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Abstract In this chapter we analyze asymptotic properties of the simulated out-of
-sample predictive mean squared error (PMSE) criterion based on a rolling window
when selecting among nested forecasting models. When the window size is a fixed
fraction of the sample size, Inoue and Kilian (J Econ 130: 273–306, 2006) show that
the PMSE criterion is inconsistent. We consider alternative schemes under which the
rolling PMSE criterion is consistent. When the window size diverges slower than
the sample size at a suitable rate, we show that the rolling PMSE criterion selects
the correct model with probability approaching one when parameters are constant
or when they are time varying. We provide Monte Carlo evidence and illustrate the
usefulness of the proposed methods in forecasting inflation.

1 Introduction

It is a common practice to compare models by out-of-sample predictive mean squared
error (PMSE). For example, Meese and Rogoff (1983a,b) and Swanson and White
(1997) compare models according to their PMSE calculated in rolling windows.
Another common practice is to use a consistent information criterion such as the
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Schwarz Information Criterion (SIC), used for example in Swanson and White
(1997). Information criteria and the out-of-sample PMSE criteria deal with the issue
of overfitting inherent in the in-sample PMSE criterion. Information criteria penalizes
overparameterized models via penalty terms and are easy to compute. The out-of-
sample PMSE criteria simulate out-of-sample forecasts and are very intuitive.1

In a recent chapter, Inoue and Kilian (2006) show that the recursive and rolling
PMSE criteria are inconsistent and recommend that consistent in-sample informa-
tion criteria, such as the SIC, be used in model selection. They also show that even
when there is structural change these out-of-sample PMSE criteria are not neces-
sarily consistent. Their results are based on the assumption that the window size is
proportional to the sample size.

In this chapter we consider an alternative framework in which the window size
goes to infinity at a slower rate than the sample size. Under this assumption we show
that the rolling-window PMSE criterion is consistent for selecting nesting linear
forecasting models. When the nesting model is the truth, the criterion selects the
nesting model with probability approaching one because the parameters and thus
the PMSE are consistently estimated as the window size diverges. When the nested
model is generating the data, the quadratic term in the quadratic expansion of the loss
difference becomes dominant when the window size is small. Because the quadratic
form is always positive, the criterion will select the nested model with probability
approaching one. When the window size is large, however, the linear term and the
quadratic term are of the same order and the sign cannot be determined. By letting the
window size diverge slowly, the rolling PMSE criterion is consistent under a variety
of environments, when parameters are constant or when they are time varying.

When the window size diverges at a slower rate than the sample size, the rolling
regression estimator can be viewed as a nonparametric estimator (Giraitis et al.
2011) and time-varying parameters are consistently estimated. We show that our
rolling-window PMSE criterion remains consistent even when parameters are time
varying. When the window size is large, that is, when it is assumed to go to infinity
at the same rate as the total sample size, the criterion is not consistent because the
rolling regression estimator is oversmoothed. In the time-varying parameter case, the
conventional information criterion is not consistent in general.

This chapter is related to, and different from, the works by West (1996); Clark
and McCracken (2001); Giacomini and White (2006); Giacomini and Rossi (2010),
and Rossi and Inoue (2011) in several ways. West (1996) and Clark and McCracken
(2001) focus on comparing models’ relative to forecasting performance when the
window size is a fixed fraction of the total sample size,whereas Giacomini and

1 The out-of-sample PMSE criteria are based on simulated out-of-sample predictions where para-
meters are estimated from a subsample to predict an observation outside the subsample. When
subsamples always start with the first observation and use consecutive observations whose number
is increasing, we call the simulated quadratic loss the recursive PMSE criterion. When subsamples
are based on the same number of observations and are moving, we call the simulated quadratic loss
the rolling PMSE criterion and the number of observations in the subsamples is the window size.
See Inoue and Kilian (2006) for more technical definitions of these criteria.
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White (2006) focus on the case where the window size is constant; this chapter
focuses instead on the case where the window size goes to infinity but at a slower
rate than the total sample size. Giacomini and Rossi (2010) argue that, in the presence
of instabilities, traditional tests of predictive ability may be invalid, since they focus
on the forecasting performance of the models on average over the out-of-sample
portion of the data. To avoid the problem, they propose to compare models’ relative
predictive ability in the presence of instabilities by using a rolling window approach
over the out-of-sample portion of the data. The latter helps them to follow the relative
performance of the models as it evolves over time. In this chapter we focus on
consistent model selection procedures, instead, rather than testing; furthermore, our
focus is not to compare models’ predictive performance over time, rather to select the
best forecasting model asymptotically. Rossi and Inoue (2011) focus on the problem
of performing inference on predictive ability that is robust to the choice of the window
size. In this chapter, instead, we take as given the choice of the window size and our
objective is not to perform tests; we focus instead on understanding whether it is
possible to consistently select the true model depending on the size of the window
relative to the total sample size.

The rest of this chapter is organized as follows: In Sect. 2 we establish the consis-
tency of the rolling PMSE criterion under the standard stationary environment as well
as under the time-varying parameter environment. In Sect. 3 we investigate the finite-
sample properties of the rolling-window PMSE criterion. Section 4 demonstrates the
usefulness of our criteria in forecasting inflation. Section 5 concludes.

2 Asymptotic Theory

Consider two nesting linear forecasting models, models 1 and 2, to generate h-steps
ahead direct forecasts (where h is finite):

Model 1 : yt+h = α∗′xt + ut+h, (1)

Model 2 : yt+h = β ′zt + vt+h = α′xt + γ ′wt + vt+h, (2)

where dim(α) = k and dim(β) = l. The first terms on the right-hand sides of
Eqs. (1) and (2), α∗′xt and β ′zt are the population linear projections of yt+h on
xt and zt , respectively. Thus, zt is uncorrelated with vt+h , α∗ = [E(xt x ′

t )]−1

E(xt yt+h) and β = [E(zt z′
t )]−1 E(zt yt+h).

Define the population quadratic loss of each model by

σ 2
1 = limT →∞ 1

T −h

T −h∑

t=1
E[(yt+h − α′xt )

2] = limT →∞ 1
T −h

T −h∑

t=1
E(u2

t+h),

σ 2
2 = limT →∞ 1

T −h

T −h∑

t=1
E[(yt+h − β ′zt )

2] = limT →∞ 1
T −h

T −h∑

t=1
E(v2

t+h).
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Our goal is to select the model with smallest quadratic loss.
Let the window size used for parameter estimation be denoted by W for some

W > h. Define the rolling ordinary least squares (OLS) estimators as follows, for
t = W + 1, ..., T :

α̂t,W =
(

t−h∑

s=t−W

xs x ′
s

)−1 t−h∑

s=t−W

xs ys+h, (3)

β̂t,W =
(

t−h∑

s=t−W

zs z′
s

)−1 t−h∑

s=t−W

zs ys+h, (4)

and the associated rolling PMSEs by:

σ̂ 2
1,W = 1

T − h − W

T −h∑

t=W+1

û2
t+h, (5)

σ̂ 2
2,W = 1

T − h − W

T −h∑

t=W+1

v̂2
t+h, (6)

where ût+h = yt+h − α̂′
t,W xt , v̂t+h = yt+h − β̂ ′

t,W zt . We say that the rolling PMSE
criterion is consistent if

• σ̂ 2
1,W < σ̂ 2

2,W with probability approaching one if σ 2
1 = σ 2

2 ; and

• σ̂ 2
1,W > σ̂ 2

2,W with probability approaching one if σ 2
1 > σ 2

2 .

Under what conditions on the window size is the rolling PMSE criterion consis-
tent? The existing results are not positive. When the window size is large relative
to the sample size (i.e., ∃λ ∈ (0, 1) s.t. W = λT + o(T )), Inoue and Kilian (2005)
show that the criterion is not consistent. Specifically, when σ 2

1 = σ 2
2 , they show that

the criterion selects model 2 with a positive probability resulting in the overparame-
terized model. We will discuss this result in more detail in the next section, where
we will compare it with the theoretical results proposed in this chapter.

When the window size is very small (i.e., W is a fixed constant), it is straight-
forward to show that the criterion may not be consistent. For example, compare
the zero-forecast model (xt = ∅) and the constant-forecast model (wt = 1) with
W = h = 1. Suppose that yt+1 = c + ut+1, where ut ∼ i id(c, σ 2). Note that
σ 2

1 = c2 + σ 2 and σ 2
2 = σ 2. Since

σ̂ 2
1,1 = 1

T −1

T −1∑

t=1
y2

t+1
p→ c2 + σ 2,

σ̂ 2
2,1 = 1

T −1

T −1∑

t=1
(yt+1 − yt )

2 p→ 2σ 2,
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however, σ̂ 2
1,1 < σ̂ 2

2,1 with probability approaching one whenever c2 < σ 2. This is
because parameter estimation uncertainty never vanishes even asymptotically, when
the window size is fixed.

The goal of the next section is to show that the criterion is consistent if the window
size is small, but not too small, relative to the sample size in the following sense:
W → ∞ and W/T → 0 as T → ∞. Following Clark and McCracken (2000),
we use the following notation: Let q2,t = zt z′

t , q1,t = xt x ′
t , Bi = [E(qit )]−1,

Bi (t) =
[

1
Wh

t−h∑

s=t−W
qi,s

]−1

, H1(t) = 1
Wh

t−h∑

s=t−W
xs(ys+h − α∗′xs), H2(t) =

1
Wh

t−h∑

s=t−W
zsvs+h , where i is either 1 or 2 and Wh = W − h + 1.

2.1 Consistency of the Rolling-Window PMSE Criterion When
Parameters are Constant

First, consider the case where the parameters are constant.

Assumption 1 As T → ∞, T 1/2/W = O(1) and W/T → 0.

Assumption 2 (a) {[x ′
t z′

t yt+h]′} is covariance stationary and has finite 10 moments
with E(zt z′

t ) positive definite and B2(t) positive definite for all t almost surely.
(b) W 1/2(Bi (t) − Bi ) and W 1/2 Hi (t) have finite fourth moments uniformly in t for

i = 1, 2.
(c) E(vt+h |Ft ) = 0 with probability one for 1, 2, . . ., where Ft is the σ field

generated by {(ys+h, zs)}t−h
s=1.

(d) E[H ′
1(t)B1(xt x ′

t−E(xt x ′
t ))B1 H1(t)] = o(W −1) and E[H ′

2(t)B2(zt z′
t−E(zt z′

t ))

B2 H2(t)] = o(W −1) uniformly in t .
(e)

Cov

[

vech

(
T −h∑

t=W+1

H ′
i (t)(Bi (t) − Bi )qi,t (Bi (t) − Bi )Hi (t)

)]

= O

(
T −h∑

t=W+1

Cov
[
vech

(
H ′

i (t)(Bi (t) − Bi )qi,t (Bi (t) − Bi )Hi (t)
)]

)

,

Cov

[

vec

(
T −h∑

t=W+1

H ′
i (t)Bi qi,t (Bi (t) − Bi )Hi (t)

)]

= O

(
T −h∑

t=W+1

Cov
[
vec

(
H ′

i (t)Bi qi,t (Bi (t) − Bi )Hi (t)
)]

)

,
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Cov

[

vech

(
T −h∑

t=W+1

H ′
i (t)Bi qi,t Bi Hi (t)

)]

= O

(
T −h∑

t=W+1

Cov
[
vech

(
H ′

i (t)Bi qi,t Bi Hi
)]

)

,

for i = 1, 2.

Remark When the window size is assumed to be proportional to the sample size,
W = [rT ] for r ∈ [0, 1], the functional central limit theorem (FCLT) is often used
to find the asymptotic properties of the recursive and rolling regression estimators
(e.g., Clark and McCracken 2001). For example, if h = 1,

√
T (β̂t,W − β) =

(
1

T

t−1∑

s=t−W

zs z′
s

)−1
1√
T

t−1∑

s=t−W

zsvs+1

and if vech(zt z′
t ) and ztvt+1 satisfy the FCLT, we obtain

√
T (β̂[rT ] − β) ⇒ σ

r
[E(zt z

′
t )]−1/2 Bl(r)

where Bl(r) is the l-dimensional standard Brownian motion, provided [z′
t vt+1]′ is

covariance stationary. Thus, we have β̂t,W −β = Op(T −1/2) uniformly in t . When
the window size diverges slower than the sample size it is tempting to use the same
analogy and claims β̂t,W − β = Op(W −1/2) uniformly in t . This result does not
follow from the FCLT, however, even though β̂t,W − β = Op(W −1/2) pointwise
in t . To see why, let zt = 1. Then

β̂t,W − β = 1

W

t−1∑

s=1

vs+1 − 1

W

t−W−1∑

s=1

vs+1

=
√

T

W

1√
T

t−1∑

s=1

vs+1 −
√

T

W

1√
T

t−W−1∑

s=1

vs+1

= op

(√
T

W

)

uniformly in t , where the last equality follows from 1√
T

∑t−1
s=1 vs+1 − 1√

T

∑t−W−1
s=1

vs+1 = op(1) by the FCLT and W = o(T ). Thus, the FCLT alone does not imply
β̂t,W − β = Op(W −1/2) uniformly in t in general. This is why we need some
high-level assumption, such as Assumptions 2(b)(d)(e).
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Assumption 1 requires that W diverges slower than T . This assumption makes
the convergence rates of terms in the expansion of the PMSE differential uneven
which helps to establish the consistency of this criterion when the nested model is
generating the data. Assumption 2(c) requires that the nesting model is (dynamically)
correctly specified. Assumption 2(d) is trivially satisfied if zt is strictly exogenous
and allows for weak correlations between zt and vs . Assumption 2(e) is a high-level
assumption and imposes that the variance of the sum is in the same order of the sum
of variances. In other words, the summands are only weakly serially correlated so that
their autocovariances decay fast enough. This assumption is somewhat related to the
concept of essential stationarity of Wooldridge (1994, pp. 2643–2644). Assumptions
somewhat similar to this condition are used in the central limit theorem for stationary
and ergodic processes (e.g., Theorem 5.6 of Hall and Heyde 1980, p. 148) and
the central limit theorem for near epoch-dependent processes (e.g., Theorem 5.3 of
Gallant and White 1988, p. 76; Assumption C1 of Wooldridge and White 1988).

Theorem 1 Under Assumptions 1 and 2, the rolling-window PMSE criterion is
consistent.

To compare our consistency result and the inconsistency result of Inoue and Kilian
(2006), consider two simple competing models, yt+h = ut+h (model 1) and yt+h =
c + vt+h (model 2) where vt+h is i.i.d. with mean zero and variance σ 2

2 and h = 1.

The difference of the out-of-sample PMSE can be written as

σ̂ 2
2,W − σ̂ 2

1,W = − 2

T − W − 1

T −1∑

t=W+1

(ĉt − c)vt+1 + 1

T − W − 1

T −1∑

t=W+1

(ĉt − c)2

where ĉt = (1/W )
∑t−1

s=t−W ys+1. Assume that c = 0 in population.
When W = [λT ] for some λ ∈ (0, 1), it follows from Lemmas A6 and A7 of

Clark and McCracken (2000) that

T
(
σ̂ 2

2,W − σ̂ 2
1,W

)
d→ − 2

λ (1 − λ)
σ 2

2

1∫

λ

(B(r) − B(r − λ))dB(r)

+ 1

λ2 (1 − λ)
σ 2

2

1∫

λ

(B(r) − B(r − λ))′(B(r) − B(r − λ))dr

where B(·) is the standard Brownian motion. Because the probability that the right-
hand side is negative is nonzero, the criterion is inconsistent when c = 0. This is the
inconsistency result in Inoue and Kilian (2006).

When W = o(T 1/(1+2ε)) for some ε ∈ (0, 1/2), the case considered in this
chapter, we have:



306 A. Inoue et al.

W (σ̂ 2
2,W − σ̂ 2

1,W ) = − 2W
1
2 +ε

T − W − 1

T −1∑

t=W+1

(
1

W
1
2 +ε

t−1∑

s=t−W

vs+1

)

vt+1

+ 1

T − W − 1

T −1∑

t=W+1

(
1

W
1
2

t−1∑

s=t−W

vs+1

)2

= 1

T − W − 1

T −1∑

t=W+1

(
1

W
1
2

t−1∑

s=t−W

vs+1

)2

+ op(1)

Because the right-hand side remains positive even asymptotically, the criterion will
choose model 1 with probability approaching one. The key for the consistency result
is that the last quadratic term in the expansion dominates the middle cross-term when
the window size is small.

Lastly, it should be noted that our consistency result does not imply that the result-
ing forecast based on a slowly diverging window size is optimal. When parameters
are constant, one would expect that the optimal forecast for the T + 1st observation
should be based on all T observations, not on the last W observations. Assumption 1
is merely a device to obtain the consistency of the rolling PMSE criterion.

2.2 Consistency of the Rolling-Window PMSE Criterion When
Parameters are Time Varying

Sometimes it is claimed that out-of-sample PMSE comparisons are used to protect
practitioners from parameter instability. As Inoue and Kilian (2006) show this is not
always the case. In this section we show that the rolling PMSE criterion with small
window sizes delivers consistent model selection even when parameters are time
varying.

Suppose that the slope coefficients are time varying in the sense that

yT,t+h = β

(
t

T

)′
zT,t + vT,t+h (7)

where β(r) = [α(r)′ γ (r)′]′ for r ∈ [0, 1]. When the slope coefficients are time
varying, the second moments are also time varying. Let

[
�zz

( t
T

)
�zy

( t
T

)

�yz
( t

T

)
�yy

( t
T

)
]

=
⎡

⎣
�xx

( t
T

)
�xw

( t
T

)
�xy

( t
T

)

�wx
( t

T

)
�ww

( t
T

)
�wy

( t
T

)

�yx
( t

T

)
�yw

( t
T

)
�yy

( t
T

)

⎤

⎦

=
⎡

⎣
E[xT,t x ′

T,t ] E[xT,tw
′
T,t ] E[xT,t yT,t ]

E[wT,t x ′
T,t ] E[wT,tw

′
T,t ] E[wT,t yT,t ]

E[yT,t x ′
T,t ] E[yT,tw

′
T,t ] E[y2

T,t ]

⎤

⎦ ,
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for t = 1, 2, ..., T and T = 1, 2, .... Let B̄1
( t

T

) = [E(xT,t x ′
T,t )]−1 and B̄2

( t
T

) =
[E(zT,t z′

T,t )]−1. Then β(·) = [�zz(·)]−1�zy(·). We compare

yT,t+h = α

(
t

T

)′
xT,t + uT,t+h (8)

and (7), where (7) simplifies to (8) if γ (u) = 0 for all u ∈ [0, 1].
Assumption 3 As T → ∞, T 1/2/W = O(1) and W = o(T 2/3).

Assumption 4 (a)

ξt = vech

{[
zT,t z′

T,t zT,t yT,t+h

yT,t+hz′
T,t y2

T,t+h

]

−
[

�zz
( t

T

)
�zy

( t
T

)

�yz
( t

T

)
�yy

( t
T

)
]}

(9)

has finite fifth moments with B2(t) positive definite for all t almost surely.
(b) W 1/2

(
Bi (t) − B̄i

( t
T

))
and W 1/2 Hi (t) have finite fourth moments uniformly in

t for i = 1, 2.
(c) E(vT,t+h |FT t ) = 0 with probability one for 1, 2, ..., where FT t is the σ field

generated by {(yT,s+h, zT s)}t−h
s=1.

(d) E[H ′
i (t)B̄i

( t
T

)
(qi,T,t − E(qi,T,t ))B̄i

( t
T

)
Hi (t)] = o(W −1) uniformly in t for

i = 1, 2, where q1,T,t = xT,t xT,t and q2,T,t = zT,t z′
T,t .

(e)

Cov

⎡

⎣vech

⎛

⎝
T −h∑

t=W+1

H ′
i (t)

(

Bi (t) − B̄i

(
t

T

))

qi,T,t

(

Bi (t) − B̄i

(
t

T

))

Hi (t)

⎞

⎠

⎤

⎦

= O

⎛

⎝
T −h∑

t=W+1

Cov

[

vech

(

H ′
i (t)

(

Bi (t) − B̄i

(
t

T

)

qi,T,t

(

Bi (t) − B̄i

(
t

T

))

Hi (t)

)])

,

Cov

[

vec

(
T −h∑

t=W+1

H ′
i (t)B̄i

(
t

T

)

qi,T,t

(

Bi (t) − B̄i

(
t

T

))

Hi (t)

)]

= O

(
T −h∑

t=W+1

Cov

[

vec

(

H ′
i (t)B̄i

(
t

T

)

qi,T,t

(

Bi (t) − B̄i

(
t

T

))

Hi (t)

)])

,

Cov

[

vech

(
T −h∑

t=W+1

H ′
i (t)B̄i

(
t

T

)

qi,T,t B̄i

(
t

T

)

Hi (t)

)]

= O

(
T −h∑

t=W+1

Cov

[

vech

(

H ′
i (t)B̄i

(
t

T

)

qi,T,t B̄i

(
t

T

)

Hi

)])

,

where i = 1, 2.
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(f) �zz(u) is positive definite for all u ∈ [0, 1], and α (.) ≡ �xx (·) −1 �xy(·) and
β (.) ≡ �zz(·) −1 �zy(·) satisfy a Lipschitz condition of order 1.

Remark Assumption 3 is more restrictive than Assumption 1 to keep the bias of
the rolling regression estimator from interfering the consistency of the rolling PMSE
estimator. Assumptions 4(a)(b) requires that ξt behaves like a stationary process with
enough many moments. Assumptions 4(b)–(e) are analogs of Assumptions 2(b)–(e).
Assumption 4(f) requires that the second moments change very smoothly.

Theorem 2 Suppose Assumptions 3 and 4 hold. Then the rolling-window PMSE
criterion is consistent.

Remark The above consistency result is intuitive once it is recognized that the rolling
regression estimator is a nonparametric regression estimator of parameters with a
truncated kernel. For example, Cai (2007) establish the consistency and asymptotic
normality of nonparametric estimators of time-varying parameters, and Giraitis et al.
(2011) prove the consistency and asymptotic normality of nonparametric estimators
for stochastic time-varying coefficient AR(1) models.

In general, the conventional information criteria, such as SIC, are not consistent
when parameters are time varying. To show why that is the case consider comparing
two competing models yt+h = ut+h and yt+h = c + vt+h for h = 1 when the data
are generated from:

yt = t

T
− 1

2
+ εt (10)

where εt is i.i.d. with mean zero and variance σ 2. Then the population in-sample
PMSE of the zero forecast model is

lim
T →∞ E

(
1

T − 1

T −1∑

t=1

y2
t+1

)

= σ 2 +
1∫

0

(

r − 1

2

)2

dr = σ 2 + 1

12

The population in-sample PMSE of the forecast model that estimates the constant in
rolling windows is also

lim
T →∞ min

c
E

(
1

T − 1

T −1∑

t=1

(yt+1 − c)2

)

= min
c

⎛

⎝σ 2 +
1∫

0

(r − c)2dr

⎞

⎠ = σ 2 + 1

12

Thus, the SIC would select the zero forecast model while the true DGP is a time-
varying constant forecast model. Our criterion, by re-estimating the constant in rolling
windows, is robust to time variation in the parameters and will select the second model
with probability approaching unity asymptotically.
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3 Monte Carlo Evidence

In this section we investigate the finite-sample performance of the rolling-window
PMSE criterion in two Monte Carlo experiments. In the first experiment, we use the
data generating process (DGP) of Clark and McCracken (2005) as it is similar to the
empirical application that we will consider in the next section. In the second experi-
ment, we use a simple DGP in which the dependent and independent variables both
follow first-order autoregressive processes, and consider both constant parameter and
time-varying parameter cases.

3.1 Simulation 1: DGP2 in Clark and McCracken (2005)

The second DGP of Clark and McCracken (2005) is based on estimates based on
quarterly 1957:1–2004:3 data of inflation (Y ) and the rate of capacity utilization in
manufacturing (x). We consider restricted and unrestricted forecasting models as
follows:

Model 1 : 
Yt+1 = α0 + α1
Yt + α2
Yt−1 + u1,t+1 (11)

Model 2 : 
Yt+1 = α0 + α1
Yt + α2
Yt−1 + γ1xt−1 + γ2xt−2 + γ3xt−3

+ γ4xt−4 + u2,t+1 (12)

When the restricted model (11) is true, the DGP is parameterized using Eq. (7) in
Clark and McCracken (2005):


Yt = −0.316
Yt−1 − 0.214
Yt−2 + uy,t , (13)

xt = −0.193
Yt−1 − 0.242
Yt−2 − 0.240
Yt−3 − 0.119
Yt−4

+ 1.427xt−1 − 0.595xt−2 + 0.294xt−3 − 0.174xt−4 + ux,t , (14)

where [
uy,t

ux,t

]
i id∼ N

([
0
0

]

,

[
1.792 0.244
0.244 1.463

])

. (15)

When the unrestricted model (12) is the truth, the DGP is parameterized using Eq. (9)
in Clark and McCracken (2005).


Yt = − 0.419
Yt−1 − 0.258
Yt−2

+ 0.331xt−1 − 0.423xt−2 + 0.309xt−3 − 0.139xt−4 + uy,t , (16)

where xt is defined as in Eq. (14) and
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Table 1 Selection probabilities of the SIC

T The restricted model is true The unrestricted model is true

100 0.9901 0.6640
250 0.9977 0.9847
500 0.9997 1
1000 0.9997 1

Table 2 Selection probabilities of the PMSE criterion when the window size is a fixed fraction of
the total sample size

π T The restricted model is true The unrestricted model is true

0.2 100 0.9955 0.2326
250 0.9914 0.9113
500 0.9907 0.9997

1000 0.9916 1
0.5 100 0.7459 0.8101

250 0.7353 0.9845
500 0.7383 0.9995

1000 0.7427 1
0.8 100 0.3385 0.8476

250 0.3682 0.9411
500 0.3735 0.9841

1000 0.3719 0.9985

[
uy,t

ux,t

]
i id∼ N

([
0
0

]

,

[
1.517 0.244
0.244 1.463

])

, (17)

In both (15) and (17), the initial values of 
Yt and xt are generated with draws from
the unconditional normal distribution. We compare the performance of the SIC and
the rolling window PMSE criteria; the latter is implemented with a window size that
is either (i) fixed relative to the sample size; (ii) proportional to the sample size; or
(iii) diverging slower than the sample size. The number of Monte Carlo replications
is set to 10,000. Tables 1, 2, 3, 4 report the empirical probabilities of selecting the
correct model. If the procedure is correct, the corresponding probabilities in the tables
should be unity.

Tables 1, 2 and 3 report the results for the SIC, the PMSE criterion with W
proportional to T , and the PMSE criterion with fixed W , respectively. As expected,
the SIC selects the correct model with probability approaching one as the sample
size increases. The second last column of Table 2 shows that, when the window size
is set to a fraction of the total sample size, W = [πT ], the PMSE criterion tends
to overparameterize the model when π is not very small. When the window size is
fixed to a small number (W = 10), the PMSE criterion tends to underparameterize
the model. The results for W = [0.2T ], W = 50, and W = 90 seem to contradict
our claim that these specifications of the window size should yield inconsistent
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Table 3 Selection probabilities of the PMSE criterion when the window size is constant

W T The restricted model is true. The unrestricted model is true.

10 100 1 0.0008
250 1 0
500 1 0

1000 1 0
50 100 0.7459 0.8101

250 0.9914 0.9113
500 1 0.9729

1000 1 0.9972
90 100 0.1937 0.8612

250 0.8959 0.9840
500 0.9954 0.9990

1000 1 1

Table 4 Selection probabilities of the PMSE criterion when the window size is slowly diverging

W T The restricted model is true The unrestricted model is true

T 1/3 100 N/A N/A
250 1 0
500 1 0

1000 1 0
T 1/2 100 1 0.0008

250 1 0.0016
500 1 0.0532

1000 1 0.5512
T 3/4 100 0.9500 0.5947

250 0.9749 0.9619
500 0.9883 0.9998

1000 0.9953 1

model selection; however, for reasonably large sample sizes, these specifications
are observationally equivalent to the small window size specification we propose.
Table 4 shows the results when the window size is small but diverging, W = o(T ).
The results for W = T 3/4 support our consistency results. Although the window size
W = T 1/3 and W = T 1/2 does not satisfy our sufficient condition (Assumption 1),
the resulting criterion chooses the restricted model with probability approaching one
when it is true. However, the PMSE criterion with W = T 1/3 fails to choose the
unrestricted model when it is the truth.2

Overall, our results suggest that a window size that is a fixed fraction of the total
sample size does not appear to give consistent results when Model 1 is the true
data generating process. On the other hand, a constant window size W = 10 is not

2 When T = 100, W = T 1/3 is too small to compute a rolling estimator.
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consistent when Model 2 is true. The divergent window size, in general, consistently
selects the correct model, asymptotically. When W = T 1/3, the consistency is not
obvious due to the small window size, but unreported results show that the frequency
of consistency will eventually converge to 1 when the total sample size becomes
infinitely large.

The SIC does select the correct model asymptotically, and it appears to do so with
an even higher probability that the PMSE criterion with a slowly diverging window
size. However, as we will show in the next set of Monte Carlo simulations, the SIC
will not select the correct model in the presence of time variation.

3.2 Simulation 2:Autoregressive DGP With/Without
a Time-Varying Parameter

Next we consider two forecasting models

Model 1: yt = αyt−1 + u1,t

Model 2: yt = αyt−1 + γ xt + u2,t

where the data are generated by

xt = 0.5xt−1 + ux,t ,

yt = 0.5yt−1 + γ xt + uy,t ,

ux,t ∼ i id N (0, 1) and uy,t ∼ i id N (0, 1) are independent of each other. We
consider four cases: γ = 0; γ = 0.25; γ = 0.5 and γ = t/T − 0.5. When γ = 0
Model 1 is true. Under the cases where γ = 0.5 or 0.25, Model 2 is true. Even when
γT,t = t/T − 0.5, Model 2 should be selected since the true data generating process
does include a constant, although the constant is time varying. The number of Monte
Carlo replications is set to 10,000.

Tables 5, 6, 7, and 8 report the empirical probabilities of selecting the right
model for the SIC and the rolling-window PMSE criterion with W = [πT ], W
being a constant, and W = o(T ), respectively, when γ is time invariant. As before,
the SIC is consistent and the PMSE criterion tends to either overparameterize or
underparameterize the model when W is a large fraction of T or when W is a small
constant. The results when W is a small fraction of T (π = 0.2) or when W is 50 or
90 show that the PMSE criterion selects the correct model. This may be due to finite
samples in which these window sizes are consistent with slowing diverging ones.
The results in Table 8 show that the PMSE criterion selects the correct forecasting
model with probability approaching one as the sample size increases when W → ∞
and T 1/2/W = O(1) as T grows.

The aforementioned results indicate that while the PMSE criterion with a slowly
diverging window size is consistent the SIC tends to perform better. One advantage
of the PMSE criterion over the SIC is that the PMSE criterion is robust to parameter
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Table 5 Selection probabilities of the SIC

T γ = 0 γ = 0.25 γ = 0.5

100 0.9645 0.7548 0.9989
250 0.9815 0.9826 1
500 0.9881 1 1

1000 0.9926 1 1

Table 6 Selection probabilities of the PMSE criterion when the window size is a fixed fraction of
the sample

π T γ = 0 γ = 0.25 γ = 0.5

0.2 100 0.9364 0.5497 0.9795
250 0.9411 0.9360 1
500 0.9414 0.9981 1

1000 0.9422 1 1
0.5 100 0.8075 0.7433 0.9759

250 0.8100 0.9368 0.9998
500 0.8089 0.9914 1

1000 0.8182 0.9998 1
0.8 100 0.6724 0.6944 0.8784

250 0.6787 0.8338 0.9753
500 0.6882 0.9205 0.9971

1000 0.6963 0.9800 0.9999

Table 7 Selection probabilities of the PMSE criterion when the window size is constant

W T γ = 0 γ = 0.25 γ = 0.5

10 100 0.9859 0.2170 0.8569
250 0.9998 0.1118 0.9591
500 1 0.0449 0.9945

1000 1 0.0054 0.9996
50 100 0.8075 0.7433 0.9759

250 0.9411 0.9360 1
500 0.9856 0.9909 1

1000 0.9982 1 1
90 100 0.6145 0.6421 0.7845

250 0.8688 0.9568 1
500 0.9479 0.9980 1

1000 0.9885 1 1

instabilities. Table 9 reports the selection probabilities of the SIC and PMSE criterion
when γT,t = t/T − 0.5. γT,t is modeled so that the in-sample PMSE of Model 2
equals that of Model 1 while the out-of-sample PMSE of Model 2 is smaller than that
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Table 8 Selection probabilities of the PMSE criterion when the window size is slowly diverging

W T γ = 0 γ = 0.25 γ = 0.5

T 1/3 100 0.9983 0.0092 0.0970
250 0.9999 0.0040 0.4060
500 1 0.0008 0.7201

1000 1 0.0016 0.9959
T 1/2 100 0.9859 0.2170 0.8569

250 0.9982 0.4115 0.9987
500 0.9997 0.7848 1

1000 1 0.9901 1
T 3/4 100 0.8909 0.6889 0.9858

250 0.9213 0.9506 1
500 0.9361 0.9980 1

1000 0.9551 1 1

Table 9 Selection probabilities when a parameter is time varying

T SIC W = T
1
3 W = T

1
2 W = T

2
3

100 0.0489 0.0063 0.1943 0.4904
250 0.0313 0.0026 0.4567 0.8703
500 0.0215 0.0005 0.8664 0.9953

1000 0.0139 0.0015 0.9982 1.0000

of Model 1. Table 9 shows that the PMSE criterion selects Model 2 with empirical
probability approaching one while the SIC selects Model 1.3

To summarize, the Monte Carlo results are consistent with our asymptotic theory
and the PMSE criterion with a slowly diverging window size chooses the correct
forecasting model with probability approaching one, no matter whether the parame-
ters are time varying or not. On the other hand, although the SIC is consistent when
the parameter is constant over time, it is inconsistent when the parameter is time
varying.

4 Empirical Application

We consider forecasting quarterly inflation h -periods into the future. Let the regres-
sion model be:

yh
t+h = γ0 + γ1 (L) xt + γ2 (L) yt + uh

t+h, t = 1, . . . , T (18)

3 Technically, the window size W = T 2/3 does not satisfy our sufficient condition but yields good
results.
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where the dependent variable is yh
t+h = (400/h) ln(Pt+h/Pt ) − 400 ln (Pt/Pt−1)

where Pt is the price level (CPI) at time t , h is the forecast horizon and equals
four, so that the forecasts involve annual percent growth rates of inflation. γ1 (L) =∑p

j=0 γ1 j L j and γ2 (L) = ∑q
j=0 γ2 j L j , where L is the lag operator. Following

Stock and Watson (2003), we consider several explanatory variables, xt , one at a
time. The explanatory variable, xt , is either an interest rate or a measure of real
output, unemployment, price, money, or earnings. The data are transformed to elim-
inate stochastic or deterministic trends and to quarterly frequencies. For a detailed
description of the variables that we consider, see Table 10. We utilize quarterly, finally
revised data available in January 2011. The earliest starting point of the sample that
we consider is January 1959, although both M3 and the exchange rate series have a
later starting date due to data availability constraints. Overall, this implies that the
total sample size is about 240 observations. In the out-of-sample forecasting exer-
cise, we estimate the number of lags (p and q) recursively by BIC; the estimation
scheme is rolling with a window size of 40 observations. The benchmark model is
an autoregressive model:

yh
t+h = γ0 + γ2 (L) yt + uh

t+h, t = 1, ..., T . (19)

Results are reported in Fig. 1. The figure reports the ratio of the MSFE of the model,
Eq. (18), relative to the MSFE of the autoregressive benchmark model, Eq. (19).
According to the Monte Carlo simulations in the previous section, the most successful
window sizes are between T 1/2 and T 2/3, which, given the available sample of data,
implies between 16 and 39 observations.

Panel A reports results for predictors (xt ) that include real output measures. It
is well known that such measures should be good predictors of inflation according
to the Phillips curve. Several studies have documented the empirical success of
Phillips curve models, see for example Stock et al. (1999a,b) and 2003, although the
empirical results in Marcellino et al. (2003) suggests that the ability of such measures
to forecast inflation in Europe is more limited than in the United States. The figure
shows that capacity utilization, employment, and unemployment measures are very
useful predictors for inflation. In fact, when the window size is less than about 80,
the MSFE of the model is always smaller than that of the autoregressive benchmark,
sometimes even substantially. Note that for larger window sizes the PMSE criterion
would however suggest that the AR benchmark forecasts better than the economic
model.

Earnings, instead, is not a successful predictor: in window sizes in the range
between T 1/2 and T 2/3, it is significantly worse, and occasionally better, although
only for larger window sizes. However, recall from the discussion in Sect. 2 that when
the window size is large relative to the total sample size, Inoue and Kilian (2005)
have shown that the PMSE criterion tends to select overparameterized models. When
the window sizes are between T 1/2 and T 2/3, the previous sections showed that the
PMSE criterion tends to select the correct model. This suggests that earnings are
particularly unreliable for forecasting inflation.
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Fig. 1 QLR break test

The performance of industrial production and real GDP predictors, instead, is less
clear: the ratio can be either above or below unity depending on the window size. Even
for window sizes in the range between T 1/2 and T 2/3, the ratio can be either above
or below unity. These results suggest instabilities in the forecasting performance
of these predictors, and are consistent with the results in Rossi and Sekhposyan
(2010), although the latter were interested in testing equal predictive ability rather
than consistently selecting the correct model, as we do here. Rossi and Sekhposyan
(2010) empirical evidence documented that the economic predictors have forecasting
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Fig. 1 continued

ability in the early part of their sample, but the predictive ability disappears in the
later part of their sample. The reversals in predictive ability happened, according
to their tests, around the time of the Great Moderation, which the literature dates
back to 1983–1984 (see McConnell and Perez-Quiros 2000), similar to the results
in D’Agostino et al. (2006).
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Fig. 1 continued

Panel B focuses on monetary measures. M1, M2, and M3 never have predictive
ability except for some selected window sizes, again pointing to the presence of
instabilities.

Panel C focuses on interest rates. The results are quite interesting. They show that
interest rates (such as 1-year or 10-year bonds) appear to be very good predictors of
inflation for medium window sizes, below 120–140 observations. Again, however,
for very large window sizes the PMSE criterion would select the smaller model.
Short-term interest rates tend to be useful predictors only when the window size is
large, but again the ratio is below unity for some selected window sizes and above
unity for others. Again, we conjecture that instabilities are important, as discussed
in Rossi and Sekhposyan (2010).

Panel D focuses on other monetary variables. Stock prices are never useful for
predicting inflation. Interestingly, the producer price index is a good predictor for
inflation: the figure shows that for the relevant window sizes, the ratio of the MSFE
of the model relative to that of the benchmark is always lower than unity, and it
becomes higher than unity only for large window sizes.

Overall, our empirical results suggest that traditional Phillips curve predictors
such as capacity utilization and unemployment are useful in forecasting inflation, as
well as the producer price index. The empirical results for the other macroeconomic
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Table 11 QLR break test P-values

Indicator P-value

A. Real output measures
Capacity utilization 0.00
Unemployment 0.00
Employment 0.00
Earnings 0.00
Industrial production 0.05
Real GDP 0.00
B. Money measures
M0 0.00
M1 0.00
M2 0.00
M3 0.00
C. Interest rates
Fed funds 0.00
Real 3-mo. Treasury bill 0.00
1-Year bond 0.04
10-Year bond 0.04
D. Other nominal measures
Stock prices 0.03
Producer price index 0.00

Notes The table reports results for Andrews (1993) QLR test for structural breaks implemented with
a HAC covariance estimator with a bandwidth equal to (1/5)T

predictors are not clearcut, and might signal the importance of instabilities in the data.
In order to provide more information on the instability in the forecasting regressions
we consider, we report joint tests for structural breaks in the parameters of Eq. (18)
using Andrews (1993) test for structural breaks. Table 11 reports the p-values of the
test, which confirm that instabilities are extremely important.

5 Concluding Remarks

There is a known break, forecasters tend to use post-break observations when they
make forecasts. In other words, they base their forecasts on a “truncated window”
instead of the full sample. This chapter shows that this type of ideas can deliver the
consistency of the rolling PMSE criterion not only when parameters are time varying
but also when they are constant over time.

In this chapter we focus on the rolling scheme. Inoue and Kilian (2006) show
that the PMSE criterion based on the recursive scheme is inconsistent if the number
of initial observations is large, i.e., a fixed fraction of the sample size, while Wei
(1992) proves that it is consistent if the number of initial observations is very small,
i.e., a fixed constant. One might be able to extend Wei (1992) result to the case in
which the number of initial observations diverges at a rate slower than the sample
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size. However, such a model selection criterion might not be robust to parameter
instability.

It should be noted that our consistency results are based on correctly specified
nested models. Although information criteria are not robust to parameter instabilities,
they are robust to misspecification and nonnestedness (Sin and White 1996). We leave
PMSE criterion-based model comparison of misspecified or non-nested models for
future research.

The main object of forecasters is often to minimize PMSE rather than identify the
true model. We are currently developing a data-dependent method for choosing the
window size to achieve this goal in a separate chapter

Appendix

A.1 Lemmas

Next, we present a lemma similar to Lemma A2 of Clark and McCracken (2000).

Lemma 1 Suppose that Assumptions 1 and 2 hold and that γ = 0. Then:

(a) 1
T −h−W

∑T −h
t=W+1 ut+h xt B1(t)H1(t) = op

( 1
W

)
.

(b) 1
T −h−W

∑T −h
t=W+1 vt+hzt B2(t)H2(t) = op

( 1
W

)
.

(c) 1
T −h−W

T −h∑

t=W+1
H ′

1(t)B1(t)xt x ′
t B1(t)H1(t) = 1

T −h−W

T −1∑

t=W+h
H ′

1(t)B1 H1(t)

+ op
( 1

W

)
.

(d) 1
T −h−W

T −h∑

t=W+1
H ′

2(t)B2(t)zt z′
t B2(t)H2(t) = 1

T −h−W

T −h∑

t=W+1
H ′

2(t)B2 H2(t)

+ op
( 1

W

)
.

Proof of Lemma 1: The proofs for (a) and (c) are very similar to those for (b) and
(d), respectively. For brevity, we only provide the proofs of (b) and (d). The results
for (a) and (c) can be easily derived by replacing zt and β by xt and α, respectively.

Note that

1

T − h − W

T −h∑

t=W+1

vt+h zt B2(t)H2(t) = 1

T − h − W

T −h∑

t=W+1

vt+h zt B2 H2(t)

+ 1

T − h − W

T −h∑

t=W+1

vt+h zt (B2(t) − B2)H2(t)

By Assumption 2(b) and Hölder’s inequality, the second moments of the summands
on the right-hand side are of order O(W −1) and O(W −2), respectively. Thus, it
follows from Assumption 2(c) that the variance of the left-hand side is of order
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O(T −1W −1). By the Chebyshev inequality and Assumption 1, the left-hand side is
op(W −1).

The proof of (d) is composed of two stages. In the first stage, we show that B2(t)
in the equation can be approximated by its expectation B2, which is

1

T − h − W

T −h∑

t=W+1

H ′
2(t)B2(t)zt z

′
t B2(t)H2(t)

= 1

T − h − W

T −h∑

t=W+1

H ′
2(t)B2zt z

′
t B2 H2(t) + op

(
1

W

)

(A.1)

Since the left-hand side of Eq. (A.1) contains four terms,

1

T − h − W

T −h∑

t=W+1

H ′
2(t)B2(t)zt z

′
t B2(t)H2(t)

= 1

T − h − W

T −h∑

t=W+1

H ′
2(t)B2zt z

′
t B2 H2(t)

+ 1

T − h − W

T −h∑

t=W+1

H ′
2(t)(B2(t) − B2)zt z

′
t (B2(t) − B2)H2(t)

+ 1

T − h − W

T −h∑

t=W+1

H ′
2(t)B2zt z

′
t (B2(t) − B2)H2(t)

+ 1

T − h − W

T −h∑

t=W+1

H ′
2(t)(B2(t) − B2)zt z

′
t B2 H2(t), (A.2)

which include the first term in the right-hand side of Eq. (A.1).
By Assumption 2(b) and Hölder’s inequality, the second moments of the sum-

mands in the last three terms are of order O(W −4), O(W −3), and O(W −3), respec-
tively. Thus, their first moments are at most O(W −3) = o(W −1). By using these
and Assumption 2(e), the second moments of the last three terms are thus of the
order O(T −1W −4), O(T −1W −3) and O(T −1W −1), respectively. By the Cheby-
shev inequality and Assumption 1, these last three terms are of the order op(W −1),
proving (A.1).

The second stage of the proof of (d) is to show that we can further approximate
zt z′

t in the first term in the right-hand side of Eq. (A.2) by its expectation E(zt z′
t ).

Adding and subtracting E(zt z′
t ), we obtain

1

T − h − W

T −h∑

t=W+1

H ′
2(t)B2zt z

′
t B2 H2(t)
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= 1

T − h − W

T −h∑

t=W+1

H ′
2(t)B2 E(zt z

′
t )B2 H2(t)

+ 1

T − h − W

T −h∑

t=W+1

H ′
2(t)B2(zt z

′
t − E(zt z

′
t ))B2 H2(t) (A.3)

The mean of the second term is op(W −1) by Assumption 2(d). The second moments
of the summand in the second term is O(W −2) by Assumption 2(b). Using these and
Assumption 2(e), the second moment of the second term is of the order o(W −2). By
the Chebyshev inequality, (A.3) is op(W −1).

Lemma 2 Suppose that Assumptions 3 and 4 hold and that γ (·) = 0.

(a) 1
T −h−W

∑T −h
t=W+1 uT,t+h xT,t B1(t)H1(t) = op

( 1
W

)
.

(b) 1
T −h−W

∑T −h
t=W+1 vT,t+hzT,t B2(t)H2(t) = op

( 1
W

)
.

(c) 1
T −h−W

T −h∑

t=W+1
H ′

1(t)B1(t)xT,t x ′
T,t B1(t)H1(t)

= 1
T −h−W

T −h∑

t=W+1
H ′

1(t)B̄1
( t

T

)
H1(t) + op

( 1
W

)
.

(d) 1
T −h−W

T −h∑

t=W+1
H ′

2(t)B2(t)zT,t z′
T,t B2(t)H2(t)

= 1
T −h−W

T −h∑

t=W+1
H ′

2(t)B̄2
( t

T

)
H2(t) + op

( 1
W

)
.

Proof of Lemma 2 Under Assumptions 3 and 4 the proof of Lemma 2 takes exactly
the same steps as the proof of Lemma 1 except that Bi , ut , and vt are replaced by
B̄i

( t
T

)
, uT,t , and vT,t , respectively. This is because Lemma 2 is written in terms of

uT,t and vT,t rather than in terms of α̂t,W − α
( t

T

)
and β̂t,W − β

( t
T

)
which we deal

with in the proof of Theorem 2.

A.2 Proofs of Theorems

Proof of Theorem 1 Note that the PMSEs σ̂ 2
1,W and σ̂ 2

2,W can be expanded as

σ̂ 2
1,W = 1

T − h − W

T −h∑

t=W+1

(
yt+h − α̂′

t xt
)2

= 1

T − h − W

T −h∑

t=W+1

(
yt+h − α∗′xt − (

α̂′
t xt − α∗′xt

))2
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= 1

T − h − W

T −h∑

t=W+1

(
yt+h − α∗′xt

)2

− 2

T − h − W

T −h∑

t=W+1

(
yt+h − α∗′xt

)
x ′

t

(
α̂t − α∗)

+ 1

T − h − W

T −h∑

t=W+1

(
α̂′

t − α∗′) xt x
′
t

(
α̂t − α∗) (A.4)

and

σ̂ 2
2,W = 1

T − h − W

T −h∑

t=W+1

(
yt+h − β̂ ′

t zt
)2

= 1

T − h − W

T −h∑

t=W+1

(
yt+h − β ′zt − (

β̂ ′
t zt − β ′zt

))2

= 1

T − h − W

T −h∑

t=W+1

(
yt+h − β ′zt

)2

− 2

T − h − W

T −h∑

t=W+1

(
yt+h − β ′zt

)
z′

t

(
β̂t − β

)

+ 1

T − h − W

T −h∑

t=W+1

(
β̂ ′

t − β ′)zt z
′
t

(
β̂t − β

)
, (A.5)

respectively, where α∗ = [E(xt x ′
t )]−1 E(xt yt+h). There are two cases: the case in

which the data are generated from model 1, i.e., γ = 0 (case 1) and the case in which
the data are generated from model 2, i.e., γ = 0 (case 2).

In case 1, the actual model is yt+h = α′xt + vt+h . The first component of σ̂ 2
2,W in

Eq. (A.5) is numerically identical to the first component of σ̂ 2
1,W in Eq. (A.4) because

γ = 0 and α − α∗ = 0. Note that all the other components converge to zero faster
since all parameters are consistently estimated. Under the case where Model 1 is true,
the difference between the probability limit of σ̂ 2

1,W and σ̂ 2
2,W is zero, which does not

identify which model is the true model. Only comparing the probability limits of σ̂ 2
1,W

and σ̂ 2
2,W as T and W go to infinity and W diverges slowly than T is not sufficient for

the model selection to indicate that limT →∞, W→∞ P(σ̂ 2
1,W < σ̂ 2

2,W ) = 1. However,

if we can tell whether σ̂ 2
1,W is always smaller than σ̂ 2

2,W along the path of convergence
of T and W toward infinity, the true model can still be identified. Since the models
are nested ut+h = vt+h , it follows from (A.4) and (A.5) that
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σ̂ 2
2,W − σ̂ 2

1,W = 2

T − h − W

T −h∑

t=W+1

[
vt+hz′

t (β̂t − β) − vt+h x ′
t (̂αt − α)

]

+ 1

T − h − W

T −h∑

t=W+1

[(
β̂ ′

t − β ′)zt z
′
t

(
β̂t − β

)

−(
α̂′

t − α′)xt x
′
t (̂αt − α)

]

= 2

T − h − W

T −h∑

t=W+1

[
vt+hz′

t B2(t)H2(t) − vt+h x ′
t B1(t)H1(t)

]

+ 1

T − h − W

T −h∑

t=W+1

[
H2(t)

′B2(t)zt z
′
t B2(t)H2(t)

−H1(t)
′B1(t)xt x

′
t B1(t)H1(t)

]

= 1

T − h − W

T −h∑

t=W+1

[
H2(t)

′B2 H2(t) − H1(t)
′B1 H1(t)

] + op

(
1

W

)

(A.6)

where the last equality follows from Lemma 1(a)–(d).
To get the sign of Eq. (A.6), we first define Q by

Q = [E(zt z
′
t )]

1
2

{

[E(zt z
′
t )]−1 −

[ [E(xt x ′
t )]−1 0l×(k−l)

0(k−l)×l 0(k−l)×(k−l)

]}

[E(zt z
′
t )]

1
2

(A.7)
as in Lemma A.4 of Clark and McCracken (2000). Clark and McCracken (2000) show
that the Q matrix is symmetric and idempotent. An idempotent matrix is positive
semidefinite, which means for all v ∈ �k , vT Qv ≥ 0. It implies that

⎡

⎣ 1

W
1
2

h

t−h∑

s=t−W

zsvs+h

⎤

⎦

′
[E(zt z

′
t )]−1

⎡

⎣ 1

W
1
2

h

t−h∑

s=t−W

zsvs+h

⎤

⎦

−
⎡

⎣ 1

W
1
2

h

t−h∑

s=t−W

xsvs+h

⎤

⎦

′
[E(xt x

′
t )]−1

⎡

⎣ 1

W
1
2

h

t−h∑

s=t−W

xsvs+h

⎤

⎦

=
⎡

⎣ 1

W
1
2

h

t−h∑

s=t−W

zsvs+h

⎤

⎦

′ {
[E(zt z

′
t )]−1 −

[ [E(xt x ′
t )]−1 0l×(k−l)

0(k−l)×l 0(k−l)×(k−l)

]}

×
⎡

⎣ 1

W
1
2

h

t−h∑

s=t−W

zsvs+h

⎤

⎦
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=
⎡

⎣ 1

W
1
2

h

t−h∑

s=t−W

zsvs+h

⎤

⎦

′
[E(zt z

′
t )]−

1
2 · Q · [E(zt z

′
t )]−

1
2

×
⎡

⎣ 1

W
1
2

h

t−h∑

s=t−W

zsvs+h

⎤

⎦ ≥ 0 (A.8)

Note that the probability that [E(zt z′
t )]−1/2W −1/2

h

∑t−h
s=t−W zsvs+h lies in the null

space of Q for infinitely many t approaches zero because the dimension of the
null space is l < k. Thus, the average of (A.8) over t is positive with probability
approaching one. Combining the results in Eqs. (A.6) and (A.8), we find that the sign
of W (σ̂ 2

2,W − σ̂ 2
1,W ) is always positive with probability approaching one. Therefore,

when γ = 0, σ̂ 2
1,W < σ̂ 2

2,W with probability approaching one.
In case 2, that is, when Model 2 is the true model, we have yt+h = β ′zt + vt+h =

α′xt +γ ′wt +vt+h . By Assumptions 2(a)(b), the second and third terms on the right-
hand sides of (A.4) and (A.5) are both op(T 1/2/W ) and op(T/W 2), respectively.
Thus, they are op(1) by Assumption 1. The first term on the right-hand side of
Eq. (A.5) converges to the variance of vt+h as the sample size T goes to infinity:

1

T − h − W

T −h∑

t=W+1

(
yt+h − β ′zt

)2 = 1

T − h − W

T −h∑

t=W+1

v2
t+h

p→ σ 2
2 . (A.9)

Similarly, the first term on the right-hand side of Eq. (A.4) converges in probability
to the variance of ut+h ≡ yt+h − α∗′xt :

σ̂ 2
1,W = 1

T − h − W

T −1∑

t=W+h

(
yt+h − α∗′xt

)2 + op(1)

p→ E
[
(yt+h − α∗′xt )

2
]

= E
[
(α′xt + γ ′wt + vt+h − α∗′xt )

2
]

= E
[
(vt+h + (α′ − α∗′

)xt + γ ′wt )
2
]

= σ 2
2 +

[
α − α∗

γ

]′ [ E(xt x ′
t ) E(xtw

′
t )

E(wt x ′
t ) E(wtw

′
t )

] [
α − α∗

γ

]

> σ 2
2 . (A.10)

Therefore, when Model 2 is true, the PMSEs satisfy P(σ̂ 2
1,W > σ̂ 2

2,W ) = 1 as T → ∞
and W → ∞, where W diverges slower than T .

Proof of Theorem 2 Note that the PMSEs, σ̂ 2
1,W and σ̂ 2

2,W can be expanded as
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σ̂ 2
1,W = 1

T − h − W

T −h∑

t=W+1

(

yT,t+h − α∗
(

t

T

)′
xT,t

)2

− 2

T − h − W

T −h∑

t=W+1

(

yT,t+h − α∗
(

t

T

)′
xT,t

)

x ′
T,t

(

α̂t − α∗
(

t

T

))

+ 1

T − h − W

T −h∑

t=W+1

(

α̂′
t − α∗

(
t

T

))′
xT,t x

′
T,t

(

α̂t − α∗
(

t

T

))

(A.11)

and

σ̂ 2
2,W = 1

T − h − W

T −h∑

t=W+1

(

yT,t+h − β ′
(

t

T

)

zT,t

)2

−
(

2

T − h − W

) T −h∑

t=W+1

(

yT,t+h − β ′
(

t

T

)

zT,t

)

z′
T,t

(

β̂t − β

(
t

T

))

+ 1

T − h − W

T −h∑

t=W+1

(

β̂ ′
t − β ′

(
t

T

))′
zt z

′
t

(

β̂t − β

(
t

T

))

, (A.12)

respectively. If we show that each of

1

T − h − W

T −h∑

t=W+1

(

yT,t+h − α∗
(

t

T

)′
xT,t

)

x ′
t

(

α̂t − α∗
(

t

T

))

− 1

T − h − W

T −h∑

t=W+1

uT,t+h x ′
T,t B1(t)H1(t), (A.13)

1

T − h − W

T −h∑

t=W+1

(

α̂′
t − α∗

(
t

T

))′
xT,t x

′
T,t

(

α̂t − α∗
(

t

T

))

− 1

T − h − W

T −h∑

t=W+1

H1(t)
′B1(t)zT,t z

′
T,t B2(t)H2(t), (A.14)

1

T − h − W

T −h∑

t=W+1

(

yT,t+h − β

(
t

T

)′
zT,t

)

z′
T,t

(

β̂t − β

(
t

T

))

− 1

T − h − W

T −h∑

t=W+1

vT,t+hz′
T,t B2(t)H2(t), (A.15)
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1

T − h − W

T −h∑

t=W+1

(

β̂ ′
t − β

(
t

T

)′)′
zT,t z

′
T,t

(

β̂t − β

(
t

T

))

− 1

T − h − W

T −h∑

t=W+1

H2(t)
′B2(t)zT,t z

′
T,t B2(t)H2(t), (A.16)

are op(1/W ) when the data are generated from model 1 (case 1) and are op(1) when
the data are generated from model 2 (case 2), the proof of Theorem 2 takes exactly the
same steps as the proof of Theorem 1. Thus, it remains to show that (A.13)–(A.16)
are op(W −1) in case 1 and op(1) in case 2. Note that the bias of the rolling regression
estimator can be written as:

β̂W,t − β

(
t

T

)

= B2(t)
1

Wh

t−h∑

s=t−W

zs

[
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β
( s

T

)
− β

(
t

T

))]

= B2(t)H2(t) + B2(t)

Wh

t−h∑

s=t−W

zs z′
s

(

β
( s

T

)
− β

(
t

T

))

(A.17)

Thus, the difference (A.15) is

1
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.

= 1
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(
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)
1
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(
t
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. (A.18)

By Assumption 4(c), the summands have zero mean. By Hölder’s inequality and
Assumptions 4(b)(c)(e)(f), the second moments of the right-hand side terms are
O(W/T 2). By Chebyshev’s inequality, (A.15) is Op(W 1/2/T ) which is op(1/W )

by Assumption 3. It can be shown that (A.13) is also op(1/W ) in a similar fashion.
The difference (A.16) is the sum of the following three terms:

1
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,

(A.19)
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1

T − h − W

T −h∑

t=W+1

(

β
( s

T

)
− β

(
t

T

))′ 1

Wh

t−h∑
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(A.20)

1

T − h − W
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t=W+1
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)
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(
t
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))′ 1
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)
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(
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, (A.21)

Using Chebyshev’s inequality, Hölder’s inequality, Assumptions 3 and 4(b)(c)(e)(f),
it can be shown that (A.19), (A.20), and (A.21) are Op(W 1/2T −2), Op(W 1/2T −2)

and Op(W 2T −2) all of which are op(W −1). It can be shown that (A.14) is also
op(1/W ) when γ (·) = 0 in an analogous fashion.

The rest of the proof of Theorem 2 takes exactly the same steps as the proof of
Theorem 1 except that α∗, β, Bi , ut , vt , xt , yt , zt and Lemma 1 is replaced by α

( t
T

)
,

β
( t

T

)
, B̄i

( t
T

)
, uT t , vT t , xT t , yT t , zT t and Lemma 2, respectively.
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