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Abstract In recent years, an impressive body of research on predictive accuracy
testing and model comparison has been published in the econometrics discipline. Key
contributions to this literature include the paper by Diebold and Mariano (J Bus Econ
Stat 13:253–263, 1995) which sets the groundwork for much of the subsequent work
in the area, West (Econometrica 64:1067–1084, 1996) who considers a variant of
the DM test that allows for parameter estimation error in certain contexts, and White
(Econometrica 68:1097–1126, 2000) who develops testing methodology suitable for
comparing many models. In this chapter, we begin by reviewing various key testing
results in the extant literature, both under vanishing and non-vanishing parameter
estimation error, with focus on the construction of valid bootstrap critical values
in the case of non-vanishing parameter estimation error, under recursive estimation
schemes, drawing on Corradi and Swanson (Int Econ Rev 48:67–109, 2007a). We
then review recent extensions to the evaluation of multiple confidence intervals and
predictive densities, for both the case of a known conditional distribution Corradi and
Swanson (J Econ 135:187–228, 2006a; Handbook of economic forecasting Elsevier,
Amsterdam, pp 197–284) and of an unknown conditional distribution. Finally, we
introduce a novel approach in which forecast combinations are evaluated via the
examination of the quantiles of the expected loss distribution. More precisely, we
compare models looking at cumulative distribution functions (CDFs) of prediction
errors, for a given loss function, via the principle of stochastic dominance, and we
choose the model whose CDF is stochastically dominated, over some given range of
interest.
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1 Introduction

One of the key contributions permeating the econometric research of Halbert White
is the development of statistical tools for specification, estimation, and inference
with possibly misspecified models. His main message is that, even though models
are merely (crude) approximations to reality, important things can be learned from
carrying out inference and generally analyzing “wrong” models. Certainly, the notion
of misspecification is absolutely crucial in the context of out-of-sample prediction.
After all, if one is carrying out a predictive accuracy assessment in order to “choose”
between two competing models, then, at the very least, one of the models is probably
misspecified.

In this chapter, we begin by assuming that we are given multiple predictions,
arising from multiple different models. Our objective is either to select the model(s)
producing the more accurate predictions, for a given loss function, or alternatively,
to eliminate the models giving the least accurate predictions. Furthermore, in many
such situations, we can choose a benchmark or reference model. This can be a model
suggested by economic theory, can be the winner of past competitions, or can simply
be a model commonly used by practitioners. The key challenge in this case is to assess
whether there exists a competing model that outperforms the benchmark. However,
if we sequentially compare the reference model with each of its competitors, we may
run into problems. In fact, as the number of competitors increases, the probability
of picking an alternative model just by “luck”, and not because of its intrinsic merit,
increases and eventually will reach one. This is the well-known problem of data
mining or data snooping.

The starting point for our discussion is Diebold and Mariano (1995), who develop
the “workhorse” of predictive accuracy tests. Two models are compared by assessing
their relative predictive losses, given a particular loss function. Assuming that para-
meter estimation error vanishes asymptotically and that the models are nonnested
ensures that the DM test is asymptotically normally distributed, regardless of whether
or not the loss function is differentiable.1 West (1996) allows for non-vanishing para-
meter estimation error in the DM test, although at the cost of assuming differentia-
bility. In White (2000), a sequence of DM tests are constructed, and the supremum
thereof (called the reality check) is used to test whether a given “benchmark” model
is at least as accurate as all competitors. The null hypothesis is thus that no com-
peting model can produce a more accurate prediction than the benchmark model,
for a given loss function. The key contribution of White (2000) is that he recog-
nizes the importance of sequential test bias when comparing many (rather than two,
say) models, and he develops the asymptotic theory allowing for the valid construc-

1 For a discussion of nested models in the current context, see Clark and McCracken (2001); Corradi
and Swanson (2006b).
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tion of critical values for his reality check, using, for example, block bootstrap and
related bootstrap techniques. In related work, Corradi and Swanson (2006a,2006b
and 2007a,2007b) extend the reality check version of the DM test to the evaluation of
confidence intervals and predictive densities (rather than focussing on the evaluation
of point predictive loss measures). They additionally develop bootstrap techniques
for addressing parameter estimation error, and allow for the evaluation of condi-
tional distributions of both known and unknown functional form. By discussing all
of the above papers, we undertake to construct a path describing developments in the
predictive accuracy testing literature.

Of note is that if any of the above tests fail to reject the null hypothesis that no
competitor outperforms the benchmark model, the obvious consequence is to base
prediction only on the benchmark model. The tests, thus, are of a “model selection”
variety. This is somewhat in contrast with the alternative approach of using forecast
combination (see Elliott and Timmermann 2004) to construct “optimal” predictions.
In light of this observation, we conclude this chapter by proposing a new stochastic
dominance type test that combines features of DM and reality check tests with fore-
cast combination. In particular, we suggest a model selection method for selecting
among alternative combination forecasts constructed from panel of forecasters. More
broadly, we close by arguing that the notions of stochastic dominance discussed in
this context may have a variety of uses in the predictive accuracy testing literature.

Before turning to our discussion of the above tests, it is worth making two com-
ments that further underscore the sense in which the results of the above papers
build on one another. In particular, recall that the prediction errors used to construct
DM-type tests arise in at least two ways. First, there are situations in which we have
series of prediction errors, although we do not know the models used to generate
the underlying predictions. For example, this situation arises when we have fore-
casts from different agents, or professional forecasters. Alternatively, we may have
a sequence of Sharpe ratios or returns from different trading rules, as in the financial
applications of Sullivan et al. (1999, 2001). Second, there are situations in which
we are interested in comparing estimated models. For example, we may want to
decide whether to predict tomorrow’s inflation rate using an autoregressive model,
a threshold model, or a Markov switching model. The parameters of these models
are generally estimated. If the number of observations used to estimate the model is
larger than the number of observations used for forecast evaluation, or if the same
loss function is used for in-sample estimation and out-of-sample prediction (e.g.,
estimation by ordinary least squares (OLS) and a quadratic loss function), then the
contribution of estimated parameters can be ignored. Otherwise, it has to be taken
into account. Corradi and Swanson (2006a, 2007a) develop bootstrap procedures
which properly capture the contribution of parameter estimation error in the case of
rolling or recursive estimation schemes, respectively.

Additionally, and as mentioned above, DM- and reality check-type tests compare
point forecasts (and forecast errors) from two or multiple models, respectively. For
example, we may want to pick the model producing the most accurate point pre-
dictions of the inflation rate. However, there are situations in which we are instead
interested in finding the model producing the most accurate interval predictions (e.g.
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that inflation will be within a given interval). Predictive interval accuracy is partic-
ularly important in the management of financial risk in the insurance and banking
industries, where confidence intervals or entire conditional distributions are often
examined. Evaluation of Value at Risk and Expected Shortfall are two main exam-
ples (see Duffie and Pan (1997) for further discussion). Corradi and Swanson (2005,
2006a,b, 2007b) extend the DM and reality check tests to the case of intervals and
conditional distributions, using both simulated and historical data.

The rest of the chapter is organized as follows. In Sect. 2 we discuss the DM and
reality check tests, and outline how to construct valid bootstrap p-values in the case of
non-vanishing parameter estimation error, with both recursive and rolling estimation
schemes. In Sect. 3 we extend the DM and reality check tests to the evaluation of
multiple confidence intervals and predictive densities. Finally, in Sect. 4 we outline
a new technique that draws together concepts of forecast combination with multiple
model evaluation. Namely, we introduce a stochastic dominance-type approach in
which forecast combinations are evaluated via the examination of the quantiles of the
expected loss distribution. More precisely, we compare models by prediction error
CDFs, for given loss functions, via the principle of stochastic dominance, and we
choose the model whose CDF is stochastically dominated, over some given range of
interest.

2 DM and Reality Check Tests

2.1 The Case of Vanishing Estimation Error

We begin by outlining the DM (1995) and White (2000) tests, when parameter
estimation error is asymptotically negligible. Consider a collection of K +1 models,
where model 0 is treated as the benchmark or reference model and models k =
1, . . . , K compose the set of competing models. For the DM test, K = 1. For the
reality check, K > 1. The h-step ahead forecast error associated with model k, is
ui,t+h = yt+h − φk(Zt , θ†

k ). As θ†
k is unknown, we do not observe the prediction

error uk,t+h, but we only observe ûk,t+h = yt+h − φk(Zt ,̂θk,t ), where ̂θk,t is an
estimator of θ†

k based on observations available at time t.
The common practice in out-of-sample prediction is to split the total sample of

T observations into two subsamples of length R and P, with R + P = T . One uses
the first R observations to estimate a candidate model, and construct the first h-step
ahead prediction error. Then, one uses R + 1 observations to re-estimate the model
and compute the second h-step ahead prediction error, and so on, until one has a
sequence of (P − h + 1) h-step ahead prediction errors.2 If we use this recursive

2 Here, we use a recursive estimation scheme, where data up to time t ≥ R are used in estimation.
West and McCracken (1998) also consider a rolling estimation scheme, in which a rolling windows
of R observations is used for estimation.
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estimation scheme, at each step the estimated parameters are given by

̂θk,t = arg max
θk

⎧

⎨

⎩

1

t

t
∑

j=1

qk, j
(

Xk,t , θk
)

⎫

⎬

⎭

for t ≥ R, (1)

where qk, j can be thought of as the quasi-likelihood function associated with model
k.3 Under stationarity, θ†

k = arg maxθi E(qk, j
(

Xk,t , θk
)

.

Hereafter, for notational simplicity, we consider only the case of h = 1.

For a given loss function, g, the DM test evaluates the following hypotheses4:

H0 : E
(

g(u0,t+1) − g(u1,t+1)
) = 0

versus
HA : E

(

g(u0,t+1) − g(u1,t+1)
) �= 0.

If R → ∞ at a faster rate than P → ∞, as T → ∞, then, assuming that models
“0” and “1” are nonnested, the limiting distribution of

̂DM P = 1√
P

T −1
∑

t=R

(

g(̂u0,t+1) − g(̂u1,t+1)
)

/σ̂S

is N (0, 1), when scaled appropriately by σ̂S, a heteroscedasticity and autocorrelation
consistent (HAC) estimation of the variance of 1√

P

∑T −1
t=R g(̂u0,t+1) − g(̂u1,t+1).

Evidently, ̂DM P is the HAC t-statistic associated with the intercept in a regression
of the loss differential series, g(̂u0,t+1)−g(̂u1,t+1), on a constant. For a discussion of
the limit distribution of this test statistic when the two forecasting models are nested,
see Clark and McCracken (2001). Note also that g need not be differentiable, unless
one wishes to adjust the limit distribution for the effect of parameter estimation
error in cases where P/R → π, as P, R, T − > ∞, 0 < π < ∞, as in West
(1996). Moreover, even if P/R → π, as P, R, T − > ∞, 0 < π < ∞, parameter
estimation error is asymptotic negligible whenever we use the same loss function for
in-sample estimation and out-of-sample prediction (see below for further discussion).

Now, for a given loss function, g, the reality check evaluates the following
hypotheses:

3 If we instead use a rolling estimation scheme, then

˜θk,t = arg max
θk

⎧

⎨

⎩

1

R

t
∑

j=t−R+1

qk, j
(

Xk,t , θk
)

⎫

⎬

⎭

R ≤ t ≤ T .

4 See Christoffersen and Diebold (1996, 1997) and Elliott and Timmermann (2004, 2005) for a
detailed discussion of loss functions used in predictive evaluation.
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H0 : max
k=1,...,K

E
(

g(u0,t+1) − g(uk,t+1)
) ≤ 0

versus
HA : max

k=1,...,K
E
(

g(u0,t+1) − g(uk,t+1)
)

> 0.

The null hypothesis is that no competing model outperforms the benchmark (i.e.,
model “0”), for a given loss function, while the alternative is that at least one com-
petitor outperforms the benchmark. By jointly considering all competing models, the
reality check controls the family-wise error rate (FWER), and circumvents so-called
“data snooping” problems. In fact, the test is designed to ensure that the probability
of rejecting the null when it is false is smaller than or equal to a fixed nominal level, α.
The reality check statistic is given by:

̂SP = max
k=1,...,K

̂SP (0, k), (2)

where

̂SP (0, k) = 1√
P

T −1
∑

t=R

(

g(̂u0,t+1) − g(̂uk,t+1)
)

, k = 1, . . . , K .

Letting SP (0, k) = 1√
P

∑T −1
t=R

(

g(u0,t+1) − g(uk,t+1)
)

, it is immediate to see that,

̂SP (0, k) − SP (0, k) = E
(∇θ0g(u0,t+1)

) 1√
P

T
∑

t=R+1

(

̂θ0,t − θ†
0

)

− E
(∇θk g(uk,t+1)

) 1√
P

T
∑

t=R+τ

(

̂θk,t − θ†
k

)

+ op(1). (3)

Now, if g = qk, then by the first-order conditions, E
(∇θk g(uk,t+1)

) = 0. Thus, if
we use the same loss function for estimation and prediction (e.g., we estimate the
model by OLS and use a quadratic loss function), then parameter estimation error is
asymptotically negligible. Furthermore, if P/R → 0, as P, R, T − > ∞ (i.e., the
sample used for estimation grows at a faster rate than the sample used for forecast
evaluation), then parameter estimation is again asymptotically negligible. Otherwise,
it has to be taken into account.

Proposition 2.2 in White (2000) establishes that

max
k=1,...,K

1√
P

T −1
∑

t=R

((

g(̂u0,t+1) − g(̂uk,t+1)
)− μk

) d→ max
k=1,...,K

Zk,
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where μk = E
(

g(̂u0,t+1) − g(̂uk,t+1)
)

, Z = ( Z1, . . . , Zk)
	 is distributed as

N (0, V ) and V has typical element

v j,k = lim
P→∞ Cov

(

1√
P

T
∑

t=R+τ

(

g(̂u0,t+1) − g(̂u j,t+1)
)

,

1√
P

T
∑

t=R+τ

(

g(̂u0,t+1) − g(̂uk,t+1)
)

)

. (4)

Because the maximum of a Gaussian process is not a Gaussian process, the con-
struction of p-values for the limiting distribution above is not straightforward. White
proposes two alternatives: (i) a simulation-based approach and (ii) a bootstrap-based
approach. The first approach starts from a consistent estimator of V , say ̂V . Then,
for each simulation s = 1, . . . , S, we construct

̂d(s)
P =

⎛

⎜

⎝

̂d(s)
1,P
...

̂d(s)
K ,P

⎞

⎟

⎠
=
⎛

⎝

v̂1,1 · · · v̂1,K
...

. . .
...

v̂K ,1 · · · v̂K ,K

⎞

⎠

1/2⎛

⎜

⎝

η
(s)
1
...

η
(s)
K

⎞

⎟

⎠
,

where
(

η(s)
1 , . . . , η(s)

K

)	
is drawn from a N(0, IK ). Next, we compute maxk=1,...,K

∣

∣

∣

̂d(s)
P

∣

∣

∣, and the (1−α)-percentile of its empirical distribution. This simulation- based

approach requires the estimation of V . Note that we can use an estimator of V
which captures the contribution of parameter estimation error, along the lines of
West (1996) and West and McCracken (1998). However, if K is large, and forecasting
errors exhibit a high degree of time dependence, estimators of the long-run variance
become imprecise and ill-conditioned, making inference unreliable, especially in
small samples. This problem can be overcome using bootstrap critical values.

White (2000) outlines the construction of bootstrap critical values when the con-
tribution of parameter estimation error to the asymptotic covariance matrix is asymp-
totically negligible. In this case, we resample blocks of g(̂u0,t+1) − g(̂uk,t+1) and,
for each bootstrap replication b = 1, . . . , B, calculate

̂S∗(b)
P (0, k) = 1√

P

T
∑

t=R+τ

(

g∗(̂u0,t+1) − g∗(̂uk,t+1)
)

− (

g(̂u0,t+1) − g(̂uk,t+1)
)

.

Then, we compute the bootstrap statistic as maxk=1,...,K

∣

∣

∣

̂S∗(b)
P (0, k) −̂SP (0, k)

∣

∣

∣

and the (1 − α)-percentile of the empirical distribution of B statistics is used for
inference. Evidently, the same approach discussed above can be used for the DM
test, although such is clearly not needed, given the earlier results discussed, in cases
where parameter estimation error vanishes asymptotically.
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Before turning to the issue of constructing DM and reality check p-values in the
case of non-vanishing parameter estimation error, it is worthwhile to review some
other recent developments in the reality check literature.5

2.1.1 Controlling for Irrelevant Models

From the statistic in (2), it is immediate to see that any model which is strictly
dominated by the benchmark does not contribute to the limiting distribution, simply
because it does not contribute to the maximum. On the other hand, all models con-
tribute to the limiting distribution of either the simulated or the bootstrap statistic.
Thus, by introducing irrelevant models, the overall p-value increases. In fact, for
a given level α, the probability of rejecting the null when it is false is α when all
models are as good as the benchmark (i.e. when E

(

g(u0,t+1) − g(uk,t+1)
) = 0 for

k = 1, . . . , K ), otherwise the probability of rejecting the null is smaller than α, and
decreases as the number of irrelevant models increases. While the reality check is
able to control the family-wise error rate, and so avoids the issue of data snooping,
it may thus be rather conservative.

For this reason, attempts have been made to modify the reality check in such a
way as to control for both the family-wise error rate and the inclusion of irrelevant
models. Hansen (2005) suggests a variant of the reality check, called the Superior
Predictive Ability (SPA) test, which is less sensitive to the inclusion of poor models
and thus less conservative. The SPA statistic is given by

TP = max

⎧

⎨

⎩

0, max
k=1,...,K

1√
P

∑T
t=R+τ

̂dk,t
√

v̂k,k

⎫

⎬

⎭

,

where ̂dk,t = (

g(̂u0,t+1) − g(̂uk,t+1)
)

and v̂k,k is defined as in (4). The bootstrap

counterpart to TP at replication b, T ∗(b)
P is given by

T ∗(b)
P = max

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, max
k=1,...,K

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1√
P

T
∑

t=R+τ

(

̂d∗(b)
k,t − ̂dk,t 1{m̂k,P>−v̂k,k

√
2 ln ln P/P}

)

√

v̂k,k

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

Here, p-values for the SPA statistic are given by 1/B
∑B

b=1 1{
T ∗(b)

P >TP

}. The logic

underlying the construction of the SPA p-values is the following. When a model is
too slack, and so it does not contribute to TP , the corresponding bootstrap moment
condition is not recentered, and so the bootstrap statistic is also not affected by the

5 In the sequel, for ease of notation, the version of the DM test that we discuss will be ̂SP (0, k),

with k = 1.
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irrelevant model. The fact that very poor models do not contribute to the bootstrap
p-values makes the SPA p-values less conservative than the reality check p -values.
Nevertheless, it cannot be established that the SPA test is uniformly more powerful
than the reality check test. Corradi and Distaso (2011), using the generalized moment
selection approach of Andrews and Soares (2010), derive a general class of superior
predictive accuracy tests, that control for FWER and for the contribution of irrelevant
models. They show that Hansen’s SPA belongs to this class. Additionally, Romano
and Wolf (2005) suggest a multiple step extension of the reality check which ensures
tighter control of irrelevant models. A review of alternative ways of controlling for the
overall error rate is provided in Corradi and Distaso (2011), and references contained
therein.

2.1.2 Conditional Predictive Ability

In the Diebold-Mariano framework, as well as in the reality check framework, model
k and model 0 are considered equally good, in terms of a given loss function,
g, if E

(

g
(

ut,0
)− g

(

ut,k
)) = 0. This is a statement about forecasting models. In

fact, the null hypothesis is evaluated at the “pseudo-true” value for the parameters.
Giacomini and White (2006) propose a novel approach in which model k and model
0 are considered equally good if E

(

g
(

ût,0
)− g

(

ût,k
) |Gt

) = 0, where Gt is an
information set, containing (part of) the history available up to time t . The two
key differences between unconditional and conditional predictive accuracy tests are:
(i) model comparison is based on estimated parameters in the GW approach, rather
than on their probability limits, and (ii) models in the GW approach are evaluated
according to the expected loss conditional on a given information set Gt , rather than
unconditionally. The above is a statement about forecasting methods rather than fore-
casting models. The notion is that not only the model, but also the way it is estimated
matters. Needless to say, if a large number of observations is used for estimation,
the estimated parameters get close to their probability limits. For this reason, GW
suggest using relatively short observation windows, whose length is fixed and does
increase with the sample size. In this way, estimated parameters can be treated as
strong mixing random variables.

Recall also that the ̂DM P is the HAC t-statistic associated with the intercept
in a regression of the loss differential series, g(̂u0,t+1) − g(̂u1,t+1), on a constant.
Evidently, DM and subsequent tests are easily made conditional by including other
conditioning variables in the regression.

2.2 Bootstrap Critical Values for Recursive Estimation Schemes

Whenever g �= qk, for at least some k, and P/R → π �= 0, then parameter esti-
mation error contributes to the variance of the limiting distribution of the DM and
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reality check tests. One reason for using a different loss function for estimation and
prediction occurs when, for example, we use OLS for estimation, but then we want
to use an asymmetric loss function which penalizes positive and negative errors in a
different manner, when comparing predictive accuracy (see Zellner 1986; Christof-
fersen and Diebold 1997). More specifically, when parameter estimation error does

not vanish, we need to take into account the contribution of 1√
P

∑T
t=R+τ

(

̂θk,t − θ†
k

)

to the asymptotic variance in (4). Hence, we need a bootstrap procedure which is
valid for recursive m-estimators, in the sense that its use suffices to mimic the limiting

distribution of 1√
P

∑T −1
t=R

(

̂θk,t − θ†
k

)

.

One approach to the above issue of parameter estimation error is to use the block
bootstrap for recursive m-estimators for constructing critical values. In this context, it
is important to note that earlier observations are used more frequently than temporally
subsequent observations, when forming test statistics. On the other hand, in the stan-
dard block bootstrap, all blocks from the original sample have the same probability
of being selected, regardless of the dates of the observations in the blocks. Thus, the
bootstrap estimator which is constructed as a direct analog of̂θt is characterized by a
location bias that can be either positive or negative, depending on the sample that we
observe. In order to circumvent this problem, Corradi and Swanson (2007a) suggest
a recentering of the bootstrap score which ensures that the new bootstrap estimator,
which is no longer the direct analog of̂θk,t , is asymptotically unbiased. It should be
noted that the idea of recentering is not new in the bootstrap literature for the case of
full sample estimation. In fact, recentering is necessary, even for first-order validity,
in the case of overidentified generalized method of moments (GMM) estimators (see
e.g. Hall and Horowitz 1996; Andrews 2002; Inoue and Shintani 2006). This is due
to the fact that, in the overidentified case, the bootstrap moment conditions are not
equal to zero, even if the population moment conditions are. However, in the context
of m−estimators using the full sample, recentering is needed only for higher order
asymptotics, but not for first-order validity, in the sense that the bias term is of smaller
order than T −1/2 (see e.g. Andrews 2002; Goncalves and White 2004). In the case
of recursive m−estimators, on the other hand, the bias term is instead of the order
T −1/2, so that it does contribute to the limiting distribution. This points to a need for
recentering when using recursive estimation schemes.

To keep notation simple, suppose that we want to predict, yt using one of its past
lags, and one lag of vector of additional variables, Xt , and let Zt = (yt , Xt ). Using
the overlapping block resampling scheme of Kunsch (1989), at each replication, we
draw b blocks (with replacement) of length l from the sample Wt = (yt , Zt−1),

where bl = T − 1. Let W ∗
t = (y∗

t , Z∗
t−1) denote the resampled observations. As

a bootstrap counterpart to ̂θk,t , Corradi and Swanson (2007a) suggest constructing
̂θ∗

k,t , defined as follows:
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̂θ∗
k,t = arg min

θk

1

t

t
∑

j=1

(

qk(y∗
j , Z∗

j−1, θk) − θ′
k

(

1

T

T −1
∑

h=1

∇θk qk(yh, Zh−1,̂θk,t )

))

,

(5)
where R ≤ t ≤ T − 1, k = 0, 1, . . . , K .

Note that ̂θ∗
k,t is not the direct analog of ̂θk,t in (1). Heuristically, the additional

recentering term in (5) has the role of offsetting the bias that arises due to the fact
in the that earlier observations have the same chance of being drawn as tempo-
rally subsequent observations. Theorem 1 in Corradi and Swanson (2007a) estab-

lishes that the limiting distribution of 1√
P

∑T −1
t=R

(

̂θ∗
k,t −̂θk,t

)

is the same as that

of 1√
P

∑T −1
t=R

(

̂θk,t − θ†
k

)

, conditional on the sample, and for all samples except a

set with probability measure approaching zero. We can easily see how this result
allows for the construction of valid bootstrap critical values for the reality check. Let

ûk,t+1 = yt+1 − φk
(

Zt ,̂θk,t
)

and û∗
k,t+1 = y∗

t+1 − φk

(

Z∗
t ,̂θ∗

k,t

)

, so that the reality

check statistic ̂SP is defined as in (2). The bootstrap counterpart of ̂SP is given by

̂S∗
P = max

k=1,...,K
S∗

P (0, k),

where

̂S∗
P (0, k) = 1√

P

T −1
∑

t=R

⎡

⎣

(

g(y∗
t+1 − φ0(Z∗

t ,̂θ∗
0,t )) − g(y∗

t+1 − φk(Z∗
t ,̂θ∗

k,t ))
)

−
⎧

⎨

⎩

1

T

T −1
∑

j=1

(

g(y j+1 − φ0(Z j ,̂θ0,t )) − g(y j+1 − φk(Z j ,̂θk,t ))
)

⎫

⎬

⎭

⎤

⎦ .

(6)

It is important to notice that the bootstrap statistic in (6) is different from the
“usual” bootstrap statistic, which is defined as the difference between the statistic
computed over the sample observations and over the bootstrap observations. In fact,
in ̂S∗

P (0, k), the bootstrap (resampled) component is constructed only over the last
P observations, while the sample component is constructed over all T observations.
The percentiles of the empirical distribution of ̂S∗

P can be used to construct valid
bootstrap critical values for ̂SP , in the case of non-vanishing parameter estimation
error. Their first-order validity is established in Proposition 2 in Corradi and Swanson
(2007a). Valid bootstrap critical values for the rolling estimation case are outlined in
Corradi and Swanson (2006a).
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3 Extending the DM and Reality Check Tests to Forecast
Interval Evaluation

3.1 The Case of Known Distribution Function

Thus far, we have discussed pointwise predictive accuracy testing (i.e. wherein mod-
els are evaluated on the basis of selecting the most accurate pointwise forecasts of
a given variable). However, there are several instances in which merely having a
“good” model for the conditional mean and/or variance may not be adequate for the
task at hand. For example, financial risk management involves tracking the entire
distribution of a portfolio, or measuring certain distributional aspects, such as value
at risk (see e.g. Duffie and Pan 1997). In such cases, models of conditional mean
and/or variance may not be satisfactory. A very small subset of important contribu-
tions that go beyond the examination of models of conditional mean and/or variance
include papers which: assess the correctness of conditional interval predictions (see
e.g. Christoffersen 1998); assess volatility predictability by comparing unconditional
and conditional interval forecasts (see e.g. Christoffersen and Diebold 2000); and
assess conditional quantiles (see e.g. Giacomini and Komunjer 2005). A thorough
review of the literature on predictive interval and predictive density evaluation is
given in Corradi and Swanson (2006b).

Corradi and Swanson (2006a) extend the DM and reality check tests to predictive
density evaluation, and outline a procedure for assessing the relative out-of-sample
predictive accuracy of multiple misspecified conditional distribution models that can
be used with rolling and recursive estimation schemes. The objective is to com-
pare these models in terms of their closeness to the true conditional distribution,
F0(u|Zt , θ0) = Pr(yt+1 ≤ u|Zt ).6 In the spirit of White (2000), we choose a partic-
ular conditional distribution model as the “benchmark” and test the null hypothesis
that no competing model can provide a more accurate approximation of the “true”
conditional distribution, against the alternative that at least one competitor outper-
forms the benchmark model. Following Corradi and Swanson (2005), accuracy is
measured using a distributional analog of mean square error. More precisely, the
squared (approximation) error associated with model k, k = 1, . . . , K , is mea-

sured in terms of the average over U of E

(

(

Fk(u|Zt , θ†
k ) − F0(u|Zt , θ0)

)2
)

,

where u ∈ U , and U is a possibly unbounded set on the real line. Addition-
ally, integration over u in the formation of the actual test statistic is governed by
φ(u) ≥ 0, where

∫

U φ(u) = 1. Thus, one can control not only the range of u,
but also the weights attached to different values of u, so that more weight can be
attached to important tail events, for example. We also consider tests based on an
analogous conditional confidence interval version of the above measure. Namely,

6 With a slight abuse of notation, in this section the subscript 0 denotes the “true” conditional
distribution model, rather than the benchmark model; and the subscript 1 thus now denotes the
benchmark model.
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E

(

((

Fk(u|Zt , θ†
k ) − Fk(u|Zt , θ†

k )
)

− (F0(u|Zt , θ0) − F0(u|Zt , θ0))
)2
)

, where

u and u are “lower” and “upper” bounds on the confidence interval to be evaluated.
For notational simplicity, in the sequel we focus on conditional forecast interval
comparison, and set u = −∞ and u = u. For example, we say that model 1 is more
accurate than model 2, if

E

(

(

F1(u|Zt , θ†
1) − F0(u|Zt , θ0)

)2 −
(

F2(u|Zt , θ†
2) − F0(u|Zt , θ0)

)2
)

< 0.

This measure defines a norm and it implies a standard goodness of fit measure.
Another measure of distributional accuracy available in the literature

is the Kullback-Leibler Information Criterion, KLIC (see e.g. White 1982; Vuong
1989; Fernandez-Villaverde and Rubio-Ramirez 2004; Amisano and Giacomini
2007; Kitamura 2004). According to the KLIC approach, we should choose Model
1 over Model 2 if

E
(

log f1

(

yt+1|Zt , θ†
1

)

− log f2

(

yt+1|Zt , θ†
2

))

> 0.

The KLIC is a sensible measure of accuracy, as it chooses the model which on
average gives higher probability to events which have actually occurred. The draw-
back is that the KLIC approach cannot be easily generalized to compare conditional
intervals.

The hypotheses of interest are formulated as:

H0 : max
k=2,...,K

(

μ2
1(u) − μ2

k(u)
)

≤ 0

versus
HA : max

k=2,...,K

(

μ2
1(u) − μ2

k(u)
)

> 0,

where μ2
k(u) = E

(

(

1{yt+1 ≤ u} − Fk(u|Zt , θ†
k )
)2
)

, k = 1, . . . , K . Note that

for any given u, E(1{yt+1 ≤ u}|Zt ) = Pr(yt+1 ≤ u|Zt ) = F0(u|Zt , θ0). Thus,
1{yt+1 ≤ u} − Fk(u|Zt , θ†

i ) can be interpreted as an “error” term associated with
computation of the conditional expectation under Fk .

The statistic is:

Z P = max
k=2,...,K

Z P,u,τ (1, k), (7)

with
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Z P,u(1, k) = 1√
P

T −1
∑

t=R

(

(

1{yt+1 ≤ u} − F1(u|Zt ,̂θ1,t )
)2

− (1{yt+1 ≤ u} − Fk(u|Zt ,̂θk,t )
)2
)

,

where, as usual, R + P = T, and̂θk,t can be either a recursive or a rolling estimator.
The limiting distribution of (7) is established in Proposition 1(a) in Corradi and
Swanson (2006a), who also suggest how to construct valid bootstrap critical values,
for both the recursive and the rolling estimation cases.

3.2 The Case of Unknown Distribution Function

There are cases in which the distribution function is not known in closed form. This
problem typically arises when the variable we want to predict is generated by highly
nonlinear dynamic models. Very important examples are Dynamic Stochastic Gen-
eral Equilibrium (DSGE) Models, which generally cannot be solved in closed form
(see Bierens (2007), for a discussion of different ways of approximating DSGEs).
Since the seminal papers by Kydland and Prescott (1982), Long and Plosser (1983)
and King et al. (1988a,b), there has been substantial attention given to the problem
of reconciling the dynamic properties of data simulated from DSGE models, and in
particular from real business cycle (RBC) models, with the historical record. A partial
list of advances in this area includes: (i) the examination of how RBC-simulated data
reproduce the covariance and autocorrelation functions of actual time series (see e.g.,
Watson 1993); (ii) the comparison of DSGE and historical spectral densities (see e.g.
Diebold et al. 1998); (iii) the evaluation of the difference between the second order
time series properties of vector autoregression (VAR) predictions and out-of-sample
predictions from DSGE models (see e.g. Schmitt-Grohe 2000); (iv) the construction
of Bayesian odds ratios for comparing DSGE models with unrestricted VAR models
(see e.g. Gomes and Schorfheide 2002; Fernandez-Villaverde and Rubio-Ramirez
2004); (v) the comparison of historical and simulated data impulse response func-
tions (see e.g. Cogley and Nason 1995); (vi) the formulation of “Reality” bounds
for measuring how close the density of an DSGE model is to the density associated
with an unrestricted VAR model (see e.g. Bierens and Swanson 2000); and (vii) loss
function based evaluation of DSGE models (see e.g. Schorfheide 2000).

The papers cited above evaluate the ability of a given DSGE model to reproduce a
particular characteristic of the data. Corradi and Swanson (2007b) use a DM (reality
check) approach to evaluate DSGEs in terms of their ability to match (with historical
data) the joint distribution of the variables of interest, and provide an empirical
application in terms of the comparison of several variants of the stochastic growth
model of Christiano (1988). As the distribution function is not known in closed form,
we replace it with its simulated counterpart.
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To keep notation simple, as above, we consider the case of confidence intervals,
setting u = −∞, and u = ∞. Hereafter, F represents the joint distribution of a
variable of interest, say Yt ( e.g. output growth and hours worked). The hypotheses
are:

H0 : max
k=2,...,K

(

(

F0(u; θ0) − F1(u; θ†
1)
)2 −

(

F0(u; θ0) − Fk(u; θ†
k )
)2
)

≤ 0

HA : max
k=2,...,K

(

(

F0(u; θ0) − F1(u; θ†
1)
)2 −

(

F0(u; θ0) − Fk(u; θ†
k )
)2
)

> 0.

Thus, under H0, no model can provide a better approximation of the joint CDF than
model 1. In order to test H0 versus HA, the relevant test statistic is

√
T ZT,S , where

ZT,S = max
k=2,...,K

√
T Zk,T,S(u), (8)

Zk,T,S(u) = 1

T

T
∑

t=1

(

1{Yt ≤ u} − 1

S

S
∑

n=1

1{Y1,n(̂θ1,T ) ≤ u}
)2

− 1

T

T
∑

t=1

(

1{Yt ≤ u} − 1

S

S
∑

n=1

1{Yk,n(̂θk,T ) ≤ u}
)2

,

and Yk,n(̂θk,T ) represents simulated counterparts of Yt (i.e., the variables simulated
under model k at simulation n, using the estimated parameters ̂θk,T ). Heuristically,
if S grows sufficiently fast with respect to T, then 1

S

∑S
n=1 1{Yk,n(̂θk,T ) ≤ u} can

be treated as the “true” distribution of the data simulated under model k. Broadly
speaking, we are comparing different DSGE models, on the basis of their ability
to match a given simulated joint CDF with that of the historical data. As we are
comparing joint CDFs, the statistic in (8) provides an in-sample test.

When constructing the bootstrap counterpart of Zk,T,S, we need to distinguish
between the case in which T/S → 0 and that in which T/S → δ �= 0. Whenever
T/S → 0, simulation error is asymptotically negligible, and thus there is no need to
resample the simulated observations. In this case, the bootstrap statistic is given by
maxk=2,...,K

√
T Z∗

k,T,S(u), where

Z∗
k,T,S(u)

= 1

T

T
∑

t=1

⎛

⎝

(

1{Y ∗
t ≤ u} − 1

S

S
∑

n=1

1{Y1,n(̂θ∗
1,T ) ≤ u}

)2
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−
(

1{Yt ≤ u} − 1

S

S
∑

n=1

1{Y1,n(̂θ1,T ) ≤ u}
)2⎞

⎠

− 1

T

T
∑

t=1

⎛

⎝

(

1{Y ∗
t ≤ u} − 1

S

S
∑

n=1

1{Yk,n(̂θ∗
k,T ) ≤ u}

)2

−
(

1{Yt ≤ u} − 1

S

S
∑

n=1

1{Yk,n(̂θk,T ) ≤ u}
)2⎞

⎠ . (9)

On the other hand, whenever T/S → δ �= 0, then simulation error contributes
to the limiting distribution. In this case, one has to additionally resample the simu-
lated observations, and thus Y1,n(̂θ∗

1,T ) and Yk,n(̂θ∗
k,T ) in (9) should be replaced by

Y ∗
1,n(̂θ∗

1,T ) and Y ∗
k,n(̂θ∗

k,T ). In both cases, the validity of bootstrap critical values is
been established in Proposition 2 of Corradi and Swanson (2007b).

4 Stochastic Dominance: Predictive Evaluation Based
on Distribution of Loss

In this section, we discuss a predictive accuracy testing approach based on distrib-
utional loss, as in the previous sections. However, rather than focusing on DM- and
reality check-type approaches, we incorporate notions of stochastic dominance in
our analysis. Namely, we introduce a criterion that is designed to include cases of
generic predictive accuracy testing, forecast model selection, and forecast combina-
tion. The criterion is constructed via evaluation of error loss distributions using basic
principles of stochastic dominance, wherein one examines whether or not one CDF
lies “above” another, for example. In our discussion, we are concerned only with the
evaluation of alternative panels or combinations of forecasts, such as are available
when analyzing the Survey of Professional Forecasters (SPF) dataset available on
the webpages of the Federal Reserve Bank of Philadelphia. Moreover, we consider
first-order stochastic dominance. Evidently, the ideas presented here can be adapted
to many varieties of predictive accuracy testing, and extension to second and higher
order stochastic dominance will also play an important role in such applications.
These and related issues are left to future research, and our example below is meant
as a starting point in this sort of analysis.

4.1 Motivation

Central Banks and financial institutions have regular access to panels of forecasts for
key macroeconomic variables that are made by professional forecasters. A leading



A Survey of Recent Advances in Forecast Accuracy Comparison Testing 137

example is the SPF. Using this dataset, much focus has centered on how to combine
predictions (see e.g. Capistran and Timmermann 2009) and how to assess forecast
rationality (see e.g. Elliott et al. 2008). With regard to forecast combination, Capistran
and Timmermann (2009), as well as Elliott and Timmermann (2004, 2005), estimate
combination weights by minimizing a given loss function, ensuring that the weights
converge to those minimizing expected loss. Wallis (2005) proposes combining fore-
casts using a finite mixture distribution, and Smith and Wallis (2009) suggest the use
of simple averages. With regard to rationality assessment, Elliott et al. (2008) test
whether forecasters taking part in the SPF are rational for some parameterization
of a flexible loss function. This is clearly an important approach when testing for
rationality. However, in many instances, users already have a given loss function in
mind, and only assess the accuracy of available forecasts under this loss function.
Here, we take the loss function as given, and discuss predictive combination and
accuracy assessment of datasets such as the SPF. However, this is done via analysis
of cumulative loss distributions rather than synthetic measures of loss accuracy such
as mean square error and mean absolute error.

More specifically, the objective is to introduce an alternative criterion for pre-
dictive evaluation which measures accuracy via examination of the quantiles of the
expected loss distribution. The criterion is based on comparing empirical CDFs
of predictive error loss, using the principle of stochastic dominance. The heuristic
argument underpinning our approach is that the preferred model is one for which the
error loss CDF is stochastically dominated by the error loss CDF of every competing
model, at all evaluation points. In this sense, a model that has smaller quantiles at
all regions of the loss distribution is selected, rather than a model that minimizes a
single criterion, such as the mean square error. If a model is not strictly dominated,
then our approach allows us to pinpoint the region of the loss distribution for which
one model is preferred to another.

As alluded to above, applications for which the criterion is designed include:
generic predictive accuracy testing; forecast model selection; and forecast combina-
tion. For example, in the context of the SPF, a panel of Nt forecasts for a given variable
are made by professionals at each point in time, t. Both the number of individuals
taking part in the survey, as well as the specific individuals generally change, from
period to period. In this context, the criterion can be applied as follows. Assume that
objective is to select and combine forecasts from the SPF. A set of rules, including
for example, the simple mean or median across all forecasters, and quantile-based
weighted combinations across forecasts are defined. Then, the loss function of the
forecast errors implied by the rules are evaluated using tests based on the stochastic
dominance criterion.

4.2 Setup

In each period t, we have a panel of Nt forecasts. The objective is to choose among
k possible combinations of the available forecasts, under a given loss function, g (·) .
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In order to allow for frequent possible entry and exit into the panel, the combinations
are simple rules, which are applied each period, regardless of the composition of
the panels. Examples are: (i) simple average, (ii) simple average over a given range,
such as the 25th-75th percentiles, or (iii) assigning different weights to different
interquantile groups from the panel, such as a weight of 0.75 for the average over
the 25th–75th percentile and 0.125 for the average over the first and last quartiles.

Define ei,t = yt − y f
t,h,i , i = 1, . . . , k, to be the forecast error associated with

the h−step ahead prediction constructed using combination i. Let gi,t = g
(

ei,t
)

,

where g (·) is a generic loss function. Also, let Fg,i (x) be the empirical distribution
of g

(

ei,t
)

evaluated at x, and let ̂Fg,i,T (x) be its sample analog, i.e.,

̂Fg,i,T (x) = 1

T

T
∑

t=1

1
{

g
(

ei,t
) ≤ x

}

.

The hypotheses of interest are:

H0 : max
i>1

inf
x∈X

(

Fg,1(x) − Fg,i (x)
) ≥ 0

versus
HA : max

i>1
inf
x∈X

(

Fg,1(x) − Fg,i (x)
)

< 0.

For the sake of simplicity suppose that k = 2. If Fg,1(x) − Fg,2(x) ≥ 0 for all x,

then the CDF associated with rule 1 always lies above the CDF associated with
rule 2. Then, heuristically, g

(

e1,t
)

is (first order) stochastically dominated by g
(

e2,t
)

and rule 1 is the preferred combination. This is because all of the quantiles of g
(

e1,t
)

are smaller than the corresponding quantiles of g
(

e2,t
)

. More formally, for a given x,

suppose that
Fg,1(x) = θ1 and Fg,2(x) = θ2,

then we choose rule 1 if θ1 > θ2. This is because x is the θ1−quantile under Fg,1 and
the θ2−quantile under Fg,2 and, as θ1 > θ2, the θ2− quantile under Fg,1 is smaller
than under Fg,2. Thus, for all evaluation points smaller than x, g

(

e1,t
)

has more
probability mass associated with smaller values than g

(

e2,t
)

does.
It follows that if we fail to reject the null, rule 1 is selected. On the other hand,

rejection of the null does not imply that rule 1 should be discarded. Instead, further
analysis is required in order to select a rule. First, one needs to discriminate between
the cases for which the various CDFs do not cross, and those for which they do
cross. This is accomplished by proceeding sequentially as follows. For all i �= j
i, j = 1, . . . , k, sequentially test

Hi, j
0 : sup

x∈X

(

Fg,i (x) − Fg, j (x)
) ≤ 0 (10)
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versus its negation. Eliminate rule i, if Hi, j
0 is not rejected. Otherwise, retain rule i.

There are two possible outcomes.
I: If there is a rule which is stochastically dominated by all other rules, we even-

tually discard all the “dominating” rules and remain with only the dominated one.
This is always the case when no CDFs cross, and also clearly occurs in cases when
various CDFs cross, as long as the dominated CDF cross no other CDF.

II: Otherwise, we remain with a subset of rules, all of which have crossing CDFs,
and all of which are stochastically dominated by the eliminated rules.

Note that the logic underlying the outlined sequential procedure is reminiscent
of the idea underlying the Model Confidence Set approach of Hansen et al. (2011),
in which the worst models are eliminated in a sequential manner, and one remains
with a set of models that are roughly equally good, according to the given evaluation
criterion.

In the case where there are crossings, further investigation is needed. In particular,
in this case, some rules are clearly dominant over certain ranges of loss, and are
dominated over others. At this point, one might choose to plot the relevant CDFs,
and examine their crossing points. Then, one has to make a choice. For example, one
can choose a rule which is dominant over small values of x and is dominated over
large values of x . This is the case in which one is concerned about making larger
losses than would be incurred, where the other rule used, in a region where losses
are large; while not being concerned with the fact that they are making larger losses,
relative to those that would be incurred, where the other rule used, when losses are
relatively small. Needless to say, one can also use a model averaging approach over
the various survivor rules.

4.3 Statistic

In order to test H0 versus HA construct the following statistic:

Lg,T = − max
i>1

inf
x∈X

√
T
(

̂Fg,1,T (x) − ̂Fg,i,T (x)
)

,

where ̂Fg, j,T (x), j ≥ 1 is defined above; and where the negative sign in front of the
statistic ensures that the statistic does not diverge to minus infinity under the null
hypothesis. On the other hand, in order to test Hi j

0 , we instead suggest the following
statistic,

Li, j
g,T = − sup

x∈X

√
T
(

̂Fg,i,T (x) − ̂Fg, j,T (x)
)

.
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In the context of testing for stochastic dominance, Linton et al. (2005) construct
critical values via subsampling. Here we instead use the “m out of n” bootstrap.7

Proceed to construct critical values as follows:

(i) We have T observations. Set ϒ < T .

(ii) Draw b blocks of length l, where bl = ϒ. One block consists, simultaneously, of
draws on the actual data as well as the rule- based combination forecasts. Thus,
if there are two rules, say, and the block length is 5, then a “block” consists of
a 3 × 1 vector of length 5. This yields one bootstrap sample, which is used to
construct a bootstrap statistic,

L∗
g,ϒ = − max

i>1
inf
x∈X

√
ϒ
(

̂F∗
g,1,ϒ (x) − ̂F∗

g,i,ϒ (x)
)

where

̂F∗
g,i,ϒ (x) = 1

ϒ

ϒ
∑

t=1

1
{

g∗ (ei,t
) ≤ x

}

g∗ (ei,t
) = g

(

y∗
t − y

∗ f
t,h,i

)

(iii) Construct B bootstrap statistics and then compute their empirical distribution.
The sample statistic is then compared against the percentile of this empirical
distribution.

5 Concluding Remarks

In this chapter, we have reviewed the extant literature on Diebold and Mariano (1995)
type predictive accuracy testing. We discuss pairwise and multiple model compari-
son (i.e., DM and reality check type predictive accuracy tests) using differentiable
pointwise prediction accuracy measures such as mean square forecast error, as well
as using non-differentiable loss functions. We also discuss valid inference under both
asymptotically negligible and non-negligible parameter estimation error. Extensions
to pairwise and multiple model comparison using predictive densities, distributions,
intervals, and conditional distributions are then outlined, with emphasis on inference
using these more complicated varieties of DM and reality check-type tests. Finally,
extension and generalization of all of these testing approaches using notions of sto-
chastic dominance are introduced, and future research directions, including the use
of second and higher order stochastic dominance are outlined.
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7 The basic difference between subsampling and “m out of n” bootstrap is that in the latter case we
resample overlapping blocks.
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