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Abstract This chapter studies partially identified structures defined by a finite
number of moment inequalities. When the moment function is misspecified, it
becomes difficult to interpret the conventional identified set. Even more seriously,
this can be an empty set. We define a pseudo-true identified set whose elements can
be interpreted as the least-squares projections of the moment functions that are obser-
vationally equivalent to the true moment function. We then construct a set estimator
for the pseudo-true identified set and establish its Op(n−1/2) rate of convergence.

1 Introduction

This chapter develops a new approach to estimating structures defined by moment
inequalities. Moment inequalities often arise as optimality conditions in discrete
choice problems or in structures where economic variables are subject to some type
of censoring. Typically, parametric models are used to estimate such structures. For
example, in their analysis of an entry game in the airline markets, Ciliberto and
Tamer (2009) use a linear specification for airlines’ profit functions and assume
that unobserved heterogeneity in the profit functions can be captured by independent
normal random variables. In asset pricing theory with short sales prohibited, Luttmer
(1996) specifies the functional form of the pricing kernel as a power function of
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consumption growth, based on the assumption that the investor’s utility function is
additively separable and isoelastic.

Any conclusions drawn from such methods rely on the validity of the model spec-
ification. Although commonly used estimation and inference methods for moment
inequality models are robust to potential lack of identification, typically they are
not robust to misspecification. Compared to cases where the parameter of interest is
point identified, much less is known about the consequences of misspecified moment
inequalities. As we will discuss, these can be serious. In general, misspecification
makes it hard to interpret the estimated set of parameter values; an even more serious
possibility is that the identified set could be an empty set. If the identified set is empty,
every nonempty estimator sequence is inconsistent. Furthermore, it is often hard to
see if the estimator is converging to some object that can be given any meaning-
ful interpretation. An exception is the estimation method developed by Ponomareva
and Tamer (2010), which focuses on estimating a regression function with interval
censored outcome variables.

This chapter develops a new estimation method that is robust to potential para-
metric misspecification in general moment inequality models. Our contributions are
three-fold. First, we define a pseudo-true identified set that is nonempty under mild
assumptions and that can be interpreted as the projection of the set of function-valued
parameters identified by the moment inequalities. Second, we construct a set esti-
mator using a two-stage estimation procedure, and we show that the estimator is
consistent for the pseudo-true identified set in Hausdorff metric. Third, we give con-
ditions under which the proposed estimator converges to the pseudo-true identified
set at the n−1/2-rate.

The first stage is a nonparametric estimator of the true moment function. Given
this, why perform a parametric second-stage estimation? After all, the nonparametric
first stage estimates the same object of interest, without the possibility of paramet-
ric misspecification. There are a variety of reasons a researcher may nevertheless
prefer to implement the parametric second stage: first is the undeniably appealing
interpretability of the parametric specification; second is the much more precise esti-
mation and inference afforded by using a parametric specification; and third, the
second term of the second-stage objective function may offer a potentially useful
model specification diagnostic. Future research may permit deriving the asymptotic
distribution of this term under the null of correct parametric specification to provide
a formal test. The two-stage procedure proposed here delivers these benefits, while
avoiding the more serious adverse consequences of potential misspecification.

The chapter is organized as follows. Section 2 describes the data generating
process and gives examples that fall within the scope of this chapter. We also introduce
our definition of the pseudo-true identified Sect. 3 defines our estimator and presents
our main results. We conclude in Sect. 4. We collect all proofs into the appendix.
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2 The Data Generating Process and the Model

Our first assumption describes the data generating process (DGP).

Assumption 2.1 Let (�,F,P0) be a complete probability space. Let k, � ∈ N. Let
X : � → R

k be a Borel measurable map, let X ⊆ R
k be the support of X , and let

P0 be the probability measure induced by X on X . Let ρ0 : X → R
� be an unknown

measurable function such that E[ρ0(X)] exists and

E[ρ0(X)] ≤ 0, (1)

where the expectation is taken with respect to P0.

In what follows, we call ρ0 the true moment function. The moment inequalities (1)
often arise as an optimality condition in game-theoretic models (Bajari et al. 2007;
Ciliberto and Tamer 2009) or models that involve variables that are subject to some
kind of censoring (Manski and Tamer 2002). In empirical studies of such models, it
is common to specify a parametric model for ρ0.

Assumption 2.2 Let p ∈ N and let� be a subset of R
p with nonempty interior. Let

m : X × � → R
� be such that m(·, θ) is measurable for each θ ∈ � and m(x, ·)

is continuous on �, a.e. − P0. For each θ ∈ �, m(·, θ) ∈ L2
� := { f : X → R

� :
E[ f (X)′ f (X)] < ∞}.

Throughout, we call m(·, ·) the parametric moment function.

Definition 2.1 Let mθ (·) := m(·, θ). Define M� := {mθ ∈ L2
� : θ ∈ �}. M� is

correctly specified (−P0) if there exists θ0 ∈ � such that

P0[ρ0(X) = m(X, θ0)] = 1.

Otherwise, the model is misspecified.

If the model is correctly specified, we may define the set of parameter values that
can be identified by the inequalities in (1):

�I := {θ ∈ � : E[m(X, θ)] ≤ 0}.

We call�I the conventional identified set. This set collects all parameter values that
yield parametric moment functions that are observationally equivalent to ρ0.

It becomes difficult to interpret �I when the model is misspecified, as pointed
out by Ponomareva and Tamer (2010) for a regression model with an interval-valued
outcome variable. Suppose first that the model is misspecified but �I is nonempty.
The set is still a collection of parameter values that are observationally equivalent
to each other, but since there is no θ in �I that corresponds to the true moment
function, further structure is required to unambiguously interpret �I as a collection
of “pseudo-true parameter(s)”. Further, �I may be empty, especially if M� is a
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small class of functions. This makes the interpretation of �I even more difficult. In
fact, interpretation is impossible, as there is nothing to interpret.

Often, the economics of a given problem impose further structure on the DGP.
To specify this, we let 0 < L ≤ �, and for measurable s : X → R

L , let ‖s‖L :=
E[s(X)′s(X)]1/2. Let L2

L := {s : X → R
L , ‖s‖L < ∞}, and let S ⊆ L2

L .

Assumption 2.3 There exists ϕ : X × S → R
� such that for each x ∈ X , ϕ(x, ·)

is continuous on S and for each s ∈ S, ϕ(·, s) is measurable. Further, there exists
s0 ∈ S such that

ρ0(x) = ϕ(x, s0), ∀x ∈ X .

When ρ0 ∈ L2
� and there is no further structure on ρ0 available, we let L = �,

S = L2
�, and take ϕ to be the evaluation functional e : X × S → R

�:

ϕ(x, s) = e(x, s) ≡ s(x),

as then ϕ(x, ρ0) = e(x, ρ0) ≡ ρ0(x) and s0 = ρ0. In this case, it is not necessary to
explicitly introduceϕ. Often, however, further structure on the form ofρ0 is available.
Typically, this is reflected in s depending non-trivially only on a strict subvector of X,
say X1. In such cases, we may write S ⊆ L2

X1
for clarity. We give several examples

below.
When Assumption 2.3 holds, we typically parametrize the unknown function s0.

For example, it is common to specify s0 as a linear function of some of the components
of x . As we will see in the examples, a common modeling assumption is

Assumption 2.4 There exists r : X ×� → R
L such that with rθ := r(·, θ),

m(x, θ) = ϕ(x, rθ ), ∀(x, θ) ∈ X ×�.

Thus, misspecification occurs when there is no θ0 in � such that s0 = rθ0 .

More generally, misspecification can occur because the researcher mistakenly
imposes Assumption 2.3, in which case s0 fails to exist and there is again no θ0 in
� such that ρ0(x) = ϕ(x, rθ0). As s0 is an element of an infinite-dimensional space,
we may refer to this as “nonparametric” misspecification. To proceed, we assume
that, as is often plausible, the researcher is sufficiently able to specify the structure
of interest that nonparametric misspecification is not an issue, either because correct
ϕ restrictions are imposed or no ϕ restrictions are imposed. We thus focus on the
case of parametric misspecification, where s0 exists but there is no θ0 in� such that
s0 = rθ0 .
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2.1 Examples

In this section, we present several motivating examples and also give commonly used
parametric specifications in these examples. For any vector x , we use x ( j) to denote
the j th component of the vector. Similarly, for a vector valued function f (x), we use
f ( j)(x) to denote the j th component of f (x).

Example 2.1 (Interval censored outcome) Let Z : � → R
dZ be a regressor with

support Z . Let Y : � → R be an outcome variable that is generated as:

Y = s0(Z)+ ε, (2)

where s0 ∈ S := L2
Z , say, and ε satisfies E[ε|Z ] = 0. We let Y denote the support

of Y . Suppose Y is unobservable, but there exist (YL ,YU )
′ : � → Y × Y such that

YL ≤ Y ≤ YU almost surely. Then, (YL ,YU , Z)′ satisfies the following inequalities
almost surely:

E[YL |Z ] − s0(Z) ≤ 0 (3)

s0(Z)− E[YU |Z ] ≤ 0. (4)

Let x = (yL , yU , z)′ ∈ X := Y × Y × Z . Given a collection {A1, . . ., AK } of Borel
subsets of Z , the inequalities in (3), (4) imply that the moment inequalities in (1)
hold with

ρ0(x) = ϕ(x, s0) :=
[

yL − s0(z)
s0(z)− yU

]
⊗ 1A(z), (5)

where 1A(z) := (1{z ∈ A1}, . . ., 1{z ∈ AK })′.1 For each x ∈ X and s ∈ S, the
functional ϕ evaluates vertical distances of r(z) from yL and yU and multiplies them
by the indicator function evaluated at z. Additional information on ρ0 available in
this example is that the moment functions are based on the vertical distances.

A common specification for s0 is s0(z) = rθ0(z) = z′θ0 for some θ0 ∈ � ⊆ R
dZ .

The parametric moment function is then given for each x ∈ X by m(x, θ) = ϕ(x, rθ ).
Therefore, this example satisfies Assumption 2.4.

Example 2.2 Tamer (2003) considers a simultaneous game of complete information.
For each j = 1, 2, let Z j : � → R

dZ and ε j : � → R be firm j’s characteristics
that are observable to the firms. The econometrician observes the Z ’s but not the ε’s.
For each j , let g j : Z × {0, 1} → R. These functions are known to the firms but not
to the econometrician. Suppose that each firm’s payoff is given by

π j (Z j ,Y j ,Y− j ) = (ε j − g j (Z j ,Y− j ))Y j , j = 1, 2,

1 Here, we take the indicators (or instruments) 1A(z) as given. The indicators 1A(z) could be
replaced by any finite vector of measurable non-negative functions of z. Andrews and Shi (2011)
give examples of such functions.
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where Y j ∈ Y := {0, 1} is firm j’s entry decision, and Y− j ∈ Y is the other firm’s
entry decision. The econometrician observes these decisions. Given (z1, z2), the
firms’ payoffs can be summarized in Table 1.

Suppose the firms and the econometrician know that g(z, 1) ≥ g(z, 0) for any
value of z. This means that, other things equal, the opponent’s entry would reduce
the firm’s own profit. In this setting, there are several possible equilibrium outcomes
depending on the realization of (ε1, ε2). If ε1 > g1(z1, 1) and ε2 > g2(z2, 1), then
(1, 1) is the unique Nash equilibrium (NE) outcome. Similarly, if ε1 > g1(z1, 1)
and ε2 < g2(z2, 1), (1, 0) is the unique NE outcome, and if ε1 < g1(z1, 1) and
ε2 > g2(z2, 1), (0, 1) is the unique NE outcome. Now, if ε1 < g1(z1, 1) and ε2 <

g2(z2, 1), there are two Nash equilibria, and they give the outcomes (1, 0) and (0, 1).
Let Fj , j = 1, 2 be the unknown CDFs of ε1 and ε2.2 Without any assumptions
on the equilibrium selection mechanism, the model predicts the following set of
inequalities:

P(Y1 = 1,Y2 = 1|Z1 = z1, Z2 = z2) = (1 − F1(g1(z1, 1)))(1 − F2(g2(z2, 1)))

(6)

P(Y1 = 1,Y2 = 0|Z1 = z1, Z2 = z2) ≥ (1 − F1(g1(z1, 1)))F2(g2(z2, 1)) (7)

P(Y1 = 1,Y2 = 0|Z1 = z1, Z2 = z2) ≤ F2(g2(z2, 1)). (8)

Let x := (y1, y2, z1, z2)
′ ∈ X := Y × Y × Z × Z . Let s0 ∈ S := {s ∈ L2

Z×Z :
s(z1, z2) ∈ [0, 1]2,∀(z1, z2) ∈ Z × Z} be defined by

s(1)0 (z1, z2) := F1(g1(z1, 1))

s(2)0 (z1, z2) := F2(g2(z2, 1)).

Here, s( j)
0 (z1, z2) is the conditional probability that firm j’s profit upon entry is

negative given z1 and z2. Given a collection {A j , j = 1, . . ., K } of Borel subsets
of Z × Z , let 1A(z) := (1{(z1, z2) ∈ A1}, . . ., 1{(z1, z2) ∈ AK })′. The inequalities
(6)–(8) imply the moment inequalities in (1) hold with

ρ0(x) = ϕ(x, s0)

=

⎛
⎜⎜⎜⎝

1{y1 = 1, y2 = 1} − (1 − s(1)0 (z1, z2))(1 − s(2)0 (z1, z2))

(1 − s(1)0 (z1, z2))(1 − s(2)0 (z1, z2))− 1{y1 = 1, y2 = 1}
(1 − s(1)0 (z1, z2))s

(2)
0 (z1, z2)− 1{y1 = 1, y2 = 0}

1{y1 = 1, y2 = 0} − s(2)0 (z1, z2)

⎞
⎟⎟⎟⎠⊗ 1A(z).

The additional information on ρ0 is that it is based on the differences between some
combinations of the conditional probabilities s0(z1, z2) and indicators for specific
events.

2 The players do not need to know the F’s, but these are important to the econometrician.
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Table 1 The entry game
payoff matrix

Y1\Y2 0 1
0 (0, 0) (0, ε2 − g2(z2, 0))
1 (ε1 − g1(z1, 0), 0) (ε1 − g1(z1, 1), ε2 − g2(z2, 1))

A common parametric specification for g j is g j (z j , y− j ) = z′
jγ0 − y− jβ j,0 for

some β j,0 ∈ B ⊆ R+ and γ0 ∈ � ⊆ R
dZ . It is also common to assume that Fj , j =

1, 2 belong to a known parametric class {F(·;α), α ∈ A} of distributions. Then
the parametric moment function can be defined for each x by m(x, θ) := ϕ(x, rθ ),
where θ := (α1, α2, β1, β2, γ )

′ and

r (1)θ (z1, z2) = F(z′
1γ − β1;α1) (9)

r (2)θ (z1, z2) = F(z′
2γ − β2;α2). (10)

This example also satisfies Assumption 2.4.

Example 2.3 (Discrete choice) Suppose an agent chooses Z ∈ R
dZ from a set Z :=

{z1, . . ., zK } in order to maximize her expected payoff E[s0(Y, Z) | I], where Y is
a vector of observable random variables, s0 ∈ R := L2

Y×Z is the payoff function,
and I is the agent’s information set. The optimality condition for the agent’s choice
is given by:

E[s0(Y, z j )− s0(Y, Z) | I] ≤ 0, j = 1, . . ., K . (11)

Let x := (y, z)′ ∈ X := Y × Z . The optimality conditions in (11) imply that the
unconditional moment inequalities in (1) hold with

ρ0(x) = ϕ(x, s0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎣

s0(y, z1)− s0(y, z1)
...

s0(y, zK )− s0(y, z1)

⎤
⎥⎦× 1{z = z1}

...⎡
⎢⎣

s0(y, z1)− s0(y, zK )
...

s0(y, zK )− s0(y, zK )

⎤
⎥⎦× 1{z = zK }

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For given y, the functional ϕ evaluates the profit differences between a given choice
z (e.g., z1) and every other possible choice. The additional information on ρ0 is that
it is based on the profit differences.

A common specification for s0 is s0(y, z) = rθ0(y, z) = ψ(y, z;α0)+ z′β0 + εz

for some known functionψ , unknown (α0, β0) ∈ � ⊂ R
dα+dβ , and an unobservable

choice-dependent error εz . For simplicity, we assume that εz satisfies E[εzi − εz j |
I] = 0 for any i, j ; see Pakes et al (2006) and Pakes (2010) for detailed discussions.
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The parametric moment function is then given for each x ∈ X by m(x, θ) = ϕ(x, rθ ).
This example satisfies Assumption 2.4.

Example 2.4 (Pricing kernel) Let Z : � → R
dZ be the payoffs of dZ securities that

are traded at a price of P ∈ P ⊆ R
dZ . If short sales are not allowed for any securities,

then the feasible set of portfolio weights is restricted to R
dZ+ and the standard Euler

equation does not hold. Instead, the following Euler inequalities hold (see Luttmer
1996):

E[s0(Y )Z − P] ≤ 0,

where Y : � → Y is a state variable, e.g. consumption growth, and s0 ∈ S := {s ∈
L2

Y : s(y) ≥ 0,∀y ∈ Y} is the pricing kernel function. The moment inequalities
thus hold with the true moment function:

ρ0(x) = ϕ(x, s0) = s0(y)z − p,

where x := (y, z, p)′ ∈ Y × Z × P . This function evaluates the pricing kernel r at
y and computes a vector of pricing errors. The additional information on ρ0 is that
it is based on the pricing errors.

A common specification for s0 is s0(y) = rθ0(y) = β0 y−γ0 , where β0 ∈ B ⊆
[0, 1] is the investor’s subjective discount factor and γ0 ∈ � ⊆ R+ is the relative
risk aversion coefficient. Let θ := (β, γ )′. The parametric moment function is then
given for each x ∈ X by m(x, θ) = ϕ(x, rθ ), satisfying Assumption 2.4.

2.2 Projection

The inequality restrictions E[ϕ(X, s0)] ≤ 0 may not uniquely identify s0. Define

S0 := {s ∈ S : E[ϕ(X, s)] ≤ 0}.

We define a pseudo-true identified set of parameters as a collection of projections
of elements in S0. Let W be a given non-random finite L × L symmetric positive-
definite matrix. For each s ∈ S, define the norm ‖s‖W := E[s(X)′W s(X)]1/2. For
each s ∈ S and A ⊆ S, the projection map �A : S → A is the map such that

‖s −�As‖W = inf
a∈A

‖s − a‖W .

Let R� := {rθ ∈ S : θ ∈ �}. Given Assumption 2.4, we can define

�∗ := {θ ∈ � : rθ = �R�
s, s ∈ S0}.

When ϕ is the evaluation map e, �∗ is simply �∗ := {θ ∈ � : mθ = �M�
s, s ∈

S0}.
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�∗ can be interpreted as the set of parameters that correspond to the elements mθ

in the R� -projection of S0. This set is nonempty (under some regularity conditions),
and each element can be interpreted as a projection of s inducing a functional ϕ(·, s)
that is observationally equivalent to ρ0. In this sense, each element in �∗ has an
interpretation as a pseudo-true value. Thus, we call�∗ the pseudo-true identified set.
[White (1982) uses θ∗ to denote the unique pseudo-true value in the fully identified
case.]

We illustrate the relationship between �I and �∗ with an example. Consider
Example 2.1. Let � ⊆ R

dZ . The conventional identified set is given by

�I = {θ ∈ � : E[(YL − Z ′θ)1{Z ∈ A j }] ≤ 0,

and E[(Z ′θ − YU )1{Z ∈ A j }] ≤ 0, j = 1, . . ., K }. (12)

The pseudo-true identified set is given by

�∗ = {θ ∈ � : θ = E[Z Z ′]−1 E[Zs(Z)], s ∈ S0}. (13)

Let D be a dZ × K matrix whose j th column is E[Z 1{Z ∈ A j }]. For this example,
the following result holds:

Proposition 2. 1 Let the conditions of Example 2.1 hold, and let �∗ be given as
in (13). Let �I be given as in (12). Then �I ⊆ �∗. Suppose further that M� is
correctly specified, that E[YU |Z ] = E[YL |Z ] = Z ′θ0 a.s, and that dZ ≤ rank(D).
Then �I = �∗ = {θ0}.

As this example shows, unless there is some information that helps restrict S0
very tightly, �I is often a proper subset of �∗. This is because without such infor-
mation, S0 is typically a much richer class of functions than R�. Another important
point to note is that, although �∗ is well-defined generally, �I can be empty quite
easily. In particular, for any x, x ′ ∈ X , let xλ := λx + (1 − λ)x ′, 0 ≤ λ ≤ 1.
�I is empty if there exists (x, x ′) and λ ∈ [0, 1] such that (i) xλ ∈ X and
(E[YL |xλ]− E[YU |x])/‖xλ− x‖ > (E[YU |x ′]− E[YU |x])/‖x ′ − x‖ or (ii) xλ ∈ X
and (E[YU |xλ]− E[YL |x])/‖xλ− x‖ < (E[YL |x ′]− E[YL |x])/‖x ′ − x‖.3 Figure 1,
which is similar to Fig. 1 in Ponomareva and Tamer (2010), illustrates an example
that satisfies condition (i) for the one-dimensional case.

In this example, each element in �∗ solves the following moment restrictions:

E[Z(Z ′θ − Y )] = E[Zu(X)], (14)

with u(x) = s(z)− y for some s ∈ S0.This can be viewed as a special case of incom-
plete linear moment restrictions studied in Bontemps, Magnac, and Maurin (2011)

3 For this example, �I is never empty as long as the number (2K ) of moment inequalities equals
the number of parameters (�).
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Fig. 1 An example with an
empty conventional identified
set

(BMM, henceforth).4 BMM shows that the set of parameters that solves incomplete
linear moment restrictions is necessarily convex and develops an inference method
that exploits this property.

We note here that this connection to BMM’s work only occurs when the para-
metric class is of the form: R� = {rθ : rθ (z) = z′θ, θ ∈ �}. The elements of
�∗, however, do not generally solve incomplete linear moment restrictions when
R� includes nonlinear functions of θ . Therefore, BMM’s inference method is only
applicable when rθ is linear. Our estimation procedure is more flexible than theirs
in the following two respects. First, one may allow projection to a more general
class of parametric functions that includes nonlinear functions of θ . Second, as a
consequence of the first point, we do not require �∗ to be convex. We, however,
pay a price for achieving this generality. We require s to satisfy suitable smoothness
conditions, which are not required by BMM. We discuss these conditions in detail
in the following section.

3 Estimation

3.1 Set Estimator

For W as above and each (θ, s) ∈ � × S, let the population criterion function be
defined by

Q(θ, s) = E[(s(Xi )− rθ (Xi ))
′W (s(Xi )− rθ (Xi ))]

− inf
ϑ∈� E[(s(Xi )− rϑ(Xi ))

′W (s(Xi )− rϑ(Xi ))]. (15)

4 We are indebted to an anonymous referee for pointing out a relationship between BMM’s frame-
work and ours. General incomplete linear moment restrictions are given by E[V (Z ′θ − Y )] =
E[V u(V )], where V is a vector of random variables, and u is an unknown bounded function. See
BMM for details.
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Using the population criterion function, the “pseudo-true” identified set �∗ can be
equivalently written as

�∗ = {θ : Q(θ, s) = 0, s ∈ S0}.

Given a sample {X1, . . ., Xn} of observations, let the sample criterion function be
defined for each (θ, s) ∈ �× S by

Qn(θ, s) := 1

n

n∑
i=1

(s(Xi )− rθ (Xi ))
′W (s(Xi )− rθ (Xi ))

− inf
ϑ∈�

1

n

n∑
i=1

(s(Xi )− rϑ(Xi ))
′W (s(Xi )− rϑ(Xi )). (16)

Ideally, we would like to estimate �∗ by �̃n , say, where �̃n := {θ : Qn(θ, s) ≤
cn, s ∈ S0}. But S0 is unknown, so we must estimate it. Thus, we employ a two-stage
procedure, similar to that studied in Kaido and White (2010). Section 3.3 discusses
how to construct a first-stage estimator of S0. For now, we suppose that such an
estimator exists. For this, let F(A) be the set of closed subsets of a set A. See Kaido
and White (2010) for background, including discussion of Effros measurability.

Assumption 3.1 (First-stage estimator) For each n, let Sn ⊆ S. Ŝn : � → F(Sn)

is (Effros-) measurable.

Given a first-stage estimator, we define a set estimator for the pseudo-true identi-
fied set. Let {cn} be a sequence of non-negative constants. The set estimator for �∗
is defined by

�̂n := {θ ∈ � : Qn(θ, s) ≤ cn, s ∈ Ŝn}. (17)

We establish our consistency results using the Hausdorff metric. Let || · || denote
the Euclidean norm, and for any closed subsets A and B of a finite-dimensional
Euclidean space (e.g., containing θ ), let

dH (A, B) := max{ �dH (A, B), �dH (B, A)}, �dH (A, B) := sup
a∈A

inf
b∈B

‖a − b‖, (18)

where dH and �dH are the Hausdorff metric and directed Hausdorff distance
respectively.

Before stating our assumptions, we introduce some additional notation. Let Dα
θ

denote the differential operator ∂α/∂θα1
1 · · · ∂θαp

p with |α| := ∑p
j=1 α j . Similarly,

we let Dβ
x denote the differential operator ∂β/∂xβ1

1 · · · ∂xβk
k with |β| := ∑k

j=1 β j .
For a function f : X → R and γ > 0, let γ be the smallest integer smaller than γ
and define
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‖ f ‖γ := max|β|≤γ sup
x∈X

∣∣Dβ
x f (x)

∣∣+ max|β|=γ sup
x,y∈X

∣∣Dβ
x f (x)− Dβ

x f (x)
∣∣

‖x − −y‖γ−γ .

Let CγM (X ) be the set of all continuous functions f : X → R such that ‖ f ‖γ ≤ M .
Let CγM,L(X ) := { f : X → R

L : f ( j) ∈ CγM (X ), j = 1, . . ., L}. Finally, for any
η > 0, let Sη0 := {s ∈ S : infs′∈S0 ‖s − s′‖W < η}.

Our first assumption places conditions on the parameter spaces � and S. We let
int(�) denote the interior of �.

Assumption 3.2 (i) � is compact; (ii) S is a compact convex set with nonempty
interior; (iii) there exists γ > k/2 such that S ⊆ CγM,L(X ); (iv) R� is a convex
subset of S; (v) �∗ ⊆ int(�).

Assumption 3.2 (i) is standard in the literature of extremum estimation and also
ensures the compactness of the pseudo-true identified set. Assumption 3.2 (iii)
imposes a smoothness requirement on each component of s ∈ S. Together with
Assumption (ii), this implies that S is compact under the uniform norm, which will
be also used for establishing the Hausdorff consistency of Ŝn in the following section.
For the Hausdorff consistency of �̂n , the requirement γ > k/2 can be relaxed to
γ > 0, and it also suffices that the smoothness requirement holds for functions in
neighborhoods of S0. The stronger requirement given here, however, will be useful
for deriving the rates of convergence of �̂n and Ŝn .

For ease of analysis, we assume below that the observations are from a sample of
IID random vectors.

Assumption 3.3 The observations {Xi , i = 1, . . ., n} are independently and
identically distributed.

The following two assumptions impose regularity conditions on rθ .

Assumption 3.4 (i) r(x, ·) is twice continuously differentiable on the interior of �
a.e.− P0, and for any j , x, and |α| ≤ 2, there exists a measurable bounded function
C : X → R such that |Dα

θ r ( j)
θ (x)− Dα

θ r ( j)
θ ′ (x)| ≤ C(x)‖θ − θ ′‖; (ii) there exists a

measurable bounded function R : X → R such that

max
j=1,...,l
|α|≤2

sup
θ∈�
∣∣Dα

θ r ( j)
θ (x)
∣∣ ≤ R(x).

For each x , let ∇θrθ (x) be a L × p matrix whose j th row is the gradient vector of
r ( j)
θ with respect to θ . For each x ∈ X and i, j ∈ {1, . . ., L}, let ∂2/∂θi∂θ j rθ (x) be

a L × 1 vector whose kth component is given by ∂2/∂θi∂θ j r
(k)
θ (x). For each θ ∈ �,

s ∈ S, and x ∈ X , let HW (θ, s, x) be a p × p matrix whose (i, j)th component is
given by

H (i, j)
W (θ, s, x) = 2

(
∂2

∂θi∂θ j
rθ (x)

)′
W (rθ (x)− s(x)). (19)
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Let η > 0. For each s ∈ Sη0 and ε > 0, let V ε(s) be the neighborhood of θ∗(s)
defined by

V ε(s) := {θ ∈ � : ‖θ − θ∗(s)‖ ≤ ε}.

Let Nε,η := {(θ, s) : θ ∈ V ε(s), s ∈ Sη0 } be the graph of the correspondence V ε

on Sη0 .

Assumption 3.5 There exist ε̄ > 0 and η̄ > 0 such that the Hessian matrix
∇2
θ Q(θ, s) := E[HW (θ, s, Xi ) + 2∇θrθ (Xi )

′W∇θrθ (Xi )] is positive definite uni-
formly over Nε̄,η̄.

Assumption 3.4 imposes a smoothness requirement on rθ as a function of θ ,
enabling us to expand the first order condition for minimization, as is standard in
the literature. Assumption 3.5 requires that Hessian of Q(θ, s) with respect to θ
to be positive definite uniformly on a suitable neighborhood of �∗ × S0. For the
consistency of �̂n , it suffices to assume that the Hessian is uniformly non-singular
over Nε̄,η̄, but a stronger condition given here will be useful to ensure a quadratic
approximation of the criterion function, which is crucial for the

√
n-consistency

of �̂n .
Further, we assume that Ŝn is consistent for S0 in a suitable Hausdorff metric.

Specifically, for subsets A, B of S, let

dH,W (A, B) := max

{
sup
a∈A

inf
b∈B

‖a − b‖W , sup
b∈B

inf
a∈A

‖a − b‖W

}
.

Assumption 3.6 dH,W (Ŝn,S0) = op(1).

Theorem 3.1 is our first main result, which establishes the consistency of the set
estimator defined in (17) with cn set to 0. This result is established by extending the
standard consistency proof for extremum estimators to the current setting. Note that,
under Assumption 3.2 (iv), the projection θ∗(s) := �R�

s of each point s ∈ S to
R� exists and is uniquely determined. In other words, for each s ∈ S, θ∗(s) is point
identified. By setting cn = 0, the set estimator is then asymptotically equivalent to
the collection of minimizers θ̂n(s) := argminθ ′∈�Qn(θ, s) of the sample criterion
function. The main challenge for establishing Hausdorff consistency is to show that
θ̂n(s) − θ∗(s) vanishes in probability over a sufficiently large neighborhood of S0.
The proof of the theorem in the appendix formally establishes this and gives the
desired result.

Theorem 3.1 Suppose Assumptions 2.1–2.4 and 3.1–3.6 hold. Let �̂n be defined as
in (17) with cn = 0 for all n. Then dH (�̂n,�∗) = op(1).

The result of Theorem 3.1 is similar to that of Theorem 3.2 in Chernozhukov et al.
(2007), who establish the Hausdorff consistency of a level-set estimator with cn = 0
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when Qn degenerates on a neighborhood of the identified set.5 When Assumption
3.2 (iv) fails to hold, this estimator may not be consistent. We, however, conjecture
that it would be possible to construct a Hausdorff consistent estimator of�∗ even in
such a setting by choosing a positive sequence {cn} of levels that tends to 0 as n → ∞
and by exploiting the fact that Ŝn converges to S0 in a suitable Hausdorff metric.
In fact, Kaido and White (2010) establish the Hausdorff consistency of their two-
stage set estimator using this argument, but in their analysis, the first-stage parameter
(s in our setting) must be finite dimensional. Extending Theorem 3.1 to a more general
one that allows non-convex parametric classes is definitely of interest, but to keep
our tight focus here, we leave this as a future work.

3.2 The Rate of Convergence

Theorem 3.1 uses the fact that dH (�̂n,�∗) can be bounded by dH,W (Ŝn,S0).
Although Ŝn does not converge at a parametric rate generally, the convergence rate of
�̂n can be improved when Ŝn converges to S0 at a rate op(n−1/4). This is analogous
to the results obtained for the point identified case; see, for example, Newey (1994),
Ai and Chen (2003), and Ichimura and Lee (2010).

Assumption 3.7 dH,W (Ŝn,S0) = op(n−1/4).

Theorem 3.2 Suppose the conditions of Theorem 3.1 hold. Suppose in addition
Assumption 3.7 holds. Let �̂n be defined as in (17) with cn = 0 for all n. Then,
dH (�̂n,�∗) = Op(n−1/2).

For this, setting cn to 0 is crucial for achieving the Op(n−1/2) rate. We here
note that Theorem 3.2 builds on Lemma A.2 in the appendix, which establishes
the convergence rate (in directed Hausdorff distance) of �̂n in (17) with a possibly
nonzero level cn . This lemma does not require Assumption 3.2 (iv) but assumes
the Hausdorff consistency of �̂n as a high-level condition. This is why Theorem
3.2 is stated for �̂n with cn = 0. As previously discussed, however, if Theorem
3.1 is extended to allow non-convex parametric classes, this lemma can be used to
characterize the estimator’s convergence rate under a more general setting.

3.3 The First-Stage Estimator

This section discusses how to construct a first-stage set estimator. A challenge is that
the object of interest S0 is a subset of an infinite-dimensional space. This requires us to
use a nonparametric estimation technique for estimating S0. This type of estimation

5 Their framework does not consider misspecification. Their object of interest is therefore the
conventional identified set �I . In our setting, the sample criterion function degenerates, i.e.,
Qn(θ, s) = 0, on a neighborhood of �∗ × S0 under Assumption 3.2 (iv).
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problem was recently analyzed in Santos (2011), who studies estimation of linear
functionals of function-valued parameters in nonparametric instrumental variable
problems. We rely on his results on consistency and the rate of convergence, which
extend Chernozhukov et al. (2007) analysis to a nonparametric setting. Specifically,
for each s ∈ S, let

Qn(s) :=
l∑

j=1

(1

n

n∑
i=1

ϕ( j)(Xi , s)
)2

+. (20)

This is a sample criterion function defined on S. For instance, Qn for Example 2.1
is given by

Qn(s) =
K∑

j=1

(1
n

n∑
i=1

(YL ,i −s(Zi ))1A j (Zi )
)2

++
K∑

j=1

(1
n

n∑
i=1

(s(Zi )−YU,i )1A j (Zi )
)2

+.

Our first-stage set estimator is a level set of Qn over a sieve Sn ⊆ S. Given a sequence
of non-negative constants {an} and {bn}, define

Ŝn := {s ∈ Sn : Qn(s) ≤ bn/an}. (21)

We add regularity conditions on ϕ, {Sn}, and {(an, bn)} to ensure the Hausdorff
consistency of Ŝn and derive its convergence rate. The following two assumptions
impose smoothness requirements on the map ϕ.

Assumption 3.8 For each j , there is a function B j : X → R+ such that

|ϕ( j)(x, s)− ϕ( j)(x, s′)| ≤ B j (x)ρ(s, s′), ∀s, s′ ∈ S,

where ρ(s, s′) := supx∈S max j=1,...,l |s( j)(x)− s′( j)(x)|.
For each s ∈ S, let I(s) := { j ∈ {1, . . ., l} : E[ϕ( j)(Xi , s)] > 0}. I(s) is the set

of indexes whose associated moments violate the inequality restrictions. For each j ,
let ϕ̄( j) := E[ϕ( j)(Xi , s)].
Assumption 3.9 (i) For each s ∈ S and j , ϕ̄( j) : S → R is continuously Fréchet
differentiable with the Fréchet derivative ϕ̇( j)

s : S → R, and for each s ∈ S, the
operator norm ‖ϕ̇( j)

s ‖op of ϕ̇( j)
s is bounded away from 0 for some j ∈ {1, . . ., l};

(ii) for each s /∈ S0, there exist j ∈ I(s) and C j > 0 such that E[ϕ( j)(Xi , s)] ≥
C j‖s − s0‖W for some s0 ∈ S0.

We also add regularity conditions on Sn , which can be satisfied by commonly used
sieves including polynomials, splines, wavelets, and certain artificial neural network
sieves.
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Assumption 3.10 (i) For each n, Sn ⊆ S, and both Sn and S are closed with respect
to ρ; (ii) for every s ∈ S, there is�ns ∈ Sn such that sups∈S ‖s −�ns‖W = O(δn)

for some sequence {δn} of non-negative constants such that δn → 0.

Theorem 3.3 Suppose Assumptions 2.1–2.3, 3.2 (i)–(iii), 3.3, 3.8, 3.9 (i), and 3.10
hold. Let an = O(max{n−1, δ2

n}−1) and bn → ∞ with bn = o(an). Then

dH,W (Ŝn,S0) = op(1).

In addition, suppose that Assumption 3.9 (ii) holds. Then

dH,W (Ŝn,S0) = Op
(√

bn/an
)
.

Theorem 3.3 can be used to establish Assumptions 3.6 and 3.7, which are imposed
in Theorems 3.1 and 3.2. These conditions are satisfied for Example 2.1 with a single
regressor.

In what follows, for any two sequences of positive constants {cn}, {dn}, let cn � dn

mean there exist constants 0 < C1 < C2 < ∞ such that C1 ≤ |cn/dn| ≤ C2 for
all n.

Corollary 3.1 In Example 2.1, suppose that Z is a compact convex subset of
the real line and rθ (z) = θ(1) + θ(2)z, where θ ∈ � ⊆ R

2. Suppose that �
is compact and convex. Suppose further that {(YL ,i ,YU,i , Zi )}i=1,...,n is a ran-
dom sample from P0 and that P0(Z ∈ Ak) > 0 for all k and V ar(Z) > 0.
Let S := {s ∈ L2

Z,1 : Z → R : ‖s‖∞ ≤ M, |s(z)−s(z′)| ≤ M‖z−z′‖,∀z, z′ ∈ Z}
for some M > 0. Let {rq(·)}Jn

q=1 be splines of order two with Jn knots on Z . Define

Sn := {s : s(z) =∑Jn
q=1 βqrq(z)} with Jn � nc1, c1 > 1/3. Let Ŝn be defined as in

(21) with an � nc2 , where 2/3 < c2 < 1 and bn � ln n. Then: (i) Ŝn is (Effros-) mea-
surable;
(ii) dH,W (Ŝn,S0) = op(1); (iii) dH,W (Ŝn,S0) = op(n−1/4).

Given these results, we further show that the estimator of the pseudo-true identified
set is consistent and converges at a n−1/2-rate.

Corollary 3.2 Suppose that the conditions of Corollary 3.1 hold. Let Q be defined
as in (15) with W = 1. Let Qn be defined as in (16) and �̂n be defined as in (17)
with cn = 0 and Ŝn as in Corollary 3.1. Then dH (�̂n,�∗) = Op(n−1/2).

4 Concluding Remarks

Moment inequalities are widely used to estimate discrete choice problems and struc-
tures that involve censored variables. In many empirical applications, potentially
misspecified parametric models are used to estimate such structures. This chapter
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studies a novel estimation procedure that is robust to misspecification of moment
inequalities. To overcome the challenge that the conventional identified set may be
empty under misspecification, we defined a pseudo-true identified set as the least
squares projection of the set of functions at which the moment inequalities are sat-
isfied. This set is nonempty under mild assumptions. We also proposed a two-stage
set estimator for estimating the pseudo-true identified set. Our estimator first esti-
mates the identified set of function-valued parameters by a level-set estimator over
a suitable sieve. The pseudo-true identified set can then be estimated by projecting
the first-stage estimator to a finite-dimensional parameter space. We give condi-
tions, under which the estimator is consistent for the pseudo-true identified set in the
Hausdorff metric and converges at a rate Op(n−1/2). Developing inference proce-
dures based on the proposed estimator would be an interesting future work. Another
interesting extension would be to study the optimal choice of the weighting matrix.
In this chapter, we maintained the assumption that W is fixed and does not depend on
(θ, s). Given the form of the criterion function, the most natural choice of W would
be the inverse matrix of the variance covariance matrix of s(Xi ) − rθ (Xi ). This
matrix is generally unknown but can be consistently estimated by its sample ana-
log: Ŵn(θ, s) := ( 1

n

∑n
i=1(s(Xi )−rθ (Xi ))(s(Xi )−rθ (Xi ))

′)−1.Defining a sample

criterion function using Ŵn(θ, s) as a weighting matrix would lead to a three-step
procedure. Such a procedure may result in more efficient estimation of �∗.6 Yet,
another interesting direction would be to develop a specification test for the moment
inequality models based on the current framework. This direction would extend the
results of Guggenberger et al. (2008), which studies a testing procedure that tests the
nonemptiness of the identified set.

A Mathematical Proofs

A.1 Notation

Throughout the appendix, let ‖·‖ denote the usual Euclidean norm. For each s, s′ ∈ S,
let ρ(s, s′) := supx∈S max j=1,...,l |s( j)(x) − s′( j)(x)|. For each a × b matrix A, let
‖A‖op := min{c : ‖Av‖ ≤ c‖v‖, v ∈ R

b} be the operator norm. For any symmetric
matrix A, let ξ(A) denote the smallest eigenvalue of A.

For a given pseudometric space (T, ρ), let N (ε, T, ρ) be the covering number,
i.e., the minimal number of ε-balls needed to cover T . For each measurable function
f : X → R and 1 ≤ p < ∞, let ‖ f ‖L p := E[| f (X)|p]1/p provided that the
integral exists. Similarly, let ‖ f ‖∞ := inf{c : P(| f (X)| > c) = 0}. For a given
function space G equipped with a norm ‖ · ‖G and l, u ∈ G, let [l, u] := { f ∈ G :
l ≤ f ≤ u}. For each f ∈ G, let Bε, f := {[l, u] : l ≤ f ≤ u, ‖l − u‖G < ε}
be the ε-bracket of f . The bracketing number N[ ](ε,G, ‖ · ‖G) is the minimum
number of ε-brackets needed to cover G. An envelope function G of a function

6 We are indebted to an anonymous referee for this point.
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class G is a measurable function such that g(x) ≤ G(x) for all g ∈ G. For each
δ > 0, the bracketing integral of G with an envelope function G is defined as
J[](δ,G, ‖ · ‖G) := ∫ δ0 √1 + ln N[](ε‖G‖G,G, ‖ · ‖G)dε.

A.2 Projection

Proof of Proposition 2.1 Note that under the conditions of Example 2.1, Assumption
2.3 holds. This ensures S0 is nonempty. By Eq. (13), �∗ is nonempty. Furthermore,
let θ ∈ �I , and for each z ∈ Z , let rθ (z) := z′θ . Note that rθ ∈ S0. Thus, (13) holds
with s = rθ , which ensures the first claim.

For the second claim, note that the condition E[YU |Z ] = E[YL |Z ] = Z ′θ0 a.s
implies that any θ ∈ �I must satisfy

E[Z1{Z ∈ A j }]′(θ0 − θ) = 0, j = 1, 2, . . ., K . (A.1)

By the rank condition on D, the unique solution to (A.1) is θ0 − θ = 0. Thus,
{θ0} = �I . Since {θ0} ⊆ �∗ by the first claim, it suffices to show that θ0 is the
unique element of �∗. For this, note that under our assumptions, S0 = {s0} with
s0(z) = z′θ0. Thus, �∗ = {θ0}. This completes the proof. ��

A.3 Consistency of the Parametric Part

For each s ∈ S, let θ∗(s) := arg minθ∈� Q(θ, s) and θ̂n(s) := arg minθ∈� Qn(θ, s).

Lemma A.1 Suppose that Assumptions 3.4 and 3.2 (iv) hold. Then, (i) for each
x ∈ X and any s, s′ ∈ S, there exists a function C1 : X → R+ such that

∥∥∥rθ∗(s)(x)− rθ∗(s′)(x)
∥∥∥ ≤ C1(x)ρ(s, s′); (A.2)

(ii) For each x ∈ X , j = 1, . . ., L , and any s, s′ ∈ S, there exists a function
C2 : X → R+ such that

∥∥∥∇( j)
θ rθ∗(s)(x)− ∇( j)

θ rθ∗(s′)(x)
∥∥∥ ≤ C2(x)ρ(s, s′). (A.3)

Proof of Lemma A.1 Assumption 3.4 ensures that

∥∥∥rθ∗(s)(x)− rθ∗(s′)(x)
∥∥∥ ≤ L1/2C(x)

∥∥∥θ∗(s)− θ∗(s′)
∥∥∥. (A.4)

Assumption 3.2 (iv) ensures that for each s ∈ L2
S,L , θ∗(s) = �R�

s is uniquely

determined, where �R�
is the projection mapping from the Hilbert space L2

S,L to
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the closed convex subset R�. Furthermore, Lemma 6.54 (d) in Aliprantis and Border
(2006) and the fact that ρ is stronger than ‖ · ‖W imply

∥∥∥θ∗(s)− θ∗(s′)
∥∥∥ ≤
∥∥∥s − s′

∥∥∥
W

≤ cρ(s, s′), (A.5)

for some c > 0. Combining (A.4) and (A.5) ensures (i). Similarly, Assumption 3.4
ensures that for each x ∈ X

∥∥∥∇( j)
θ rθ∗(s)(x)− ∇( j)

θ rθ∗(s′)(x)
∥∥∥ ≤ J 1/2C(x)

∥∥∥θ∗(s)− θ∗(s′)
∥∥∥. (A.6)

Combining (A.5) and (A.6) ensures (ii). ��
Proof of Theorem 3.1 Step 1: Let s ∈ S be given. For each θ ∈ �, let Qs(θ) :=
Q(θ, s) and Qn,s(θ) := Qn(θ, s). By Assumption 3.2 (iv) and Theorem 6.53 in
Aliprantis and Border (2006), Qs is uniquely minimized at θ∗(s). By Assump-
tion 3.2 (i), � is compact. By Assumption 3.2, Q(θ) is continuous. Furthermore,
Assumption 3.4 ensures the applicability of the uniform law of large numbers. Thus,
supθ∈� |Qn,s(θ)−Qs(θ)| = op(1). Hence, by Theorem 2.1 in Newey and McFadden
(1994), θ̂n(s)− θ∗(s) = op(1).

By Assumptions 3.2 (v), 3.4 (ii), and the fact that θ̂n(s) is consistent for θ∗(s),
θ̂n(s) solves the first order condition:

∇θ Qn(θ, s) = 1

n

n∑
i=1

∇θrθ (Xi )
′W (s(Xi )− rθ (Xi )) = 0, (A.7)

with probability approaching one. Expanding this condition at θ∗(s) using the mean-
value theorem applied to each element of ∇θ Qn(θ, s) yields

∇2
θ Qn(θ̄n(s), s)(θ̂n(s)− θ∗(s)) = 1

n

n∑
i=1

∇θrθ∗(s)(Xi )
′W (s(Xi )− rθ∗(s)(Xi )),

(A.8)
where θ̄n(s) lies on the line segment that connects θ̂n(s) and θ∗(s).7 For each s ∈ S η̄0 ,
let

ψs(x) := ∇θrθ∗(s)(x)′W (s(x)− rθ∗(s)(x)). (A.9)

Below, we show that the function class � := { fs : fs = ψ
( j)
s , s ∈ S η̄0 , j =

1, 2, . . ., J } is a Glivenko–Cantelli class.

7 Since the mean value theorem only applies element by element to the vector in (A.8), the mean
value θ̄n differs across the elements. For notational simplicity, we use θ̄n in what follows, but the
fact that they differ element to element should be understood implicitly. For the measurability of
these mean values, see Jennrich (1969) for example.
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By Assumption 3.4 (ii), Lemma A.1, the triangle inequality, and the Cauchy–
Schwarz inequality, for any s, s′ ∈ S,

|ψ( j)
s (x)− ψ

( j)
s′ (x)| ≤

∥∥∥(∇( j)
θ rθ∗(s)(x)− ∇( j)

θ rθ∗(s′)(x))
′W
∥∥∥

×
∥∥∥s(x)− rθ∗(s)(x)

∥∥∥+
∥∥∥∇( j)

θ rθ∗(s′)(x)
′W
∥∥∥

×
∥∥∥[s(x)− s′(x)] + [rθ∗(s′)(x)− rθ∗(s)(x)]

∥∥∥
≤ (C2(x)‖W‖op(M + R(x))+ (1 + C1(x))‖W‖op R(x))

× sup
x∈S

∥∥∥s(x)− s′(x)
∥∥∥

≤ F(x)ρ(s, s′), (A.10)

where F(x) := (C2(x)‖W‖op(M + R(x))+ (1 + C1(x))‖W‖op R(x))× √
L . For

any ε > 0, let u := ε/2‖F‖L1 . By, Theorem 2.7.11 in van der Vaart and Wellner
(1996) and Assumption 3.2 (ii), we obtain

N[](ε,�, ‖ · ‖L1) = N[](2u‖F‖L1 , �, ‖ · ‖L1)

≤ N (u,S η̄0 , ρ). (A.11)

For each j = 1, . . ., L , let S η̄,( j)
0 := {s( j) : s ∈ S η̄0 }. For each j, g ∈ S η̄,( j)

0 ,

and ε > 0, let B( j)
ε (g) := { f ∈ S η̄,( j)

0 : ‖ f − g‖∞ < ε}. Similarly, for each

s ∈ S η̄0 , let Bu,ρ(s) := { f ∈ S η̄,( j)
0 : ρ( f, s) < ε}. As we will show below, N j :=

N (u,S η̄,( j)
0 , ‖ · ‖∞) is finite for all j . Thus, for each j there exist f1, j , . . ., fN j , j ∈

S η̄,( j)
0 such that S η̄,( j)

0 ⊆⋃N j
l=1 B( j)

u ( fl, j ). We can then obtain a grid of distinct points

f1, . . ., fN ∈ S η̄0 such that f ( j)
i = fl, j for some 1 ≤ l ≤ N j , where N =∏L

j=1 N j .

Then, by the definition of ρ, S η̄0 ⊆⋃N
i=1 Bu,ρ( fi ). Thus,

N
(
u,S η̄0 , ρ

) ≤
L∏

j=1

N
(
u,S η̄,( j)

0 , ‖ · ‖∞
) ≤ N

(
u, CγM (X ), ‖ · ‖∞

)L
< ∞, (A.12)

where the last inequality follows from Assumption 3.2 (ii)–(iii) and Theorem 2.7.1
in van der Vaart and Wellner (1996). By Theorem 2.4.1 in van der Vaart and Wellner
(1996), � is a Glivenko–Cantelli class.

Note that, by Assumptions 3.2 (v) and 3.4, θ∗(s) solves the population analog of
(A.7). Thus,

E[∇θrθ∗(s)(Xi )
′W (s(Xi )− rθ∗(s)(Xi ))] = E[ψs(x)] = 0. (A.13)
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These results together with the strong law of large numbers whose applicability is
ensured by Assumptions 3.3 and 3.4 (ii) imply

sup
s∈S η̄0

∣∣∣∣∣
1

n

n∑
i=1

ψ
( j)
s (Xi )

∣∣∣∣∣ = op(1), j = 1, . . ., J. (A.14)

Step 2: In this step, we show that the Hessian ∇2
θ Qn(θ, s) is invertible with prob-

ability approaching 1 uniformly over Nε̄,η̄. Let H := {hθ,s : X → R : hθ,s(x) =
H (i, j)

W (θ, s, x) + 2∇θr (i)θ (x)′W∇θr ( j)
θ (x), 1 ≤ i, j ≤ p, θ ∈ �, s ∈ S η̄0 }. Note that

hθ,s takes the form:

hθ,s(x) = 2
L∑

k=1

L∑
h=1

∂2r (h)θ (x)

∂θi∂θ j
W (h,k)(s(k)(x)− r (k)θ (x)

)

+
L∑

k=1

L∑
h=1

∂r (h)θ (x)

∂θi
W (h,k) ∂r (k)θ (x)

∂θ j

for some 1 ≤ i, j ≤ p, θ ∈ �, and s ∈ S η̄0 . Consider the function classes F1 :=
{Dα

θ r (k)θ : θ ∈ �, |α| ≤ 2, k = 1, . . ., L} and F2 := {s(k) : s ∈ S η̄0 , k = 1, . . ., L}.
Assumptions 3.2 (i), 3.4, and Theorem 2.7.11 in van der Vaart and Wellner (1996)
ensure N[](ε,F1, ‖ · ‖L2) ≤ N (u,�, ‖ · ‖) < ∞ with u := ε/2‖C‖L2 . Assump-
tion 3.2 (ii)–(iii) and Corollary 2.7.2 in van der Vaart and Wellner (1996) ensure
N[](ε,F2, ‖ ·‖L2) ≤ N[](ε, CγM (X ), ‖ ·‖L2) < ∞. Since H can be obtained by com-
bining functions in F1 and F2 by additions and pointwise multiplications, Theorem
6 in Andrews (1994) implies N[](ε,H, ‖ · ‖L2) < ∞. This bracketing number is
given in terms of the L2-norm, but we can also obtain a bracketing number in terms
of the L1-norm. For this, let h1, . . ., h p be the centers of ‖ · ‖L2 -balls that cover H.
Then, the brackets [hi − ε, hi + ε], i = 1, . . ., p cover H, and each bracket has
length at most 2ε in ‖ · ‖L1 . Thus, N[](ε,H, ‖ · ‖L1) < ∞. By Theorem 2.7.1 in van
der Vaart and Wellner (1996), H is a Glivenko–Cantelli class. Hence, uniformly over
�× S η̄0 ,

∇2
θ Qn(θ, s) = 1

n

n∑
i=1

HW (θ, s, Xi )+ 2∇θrθ (Xi )
′W∇θrθ (Xi )

p→ E[HW (θ, s, Xi )+ 2∇θrθ (Xi )
′W∇θrθ (Xi )]. (A.15)

Note that dH,W (Ŝn,S0) = op(1) by Assumption 3.6. Thus, (θ̄n(s), s) ∈ Nε̄,η̄ with
probability approaching one. By Assumption 3.5 and (A.15), there exists δ > 0 such
that ∇2

θ Qn(θ̄n(s), s)’s smallest eigenvalue is above δ uniformly over Nε̄,η̄. Thus, the
Hessian ∇2

θ Qn(θ̄n(s), s) in (A.8) is invertible with probability approaching 1.
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Step 3: Steps 1–2 imply that, uniformly over S η̄0 ,

‖θ∗(s)− θ̂n(s
′)‖ = ‖θ∗(s)− θ∗(s′)+ θ∗(s′)− θ̂n(s

′)‖

≤ ‖θ∗(s)− θ∗(s′)‖ + 2δ−1 sup
s∈S η̄0

∥∥∥∥∥
1

n

n∑
i=1

ψs(Xi )

∥∥∥∥∥
≤ ‖s − s′‖W + op(1), (A.16)

where we used the fact that ‖θ∗(s) − θ∗(s′)‖ ≤ ‖s − s′‖W by Lemma 6.54 (d) in
Aliprantis and Border (2006).

Step 4: Finally, note that by Step 3,

�dH (�∗, �̂n) = sup
θ∈�∗

inf
θ ′∈�̂n

‖θ − θ ′‖ = sup
s∈S0

inf
s′∈Ŝn

‖θ∗(s)− θ̂n(s
′)‖

≤ sup
s∈S0

inf
s′∈Ŝn

‖s − s′‖W + op(1) (A.17)

�dH (�̂n,�∗) = sup
θ ′∈�̂n

inf
θ∈�∗

‖θ − θ ′‖ = sup
s′∈Ŝn

inf
s∈S0

‖θ∗(s)− θ̂n(s
′)‖

≤ sup
s′∈Ŝn

inf
s∈S0

‖s − s′‖W + op(1). (A.18)

Equation (18) and Assumption 3.6 then ensure the desired result. ��

A.4 Convergence Rate

The following lemma controls the rate at which �̂n covers �∗. Given a sequence
{ηn} such that ηn → 0, we let V δ1n (s) := {θ ′ : ‖θ ′ − θ(s)‖ ≤ en, en = Op(ηn)}
and let Nηn ,0 := {(θ, s) : θ ∈ V ηn (s), s ∈ S0}.
Lemma A.2 Suppose Assumptions 2.1–2.3, 3.1–3.2, and 3.6 hold. Let {δ1n} and {εn}
be sequences of non-negative numbers converging to 0 as n → ∞. Let G : �×S →
R+ be a function such that G is jointly measurable and lower semicontinuous. For
each n, let Gn : �×�×S → R be a function such that for each ω ∈ �, Gn(ω, ·, ·)
is jointly measurable and lower semicontinuous, and for each (θ, s) ∈ � × S,
Gn(·, θ, s) is measurable. Let �∗ := {G(θ, s) = 0, s ∈ S0} and �̂n := {θ ∈ � :
Gn(θ, s) ≤ infθ∈� Gn(θ, s) + cn, s ∈ Ŝn}. Suppose that dH (�̂n,�∗) = Op(δ1n).
Suppose further that there exists a positive constant κ and a neighborhood V (s) of
θ∗(s) such that

G(θ, s) ≥ κ‖θ − θ∗(s)‖2 (A.19)

for all θ ∈ V (s), s ∈ S0. Suppose that uniformly over Nδ1n ,0,

Gn(θ, s) = G(θ, s)+ Op(‖θ−θ∗(s)‖/√n)+op(‖θ−θ∗(s)‖2)+ Op(εn). (A.20)
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Then
�dH (�∗, �̂n) = Op(max{c1/2

n , ε
1/2
n , 1/

√
n}).

Proof of Lemma A.2 The proof of this Lemma is similar to Theorem 1 in Sherman
(1993). By (A.19), (A.20), and the Hausdorff consistency of �̂n , it follows that,
uniformly over Nδ1n ,0,

cn ≥ κ‖θ−θ∗(s)‖2 + Op(‖θ−θ∗(s)‖/√n)+op(‖θ−θ∗(s)‖2)+ Op(εn), (A.21)

with probability approaching 1. As in Theorem 1 in Sherman (1993), write Kn‖θ −
θ(s)‖ for the Op(‖θ − θ∗(s)‖/√n) term, where Kn = Op(1/

√
n) and also note

that op(‖θ − θ∗(s)‖2) is bounded from below by − κ
2 ‖θ − θ∗(s)‖2 with probability

approaching 1. Thus, we obtain

κ

2
‖θ − θ∗(s)‖2 + Kn‖θ − θ∗(s)‖ ≤ cn + Op(εn). (A.22)

Completing the square, we obtain

1

2
κ(‖θ − θ∗(s)‖ − Kn/κ)

2 ≤ cn + Op(εn)+ 1

2
K 2

n/κ = cn + Op(εn)+ Op(1/n).

(A.23)
Taking square roots gives

‖θ − θ∗(s)‖ ≤ (2/κ)1/2c1/2
n + Kn/κ + Op(ε

1/2
n )+ Op(1/

√
n) (A.24)

= Op(c
1/2
n )+ Op(ε

1/2
n )+ Op(1/

√
n). (A.25)

Thus,

�dH (�∗, �̂n) = sup
s∈S0

inf
θ∈�̂n

‖θ − θ∗(s)‖ (A.26)

≤ sup
s∈S0

inf
θ∈V δ1n (s)

‖θ − θ∗(s)‖

≤ Op(c
1/2
n )+ Op(ε

1/2
n )+ Op(1/

√
n). (A.27)

This completes the proof. ��
The following lemma controls the rate at which �̂n is contracted into a neighbor-

hood of �∗. Given s ∈ S and a sequence {δn} such that δn → 0, let U δn (s) := {θ ∈
� : ‖θ − θ∗(s)‖ ≥ δn}.
Lemma A.3 Suppose Assumptions 2.1–2.3, 3.1–3.2, and 3.6 hold. Let Gn be defined
as in Lemma A.2. Suppose that there exist positive constants (k, κ2) and a sequence
{δ1n} such that

Gn(θ, s) ≥ κ2‖θ − θ∗(s)‖2 (A.28)
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with probability approaching 1 for all θ ∈ U δn (s) with δn := (kδ1n/
√

n)1/2 and
s ∈ S η̄0 . Then,

�dH (�̂n,�∗) = Op(δ
1/2
1n /n1/4)+ Op(c

1/2
n ).

Proof of Lemma A.3 Note first that Ŝn is in S η̄0 with probability approaching 1
by Assumption 3.6. Let c̃n := √

ncn and c̄n := max{κ2kδ1n, c̃n}. Let εn :=
(c̄n/κ2

√
n)1/2. Then, uniformly over S η̄0 ,

inf
�∩U εn (s)

√
nGn(θ, s) ≥ κ2

√
nε2

n ≥ c̄n . (A.29)

Since
√

nGn(θ̂n(s), s) ≤ c̃n for all s ∈ Ŝn , the results above ensure

�dH (�̂n,�∗) = sup
s∈Ŝn

inf
θ∈�∗

‖θ̂n(s)− θ‖

≤ sup
s∈Ŝn

‖θ̂n(s)− θ∗(s)‖ ≤ εn = Op(δ
1/2
1n /n1/4)+ Op(c̃

1/2
n /n1/4).

This ensures the claim of the Lemma. ��
Proof of Theorem 3.2 We first show (A.19) holds with G(θ, s) = Q(θ, s). For this,
we use the second-order Taylor expansion of Q(θ, s). For θ ∈ V δ1n (s), it holds by
Assumptions 3.2 (v) and 3.4 that

Q(θ, s) = Q(θ∗(s), s)+ ∇θ Q(θ∗(s), s)′(θ − θ∗(s))

+ 1

2
(θ − θ∗(s))′∇2

θ Q(θ̄(s), s)(θ − θ∗(s)), (A.30)

where θ̄ (s) is on the line segment that connects θ and θ∗(s). By (15), Q(θ∗(s), s) = 0,
and by the first order condition of the optimality, ∇θ Q(θ∗(s), s) = 0. Thus, it follows
that

Q(θ, s) = 1

2
(θ − θ∗(s))′∇2

θ Q(θ̄(s), s)(θ − θ∗(s)) ≥ κ‖θ − θ∗(s)‖2, (A.31)

where κ := infθ∈�,s∈S0 ξ(∇2
θ Q(θ, s))/2, and κ > 0 by Assumption 3.5.

We next show that (A.20) holds for

Gn(θ, s) = 1

n

n∑
i=1

(s(Xi )− rθ (Xi ))
′W (s(Xi )− rθ (Xi ))

− 1

n

n∑
i=1

(s(Xi )− rθ∗(s)(Xi ))
′W (s(Xi )− rθ∗(s)(Xi )). (A.32)
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In what follows, let Ên denote the expectation with respect to the empirical distrib-
ution. Using the Taylor expansion of Gn and G with respect to θ at θ∗(s), we may
write

Gn(θ, s)− G(θ, s) = S1,n(θ, s)+ S2,n(θ, s), (A.33)

where

S1n(θ, s) := −2(θ − θ∗(s))′(Ên − E)[∇θrθ∗(s)(x)′W (s(x)− rθ∗(x))]
+op(‖θ − θ∗(s)‖2) (A.34)

S2n(θ, s) := (θ − θ∗(s))′(Ên − E)[∇θrθ∗(s)(x)′W∇θrθ∗(s)(x)](θ − θ∗(s)).
(A.35)

Thus, for (A.20) to hold, it suffices to show that S1n(θ, s) = Op(‖θ−θ∗(s)‖/√n)+
op(‖θ − θ∗(s)‖2) and S2n(θ, s) = Op(εn) for some εn → 0. For S1n , note that our
assumptions suffice for the conditions of Lemma A.4. Thus,� is a P0-Donsker class.
This ensures S1n(θ, s) = Op(‖θ−θ∗(s)‖/√n)+op(‖θ−θ∗(s)‖2). We now consider
S2n . For each s ∈ S0 and x ∈ X , let φs(x) := ∇θrθ∗(s)(x)′W∇θrθ∗(s)(x). Note that

E

[
sup

(θ,s)∈Nδ1n ,0

|S2n(θ, s)|
]

≤ δ2
1nn−1/2 E

[
sup
s∈S0

|Gnφs |
]

≤ n−1/2δ2
1nC J[](1,S0, ‖ · ‖L2)

∥∥∥∥∥ sup
s∈S0

|φs |
∥∥∥∥∥

L2

, (A.36)

where the last inequality follows from Lemma B.1 of Ichimura and Lee (2010). Now,
Markov’s inequality, Lemma A.4, and Assumption 3.4 (ii) ensure that S2n = Op(εn),
where εn = n−1/2δ2

1n .
We further set cn = 0. Note that the estimator defined in (17) with cn = 0

equals the set estimator �̂n = {θ : Gn(θ, s) ≤ infθ∈� Gn(θ, s)}. By Assumption
3.7 and Step 4 of the proof of Theorem 3.1, we may take δ1n = Op(n−1/4) as an

initial rate. Lemma A.2 then implies that �dH (�∗, �̂n) = Op(ε
1/2
n ), where εn =

Op(n−1/2δ2
1n) = Op(n−1). Thus, �dH (�∗, �̂n) = Op(n−1/2).

Now we consider �dH (�̂n,�∗). We show that (A.28) holds for Gn . For each θ
and s, let Ln(θ, s) := 1

n

∑n
i=1(s(Xi )− rθ (Xi ))

′W (s(Xi )− rθ (Xi )). Let s ∈ S η̄0 and
θ ∈ U δ1n (s). A second-order Taylor expansion of Gn(θ, s) = Ln(θ, s)−Ln(θ∗(s), s)
with respect to θ at θ∗(s) gives

Gn(θ, s) = ∇θ Ln(θ∗(s), s)′(θ − θ∗(s))+ 1

2
(θ − θ∗(s))′∇2

θ Ln(θ̄n(s), s)(θ − θ∗(s))

= op(1)+ 1

2
(θ − θ∗(s))′∇2

θ Ln(θ̄n(s), s)(θ − θ∗(s))

≥ κ2‖θ − θ∗(s)‖2, (A.37)
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with probability approaching 1 for some κ2 > 0, where θ̄n(s) is a point on the line
segment that connects θ and θ∗(s). The last inequality follows from Step 3 of the
proof of Theorem 3.1 and Assumption 3.5.

Set c̃n = 0. Then, Lemma A.3 implies �dH (�̂n,�∗) = Op(δ
1/2
1n /n1/4). Setting

δ1n = Op(n−1/4) refines this rate to Op(n−3/8). Repeated applications of Lemma
A.3 then implies �dH (�̂n,�∗) = Op(n−1/2). As both of the directed Hausdorff
distances converge to 0 at the stochastic order of n−1/2, the claim of the theorem
follows. ��
Lemma A.4 Suppose Assumptions 3.2 and 3.4 hold. Then� is a P0-Donsker class.

Proof of Lemma A.4 The proof of Theorem 3.1 shows that each fs ∈ � is Lipschitz
in s. For any ε > 0, Assumption 3.2 (ii)–(iii), Theorems 2.7.11 and 2.7.2 in van der
Vaart and Wellner (1996), and (A.12) imply

ln N[](ε‖F‖L2 , �, ‖ · ‖L2) ≤ ln N (ε/2,Sδ2
0 , ρ)

L ≤ C(1/ε)k/γ , (A.38)

where C is a constant that depends only on k, γ, L , and diam(X ). Thus, for any
δ > 0,

J[](δ,�, ‖ · ‖L2) ≤
δ∫

0

√
1 + C(1/ε)k/γ dε < ∞. (A.39)

Example 2.14.4 in van der Vaart and Wellner (1996) ensures that � is P0-
Donsker. ��

A.5 First Stage Estimation

In the following, we work with the following population criterion function. For each
s ∈ S, let Q be defined by

Q(s) :=
l∑

j=1

E[ϕ( j)(Xi , s)]2+. (A.40)

Lemma A.5 Suppose that Assumption 3.9 (i) holds. Let the criterion function be
given as in (A.40). Then, there exists a positive constant C2 such that

Q(s) ≤ inf
s0∈S0

C2‖s − s0‖2
W .

Proof of Lemma A.5 Let s ∈ S be arbitrary. For any s0 ∈ S, E[ϕ( j)(X, s0)] ≤ 0 for
j = 1, . . ., l. Let V be an open set that contains s and s0. Assumption 3.9 (i) and
Theorem 1.7 in Lindenstrauss et al. (2007), it holds that
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Q(s) ≤
l∑

j=1

(
E[ϕ( j)(Xi , s)] − E[ϕ( j)(Xi , s0)]

)2
+

≤
⎛
⎝ l∑

j=1

‖ sup
g∈Ṽ j

ϕ̇( j)
g ‖2

op

⎞
⎠ ‖s − s0‖2

W , (A.41)

where Ṽ j := {g ∈ V : ϕ̇( j)
g exists}. Let C2 :=∑l

j=1 ‖ supg∈S ϕ̇
( j)
g ‖2

op. It holds that
0 < C2 < ∞ by the hypothesis. We thus obtain

Q(s) ≤ C2‖s − s0‖2
W (A.42)

for all s0 ∈ S0. Note that s0 �→ ‖s − s0‖W is continuous and S0 is compact by
Assumption 3.2 (ii)–(iii) and Assumption 3.10 (i). Taking infimum over S0 then
ensures the desired result. ��
Lemma A.6 Suppose Assumption 3.9 (ii) holds. Let the criterion function be given
as in (A.40). Then there exists a positive constant C such that

Q(s) ≥ inf
s0∈S0

C3‖s − s0‖2
W .

Proof of Lemma A.6 If s ∈ S0, the conclusion is immediate. Suppose that s /∈ S0.

By Assumption 3.9 (ii), there exists s0 ∈ S0

Q(s) =
∑

j∈I(s)
(E[ϕ( j)(Xi , s)])2 ≥ C j‖s − s0‖2

W . (A.43)

Let C3 := C j . Thus, the claim of the lemma follows. ��
In the following, let G := {g : g(x) = ϕ

( j)
s (x), s ∈ S, j = 1, . . ., l}.

Lemma A.7 Suppose Assumptions 3.2, 3.4 , and 3.8 hold. Then G is a P0-Donsker
class.

Proof of Lemma A.7 By Assumption 3.8, ϕ( j)
s is Lipschitz in s. The rest of the proof

is the same as that of Lemma A.4. ��
Proof of Theorem 3.3 We establish the claims of the theorem by applying Theorem
B.1 in Santos (2011). Note first that Assumption 3.2 (ii)–(iii) and Assumption 3.10
(i) ensure that S is compact. This ensures condition (i) of Theorem B.1 in Santos
(2011). Condition (ii) of Theorem B.1 in Santos (2011) is ensured by Assumption
3.10. Lemma A.7 ensures that uniformly over �n

Qn(s) = Q(s)+ Op(n
−1). (A.44)
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Thus, condition (iii) of Theorem B.1 in Santos (2011) hold with C1 = 1 and c2n =
n−1. Lemma A.5 ensures that Q(s) ≤ infs0∈S0 C2‖s −s0‖2

W for some C2 > 0. Thus,
condition (iv) of Theorem B.1 in Santos (2011) hold with κ1 = 2. Now, the first
claim of Theorem B.1. in Santos (2011) establishes

dH,W (Ŝn,S0) = op(1). (A.45)

Furthermore, Lemma A.6 ensures Q(s) ≥ infs0∈S0 C3‖s −s0‖2 for some C3 > 0.
This ensures condition (v) of Theorem B.1 in Santos (2011) with κ2 = 2. Now, the
second claim of Theorem B.1. in Santos (2011) ensures

dH,W (Ŝn,S0) = Op(max{(bn/an)
1/2, δn}). (A.46)

Since (bn/an)
1/2/δn → ∞, the claim of the theorem follows. ��

Proof of Corollary 3.1 In what follows, we explicitly show Qn’s dependence on ω
∈ �. Let Qn : �×S → R be defined by Qn(ω, s) =∑l

j=1(
1
n

∑n
i=1 ϕ(Xi (ω), s))2+.

By Assumption 2.3, ϕ is continuous in s for every x and measurable for every s.
Also note that Xi is measurable for every i . Thus, by Lemma 4.51 in Aliprantis and
Border (2006), Qn is jointly measurable in (ω, s) and lower semicontinuous in s for
every ω. Note that S is compact by Assumptions 3.2 (ii)–(iii) and 3.10 (i), which
implies S is locally compact. Since S is a metric space, it is a Hausdorff space.
Thus, by Proposition 5.3.6 in Molchanov (2005), Qn is a normal integrand defined
on a locally compact Hausdorff space. Proposition 5.3.10 in Molchanov (2005) then
ensures the first claim.

Now we show the second claim using Theorem 3.3 (i). Assumptions 2.1–2.3
hold with ϕ defined in (5). Assumption 3.2 holds by our hypothesis with γ = 1.
Assumption 3.3 is also satisfied by the hypothesis. Note that for each j , ϕ( j)(x, s) =
(yL − s(z))1Ak (z) or ϕ( j)(x, s) = (s(z) − yU )1Ak (z) for some k ∈ {1, . . ., K }.
Without loss of generality, let j be an index for which ϕ( j)(x, s) = (yL −s(z))1Ak (z)
for some Borel set Ak . For any s, s′ ∈ S,

|ϕ( j)(x, s)− ϕ( j)(x, s′)| = |(s′(z)− s(z))1Ak (z)| ≤ ρ(s, s′). (A.47)

It is straightforward to show the same result for other indexes. Thus, Assumption 3.8
is satisfied.

Now for j such that ϕ( j)(x, s) = (yL − s(z))1Ak (z), note that

|ϕ̄( j)(s + h)− ϕ̄( j)(s)− E[h(Z)(−1Ak (Z))]| = 0. (A.48)

Thus, the Fréchet derivative is given by ϕ̇( j)
s (h) = E[h(Z)(−1Ak (Z))]. By Propo-

sition 6.13 in Folland (1999), the norm of the operator is given by ‖ϕ̇( j)
s ‖op =

E[| − 1Ak (Z)|2]1/2 = P0(Z ∈ Ak) > 0, which ensures the boundedness (continu-
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ity) of the operator. It is straightforward to show the same result for other indexes.
Hence, Assumption 3.9 (i) is satisfied. By construction, Assumption 3.10 (i) is satis-
fied, and Assumption 3.10 (ii) holds with δn � J−1

n (See Chen 2007). These ensure
the conditions of Theorem 3.3 (i). Thus, the second claim follows.

For the third claim, let s ∈ S \S0. Then, there exists j such that E[ϕ( j)(Xi , s)] >
0. Without loss of generality, suppose that E[ϕ( j)(Xi , s)] = E[(YL ,i − s(Zi ))1Ak

(Zi )] ≥ δ > 0. Let s0 ∈ S0 be such that

E[(YL ,i − s0(Zi ))1Ak (Zi )] = 0. (A.49)

Such s0 always exists by the intermediate value theorem. Then, for j with which
ϕ( j)(x, s) = (yL − s(z))1Ak (z), it follows that

E[ϕ( j)(Xi , s)] = E[(YL ,i − s(Zi ))1Ak (Zi )] − E[(YL ,i − s0(Zi ))1Ak (Zi )]
= E[(s0(Zi )− s(Zi ))1Ak (Zi )] > 0 (A.50)

Thus, we have
E[ϕ( j)(Xi , s)] ≥ C‖s0 − s‖W , (A.51)

where C := infq∈E E[q(Zi )1Ak (Zi )] and E := {q ∈ S : ‖q‖W = 1, E[q(Zi )1Ak

(Zi )] > 0}. Since C is the minimum value of a linear function over a convex set, it is
finite. Furthermore, by the construction of E , it holds that C > 0. Thus, Assumption
3.9 (ii) holds. Thus, by Theorem 3.3 (ii), the third claim follows. ��
Proof of Corollary 3.2 We show the claim of the corollary using Theorem 3.2. Note
that we have shown, in the proof of Corollary 3.1, that Assumptions 2.1–2.3, 3.2
(i)–(iii), and 3.3 hold. Thus, to apply Theorem 3.2, it remains to show Assumptions
2.4, 3.2 (iv), and 3.4–3.7.

Assumption 2.4 is satisfied by the parameterization rθ (z) = θ(1) + θ(2)z. For
Assumption 3.2 (iv), note that R� is given by

R� = {rθ : rθ = θ(1) + θ(2)z, θ ∈ �}.
Since� is convex, for any λ ∈ [0, 1], it holds that λrθ + (1 − λ)rθ ′ = rλθ+(1−λ)θ ′ ∈
R�. Thus, Assumption 3.2 (iv) is satisfied. For Assumption 3.4, note first that
rθ is twice continuously differentiable on the interior of �. Because rθ is linear,
max|α|≤2 |Dα

θ rθ (z) − Dα
θ rθ ′(z)| = (1 + z2)1/2‖θ − θ ′‖ by the Cauchy–Schwarz

inequality. By the compactness of Z , C(z) := (1+z2)1/2 is bounded. Thus, Assump-
tion 3.4 (i) is satisfied. Similarly, max|α|≤2 supθ∈� |Dα

θ rθ | ≤ max{1, |z|,C(1 +
z2)1/2} =: R(z), where C := supθ∈� ‖θ‖. By the compactness of Z and �, R
is bounded. Thus, Assumption 3.4 (ii) is satisfied. Note that the Hessian of Q(θ, s)
with respect to θ is given by 2E[(1, z)(1, z)′], which does not depend on θ nor s and
is positive definite by the assumption that V ar(Z) > 0. Thus, Assumption 3.5 is
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satisfied. Assumptions 3.6 and 3.7 are ensured by Corollary 3.1. Now the conditions
of Theorem 3.2 are satisfied. Thus, the claim of the Corollary follows. ��
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