
Hal White: Time at MIT and Early Days
of Research

Jerry Hausman

I am pleased to write a note in honor of Hal’s sixtieth birthday. As memory is a
tricky thing, I hope the following is accurate, but I can make no guarantees. Hal was
among my first three Ph.D. students at MIT who are Roger Gordon, Hal White, and
Paul Krugman. Since my first and only job has been at MIT, I found this supervision
enjoyable and remarkably easy. However, using these three sample points to predict
the future would have been grossly inaccurate, although mostly I have enjoyed the
many MIT (and some Harvard) students I have supervised over the years.

Hal’s thesis was in applied labor economics: “A Microeconomic Model of Wage
Determination: Econometric Estimation and Application”. His other supervisors
were Bob Solow and Lester Thurow. While the thesis uses interesting econometric
methods, the question may arise of why Hal did not write an econometric method-
ology thesis. My memory is as follows. In those days MIT students finished in four
years. Then and now, MIT has much less fellowship money than Harvard and other
universities which can guarantee a longer period. Nevertheless, MIT has far outdis-
tanced other universities in the past 40 years in producing top graduate students.
I told Hal that if by May of his third year he did not have an Econometrica level
paper in process he should do an applied thesis so he could be sure to finish on time.
Perhaps I was too young and inexperienced at the time to give better thesis advice.
However, the initial conditions of his thesis being in an applied topic had no effect
on his subsequent research which I now turn to.

Hal took three econometrics courses from me so, of course, I chose him as one
of my teaching assistants (TA). He was the TA for all three courses so we talked
about the topics in the courses a lot since my yellow note pages were just beginning
to take shape at that time. Hal was a terrific TA, which the students appreciated
given my teaching approach. He led the way for many subsequent TAs including
Bernanke, Paul Ruud, Mark Machina, Whitney Newey, and Ken West over the next
few years after Hal.
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1 My Approach Before White Standard Errors

In the introductory econometrics course I discussed at length the problem of inference
when the covariance matrix was not diagonal. How to estimate (X ′ X)−1(X ′�X)(X ′ X)−1

where � is a diagonal matrix of unknown form? I pointed out that estimation of
the middle matrix followed from the approach of the Berndt–Hall–Hall–Hausman
(BHHH) algorithm: D = �Xiεiε

′
i X ′

i where D is an estimate of the middle matrix
and (ε′

i ) is the least squares estimate of the residual. I missed the “ White standard
error” formula, but instead I took two alternative approaches. I taught that one could
do FGLS (feasible GLS) using a specification for ε2

i using a general polynomial
approach based on the Xi s. I emphasized that the specification did not have to be
“correct” since in large samples the estimates of the slope parameters would continue
to be consistent and hopefully have reduced variance relative to the OLS estimates.
However, in the absence of the correct specification for ε2

i the correct standard errors
and t-tests were not available.

My other approach was to explore “how bad” things could be if one did OLS.
Here I used “ Watson’s bound” (Watson 1967; Hannan 1970), to derive a formula
in the single regressor setup.1 The question at hand is how badly will OLS perform
relative to GLS where the answer depends on both X and �. The efficiency measure
is EB easy to compute:

E B(X,�) =
(∑

i

(
x2

i

σ 2
i

))−1

.

Thus, the relationship of xi and σ 2
i is clear. Now for fixed X the approach is to

maximize over � which is a straightforward characteristic value problem. Let us
arrange the λi s from smallest to largest, 0 ≤ λ1 ≤ · · · ≤ λN where N is the sample
size. Watson’s bound, which is attainable, is

E B(X,�) ≥ 4λ2
1λ

2
N

2 +
(

λ2
1

λ2
N

)
+

(
λ2

N
λ2

1

)

where the estimates of σ 2
i can replace the λ2

i in the efficiency bound formula. Cal-
culating the bound for some illustrative values of the ratio of the largest to smallest
variance yields:

Efficiency Bounds

Ratio 1.2 1.5 2 5 10 100
Bound 0.992 0.960 0.889 0.556 0.331 0.039

1 I also did analysis with multiple right-hand side variables but I will not discuss the results here
since they are more complicated.
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Thus, for cross-sectional data the loss in efficiency is typically not very large.
Indeed, for typical inid cross-section Xs, a refined calculation demonstrates that the
efficiency losses tend to be even smaller. However, as the number of right-hand side
variables grows, the bound deteriorates. Thus, the efficiency loss in a given sample
for fixed Xs could be calculated and a bound over all Xs was also available. However,
unless we know the correct specification for the variances in the FGLS approach, we
still did not have an estimate of the standard errors, since this period preceded the
bootstrap approach.

Here, Hal solved the problem with his formula for “White standard errors”, (White
1980). I first heard Hal’s paper at the weekly joint Harvard–MIT Thursday economet-
rics seminar. I remember walking out of the seminar and saying to my close friend
and co-author Zvi Griliches that Hal’s paper would change the way we do econo-
metrics. Zvi was less enthusiastic, perhaps since Hal had not been his student, but
my prediction appears correct given the presence of Hal’s formula in all econometric
software packages and the large number of citations. Two further points. I talked
with Hal when he was my TA about the “Hausman specification test” approach,
and his comments were quite helpful. Second, the “Newey-West standard errors”
for time series applications followed from two subsequent TAs for my econometrics
courses. So I am pleased thinking that all applied econometrics computer output for
regressions should have output arising from my TAs at MIT.

2 Finite Sample Approach

As Hal’s thesis supervisor, I now propose a possible finite sample improvement to
his approach. James MacKinnon (2011) in his paper in this volume has explored
various bootstrap approaches to improve the finite sample performance of White
standard error estimation. Since I am interested in inference, I will explore possible
improvements in the behavior of the “t-test” using Hal’s approach. However, if one is
interested in the estimated standard errors, one can derive an estimate using division
on the refined t-test divided by the OLS estimate of the parameter.

In large samples the asymptotic approximation assumes we know the true σ 2
i s.

However, in finite samples we use estimates of these parameters. Guido Keurstiener
and I explored this effect in inference from FGLS applied to difference-in-differences
models in Hausman and Kuersteiner (2008). We found that taking account of the
unknown variance estimates using Rothenberg (1988) second order Edgeworth
expansion approach led to much more accurate sized tests. Also, we found that
the second order expansion approach did better than the bootstrap in terms of power.
Thus, I have applied a modification to the second order expansion to calculation of
t-tests based on estimated White standard errors.2 I have used the design framework

2 This research is done jointly with Christopher Palmer, one of my current TAs. See Hausman and
Palmer (2012).
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from James MacKinnon’s paper to see how his bootstrap approaches compare with
the second-order refinement approach.

I consider the test statistic for linear combinations of the parameters and the null
hypothesis H0 : c′β = c′β0. The associated t-statistic is

T = c′β̂ − c′β0√
c′V̂ c

(1)

We first consider the size of various tests where the estimate of � in the middle
matrix X ′�X takes various forms:3

1. HC0: White approach using the OLS residuals to estimate

� = diag
{

û2
i

}
(2)

2. HC1: this approach adjusts for degrees of freedom and is the most commonly
used form:

� = n

n − k
diag

{
û2

i

}
(3)

3. HC2: this approach adjusts for the “leverage” values hi , where h is the diagonal
of the projection matrix.

� = diag

{
û2

i

1 − hi

}
(4)

where h = diag (PX ) and PX = X(X ′ X)
−1 X1 is the projection matrix of X .

4. HC3: this approach is an approximation to the jackknife covariance matrix HCJ,
which I emit here because it is computationally more complicated and provides
nearly identical results. HC3 is a slight modification of HC2:

� = diag

{(
ûi

1 − hi

)2
}

(5)

See MacKinnon (zou) for results containing HC4, which I omit because of its
poor size performance in this design.

I compare these estimators to the Rothenberg second order Edgeworth approxi-
mation. This approach modifies the traditional two-sided critical values Zα/2 for a
t-statistic of null hypothesis Ho2 C′β = C′β0 with the equation:

t = ±zα/2

(
1 − A

2n

)
(6)

where n is the sample size and

3 I use the same notation that MacKinnon uses in his paper in this volume.
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A = 1
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f = nX(X ′ X)
−1C

g = M� f√
f ′� f/n

Q = n(M�M − �)

M = I − PX

and ûi are the fitted residuals.
However, the experience of applying this formula in Hausman and Palmer (2012)

was that it has significant size distortions. Thus, I apply a non-parametric bootstrap
to estimate β. For B bootstrap iterations, I resample (X, y) with replacement from
the original data, forming a bootstrap sample (X∗, y∗). For each iteration j , I then
calculate β∗

j = (X∗′ X∗)−1 X∗′y∗, and take V̂ to be

V̂ = 1

B − 1

B∑
j=1

(
β̂∗

j − ¯̂
β∗) (

β̂∗
j − ¯̂

β∗)′
. (7)

I use this estimated covariance matrix to calculate the test statistic in equation (1)
and make interference by comparing it with the adjusted critical value obtained from
equation (6), an approach. I refer to as the “ second order bootstrap”, or SOB, method.

To test our approach I use the same simulation design as MacKinnon (2011)

yi = β1 +
5∑

k=2

βk Xik + ui

ui = σiεi

εi ∼ N (0, 1)

σi = z(γ ) (Xiβ)γ

Xik ∼ L N (0, 1) for k ≥ 2

βk = 1 for k < 5

β5 = 0
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where γ = 0 corresponds to homoskedasticity, and the degree of heteroskedasticity
increases with γ , and z(γ ) is a scaling factor which ensures that the average variance
of ui is equal to 1.

I first consider the sizes of the various approaches. I test H0 : β5 = 0 with a size of
α = 0.05. In Graph 1 we see that HC0 rejects much too often as is well-recognized.

The alternatives HC1, HC2, and HC3 offer improvements, but all have significant
size distortions. The “second order bootstrap” (SOB) approach has acceptable size
performance, being the best of the alternatives considered.4

I now consider power performance and compare the SOB approach to a bootstrap
approach to the White test. It is well recognized, e.g., (Hall 1992), the bootstrapped
test statistic for a pivotal situation has the same order of approximation as the second-
order approach. MacKinnon finds the wild bootstrap to perform the best using the
following specification. The wild bootstrap involves forming B bootstrap samples
using the data generating process

y∗
i = Xi β̃ + f (ũi )v

∗
i ,

4 I do not consider the bootstrap form of the White test since Hausman and Palmer (2012) find it
has significant size distortions and will be inferior in terms of the higher order expansions to the
bootstrap version of the test I consider below.
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where ũi are residuals from an estimate β̃ of β, f (·) is one of several candidate
transformations of the estimated residuals, and v∗

i is a random variable with mean
0 and variance 1, such that E

(
f (ũi )v

∗
i

) = 0. For each bootstrap sample
{

Xi , y∗
i

}
,

I estimate β̂∗
j where j indexes the bootstrap sample, j = 1, . . ., B, and calculates

the test statistic of interest, as in (1), using a particular heteroskedasticity-robust
estimator of the variance of β̂.

MacKinnon (2011) shows that using the wild bootstrap to estimate the distribution
of test statistics based on HC1, using v∗

i ∈ {−1, 1} with equal probability, restricted
residuals (i.e. β̃ is estimated imposing the null hyptothesis), and a transformation
of the residuals corresponding to HC3, f (ũi ) = ũi

1−h̃i
(where h̃i an element of the

diagonal of the restricted projection matrix PX̃ ) performs best in terms of size and
power.

I now compare the second order-bootstrap (SOB) approach to the best bootstrap
approach found by MacKinnon. In Graph 2, we see that the SOB approach has good
size properties as does the wild bootstrap (WB), by construction.

However, the SOB statistic has considerably greater power than the WB. In Graph
3 for the case of severe heteroskedasticity, we find a similar result.
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The size of both tests is quite accurate, but the power of the SOB approach exceeds
the power of the WB by a considerable margin. Thus, I conclude that the second
order bootstrap (SOB) approach appears to be better than alternative approaches to
calculating the White test in finite samples.

The refinement to the t-tests arising from the second-order bootstrap approach
is straightforward to program for econometric software. Thus, I recommend that
econometric software providers include the refined SOB formula since it is typically
(weakly) more accurate than the standard White formula.5

Hal has written many other important papers since his heteroscedasticity paper.
I recommend to the reader the papers in this volume to see the breadth of Hal’s
research interests and contributions. I take great pride in Hal’s accomplishments
over the years and congratulate him and the conference organizers for celebrating
Hal’s sixtieth birthday.

Acknowledgments I thank Christopher Palmer for assisting in the preparation of this note.

5 Similar refinements could be quite useful in the case of Newey-West and GMM estimated covari-
ance matrices, where the number of unknown parameters estimates is significantly larger than in
the heteroscedasticity situation.
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