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Editor’s Introduction

With profound sadness, we are forced to note that Hal White passed away during
the publication of this volume, at age 61. This Festschrift, thus, now honors both
his academic prowess as well as his memory. During Hal’s short stay on this earth,
he touched so many lives in so many wonderful ways that it is impossible to
enumerate all of them. All of those of us who know Hal have many stories to tell
of how he has shaped our lives, both in academic and non-academic ways. Hal was
always cheerful, intellectually curious, insightful, resourceful, considerate, toler-
ant, humble, hard-working, well spoken, efficient, engaging, encouraging and
energizing. He truly loved and enjoyed everything he did, from teaching and
researching, to working on government ‘‘think tank’’ projects and consulting
projects of all types; and of course to playing his trumpets. His zest for life was
extremely contagious. He gave of himself freely and in some sense with abandon,
spearheading literally hundreds of path-breaking research projects in economet-
rics, financial economics, forecasting, labor economics, causality, law and eco-
nomics, neural networks, and biostatistics. Hal was always optimistic and never
complained about anything. He cared about doing things that would uplift others’
spirits, too. He loved his family dearly, and treated all with a kindness not often
seen. His work ethic was un-paralleled. Once, Norm was surprised to find, upon
meeting Hal at 8am one morning to discuss research, that he had already, that day,
written undergraduate and graduate lectures, worked on his new book, thought
about and worked on research, and gone to the gym. He was one of the best
undergraduate and graduate teachers we have ever known. He was the only
undergraduate statistics/econometrics teacher we know of that was given a
spontaneous standing ovation by more than 100 students at the end of a quarter’s
teaching introductory statistics. His exceptional graduate lectures resulted in so
many of us pursuing careers in econometrics that we number in hundreds. Hal was
extremely smart and knowledgeable, even brilliant, yet he never laughed at any
naïve and sometimes stupid questions and comments from his students. He was
always patient with his students. He believed in us and encouraged us even though
some of us had no clue what we were doing or saying. Xiaohong still remembers
vividly that, instead of trying to understand Hal’s papers, she told him that his
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econometrics papers were boring and that some papers on bounded rationality in
decision and game theories were much more interesting. To her surprise, Hal did
not get angry but replied that he would be happy to supervise her even if she
wanted to work on topics in microeconomics. Without Hal’s guidance and
encouragement, many of us would not have been enjoying our professional lives
now.

Hal was not just a renaissance man, but so much more.
Dearly missed by all who have had the good fortune and pleasure to have

known and interacted with him.
Xiaohong Chen and Norm Swanson—April 2012

This volume gathers together 20 original research papers which were presented
at the conference in honor of the pre-eminent econometrician from the University
of California, San Diego, Halbert L. White, organized on the occasion of his
sixtieth birthday, and entitled Causality, Prediction, and Specification Analysis:
Recent Advances and Future Directions. The conference was held at the Rady
School of Management on the UCSD campus during May 6–7, 2011. The con-
ference was attended by over 100 co-authors, colleagues, and students of White.
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There is little doubt that Hal White has been one of the most important researchers
in econometric theory and in econometrics in general, over the last 35 years. There
are many ways of measuring the role that he has played in the profession, and the
impact that he has had on research. For example, A Heteroskedasticity-Consistent
Covariance Matrix Estimator and a Direct Test for Heteroskedasticity (Econome-
trica, 1980), also often referred to as the ‘‘White Standard Error’’ paper, had 5738
citations on the Web of Science in one recent count, and is thus one of the most highly
cited papers ever, both in econometrics and in the entire field of economics. Other
seminal papers in econometrics have much lower citation numbers, which indicates
the broad impact of White’s work in economics in general.

According to one recent count, White had more than 130 full-length articles
spanning all of the very top journals in economics, statistics, and finance. He has
also written three seminal books in econometrics, and has edited more than 10
other volumes. His research has had a major impact not only in econometrics and
in economics, but also in statistics, finance, and in computer and cognitive science;
and in recent years his work has also had an impact even in medicine and the
natural sciences. For example, his seminal paper on artificial neural networks (joint
with Kurt Hornik and Max Stinchcombe) entitled Multilayer Feedforward Net-
works are Universal Approximators (Neural Networks, 1989) has 3862 Web of
Science citations. He even has an article recently appearing in the Michigan Law
Review. This multi-discliplinary diversity is indeed a characteristic unique to Hal.

In various discussions, Hal has recounted some details from his ‘‘early years’’.

I was born and raised in Kansas City, MO, where I attended Southwest High,
graduating in 1968. There, I was salutatorian, having gotten edged out from
the valedictorian spot by a few thousandths of a GPA point. If I had been
smart enough not to take orchestra for credit, I could have been valedictorian,
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but since the valedictorian was smart enough to not do that (damned clarinet
players!) I always figured she deserved it.

I applied to Harvard and Princeton for college and got rejected from
Harvard. Later, when I was deciding whether to stay at Rochester or move, I
ended up choosing the UCSD offer over that from Harvard, but not because
of my undergrad admission experience. Like Groucho Marx, I apparently
wouldn’t want to belong to an organization that would admit someone like
me (except in California).

Luckily, Princeton accepted me, and I was thrilled to go there, expecting
to be a physics major. One problem: I couldn’t understand physics to save
my life. The only way I made it through physics to satisfy my science
requirement was extensive tutoring by Vince Crawford, who was my hall-
mate (Dod Hall) freshman year. By second semester sophomore year, I had
decided economics was much more interesting and doable, and I was for-
tunate in having great professors, among them Steven Goldfeld, Richard
Quandt, Gregory Chow, Ray Fair, William Branson, George DeMenil, Orley
Ashenfelter, Dan Hamermesh, and my senior thesis advisor, Alan Blinder.
Alan was a new assistant professor then, fresh out of MIT.

At Princeton, I played my trumpet in the marching band, the orchestra
(but not for credit), and the Triangle Club, plus a wide variety of student
groups: a brass quintet, several big band jazz groups, and various soul/
rhythm and blues bands, including The Nassau Brothers Soul Revue. This
time I did manage to grab the valedictorian spot, although at Princeton, this
is not determined by GPA, but by departmental nomination and election by
the faculty.

Given the large number of my professors who came from MIT, that
seemed to be the place to go next. So there I went in the Fall of 1972, along
with Vince Crawford. My class at MIT has turned out to be quite distin-
guished, containing not only Vince, but also UCSD’s Roger Gordon, who
was my office mate in an office around the corner from Fisher Black and
Robert Merton. Our office had no windows, but housed both of us (as well as
Zvi Bodie), and gusts of sticky black soot would periodically blow out of the
air vent. My illustrious classmates also include Peter Berck, Glenn Loury,
Steven Sheffrin, Stephen Figlewski, Allan Drazen, Mario Draghi, Jeff Perl-
off, and Dennis Carlton. It was at MIT that I unknowingly established a later
claim to fame by grading the homework of both Ben Bernanke and Paul
Krugman as a TA for Jerry Hausman’s econometrics classes. No surprise—
they both did well. Frequently, I could use Bernanke’s homework as an
answer key!

Of course, the faculty at MIT while I was in grad school were stunning:
Paul Samuelson, Robert Solow, Evsey Domar, Jagdish Bhagwati, Franco
Modigliani, Charles Kindleberger, Frank Fisher, Peter Temin, Stan Fisher,
Rudy Dornbusch, Hal Varian, Robert Hall, and very notably Rob Engle, a
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newly minted Ph.D. from Cornell, and a young Jerry Hausman, fresh out of
Oxford.

I had somewhat of a hard time finding a thesis advisor to supervise my
dissertation in labor economics, but eventually I knocked on the right door—
Jerry’s—and found the best advisor a young grad student could hope for.
Jerry was always available and encouraging and provided ways forward
whenever I hit what seemed to me to be a hopeless roadblock. My disser-
tation committee also included Lester Thurow (with whom I published my
first Econometrica article, in international trade in 1976) and Bob Solow.

My job market experience in 1975–1976 was a harrowing one. I had 27
interviews, including the University of Chicago, where among my inter-
viewers was Jim Heckman. The interview consisted of him demolishing my
labor economics job market paper. I did end up with a good number of
flybacks, including UCSD, but I did not get a UCSD offer (although Vince
Crawford did, and took it!). Nor did I have any top 5 or 10 flybacks, and
especially not Chicago! Only at the last minute, the night before I was just
about to accept a very good but not great offer did I get a call from the
University of Rochester offering me a flyout with a practically guaranteed
offer. After consulting with Jerry, I decided to turn down my existing offer
and bet my future on the Rochester possibility. In hindsight, I strongly
suspect that Jerry was operating behind the scenes to generate that oppor-
tunity, making sure that his #2 thesis advisee (Roger Gordon was his first)
was well treated in the market.

Rochester did come through with an offer, and an extremely attractive one
at that—$16,000 for the academic year! Plus, I was thrilled to be going to a
truly distinguished department, including, among others, Lionel McKenzie,
Sherwin Rosen, Stanley Engerman, Robert Barro, Walter Oi, Eric Hanushek,
Elhannon Helpman, and James Friedman. Econometrician G.S. Maddala had
just left for Florida, but Charles Plosser and Bill Schwert were in the U of R
Graduate School of Management just a few steps away, so I did have
econometric colleagues handy. The thing was, at that time, I was a primarily
a labor economist and only secondarily an econometrician. So there were
some semesters that I taught macro and urban economics instead of
econometrics. (Not that I knew macro or urban—these were just what was
left over after the more senior faculty had chosen their courses!) I did
accidentally learn a valuable lesson, though, in teaching those classes: make
the first lecture about using the method of Lagrange multipliers to do con-
strained optimization. Not only is almost everything in economics a special
case of this, but it causes half of those enrolled to drop the class immediately.

My transition from labor economist to econometrician took place in the
first few years at U of R. One factor was that all of my labor economics
articles based on my thesis chapters got rejected from all of the field journals.
Another was that I learned measure theory from Bartle’s superb book,
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Measure and Integration, in a small study group consisting of game theorist
Jim Friedman, general equilibrium theorist Larry Benveniste, and myself.
Each week we met and worked through a chapter of Bartle’s book and
presented solutions to the exercises. From this, I finally began to understand
asymptotic distribution theory.

At the same time, I was deeply concerned by the prevalence of misspe-
cification in econometric models and the fact that not much was known at a
general level about the consequences of misspecification. Especially puz-
zling was the then common wisdom that OLS applied to a misspecified
model gave you a Taylor-series approximation to whatever the true relation
was. This made no sense to me, so I wrote a paper called Using Least
Squares to Approximate Unknown Regression Functions. Amazingly to me,
this was accepted by the International Economic Review for publication.
Since, thanks to measure theory, I now seemed to know what I was doing,
and since I had finally succeeded in getting an article published, I then began
to think that maybe econometrics was a better place for me than labor
economics or international trade. (As an interesting aside, the IER paper now
has nearly 300 citations, according to Google Scholar, but there are still lots
of people who think least squares gives you a Taylor approximation!)

This paper then led to my famous Econometrica paper on heteroskedas-
ticity, where my final conversion to an econometrician was effected by a
referee who said that he would recommend publication, provided that the
included labor economics example was removed. Finally, I got it! Econo-
metrics was my way forward.

An especially outstanding feature of the U of R was the wonderful group
of graduate students it attracted. Eventually, I did get to teach the graduate
econometrics classes. Two of my now distinguished students there were
Gary Gorton and Glenn MacDonald. And one of the most important rela-
tionships of my life began when Charley Bates showed up in my office one
day with his little Lhasa Apso dog, Li Po, to see about studying econo-
metrics. Charley had just finished an undergrad degree at UCSD with a
double major in math and economics. Charley ended up taking my econo-
metrics classes, and, after an interesting oddyssey, eventually became my
thesis advisee. As it turned out, that was just the beginning of a lifelong
friendship and collaboration with Charley that has had an extremely positive
impact on both my professional and personal life. Among other things, we
co-founded our economics consulting firm Bates White, LLC, together with
a small group of econ Ph.D.s that Charley had hand-picked. The firm will
soon celebrate its twelfth anniversary, and it now employs over 150 highly
talented people, many of whom have direct or indirect connections to UCSD.
I am especially gratified that the firm is now well known for setting new
quality standards in the economic and econometric analysis of legal
disputes.
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One of the things Hal first did upon arriving at UCSD was to write his book
Asymptotic Theory for Econometricians (1984). This was path breaking. Hal
realized that in order to develop econometric theory, and also in order to be a
competent user, not limited by the availability of ready-to-use procedures, one
should be able to understand and combine all of the relevant tools from probability
theory and mathematical statistics. He was the first to develop and make accessible
to econometricians the necessary tools for deriving the properties of estimators and
constructing tests under a full menu of realistic settings. Hal was the first to teach
us about the interplay between properties of the data (e.g., how much dependence
there is in the series and how many moments are finite) and theoretical features of
the model postulated by the researcher, as dictated by econometric theory. Whe-
ther an estimator has a well defined probability limit depends on the statistical
properties of the data, but the meaning and economic interpretation of that
probability limit depends on the theoretical model. One of the fundamental
insights Hal emphasized is that all models are an approximation to reality, and are
thus generally incorrect. Nevertheless, we can learn important things, even from an
approximation of reality. Furthering this idea, a complete and rigorous treatment
of estimation and inference with misspecified (i.e., generally incorrect models), is
given in his book entitled Estimation, Inference and Specification Analysis (1994).
There is little doubt that modern econometric theory was pioneered by Hal.
Moreover, Hal’s contributions have been fundamental not only to the field of
theoretical econometrics, but also to the field of empirical economics. In particular,

Another transition began in those early days at the U of R, and that was
my transformation from an East Coast type with a Midwestern background to
a California type. That transition began with a phone call in early May of
1977 from Rob Engle, who was by then at UCSD with Clive Granger. Rob’s
call came just one day after Rochester had received three FEET of snow (in
May!) in a still famous blizzard. He inquired if I might be interested in being
a visiting assistant professor at UCSD. I had to think about that for a while—
perhaps ten seconds. As it turned out, I was not able to visit the next aca-
demic year, but it did work out that I was able to visit UCSD in Winter and
Spring quarters of 1979. So it was that in December of 1978 I flew out of
Rochester during a blizzard and arrived in 75� San Diego sunshine to begin a
visiting appointment at UCSD.
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thanks to Hal’s work, standard econometric tools, such as hypotheses testing and
inference in general, are now utilized correctly, in a variety of realistic contexts.

It is impossible to list all of his contributions. Hence, we confine our attention to
five particular standouts.

White Standard Errors

Empirical work often requires one to test the null hypothesis that a parameter, say
that associated with conveying the returns to an extra year of schooling, is zero or
is instead strictly positive. Standard computer packages have always provided a
ready-to-use solution to this problem. However, the classical solution is correct
only under a particular assumption, known as conditional homoskedasticity. This
assumption states that the variance of the error in a given model, conditional on the
explanatory variables, is constant. This is a very restrictive assumption, often
violated in practice. In fact, often the variance of the error depends on the indi-
vidual covariates, in an unknown manner. However, if conditional homoskedas-
ticity fails to hold, the inference that we draw based on the classical solution is
incorrect, and may lead to the wrong conclusion (e.g., we might conclude than an
extra year of schooling has no effect on wages, when instead it does). This is
because the variance/standard error estimator used by standard packages is only
consistent for the ‘‘true’’ variance/standard error under conditional homoskedas-
ticity. Hal, in A Heteroskedasticity-Consistent Covariance Matrix Estimator and a
Direct Test for Heteroskedasticity (Econometrica, 1980), developed an estimator
of the covariance which is robust to the presence of conditional heteroskedasticity
of unknown form. This estimator is now routinely available in all computer
packages, and is called ‘‘White Standard Errors’’. It is now common practice to
report both ‘‘classical’’ and ‘‘White’’ standard errors.

White Standard Errors, although crucial to applied econometric analysis, still
require that the error of the model is not autocorrelated (i.e. the error does not
depend on its past). This is typically the case when we have cross-sectional
observations, for example (e.g., we have data on a group of individuals at a given
point in time, rather than data that are measured over time, such as the consumer
price index). If we do have data measured over time, called time-series data, then
the error is not autocorrelated only if the model is ‘‘dynamically correctly speci-
fied’’. For dynamic correct specification, we mean that both the functional form of
the model and the dynamics specified for the model (e.g. the number of lags or past
values) are correct. However, in practice, dynamic misspecification is more the
rule than the exception. In articles co-authored with Ian Domowitz (Journal of
Econometrics, 1982 and Econometrica, 1984) and as elaborated in his book
Asymptotic Theory for Econometricians (1984), Hal proposed a variance estimator
that is robust to both heteroskedasticity and autocorrelation of unknown form, and
which is now known as a HAC (heteroskedasticity and autocorrelation robust)
estimator. Whitney Newey and Ken West, in a famous Econometrica paper

xii Editor’s Introduction



published in 1987, refined White’s estimator to ensure positive definiteness, which
is crucial for empirical application, yielding the famous so-called Newey-West
estimator. Of course, all of this work was predicated in large part on the initial
1980 Econometrica paper and Hal’s seminal work with Domowitz.

Maximum Likelihood Estimation of Misspecified Models

Another key contribution due to Hal is Maximum Likelihood Estimation of Mis-
specified Models (Econometrica, 1982). This paper is also among the most cited
ever, with 1389 citations on the Web of Science. The idea underlying Maximum
Likelihood Estimation (MLE) is that the estimators we compute are those maxi-
mizing the probability of observing the sample of data that we actually observe. If
we correctly specify the conditional density of the data, then ML estimators are the
‘‘best estimators’’—they are consistent, asymptotically efficient, and invariant to
reparameterization. However, we almost never know the correct conditional
density. For example, sometimes we are able to correctly specify only the con-
ditional mean and maybe the conditional variance; and sometimes we are not even
able to correctly specify the conditional mean. In the end, as Hal emphasized,
models are just approximations of reality and so they are generally incorrect. But,
what happens if we estimate misspecified models using Maximum Likelihood?
Hal shows that the MLE generally converges to the parameter values minimizing
the Kullback-Leibler Information Criterion (KLIC). Namely, MLE always con-
verges to the parameters minimizing the ‘‘surprise’’ that we get when we believe
that our data are generated by a given model, but instead we learn that they are
generated by a different one. Further, if we misspecify the conditional distribution,
but we still correctly specify the conditional mean, then the ML estimator, under
very mild conditions, converges to the same value, as in the case of ‘‘full’’ correct
specification. Nevertheless, the asymptotic variance is different, and this should be
taken into account when performing hypothesis testing. This observation led to the
celebrated Dynamic Fisher Information Matrix test due to Hal. The main practical
implication of his work on MLE with misspecified models, is that one can simply
estimate models via Gaussian Maximum Likelihood (i.e. one can proceed as if the
errors are conditionally normal, even if they are not). This has had tremendous
impact on applied work. Estimation with Gaussian likelihood is very simple to
implement, and it’s incredibly useful to know that it can deliver valid inference
even if conditional normality does not hold.

This work also played a part in inspiring the subsequent literature on the
estimation of conditional autoregressive models (ARCH and GARCH models). In
this context, one postulates a model for the conditional mean and the conditional
variance, even though the conditional density of the error is generally unknown,
and typically has fatter tails than those associated with a normal random variable.
However, Gaussian ML generally gives consistent parameter estimates and allows
for correct inference as a consequence of Hal’s theory. Hal’s 1982 paper was also

Editor’s Introduction xiii



the starting point for a literature based on the use of the KLIC for model speci-
fication and testing (see e.g. the recent applications of the KLIC to measuring
serial dependence by Yongmiao Hong and Hal White in Econometrica in 2005 and
to forecast evaluation by Rafaella Giacomini and Hal White in Econometrica in
2006.

Neural Network and Consistent Specification Tests

Neural network models were introduced by cognitive scientists, in an attempt to
build computers that could learn from experience instead of having to be pro-
grammed. Such models are characterized by input variables (sensory information)
that ‘‘pass through’’ one (or more) hidden processing layers, yielding an ‘‘output’’
(a classification, prediction, or action) In a series of seminal papers, some joint
with Ron Gallant or with Kurt Hornik and Max Stinchcombe, Hal has shown that
such models have a ‘‘universal approximation’’ property, in the sense that they are
able to approximate any generic function, as well as its derivatives, up to an
arbitrary level of accuracy, given mild conditions. Although not as well known to
economists, one of Hal’s key papers on this subject, entitled Multilayer Feed-
forward Networks are Universal Approximators (Neural Networks, 1989) has
received 3862 citations on the Web of Science, as mentioned above.

The flexibility of a neural network model is ensured by its dependence on a
number of parameters, which have to be estimated. Hal developed novel tech-
niques for estimating neural network models and derived their statistical properties
in a number of papers, including Some Asymptotic Results for Learning in Single
Hidden Layer Feedforward Network Models (Journal of the American Statistical
Association, 1989). These fundamental contributions to neural network theory
have had a big impact in the cognitive sciences, medicine, engineering, and
psychology. But what impact have they had in the field of econometrics? For one
thing, artificial neural networks now have their own JEL number, C45. Further,
neural networks play a major role in the crucially important literature on testing for
the correct functional form of a model. Suppose that we want to test whether a
linear model is correctly specified for the conditional mean. In this case, we want
to have a test that is able to detect all possible departures from linearity, including
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small ones. A test that is able to detect any generic deviation from the null
hypothesis is said to be ‘‘consistent’’. If the linear model is correctly specified, then
the error is uncorrelated with any arbitrary function of the regressors. How can we
approximate any arbitrary function of the regressors? With a neural network, of
course, as they are capable of approximating any generic function. A very nice
example of the use of neural network in testing for the correct functional form of a
model is Hal’s paper with T.H. Lee and Granger entitled Testing for Neglected
Nonlinearity in Time-Series Models: A Comparison of Neural Network Methods
and Standard Tests (Journal of Econometrics, 1993).

Nowadays, a new branch of economics, labeled neuro-economics, is rapidly
gaining momentum. The objective is to study the link between the functioning of
the brain and economic behavior. For example, which part of the brain controls our
behavior when playing the stock market? Which characteristics of the brain make
an individual a ‘‘better’’ player in the stock market? There is little doubt that in the
near future, neural network theory will play a major role in the formalization and
in the development of neuro-economics.

Reality Check and Data Snooping

A Reality Check for Data Snooping (Econometrica, 2000), is one of the most (if
not the most) influential papers in the study of financial econometrics as well as in
forecasting, over the last few years. Begin with a ‘‘benchmark’’ model, typically
the most popular model, or the easiest to estimate, and consider a (potentially long)
list of competing models. Assume that we want to test whether there exists at least
one competitor that truly outperforms the benchmark. Hal starts from the obser-
vation that if we use the same dataset to sequentially test each model versus the
benchmark, then eventually we’re sure to find one or more models that beat it. This
is because of the well known ‘‘data-mining’’ or ‘‘data-snooping’’ problem asso-
ciated with sequentially comparing many models using classical statistical testing
approaches. That is, we will eventually find a model that, simply due to luck,
appears to be superior to the benchmark. Hal provides a novel solution to this
problem. By jointly considering all competing models, his reality check procedure
ensures that the probability of rejecting the null when it is false (i.e., the proba-
bility of a false discovery), is smaller than a prespecified level, say 5 %.

Evaluation of asset trading rules has been one of the most challenging issues in
empirical finance. An investor can choose from a very long list of trading strat-
egies. Say that she wants to pick the strategy giving the highest return. However,
because of the data-snooping problem, she may simply pick a strategy that by luck
appears to be successful, but it is truly not. Hal’s Reality Check provides a formal
way of choosing among trading strategies, controlling for the probability of
picking ‘‘winners’’ just because of luck. This idea is clearly illustrated in his paper
with Ryan Sullivan and Allan Timmermann, entitled, Data Snooping, Technical
Trading Rule Performance, and the Bootstrap (Journal of Finance, 1999).
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Causality and Structural Modeling

In recent years, Hal’s interest has also focused on the issue of measuring causal
effects, in very general settings. This is one of the most challenging problems in
econometrics and statistics. Suppose that we want to evaluate the effect of an
increase of police per capita on the crime rate. However, the crime rate may also
increase in areas because of urban decay, which may be impossible to properly
measure, and police per capita may be (positively or negatively) correlated with
urban decay. Disentangling such cause/effect relationships is a problem that has
been addressed numerous times over the last 100 years, and the problem remains
vexing and complicated. Exactly how can we carry out valid statistical analysis of
the sort needed? The difficulty is that we need to measure the effect of a cause or
treatment that is ‘‘endogenous’’ – that is, the cause of interest (police per capita) is
correlated with unobservable drivers (urban decay) of the response (the crime
rate). The two most common solutions to this problem are the use of instrumental
variables, i.e., the use of variables that are correlated with the observable cause but
independent of the confounding, unobservable cause—i.e. the ‘‘error’’. The second
approach consists of finding control variables, such that the endogenous cause,
conditional on the control variables, is independent of the unobservable causes.
There is growing consensus that the latter approach is preferable. However, it is
often difficult to find adequate control variables. In this case, one has to rely on the
instrumental variable approach. Still, there is a problem, as this approach works
only for separable models, in which the error enters in an additive manner, that is,
the unobservable causes do not interact with the observable causes.

In one of his recent important works in this area with Karim Chalak and
Susanne Schennach, entitled Estimating Average Marginal Effects in Nonsepa-
rable Structural Systems (2011), Hal studies the case of nonseparable models, in
which the effects of unobserved causes cannot be separated from those of the
observable endogenous causes. They consider a different route to evaluate the
marginal effect of an endogenous cause on the response variable, via use of the
ratio of the marginal effect of the instrument on the response variables and the
marginal effect of the instrument on the endogenous cause. In particular, they
provide sufficient conditions on the structure of the model for the validity of the
approach, and they develop a novel estimator. There is little doubt that this work
will have a large impact on empirical microeconomics, as it considers very general
and realistic settings. In another recent work with Stefan Hoderlein, entitled
Nonparametric Identification in Nonseparable Panel Data Models with General-
ized Fixed Effects (2011), Hal is also considering identification of marginal effects
in nonseparable panel data models with non-additive fixed effects. This is a
daunting challenge, and their results are bound to open new frontiers in both the
nonparametric identification and the nonlinear panel data literatures.

In other recent work with UCSD Ph.D. Xun Lu, (Granger Causality and
Dynamic Structural Systems, 2010) Hal shows that Granger causality is not devoid
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of true causal content. Instead, as Hal shows, it is equivalent to true structural
causality under well defined conditions.

Turning our attention to the papers published in this volume, it is worth
stressing that they comprise 20 original research papers. All of the papers inves-
tigate econometric questions in the broad areas of specification analysis, causality,
and prediction. In the first paper, entitled: Improving GDP Measurement: A
Forecast Combination Perspective by Boragan Aruoba, University of Maryland,
Francis X. Diebold, University of Pennsylvania, Jeremy Nalewaik, Federal
Reserve Board, Frank Schorfheide, University of Pennsylvania, and Dongho Song,
University of Pennsylvania, the authors examine a forecast combination approach
to ‘‘predict’’ GDP growth for the U.S., using both income side and expenditure
side versions of GDP, and uncover interesting features of their new measure. In the
second paper, entitled Identification without Exogeneity under Equiconfounding in
Linear Recursive Structural Systems by Karim Chalak, Boston College, the author
provides alternative identification results on structural coefficients in linear
recursive systems of structural equations without requiring that observable vari-
ables are exogenous or conditionally exogenous. He provides conditions under
which equiconfounding supports either full identification or partial identification..
In the third paper, entitled Optimizing Robust Conditional Moment Tests: An
Estimating Function Approach by Yi-Ting Chen, Academia Sinica and Chung-
Ming Kuan, National Taiwan University, survey robust conditional moment
(RCM) tests under partial model specification, discuss a generalized RCM type
test, and introduce methods for improving local asymptotic power of suboptimal
RCM tests. In the fourth paper, entitled Asymptotic Properties of Penalized M
Estimators with Time Series Observations by Xiaohong Chen, Yale University and
Zhipeng Liao, University of California, Los Angeles, the authors establish con-
vergence rates for penalized M estimators with weakly dependent data. They then
derive root-n asymptotic normality results for plug-in penalized M estimators of
regular functionals, and discuss consistent long-run covariance estimation. Turn-
ing our attention again to forecasting, in the fifth paper, entitled A Survey of Recent
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Advances in Forecast Accuracy Comparison Testing with an Extension to Sto-
chastic Dominance by Valentina Corradi, Warwick University and Norman R.
Swanson, Rutgers University, the authors survey recent advances in predictive
accuracy testing, with focus on distributional and density forecasting. They then
introduce a new model selection type forecast accuracy test based on the use of
standard principles of stochastic dominance. The sixth paper is entitled New
Directions in Information Matrix Testing: Eigenspectrum Tests by Richard M.
Golden, University of Texas at Dallas, Steven S. Henley, Martingale Research
Corporation and Loma Linda University, Halbert White, University of California,
San Diego, and T. Michael Kashner, Loma Linda University. In this paper, the
information matrix test of White (1982) is extended by considering various non-
linear functions of the Hessian covariance matrices commonly used when carrying
out such model specification tests. The paper entitled Bayesian Estimation and
Model Selection of GARCH Models with Additive Jumps by Christian Haefke,
Institute for Advanced Studies and Leopold Sogner, Institute for Advanced Studies
is the seventh paper in this volume. In this paper, novel Bayesian simulation
methods are used to carry out parameter estimation and model selection in a class
of GARCH models with additive jumps. In the eighth paper, entitled Hal White:
Time at MIT and Early Days of Research by Jerry Hausman, M.I.T., the author
briefly discusses Hal White’s early experiences at MIT, where he carried out his
graduate work. Hausman then undertakes an interesting examination, via Monte
Carlo simulation, of a variety of different estimators of White heteroskedasticity
consistent standard errors, including one based on a Rothenberg second-order
Edgeworth approximation. Turning now to the paper entitled Open-model Fore-
cast-error Taxonomies by David F. Hendry, University of Oxford and Grayham E.
Mizon, University of Southhampton, we are treated to a paper wherein ‘‘forecast-
error taxonomies’’ are developed when there are unmodeled variables, and forecast
failure to shifting intercept issues is discussed. The tenth paper in the volume is
entitled Heavy-Tail and Plug-In Robust Consistent Conditional Moment Tests of
Functional Form by Jonathan B. Hill, University of North Carolina. In this paper,
the author considers consistent specification test of a parametric conditional mean
function for heavy-tailed time series models, in which the dependent variable has
only finite conditional first moment while all the higher moments could be infinite.
The author derives chi-squared weak limit of his test statistics and provides a
Monte Carlo study.. In the eleventh paper, entitled Nonparametric Identification in
Dynamic Nonseparable Panel Data Models by Stefan Hoderlein, Boston College,
and Halbert White, University of California, San Diego, the authors tackle the
issue of nonparametric identification of covariate-conditioned and average partial
effects in dynamic nonseparable panel data models. They show that the panel
structure can be used to find control functions that in turn can be used for iden-
tification. The paper entitled Consistent Model Selection Over Rolling Windows,
which is the twelfth paper in the volume, and which is written by Atsushi Inoue,
North Carolina State University, Barabara Rossi, Duke University, and Lu Jin,
North Carolina State University, analyzes the asymptotic properties of a test sta-
tistc based on the use of simulated out-of-sample predictive mean square errors
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when carrying out model selection amongst nested models using rolling data
estimation windows. In particular, the authors discuss instances under which test
consistency obtains, hence validating the use of the statistic in empirical contexts.
Next, we have the paper entitled Estimating Misspecified Moment Inequality
Models by Hiroaki Kaido, Boston University and Halbert White, University of
California, San Diego. In this interesting paper, partially identified structures
defined by a finite number of moment inequalities are examined, in the context on
functional misspecification, a pseudo-true identified set whose elements can be
interpreted as the least-squares projections of the moment functions that are
observationally equivalent to the true moment function is found, and a set esti-
mator for the pseudo-true identified set is proposed. The fourteenth paper in the
volume is entitled Model Adequacy Checks for Discrete Choice Dynamic Models
by Igor Kheifets, New Economic School and Carlos Velasco, Universidad Carlos
III de Madrid. In this paper, the authors propose a consistent specification test for
possibly nonstationary dynamic discrete choice models. They apply an extension
of the probability integral transformation of data, and convert the null hypothesis
of correct specification of conditional distribution of the original model into test of
uniform marginal with no series dependence of the transformed data. This paper is
followed by the piece entitled On Long-Run Covariance Matrix Estimation with
the Truncated Flat Kernel by Chang-Ching Lin, Academia Sinica and Shinichi
Sakata, University of Southern California, the authors propose simple modifica-
tions to truncated flat kernel estimators of long-run covariance matrices which
enforce positive definiteness and have good small sample properties. The fol-
lowing paper, which is the sixteenth in the volume, and which is entitled Pre-
dictability and Specification in Models of Exchange Rate Determination, is
authored by Esfandiar Maasoumi, Emory University and Levent Bulut, Emory
University. In this paper, metric entropy tests are used to examine a variety of
parametric models of exchange rate determination, and it is found that random
walk models, both with and without drift, almost always dominate models based
on various conditioning information sets. The seventeenth paper in the volume is
entitled Thirty Years of Heteroskedasticity-Robust Inference by James G. MacK-
innon, Queen’s University. In this paper, the author discusses the revolutionary
idea of White (1980) on inference that is robust to heteroskedasticity of unknown
form. He also presents the recent developments to improve the finite sample
properties of White’s original standard error estimators. The eighteenth paper in
the volume, entitled Smooth Constrained Frontier Analysis, is authored by
Christopher F. Parmeter, McMaster University and Jeffrey S. Racine, McMaster
University. In this paper, the authors propose a class of smooth constrained non-
parametric and semiparametric estimators of production functions that are con-
tinuously differentiable and are consistent with the optimization axioms of
production. Turning now to the second last paper in this volume, entitled NoVaS
Transformations: Flexible Inference for Volatility Forecasting by Dimitris Politis,
University of California, San Diego and Dimitrios D. Thomakos, University of
Peloponesse, the authors present some new findings on the NoVas (‘‘normalizing
and variance stabilizing’’) transformation approach to volatility prediction. They
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conduct detailed simulation studies about the relative forecasting performance of
NoVaS with that of a benchmark GARCH(1,1) model.. Finally, we have an
interesting paper entitled Causal Efficacy and the Curse of Dimensionality by
Maxwell B. Stinchcombe, University of Texas, Austin and David M. Drukker,
STATACorp Statistical Software. This paper gives a new geometric representation
of various nonparametric conditional mean regression estimators, including the
sieve least squares estimators (Fourier, wavelet, splines, artificial neural networks),
the kernels and other locally weighted regressions. The authors establish that for
any estimator having their new geometric representation, the nonparametric rate of
convergence does not suffer the well-known curse of dimensionality, at least
asymptotically.

Hal White’s Key Publications

Books
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Improving U.S. GDP Measurement: A Forecast
Combination Perspective

S. Borağan Aruoba, Francis X. Diebold, Jeremy Nalewaik,
Frank Schorfheide and Dongho Song

“A growing number of economists say that the government
should shift its approach to measuring growth. The current
system emphasizes data on spending, but the bureau also
collects data on income. In theory the two should match
perfectly—a penny spent is a penny earned by someone else. But
estimates of the two measures can diverge widely, particularly in
the short term...”

[Binyamin Appelbaum, New York Times, August 16, 2011]

Abstract Two often-divergent U.S. GDP estimates are available, a widely-used
expenditure-side version GDPE , and a much less widely-used income-side version
GDPI . We propose and explore a “forecast combination” approach to combining
them. We then put the theory to work, producing a superior combined estimate
of GDP growth for the U.S., GDPC . We compare GDPC to GDPE and GDPI , with
particular attention to behavior over the business cycle. We discuss several variations
and extensions.
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1 Introduction

GDP growth is surely the most fundamental and important concept in empiri-
cal/applied macroeconomics and business cycle monitoring, yet significant uncer-
tainty still surrounds its estimation. Two often-divergent estimates exist for the U.S.,
a widely-used expenditure-side version, GDPE , and a much less widely-used income-
side version, GDPI . Nalewaik (2010) makes clear that, at the very least, GDPI

deserves serious attention and may even have properties in certain respects supe-
rior to those of GDPE . That is, if forced to choose between GDPE and GDPI ,
a surprisingly strong case exists for GDPI .

But of course one is not forced to choose between GDPE and GDPI , and a com-
bined estimate that pools information in the two indicators GDPE and G D PI may
improve on both. In this chapter, we propose and explore a method for constructing
such a combined estimate, and we compare our new GDPC (“combined”) series to
GDPE and GDPI over many decades, with particular attention to behavior over the
business cycle, emphasizing comparative behavior during turning points.

Our work is motivated by, and builds on, five key literatures. First, and most
pleasing to us, our work is very much related to Hal White’s in its focus on dynamic
modeling while acknowledging misspecification throughout.

Second, we obviously build on the literature examining GDPI and its properties,
notably Fixler and Nalewaik (2009) and Nalewaik (2010). GDPI turns out to have
intriguingly good properties, suggesting that it might be usefully combined with
GDPE .

Third, our work is related to the literature distinguishing between “forecast error”
and “measurement error” data revisions, as for example in Mankiw et al. (1984),
Mankiw and Shapiro (1986), Faust et al. (2005), and Aruoba (2008). In this chapter
we work largely in the forecast error tradition.

Fourth, and related, we work in the tradition of the forecast combination literature
begun by Bates and Granger (1969), viewing GDPE and GDPI as forecasts of GDP
[actually a mix of “backcasts” and “nowcasts” in the parlance of Aruoba and Diebold
(2010)]. We combine those forecasts by forming optimally weighted averages.1

Finally, we build on the literature on “balancing” the national income accounts,
which extends back almost as far as national income accounting itself, as for
example in Stone et al. (1942), who use a quadratic loss criterion to propose weight-
ing different GDP estimates by the inverse of their squared “margins of error.” Stone
refined those ideas in his subsequent national income accounting work, and Byron
(1978) and Weale (1985) formalized and refined Stone’s approach. Indeed a number
of papers by Weale and coauthors use subjective evaluations of the quality of different
U.K. GDP estimates to produce combined estimates; see Barker et al. (1984), Weale

1 For surveys of the forecast combination literature, see Diebold and Lopez (1996) and Timmermann
(2006).
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(1988), Solomou and Weale (1991), and Solomou and Weale (1993).2 For example,
Barker et al. (1984) and Weale (1988) incorporate data quality assessments from the
U.K. Central Statistical Office. Weale also disaggregate some of their GDP estimates
to incorporate information regarding differential quality of underlying source data.
In that tradition, Beaulieu and Bartelsman (2004) use input–output tables to disag-
gregate GDPE and GDPI , using what they call “tuning” parameters to balance the
accounts. We take a similar approach here, weighting competing GDP estimates in
ways that reflect our assessment of their quality, but we employ more of a top-down,
macro perspective.

We proceed as follows. In Sect. 2 we consider GDP combination under quadratic
loss. This involves taking a stand on the values of certain unobservable parameters (or
at least reasonable ranges for those parameters), but we argue that a “quasi-Bayesian”
calibration procedure based on informed judgment is feasible, credible, and robust.
In Sect. 3 we consider GDP combination under minimax loss. Interestingly, as we
show, it does not require calibration. In Sect. 4 we apply our methods to provide
improved GDP estimates for the U.S. In Sect. 5 we sketch several extensions, and
we conclude in Sect. 6.

2 Combination Under Quadratic Loss

Optimal forecast combination typically requires knowledge (or, in practice, esti-
mates) of forecast error properties such as variances and covariances. In the present
context, we have two “forecasts,” of true GDP, namely GDPE and GDPI , but true
GDP is never observed, even after the fact. Hence we never see the “forecast errors,”
which complicates matters significantly but not hopelessly. In particular, in this
section we work under quadratic loss and show that a quasi-Bayesian calibration
based on informed judgment is feasible and credible, and simultaneously, that the
efficacy of GDP combination is robust to the precise weights used.

2.1 Basic Results and Calibration

First assume that the errors in GDPE and GDPI growth are uncorrelated. Consider
the convex combination3

GDPC = λGDPE + (1 − λ) GDPI ,

2 Weale also consider serial correlation and time-varying volatility in GDP measurement errors, as
well as time-varying correlation between expenditure- and income-side GDP measurement errors.
3 Throughout this chapter, the variables GDP, GDPE , and GDPI that appear in the equations refer
to growth rates.
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where λ ∈ [0, 1].4 Then the associated errors follow the same weighting,

eC = λeE + (1 − λ)eI ,

where eC = GDP−GDPC , eE = GDP−GDPE and eI = GDP−GDPI . Assume that
both GDPE and GDPI are unbiased for GDP, in which case GDPC is also unbiased,
because the combining weights sum to unity.

Given the unbiasedness assumption, the minimum-MSE combining weights are
just the minimum-variance weights. Immediately, using the assumed zero correlation
between the errors,

σ 2
C = λ2σ 2

E + (1 − λ)2σ 2
I , (1)

where σ 2
C = var(eC ), σ 2

E = var(eE ) and σ 2
I = var(eI ). Minimization with respect

to λ yields the optimal combining weight,

λ∗ = σ 2
I

σ 2
I + σ 2

E

= 1

1 + φ2 , (2)

where φ = σE/σI .
It is interesting and important to note that in the present context of zero correlation

between the errors,

var(eE )+ var(eI ) = var(GDPE − GDPI ). (3)

The standard deviation of GDPE minus GDPI can be trivially estimated. Thus, an
expression of a view about φ is in fact implicitly an expression of a view about not
only the ratio of var(eE ) and var(eI ), but about their actual values. We will use this
fact (and its generalization in the case of correlated errors) in several places in what
follows.

Based on our judgment regarding U.S. GDPE and GDPI data, which we will
subsequently discuss in detail in Sect. 2.2, we believe that a reasonable range for
φ is φ ∈ [0.75, 1.45], with midpoint 1.10.5 One could think of this as a quasi-
Bayesian statement that prior beliefs regarding φ are centered at 1.10, with a 90 %
prior credible interval of [0.75, 1.45]. In Fig. 1 we graph λ∗ as a function of φ, for
φ ∈ [0.75, 1.45]. λ∗ is of course decreasing in φ, but interestingly, it is only mildly
sensitive to φ. Indeed, for our range of φ values, the optimal combining weight
remains close to 0.5, varying from roughly 0.65 to 0.30. At the midpoint φ = 1.10,
we have λ∗ = 0.45.

4 Strictly speaking, we need not even impose λ ∈ [0, 1], but λ /∈ [0, 1] would be highly nonstandard
for two valuable and sophisticated GDP estimates such as GDPE and GDPI . Moreover, as we shall
see subsequently, multiple perspectives suggest that for our application the interesting range of λ
is well in the interior of the unit interval.
5 Invoking Eq. (3), we see that the midpoint 1.10 corresponds to σI = 1.30 and σE = 1.43, given
our estimate of std(GDPE − GDPI ) = 1.93 % using data 1947Q2-2009Q3.



Improving U.S. GDP Measurement: A Forecast Combination Perspective 5

Fig. 1 λ∗ versus φ. λ∗ con-
structed assuming uncorre-
lated errors. The horizontal
line for visual reference is at
λ∗ = 0.5. See text for details
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It is instructive to compare the error variance of combined GDP, σ 2
C , to σ 2

E for a
range of λ values (including λ = λ∗, λ = 0, and λ = 1).6 From (1) we have:

σ 2
C

σ 2
E

= λ2 + (1 − λ)2

φ2 .

In Fig. 2 we graph σ 2
C/σ

2
E for λ ∈ [0, 1] with φ = 1.1. Obviously the maximum

variance reduction is obtained using λ∗ = 0.45, but even for nonoptimal λ, such
as simple equal-weight combination (λ = 0.5), we achieve substantial variance
reduction relative to using GDPE alone. Indeed, a key result is that for all λ (except
those very close to 1, of course) we achieve substantial variance reduction.

Now consider the more general and empirically-relevant case of correlated errors.
Under the same conditions as earlier,

σ 2
c = λ2σ 2

E + (1 − λ)2σ 2
I + 2λ(1 − λ)σE I , (4)

so

6 We choose to examine σ 2
C relative to σ 2

E , rather than to σ 2
I , because GDPE is the “standard” GDP

estimate used in practice almost universally. A graph of σ 2
C/σ

2
I would be qualitatively identical, but

the drop below 1.0 would be less extreme.
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Fig. 2 σ 2
C/σ

2
E for λ ∈ [0, 1].

We assume φ = 1.1 and
uncorrelated errors. See text
for details
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λ∗ = σ 2
I − σE I

σ 2
I + σ 2

E − 2σE I

= 1 − φρ

1 + φ2 − 2φρ
,

where σE I = cov(eE , eI ) and ρ = corr(eE , eI ).
It is noteworthy that—in parallel to the uncorrelated-error case in which beliefs

about φ map one-for-one into beliefs about σE and σI — beliefs about φ and ρ now
similarly map one-for-one into beliefs about σE and σI . Our definitions of σ 2

E and
σ 2

I imply that

σ 2
j = var[GDP j ] − 2cov[GDP j ,GDP] + var[GDP], j ∈ {E, I }. (5)

Moreover, the covariance between the GDPE and GDPI errors can be expressed as

σE I = cov[GDPE ,GDPI ] − cov[GDPE ,GDP] − cov[GDPI ,GDP] + var[GDP].
(6)

Solving (5) for cov[GDP j ,GDP] and inserting the resulting expressions for j ∈
{E, I } into (6) yields

σE I = cov[GDPI ,GDPE ] − 1

2

(
var [GDPI ] + var[GDPE ] − σ 2

I − σ 2
E

)
. (7)

Finally, let σE I = ρσEσI and σ 2
E = φ2σ 2

I . Then we can solve (7) for σ 2
I :
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Fig. 3 λ∗ versus φ for various ρ values. The horizontal line for visual reference is at λ∗ = 0.5.
See text for details

σ 2
I = cov[GDPI ,GDPE ] − 1

2 (var[GDPI ] + var[GDPE ])
ρφ − 1

2 (1 + φ2)
= N

D
. (8)

For given values of φ and ρ we can immediately evaluate the denominator D in (8),
and using data-based estimates of cov[GDPI ,GDPE ], var[GDPI ], and var[GDPE ]
we can evaluate the numerator N .

Based on our judgment regarding U.S. GDPE and GDPI data (and again, we will
discuss that judgment in detail in Sect. 2.2), we believe that a reasonable range for ρ
is ρ ∈ [0.30, 0.60], with midpoint 0.45. One could think of this as a quasi-Bayesian
statement that prior beliefs regardingρ are centered at 0.45, with a 90 % prior credible
interval of [0.30, 0.60].7

7 Again using GDPE and GDPI data 1947Q2-2009Q3, we obtain for the numerator N = −1.87
in Eq. (7) above. And using the benchmark values of φ = 1.1 and ρ = 0.45, we obtain for the
denominator D = −0.61. This implies σI = 1.75 and σE = 1.92. For comparison, the standard
deviation of GDPE and GDPI growth rates is about 4.2. Hence our benchmark calibration implies
that the error in measuring true GDP by the reported GDPE and GDPI growth rates is potentially
quite large.



8 S. Borağan Aruoba et al.

0.95

0.3 0.4 0.5 0.6

0.
00

0.
50

1.
00

1.05

0.3 0.4 0.5 0.6

0.
00

0.
50

1.
00

1.15

0.3 0.4 0.5 0.6

0.
00

0.
50

1.
00

1.25

0.3 0.4 0.5 0.6

0.
00

0.
50

1.
00

Fig. 4 λ∗ versus ρ for various φ values. The horizontal line for visual reference is at λ∗ = 0.5.
See text for details

In Fig. 3 we show λ∗ as a function of φ for ρ = 0, 0.3, 0.45, and 0.6; in Fig. 4 we
show λ∗ as a function of ρ for φ = 0.95, 1.05, 1.15, and 1.25; and in Fig. 5 we show
λ∗ as a bivariate function of φ and ρ. For φ = 1 the optimal weight is 0.5 for all ρ, but
for φ �= 1 the optimal weight differs from 0.5 and is more sensitive to φ as ρ grows.
The crucial observation remains, however, that under a wide range of conditions it is
optimal to put significant weight on both GDPE and GDPI , with the optimal weights
not differing radically from equality. Moreover, for all φ values greater than one, so
that less weight is optimally placed on GDPE under a zero-correlation assumption,
allowance for positive correlation further decreases the optimal weight placed on
GDPE . For a benchmark calibration of φ = 1.1 and ρ = 0.45, λ∗ ≈ 0.41.

Let us again compare σ 2
C to σ 2

E for a range of λ values (including λ = λ∗, λ = 0,
and λ = 1). From (4) we have:

σ 2
C

σ 2
E

= λ2 + (1 − λ)2

φ2 + 2λ(1 − λ)
ρ

φ
.

In Fig. 6 we graph σ 2
C/σ

2
E for λ ∈ [0, 1] with φ = 1.1 and ρ = 0.45. Obviously the

maximum variance reduction is obtained using λ∗ = 0.41, but even for nonoptimal λ,
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Fig. 5 λ∗ versus ρ and φ. See
text for details
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such as simple equal-weight combination (λ = 0.5), we achieve substantial variance
reduction relative to using GDPE alone.
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2.2 On the Rationale for our Calibration

We have thus far implicitly asked the reader to defer to our judgment regarding cali-
bration, focusing on φ ∈ [0.75, 1.45] and ρ ∈ [0.30, 0.60] with benchmark midpoint
values of φ = 1.10 and ρ = 0.45. Here we explain the experience, reasoning, and
research that supports that judgment.

2.2.1 Calibrating φ

The key prior view embedded in our choice of φ ∈ [0.75, 1.45], with midpoint 1.10,
is that GDPI is likely a somewhat more accurate estimate than GDPE . This accords
with the results of Nalewaik (2010), who examines the relative accuracy of the GDPE

and GDPI in several ways, with results favorable to GDPI , suggesting φ > 1.
Let us elaborate. The first source of information on likely values of φ is from

detailed examination of the source data underlying GDPE and GDPI . The largest
component of GDPI , wage, and salary income, is computed using quarterly data from
tax records that are essentially universe counts, contaminated by neither sampling
nor nonsampling errors. Two other very important components of GDPI , corpo-
rate profits, and proprietors’ income, are also computed using annual data from tax
records.8 Underreporting and nonreporting of income on tax forms (especially by
proprietors) is an issue with these data, but the statistical agencies make adjustments
for misreporting, and in any event the same misreporting issues plague GDPE as
well as GDPI , as we discuss below.

In contrast to GDPI , very little of the quarterly or annual data used to compute
GDPE is based on universe counts.9 Rather, most of the quarterly GDPE source data
are from business surveys where response is voluntary. Nonresponse rates can be
high, potentially introducing important sample-selection effects that may, moreover,
vary with the state of the business cycle. Many annual GDPE source data are from
business surveys with mandatory response, but some businesses still do not respond
to the surveys, and surely the auditing of these nonrespondents is less rigorous than
the auditing of tax nonfilers. In addition, even the annual surveys do not attempt to
collect data on some types of small businesses, particularly nonemployer businesses
(i.e., businesses with no employees). The statistical agencies attempt to correct some
of these omissions by incorporating data from tax records (making underreporting
and nonreporting of income on tax forms an issue for GDPE as well as GDPI ), but
it is not entirely clear whether they adequately plug all the holes in the survey data.

8 The tax authorities do not release the universe counts for corporate profits and proprietors’ income;
rather, they release results from a random sample of tax returns. But the sample they employ is
enormous, so the variance of the sampling error is tiny for the top-line estimates. Moreover, the
tax authorities obviously know the universe count, so it seems unlikely that they would release
tabulations that are very different from the universe counts.
9 Motor vehicle sales are a notable exception.
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Although these problems plague most categories of GDPE , some categories
appear more severely plagued. In particular, over most of history, government sta-
tistical agencies have collected annual source data on less than half of personal con-
sumption expenditures (PCE) for services, a very large category comprising between
a quarter and a half of the nominal value of GDPE over our sample. At the quarterly
frequency, statistical agencies have collected even less source data on services PCE.10

For this reason, statistical agencies have been forced to cobble together less-reliable
data from numerous nongovernmental sources to estimate services PCE.

A second source of information on the relative reliability of GDPE and GDPI is
the correlation of the two measures with other variables that should be correlated
with output growth, as examined in Nalewaik (2010). Nalewaik (2010) is careful to
pick variables that are not used in the construction of either GDPE or GDPI , to avoid
spurious correlation resulting from correlated measurement errors.11 The results are
uniformly favorable to GDPI and suggest that it is a more accurate measure of output
growth than GDPE . In particular, from the mid-1980s to the mid-2000s, the period of
maximum divergence between GDPE and GDPI , Nalewaik (2010) finds that GDPI

growth has higher correlation with lagged stock price changes, the lagged slope of
the yield curve, the lagged spread between high-yield corporate bonds and Treasury
bonds, short and long differences of the unemployment rate (both contemporaneously
and at leads and lags), a measure of employment growth computed from the same
household survey, the manufacturing ISM PMI (Institute for Supply Management,
Purchasing Managers Index), the nonmanufacturing ISM PMI, and dummies for
NBER recessions. In addition, lags of GDPI growth also predict GDPE growth (and
GDPI growth) better than lags of GDPE growth itself.

It is worth noting that, as regards our benchmark midpoint calibration of
φ = 1.10, we have deviated only slightly from an “ignorance prior” midpoint of 1.00.
Hence our choice of midpoint reflects a conservative interpretation of the evidence
discussed above. Similarly, regarding the width of the credible interval as opposed
to its midpoint, we considered employing intervals such as φ ∈ [0.95, 1.25], for
which φ > 1 over most of the mass of the interval. The evidence discussed above,
if interpreted aggressively, might justify such a tight interval in favor of GDPI , but
again we opted for a more conservative approach with φ < 1 over more than a third
of the mass of the interval.

2.2.2 Calibrating ρ

The key prior view embedded in our choice of ρ ∈ [0.30, 0.60], with midpoint
0.45, is that the errors in GDPE and GDPI are likely positively correlated, with a

10 This has begun to change recently, as the Census Bureau has expanded its surveys, but φ is meant
to represent the average relative reliability over the sample we employ, so these facts are highly
relevant.
11 For example, the survey of households used to compute the unemployment rate is used in the
construction of neither GDPE nor GDPI , so use of variables from that survey is fine.
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moderately but not extremely large correlation value. This again accords with the
results in Nalewaik (2010), who shows that 26 % of the nominal value of GDPE and
GDPI is identical. Any measurement errors in that 26 % will be perfectly correlated
across the two estimates. Furthermore, GDPE and GDPI are both likely to miss
fluctuations in output occurring in the underground or “gray” economy, transactions
that do not appear on tax forms or government surveys. In addition, the same price
deflator is used to convert GDPE and GDPI from nominal to real values, so any
measurement errors in that price deflator will be perfectly correlated across the two
estimates.

These considerations suggest the lower bound for ρ should be well above zero,
as reflected in our chosen interval. However, the evidence favoring an upper bound
well below one is also quite strong, as also reflected in our chosen interval. First, and
most obviously, the standard deviation of the difference between GDPE and GDPI

is 1.9 %, far from the 0.0 % that would be the case if ρ = 1.0. Second, as discussed
in the previous section, the source data used to construct GDPE is quite different
from the source data used to construct GDPI , implying the measurement errors are
likely to be far from perfectly correlated.

Of course, ρ could still be quite high if GDPE and GDPI were contaminated with
enormous common measurement errors, as well as smaller, uncorrelated measure-
ment errors. But if that were the case, GDPE and GDPI would fail to be correlated
with other cyclically-sensitive variables, such as the unemployment rate, as they both
are. The R2 values from regressions of the output growth measures on the change in
the unemployment rate are each around 0.50 over our sample, suggesting that at least
half of the variance of GDPE and GDPI is true variation in output growth, rather than
measurement error. The standard deviation of the residual from these regressions is
2.81 % using GDPI and 2.95 % using GDPE . For comparison, taking our benchmark
value φ = 1.1 and our upper bound ρ = 0.6 produces σI = 2.05 and σE = 2.25.
Increasing ρ to 0.7 produces σI = 2.36 and σE = 2.60, approaching the residual
standard error from our regression. This seems like an unreasonably high amount of
measurement error, since the explained variation from such a simple regression is
probably not measurement error, and indeed some of the unexplained variation from
the regression is probably also not measurement error. Hence the upper bound of 0.6
for ρ seems about right.

3 Combination Under Minimax Loss

Here we take a more conservative perspective on forecast combination, solving a
different but potentially important optimization problem. We utilize the minimax
framework of Wald (1950), which is the main decision-theoretic approach for impos-
ing conservatism and therefore of intrinsic interest. We solve a game between a
benevolent scholar (the Econometrician) and a malevolent opponent (Nature). In
that game the Econometrician chooses the combining weights, and Nature selects
the stochastic properties of the forecast errors. The minimax solution yields the
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combining weights that deliver the smallest chance of the worst outcome for the
Econometrician. Under the minimax approach knowledge or calibration of objects
like φ and ρ is unnecessary, enabling us to dispense with judgment, for better or
worse.

We obtain the minimax weights by solving for the Nash equilibrium in a two-
player zero-sum game. Nature chooses the properties of the forecast errors and the
Econometrician chooses the combining weights λ. For expositional purposes, we
begin with the case of uncorrelated errors, constraining Nature to choose ρ = 0. To
impose some constraints on the magnitude of forecast errors that Nature can choose,
it is useful to re-parameterize the vector (σI , σE )

′ in terms of polar coordinates; that
is, we let σI = ψ cosϕ and σE = ψ sin ϕ. We restrictψ to the interval [0, ψ̄] and let
ϕ ∈ [0, π/2]. Because cos2 ϕ + sin2 ϕ = 1, the sum of the forecast error variances
associated with GDPE and GDPI is constrained to be less than or equal to ψ̄2. The
error associated with the combined forecast is given by

σ 2
C (ψ, ϕ, λ) = ψ2

[
λ2 sin2 ϕ + (1 − λ)2 cos2 ϕ

]
, (9)

so that the minimax problem is

max
ψ∈[0,ψ̄], ϕ∈[0,π/2]

min
λ∈[0,1] σ

2
C (ψ, ϕ, λ), (10)

The best response of the Econometrician was derived in (2) and can be expressed
in terms of polar coordinates as λ∗ = cos2 ϕ. In turn, Nature’s problem simplifies to

max
ψ∈[0,ψ̄], ϕ∈[0,π/2]

ψ2(1 − sin2 ϕ) sin2 ϕ,

which leads to the solution

ϕ∗ = arc sin
√

1/2, ψ∗ = ψ̄, λ∗ = 1/2. (11)

Nature’s optimal choice implies a unit forecast error variance ratio, φ = σE/σI = 1,
and hence that the optimal combining weight is 1/2. If, instead, Nature set ϕ = 0
or ϕ = π/2, that is φ = 0 or φ = ∞, then either GDPE or GDPI is perfect and the
Econometrician could choose λ = 0 or λ = 1 to achieve a perfect forecast leading
to a suboptimal outcome for Nature.

Now we consider the case in which Nature can choose a nonzero correlation
between the forecast errors of GDPE and GDPI . The loss of the combined forecast
can be expressed as

σ 2
C (ψ, ρ, ϕ, λ) = ψ2

[
λ2 sin2 ϕ + (1 − λ)2 cos2 ϕ + 2λ(1 − λ)ρ sin ϕ cosϕ

]
.

(12)
It is apparent from (12) that as long as λ lies in the unit interval the most devious
choice of ρ is ρ∗ = 1. We will now verify that conditional on ρ∗ = 1 the solution in
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(11) remains a Nash equilibrium. Suppose that the Econometrician chooses equal
weights, λ∗ = 1/2. In this case

σ 2
C (ψ, ρ

∗, ϕ, λ∗) = ψ2
[

1

4
+ 1

2
sin ϕ cosϕ

]
.

We can deduce immediately that ψ∗ = ψ̄ . Moreover, first-order conditions for
the maximization with respect to ϕ imply that cos2 ϕ∗ = sin2 ϕ∗ which in turn
leads to ϕ∗ = arc sin

√
1/2. Conditional on Nature choosing ρ∗, ψ∗, and ϕ∗, the

Econometrician has no incentive to deviate from the equal-weights combination
λ∗ = 1/2, because

σ 2
C (ψ

∗, ρ∗, ϕ∗, λ) = ψ̄

2

[
λ2 + (1 − λ)2 + 2λ(1 − λ)

]
= ψ̄

2
.

In sum, the minimax analysis provides a rational for combining GDPE and GDPI

with equal weights of λ = 1/2.
To the best of our knowledge, this section’s demonstration of the optimality of

equal forecast combination weights under minimax loss is original and novel. There
does of course exist some related literature, but ultimately our approach and results
are very different. For example, a branch of the machine-learning literature (e.g.,
Vovk 1998; Sancetta 2007) considers games between a malevolent Nature and a
benevolent “Learner.” The learner sequentially chooses weights to combine expert
forecasts, and Nature chooses realized outcomes to maximize the Learner’s forecast
error relative to the best expert forecast. The Learner wins the game if his forecast
loss is only slightly worse than the loss attained by the best expert in the pool, even
under Nature’s least favorable choice of outcomes. This game is quite different and
much more complicated than ours, requiring different equilibrium concepts with
different resultant combining weights.

4 Empirics

We have shown that combining using a quasi-Bayesian calibration under quadratic
loss producesλ close to but less than 0.5, given our prior means forφ andρ. Moreover,
we showed that combining with λ near 0.5 is likely better—often much better—than
simply using GDPE or GDPI alone, for wide ranges of φ and ρ. We also showed
that combining under minimax loss always implies an optimal λ of exactly 0.5.

Here we put the theory to work for the U.S., providing arguably-superior combined
estimates of GDP growth. We focus on quasi-Bayesian calibration under quadratic
loss. Because the resulting combining weights are near 0.50, however, one could
also view our combinations as approximately minimax. The point is that a variety
of perspectives lead to combinations with weights near 0.50, and they suggest that
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Fig. 7 U.S. GDPC and GDPE growth rates. GDPC constructed assuming φ = 1.1 and ρ = 0.45.
GDPC is solid and GDPE is dashed. In the top panel we show a long sample, 1947Q2–2009Q3. In
the bottom panel, we show a recent sample, 2006Q1–2009Q3. See text for details

such combinations are likely superior to using either of GDPE or GDPI alone, so
that empirical examination of GDPC is of maximal interest.

4.1 A Combined U.S. GDP Series

In the top panel of Fig. 7 we plot GDPC constructed using λ = 0.41, which is
optimal for our benchmark calibration of φ = 1.1 and ρ = 0.45, together with the
“conventional” GDPE . The two appear to move closely together, and indeed they
do, at least at the low frequencies emphasized by the long time-series plot. Hence
for low-frequency analyses, such as studies of long-term economic growth, use of
GDPE , GDPI or GDPC is not likely to make a major difference.

At higher frequencies, however, important divergences can occur. In the bottom
panel of Fig. 7, for example, we emphasize business cycle frequencies by focusing
on a short sample 2006–2010, which contains the severe U.S. recession of 2007–
2009. There are two important points to notice. First, the bottom panel of Fig. 7
makes clear that growth-rate assessments on particular dates can differ in important
ways depending on whether GDPC or GDPE is used. For example, GDPE is strongly
positive for 2007Q3, whereas GDPC for that quarter is close to zero, as GDPI was
strongly negative. Second, the bottom panel of Fig. 7 also makes clear that differing
assessments can persist over several quarters, as for example during the financial
crisis episode of 2007Q1–2007Q3, when GDPE growth was consistently larger than
GDPC growth. One might naturally conjecture that such persistent and cumulative
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data distortions might similarly distort inferences, based on those data, about whether
and when the U.S. economy was in recession. We now consider recession dating in
some detail.

4.2 U.S. Recession and Volatility Regime Probabilities

Thus far we have assessed how combining produces changes in measured GDP. Now
we assess whether and how it changes a certain important transformation of GDP,
namely measured probabilities of recession regimes or high-volatility regimes based
on measured GDP. We proceed by fitting a regime-switching model in the tradition
of Hamilton (1989), generalized to allow for switching in both means and variances,
as in Kim and Nelson (1999a),

(GDPt − μsμt ) = β(GDPt−1 − μsμt−1)+ σsσ t εt (13)

εt ∼ i id N (0, 1)

sμt ∼ Markov(Pμ), sσ t ∼ Markov(Pσ ).

Then, conditional on observed data, we infer the sequences of recession probabilities
[(P(sμt = L), where L (“low”) denotes the recession regime] and high-volatility
regime probabilities [(P(sσt = H), where H (“high”) denotes the high-volatility
regime]. We perform this exercise using both GDPE and GDPC , and we compare
the results.

We implement Bayesian estimation and state extraction using data 1947Q2-
2009Q3.12 In Fig. 8 we show posterior median smoothed recession probabilities.
We show those calculated using GDPC as solid lines with 90 % posterior intervals,
we show those calculated using GDPE as dashed lines, and we also show shaded
NBER recession episodes to help provide context. Similarly, in Fig. 9 we show
posterior median smoothed volatility regime probabilities.

Numerous interesting substantive results emerge. For example, posterior median
smoothed recession regime probabilities calculated using GDPC tend to be greater
than those calculated using GDPE , sometimes significantly so, as for example during
the financial crisis of 2007. Indeed, using GDPC one might date the start of the recent
recession significantly earlier than did the NBER. As regards volatilities, posterior
median smoothed high-volatility regime probabilities calculated by either GDPE or
GDPC tend to show the post-1984 “great moderation” effect asserted by McConnell
and Perez-Quiros (2000) and Stock and Watson (2002). Interestingly, however, those
calculated using GDPE also show the “higher recession volatility” effect in recent
decades documented by Bloom et al. (2009) (using GDPE data), whereas those
calculated using GDPC do not.

12 We provide a detailed description in Appendix.
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Fig. 8 Inferred U.S. Recession Regime Probabilities, calculated using GDPC versus GDPE . Solid
lines are posterior median smoothed recession regime probabilities calculated using GDPC , which
we show with 90 % posterior intervals. Dashed lines are posterior median smoothed recession
regime probabilities calculated using GDPE . The sample period is 1947Q2-2009Q3. Dark shaded
bars denote NBER recessions. See text and appendix for details

For our present purposes, however, none of those substantive results are of first-
order importance, as the present chapter is not about business cycle dating, low-
frequency versus high-frequency volatility regime dating, or revisionist history,
per se. Indeed, thorough explorations of each would require separate and lengthy
papers. Rather, our point here is simply that one’s assessment and characteriza-
tion of macroeconomic behavior can, and often does, depend significantly on use of
GDPC versus GDPE . That is, choice of GDPC versus GDPE can matter for important
tasks, whether based on direct observation of measured GDP, or on transformations
of measured GDP such as extracted regime chronologies.

5 Extensions

Before concluding, we offer sketches of what we see as two important avenues for
future research. The first involves real-time analysis and nonconstant combining
weights, and the second involves combining from a measurement error as opposed
to efficient forecast error perspective.
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Fig. 9 Inferred U.S. high-volatility regime probabilities, calculated using GDPC versus GDPE .
Solid lines are posterior median smoothed high-volatility regime probabilities calculated using
GDPC , which we show with 90 % posterior intervals. Dashed lines are posterior median smoothed
high-volatility regime probabilities calculated using GDPE . The sample period is 1947Q2-2009Q3.
Dark shaded bars denote NBER recessions. See text and appendices for details.

5.1 Vintage Data, Time-Varying Combining Weights,
and Real-Time Analysis

It is important to note that everything that we have done in this chapter has a retro-
spective, or “off-line,” character. We work with a single vintage of GDPE and GDPI

data and combine them, estimating objects of interest (combining weights, regime
probabilities, etc.) for any period t using all data t = 1, . . ., T . In all of our analyses,
moreover, we have used time-invariant combining weights. Those two characteristics
of our work thus far are not unrelated, and one may want to relax them eventually,
allowing for time-varying weights, and ultimately, a truly real-time-analysis.

One may want to consider time-varying combining weights for several reasons.
One reason is of near-universal and hence great interest, at least under quadratic loss.
For any given vintage of data, error variances and covariances may naturally change,
as we pass backward from preliminary data for the recent past, all the way through to
“final revised” data for the more distant past.13 More precisely, let t index time mea-
sured in quarters, and consider moving backward from “the present” quarter t = T .

13 This is the so-called “apples and oranges” problem. To the best of our knowledge, the usage in
our context traces to Kishor and Koenig (2011).
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At instant v ∈ T (with apologies for the slightly abusive notation), we have vintage-v
data. Consider moving backward, constructing combined GDP estimates GDPvC,T −k ,
k = 1, . . .∞. For small k, the optimal calibrations might be quite far from bench-
mark values. As k grows, however, ρ and φ should approach benchmark values as
the final revision is approached. The obvious question is how quickly and with what
pattern should an optimal calibration move toward benchmark values as k → ∞.
We can offer a few speculative observations.

First consider ρ. GDPI , and GDPE share a considerable amount of source data
in their early releases, before common source data are swapped out of GDPI (e.g.,
when tax returns eventually become available and can be used). Indeed Fixler and
Nalewaik (2009) show that the correlation between the earlier estimates of GDPI

and GDPE growth is higher than the correlation between the later estimates. Hence
ρ is likely higher for dates near the present (small k). This suggests calibrations with
ρ dropping monotonically toward the benchmark value of 0.45 as k grows.

Now consider φ. How φ should deviate from its benchmark calibration value of
1.1 is less clear. On the one hand, early releases of GDPI are missing some of their
most informative source data (tax returns), which suggests a lower-than-benchmark
φ for small k. On the other hand, early releases of GDPE growth appear to be noisier
than the early releases of GDPI growth (see below), which suggests a higher-than-
benchmark φ for small k. All told, we feel that a reasonable small-k calibration of
φ is less than 1.1 but still above 1.

Note that our conjectured small-k effects work in different directions. Other things
equal, bigger ρ pushes the optimal combining weight downward, away from 0.5, and
smaller φ pushes the optimal combining weight upward, toward 0.5. In any particular
data set the effects could conceivably offset more-or-less exactly, so that combination
using constant weights for all dates would be fully optimal, but there is of course no
guarantee.

Several approaches are possible to implement the time-varying weights sketched
in the preceding paragraphs. One is a quasi-Bayesian calibration, elaborating on the
approach we have taken in this chapter. However, such an approach would be more
difficult in the more challenging environment of time-varying parameters. Another
is to construct a real-time data set, one that records a snapshot of the data available
at each point in time, such as the one maintained by the Federal Reserve Bank
of Philadelphia. The key is to recognize that each quarter we get not simply one
new observation on GDPE and GDPI , but rather an entire new vintage of data, all
the elements of which could (in principle) change. One might be able to use the
different data vintages, and related objects like revision histories, to infer properties
of “forecast errors” of relevance for construction of optimal combining weights
across various k.

One could go even further in principle, progressing to a truly real-time analysis,
which is of intrinsic interest quite apart from addressing the issue of time-varying
combining weights in the above “apples and oranges” environments. Tracking vin-
tages, modeling the associated dynamics of revisions, and putting it all together to
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produce superior combined forecasts remains an outstanding challenge.14 We look
forward to its solution in future work, potentially in the state-space framework that
we describe next.

5.2 A Model of Measurement Error

In parallel work in progress (Aruoba et al. 2011), we pursue a complementary
approach based on a state-space model of measurement error. The basic model is

[
GDPE,t

GDPI,t

]
=

[
1
1

]
GDPt +

[
εEt

εI t

]

GDPt = β0 + β1GDPt−1 + ηt, (14)

where εt = (εEt , εI t )
′ ∼ W N (0, �ε), ηt ∼ W N (0, σ 2

η ), and εt and ηt are uncorre-
lated at all leads and lags. In this model, both GDPE and GDPI are noisy measures of
the latent true GDP process, which evolves dynamically. The expectation of true GDP
conditional upon observed measurements may be extracted using optimal filtering
techniques such as the Kalman filter.

The basic state-space model can be extended in various directions, for example to
incorporate richer dynamics, and to account for data revisions and missing advance
and preliminary releases of GDPI .15 Perhaps most important, the measurement errors
ε may be allowed to be correlated with GDP, or more precisely, correlated with
GDP innovations, ηt . Fixler and Nalewaik (2009) and Nalewaik (2010) document
cyclicality in the “statistical discrepancy” (GDPE − GDPI ), which implies failure
of the assumption that εt and ηt are uncorrelated at all leads and lags. Of particular
concern is contemporaneous correlation between ηt and εt . The standard Kalman
filter cannot handle this, but appropriate modifications are available.

6 Conclusions

GDP growth is a central concept in macroeconomics and business cycle monitoring,
so its accurate measurement is crucial. Unfortunately, however, the two available
expenditure-side and income-side U.S. GDP estimates often diverge. In this chapter,
we proposed a technology for optimally combining the competing GDP estimates,

14 Nalewaik (2011) makes some progress toward real-time analysis in a Markov-switching envi-
ronment.
15 The first official estimate of GDPI is released a month or two after the first official estimate of
GDPE , so for vintage v the available GDPvE data might be {GDPvE,t }T −1

t=1 , whereas the available

GDPvI vintage might be {G D PvI,t }T −2
t=1 . Note that for any vintage v, the available GDPI data differ

by at most one quarter from the available GDPE data.
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we examined several variations on the basic theme, and we constructed and examined
combined estimates for the U.S.

Our results strongly suggest the desirability of separate and careful calculation
of both GDPE and GDPI , followed by combination, which may lead to different
and more accurate insights than those obtained by simply using expenditure-side or
estimates alone. This prescription differs fundamentally from U.S. practice, where
both are calculated but the income-side estimate is routinely ignored.

Our call for a combined U.S. GDP measure is hardly radical, particularly given
current best-practice “balancing” procedures used at various non-U.S. statistical
agencies to harmonize GDP estimates from different sources. We discussed U.K.
GDP balancing at some length in the introduction, and some other countries also use
various similar balancing procedures.16 All such procedures recognize the potential
inaccuracies of source data and have a similar effect to our forecast combination
approach: the final GDP number lies between the alternative estimates.

Other countries use other approaches to combination. Indeed Australia uses an
approach reminiscent of the one that we advocate in this chapter, albeit not on the
grounds of our formal analysis.17 In addition to GDPE and GDPI , the Australian
Bureau of Statistics produces a production-side estimate, GDPP , defined as total
gross value added plus taxes and less subsidies, and its headline GDP number is the
simple average of the three GDP estimates. We look forward to the U.S. producing a
similarly-combined headline GDP estimate, potentially using the methods introduced
in this chapter.

Acknowledgments We dedicate this chapter to Hal White, on whose broad shoulders we stand,
on the occasion of his sixtieth birthday. For helpful comments we thank the editors and refer-
ees, as well as John Geweke, Greg Mankiw, Matt Shapiro, Chris Sims, and Justin Wolfers. For
research support we thank the National Science Foundation and the Real-Time Data Research Center
at the Federal Reserve Bank of Philadelphia. For research assistance we thank Ross Kelley and
Matthew Klein.

Appendix: Estimation of U.S. Recession Probabilities

Here we provide details of Bayesian analysis of our regime-switching model.

A.1 Baseline Model

We work with a simple model with Markov regime-switching in mean and variance:

16 Germany’s procedures, for example, are described in Statistisches Bundesamt (2009).
17 See http://www.abs.gov.au, under Australian National Accounts, Explanatory Notes for Australia.

http://www.abs.gov.au
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(GDPt − μsμt ) = β(GDPt−1 − μsμt−1)+ σsσ t εt (A.1)

εt ∼ i id N (0, 1)

sμt ∼ Markov(Pμ), sσ t ∼ Markov(Pσ ), (A.2)

where Pμ and Pσ denote transition matrices for high and low mean and variance
regimes,

Pμ =
[

pμH 1 − pμH

1 − pμL pμL

]

Pσ =
[

pσH 1 − pσH

1 − pσL pσL

]
.

Overall, then, there are four regimes:

St = 1if sμt = H, sσ t = H (A.3)

St = 2if sμt = H, sσ t = L

St = 3if sμt = L , sσ t = H

St = 4if sμt = L , sσ t = L .

For t = 0 the hidden Markov states are governed by the ergodic distribution associ-
ated with Pμ and Pσ .

A.2 Bayesian Inference

Priors. Bayesian inference combines a prior distribution with a likelihood function
to obtain a posterior distribution of the model parameters and states. We summarize
our benchmark priors in Table A.1. We employ a normal prior forμL , a gamma prior
for μH − μL , inverted gamma priors for σH and σL , beta priors for the transition
probabilities, and finally, a normal prior for β. Our prior ensures that μH ≥ μL and
thereby deals with the “label switching” identification problem.

ForμL , the average growth rate in the low-growth state, we use a prior distribution
that is centered at 0, with standard deviation 0.70 %. Note that a priori we do not
restrict the average growth rate to be negative. We also allow for (mildly) positive
values. We choose the prior for μH −μL such that the mean difference between the
average growth rates in the two regimes is 2.00 %, with standard deviation 1.00 %.
Our priors for the transition probabilities pμ and pσ are symmetric and imply a mean
regime duration between three and 14 quarters. Finally, our choice for the prior of
the autoregressive parameter β is normal with zero mean and unit variance, allowing
a priori for both stable and unstable dynamics of output growth rates.
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Table A.1 Prior choices and posterior distributions

Prior GDPE GDPC

Choice Median 5 % 95 % Median 5 % 95 %

μH − μL Gamma(2, 1) – – – – – –
μH – 3.50 [3.03 4.12] 3.76 [2.97 4.28]
μL Normal(0, 0.5) 1.25 [0.34 2.29] 0.82 [0.17 1.64]
σH InvGamma(2, 2) 4.82 [4.35 5.43] 4.64 [4.21 5.13]
σL InvGamma(1, 2) 1.92 [1.55 2.34] 1.71 [1.74 2.05]
β Normal(0, 1) 0.31 [0.17 0.45] 0.37 [0.27 0.53]
pμH Beta(25, 5) 0.91 [0.82 0.96] 0.92 [0.85 0.96]
pμL Beta(25, 5) 0.79 [0.64 0.87] 0.80 [0.67 0.88]
pσH Beta(25, 5) 0.91 [0.83 0.96] 0.91 [0.83 0.96]
pσL Beta(25, 5) 0.89 [0.81 0.95] 0.91 [0.85 0.95]

Implementation of Posterior Inference. Posterior inference is implemented with a
Metropolis-within-Gibbs sampler, building on work by Carter and Kohn (1994) and
Kim and Nelson (1999b). We denote the sequence of observations by GDP1:T . More-
over, let S1:T be the sequence of hidden states, and let

θ = (μH , μL , σH , σL , β)
′, and φ = (pμH , pμL , pσL , pσH )

′.

Our Metropolis-within-Gibbs algorithm involves sampling iteratively from three
conditional posterior distributions. To initialize the sampler we start from (θ0, φ0).
Algorithm: Metropolis-within-Gibbs Sampler
For i = 1, . . . , N :

1. Draw Si+1
1:T conditional on θ i , φi , GDP1:T . This step is implemented using the

multi-move simulation smoother described in Sect. 9.1.1 of Kim and Nelson
(1999b).

2. Draw φi+1 conditional on θ i , Si+1
1:T , GDP1:T . If the dependence of the distribution

of the initial state S1 on φ is ignored, then it can be shown that the conditional
posterior of φ is of the Beta form (see Sect. 9.1.2 of Kim and Nelson 1999b).
We use the resulting Beta distribution as a proposal distribution in a Metropolis–
Hastings step.

3. Draw θ i+1, conditional on φi+1, Si+1
1:T , GDP1:T . Since our prior distribution is

nonconjugate, we are using a random-walk Metropolis step to generate a draw
from the conditional posterior of θ . The proposal distribution is N (θ i , c�).

We obtain the covariance matrix� of the proposal distribution in Step 3 as follows.
Following Schorfheide (2005) we maximize the posterior density,

p(θ, φ|GDP1:T ) ∝ p(GDP1:T |θ, φ)p(θ, φ),
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to obtain the posterior mode (θ̃ , φ̃). We then construct the negative inverse of the
Hessian at the mode and let � be the submatrix that corresponds to the parameter
subvector θ . We choose the scaling factor c to obtain an acceptance rate of approxi-
mately 40 %. We initialize our algorithm choosing (θ0, φ0) in the neighborhood of
(θ̃ , φ̃) and use it to generate N = 100, 000 draws from the posterior distribution.18

Posterior Estimates. Table A.1 also contains percentiles of posterior parameter
distributions. The posterior estimates for the volatility parameters and the transition
probabilities are similar across GDPE and GDPC . However, the posterior estimate
for μL is higher using GDPE than using GDPC , while the opposite is true for β.
Moreover, the differential between high and low mean regimes is bigger in the case
of GDPC , all of which can influence the time-series plot of the recession probabilities.

The Markov-switching means capture low-frequency shifts while the autoregres-
sive coefficient captures high-frequency dynamics. Thus, the presence of the autore-
gressive term may complicate our analysis, because we are trying to decompose the
GDP measurement discrepancy into both low- and highfrequency components. As
a robustness check, we remove the autoregressive term in (A.1) and estimate an i id
model specification. Although the posterior estimates for μL change, the remaining
parameters are essentially identical to Table A.1. The smoothed recession probabil-
ities remain nearly identical to Fig. 8.
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Identification Without Exogeneity Under
Equiconfounding in Linear Recursive
Structural Systems

Karim Chalak

Abstract This chapter obtains identification of structural coefficients in linear
recursive systems of structural equations without requiring that observable vari-
ables are exogenous or conditionally exogenous. In particular, standard instrumental
variables and control variables need not be available in these systems. Instead, we
demonstrate that the availability of one or two variables that are equally affected
by the unobserved confounder as is the response of interest, along with exclusion
restrictions, permits the identification of all the system’s structural coefficients. We
provide conditions under which equiconfounding supports either full identification
of structural coefficients or partial identification in a set consisting of two points.

Keywords Causality · Confounding · Covariance Restrictions · Identification ·
Structural systems

1 Introduction

This chapter obtains identification of structural coefficients in fully endogenous linear
recursive systems of structural equations. In particular, standard exogenous instru-
ments and control variables may be absent in these systems.1 Instead, identification
obtains under equiconfounding that is to say in the presence of (one or two) observ-
able variables that are equally directly affected by the unobserved confounder as is
the response. Examples of equiconfounding include cases in which the unobserved
confounder directly affects the response and one or two observables by an equal

K. Chalak (B)
Department of Economics, Boston College, 140 Commonwealth Ave.,
Chestnut Hill, MA 02467, USA
e-mail: chalak@bc.edu

1 Standard instruments are uncorrelated with the unobserved confounder whereas conditioning on
control variables renders the causes of interest uncorrelated with the confounder.
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proportion (proportional confounding) or an equal standard deviation shift. We show
that the availability of one or two variables that are equally (e.g., proportionally)
confounded in relation to the response of interest, along with exclusion restrictions,
permits the identification of all the system’s structural coefficients. We provide con-
ditions under which we obtain either full identification of structural coefficients or
partial identification in a set consisting of two points.

The results of this chapter echo a key insight in Halbert White’s work regard-
ing the importance of specifying causal relations governing the unobservables for
the identification and estimation of causal effects (e.g., White and Chalak 2010,
2011; Chalak and White 2011; White and Lu 2011a,b; Hoderlein et al. 2011).
A single chapter can do little justice addressing Hal’s prolific and groundbreak-
ing contributions to asymptotic theory, specification analysis, neural networks,
time series analysis, and causal inference, to list a few areas, across several disci-
plines including economics, statistics, finance, and computer and cognitive sciences.
Instead, here, we focus on one insight of Hal’s recent work and build on it to intro-
duce the notion of equiconfounding and demonstrate how it supports identification
in structural systems.

To illustrate this chapter’s results, consider the classic structural equation for the
return to education (e.g., Mincer 1974; Griliches 1977)

Y = βo X + αuU + αyUy, (1)

where Y denotes the logarithm of hourly wage, X determinants of wage with observed
realizations, and U and Uy determinants of wage whose realizations are not observed
by the econometrician. Elements of X may include years of education, experience,
and tenure. Interest attaches to the causal effect of X on Y , assumed to be the
constant βo. Here, U denotes an index of unobserved personal characteristics that
may determine wage and be correlated with X , such as cognitive and noncognitive
skills, and Uy denote other unobserved determinants assumed to be uncorrelated
with X and U . Endogeneity arises because of the correlation between X and αuU ,
leading to bias in the coefficient of a linear regression of Y on X . The method of
instrumental variables (IV) permits identification of the structural coefficients under
the assumption that a “valid” (i.e. uncorrelated with αuU + αyUy) and “relevant”
(i.e. E(X Z ′) is full raw rank) vector Z excluded from Eq. (1) and whose dimen-
sion is at least as large as that of X is available (e.g., Wooldridge 2002, pp. 83–84).
Alternatively, the presence of key covariates may ensure “conditional exogeneity”
or “unconfoundedness” supporting identification (see e.g., White and Chalak 2011
and the citations therein). We do not assume the availability of standard instruments
or control variables here, so these routes for identification are foreclosed.

Nevertheless, as we show, a variety of shape restrictions2 on confounding can
secure identification of βo. To illustrate, begin by considering the simplest such

2 Shape restrictions have been employed in a variety of different contexts. For example, Matzkin
(1992) employs shape restrictions to secure identification in nonparametric binary threshold crossing
models with exogeneity.
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possibility in which data on a proxy for αuU , such as I Q score, is available. Let Z
denote the logarithm of I Q and assume that the predictive proxy Z for U does not
directly cause Y , and that Z and Y are equiconfounded. In particular, suppose that
Z is structurally generated by

Z = αuU + αzUz,

with Uz as a source of variation uncorrelated with other unobservables. Then, under
this proportional confounding, a one unit increase in U leads to an approximate
100αu% increase in wage and I Q ceteris paribus. It is straightforward to see that,
by substitution, βo is identified from a regression of Y − Z on X . Note, however,
that Z is not a valid instrument here (E(ZαuU ) �= 0) since Z is driven by U .

The above simple structure excludes I Q from the equation for Y to ensure that
βo is identified. Suppose instead that X = (X1, X2, X ′

3)
′ and that the two variables

X1 and X2 are structurally generated as follows

X1 = αuU + αx1Ux1 and X2 = αuU + αx2Ux2 ,

with Ux1 and Ux2 sources of variation, each uncorrelated with other unobservables.
We maintain that the other elements of X are generally endogenous but we restrict
X1 and X2 to be equiconfounded joint causes of Y . For example, X1 may denote the
logarithm of another test score, such as the Knowledge of World of Work (K W W )
score (see e.g., Blackburn and Neumark 1992), and we relabel log(I Q) to X2.
Here, wage, K W W , and I Q are proportionally confounded by U . Substituting for
αuU = X1 − αx1Ux1 in (1) gives

Y − X1 = βo X − αx1Ux1 + αyUy,

and thus a regression of Y − X1 on X does not identify βo since X1 is correlated
with αx1Ux1 . Further, although X2 and X3 are exogenous in this equation, they are
not excluded from it and thus they cannot serve as instruments for X1. Nevertheless,
we demonstrate that in this case βo is fully (over) identified.

In the previous example, two joint causes and a response that are equiconfounded
secure identification. Similarly, one cause and two joint responses that are equicon-
founded can ensure that βo is identified. For example, let Y1 and Y2 denote two
responses of interest (e.g., two measures of the logarithm of wage, one reported by
the employer and another by the employee). In particular, suppose that

Y1 = β1o X + αuU + αy1Uy1 and Y2 = β2o X + αuU + αy2Uy2 .

Note that β1o and β2o need not be equal. As before, we maintain that an element X1
(e.g., log(I Q)) of X is structurally generated by

X1 = αuU + αx1Ux1,
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with the remaining elements of X generally endogenous. We demonstrate that here
(β′

1o,β
′
2o)

′ is partially identified in a set consisting of two points.
Various other exclusion restrictions can secure identification of structural coeffi-

cients in the presence of equiconfounding. Consider the classic triangular structure:

Y = βo X + αuU + αyUy,

X = γo Z + ηuU + αxUx .

As before, Uy and Ux denote exogenous sources of variation. The method of IV
identifies βo provided that the excluded vector Z is valid (E(αuU Z ′) = 0) and
relevant (E(X Z ′) full raw rank) and thus has dimension at least as large as that of X .
Suppose instead that Y , Z , and an element X1 of X are equiconfounded by U :

X1 = γ1o Z + αuU + αx1Ux1 and Z = αuU + αzUz,

where Ux1 and Uz are each uncorrelated with other unobservables. The remaining
elements of X are generally endogenous. For example, a researcher may wish to
allow I Q to be a structural determinant of the subsequently administered K W W
test, in order to capture learning effects, and to exclude I Q from the equation for Y
if this test’s information is unavailable to employers. Then Z denotes log(I Q) and X1
denotes log(K W W ). In this structure we refer to Z and X1 as equiconfounded pre-
cause and intermediate-cause, respectively. We demonstrate that (β′

o, γ
′
o)

′ is either
fully identified or partially identified in a set consisting of two points. Importantly,
in contrast to the method of IV, here Z is a scalar endogenous variable.

This chapter is organized as follows. Section 2 introduces notation. Formal identi-
fication results, including for the examples above, are discussed in Sects. 3 to 6. Often
we present the identification results as adjustments to standard regression coefficients
thereby revealing the regression bias arising due to endogeneity. Section 7 contains
a discussion and Sect. 8 concludes. All mathematical proofs as well as constructive
arguments for identification are gathered in the appendix.

2 Notation

Throughout, we let the random k × 1 vector X and p × 1 vector Y denote the
observed direct causes and responses of interest, respectively.3 If there are observed
variables excluded from the equation for Y , we denote these by the �× 1 vector Z .
We observe independent and identically distributed realizations {Zi , Xi ,Yi }n

i=1 for

3 This chapter considers linear recursive structural systems. Recursiveness rules out “simultaneity”
permitting distinguishing the vectors of primary interest X and Y as the observed direct causes
and responses, respectively. In particular, elements of Y are assumed to not cause elements of X .
While mutual causality is absent here, endogeneity arises due to the confounder U jointly driving
the causes X and responses Y .
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Z , X , and Y and stack these into the n × �, n × k, and n × p matrices Z, X, and
Y, respectively. The matrices (or vectors) of structural coefficients γo and βo denote
finite causal effects determined by theory as encoded in a linear structural system
of equations. The scalar index U denotes an unobserved confounder of X , Z , and
Y and the vectors Uz,Ux , and Uy of positive dimensions denote unobserved causes
of elements of Z , X and Y , respectively. Without loss of generality, we normalize
the expectations of U,Uz,Ux , and Uy to zero. The structural coefficients matrices
αz,αx and αy denote the effects of elements of Uz,Ux and Uy on elements of Z , X
and Y , respectively. Equiconfounding restricts the effect of the confounder U on Y
and certain elements of X and Z to be equal; we denote this restricted effect by αu

and we denote unrestricted effects of U on elements of X by φu .
We employ the following notation for regression coefficients and residuals. Let

Y, X, and Z be generic random vectors. We denote the coefficient and residual from
a regression of Y on X by

πy.x ≡ E(Y X ′)E(X X ′)−1 and εy.x ≡ Y − πy.x X.

Similarly, we denote the coefficient associated with X from a regression of Y on X
and Z by

πy.x |z ≡ E(εy.zε
′
x .z)E(εx .zε

′
x .z)

−1.

This representation obtains from the Frisch-Waugh-Lovell theorem (Frisch and
Waugh 1993; Lovell 1963; see e.g., Baltagi 1999, p. 159). Noting that

E(εy.zε
′
x .z) = E(Y ε′x .z)− E(Y Z ′)E(Z Z ′)−1 E(Zε′x .z) = E(Y ε′x .z)

= E(Y X ′)− E(Y Z ′)E(Z Z ′)−1 E(Z X ′) = E(εy.z X ′),

we can rewrite πy.x |z as

πy.x |z = E(Y ε′x .z)E(Xε′x .z)−1 = E(εy.z X ′)E(εx .z X ′)−1.

Last, we denote sample regression coefficients by π̂y.x ≡ (X′X)−1X′Y and residuals
by ε̂y.x,i ≡ Yi − π̂y.x Xi , which we stack into the n × p vector ε̂y.x . Similarly, we let
π̂y.x |z ≡ (ε̂′x .zX)−1ε̂′x .zY.

Throughout, we illustrate a structural system using a directed acyclic graph as in
Chalak and White (2011). A graph GS associated with a structural system S consists
of a set of vertices (nodes) {Vg}, one for each variable in S, and a set of arrows
{agh}, corresponding to ordered pairs of distinct vertices. An arrow agh denotes that
Vg is a potential direct cause for Vh , i.e., it appears directly in the structural equation
for Vh with a corresponding possibly nonzero coefficient. We use solid nodes for
observables and dashed nodes for unobservables. For convenience, we sometimes
use vector nodes to represent vectors generated by structural system S. In this case, an
arrow from vector node Z to vector node X indicates that at least one element of Z is
a direct cause of at least one element of X . We use solid nodes for observable vectors
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and dashed nodes for vectors with at least one unobservable element. For simplicity,
we omit nodes for the exogenous vectors Uz, Ux ,and Uy . Lastly, we use dashed
arrows emanating from U to Y , X1, Z , and possibly X2 to denote equiconfounding.

3 Equiconfounded Predictive Proxy and Response

The simplest possibility arises when the response Y and a scalar predictive proxy
Z for the unobserved confounder U are equiconfounded. The predictive proxy Z
is excluded from the equation for Y . In particular, consider the structural system of
equations S1 with causal graph G1:

Similar to Chalak and White (2011), we use the “
s=” notation instead of “=” to

emphasize structural equations. We let � = p = 1 in S1 as this suffices for iden-
tification. Here and in what follows, we let the last element of X be degenerate
at 1. The next result shows that the structural vector βo is point identified. This is
obtained straightforwardly by substituting αuU with Z −αzUz in the equation for Y .

Theorem 3.1 Consider structural system S1 with k > 0, � = p = 1, and expected
values of U,Uz,Ux ,Uy normalized to zero. Suppose that E(U 2) and E(UxU ′

x ) exist
and are finite. Then (i) E(X X ′), E(Z X ′), and E(Y X ′) exist and are finite. Suppose
further that E(X X ′) is nonsingular. Then (ii) βo is fully identified as

βo = πy−z.x .

Under standard conditions (e.g., White 2001) the estimator π̂y−z.x ≡ (X′X)−1X′
(Y − Z) is a consistent and asymptotically normal estimator for βo. A heteroskedas-
ticity robust estimator (White 1980) for the asymptotic covariance matrix for π̂y−z.x

is given by (X′X)−1(
∑n

i=1 ε̂
2
y−z.x,i Xi X ′

i )(X
′X)−1.
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4 Equiconfounded Joint Causes and Response

Identification in S1 requires the predictive proxy Z to be excluded from the equation
for Y . However, βo is also identified if two causes X1 and X2 and the response Y are
equiconfounded. In particular, consider structural system S2 with causal graph G2:

We can rewrite 1(a, b, c) as

(1) (X ′
1, X ′

2, X ′
31)

′ s= ηuU + αxUx ,

with ηu = (α′
u,α

′
u,φ

′
u)

′, Ux = (U ′
x1
,U ′

x2
,U ′

x3
)′, and αx a block diagonal matrix

with αx1,αx2 , and αx3 at the diagonal entries and zeros at the off-diagonal entries.
Here, we let X1 and X2 be scalars, k1 = k2 = 1, as this suffices for identification.
The next theorem shows that the structural vector βo is point identified.

Theorem 4.1 Consider structural system S2 with dim(X3) ≡ k3 ≥ 0, and
k1 = k2 = p = 1, and expected values of U,Uz,Ux ,Uy normalized to zero. Suppose
that E(U 2) and E(UxU ′

x ) exist and are finite. Then (i) E(X X ′) and E(Y X ′) exist
and are finite. Suppose further that E(X X ′) is nonsingular. Then (ii) the vector βo

is fully (over-)identified by:

βo = β∗
JC ≡ πy.x − [E(X2 X ′

1), E(X2 X ′
1), E(X1 X ′

3)]E(X X ′)−1

= β†
JC ≡ πy.x − [E(X2 X ′

1), E(X2 X ′
1), E(X2 X ′

3)]E(X X ′)−1.

The above result obtains by noting that the moment E(Y X ′) identifies βo when
E(X X ′) is nonsingular provided that αu E(U X ′) is identified. But this holds since,
E(X1 X ′

3) = E(X2 X ′
3) = (Cov(φuU,αuU )′, 0) and E(X1 X2) = Var(αuU ). The

expressions for β∗
JC and β†

JC emphasize the bias πy.x − β∗
JC (or πy.x − β†

JC ) in a

regression of Y on X arising due to endogeneity. The plug-in estimators β̂∗
JC and

β̂†
JC for β∗

JC and β†
JC , respectively:
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β̂∗
JC ≡ π̂y.x −

n∑
i=1

[ X2i X ′
1i , X2i X ′

1i , X1i X ′
31i , 0 ](X′X)−1, and

β̂∗
JC ≡ π̂y.x −

n∑
i=1

[ X2i X ′
1i , X2i X ′

1i , X2i X ′
31i , 0 ](X′X)−1,

are consistent estimators under conditions sufficient to invoke the laws of large num-
bers.

A testable restriction of structure S2 is that Cov(X1, X3) = Cov(X2, X3) =
(αu E(U 2)φ′

u, 0). Thus, S2 can be falsified by rejecting this null. In particular, one
can reject the equiconfounding restrictions in equations 1(a, b, c) if E(X1 X ′

3) �=
E(X2 X ′

3). For this, one can employ a standard F-statistic for the overall significance
of the regression of X1 − X2 on X3.

5 Equiconfounded Cause and Joint Responses

The availability of a single cause and two responses that are equiconfounded also
ensures the identification of causal coefficients. Specifically, consider structural sys-
tem S3 given by:

Letting Y = (Y ′
1,Y ′

2)
′, βo = (β′

1o,β
′
2o)

′, Ux = (U ′
x1
,U ′

x2
)′, and

Uy = (U ′
y1
,U ′

y2
)′, and letting αx be a block diagonal matrix with diagonal entries

αx1 and αx2 and zero off-diagonal entries, and similarly for αy , we can write 1(a, b)
and 2(a, b) more compactly as

(1) (X ′
1, X ′

21)
′ s= ηuU + αxUx

(2) Y
s= βo X + αuιpU + αyUy,
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with ιp a p × 1 vector with each element equal to 1 and ηu = (α′
u,φ

′
u)

′. Here it
suffices for identification that dim(X1) ≡ k1 = 1 and p = 2. The next theorem
demonstrates that the structural matrix βo is partially identified in a set consisting of
two points.

Theorem 5.1 Consider structural system S3 with dim(X2) ≡ k2 ≥ 0, k1 = 1,
p = 2, and expected values of U,Uz,Ux , and Uy normalized to zero. Suppose
that E(U 2) and E(UxU ′

x ) exist and are finite, then (i) E(X X ′) and (Y X ′) exist
and are finite. Suppose further that E(X1 X ′

1) and E(X2 X ′
2) are nonsingular then

(ii.a) Px1 ≡ E(εx1.x2ε
′
x1.x2

) and Px2 ≡ E(εx2.x1ε
′
x2.x1

) exist and are finite. If also
Px1 and Px2 are nonsingular then (ii.b) E(X X ′) is nonsingular, πy.x and E(εy1.x Y ′

2)

exist and are finite, and (ii.c)

�J R =
[
2P−1

x1
E(X1 X ′

1)− 1
]2 − 4P−1

x1

[
E(X1 X ′

2)P
−1
x2

E(X2 X ′
1)+ E(εy1.x Y ′

2)
]
,

exists, is finite, and is nonnegative.
(iii) βo is partially identified in a set consisting of two points. In particular,

(iii.a) if

Var(αx1Ux1)+ Cov(φuU,αuU )′

[Var(φuU )+ Var(αx2Ux2)]−1Cov(φuU,αuU )− Var(αuU ) < 0,

then

0 ≤ σ†
J R ≡ E(X1 X ′

1)+ 1

2
Px1(−1 − √

�J R) < α2
u E(U 2), and

σ∗
J R ≡ E(X1 X ′

1)+ 1

2
Px1(−1 + √

�J R) = α2
u E(U 2),

and thus
βo = β∗

J R ≡ πy.x − ιp[σ∗
J R, E(X1 X ′

2)]E(X X ′)−1.

(iii.b) If instead the expression in (iii) is nonnegative then

σ†
J R = α2

u E(U 2) and 0 ≤ α2
u E(U 2) ≤ σ∗

J R,

and thus
βo = β†

J R ≡ πy.x − ιp[σ†
J R, E(X1 X ′

2) ]E(X X ′)−1.

Observe here that, unlike for the case of equiconfounded joint causes, βo is not
point identified but is partially identified in a set consisting of two points. Also,
observe that β1o − β2o is identified from a regression of Y1 − Y2 on X . How-
ever, β∗

1,J R − β∗
2,J R = β†

1,J R − β†
2,J R and thus this does not help in fully iden-

tifying βo. Similar to S2, with E(X X ′) nonsingular, the moment E(Y X ′) identifies
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βo provided Cov(φuU,αuU ) and Var(αuU ) are identified. While E(X21 X1) =
Cov(φuU,αuU ), identification of Var(αuU ) is more involved here than in S2.
Appendix B.1 presents a constructive argument showing that the moment E(Y1Y2)

delivers a quadratic equation in Var(αuU ) with two positive roots, σ†
J R and σ∗

J R .
Under suitable conditions sufficient to invoke the law of large numbers, the follow-

ing plug-in estimators are consistent for�J R,σ
∗
J R,σ

†
J R,β

∗
J R, and β†

J R respectively.

To express these, let P̂x1 = 1
n ε̂

′
x1.x2

X1 and P̂x2 ≡ 1
n ε̂

′
x2.x1

X2. Then

�̂J R ≡
[

2 P̂−1
x1

1

n
X′

1X1 − 1

]2

− 4P̂−1
x1

[
1

n
X′

1X2 P̂−1
x2

1

n
X′

2X1 + 1

n
ε̂′y1.x Y2

]
,

σ̂∗
J R ≡ 1

n
X′

1X1 + 1

2
P̂x1

(
−1 +

√
�̂J R

)
and

σ̂†
J R ≡ 1

n
X′

1X1 + 1

2
P̂x1

(
−1 −

√
�̂J R

)
,

β̂∗
J R ≡ π̂y.x − ιp

[
σ̂∗

J R,
1

n
X′

1X2

] (
1

n
X′X

)−1

, and

β̂†
J R ≡ π̂y.x − ιp

[
σ̂†

J R,
1

n
X′

1X2

] (
1

n
X′X

)−1

.

Thus, under suitable statistical assumptions, β̂∗
J R and β̂†

J R converge to β∗
J R and β†

J R ,

respectively; under the structural assumptions of S3, either β∗
J R or β†

J R identifies the
structural coefficient vector βo.

6 Equiconfounding in Triangular Structures

Next, we consider the classic triangular structure discussed in the Introduction and
show that if one excluded variable Z1, one element X1 of the direct causes X, and the
response Y are equally confounded by U then all the system’s structural coefficients
are identified. Consider structural system S4 with causal graph G4:
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To rewrite 2(a, b) more compactly, let γo = (γ′
1o, γ

′
2o)

′ and ηu = (α′
u,φ

′
u)

′, and
write U ′

x = (U ′
x1
,U ′

x2
)′, with αx1 and αx2 the diagonals entries of the block diagonal

matrix αx with zero off-diagonal entries. Then

(2) (X ′
1, X ′

21)
′ s= γo Z + ηuU + αxUx .

We sometimes refer to Z1 as a pre-cause variable as it is excluded from the equation
for Y and to X1 as an intermediate cause as it mediates the effect of Z1 on Y . As
discussed in the Introduction, necessary conditions for the method of IV to identify
βo are that E(Z(αuU + αyUy)) = 0 and that E(X Z ′) is full raw rank. Both of
these conditions can fail in S4, since E(Z(αuU )) is generally nonzero and only one
excluded variable suffices for identification here so that dim(Z1) ≡ �1 = dim(X1) ≡
k1 = p = 1 and thus dim(Z) ≡ � ≤ dim(X) ≡ k. Nevertheless, the next theorem
demonstrates that the structural vectors γo and βo are jointly either point identified
or partially identified in a set consisting of two points.

Theorem 6.1 Consider structural system S4 with dim(X2) = k2 ≥ 0, �1 =
k1 = p = 1, and expected values of U,Uz,Ux ,Uy normalized to zero. Sup-
pose that E(U 2), E(UzU ′

z), and E(UxU ′
x ) exist and are finite. Then (i) E(Z Z ′),

E(X Z ′), E(X X ′) , E(Y X ′), and E(Y Z ′) exist and are finite. (ii) Suppose further that
Pz1 ≡ E(εz1.z2 Z ′

1) = E(Z1 Z ′
1), and thus E(Z Z ′), and E(X X ′) are nonsingular.

Then (ii.a) πx .z , πz.x , E(εx1.z X ′
2), and E(εy.x Z ′

1) exist and are finite and (ii.b)

�PC = [−π′
x .z1|z2

π′
z1.x − π′

z1.x1|x2
+ 1]2

+ 4P−1
z1

π′
z1.x1|x2

[E(εy.x Z ′
1)+ E(εx1.z X ′

2) π
′
z1.x2|x1

]

exists, is finite, and nonnegative.
(iii) βo is either point identified or partially identified in a set consisting of two

points. In particular, (iii.a) if
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π′
x .z1|z2

π′
z1.x + π′

z1.x1|x2
− 1 − 2P−1

z1
π′

z1.x1|x2
α2

u E(U 2) < 0, (2)

then

σ†
PC ≡ π′

x .z1|z2
π′

z1.x + π′
z1.x1|x2

− 1 − √
�PC

2P−1
z1 π

′
z1.x1|x2

< α2
u E(U 2) and

σ∗
PC ≡ π′

x .z1|z2
π′

z1.x + π′
z1.x1|x2

− 1 + √
�PC

2P−1
z1 π′

z1.x1|x2

= α2
u E(U 2),

and we have

γ1o = γ∗
1,PC ≡ πx1.z − [σ∗

PC , 0]E(Z Z ′)−1,

γ2o = γ∗
2,PC ≡ πx21.z − [E(X21ε

′
x1.z)[1 − σ∗

PC P−1
z1

]−1, 0]E(Z Z ′)−1, and

βo = β∗
PC ≡ πy.x − [σ∗

PC (π
′
x1.z1|z2

− σ∗
PC P−1

z1
+ 1), E(εx1.z X ′

2)

+ σ∗
PCπ

′
x2.z1|z2

]E(X X ′)−1.

(iii.b) If instead the expression in (2) is nonnegative then σ†
PC = α2

u E(U 2) and
σ∗

PC ≥ α2
u E(U 2), and

γ1o = γ†
1,PC ≡ πx1.z − [σ†

PC , 0]E(Z Z ′)−1,

γ2o = γ†
2,PC ≡ πx21.z − [ E(X21ε

′
x1.z)[1 − σ†

PC P−1
z1

]−1, 0 ]E(Z Z ′)−1, and

βo = β†
PC ≡ πy.x − [σ†

PC (π
′
x1.z1|z2

− σ†
PC P−1

z1
+ 1), E(εx1.z X ′

2)

+ σ†
PCπ

′
x2.z1|z2

]E(X X ′)−1.

Similar to S3, the moment E(Y X ′) identifies βo providedαu E(U X ′) is identified,
which involves identifying Var(αuU ). Appendix B.2 provides a constructive argu-
ment showing that the moment E(Y Z ′) delivers a quadratic equation in Var(αuU )
which admits the two roots σ†

PC and σ∗
PC . Note that it is possible to give primitive

conditions in terms of system coefficients and covariances among unobservables for
(2) to hold, similar to the condition given for the case of equiconfounded cause and
joint responses. We forego this here but we note that, unlike for the case of equicon-
founded cause and joint responses, if (2) holds, it is possible for σ†

PC to be negative,
leading to α2

u E(U 2), and thus (γo,βo), to be point identified.
The following plug in estimators are consistent estimators under conditions suit-

able for the law of large numbers. First, we let P̂z1 = 1
n ε̂

′
z1.z2

Z1, then
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�̂PC = [−π̂′
x .z1|z2

π̂′
z1.x − π̂′

z1.x1|x2
+ 1]2

+ 4P̂−1
z1
π̂′

z1.x1|x2

[
1

n
ε̂′y.x Z1 +

(
1

n
ε̂′x1.zX2

)
π̂′

z1.x2|x1

]
,

σ̂∗
PC ≡ (2 P̂−1

z1
π̂′

z1.x1|x2
)−1

[
π̂′

x .z1|z2
π̂′

z1.x + π̂′
z1.x1|x2

− 1 +
√
�̂PC

]
,

σ̂†
PC ≡ (2 P̂−1

z1
π̂′

z1.x1|x2
)−1

[
π̂′

x .z1|z2
π̂′

z1.x + π̂′
z1.x1|x2

− 1 −
√
�̂PC

]
,

γ̂∗
1,PC ≡ π̂x1.z − [σ̂∗

PC , 0]
(

1

n
Z′Z

)−1

and

γ̂†
1,PC ≡ π̂x1.z − [σ̂†

PC , 0]
(

1

n
Z′Z

)−1

,

γ̂∗
2,PC ≡ π̂x21.z −

[(
1

n
X′

21ε̂x1.z

)
[1 − σ̂∗

PC P̂−1
z1

]−1, 0

] (
1

n
Z′Z

)−1

,

γ̂†
2,PC ≡ π̂x21.z −

[(
1

n
X′

21ε̂x1.z

)
[1 − σ̂†

PC P̂−1
z1

]−1, 0

] (
1

n
Z′Z

)−1

,

β̂∗
PC ≡ π̂y.x − [σ̂∗

PC (π̂
′
x1.z1|z2

− σ̂∗
PC P̂−1

z1
+ 1),

1

n
ε̂′x1.zX2

+ σ̂∗
PC π̂

′
x2.z1|z2

]
(

1

n
X′X

)−1

, and

β̂†
PC ≡ π̂y.x − [σ̂†

PC (π̂
′
x1.z1|z2

x − σ̂†
PC P̂−1

z1
+ 1),

1

n
ε̂′x1.zX2

+ σ̂†
PC π̂

′
x2.z1|z2

]
(

1

n
X′X

)−1

.

7 Discussion

Structures S1, S2, S3, and S4 do not exhaust the possibilities for identification under
equiconfounding. An example of another linear triangular structure with equicon-
founding is one involving equiconfounded cause, response, and a post-response vari-
able. For example, assuming that K W W score (a potential cause), hourly wage
(a response), and the number of hours worked (a post response directly affected
by hourly wage but not by the K W W score) are proportionally confounded, with
other determinants of wage generally endogenous, may permit identification of this
system’s structural coefficients.

Roughly speaking, equiconfounding reduces the number of unknowns thereby
permitting identification. In contrast, the method of IV supplies additional moments
useful for identification. In general, equiconfounding leads to covariance restrictions
(see e.g., Chamberlain 1977; Hausman and Taylor 1983) that, along with exclusion
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restrictions, permit identification. For example, in S4, the absence of a direct causal
effect among X1 and elements of X2 and excluding Z1 from the equation for Y
permits identifying Cov(φuU,αuU ) and Var(αuU ) given that Z1, X1, and Y are
equiconfounded. This then permits identifying S4’s coefficients. Similar arguments
apply to S1, S2, and S3. This is conveniently depicted in the causal graphs by (1) a
missing arrow between two nodes, one of which is linked to U by a dashed arrow
and the other by a solid arrow (e.g., X1 and X2 in S4) and (2) a missing arrow
between two nodes that are both linked to U by a dashed arrow (e.g., Z and Y in S4).
Recent papers which make use of alternative assumptions that lead to covariance
restrictions useful for identification include Lewbel (2010); Altonji et al. (2011) and
Galvao et al. (2012).

As discussed in Sect. 4, the availability of multiple equiconfounded variables can
overidentify structural coefficients, leading to tests for equiconfounding. Further,
equiconfounding can be used to conduct tests for hypotheses of interest. For exam-
ple, one could test for endogeneity under equiconfounding without requiring valid
exogenous instruments. To illustrate, consider the triangular structure discussed in
structure S4 of Sect. 6 then Theorem 6.1 gives that under equiconfounding βo is
either fully identified or partially identified in {β∗

PC ,β
†
PC }. Theorem 6.1 allows for

the possibility Var(αuU ) = 0 of zero confounding or exogeneity. Further, if X is
exogenous then clearly the regression coefficient πy.x also identifies βo. This over
identification provides the foundation for testing the exogeneity of X without requir-
ing the availability of exogenous instruments with dimension at least as large as
that of X . Instead, it suffices that a scalar Z1 and one element X1 of X are equally
(un)affected by U as is Y . For example, in estimating an Engle curve for a particular
commodity, total income Z1 is often used as an instrument for total expenditures X1
which may be measured with error. Nevertheless, as Lewbel (2010, Sect. 4) notes, “it
is possible for reported consumption and income to have common sources of mea-
surement errors” which could invalidate income as an instrument. One possibility for
testing the absence of common sources of measurement error is to assume that the
consumption Y of the commodity of interest, total expenditures X1, and income Z1
are misreported by an equal proportion. In the absence of common sources of mea-
surement error, Var(αuU ) = 0 and one of the equiconfounding estimands should
coincide with the regression coefficient πy.x , providing the foundation for such a test.
A statistic for this test can be based on the difference between the regression esti-
mator π̂y.x and the equiconfounding estimators β̂∗

PC and β̂†
PC for βo or alternatively

on the estimators σ̂∗
PC and σ̂†

PC for Var(αuU ). Such a test statistic must account for

Var(αuU ) being possibly partially identified in {σ∗
PC ,σ

†
PC }. We do not study formal

properties of such tests here but we note the possibility of a test statistic based on
min{σ̂∗

PC , σ̂
†
PC }. A similar test for exogeneity can be constructed in other structures,

e.g., S3.
A key message of this chapter is that, when exogeneity and conditional exogeneity

are not plausible, one can proceed to identify structural coefficients and test hypothe-
ses in linear recursive structures by relying on a parsimonious alternative assumption
that restricts the shape of confounding, namely equiconfounding. Here, we begin to
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study identification via restricting the shape of confounding by focusing on equicon-
founding in linear structures but there are several potential extensions of interest.
One possibility is to maintain the equiconfounding assumption and relax the con-
stant effect structure, e.g., by allowing for random coefficients across individuals.
Another possibility is to maintain the constant effect linear assumption and study
bounding the structural coefficients under shape restrictions on confounding weaker
than equiconfounding. Relaxing the restriction on the shape of confounding could
potentially increase the plausibility of this restriction albeit while possibly leading
to wider identification sets.

8 Conclusion

This chapter obtains identification of structural coefficients in linear systems of struc-
tural equations with endogenous variables under the assumption of equiconfound-
ing. In particular, standard instrumental variables and control variables need not
be available in these systems. Instead, we demonstrate an alternative way in which
sufficiently specifying the causal relations among unobservables, as Hal White rec-
ommends (e.g., Chalak and White 2011; White and Chalak 2010, 2011; White and
Lu 2011a,b; Hoderlein et al. 2011), can support identification of causal effects. In
particular, we introduce the notion of equiconfounding, where one or two observables
are equally affected by the unobserved confounder as is the response, and show that,
along with exclusion restrictions, equiconfounding permits the identification of all
the system’s structural coefficients. We distinguish among several cases by the struc-
tural role of the equiconfounded variables. We study the cases of equiconfounded
(1) predictive proxy and response, (2) joint causes and response, (3) cause and joint
responses, and (4) and pre-cause, intermediate-cause, and response. We provide con-
ditions under which we obtain either full identification of structural coefficients or
partial identification in a set consisting of two points.

As discussed in Sect. 7, several extensions of this work are of potential interest
including characterizing identification under equiconfounding in linear structural
systems, developing the asymptotic distributions and properties for the plug-in esti-
mators suggested here, extending the analysis to structures with heterogenous effects,
relaxing the restriction on the shape of confounding, developing tests for equicon-
founding and for endogeneity, as well as employing these results in empirical appli-
cations. We leave pursuing these extensions to future work.
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Appendix A: Mathematical Proofs

Proof of Theorem 3.1 (i) Given that the structural coefficients of S1 are finite and
that E(U 2) and E(UxU ′

x ) exist and are finite, the following moments exist and are
finite:

E(X X ′) =
[
φu E(U 2)φ′

u + αx E(UxU ′
x )αx , 0

0, 1

]

E(Z X ′) = αu E(U X ′) = [αu E(U 2)φ′
u, 0]

E(Y X ′) = βo E(X X ′)+ αu E(U X ′) = βo E(X X ′)+ [αu E(U 2)φ′
u, 0].

(i i) Substituting for αuU in (3) with its expression from (1), αuU = Z − αzUz,

gives

Y − Z = βo X − αzUz + αyUy, and thus E[(Y − Z)X ′] = βo E(X X ′).

It follows from the nonsingularity of E(X X ′) that βo is point identified as

βo = πy−z.x ≡ E[(Y − Z)X ′]E(X X ′)−1.�

Proof of Theorem 4.1 (i) Given that the structural coefficients of S2 are finite and
that E(U 2) and E(UxU ′

x ) exist and are finite, we have that

E(X X ′) =
[
ηu E(U 2)η′

u + αx E(UxU ′
x )α

′
x , 0

0, 1

]
, and

E(Y X ′) = βo E(X X ′)+ [αu E(U X ′
1), αu E(U X ′

2), αu E(U X ′
31), αu E(U ) ]

= βo E(X X ′)+ [α2
u E(U 2), α2

u E(U 2), αu E(U 2)φ′
u, 0 ]

exist and are finite. (i i) Further, α2
u E(U 2) is identified by α2

u E(U 2) = E(X2 X ′
1)

andφu E(U 2)αu is overidentified byφu E(U 2)αu = E(X31 X ′
1) = E(X31 X ′

2). Given
that E(X X ′) is nonsingular, it follows that βo is fully (over)identified by

βo = β∗
JC ≡ πy.x − [ E(X2 X ′

1), E(X2 X ′
1), E(X1 X ′

3) ]E(X X ′)−1

= β†
JC ≡ πy.x − [ E(X2 X ′

1), E(X2 X ′
1), E(X2 X ′

3) ]E(X X ′)−1.�

Proof of Theorem 5.1 (i)Given that the structural coefficients of S3 and E(U 2) and
E(UxU ′

x ) exist and are finite we have

E(X X ′) =
[
ηu E(U 2)η′

u + αx E(UxU ′
x )α

′
x , 0

0, 1

]
, and

E(Y X ′) = βo E(X X ′)+ αuιp[ E(U X ′
1), E(U X ′

2) ]
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= βo E(X X ′)+ ιp[α2
u E(U 2), [αu E(U 2)φ′

u, 0 ] ]

exists and are finite.
(i i.a) Given that E(X1 X ′

1) and E(X2 X ′
2) are nonsingular, we have

Px1 ≡ E(εx1.x2ε
′
x1.x2

) = E(εx1.x2 X ′
1) = E(X1 X ′

1)− πx1.x2 E(X2 X ′
1) and

Px2 ≡ E(εx2.x1ε
′
x2.x1

) = E(εx2.x1 X ′
2) = E(X2 X ′

2)− πx2.x1 E(X1 X ′
2)

exist and are finite. (i i.b) If also Px1 and Px2 are nonsingular, then E(X X ′)−1 exists,
is finite, and is given by (e.g., Baltagi 1999, p. 185):

E(X X ′)−1 =
[

E(X1 X ′
1), E(X1 X ′

2)

E(X2 X ′
1), E(X2 X ′

2)

]−1

=
[

P−1
x1
, −π′

x2.x1
P−1

x2−π′
x1.x2

P−1
x1
, P−1

x2

]
,

with P−1
x1
πx1.x2 = π′

x2.x1
P−1

x2
. It follows that πy.x exists and is finite. To show that

E(εy1.x Y ′
2) = E(Y1Y ′

2)− E(Y1 X ′)E(X X ′)−1 E(XY ′
2)

exists and is finite, note that

E(Y Y ′) = E[(βo X + αuιpU + αyUy)(βo X + αuιpU + αyUy)
′]

= βo E(X X ′)β′
o + βo E(XU )ι′pα′

u + αuιp E(U X ′)β′
o

+ ιpι
′
pα

2
u E(U 2)+ αy E(UyU ′

y)α
′
y .

Substituting for the diagonal term E(Y1Y ′
2) in the above expression for E(εy1.x Y ′

2)

then gives

E(εy1.x Y ′
2) = β1o E(X X ′)β′

2o + β1oαu E(XU )+ αu E(U X ′)β′
2o

+ α2
u E(U 2)− E(Y1 X ′)E(X X ′)−1 E(XY ′

2),

and thus E(εy1.x Y ′
2) exists and is finite given that αu E(U X ′) = [α2

u E(U 2),

[αu E(U 2)φ′
u, 0]].

(i i.c) Next, we have that

�J R = [2P−1
x1

E(X1 X ′
1)− 1]2 − 4P−1

x1
[E(X1 X ′

2)P
−1
x2

E(X2 X ′
1)+ E(εy1.x Y ′

2)],

exists and is finite as it is a function of finite moments and coefficients. We now show
that �J R is nonnegative. Given the nonsingularity of E(X X ′), substituting for

βo = [E(Y X ′)− αuιp E(U X ′)]E(X X ′)−1,

in the expression for E(Y Y ′) gives
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E(Y Y ′) = [E(Y X ′)− αuιp E(U X ′)]E(X X ′)−1 E(X X ′)E(X X ′)−1[E(XY ′)
− E(XU ′)ι′pα′

u] + [E(Y X ′)− αuιp E(U X ′)]E(X X ′)−1 E(XU )ι′pα′
u

+ αuιp E(U X ′)E(X X ′)−1[E(XY ′)− E(XU )ι′pα′
u]

+ ιpι
′
pα

2
u E(U 2)+ αy E(UyU ′

y)α
′
y

= E(Y X ′)E(X X ′)−1 E(XY ′)− αuιp E(U X ′)E(X X ′)−1 E(XU ′)ι′pα′
u

+ ιpι
′
pα

2
u E(U 2)+ αy E(UyU ′

y)α
′
y .

The off-diagonal term then gives

E(εy1.x Y ′
2) = E(Y1Y ′

2)− E(Y1 X ′)E(X X ′)−1 E(XY ′
2)

= α2
u E(U 2)− αu E(U X ′)E(X X ′)−1 E(XU ′)α′

u

Substituting for αu E(U X ′) = [α2
u E(U 2), [αu E(U 2)φ′

u, 0]] = [α2
u E(U 2),

E(X1 X ′
2)] gives

αu E(U X ′)E(X X ′)−1 E(XU )α′
u

= [α2
u E(U 2), E(X1 X ′

2)]
[

P−1
x1
, −π′

x2.x1
P−1

x2−π′
x1.x2

P−1
x1
, P−1

x2

]
[α2

u E(U 2), E(X1 X ′
2)]′

= α4
u E(U 2)2 P−1

x1
− E(X1 X ′

2)π
′
x1.x2

P−1
x1
α2

u E(U 2)

− α2
u E(U 2)π′

x2.x1
P−1

x2
E(X2 X ′

1)+ E(X1 X ′
2)P

−1
x2

E(X2 X ′
1).

Thus, we expand the term E(X1 X ′
2)P

−1
x2

E(X2 X ′
1)+ E(εy1.x Y ′

2) in �J R as:

E(X1 X ′
2)P

−1
x2

E(X2 X ′
1)+ E(εy1.x Y ′

2)

= E(X1 X ′
2)P

−1
x2

E(X2 X ′
1)+ α2

u E(U 2)− α4
u E(U 2)2 P−1

x1

+ E(X1 X ′
2)π

′
x1.x2

P−1
x1
α2

u E(U 2)+ α2
u E(U 2)π′

x2.x1
P−1

x2
E(X2 X ′

1)

− E(X1 X ′
2)P

−1
x2

E(X2 X ′
1)

= −α4
u E(U 2)2 P−1

x1
+ α2

u E(U 2)[2P−1
x1
πx1.x2 E(X2 X ′

1)+ 1]
= −α4

u E(U 2)2 P−1
x1

+ α2
u E(U 2)[2P−1

x1
[E(X1 X ′

1)− Px1 ] + 1]
= −α4

u E(U 2)2 P−1
x1

+ α2
u E(U 2)[2P−1

x1
E(X1 X ′

1)− 1]

where we use P−1
x1
πx1.x2 = π′

x2.x1
P−1

x2
and Px1 = E(X1 X ′

1)−πx1.x2 E(X2 X ′
1). Then

�J R ≡ [2P−1
x1

E(X1 X ′
1)− 1]2 − 4P−1

x1
[E(X1 X ′

2)P
−1
x2

E(X2 X ′
1)+ E(εy1.x Y ′

2)]
= [2P−1

x1
E(X1 X ′

1)− 1]2 + 4α4
u E(U 2)2 P−2

x1

− 4P−1
x1
α2

u E(U 2)[2P−1
x1

E(X1 X ′
1)− 1]
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= {[2P−1
x1

E(X1 X ′
1)− 1] − 2P−1

x1
α2

u E(U 2)}2 ≥ 0.

(i i i) We begin by showing that

Var(αx1Ux1)+ Cov(φuU,αuU )′ (A.1)

×[Var(φuU )+ Var(αx2Ux2)]−1Cov(φuU,αuU )− Var(αuU )

has the same sign as the expression 2P−1
x1

E(X1 X ′
1) − 1 − 2P−1

x1
α2

u E(U 2) from
�J R . First, clearly, (A.1) can be negative, zero, or positive (e.g., set dim(X21) = 1,
Var(αx1Ux1) = 1, and Var(αx2Ux2) = Var(φuU ) = 1

2 . Then (A.1) reduces to
1− 1

2 Var(αuU )with sign depending on Var(αuU )). Next, multiplying this expression
by Px1 ≡ E(εx1.x2ε

′
x1.x2

) preserves its sign and we obtain

2E(X1 X ′
1)− Px1 − 2α2

u E(U 2)

= 2E(X1 X ′
1)− [E(X1 X ′

1)− E(X1 X ′
2)E(X2 X ′

2)
−1 E(X2 X ′

1)] − 2α2
u E(U 2)

= E(X1 X ′
1)+ E(X1 X ′

2)E(X2 X ′
2)

−1 E(X2 X ′
1)− 2α2

u E(U 2).

But we have

E(X1 X ′
1) = α2

u E(U 2)+ αx1 E(Ux1U ′
x1
)α′

x1
and

E(X2 X ′
2) =

[
φu E(UU ′)φ′

u + αx2 E(Ux2U ′
x2
)α′

x2
, 0

0, 1

]
.

Then using [αu E(U 2)φ′
u, 0 ] = E(X1 X ′

2) gives

E(X1 X ′
1)+ E(X1 X ′

2)E(X2 X ′
2)

−1 E(X2 X ′
1)− 2α2

u E(U2)

= α2
u E(U2)+ αx1 E(Ux1U ′

x1
)α′

x1
+ [

αu E(U2)φ′
u , 0

]

×
[
φu E(UU ′)φ′

u + αx2 E(Ux2U ′
x2
)α′

x2
, 0

0, 1

]−1 [
φu E(U2)αu

0

]
− 2α2

u E(U2)

= Var(αx1Ux1)+ Cov(φuU,αuU )′[Var(φuU )+ Var(αx2Ux2 )]−1

× Cov(φuU,αuU )− Var(αuU ).

(i i i.a) Now, recall from (i i.c) that

�J R = {[2P−1
x1

E(X1 X ′
1)− 1] − 2P−1

x1
α2

u E(U 2)}2.
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Suppose that (3) is negative, then

√
�J R =

∣∣∣2P−1
x1

E(X1 X ′
1)− 1 − 2P−1

x1
α2

u E(U 2)

∣∣∣
= −2P−1

x1
E(X1 X ′

1)+ 1 + 2P−1
x1
α2

u E(U 2),

and we have

σ†
J R ≡ E(X1 X ′

1)+ 1

2
Px1(−1 − √

�J R)

= 2E(X1 X ′
1)− Px1 − α2

u E(U 2)

= Var(αx1Ux1)+ Cov(φuU,αuU )′[Var(φuU )+ Var(αx2Ux2)]−1

× Cov(φuU,αuU )

< α2
u E(U 2) (and ≥ 0),

and

σ∗
J R ≡ E(X1 X ′

1)+ 1

2
Px1(−1 + √

�J R) = α2
u E(U 2).

(i i i.b) Suppose instead that (A.1) is nonnegative then

√
�J R =

∣∣∣2P−1
x1

E(X1 X ′
1)− 1 − 2P−1

x1
α2

u E(U 2)

∣∣∣
= 2P−1

x1
E(X1 X ′

1)− 1 − 2P−1
x1
α2

u E(U 2),

and we have
σ†

J R = α2
u E(U 2),

and

σ∗
J R = Var(αx1Ux1)+ Cov(φuU,αuU )′[Var(φuU )

+ Var(αx2Ux2)]−1Cov(φuU,αuU )

≥ α2
u E(U 2) ≥ 0.

Thus, α2
u E(U 2) is partially identified in the set {σ†

J R,σ
∗
J R}. It follows from the

moment
E(Y X ′) = βo E(X X ′)+ ιp[α2

u E(U 2), E(X1 X ′
2)],

and the nonsingularity of E(X X ′) that βo is partially identified in the set {β∗
J R,

β†
J R}. �
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Proof of Theorem 6.1 (i) We have that

E(Z Z ′) =
[
α2

u E(U 2), 0
0, 1

]
,

E(X Z ′) = E

( [X ′
1, X ′

21]′Z ′
Z ′

)
=

[
γo E(Z Z ′)+ [

ηu E(U 2)α′
u 0

]
[0, 1]

]
,

E(X X ′) =
[
γo E(Z X ′)+ ηu E(U X ′)+ αx E(Ux X ′), E(X)

E(X ′), 1

]

=
⎡
⎣ γo E(Z X ′)+ [[ηu E(U 2)α′

u, 0]γ′
o

+ηu E(U 2)η′
u, 0] + [

αx E(UxUx )
′α′

x , 0
]
,
[

0′, 1′ ]′[
0, 1

]
, 1

⎤
⎦ ,

E(Y X ′) = βo E(X X ′)+ αu E(U X ′) = βo E(X X ′)
+ [[α2

u E(U 2), 0]γ′
1o + α2

u E(U 2), [[α2
u E(U 2), 0]γ′

2o + αu E(U 2)φ′
u, 0]],

E(Y Z ′) = βo E(X Z ′)+ [α2
u E(U 2), 0],

Thus, these moments exist and are finite since they are functions of existing finite
coefficients and moments.
(i i.a) Given that Pz1 ≡ E(εz1.z2 Z ′

1) = E(Z1 Z ′
1) is nonsingular and Z2 = 1, we

have that

E(Z Z ′)−1 =
[

P−1
z1
, −π′

z2.z1
P−1

z2−π′
z1.z2

P−1
z1
, P−1

z2

]
=

[
E(Z1 Z ′

1)
−1 0

0 1

]

is nonsingular and thus πx .z and E(εx1.z X ′
2) = E(X1 X ′

2)− πx1.z E(Z X ′
2) exist and

are finite. With E(X X ′) also nonsingular, πz.x exists and is finite. Also,

E(εy.x Z ′
1) = E(Y ε′z1.x )

= βo E(Xε′z1.x )+ αu E(Uε′z1.x )+ αy E(Uyε
′
z1.x )

= αu E(Uε′z1.x ).

Using E(X1 X ′
2) = γ1o E(Z X ′

2)+ αu E(U X ′
2) then gives

E(εy.x Z ′
1) = αu E(Uε′z1.x ) = αu E(U Z ′

1)− αu E(U X ′)E(X X ′)−1 E(X Z ′
1)

= α2
u E(U 2)− [[α2

u E(U 2), 0]γ′
1o

+ α2
u E(U 2), E(X1 X ′

2)− γ1o E(Z X ′
2)]π′

z1.x

exists and is finite.
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(i i.b)We have that�PC exists and is finite as it is a function of finite coefficients
and moments. Next, we verify that �PC ≥ 0. We begin by expanding the term
E(εy.x Z ′

1) in �PC . For this, we substitute for γ1o with

γ1o = πx1.z − [α2
u E(U 2), 0 ]E(Z Z ′)−1,

in −αu E(U X ′)π′
z.x which gives

− αu E(U X ′)π′
z.x

= −[[α2
u E(U2), 0]γ′

1o + α2
u E(U2), E(X1 X ′

2)− γ1o E(Z X ′
2)]π′

z.x

= −[α2
u E(U2), 0]π′

x1.zπ
′
z.x1|x2

+ [α2
u E(U2), 0]E(Z Z ′)−1[α2

u E(U2), 0]′π′
z.x1|x2

− α2
u E(U2)π′

z.x1|x2
− E(εx1.z X ′

2)π
′
z.x2|x1

− [α2
u E(U2), 0]π′

x2.zπ
′
z.x2|x1

= −α2
u E(U2)π′

x1.z1|z2
π′

z.x1|x2
+ α4

u E(U2)2 P−1
z1
π′

z.x1|x2
− α2

u E(U2)π′
z.x1|x2

− E(εx1.z X ′
2)π

′
z.x2|x1

− α2
u E(U2)π′

x2.z1|z2
π′

z.x2|x1
,

where we make use of [α2
u E(U 2), 0 ]E(Z Z ′)−1[α2

u E(U 2), 0 ]′ = α4
u E(U 2)2 P−1

z1
.

Thus,

E(εy.x Z ′
1) = α2

u E(U2)− αu E(U X ′)π′
z1.x

= α2
u E(U2)− α2

u E(U2)π′
x1.z1|z2

π′
z1.x1|x2

+ α4
u E(U2)2 P−1

z1
π′

z1.x1|x2

− α2
u E(U2)π′

z1.x1|x2
− E(εx1.z X ′

2)π
′
z1.x2|x1

− α2
u E(U2)π′

x2.z1|z2
π′

z1.x2|x1

= α2
u E(U2)− α2

u E(U2)π′
x .z1|z2

π′
z1.x + α4

u E(U2)2 P−1
z1
π′

z1.x1|x2

− α2
u E(U2)π′

z1.x1|x2
− E(εx1.z X ′

2)π
′
z1.x2|x1

.

Then

�PC ≡ [−π′
x .z1|z2

π′
z1.x − π′

z1.x1|x2
+ 1]2 + 4P−1

z1
π′

z1.x1|x2
[E(εy.x Z ′

1)

+ E(εx1.z X ′
2) π

′
z1.x2|x1

]
= [−π′

x .z1|z2
π′

z1.x − π′
z1.x1|x2

+ 1]2

+ 4P−1
z1
π′

z1.x1|x2
[α2

u E(U 2)− α2
u E(U 2)π′

x .z1|z2
π′

z1.x

+ α4
u E(U 2)2 P−1

z1
π′

z1.x1|x2
− α2

u E(U 2)π′
z1.x1|x2

− E(εx1.z X ′
2)π

′
z1.x2|x1

+ E(εx1.z X ′
2)π

′
z1.x2|x1

]
= {[π′

x .z1|z2
π′

z1.x + π′
z1.x1|x2

− 1] − 2P−1
z1
π′

z1.x1|x2
α2

u E(U 2)}2 ≥ 0.

(i i i) Suppose that

π′
x .z1|z2

π′
z1.x + π′

z1.x1|x2
− 1 − 2P−1

z1
π′

z1.x1|x2
α2

u E(U 2) < 0.
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Then

√
�PC =

∣∣∣π′
x .z1|z2

π′
z1.x + π′

z1.x1|x2
− 1 − 2P−1

z1
π′

z1.x1|x2
α2

u E(U 2)

∣∣∣
= −π′

x .z1|z2
π′

z1.x − π′
z1.x1|x2

+ 1 + 2P−1
z1
π′

z1.x1|x2
α2

u E(U 2),

and thus

σ†
PC ≡ π′

x .z1|z2
π′

z1.x + π′
z1.x1|x2

− 1 − √
�PC

2P−1
z1 π

′
z1.x1|x2

= π′
x .zπ

′
z.x + π′

z.x1|x2
− 1 − P−1

z1
π′

z1.x1|x2
α2

u E(U 2)

P−1
z1 π

′
z1.x1|x2

<
P−1

z1
π′

z1.x1|x2
α2

u E(U 2)

P−1
z1 π

′
z1.x1|x2

= α2
u E(U 2),

and

σ∗
PC ≡ π′

x .z1|z2
π′

z1.x + π′
z1.x1|x2

− 1 + √
�PC

2P−1
z1 π

′
z1.x1|x2

= α2
u E(U 2).

Now, with E(Z Z ′) nonsingular, we have

E(X1 Z ′) = γ1o E(Z Z ′)+ [α2
u E(U 2), 0 ], or

γ1o = πx1.z − [σ∗
PC , 0 ]E(Z Z ′)−1.

Further, with E(X X ′) nonsingular, we have

E(Y X ′) = βo E(X X ′)+ αu E(U X ′), or

βo = {E(Y X ′)− [[α2
u E(U 2), 0]γ′

1o

+ α2
u E(U 2), E(X1 X ′

2)− γ1o E(Z X ′
2)]}E(X X ′)−1.

Substituting for γ1o gives

[
α2

u E(U2), 0
]
γ′

1o + α2
u E(U2)

= [
α2

u E(U2), 0
]
π′

x1.z − [
α2

u E(U2), 0
]

E(Z Z ′)−1 [
α2

u E(U2), 0
]′ + α2

u E(U2)

= [
α2

u E(U2), 0
]
π′

x1.z − α4
u E(U2)2 P−1

z1
+ α2

u E(U2)

= α2
u E(U2) (π′

x1.z1|z2
− α2

u E(U2) P−1
z1

+ 1),

and
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E(X1 X ′
2)− γ1o E(Z X ′

2)

= E(X1 X ′
2)− [πx1.z − [α2

u E(U 2), 0 ]E(Z Z ′)−1]E(Z X ′
2)

= E(εx1.z X ′
2)+ [α2

u E(U 2), 0 ]π′
x2.z = E(εx1.z X ′

2)+ α2
u E(U 2) π′

x2.z1|z2
,

so that

βo = πy.x − [σ∗
PC (π

′
x1.z1|z2

− σ∗
PC P−1

z1
+ 1), E(εx1.z X ′

2)

+ σ∗
PC π′

x2.z1|z2
]E(X X ′)−1.

Also, we have

E(X1 X ′
21) = γ1o E(Z X ′

21)+ αu E(U X ′
21)

= γ1o E(Z X ′
21)+ αu E(U Z ′)γ′

2o + αu E(U 2)φ′
u

= γ1o E(Z X ′
21)+ [α2

u E(U 2), 0 ]γ′
2o + αu E(U 2)φ′

u and

E(X21 Z ′) = γ2o E(Z Z ′)+ [φu E(U 2)α′
u, 0 ].

Substituting for
γ2o = πx21.z − [φu E(U 2)α′

u, 0 ]E(Z Z ′)−1

in the expression for E(X1 X ′
21) gives

E(X1 X ′
21) = γ1o E(Z X ′

21)+ [α2
u E(U 2), 0 ]π′

x21.z

− [α2
u E(U 2), 0 ]E(Z Z ′)−1[φu E(U 2)α′

u, 0 ]′ + αu E(U 2)φ′
u

= γ1o E(Z X ′
21)+ [α2

u E(U 2), 0 ]π′
x21.z

− α2
u E(U 2)P−1

z1
αu E(U 2)φ′

u + αu E(U 2)φ′
u .

Further substituting for γ1o with [E(X1 Z ′)− [α2
u E(U 2), 0 ]]E(Z Z ′)−1 gives

E(X1 X ′
21)− [E(X1 Z ′)− [α2

u E(U2), 0 ]]E(Z Z ′)−1 E(Z X ′
21)− [α2

u E(U2), 0 ]π′
x21.z

= −α2
u E(U2)P−1

z1
αu E(U2)φ′

u + αu E(U2)φ′
u ,

or
E(X1ε

′
x21.z) = −α2

u E(U 2)P−1
z1
αu E(U 2)φ′

u + αu E(U 2)φ′
u .

Substituting for

φu E(U 2)α′
u = E(X21ε

′
x1.z)[1 − α2

u E(U 2)P−1
z1

]−1

in the expression for γ2o gives
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γ2o = πx21.z − [φu E(U 2)α′
u, 0 ]E(Z Z ′)−1

= πx21.z − [ E(X21ε
′
x1.z)[1 − σ∗

PC P−1
z1

]−1, 0 ]E(Z Z ′)−1.

(i i i.b) Suppose instead that

π′
x .z1|z2

π′
z1.x + π′

z1.x1|x2
− 1 − 2P−1

z1
π′

z1.x1|x2
α2

u E(U 2) ≥ 0.

Then

√
�PC =

∣∣∣π′
x .z1|z2

π′
z1.x + π′

z1.x1|x2
− 1 − 2P−1

z1
π′

z1.x1|x2
α2

u E(U 2)

∣∣∣
= π′

x .z1|z2
π′

z1.x + π′
z1.x1|x2

− 1 − 2P−1
z1
π′

z1.x1|x2
α2

u E(U 2),

and thus
σ†

PC = α2
u E(U 2),

and

σ∗
PC = π′

x .z1|z2
π′

z1.x + π′
z1.x1|x2

− 1 − P−1
z1
π′

z1.x1|x2
α2

u E(U 2)

P−1
z1 π

′
z1.x1|x2

≥ P−1
z1
π′

z1.x1|x2
α2

u E(U 2)

P−1
z1 π

′
z1.x1|x2

= α2
u E(U 2).

It follows that

γ1o = γ†
1 ≡ πx1.z − [σ†

PC , 0 ]E(Z Z ′)−1,

γ2o = γ†
2 ≡ πx2.z − [ E(X21ε

′
x1.z)[1 − σ†

PC P−1
z1

]−1, 0 ]E(Z Z ′)−1, and

βo = β† ≡ πy.x − [σ†
PC (π

′
x1.z1|z2

− σ†
PC P−1

z1
+ 1), E(εx1.z X ′

2)

+ σ†
PC π′

x2.z1|z2
]E(X X ′)−1.�

Appendix B: Constructive Identification

B.1 Equiconfounded Cause and Joint Responses: Constructive
Identification

We present an argument to constructively demonstrate how the expression for �J R

and the identification of α2
u E(U 2), and thus βo, in the proof of Theorem 5.1 obtain.

Recall that in S3
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E(Y X ′) = βo E(X X ′)+ ιp[α2
u E(U 2), [αu E(U 2)φ′

u, 0 ] ].

We have that αu E(U 2)φ′
u = E(X1 X ′

2). It remains to identify α2
u E(U 2). For this,

recall that the proof of Theorem 5.1 gives

E(Y Y ′) = E(Y X ′)E(X X ′)−1 E(XY ′)− αuιp E(U X ′)E(X X ′)−1αu E(XU )ι′p
+ ιpι

′
pα

2
u E(U 2)+ αy E(UyU ′

y)α
′
y,

which we rewrite as

ιpι
′
pα

2
u E(U 2)− αuιp E(U X ′)E(X X ′)−1 E(XU )ι′pα′

u (B.1)

− E(εy.x Y ′)+ αy E(UyU ′
y)α

′
y = 0.

From the proof of Theorem 5.1, we also have

αu E(U X ′)E(X X ′)−1 E(XU )α′
u

= α4
u E(U 2)2 P−1

x1
− E(X1 X ′

2)π
′
x1.x2

P−1
x1
α2

u E(U 2)

− α2
u E(U 2)π′

x2.x1
P−1

x2
E(X2 X ′

1)+ E(X1 X ′
2)P

−1
x2

E(X2 X ′
1).

Thus, collecting the off-diagonal terms in Eq. (B.1) gives:

α2
u E(U 2)− α4

u E(U 2)2 P−1
x1

+ E(X1 X ′
2)π

′
x1.x2

P−1
x1
α2

u E(U 2)

+ α2
u E(U 2)π′

x2.x1
P−1

x2
E(X2 X ′

1)− E(X1 X ′
2)P

−1
x2

E(X2 X ′
1)− E(εy1.x Y ′

2) = 0.

This is a quadratic equation in α2
u E(U 2) of the form

aα4
u E(U 2)2 + bα2

u E(U 2)+ c = 0,

with

a = P−1
x1
,

b = −[1 + E(X1 X ′
2)π

′
x1.x2

P−1
x1

+ π′
x2.x1

P−1
x2

E(X2 X ′
1)]

= −[1 + E(X1 X ′
2)π

′
x1.x2

P−1
x1

+ P−1
x1
πx1.x2 E(X2 X ′

1)]
= −[1 + 2P−1

x1
πx1.x2 E(X2 X ′

1)]
= −[1 + 2P−1

x1
[E(X1 X ′

1)− Px1 ]] = −[2P−1
x1

E(X1 X ′
1)− 1], and

c = E(X1 X ′
2)P

−1
x2

E(X2 X ′
1)+ E(εy1.x Y ′

2),

where we make use of P−1
x1
πx1.x2 = π′

x2.x1
P−1

x2
and Px1 = E(X1 X ′

1) − πx1.x2

E(X2 X ′
1). The discriminant of this quadratic equation gives the expression for

�J R = b2 − 4ac. Theorem 5.1 (i i.c) gives that �J R ≥ 0 and (i i i) gives the
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two roots σ†
PC and σ∗

PC of this quadratic equation

−b ± √
�J R

2a
= 1

2
Px1

{
2P−1

x1
E(X1 X ′

1)− 1 ± √
�J R

}

= E(X1 X ′
1)+ 1

2
Px1

(
−1 ± √

�J R

)
,

and shows that these are nonnegative. One of these roots identifiesα2
u E(U 2), depend-

ing on the sign of

Var(α′
x1

Ux1)+ Cov(φuU,αuU )′[Var(φuU )

+ Var(αx2Ux2)]−1Cov(φuU,αuU )− Var(αuU ).

βo is then identified from the moment E(Y X ′) = βo E(X X ′) + ιp[α2
u E(U 2),

E(X1 X ′
2)].

B.2 Equiconfounding in Triangular Structures: Constructive
Identification

We present an argument to constructively demonstrate how the expression for �PC

and the identification of α2
u E(U 2) in the proof of Theorem 6.1 obtain. From the

proof of Theorem 6.1, we have that

βo = {E(Y X ′)− αu E(U X ′)}E(X X ′)−1 = πy.x − αu E(U X ′)E(X X ′)−1.

Substituting for βo in the expression for E(Y Z ′) gives

E(Y Z ′) = βo E(X Z ′)+ [α2
u E(U 2), 0 ],

= πy.x E(X Z ′)− αu E(U X ′)E(X X ′)−1 E(X Z ′)+ [α2
u E(U 2), 0 ], or

− E(εy.x Z ′)− αu E(U X ′)π′
z.x + [α2

u E(U 2), 0 ] = 0.

From the proof of Theorem 6.1, we have

− αu E(U X ′)π′
z.x

= −α2
u E(U 2)π′

x1.z1|z2
π′

z.x1|x2
+ α4

u E(U 2)2 P−1
z1
π′

z.x1|x2
− α2

u E(U 2)π′
z.x1|x2

− E(εx1.z X ′
2)π

′
z.x2|x1

− α2
u E(U 2)π′

x2.z1|z2
π′

z.x2|x1
.

Substituting for −αu E(U X ′)π′
z.x in the above equality then gives
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− E(εy.x Z ′)− α2
u E(U 2)π′

x1.z1|z2
π′

z.x1|x2
+ α4

u E(U 2)2 P−1
z1
π′

z.x1|x2

− α2
u E(U 2)π′

z.x1|x2
− E(εx1.z X ′

2)π
′
z.x2|x1

− α2
u E(U 2)π′

x2.z1|z2
π′

z.x2|x1

+ [α2
u E(U 2), 0 ] = 0.

Collecting the first elements of this vector equality gives

− E(εy.x Z ′
1)− α2

u E(U 2)π′
x1.z1|z2

π′
z1.x1|x2

+ α4
u E(U 2)2 P−1

z1
π′

z1.x1|x2

− α2
u E(U 2)π′

z1.x1|x2
− E(εx1.z X ′

2)π
′
z1.x2|x1

− α2
u E(U 2)π′

x2.z1|z2
π′

z1.x2|x1

+ α2
u E(U 2) = 0.

This is a quadratic equation in α2
u E(U 2) of the from

aα4
u E(U 2)2 + bα2

u E(U 2)+ c = 0,

with

a = P−1
z1
π′

z1.x1|x2
,

b = −π′
x .z1|z2

π′
z1.x − π′

z1.x1|x2
+ 1, and

c = −E(εy.x Z ′
1)− E(εx1.z X ′

2)π
′
z1.x2|x1

.

The discriminant of this equation gives the expression for �PC = b2 − 4ac in
Theorem 6.1 where it is shown that�PC ≥ 0 and that the solutions to this quadratic
equation are σ†

PC and σ∗
PC :

−b ± √
�PC

2a
= π′

x .z1|z2
π′

z1.x + π′
z1.x1|x2

− 1 ± √
�PC

2P−1
z1 π

′
z1.x1|x2

.

This then enables the identification of (βo, γo) as shown in the proof of Theorem 6.1.
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Optimizing Robust Conditional Moment Tests:
An Estimating Function Approach

Yi-Ting Chen and Chung-Ming Kuan

Abstract Robust conditional moment (RCM) tests for partial specifications are
derived without a full specification assumption. Yet, researchers usually claim the
optimality of these RCM tests by reinterpreting them as score tests under certain
full specifications. This argument is in fact incompatible with the rationale of RCM
tests. In this study, we consider a generalized RCM test based on the estimating func-
tion (EF) approach and explore a semi-parametric optimality criterion that does not
require full specifications. Specifically, we derive the upper bound of the noncentral-
ity parameter of the generalized RCM test and propose a method to optimize RCM
tests so as to achieve this upper bound. The optimized RCM test is associated with
the optimal EF method, and it is useful for improving the asymptotic local power of
existing RCM tests. The proposed method thus permits researchers to pursue opti-
mality without sacrificing robustness in estimating and testing partial specifications.
We illustrate our method using various partial specifications and demonstrate the
improved power property of the optimized tests by simulations.

Keywords Conditional mean-and-variance · Conditional quantile · Optimal
estimating function · Quasi-maximum likelihood method · Robust conditional
moment test · Semi-parametric optimality

1 Introduction

The correct specification of an econometric model can often be represented as a
set of conditional moment (CM) restrictions and tested by checking the implied
(finite-dimensional) unconditional moment restrictions. In the context of fully
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specified conditional distribution models, Newey (1985) and Tauchen (1985) intro-
duce a class of maximum-likelihood (ML)-based CM tests for static models; these
tests are extended to dynamic models by White (1987). Such tests can be interpreted
as Rao’s score tests (Lagrange multiplier tests) for some parameter restrictions of
conditional distribution models; see, e.g., White (1984, 1994), Chesher and Smith
(1997), and Bera and Bilias (2001). An ML-based CM test is thus parametrically
optimal against certain local alternatives if the conditional distribution is specified
correctly.

Instead of specifying a complete model for conditional distribution, it is also
common to postulate a partial specification, such as conditional mean, conditional
mean-and-variance, or conditional quantile models. In this context, the ML-based
CM tests need not be asymptotically valid because the underlying assumption of
conditional distribution is likely to be misspecified. This motivates researchers to
derive robust CM (RCM) tests without full specifications. For example, Wooldridge
(1990a) propose a generalized RCM test based on “generalized residuals.” This
generalized test is also the omitted variable test of Davidson and MacKinnon (1990,
1993, 2000) for conditional-mean models and is readily applied to other partial
specifications. RCM tests may also be obtained by replacing the ML method with
certain quasi-ML (QML) methods, e.g., Wooldridge (1991), Berkes et al. (2003),
Wong and Ling (2005), and Chen (2008).

Unlike test robustness, the optimality issue of RCM tests does not receive suffi-
cient attention in the literature. Researchers usually reinterpret RCM tests as some
ML-based CM tests (or score tests) and claim their parametric optimality. For exam-
ple, the RCM tests for conditional mean (and variance) specifications are also the
Gaussian ML-based CM tests under the conditional normality assumption and hence
are as optimal as the latter when the full normality specification is correct. It is there-
fore said that the robustness of RCM tests “is obtained without sacrificing asymptotic
efficiency” (Wooldridge 1990a). This optimality argument is, however, incompatible
with the rationale of RCM tests. While parametric optimality requires full specifi-
cations being correctly specified, RCM tests are robust because they are constructed
without full specifications. This suggests that the optimality of RCM tests should be
studied under a different criterion.

The aim of this chapter is to explore “semi-parametric” optimality for RCM tests.
We base our generalized RCM test on the estimating function (EF) approach, where
the EF involves a generalized residual vector and a set of instrument variables. This
generalized test encompasses many QML-based RCM tests for various partial spec-
ifications and is asymptotically equivalent to the test of Wooldridge (1990a). By
exploring the noncentrality parameter of this generalized test, we observe that the
parametric optimality of this test is crucially dependent on a generalized conditional
homoskedasticity and standardization (GCHS) restriction, which requires the condi-
tional covariance matrix of the generalized residual vector to be an identity matrix.
Given this restriction, a generalized test can be understood as a score test if the asso-
ciated EF is the same as the true score function. This motivates us to standardize the
generalized residual vector using the matrix square root of its conditional covariance
matrix for ensuring the GCHS restriction.
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This standardization leads us to a particular version of the generalized RCM test.
This test is parametrically optimal if its EF is the same as the true score function,
whether or not the original GCHS restriction is satisfied. More importantly, it is
semi-parametrically optimal in the sense that it achieves the upper bound of the non-
centrality parameter of the generalized test without assuming a full specification.
The associated EF is also Godambe (1960)-Durbin (1960)-optimal, in the sense that
it attains the lower bound of the asymptotic covariance matrix of a generalized esti-
mator for partial specifications; see, e.g., Godambe and Kale (1991), Vinod (1997),
Mittelhammer et al. (2000), Bera et al. (2006) and the references therein for more dis-
cussions on the optimal EF. By combining the optimal EF method with this optimized
test, we have an alternative approach to estimating and testing partial specifications
in a semi-parametrically optimal way.

This approach has a simple generalized least square (GLS) interpretation in the
linear regression context and depends on the conditional covariance matrix of the gen-
eralized residual vector. Since this matrix is typically unknown and needs to be esti-
mated or approximated in applications, this approach would be semi-parametrically
optimal if the conditional covariance matrix is consistently estimated; otherwise,
this approach is suboptimal but remains robust. Thus, this approach permits us to
pursue asymptotic efficiency without sacrificing robustness in estimating and testing
partial specifications. To illustrate its usefulness, we consider the conditional mean,
conditional mean-and-variance, and conditional quantile specifications. The GCHS
restriction in these examples implies different higher order CM restrictions. Many
existing RCM tests are likely to be suboptimal because they do not take into account
these restrictions. The proposed method is therefore useful for improving the asymp-
totic local power of these suboptimal tests. We also demonstrate the proposed method
in this respect using two Monte Carlo experiments.

The remainder of this chapter is organized as follows. In Sect. 2, we consider a
generalized RCM test built on the EF approach. In Sect. 3, we provide examples
of this generalized test in the conditional mean, mean-and-variance, and quantile
contexts. In Sect. 4, we derive the upper bound of the noncentrality parameter, pro-
pose the optimized test, and link this test to the optimal EF method. We illustrate
the applicability of the optimized test in Sect. 5, based on the examples in Sect. 3.
Section 6 reports the simulation results. We conclude the chapter in Sect. 7. The
Appendix summarizes some mathematical derivations.

2 A Generalized RCM Test

Let yt be a finite-dimensional vector of dependent variable(s) with the time or cross-
sectional index t , and X t be the information set available in explaining yt . Suppose
that we are interested in testing a partial specification of yt |Xt that has an r ×1 vector
of generalized residuals vt (θ) := vt (yt , xt ; θ) for some finite r ≥ dim(yt ), in which
xt denotes a vector of Xt -measurable explanatory variables, θ is a p × 1 parameter
vector in the compact set� ⊂ R

p. This partial specification is correctly specified if,
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and only if, the martingale difference condition,

Ho : E[vt (θo)|Xt ] = 0, (1)

is satisfied for some θo ∈ �. As in Wooldridge (1990a), we apply the concept of
generalized residual to unify various partial specifications; see also Cox and Snell
(1968), Gouriéroux et al. (1987), and Cameron and Trivedi (1998, Chap. 5). In certain
applications, we may also be interested in testing

H ′
o : (1) and vt (θo) is independent of Xt . (2)

The following discussion focuses on Ho, but the results also hold for H ′
o because the

former is weaker than the latter.
Let zt (θ) be a q × r matrix of Xt -measurable misspecification indicators which

may depend on the parameter vector θ , and Ct (θ) be an r × r Xt -measurable
weighting matrix that has a symmetric and positive-definite matrix square root
Ct (θ)

1/2 such that Ct (θ) = Ct (θ)
1/2Ct (θ)

1/2. Denote the standardized vectors
vs

t (θ) := Ct (θ)
1/2vt (θ) and zs

t (θ) := zt (θ)Ct (θ)
1/2. Under Ho, the q × 1 testing

function zs
t (θ)v

s
t (θ) must satisfy the martingale difference condition:

E[zs
t (θo)v

s
t (θo)|Xt ] = zs

t (θo)E[vs
t (θo)|Xt ] = 0, (3)

which implies the unconditional moment restriction:

E[zs
t (θo)v

s
t (θo)] = 0. (4)

Let T be the sample size, and {θT } be a sequence of parameters in � such that
limT →∞ θT = θo. A testing of Ho that checks the validity of (4) is expected to be
powerful against:

H1T : E[vt (θT )|Xt ] = zt (θT )
�δT −1/2, (5)

with δ a q×1 non-zero vector, because E[zs
t (θT )v

s
t (θT )|Xt ] = zs

t (θT )zs
t (θT )

�δT −1/2

under H1T . This implies that E[zs
t (θT )v

s
t (θT )] = E[zs

t (θT )zs
t (θT )

�]δT −1/2 is a q ×1
non-zero vector provided that E[zs

t (θT )zs
t (θT )

�] is positive definite.
To check the validity of (4), we need to first estimate θo using the information

implied by Ho. Let πt (θ) be a p × r matrix of Xt -measurable variables, and sup-
pose that the row vectors of πt (θ) and zt (θ) are linearly independent of each other.
In addition to (4), Ho also implies

E[πt (θo)vt (θo)] = 0. (6)

Using this information, we may estimate θo by the EF estimator θ̄T , which solves
the estimating equation:
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1

T

T∑
t=1

gt (θ) = 0, (7)

for some gt (θ) from a class of linearly unbiased EFs:

G := {gt (θ)|gt (θ) = πt (θ)vt (θ)}. (8)

In this class of EFs, g(θ) and hence θ̄T are determined by the choice of πt (θ); see,
e.g., Bera and Bilias (2002) for a survey. Clearly, θ̄T can also be interpreted as a
(just-identified) generalized-method-of-moments (GMM) estimator for θo.

Given the p × r matrix wt (θo) := (∇θ�E[vt (θo)|Xt ]
)� which is evaluated under

Ho, we denote wt (θ) by using θ in place of the role of θo in wt (θo). We also define
θ̂T as the solution to (7) with the choice of πt (θ) = −wt (θ)Ct (θ). Put differently,
θ̂T is a particular θ̄T with the EF:

gt (θ) = −wt (θ)Ct (θ)vt (θ) = −ws
t (θ)v

s
t (θ), (9)

where ws
t (θ) := wt (θ)Ct (θ)

1/2. Given this estimator, we can estimate E[zs
t (θo)

vs
t (θo)] using the empirical moment T −1 ∑T

t=1 zs
t (θ̂T )v

s
t (θ̂T ), and check (4) by eval-

uating the significance of this statistic. As will be discussed in Sect. 3, the estimator
θ̂T encompasses the QML estimators (QMLEs) for some important partial specifica-
tions, and this EF approach is useful for unifying a number of existing tests proposed
in different contexts.

Let �(θ) := E[(zs
wt (θ)v

s
t (θ)

) (
zs
wt (θ)v

s
t (θ)

)�] be the q × q covariance matrix
with

zs
wt (θ) := zs

t (θ)− E[zs
t (θ)w

s
t (θ)

�]E[ws
t (θ)w

s
t (θ)

�]−1ws
t (θ). (10)

The sample counterpart of �(θ) is

�̄T (θ) := 1

T

T∑
t=1

(
ẑs
wt
(θ)vs

t (θ)
) (

ẑs
wt
(θ)vs

t (θ)
)�
,

with

ẑs
wt
(θ) := zs

t (θ)−
[

T∑
t=1

zs
t (θ)w

s
t (θ)

�
] [

T∑
t=1

ws
t (θ)w

s
t (θ)

�
]−1

ws
t (θ). (11)

It is standard to derive the asymptotic distribution of T −1/2 ∑T
t=1 zs

t (θ̂T )v
s
t (θ̂T ) under

H1T . This derivation involves a set of intermediate results that are presented as the
“high-level” assumptions:

[A.1] The estimator θ̄T is consistent for θo and has the asymptotic linear represen-
tation:
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√
T (θ̄T − θo) = −E[πt (θo)wt (θo)

�]−1 1√
T

T∑
t=1

πt (θo)vt (θo)+ op(1). (12)

[A.2] The statistic T −1/2 ∑T
t=1 zs

t (θ̄T )v
s
t (θ̄T ) has the asymptotic expansion:

1√
T

T∑
t=1

zs
t (θ̄T )v

s
t (θ̄T ) = 1√

T

T∑
t=1

zs
t (θo)v

s
t (θo)

+ E[zs
t (θo)w

s
t (θo)

�]√T (θ̄T − θo)+ op(1). (13)

[A.3] The sequence {zs
wt
(θo)zs

t (θo)
�} is stationary and ergodic and {zs

wt
(θo)

(
vs

t (θo)

−zs
t (θo)

�δT −1/2
)} obeys a central limit theorem (CLT).

[A.4] The statistic �̄T (θ) is positive definite uniformly in T and θ and is uniformly
consistent for �(θ) over a neighborhood of θo.

These assumptions are quite standard for the first-order asymptotic analysis. Based
on the GMM interpretation of θ̄T , the consistency of θ̄T in [A.1] can be established
using the conventional GMM theory, e.g., Hall (2005, Theorem 3.1). It is also com-
mon to obtain the asymptotic expansion in (12) whenπt (θ)vt (θ) is a smooth function
of θ ; see, e.g., Newey and McFadden (1994, Sect. 3). Similarly, the asymptotic expan-
sion (13) in [A.2] can be obtained when zs

t (θ)v
s
t (θ) is a smooth function of θ , e.g.,

Wooldridge (1990a, pp. 40–42). In the Appendix, we provide a detailed discussion
about [A.1] and [A.2] and their underlying conditions. Note that the asymptotic
expansions in (12) and (13) may also hold when πt (θ)vt (θ) and zs

t (θ)v
s
t (θ) are

based on indicator functions of θ ; see Phillips (1991), Andrews (1994, Sect. 3.2),
and Newey and McFadden (1994, Sect. 7) for more discussions.

In [A.3], the stationarity and ergodicity of {zs
wt
(θo)zs

t (θo)
�} allow us to write

T −1 ∑T
t=1 zs

wt
(θo)zs

t (θo)
� = E[zs

wt
(θo)zs

t (θo)
�]+op(1)by the ergodic theorem when

the elements of zs
wt
(θo)zs

t (θo)
� have finite absolute moments. Meanwhile, the CLT

of {zs
wt
(θo)

(
vs

t (θo)− zs
t (θo)

�δT −1/2
)} is mainly due to the martingale difference

property E[zs
wt
(θo)

(
vs

t (θo)− zs
t (θo)

�δT −1/2
) |Xt ] = 0 under H1T ; see White (White

(1994), Theorem A.3.4) for a CLT for a double array of martingale difference and
the associated technical conditions. This CLT requires that �(θo) exists and has
finite elements. This implicitly assumes that the matrix E[ws

t (θo)w
s
t (θo)

�] must be
positive definite. In [A.4], the positive-definiteness condition is standard in defining
a chi-square test statistic. This condition also requires that

∑T
t=1w

s
t (θ)w

s
t (θ)

� is
uniformly positive definite. In addition, the uniform consistency of �̄T (θ) for �(θ)
holds when {ws

t (θ)w
s
t (θ)

�}, {zs
t (θ)w

s
t (θ)

�}, and {(zs
wt
(θ)vs

t (θ))(z
s
wt
(θ)vs

t (θ))
�} are

stationary and ergodic for each θ ∈ � and obey a uniform law of larger numbers
(ULLN); see, e.g., White (1994, Theorem A.2.2).

Given θ̄T = θ̂T , we can use (12), with the choice of πt (θ) = −wt (θ)Ct (θ), and
(13) to show that
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1√
T

T∑
t=1

zs
t (θ̂T )v

s
t (θ̂T ) = 1√

T

T∑
t=1

zs
wt
(θo)v

s
t (θo)+ op(1)

= 1√
T

T∑
t=1

zs
wt
(θo)

(
vs

t (θo)− zs
t (θo)

�δT −1/2
)

+
[

1

T

T∑
t=1

zs
wt
(θo)z

s
t (θo)

�
]
δ + op(1). (14)

By [A.3] and the fact that E[zs
wt
(θo)w

s
t (θo)

�] = 0, we then have under H1T that

1√
T

T∑
t=1

zs
t (θ̂T )v

s
t (θ̂T )

d→ N
(
E[zs

wt
(θo)z

s
wt
(θo)

�]δ,�(θo)
)
. (15)

Denote the r × r conditional covariance matrices:

�t (θo) := E[vt (θo)vt (θo)
�|Xt ] (16)

and
�s

t (θo) := E[vs
t (θo)v

s
t (θo)

�|Xt ] = Ct (θo)
1/2�t (θo)Ct (θo)

1/2. (17)

We now define the generalized RCM test as

MT =
[

T∑
t=1

zs
t (θ̂T )v

s
t (θ̂T )

]� [
T∑

t=1

(ẑs
wt
(θ̂T )v

s
t (θ̂T ))(ẑ

s
wt
(θ̂T )v

s
t (θ̂T ))

�
]−1

×
[

T∑
t=1

zs
t (θ̂T )v

s
t (θ̂T )

]
, (18)

which will be referred to as the M test. In the light of (15), we can estimate �(θo)

by �̄T (θ̂T ) and obtain the following result.

Proposition 1 Given [A.1]–[A.4],

MT
d→

{
χ2(q), under Ho,

χ2(q; ν), under H1T ,

with the noncentrality parameter:

ν := δ�
(
E[zs

wt
(θo)z

s
wt
(θo)

�]E[zs
wt
(θo)�

s
t (θo)z

s
wt
(θo)]−1

E[zs
wt
(θo)z

s
wt
(θo)

�]
)
δ.

(19)
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The M test defines a class of RCM tests that, with suitable vs
t (θ)’s (and zs

t (θ)’s),
are readily applied to check various partial specifications. The M test is robust to
the unknown conditional distribution of yt |Xt because the martingale difference
property of the moment function zs

t (θ)v
s
t (θ) and the EF in (9) under Ho, as well

as the consistency of �̄T (θ̂T ) for �(θo), does not require a full specification. It is
worth emphasizing that the asymptotic local power of the M test increases in the
noncentrality parameter v, which depends on the choice of Ct (θ). We will explore
this issue again in Sect. 4.

In some applications, we need to extend zt (θ) to admit a nuisance parameter
vector ς and will write zt (θ, ς); see Sects. 4.1 and 6 for examples. Let ς̄T be a
T 1/2-consistent estimator for some ςo in the parameter space of ς . As discussed
in Wooldridge (1990a), the asymptotic validity of an RCM test is not affected if
we replace zt (θ̄T ) with zt (θ̄T , ς̄T ), because the estimation effect generated by ς̄T is
asymptotically negligible. For the same reason, we can use zt (θ̂T , ς̄T ) in place of the
role of zt (θ̂T ) in the M test without affecting its asymptotic validity.

The M test is asymptotically equivalent to Wooldridge (1990a) test:

WT : =
[

T∑
t=1

ẑs
wt
(θ̄T )v

s
t (θ̄T )

]� [
T∑

t=1

(ẑs
wt
(θ̄T )v

s
t (θ̄T ))(ẑ

s
wt
(θ̄T )v

s
t (θ̄T ))

�
]−1

×
[

T∑
t=1

ẑs
wt
(θ̄T )v

s
t (θ̄T )

]
, (20)

which can be computed as T R2, where R2 is the uncentered coefficient of deter-
mination from the artificial regression of 1 on ẑs

wt
(θ̄T )v

s
t (θ̄T ); see also Davidson

and MacKinnon (1985) for a conditional mean example. Compared with the M test,
WT uses ẑs

wt
(θ̄T ) in place of the role of zs

t (θ̄T ) in (13). This replacement is in spirit
similar to the transformation in the C(α) test of Neyman (1959). While the C(α)
test is designed for a full specification, WT is for partial specifications; see Bera and
Bilias (2001) for more discussion about the C(α) test. Note that by the restriction:
E[zs

wt
(θo)w

s
t (θo)

�] = 0, the estimation effect in (13) can be eliminated so that

1√
T

T∑
t=1

ẑs
wt
(θ̄T )v

s
t (θ̄T ) = 1√

T

T∑
t=1

zs
wt
(θo)v

s
t (θo)+ op(1). (21)

Observe that the right-hand side of (21) is the same as the right-hand side of the
first equality of (14). It follows that WT is asymptotically equivalent to MT ; clearly,
WT would be the same as MT when θ̄T = θ̂T . Moreover, WT can be presented as a
(conditional-heteroskedasticity-)robust Wald test statistic for checking the parameter
restriction γ = 0q×1 of the artificial regression:

vs
t (θ̄T ) = ws

t (θ̄T )
�β + zs

t (θ̄T )
�γ + error term, (22)
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with β a p × 1 parameter vector. Thus, we can also interpret WT (or MT ) as an
omitted variable test; see Davidson and MacKinnon (1990, 1993, 2000), Basawa
(1991), MacKinnon (1992), Cameron and Trivedi (1998, 2005), and Godfrey and
Orme (2001, Sects. 3.2 and 3.3).

Although the M test defines a wide class of RCM tests, it does not encompass
nonparametric tests, score tests, and model selection tests. While the M test is based
on a finite-dimensional moment restriction of Ho (or H ′

o), the nonparametric test
is for an infinite-dimensional moment restriction of the same hypothesis; see, e.g.,
Bierens (1982, 1994). An advantage of the nonparametric test over the M test is
the consistency of testing Ho against all possible misspecifications in large sam-
ples. Nonetheless, the M test can be made powerful against specific misspecification
by choosing a suitable zt (θ); this advantage is especially important for refining a
misspecified model. Compared with the M test, the score test also checks a finite-
dimensional moment restriction, but it is developed from a conditional distribution
assumption. The score test would be parametrically optimal or efficient (to be dis-
cussed in Sect. 4.1) if this assumption is true. However, the score test need not be
optimal for partial specifications. The robustness to the unknown conditional distri-
bution is an important advantage of the M test relative to the score test. The model
selection test could also be based on a finite-dimensional moment restriction, but it
focuses on the relative performance of models and does not deal with model cor-
rectness; see, e.g., Vuong (1989). Thus, the model selection test and the M test have
different usages in empirical applications.

3 Examples: RCM Tests

In this section, we discuss a number of existing CM tests with dim(yt ) = 1, provide
the practical forms of vt (θ), wt (θ), zt (θ), and Ct (θ) in the conditional mean, mean-
and-variance, and quantile contexts, and demonstrate the general applicability of the
M test in generating RCM tests.

3.1 Conditional-Mean Context

In the conditional-mean context, the partial specification of interest is the regression:

yt = μt (θ)+ ut , (23)

where μt (θ) is a Xt -measurable conditional mean specification for yt |Xt and a
smooth function of θ , and ut = ut (θ) denotes the error term. This model is cor-
rectly specified for E[yt |Xt ] under Ho with vt (θ) = ut (θ). This vt (θ) implies that
wt (θ) = −∇θμt (θ).

In the literature, there exist a variety of CM tests that check model (23) in
different power directions by examining condition (4) withvt (θ) = ut (θ), Ct (θ) = 1,
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and various zt (θ)’s. Examples include the tests of Breusch (1978), Godfrey (1978),
and Dezhbakhsh (1990) that choose zt (θ) = (ut−1(θ), . . . , ut−m(θ))

� for testing a
linear regression against the remaining serial correlation. Similar to Ramsey (1969)
regression specification error test (RESET), the tests of Keenan (1985), Tsay (1986),
Luukkonen et al. (1988), Lee et al. (1993), and Eitrheim and Teräsvirta (1996) check
model (23) against the remaining nonlinearity by choosing some nonlinear zt (θ)’s.
The non-nested tests of Davidson and MacKinnon (1981) and Fisher and McAleer
(1981) check model (23) against a competing model by setting zt (θ, ς) according
to the difference between the non-nested specifications, where θ and ς are respec-
tively, the parameter vectors of the model being tested and the alternative model.
These existing tests are often presented as score tests under the conditional normal-
ity assumption: ut (θo)|Xt ∼ N (0, σ 2

u ), with σ 2
u := E[ut (θo)

2].
By applying the M test in (18) to vt (θ) = ut (θ),wt (θ) = −∇θμt (θ), Ct (θ) = 1,

and the aforementioned zt (θ)’s, we can easily make these existing tests free of the
conditional normality assumption or the conditional homoskedasticity assumption:
σ 2

ut
= σ 2

u , where σ 2
ut

:= E[ut (θo)
2|Xt ]. In this case, θ̂T is the least square (LS)

estimator for θo because the EF in (9) is

gt (θ) = ∇θμt (θ)ut (θ).

The resulting RCM tests are asymptotically equivalent to the robust conditional mean
tests in Wooldridge (1990b) that are obtained by Wooldridge (1990a) approach.

3.2 Conditional Mean-and-Variance Context

In the conditional mean-and-variance context, the partial specification is a location-
scale model:

yt = μt (θ)+ ht (θ)
1/2εt , (24)

where ht (θ) is a Xt -measurable conditional variance specification for yt |Xt and
a smooth function of θ , and εt = εt (θ) represents the standardized error with
zero mean and unit variance. This model extends (23) by specifying the regres-
sion error as ut = ht (θ)

1/2εt , and it is correctly specified for E[yt |Xt ] and
var[yt |Xt ] under Ho with vt (θ) = (εt (θ), εt (θ)

2 − 1)�. It is also easy to see that
wt (θ) = − (∇θμt (θ)ht (θ)

−1/2,∇θht (θ)ht (θ)
−1

)�
.

Given the specification μt (θ), there exist numerous CM tests that check the
conditional variance specification of model (24) by examining condition (4) with
vt (θ) = εt (θ)

2−1, Ct (θ) = 1, and various zt (θ)’s. Examples include the conditional
heteroskedasticity tests of Breusch and Pagan (1979), White (1980), Engle (1982b),
and McLeod and Li (1983) for the conditional-homoskedasticity model: ht (θo) = σ 2

u .
In the generalized autoregressive conditional heteroskedasticity (GARCH) literature,
examples also include the modified McLeod-Li test proposed by Li and Mak (1994)
that chooses zt (θ) = (εt−1(θ)

2−1, . . . , εt−m(θ)
2−1)� for checking a GARCH-type

ht (θ) against remaining volatility clustering, the news impact curve test of Engle and
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Ng (1993) that checks a GARCH-type ht (θ) against remaining volatility asymmetry
by setting zt (θ) = I (εt−1(θ) < 0), with the indicator function I (εt−1(θ) < 0) = 1
if εt−1(θ) < 0 and otherwise zero, and the tests of Lundbergh and Teräsvirta (2002).
Similar to the tests in Sect. 3.1, these tests are often presented as score tests by adding
the conditional normality assumption: εt (θo)|Xt ∼ N (0, 1) to model (24).

We can also remove the conditional normality assumption and estimate θo using
the Gaussian QML method. This method shares the same log-likelihood function
T −1 ∑T

t=1 ln ft (θ) as the Gaussian ML method, with the conditional normal proba-
bility density function (PDF):

ft (θ) = 1√
2πht (θ)1/2

exp

(
− 1

2ht (θ)
(yt − μt (θ))

2
)
. (25)

However, the asymptotic properties of the Gaussian QMLE are established without
the conditional normality assumption; see, e.g., Bollerslev and Wooldridge (1992).
In the GARCH literature, a number of RCM tests have been proposed for testing
the independence hypothesis H ′

o by using this QML method. Specifically, Berkes
et al. (2003) used this QML method to robustify the Li-Mak test for H ′

o in the
presence of conditional non-normality. Wong and Ling (2005) derived an omnibus
test for H ′

o against the remaining serial correlation and volatility clustering based on
vt (θ) = (εt (θ), εt (θ)

2 − 1)�. See also Chen (2008) for further extensions.
Let Ir be the r × r identity matrix. Note that we can rewrite the vt (θ) for model

(24) as:

vt (θ) =
(
εt (θ),

1√
2
(εt (θ)

2 − 1)

)�
(26)

without distorting Ho. By applying the M test to this vt (θ),

wt (θ) = −
(∇θμt (θ)

ht (θ)1/2
,

∇θht (θ)√
2ht (θ)

)�
, (27)

Ct (θ) = I2, and various zt (θ)’s, we can easily generate different RCM tests. The
associated θ̂T is the Gaussian QMLE for θo because the EF in (9) is

gt (θ) = ∇θμt (θ)

ht (θ)1/2
εt (θ)+ ∇θht (θ)

2ht (θ)

(
εt (θ)

2 − 1
)
, (28)

so that the estimating equation with (28) is the same as the first-order condition of
the Gaussian QML method. This particular M test extends the applicability of the
aforementioned Gaussian QML-based tests for Ho. Wooldridge (1990a, Examples
3.2), considered a WT -based conditional variance test with vt (θ) = ut (θ)

2 − ht (θ)

and Ct (θ)
1/2 = ht (θ)

−1, which is asymptotically equivalent to this M test, with zt (θ)

replaced by (0q×1, zt (θ)). Lundbergh and Teräsvirta (2002) applied Wooldridge
(1990a) approach to make their Gaussian ML-based score tests robust to conditional
non-normality. These robust tests can also be linked to this particular M test.
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3.3 Conditional Quantile Context

In the conditional quantile context, the partial specification is the quantile regression:

yt = mτ,t (θ)+ ut , (29)

where mτ,t (θ) is a Xt -measurable specification for the τ -th conditional quantile of
yt |Xt and a smooth function of θ , and ut (θ) denotes the error term. This model
is correctly specified under Ho with vt (θ) = I (ut (θ) < 0) − τ . Let p(·|Xt ) be
the conditional PDF of ut (θo)|Xt . Under Ho, this vt (θ) implies that E[vt (θ)|Xt ] =∫ mτ,t (θ)

−∞ p(y − mτ,t (θo)|Xt )dy − τ and hence wt (θo) = p(0|Xt )∇θmτ,t (θo).
Given the tick function ρτ (u) := u(τ − I (u < 0)), u ∈ R, θo can be estimated

by minimizing

1

T

T∑
t=1

ρτ (yt − mτ,t (θ));

see Koenker and Bassett (1978). The resulting estimator for θo is also the asymmet-
ric Laplace QMLE and encompassed by the tick-exponential QMLE of Komunjer
(2005). In addition, this estimator satisfies the asymptotic first-order condition:

1

T

T∑
t=1

∇θmτ,t (θ) (I (ut (θ) < 0)− τ) = op(1), (30)

and has asymptotic normality with the asymptotic covariance matrix:

Vτ (θo) := τ(1 − τ)E[p(0|Xt )∇θmτ,t (θo)∇θmτ,t (θo)
�]−1

× E[∇θmτ,t (θo)∇θmτ,t (θo)
�]E[p(0|Xt )∇θmτ,t (θo)∇θmτ,t (θo)

�]−1;
(31)

see, e.g., Engle and Manganelli (2004, Theorem 2) and Koenker (2005, p. 124).
By applying the M test to vt (θ) = I (ut (θ) < 0)−τ ,wt (θ) = p(0|Xt )∇θmτ,t (θ),

Ct (θ) = p(0|Xt )
−1, and various zt ’s and by estimating p(0|Xt ), we can generate

different RCM tests. The associated θ̂T is based on the EF:

gt (θ) = −∇θmτ,t (θ) (I (ut (θ) < 0)− τ) , (32)

which can be seen by introducing these vt (θ), wt (θ), and Ct (θ) into (9). This θ̂T

is asymptotically equivalent to the asymmetric Laplace QMLE for θo. To see this
point, note that since {πt (θo)vt (θo)} is a martingale difference sequence under Ho,
we may use (12) and a martingale difference CLT to show the result:

√
T (θ̄T − θo)

d→ N (0, V (θo)), (33)
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in which the asymptotic covariance matrix V (θo) is of the “sandwich” form:

V (θo) := E[πt (θo)wt (θo)
�]−1

E[(πt (θo)vt (θo)) (πt (θo)vt (θo))
�]E[wt (θo)πt (θo)

�]−1,

= E[πt (θo)wt (θo)
�]−1

E[πt (θo)�t (θo)πt (θo)
�]E[wt (θo)πt (θo)

�]−1, (34)

where the last equality is due to the law of iterated expectations. This result holds for
general θ̄T . By plugging πt (θ) = −wt (θ)Ct (θ) andwt (θ) and Ct (θ) above into (34)
and using the fact that �t (θo) = τ(1 − τ), we have V (θo) = Vτ (θo). This verifies
that θ̂T is asymptotically equivalent to the asymmetric Laplace QMLE for θo.

The M test here is closely related to the dynamic quantile test of Engle and
Manganelli (2004, Theorem 4) that checks condition (4) with vt (θ) = I (ut (θ) <

0) − τ and Ct (θ) = 1. These two tests coincide when p(0|Xt ) is a constant for
all t’s.

4 Optimization

4.1 Parametric Optimality

Let ft (·|Xt ; θ, γ ) be a postulated conditional PDF of yt |Xt with the score functions:
�θ t (θ) := ∇θ ln ft (yt |Xt ; θ, γ ) and �γ t (θ) := ∇γ ln ft (yt |Xt ; θ, γ ). Suppose that
Ho corresponds to the parameter restriction γ = 0q×1 and H1T corresponds to
γ = δT −1/2. Also let θ̂ML be the MLE for θo under Ho. It is well known that the
score test,

ST :=
[

T∑
t=1

�γ t (θ̂ML)

]� ([
T∑

t=1

�γ t (θ̂ML)�γ t (θ̂ML)
�
]

−
[

T∑
t=1

�γ t (θ̂ML)�θ t (θ̂ML)
�
]

×
[

T∑
t=1

�θ t (θ̂ML)�θ t (θ̂ML)
�
]−1 [

T∑
t=1

�θ t (θ̂ML)�γ t (θ̂ML)
�
]⎞
⎠

−1 [
T∑

t=1

�γ t (θ̂ML)

]
,

(35)

is asymptotically most powerful for checking Ho against H1T , if ft (yt |Xt ; θ, γ ) is
the true conditional PDF of yt |Xt ; see also Newey (1985) for its optimal CM test
interpretation. In this full specification context, ST has the asymptotic distribution:

ST
d→

{
χ2(q), under Ho,

χ2(q; ν†), under H1T ,

with the noncentrality parameter:
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ν† := δ�
(

E[�γ t (θo)�γ t (θo)
�]

− E[�γ t (θo)�θ t (θo)
�]E[�θ t (θo)�θ t (θo)

�]−1
E[�θ t (θo)�γ t (θo)

�]
)
δ; (36)

see, e.g., Eq. (51) of Engle (1982a) and Eq. (8.11) of Basawa (1991).
Under the conditional distribution assumption: �θ t (θ) = −ws

t (θ)v
s
t (θ) and

�γ t (θ) = −zs
t (θ)v

s
t (θ), we can write that θ̂T = θ̂ML and express the M test

statistic in (18) as:

MT =
[

T∑
t=1

�γ t (θ̂ML)

]� [
T∑

t=1

(ẑs
wt
(θ̂ML)v

s
t (θ̂ML))(ẑ

s
wt
(θ̂ML)v

s
t (θ̂ML))

�
]−1

×
[

T∑
t=1

�γ t (θ̂ML)

]
, (37)

in which

ẑs
wt
(θ)vs

t (θ) = −
⎛
⎝�γ t (θ)−

[
T∑

t=1

zs
t (θ)w

s
t (θ)

�
] [

T∑
t=1

ws
t (θ)w

s
t (θ)

�
]−1

�θ t (θ)

⎞
⎠

by (11). In general, this statistic needs not be asymptotically equivalent to the score
test statistic (35). It is readily seen that, given

�s
t (θo) = Ir , (38)

we can write E[zs
t (θo)w

s
t (θo)

�] = E[�γ t (θo)�θ t (θo)
�] and E[ws

t (θo)w
s
t (θo)

�] =
E[�θ t (θo)�θ t (θo)

�] by the law of iterated expectations. The restriction (38) will be
referred to as the GCHS restriction, because it extends the conditional homoskedas-
ticity and standardization restriction: E[v2

t (θo)|Xt ] = E[vt (θo)
2] and E[vt (θo)

2] = 1
from the special case Ct (θ) = 1 to a general Ct (θ). The GCHS restriction yields
asymptotic equivalence between (35) and (37) and also permits simplification of (19):

ν = δ�(E[zs
wt
(θo)z

s
wt
(θo)

�])δ,
= δ�

(
E[zs

t (θo)z
s
t (θo)

�]

− E[zs
t (θo)w

s
t (θo)

�]E[ws
t (θo)w

s
t (θo)

�]−1
E[ws

t (θo)z
s
t (θo)

�]
)
δ. (39)

This ν is the same as ν† under the conditional distribution assumption. Thus, under
the conditional distribution assumption and the GCHS restriction, the M test has



Optimizing Robust Conditional Moment Tests: An Estimating Function Approach 71

the score test interpretation and hence is “parametrically optimal” for checking Ho

against H1T .
It is interesting to note that when �θ t (θ) = −ws

t (θ)v
s
t (θ), we have E[∇θ��θ t (θo)]

= −E[ws
t (θo)w

s
t (θo)

�] under Ho. Recall that under the GCHS restriction, E[ws
t (θo)

ws
t (θo)

�] = E[�θ t (θo)�θ t (θo)
�]. Thus, the GCHS restriction is analogous to the infor-

mation matrix equality on the conditional distribution assumption: E[∇θ��θ t (θo)] +
E[�θ t (θo)�θ t (θo)

�] = 0.

4.2 Semi-Parametric Optimality

It is clear that the GCHS restriction would not be automatically satisfied for vs
t (θ)

with a general weighting matrix Ct (θ). However, by choosing Ct (θ) = �t (θo)
−1,

vs
t (θ) becomes the standardized version of the generalized residual vector:

v∗
t (θ) := �t (θo)

−1/2vt (θ),

where �t (θo)
1/2 is a symmetric and positive-definite matrix square root of �t (θo).

It follows from the definition of �s
t (θo) in (17), the GCHS restriction holds:

E[v∗
t (θo)v

∗
t (θo)

�|Xt ] = �t (θo)
−1/2�t (θo)�t (θo)

−1/2 = Ir . (40)

In view of the discussion in Sect. 4.1, it is natural to consider Ct (θ) = �t (θo)
−1 in

exploring the optimality of the M test.
Given Ct (θ) = �t (θo)

−1, we write

w∗
t (θ) := wt (θ)�t (θo)

−1/2, z∗
t (θ) := zt (θ)�t (θo)

−1/2, (41)

and
z∗
wt (θ) := z∗

t (θ)− E[z∗
t (θ)w

∗
t (θ)

�]E[w∗
t (θ)w

∗
t (θ)

�]−1w∗
t (θ). (42)

Then by (40), we obtain a particular ν:

ν∗ = δ�
(

E[z∗
t (θo)z

∗
t (θo)

�]

− E[z∗
t (θo)w

∗
t (θo)

�]E[w∗
t (θo)w

∗
t (θo)

�]−1
E[w∗

t (θo)z
∗
t (θo)

�]
)
δ. (43)

The proposition below is a key result of this study, and its proof is given in the
Appendix.

Proposition 2 ν ≤ ν∗ for all possible Ct (θ)’s.

This result shows that ν∗ is the upper bound of the noncentrality parameters within
a class of M tests that have the same vt (θ) and zt (θ) but different Ct (θ)’s. As the
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M test is asymptotically equivalent to Wooldridge (1990a) test, the noncentrality
parameter v and Proposition 2 also apply to WT which allows a general θ̄T . Let M∗

T

be a particular MT with Ct (θ) = �t (θo)
−1 and θ̂∗

T a particular θ̂T that solves the
estimating equation: T −1 ∑T

t=1 g∗
t (θ) = 0, with

g∗
t (θ) = −wt (θ)�t (θo)

−1vt (θ). (44)

By Proposition 1, M∗
T has the asymptotic distribution:

M∗
T

d→
{
χ2(q), under Ho,

χ2(q; ν∗), underH1T ,
(45)

with the noncentrality parameter ν∗. It is then clear from Proposition 2 that the M∗
test is the optimized M test because its noncentrality parameter is ν∗.

By applying (40) and the law of iterated expectations to (43), we can see that
ν∗ = ν† under the conditional distribution assumption: �θ t (θ) = −w∗

t (θ)v
∗
t (θ)

and �γ t (θ) = −z∗
t (θ)v

∗
t (θ). In this case, the M∗ test has the score test interpre-

tation for checking Ho against H1T , and the estimator θ̂∗
T is the same as the MLE

for θo. Unlike the case in Sect. 4.1, this parametric optimality holds without the orig-
inal GCHS restriction (38). Moreover, the M∗ test is semi-parametrically optimal
because it achieves the upper bound of ν without requiring any conditional distribu-
tion assumption.

Since θ̂∗
T is a particular θ̄T with the choice of πt (θ) = −wt (θ)�t (θo)

−1, we can
follow (33) to write √

T (θ̂∗
T − θo)

d→ N (0, V ∗(θo)), (46)

where the covariance matrix

V ∗(θo) := E[wt (θo)�t (θo)
−1wt (θo)

�]−1, (47)

is obtained from the V (θo) in (34) with this choice of πt (θ). The following result
holds without full specification; see Newey (1993, p. 423) for a proof.

Proposition 3 V (θo)− V ∗(θo) is positive semidefinite for possible πt (θ)’s.

This result means that the g∗
t (θ) in (44) is the optimal EF of G, and θ̂∗

T is the
asymptotically most efficient version of θ̄T . The optimal EF was first introduced by
Godambe (1960) and Durbin (1960) for simple regressions and extended by Godambe
(1985) and Godambe and Thompson (1989) to multiple linear regressions; see also
Bera et al. (2006) for a recent survey. In the GMM literature,πt (θ) = −wt (θ)�t (θo)

−1

is known as the optimal instrument variable; see Chamberlain (1987) and Newey
(1990, 1993). Also, the optimal EF has an information-matrix-equality-like interpre-
tation under Ho, i.e.,

E[∇θ�g∗
t (θo)] + E[g∗

t (θo)g
∗
t (θo)

�] = 0,
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whether or not g∗
t (θ) is the same as the true score function. As discussed by Heyde

(1997, p. 13), g∗
t (θ) is closer to the true score function (with respect to θ ) than any

other members of G. As such, g∗
t (θ)may also be understood as the best “quasi-score”

function for a partial specification.
It should be emphasized that, unlike the parametric optimality of the score test (the

MLE), the semiparametric optimality of the M∗ test (the estimator θ̂∗
T ) is obtained

without a full specification. Compared to the noncentrality parameter ν† for full
specifications, the noncentrality parameter ν∗ is the upper bound of v for partial
specifications. Similarly, compared to the Cramér-Rao lower bound for full speci-
fications, the covariance matrix V ∗

o is the lower bound of νo for partial specifica-
tions. This semiparametric optimality is thus compatible with the robustness to the
unknown conditional distribution. This is particularly important for estimating and
testing partial specifications.

This approach indeed has a very simple GLS interpretation in the linear regression
context. To see this point, consider the linear regression yt = x�

t θ + ut , such that
vt (θ) = ut (θ), wt (θ) = −xt , �t (θ) = σ 2

ut . Recall that σ 2
ut := E[ut (θo)

2|Xt ]. Thus,
the optimal EF in (44) becomes g∗

t (θ) = xt ut (θ)/σ
2
ut, and the estimator θ̂∗

T reduces to

the GLS estimator: θ̂∗
T =

[∑T
t=1 xt x�

t /σ
2
ut

]−1 [∑T
t=1 xt yt/σ

2
ut

]
. Here, the M∗ test is

also a robust Wald test for checking the standardized regression of yt/σut on xt/σut

against the artificial regression of yt/σut on xt/σut and zt/σut ; see Engle (1982a,
p. 790) for a “GLS-based Lagrange multiplier test” interpretation. This example
provides an intuition underlying Propositions 2 and 3.

4.3 Computational Aspect

The optimized estimator and test, θ̂∗
T and M∗

T , are both based on the unknown
conditional covariance matrix �t (θo). To compute the optimized estimator and
test, we need to estimate or approximate �t (θo) by a r × r matrix, denoted as
Kt (θ̂T ). Let θ̇T and ṀT be, respectively, the feasible estimator and test that are
obtained using Kt (θ̂T ). Specifically, θ̇T is a particular θ̄T with the choice of πt (θ) =
−wt (θ)Kt (θ̂T )

−1, and ṀT is a particular MT with the choice of Ct (θ) = Kt (θ)
−1

and evaluated at θ = θ̇T . Since θ̂T is T 1/2-consistent for θo, θ̇T and ṀT are, respec-
tively, asymptotically equivalent to their Kt (θo)-based counterparts. This means that
θ̇T has the asymptotic null distribution (33) with πt (θ) = −wt (θ)Kt (θ)

−1, and ṀT

has the asymptotic distribution in Proposition 1 with Ct (θ) = Kt (θ)
−1. In the case

where Kt (θo) = �t (θo) (or in testing H ′
o, as will be explained shortly), the feasible

statistics: θ̇T and ṀT are, respectively, asymptotically equivalent to the infeasible
statistics: θ̂∗

T and M∗
T , and hence are of the semiparametric optimality. In other cases,

the feasible statistics are not ensured to be optimal, but they remain robust to the
unknown conditional distribution. Thus, we could pursue semiparametric optimality
without sacrificing the robustness by choosing a proper Kt (θ̂T ). The difficulty of this
problem depends on the hypothesis being tested.
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In testing the independence hypothesis H ′
o, it is natural to choose

Kt (θ̂T ) = 1

T

T∑
t=1

vt (θ̂T )vt (θ̂T )
� (48)

for all the t’s because �t (θo) becomes E[vt (θo)vt (θo)
�] under H ′

o and the estimator
in (48) is consistent for this matrix. In this case, we can easily implement the optimal-
EF-based approach using the feasible statistics θ̇T and ṀT with the choice of (48).

In testing Ho, it is challenging to choose a proper Kt (θ̂T ). One possibility is to
set Kt (θ̂T ) as a nonparametric estimator for�tθo; see Newey (1993, Sects. 4 and 5).
However, such an estimator may not be easy for practitioners. An alternative strategy
is to choose Kt (θ̂T ) as an estimated conditional covariance model, based on θ̂T ,
for unknown �t (θo). For instance, we may specify a conditional variance model
for Kt (θ) in testing conditional mean or specify a conditional skewness-kurtosis
model for Kt (θ) in testing conditional mean-and-variance. A sensible specification
of Kt (θ) may be obtained by exploring the dynamic characteristics of the sequence
{vt (θ̂T )vt (θ̂T )

�}. This strategy does not ensure the semiparametric optimality of
θ̇T and ṀT because the postulated model Kt (θ) is likely to be misspecified for
�t (θo). Nonetheless, it is sensible because it reflects the fact that the semiparametric
optimality of a “lower-order” CM estimation and testing method is obtained at the
cost of exploiting the “higher-order” information contained in�t (θo). Intuitively, the
resulting θ̇T and ṀT would be closer to the infeasible θ̂∗

T and M̂∗
T if Kt (θo) provides

a better approximation to �t (θo).
In the case where the estimator θ̇T needs to be computed numerically (as in the

GARCH example of Sect. 6), we may replace θ̇T in the proposed approach with the
two-step estimator:

θ̈T := θ̂T −
[

T∑
t=1

wt (θ̂T )Kt (θ̂T )
−1wt (θ̂T )

�
]−1 [

T∑
t=1

wt (θ̂T )Kt (θ̂T )
−1vt (θ̂T )

]
,

for computational simplicity. By definition, we have

√
T (θ̈T − θ̇T ) = √

T (θ̂T − θ̇T )−
[

1

T

T∑
t=1

wt (θ̂T )Kt (θ̂T )
−1wt (θ̂T )

�
]−1

×
[

1√
T

T∑
t=1

wt (θ̂T )Kt (θ̂T )
−1vt (θ̂T )

]
. (49)

Using the mean-value expansion and the T 1/2-consistency of θ̂T and θ̇T , we obtain
the asymptotic expansion:



Optimizing Robust Conditional Moment Tests: An Estimating Function Approach 75

1√
T

T∑
t=1

wt (θ̇T )Kt (θ̂T )
−1vt (θ̇T ) = 1√

T

T∑
t=1

wt (θ̂T )Kt (θ̂T )
−1vt (θ̂T )

−
[

1

T

T∑
t=1

wt (θ̂T )Kt (θ̂T )
−1wt (θ̂T )

�
]

√
T (θ̂T − θ̇T )+ op(1). (50)

Plugging (50) into (49) and using the estimating equation: T −1 ∑T
t=1wt (θ̇T )

Kt (θ̂T )
−1vt (θ̇T ) = 0, we have T 1/2(θ̈T − θ̇T ) = op(1). This shows the asymptotic

validity of replacing θ̇T with θ̈T . Similarly, we can also replace ṀT with M̈T , where
the latter is defined using θ̈T .

5 Examples: Optimized Tests

It is easy to observe from (18) that the test statistics: MT and M∗
T are equivalent when

r = 1, Ct (θ) is a constant, and the conditional homoskedasticity restriction holds:

E[vt (θo)
2|Xt ] = E[vt (θo)

2]. (51)

Thus, the M test is semiparametrically optimal in this special case. In more general
cases, the M test is not necessarily the same as the M∗ test. We may apply the latter
to refine the former; this is demonstrated below using the examples in Sect. 3.

5.1 Conditional-Mean Context

In Sect. 3.1, we considered a class of LS-based M tests for the conditional mean
regression in (23) that are established for the case where vt (θ) = ut (θ) (hence
r = 1) and Ct (θ) = 1. These particular M tests would be semi-parametrically opti-
mal if the conditional homoskedasticity restriction: σ 2

ut = σ 2
u is satisfied. Since this

restriction is implied by H ′
o, these tests are semiparametrically optimal in testing

H ′
o. However, they are not ensured to have this optimality in testing Ho because the

conditional homoskedasticity restriction could be misspecified under Ho. In many
applications, conditional heteroskedasticity is not exceptional. For instance, a
Bernoulli-dependent variable with the conditional mean specification μt (θ) is con-
ditionally heteroskedastic with the conditional variance: σ 2

ut = μt (θo)(1 − μt (θo))

under Ho; see also Cameron and Trivedi (1998, p. 347) for an example of the count
data model. Conditional heteroskedasticity is also a well-known, stylized fact in
financial time series.

In the presence of conditional heteroskedasticity, we may further improve the
asymptotic local powers of the LS-based M tests by applying the M∗ test to the
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same zt (θ)’s. By the same token, the asymptotic efficiency of the LS method can
also be improved using the optimal EF method. In the example of binary choice mod-
els, the proposed optimization can be easily implemented by estimating θo using θ̂T

because �t (θo) has a closed form σ 2
ut = μt (θo)(1 − μt (θo)). For financial time

series, the functional form of �t (θ) is unknown and can be approximated using a
certain Kt (θ), as discussed in Sect. 4.3. For instance, we may compute Kt (θ̂T ) as an
estimated GARCH-type model. Such an approximation does not ensure semipara-
metric optimality but may be useful for improving the original LS-based M tests.
This is because the original M tests are based on Ct (θ) = 1, which amounts to
approximating conditional heteroskedasticity using a constant. Yet, a GARCH-type
Kt (θ̂T ) ought to be a more sensible approximation to�t (θo); our simulation in Sect. 6
provides evidence for this argument.

5.2 Conditional Mean-and-Variance Context

In Sect. 3.2, we discussed a class of Gaussian-QML-based M tests for the conditional
mean-and-variance model in (24), where vt (θ) follows (26) (hence r = 2) and
Ct (θ) = I2. In this scenario, the M test would not be the same as the M∗ test for
both Ho and H ′

o, unless the condition �t (θo) = I2 is satisfied. To ensure the GCHS
restriction in (38) with r = 2, denote the conditional skewness st (θ) := E[εt (θ)

3|Xt ]
and the conditional kurtosis kt (θ) := E[εt (θ)

4|Xt ]. To assess the validity of this
condition, we can use (26) to write

�t (θ) =
⎡
⎣ E[εt (θ)

2|Xt ] 1√
2

(
E[εt (θ)

3|Xt ] − E[εt (θ)|Xt ]
)

1√
2

(
E[εt (θ)

3|Xt ] − E[εt (θ)|Xt ]
)

1
2

(
E[εt (θ)

4|Xt ] − 2E[εt (θ)
2|Xt ] + 1

)
⎤
⎦ ,

and simplify �t (θo) as:

�t (θo) =
[

1 1√
2

st (θo)

1√
2

st (θo)
1
2 (kt (θo)− 1)

]
(52)

under Ho with the vt (θ) in (26). Clearly, the condition�t (θo) = I2 amounts to impos-
ing the conditional skewness and kurtosis restrictions: st (θo) = 0 and kt (θo) = 3,
which are satisfied under conditional normality: εt (θo)|Xt ∼ N (0, 1). This is con-
sistent with the fact that the Gaussian QML-based M tests become the Gaussian
ML-based tests and hence are parametrically optimal.

However, the conditional skewness and kurtosis restrictions are unlikely to be
satisfied under conditional non-normality. This problem is empirically relevant in
financial time series analysis. For example, the standardized errors of GARCH-type
models for financial returns are usually found to be leptokurtic and/or asymmetric;
see, e.g., Bollerslev (1987), Engle and González-Rivera (1991), and Park and Bera
(2009), among others. In this scenario, the Gaussian QML method and the associated
M tests may not be semiparametrically optimal. Li and Turtle (2000) suggested
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replacing the Gaussian QML method with the optimal EF method for estimating
GARCH-type models. We may also improve the asymptotic local powers of the
Gaussian QML-based M tests by applying the M∗ test to the associated vt (θ) and
zt (θ)’s, i.e., by replacing the weighting matrix Ct (θ) = I2 with Ct (θ) = �t (θo)

−1

for these particular M tests.
To see the relationship between the optimal EF method and the Gaussian QML

method in this context, note that we can use (26), (27), and (52) to write the optimal
EF in (44) as:

g∗
t (θ) = 1

kt (θo)− 1 − st (θo)2

[∇θμt (θ)

ht (θ)1/2
,

∇θ ht (θ)√
2ht (θ)

] [
kt (θo)− 1 −√

2st (θo)

−√
2st (θo) 2

][
εt (θ)

εt (θ)
2−1√
2

]

=

(
(kt (θo)− 1)∇θ μt (θ)

ht (θ)1/2
− st (θo)

∇θ ht (θ)√
2ht (θ)

)
εt (θ)−

(
st (θo)

∇θ μt (θ)

ht (θ)1/2
− ∇θ ht (θ)√

2ht (θ)

)
(εt (θ)

2 − 1)

kt (θo)− 1 − st (θo)2
;

(53)

see also Li and Turtle (2000, Eq. 14) for the ARCH case of this optimal EF. Clearly,
the optimal EF in (53) includes the Gaussian score function (28) as a special case
where st (θo) = 0 and kt (θo) = 3. Meanwhile, it is easy to see that the moment func-
tion z∗

t (θ)v
∗
t (θ) = zt (θ)�t (θo)

−1vt (θ) also reduces to the original testing function
zt (θ)vt (θ) in this case. Thus, the optimal EF method can be viewed as a generalization
of the Gaussian QML method. Under conditional non-normality, this generalization
improves the semiparametric optimality of the Gaussian QML method, because it
combines the conditional mean-and-variance estimation and testing problems with
the higher CM information st (θo) and kt (θo).

Practical applications of this optimal approach involve the estimation or approx-
imation of st (θo) and kt (θo). As discussed in Sect. 4.3, the implementation of this
approach would be semiparametrically optimal if the higher order CMs, st (θo) and
kt (θo), are consistently estimated; otherwise, this approach would be suboptimal but it
remains robust. In testing H ′

o, it is easy to consistently estimate st (θo) and kt (θo) using
the sample skewness T −1 ∑T

t=1 εt (θ̂T )
3 and the sample kurtosis T −1 ∑T

t=1 εt (θ̂T )
4

autoedited1, respectively. In testing Ho, we may approximate st (θo) and kt (θo) using
a conditional skewness-kurtosis specification, such as that implied by the autoregres-
sive conditional density model of Hansen (1994), Rockinger and Jondeau (2002), or
Komunjer (2007). Unlike the case of score test, the higher order CM model discussed
here is considered only for approximating the unknown st (θo) and kt (θo), and the Ṁ
test remains asymptotically valid even if this model is misspecified.

5.3 Conditional Quantile Context

In Sect. 3.3, we demonstrated that the M test is also applicable to the quantile
regression in (29) when vt (θ) = I (ut (θ) < 0) − τ and Ct (θ) = p(0|Xt )

−1.
In this example, we have r = 1, �t (θo) = τ(1 − τ), but a non-constant Ct (θ)

in general. (Note that the condition: r = 1 would not be satisfied when vt (θ) is
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multidimensional, such as model (29) with various τ ’s.) Thus, the M test is not
guaranteed to be the same as the M∗ test.

In the conditional quantile context, the optimal EF in (44) is

gt (θ) = − 1

τ(1 − τ)
p(0|Xt )∇θmτ,t (θ) (I (ut (θ) < 0)− τ) , (54)

which encompasses Godambe (2001) optimal EF for the conditional median model.
By comparing (54) with Komunjer (2005, Eq. 8), we may also interpret this optimal
EF as a particular tick-exponential score function. The resulting θ̂∗

T has the asymptotic
covariance matrix:

V ∗(θo) = τ(1 − τ)E[p(0|Xt )
2∇θmτ,t (θo)∇θmτ,t (θo)

�]−1, (55)

which is obtained by plugging the associated wt (θ) and �t (θ) into (47). This esti-
mator is asymptotically equivalent to the weighted estimator that minimizes the
weighted objective function: T −1 ∑T

t=1 p(0|Xt )ρτ (yt −mτ,t (θ)); see, e.g., Koenker
(2005, Theorem 5.1) for the latter. It is asymptotically more efficient than the asym-
metric Laplace QMLE in Sect. 3.3. Given this θ̂∗

T , we can also apply the M∗ test
to the conditional quantile context by setting Ct (θ) = �t (θo)

−1 = 1/(τ(1 − τ))

and using the associated vt (θ) and wt (θ). Interestingly, since the M and M∗ tests
both involve the conditional PDF p(·|Xt ), their computational cost in estimating this
component are the same. This is different from the conditional mean(-and-variance)
example where the M∗ test typically has higher computational cost than the M test
in applications.

6 Simulation

In this section, we conduct two Monte Carlo experiments to assess the finite-sample
performance of the M test (with Ct (θ) = Ir ), the M∗ test (with Ct = �t (θo)

−1),
and the Ṁ (or M̈) test.

In the first experiment, we apply the M , M∗, and Ṁ tests to check Ho for the
location model: yt = θ + ut . The data generating processes (DGPs) are in the form
of (24): yt = μt + h1/2

t εt , with εt |Xt ∼ N (0, 1) and the following (μt , ht )’s:

• AR-CHOMO (conditional homoskedasticity): μt = θo + γ1 yt−1 and ht = 1;
• AR-EGARCH1: the AR μt and ht = exp(κ0 + κ1 ln ht−1 + κ2εt−1 + κ3|εt−1|);
• AR-EGARCH2: the AR μt and ht = exp(κ0 + 2κ1 ln ht−1 + κ2εt−1 + κ3|εt−1|);
• TAR (threshold AR)-CHOMO: μt = θo + (γ1 I (yt−1 ≥ γ3)+ γ2 I (yt−1 < γ3))

yt−1 and ht = 1;
• TAR-EGARCH1: the TAR μt and the EGARCH1 ht ;
• TAR-EGARCH2: the TAR μt and the EGARCH2 ht .

The parameters are set to be θo = 0, γ1 = δT −1/2, with δ = 0, 1, 3, 5, γ2 = −γ1,
γ3 = 0, κ0 = 0.1, κ1 = 0.9, κ2 = −0.15, and κ3 = 0.05. The strength of serial
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correlation (nonlinearity) of the AR (TAR) processes increases in δ, and the EGARCH2
process implies a stronger volatility asymmetry than the EGARCH1 process. The
parameter γ1 = δT −1/2 controls the local powers of these tests. In particular, Ho

holds under these DGPs when δ = 0.
In this experiment, we have vt (θ) = ut (θ) = yt −θ ,wt (θ) = −1, and Ct (θ) = 1.

Correspondingly, we estimate θo by the sample average θ̂T = T −1 ∑T
t=1 yt , and com-

pute the test statistic MT in (18) accordingly. The optimal EF estimator θ̂∗
T and the

optimized test statistic M∗
T are computed by setting �t (θo) as the true ht . Let ĥt be

the Gaussian QML-based fitted value of the GARCH(1,1) model for the residuals
{ut (θ̂T )}. By approximating �t (θo) using Kt (θ̂T ) = ĥt , we base the feasible test

statistic ṀT on this Kt (θ̂T ) and the estimator θ̇T =
[∑T

t=1 1/ĥt

]−1 [∑T
t=1 yt/ĥt

]
.

This GARCH approximation is misspecified under the EGARCH1 and EGARCH2
processes because it ignores the volatility asymmetry, and the misspecification under
EGARCH1 is milder than that under EGARCH2. This design reflects the fact that
Kt (θ) could be misspecified for �t (θ) in practical applications. In performing the
tests, we consider two sets of zt (θ, ς)’s: (i) zk,lt = ut−k(θ), with k = 1, 2, 3,
and zlt = (z�

1,lt , z�
2,lt , z�

3,lt )
� for testing Ho against serial correlations and (ii)

zk,nt = ut−1(θ)
k − E[ut−1(θ)

k], with k = 2, 3, 4, and znt = (z�
2,nt , z�

3,nt , z�
4,nt )

�

for testing Ho against nonlinearity. Note that zk,nt is centered and hence involves
the nuisance parameter ςo = E[ut−1(θo)

k]. We estimate ςo using the statistic
ς̄T = (T − 1)−1 ∑T

t=2 ut−1(θ̂T )
k in th simulation. As explained in Sect. 2, this

does not change the asymptotic validity of our tests.
In the second experiment, we apply the M , M∗, and M̈ tests to checking H ′

o for
the model:

yt = θ0 + εt h
1/2
t and ht = θ1 + θ2ht−1 + θ3u2

t−1. (56)

The DGPs are also in the form of (24) but with various εt ’s or (μt , ht )’s:

• AR-GARCH-N: the AR μt , ht = θ1 + θ2ht−1 + θ3u2
t−1, and εt |Xt ∼ N (0, 1);

• AR-GARCH-L1: the AR μt , the GARCH ht , and εt |Xt ∼ standardized log-
normal distribution with the asymmetry parameter η = 0.3; specifically, εt =
(exp(ηεt )− ω1/2)/(ω(ω − 1))1/2, ω := exp(η2), εt |Xt ∼ N (0, 1),

• AR-GARCH-L2: the ARμt , the GARCH ht , and εt |Xt ∼ standardized log-normal
distribution with the asymmetry parameter η = 0.6;

• TAR-GARCH-N: the TAR μt , the GARCH ht , and εt |Xt ∼ N (0, 1);
• TAR-GARCH-L1: the TAR μt , the GARCH ht , and εt |Xt ∼ standardized log-

normal distribution with the asymmetry parameter η = 0.3;
• TAR-GARCH-L2: the TAR μt , the GARCH ht , and εt |Xt ∼ standardized log-

normal distribution with the asymmetry parameter η = 0.6.

We set θ1 = 0.1, θ2 = 0.9, and θ3 = 0.05. Other parameters are the same as those
in the first experiment. The L2 process implies a stronger distributional asymmetry
than the L1 process. In these DGPs, H ′

o holds when δ = 0, and the asymptotic local
powers of the tests increase in δ.
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In this experiment, we have θ = (θ0, θ1, θ2, θ3)
�, the vt (θ) in (26) with the εt (θ)

given by model (56), and Ct = I2. We estimate the true parameter vector θo of
(56) by the Gaussian QMLE θ̂T and compute the test statistic MT accordingly. The
estimator θ̂∗

T and the test statistic M∗
T are computed using the H ′

o-implied value of
�t (θo):

�t (θo) =
[

1 1√
2
E[εt (θo)

3]
1√
2
E[εt (θo)

3] 1
2 (E[εt (θo)

4] − 1)

]
, (57)

that holds for all t’s. Note that the standardized log-normal distribution implies
E[εt (θo)

3] = (ω + 2)
√
ω − 1 and E[εt (θo)

4] = ω4 + 2ω3 + 3ω2 − 3; see, e.g.,
Johnson et al. (1994, p. 212). In testing H ′

o, we can consistently estimate �t (θo)

using Kt (θ̂T ) = T −1 ∑T
t=1 vt (θ̂T )vt (θ̂T )

�, as mentioned in Sect. 4.3. The estima-
tor θ̈T and the test statistic M̈T are computed using this Kt (θ̂T ), and they are,
respectively, asymptotically equivalent to θ̂∗

T and M̂∗
T . In performing the tests, the

zt (θ, ς)’s being considered include (i) zk,lt = (εt−k(θ), 0), with k = 1, 2, 3,
and znt = (z�

1,lt , z�
2,lt , z�

3,lt )
� for testing H ′

o against serial correlations and (ii)

zk,nt = (εt−1(θ)
k −E[εt−1(θ)

k], 0), with k = 2, 3, 4, and znt = (z�
2,nt , z�

3,nt , z�
4,nt )

�

for testing H ′
o against nonlinearity. To perform the tests with zk,nt , we estimate the

nuisance parameter ςo = E[εt−1(θo)
k] using ς̄T = T −1 ∑T

t=2 εt−1(θ̂T )
k .

For each DGP, we generate T +100 observations, and use the last T observations
for estimation and testing. Given the nominal size 5 %, the sample sizes T = 500,
1,000, and the number of replications 1,000, we show the empirical rejection fre-
quencies of the M , M∗, and Ṁ tests for the first experiment in Table 1 and their
counterparts for the second experiment in Table 2. The main results of these two
tables are summarized as follows.

First, the M test and the M∗ test have the same empirical sizes and powers
under the AR-CHOMO and TAR-CHOMO (AR-GARCH-N and TAR-GARCH-N)
processes in the first (second) experiment. This is because these two tests are identical
under conditional homoskedasticity (conditional normality), as discussed in Sect. 4.1
(Sect. 4.2). Table 1 (Table 2) also shows that the performance of the Ṁ test (the M̈
test) is very similar to that of the M test and the M∗ test in these cases. This reflects the
fact that the GARCH approximation encompasses the conditionally homoskedastic
errors (the estimator T −1 ∑T

t=1 vt (θ̂T )vt (θ̂T )
� is consistent for (57)), so that these

tests are asymptotically equivalent and share the same optimality property.
Second, the M tests with various zt (θ, ς)’s have proper empirical sizes close

to the 5 % nominal level in most cases. This shows that these tests are robust to
the unknown conditional distribution in checking Ho and H ′

o. The tests with z4,nt

and znt are somewhat undersized for certain DGPs; this exceptional case is likely
due to the fact that these nonlinear zt (θ, ς)’s are highly sensitive to outliers. These
two tables also show that the M tests with various zt (θ, ς)’s have different power
directions. In particular, the M test with z1,lt (or zlt ) and the test with z2,nt (or znt )
are, respectively, powerful against the AR processes and the TAR processes. This is
consistent with the power directions that these two zt (θ, ς)’s are designed to have. In
addition, the empirical powers of the M test at T = 500 are close to their counterparts
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at T = 1,000. This is consistent with the parameter setting γ1 = δT −1/2 that we
design to simulate the “local” powers of the M test. Importantly, the aforementioned
size and power properties also hold for the M∗ test and the Ṁ test (or the M̈ test).
Thus, these tests are of the same robustness and power directions, and it is essential
to discriminate between them by comparing their relative power performance.

Third, and more importantly, the relative power performance of these tests is
consistent with our theoretical results. Specifically, Table 1 shows that the optimized
M∗ test and its approximation, the feasible Ṁ test, tend to outperform, or at least have
very similar performance to, the (suboptimal) M test in the presence of conditional
heteroskedasticity. Meanwhile, the Ṁ test provides a reasonable approximation to
the M∗ test in view of their power performance. To make these points clear, we
simulate and plot the empirical power curves of the M , M∗, and Ṁ tests, under
various AR (TAR) processes with z1,lt (z2,nt ), T = 500, and δ = 0, 0.5, 1, . . . , 5
in Fig. 1. We focus on this zt (θ, ς) because the testing powers of these tests under
the AR (TAR) processes are mainly contributed by using this zt (θ, ς); see Table 1.
Thus, we may evaluate our theoretical results in a more direct way by focusing on
this zt (θ, ς).

This figure shows that these tests are indistinguishable under conditional
homoskedasticity. By contrast, the M∗ test and the Ṁ test outperform the M test
under conditional heteroskedasticity. As implied by Proposition 2, the M∗ test yields
the upper bound of the power curve of the M test. A mild exception appears in Fig. 1f,
in which the Ṁ test is marginally more powerful than the M∗ test when δ ≤ 1. This
might be due to sampling variation. In general, the power curve of the Ṁ test is
between those of the M∗ test and the M test. This suggests that the Ṁ test is useful
for improving the local powers of the M test, even though it is not based on the
true �t (θo). This improvement is likely due to the fact that, despite the conditional
homoskedasticity approximation (Ct (θ) = 1) implicitly used by the M test and the
GARCH approximation explicitly used by the Ṁ test are both misspecified for
the EGARCH processes, the latter obviously provides a better approximation than
the former.

From Table 1 and Fig. 1, we also observe that the “significance” of the power
advantage of the M∗ and Ṁ tests over the M test is data-dependent. Given T = 500
and δ = 3 (δ = 5), the M , M∗, and Ṁ tests with z1,lt (z2,nt ) have respective pow-
ers: 81.7 %, 86.5 %, and 83.6 % (43.2 %, 49.8 %, and 46.8 %) under AR-EGARCH1
(TAR-EGARCH1). These powers are not substantially different. In comparison,
given the same T and δ, these tests have respective powers: 67.4 %, 87.9 %, and
75.1 % (33.9 %, 57.1 %, and 44.9 %) under AR-EGARCH2 (TAR-EGARCH2). The
M∗ and Ṁ tests outperform the M test in both cases, but it is particularly important
to replace the suboptimal M test by the Ṁ test when conditional heteroskedasticity
becomes stronger.

The second experiment also supports the validity of our theoretical results in
finite samples. Table 2 shows that the M∗ and M̈ tests tend to generate higher powers
than, or at least very similar powers to, the M test under conditional asymmetry.
For instance, the M , M∗, and M̈ tests with zlt (znt ) are, respectively, of the powers:
67.1 %, 78.2 %, and 78.3 % (25.8 %, 39.9 %, and 38.9 %) under AR-GARCH-L1
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(TAR-GARCH-L1) when T = 500 and δ = 3. Similar to the first experiment, this
also shows the power advantage of the M∗ test and the M̈ test over the suboptimal
M test. Note that the M∗ test and the M̈ test have very similar empirical rejection
frequencies in all cases for the second experiment. This reflects the fact that the
feasible M̈ test is based on a consistent estimator for�ot and hence is asymptotically
equivalent to the infeasible M∗ test. In this scenario, it is very easy to implement the
optimized test.

From these two experiments, we see that the M∗ and Ṁ (or M̈) tests are potentially
useful for improving the local powers of the M test without sacrificing their size
performance, that is, without sacrificing their robustness to the unknown conditional
distribution.

7 Conclusions

This chapter is concerned with the optimality of RCM tests. We argue that the con-
ventional score test interpretation is incompatible with the rationale of RCM tests.
Instead, we explore a different type of test optimality by considering a generalized
RCM test based on the EF approach and deriving the upper bound of its noncen-
trality parameter without a conditional distribution assumption. We then propose to
optimize the generalized RCM test and show that the resulting test achieves this
upper bound and is thus semiparametrically optimal. The optimized test is readily
applicable to various partial specifications, such as the conditional mean, mean-and-
variance, and quantile models. Thus, the proposed optimization method is useful for
improving the power property of many existing RCM tests.

The implementation of the optimized test requires estimation (approximation) of
the conditional covariance matrix of the generalized residual vector. The form of this
matrix depends on the partial specifications being tested. When the covariance matrix
can be consistently estimated, the optimized test constructed from this estimate is
semiparametrically optimal. When the covariance matrix is difficult to estimate, it
may be approximated using a sensible model. The power performance of the resulting
test would be better if the postulated model provides a more accurate approximation
to the covariance matrix. Even when the model is misspecified, the optimized test
remains robust. Therefore, the approach proposed in this study allows us to pursue
optimality of RCM tests without sacrificing their robustness to unknown conditional
distributions. This makes the optimized test a practically useful tool.
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Appendix

A.1 Assumptions: [A.1]–[A.2]

Because the derivation of the asymptotic results in [A.1] and [A.2] are known in the
literature, the following discussions are provided only for completeness. For ease of
exposition, the discussions are focused on the case where πt (θ)vt (θ) and zs

t (θ)v
s
t (θ)

are smooth functions of θ .
Recall that (i) � is a compact set. Let QT (θ) and Qo(θ) be, respectively, the

inner products of T −1 ∑T
t=1 πt (θ)vt (θ) and E[πt (θ)vt (θ)]. Given the following

conditions for EF: (ii) {πt (θ)vt (θ)} is stationary and ergodic for each θ ∈ �,
(iii) E[πt (θ)vt (θ)] exists and is finite for each θ ∈ �, and is continuous on �,
and (iv) E[supθ∈� ‖πt (θ)vt (θ)‖] < 0, we may have the uniform convergence:

supθ∈� |QT (θ)− Qo(θ)| p→ 0; see, e.g., Hall (2005, Lemma 3.1). The consistency
of θ̄T for θo, stated in [A.1], may follow this result and (v) the identifiable uniqueness
condition: (6) only holds for a unique θo ∈ �; see, e.g., Hall (2005, Theorem 3.1).

If the EF is smooth in the sense that (vi) πt (θ)vt (�) is continuously differen-
tiable on �, then we can take the mean-value expansion of the estimating equation:
T −1 ∑T

t=1 πt (θ̄T )vt (θ̄T ) = 0 to write that

1√
T

T∑
t=1

πt (θo)vt (θo)+ 1

T

T∑
t=1

∇θ�
(
πt (θ̃T )vt (θ̃T )

) √
T (θ̄T − θo) = 0 (A.1)

for some θ̃T ∈ � such that ‖θ̃T − θo‖ ≤ ‖θ̄T − θo‖. Given the consistency of θ̄T

for θo, the expansion in (A.1), and the conditions: (vii) {∇θ�(πt (θ)vt (θ))} obeys a
ULLN, (viii) E[∇θ�(πt (θ)vt (θ))] is continuous on�, and (ix) E[∇θ�(πt (θo)vt (θo))]
is positive definite, it is easy to show that

√
T (θ̄T − θo) = −E[∇θ�(πt (θo)vt (θo))]−1 1√

T

T∑
t=1

πt (θo)vt (θo)+ op(1); (A.2)

see, e.g., Newey and McFadden (1994, Sect. 3). Following Magnus and Neudecker
(1988, p. 30, Eq. 5), we can write that E[πt (θ)vt (θ)] = E[(vt (θ)

� ⊗ Ip)vec(πt (θ))].
Accordingly, we have

E[∇θ�(πt (θo)vt (θo))] = E[πt (θo)∇θ�vt (θo)] + E[(vt (θo)
� ⊗ Ip)∇θ�vec(πt (θo))]

= E[πt (θo)E[∇θ�vt (θo)|Xt ]]
+ E[(E[vt (θo)|Xt ]� ⊗ Ip)∇θ�vec(πt (θo))], (A.3)

where the second equality is due to the law of iterated expectations. Condition (vi)
may allow us to write that wt (θo) = E[∇�

θ vt (θo)|Xt ]. Recall that E[vt (θo)|Xt ] = 0
holds under Ho. Given condition (x): E[(zt (θ)⊗ Ip)∇�

θ vec(πt (θ))] exists and is finite
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for each θ ∈ �, and is continuous on �, this restriction also holds under H1T as
T → ∞ because

E[(E[vt (θT )|Xt ]� ⊗ Ip)∇�
θ vec(πt (θT ))] = T −1/2δ�E[(zt (θT )⊗ Ip)∇θ�vec(πt (θT ))]

(A.4)
= o(1)

and θT → θo as T → ∞. The asymptotic linear representation in (12) is obtained
from (A.2) and these results. This shows that conditions (i)–(x) serve as a set of
sufficient conditions underlying [A.1].

If the moment function zs
t (θ)v

s
t (θ) is smooth in the sense that (xi) zs

t (θ)v
s
t (θ) is

continuously differentiable on�, then we can also take the mean-value expansion of
the estimated moment: T −1 ∑T

t=1 zs
t (θ̄T )v

s
t (θ̄T ). Given the consistency of θ̄T for θo,

this expansion, and the conditions: (xii) {∇θ�(zs
t (θ)v

s
t (θ))} is stationary and ergodic,

and obeys a ULLN and (xiii) E[∇θ�(zs
t (θ)v

s
t (θ))] is continuous on�, it is also easy

to show that

1√
T

T∑
t=1

zs
t (θ̄T )v

s
t (θ̄T ) = 1√

T

T∑
t=1

zs
t (θo)v

s
t (θo) (A.5)

+ E[∇θ�(zs
t (θo)v

s
t (θo))]

√
T (θ̄T − θo)+ op(1).

Similar to (A.3) and (A.4), given condition (xiii), we can show that, under Ho,

E[∇θ�(zs
t (θo)v

s
t (θo))] = E[zs

t (θo)w
s
t (θo))

�].

Given condition (xiv): E[(zs
t (θ) ⊗ Ip)∇θ�vec(zs

t (θ))] exists and is finite for each
θ ∈ �, and is continuous on � this restriction also holds under H1T as T → ∞.
The asymptotic expansion in [A.2] is due to (A.5) and these results, and conditions:
(i)–(v) and (xi)–(xiv) are a set of sufficient conditions underlying this assumption.

A.2 Proof of Proposition 2

The matrices considered in this proof are all evaluated at θ = θo. For notational
brevity, we denote Ct := Ct (θo), �t := �t (θo), �s

t := �s
t (θo), ws

t := ws
t (θo),

w∗
t := w∗

t (θo), zs
t := zs

t (θo), z∗
t := z∗

t (θo), zs
wt := zs

wt (θo), and z∗
wt := z∗

wt (θo)

in the proof. Recall that C1/2
t and �1/2

t are symmetric and �s1/2
t := �

1/2
t C1/2

t .
Therefore, we can write �s

t = (�
s1/2
t )��s1/2

t . By denoting ξ1t := zs
wt�

s−1/2
t and

ξ2t := zs
wt (�

s1/2
t )�, we can rewrite (19) as

v = δ�
(
E[ξ1tξ

�
2t ]E[ξ2tξ

�
2t ]−1

E[ξ2tξ
�
1t ]

)
δ. (A.6)
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By the definition of zs
wt , w

∗
t , and z∗

t , we can reexpress ξ1t as:

ξ1t = (zs
t − E[zs

tw
s�
t ]E[ws

tw
s�
t ]−1ws

t )�
s−1/2
t ,

= (zt − E[zs
tw

s�
t ]E[ws

tw
s�
t ]−1wt )C

1/2
t �

s−1/2
t ,

= (z∗
t − E[zs

tw
s�
t ]E[ws

tw
s�
t ]−1w∗

t )(�
1/2
t C1/2

t �
s−1/2
t ).

Since
�

1/2
t C1/2

t �
s−1/2
t = �

1/2
t C1/2

t (�
1/2
t C1/2

t )−1 = Ir ,

we can simplify the above expression of ξ1t as

ξ1t = z∗
t − E[zs

tw
s�
t ]E[ws

tw
s�
t ]−1w∗

t

= z∗
wt + (E[z∗

t w
∗�
t ]E[w∗

t w
∗�
t ]−1 − E[zs

tw
s�
t ]E[ws

tw
s�
t ]−1)w∗

t

and show that

E[ξ1tξ
�
2t ] = E[z∗

wtξ
�
2t ]+(E[z∗

t w
∗�
t ]E[w∗

t w
∗�
t ]−1 −E[zs

tw
s�
t ]E[ws

tw
s�
t ]−1)E[w∗

t ξ
�
2t ].

Using the fact that

E[w∗
t ξ

�
2t ] = E[wt�

−1/2
t �

s1/2
t zs�

wt ] = E[wt C
1/2
t zs�

wt ]
= E[ws

t zs�
wt ] = (E[zs

wtw
s�
t ])� = 0,

we obtain an important result: E[ξ1tξ
�
2t ] = E[z∗

wtξ
�
2t ]. By this relationship, we can

present (A.6) as

ν = δ�
(
E[z∗

wtξ
�
2t ]E[ξ2tξ

�
2t ]−1

E[ξ2t z
∗�
wt ]

)
δ.

According to (43), we can write that v∗ = δ�E[z∗
wt z

∗�
wt ]δ. Consequently, we have

ν∗ − ν = δ�
(
E[z∗

wt z
∗�
wt ] − E[z∗

wtξ
�
2t ]E[ξ2tξ

�
2t ]−1

E[ξ2t z
∗�
wt ]

)
δ

= δ�E[ζtζ
�
t ]δ,

in which ζt := z∗
wt − E[z∗

wtξ
�
2t ]E[ξ2tξ

�
2t ]−1ξ2t . Proposition 2 is proved because the

matrix E[ζtζ
�
t ] is positive semi-definite. �
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Asymptotic Properties of Penalized M
Estimators with Time Series Observations

Xiaohong Chen and Zhipeng Liao

Abstract The method of penalization is a general smoothing principle to solve
infinite-dimensional estimation problems. In this chapter, we study asymptotic prop-
erties of penalized M estimators with weakly dependent data. We first establish the
convergence rate for any penalized M estimators of unknown functions with station-
ary beta mixing observations. While the existing theories on the convergence rates
with i.i.d. data require that the random criteria have exponential thin tails, we allow
for unbounded random criteria with finite polynomial moments. When specializing
to regression and density estimation of time series models, our rates coincide with
Stone (The Annals of Statistics, 10: 1040–1053, 1982) optimal rates for i.i.d. data.
We then derive root-n asymptotic normality for any plug-in penalized M estimators
of regular functionals, and provide consistent estimates of their long-run variances.

Keywords Penalized M estimation · Weakly dependent data · Convergence rate ·
Asymptotic normality · HAC estimation

1 Introduction

Many estimators can be obtained by maximizing an empirical criterion of a sam-
ple average form, Ln(α) ≡ n−1 ∑n

t=1 �(α, Zt ) over a parameter space A (e.g.,
log-likelihood, least squares, least absolute deviation). They are referred to as
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maximum-likelihood-like (M) estimators by Huber (1981), Gallant and White (1988),
and Newey and McFadden (1994), among others.

When the parameter space A is a compact subset of a finite-dimensional Euclidean
space, exact M estimates are easy to compute and their asymptotic properties are well
established for both independent and dependent observations. For example, if Ln(α)

is smooth in α almost surely and A has non-empty interior containing a pseudo-true
parameter of interest α0 = arg maxα∈A E[Ln(α)], the asymptotic normality of the
M estimator α̂n can be obtained by Taylor expansion of the corresponding estimating
equations (or the score equation �Ln (̂αn) = 0, when Ln(α) is the sample average
log-likelihood, or sample moment conditions) around α0.

When A is an infinite-dimensional, non-compact function space, the exact M
estimates for a general criterion Ln(α) may either not be defined or may have poor
asymptotic properties such as the inconsistency or slow rate of convergence, see, e.g.,
Grenander (1981) for many such examples. Some approximate M estimation meth-
ods such as sieve method and penalization (or regularization) method can outperform
the exact M estimation procedure in infinite-dimensional setting. The sieve M esti-
mates maximize Ln(α) over a sequence of (smaller and typically compact) approx-
imating parameter spaces An , instead of the original infinite-dimensional parame-
ter space A; see e.g., Grenander (1981), White and Wooldridge (1991) and Chen
(2007). The penalized (or regularized) M estimates (Tikhonov 1963) maximize L̃n(α)

(a penalized or regularized version of Ln(α)) over the whole parameter space A. Both
these methods can provide consistent estimates that may have better asymptotic and
finite sample properties than those of exact M estimates. Both methods are very flex-
ible by combining different criterion functions with different sieves (for the sieve
method) and different penalties (for the penalization method). For example, both
could easily implement constraints such as monotonicity and convexity; and both
could handle ill-posed inverse problems; see, e.g., Chen (2007, 2011), Chen and
Pouzo (2012) and the references therein for details.

The asymptotic properties of general sieve M estimates have been relatively well
developed. For example, for sieve M estimation with i.i.d. observations, Shen and
Wong (1994), Birge and Massart (1994), Van de Geer (2000) derived the convergence
rates; Shen (1997) established the

√
n asymptotic normality of plug-in estimates of

regular functions (i.e., functionals that could be estimated at a root-n rate); Chen
and Liao (2008) derived the asymptotic normality for plug-in estimates of irregular
functionals (i.e., functionals that could be at best estimated at a slower than root-
n rate) and provided simple consistent variance estimates. For sieve M estimation
with weakly dependent data, Chen and Shen (1998) obtained the non-parametric
convergence rates and the

√
n-asymptotic normality for plug-in estimates of regular

functionals; Chen et al. (2011) derived the asymptotic normality and proposed auto-
correlation robust inference procedures for plug-in estimates of possibly irregular
functionals.

There are some published work on the asymptotic properties of general penalized
M estimators for i.i.d. data. Earlier theories developed by Wahba (1990), Gu (2002)
and others are confined to the reproducing kernel Hilbert space framework, and
relied on explicit solutions that can be exactly expressed as splines (i.e., smoothing
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splines).1 The search for a spline representation for the exact solution often requires
various boundary conditions on the space of functions, which are hard to justify in
most economics applications. When the data are i.i.d. and when the centered random
criterion function has an exponential thin tail, Shen (1997, 1998) and Van de Geer
(2000) obtained the rate of convergence and the

√
n-asymptotic normality for general

penalized M estimators that may not have a closed form solution expressed as splines.
In this chapter, we give up the search for the exact spline representation, but use

the penalization to make the effective parameter space relatively compact. Thus, it
is very flexible with the choice of parameter spaces as well as the choice of the
penalization. We can use infinitely many terms of spline, Fourier series, wavelet, and
many other basis expansions to implement the estimation with or without economics
constraints. We study the rate of convergence (in a general pseudometric) and the
asymptotic normality of penalized M estimates with weakly dependent data. Our
sufficient conditions for asymptotic properties are more or less the same as those for
sieve M estimates in Chen and Shen (1998) for time series data. Instead of imposing
the strong exponential thin tail condition (as assumed in the existing penalization lit-
erature for i.i.d. data), we allow for polynomial tail of the centered random criterion
function, which is important for economic time series applications. When specializ-
ing to time series regression and density estimation, our rates coincide with Stone’s
(1982) optimal rates for i.i.d. data. We then derive the root-n asymptotic normality
for any plug-in penalized M estimators of regular functionals, and provide consistent
estimates of their long-run variances (LRVs). We point out that this chapter is an
updated and improved version of Chen (1997), which is an old unpublished working
paper that established the rates of convergence of penalized M estimators and the
root-n asymptotic normality of plug-in penalized M estimators of regular function-
als for time series data. But Chen (1997) derived the rate result under the strong
exponential thin tail condition and did not provide any consistent LRV estimators.

The rest of the chapter is organized as follows. Section 2 defines the general
penalized M estimates and provides two illustrative examples. Section 3 establishes
the rates of convergence for penalized M estimates with stationary weakly dependent
observations. Section 4 develops the root-n asymptotic normality for plug-in penal-
ized M estimates of regular functionals, and Sect. 5 provides consistent estimates
of their LRVs. Section 6 briefly concludes. The Appendix contains all the technical
proofs.

2 Definitions and Examples

Throughout the chapter, we let {Zt }n
t=1 be a weakly dependent sequence with Zt ∈

Z ⊂ Rdz for each t , (1 ≤ dz < ∞), with marginal density P0,t (z) that is related toα0,
the pseudo-true parameter of interest. Let d(·, ·) be a general pseudometric on an

1 Corradi and White (1995) applied this approach to establish convergence rate for Tikhonov-
regularized neural networks.
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infinite-dimensional parameter space A and Ln(α) ≡ n−1 ∑n
t=1 �(α, Zt ) be an

empirical criterion. We assume that the pseudo-true parameter α0 ∈ A satisfies:

E [Ln(α0)] ≥ sup
α∈A

E [Ln(α)] .

Let K (α0, α) ≡ n−1 ∑n
t=1 E [�(α0, Zt )− �(α, Zt )]. Notice that K (α0, α) is the

Kullback–Leibler information number based on n observations if the criterion is a
log-likelihood.

One way to overcome the difficulties of optimizing over an infinite dimensional
non-compact parameter space is to include a penalty describing the plausibility of
each parameter value to the empirical criterion to be optimized. The penalty effec-
tively forces the optimization to be carried out within compact subsets depending on
sample size. More specifically, we denote

L̃n(α) ≡ Ln(α)− λn J (α),

where J (α) is a non-negative penalty function and λn is the tuning parameter. An
approximate penalized M estimate, denoted by α̂n , is defined as an approximate
maximizer of L̃n(α) over A, i.e.,

L̃n (̂αn) ≥ sup
α∈A

L̃n(α)− an, (1)

where an = op(1). The above procedure is called the method of penalization (see
e.g., Tikhonov 1963 and Wahba 1990). Let ρ(·) : A → R be a known functional.
Sometimes ρ(α0) is also the parameter of interest. The plug-in penalized M estimate
for ρ(α) is simply ρ(̂αn).

In this chapter, we study asymptotic properties of penalized M estimates with time
series data. Let I t−∞ and I∞

t+ j beσ− fields generated, respectively, by (Z−∞, · · ·, Zt )
and (Zt+ j , · · ·, Z∞). Define

φ( j) ≡ sup
t

sup{|P(B|A)− P(B)| : A ∈ I t−∞, P(A) > 0, B ∈ I∞
t+ j }.

β( j) ≡ sup
t

E sup{|P(B|I t−∞)− P(B)| : B ∈ I∞
t+ j }.

The process {Zt }∞t=−∞ is called uniform mixing if φ( j) → 0 as j → ∞; is
β-mixing or absolutely regular if β( j) → 0 as j → ∞. The well-known rela-
tion is: β( j) ≤ φ( j). There exist random sequences which are β-mixing but not
uniform mixing; see Bradley (1986), Doukhan (1994) and White (2004) for details.
Many nonlinear Markov processes have been shown to satisfy stationary β-mixing
with exponential decay rates (i.e., β( j) ≤ β0 exp(−cj) for some β0, c > 0); see,
e.g., Chen (2011) for a long list of many econometrics time series models that are
beta mixing.
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Example 2.1 (Semiparametric additive AR(p) mean regression): suppose that the
time series data {Yt }n

t=1 is generated according to

Yt =
p1∑

i=1

Yt−iθ0,i +
p∑

i=p1+1

h0,i−p1(Yt−i )+ et , E[et |Yt−i , 1 ≤ i ≤ p] = 0.

The parameters of interest are θ ≡ (θ1, · · · , θp1)
′ ∈ 
 and h(·) = (h1(·), · · · , h p−p1

(·)) ∈ H, where
 = (−1, 1)p1 , and H = H1×···×Hp−p1 , Hl = W ml,1,ml,2([0, 1])
is a Sobolev space with degree of smoothness ml,1 measured by Lml,2 (leb) norm (see,
Adams 1975). Let α0 = (θ0, h0) ∈ A = 
× H.

Denote X1,t ≡ (Yt−1, · · ·,Yt−p1)
′ and η0(X2,t ) = ∑p

l=p1+1 h0,l−p1(Yt−l).

Let Ln(α) = n−1 ∑n
t=1 �(α, Zt ), �(α, Zt ) = − 1

2

[
Yt − X ′

1,tθ − η(X2,t )
]2

. Let

L̃n(α) = Ln(α) − ∑p−p1
l=1 λn,l Jl(α), where Jl(α) =

[∫ 1
0 |∇ml,1 hl(x)|ml,2 dx

]1/ml,2

with ml,1 > 1 and ml,2 ≥ 1. Then α̂n = (θ̂ , ĥ) ∈ A that solves L̃n (̂αn) ≥
supα∈A L̃n(α) − op(1) becomes the penalized Least Squares estimator of α0. To
implement this, we can use wavelet to represent any functions in H. The theory of
this chapter can be applied to derive the convergence rate of ĥ, the root-n asymptotic
normality of θ̂ , and a consistent estimate of its asymptotic variance.

Example 2.2 (Non-parametric ARX(p,q) quantile regression): suppose {Yt }n
t=1 is

generated according to:

Yt = h0(Yt−1, · · · ,Yt−p1 , Xt , · · · , Xt−p2+1)+ et

with : E
[
τ − I {et ≤ 0}| Yt−1, · · · ,Yt−p1 , Xt , · · · , Xt−p2+1

] = 0. (2)

The function h0 : Rp1 ×Rdx p2 → R is the parameter of interest, where p1, p2, dx ≥
1 are fixed and known integers. {Yt } is stationary β-mixing under certain conditions
on h0, {Xt } and {et }. Let d ≡ p1 + dx p2. Suppose h0 ∈ H = W m,p([b1, b2]d)

(Sobolev space).

Previously Koenker et al. (1994) estimated a nonparametric quantile regression
with i.i.d. data via the penalized smoothing spline technique. Chen and White (1999)
estimated this time series quantile model via neural network sieve M estimation.
Let Zt = (Yt ,Wt ) and Wt = (Yt−1, · · · ,Yt−p1 , Xt , · · · , Xt−p2+1). Let L̃n(h) =
n−1 ∑n

t=1 �(h, Zt ) − λn J (h), where �(h, z) = [1(y < h(w))− τ ] (y − h(w)) and

J (h) = [∫ |h([m])(w)|pdw
]1/p

with m ≥ 1,min(p, 2) × m > d. Then ĥ ∈ H that
solves L̃n (̂hn) ≥ suph∈H L̃n(h)− op(1) becomes the penalized quantile regression
estimator of h0. To implement this, we can use Fourier series, spline, or wavelet to
represent any functions in H. The theory of this chapter can be applied to derive the
convergence rate of ĥn , and the root-n asymptotic normality of plug-in penalized
estimate ρ(̂hn) of any regular functionals ρ(h0).
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3 Convergence Rate of the Penalized M Estimate

For simplicity we let the parameter space (A, d) be a Banach space, and J (α) be
a semi-norm type of smoothness penalty such that λn J (α) 
 J (λnα) ≥ 0. In this
section, we establish the convergence rate (in d(·, ·)) of the approximate penalized
M estimate with dependent data. We first provide a set of sufficient conditions.

Condition 3.1 (Dependence) {Zt }n
t=1 is a strictly stationary process that is either

uniform mixing with φ( j) ≤ φ0 j−
 for some φ0 > 0, 
 > 2, or β-mixing with
β( j) ≤ β0 j−
 for some β0 > 0, 
 > 2.

Condition 3.2 (Identification) There exist finite constants c0 > 0, γ1 > 0 such that
for all small δ > 0,

inf
{d(α0,α)≥δ,α∈A}

K (α0, α) ≥ c0δ
2γ1 . (3)

In the following, for any finite positive constants δ1 and δ2 ≥ 1, we denote

Aδ1,δ2 ≡ {α ∈ A : δ1/2 ≤ d(α0, α) ≤ δ1, J (α) ≤ δ2}
and Fδ1,δ2 ≡ {�(α, Z)− �(α0, Z) : α ∈ Aδ1,δ2}.

Condition 3.3 (Variance) There exist finite constants c1 > 0 and γ2 ∈ [0, 1) such
that for all finite δ1 > 0 and δ2 ≥ 1,

sup
α∈Aδ1,δ2

n−1Var

[
n∑

t=1

(�(α, Zt )− �(α0, Zt ))

]
≤ c1δ

2γ1
1 [1 + (δ

2γ1
1 + δ2)

γ2 ].

Condition 3.4 (Tails behavior) There exist finite constants c2 > 0, γ3 ∈ (0, 2γ1),
γ4 ∈ [0, 1) and a random variable U (Z) such that for all finite δ1 > 0 and δ2 ≥ 1,

sup
α∈Aδ1,δ2

|�(α, Z)− �(α0, Z)| ≤ c2U (Zt )δ
γ3
1 δ

γ4
2

with E [{U (Z)}γ5 ] < ∞ for some γ5 > 2.

Let G = {g(α, Z) : α ∈ A} be a class of measurable functions mapping A×Z to
R such that E[g(α, Z)]2 is finite for all α ∈ A. Let ‖·‖2 be the L2-norm on G, i.e.,
for any g(α1, z), g(α2, z) ∈ G,

||g(α1, Z)− g(α2, Z)| |2 =
[

E |g(α1, Z)− g(α2, Z)|2
]1/2

.

Let L2 be the completion of G under ‖·‖2. We use the bracketing average L2
metric entropy to measure the size of G (see, e.g., Pollard 1984), that is, for any
given ε > 0, suppose there exists S(ε, N ) = {gl

1, g
u
1 , · · · , gl

N , g
u
N } ⊂ L2 such that

max1≤ j≤N ‖gu
j − gl

j‖2 ≤ ε and for any g ∈ G, there exists a j ∈ {1, · · · , N } with
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gl
j ≤ g ≤ gu

j almost surely, then H[](ε,G) = log(min{N : S(ε, N )}) is the bracket-
ing L2 metric entropy of the space G, i.e., the logarithm of the minimal cardinality
of ε-covering of the space G in the L2 metric with bracketing.

Let J (α0) < ∞, J0 ≡ max(J (α0), 1) and Fδ1,δ2 ≡ {�(α, Z) − �(α0, Z) : α ∈
Aδ1,δ2}.
Condition 3.5 (Size of the space) There exists some εn ∈ (0, 1) such that λn J0 ≤
c3ε

2γ1
n and

εn = inf

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
ε > 0 : sup

{δ1≥1,δ2≥1}

aεγ1 (δ
2γ1
1 +δ2)

(1+γ2)/2∫
bλn(δ

2γ1
1 +δ2)

H1/2
[] (w,Fδ1,δ2)dw

λn(δ
2γ1
1 + δ2)

≤ c4n
1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

for some constants a, b, c3, c4 > 0.

Condition 3.1 assumes that the data is mixing and imposes the decay rate on the
weak dependence. Condition 3.2 is the identifiable uniqueness condition. Similar
condition is used in White and Wooldridge (1991) to show the consistency of the
sieve M estimates. In most applications, we can choose d(α0, α) = K 1/2(α0, α) and
γ1 = 1 and then Condition 3.2 becomes the case considered in Shen (1998) for i.i.d.
data. Condition 3.3 generalizes Assumption B in Shen (1998) for i.i.d. data to time
series setting. Condition 3.4 relaxes the strong exponential thin tail Assumption C
in Shen (1998) in order to allow for a wide range of semi-nonparametric time series
applications. It is similar to the polynomial tail condition A.4 imposed in Chen and
Shen (1998) for sieve M estimation of time series models. Condition 3.5 is similar
to Assumption D in Shen (1998), which measures the complexity of the cell spaces
Fδ1,δ2 .

In the following we let P∗ (·) denote the outer measure (see, Pollard 1984).

Theorem 3.6 Suppose that Conditions 3.1–3.5 hold. Then there exist finite constants
d1, d2, d3 > 0 such that for all large x ≥ 1 and for all integer n,

P∗
(

sup
{d(α0,α)≥xεn ,α∈A}

[
L̃n(α)− L̃n(α0)

] ≥ −(xεn)
2γ1/2

)
≤ ηn(x), with

ηn(x) ≡ d1

exp(cx2γ1(1−γ2)nλ2
nε

−2γ1
n )

+ d2

(x(2γ1−γ3)λn)1+
 n

+ d3ε

γ3γ5
n

(x(2γ1−γ3)λn)γ5 nγ5/2
.

(4)

Hence for the penalized M estimate defined in (1) with an = o(ε2γ1
n ), we have for all

x ≥ 1,
P (d(α0, α̂n) ≥ xεn) ≤ ηn(x).
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We next show that the penalized M estimate falls into the set {α ∈ A : J (α) ≤
[1 + o(1)]J (α0)} with probability approaching 1.

Theorem 3.7 Let conditions in Theorem 3.6 hold. For any 0 < δ < 1/4, if (1 −
δ)(xεn)

2γ1 ≤ λn, then: Pr [J (̂αn) ≥ (1 + 4δ)J0] ≤ ηn(x).

Theorem 3.7 indicates that the penalized M estimation is effectively equivalent to
the infeasible constrained M estimation over the subspace {α ∈ A : J (α) ≤ cJ (α0)}
where c is some large but finite positive constant.

Applying Theorems 3.6 and 3.7, we immediately obtain the following Corollary.

Corollary 3.8 Let conditions of Theorem 3.6 hold with γ1 = 1. If

min
{

nλ2
nε

−2
n , nλ2

nε
−2γ3
n , n
λ1+


n

}
≥ c > 0 as n → ∞,

then: (1) d(α0, α̂n) = Op(δn) with δn = max(εn, λ
1/2
n ); (2) J (̂αn) ≤ (1 + op(1))J0.

Remark 3.9 Corollary 3.8 implies that the convergence rate of the penalized M
estimator depends on the local entropy εn of the parameter space and the tuning
parameter λn . The optimal convergence rate is achieved by setting λn 
 ε2

n , and
the optimal rate is δn 
 εn . This result is very similar to Theorem 1 in Chen and
Shen (1998) for the convergence rate of sieve M estimator with dependent data. When
d(α0, α) = K 1/2(α0, α) (hence γ1 = 1), and the data {Zt } is i.i.d., our Corollary 3.8
becomes Corollary 2 in Shen (1998), except that we replace his strong exponential
thin tail Assumption C by the weaker polynomial tail Condition 3.4.

4 Asymptotic Normality of Plug-In Penalized M Estimates

Since α̂n is an approximate penalized M estimate over an infinite-dimensional func-
tion space, α̂n may not be a solution to �Ln(α) = 0, and hence we could not
follow the typical approach of Taylor expansion to derive the asymptotic normality
of ρ(̂αn)− ρ(α0).

Given the global convergence rate results in the previous section, to establish
the asymptotic normality of ρ(̂αn) − ρ(α0), it suffices to have “good” (to be more
precise below) linear approximations to Ln(α) − Ln(α0) and ρ(α) − ρ(α0) within
some shrinking neighborhood of α0.

Let (A, d) be a subspace of a certain normed linear space L equipped with an
inner product-induced norm ‖ · ‖ such that ‖α− α0‖ ≤ cd(α0, α) for some constant
c > 0 and that ‖α − α0‖ 
 K 1/2(α0, α) within a small d-neighborhood of α0. We
assume that there exists some local approximation of �(α, Z), i.e.,

�(α, Z) � �(α0, Z)+�(α0, Z)[α − α0] + r(α0, Z)[α − α0, α − α0]/2, (5)
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for all α in a shrinking neighborhood of α0, where�(α0, Z)[v] and r(α0, Z)[v1, v2]
are the (possibly smoothed) first and second pathwise derivatives of �(α, Z) w.r.t. α
in the direction v and (v1, v2), respectively. Suppose the functional of interest ρ(·)
has the following local linear approximation such that

|ρ(α)− ρ(α0)− ρ′
α0

[α − α0]| ≤ O(‖α − α0‖ω) as ‖α − α0‖ → 0, (6)

where ω is a positive number, ρ′
α0

[α − α0] is linear in (α − α0). We say that ρ(·) is
a regular functional if the following condition holds

‖ρ′
α0

‖ ≡ sup
{α∈A:‖α−α0‖>0}

∣∣ρ′
α0

[α − α0]
∣∣

‖α − α0‖ < ∞.

Let V be the Hilbert space generated by A − {α0} under the norm ‖ · ‖, with 〈·, ·〉
denoting the corresponding inner product. By the Riesz representation theorem, there
exists v∗ ∈ V such that

ρ′
α0

[v] = 〈v, v∗〉 for all v ∈ V,

and that ‖v∗‖ = ‖ρ′
α0

‖.
To derive the asymptotic normality for n1/2[ρ(̂αn)−ρ(α0)], we will approximate

ρ(̂αn)− ρ(α0) locally by a bounded linear functional 〈̂αn − α0, v
∗〉. The latter can

also be approximated by n−1 ∑n
t=1�(α0, Zt )[v∗], which is the local linear approxi-

mation to the random criterion difference of Ln (̂αn)− Ln (̂αn ± εnv
∗), provided that

α ± εnv
∗ ∈ A is a local alternative value of any α in a shrinking neighborhood of

α0, with εn = o(n−1/2).
Essentially, the penalty J (α), which controls the global properties of the esti-

mates, plays no role in the local approximation of the criterion difference within a
neighborhood of α0. However, to control the local behavior of the linear approxima-
tion of the criterion function with penalty, certain assumptions on J (α) and λn are
needed.

Let δn be the convergence rate of the approximate penalized M estimate under the
norm ‖ · ‖, i.e., ||̂αn − α0|| = Op(δn). Let C be a finite positive constant such that
C ≥ max{J (α0), J (v∗)} > 0. Denote

Nn ≡ {α ∈ A : ||α − α0|| ≤ δn log log n, J (α) ≤ C}

as a shrinking neighborhood of α0. Then α̂n ∈ Nn with probability approaching one
(wpa1). Let μn[ f (α, Z)] = n−1 ∑n

t=1 { f (α, Zt )− E [ f (α, Zt )]} be the empirical
process indexed by α. Denote u∗ = ±v∗ and εn = o(n−1/2). We now formulate the
set of regularity conditions.
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Condition 4.1 (Stochastic equicontinuity)

sup
α∈Nn

μn(�(α, Z)−�(α0, Z)[α − α0] − {�(α + εnu∗, Z)

−�(α0, Z)[α + εnu∗ − α0]}) = Op(ε
2
n)

Condition 4.2 (Expected value of criterion difference)

sup
α∈Nn

∣∣∣∣E[�(α, Z)− �(α + εnu∗, Z)] − ‖α + εnu∗ − α0‖2 − ‖α − α0‖2

2

∣∣∣∣ = O(ε2
n).

Condition 4.3 (Penalty) There is a finite constant c > 0 such that

J (α1 + α2) ≤ c × [J (α1)+ J (α2)] for any α1, α2 ∈ Nn;

In addition λn J (εnu∗) = O(ε2
n).

Condition 4.4 (Gradient) supα∈Nn
μn {�(α0, Z)[α − α0]} = Op(εn).

Condition 4.5 (CLT) n1/2μn {�(α0, Z)[v∗]} →d N (0, σ 2
v∗) with

σ 2
v∗ ≡ lim

n→∞ n−1V ar

(
n∑

t=1

�(α0, Zt )[v∗]
)

∈ (0,∞).

Condition 4.1 specifies linear approximation of the empirical criterion by its
derivative within a small neighborhood of α0. Condition 4.2 characterizes the
local quadratic behavior of the expected value of the criterion difference. When
A is an infinite-dimensional space, α̂n is often on the boundary of A, where interior
points of A with respect to ‖·‖ may not exist. The corresponding score function spec-
ified by the directional derivative evaluated at α̂n may not be close to zero when A is
very large. Conditions 4.3 and 4.4 are generalization of the usual assumption that α0
is an interior point of A. Condition 4.5 only requires a traditional finite-dimensional
CLT, which is weaker than the need of CLTs in an infinite-dimensional Hilbert space
[see, e.g., Chen and White (1998)]. Condition 4.5 is satisfied by many weakly depen-
dent data structures. For example, suppose that {Zt }∞t=1 is strictly stationary strong
mixing with mixing coefficients α(i) satisfying

∑∞
i=1[α(i)](q−2)/q < ∞ and that

�(α0, Z)[v∗] has finite qth moments (q > 2). Then Condition 4.5 is satisfied with

σ 2
v∗ = V ar(�(α0, Z)[v∗])+ 2

∞∑
j=2

Cov(�(α0, Z1)[v∗],�(α0, Z j )[v∗]).

Theorem 4.6 Suppose that Conditions 4.1–4.5 hold and ρ(·) satisfies (6) with ‖α̂n −
α0‖ω = oP (n−1/2). Then for the plug-in penalized M estimate ρ(̂αn), we have:
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√
n [ρ(̂αn)− ρ(α0)] →d N (0, σ 2

v∗).

This asymptotic normality result is very similar to that in Chen and Shen (1998)
and Chen (2007, Theorem 4.3) for plug-in sieve M estimates. In particular, both
estimators share the same asymptotic variance σ 2

v∗ for weakly dependent data. This
confirms the well-known result by Newey (1994) for i.i.d. data that the asymptotic
variances of

√
n-consistent semiparametric two-step estimators do not depend on the

choice of first step nonparametric estimators.

5 Consistent Estimation of the Long-Run Variance

In this section, we provide a consistent estimator for the LRV σ 2
v∗ of the plug-in

penalized M estimateρ(̂αn) of a regular functionalρ(α0). Using the expression in (5),
we define the norm ‖ · ‖ as ‖v‖2 = −E {r(Z , α0)[v, v]}. Let V be the Hilbert space
generated by A−α0 under the norm ‖ · ‖ with the corresponding inner product 〈·, ·〉.
Let Vn be a kn−dimensional Hilbert space under the norm ‖ · ‖ that becomes dense
in V as kn → ∞. We compute a sieve Riesz representor v∗

n ∈ Vn as

ρ′
α0

[v∗
n ] = ‖v∗

n‖2 ≡ sup
v∈Vn ,v �=0

∣∣ρ′
α0

[v]∣∣2
‖v‖2 < ∞.

Then by the property of Hilbert space we have: ‖v∗
n‖2 ↗ ‖v∗‖2 and ‖v∗

n − v∗‖ → 0
as kn → ∞.

We can define an empirical seminorm as ‖v‖2
n = −1

n

∑n
t=1 r(Z , α̂n)[v, v] for

all v ∈ V . Using the empirical seminorm ‖ · ‖n we can define an empirical Riesz
representor v̂∗

n as

ρ ′̂
αn

[̂v∗
n ] = ‖̂v∗

n‖2
n ≡ sup

v∈Vn ,v �=0

|ρ ′̂
αn

[v]|2
‖v‖2

n
< ∞, (7)

Using the penalized M estimate α̂n and the empirical Riesz representor v̂∗
n , we

introduce an estimator of σ 2
v∗ as

σ̂ 2
n ≡

n−1∑
t=−n+1

K
(

t

mn

)
�n,t (̂αn)

[̂
v∗

n , v̂
∗
n

]
, (8)
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where

�n,t (̂αn)
[̂
v∗

n , v̂
∗
n

] =

⎧⎪⎪⎨
⎪⎪⎩

1
n

n∑
k=t+1

�(̂αn, Zk)[̂v∗
n ]�(̂αn, Zk−t )[̂v∗

n ] for t ≥ 0

1
n

n∑
k=−t+1

�(̂αn, Zk)[̂v∗
n ]�(̂αn, Zk+t )[̂v∗

n ] for t < 0
,

K (·) is some kernel density function and mn denotes its bandwidth. This estimator is
an extension of Newey and West (1987) or Andrews’ (1991) estimator for parametric
time series models to the penalized M estimation of semi-nonparametric time series
models.

We next present sufficient conditions for the consistency of σ̂ 2
n .

Condition 5.1 Let Wn = {v ∈ Vn : ||v| | = 1} and δv∗,n = o(1) be some positive
sequence.

(i) sup
α∈Nn ,v∈Wn

μn {r(Z , α) [v1, v2]} = Op(δv∗,n);

(ii) sup
α∈Nn ,v∈Wn

|E {r(Z , α) [v1, v2] − r(Z , α0) [v1, v2]}| = O
(
δv∗,n

) ;

(iii) supα∈Nn ,v∈Wn

∣∣ρ′
α[v] − ρ′

α0
[v]∣∣ = O(δv∗,n); (iv) ‖v∗

n − v∗‖ = O(πn).

Under Condition 5.1(i)–(iii), we can invoke Lemma 5.1 of Chen et al. (2011) to
deduce that ‖̂v∗

n − v∗
n‖ = Op(δv∗,n). By definitions of the Riesz representors v∗ ∈ V

and v∗
n ∈ Vn we have ρ′

α0
[v] = 〈v, v∗

n〉 = 〈v, v∗〉 for any v ∈ Vn . Hence we can
deduce that v∗ − v∗

n is orthogonal to Vn . This and Condition 5.1(iv) imply that

‖̂v∗
n − v∗‖2 = ‖̂v∗

n − v∗
n‖2 + ‖v∗

n − v∗‖2 = Op(δ
2
v∗,n + π2

n ). (9)

Denote δ∗n = max{δv∗,n, πn}, then it is clear that under Condition 5.1, v̂∗
n is a consis-

tent estimate of v∗ w.r.t. the norm ‖·‖ at the convergence rate δ∗n .

Condition 5.2 (i) There are r ∈ (2, 4] and p > r such that
∑∞

j=0 β( j)2(1/r−1/p) <

∞ and ‖�(α0, Z)[v∗]‖p < ∞; (ii) there is a finite constant c > 0 such that for

all v ∈ {Vn : ||v − v∗| | ≤ δ∗n log log n}, we have E
(
|�(α0, Z)[v − v∗]|2

)
≤

c‖v − v∗‖2; (iii) there is a finite constant c′ > 0 such that for all α ∈ Nn, we have

E

[
sup
v∈Wn

|�(Z , α)[v] −�(Z , α0)[v]|2
]

≤ c′‖α − α0‖2; (iv) mn(δn ∨ δ∗n) = o(1)

and n−1+2/r m2
n = o(1); (v) K (·) is symmetric, continuous at zero and satisfies

K (0) = 1, supx |K(x)| ≤ 1,
∫
R

|K(x)|dx < ∞ and
∫
R

|x |φ(x)dx < ∞ where
φ(x) is a nonincreasing function such that |K(x)| ≤ φ(x) for almost all x ∈ R.

Theorem 5.3 Suppose that Conditions 5.1 and 5.2 hold and that α̂n ∈ Nn with
probability approaching one. Then:
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σ̂ 2
n →p σ

2
v∗ . (10)

Using the results of Theorems 4.6 and 5.3, we can apply the Slutsky theorem to
deduce that

√
n [ρ(̂αn)− ρ(α0)]

σ̂n
=

√
n [ρ(̂αn)− ρ(α0)]

σv∗
σv∗

σ̂n
→d N (0, 1). (11)

It is clear that confidence intervals (CIs) of ρ(α0) can be constructed using the above
Gaussian approximation.

6 Conclusion

In this chapter and for semi-nonparametric time series models with stationary beta-
mixing observations, we provide a general theory on the convergence rate of penal-
ized M estimates and root-n asymptotic normality of plug-in penalized M estimates
of regular functionals. We establish these results under conditions similar to those
for sieve M estimates in Chen and Shen (1998) for time series data. Instead of impos-
ing the strong exponential thin tail condition as assumed in the existing theories on
penalized M estimation with i.i.d. data, we allow for polynomial tail of the centered
random criterion function, which is very important for time series applications. We
also present simple consistent estimates of LRVs of the penalized M estimates of reg-
ular functionals, which can be used to construct confidence intervals or Wald-based
tests.

We are working on various extensions. First, we plan to establish the asymp-
totic normality of the plug-in penalized M estimates of irregular (i.e., slower than
root-n estimable) functionals. Second, we could entertain semi-nonparametric time
series models with other types of temporal dependence properties, such as near
epoch dependent functions of mixing processes considered in White and Wooldridge
(1991).
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Appendix

The following Lemma is a useful exponential inequality for uniform mixing
processes, which is similar to Lemma 1 in Chen and Shen (1998, Appendix) for
beta-mixing processes.
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Lemma A.1 Let {Yt } be either m-dependent or uniform mixing. Suppose

σ 2 ≥ sup
f ∈F

n−1Var
[∑n

t=1
f (Zt )

]
and T ≥ sup

f ∈F
‖ f (Z)‖sup

and in addition, for any 0 < ξ < 1,

M ≤ ξσ 2/4,

and
σT 1/2∫

ξM/32

H1/2(u,F)du ≤ Mn1/2ξ3/2/210.

Then

P

(
sup
f ∈F

n−1
n∑

t=1

( f (Yt )− E f (Yt )) ≥ M

)

≤ 3c exp

(
−(1 − ξ)

nM2

2σ 2(1 + T ξ/12)

)
.

Proof of Theorem 3.6 We prove this theorem for beta-mixing processes, while the
proof for uniform-mixing case is the same except using Lemma A.1 instead of
Lemma 1 in Chen and Shen (1998). Without loss of generality, we assume that
x > 1, max{λn, εn} ≤ 1 and we use c to denote a generic positive finite constant.
Let �̃(α, Z) ≡ �(α, Z)− λn J (α). Denote

I = P∗
(

sup
{d(α0,α)≥xεn ,α∈A}

[
L̃n(α)− L̃n(α0)

] ≥ −(xεn)
2γ1/2

)

= P∗
(

sup
{d(α0,α)≥xεn ,α∈A}

{
μn

[
�̃(α, Z)− �̃(α0, Z)

]

+E
(
L̃n(α)− L̃n(α0)

)} ≥ −(xεn)
2γ1/2

)
.

Since

μn
[
�̃(α, Z)− �̃(α0, Z)

] = μn [�(α, Z)− �(α0, Z)] ,
E
(
L̃n(α)− L̃n(α0)

) = − [K (α0, α)+ λn(J (α)− J (α0))] ,

we have:

I = P∗
(

sup
{d(α0,α)≥xεn ,α∈A}

μn [�(α, Z)− �(α0, Z)]

≥ inf
{d(α0,α)≥xεn ,α∈A}

[K (α0, α)+ λn(J (α)− J (α0))] − (xεn)
2γ1/2

)
.
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For any i, j ∈ N+, define

Ai, j =
{
α ∈ A : 2i−1xεn ≤ d(α0, α) < 2i xεn and 2 j−1 J0 ≤ J (α) < 2 j J0

}
,

Ai,0 =
{
α ∈ A : 2i−1xεn ≤ d(α0, α) < 2i xεn and J (α) < J0

}
,

then it is clear that

⋃
j≥0

Ai, j =
{

2i−1xεn ≤ d(α0, α) < 2i xεn, α ∈ A
}
,

⋃
i≥1, j≥0

Ai, j = {d(α0, α) ≥ xεn, α ∈ A} (A.1)

and Ai1, j1 and Ai2, j2 are disjoint for any i1 �= i2 or j1 �= j2. By Condition 3.2 (with
c0 = 1 for notational simplicity), we have

inf
Ai, j

[K (α0, α)+ λn(J (α)− J (α0))] ≥ (2i−1xεn)
2γ1 + λn(2

j−1 − 1)J (α0)

and inf
Ai,0

[K (α0, α)+ λn(J (α)− J (α0))] ≥ (2i−1xεn)
2γ1 − λn J (α0), (A.2)

Hence

sup
Ai, j

[
L̃n(α)− L̃n(α0)

] ≤ sup
Ai, j

μn [�(α, Z)− �(α0, Z)]

−
[
(2i−1xεn)

2γ1 + λn(2
j−1 − 1)J (α0)

]
(A.3)

for j ≥ 1, and

sup
Ai,0

[
L̃n(α)− L̃n(α0)

] ≤ sup
Ai,0

μn [�(α, Z)− �(α0, Z)]

−
[
(2i−1xεn)

2γ1 − λn J (α0)
]
. (A.4)

Since x ≥ 1, J0λn ≤ c3(xεn)
2γ1 , max{λn, εn} ≤ 1, using the results in (A.1), (A.2),

(A.3) and (A.4), we can deduce that

I ≤
∞∑

i, j=1

P∗
(

sup
Ai, j

μn [�(α, Z)− �(α0, Z)] ≥ Mi, j

)

︸ ︷︷ ︸
I1

+
∞∑

i=1

P∗
(

sup
Ai,0

μn [�(α, Z)− �(α0, Z)] ≥ Mi

)

︸ ︷︷ ︸
I2

, (A.5)
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where Mi, j ≡ λn
2

[
(2i−1x)2γ1 + (2 j−1 − 1)J (α0)

]
and Mi ≡ c(2i−1xεn)

2γ1 . We
now bound the term I1 by modifying the proof of Theorem 3 in Chen and Shen
(1998, Appendix). Let Bn,i, j be some truncation sequence such that Bn,i, j → ∞,

Bn,i, jε
γ3
n → 0 and an1,i, j B2

n,i, jε
2γ3
n → 0 as n → ∞ for any fixed i and j , where

an1,i, j is defined later. Then we have

I1 ≤
∞∑

i, j=1

P∗
(

sup
Ai, j

μn
{
[�(α, Z)− �(α0, Z)] I (U ≤ Bn,i, j )

} ≥ Mi, j

)

+
∞∑

i, j=1

P∗
(

sup
Ai, j

μn
{
[�(α, Z)− �(α0, Z)] I (U > Bn,i, j )

} ≥ Mi, j

)

=
∞∑

i, j=1

I11,i, j +
∞∑

i, j=1

I12,i, j = I11 + I12. (A.6)

We use Lemma 1 in Chen and Shen (1998) (on beta mixing) to bound I11,i, j for any
fixed i and j . By Condition 3.3, we have

sup
Ai, j

n−1Var

[
n∑

t=1

(�(α, Zt )− �(α0, Zt ))

]

≤ v2
i, j ≡ c1(2

i xεn)
2γ1

[
1 + ((2i x)2γ1 + 2 j J0)

γ2
]
.

Under Condition 3.4 we have

sup
Ai, j

∥∥[�(α, Z)− �(α0, Z)] I (U ≤ Bn,i, j )
∥∥

sup ≤ Bn,i, j (2
i xεn)

γ3(2 j J0)
γ4 .

Denote Ti, j ≡ min{Bn,i, j (2i xεn)
γ3(2 j J0)

γ4 , 8/c1} and σ 2
i, j = v2

i, j Ti, j . We can
define an1,i, j = [nMi, j/(14Ti, j )] and an2,i, j = [n/(2an1,i, j )] = [7Ti, j/Mi, j ],
then it is easy to see that an1,i, j → ∞ and an2,i, j → ∞ as n → ∞, and
an2,i, j ≥ 6Ti, j/Mi, j . As J0λn ≤ c4(xεn)

2γ1 , we can deduce that Mi, j ≡ λn
2[

(2i−1x)2γ1 + (2 j−1 − 1)J (α0)
] ≤ ξσ 2

i, j/4 for some ξ ∈ (0, 1). By the definition
of εn and Condition 3.5 we have

∫ σi, j
√

Ti, j

bMi, j
H

1
2[] (u,Fi, j )du

Mi, j
≤ c

∫ aε
γ1
n (δ

2γ1
1 +δ2)

(1+γ2)/2

bλn(δ
2γ1
1 +δ2)

H
1
2[] (u,Fi, j )du

λn(δ
2γ1
1 + δ2)

≤ cn
1
2

where δ1 = 2i x , δ2 = 2 j J0 and Fi, j ≡ {�(α, Z) − �(α0, Z) : α ∈ Ai, j }. Now we
can invoke Lemma 1 in Chen and Shen (1998) to deduce that
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I11,i, j = P∗
(

sup
Ai, j

μn
{
[�(α)− �(α0)] I (U ≤ Bn,i, j )

} ≥ Mi, j

)

≤ 6 exp

{
−c

nM2
i, j

σ 2
i, j

[
1 + an1,i, j Ti, j

]
}

+ 2(an2,i, j − 1)β(an1,i, j )

≤ 6 exp

{
−cnλ2

n

[
(2i x)2γ1 + 2 j J (α0)

]1−γ2

ε
2γ1
n

}
+ 4β0n−
(Ti, j/Mi, j )

1+
 .

(A.7)

Using virtually the same arguments as in the proof of Theorem 3 in Chen and Shen
(1998, Appendix), we obtain

I11 ≤ 6
∞∑

i, j=1

exp

{
−cnλ2

nε
−2γ1
n

[
(2i x)2γ1 + 2 j J (α0)

]1−γ2
}

+ 4β0n−
λ−(1+
)
n x (γ3−2γ1)(1+
)εγ3(1+
)

n B1+

n,i, j

×
∞∑

i, j=1

[
(2i )γ3(2 j J0)

γ4

(2i )2γ1 + 2 j J (α0)

]1+


≤ d1 exp
{
−cx2γ1(1−γ2)nλ2

nε
−2γ1
n

}
+ d2x (γ3−2γ1)(1+
)n−
λ−(1+
)

n . (A.8)

To bound
∑∞

i, j=1 I12,i, j , following the proof of Theorem 3 in Chen and Shen (1998),

we can show that, with Mi, j ≡ λn
2

[
(2i−1x)2γ1 + (2 j−1 − 1)J (α0)

]
,

I12 ≤
∞∑

i, j=1

P∗
(

2

n

n∑
t=1

sup
Ai, j

|�(α, Z)− �(α0, Z)| I (U > Bn,i, j ) ≥ Mi, j

)

≤
∞∑

i, j=1

P∗
(

n∑
t=1

Ut I (Ut > Bn,i, j ) ≥ cnMi, j

(2i xεn)γ3(2 j J0)γ4

)

≤
∞∑

i, j=1

P∗
(

nμn
[
Ut I (Ut > Bn,i, j )

] ≥ c′ nλn

ε
γ3
n

[
(2i−1x)2γ1 + (2 j−1 − 1)J (α0)

]
(2i x)γ3(2 j J0)γ4

)

≤ c
∞∑

i, j=1

E

[∣∣nμn
[
Ut I (Ut > Bn,i, j )

]∣∣γ5

∣∣∣∣∣nλnε
−γ3
n

[
(2i x)2γ1 + 2 j J0

]
(2i x)γ3(2 j J0)γ4

∣∣∣∣∣
−γ5

]

≤ cnγ5/22γ5/2
(
ε
γ3
n n−1λ−1

n

)γ5
∞∑

i, j=1

∣∣∣∣∣
(2i x)γ3(2 j J0)

γ4[
(2i x)2γ1 + 2 j J (α0)

]
∣∣∣∣∣
γ5

≤ cx (γ3−2γ1)γ5(n− 1
2 λ−1

n ε
γ3
n )

γ5 . (A.9)
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From the results in (A.8, A.9), we can deduce that

I1 ≤ d1

exp(cx2γ1(1−γ2)nλ2
nε

−2γ1
n )

+ d2

x (2γ1−γ3)(1+
)n
λ1+

n

+ d3ε
γ3γ5
n

x (2γ1−γ3)γ5 nγ5/2λ
γ5
n

≡ ηn(x).

I2 can be bounded by the same bound using virtually the same arguments. Hence,
we can deduce that I ≤ ηn(x). Finally, by definition of α̂n , we have for all x ≥ 1
and with an = o(ε2γ1

n ),

P (d(α0, α̂n) ≥ xεn) ≤ P∗
(

sup
{d(α0,α)≥xεn ,α∈A}

[
L̃n(α)− L̃n(α0)

] ≥ −an

)

≤ P∗
(

sup
{d(α0,α)≥xεn ,α∈A}

[
L̃n(α)− L̃n(α0)

] ≥ − (xεn)
2γ1

2

)

≤ ηn(x).

Proof of Theorem 3.7 For any x ≥ 1 and j ∈ N , define

A j =
{
α ∈ A : d(α0, α) < xεn and 2 j−1 J0 ≤ J (α) < 2 j J0

}
,

A0 = {α ∈ A : d(α0, α) < xεn and J (α) < J0} .

First note that

Pr

[
J (̂αn) ≥

[
λn + δ(xεn)

2γ1
]

J (α0)

λn − δ(xεn)2γ1

]

≤ Pr
{
λn [J (̂αn)− J (α0)] ≥ δ(xεn)

2γ1 [J (̂αn)+ J (α0)]
}
. (A.10)

By definition of α̂n , we have:

μn [�(̂αn)− �(α0)] ≥ λn [J (̂αn)− J (α0)] + K (α0, α̂n)− an,

which and (A.10) imply that

Pr

[
J (̂αn) ≥

[
λn + δ(xεn)

2γ1
]

J (α0)

λn − δ(xεn)2γ1

]
≤ I3 + Pr {d(α0, α̂n) ≥ xεn} ,
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where

I3 = Pr

[
μn[�(̂αn)− �(α0)] ≥ δ(xεn)

2γ1 [J (̂αn)+ J (α0)] + K (α0, α̂n)

− an, d(α0, α̂n) ≤ xεn

]
.

By Condition 3.2,

inf
α∈A j

[
K (α0, α)+ δ(xεn)

2γ1(J (α)+ J (α0))
]

≥ M j

where M j = 2 jδ(xεn)
2γ1 J0, hence we get

I3 ≤
∞∑
j=1

Pr

{
sup
A j

μn
[
[�(α)− �(α0)] I (U ≤ B j,n)

] ≥ M j

}

+
∞∑
j=1

Pr

{
sup
A j

μn
[
[�(α)− �(α0)] I (U > B j,n)

] ≥ M j

}
.

Using the same arguments as in the proof of Theorem 3.6, we can show that I3 ≤
ηn(x). By Theorem 3.6, we also have: Pr {d(α0, α̂n) ≥ xεn} ≤ ηn(x). Based on the
above results, we can deduce that

Pr

[
J (̂αn) ≥ λn + δ(xεn)

2γ1

λn − δ(xεn)2γ1
J (α0)

]
≤ ηn(x). (A.11)

Under 0 < δ < 1/4 and (1 − δ)(xεn)
2γ1 ≤ λn ,

λn + δ(xεn)
2γ1

λn − δ(xεn)2γ1
= 1 + 2δ

λn/(xεn)2γ1 − δ
≤ 1 + 2

1 − 2δ
δ < 1 + 4δ. (A.12)

The claimed result now follows from (A.11) and (A.12). �

Proof of Theorem 4.6 In the following we denote R[α − α0, z] ≡ �(α, z) −
�(α0, z) − �(α0, z)[α − α0] and α∗(α, εn) = α + εnu∗ ∈ A with u∗ = ±v∗
and εn = o(n−1/2). By the definition of the penalized extremum estimator, we have
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− Op(ε
2
n) ≤ n−1

n∑
t=1

[
�(̂αn, Zt )−�(α∗(̂αn, εn), Zt )

]−λn
[
J (̂αn)−J (α∗(̂αn, εn))

]

= E[�(̂αn, Zt )− �(α∗(̂αn, εn), Zt )] + μn
(
�(α0, Z)[̂αn − α∗(̂αn, εn)]

)
+μn

(
R[̂αn − α0, Z ] − R[α∗(̂αn, εn)− α0, Z ])

+λn
[
J (̂αn + εnu∗)− J (̂αn)

]
≤ εn

[〈̂αn − α0, u∗〉 − μn
(
�(α0, Z)[u∗])] + Op(ε

2
n)+ λn J (εnu∗)

= εn
[〈̂αn − α0, u∗〉 − μn

(
�(α0, Z)[u∗])] + Op(ε

2
n) (A.13)

where the last equality is by Condition 4.1–4.4. By the definition of u∗, the inequality
in (A.13) implies that

∣∣〈̂αn − α0, v
∗〉 − μn

(
�(α0, Z)[v∗])∣∣ = Op(εn). (A.14)

On the other hand, using (6) and the assumption on the convergence rate, we can
deduce that

√
n [ρ(̂αn)− ρ(α0)] = √

nρ′
α0

[̂αn − α0] + oP (1) = √
n〈̂αn − α0, v

∗〉 + oP (1).
(A.15)

The claimed result in Theorem 4.6 now follows from (A.14), (A.15) and the
Condition 4.5. �

Proof of Theorem 5.3 This Theorem is proved by following similar arguments in
Chen et al. (2011) for sieve semiparametric two-step GMM estimators with depen-
dent data. See their paper for more details. Denote

σ̃ 2
v∗ ≡

n−1∑
t=−n+1

K
(

t

mn

)
�n,t (α0)

[
v∗, v∗] ,

then by the triangle inequality, we have

∣∣∣̂σ 2
n − σ 2

v∗
∣∣∣ ≤

∣∣∣̂σ 2
n − σ̃ 2

v∗
∣∣∣ +

∣∣∣̃σ 2
v∗ − E

[
σ̃ 2
v∗
]∣∣∣ +

∣∣∣E [
σ̃ 2
v∗
]

− σ 2
v∗
∣∣∣ . (A.16)

First note that by the triangle inequality

∣∣∣E [
σ̃ 2
v∗
]

− σ 2
v∗
∣∣∣

≤ 1

n

n−1∑
t=0

∣∣∣∣K
(

t

mn

)
− 1

∣∣∣∣
n∑

k=t+1

∣∣E {
�(α0, Zk)[v∗]�(α0, Zk−t )[v∗]}∣∣

+1

n

−1∑
t=−n+1

∣∣∣∣K
(

t

mn

)
− 1

∣∣∣∣
n∑

k=−t+1

∣∣E {
�(α0, Zk)[v∗]�(α0, Zk+t )[v∗]}∣∣ ,
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where

∣∣E {
�(α0, Zk)[v∗]�(α0, Zk−t )[v∗]}∣∣ ≤ 6β

2
(

1
2 − 1

p

)
i

∥∥�(α0, Zk)[v∗]∥∥2
p ≤ cβ

2
(

1
r − 1

p

)
i

for the beta mixing process. Thus we can deduce that

∣∣∣E [
σ̃ 2
v∗
]

− σ 2
v∗
∣∣∣ ≤ 2c

n−1∑
i=0

∣∣∣∣K
(

i

mn

)
− 1

∣∣∣∣β
2
(

1
r − 1

p

)
i → 0 (A.17)

where the last result is by Condition 5.2(i) and the dominated convergence theorem.
For the second term at the right-hand side of inequality (A.16), note that by

Minkowski’s inequality

∥∥∥σ̃ 2
v∗ − E

[
σ̃ 2
v∗
]∥∥∥

r/2
≤

n−1∑
t=−n+1

∣∣∣∣K
(

t

mn

)∣∣∣∣ ∥∥�n,t (α0)
[
v∗, v∗]

−E
[
�n,t (α0)

[
v∗, v∗]]∥∥

r/2

≤ cm2
nn−1+ 2

r

n−1∑
t=−n+1

∣∣∣∣K
(

t

mn

)∣∣∣∣ 1

mn
= o(1), (A.18)

where the second inequality follows from Lemma 2 in Hansen (1992) and the proof
of Theorem 2 in Jong (2000), and the last equality is by Condition 5.2(iv)(v):

m2
nn−1+ 2

r = o(1) and
∑n−1

t=−n+1

∣∣∣K (
t

mn

)∣∣∣ 1
mn

≤ ∫
R |K (x)| dx < ∞. Now, the

result in (A.18) implies that

∣∣∣̃σ 2
v∗ − E

[
σ̃ 2
v∗
]∣∣∣ = op(1) (A.19)

We next deal with the first term at the right-hand side of inequality (A.16). First
by the triangle inequality, we have

∣∣∣̂σ 2
n − σ̃ 2

v∗
∣∣∣ ≤

n−1∑
t=−n+1

∣∣∣∣K
(

t

mn

)∣∣∣∣ ∣∣�n,t (̂αn)
[̂
v∗

n , v̂
∗
n

] − �n,t (α0)
[̂
v∗

n , v̂
∗
n

]∣∣

+
n−1∑

t=−n+1

∣∣∣∣K
(

t

mn

)∣∣∣∣ ∣∣�n,t (α0)
[̂
v∗

n , v̂
∗
n

] − �n,t (α0)
[
v∗, v̂∗

n

]∣∣

+
n−1∑

t=−n+1

∣∣∣∣K
(

t

mn

)∣∣∣∣ ∣∣�n,t (α0)
[
v∗, v̂∗

n

] − �n,t (α0)
[
v∗, v∗]∣∣

≡ I1,n + I2,n + I3,n . (A.20)
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For I3,n , note that

E
∣∣�n,t (α0)

[
v∗, v̂∗

n

] − �n,t (α0)
[
v∗, v∗]∣∣

≤ 1

n

n∑
k=t+1

E
∣∣�(α0, Zk−t )[v∗]�(α0, Zk)[̂v∗

n − v∗]∣∣

≤ n − i

n

∥∥�(α0, Zk−t )[v∗]∥∥2

∥∥�(α0, Zk)[̂v∗
n − v∗]∥∥2 , (A.21)

where the last inequality is by the Hölder inequality. Now using (A.21), the conver-
gence rate of v̂∗

n and Condition 5.2 (ii), we have

∣∣|I3,n
∣∣ |1 ≤ cmnδ

∗
n

n−1∑
i=−n+1

∣∣∣∣K
(

i

mn

)∣∣∣∣m−1
n ≤ cmnδ

∗
n

∫
R

|K (x)| dx = o(1).

(A.22)
Using similar arguments, we can show that

∣∣|I2,n
∣∣ |1 ≤ cmnδ

∗
n

n−1∑
i=−n+1

∣∣∣∣K
(

i

mn

)∣∣∣∣m−1
n ≤ cmnδ

∗
n

∫
R

|K (x)| dx = o(1).

(A.23)
Finally, we bound I1,n . Since

�n,t (α)
[̂
v∗

n , v̂
∗
n

] =

⎧⎪⎪⎨
⎪⎪⎩

1
n

n∑
k=t+1

�(α, Zk)[̂v∗
n ]�(α, Zk−t )[̂v∗

n ] for t ≥ 0

1
n

n∑
k=−t+1

�(α, Zk)[̂v∗
n ]�(α, Zk+t )[̂v∗

n ] for t < 0
,

we have that for t ≥ 0,

∣∣�n,t (̂αn)
[̂
v∗

n , v̂
∗
n

] − �n,t (α0)
[̂
v∗

n , v̂
∗
n

]∣∣
≤ 1

n

n∑
k=t+1

∣∣�(̂αn, Zk)[̂v∗
n ]�(̂αn, Zk−t )[̂v∗

n ] −�(α0, Zk)[̂v∗
n ]�(α0, Zk−t )[̂v∗

n ]∣∣

By the triangle inequality, Cauchy–Schwarz inequality and Minkowski inequality,
we have uniformly in t ≥ 0,
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∣∣�n,t (̂αn)
[̂
v∗

n , v̂
∗
n

] − �n,t (α0)
[̂
v∗

n , v̂
∗
n

]∣∣
≤ 1

n

n∑
k=1

∣∣�(̂αn, Zk)[̂v∗
n ] −�(α0, Zk)[̂v∗

n ]∣∣2

+2

√√√√1

n

n∑
k=1

∣∣�(̂αn, Zk)[̂v∗
n ] −�(α0, Zk)[̂v∗

n ]∣∣2
√√√√1

n

n∑
k=1

∣∣�(α0, Zk)[̂v∗
n − v∗]∣∣2

+2

√√√√1

n

n∑
k=1

∣∣�(̂αn, Zk)[̂v∗
n ] −�(α0, Zk)[̂v∗

n ]∣∣2
√√√√1

n

n∑
k=1

|�(α0, Zk)[v∗]|2

= Op(δ
2
n)+ Op(δn × δ∗n)+ Op(δn)

where the last equality is due to Condition 5.2 (i)–(iii) and the Markov inequality.
Similarly we get the same probability bound uniformly in t < 0. Hence,

sup
t

∣∣�n,t (̂αn)
[̂
v∗

n , v̂
∗
n

] − �n,t (α0)
[̂
v∗

n , v̂
∗
n

]∣∣ = Op(δn). (A.24)

Using (A.24), we get

I1,n ≤ mn Op(δn)

n−1∑
i=−n+1

∣∣∣∣K
(

i

mn

)∣∣∣∣ 1

mn
≤ mn Op(δn)

∫
R

|K (x)| dx = op(1).

(A.25)
From (A.20), (A.22), (A.23) and (A.25), we can deduce that

∣∣̂σ 2
n − σ̃ 2

v∗
∣∣ = op(1),

which together with the results in (A.17) and (A.19), gives the claimed result.
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Accuracy Comparison Testing, with an
Extension to Stochastic Dominance

Valentina Corradi and Norman R. Swanson

Abstract In recent years, an impressive body of research on predictive accuracy
testing and model comparison has been published in the econometrics discipline. Key
contributions to this literature include the paper by Diebold and Mariano (J Bus Econ
Stat 13:253–263, 1995) which sets the groundwork for much of the subsequent work
in the area, West (Econometrica 64:1067–1084, 1996) who considers a variant of
the DM test that allows for parameter estimation error in certain contexts, and White
(Econometrica 68:1097–1126, 2000) who develops testing methodology suitable for
comparing many models. In this chapter, we begin by reviewing various key testing
results in the extant literature, both under vanishing and non-vanishing parameter
estimation error, with focus on the construction of valid bootstrap critical values
in the case of non-vanishing parameter estimation error, under recursive estimation
schemes, drawing on Corradi and Swanson (Int Econ Rev 48:67–109, 2007a). We
then review recent extensions to the evaluation of multiple confidence intervals and
predictive densities, for both the case of a known conditional distribution Corradi and
Swanson (J Econ 135:187–228, 2006a; Handbook of economic forecasting Elsevier,
Amsterdam, pp 197–284) and of an unknown conditional distribution. Finally, we
introduce a novel approach in which forecast combinations are evaluated via the
examination of the quantiles of the expected loss distribution. More precisely, we
compare models looking at cumulative distribution functions (CDFs) of prediction
errors, for a given loss function, via the principle of stochastic dominance, and we
choose the model whose CDF is stochastically dominated, over some given range of
interest.
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1 Introduction

One of the key contributions permeating the econometric research of Halbert White
is the development of statistical tools for specification, estimation, and inference
with possibly misspecified models. His main message is that, even though models
are merely (crude) approximations to reality, important things can be learned from
carrying out inference and generally analyzing “wrong” models. Certainly, the notion
of misspecification is absolutely crucial in the context of out-of-sample prediction.
After all, if one is carrying out a predictive accuracy assessment in order to “choose”
between two competing models, then, at the very least, one of the models is probably
misspecified.

In this chapter, we begin by assuming that we are given multiple predictions,
arising from multiple different models. Our objective is either to select the model(s)
producing the more accurate predictions, for a given loss function, or alternatively,
to eliminate the models giving the least accurate predictions. Furthermore, in many
such situations, we can choose a benchmark or reference model. This can be a model
suggested by economic theory, can be the winner of past competitions, or can simply
be a model commonly used by practitioners. The key challenge in this case is to assess
whether there exists a competing model that outperforms the benchmark. However,
if we sequentially compare the reference model with each of its competitors, we may
run into problems. In fact, as the number of competitors increases, the probability
of picking an alternative model just by “luck”, and not because of its intrinsic merit,
increases and eventually will reach one. This is the well-known problem of data
mining or data snooping.

The starting point for our discussion is Diebold and Mariano (1995), who develop
the “workhorse” of predictive accuracy tests. Two models are compared by assessing
their relative predictive losses, given a particular loss function. Assuming that para-
meter estimation error vanishes asymptotically and that the models are nonnested
ensures that the DM test is asymptotically normally distributed, regardless of whether
or not the loss function is differentiable.1 West (1996) allows for non-vanishing para-
meter estimation error in the DM test, although at the cost of assuming differentia-
bility. In White (2000), a sequence of DM tests are constructed, and the supremum
thereof (called the reality check) is used to test whether a given “benchmark” model
is at least as accurate as all competitors. The null hypothesis is thus that no com-
peting model can produce a more accurate prediction than the benchmark model,
for a given loss function. The key contribution of White (2000) is that he recog-
nizes the importance of sequential test bias when comparing many (rather than two,
say) models, and he develops the asymptotic theory allowing for the valid construc-

1 For a discussion of nested models in the current context, see Clark and McCracken (2001); Corradi
and Swanson (2006b).
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tion of critical values for his reality check, using, for example, block bootstrap and
related bootstrap techniques. In related work, Corradi and Swanson (2006a,2006b
and 2007a,2007b) extend the reality check version of the DM test to the evaluation of
confidence intervals and predictive densities (rather than focussing on the evaluation
of point predictive loss measures). They additionally develop bootstrap techniques
for addressing parameter estimation error, and allow for the evaluation of condi-
tional distributions of both known and unknown functional form. By discussing all
of the above papers, we undertake to construct a path describing developments in the
predictive accuracy testing literature.

Of note is that if any of the above tests fail to reject the null hypothesis that no
competitor outperforms the benchmark model, the obvious consequence is to base
prediction only on the benchmark model. The tests, thus, are of a “model selection”
variety. This is somewhat in contrast with the alternative approach of using forecast
combination (see Elliott and Timmermann 2004) to construct “optimal” predictions.
In light of this observation, we conclude this chapter by proposing a new stochastic
dominance type test that combines features of DM and reality check tests with fore-
cast combination. In particular, we suggest a model selection method for selecting
among alternative combination forecasts constructed from panel of forecasters. More
broadly, we close by arguing that the notions of stochastic dominance discussed in
this context may have a variety of uses in the predictive accuracy testing literature.

Before turning to our discussion of the above tests, it is worth making two com-
ments that further underscore the sense in which the results of the above papers
build on one another. In particular, recall that the prediction errors used to construct
DM-type tests arise in at least two ways. First, there are situations in which we have
series of prediction errors, although we do not know the models used to generate
the underlying predictions. For example, this situation arises when we have fore-
casts from different agents, or professional forecasters. Alternatively, we may have
a sequence of Sharpe ratios or returns from different trading rules, as in the financial
applications of Sullivan et al. (1999, 2001). Second, there are situations in which
we are interested in comparing estimated models. For example, we may want to
decide whether to predict tomorrow’s inflation rate using an autoregressive model,
a threshold model, or a Markov switching model. The parameters of these models
are generally estimated. If the number of observations used to estimate the model is
larger than the number of observations used for forecast evaluation, or if the same
loss function is used for in-sample estimation and out-of-sample prediction (e.g.,
estimation by ordinary least squares (OLS) and a quadratic loss function), then the
contribution of estimated parameters can be ignored. Otherwise, it has to be taken
into account. Corradi and Swanson (2006a, 2007a) develop bootstrap procedures
which properly capture the contribution of parameter estimation error in the case of
rolling or recursive estimation schemes, respectively.

Additionally, and as mentioned above, DM- and reality check-type tests compare
point forecasts (and forecast errors) from two or multiple models, respectively. For
example, we may want to pick the model producing the most accurate point pre-
dictions of the inflation rate. However, there are situations in which we are instead
interested in finding the model producing the most accurate interval predictions (e.g.
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that inflation will be within a given interval). Predictive interval accuracy is partic-
ularly important in the management of financial risk in the insurance and banking
industries, where confidence intervals or entire conditional distributions are often
examined. Evaluation of Value at Risk and Expected Shortfall are two main exam-
ples (see Duffie and Pan (1997) for further discussion). Corradi and Swanson (2005,
2006a,b, 2007b) extend the DM and reality check tests to the case of intervals and
conditional distributions, using both simulated and historical data.

The rest of the chapter is organized as follows. In Sect. 2 we discuss the DM and
reality check tests, and outline how to construct valid bootstrap p-values in the case of
non-vanishing parameter estimation error, with both recursive and rolling estimation
schemes. In Sect. 3 we extend the DM and reality check tests to the evaluation of
multiple confidence intervals and predictive densities. Finally, in Sect. 4 we outline
a new technique that draws together concepts of forecast combination with multiple
model evaluation. Namely, we introduce a stochastic dominance-type approach in
which forecast combinations are evaluated via the examination of the quantiles of the
expected loss distribution. More precisely, we compare models by prediction error
CDFs, for given loss functions, via the principle of stochastic dominance, and we
choose the model whose CDF is stochastically dominated, over some given range of
interest.

2 DM and Reality Check Tests

2.1 The Case of Vanishing Estimation Error

We begin by outlining the DM (1995) and White (2000) tests, when parameter
estimation error is asymptotically negligible. Consider a collection of K +1 models,
where model 0 is treated as the benchmark or reference model and models k =
1, . . . , K compose the set of competing models. For the DM test, K = 1. For the
reality check, K > 1. The h-step ahead forecast error associated with model k, is
ui,t+h = yt+h − φk(Zt , θ†

k ). As θ†
k is unknown, we do not observe the prediction

error uk,t+h, but we only observe ûk,t+h = yt+h − φk(Zt , θ̂k,t ), where θ̂k,t is an
estimator of θ†

k based on observations available at time t.
The common practice in out-of-sample prediction is to split the total sample of

T observations into two subsamples of length R and P, with R + P = T . One uses
the first R observations to estimate a candidate model, and construct the first h-step
ahead prediction error. Then, one uses R + 1 observations to re-estimate the model
and compute the second h-step ahead prediction error, and so on, until one has a
sequence of (P − h + 1) h-step ahead prediction errors.2 If we use this recursive

2 Here, we use a recursive estimation scheme, where data up to time t ≥ R are used in estimation.
West and McCracken (1998) also consider a rolling estimation scheme, in which a rolling windows
of R observations is used for estimation.
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estimation scheme, at each step the estimated parameters are given by

θ̂k,t = arg max
θk

⎧⎨
⎩

1

t

t∑
j=1

qk, j
(
Xk,t , θk

)
⎫⎬
⎭ for t ≥ R, (1)

where qk, j can be thought of as the quasi-likelihood function associated with model
k.3 Under stationarity, θ†

k = arg maxθi E(qk, j
(
Xk,t , θk

)
.

Hereafter, for notational simplicity, we consider only the case of h = 1.
For a given loss function, g, the DM test evaluates the following hypotheses4:

H0 : E
(
g(u0,t+1)− g(u1,t+1)

) = 0

versus
HA : E

(
g(u0,t+1)− g(u1,t+1)

) �= 0.

If R → ∞ at a faster rate than P → ∞, as T → ∞, then, assuming that models
“0” and “1” are nonnested, the limiting distribution of

̂DM P = 1√
P

T −1∑
t=R

(
g(̂u0,t+1)− g(̂u1,t+1)

)
/σ̂S

is N (0, 1), when scaled appropriately by σ̂S, a heteroscedasticity and autocorrelation
consistent (HAC) estimation of the variance of 1√

P

∑T −1
t=R g(̂u0,t+1) − g(̂u1,t+1).

Evidently, ̂DM P is the HAC t-statistic associated with the intercept in a regression
of the loss differential series, g(̂u0,t+1)−g(̂u1,t+1), on a constant. For a discussion of
the limit distribution of this test statistic when the two forecasting models are nested,
see Clark and McCracken (2001). Note also that g need not be differentiable, unless
one wishes to adjust the limit distribution for the effect of parameter estimation
error in cases where P/R → π, as P, R, T − > ∞, 0 < π < ∞, as in West
(1996). Moreover, even if P/R → π, as P, R, T − > ∞, 0 < π < ∞, parameter
estimation error is asymptotic negligible whenever we use the same loss function for
in-sample estimation and out-of-sample prediction (see below for further discussion).

Now, for a given loss function, g, the reality check evaluates the following
hypotheses:

3 If we instead use a rolling estimation scheme, then

θ̃k,t = arg max
θk

⎧⎨
⎩

1

R

t∑
j=t−R+1

qk, j
(
Xk,t , θk

)
⎫⎬
⎭ R ≤ t ≤ T .

4 See Christoffersen and Diebold (1996, 1997) and Elliott and Timmermann (2004, 2005) for a
detailed discussion of loss functions used in predictive evaluation.
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H0 : max
k=1,...,K

E
(
g(u0,t+1)− g(uk,t+1)

) ≤ 0

versus
HA : max

k=1,...,K
E
(
g(u0,t+1)− g(uk,t+1)

)
> 0.

The null hypothesis is that no competing model outperforms the benchmark (i.e.,
model “0”), for a given loss function, while the alternative is that at least one com-
petitor outperforms the benchmark. By jointly considering all competing models, the
reality check controls the family-wise error rate (FWER), and circumvents so-called
“data snooping” problems. In fact, the test is designed to ensure that the probability
of rejecting the null when it is false is smaller than or equal to a fixed nominal level,α.
The reality check statistic is given by:

ŜP = max
k=1,...,K

ŜP (0, k), (2)

where

ŜP (0, k) = 1√
P

T −1∑
t=R

(
g(̂u0,t+1)− g(̂uk,t+1)

)
, k = 1, . . . , K .

Letting SP (0, k) = 1√
P

∑T −1
t=R

(
g(u0,t+1)− g(uk,t+1)

)
, it is immediate to see that,

ŜP (0, k)− SP (0, k) = E
(∇θ0g(u0,t+1)

) 1√
P

T∑
t=R+1

(
θ̂0,t − θ†

0

)

− E
(∇θkg(uk,t+1)

) 1√
P

T∑
t=R+τ

(
θ̂k,t − θ†

k

)
+ op(1). (3)

Now, if g = qk, then by the first-order conditions, E
(∇θkg(uk,t+1)

) = 0. Thus, if
we use the same loss function for estimation and prediction (e.g., we estimate the
model by OLS and use a quadratic loss function), then parameter estimation error is
asymptotically negligible. Furthermore, if P/R → 0, as P, R, T − > ∞ (i.e., the
sample used for estimation grows at a faster rate than the sample used for forecast
evaluation), then parameter estimation is again asymptotically negligible. Otherwise,
it has to be taken into account.

Proposition 2.2 in White (2000) establishes that

max
k=1,...,K

1√
P

T −1∑
t=R

((
g(̂u0,t+1)− g(̂uk,t+1)

)− μk
) d→ max

k=1,...,K
Zk,
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where μk = E
(
g(̂u0,t+1)− g(̂uk,t+1)

)
, Z = ( Z1, . . . , Zk)

	 is distributed as
N (0, V ) and V has typical element

v j,k = lim
P→∞ Cov

(
1√
P

T∑
t=R+τ

(
g(̂u0,t+1)− g(̂u j,t+1)

)
,

1√
P

T∑
t=R+τ

(
g(̂u0,t+1)− g(̂uk,t+1)

))
. (4)

Because the maximum of a Gaussian process is not a Gaussian process, the con-
struction of p-values for the limiting distribution above is not straightforward. White
proposes two alternatives: (i) a simulation-based approach and (ii) a bootstrap-based
approach. The first approach starts from a consistent estimator of V , say V̂ . Then,
for each simulation s = 1, . . . , S, we construct

d̂(s)P =
⎛
⎜⎝

d̂(s)1,P
...

d̂(s)K ,P

⎞
⎟⎠ =

⎛
⎝ v̂1,1 · · · v̂1,K

...
. . .

...
v̂K ,1 · · · v̂K ,K

⎞
⎠

1/2⎛
⎜⎝
η
(s)
1
...

η
(s)
K

⎞
⎟⎠ ,

where
(
η(s)1 , . . . , η(s)K

)	
is drawn from a N(0, IK ). Next, we compute maxk=1,...,K∣∣∣d̂(s)P

∣∣∣, and the (1−α)-percentile of its empirical distribution. This simulation- based

approach requires the estimation of V . Note that we can use an estimator of V
which captures the contribution of parameter estimation error, along the lines of
West (1996) and West and McCracken (1998). However, if K is large, and forecasting
errors exhibit a high degree of time dependence, estimators of the long-run variance
become imprecise and ill-conditioned, making inference unreliable, especially in
small samples. This problem can be overcome using bootstrap critical values.

White (2000) outlines the construction of bootstrap critical values when the con-
tribution of parameter estimation error to the asymptotic covariance matrix is asymp-
totically negligible. In this case, we resample blocks of g(̂u0,t+1) − g(̂uk,t+1) and,
for each bootstrap replication b = 1, . . . , B, calculate

Ŝ∗(b)
P (0, k) = 1√

P

T∑
t=R+τ

(
g∗(̂u0,t+1)− g∗(̂uk,t+1)

)

− (
g(̂u0,t+1)− g(̂uk,t+1)

)
.

Then, we compute the bootstrap statistic as maxk=1,...,K

∣∣∣Ŝ∗(b)
P (0, k)− ŜP (0, k)

∣∣∣
and the (1 − α)-percentile of the empirical distribution of B statistics is used for
inference. Evidently, the same approach discussed above can be used for the DM
test, although such is clearly not needed, given the earlier results discussed, in cases
where parameter estimation error vanishes asymptotically.
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Before turning to the issue of constructing DM and reality check p-values in the
case of non-vanishing parameter estimation error, it is worthwhile to review some
other recent developments in the reality check literature.5

2.1.1 Controlling for Irrelevant Models

From the statistic in (2), it is immediate to see that any model which is strictly
dominated by the benchmark does not contribute to the limiting distribution, simply
because it does not contribute to the maximum. On the other hand, all models con-
tribute to the limiting distribution of either the simulated or the bootstrap statistic.
Thus, by introducing irrelevant models, the overall p-value increases. In fact, for
a given level α, the probability of rejecting the null when it is false is α when all
models are as good as the benchmark (i.e. when E

(
g(u0,t+1)− g(uk,t+1)

) = 0 for
k = 1, . . . , K ), otherwise the probability of rejecting the null is smaller than α, and
decreases as the number of irrelevant models increases. While the reality check is
able to control the family-wise error rate, and so avoids the issue of data snooping,
it may thus be rather conservative.

For this reason, attempts have been made to modify the reality check in such a
way as to control for both the family-wise error rate and the inclusion of irrelevant
models. Hansen (2005) suggests a variant of the reality check, called the Superior
Predictive Ability (SPA) test, which is less sensitive to the inclusion of poor models
and thus less conservative. The SPA statistic is given by

TP = max

⎧⎨
⎩0, max

k=1,...,K

1√
P

∑T
t=R+τ d̂k,t√
v̂k,k

⎫⎬
⎭ ,

where d̂k,t = (
g(̂u0,t+1)− g(̂uk,t+1)

)
and v̂k,k is defined as in (4). The bootstrap

counterpart to TP at replication b, T ∗(b)
P is given by

T ∗(b)
P = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, max
k=1,...,K

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
P

T∑
t=R+τ

(
d̂∗(b)

k,t − d̂k,t 1{m̂k,P>−v̂k,k
√

2 ln ln P/P}
)

√
v̂k,k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Here, p-values for the SPA statistic are given by 1/B
∑B

b=1 1{
T ∗(b)

P >TP

}. The logic

underlying the construction of the SPA p-values is the following. When a model is
too slack, and so it does not contribute to TP , the corresponding bootstrap moment
condition is not recentered, and so the bootstrap statistic is also not affected by the

5 In the sequel, for ease of notation, the version of the DM test that we discuss will be ŜP (0, k),
with k = 1.
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irrelevant model. The fact that very poor models do not contribute to the bootstrap
p-values makes the SPA p-values less conservative than the reality check p -values.
Nevertheless, it cannot be established that the SPA test is uniformly more powerful
than the reality check test. Corradi and Distaso (2011), using the generalized moment
selection approach of Andrews and Soares (2010), derive a general class of superior
predictive accuracy tests, that control for FWER and for the contribution of irrelevant
models. They show that Hansen’s SPA belongs to this class. Additionally, Romano
and Wolf (2005) suggest a multiple step extension of the reality check which ensures
tighter control of irrelevant models. A review of alternative ways of controlling for the
overall error rate is provided in Corradi and Distaso (2011), and references contained
therein.

2.1.2 Conditional Predictive Ability

In the Diebold-Mariano framework, as well as in the reality check framework, model
k and model 0 are considered equally good, in terms of a given loss function,
g, if E

(
g
(
ut,0

)− g
(
ut,k

)) = 0. This is a statement about forecasting models. In
fact, the null hypothesis is evaluated at the “pseudo-true” value for the parameters.
Giacomini and White (2006) propose a novel approach in which model k and model
0 are considered equally good if E

(
g
(̂
ut,0

)− g
(̂
ut,k

) |Gt
) = 0, where Gt is an

information set, containing (part of) the history available up to time t . The two
key differences between unconditional and conditional predictive accuracy tests are:
(i) model comparison is based on estimated parameters in the GW approach, rather
than on their probability limits, and (ii) models in the GW approach are evaluated
according to the expected loss conditional on a given information set Gt , rather than
unconditionally. The above is a statement about forecasting methods rather than fore-
casting models. The notion is that not only the model, but also the way it is estimated
matters. Needless to say, if a large number of observations is used for estimation,
the estimated parameters get close to their probability limits. For this reason, GW
suggest using relatively short observation windows, whose length is fixed and does
increase with the sample size. In this way, estimated parameters can be treated as
strong mixing random variables.

Recall also that the ̂DM P is the HAC t-statistic associated with the intercept
in a regression of the loss differential series, g(̂u0,t+1) − g(̂u1,t+1), on a constant.
Evidently, DM and subsequent tests are easily made conditional by including other
conditioning variables in the regression.

2.2 Bootstrap Critical Values for Recursive Estimation Schemes

Whenever g �= qk, for at least some k, and P/R → π �= 0, then parameter esti-
mation error contributes to the variance of the limiting distribution of the DM and
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reality check tests. One reason for using a different loss function for estimation and
prediction occurs when, for example, we use OLS for estimation, but then we want
to use an asymmetric loss function which penalizes positive and negative errors in a
different manner, when comparing predictive accuracy (see Zellner 1986; Christof-
fersen and Diebold 1997). More specifically, when parameter estimation error does

not vanish, we need to take into account the contribution of 1√
P

∑T
t=R+τ

(
θ̂k,t − θ†

k

)
to the asymptotic variance in (4). Hence, we need a bootstrap procedure which is
valid for recursive m-estimators, in the sense that its use suffices to mimic the limiting

distribution of 1√
P

∑T −1
t=R

(
θ̂k,t − θ†

k

)
.

One approach to the above issue of parameter estimation error is to use the block
bootstrap for recursive m-estimators for constructing critical values. In this context, it
is important to note that earlier observations are used more frequently than temporally
subsequent observations, when forming test statistics. On the other hand, in the stan-
dard block bootstrap, all blocks from the original sample have the same probability
of being selected, regardless of the dates of the observations in the blocks. Thus, the
bootstrap estimator which is constructed as a direct analog of θ̂t is characterized by a
location bias that can be either positive or negative, depending on the sample that we
observe. In order to circumvent this problem, Corradi and Swanson (2007a) suggest
a recentering of the bootstrap score which ensures that the new bootstrap estimator,
which is no longer the direct analog of θ̂k,t , is asymptotically unbiased. It should be
noted that the idea of recentering is not new in the bootstrap literature for the case of
full sample estimation. In fact, recentering is necessary, even for first-order validity,
in the case of overidentified generalized method of moments (GMM) estimators (see
e.g. Hall and Horowitz 1996; Andrews 2002; Inoue and Shintani 2006). This is due
to the fact that, in the overidentified case, the bootstrap moment conditions are not
equal to zero, even if the population moment conditions are. However, in the context
of m−estimators using the full sample, recentering is needed only for higher order
asymptotics, but not for first-order validity, in the sense that the bias term is of smaller
order than T −1/2 (see e.g. Andrews 2002; Goncalves and White 2004). In the case
of recursive m−estimators, on the other hand, the bias term is instead of the order
T −1/2, so that it does contribute to the limiting distribution. This points to a need for
recentering when using recursive estimation schemes.

To keep notation simple, suppose that we want to predict, yt using one of its past
lags, and one lag of vector of additional variables, Xt , and let Zt = (yt , Xt ). Using
the overlapping block resampling scheme of Kunsch (1989), at each replication, we
draw b blocks (with replacement) of length l from the sample Wt = (yt , Zt−1),

where bl = T − 1. Let W ∗
t = (y∗

t , Z∗
t−1) denote the resampled observations. As

a bootstrap counterpart to θ̂k,t , Corradi and Swanson (2007a) suggest constructing
θ̂∗

k,t , defined as follows:
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θ̂∗
k,t = arg min

θk

1

t

t∑
j=1

(
qk(y

∗
j , Z∗

j−1, θk)− θ′
k

(
1

T

T −1∑
h=1

∇θk qk(yh, Zh−1, θ̂k,t )

))
,

(5)
where R ≤ t ≤ T − 1, k = 0, 1, . . . , K .

Note that θ̂∗
k,t is not the direct analog of θ̂k,t in (1). Heuristically, the additional

recentering term in (5) has the role of offsetting the bias that arises due to the fact
in the that earlier observations have the same chance of being drawn as tempo-
rally subsequent observations. Theorem 1 in Corradi and Swanson (2007a) estab-

lishes that the limiting distribution of 1√
P

∑T −1
t=R

(
θ̂∗

k,t − θ̂k,t

)
is the same as that

of 1√
P

∑T −1
t=R

(
θ̂k,t − θ†

k

)
, conditional on the sample, and for all samples except a

set with probability measure approaching zero. We can easily see how this result
allows for the construction of valid bootstrap critical values for the reality check. Let

ûk,t+1 = yt+1 −φk
(
Zt , θ̂k,t

)
and û∗

k,t+1 = y∗
t+1 −φk

(
Z∗

t , θ̂
∗
k,t

)
, so that the reality

check statistic ŜP is defined as in (2). The bootstrap counterpart of ŜP is given by

Ŝ∗
P = max

k=1,...,K
S∗

P (0, k),

where

Ŝ∗
P (0, k) = 1√

P

T −1∑
t=R

⎡
⎣(g(y∗

t+1 − φ0(Z
∗
t , θ̂

∗
0,t ))− g(y∗

t+1 − φk(Z
∗
t , θ̂

∗
k,t ))

)

−
⎧⎨
⎩

1

T

T −1∑
j=1

(
g(y j+1 − φ0(Z j , θ̂0,t ))− g(y j+1 − φk(Z j , θ̂k,t ))

)
⎫⎬
⎭
⎤
⎦ .

(6)

It is important to notice that the bootstrap statistic in (6) is different from the
“usual” bootstrap statistic, which is defined as the difference between the statistic
computed over the sample observations and over the bootstrap observations. In fact,
in Ŝ∗

P (0, k), the bootstrap (resampled) component is constructed only over the last
P observations, while the sample component is constructed over all T observations.
The percentiles of the empirical distribution of Ŝ∗

P can be used to construct valid
bootstrap critical values for ŜP , in the case of non-vanishing parameter estimation
error. Their first-order validity is established in Proposition 2 in Corradi and Swanson
(2007a). Valid bootstrap critical values for the rolling estimation case are outlined in
Corradi and Swanson (2006a).
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3 Extending the DM and Reality Check Tests to Forecast
Interval Evaluation

3.1 The Case of Known Distribution Function

Thus far, we have discussed pointwise predictive accuracy testing (i.e. wherein mod-
els are evaluated on the basis of selecting the most accurate pointwise forecasts of
a given variable). However, there are several instances in which merely having a
“good” model for the conditional mean and/or variance may not be adequate for the
task at hand. For example, financial risk management involves tracking the entire
distribution of a portfolio, or measuring certain distributional aspects, such as value
at risk (see e.g. Duffie and Pan 1997). In such cases, models of conditional mean
and/or variance may not be satisfactory. A very small subset of important contribu-
tions that go beyond the examination of models of conditional mean and/or variance
include papers which: assess the correctness of conditional interval predictions (see
e.g. Christoffersen 1998); assess volatility predictability by comparing unconditional
and conditional interval forecasts (see e.g. Christoffersen and Diebold 2000); and
assess conditional quantiles (see e.g. Giacomini and Komunjer 2005). A thorough
review of the literature on predictive interval and predictive density evaluation is
given in Corradi and Swanson (2006b).

Corradi and Swanson (2006a) extend the DM and reality check tests to predictive
density evaluation, and outline a procedure for assessing the relative out-of-sample
predictive accuracy of multiple misspecified conditional distribution models that can
be used with rolling and recursive estimation schemes. The objective is to com-
pare these models in terms of their closeness to the true conditional distribution,
F0(u|Zt , θ0) = Pr(yt+1 ≤ u|Zt ).6 In the spirit of White (2000), we choose a partic-
ular conditional distribution model as the “benchmark” and test the null hypothesis
that no competing model can provide a more accurate approximation of the “true”
conditional distribution, against the alternative that at least one competitor outper-
forms the benchmark model. Following Corradi and Swanson (2005), accuracy is
measured using a distributional analog of mean square error. More precisely, the
squared (approximation) error associated with model k, k = 1, . . . , K , is mea-

sured in terms of the average over U of E

((
Fk(u|Zt , θ†

k )− F0(u|Zt , θ0)
)2
)
,

where u ∈ U , and U is a possibly unbounded set on the real line. Addition-
ally, integration over u in the formation of the actual test statistic is governed by
φ(u) ≥ 0, where

∫
U φ(u) = 1. Thus, one can control not only the range of u,

but also the weights attached to different values of u, so that more weight can be
attached to important tail events, for example. We also consider tests based on an
analogous conditional confidence interval version of the above measure. Namely,

6 With a slight abuse of notation, in this section the subscript 0 denotes the “true” conditional
distribution model, rather than the benchmark model; and the subscript 1 thus now denotes the
benchmark model.
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E

(((
Fk(u|Zt , θ†

k )− Fk(u|Zt , θ†
k )
)

− (F0(u|Zt , θ0)− F0(u|Zt , θ0))
)2
)
, where

u and u are “lower” and “upper” bounds on the confidence interval to be evaluated.
For notational simplicity, in the sequel we focus on conditional forecast interval
comparison, and set u = −∞ and u = u. For example, we say that model 1 is more
accurate than model 2, if

E

((
F1(u|Zt , θ†

1)− F0(u|Zt , θ0)
)2 −

(
F2(u|Zt , θ†

2)− F0(u|Zt , θ0)
)2
)
< 0.

This measure defines a norm and it implies a standard goodness of fit measure.
Another measure of distributional accuracy available in the literature

is the Kullback-Leibler Information Criterion, KLIC (see e.g. White 1982; Vuong
1989; Fernandez-Villaverde and Rubio-Ramirez 2004; Amisano and Giacomini
2007; Kitamura 2004). According to the KLIC approach, we should choose Model
1 over Model 2 if

E
(

log f1

(
yt+1|Zt , θ†

1

)
− log f2

(
yt+1|Zt , θ†

2

))
> 0.

The KLIC is a sensible measure of accuracy, as it chooses the model which on
average gives higher probability to events which have actually occurred. The draw-
back is that the KLIC approach cannot be easily generalized to compare conditional
intervals.

The hypotheses of interest are formulated as:

H0 : max
k=2,...,K

(
μ2

1(u)− μ2
k(u)

)
≤ 0

versus
HA : max

k=2,...,K

(
μ2

1(u)− μ2
k(u)

)
> 0,

where μ2
k(u) = E

((
1{yt+1 ≤ u} − Fk(u|Zt , θ†

k )
)2
)
, k = 1, . . . , K . Note that

for any given u, E(1{yt+1 ≤ u}|Zt ) = Pr(yt+1 ≤ u|Zt ) = F0(u|Zt , θ0). Thus,
1{yt+1 ≤ u} − Fk(u|Zt , θ†

i ) can be interpreted as an “error” term associated with
computation of the conditional expectation under Fk .

The statistic is:

Z P = max
k=2,...,K

Z P,u,τ (1, k), (7)

with
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Z P,u(1, k) = 1√
P

T −1∑
t=R

((
1{yt+1 ≤ u} − F1(u|Zt , θ̂1,t )

)2

− (1{yt+1 ≤ u} − Fk(u|Zt , θ̂k,t )
)2)

,

where, as usual, R + P = T, and θ̂k,t can be either a recursive or a rolling estimator.
The limiting distribution of (7) is established in Proposition 1(a) in Corradi and
Swanson (2006a), who also suggest how to construct valid bootstrap critical values,
for both the recursive and the rolling estimation cases.

3.2 The Case of Unknown Distribution Function

There are cases in which the distribution function is not known in closed form. This
problem typically arises when the variable we want to predict is generated by highly
nonlinear dynamic models. Very important examples are Dynamic Stochastic Gen-
eral Equilibrium (DSGE) Models, which generally cannot be solved in closed form
(see Bierens (2007), for a discussion of different ways of approximating DSGEs).
Since the seminal papers by Kydland and Prescott (1982), Long and Plosser (1983)
and King et al. (1988a,b), there has been substantial attention given to the problem
of reconciling the dynamic properties of data simulated from DSGE models, and in
particular from real business cycle (RBC) models, with the historical record. A partial
list of advances in this area includes: (i) the examination of how RBC-simulated data
reproduce the covariance and autocorrelation functions of actual time series (see e.g.,
Watson 1993); (ii) the comparison of DSGE and historical spectral densities (see e.g.
Diebold et al. 1998); (iii) the evaluation of the difference between the second order
time series properties of vector autoregression (VAR) predictions and out-of-sample
predictions from DSGE models (see e.g. Schmitt-Grohe 2000); (iv) the construction
of Bayesian odds ratios for comparing DSGE models with unrestricted VAR models
(see e.g. Gomes and Schorfheide 2002; Fernandez-Villaverde and Rubio-Ramirez
2004); (v) the comparison of historical and simulated data impulse response func-
tions (see e.g. Cogley and Nason 1995); (vi) the formulation of “Reality” bounds
for measuring how close the density of an DSGE model is to the density associated
with an unrestricted VAR model (see e.g. Bierens and Swanson 2000); and (vii) loss
function based evaluation of DSGE models (see e.g. Schorfheide 2000).

The papers cited above evaluate the ability of a given DSGE model to reproduce a
particular characteristic of the data. Corradi and Swanson (2007b) use a DM (reality
check) approach to evaluate DSGEs in terms of their ability to match (with historical
data) the joint distribution of the variables of interest, and provide an empirical
application in terms of the comparison of several variants of the stochastic growth
model of Christiano (1988). As the distribution function is not known in closed form,
we replace it with its simulated counterpart.
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To keep notation simple, as above, we consider the case of confidence intervals,
setting u = −∞, and u = ∞. Hereafter, F represents the joint distribution of a
variable of interest, say Yt ( e.g. output growth and hours worked). The hypotheses
are:

H0 : max
k=2,...,K

((
F0(u; θ0)− F1(u; θ†

1)
)2 −

(
F0(u; θ0)− Fk(u; θ†

k )
)2
)

≤ 0

HA : max
k=2,...,K

((
F0(u; θ0)− F1(u; θ†

1)
)2 −

(
F0(u; θ0)− Fk(u; θ†

k )
)2
)
> 0.

Thus, under H0, no model can provide a better approximation of the joint CDF than
model 1. In order to test H0 versus HA, the relevant test statistic is

√
T ZT,S , where

ZT,S = max
k=2,...,K

√
T Zk,T,S(u), (8)

Zk,T,S(u) = 1

T

T∑
t=1

(
1{Yt ≤ u} − 1

S

S∑
n=1

1{Y1,n(θ̂1,T ) ≤ u}
)2

− 1

T

T∑
t=1

(
1{Yt ≤ u} − 1

S

S∑
n=1

1{Yk,n(θ̂k,T ) ≤ u}
)2

,

and Yk,n(θ̂k,T ) represents simulated counterparts of Yt (i.e., the variables simulated
under model k at simulation n, using the estimated parameters θ̂k,T ). Heuristically,
if S grows sufficiently fast with respect to T, then 1

S

∑S
n=1 1{Yk,n(θ̂k,T ) ≤ u} can

be treated as the “true” distribution of the data simulated under model k. Broadly
speaking, we are comparing different DSGE models, on the basis of their ability
to match a given simulated joint CDF with that of the historical data. As we are
comparing joint CDFs, the statistic in (8) provides an in-sample test.

When constructing the bootstrap counterpart of Zk,T,S, we need to distinguish
between the case in which T/S → 0 and that in which T/S → δ �= 0. Whenever
T/S → 0, simulation error is asymptotically negligible, and thus there is no need to
resample the simulated observations. In this case, the bootstrap statistic is given by
maxk=2,...,K

√
T Z∗

k,T,S(u), where

Z∗
k,T,S(u)

= 1

T

T∑
t=1

⎛
⎝
(

1{Y ∗
t ≤ u} − 1

S

S∑
n=1

1{Y1,n(θ̂
∗
1,T ) ≤ u}

)2



136 V. Corradi and N. R. Swanson

−
(

1{Yt ≤ u} − 1

S

S∑
n=1

1{Y1,n(θ̂1,T ) ≤ u}
)2⎞
⎠

− 1

T

T∑
t=1

⎛
⎝
(

1{Y ∗
t ≤ u} − 1

S

S∑
n=1

1{Yk,n(θ̂
∗
k,T ) ≤ u}

)2

−
(

1{Yt ≤ u} − 1

S

S∑
n=1

1{Yk,n(θ̂k,T ) ≤ u}
)2⎞
⎠ . (9)

On the other hand, whenever T/S → δ �= 0, then simulation error contributes
to the limiting distribution. In this case, one has to additionally resample the simu-
lated observations, and thus Y1,n(θ̂

∗
1,T ) and Yk,n(θ̂

∗
k,T ) in (9) should be replaced by

Y ∗
1,n(θ̂

∗
1,T ) and Y ∗

k,n(θ̂
∗
k,T ). In both cases, the validity of bootstrap critical values is

been established in Proposition 2 of Corradi and Swanson (2007b).

4 Stochastic Dominance: Predictive Evaluation Based
on Distribution of Loss

In this section, we discuss a predictive accuracy testing approach based on distrib-
utional loss, as in the previous sections. However, rather than focusing on DM- and
reality check-type approaches, we incorporate notions of stochastic dominance in
our analysis. Namely, we introduce a criterion that is designed to include cases of
generic predictive accuracy testing, forecast model selection, and forecast combina-
tion. The criterion is constructed via evaluation of error loss distributions using basic
principles of stochastic dominance, wherein one examines whether or not one CDF
lies “above” another, for example. In our discussion, we are concerned only with the
evaluation of alternative panels or combinations of forecasts, such as are available
when analyzing the Survey of Professional Forecasters (SPF) dataset available on
the webpages of the Federal Reserve Bank of Philadelphia. Moreover, we consider
first-order stochastic dominance. Evidently, the ideas presented here can be adapted
to many varieties of predictive accuracy testing, and extension to second and higher
order stochastic dominance will also play an important role in such applications.
These and related issues are left to future research, and our example below is meant
as a starting point in this sort of analysis.

4.1 Motivation

Central Banks and financial institutions have regular access to panels of forecasts for
key macroeconomic variables that are made by professional forecasters. A leading
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example is the SPF. Using this dataset, much focus has centered on how to combine
predictions (see e.g. Capistran and Timmermann 2009) and how to assess forecast
rationality (see e.g. Elliott et al. 2008). With regard to forecast combination, Capistran
and Timmermann (2009), as well as Elliott and Timmermann (2004, 2005), estimate
combination weights by minimizing a given loss function, ensuring that the weights
converge to those minimizing expected loss. Wallis (2005) proposes combining fore-
casts using a finite mixture distribution, and Smith and Wallis (2009) suggest the use
of simple averages. With regard to rationality assessment, Elliott et al. (2008) test
whether forecasters taking part in the SPF are rational for some parameterization
of a flexible loss function. This is clearly an important approach when testing for
rationality. However, in many instances, users already have a given loss function in
mind, and only assess the accuracy of available forecasts under this loss function.
Here, we take the loss function as given, and discuss predictive combination and
accuracy assessment of datasets such as the SPF. However, this is done via analysis
of cumulative loss distributions rather than synthetic measures of loss accuracy such
as mean square error and mean absolute error.

More specifically, the objective is to introduce an alternative criterion for pre-
dictive evaluation which measures accuracy via examination of the quantiles of the
expected loss distribution. The criterion is based on comparing empirical CDFs
of predictive error loss, using the principle of stochastic dominance. The heuristic
argument underpinning our approach is that the preferred model is one for which the
error loss CDF is stochastically dominated by the error loss CDF of every competing
model, at all evaluation points. In this sense, a model that has smaller quantiles at
all regions of the loss distribution is selected, rather than a model that minimizes a
single criterion, such as the mean square error. If a model is not strictly dominated,
then our approach allows us to pinpoint the region of the loss distribution for which
one model is preferred to another.

As alluded to above, applications for which the criterion is designed include:
generic predictive accuracy testing; forecast model selection; and forecast combina-
tion. For example, in the context of the SPF, a panel of Nt forecasts for a given variable
are made by professionals at each point in time, t. Both the number of individuals
taking part in the survey, as well as the specific individuals generally change, from
period to period. In this context, the criterion can be applied as follows. Assume that
objective is to select and combine forecasts from the SPF. A set of rules, including
for example, the simple mean or median across all forecasters, and quantile-based
weighted combinations across forecasts are defined. Then, the loss function of the
forecast errors implied by the rules are evaluated using tests based on the stochastic
dominance criterion.

4.2 Setup

In each period t, we have a panel of Nt forecasts. The objective is to choose among
k possible combinations of the available forecasts, under a given loss function, g (·) .
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In order to allow for frequent possible entry and exit into the panel, the combinations
are simple rules, which are applied each period, regardless of the composition of
the panels. Examples are: (i) simple average, (ii) simple average over a given range,
such as the 25th-75th percentiles, or (iii) assigning different weights to different
interquantile groups from the panel, such as a weight of 0.75 for the average over
the 25th–75th percentile and 0.125 for the average over the first and last quartiles.

Define ei,t = yt − y f
t,h,i , i = 1, . . . , k, to be the forecast error associated with

the h−step ahead prediction constructed using combination i. Let gi,t = g
(
ei,t
)
,

where g (·) is a generic loss function. Also, let Fg,i (x) be the empirical distribution
of g

(
ei,t
)

evaluated at x, and let F̂g,i,T (x) be its sample analog, i.e.,

F̂g,i,T (x) = 1

T

T∑
t=1

1
{
g
(
ei,t
) ≤ x

}
.

The hypotheses of interest are:

H0 : max
i>1

inf
x∈X

(
Fg,1(x)− Fg,i (x)

) ≥ 0

versus
HA : max

i>1
inf
x∈X

(
Fg,1(x)− Fg,i (x)

)
< 0.

For the sake of simplicity suppose that k = 2. If Fg,1(x) − Fg,2(x) ≥ 0 for all x,
then the CDF associated with rule 1 always lies above the CDF associated with
rule 2. Then, heuristically, g

(
e1,t
)

is (first order) stochastically dominated by g
(
e2,t
)

and rule 1 is the preferred combination. This is because all of the quantiles of g
(
e1,t
)

are smaller than the corresponding quantiles of g
(
e2,t
)
. More formally, for a given x,

suppose that
Fg,1(x) = θ1 and Fg,2(x) = θ2,

then we choose rule 1 if θ1 > θ2. This is because x is the θ1−quantile under Fg,1 and
the θ2−quantile under Fg,2 and, as θ1 > θ2, the θ2− quantile under Fg,1 is smaller
than under Fg,2. Thus, for all evaluation points smaller than x, g

(
e1,t
)

has more
probability mass associated with smaller values than g

(
e2,t
)

does.
It follows that if we fail to reject the null, rule 1 is selected. On the other hand,

rejection of the null does not imply that rule 1 should be discarded. Instead, further
analysis is required in order to select a rule. First, one needs to discriminate between
the cases for which the various CDFs do not cross, and those for which they do
cross. This is accomplished by proceeding sequentially as follows. For all i �= j
i, j = 1, . . . , k, sequentially test

Hi, j
0 : sup

x∈X

(
Fg,i (x)− Fg, j (x)

) ≤ 0 (10)
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versus its negation. Eliminate rule i, if Hi, j
0 is not rejected. Otherwise, retain rule i.

There are two possible outcomes.
I: If there is a rule which is stochastically dominated by all other rules, we even-

tually discard all the “dominating” rules and remain with only the dominated one.
This is always the case when no CDFs cross, and also clearly occurs in cases when
various CDFs cross, as long as the dominated CDF cross no other CDF.

II: Otherwise, we remain with a subset of rules, all of which have crossing CDFs,
and all of which are stochastically dominated by the eliminated rules.

Note that the logic underlying the outlined sequential procedure is reminiscent
of the idea underlying the Model Confidence Set approach of Hansen et al. (2011),
in which the worst models are eliminated in a sequential manner, and one remains
with a set of models that are roughly equally good, according to the given evaluation
criterion.

In the case where there are crossings, further investigation is needed. In particular,
in this case, some rules are clearly dominant over certain ranges of loss, and are
dominated over others. At this point, one might choose to plot the relevant CDFs,
and examine their crossing points. Then, one has to make a choice. For example, one
can choose a rule which is dominant over small values of x and is dominated over
large values of x . This is the case in which one is concerned about making larger
losses than would be incurred, where the other rule used, in a region where losses
are large; while not being concerned with the fact that they are making larger losses,
relative to those that would be incurred, where the other rule used, when losses are
relatively small. Needless to say, one can also use a model averaging approach over
the various survivor rules.

4.3 Statistic

In order to test H0 versus HA construct the following statistic:

Lg,T = − max
i>1

inf
x∈X

√
T
(
F̂g,1,T (x)− F̂g,i,T (x)

)
,

where F̂g, j,T (x), j ≥ 1 is defined above; and where the negative sign in front of the
statistic ensures that the statistic does not diverge to minus infinity under the null
hypothesis. On the other hand, in order to test Hi j

0 ,we instead suggest the following
statistic,

Li, j
g,T = − sup

x∈X

√
T
(
F̂g,i,T (x)− F̂g, j,T (x)

)
.
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In the context of testing for stochastic dominance, Linton et al. (2005) construct
critical values via subsampling. Here we instead use the “m out of n” bootstrap.7

Proceed to construct critical values as follows:

(i) We have T observations. Set ϒ < T .
(ii) Draw b blocks of length l, where bl = ϒ.One block consists, simultaneously, of

draws on the actual data as well as the rule- based combination forecasts. Thus,
if there are two rules, say, and the block length is 5, then a “block” consists of
a 3 × 1 vector of length 5. This yields one bootstrap sample, which is used to
construct a bootstrap statistic,

L∗
g,ϒ = − max

i>1
inf
x∈X

√
ϒ
(

F̂∗
g,1,ϒ (x)− F̂∗

g,i,ϒ (x)
)

where

F̂∗
g,i,ϒ (x) = 1

ϒ

ϒ∑
t=1

1
{
g∗ (ei,t

) ≤ x
}

g∗ (ei,t
) = g

(
y∗

t − y
∗ f
t,h,i

)

(iii) Construct B bootstrap statistics and then compute their empirical distribution.
The sample statistic is then compared against the percentile of this empirical
distribution.

5 Concluding Remarks

In this chapter, we have reviewed the extant literature on Diebold and Mariano (1995)
type predictive accuracy testing. We discuss pairwise and multiple model compari-
son (i.e., DM and reality check type predictive accuracy tests) using differentiable
pointwise prediction accuracy measures such as mean square forecast error, as well
as using non-differentiable loss functions. We also discuss valid inference under both
asymptotically negligible and non-negligible parameter estimation error. Extensions
to pairwise and multiple model comparison using predictive densities, distributions,
intervals, and conditional distributions are then outlined, with emphasis on inference
using these more complicated varieties of DM and reality check-type tests. Finally,
extension and generalization of all of these testing approaches using notions of sto-
chastic dominance are introduced, and future research directions, including the use
of second and higher order stochastic dominance are outlined.

Acknowledgments This chapter has been prepared for the Festschrift in honor of Halbert L. White
in the event of the conference celebrating his sixtieth birthday, entitled “Causality, Prediction, and

7 The basic difference between subsampling and “m out of n” bootstrap is that in the latter case we
resample overlapping blocks.
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Abstract Model specification tests are essential tools for evaluating the appropriate-
ness of probability models for estimation and inference. White (Econometrica, 50:
1–25, 1982) proposed that model misspecification could be detected by testing the
null hypothesis that the Fisher information matrix (IM) Equality holds by comparing
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linear functions of the Hessian to outer product gradient (OPG) inverse covariance
matrix estimators. Unfortunately, a number of researchers have reported difficulties
in obtaining reliable inferences using White’s (Econometrica, 50: 1–25, 1982) orig-
inal information matrix test (IMT). In this chapter, we extend White (Econometrica,
50: 1–25, 1982) to present a new generalized information matrix test (GIMT) theory
and develop a new Adjusted Classical GIMT and five new Eigenspectrum GIMTs that
compare nonlinear functions of the Hessian and OPG covariance matrix estimators.
We then evaluate the level and power of these new GIMTs using simulation studies
on realistic epidemiological data and find that they exhibit appealing performance
on sample sizes typically encountered in practice. Our results suggest that these new
GIMTs are important tools for detecting and assessing model misspecification, and
thus will have broad applications for model-based decision making in the social,
behavioral, engineering, financial, medical, and public health sciences.

Keywords Eigenspectrum · Goodness-of-fit · Information matrix test · Logistic
regression · Specification analysis

1 Introduction

A correctly specified probability model has the property that it contains the probabil-
ity distribution that generates the observed data. Model specification tests examine
the null hypothesis that a researcher’s probability model is correctly specified. If the
researcher’s model of the observed data is not correct (i.e., misspecified), then the
interpretation of parameter estimates and the validity of inferences obtained from
the resulting probability model may be suspect. Thus, to avoid misleading infer-
ences, the effects of model specification must be considered. For example, in the
social and medical sciences (e.g., Kashner et al. 2010), the incompleteness of behav-
ioral and medical theories mandates the need for principled specification analysis
methods that use empirical observations to assess quality of a particular theory. This
situation, all too common in statistical modeling, provides considerable impetus for
the development of improved model specification tests.

1.1 Model Misspecification

When viewed from a practical perspective, the problem of model misspecification
is essentially unavoidable. Although ideally a correctly specified model is always
preferable, in many fields of science such as econometrics, medicine, and psychology
some degree of model misspecification is inevitable. Indeed, all probability models
are abstractions of reality, so the issue of model misspecification is fundamentally an
empirical issue that is dependent upon how the model will be developed and applied
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in practice (e.g., Fisher 1922; White 1980, 1981, 1982, 1994; Begg and Lagakos
1990; Cox 1990; Lehmann 1990).

A variety of methods have been developed for the purpose of the assessment of
model misspecification. For example, graphical residual diagnostics are useful for
identifying the presence of model misspecification for the class of generalized lin-
ear models (e.g., Davison and Tsai 1992) and the larger class of exponential family
nonlinear models (e.g., Wei 1998, Chap. 6). However, these methods require more
subjective interpretations because results are expressed as measures of fit rather than
as hypothesis tests. Moreover, specification tests such as chi-square goodness-of-fit
tests (e.g., Hosmer et al. 1991, 1997) are not applicable in a straightforward manner
when the observations contain continuous random variables. Link specification tests
(Collett 2003; Hilbe 2009) are applicable for testing the assumption of linearity in
the link function (e.g., logit), but are not designed to detect other types of model mis-
specification. Further, the applicability of these methods to more complex probability
models such as hierarchical (e.g., Agresti 2002; Raudenbush and Bryk 2002), mixed
(e.g., Verbeke and Lesaffre 1997), and latent variable (e.g., Gallini 1983; Arminger
and Sobel 1990) models may not always be obvious.

1.2 Specification Analysis for Logistic Regression

Logistic regression modeling (Christensen 1997; Hosmer and Lemeshow 2000;
Harrell 2001; Agresti 2002; Collett 2003; Hilbe 2009) is an important and widely
used analysis tool in various fields; however, the number of available options for the
assessment of model misspecification is relatively limited (see Sarkar and Midi 2010
for a review). Typically, the detection of model misspecification in logistic regression
models is based upon direct comparison of the observed conditional frequencies of
the response variable with predicted conditional probabilities (Hosmer et al. 1997).
Unfortunately, the observed conditional frequencies of the response variable can only
be compared with predicted conditional probabilities for a particular pattern of pre-
dictor variable values in a given data record. In practice, patterns of predictor variable
values may rarely be repeated for more complex models involving either multiple
categorical predictor variables or continuous-valued predictor variables. Because the
number of distinct predictor patterns often increases as the number of records (i.e.,
sample size) increases, such applications of classical “fixed-cell asymptotic” results
are problematic (e.g., Osius and Rojek 1992). To address this problem, “grouping”
methods have been proposed that require artificially grouping similar, yet distinct
predictor patterns (Bertolini et al. 2000; Archer and Lemeshow 2006).

A variety of test statistics that explicitly compare predicted probabilities with
observed frequencies using grouping methods have been proposed, and include chi-
square test methods (e.g., Hosmer and Lemeshow 1980; Tsiatis 1980; Hosmer et al.
1988, 1997; Copas 1989; Qin and Zhang 1997; Zhang 1999; Archer and Lemeshow
2006; Deng et al. 2009), sum-squared comparison methods (Copas 1989; Kuss 2002),
and the closely related likelihood ratio test deviance-based comparison methods
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(e.g., Hosmer and Lemeshow 2000, pp. 145–146; Kuss 2002). Without employing
such grouping methods, the resulting test statistics associated with direct compari-
son of observed conditional frequencies and predicted conditional probabilities will
have excessive degrees of freedom and thus poor power. However, when such group-
ing methods are applied, they may actually have the unintended consequence of
redefining the probability model whose integrity is being evaluated (Hosmer et al.
1997).

One solution to dealing with the “grouping” problem is to introduce appropriate
regularity conditions intended to characterize the asymptotic behavior of the test
statistics while allowing the number of distinct predictor patterns to increase with
the sample size (e.g., Osius and Rojek 1992). Another important solution to the
“grouping” problem is to embed the probability model whose specification is being
scrutinized within a larger probability model and then compare the predicted proba-
bilities of both models (e.g., Stukel 1988). Other approaches have explored improved
approximations to Pearson’s goodness-of-fit statistic (McCullagh 1985; Farrington
1996). Yet, despite these approaches, the variety of methods available for assessing
the presence of model misspecification is surprisingly limited, and these limitations
are particularly striking in the context of logistic regression modeling (e.g., Sarkar
and Midi 2010).

1.3 Information Matrix Test

White (1982; also see 1987, 1994) proposed a particular model specification test
called the information matrix test (IMT). Unlike chi-square goodness-of-fit tests
and graphical diagnostics, IMTs are based upon the theoretical expectation that
the Hessian inverse covariance matrix estimator (derived from the Hessian of the
log-likelihood function) and the outer product gradient (OPG) inverse covariance
matrix estimator (derived from the first derivatives of the log-likelihood function)
are asymptotically equivalent whenever the researcher’s probability model is cor-
rectly specified. We define a full IMT as a statistical test that tests the null hypothesis
of asymptotic equivalence of the Hessian and OPG asymptotic covariance matrix
estimators.

An important virtue of the IMT method is that it is applicable in a straightforward
manner to a broad class of probability models. This includes not only linear and
nonlinear regression models, but also even more complex models such as: limited
dependent variables models (e.g., Maddala 1999; Greene 2003), exponential fam-
ily nonlinear models (e.g., Wei 1998), generalized linear models (e.g., McCullagh
and Nelder 1989), generalized additive models (e.g., Hastie and Tibshirani 1986,
1990), hierarchical models (e.g., Agresti 2002; Raudenbush and Bryk 2002), mixed
models (e.g., Verbeke and Lesaffre 1997), latent variable models (e.g., Gallini 1983;
Arminger and Sobel 1990), conditional random fields (e.g., Winkler 1991), and time
series models (e.g., Hamilton 1994; White 1994; Box et al. 2008; Tsay 2010). How-
ever, despite the broad applicability of the IMT, the majority of the research in the
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development and evaluation of IMTs has focused on linear regression (Hall 1987;
Taylor 1987; Davidson and MacKinnon 1992, 1998), logistic regression (Aparicio
and Villanua 2001; Zhang 2001), probit (Davidson and MacKinnon 1992, 1998;
Stomberg and White 2000; Dhaene and Hoorelbeke 2004), and Tobit (Horowitz
1994, 2003) modeling.

1.4 Empirical Performance of the Information Matrix Test

Although theoretically attractive, the IMT has not been widely used to detect model
misspecification. In particular, some researchers have found the full IMT (White
1982) both analytically and computationally burdensome because its derivation and
computation require third derivatives of the log-likelihood. To address this prob-
lem, Chesher (1983) and Lancaster (1984) demonstrated how the calculation of the
third derivatives of the log-likelihood function could be avoided for the full IMT
by showing that when the OPG and Hessian inverse covariance matrix estimators
are asymptotically equivalent, the third derivatives of the log-likelihood may be
expressed in terms of the first and second derivatives of the log-likelihood. This
particular version of the White (1982) full IMT is commonly referred to as the
OPG IMT. Unfortunately, OPG full IMTs were subsequently found to exhibit poor
performance in various simulation studies for logistic regression (Aparicio and Vil-
lanua 2001) and linear regression (Taylor 1987; Davidson and MacKinnon 1992;
Dhaene and Hoorelbeke 2004). This prompted some researchers (Davidson and
MacKinnon 1992, 1998; Stomberg and White 2000; Dhaene and Hoorelbeke 2004)
to re-evaluate the original formulation by White (1982), which involves explicit
analytical computation of the third derivatives of the log-likelihood function.

In a series of simulation studies, researchers (e.g., Orme 1990; Stomberg and
White 2000) have demonstrated that both the original White (1982) formulation and
the OPG-IMT method exhibit relatively erratic performance and require excessively
large sample sizes to ensure that the test statistic behaves properly. This led a number
of researchers (e.g., Davidson and MacKinnon 1992; Stomberg and White 2000;
Aparicio and Villanua 2001; Dhaene and Hoorelbeke 2004) to suggest that the erratic
behavior of the full IMT for linear regression is due to excessive test statistic variance,
since the degrees of freedom of the full IMT increase as a quadratic function of the
number of free parameters of the probability model.

Further, researchers (Taylor 1987; Orme 1990; Horowitz 1994, 2003) have pro-
vided empirical evidence that the poor level performance of the OPG IMT is due to
failure to incorporate the third derivatives of the log-likelihood functions as originally
recommended by White (1982). Stomberg and White (2000) have shown demon-
strable improvements using a bootstrapped version of the full IMT, but this method
requires substantial computational resources.
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1.5 Nondirectional and Directional Tests

A “nondirectional IMT” examines the null hypothesis that the Hessian and OPG
covariance matrix estimators are asymptotically equivalent. White’s (1982) Clas-
sical Full IMT is an example of a nondirectional information matrix test. If the
null hypothesis of a nondirectional information test is false, it directly follows from
Fisher’s Information Matrix Equality that the probability model is misspecified.

A “directional IMT” compares functions of the OPG and Hessian covariance
matrix estimators for the purpose of identifying specific types of model misspecifi-
cation, rather than implementing a full covariance matrix estimator comparison. Two
potential advantages of directional tests are: (1) gaining important insights regarding
how to improve the quality of a misspecified model by identifying specific aspects
of a model that appear to be correctly or incorrectly specified, and (2) better level
performance and greater statistical power in the detection of model misspecification.
White (1982) explicitly emphasized that improved specification testing performance
and specific specification tests could be obtained through the use of directional infor-
mation matrix tests. Nonetheless, as previously described, the majority of research
has focused upon the full IMT rather than on particular directional versions of the
full IMT as recommended by White (1982).

Directional tests also may, in some cases, provide improved statistical power if
such tests are appropriately designed. However, despite the advantages of directional
specification testing, little theoretical or empirical research has been conducted to
more thoroughly explore directional IMTs as viable alternatives to White’s (1982)
nondirectional Classical Full IMT. Such insights may also be helpful for suggest-
ing specific modifications to a researcher’s model to improve its quality. Although,
nondirectional tests are useful for overall assessments of model misspecification, but
directional tests provide insights into which properties of a model are sensitive to the
effects of model misspecification.

Prior research on directional versions of the full IMT has focused upon the detec-
tion of skewness, kurtosis, and heteroskedasticity in linear regression models, with a
few notable exceptions (i.e., Henley et al. 2001, 2004; Alonso et al. 2008). For exam-
ple, Bera and Lee (1993; also see Hall 1987; Chesher and Spady 1991) have shown
how to derive directional information matrix tests for linear regression models using
White’s (1982) theoretical framework. These directional information matrix tests
were shown to be mathematically equivalent (see White 1982; Hall 1987; Chesher
and Spady 1991; Bera and Lee 1993 for relevant reviews) to commonly used statistical
tests for checking for the presence of autoregressive conditional heteroskedasticity
as well as checking for normality in the residual errors.

1.6 Logistic Regression Modeling IMTs

The IMT method is particularly attractive in the context of logistic regression mod-
eling because it does not require the use of grouping mechanisms, and the degrees
of freedom are solely dependent upon the number of free parameters in the model
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rather than the degree to which the predictor patterns in the data set are replicated.
However, the application of IMTs to the problem of the detection of misspecification
in categorical regression (Agresti 2002) and, in particular, logistic regression model-
ing (Hosmer and Lemeshow 2000; Hilbe 2009) is less common (but see Orme 1988;
Aparicio and Villanua 2001; Zhang 2001; Kuss 2002), despite the major role that
logistic regression plays in applied statistical analysis (Christensen 1997; Hosmer
and Lemeshow 2000; Harrell 2001; Agresti 2002; Collett 2003; Hilbe 2009).

1.7 Generalized Information Matrix Test Theory

In this chapter, we introduce the essential ideas of our Generalized Information
Matrix Test (GIMT) theory (Henley et al. 2001, 2004, 2008). GIMT theory includes
the IMTs previously discussed in the literature, as well as a larger class of direc-
tional and nondirectional IMTs. We apply GIMT theory to develop six specific new
GIMTs. We begin with a new version of the original k(k + 1)/2 degrees of freedom
White (1982) Classical Full IMT, called the “Adjusted Classical GIMT”, which is
applicable to a k parameter model. In addition, we explore information matrix testing
by introducing and empirically evaluating five new Information Matrix Tests based
upon comparing specific nonlinear functions of the eigenspectra of the Hessian and
OPG covariance matrices (rather than their inverses) developed by Henley et al.
(2001, 2004, 2008). The first of these directional tests is the k-degree of freedom
“Log Eigenspectrum GIMT” based on the null hypothesis that the k eigenvalues of
the Hessian and OPG covariance matrices are the same. The one-degree of freedom
“Log Determinant GIMT” tests the null hypothesis that the products of the eigen-
values of the Hessian and OPG covariance matrices are identical. Log Determinant
GIMTs are exceptionally sensitive to small differences in the eigenstructures. The
“Log Trace GIMT” is a one-degree of freedom GIMT that tests the null hypothesis
that the sums of the eigenvalues of the Hessian and OPG covariance matrices are
identical. Log Trace GIMTs focus on differences in the major principal components
of the Hessian and OPG covariance matrices. The fourth eigenspectrum test is the
two-degree of freedom “Generalized Variance GIMT” that tests the composite null
hypothesis that the Log Determinant and Log Trace GIMTs’ null hypotheses hold.
In particular, the Generalized Variance GIMT exploits the complementary features
of the Log Trace and Log Determinant GIMTs, since the Log Determinant GIMT is
sensitive to small differences in the entire eigenspectrum of the Hessian and OPG
covariance matrices, while the Log Trace GIMT tends to focus on the larger eigen-
values. Finally, if the Hessian and OPG covariance matrices are identical, then the
Hessian covariance matrix multiplied by the inverse of the OPG covariance matrix
will be the identity matrix. This observation suggests a fifth type of GIMT called
the “Log Generalized Akaike Information Criterion (GAIC) GIMT” for examining
the average relative deviation between the eigenspectra of the Hessian and OPG
covariance matrices. The Log GAIC GIMT, like the Log Determinant and Log Trace
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GIMTs, is also a one-degree of freedom test sensitive to small differences in the
eigenstructures of the Hessian and OPG covariance matrices.

We then provide a series of simulation studies to investigate the level and power
properties of the new Eigenspectrum GIMTs and the Adjusted Classical GIMT. Our
simulation studies are intended to achieve three specific objectives. First, we evaluate
the reliability of the large sample approximations for estimating Type I error prob-
abilities (level) for the Adjusted Classical GIMT and our five new Eigenspectrum
GIMTs. Second, we evaluate the level-power performance of the new Eigenspectrum
GIMTs relative to the Adjusted Classical GIMT. Finally, we evaluate the applica-
bility of the new GIMTs to detect model misspecification in representative, realistic
epidemiological data.

2 Theory

2.1 Information Matrix Equality

In what follows, we do not give formal results. For the most part, the necessary
theory can already be found in White (1982, 1994). We use the following notation.
Let the d-dimensional real column vectors x1, . . . , xn be realizations of the i.i.d.
random variables X1, . . . ,Xn having support Rd . Let the parameter space �⊆Rk

be a compact set with non-empty interior. Let f : X × � → [0,∞) be defined
such that f (· ; θ) is a Radon-Nikodým density for each θ ∈ �. Let f (xi ; θ) denote
the likelihood of an observation xi for parameter vector θ. Let B̄n = n−1∑n

i=1 Bi

where Bi = gi gT
i and gi ≡ −∇θ log f (Xi ; ·). Let Ān = n−1∑n

i=1 Ai where Ai ≡
−∇2

θ log f (Xi ; ·). Let A and B denote the respective expected values of Ān and B̄n

(when they exist). Suppose the maximum likelihood estimator θ̂n , which maximizes
the likelihood function

∏n
i=1 f (Xi ; θ), converges almost surely to θ

∗ ∈ int �. Let
A∗ ≡ A(θ∗) and B∗ ≡ B(θ∗). Let Ân ≡ Ān(θ̂n) and B̂n ≡ B̄n(θ̂n) . We say the model
is correctly specified if there exists θ0 such that f (·; θ0) is the true density of Xi . In
this case, it holds under general conditions that θ∗ = θ0. The GIMT is based upon the
critical observation that under correct specification, the Fisher Information Matrix
equality holds, that is, A∗ = B∗ (e.g., White 1982, 1994). This hypothesis may be
tested by comparing Ân and B̂n . Rejecting the null hypothesis that A∗ = B∗, thus
indicates the presence of model misspecification. In this situation, the classic Hessian
covariance matrix estimator Â−1

n and classic OPG covariance matrix estimator B̂−1
n

for
√

n
(
θ̂n − θ

∗) are inconsistent and the robust estimator Ĉn ≡ Â−1
n B̂nÂ−1

n (e.g.,
Huber 1967; White 1982, 1994; Golden 1996) is consistent and should be used
instead.
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2.2 The Null Hypothesis for a Generalized IMT

Let ϒk×k ⊆ Rk×k be a compact set that contains A∗ and B∗ in its interior. Let s :
ϒk×k ×ϒk×k → Rr be continuously differentiable in both of its matrix arguments
where r is a positive integer less than or equal to k(k +1)/2. The function s is called a
Generalized Information Matrix Test (GIMT) Hypothesis Function when it satisfies
the condition that: For every A,B ∈ ϒk×k , if A = B, then s (A,B) = 0r . Throughout
this chapter, we assume that the GIMT Hypothesis function s : ϒk×k ×ϒk×k → Rr

is a continuously differentiable function of both its arguments and that ds(A(θ),B(θ))
dθ

evaluated at θ
∗ has full row rank r. It will also be convenient to let s∗ ≡ s (A∗,B∗).

A GIMT is defined as a test statistic ŝn ≡ s
(

Ân, B̂n

)
that tests the null hypothesis:

H0 : s∗ = 0r .

We distinguish between “nondirectional” and “directional” GIMT hypothesis func-
tions. A GIMT hypothesis function s is called nondirectional when s has the property
that: For every A,B ∈ ϒk×k , A = B, if and only if s (A,B) = 0r . Otherwise, the
GIMT hypothesis function s is called directional.

2.3 Asymptotic Behavior of the Generalized IMT Statistic

We now define the Generalized Information Matrix Test (GIMT) statistic:

Ŵn ≡ n
(
ŝn
)T ∑̂−1

n,s

(
ŝn
)
. (1)

where the estimator
∑̂−1

n,s is an estimator of the asymptotic covariance matrix of

n1/2ŝn,
∑−1

s (θ
∗).

Under standard regularity conditions, Ŵn has a chi-squared distribution with r
degrees of freedom when the null hypothesis H0 : s∗ = 0r holds. Let ĝi ≡ gi

(
θ̂n
)
,

di ≡
[

vec (Ai (θ))

vec (Bi (θ))

]
, and ∇d̄n (θ) ≡ n−1∑n

i=1 ∇di (θ). The covariance matrix

estimator
∑̂

n,s is given by:

∑̂
n,s

≡
[
∂s
∂A

(
Ân

) ∂s
∂B

(
B̂n

)]T

Q̂n

[
∂s
∂A

(
Ân

) ∂s
∂B

(
B̂n

)]

where Q̂n is computed from di , Ân, ∇d̄n, gi and θ̂n following the approach of White
(1982).
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When the r-dimensional matrix
∑

s (θ
∗) is singular and has rank g where 0

<g < r, it is often possible to replace the original GIMT hypothesis function
s : ϒk×k × ϒk×k → Rr with an alternative “adjusted” GIMT hypothesis func-
tion s̃ : ϒk×k ×ϒk×k → Rg that tests a similar null hypothesis yet has the property
that the resulting asymptotic covariance matrix of n1/2s̃n is nonsingular. Let the
adjusted hypothesis projection matrix T be a rectangular matrix with g rows and r
columns with full row rank. Then, a decision indicating the “adjusted” null hypoth-
esis H̃0 : Ts∗ = 0g should be rejected also implies that the original null hypothesis
H0 : s∗ = 0r should be rejected as well. Note that the adjusted null hypothe-
sis projects the original GIMT hypothesis function from the original r-dimensional
space into a g-dimensional subspace. Let s̃n ≡ Tŝn . Let

∑̃
n,s ≡ T

∑̂
n,sT

T . Then

W̃n ≡ n (s̃n)
T ∑̃−1

n,s (s̃n) is called an “adjusted” GIMT, having g degrees of freedom
(rather than r degrees of freedom) and testing the null hypothesis: H0 : Ts∗ = 0g .

Finally, although calculation of ∇di (θ) requires using the derivative of Ai , which
requires third derivatives of the log-likelihood, one can use the Lancaster-Chesher
formula for ∇di (θ), denoted ∇̈di (θ). This avoids third derivatives by expressing
∇di (θ) in terms of the first and second derivatives of the log-likelihood function
when the null hypothesis that the model is correctly specified holds (Lancaster 1984;
also see Chesher 1983).

Thus, this yields six distinct GIMT statistics that can be used to test a single null
hypothesis specified by a given GIMT Hypothesis function. When the GIMT null
hypothesis holds either B̂−1

n or Ĉn may be used instead of Â−1
n to calculate Q̂n .

Furthermore, the assumption that the GIMT null hypothesis holds permits the
use of the Lancaster-Chesher formula ∇̈di (θ) to avoid explicitly computing the
third derivatives of the log-likelihood function (i.e., ∇di (θ)). A Hessian-GIMT

statistic corresponds to the case denoted by

{(
Ân

)−1
,∇di (θ)

}
where

(
Ân

)−1

is estimated by the Hessian covariance matrix estimator. An OPG-GIMT statis-

tic corresponds to the case denoted by

{(
B̂n

)−1
, ∇̈di (θ)

}
where

(
B̂n

)−1
is esti-

mated by the OPG covariance matrix estimator (Lancaster 1984; also see Chesher
1983) and ∇di (θ) is calculated using the Lancaster-Chesher formula ∇̈di (θ).
To the best of our knowledge, the use of the remaining four GIMT statistics(

i.e.,

{(
Ân

)−1
, ∇̈di (θ)

}
,
{

Ĉn, ∇̈di (θ)
}
,

{(
B̂n

)−1
,∇di (θ)

}
,
{

Ĉn,∇di (θ)
})

associated with a single specific GIMT Hypothesis function for estimating the GIMT
covariance matrix have not been discussed in the literature. However, in preliminary
studies not reported here (Henley et al. 2001, 2004) we have found that these new
statistics exhibit promising size and power properties.

It can be shown that for all six distinct GIMT statistics, the asymptotic distribution
of Ŵn is chi-square with r degrees of freedom when H0 : s (A∗,B∗) = 0r holds,
under appropriate further regularity conditions and with a few minor modifications
to the analysis presented by White (1982; see Proof of Theorem 4.1). Further, it can
be shown that Ŵn → ∞ almost surely when H0 : s (A∗,B∗) = 0r is false. Thus,
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Ŵn (or similarly the adjusted version Ŵn) can be used as a test statistic for the
purpose of detecting the presence of model misspecification.

2.4 Classical IMT Family

White (1982) describes a family of IMTs that can be represented by a GIMT Hypoth-
esis Function s of the form s (A,B) = S vech (A − B), where the selection matrix
S ∈ Rr×k(k+1)/2 is some user-specified constant rectangular matrix of row rank r.
The Classical Full IMT that has been widely discussed in the literature corresponds to
the case where the selection matrix is a k(k+1)/2-dimensional identity matrix. White
(1982) proposed the Classical Full IMT null hypothesis H0 : A∗ = B∗ that can be rep-
resented by a nondirectional GIMT hypothesis function. White (1982) also proposed
a family of IMTs that could be represented as a set of directional GIMT hypothesis
functions of the form: s (A,B) ≡ S vech (A − B) where S ∈ Rr×k(k+1)/2 has row
rank r. Thus, the GIMT hypothesis function introduced in this chapter is a nonlinear
generalization of the original Information Matrix Test hypothesis function described
by White (1982), which is limited to the representation of linear combinations of
the elements of the A and B matrices. Note that White’s (1982) IMT theory may be
viewed as special case of the GIMT theory presented in this chapter.

2.4.1 Classical Full IMT

The Classical Full IMT as described in White (1982, 1994) corresponds to the case
where the Classical Full IMT Hypothesis Function s : ϒk×k × ϒk×k → Rr is
defined such that for every A,B ∈ ϒk×k :

s (A,B) = vech(A)− vech(B)

yielding the null hypothesis H0 : vech (A∗) = vech (B∗). The Classical Full IMT is
a nondirectional GIMT, but suffers from the disadvantage of an excessive number of
degrees of freedom, k(k + 1)/2. Thus, the associated excessive variance may yield
erratic test performance for typical values of k.

2.4.2 Adjusted Classical GIMT

In simulation studies, we found that the covariance matrix of the GIMT hypothesis
function estimator for White’s (1982) Classical IMT tended to be singular and so
we always used the “adjusted version” of the Classical Full IMT (see the discussion
in Sect. 2.3), called the Adjusted Classical GIMT. We emphasize that although the
performance of the Adjusted Classical GIMT has not been systematically investi-
gated in previous empirical studies, it is actually a particular member of the family
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of directional IMTs explicitly discussed in White’s (1982) original paper. We also
comment that the performance of the adjusted version of the Classical Full IMT
depends upon the researcher’s choice of the row dimension g of the adjusted hypoth-
esis projection matrix. Theoretically, the appropriate choice of g is straightforward,
but in practice, numerical definitions of the presence of excessive multicollinearity
are required. To examine the presence of excessive multicollinearity we compute
the ratio of the largest to the smallest eigenvalues as well as the magnitude of the
largest and smallest eigenvalues of the GIMT statistic covariance matrix estimator.
The performance of the Adjusted Classical GIMT in our simulation studies (and other
simulation studies not reported here) tended to vary depending upon how stringently
we defined a GIMT statistic covariance matrix estimator as singular or non-singular
(Henley et al. 2001, 2004). Our results suggest that care in this regard is a previously
unappreciated crucial element to obtaining good IMT statistic performance.

2.5 Eigenspectrum GIMT Family

The essential idea of the classical IMT family (White 1982) was to directly compare
linear combinations of the elements of and A∗ and B∗. In this section, we propose a
new approach that compares the eigenvalues of (A∗)−1 and (B∗)−1 to determine if
the Fisher Information Matrix Equality holds for a probability model.

Assume A∗ is real symmetric positive definite and that all eigenvalues of A∗ are
distinct. Let λ j,A∗ denote the jth eigenvalue associated with the jth unique orthonor-
mal eigenvector e j,A∗ of A∗. Then there exists a neighborhood of A∗,N A∗ ⊆ Rk×k ,
such that: Aε j,A∗ (A) = � j,A∗ (A) ε j,A∗ (A) for all A ∈ N A∗ where � j,A∗ :
N A∗ → R is an infinitely differentiable function such that� j,A∗ (A∗) = λ j,A∗ , and
ε j,A∗ : N A∗ → Rk is an infinitely differentiable function such that ε j,A∗ (A∗) =
e j,A∗ (Magnus (1985) Theorem 1; also see Magnus and Neudecker (1999) p. 180).

Furthermore,
d� j,A∗

dA (A∗) = e j,A∗
(
e j,A∗

)T . Let�A∗ : N A∗ → Rk be defined such
that for all N A∗ ⊆ Rk×k : �A∗ ≡ [

�1,A∗ , . . . , �k,A∗
]
. Similarly, when B∗ is real

symmetric positive definite with distinct eigenvalues, there exists a neighborhood of
B∗,N B∗ ⊆ Rk×k , such that: Bε j,B∗ (B) = � j,B∗ (B) ε j,B∗ (B) for all B ∈ N B∗ .

Let ψ : (0,∞)k × (0,∞)k → Rr be continuously differentiable in both of
its arguments. An Eigenspectrum IMT Family is a collection of GIMT selection
functions where each selection function s : N A∗ × N B∗ → Rr has the property
that: s (A,B) = ψ (�A∗ (A) ,�B∗ (B)) for all A ∈ N A∗ and for all B ∈ N B∗ .

2.5.1 Log Eigenspectrum GIMT

Let log�A∗ (A) ≡ [
log�1,A∗ (A) , . . . , log�q,A∗ (A)

]T . The Log Eigenspectrum
GIMT Hypothesis Function is defined such that for all A,B ∈ ϒk×k :
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s (A,B) =
[

log

(
�1,A∗

(
A−1

)
�1,B∗

(
B−1

)
)
, . . . , log

(
�k,A∗

(
A−1

)
�k,B∗

(
B−1

)
)]

= log�A∗
(

A−1
)

− log�B∗
(

B−1
)
.

Thus, the null hypothesis of the log eigenspectrum GIMT is given by:

H0 : s
(
A∗,B∗) = log�A∗

((
A∗)−1

)
− log�B∗

((
B∗)−1

)
= 0k .

The Log Eigenspectrum GIMT is a directional GIMT because cases exist where
A∗ 
= B∗, yet the eigenspectra of A∗ and B∗ are identical. For example,

A∗ ≡ (1)

[
0.7025
−0.7117

] [
0.7025 −0.7117

]

+ (2)

[−0.7117
−0.7025

] [−0.7117 −0.7025
] =

[
1.5065 0.5
0.5 1.4935

]

and

B∗ ≡ (1)

[−0.8206
0.5715

] [−0.8206 0.5715
]

+ (2)

[
0.5715
0.8206

] [
0.5715 0.8206

] =
[

1.3266 0.4690
0.4690 1.6734

]

both have the same eigenvalues (1 and 2), yet A∗ 
= B∗. On the other hand, such
situations are rarely expected to occur in practice, so the Log Eigenspectrum GIMT
essentially exhibits the behavioral properties of a nondirectional GIMT.

Note that the number of degrees of freedom for the Log Eigenspectrum GIMT is
equal to the number of free parameters k, which is a substantial reduction from the
k(k +1)/2 degrees of freedom of the Classical Full IMT statistic. Thus, it is expected
that the variance of the Log Eigenspectrum GIMT statistic will be less than that of
the Classical Full IMT statistic for even moderately small k.

2.5.2 Log Determinant GIMT

The Log Determinant GIMT Hypothesis Function is defined such that for every
A,B∈ϒk×k :

s (A,B) = log det
(

A−1B
)
.

Thus, the null hypothesis of the Log Determinant GIMT is given by:
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H0 : s
(
A∗,B∗) = log det

((
A∗)−1 B∗)

= log det
((

A∗)−1
)

− log det
((

B∗)−1
)

= 0.

The determinant of (A∗)−1 (i.e., the product of the eigenvalues of (A∗)−1) can be
interpreted as a measure of the magnitude of the Hessian covariance matrix (A∗)−1

and is sometimes referred to as the “generalized variance” (Cramér 1946, Sect. 22.7;
Serfling 1980, p. 139). Thus, the Log Determinant GIMT hypothesis function com-
pares the generalized variance of the Hessian covariance matrix (A∗)−1 to the gener-
alized variance of the OPG covariance matrix (B∗)−1. The Log Determinant GIMT
is expected to have good statistical power for two reasons: (1) it is a one degree of
freedom GIMT regardless of the complexity of the model or the complexity of the
data, and (2) it is equally sensitive to changes in the largest eigenvalues as well as
changes in the smallest eigenvalues.

2.5.3 Log Trace GIMT

The Log Trace GIMT is a one-degree of freedom test that compares the magnitude
of the Hessian covariance matrix (A∗)−1 to the magnitude of the OPG covariance
matrix (B∗)−1 by constructing the Log Trace GIMT hypothesis function. The Log
Trace GIMT hypothesis function is defined such that for every A,B ∈ ϒk×k :

s (A,B) = log tr
(

A−1
)

− log tr
(

B−1
)
.

The null hypothesis of the Log Trace GIMT is given by:

H0 : s
(
A∗,B∗) = log tr

((
A∗)−1

)
− log tr

((
B∗)−1

)
= 0.

Note that the Log Trace GIMT hypothesis function may be interpreted as com-
paring the log sum of the on-diagonal variances of the Hessian covariance matrix
(A∗)−1 to that of the OPG covariance matrix (B∗)−1 or equivalently, comparing the
log sum of the eigenvalues of (A∗)−1 with that of (B∗)−1.

The Log Trace GIMT compares the Hessian and OPG covariance matrix structures
based upon the larger eigenvalues while tending to ignore the smaller eigenvalues.
This is equivalent to comparing the sums of the largest on-diagonal variance elements
of both covariance matrices. Thus, the Log Trace GIMT is more sensitive to changes
in the larger eigenvalues of the covariance matrices and less sensitive to changes in
the smaller eigenvalues (i.e., focuses upon the major principal components of the
Hessian and OPG covariance matrices). It is thus expected to be a less sensitive
GIMT than the Log Determinant GIMT (i.e., it may have reduced statistical power).
Depending upon the situation, this latter property of the Log Trace GIMT may be
more or less desirable.
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2.5.4 Log Generalized Variance GIMT

The Log Generalized Variance GIMT Hypothesis Function is defined such that for
every A,B ∈ ϒk×k :

s (A,B) =
[

log det
(
A−1

)− log det
(
B−1

)
log tr

(
A−1

)− log tr
(
B−1

)
]
.

The null hypothesis of the Log Generalized Variance GIMT is given by:

H0 : s
(
A∗,B∗) =

⎡
⎣ log det

(
(A∗)−1

)
− log det

(
(B∗)−1

)
log tr

(
(A∗)−1

)
− log tr

(
(B∗)−1

)
⎤
⎦ =

[
0
0

]
.

The Log Generalized Variance GIMT is a two degree of freedom GIMT and
combines the Log Determinant GIMT, which focuses on both major and minor
principal components of the Hessian and OPG covariance matrices, with the Log
Trace GIMT, which focuses only upon the major principal components of the Hessian
and OPG covariance matrices.

2.5.5 Log GAIC GIMT

Takeuchi (1976; for relevant reviews see Konishi and Kitagawa 1996; Bozdogan
2000) showed that the GAIC defined by the formula:

G AI C ≡ −2 log
n∏

i=1

f
(
Xi ; θ̂n

)+ 2TRACE
(

Â−1
n B̂n

)

is an unbiased estimator of the expected value of −2 log
∏n

i=1 f
(
Xi ; θ̂n

)
in the pres-

ence of model misspecification. When the model is correctly specified, then almost
surely: Â−1

n B̂n → Ik where Ik is the k-dimensional identity matrix. Furthermore,

since 2TRACE
(

Â−1
n B̂n

)
→ 2k, GAIC reduces to Akaike’s (1973) Akaike Informa-

tion Criterion (AIC) defined as:

AI C ≡ −2 log
n∏

i=1

f
(
Xi ; θ̂n

)+ 2k.

Let (�A∗ (A))−1 ≡
[(
�1,A∗ (A)

)−1
, . . . ,

(
�k,A∗ (A)

)−1
]

and let � denote

the Hadamard product (i.e., element-wise vector multiplication) operator. If a

simultaneous diagonalization of A∗ and B∗ exists, TRACE
[
(A∗)−1 B∗

]
= (1k)

T[
(�A∗ (A∗))−1 ��B∗ (B∗)

]
. This observation suggests a new GIMT called the Log
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GAIC IMT. The Log GAIC GIMT Hypothesis Function is defined such that for every
A,B ∈ ϒk×k :

s (A,B) = log

⎛
⎝1

k

k∑
j=1

(
λ̃ j,B∗ (B)

λ̃ j,A∗ (A)

)⎞
⎠

= log

(
1

k
TRACE

[(
λ̃A∗ (A)

)−1 � λ̃B∗ (B)
])
.

Thus, the null hypothesis of the Log GAIC IMT is given by:

H0 : s
(
A∗,B∗) = log

(
1

k
TRACE

[(
λ̃A∗

(
A∗))−1 � λ̃B∗

(
B∗)]) = 0.

The Log GAIC GIMT is also a one-degree of freedom IMT, and is more similar
to the Log Determinant GIMT than to the Log Trace GIMT because the Log GAIC
GIMT is sensitive to all differences in the eigenspectra of (A∗)−1 and (B∗)−1. How-
ever, the Log GAIC GIMT differs from the Log Determinant GIMT because these
changes are combined additively instead of multiplicatively.

3 Simulation Studies

In this section we describe and report findings from simulation studies designed to
investigate the level and power properties of the five new Eigenspectrum GIMTs and
the Adjusted Classical GIMT. Our studies here investigate the reliability of the large
sample approximations for estimating Type I error probabilities (level) and evaluate
the performance of the new Eigenspectrum GIMTs relative to the new Adjusted
Classical GIMT. They also demonstrate the applicability of the new Eigenspectrum
GIMTs to detect and assess model misspecification using a realistic epidemiological
data analysis problem.

3.1 Epidemiological Data Sample

Our simulation studies were conducted using a random sample (n = 16,189) of dei-
dentified patient discharges from the Department of Veterans Affairs (VA) Patient
Treatment File between October 1, 1995 and September 30, 1996. The “deidenti-
fied Extraction Sample” of 16,189 patients included a single binary response variable
(ALC) indicating the presence or absence of a primary or secondary discharge diagno-
sis of either: (i) alcohol dependence (IDC9#303), or (ii) alcohol abuse (ICD9#305.0),
based on diagnostic codes from the International Classification of Diseases 9th
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Edition (ICD9) (DHHS 1980). The simulation data contains only adults, with the
ICD9 alcohol disorders occurring in approximately 20.3 % (3,283) of all patients,
where in the sample 4 % are female, 25.1 % are divorced, and 4.2 % are minorities.

3.2 Logistic Regression Models

In this chapter, we investigate the performance of our new GIMTs with respect to
binary logistic regression (logit) models (Christensen 1997; Hosmer and Lemeshow
2000; Harrell 2001; Agresti 2002; Collett 2003; Hilbe 2009) in which the probability
that a binary response random variable R takes on the values of zero or one is
functionally dependent upon d − 1 predictor variable values denoted by the d − 1-
dimensional vector u ∈ Rd−1. Define a logistic regression model using

log

[
p (R = 1|u; β)

p (R = 0|u; β)

]
= βT

[
u
1

]

where the last element of the k-dimensional parameter vector β corresponds to the
intercept parameter. In order to relate this logistic regression model to the discussion
in Sect. 2, let R ≡ x1 and u ≡ [x2, . . . , xd ] so that x ≡ [R,u] ∈ Rd and let
θ ≡ β ∈ � ⊆ Rk where d = k. Using this notation, we define

f (x; θ) ≡ [x1 p (R = 1|u; β)+ (1 − x1) p (R = 0|u; β)] p (x2, . . . , xd)

where the joint predictor density p (x2, . . . , xd) is not functionally dependent upon
β ∈ Rd . Because of this latter property, the GIMT formulas are not functionally
dependent on p (x2, . . . , xd). Thus in the i.i.d. case the log-likelihood for a logistic
regression model with sample size n is

L (β) =
n∑

i=1

{Ri ln [p (Ri = 1|ui ; β)] + (1 − Ri ) ln [1 − p (Ri = 1|ui ; β)]}

where

p (R = 1|u; β) =
(

1 + exp
[
−
(

uT β
)])−1

.

3.2.1 Logistic Regression Model with Binary Predictors

We first fitted a logistic regression model to the n = 16,189 deidentified Extraction
Sample using maximum likelihood estimation to predict the presence or absence
of “alcohol-disorder” (ALC) from the binary predictors “female” (FEMALE),
“married” (MARRIED), recoded categorical predictor ethnicity containing “black”
(BLACK) and “white” (WHITE), and the recoded predictor “age” (AGE).
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The ethnicity variable was recoded into a three category design variable (white, black,
other) using reference cell coding (Hosmer and Lemeshow 2000) where “other” is
the reference variable. Also, the numerical AGE predictor was trichotomized into a
three category design variable by applying optimally estimated cut values γ1 = 55.4
and γ2 = 68.2 (Henley et al. 2000; Kashner et al. 2002, 2003, 2007, 2010) where
the first binary design variable AGE1(age ≤ 55.4) is the reference variable.

In addition to reporting our model fit results using a negative log-likelihood score,
we report fitness results in terms of a GAIC, also known as the Takeuchi Information
Criterion (TIC) (Takeuchi 1976; Konishi and Kitagawa 1996; Bozdogan 2000). GAIC
is a misspecification robust extension of the Akaike Information criterion (AIC)
(Akaike 1973; Burnham and Anderson 2002, pp. 65, 362–372). The resulting fitted
logistic regression model had a negative log-likelihood of 6,718.2 (GAIC/2n =
0.415420, p = 0.0000) with estimated parameter values

β̂0 = −0.7397, β̂1 = −1.3099, β̂2 = −2.2946, β̂3 = −1.4249,

β̂4 = −0.9784, β̂5 = 1.0000, β̂6 = 0.6822

respectively for the intercept, AGE2 (55.4 < age ≤ 68.2), AGE3 (68.2 < age ≤
85), FEMALE, MARRIED, BLACK, and WHITE predictors. Wald tests computed
using robust standard errors (e.g., Wald 1943; White 1982; Golden 1996) showed
each estimated parameter value was significantly different from zero (p < 0.001).
All six GIMTs applied to this model failed to reject the null hypothesis (Adjusted
Classical, p = 0.6113; Log Eigenspectrum, p = 0.3618; Log Determinant, p =
0.6138; Log Trace, p = 0.4063; Log Generalized Variance, p = 0.6890; Log GAIC,
p = 0.6004) indicating no evidence of model misspecification. Thus, simulated data
samples generated from this fitted model were expected to be more representative of
real world data.

3.2.2 Alternative Logistic Regression Model with Numerical
and Binary Predictors

We also fitted a different (alternative) logistic regression model that replaced the tri-
chotimized age predictor with the numerical predictor for “age” (AGE∗) and added
a “divorced” (DIVORCED∗) binary variable so each model had seven free parame-
ters. The model was otherwise identical to the first one. The resulting fitted logistic
regression model had a negative log-likelihood of 6,743 (GAIC/2n = 0.416965, p =
0.0000) with estimated parameter values

β̂0 = 1.8448, β̂1 = −0.0646, β̂2 = −1.6057, β̂3 = −0.7972,

β̂4 = 0.3353, β̂5 = 1.0082, β̂6 = 0.7065

respectively for the intercept, AGE∗, FEMALE, MARRIED, DIVORCED∗,
BLACK, and WHITE predictors. Wald tests computed using robust standard errors
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(e.g., Wald 1943; White 1982; Golden 1996) again showed each estimated parameter
value was significantly different from zero (p < 0.001). All six GIMTs applied to the
alternative logit model rejected the null hypothesis (Adjusted Classical, p = 0.0000;
Log Eigenspectrum, p = 0.0000; Log Determinant, p = 0.0028; Log Trace,
p = 0.0282; Log Generalized Variance, p = 0.0112; Log GAIC, p = 0.0026)
indicating the presence of model misspecification.

In practice, researchers may inadvertently use a misspecified model that never-
theless provides a good fit, as measured by log-likelihood or GAIC, to the observed
data. We selected an alternative logistic regression model, which provided a fit
(GAIC/2n = 0.416965, p = 0.0000) to the observed data that is comparable to
the fit (GAIC/2n = 0.415420, p = 0.0000) of the original logit model described in
Sect. 3.2.1. This difference in model fit was not statistically significant (p = 0.1960)
using the Discrepancy Risk Model Selection Test (DRMST) (Vuong 1989; Golden
2000, 2003; Henley et al. 2000, 2003, 2008) for comparing nonnested and possibly
misspecified models.

3.3 Simulation Study

3.3.1 GIMT Level and Power Estimation Procedures

The procedure for estimating the observed level of a GIMT is shown in Fig. 1. Four
simulated data samples of n∗ records (n∗ = 1,619, n∗ = 4,047, n∗ = 8,095, and
n∗ = 16,189) were generated by sampling with replacement from the original rep-
resentative sample (see Politis et al. 1999; Davison et al. 2003). This process was
repeated m times for each of four sample sizes. The conditional probability for the
binary ALC outcome variable was then computed and assigned the value one or zero,
based on the minimum probability of decision error rule, for each record using pre-
dictor values and the estimated coefficients of the seven-parameter logistic regression
model with binary predictors. Thus, all simulated data samples had predictor values
with synthetic ALC outcome values that had been generated from the specified logis-
tic regression model estimated on the original representative sample (n = 16,189).
To calculate level estimation results, we then fit the logistic regression model to each
of the m simulated data samples for the four sample sizes and computed 10,000
significance levels in the range of zero to one for all the GIMTs. The percentage of
times that a GIMT incorrectly rejects the null hypothesis of correct specification as
the “observed incorrect rejection rate” or “observed level” was calculated.

The procedure for estimating the observed power of a GIMT is shown in (Fig. 2).
In this experiment we created an alternative logistic regression model by changing
two of the six binary predictor variables in the logistic regression model from the
level estimation procedure (Fig. 1). As previously described, the numerical AGE
and binary DIVORCED predictor variables in the original representative data sam-
ple replaced the binary design variables AGE2 and AGE3. This predictor variable
change introduced a relatively subtle, but realistic misspecification into the alterna-
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Generate m
Simulated Data 
Samples of size 
n* from model 
fitted to original 
Data Sample of 
size n.

Compute MLE and then 
compute GIMT using 
Simulated Data Sample 1
of size n*.

Compute MLE and then 
compute GIMT using 
Simulated Data Sample 2
of size n*.

Compute MLE and then 
compute GIMT using 
Simulated Data Sample m
of size n*.

Count % Incorrect
Rejections of H0.

Estimated 
Level

Fig. 1 Simulation procedure for estimation of level

tive model because the known (i.e., simulated) data generating process stems from
the original logistic regression model containing only binary predictors. Further, the
use of observationally equivalent original and alternative logit models (see discus-
sion in Sect. 3.2.2) for the simulation design minimizes the confounding issue of
model fit (GAIC) with specification, thus enabling the effects of model specification
(goodness-of-fit) on GIMT performance to be more effectively studied. To calculate
power estimation results, we then fit the alternative logistic regression model to each
of the simulated data samples from the level analysis for the four sample sizes and
computed 10,000 significance levels in the range of zero to one for all the GIMTs.
The percentage of times that a GIMT correctly rejects the null hypothesis of cor-
rect specification as the “observed correct rejection rate” or “observed power” was
calculated.

In our simulation studies, an MLE was defined as a set of parameter values such
that the sup norm of the gradient of the negative log-likelihood evaluated at the MLE
was less than 1e−8. Further, we avoided fitting models to degenerate simulated
data by omitting samples with condition numbers greater than 4.5e+14 to insure
numerical stability. The condition number is defined as the maximum eigenvalue
divided by the minimum eigenvalue of the inverse of the Hessian covariance matrix
estimator. Each simulation was run until m = 100,000 simulated data samples of
size n∗ was reached. The sample sizes n∗ for the simulated data represented 10 %,
25 %, 50 %, and 100 % of the original 16,189 record data set. In all simulations, we
utilized the Hessian-GIMT statistic as defined in Sect. 2.3.
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Use m Simulated 
Data Samples from 
Level Analysis.

Compute MLE by fitting 
alternative model and then 
compute GIMT using 
Simulated Data Sample 1
of size n*.

Compute MLE by fitting 
alternative model and then 
compute GIMT using 
Simulated Data Sample 2
of size n*.

Compute MLE by fitting 
alternative model and then 
compute GIMT using 
Simulated Data Sample m
of size n*.

Count % Correct
Rejections of H0.

Estimated
Power

Fig. 2 Simulation procedure for estimation of power

3.3.2 Simulation Study Results

In this section we present level-discrepancy and level-power simulation results for
the proposed GIMTs.

Level-Discrepancy Analyses
We first examined the performance for the six GIMTs using a P-value plot analysis

(Davidson and MacKinnon 1998). This method plots the empirical level (observed
rejection rate of the null hypothesis, i.e., Type I error) of a GIMT against its nominal
level (specified rejection rate of the null hypothesis). To enable P-value plot com-
parisons, we also define a summary deviation measure for the level-discrepancy as
the root mean square error (RMSE) between empirical and nominal levels over the
specified range of interest (e.g., [0, 0.1] or [0, 1.0]). Thus, an ideal estimation of the
Type I error rate corresponds to a level-discrepancy of zero (i.e., RMSE = 0). In our
studies, the level-discrepancy for each GIMT was estimated on simulated data for
each sample size.

The Adjusted Classical GIMT is a member of the family of Classical IMTs
that includes White (1982) Full IMT. Figure 3 depicts the P-value plots with level-
discrepancies for the Adjusted Classical GIMT on 100,000 simulated data samples
for n ranging from 1,619 to 16,189 for level ranges on [0, 0.10]. These results show
that the level-discrepancy deviation decreases from 0.0261 to 0.0091 RMSE as sam-
ple size increases, thus approaching an ideal estimation Type I error rate at larger
sample sizes. Further, the exhibited Type I error rate convergence for the Adjusted
Classical GIMT indicated level-discrepancy performance that was much better than
the performance of the Classical Full IMT (not shown). We attribute this to the par-
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Fig. 3 P-value plots for the White’s (1982) Adjusted Classical GIMT show empirical level [0, 0.1]
versus nominal level [0, 0.1] by sample size. The displayed level-discrepancy is defined as the root
mean square error (RMSE) between the empirical and nominal levels. Thus, an ideal estimation of
the Type I error rate corresponds to a discrepancy between the empirical (simulated) and nominal
levels of zero (i.e., RMSE = 0). The data points on the graphs are computed for 100,000 simulated
data samples for n∗ = 1,619, n∗ = 4,047, n∗ = 8,095 and n∗ = 16,189

ticular care with which singularity or near-singularity of the test statistic covariance
matrix is handled.

Next, we present the simulation results for the new Log Eigenspectrum GIMT.
Figure 4 depicts the P-value plots with level-discrepancies for the Log Eigenspec-
trum GIMT on 100,000 simulated data samples for n ranging from 1,619 to 16,189,
which again shows RMSE decreasing as sample size increases. Notably, the level-
discrepancy (RMSE = 0.0030) for the Log Eigenspectrum GIMT at n = 16,189 is
less than the level-discrepancy (RMSE = 0.0091) for the Adjusted Classical GIMT
(Fig. 3).

The simulation results for the new Log GAIC GIMT, which is a directional GIMT,
are also presented for comparison. Figure 5 shows the P-value plots with level-
discrepancies for the Log GAIC GIMT on 100,000 simulated data samples for n
ranging from 1,689 to 16,189. Again, the empirical and nominal levels of interest
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Fig. 4 P-value plots for the Log Eigenspectrum GIMT show empirical level [0, 0.1] versus nominal
level [0, 0.1] by sample size. The level-discrepancy is defined as the deviation measured by root
mean square error (RMSE) between the empirical and nominal levels. Thus, an ideal estimation of
the Type I error rate corresponds to a discrepancy between the empirical (simulated) and nominal
levels of zero (i.e., RMSE = 0). The data points on the graphs are computed for 100,000 simulated
data samples for n∗ = 1,619, n∗ = 4,047, n∗ = 8,095 and n∗ = 16,189. The level-discrepancy
(RMSE = 0.0030) at n = 16,189 for the Log Eigenspectrum GIMT with seven degrees of freedom
is less than the level-discrepancy (RMSE = 0.0091) reported for the Adjusted Classical GIMT
(Fig. 3), which has up to 28 degrees of freedom

range over [0, 0.10]. These simulation results show the level-discrepancy for the Log
GAIC GIMT is converging to zero as sample size increases. The level-discrepancy
(RMSE = 0.0045) at n = 16,189 for the directional Log GAIC GIMT is greater
than the level-discrepancy (RMSE = 0.0030) reported for the Log Eigenspectrum
GIMT (Fig. 4), but less than the level-discrepancy (RMSE = 0.0091) reported for
the Adjusted Classical Full GIMT (Fig. 3). A similar pattern of results was observed
using the P-value plot analyses for the remaining three new directional Eigenspec-
trum GIMTs. All observed rejection rates were very close to the nominal levels.

The level-discrepancy performance of all GIMTs is depicted in Fig. 6, which
displays P-value plot results as a function of sample size. As shown, the new Eigen-
spectrum GIMTs exhibit excellent performance for large sample sizes. In addi-
tion, they exhibited better performance than the Adjusted Classical GIMT with
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Fig. 5 P-value plots for the directional Log GAIC GIMT show empirical level [0, 0.1] versus
nominal level [0, 0.1] by sample size. The level-discrepancy is defined as the deviation measured by
root mean square error (RMSE) between the empirical and nominal levels. Thus, an ideal estimation
of the Type I error rate corresponds to a discrepancy between the empirical (simulated) and nominal
levels of zero (i.e., RMSE = 0). The data points on the graphs are computed for 100,000 simulated
data samples for n∗ = 1,619, n∗ = 4,047, n∗ = 8,095 and n∗ = 16,189. The level-discrepancy
(RMSE = 0.0045) at n = 16,189 for the directional Log GAIC GIMT with one-degree of freedom
is larger than the level-discrepancies obtained for the Log Eigenspectrum GIMT (RMSE = 0.0030),
though smaller than the Adjusted Classical GIMT (RMSE = 0.0091) shown respectively in Figs. 3
and 4

level-discrepancies approaching zero in all cases. The Log Eigenspectrum GIMT
exhibited the best (i.e., smallest) level-discrepancy performance of all GIMTs at
larger sample sizes.

The observed rejection rates (estimated Type I errors) for each of the six new
GIMTs are reported in Table 1 for the nominal significance levels of 0.001, 0.005,
0.01, 0.025, 0.05, and 0.10 for the full sample size of n = 16,189. The simulated
standard errors of the estimated Type I error rates are shown in parentheses. Note
that these standard errors will converge to zero as m → ∞ for a fixed sample
size n = 16,189. Our findings show that the estimated Type I error rates for all
six new GIMTs are, in general, very close to their specified error rates. The Log
Eigenspectrum GIMT exhibited the smallest level-discrepancy of all GIMTs at the
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Fig. 6 Level-discrepancy performance by sample size for the six GIMTs in the simulation study.
Each data point corresponds to 100,000 simulated data samples. The Adjusted Classical GIMT and
all the Eigenspectrum GIMTs exhibit level-discrepancy convergence towards zero as sample size
increases. The Log Eigenspectrum GIMT exhibited the smallest level-discrepancy of all GIMTs at
the larger sample sizes

larger sample sizes. We also performed additional simulation studies (Henley et al.
2001, 2004), and found that the performance of the six new GIMTs was always better
than White’s (1982) Classical Full IMT.

Level-Power Analyses
Next, we perform a level-power analysis to examine all six GIMTs by generating

a level-power curve (Davidson and MacKinnon 1998) for each GIMT. A level-power
curve plots the power (i.e., 1-Type II error) of a statistical test as a function of the
level (rejection rate or Type I error). Accordingly, we interpret a statistical test as
a binary classifier that divides the decision space into two regions: reject or fail to
reject (Wickens 2002; Pepe 2004, p. 152).

An important performance measure for the evaluation of binary classifiers is the
Area Under the Response Operating Characteristic Curve (AUROC; also known as
AUC) (Hanley and McNeil 1982; Bradley 1997; Wickens 2002; Pepe 2004; Fawcett
2006). In the context of a level-power analysis, this corresponds to the area under the
level-power curve. A level-power AUROC equal to one corresponds to perfect clas-
sification (i.e. test) performance. Figure 7 shows the level-power curves for the Log
Eigenspectrum GIMT for m = 100,000 simulated data samples with sample sizes
of n∗ = 1,619, n∗ = 4,047, n∗ = 8,095, and n∗ = 16,189. The Log Eigenspectrum
GIMT exhibited ideal level-power performance (AUROC = 1.00) at the two larger
samples sizes (not shown).

Level-power curves for all sample sizes (n∗ = 1,619, n∗ = 4,047, n∗ = 8,095,
and n∗ = 16,189) were also generated for the other GIMTs using 100,000 simulated
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Fig. 7 Level-power curves for Log Eigenspectrum GIMT exhibit convergence to ideal GIMT
decision performance as sample size increases using simulated epidemiological data. Each data point
on the graphs represents 100,000 simulated data samples under the null and alternative hypotheses
for the sample sizes n∗ = 1,619 and n∗ = 4,047 respectively. This two graph sequence depicts
convergence to an ideal level-power curve (i.e., AUROC = 1.00). The level-power performance for
the larger sample sizes n∗ = 8,095 and n∗ = 16,189 (not shown) achieved an ideal AUROC = 1.00

data samples per data point under the null and alternative hypotheses. Figure 8 depicts
the level-power performance of all GIMTs as a function of sample size. As shown, the
new Log Eigenspectrum GIMT and the Adjusted Classical GIMT have good power
for both small and large sample sizes, although all of the GIMTs exhibit useful power
for large sample sizes. A possible explanation for the increased power of the Log
Eigenspectrum and the Adjusted Classical GIMTs is that these GIMTs test more
comprehensive composite null hypotheses that result in increased opportunities to
detect the presence of model misspecification.

4 Summary and Conclusions

In this chapter, we have introduced a general approach to the development of Gener-
alized Information Matrix Tests that are intended to detect the presence of model mis-
specification. Such situations occur when the Hessian inverse covariance matrix A∗
and the OPG inverse covariance matrix B∗ are different. In particular, we introduced
the new Generalized Information Matrix Test (GIMT) that tests H0 : s (A∗,B∗) = 0r

and provided a Wald test version of the GIMT based on the asymptotic distribution of

n1/2ŝn ≡ n1/2s
(

Ân, B̂n

)
, along the lines of (White 1982, Theorem 4.2). For a given

GIMT Selection Hypothesis Function, we also provided six distinct formulas for
computing each GIMT test statistic and introduced the new concept of an “adjusted”
GIMT statistic for dealing with issues of multicollinearity and demonstrated its utility
by applying it to White’s (1982) Classical Full IMT.
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Fig. 8 AUROC (level-power) performance as a function of sample size for the six GIMTs in the
simulation study. Each data point corresponds to 100,000 simulated data samples under the null
and 100,000 simulated data samples under the alternative hypothesis. The Adjusted Classical and
Log Eigenspectrum GIMTs converged at a faster rate to ideal level-power (i.e., AUROC = 1.00)
as sample size increases, indicating more efficient level-power performance when compared to the
other GIMTs

Further, we introduced the idea of constructing GIMTs by comparing nonlinear
functions of the eigenspectra of the Hessian and OPG covariance matrices. Next, we
developed five new GIMTs based upon the Eigenspectrum GIMT Family. These are
the Log Eigenspectrum GIMT, Log Determinant GIMT, Log Trace GIMT, Gener-
alized Variance GIMT, and Log GAIC GIMT. Analytic formulas for these five new
Eigenspectrum GIMTs were derived and implemented in computer software.

We studied the performance of these five new Eigenspectrum GIMTs and an
adjusted version of White’s (1982) Classical Full IMT (i.e., Adjusted Classical
GIMT) in a series of simulation experiments using a realistic 16,189 record data
set typical of data encountered in epidemiological studies. By comparing a correctly
specified model and a misspecified model with approximately equivalent fits to the
observed data, our simulation studies focus specifically on the effects of model mis-
specification. Using P-value plots and level-power plots, we found that the Adjusted
Classical GIMT and the five new Eigenspectrum GIMTs exhibited reliable perfor-
mance, in the sense that their asymptotic behavior was correctly captured by the
large sample statistical theory under the null. In particular, the empirically observed
Type I error rates for all six new GIMTs were very close to their nominal error rates.
Additionally, they also exhibited useful power. This is in stark contrast to the familiar
poor performance of the unadjusted form of White (1982) Classical Full IMT (e.g.,
Davidson and MacKinnon 1992; Stomberg and White 2000; Aparicio and Villanua
2001).
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For the larger sample sizes, the level-discrepancy performance (i.e., Type I error
performance) of the high degree of freedom GIMT (i.e., Log Eigenspectrum) was
better than those of all the low degree of freedom GIMTs (i.e., Log Determinant,
Log Trace, Log Generalized Variance, Log GAIC), which in turn exceeded the per-
formance of the high degree of freedom Adjusted Classical GIMT. However, the
power performance (i.e., Type II error performance) of the Adjusted Classical and
Log Eigenspectrum GIMTs was always superior to that of the low degree of freedom
GIMTs over all sample sizes. We conjecture that the reduced variance of the low
degree of freedom GIMTs decreased the efficiency of the large sample approxima-
tion when compared to the Log Eigenspectrum GIMT. We further conjecture that
because the Eigenspectrum GIMTs have fewer degrees of freedom they were more
robust to sampling error when compared to the Adjusted Classical GIMT, which
adjusts its degrees of freedom to control for multicollinearity. The greater power of
the larger degree of freedom GIMTs is most likely explained by noting that these
GIMTs are simultaneously testing multiple hypotheses, thus providing additional
opportunities to detect model misspecification.

We used our Adjusted Classical GIMT instead of White’s (1982) Classical Full
IMT because in additional simulation studies not reported here, the asymptotic
covariance matrix for the Classical Full IMT was frequently observed to be sin-
gular and exhibited much worse performance in our investigations. However, in all
cases, the level-discrepancy and the level-power performance of the new Adjusted
Classical GIMT and the new Eigenspectrum GIMTs were superior to those of the
Classical Full IMT. Moreover, the reliable performance of the Adjusted Classical
GIMT as compared to the Classifical Full IMT is notable, and we emphasize that
this GIMT is a special case of the original IMT theory proposed by White (1982).

In conclusion, the generalized IMT theory (Henley et al. 2001, 2004, 2008)
presented here provides a novel framework for developing a wide range of model
specification tests for a broad range of probability models. In particular, the new
Eigenspectrum Family GIMTs have degrees of freedom less than or equal to k, in
contrast to the Classical Full IMT (White 1982), which has k(k + 1)/2 degrees of
freedom for a k-parameter model. Further, our five new Eigenspectrum GIMTs and
new Adjusted Classical GIMT for logistic regression models all have appealing level
and power properties, as seen in a series of simulation experiments involving a real-
istic epidemiologic modeling problem. These six new GIMTs are therefore expected
to provide useful new tools for detecting model misspecification across a broad class
of probability models (Hastie and Tibshirani 1986; McCullagh and Nelder 1989; Wei
1998; Harrell 2001; Hastie et al. 2009), thus decreasing the chance that a misspecified
model is inadvertently used to make inferences in practice. The reduction of incorrect
statistical inferences, in turn, has fundamentally important consequences for making
critical decisions in many areas, including the social, behavioral, and physical sci-
ences, as well as engineering, financial, medical, and public health research (Kashner
et al. 2002, 2003, 2007, 2010).
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Bayesian Analysis and Model Selection
of GARCH Models with Additive Jumps

Christian Haefke and Leopold Sögner

Abstract This article investigates parameter estimation and model selection of
GARCH models with additive jumps. Continuous noise is driven by Student-t
innovations. Since the likelihood is not available in closed form, Bayesian simu-
lation methods are applied to estimate the model parameters and perform model
selection. Simulations suggest that the parameters of the jump process are difficult to
estimate. Informative priors based on sample moments and tests on jumps are neces-
sary to obtain reliable parameter estimates. In an application using S&P 500returns
we estimate a 3 % jump intensity. In addition, our model allows us to infer the impact
of a jump on future volatility. Our estimates show that the impact of jumps on the
conditional volatility is large compared to the impact of continuous innovations.

Keywords GARCH · Additive jumps · Bayes factors · Model selection

1 Introduction

One of the recent challenges in modeling the volatility of asset returns is whether
jumps are present in the time series and how—if there are any jumps—such drastic
changes propagate forward into the asset’s volatility. The literature on this topic
(Sakata and White 1998; Harvey and Chakravarty 2008) suggests that jumps have
no or only small impact on future volatility such that standard GARCH settings
tend to overestimate the effect of jumps on volatility. The goal of this chapter is to
estimate the effect of jumps on future volatility in a univariate GARCH specification.
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In addition, we perform Bayesian model selection to test whether a model with jumps
is superior to a model without jumps.

Most models in the mathematical finance literature use Brownian motion to
model asset returns. To account for drastic changes a jump component is included
(see e.g. Duffie et al. 2000; Barndorff-Nielsen and Shephard 2001; Lamberton and
Lapeyre 2008). Multivariate extensions with jumps in the return process and/or the
underlying volatility process have been developed in recent years (see e.g. Aït-Sahalia
et al. 2009; Barndorff-Nielsen and Stelzer 2009; Mayerhofer et al. 2010 etc.). Tests
and evidence for jumps in financial time series, mostly constructed for high fre-
quency data, have been provided e.g. in Barndorff-Nielsen and Shephard (2006),
Andersen et al. (2007), Lee and Mykland (2008) and Corsi et al. (2008). With
respect to GARCH models Grossi (2004) developed tools to detect jumps (which are
outliers in this framework). Based on Engle (2002) and Engle and Gallo (2003),
Hansen et al. (2010) proposed a GARCH setting which provides a nice mix-
ture between the strengths of GARCH models and realized volatility estimates,
where the realized volatility estimates enter into the conditional volatility term of a
GARCH model. By this setting high degrees of persistence of GARCH conditional
volatilities—already discussed in Andersen et al. (2003, 2007)—can be substituted
for by a much smaller degree of serial correlation of the GARCH volatility term and
a strong dependence on the realized volatility. The parameter estimates verify this
claim.

Our setting approaches the modeling of jumps in a different way. Without working
with high frequency data to estimate the realized volatility, a naïve estimate of the
realized volatility is already given by the last squared return. The effect of this term
is already included in usual GARCH settings. To overcome the potential problem of
less persistence of the conditional GARCH volatility with respect to extreme events,
we shall follow Boudt et al. (2011) and work with a setting with additive jumps
(bounded innovation propagation GARCH). Other settings with jumps have been
constructed in Duan et al. (2006, 2007).

For models with additive jumps estimation procedures taking care of outliers
can be adapted. Usually, robust estimation is performed with a quasi maximum
likelihood procedure where some down-weighting is applied to extreme events. Such
estimators have been derived e.g. in Charles and Darn (2005), Muler and Yohai
(2008) and Boudt and Croux (2010). Gran and Veiga (2010) use wavelet transforms
to account for outliers. In contrast to these articles, our chapter explicitly specifies
the distribution of jumps, performs an exact Bayesian analysis (alternatively the EM
algorithm could be used in this setting), and—in contrast to robust estimation—
allows us to study whether jumps impact future volatility differently than continuous
innovations. Potentially, we can estimate the jump intensity, the distribution of the
jump sizes and in addition, the posterior distribution of the latent jump process.

In this article, the continuous innovations follow an asymmetric t-distribution
as applied in Mittnik and Paolella (2000) and Bauwens and Laurent (2005). The
t-distribution is more flexible than the normal distribution to model tail behavior.
Since financial returns are known for their fat tails, a model with t-distributions
allows for parsimonious models with accurate fit in the tails, which is important
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for all kinds of risk management. To speed up computations we extend the results
of Giacomini et al. (2008)—who provided closed form solutions for mixtures of
cumulative distribution functions and quantiles for the Student t-distribution—to
skew extensions of the t-distribution. Identification, however, is difficult to show for
the general case, and we therefore restrict ourselves to mixtures of t-distributions
with exogenously specified degrees of freedom. Yu and Daal (2005) claimed that an
asymmetric t-model (of Hansen type) outperforms a jumps setting in the univariate
case.

Parameter estimation is performed by means of Bayesian simulation techniques.
Although the likelihood is not fully available in closed form, the likelihood con-
ditional on the latent jump process will be given by an asymmetric t-distribution.
This allows us to apply data augmentation (Tanner and Wong 1987) with the goal
of simulating the joint posterior distribution of the model parameters and the latent
processes.

We propose Bayesian model selection to test whether additive jumps play a
significant role. Therefore, we are going to develop an algorithm to calculate Bayes
factors (posterior odds-ratios) by means of importance sampling techniques (here we
follow Frühwirth-Schnatter 2004, 2006). The latent jump process will be integrated
out by means of particle filtering techniques recently developed in Shephard and Pitt
(1999), Doucet and Johansen (2008) and Andrieu et al. (2010). The MCMC sampler
successfully selects models for simulated data. When applied to S&P 500returns
for the time span 11/2007–9/2009 the estimated number of jumps is between 9
and 16. Identified jumps differ from large innovations with respect to their persis-
tence on future return volatility.

This chapter is organized as follows: Sect. 2 introduces and extends multivariate
GARCH settings. Section 3 investigates parameter estimation in a Bayesian frame-
work, while Sect. 4 describes Bayesian model selection. Then Sect. 5 applies our
methodology to simulated and empirical data. Section 6 concludes.

2 A GARCH Setting with Additive Jumps

Consider a risky asset with one period—mean adjusted—net returns of rn , n = 1,
. . . , N , that follow a GARCH process with additive jumps Jn ∈ R:

rn = √
hnen + Jn

hn = A0 +
p∑

j ′=1

A j ′(rn− j ′ − Jn− j ′)
2 +

q∑
j=1

B j hn− j + C J 2
n−1. (1)

Let hn describe the conditional volatility and en be a standardized i id noise term
with absolutely continuous density. Fat tails for en will be modeled by means of
t-distributed innovations. A0 accounts for the level, A j ′ for the dependence of hn on
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past realizations of En = (rn − Jn)
2 = hne2

n . Equation (1) implies that En = r2
n in

the absence of jumps, which corresponds to the basic GARCH setting. While with
a standard GARCH model (i.e. zero J and C), any Jn−1 �= 0 enters into hn via
r2

n−1, the specification in (1) distinguishes between the impact of the “continuous”
component en on asset volatility hn and the impacts of jumps. The persistence of the
volatility hn is described by B j while C captures the effect of jumps on hn . To keep
things simple—and in line with the later application where we restrict ourselves to
p = q = 1—only Jn−1 but no higher order lags are included in (1). The parameters
are collected in the vector θ.

To allow for drastic changes in the yields, we include the jump component Jn by
following Boudt et al. (2011) who introduced additive jumps in a GARCH setting.
Their motivation for additive jumps was the observation of a short run impact of
extreme returns on the future return. Our approach differs with respect to their
model by including Jn−1 in the conditional volatility function hn . From a quantitative
finance point of view, C measures how jumps propagate forward into volatility. If
C = 0 then jumps have no memory. In addition since A j ′ �= C , different decays of
different innovations in the volatility equation are allowed.

The econometric challenge is to estimate the model parameters θ. Note that, hn

depends on E0, E1, . . . , En−1 and J0, J1, . . . , Jn−1. Neither En nor Jn are observ-
able which complicates the econometric analysis. Let us start a description of the
continuous noise term en . Let εn follow an asymmetric t-distribution (see Mittnik and
Paolella 2000; Bauwens and Laurent 2005) with density function πT (εn|ν, ζ). As
described in Appendix A this distribution has mean μe and variance σ2

e > 0 which
depends on the degrees of freedom ν and the non-centrality parameter ζ. With ζ = 1
we obtain a standard t-distribution with mean zero and variance ν/(ν − 2); if ζ = 1
we shall use the notation πT (.|ν). en is a standardized variable such that

en = εn − μe

σe
. (2)

Appendix A provides more details on this distribution and extends the derivation
of a closed form solution for the cumulative distribution function by Giacomini
et al. (2008). Throughout the chapter, we assume that the fourth moment of en exists,
which is guaranteed by the assumption ν > 4. Summing up, the continuous noise
part is described by the density

π(en|θ) = π(en|ν, ζ,μe,σ
2
e ) = σeπT (εn|ν, ζ). (3)

The jumps are constructed by means of

Jn = Yn Sn . (4)

The jump indicator Yn equals one in the case of a jump in period n, otherwise it
is zero. Following Duan et al. (2006, 2007) we use normal jump sizes. Sn is i id
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normal with mean zero and variance σ2
J . For notational convenience define r N =

(r1, . . . , rn, . . . , rN ), Y N = (Y1, . . . ,YN ), and SN = (S1, . . . , SN ).
Jump times and jump sizes are jointly independent. Each Yn follows a Bernoulli

distribution with probability pλ : = 1−exp(−λ).1 Hence π(Y N |θ) = ∏N
n=1 p

1{Yn=1}
λ

(1 − pλ)1{Yn=0} . Sn is normal with mean zero and variance σ2
J . This yields

π(Sn|Yn, θ) = 1{Yn=1}πN (Sn|(0,σ2
J ))+ 1{Yn=0}δSn=0(Sn),

π(SN |Y N , θ) =
N∏

n=1

π(Sn|Yn, θ) (5)

π(Y N |θ) =
N∏

n=1

p
1{Yn=1}
λ (1 − pλ)

1{Yn=0}and

g(J N |θ) = π(SN ,Y N |θ) = π(SN |Y N , θ)π(Y N |θ) (6)

where πN (.) stands for a standard normal density, δSn=0(Sn) is the Dirac mass at
Sn = 0, i.e., equal to one at Sn = 0 and zero elsewhere. The parameters θ consist
of: ν, ζ (parameters of skewed-Student t-distributions), A0, A j ′ , B j and C , with
j ′ = 1, . . . , p, j = 1, . . . , q (GARCH parameters) and the jump parameters λ
and σ2

J .

3 Parameter Estimation

For the model structure described in Sect. 2 Bayes’ Theorem results in

π(rn|rn−1, θ) ∝ π(rn|rn−1, J n, θ)g(J n|θ)π(θ). (7)

Conditional on the current and past realizations of the jump process we derive

en = (hn)
−1/2(rn − Jn) (8)

such that the conditional density of the returns is given by

π(rn|rn−1, J n, θ) = 1

|det(hn)1/2| · πe(en|θ) = 1

|√hn| · σeπT (εn|ν, ζ). (9)

We get the joint density of returns and jumps by means of

1 ∑N
n=1 1{Yn=1} follows binomial distribution with parameters N and pλ = 1 − exp(λ).
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π(rn, Jn |rn−1, J n−1, θ) = π(rn, |rn−1, Jn, J n−1, θ)g(Jn|θ)
= 1

|√hn| · σeπT (εn|ν, ζ)g(Jn|θ)
π(r N , J N |r0, J0, e0, h0, θ) = �N

n=1π(rn, Jn|rn−1, J n−1, θ). (10)

Note that, if C = 0 then π(rn, |rn−1, J n, θ) depends on Jn only, while for C �= 0
this density depends of the whole history of Jn . That is to say we need the initial
values X0 = (h0, J0, r0) to reconstruct hn . The distribution of the jumps J n is given
by densities already described by (5) and (6).

Posterior distribution. Although the density

π(r N |θ) =
∫ (

�N
n=1π(rn, Sn,Yn|rn−1, Sn−1,Y n−1, X0, θ)

)
dπ(Sn,Y n, X0)

(11)
is not available in closed from, the structure in (7) is sufficient to perform an exact
Bayesian analysis. Given priors for the parameters θ and the initial values X0, the
joint posterior is given by Bayes’ Theorem:

π(θ, SN ,Y N , X0|r N ) ∝ π(r N |SN ,Y N , X0, θ)π(S
N ,Y N |θ)π(θ, X0)

where the jumps are parameterized by Y N and SN . The initial values X0 are required
to calculate h1 (see (1)). If p or q are larger than one, then X0 has to be adapted to
the dimension required by the model. The set of augmented parameters consisting
of θ, Y N , SN , and X0 is collected in �. Although not available in closed form, the
log-likelihood �(θ; r N ) would be given by the log of Eq. (11) evaluated at the data
r N , while

�(θ; r N |SN ,Y N ) = logπ(r N |SN ,Y N , X0, θ) (12)

will be called the partial likelihood in the following.
Prior distribution. To derive the joint posterior (12), we have to specify our prior

π(θ, X0). We assume that this prior factorizes into π(θ)π(Y0, S0|θ)π(h0)π(r0). We
put a Gamma prior (πG(.|1, 1)) on h0, while for r0 and S0 we use a normal prior with
mean zero and variance 1000. For Y0 we use a Bernoulli distribution with probability
pλ = 1 − exp(−λ).
π(θ) is the prior for the parameters ν, ζ, λ, σ2

J , A0, A j ′ , B j and C , with j ′ =
1, . . . , p and j = 1, . . . , q. ν is fixed at ν = 8 and will not be estimated.2 For
the parameters λ and σ2

J informative priors based on sample moments and a priori
running a Lee and Mykland (2008) jump test have been used. For more details see
Appendix C. For λ we use a truncated normal prior πT N (.|λ0,�0,λ, λ̄). The left

2 Sampling ν (with a truncated gamma distribution with truncation value 4, accounting for ν > 4)
resulted in a very poor performance of the sampler, the standard deviation of ν was high. This was
observed in a model with and without jumps, respectively. Also maximum likelihood estimation
in a model without jumps but with ν not fixed resulted in weak performance of the estimation
procedure.
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Table 1 Overview MCMC sampling

Step 1 sample A0, A j ′ , B j ,C from π(A0, A j ′ , B j ,C|r N , Y N , SN , X0, θ(−))
Step 2 sample λ,σ2

J from π(λ,σ2
J |r N , Y N , SN , X0, θ(−))

Step 3 sample ζ from π(ζ|r N , Y N , SN , X0, , θ(−))
Step 4 sample Y N , SN from π(Y N , SN |r N , X0, θ)

Step 5 sample X0 from π(X0|r N , Y N , SN , θ)

MCMC Bayesian sampling of the augmented parameters � is performed in five steps. θ(−) always
stands for the remaining parameters. After a burn-in phase, Steps 1–5 provide us with the samples
�v, v = 1, . . . ,V, from the posterior

boundary, λ of this distribution is specified as one quarter of the jump probability
obtained by the Lee and Mykland (2008) test. λ̄ is set to 0.25, to prevent too frequent
jumps.3 Based on simulation evidence for our sample sizes we note that the Lee and
Mykland (2008) test underestimates the number of jumps arising from our GARCH
model approximately by a factor of two. Therefore, the location parameter λ0 is set
to two times the number of jumps inferred by the test, which turns out to give a
relatively good proxy for the true jump intensity. The variance parameter�0 is fixed
at 0.1. Appendix C uses the output of the jump test to construct a truncated normal
prior for σ2

J in a similar way.
To ensure non-negativity of A0, A j ′ , B j , and C the support of these parameters

has been truncated at zero. In addition, we constructed a prior based on the θ̂M L0 =
( ÂM L0

0 , ÂM L0
j ′ , B̂ M L0

j , Ĉ M L0)� obtained in the starting phase of the sampler. Step 1

below describes how θ̂ML is obtained. Based on this we use a truncated normal prior
with mean parameter ÂM L0

0 and variance parameter c2
A0; the support of A0 is R+.

In the same way, π(A j ′) = πT N (A j ′ | ÂM L0
j ′ , c2

A1), π(B j ) = πT N (B j |B̂ M L0
j , c2

B1)

and π(C) = πT N (C |Ĉ M L0, c2
C1). We set c2

A0, c2
A1, c2

B1 and c2
C1 all equal to 0.1.

We assume |A2
1E(e4

n) + B2
1 | < 1 which implies weak stationarity for p, q = 1.4

For more details see the derivation in Appendix B. In addition, we use the second
to fourth sample moments of the returns to construct an informative prior for the
parameters θ. For more details see Appendix C (Table 1).

MCMC Step 1: Sampling of the MGARCH parameters A0, A j ′ , B j and C

We propose from the maximizer θ̂ML = ( ÂML
0 , ÂML

j ′ , B̂ML
j , ĈML)� of the con-

ditional likelihood (12). Then Anew
0 = ÂML

0 + cA0ε with ε ∼ πN (.|0, 1) or
log Anew

0 = log ÂML
0 + cA0ε, etc. Then cA0, cA1, cB1 and cC1 used here corre-

3 This can be thought of an identification assumption to disentangle the innovation variance and the
jump intensity.
4 The innovation en was defined in Eq. (2) as the standardized innovation to our GARCH model.
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spond to the parameters in the prior. The updates of A0 and Bq are performed in one
block, the remaining parameters are updated in separate Metropolis Hastings steps.

MCMC Step 2: Sampling of the jump intensity and size parameters λ,σ2
J

For both parameters we apply log-random walk proposals. In addition, we use the fact
that for Yn = 1, the setting corresponds to a regression model with innovation given
by Sn . Based on this we get cS = ∑N

n=1 1{Yn=1} and CS = ∑N
n=1 1{Yn=1}S2

n , where
σ2

J is now proposed from an inverse gamma distribution with parameters cs,CS . This
proposal is then used in a Metropolis–Hastings sampler. The Metropolis–Hastings
step becomes necessary, since non-conjugate priors are used for this parameter.

For the jump probability 1
N

∑N
n=1 1{Yn=1} = 1

N

∑N
n=1 Yn can be used. In a

Bayesian context, we know that based on the model assumptions Yn follows a
binomial distribution with probability pλ = 1 − exp(−λ), such that with a con-
jugate Beta prior with parameters α0,β0, the conditional posterior is given by pλ ∼
πB(.|α0 +∑N

n=1 1{Yn=1},β0 + N −∑N
n=1 1{Yn=1}) (see Robert 1994, p. 104); πB(.|.)

stands for a beta-distribution. This distribution can be used to propose λ as follows:
sample pλ from the above πB(.|.) distribution. λ follows from λ = − log(1 − pλ),
while the proposal density q(λ) is given by the product of a beta-density with the
above parameters and factor 1

1−pλ
arising from the density transformation formula.

MCMC Step 3: Sampling of the parameter driving the asymmetric
t-distribution ζ

For ζ a log proposal based on ζ̂ML has been applied.

MCMC Step 4: Sampling of the latent jump indicators and jump sizes Y N , SN

Jumps are proposed from filtered estimates. To see how this works, first suppose that
Yn = 1 for all n. Then we get from (1):

rn = √
hnen + Sn (13)

Sn = 0 · Sn−1 + ζn,

where ζn ∼ N (0,σ2
J ), such that (13) corresponds to a model in state space form.

Given the parameters θ and X0, filtered estimates of Sn can be derived by means of
the Kalman filter. E.g., from Frühwirth-Schnatter (2006) (p. 404) we get:

1. Propagation step—derive the predictive density π(Sn|rn−1,Y n = 1):

Sn|rn−1 ∼ N (xn|n−1, Pn|n−1) with xn|n−1 = 0, Pn|n−1 = σ2
J . (14)

2. Prediction step—derive the forecast density π(rn|rn−1,Y n = 1):

yn|yn−1 ∼ N (yn|n−1,Cn|n−1) with yn|n−1 = 0, Cn|n−1 = hn + σ2
J . (15)

3. Correction step—derive the filter density π(Sn|rn,Y n = 1):
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Sn|rn ∼ N (xn|n, Pn|n) with xn|n = Kn yn,

Kn = σ2
J

σ2
J + hn

, Pn|n = σ2
J (1 − Kn). (16)

Based on the filter we propose Sn from a normal distribution with mean xn|n and
variance Pn|n . It is also worth noting that running the filter is not as simple as it looks,
since J 2

n−1 enters into hn . Therefore, we have to start with X0 and run this filter from
n = 1, . . . , N . In each of these steps hn has to be recalculated.

Now that we understand the choice of the parameters for the jump size, consider
(1) as a regime switching state space model with a degenerated state at Yn = 0. In
other words, we consider a switching model with Sn ∼ N (0,σ2

J ) in state Yn = 1
with probability pλ = 1 − exp(−λ), and a degenerated state with Yn, Sn = 0 with
probability 1 − pλ = exp(−λ) yielding rn = √

hnen + Yn Sn .
By means of Bayes’ Theorem, we are able to calculate the conditional probabilities

of the state indicators Yn (see e.g. Frühwirth-Schnatter 2006, p. 324):

π(Yn = 1|rn,Y n−1, Sn, Sn−1, θ)

= π(rn|Y n = 1, Sn, Sn−1, rn−1, X0, θ)(1 − exp(−λ))
π(rn|Sn, Sn−1,Y n−1, rn−1, X0, θ)

π(rn|Sn, Sn−1,Y n−1, rn−1, X0, θ)

= π(rn|Yn = 1,Y n−1, Sn, Sn−1, rn−1, X0, θ)(1 − exp(−λ))
+ π(rn|Y n = 0,Y n−1, Sn, Sn−1, rn−1, X0, θ) exp(−λ). (17)

Therefore, the jump sizes Sn are proposed from a normal distribution with mean xn|n
and variance Pn|n . For each n = 1 . . . N we propose Yn from a Bernoulli trial with
probability π(Yn = 1|rn,Y n−1, Sn, Sn−1, θ). This results in the proposal density
q(Yn, Sn), n = 1, . . . , N . Equipped with samples from q(Yn, Sn), the jump flags
and sizes are updated by means of the Metropolis Hastings algorithm. If only a block
from n0 ≥ 1 to n1 ≤ N should be updated we proceed in the same way. The filtering
procedure works particularly well if pλ is close to the true jump probability. In the
applied part, we mix between full updates of (Yn, Sn), n = 1, . . . , N and updates of
smaller blocks of mean block size ten.

MCMC Step 5: Sampling of the initial values r0, h0,Y0, S0

X0 is proposed by means of a normal random walk proposal. Note that, all of r0,
h0 and Y0, S0 enter into h1, and therefore propagate forward by the autoregressive
structure of hn .

MCMC: General considerations and pre-sampling phase

Before the sampler is started at sweepv = 1, we alter between a maximization step of
the partial likelihood given J N and sampling J N as described inStep 4; ν, ζ,λ are
kept fixed here. For λ we used λ0, ν = 8 while ζ was fixed at one. This presampling
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phase corresponds to a basic EM update of the parameters (see e.g. McLachlan
and Krishnan 1997). After a few steps, this procedure already approaches the true
parameters given that λ is initially chosen rather close to the true jump intensity.
Therefore, the Lee and Mykland (2008) test of jumps is necessary to obtain good
starting values for the jump intensity. In the Bayesian estimation starting after this
initial phase, λ is not kept fixed but rather sampled as one of the parameters of the
MCMC sampler.

4 Model Selection

Consider a finite set of models M, with elements Ml and the corresponding para-
meters and augmented parameters, θl and �l , respectively. The marginal likelihood
π(r N |Ml) follows from Bayes’ Theorem:

logπ(r N |Ml) = logπ(r N |θl ,Ml)+ logπ(θl |Ml)− logπ(θl |r N ,Ml). (18)

The prior of the parameters described in Sect. 3 for any fixed Ml ∈ M is denoted
by π(θl |Ml) and π(θl |r N ,Ml) is the posterior density of model Ml where jumps
and initial values have already been integrated out. While the non-normalized pos-
terior (12) was sufficient to construct a Bayesian sampler, all terms in (18) have to
be densities. Since the normalized π(θl |r N ,Ml) is not available in closed form, a
numerical estimate of the model likelihood π(r N |Ml) has to be constructed. To this
end, we derive a numerical approximation of the integral

π(r N |Ml) =
∫ [

N∏
n=1

π(rn|rn−1, J N , X0, θ)

]
dπ(J N , X0, θ). (19)

This will be done in two steps: First, we integrate out the jumps J N and the initial
values X0 given a fixed latent parameter θil . This provides us with the likelihood
π(r N |θil ,Ml) evaluated at θil . In a second step, we integrate over θl . In the following
paragraphs we skip the model index l.

From Bayes’ Theorem we get

π(rn|rn−1, θ) ∝ π(rn|rn−1,Y n, Sn, X0, θ)π(Y
n, Sn|θ)π(X0|θ). (20)

To derive π(r N |θ) = ∏
n π(rn|rn−1, θ) the latent process J N —parameterized by

Xn = (Yn, Sn)—and the initial values X0 are integrated out by means of particle
filtering. The recent literature on particle filtering e.g. Flury and Shephard (2009),
Omori et al. (2007), Malik and Pitt (2009), Chib (1995), Pitt and Shephard (1999),
Shephard and Pitt (1999), Doucet and Johansen (2008), Chib and Jeliazkov (2001)
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and Andrieu et al. (2010) provides tools to do this integration step. We denote the
importance density by qθ(Xk

n |rn) and will specify it later.5

We use a filter based on standard importance sampling. With θ fixed at θi, the
joint distribution of r N , X0 and X N is given by:

πθi(r
N , X0, X N ) = πθi(X0)π(X

N ) ·
N∏

n=1

πθi(rn|rn−1, Xn)

= πθi(X0)πθi(Y
N , SN ) ·

N∏
n=1

πθi(rn|rn−1,Y n, Sn, X0). (21)

The joint density of X N follows from (5), andπθi(rn|rn−1, Xn) is defined in Eq. (7).6

We sample the particles k, k = 1, . . . ,K, as follows:
Step P1. Create particles for the initial values X0:

(a) Sample Xk
0 = (hk0 , r

k
0 ,Y k

0 , Sk0 ) from qθi(X0).
(b) πθi(X0) is a prior on the initial values.
(c) Compute the ratio:

w0(X
0,k) = πθi(X

k
0 )

qθi(X
k
0 )
. (22)

Step P2. Sample particles Xk
n : for n = 1, . . . , N :

(a) Sample Xk
n from qθi(Xn).

(b) Compute the ratio

wN (X
N ,k) = πθi(X

N ,k)

qθi(X N ,k)

N∏
n=1

πθi(rn|rn−1, Xn,k) . (23)

Step P3. An estimate of the marginal likelihood πθi(r
N ) is now derived as:

π̂θi(r
N ) = 1

K

K∑
k=1

wN (X
N ,k)w0(X

0,k). (24)

Importance Densities. We know from the literature (Shephard and Pitt 1999;
Doucet and Johansen 2008) that the best way to sample is to use qθi(Xn) =
πθi(Xn|rn, Xn−1). However, for our setting the normalizing constant of the con-
ditional posterior Xn|rn, Xn−1 is not available. Based on the MCMC output �v,

5 We also implemented a sequential importance sampling scheme as e.g. used in Andrieu et al.
(2010); however this algorithm was too demanding from a computational point of view.
6 With MCMC we derived samples from π(θ, X N |r N ) ∝ π(yN , X N |θ)π(θ), where θ is a random
variable.
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v = 1, . . . ,V, we get an estimate of the jump probabilities p̂λ,n by calculating the
fractions Y v

n /V . The sample means of Svn , n = 1, . . . , N , result in Ŝn , the estimates
of sample variances are ŝ2

n . Based on these estimates the particles Y k
n are sampled

from a Bernoulli distribution with a parameter p̆λ,n : = max{pmin,min{pmax, p̂λ,n}},
for n = 1, . . . , N where pmin = 0.02 and pmax = 0.98. This results in Y N ,k. For the
jump sizes we sample Skn from a Student t-distribution with ten degrees of freedom;
the level and variance are given by Ŝn and s̆2

n = max{0.01, ŝ2
n }. We sample from a

Student-t distribution to apply importance densities with sufficiently strong tails as
required in Robert and Casella (1999) (p. 84) and the literature cited there. Similar to
(5) we derive the proposal density qθi(Y

N ,k, SN ,k). The conditional distribution of

SN ,k|Y N ,k is given by
∏N

n=1 1{Yk
n =1} 1√

s̆2
n
πT

(
(Skn − Ŝn)/

√
s̆2

n |10
)

+ 1{Yk
n =0}δSkn =0,

where πT (.|10) stands for a standard Student-t density with 10 degrees of freedom.
The assumption of a Bernoulli distribution implies qθ(Y k

n ) such that qθ(Y N ,k) =∏N
n=1 qθ(Y k

n ) = ∏N
n=1 p̆

1{Ykn =1}
λ,n (1 − p̆λ,n)

1{Ykn =0} . This provides us with the proposal

densities of X N ,k. For qθi(X0) we used the MCMC means and variances of this
parameters and sample from t-distributions with the same level and scale parameter.

Model Likelihood. Last but not least, we calculate the model likelihood π(r N |Ml),
by following some arguments in Malik and Pitt (2009). With the above particle filter
we are already equipped with samples from π(r N |θil ,Ml), which are πθi(r

N ) for
some fixed θil , i = 1, . . . , I ; l is the model index while i is a sample index. By
means of importance sampling we sample an estimate of π(r N |Ml). π(r N |Ml) =∫
π(r N |θl ,Ml)dπ(θl |Ml), where π(θl |Ml) is the prior in (18). By choosing an

importance density q(θ|Ml) we get the samples θil , i = 1, . . . ,I, and an estimate
of the model likelihood

π̂(r N |Ml) = 1

I

I∑
i=1

π(r N |θil ,Ml)π(θ
i
l |Ml)

q(θil |Ml)
. (25)

Each π(r N |θil ,Ml) can now be estimated by Steps P1–P3.

5 Performance in Simulated and Empirical Data

5.1 Simulated Data

The objective of this exercise is to test the performance of the Bayesian sampler
in a controlled environment similar to the data we are later going to use. Based on
maximum likelihood estimates of a standard GARCH(1,1) model (N = 500 observa-
tions of S&P 500returns; November 2007–September 2009; parameter estimates in
Table 2) we therefore pick the model parameters for the simulation to be A0 = 0.006,
A1 = 0.07, B1 = 0.9, and ν = 8. In addition to these parameters we add a jump
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Table 2 Maximum likelihood estimate for a GARCH(1,1)
ML estimates of S&P 500returns

MLE SE p-value
A0 0.0064 0.0025 0.0102
A1 0.0692 0.0096 <0.001
B1 0.9284 0.0090 <0.001
ν 7.8708 1.1353 <0.001

Data are mean adjusted S&P 500returns from November 2007 to September 2009. N = 500
observations. MLE stands for the maximum likelihood estimate of the corresponding parameter,
SE for the standard errors

component with an intensity λ = 0.05 and a jump size parameter of σ2
J = 4. The

parameter C was set to 0.2 while ζ = 1.
We use model (1) to generate series of N = 500 observations each. Table 3

presents typical output from the Bayesian sampler. The results presented in this table
are descriptive statistics derived from the samples of the posterior�v, v = 1, . . . ,V,
obtained by means of the Monte Carlo methods described in Sect. 3. IEF stands for the
Chib (2001) inefficiency factor, which provides a measure of how many samples have
to be generated by the Markov chain compared to a situation where we would be able
to draw independent samples from the posterior. Although IEF is not low with our
sampler, we observe that using the filter based updates of the jumps and proposals of
the parameters based on a maximum likelihood routine results in fast convergence and
stable sampling properties. The application of the filtered jump times and sizes and
proposals based on maximizing the partial likelihood by far outperformed the other
alternatives [e.g. a “regression based proposal” used in Kaufmann and Frühwirth-
Schnatter (2002) or random walk proposals]. Although these two sampling steps are
computationally demanding, they are very important to get reasonable parameter
estimates—in addition convergence of the sampler is fast when using these tools.

To check the convergence properties of the sampler we checked/observed the
following: With simulated data, we observed that our hybrid sampler starting with
an EM type pre-sampling phase combined with the application of the Bayesian
sampler as described in Sect. 3 quite rapidly arrives at samples concentrated around
the true parameter values. In addition, we checked whether the sampler produces
multimodal posteriors; however, this was not the case. Moreover, we compared the
posterior distributions produced by the sampler when starting it with the same data
with a different seed and different starting values. Here, the histograms from the
posterior-samples are close to each other. In addition, we implemented the Gelman
and Rubin (1992) test and its modified version in Brooks and Gelman (1998), the
Geweke (1991) convergence diagnostic as well as the Geweke (1991) convergence
diagnostic applied to the likelihood as proposed by Cowles and Carlin (1996). We
observe that the Gelman and Rubin (1992) and Brooks and Gelman (1998) criterion
based on comparing MCMC output of different chains is always passed. With the
Geweke (1991) procedure we obtain reasonable results in most cases, however, as
already pointed out by Cowles and Carlin (1996) the results of this test is sensitive
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Table 3 Estimation results for simulated data with jumps
Data generated from model with jumps

true mean sd min max Q(0.025) median Q(0.975) IEF

Parameter estimates for model without jumps
A0 0.0060 0.0456 0.0265 0.0080 0.0981 0.0080 0.0470 0.0865 45.4807
A1 0.0700 0.1505 0.0259 0.0959 0.2303 0.1198 0.1382 0.2132 101.1872
B1 0.9000 0.8546 0.0266 0.7941 0.9019 0.7993 0.8539 0.9013 26.1383
C 0.2000 0.0000 Fixed
ν 8.0000 − Fixed
ζ 1.0000 0.9892 0.0162 0.9495 1.0442 0.9554 0.9886 1.0218 2.4594
λ 0.0500 − Fixed
σ2

J 4.0000 − Fixed
Parameter estimates for model with jumps
A0 0.0060 0.0155 0.0071 0.0055 0.0366 0.0055 0.0152 0.0249 111.2976
A1 0.0700 0.1332 0.0149 0.0977 0.1647 0.0998 0.1324 0.1576 83.1306
B1 0.9000 0.8399 0.0141 0.8057 0.8832 0.8226 0.8327 0.8763 179.1291
C 0.2000 0.1778 0.0403 0.0706 0.3304 0.1134 0.1768 0.2578 1.7911
ν 8.0000 − Fixed
ζ 1.0000 1.0007 0.0152 0.9583 1.0472 0.9753 1.0018 1.0356 4.8794
λ 0.0500 0.0597 0.0054 0.0416 0.0658 0.0470 0.0596 0.0658 66.0968
σ2

J 4.0000 3.6387 0.5911 2.4246 6.0296 2.6572 3.6085 5.0154 31.5103

N = 500 observations. The true parameter values are given in the column ‘true’. ‘mean’ is the
sample mean from the posterior, ‘sd’ the standard deviation, Q(0.025), Q(0.975) are quantiles.
IEF is the Chib (2001) inefficiency factor

to the subsamples chosen to run this test. When the Geweke (1991) convergence test
is applied to the log-likelihood, the test indicates good convergence properties.

Even with the strong priors on λ and σ2
J , the estimated jump sizes exhibit some

downward bias and still too many small jumps which are difficult to distinguish from
large innovations en—especially if the innovations follow a Student-t distribution.
The GARCH parameters A0, A1, B1 and C are difficult to estimate. Especially the
estimates of A0 show a substantial degree of variation. Since A0 accounts for the
level of the conditional volatility, this high A0 is compensated by a lower B1 and a
small jump intensity λ (see (B.6) in Appendix B).

We also simulated data without jumps and then again estimated parameters of a
model with and without jumps. The parameter estimates are presented in Table 4.
For both specifications the parameter ζ is estimated with high precision.

The second important insight—apart from the precision of the parameter
estimates—that we would like to glean from the simulation is the reliability of the
model selection step as described in Sect. 4. For each of our simulated time series we
estimated a model with and without jumps7 (Mjump and Mnojump) and the marginal
likelihood as described in Sect. 4. Then the estimation and model selection step is
repeated with a different seed. In each step, we derive four estimates of the model
likelihood and its standard deviation (SD). When comparing the model likelihoods

7 Each of these estimation and model selection steps is done with the same seed.
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Table 4 Estimation results for simulated data without jumps
Data generated from model without jumps

true mean sd min max Q(0.025) median Q(0.975) IEF

Parameter estimates for model without jumps
A0 0.0060 0.0202 0.0115 0.0049 0.0490 0.0049 0.0184 0.0412 105.9971
A1 0.0700 0.0226 0.0178 0.0003 0.0984 0.0012 0.0235 0.0599 112.0275
B1 0.9000 0.8832 0.0597 0.7455 0.9715 0.7496 0.8803 0.9715 110.0528
C − − fixed
ν 8.0000 − fixed
ζ 1.0000 1.0014 0.0136 0.9586 1.0456 0.9724 1.0011 1.0298 6.6382
λ − − fixed
σ2

J − − fixed
Parameter estimates for model with jumps
A0 0.0060 0.0126 0.0071 0.0044 0.0499 0.0044 0.0096 0.0266 46.0598
A1 0.0700 0.0346 0.0229 0.0026 0.1309 0.0064 0.0257 0.0851 99.8631
B1 0.9000 0.9033 0.0497 0.7525 0.9549 0.8068 0.9246 0.9549 84.5283
C − 0.0770 0.0551 0.0002 0.3332 0.0036 0.0681 0.2019 5.0042
ν 8.0000 − fixed
ζ 1.0000 1.0004 0.0143 0.9645 1.0487 0.9719 1.0009 1.0266 5.2674
λ − 0.0255 0.0066 0.0134 0.0351 0.0148 0.0250 0.0351 83.6257
σ2

J − 0.2029 0.0489 0.1552 0.4288 0.1560 0.1871 0.3451 36.6597

N = 500 observations, the data are generated from a model without jumps. The true parameter
values are given in the second column. ‘mean’ is the sample mean from the posterior, sd the standard
deviation, Q(0.025), Q(0.975) are quantiles. IEF is the Chib (2001) inefficiency factor

we observe that l̂ogπ(r N |Mjump) > l̂ogπ(r N |Mnojump) in all our simulation runs.
In addition, we checked whether

l̂ogπ(r N |Mjump)− αŜD(logπ(r N |Mjump))

> l̂ogπ(r N |Mnojump)+ αŜD(logπ(r N |Mnojump)) (26)

for α = 1, 2, 3. Inequality (26) was satisfied for all simulation runs with α = 1, 2,
and approximately 97.5 % of the simulation runs for α = 3. That is to say, if the
data was generated by a model with jumps, the marginal likelihood obtained by the
sampler is a highly reliable tool to find the correct model.

If the true model is the model without jumps, the above inequality should not
be satisfied, i.e., the marginal likelihood of the model without jumps should be
higher, which was indeed the case for all point estimates of the marginal likelihood.
To investigate the question whether the marginal likelihoods differ significantly,
we once again look at (26) for α = −1,−2,−3. With α = −1, we observe that
for approximately 70 % of the simulation runs inequality (26) does not hold; with
α = −2 and −3, these numbers decrease to 42 and 23 % respectively. So unlike the
case with jumps, in the absence of jumps the distributions of marginal likelihoods
overlap more for the two different specifications.
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Fig. 1 S&P 500 returns and estimated volatility. Top panel S&P 500 returns form January 11, 2007
to September 30, 2009 measured in percentage terms. Bottom panel Estimated volatility process
and jump dates (dots)

We summarize that the parameter estimation for A0 and A1 is rather imprecise
in the simulation. Based on the marginal likelihood π̂(Y ) and its standard deviation
ŜD(π(Y )) the true model with jumps is clearly preferred to the model without jumps.
When the artificial data is generated without jumps, the selection algorithm again
always picks the correctly specified model.

5.2 Empirical Data

We applied the sampler to N = 500 daily S&P 500returns; the time span was
November 2007 to September 2009. A maximum likelihood estimate with ζ fixed at
one but with variable ν has already been presented in Table 2. Figures 1 and 2 provide
a graphical illustration of our estimation results. Figure 1 shows the S&P 500 time
series used to estimate the model parameters and the posterior estimates of hn for the
model with jumps. The posterior estimates of the jump times are denoted by dots.
Interestingly, we infer jumps in the relatively calm periods of the time series. The
more volatile last months of 2008 are driven by continuous innovations. To highlight
these differences we focus on estimates of hn for different sub-periods in Fig. 2
(upper panel with jumps, lower panel are estimates without jumps). E.g., at the first
jump inferred in April 2008, the increase in hn is smaller than in the estimates without
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jumps. In addition, we observe that especially in October and November 2008 hn is
much more volatile in the standard GARCH(1,1) model. Since the estimates of C are
larger than zero, the jumps should not be considered as pure outliers. In addition, the
impact of

√
hnen or Jn on future hn is smaller in the model with jumps (parameter

estimates of A1 and C with jumps, smaller than A1 without jumps in Table 5).
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Fig. 2 Posterior estimates of of hn , “zoom in” to modest period (left figures) and the beginning of
the financial crises (right figures). Top panel Posterior estimates of a model with jumps, estimates
of the jump dates marked by a dot. Bottom panel Posterior estimates of a model without jumps

The prior parameter λ0 = 0.022 is obtained by the procedure described in Sect. 3
and data for the pre-estimation period 2000–2007. The estimated jump intensity
based on the Lee and Mykland (2008) test for 2000–2007 data is slightly smaller
than for the actual estimation sample 2007–2009, because the latter contains the
financial crisis. However, as a robustness check we compared the posterior estimates
for priors based on the pre-sample period 2000–2007 and priors based on 2007–2009
and found no important difference. The importance of the Lee and Mykland (2008)
test is not to construct a “good” prior but to provide a reasonable initial value for the
parameter λ which is important for step 4 of the MCMC sampler.

The Bayesian parameter estimates for a model with and without jumps are pre-
sented in Table 5. The upper part of this table shows the estimates for a model without
jumps. Although the models considered are not exactly the same, compared to the
maximum likelihood estimates (see Table 2) the Bayesian estimate of A1 is larger
while B1 is smaller. More importantly, since the model likelihood is much larger with
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Table 5 Estimation results for S&P 500returns

mean sd min max Q(0.025) median Q(0.975) IEF

Parameter estimates for model without jumps
A0 0.1792 0.0239 0.1328 0.2365 0.1328 0.1803 0.2365 51.6182
A1 0.1136 0.0092 0.0996 0.1386 0.1018 0.1097 0.1380 137.5502
B1 0.8549 0.0099 0.8307 0.8719 0.8307 0.8592 0.8719 112.6735
C 0.0000 fixed
ν 8.0000 fixed
ζ 0.9957 0.0112 0.9659 1.0233 0.9768 0.9958 1.0191 2.8678
l̂ogπ(r N |Mnojump) = −1236.4168, ŜD(logπ(r N |Mnojump)) = 6.1863
Parameter estimates for model with jumps
A0 0.0348 0.0087 0.0059 0.0631 0.0167 0.0356 0.0506 82.9480
A1 0.0760 0.0060 0.0630 0.0922 0.0652 0.0753 0.0918 153.5819
B1 0.9116 0.0067 0.8944 0.9264 0.8964 0.9115 0.9241 162.6749
C 0.1331 0.0426 0.0067 0.3211 0.0542 0.1307 0.2241 23.8281
ν 8.0000 fixed
ζ 0.9950 0.0116 0.9512 1.0403 0.9710 0.9952 1.0173 12.2026
λ1 0.0302 0.0087 0.0099 0.0839 0.0162 0.0289 0.0515 61.5177
σ2

J 7.9145 0.9969 5.1770 9.5260 5.8054 8.0274 9.4365 22.2376
l̂ogπ(r N |Mjump) = −1130.6176, ŜD(logπ(r N |Mjump)) = 10.8231

Time span from November 2007 to September 2009, N = 500. ‘mean’ is the sample mean
from the posterior, sd the standard deviation, Q(0.025), Q(0.975) are quantiles. IEF is Chib
(2001) inefficiency factor. l̂ogπ(r N |M.) is the point estimate of the log of the model likelihood,
ŜD(logπ(r N |M.)) is the estimated standard deviation. 10,000 MCMC steps, 1,000 burn in

jumps, the model selection tool clearly prefers a model with jumps. The estimated
jump intensity is about 3 %, for the 500 periods considered we inferred 9–16 jumps.

Interestingly, the estimate of A1 is substantially smaller than the estimate of C .
Therefore, the persistence of non-jump innovations is much smaller than that of
jump innovations. That is to say those drastic changes which have been inferred to
be a jump have a higher impact on hn+ j , j ≥ 1, than changes in

√
hnen . While

robust estimation techniques reduce the impact of extreme observations to improve
parameter estimation, our estimates suggest that extreme observations picked up by
Jn have a stronger impact on the volatility estimate than higher levels in hne2

n and
allowing for them substantially improves the estimation.

6 Conclusions

This chapter developed tools for parameter estimation and model selection for a
GARCH model with additive jumps. Lagged jumps significantly enter into the con-
ditional volatility term. Simulation suggests, that the model selection algorithm is
successful in distinguishing between models with and without jumps for samples of
the same size as our actual data. The data clearly favor a model with additive jumps
rather than a standard GARCH setting, even with Student-t distributed innovations.
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Appendix A: The Skewed Student-t Distribution

In the following steps, we augment Giacomini et al. (2008) and calculate the
cumulative distribution function for the univariate asymmetric Student-t distribution.
First, we repeat some results concerning the distribution function for the univariate
symmetric case. The density of a standard Student t-distribution with ν degrees of
freedom is given by:

πT (x |ν) = �
(
ν+1

2

)
√
νπ�

(
ν
2

)
(

1 + x2

ν

)− ν+1
2

. (A.1)

The random variable X has an expectation of zero and the variance ν
ν−2 if ν > 1 and

ν > 2, respectively. Giacomini et al. (2008) derived the first and the second anti-
derivative for univariate t-distributed random variables by using the hypergeometric
series

G12 (a, b, c, z) = � (c)

� (a) � (b)

∞∑
k=0

� (a + k) � (b + k)

� (c + k)

zk

k! . (A.2)

For a, b, c, z ∈ C and |z| < 1 this hypergeometric series converges, for non-negative
integers n = ν/2−1 the infinite sum stops after n terms. Then the first antiderivative
D−1πT (x |ν) provides us with the distribution function FT (x |ν):

FT (x |ν) = 1

2
+ x

κν

√
1 + x2

ν

· G12

(
1

2
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2
,
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,
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)
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where

κν =
√
νπ�

(
ν
2

)
�

(
ν+1

2

) . (A.4)

The second antiderivative of πT (x |ν) can be derived by means of

D−2πT (x |ν) = x

2
+ ν

√
1 + x2

ν

(ν − 1)κν
· G12

(
−1

2
, 1 − ν

2
,

1

2
,

x2

x2 + ν

)
. (A.5)

By the properties of (A.2), G12(.) terminates after ν/2 − 1 terms.
Remark To derive (A.3) an incomplete beta integral has to be solved:

x∫
0

tα−1(1 − t)β−1dt = B(x,α,β), (A.6)
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where B(x,α,β) is the incomplete beta-function with parameters α,β > 0. The
regularized incomplete beta-function Bregularized(x,α,β) is the fraction of B(x,α,β)
and B(α,β), where B(α,β) is the beta-function. For beta-functions we know that

1/B(1/2, ν/2) = �
(
ν+1

2

)
√
π�

(
ν
2

) . (A.7)

Therefore

c∫
0

πT (x |ν)dx = 1

2

B(c, 1/2, ν/2)

B(1/2, ν/2) = Bregularized(c,α,β)

2
. (A.8)

By the definition and the properties of the hypergeometric function, the reader can
verify that (A.3) and the calculation of the cumulative distribution function based on
(A.8) have to agree.

Distribution Function—Asymmetric Case. Consider the scalar ζ > 0. An asym-
metric Student-t density can be derived by means of:

πT (x |ν, ζ) = 2
ζ

1 + ζ2

�
(
ν+1

2

)
�

(
ν
2

) √
πν

×
⎛
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1 + x2

ζ2ν

)− ν+1
2

1x≥0 +
(

1 + ζ2x2

ν

)− ν+1
2

1x<0

⎞
⎠ . (A.9)

The construction of (A.9) follows from Fernandez and Steel (1998), Mittnik and
Paolella (2000) and Bauwens and Laurent (2005). This construction allows us to get
samples from this distribution as follows:

X = W |Z |ζ − (1 − W )|Z |ζ−1, (A.10)

where W is a Bernoulli random variable with probability ζ2/(1 + ζ2); this is also
the probability that X ≥ 0. Z is standard t-distributed with mean zero and variance
ν
ν−2 . The moments of X are given by:

E(Xr |ν, ζ) = ζr+1 + (−1)r/ζr+1

ζ + 1/ζ
2E

(
Zr |Z > 0, ζ = 0

)
. (A.11)

In our application where the symmetric distribution is a Student-t distribution, we
get E (Xr |X > 0, ζ = 0) by means of Mittnik and Paolella (2000) or Paolella (2007)
(p. 274). With ν > r we get
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E

(
Xr |X > 0, ζ = 0

) = νr/2

2
√
π

�( r+1
2 )�( ν−r

2 )

�( ν2 )
, (A.12)

where �(.) is the Euler-Gamma function. Equipped with (A.11) define μe =
E(X1|ν, ζ) and σ2

e = E(X2|ν, ζ) − μ2
e . If the first and the second moments exist,

we get the standardized random variable ε = (X − μe)/σ
0.5
e .

Next we derive the cumulative distribution function: We abbreviate the factors of
(A.9) as follows:

c0 = 2
ζ

1 + ζ2 , c1 = �
(
ν+1

2

)
�

(
ν
2

)√
πν

and, c2 =
(

1 + x2(ζ I )2

ν

)− ν+1
2

.

where ζ I = (1x≥0/ζ+1x<0ζ) and I = −1 if x ≥ 0 and I = 1 if x < 0. To calculate
the distribution function P(X ≤ x) := FT (x |ν, ζ), x ∈ R, we have to solve the
integral

FT (x |ν, ζ) = c0c1

x∫
−∞

(
1 + (zζ I )2

ν

)−β
dz,β = ν + 1

2
. (A.13)

The transformation y = ζ I z and the change of variable formula (such that dy = ζ I dz
and dz = 1

ζ I dy) yield

FT (x |ν, ζ) = c0c1

y(x)∫
−∞

1

ζ I

(
1 + y2

ν

)−β
dy. (A.14)

y(x) is the upper bound of the integral. 1
ζ I is constant on the sets A1 = {y|y ≥ 0}

and A2 = {y|y < 0}; i.e. we have I = −1 on A1 while I = 1 on A2. The structure
of the integrals remains the same, such that (A.14) becomes

FT (x |ν, ζ) = 1x<0c0c1

⎛
⎜⎝1

ζ

∞∫
0

(
1 + y2

ν

)−β
dy − 1

ζ

y(x)∫
0

(
1 + y2

ν

)−β
dy

⎞
⎟⎠

+ 1x≥0c0c1

⎛
⎜⎝1

ζ

∞∫
0

(
1 + y2

ν

)−β
dy + ζ

y(x)∫
0

(
1 + y2

ν

)−β
dy

⎞
⎟⎠ .

(A.15)
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Apply the following substitution:

ν

ν + y2 = 1 − t such that t = 1 − ν

ν − y2 and y =
√

νt

1 − t
. (A.16)

For y ∈ [0,∞), 1 − t ∈ (0, 1) since ν > 0. The first derivative is given by

dy

dt
= 1

2

√
1 − t

νt

ν

(1 − t)2
= 1

2
ν0.5t−0.5(1 − t)−1.5. (A.17)

Applying the substitution (A.16) in (A.15) and using (A.17) results in:

FT (x |ν, ζ) = 1x<0c0c1ν
0.5 1

2

⎛
⎝1

ζ

1∫
0

t−0.5 (1 − t)β−1.5 dt

−1

ζ

bu(y(x))∫
0

t−0.5 (1 − t)β−1.5 dt

⎞
⎟⎠

+ 1x≥0c0c1ν
0.5 1

2

⎛
⎝1

ζ

1∫
0

t−0.5 (1 − t)β−1.5 dt

+1

ζ
ζ2

bu(y(x))∫
0

t−0.5 (1 − t)β−1.5 dt

⎞
⎟⎠ .

(A.18)

By (A.16) the lower bound of the integrals remain 0, the upper bound when
integrating to z is bu(y(x)) = 1 − ν

ν+y(x)2
for the upper bound going to infinity

this results in bu(∞) = 1. Therefore, the cumulative distribution function (A.18)
is the sum of beta integrals. For the complete beta integral in (A.18) we directly
apply (A.7) where

∫ 1
0 t−0.5 (1 − t)β−1.5 dt = B(1, 1

2 ,
ν
2 ) = (1/c1)(1/ν0.5), while∫ bu(y(x))

0 t−0.5 (1 − t)β−1.5 dt = B(bu(y(x)),
1
2 ,

ν
2 ) by (A.6). These facts, (A.7) and

some algebra yield:

FT (x |ν, ζ) = 1x<0
1

1 + ζ2

(
1 − c1

√
νB

(
bu(y(x)),

1

2
,
ν

2

))

+ 1x≥0
1

1 + ζ2

(
1 + ζ2c1

√
νB

(
bu(y(x)),

1

2
,
ν

2

))

= 1x<0
1

1 + ζ2

(
1 − �

(
ν+1

2

)
�

(
ν
2

) √
π

B
(

bu(y(x)),
1

2
,
ν

2

))
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+ 1x≥0
1

1 + ζ2

(
1 + ζ2 �

(
ν+1

2

)
�

(
ν
2

) √
π

B
(

bu(y(x)),
1

2
,
ν

2

))

= 1x<0
1

1 + ζ2

(
1 − B(bu(y(x)),

1
2 ,

ν
2 )

B( 1
2 ,

ν
2 )

)

+ 1x≥0
1

1 + ζ2

(
1 + ζ2 B(bu(y(x)),

1
2 ,

ν
2 )

B( 1
2 ,

ν
2 )

)
. (A.19)

Remark Note that we can easily check that (A.9) is a density. Since ζ + 1/ζ =
(1 + ζ2)/ζ we obtain

∞∫
−∞

πT (x |ν, ζ)dx = c0c1
√
ν

2ζ
B

(
1

2
,
ν

2

)
+ ζc0c1

√
ν

2
B

(
1

2
,
ν

2

)

= c0c1

√
ν

2
(1/ζ + ζ)

1

c1
√
ν

= 1.

Remark A further useful property is given by the fact that if Z is standard normal
and Y = √

U/ν, where U ∼ πχ2(.|ν), then X = Z/Y is standard t-distributed
with ν degrees of freedom. If Z follows an asymmetric normal distribution based
on Fernandez and Steel (1998), then X = Z/Y follows the asymmetric t-distributed
described by (A.9). To show this fact, it is sufficient to show that πT (x/ζ|ν, 1) =∫ |y|πN (xy/ζ)π(y)dy. π(y) = 2−ν/2+1νν/2

�(ν/2) yν−1 exp(−(νy2)/2)1y≥0 follows from

the χ2 density and the transformation rule. πN (.) and πχ2(.) are densities of the stan-
dard normal and a χ2 distribution, respectively. This equality follows from straight-
forward integration. For the symmetric case this is presented in Paolella (2007)
(p. 80).

Appendix B: Moments and Weak Stationarity

Conditions for strict stationarity for a GARCH setting without jumps have been
derived in Francq and Zakoian (2005), Liu (2006) and Abramson and Cohen (2007).
Here, we check whether our model with jumps is weakly stationary. A time series
is called weakly stationary if the first and second moments exist and do not depend
on the time index, in addition the autocovariances C��(rn, rn−s) are independent
of n. Consider the model (1):

rn = √
hnen + Jn (B.1)
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hn = A0 +
p∑

j ′=1

A j ′ En− j ′ +
q∑

j=1

B j hn− j + C J 2
n−1

= A0 + A(L)E + B(L)hn . (B.2)

Since E(en) = E(Jn) = 0 we get E(rn) = 0. By the model assumptions we also
know that V(en) = 1. The k-th moment of en exists for ν > k. V(Jn) = pλσ2

j by
the construction of the jump component Jn . Jn and en− j ′ are independent for all
n, n − j ; pλ = 1 − exp(−λ). With En = (rn − Jn)

2 = hne2
n we get

hn = A0 +
p∑

j ′=1

A j ′hn−1e2
n− j ′ +

q∑
j=1

B j hn− j + C J 2
n−1. (B.3)

By (B.3), hn follows an AR(�) process with random coefficients, such that

hn = (A0 + C J 2
n−1)+

�∑
j=1

(A j e
2
n− j + B j )hn− j , (B.4)

� = max{p, q}, where A j or B j = 0 for j > p or j > q respectively. Suppose the
second moments of en and Jn exist.

Given p = q = 1, ν > 4 and the assumptions from Sect. 2, Meyn and Tweedie
(2009) (Theorem 16.5.1) imply that (hn) is second order stationary if |A2

1E(e4) +
B2

1 | < 1. For p, q > 1 this result can be adapted if necessary.8 This yields

E(hn) = A0 +
p∑

j ′=1

A j ′E(hn)+
q∑

j=1

B j E(hn)+ CE(J 2
n−1) such that

E(hn) = 1

1 − ∑p
j ′=1 A j ′ + ∑q

j=1 B j

(
A0 + C pλσ

2
J

)
. (B.5)

Since V(X) = E(V(X |F)) + V(E(X |F)) (see e.g. Casella and Berger 2001) and
E(rn|hn) = 0 for any hn , we get

V(rn) = E(hn)+ pλσ
2
J . (B.6)

For the autocovariance we also use the fact that Cov(rn, rn−s) = E(Cov(rn,

rn−s |hn−s)) + Cov(E(rn|hn−s),E(rn−s |hn−s)). The second term is zero since

8 This can be done by increasing the dimension of the process. While Meyn and Tweedie (2009)
(Theorem 16.5.1) require a positive density with respect to the Lebesgue measure for the stochastic
component, it should be noted that hn lives on R+. On this set there is always a density always
positive. Following Meyn and Tweedie (2009) (Chap. 6) we observe that (hn) is an aperiodic and
irreducible T-chain as required in the proof of Theorem 16.5.1. Hence, Theorem 16.5.1 still holds
with this slight modification of the process (hn) living on non-negative reals.

http://dx.doi.org/10.1007/978-3-642-28079-5_6
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E(rn−s |hn−s) = 0 for arbitrary n and s, while Cov(Xn, Xn−s |hn−s) = 0 for any
s �= 0 since en, en−s, Jn, Jn−s are jointly independent. This yields

Cov(rn, rn−s) = 0 for all s �= 0. (B.7)

In addition, we derive some higher order moments: by (A.11) from Appendix A the
kth moment Mε,k of εn can be derived as long as ν > k. Since en = εn−μe

σe
, where

μe := Mε,1 and σ2
e := Mε,2 − M2

ε,1, we get the moments of en by means of

Me,k =
(

Mε,r − μe

σe

)r

. (B.8)

In the following, we shall approximate the skewness. To derive, it is necessary to
calculate E(r3

n ); we already know that E(rn) = 0. Here, we get

E(r3
n ) = E((

√
hnen + Jn)

3)

= E(h3/2
n e3

n)+ 3E(hne2
n Jn)+ 3E(

√
hnen J 2

n )+ E(J 3
n )

= E(h3/2
n )E(e3

n). (B.9)

The second on the third term become zero since hn, en, Jn are independent and en

and Jn have an expectation of zero. The expectation of J 3
n is zero by the assumption

of normal jump sizes. For the expected value of E(h3/2
n ) we can perform a Taylor

series approximation (see e.g. Paolella 2007, p. 86), such that

E(h3/2
n ) ≈ (E(hn))

3/2 + 3

4

1

E(hn)2
. (B.10)

By using only the constant term of this approximation we derive

E(r3
n )

(E(r2
n ))

3/2 = E(h3/2
n )E(e3

n)

(E(hn)+ pλσ2
J )

3/2
≈ E(hn)

3/2
E(e3

n)

(E(hn)+ pλσ2
J )

3/2
. (B.11)

In a similar way we derive the kurtosis. Suppose ν > 4, then

E(r4
n ) = E((

√
hnen + Jn)

4)

= E(h2
ne4

n)+ 4E(h3/2
n e3

n Jn)+ 6E(hne2
n J 2

n )+ 4E(h1/2
n en J 3

n )+ E(J 4
n )

= E(h2
n)E(e

4
n)+ 4 · 0 + 6E(hn)pλσ

2
J + 4 · 0 + pλ3σ4

J . (B.12)

The second and the fourth term in the second line are zero by the independence
assumption and the fact that E(Jn) = E(J 3

n ) = 0. The second term follows from
the independence of Jn, en and hn plus taking expectations. The last term follows
from the independence of jump sizes and jump times and the properties of the normal
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distribution. E(e4
n) follows from (A.11) and the discussion above. It remains to derive

E(h2
n). Thus,

E(h2
n) = E

⎛
⎜⎝

⎛
⎝A0 +

p∑
j ′=1

A j ′ En− j ′ +
q∑

j ′=1

B j hn− j + C J 2
n−1

⎞
⎠

2
⎞
⎟⎠

= E

⎛
⎜⎝A2

0 + 2A0

p∑
j ′=1

A j ′ En− j ′ +
⎛
⎝ p∑

j ′=1

A j ′ En− j ′

⎞
⎠

2
⎞
⎟⎠

+ 2E

⎛
⎝A0

q∑
j ′=1

B j hn− j + A0C J 2
n−1 +

⎛
⎝ p∑

j ′=1

A j ′ En− j ′

⎞
⎠

⎛
⎝ q∑

j ′=1

B j hn− j

⎞
⎠

+
⎛
⎝ q∑

j ′=1

B j hn− j

⎞
⎠ C J 2

n−1

⎞
⎠

+ E

⎛
⎜⎝

⎛
⎝ q∑

j ′=1

B j hn− j

⎞
⎠

2

+ 2

⎛
⎝ q∑

j ′=1

B j hn− j

⎞
⎠ C J 2

n−1 + C2 J 4
n−1

⎞
⎟⎠

= A2
0 + 2A0

p∑
j ′=1

A j ′E(En)+ E

⎛
⎜⎝

⎛
⎝ p∑

j ′=1

A j ′ En− j ′

⎞
⎠

2
⎞
⎟⎠

+ 2

⎛
⎝A0

q∑
j ′=1

B j E(hn)+ A0Cpλσ
2
J +

⎛
⎝ p∑

j ′=1

A j ′E(En)

⎞
⎠

⎛
⎝ q∑

j ′=1

B j hn− j

⎞
⎠

+
⎛
⎝ q∑

j ′=1

B j E(hn− j )

⎞
⎠ CE(J 2

n−1)

⎞
⎠

+
q∑

j ′=1

B2
j E(h

2
n)+ 2

⎛
⎝ q∑

j ′=1

B j E(hn)

⎞
⎠ Cpλσ

2
J + C2 pλ3σ4

J . (B.13)

Note that E(hne2
n) = E(hn)E(en) = E(hn) and E(h2

ne4
n) = E(h2

n)E(e
4
n) =

E(h2
n)Me,4. For p, q ≤ 1 the above expression can be simplified. The kurtosis

follows from the fraction E(r4
n )

(E(r2
n ))

2 where the numerator follows from (B.12) while

the denominator is given by (B.6).
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Appendix C: Construction of an Informative Prior

To arrive at reliable parameter estimates, it was necessary to include some
“additional” information in the data obtained by other statistical procedures. In the
Bayesian sampler, this resulted in informative priors on λ and σ2

J .
Tests on Jumps. Lee and Mykland (2008) developed a test on jumps for continuous

time processes. This test is primary design for high frequency data. We apply this test
to daily data. The test provides us with estimates of time point where the process rn

jumps, this estimates are abbreviated by Y LM
n . Since E(

√
hnen) = 0 for our GARCH

model we get an estimate of the jump size by means of SLM
n = rn with sample

variance V̂(SLM
n )

In the simulated data, we observe that for a sufficiently large σ2
J , this test detects

approximately 20–50 % of the jumps Jn .
∑

Y LM/N , therefore underestimates the
probability of a jump pλ. Based on this observation we set the mean parameter
used in the truncated normal prior to two times pLM

λ = ∑
Y LM/N . In more details

λ0 = −log(1 − αpLM
λ ), with α = 2. In addition, we observe that the test gets the

large jumps, such that σ2
J should be smaller than the sample variance of the jumps

heights inferred by this test. Thus, we calculated the variance of the jump size SLM
n

and constructed a truncated normal prior, such that the mean is half the variance of
SLM

n , the variance parameter is set to 2, the lower bound is the variance of the returns,
while for the upper bound we used eight times V̂(SLM

n ).
Moments of rn . From (B.8) and Pascal’s triangle we get

E

(
(en)

r |hn
) =

(
1

σe

)r

E

(
(εn − μe)

r ) =
(

1

σe

)r r∑
j=0

(
r

j

)
E

(
ε

r− j
n

)
μ

j
e . (C.1)

For the third moment we can use the proxy

E(r3
n ) = E(h3/2

n )E(e3
n) ≈

(
(E(hn))

3/2 + 3

4

1

E(hn)2

)
E(e3

n), (C.2)

where E(hn) follows from (B.5). For the fourth moment (B.12) provides us with

E(r4
n ) = E(h2

n)E(e
4
n)+ 6E(hn)pλσ

2
J + pλ3σ4

J . (C.3)

With p = q = 1 the term E(h2
n) becomes

E(h2
n) = 1

1 − A2
1E(e4

n)− B2
1

[
A2

0 + 2A0 A1E(hn)

+ 2
(

A0 B1E(hn)+ A0Cpλσ
2
J + A1 B1E(hn)

2 + B1E(hn)Cpλσ
2
J

)]

+ 1

1 − A2
1E(e4

n)− B2
1

[
2B1E(hn)Cpλσ

2
J + C2 pλ3σ4

J

]
. (C.4)
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E(e4
n) can be obtained by means of (C.1). By comparing the j-th moments

based on these expressions to the sample moments m j (r N ) we get the scores

g j (r N , θ) = EN (r
j

n ) − m j (r N ). By means of d(r N , θ) = g j (r N , θ)��g j (r N , θ)
we map these deviations to one real number. If the parameters perfectly match the
empirical moments d = 0. Therefore, we also use the prior d(r N , θ) ∼ πN (d|0,σ2

d),
where σ2

d = 100 controls for the dispersion. The weight matrix � is diagonal with
entries (0, 1, 0.1, 0.0001). By this prior we put a joint prior on all model parameters.
By our choice of� the impact of this prior on the parameters θ is neglectably small.
This prior only puts low mass on those θwhere the empirical moments and the model
moments are very different.
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Hal White: Time at MIT and Early Days
of Research

Jerry Hausman

I am pleased to write a note in honor of Hal’s sixtieth birthday. As memory is a
tricky thing, I hope the following is accurate, but I can make no guarantees. Hal was
among my first three Ph.D. students at MIT who are Roger Gordon, Hal White, and
Paul Krugman. Since my first and only job has been at MIT, I found this supervision
enjoyable and remarkably easy. However, using these three sample points to predict
the future would have been grossly inaccurate, although mostly I have enjoyed the
many MIT (and some Harvard) students I have supervised over the years.

Hal’s thesis was in applied labor economics: “A Microeconomic Model of Wage
Determination: Econometric Estimation and Application”. His other supervisors
were Bob Solow and Lester Thurow. While the thesis uses interesting econometric
methods, the question may arise of why Hal did not write an econometric method-
ology thesis. My memory is as follows. In those days MIT students finished in four
years. Then and now, MIT has much less fellowship money than Harvard and other
universities which can guarantee a longer period. Nevertheless, MIT has far outdis-
tanced other universities in the past 40 years in producing top graduate students.
I told Hal that if by May of his third year he did not have an Econometrica level
paper in process he should do an applied thesis so he could be sure to finish on time.
Perhaps I was too young and inexperienced at the time to give better thesis advice.
However, the initial conditions of his thesis being in an applied topic had no effect
on his subsequent research which I now turn to.

Hal took three econometrics courses from me so, of course, I chose him as one
of my teaching assistants (TA). He was the TA for all three courses so we talked
about the topics in the courses a lot since my yellow note pages were just beginning
to take shape at that time. Hal was a terrific TA, which the students appreciated
given my teaching approach. He led the way for many subsequent TAs including
Bernanke, Paul Ruud, Mark Machina, Whitney Newey, and Ken West over the next
few years after Hal.
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MIT Department of Economics, Cambridge, MA, USA
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1 My Approach Before White Standard Errors

In the introductory econometrics course I discussed at length the problem of inference
when the covariance matrix was not diagonal. How to estimate (X ′ X)−1(X ′�X)(X ′ X)−1

where � is a diagonal matrix of unknown form? I pointed out that estimation of
the middle matrix followed from the approach of the Berndt–Hall–Hall–Hausman
(BHHH) algorithm: D = �Xiεiε

′
i X ′

i where D is an estimate of the middle matrix
and (ε′i ) is the least squares estimate of the residual. I missed the “ White standard
error” formula, but instead I took two alternative approaches. I taught that one could
do FGLS (feasible GLS) using a specification for ε2

i using a general polynomial
approach based on the Xi s. I emphasized that the specification did not have to be
“correct” since in large samples the estimates of the slope parameters would continue
to be consistent and hopefully have reduced variance relative to the OLS estimates.
However, in the absence of the correct specification for ε2

i the correct standard errors
and t-tests were not available.

My other approach was to explore “how bad” things could be if one did OLS.
Here I used “ Watson’s bound” (Watson 1967; Hannan 1970), to derive a formula
in the single regressor setup.1 The question at hand is how badly will OLS perform
relative to GLS where the answer depends on both X and�. The efficiency measure
is EB easy to compute:

E B(X,�) =
(∑

i

(
x2

i

σ 2
i

))−1

.

Thus, the relationship of xi and σ 2
i is clear. Now for fixed X the approach is to

maximize over � which is a straightforward characteristic value problem. Let us
arrange the λi s from smallest to largest, 0 ≤ λ1 ≤ · · · ≤ λN where N is the sample
size. Watson’s bound, which is attainable, is

E B(X,�) ≥ 4λ2
1λ

2
N

2 +
(
λ2

1
λ2

N

)
+

(
λ2

N
λ2

1

)

where the estimates of σ 2
i can replace the λ2

i in the efficiency bound formula. Cal-
culating the bound for some illustrative values of the ratio of the largest to smallest
variance yields:

Efficiency Bounds

Ratio 1.2 1.5 2 5 10 100
Bound 0.992 0.960 0.889 0.556 0.331 0.039

1 I also did analysis with multiple right-hand side variables but I will not discuss the results here
since they are more complicated.
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Thus, for cross-sectional data the loss in efficiency is typically not very large.
Indeed, for typical inid cross-section Xs, a refined calculation demonstrates that the
efficiency losses tend to be even smaller. However, as the number of right-hand side
variables grows, the bound deteriorates. Thus, the efficiency loss in a given sample
for fixed Xs could be calculated and a bound over all Xs was also available. However,
unless we know the correct specification for the variances in the FGLS approach, we
still did not have an estimate of the standard errors, since this period preceded the
bootstrap approach.

Here, Hal solved the problem with his formula for “White standard errors”, (White
1980). I first heard Hal’s paper at the weekly joint Harvard–MIT Thursday economet-
rics seminar. I remember walking out of the seminar and saying to my close friend
and co-author Zvi Griliches that Hal’s paper would change the way we do econo-
metrics. Zvi was less enthusiastic, perhaps since Hal had not been his student, but
my prediction appears correct given the presence of Hal’s formula in all econometric
software packages and the large number of citations. Two further points. I talked
with Hal when he was my TA about the “Hausman specification test” approach,
and his comments were quite helpful. Second, the “Newey-West standard errors”
for time series applications followed from two subsequent TAs for my econometrics
courses. So I am pleased thinking that all applied econometrics computer output for
regressions should have output arising from my TAs at MIT.

2 Finite Sample Approach

As Hal’s thesis supervisor, I now propose a possible finite sample improvement to
his approach. James MacKinnon (2011) in his paper in this volume has explored
various bootstrap approaches to improve the finite sample performance of White
standard error estimation. Since I am interested in inference, I will explore possible
improvements in the behavior of the “t-test” using Hal’s approach. However, if one is
interested in the estimated standard errors, one can derive an estimate using division
on the refined t-test divided by the OLS estimate of the parameter.

In large samples the asymptotic approximation assumes we know the true σ 2
i s.

However, in finite samples we use estimates of these parameters. Guido Keurstiener
and I explored this effect in inference from FGLS applied to difference-in-differences
models in Hausman and Kuersteiner (2008). We found that taking account of the
unknown variance estimates using Rothenberg (1988) second order Edgeworth
expansion approach led to much more accurate sized tests. Also, we found that
the second order expansion approach did better than the bootstrap in terms of power.
Thus, I have applied a modification to the second order expansion to calculation of
t-tests based on estimated White standard errors.2 I have used the design framework

2 This research is done jointly with Christopher Palmer, one of my current TAs. See Hausman and
Palmer (2012).
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from James MacKinnon’s paper to see how his bootstrap approaches compare with
the second-order refinement approach.

I consider the test statistic for linear combinations of the parameters and the null
hypothesis H0 : c′β = c′β0. The associated t-statistic is

T = c′β̂ − c′β0√
c′V̂ c

(1)

We first consider the size of various tests where the estimate of � in the middle
matrix X ′�X takes various forms:3

1. HC0: White approach using the OLS residuals to estimate

� = diag
{

û2
i

}
(2)

2. HC1: this approach adjusts for degrees of freedom and is the most commonly
used form:

� = n

n − k
diag

{
û2

i

}
(3)

3. HC2: this approach adjusts for the “leverage” values hi , where h is the diagonal
of the projection matrix.

� = diag

{
û2

i

1 − hi

}
(4)

where h = diag (PX ) and PX = X(X ′ X)−1 X1 is the projection matrix of X .
4. HC3: this approach is an approximation to the jackknife covariance matrix HCJ,

which I emit here because it is computationally more complicated and provides
nearly identical results. HC3 is a slight modification of HC2:

� = diag

{(
ûi

1 − hi

)2
}

(5)

See MacKinnon (zou) for results containing HC4, which I omit because of its
poor size performance in this design.

I compare these estimators to the Rothenberg second order Edgeworth approxi-
mation. This approach modifies the traditional two-sided critical values Zα/2 for a
t-statistic of null hypothesis Ho2 C′β = C′β0 with the equation:

t = ±zα/2

(
1 − A

2n

)
(6)

where n is the sample size and

3 I use the same notation that MacKinnon uses in his paper in this volume.
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A = 1

4
(1 + z2

α/2)VW − a(z2
α/2 − 1)− b

VW = 2n

3

∑
f 4
i û4

i(∑
f 2
i û2

i

)2

a =
∑

f 2
i g2

i∑
f 2
i û2

i

b =
∑

f 2
i Qii∑
f 2
i û2

i

f = nX(X ′ X)−1C

g = M� f√
f ′� f/n

Q = n(M�M −�)

M = I − PX

and ûi are the fitted residuals.
However, the experience of applying this formula in Hausman and Palmer (2012)

was that it has significant size distortions. Thus, I apply a non-parametric bootstrap
to estimate β. For B bootstrap iterations, I resample (X, y) with replacement from
the original data, forming a bootstrap sample (X∗, y∗). For each iteration j , I then
calculate β∗

j = (X∗′ X∗)−1 X∗′y∗, and take V̂ to be

V̂ = 1

B − 1

B∑
j=1

(
β̂∗

j − ¯̂
β∗) (

β̂∗
j − ¯̂

β∗)′
. (7)

I use this estimated covariance matrix to calculate the test statistic in equation (1)
and make interference by comparing it with the adjusted critical value obtained from
equation (6), an approach. I refer to as the “ second order bootstrap”, or SOB, method.

To test our approach I use the same simulation design as MacKinnon (2011)

yi = β1 +
5∑

k=2

βk Xik + ui

ui = σiεi

εi ∼ N (0, 1)

σi = z(γ ) (Xiβ)
γ

Xik ∼ L N (0, 1) for k ≥ 2

βk = 1 for k < 5

β5 = 0
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where γ = 0 corresponds to homoskedasticity, and the degree of heteroskedasticity
increases with γ , and z(γ ) is a scaling factor which ensures that the average variance
of ui is equal to 1.

I first consider the sizes of the various approaches. I test H0 : β5 = 0 with a size of
α = 0.05. In Graph 1 we see that HC0 rejects much too often as is well-recognized.

The alternatives HC1, HC2, and HC3 offer improvements, but all have significant
size distortions. The “second order bootstrap” (SOB) approach has acceptable size
performance, being the best of the alternatives considered.4

I now consider power performance and compare the SOB approach to a bootstrap
approach to the White test. It is well recognized, e.g., (Hall 1992), the bootstrapped
test statistic for a pivotal situation has the same order of approximation as the second-
order approach. MacKinnon finds the wild bootstrap to perform the best using the
following specification. The wild bootstrap involves forming B bootstrap samples
using the data generating process

y∗
i = Xi β̃ + f (ũi )v

∗
i ,

4 I do not consider the bootstrap form of the White test since Hausman and Palmer (2012) find it
has significant size distortions and will be inferior in terms of the higher order expansions to the
bootstrap version of the test I consider below.
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where ũi are residuals from an estimate β̃ of β, f (·) is one of several candidate
transformations of the estimated residuals, and v∗

i is a random variable with mean
0 and variance 1, such that E

(
f (ũi )v

∗
i

) = 0. For each bootstrap sample
{

Xi , y∗
i

}
,

I estimate β̂∗
j where j indexes the bootstrap sample, j = 1, . . ., B, and calculates

the test statistic of interest, as in (1), using a particular heteroskedasticity-robust
estimator of the variance of β̂.

MacKinnon (2011) shows that using the wild bootstrap to estimate the distribution
of test statistics based on HC1, using v∗

i ∈ {−1, 1} with equal probability, restricted
residuals (i.e. β̃ is estimated imposing the null hyptothesis), and a transformation
of the residuals corresponding to HC3, f (ũi ) = ũi

1−h̃i
(where h̃i an element of the

diagonal of the restricted projection matrix PX̃ ) performs best in terms of size and
power.

I now compare the second order-bootstrap (SOB) approach to the best bootstrap
approach found by MacKinnon. In Graph 2, we see that the SOB approach has good
size properties as does the wild bootstrap (WB), by construction.

However, the SOB statistic has considerably greater power than the WB. In Graph
3 for the case of severe heteroskedasticity, we find a similar result.
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The size of both tests is quite accurate, but the power of the SOB approach exceeds
the power of the WB by a considerable margin. Thus, I conclude that the second
order bootstrap (SOB) approach appears to be better than alternative approaches to
calculating the White test in finite samples.

The refinement to the t-tests arising from the second-order bootstrap approach
is straightforward to program for econometric software. Thus, I recommend that
econometric software providers include the refined SOB formula since it is typically
(weakly) more accurate than the standard White formula.5

Hal has written many other important papers since his heteroscedasticity paper.
I recommend to the reader the papers in this volume to see the breadth of Hal’s
research interests and contributions. I take great pride in Hal’s accomplishments
over the years and congratulate him and the conference organizers for celebrating
Hal’s sixtieth birthday.

Acknowledgments I thank Christopher Palmer for assisting in the preparation of this note.

5 Similar refinements could be quite useful in the case of Newey-West and GMM estimated covari-
ance matrices, where the number of unknown parameters estimates is significantly larger than in
the heteroscedasticity situation.
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Open-Model Forecast-Error Taxonomies

David F. Hendry and Grayham E. Mizon

Abstract We develop forecast-error taxonomies when there are unmodeled vari-
ables, forecast ‘off-line’. We establish three surprising results. Even when an open
system is correctly specified in-sample with zero intercepts, despite known future
values of strongly exogenous variables, changes in dynamics can induce forecast
failure when they have nonzero means. The additional impact on forecast failure
of incorrectly omitting such variables depends only on unanticipated shifts in their
means. With no such shifts, there is no reduction in forecast failure from forecast-
ing unmodeled variables relative to omitting them in 1-step or multi-step forecasts.
Artificial data illustrations confirm these results.

Keywords Forecasting ·Forecast-error taxonomies ·Location shifts ·Open models

1 Introduction

Our pleasure at contributing a chapter on forecasting to a volume in honor of Hal
White, for whom forecasting was a salient research topic, has been completely dashed
by Hal’s tragic and premature death. Nevertheless, we should still celebrate a won-
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derful and generous individual who will be sorely, missed as well as the many major
research findings that flowed from Hal’s immensely creative mind.

There are a number of taxonomies of the sources of forecast errors in closed
systems where every variable to be forecast is modeled: see for example, Clements
and Hendry (1998), Clements and Hendry (2006) and Hendry and Hubrich (2011).
Such taxonomies have clarified the problems facing forecasters when parameters
change. Forecasting variables as part of systems that are subjected to unanticipated
changes is difficult, as recent floods, tsunamis, and the financial crisis demonstrate.
Systematic forecast errors and forecast failures are mainly due to location shifts,
namely changes in the previous unconditional means of the variables being forecast,
and changes in other parameters can be hard to detect, as shown in Hendry (2000)
and illustrated by Hendry and Nielsen (2007).

In practice, many forecasting systems include unmodeled determinants, whose
future values are determined ‘off-line’ by a separate process: examples include com-
modity prices, exchange rates, and outputs of trading partners. There are many rea-
sons for not modeling some variables, namely those that are exceptionally difficult
to forecast accurately, other variables that are policy instruments determined outside
the system in use, and some weakly exogenous variables where conditioning on them
incurs no loss of information for modeling: see Engle et al. (1983). Using a taxonomy
of the consequences of including or excluding ‘off-line’ variables as inputs in fore-
casting models, we clarify the forecasting problems which could result. Even when
the forecasting model is correctly specified in-sample having accurately estimated
coefficients, with unmodeled variables that are strongly exogenous and known into
the future, nevertheless changes in the dynamics of the system can induce forecast
failure simply because the unmodeled variables have nonzero means.

At first sight such a claim seems counter-intuitive: if a variable yt is determined
by

yt = γ yt−1 + λzt + εt

say, when εt ∼ IN[0, σ 2
ε ], and zt is strongly exogenous, then for known λzt :

(yt − λzt ) = γ yt−1 + εt (1)

where the right-hand side has no intercept. Hence it might seem that (1) is in the
class of models where change is hard to detect. However, if zt has a nonzero mean,
then so does yt , and that alone makes the model susceptible to forecast failure after
any parameters change, and as we show below, that result holds whether or not zt is
included in the model.

There are four distinct scenarios to consider for 1-step ahead forecasts, when
facing parameter shifts in the data-generation process (DGP). First, where strongly
exogenous variables with known future values are correctly included in the fore-
casting model and all parameters are known (or sufficiently precisely estimated that
sampling variation is a second-order issue). Second, when the strongly exogenous
variables are unknowingly and incorrectly omitted. Third, when the strongly exoge-
nous variables need to be forecast, either within the system or ‘off-line’. Finally,
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allowing for parameter-estimation uncertainty, model misspecification for the DGP
and measurement errors at the forecast origin, a setting which in principle is applica-
ble to all three previous cases but here is only considered for the third. An analo-
gous four scenarios arise for multi-step forecasts, but as the key results seem little
affected, we focus on the first four scenarios and briefly note extensions to forecasting
more than one period ahead.

Section 2 investigates a correctly-specified I(0) open system to consider the
sources of forecast failure that can result from changes in the parameters when
the m unmodeled strongly exogenous variables, zt , have nonzero means. Section 2.1
investigates any additional impacts from unknowingly omitting the zt , and Sect. 2.2
compares 1-step forecasts one period later in both those settings. Section 3 develops
1-step taxonomies, first for excluding the zt , then in §3.1 when they are forecast
‘off-line’, also allowing for parameter-estimation uncertainty, measurement errors at
the forecast origin, and mis-forecasting the zt . Section 4 provides an artificial data
illustration of the analytical results. Section 5 considers multi-step forecasts when
the exogenous process is known in the future, then §5.1, §5.2 and §5.3, respectively
consider the impacts of omitting the unmodeled variables, forecasting them, then
parameter estimation. Section 6 briefly notes the transformations needed to reduce
an initially I(1) system to I(0). Section 7 concludes. The appendix compares fore-
casting in open and closed I(0) systems.

2 Forecasting in an Open I(0) System

Consider an open I(0) system conditional on a set of m strongly exogenous variables
{zt },1 which are known into the future (lagged unmodeled variables can be stacked
within zt ) where the conditional DGP over t = 1, . . . T is:

yt = τ + Υ yt−1 + Γ zt + εt (2)

when εt ∼ INn [0, 	] and E
[
εt |z1 . . . zT +H

] = 0. A system which is I(1) and
cointegrated is considered in §6. When all the variables are weakly stationary in-
sample, so the eigenvalues of Υ lie within the unit circle, and we initially set all
parameters to be constant, taking expectations in (2) when E [zt ] = ρ:

E
[
yt

] = φ = τ + Υ φ + ΓE [zt ] = τ + Υ φ + Γρ,

so the in-sample equilibrium mean of y is:

φ = (In − Υ )−1 (τ + Γρ) (3)

Consequently, we can re-write (2) as:

1 Corresponding to Ψzy = 0 in the Appendix.
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yt − φ = Υ (yt−1 − φ)+ Γ (zt − ρ)+ εt (4)

Below, we use whichever parametrization (2) or (4) proves most convenient, although
it must be remembered that how the means φ and ρ are connected in (3) depends on
the invariants of the underlying behavior represented by agents’ plans. For example,
(3) only entails co-breaking between φ and ρ so long as the other parameters remain
constant when ρ shifts: see Hendry and Massmann (2007), for an analysis of co-
breaking. Concerning notation for forecast values, y denotes a correctly specified
model with known future z; ỹ denotes when z is omitted from the model; and ŷ is
when the z are included in the model, but future values need to be forecast; and if
needed, ̂̂y for that last case when parameters are estimated. ŷT denotes an estimated
forecast-origin value.

We first consider a 1-step ahead forecast from time T for known zT +1 from a
model that is correctly specified in-sample with known parameter values, denoted:

yT +1|T = τ + Υ yT + Γ zT +1 (5)

However, the DGP in the next period in fact changes to:

yT +1 = τ ∗ + Υ ∗yT + Γ ∗zT +1 + εT +1 (6)

where all the parameters shift, including the dynamic feedback, and ρ shifts to
E

[
zT +1

] = ρ∗. The resulting forecast error between (5) and (6) is εT +1|T = yT +1 −
yT +1|T and hence:

εT +1|T = (
τ ∗ − τ

) + (
Υ ∗ − Υ

)
yT + (

Γ ∗ − Γ
)

zT +1 + εT +1 (7)

so that:

E
[
εT +1|T

] = (
τ ∗ − τ

) + (
Υ ∗ − Υ

)
E

[
yT

] + (
Γ ∗ − Γ

)
E

[
zT +1

]
= (

τ ∗ − τ
) + (

Υ ∗ − Υ
)
φ + (

Γ ∗ − Γ
)
ρ∗ (8)

Consequently, even if τ ∗ = τ = 0 so (7) has no intercept and Γ ∗ = Γ and ρ∗ = ρ,
so (8) then does not depend directly on zT +1 which anyway has constant parameters,
nevertheless forecast failure can occur for ρ �= 0 when Υ ∗ �= Υ as then:

E
[
εT +1|T

] = (
Υ ∗ − Υ

)
(In − Υ )−1 Γρ (9)

which reveals an equilibrium-mean shift occurs in {yt }.
This outcome may be clearer when (4) is written using (3) as:

yt = (In − Υ )−1 (τ + Γρ)+ Υ (yt−1 − φ)+ Γ (zt − ρ)+ εt (10)
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so that even when τ = 0, although (yt−1 − φ),Γ (zt − ρ) and εt all have expectations
of zero, (10) entails an equilibrium mean of

(In − Υ )−1 Γρ (11)

which is zero only if ρ = 0 when Γ �= 0.
This is our first main result: despite correctly including unmodeled strongly exoge-

nous variables zt with known future values in a forecasting equation with no intercept
and known parameters, a change in dynamics alone can induce forecast failure when
the zt have nonzero means.

More surprising still is that such failure is little different to that resulting either
from modeling and forecasting zt (see §3) possibly by a vector autoregression (VAR)
say, or even excluding zt entirely from the model, either deliberately or inadvertently,
as we now show in §2.1.

2.1 Omitting the Exogenous Variables

If it is not known that zt is relevant, so it is inadvertently omitted, the misspecified
model of (4) is:

yt = φ + Υe (yt−1 − φ)+ ut (12)

where the subscript e in (12) denotes the finite-sample expected value following
misspecification (i.e., E[Υ̃ ] = Υe). Then ut = Γe (zt − ρ) + εt with E [ut ] = 0.
Provided there have not been any equilibrium mean shifts in-sample, then φe = φ.
The forecast using the expected parameter values (to abstract from sampling uncer-
tainty) is:

ỹT +1|T = φ + Υe (yT − φ) (13)

with ũT +1|T = yT +1 − ỹT +1|T where (6) is reparametrized as:

yT +1 = φ∗ + Υ ∗ (
yT − φ∗) + Γ ∗ (

zT +1 − ρ∗) + εT +1 (14)

where φ∗ = (In − Υ ∗)−1 (τ ∗ + Γ ∗ρ∗). Then:

ũT +1|T = (
φ∗ − φ

) + Υ ∗ (
yT − φ∗) − Υe (yT − φ)+ Γ ∗ (

zT +1 − ρ∗) + εT +1

= (
In − Υ ∗) (

φ∗ − φ
) + (

Υ ∗ − Υe
)
(yT − φ)+ Γ ∗ (

zT +1 − ρ∗) + εT +1
(15)

with:
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E
[̃
uT +1|T

] = (
In − Υ ∗) (

φ∗ − φ
)

= (
τ ∗ − τ

) + (
Υ ∗ − Υ

)
φ + (

Γ ∗ − Γ
)
ρ∗ + Γ

(
ρ∗ − ρ

)
(16)

Thus, (8) and (16) only differ by Γ (ρ∗ − ρ), and hence are the same when ρ∗ = ρ

despite the mis-specification. When also τ ∗ = τ = 0 and Γ ∗ = Γ , both are nonzero
at the value in (9). However, the forecast-error variances will differ between (15) and
(7), with the former being larger in general.

This is our second main result: the additional impact on forecast failure of incor-
rectly omitting strongly exogenous variables depends only on shifts in their means.
Combining these first two results, as the comparison of and (8) (16) shows, when
their means are constant at zero, then irrespective of whether or not these strongly
exogenous variables are included in the forecasting system, they neither cause nor
augment forecast failure.

2.2 1-Step Forecasts One Period Later

The analyses of forecasting one period after a break in Clements and Hendry (2011)
show that results can be substantively altered because of the impacts of the breaks
on later data. From (6):

yT +2 = τ ∗ + Υ ∗yT +1 + Γ ∗zT +2 + εT +2 (17)

so that as E
[
zT +2

] = ρ∗:

E
[
yT +2

] = τ ∗ + Υ ∗E
[
yT +1

] + Γ ∗E
[
zT +2

] =
(

In − (
Υ ∗)2

)
φ∗ + (

Υ ∗)2
φ

= φ∗ − (
Υ ∗)2 (

φ∗ − φ
)

(18)

as φ∗ = (In − Υ ∗)−1 (τ ∗ + Γ ∗ρ∗) and E
[
yT +1

] = φ∗ −Υ ∗ (φ∗ − φ). Forecasting
from (5) updated one period, but still with in-sample known parameters, so:2

yT +2|T +1 = τ + Υ yT +1 + Γ zT +2 (19)

the resulting forecast error εT +2|T +1 = yT +2 − yT +2|T +1 is:

2 Recursive or moving windows updating will drive the forecasting system toward the robust device
considered in §2.3.
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εT +2|T +1 = (
In + Υ ∗ − Υ

) (
In − Υ ∗) (

φ∗ − φ
)

(I a)

+ (
Υ ∗ − Υ

) (
yT +1 − E

[
yT +1

])
(I I a)

+ εT +2 (I I I a)

+ (
Γ ∗ − Γ

) (
zT +2 − ρ∗) (I V a)

− Γ
(
ρ∗ − ρ

)
(V a) (20)

with

E
[
εT +2|T +1

] = (
In + Υ ∗ − Υ

) (
In − Υ ∗) (

φ∗ − φ
) − Γ

(
ρ∗ − ρ

)
(21)

Similarly, omitting the zT +2, so using:

ỹT +2|T +1 = φ + Υe (yT +1 − φ) (22)

then as:

yT +2 = φ∗ − (
Υ ∗)2 (

φ∗ − φ
) +Υ ∗ (

yT +1 − E
[
yT +1

]) +Γ ∗ (
zT +2 − ρ∗) + εT +2

(23)
the forecast error ε̃T +2|T +1 = yT +2 − ỹT +2|T +1 is:

ε̃T +2|T +1 = (
In + Υ ∗ − Υe

) (
In − Υ ∗) (

φ∗ − φ
)

(I b)

+ (
Υ ∗ − Υe

) (
yT +1 − E

[
yT +1

])
(I I b)

+ εT +2 (I I I b)

+ Γ ∗ (
zT +2 − ρ∗) (I V b) (24)

with:
E

[̃
εT +2|T +1

] = (
In + Υ ∗ − Υe

) (
In − Υ ∗) (

φ∗ − φ
)

(25)

Consequently, unlike Clements and Hendry (2011), comparing (21) and (25) shows
that there are no substantive changes compared to the baseline case here, and those
two formulae are essentially the same when ρ∗ = ρ.

2.3 Avoiding Systematic Forecast Failure

One implication of §2.2 is that until the forecasting model is changed, systematic
forecast failure will persist. Out of the many possible methods for updating a model by
intercept corrections, modeling the break, recursive or moving window re-estimation
and differencing, we only note the last here: see Hendry (2006). In place of (22),
consider simply using the first-difference forecast, ΔỹT +2|T +1 = 0:
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ỹT +2|T +1 = yT +1 = φ∗ + Υ ∗ (
yT − φ∗) + Γ ∗ (

zT +1 − ρ∗) + εT +1

so that using (23), ε̃T +2|T +1 = yT +2 − ỹT +2|T +1 is:

ε̃T +2|T +1 = φ∗ − (
Υ ∗)2 (

φ∗ − φ
) + Υ ∗ (

yT +1 − E
[
yT +1

]) + Γ ∗ (
zT +2 − ρ∗)

+ εT +2−φ∗+Υ ∗ (
φ∗−φ) −Υ ∗ (yT −φ)− Γ ∗ (

zT +1 − ρ∗) − εT +1

= Υ ∗ (
In − Υ ∗) (

φ∗ − φ
) + Υ ∗ (

yT +1 − E
[
yT +1

])
− Υ ∗ (yT − φ)+ Γ ∗ΔzT +2 +ΔεT +2

so:
E

[̃
εT +2|T +1

] = Υ ∗ (
In − Υ ∗) (

φ∗ − φ
)

(26)

which considerably dampens the forecast-error bias relative to (20) and (24) (e.g.,
for a univariate yt , then Υ ∗ (1 − Υ ∗) ≤ 0.25).

3 1-Step Taxonomies

We now also allow for parameter estimation uncertainty, the misspecification of
omitting z, and possible mismeasurement at the forecast origin, so the forecast-period
DGP remains (14), whereas the forecasting model becomes:

ỹT +1|T = φ̃ + Υ̃
(̃
yT − φ̃

)
(27)

The forecast error, ε̃T +1|T = yT +1 − ỹT +1|T can be decomposed into eleven
empirically-relevant sources when φe �= φ:

ε̃T +1|T = (
In − Υ ∗) (

φ∗ − φ
)

[1] equilibrium-mean shift

+ (
Υ ∗ − Υ

)
(yT − φ) [2] dynamic shift

+ (In − Υe) (φ − φe) [3] equilibrium-mean mis-specification

+ (Υ − Υe) (yT − φ) [4] dynamic mis-specification

+ (In − Υe)
(
φe − φ̃

)
[5] equilibrium-mean estimation

+ (
Υe − Υ̃

)
(yT − φ) [6] dynamic estimation (28)

+ Υe (yT − ỹT ) [7] forecast origin mis-measurement

+ (
Υ̃ − Υe

) (
φ̃ − φ

)
[8] estimation covariance

+ (
Υ̃ − Υe

)
(yT − ỹT ) [9] measurement covariance

+ εT +1 [10] innovation error

+ Γ ∗ (
zT +1 − ρ∗) [11] omitted variables
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As with earlier taxonomies, terms in (28) can be divided into those with nonzero
expected values that lead to forecast biases, namely [1] and possibly [3] and [7]
(noting that [8] is Op(T −1)), and those with zero means that only affect forecast error
variances, namely all the other terms, noting that E[yT − φ] = E[zT +1 − ρ∗] = 0.
Thus, despite estimating a misspecified system with omitted variables:

E
[̃
εT +1|T

] ≈ (
In − Υ ∗) (

φ∗ − φ
) + Υe

(
φ − E

[̃
yT

])

which matches (16) when E
[̃
yT

] = φ.
This outcome could be compared directly with that from including the known zt in

estimation and forecasting by dropping line [10], stacking x′
t = (

y′
t z′

t

)
and redefining

parameters, estimates, and variables accordingly. Indeed, when Γ ∗ = Γ = 0, (28)
becomes the forecast error taxonomy for a VAR.

3.1 Forecasting the Unmodeled Variables

However, the more interesting and realistic case is where zT +1 is known to be relevant
and has to be forecast with its parameters estimated in (2), which we now consider
via:

ŷT +1|T = φ̂ + Υ̂
(̂
yT − φ̂

) + Γ̂ (̂zT +1 − ρ̂) (29)

compared to (6). Although the following derivation is under the correct specifica-
tion of (29), the results above show that misspecification does not create important
additional problems, and for the dynamics, is already reflected in (28). Then, letting
ε̂T +1|T = yT +1 − ŷT +1|T , all the terms from (28) remain other than [11] (still allow-
ing for finite-sample biases in the dynamics, so Υe �= Υ , but for simplicity taking
E[ρ̂] = ρ and E[Γ̂ ] ≈ Γ ) with the following 9 terms replacing the old [11].

ε̂T +1|T = [1]–[10] in (28)

− Γ
(
ρ∗ − ρ

)
[11] exogenous mean shift

+ (
Γ ∗ − Γ

) (
zT +1 − ρ∗) [12] exogenous slope shift

+ Γ (ρ̂ − ρ) [13] exogenous-mean estimation

− (
Γ̂ − Γ

) (
zT +1 − ρ∗) [14] exogenous slope estimation (30)

+ Γ
(
zT +1 − E

[̂
zT +1

])
[15] exogenous mean mis-forecast

+ (
Γ̂ − Γ

)
(ρ̂ − ρ) [16] estimation covariance

− (
Γ̂ − Γ

) (
ρ∗ − ρ

)
[17] exogenous mean shift covariance

+ Γ
(
E

[̂
zT +1

] − ẑT +1
)

[18] exogenous mis-forecast.

+ (
Γ̂ − Γ

)
(zT +1 − ẑT +1) [19] exogenous mis-forecast covariance
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We focus on the terms in (30) with non-zero expectations, where E
[
zT +1

] = ρ∗,
and for simplicity covariances are ignored as a smaller order of magnitude. Then
combined with (28):

E
[̂
εT +1|T

] ≈ (
In − Υ ∗) (

φ∗ − φ
) − Γ

(
ρ∗ − ρ

) + Υe
(
φ − E

[̃
yT

])
+ Γ

(
ρ∗ − E

[̂
zT +1

])
= (

τ ∗ − τ
) + (

Υ ∗ − Υ
)
φ + (

Γ ∗ − Γ
)
ρ∗ + Υe

(
φ − E

[̃
yT

])
+ Γ

(
ρ∗ − E

[̂
zT +1

])

from (16). As before, when τ ∗ = τ = 0 and Γ ∗ = Γ , with E
[̃
yT

] = φ:

E
[̂
εT +1|T

] ≈ (
Υ ∗ − Υ

)
φ + Γ

(
ρ∗ − E

[̂
zT +1

])

compared to E
[̃
uT +1|T

] = (Υ ∗ − Υ ) φ + Γ (ρ∗ − ρ), so:

E
[̂
εT +1|T

] − E
[̃
uT +1|T

] ≈ −Γ (
E

[̂
zT +1

] − ρ
)

(31)

This is our third main result: exogenous variable forecasts have to be closer to the
new mean ρ∗ than the old mean ρ to deliver a smaller forecast error bias than arises
from omitting them.

When ρ∗ = ρ, E
[̂
zT +1

] = ρ is necessary for E
[̂
εT +1|T

] = E
[̃
uT +1|T

]
,

and even then there will be variance effects both from parameter estimation and(
E

[̂
zT +1

] − ẑT +1
)
. This is our fourth main result: when ρ∗ = ρ, there is no reduc-

tion in forecast failure from accurately forecasting the exogenous variables relative
to omitting them.

Our fifth main result is: this outcome does not depend on the strong exogeneity
of the unmodeled variables, and holds even when they are only weakly exogenous.

Without strong assumptions about the dependencies between the many mean-zero
terms in the taxonomy, it is not possible to derive explicit forecast error variances, but
it is clear there are many contributions beyond the innovation error variance, some
of which could well be Op(1), such as mis-forecasting the unmodeled variables, and
forecast-origin mismeasurement. Moreover, as forecast errors could arise from every
possible (non-repetitive) selection from the 19 terms, namely

∑19
k=1 19!/ (19 − k)! ≈

3.3 × 1017, delineating their source must be nearly impossible.

4 Artificial Data Illustration

We consider a bivariate system with one unmodeled (strongly exogenous) variable,
with known future values, where the baseline parameter values are τ = 0 and ρ = 0
when:

Υ =
(

0.5 0
0 0.5

)
Γ =

(
1
1

)
(32)
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Fig. 1 Forecast failure for correct and misspecified models

with	 = I2, T = 100, and h = 1, . . . , 5 1-step ahead forecasts after the break. The
parameter shift investigated is:

Υ ∗ =
(

0.75 0
0 0.5

)
(33)

first for the baseline, then when ρ = 0 but:

τ =
(

5
0

)
(34)

and finally when τ = 0 but ρ = 5.
The two equations are decoupled in this first experiment, whereas in the second:

Υ =
(

0.5 0.5
−0.3 0.5

)
(35)

again for the same scenarios.
The results of the first set are reported in Fig. 1.
Panel a records forecasts ŷ1,T +h|T +h−1 from a single draw of the initial process

in (32) when parameters are estimated, shown with error bands of ±2σ̂11, and when
including parameter estimation uncertainty, shown with bars. There is a very small
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increase in forecast uncertainty from adding parameter variances, consistent with an
Op(1/T ) effect.

Panel b reports forecasts when zt is omitted both in estimation and forecasting.
Although the forecast intervals are wider, forecasts are similar and remain within
their ex ante forecast intervals.

Panel c is for the correct specification but after the shift in (33), still with τ = 0
and ρ = 0. Despite the break in the dynamics, forecasts remain within their ex
ante forecast intervals, even though those are now incorrect. Panel d augments the
problem by the incorrect omission of zt , but hardly differs from Panel b.

Although we do not report the outcomes for a constant model and nonzero τ , they
are well-behaved around the new data outcomes. The same cannot be said for the
outcomes in Panels e & f for the nonzero value of τ in (34) after the break in Υ in
(33): forecast failure is manifest, and almost unaffected by whether zt is included or
omitted.

Finally, for ρ = 5, Panels g & h show the forecasts for the same break when the
model is correctly specified by including zt , and incorrect by omitting it. Despite the
known future values of zt and the absence of forecast failure after the break when
ρ = 0, failure is again manifest and similar to Panels e & f.

The second setting in (35) yielded similar results, even though throughout both
sets of experiments, the second variable was correctly forecast. All these results are
consistent with the implications of the taxonomy in (28).

5 h-Step Ahead Forecasts

We now consider the outcomes when an investigator needs to forecast h-steps
ahead, h > 1. As the impacts of parameter-estimation uncertainty, mis-forecasting
the unmodeled variables, and forecast-origin mismeasurement are similar to those
derived above, we first derive the outcomes for known parameters to highlight the
impacts of breaks when there are unmodeled variables. Thus, the in-sample system
remains:

yt = φ + Υ (yt−1 − φ)+ Γ (zt − ρ)+ εt

forecasting from T + h − 1 to T + h by:

yT +h|T +h−1 = φ + Υ
(
yT +h−1|T +h−2 − φ

) + Γ (zT +h − ρ)

leading to the multi-step forecast:

yT +h|T = φ +
h−1∑
i=0

Υ iΓ (zT +h−i − ρ)+ Υ h (yT − φ) (36)

If the system remained constant, the outcome would be:
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yT +h = φ +
h−1∑
i=0

[
Υ iΓ (zT +h−i − ρ)+ Υ iεT +h−i

]
+ Υ h (yT − φ) (37)

so a known future {zt } enters the same way as the cumulative error process. Then∑h−1
i=0 Υ

iεT +h−i would be the only source of forecast error when equation (36)
was used. However, that will not remain the case once there are changes in para-
meters, misspecification of the model, or mis-estimation of Γ in (2), or unantici-
pated changes to ρ in the forecast period when the {zT +h−i } are not known with
certainty.

As before, we allow for structural change in the DGP, but to highlight the key
problem, we first analyze a setting without estimation of, or misspecification in, the
econometrician’s model for the DGP in-sample, so the in-sample parameter values
are known. Under changes in all parameters of (37), the actual future outcomes will
be:

yT +h = φ∗ +
h−1∑
i=0

(
Υ ∗)i [

Γ ∗ (
zT +h−i − ρ∗) + εT +h−i

] + (
Υ ∗)h (

yT − φ∗) (38)

When (36) is used, the forecast error vT +h|T = yT +h − yT +h|T becomes:

vT +h|T = φ∗ − φ + (
Υ ∗)h (

yT − φ∗) − Υ h (yT − φ)

+
h−1∑
i=0

(
Υ ∗)i

Γ ∗ (
zT +h−i − ρ∗) −

h−1∑
i=0

Υ iΓ (zT +h−i − ρ)

+
h−1∑
i=0

(
Υ ∗)i

εT +h−i

Taking these rows one at a time, and using:

h−1∑
i=0

Ai =
(

In − Ah
)
(In − A)−1

first:

φ∗ − φ + (
Υ ∗)h (

yT − φ∗) − Υ h (yT − φ)

=
(

In − (
Υ ∗)h

) (
φ∗ − φ

) +
((
Υ ∗)h − Υ h

)
(yT − φ)

where the terms respectively represent equilibrium-mean and slope shifts. Next:
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h−1∑
i=0

(
Υ ∗)i

Γ ∗ (
zT +h−i − ρ∗) −

h−1∑
i=0

Υ iΓ (zT +h−i − ρ)

=
h−1∑
i=0

[(
Υ ∗)i

Γ ∗ − Υ iΓ
] (

zT +h−i − ρ∗) −
h−1∑
i=0

Υ iΓ
(
ρ∗ − ρ

)

where the first component has mean zero and the second is part of the exogenous
mean shift. Finally, combining:

vT +h|T =
(

In − (
Υ ∗)h

) (
φ∗ − φ

)
[A] equilibrium-mean shift

+
((
Υ ∗)h − Υ h

)
(yT − φ) [B] dynamic shift

−
(

In − Υ h
)
(In − Υ )−1 Γ

(
ρ∗ − ρ

)
[C] exogenous mean shift

(39)

+
h−1∑
i=0

[(
Υ ∗)i

Γ ∗ − Υ iΓ
] (

zT +h−i − ρ∗) [D] exogenous slope shift

+
h−1∑
i=0

(
Υ ∗)i

εT +h−i [E] innovation error

This outcome matches the earlier taxonomy specialized appropriately, namely [1],
[2], [9], plus new [11], and [12]. As terms [A] and [C] have nonzero means, and the
others have zero means:

E
[
vT +h

] =
(

In − (
Υ ∗)h

) (
φ∗ − φ

) −
(

In − Υ h
)
(In − Υ )−1 Γ

(
ρ∗ − ρ

)
(40)

Thus, even h-steps ahead, when ρ∗ = ρ, forecast biases depend on (φ∗ − φ) which
is nonzero whenever ρ �= 0 despite τ ∗ = τ = 0.

This is our sixth main result: the first two results continue to hold for multi-step
forecasts.

5.1 Omitting the Unmodeled Variables in h-Step Ahead Forecasts

The forecasting model in-sample is now (4) leading to the multi-step forecasts:

ỹT +h|T = φ + (Υe)
h (yT − φ) (41)

When (41) is used, the forecast error ṽT +h|T = yT +h − ỹT +h|T becomes:
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ṽT +h|T = (
φ∗ − φ

) + (
Υ ∗)h (

yT − φ∗) − (Υe)
h (yT − φ)+ vT +h

=
(

In − (
Υ ∗)h

) (
φ∗ − φ

) +
((
Υ ∗)h − (Υe)

h
)
(yT − φ)

+
h−1∑
i=0

(
Υ ∗)i

εT +h−i +
h−1∑
i=0

(
Υ ∗)i

Γ ∗ (
zT +h−i − ρ∗) (42)

matching the four terms in (15), where:

vT +h =
h−1∑
i=0

(
Υ ∗)i [

Γ ∗ (
zT +h−i − ρ∗) + εT +h−i

]

with E
[
vT +h

] = 0, so that:

E
[̃
vT +h|T

] =
(

In − (
Υ ∗)h

) (
φ∗ − φ

)
(43)

This is our seventh main result: the previous conclusions about forecast failure based
on the 1-step analyses are essentially unaltered: whenρ∗ = ρ, (40) and (43) are equal,
so forecast failure is only reduced by the inclusion of unmodeled variables when they
have mean shifts.

5.2 Forecasting the Unmodeled Variables in h-Step Ahead
Forecasts

Now:

ŷT +h|T = φ +
h−1∑
i=0

Υ iΓ (̂zT +h−i − ρ)+ Υ h (yT − φ) (44)

with the forecast error v̂T +h|T = yT +h − ŷT +h|T :
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v̂T +h|T = (
φ∗ − φ

) + (
Υ ∗)h (

yT − φ∗) − (Υe)
h (yT − φ)+

h−1∑
i=0

(
Υ ∗)i

εT +h−i

+
h−1∑
i=0

(
Υ ∗)i

Γ ∗ (
zT +h−i − ρ∗) −

h−1∑
i=0

Υ iΓ (̂zT +h−i − ρ)

=
(
In− (

Υ ∗)h
) (
φ∗−φ)+

((
Υ ∗)h − (Υe)

h
)
(yT − φ)+

h−1∑
i=0

(
Υ ∗)i

εT +h−i

+
h−1∑
i=0

((
Υ ∗)i

Γ ∗−Υ iΓ
) (

zT +h−i−ρ∗) −
h−1∑
i=0

Υ iΓ (̂zT +h−i − zT +h−i )

−
h−1∑
i=0

Υ iΓ
(
ρ∗ − ρ

)
(45)

In the second block, the first three terms are identical to those in (42), and∑h−1
i=0 (Υ

∗)i Γ ∗ (zT +h−i − ρ∗) has been replaced by terms relating to the shift in
the dynamics (with mean zero), the forecast mistake, and the shift in the mean of the
exogenous variables, as in (16).

5.3 Parameter Estimation in h-Step Ahead Forecasts

The estimated model forecasts are now:

̂̂yT +h|T = φ̂ +
h−1∑
i=0

Υ̂ i Γ̂ (̂zT +h−i − ρ̂)+ Υ̂ h (̂
yT − φ̂

)
(46)

Thus, facing (38), the forecast error ̂̂εT +h|T = yT +h −̂̂yT +h|T is:

̂̂εT +h|T = φ∗ − φ̂ + (
Υ ∗)h (

yT − φ∗) − Υ̂ h (̂
yT − φ̂

)

+
h−1∑
i=0

(
Υ ∗)i [

Γ ∗ (
zT +h−i − ρ∗)] −

h−1∑
i=0

Υ̂ i Γ̂ (̂zT +h−i − ρ̂)

+
h−1∑
i=0

(
Υ ∗)i

εT +h−i

which can be decomposed into the equivalent 19 terms as the earlier 1-step taxonomy
in §3, analogous to the relation between (7) and (39). However, no new insights seem
to be gained by doing so, and it is clear that the third result above still holds.
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6 Transforming an I(1) System to I(0)

Consider an n-dimensional I(1) VAR with p lags and an innovation error ηt ∼
INn

[
0,Ωη

]
written as:

wt = π +
p∑

i=1

�i wt−i + ηt (47)

where some of the np eigenvalues of the polynomial
∣∣In − ∑p

i=1�i Li
∣∣ in L lie on,

and the rest inside, the unit circle. Then Γ = (In − ∑p
i=1�i ) has reduced rank

0 < r < n, and can be expressed as Γ = αβ ′ where α and β are n × r with rank r :
see e.g., Johansen (1995). Also π = γ + αμ, so when (e.g.) p = 2:

Δwt = γ + (�1 − In) (Δwt−1 − γ )− α
(
β ′wt−2 − μ

) + ηt (48)

with E
[
β ′wt

] = μ and E [Δwt ] = γ where bothΔwt and β ′wt are I(0) even though
wt is I(1). Then r of the xt above are β ′wt and n − r are α′⊥Δwt where α⊥ is
n × (n − r) with α′⊥α = 0 and (α : α⊥) is non-singular.

Partitioning wt into endogenous (modeled) variables yt conditional on unmodeled
zt then produces an open system as analyzed in §7. Thus, our results hold in an open
cointegrated system.

7 Conclusion

Even when a model is correctly specified in-sample, and the unmodeled variables,
zt , are strongly exogenous with the correctly estimated coefficients, changes in the
dynamics alone can induce forecast failure simply because the unmodeled variables
have nonzero means. When the mean of zt is constant, this forecast bias does not
depend substantively on whether or not zt is included in the forecasting model, but
only on its nonzero mean. Including zt in the forecasting model is beneficial when
its mean shifts, but that advantage can be lost when future values zT +h have to be
forecast ‘off-line’. These results are explicitly derived for 1-step ahead forecasts
and known parameters, but continue to hold when extended to estimated models, to
multi-step forecasting, and to a later forecast origin following a break.

Acknowledgments Financial support from the Open Society Foundation and the Oxford Martin
School is gratefully acknowledged. We are indebted to Anindya Banerjee, Jennifer L. Castle, Mike
Clements, Jurgen A. Doornik, Neil Ericsson, Katarina Juselius, and John N.J. Muellbauer for helpful
discussions about and comments on an earlier version.
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Appendix: Comparing Open with Closed I(0) Systems

Here, we relate the forecast error taxonomy of the open conditional I(0) system in
(2) to that for a closed VAR(1). Let x′

t = (
y′

t z′
t

)
, then the DGP over t = 1, . . . , T

for yt and zt is now:

xt = ψ + Ψ xt−1 + vt (A.1)

when v′
t =

(
v′

yt , v′
zt

)
∼ INn+m [0,Ω] and Ω =

(
Ωyy Ωyz

Ωzy Ωzz

)
with Ωzy = Ω ′

yz .

When all the variables are weakly stationary in-sample, taking expectations in (A.1):

E [xt ] = ψ + ΨE
[
xt−1

] = ψ + Ψμ = μ,

so:

μ = (In+m − Ψ )−1 ψ =
(

E
[
yt

]
E [zt ]

)
=

(
φ

ρ

)
. (A.2)

Consequently, we can re-write (A.1) as:

xt − μ = Ψ (xt−1 − μ)+ vt (A.3)

for t = 1, 2, . . . T .
We first consider a 1-step ahead forecast from time T from a model that is correctly

specified in-sample with known parameter values:

xT +1|T = ψ + Ψ xT (A.4)

but where the DGP in the next period has shifted to:

xT +1 = ψ∗ + Ψ ∗xT + vT +1 (A.5)

with vT +1 ∼ INn+m [0,Ω]. The resulting forecast error between (A.4) and (A.5) is
vT +1|T = xT +1 − xT +1|T and hence:

vT +1|T = (
ψ∗ − ψ

) + (
Ψ ∗ − Ψ

)
xT + vT +1 (A.6)

so that:3

3 Note that although E [xt ] = ψ + ΨE
[
xt−1

] = ψ + Ψμ = μ for t = 1, 2, . . .T when t > T

E
[
xT + j

] = ∑ j−1
i=0 (Ψ

∗)iψ∗ + (Ψ ∗) jμ for j � 1 which for an I(o) {xt } process converges to
(In+m − Ψ ∗)−1ψ∗ = μ∗ as j → ∞.
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E
[
vT +1|T

] = (
ψ∗ − ψ

) + (
Ψ ∗ − Ψ

)
E [xT ] = (

μ∗ − μ
)
. (A.7)

From (A.2), we can partition (A.7) as:

E
[
vT +1|T

] =
(
φ∗−φ
ρ∗−ρ

)

=
((
ψ∗

y − ψy

)
(
ψ∗

z − ψz
)

)
+

(
(Ψ ∗

yy − Ψyy) (Ψ
∗
yz − Ψyz)

(Ψ ∗
zy − Ψzy) (Ψ

∗
zz − Ψzz)

) (
φ

ρ

)

=
(∇ψy

∇ψz

)
+

(∇Ψyy ∇Ψyz

∇Ψzy ∇Ψzz

)(
φ

ρ

)

where ∇ denotes a change in a parameter, with:

∇ψy =
(
ψ∗

y − ψy

)
∇ψz = (

ψ∗
z − ψz

) ∇Ψyy = (Ψ ∗
yy − Ψyy)

∇Ψyz = (Ψ ∗
yz − Ψyz) ∇Ψzy = (Ψ ∗

zy − Ψzy) ∇Ψzz = (Ψ ∗
zz − Ψzz)

Partitioning μ = (In+m − Ψ )−1 ψ yields:

(
φ

ρ

)
=

(
(In − Ψyy) −Ψyz

−Ψzy (Im − Ψzz)

)−1 (
ψy

ψz

)

=
(

A−1 −A−1Ψyz(Im − Ψzz)
−1

−(Im − Ψzz)
−1ΨzyA−1 B

) (
ψy

ψz

)

=
(

A−1ψy − A−1Ψyz(Im − Ψzz)
−1ψz

Bψz − (Im − Ψzz)
−1ΨzyA−1ψy

)
(A.8)

when A =[(In − Ψyy)− Ψyz(Im − Ψzz)
−1Ψzy] and

B = (Im − Ψzz)
−1[Im + ΨzyA−1Ψyz(Im − Ψzz)

−1]. Therefore (A.7) has the form:

E
[
vT +1|T

] =
(∇ψy

∇ψz

)
+

(∇Ψyy ∇Ψyz

∇Ψzy ∇Ψzz

)(
A−1ψy − A−1Ψyz(Im − Ψzz)

−1ψz

Bψz − (Im − Ψzz)
−1ΨzyA−1ψy

)

Hence, if the mean of the {zt } process is constant (∇ψz = 0,∇Ψzy = 0,∇Ψzz = 0),
and there is no intercept in the {yt } process (ψ∗

y = ψy = 0), the mean of the forecast
error becomes:

E
[
vT +1|T

] =
({∇ΨyzB − ∇ΨyyA−1Ψyz(Im − Ψzz)

−1
}
ψz

0

)

so if there is a change in the dynamics of the {yt } process and {zt } has a nonzero
mean, there will be forecast failure. Further, even if zt is strongly exogenous for the
parameters of the {yt } process (Ψzy = 0), there will be forecast failure as:
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E
[
vT +1|T

] =
({∇Ψyz − ∇ΨyyA−1Ψyz

}
(Im − Ψzz)

−1ψz

0

)

which will be nonzero provided ψz �= 0 and there is a change in the dynamics of
the {yt } process, consistent with the closed system results in Clements and Hendry
(1999).

These closed system results can be mapped to an open system using a conditional
and marginal factorization of the joint distribution. From (A.1), the conditional dis-
tribution of yt given zt and the past is:

yt = (
ψy−Ξψz

) + (
Ψyy−ΞΨzy

)
yt−1+Ξzt+

(
Ψyz−ΞΨzz

)
zt−1+

(
vyt +Ξvzt

)
= θ +Θyt−1 +Ξzt +Λzt−1 + νt (A.9)

when Ξ = Ω yzΩ
−1
zz . The initial VAR formulation induces one lag longer in zt with:

E
[
yt

] = θ +ΘE
[
yt−1

] +ΞE [zt ] +ΛE
[
zt−1

] = θ +Θφ + (Ξ +Λ)ρ = φ

so that:
φ = (In −Θ)−1 {θ + (Ξ +Λ)ρ}

and:
(yt − φ) = Θ (yt−1 − φ)+Ξ (zt − ρ)+Λ(zt−1 − ρ)+ νt .

The forecast error from predicting yT +1 by yT +1|T = θ +Θyt−1 +ΞzT +1 +ΛzT

with known parameters and zT +1 and zT is:

νT +1 = yT +1 − yT +1|T = ∇θ + ∇Θyt−1 + ∇ΞzT +1 + ∇ΛzT + νT +1

hence:

E
[
νT +1

] = ∇θ + ∇Θφ + (∇Ξ + ∇Λ)ρ
= ∇θ + ∇Θ (In −Θ)−1 {θ + (Ξ +Λ)ρ} + (∇Ξ + ∇Λ)ρ

with
ρ = Bψz − (Im − Ψzz)

−1ΨzyA−1ψy

∇θ = (∇ψy − ∇Ξψz −Ξ∇ψz)

∇Θ = (∇Ψyy − ∇ΞΨzy −Ξ∇Ψzy)

∇Λ = (∇Ψyz − ∇ΞΨzz −Ξ∇Ψzz
)

If the {zt } process is constant (∇ψz = 0,∇Ψzy = 0,∇Ψzz = 0) and there is no
intercept in the {yt } process (ψ∗

y = ψy = 0) then ρ = Bψz and the mean of the
forecast error becomes:
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E
[
νT +1

] = −[∇Ξ + (∇Ψyy − ∇ΞΨzy)
(
In − Ψyy +ΞΨzy

)−1
Ξ ]ψz

+
[
(∇Ψyy−∇ΞΨzy)

(
In−Ψyy+ΞΨzy

)−1
(Ξ+Λ)+ (∇Ξ+∇Λ)

]
Bψz

which, when zt is strongly exogenous for the parameters of the {yt } process
(Ψzy = 0), simplifies to:

E
[
νT +1

] = −[∇Ξ + ∇Ψyy
(
In − Ψyy

)−1
Ξ ]ψz

+
[
∇Ψyy

(
In − Ψyy

)−1
(Ξ +Λ)+ (∇Ξ + ∇Λ)

]
(Im − Ψzz)

−1ψz

so again will be non-zero when ψz �= 0 and there is a change in the dynamics of the
{yt } process (i.e., at least one of ∇Ψyy,∇Ξ and ∇Λ is non-zero). This result mirrors
that in (8) noting that ρ = (Im − Ψzz)

−1ψz in this case.
An analogous result is obtained when we close the open conditional I(0) system

in (2) by endogenizing zt in:

yt = τ + Υ yt−1 + Γ zt + εt (A.10)

zt = λ+Φyt−1 +�zt−1 + ηt (A.11)

so that:
E [zt ] = λ+ΦE

[
yt−1

] +�E
[
zt−1

] = λ+Φφ +�ρ = ρ

or:
λ = (Im −�)ρ −Φφ

leading to:
(zt − ρ) = Φ (yt−1 − φ)+�(zt−1 − ρ)+ ηt

Then, as φ = (In − Υ )−1 (τ + Γρ)4:

yt − φ = Υ (yt−1 − φ)+ Γ (zt − ρ)+ εt

= (Υ + ΓΦ) (yt−1 − φ)+ Γ� (zt−1 − ρ)+ (
Γ ηt + εt

)

These results allow a general evaluation of the relative impacts of breaks when zt is
treated as ‘external’ or ‘internal’.

4 This is true whether or not zt is strongly exogenous (i.e., Φ = 0) for the parameters of yt in the
VAR.
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Heavy-Tail and Plug-In Robust Consistent
Conditional Moment Tests of Functional Form

Jonathan B. Hill

Abstract We present asymptotic power-one tests of regression model functional
form for heavy-tailed time series. Under the null hypothesis of correct specification
the model errors must have a finite mean, and otherwise only need to have a fractional
moment. If the errors have an infinite variance then in principle any consistent plug-in
is allowed, depending on the model, including those with non-Gaussian limits and/or
a sub-

√
n-convergence rate. One test statistic exploits an orthogonalized test equation

that promotes plug-in robustness irrespective of tails. We derive chi-squared weak
limits of the statistics, we characterize an empirical process method for smoothing
over a trimming parameter, and we study the finite sample properties of the test
statistics.

1 Introduction

Consider a regression model

yt = f (xt , β)+ εt (β) (1)

where f : R
p × B → R is a known response function for finite p > 0,

continuous and differentiable in β ∈ B where B is a compact subset of R
q , and

the regressors xt ∈ R
p may contain lags of yt or other random variables. We are

interested in testing whether f (xt , β) is a version of E[yt |xt ] for unique β0, with-
out imposing higher moments on yt , while under misspecification we only require
E[supβ∈B |εt (β)|ι]<∞ and each E[supβ∈B |(∂/∂βi ) f (xt , β)|ι] < ∞ for some tiny
ι > 0. Heavy tails in macroeconomic, finance, insurance and telecommunication
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time series are now well-documented (Resnick 1987; Embrechts et al. 1997; Finken-
stadt and Rootzen 2003; Gabaix 2008). Assume E |yt | < ∞ to ensure E[yt |xt ] exists
by the Radon–Nikodym theorem, and consider the hypotheses

H0 : E [yt |xt ] = f (xt , β
0) a.s. for unique β0 ∈ B, versus

H1 : max
β∈B

P (E [yt |xt ] = f (xt , β)) < 1.

We develop consistent conditional moment (CM) test statistics for general alter-
natives that are both robust to heavy tails and to a plug-in for β0. Our focus is Bierens’
(1982, 1990) nuisance parameter indexed CM test for the sake of exposition, with
neural network foundations in Gallant and White (1989), Hornik (1989, 1990), and
White (1989a), and extensions to semi- and non-parametric models in Chen and Fan
(1999). Let {yt , xt }n

t=1 be the sample with size n ≥ 1, let β̂n be a consistent estimator
of β0, and define the residual εt (β̂n) := yt − f (xt , β̂n). The test statistic is

T̂n (γ ) = 1

V̂n(β̂n, γ )

(
n∑

t=1

εt (β̂n)F
(
γ ′ψt

))2

where F
(
γ ′ψt

) = exp
{
γ ′ψt

}
and ψt := ψ(xt ), (2)

whereψ is a bounded one-to-one Borel function from R
p to R

p, V̂n(β̂n, γ ) estimates
E[(∑n

t=1 εt (β̂n)F(γ ′ψt ))
2], and γ ∈ R

p is a nuisance parameter.
If E |εt | < ∞ and E[εt |xt ] �= 0 with positive probability then E[εt F(γ ′ψt )] �= 0

for all γ on any compact � ⊂ R
p with positive Lebesgue measure, except possibly

for γ in a countable subset S ⊂ � (Bierens 1990, Lemma 1). This seminal result
promotes a consistent test: if εt and supβ∈B |(∂/∂βi ) f (xt , β)| have finite 4 + ιth-

moments for tiny ι > 0, and the NLLS estimator β̂n = β0 + Op(1/n1/2) then

T̂n (γ )
d→ χ2(1) under H0 and T̂n (γ )

p→ ∞ under H1 for all γ ∈�/S. Such moment
and plug-in conditions are practically de rigueur (e.g. Hausman 1978; White 1981;
Davidson et al. 1983; Newey 1985; White 1987; Bierens 1990; Jong 1996; Fan and
Li 1996; Corradi and Swanson 2002; Hong and Lee 2005).

The property E[εt F(γ ′ψt )] �= 0 under H1 for all but countably many γ carries
over to non-polynomial real analytic F : R → R, including exponential and trigono-
metric classes (Lee et al. 1993; Bierens and Ploberger 1997; Stinchcombe and White
1998), and compound versions where S may be empty (Hill 2008a, 2008b), and has
been discovered elsewhere in the literature on universal approximators (Hornik et al.
1989; 1990; Stinchcombe and White 1989; White 1989b; 1990). Stinchcombe and
White (1998, Theorem 3.1) show boundedness of ψ ensures {F(γ ′ψ(xt )): γ ∈ �}
is weakly dense on the space on which xt lies, a property exploited to prove F is
revealing.1

1 We use the term “revealing” in the sense of “generically totally revealing” in Stinchcombe
and White (Stinchcombe and White 1998, p. 299). A member h of a function space H reveals
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The moment E |εt | < ∞ is imposed to ensure E[εt |xt ] exists under either hypoth-
esis, but if f (xt , β

0) is misspecified then there is no guarantee εt is integrable when
E[y2

t ] =∞ precisely because f (xt , β
0) need not be integrable. Suppose xt is an inte-

grable scalar with an infinite variance, and f (xt , β)=(xt+β)2. Then E |εt (β)|=∞ for
any β ∈ B, hence E[εt (β)|xt ] is not well-defined for any β. Clearly we only need
E |yt | < ∞ to ensure E[yt |xt ] exists for a test of (1), while heavy tails can lead to
empirical size distortions in a variety of test statistics (Lima 1997; Hill and Aguilar
2011).

In this chapter we apply a trimming indicator În,t (β) ∈ {0, 1} to εt (β) in order
to robustify against heavy tails. Define the weighted and trimmed errors and test
statistic

T̂n (γ ) = 1

Ŝ2
n (β̂n, γ )

(
n∑

t=1

m̂∗
n,t (β̂n, γ )

)2

where m̂∗
n,t (β, γ ) := εt (β) În,t (β)F

(
γ ′ψt

)

where Ŝ2
n (β, γ ) is a kernel estimator of E[(∑n

t=1 m̂∗
n,t (β̂n, γ ))

2] defined by

Ŝ2
n (β, γ ) =

n∑
s,t=1

ω ((s − t) /bn)
{
m̂∗

n,s(β, γ )− m̂∗
n(β, γ )

} {
m̂∗

n,t (β, γ )− m̂∗
n(β, γ )

}

with m̂∗
n(β, γ ) = 1/n

∑n
t=1 m̂∗

n,t (β, γ ), andω(·) is a kernel function with bandwidth
bn → ∞ and bn/n → 0. By exploiting methods in the tail-trimming literature we
construct În,t (β) in a way that ensures sufficient but negligible trimming: În,t (β) = 0
for asymptotically infinitely many sample extremes of εt (β) representing a vanishing
sample portion. This promotes both Gaussian asymptotics under H0 and a consistent
test.

Tail truncation by comparison is not valid when E[ε2
t ] = ∞ because sample

extremes of εt are replaced by a tail order statistic of εt that increases with n: too
many large values are allowed for Gaussian asymptotics (Csörgo et al. 1986). On
the other hand, trimming or truncating a constant sample portion of εt (β) leads
to bias in general, unless εt is symmetrically distributed about zero under H0 and
symmetrically trimmed or truncated. In some cases, however, symmetry may be
impossible as in a test of ARCH functional form (see Sect. 4.2).

We assume F(u) is bounded on any compact subset of its support, covering
exponential, logistic, and trigonometric weights, but not real analytic functions like
(1−u)−1 on [−1, 1]. Otherwise we must include F

(
γ ′ψt

)
in the trimming indicator

În,t (β) which sharply complicates proving T̂n (γ ) obtains an asymptotic power of

(Footnote 1 continued)
misspecification E[y|x] �= f when E[(y− f )h] �= 0. A space H is generically totally revealing if all
but a negligible number of h ∈ H have this property. In the index function case h(x)= F(γ ′ψ(x)),
where the weight h aligns with γ and the class H with �, this is equivalent to saying all γ ∈ �/S
where S has Lebesgue measure zero.
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one on �/S . A HAC estimator Ŝ2
n (β, γ ) is required in general unless εt is iid under

H0: even if εt is a martingale difference m̂n,t (β
0, γ ) may not be due to trimming.

In lieu of the test statistic form a unique advantage exists in heavy-tailed cases since
1/n

∑n
t=1 m̂∗

n,t (β
0, γ ) is sub-n1/2-convergent. Depending on the data generating

process, a plug-in β̂n may converge fast enough that it does not impact the limit
distribution of T̂n(γ )under H0, including estimators with a sub-n1/2 rate and/or a non-

Gaussian limit. Conversely, if β̂n
p→ β0 at a sufficiently slow rate we either assume

β̂n is asymptotically linear, or in the spirit of Wooldridge (1990) exploit an orthogonal
transformation of m̂∗

n,t (β, γ ) that is robust to any β̂n with a minimal convergence rate
that may be below n1/2 for heavy-tailed data. Orthogonal transformations have not
been explored in the heavy-tail robust inference literature, and they do not require
n1/2-convergent or asymptotically normal β̂n in heavy-tailed cases.

Model (1) covers Nonlinear ARX with random volatility errors of an unknown
form, and Nonlinear strong and semi-strong ARCH. Note, however, that we do not
test whether E[yt |zt−1, zt−2, ...] = f (xt , β

0) a.s., where zt = [yt , x ′
t+1]′ such that

the error εt = yt− f (xt , β
0) is a martingale difference under H0. This rules out testing

whether a Nonlinear ARMAX or Nonlinear GARCH model is correctly specified.
We can, however, easily extend our main results to allow such tests by mimicking
de Jong’s (1996, Theorem 2) extension of Bierens’ (1990, Lemma 1) main result.

Consistent tests of functional form are widely varied with nonparametric, semi-
parametric, and bootstrap branches. A few contributions not cited above include
White (1989a), Chan (1990), Eubank and Spiegelman (1990), Yatchew (1992), Har-
dle and Mammen (1993), Dette (1996), Zheng (1996), Fan and Li (1996, 2000), and
Hill (2012). Inherently robust methods include distribution-free tests like indicator
or sign-based tests (e.g. Brock et al. 1996), the m-out-of-n bootstrap with m = o(n)
applied to (2) (Arcones and Giné 1989; Lahiri 1995), and exact small sample tests
based on sharp bounds (e.g. Dufour et al. 2006; Ibragimov and Muller 2010).

In Sect. 2 we construct În,t (β) and characterize allowed plug-ins. In Sect. 3 we
discuss re-centering after trimming to remove small sample bias that may arise due to
trimming. We then construct a p-value occupation time test that allows us to bypass
choosing a particular number of extremes to trim and to commit only to a functional
form for the sample fractile. Sect. 4 contains AR and ARCH examples where we
present an array of valid plug-ins. In Sect. 5 we perform a Monte Carlo study and
Sect. 6 contains concluding remarks.

We use the following notation conventions. Let �t := σ(yτ , xτ+1 : τ ≤ 1),
and let M and N be finite integers. λmin(A) and λmax(A) are the minimum and
maximum eigenvalues of a square matrix A ∈ R

M×M . The L p-norm of stochastic
A ∈ R

M×N is ||A||p := (
∑M,N

i=1, j=1 E |Ai, j |p)1/p, and the spectral norm of A ∈
R

M×N is ||A|| = (λmax(A′ A))1/2. For scalar z write (z)+ := max{0, z}, and let [z]
be the integer part of z. K > 0 is a finite constant and ι > 0 is a tiny constant, the
values of which may change from line-to-line; L(n) is a slowly varying function
where L(n) → ∞ as n → ∞, the rate of which may change from line-to-line.2 If
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{An(γ ), Bn(γ )}n≥1 are sequences of functions of γ and supγ∈� |An(γ )/Bn(γ )| →
1 we write An(γ ) ∼ Bn(γ ) uniformly on �, and if supγ∈� |An(γ )/Bn(γ )| p→ 1 we

write An(γ )
p∼ Bn(γ ) uniformly on �. =⇒ denotes weak convergence on C[�], the

space of continuous real functions on �. The indicator function is I (a) = 1 if a is
true, and 0 otherwise. A random variable is symmetric if its distribution is symmetric
about zero.

2 Tail-Weighted Conditional Moment Test

2.1 Tail-Trimmed Equations

Compactly denote the test equation, and the error evaluated at β0:

mt (β, γ ) := εt (β)F(γ
′ψt ) and εt = εt (β

0).

By the mean-value-theorem the residuals εt (β̂n) reflect the plug-in β̂n , the regression
error εt , and the response gradient written variously as

gt (β) = [
gi,t (β)

]q
i=1 = g(xt , β) := ∂

∂β
f (xt , β) ∈ R

q .

We should therefore trim εt (β) by setting În,t (β) = 0 when εt (β) or gi,t (β) is an
extreme value. This idea is exploited for a class of heavy-tail robust M-estimators
in Hill (2011b), and similar ideas are developed in Hill and Renault (2010) and Hill
and Aguilar (2011).

In the following let zt (β) ∈ {εt (β), gi,tβ)}, define tail-specific observations

z(−)t (β) := zt (β)I (zt (β) < 0) and z(+)t (β) := zt (β)I (zt (β) ≥ 0) ,

and let z(·)(i)(β)be the i th sample order statistic of z(·)t (β): z(−)(1) (β) ≤ · · · ≤ z(−)(n) (β)≤ 0

and z(+)(1) (β) ≥ · · · ≥ z(+)(n) (β) ≥ 0. Let {k j,ε,n : j = 1, 2} and {k j,i,n : j = 1, 2} be
sequences of positive integers taking values in {1, ..., n}, define trimming indicators

Îε,n,t (β) := I
(
ε
(−)
(k1,ε,n)

(β) ≤ εt (β) ≤ ε
(+)
(k2,ε,n)

(β)
)

Îi,n,t (β) := I
(
g
(−)
i,(k1,i,n)

(β) ≤ gi,t (β) ≤ g
(+)
i,(k2,i,n)

(β)
)

Îg,n,t (β) :=
q∏

i=1

Îi,n,t (β)

2 Slow variation implies limn→∞ L(λn)/L(n) = 1 for any λ > 0 (e.g. a constant, or (ln(n))a for
finite a > 0: see Resnick 1987). In this chapter we always assume L(n) → ∞.
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În,t (β) := Îε,n,t (β)× Îg,n,t (β),

and trimmed test equations

m̂∗
n,t (β, γ ) := mt (β, γ )× În,t (β) = εt (β)× În,t (β)× F(γ ′ψt ).

Thus În,t (β) = 0 when any εt (β) or gi,t (β) is large. Together with some plug-in
β̂n and HAC estimator Ŝ2

n (β̂n, γ ) we obtain our test statistic T̂n (γ ) = Ŝ−2
n (β̂n, γ )

(
∑n

t=1 m̂∗
n,t (β̂n, γ ))

2.
We determine how many observations of εt (β) and gi,t (β) are extreme values by

assuming {k j,ε,n} and {k j,i,n} are intermediate order sequences. If {k j,z,n} denotes
any one of them, then

1 ≤ k1,z,n + k2,z,n < n, k j,z,n → ∞ and k j,z,n/n → 0.

The fractile k j,z,n represents the number of mt (β, γ ) trimmed due to a large left-
or right-tailed εt (β) or gi,t (β). Since we trim asymptotically infinitely many large
values k j,z,n → ∞ we ensure Gaussian asymptotics, while trimming a vanishing
sample portion k j,z,n/n → 0 promotes identification of H0 and H1.3 The reader may
consult Leadbetter et al. (1983, Chap. 2), Hahn et al. (1991) and Hill (2011a) for the
use of intermediate order statistics in extreme value theory and robust estimation.
See Sect. 3 for details on handling the fractiles k j,z,n .

If any zt is symmetric then symmetric trimming is used:

I
(
|zt (β)| ≤ z(a)(kz,n)

(β)
)

where z(a)t := |zt | , kz,n → ∞ and kz,n/n → 0. (3)

If a component takes on only one sign then one-sided trimming is appropriate, and if
zt (β) has a finite variance then it can be dropped from În,t (β). In general tail thickness
does not need to be known because our statistic has the same asymptotic properties
for thin or thick tailed data, while unnecessary tail trimming is both irrelevant in
theory, and does not appear to affect the test in small samples.

2.2 Plug-In Properties

The plug-in β̂n needs to be consistent for a unique point β0 ∈ B.4 In particular, we
assume there exists a sequence of positive definite matrices {Ṽn}, where Ṽn ∈ R

q×q

3 Consider if εt is iid and asymmetric under H0, but symmetrically and non-negligibly trimmed

with Tuesday, May 22, 2012 at 12:37 pmk1,ε,n = k2,ε,n ∼ λn where λ ∈ (0, 1). Then T̂n(γ )
p→

∞ under H0 is easily verified. The test statistic reveals misspecification due entirely to trimming
itself.
4 Under the alternative β0 is the unique probability limit of β̂n , a “quasi-true” point that optimizes
a discrepancy function, for example, a likelihood function, method of moments criterion or the
Kullback–Leibler Information Criterion. See White (1982) amongst many others.
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and Ṽi,i,n → ∞, and

Ṽ 1/2
n

(
β̂n − β0

)
= Op(1).

As we discuss below, in the presence of heavy tails β̂n need not have n1/2-convergent
components, and depending on the model may have components with different rates
Ṽ 1/2

i,i,n below, at or above n1/2.

Precisely how fast convergence β̂n
p→ β0 is gauged by exploiting an asymptotic

expansion of Ŝ−1
n (β̂n, γ )

∑n
t=1 m̂∗

n,t (β̂n, γ ) around β0. We therefore require the non-

random quantile sequences in which the order statistics ε(·)(k j,ε,n)
(β) and g

(·)
i,(k j,i,n)

(β)

approach asymptotically. The sequences are positive functions {lz,n(β), uz,n(β)}
denoting the lower k1,z,n/nth and upper k2,z,n/nth quantiles of zt (β) in the sense

P
(
zt (β) < −lz,n(β)

) = k1,z,n

n
and P

(
zt (β) > uz,n(β)

) = k2,z,n

n
. (4)

Distribution smoothness for εt (β) and gi,t (β) ensures {lz,n(β), uz,n(β)} exist for allβ
and any chosen fractile policy {k1,z,n, k2,z,n}. See Appendix A for all assumptions. By
construction {z(−)(k1,z,n)

(β), z(+)(k2,z,n)
(β)} estimate {−lz,n(β), uz,n(β)} and are uniformly

consistent, e.g. supβ∈B |z(+)(k2,z,n)
(β)/uz,n(β) − 1| = Op(1/k1/2

1,z,n). See Hill (2011b,
Lemma C.2).

Now construct indicators and a trimmed test equation used solely for asymptotics:
in general write Iz,n,t (β) := I (−lz,n(β) ≤ zt (β) ≤ uz,n(β)), and define

In,t (β) := Iε,n,t (β)×
q∏

i=1

Ii,n,t (β) = Iε,n,t (β)× Ig,n,t (β) and

m∗
n,t (β, γ ) := mt (β, γ )× In,t (β).

We also require covariance, Jacobian, and scale matrices:

S2
n (β, γ ) := E

(
n∑

t=1

{
m∗

n,t (β, γ )− E[m∗
n,t (β, γ )]

})2

and

Jn(β, γ ) := ∂

∂β
E

[
m∗

n,t (β, γ )
] ∈ R

q×1

Vn (β, γ ) := n2S−2
n (β, γ )× Jn (β, γ )

′ Jn (β, γ ) ∈ R.

Now drop β0 throughout, e.g. gt = gt (β
0),m∗

n,t (γ ) = m∗
n,t (β

0, γ ) and S2
n (γ ) =

S2
n (β

0, γ ). We may work with m∗
n,t (γ ) for asymptotic theory purposes since

sup
γ∈�

∣∣∣∣∣
1

Sn (γ )

n∑
t=1

{
m̂∗

n,t (γ )− m∗
n,t (γ )

}∣∣∣∣∣ = op (1) ,
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while trimming negligibility and response function smoothness ensure the following
expansion:

1

Ŝn(β̂n, γ )

n∑
t=1

m̂∗
n,t (β̂n, γ )

p∼ 1

Sn (γ )

n∑
t=1

m∗
n,t (γ )+ V 1/2

n (γ )
(
β̂n − β0

)
. (5)

See Lemmas B.2 and B.3 in Appendix A. Thus T̂n(γ ) tests H0 if β̂n
p→ β0 fast

enough in the sense supγ∈� ||Vn(γ )Ṽ −1
n || = O(1). In the following we detail three

plug-in cases denoted P1, P2, and P3.

Case P1 (fast (non)linear plug-ins). In this case supγ∈� ||Vn(γ )Ṽ −1
n || → 0 hence

β̂n does not impact T̂n(γ ) asymptotically, which is evidently only possible if εt

and/or gi,t are heavy tailed. If {εt , gt } are sufficiently thin tailed then under regularity
conditions minimum distance estimators β̂n are n1/2-convergent while Vn(γ )/n →
V (γ ) = S−2(γ )J (γ )′ J (γ ) is finite for each γ ∈ �.5 In the presence of heavy
tails, however, a unique advantage exists since supγ∈� ||V 1/2

n (γ )|| = o(n1/2) may

hold allowing many plug-ins to satisfy supγ∈� ||Vn(γ )Ṽ −1
n || → 0. See Sect. 4 for

examples.
Case P2 (slow linear plug-ins). If Ṽn is proportional to Vn(γ ) then β̂n impacts T̂n(γ )

asymptotically. This is the case predominantly encountered in the literature since
Ṽn/n → Ṽ and Vn(γ )/n → V (γ ) for sufficiently thin tailed {εt , gt }. At least two
solutions exist. First, under the present case β̂n is assumed to be asymptotically lin-
ear and normal, covering many minimum discrepancy estimators when {εt , gt } are
sufficiently thin tailed, or heavy tail robust linear estimators like Quasi-maximum
tail-trimmed likelihood (QMTTL) (Hill 2011b). Linearity rules out quantile estima-
tors like LAD and its variants, including Log-LAD for GARCH models with heavy
tailed errors (Peng and Yao 2003) and least absolute weighted deviations (LWAD)
for heavytailed autoregressions (Ling 2005).
Case P3 ((non)linear plug-ins for orthogonal equations). If Ṽn is proportional to
Vn(γ ) then our second solution is to exploit (Wooldridge’s 1990) orthogonal trans-
formation for a new test statistic, ensuring plug-in robustness, and allowing nonlinear
plug-ins. Other projection techniques are also evidently valid (e.g. Bai 2003).
Define a projection operator P̂n,t (γ ) and filtered equations m̂⊥

n,t (β, γ ):

P̂n,t (γ ) = 1 − g′
t (β̂n) În,t (β̂n)

(
1

n

n∑
t=1

gt (β̂n)g
′
t (β̂n)F(γ

′ψt ) În,t (β̂n)

)−1

×1

n

n∑
t=1

gt (β̂n)F(γ
′ψt ) În,t (β̂n)m̂

⊥
n,t (β, γ ) = m̂∗

n,t (β, γ )× P̂n,t (γ ) .

5 The rate of convergence for some minimum discrepancy estimators may be below n1/2, even for
thin tailed data, in contexts involving weak identification, kernel smoothing, and in-fill asymptotics.
We implicitly ignored such cases here.
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The test statistic is now

T̂ ⊥
n (γ ) = 1

Ŝ⊥2
n (β̂n, γ )

(
n∑

t=1

m̂⊥
n,t (β̂n, γ )

)2

,

where Ŝ⊥2
n (β, γ ) is identically Ŝ2

n (β, γ ) computed with m̂⊥
n,t (β, γ ).

The asymptotic impact of β̂n is again gauged by using the non-random thresholds
{lz,n, uz,n} to construct orthogonal equations and their variance and Jacobian:

Pn,t (γ ) := 1 − g′
t In,t

(
E

[
gtg

′
t F(γ ′ψt )In,t

])−1 × E
[
gt F(γ ′ψt )In,t

]
and

m⊥
n,t (β, γ ) = m∗

n,t (β, γ )× Pn,t (γ )

S⊥2
n (β, γ ) := E

(
n∑

t=1

{
m⊥

n,t (β, γ )− E[m⊥
n,t (β, γ )]

})2

and

J⊥
n (β, γ ) := ∂

∂β
E

[
m⊥

n,t (β, γ )
]

∈ R
q×1

V ⊥
n (β, γ ) := n2S⊥−2

n (β, γ )× J⊥
n (β, γ )′ J⊥

n (β, γ ) ∈ R.

Notice Pn,t (γ ) is σ(xt )-measurable, and uniformly L1-bounded by Lyapunov’s
inequality and boundedness of F(u), thus by dominated convergence E[m⊥

n,t (γ )] →
0 under H0. By imitating expansion (5) and arguments in Wooldridge (1990), it
can easily be shown if V ⊥

n (γ )
1/2(β̂n − β0) = Op(1) then Ŝ⊥−1

n (β̂n, γ )
∑n

t=1 m̂⊥
n,t

(β̂n, γ )
p∼ S⊥−1

n (γ )
∑n

t=1 m⊥
n,t (γ ). In general the new statistic T̂ ⊥

n (γ ) is robust to

β̂n , allowing nonlinear estimators, as long as

Ṽ 1/2
n

(
β̂n − β0

)
= Op(1) and lim sup

n→∞
sup
γ∈�

∥∥∥V ⊥
n (γ )Ṽ

−1
n

∥∥∥ < ∞. (6)

2.3 Main Results

Appendix A contains all assumptions concerning the fractiles and non-degeneracy of
trimmed moments (F1–F2); identification of the null (I1); the kernel and bandwidth
for the HAC estimator (K1); the plug-in (P1–P3); moments and memory of regression
components (R1–R4); and the test weight (W1). We state the main results for both
T̂n(γ ) and T̂ ⊥

n (γ ), but for the sake of brevity limit discussions to T̂n(γ ). Throughout
� is a compact subset of R

p with positive Lebesgue measure.
Our first result shows tail-trimming does not impact the ability of F(γ ′ψt ) to

reveal misspecification.
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Lemma 2.1 Let μn,t (γ ) denote either m∗
n,t (γ ) or m⊥

n,t (γ ). Under the null E[μn,t

(γ )] → 0. Further, if test weight property W1 and the alternative H1 hold then
lim infn→∞ |E[μn,t (γ )]| > 0 for all γ ∈ � except possibly on a set S ⊂ � with
Lebesgue measure zero.

Remark 1 Under H1 it is possible in small samples for E[m∗
n,t (γ )] = 0 due to

excessive trimming, and |E[m∗
n,t (γ )]| → ∞ due to heavy tails. The test weight

F(u) therefore is still revealing under tail-trimming for sufficiently large n.

Next, the test statistics converge to chi-squared processes under H0 and are con-
sistent. Plug in cases are discussed in Sect. 2.2

Theorem 2.2 Let F1–F2, I1, K1, R1–R4, and W1 hold.

i. Under H0 and plug-in cases P1 or P2 there exists a Gaussian process {z(γ ) : γ ∈
�}onC[�]with zero mean, unit variance, and covariance function E[z(γ1)z(γ2)]
such that {T̂n(γ ) : γ ∈ �} =⇒ {z(γ )2 : γ ∈ �}.

ii. UnderH1 and P1 or P2, T̂n(γ )
p→ ∞∀γ ∈ �/Swhere S has Lebesgue measure

zero.
iii. Under plug-in case P3 T̂ ⊥

n (γ ) satisfies (i) and (ii).

Remark 1 The literature offers a variety of ways to handle the nuisance parameter γ .
Popular choices include randomly selecting γ ∗ ∈ � (e.g. Lee et al. 1993), or com-
puting a continuous test functional h(T̂n(γ )) like the supremum supγ∈� T̂n(γ ) and

average
∫
�

T̂n(γ )μ(dγ ), whereμ(γ ) is a continuous measure (Davies 1977; Bierens

1990). In the latter case h(T̂n(γ ))
d→ h(z(γ )2) =: h0 under H0 by the mapping the-

orem.
Hansen’s 1996 bootstrapped p-value for non-standard h0 exploits an iid Gaussian

simulator. The method therefore applies only if εt is a martingale difference under H0
and the trimmed error εt Iε,n,t becomes a martingale difference sufficiently fast in the
sense (n/E[m∗2

n,t (γ )])1/2 E[εt Iε,n,t |�t−1] → 0. It therefore suffices for εt to be iid
and symmetric under H0 and symmetrically trimmed since then E[εt Iε,n,t |�t−1] =
E[εt Iε,n,t ] = 0, or if εt is asymmetric and E[εt ] = 0 under either hypothesis then εt

can be symmetrically trimmed with re-centering as in Sect. 3, below. See Hill (2011c,
Sect. C.1), the supplemental appendix to this chapter, for details on Hansen’s p-value
under tail-trimming.

Remark 2 As long as S2
n (γ ) = E[m∗

n,t (γ )m
∗
n,t (γ )

′] × (1 +o(1)) then a HAC esti-
mator is not required, including when εt Iε,n,t becomes a martingale difference suf-
ficiently fast under H0 as above. If we do not use a plug-in robust equation then an
estimator Ŝ2

n (β̂n, γ )must control for sampling error associated with β̂n . For example,
if β̂n is the NLLS estimator then (e.g. Bierens 1990, Eq. (14))

Ŝ2
n (β̂n, γ ) =

n∑
t=1

ε2
t (β̂n) În,t (β̂n)×

{
F(γ ′ψt )− b̂′

n Â−1
n ĝ∗

n,t (β̂n)
}2

(7)

http://dx.doi.org/10.1007/978-1-4614-1653-1_2
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where ĝ∗
n,t (β) := gt (β) Îg,n,t (β), b̂n := 1/n

∑n
t=1 ĝ∗

n,t (β̂n)F(γ ′ψt ) and Ân :=
1/n

∑n
t=1 ĝ∗

n,t (β)ĝ
∗
n,t (β)

′. However, if S⊥2
n (γ ) ∼ E[m⊥

n,t (γ )m
⊥
n,t (γ )

′] then by
orthogonality we need only use

Ŝ⊥2
n (β̂n, γ ) =

n∑
t=1

m̂⊥
n,t (β̂n, γ )m̂

⊥
n,t (β̂n, γ )

′. (8)

3 Fractile Choice

We must choose how much to trim k j,z,n for each variable zt ∈ {εt , gi,t } and any
given n. We first present a case when symmetric trimming with re-centering is valid
even when εt is asymmetric under H0. We then discuss an empirical process method
that smooths over a class of fractiles.

Symmetric Trimming with Re-Centering. If E[εt ] = 0 even under the alternative, and
εt is independent of xt under H0, then we may symmetrically trim for simplicity and
re-center to eradicate bias that arises due to trimming, and still achieve a consistent
test statistic. The test equation is

m̂∗
n,t (β, γ ) =

(
εt (β) În,t (β)− 1

n

n∑
t=1

εt (β) În,t (β)

)
× F(γ ′ψt ) (9)

where În,t (β) = Îε,n,t (β)
∏q

i=1 Îi,n,t (β) as before, with symmetric trimming

indicators Îε,n,t (β) := I (|εt (β)| ≤ ε
(a)
(kε,n)

(β)), and Îi,n,t (β) := I (|gi,t (β)| ≤
g
(a)
i,(ki,n)

(β)). By independence m∗
n,t (β, γ ) = (

εt (β)In,t (β)− E[εt (β)In,t (β)]
) ×

F(γ ′ψt ) satisfies E[m∗
n,t (γ )] = 0 under H0 for any {kε,n, ki,n}, hence identification

I1 is trivially satisfied. Under H1 the weight F(u) is revealing by Lemma 2.1 since
E[εt ] = 0, F(u) is bounded, and trimming is negligible: lim infn→∞ |E[m∗

n,t (γ )]| =
lim infn→∞ |E[εt In,t F(γ ′ψt )]| > 0 ∀γ ∈ �/S. A test of linear AR where the errors
may be governed by a nonlinear GARCH process, or a test of linear ARCH, provide
natural platforms for re-centering. See Sect. 4 for ARCH.

The moment condition E[εt ] = 0 under either hypothesis rules out some response
functions depending on the tails of {yt , xt } . See Sect.1 for an example.

P–Value Occupation Time. Assume symmetric trimming to reduce notation and
define the error moment supremum κε := arg sup{α > 0 : E |εt |α < ∞} . Under
H0 any intermediate order sequences {kε,n, ki,n} are valid, but in order for our test
to work under H1 when εt may be exceptionally heavy tailed κε < 1, we must
impose kε,n/n2(1−κε)/(2−κε) → ∞ to ensure sufficient trimming for test consistency
(see Assumption F1.b in Appendix A). Thus kε,n ∼ n/L(n) is valid for any slowly
varying L(n) → ∞. Consider kε,n = ki,n ∼ λn/ ln(n) where λ is taken from a
compact set � := [λ, 1] for tiny λ > 0, although any slowly varying L(n) → ∞
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may replace ln(n). The point λ = 0 is ruled out because the untrimmed T̂n(0) is
asymptotically non-chi-squared under H0 when E[ε2

t ] = ∞.
We must now commit to some λ. Other than an arbitrary choice, Hill and Aguilar

(2011) smooth over a space of feasible λ′s by computing p-value occupation time.
We construct the occupation time below, and prove its validity for T̂n(γ ) and T̂ ⊥

n (γ )

in Appendix B. The following easily extends to kε,n �= ki,n , asymmetric trimming,
and functionals h(T̂n(γ )) on �.

Write T̂n(γ, λ) and T̂ ⊥
n (γ, λ) to reveal dependence on λ, let pn(γ, λ) denote the

asymptotic p-value 1 − Fχ (T̂n(γ, λ)) where Fχ is the χ2(1) distribution, and define
the α-level occupation time

τn(γ, α) := 1

1 − λ

1∫
λ

I (pn(γ, λ) < α) dλ ∈ [0, 1] , where α ∈ (0, 1).

Thus τn(γ, α) is the proportion of λ′s satisfying pn(γ, λ) < α hence rejection of H0
at level α. Similarly, define the occupation time τ⊥

n (γ, α) for T̂ ⊥
n (γ, λ) .

Theorem 3.1 Let F1–F2, I1, K1, P1 or P2, R1–R4, and W1 hold. Let {u(λ) : λ ∈ �}
be a stochastic process that may be different in different places: in each case it
has a version that has uniformly continuous sample paths, and u(λ) is uniformly

distributed on [0, 1]. Under the null τn(γ, α)
d→ (1 − λ)−1

∫ 1
λ

I (u(λ) < α)dλ and

τ⊥
n (γ, α)

d→ (1 − λ)−1
∫ 1
λ

I (u(λ) < α)dλ, and under the alternative τn(γ, α)
p→ 1

and τ⊥
n (γ, α)

p→ 1 ∀γ ∈ � except possibly on subsets with measure zero.

Remark 1 Since u(λ) is a uniform random variable it follows limn→∞ P(τn(γ, α) >

α|H0) < α. A p-value occupation test therefore rejects H0 at level α if τn(γ, α) > α.
In practice a discretized version is computed, for example

τ̂n(γ, α) := 1

nλ

n∑
i=1

I (pn(γ, i/n) < α)× I
(
i/n ≥ λ

)
(10)

where nλ := ∑n
i=1 I (i/n ≥ λ) is the number of discretized points in [λ, 1].

Remark 2 In Sect. 4 we show β̂n has a larger impact on T̂n(γ, λ) in small samples
when the error has an infinite variance κε < 2, each gi,t has a finite mean κi > 1,
and the number of trimmed errors kε,n is large (see Remark 3 of Lemma 4.1). This
translates to the possibility of plug-in sensitivity of τn(γ, α) in small samples. We
show in our Monte Carlo study of Sect. 5 that when κε < 2 and κi > 1 the occupation
time τn(γ, α) results in size distortions that are eradicated when the plug-in robust
τ̂⊥

n (γ, α) is used.

In Fig. 1, we plot sample paths {pn(γ, λ), p⊥
n (γ, λ) : λ ∈ [0.01, 1.0]} based on

two samples {yt }n
t=1 of size n = 200: one sample is drawn from an AR(1) process
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Fig. 1 P-value functions pn(λ) and p⊥
n (λ). Note pn = pn(λ), and pn-orth = p⊥

n (λ)

and the other from a Threshold AR(1) process, each with iid Pareto errors εt and
tail index 1.5. See Sect. 5 for simulation details. We estimate an AR(5) model by
OLS, compute T̂n(γ, λ) and T̂ ⊥

n (γ, λ) with weight F(γ ′ψ(xt )) = exp{γ ′ψ(xt )},
ψ(xt ) = [1, arctan(x̃∗

t )
′]′ where x̃∗

t is centered x̃t = [yt−1, ..., yt−5]′, and γ is
uniformly randomize on [.1, 2]6. In this case at the 5 % level τ̂n, τ̂

⊥
n = 0, 0 for the

AR sample hence we fail to reject H0, and τ̂n, τ̂
⊥
n = 0.59, 1.0 for the SETAR sample

hence we reject H0.
Notice in the AR case pn(γ, λ) is smallest for large λ ≥ 0.9, and pn(γ, λ) <

p⊥
n (γ, λ) for most λ : pn(γ, λ) is more likely to lead to a rejection than the plug-in

robust p⊥
n (γ, λ) and for large λ. Although we only use one AR sample here, in Sect. 5

we show plug-in sensitivity does indeed lead to over-rejection of H0.

4 Plug-In Choice and Verification of the Assumptions

We first characterize Vn (γ ) to show how fast β̂n in T̂n(γ )must be in view of expan-
sion (5). Synonymous derivations carry over to portray V ⊥

n (γ ). We then verify
the assumptions for AR and ARCH models and several plug-in estimators. Define
moment suprema κε := arg sup{α > 0 : E |εt |α < ∞} and κi := arg sup{α > 0 :
E |gi,t |α < ∞}.
Lemma 4.1 Let F1–F2, I1, R1–R4 and W1 hold. If κi ≤ 1 then assumeP(|gi,t | >
g) = dig

κi (1 + o(1)) for some di > 0. Let L(n) → ∞ be slowly varying, and let
{Ln} be a sequence of positive constants: lim infn→∞ Ln ≥ 1 and Ln = O(ln(n)),
and if εt is finite dependent then Ln = K . In the following L(n) and Ln may be
different in different places.

i. Let min{κi } > 1. If κε > 2 then Vn (γ ) = O(n) ; if κε = 2 then Vn (γ ) ∼
n/L(n); and if κε < 2 then Vn (γ ) ∼ K n(kε,n/n)2/κε−1/Ln.

ii. Let some κi < 1. If κε > 2 then Vn (γ ) ∼ K n maxi :κi<1{(n/ki,n)
2/κi −2}; if

κε = 2 then Vn (γ ) ∼ K n maxi :κi<1{(n/ki,n)
2/κi −2}/L(n); and if κε < 2 then

Vn (γ ) ∼ K n maxi :κi<1{(n/ki,n)
2/κi −2} × (kε,n/n)2/κε−1/Ln.
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iii. If min{κi } = 1 then replace maxi :κi<1{(n/ki,n)
2/κi −2} in (b ) withL(n).

Remark 1 The term Ln arises due to β-mixing and heavy tails: clearly S2
n (γ ) ∼

K nE[m2
n,t ] if εt is finite dependent or has a finite variance, but otherwise we can

only show S2
n (γ ) ∼ nE[m2

n,t ] × O(ln(n)), cf. Hill (2011b, Lemma B.2)

Remark 2 If E[ε2
t ] = ∞ then Vn (γ ) = o(n) as long as all κi > 1 , hence β̂n may

be sub-n1/2-convergent. This arises, for example, in integrable AR models or ARCH
models with square integrable errors as we verify below.

Remark 3 If κε < 2 and each κi > 1 then Vn (γ ) ∼ K n(kε,n/n)2/κε−1/Ln . Combine
this with expansion (5) to deduce a higher error trimming rate kε,n → ∞ amplifies
the impact of β̂n on the test statistic T̂n(γ ) in small samples, even when fast plug-in
Assumption P1 holds. This suggests the plug-in robust statistic T̂ ⊥

n (γ ) should be
used when kε,n is chosen to be large relative to n. This is supported by experiments
in Sect. 5 where the p-value occupation which smooths over small and large kε,n
performs substantially better when T̂ ⊥

n (γ ) is used.

4.1 Linear AR

Consider a stationary AR(p) yt = β0′xt + εt where xt = [yt−1, ..., yt−p]′, εt is iid
and E [εt ] = 0. Assume εt has an absolutely continuous symmetric distribution with
a uniformly bounded density supc∈R(∂/∂c)P(εt ≤ c) < ∞, and Paretian tail:

P (|εt | > ε) = dε−κ (1 + o (1)) , d > 0, κ > 1. (11)

Since yt is symmetric with a power law tail and the same index κ (Brockwell and
Cline 1985), and gi,t = yt−i , we use symmetric trimming (3) with common frac-
tiles kε,n = ky,n denoted kn . Let β̂n be computed by OLS, LAD, LWAD by Ling
(2005), least tail-trimmed squares (LTTS) by Hill (2011b), or generalized method of
tail-trimmed moments (GMTTM) by Hill and Renault (2010) with estimating equa-
tions [εt (β)yt−i ]ri=1 for some r ≥ p.6

Lemma 4.2 Assumptions F2, I1, and R1–R4 hold. If κ < 2 then Vn(γ ) ∼
K n(kn/n)2/κ−1 and i f then Vn(γ ) ∼ K n/L(n) uni f ormly on �. Therefore
each β̂n satisfies P1 and P3 if E[ε2

t ] = ∞ and P3 if E[ε2
t ] < ∞; and if E[ε2

t ] < ∞
then only OLS, LTTS, and GMTTM satisfy P2.

Remark 1 The F1 fractile properties are controlled by the analyst. Each plug-in is
super-n1/2-convergent when E[ε2

t ] = ∞, and OLS and LAD have non-Gaussian
limits when E[ε2

t ] = ∞ (Davis et al. 1992; Ling 2005; Hill and Renault 2010; Hill

6 Other over-identifying restrictions can easily be included, but the GMTTM rate may differ from
what we cite in the proof of Lemma 4.2 if they are not lags of yt . See Hill and Renault (2010).
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2011b) while V 1/2
n (γ ) = o(n1/2) by Lemma 4.1. Hence each β̂n satisfies fast plug-

in P1. However, if εt has a finite variance then Vn (γ ) ∼ K n and each β̂n has rate
n1/2, ruling out LAD and LWAD for the non-orthogonalized T̂n(γ ) since P2 requires
estimator linearity.

4.2 Linear ARCH

Now consider a strong-ARCH(p) yt = ht ut where ut
iid∼ (0, 1) and h2

t = ω0 +∑p
i=1 α

0
i y2

t−i = β0′xt , ω0 > 0, and α0
i ≥ 0. Assume at least one α0

i > 0 for brevity,
let

∑p
i=1 α

0
i < 1, and assume the distribution of ut is non-degenerate, symmetric,

absolutely continuous, and bounded supc≥0(∂/∂c)P(ut ≤ c) < ∞. Let κu be the
moment supremum arg sup{α > 0 : E |ut |α < ∞}. If κu ∈ (2, 4] then assume ut has
tail (11) with index κu .

A test of omitted ARCH nonlinearity can be framed in terms of errors u2
t − 1 or

y2
t −β0′xt = (u2

t −1)h2
t . Since the former only requires u2

t and not y2
t to be integrable,

consider εt (β) := u2
t (β) − 1 := y2

t /(β
′xt ) − 1. In this case (∂/∂β)εt (β)|β0 =

−u2
t xt/h2

t has tails that depend solely on the iid error ut since we impose ARCH
effects α0

i > 0: ||xt/h2
t || ≤ K a.s. We therefore do not need to use information from

xt for trimming. The error εt = u2
t −1 may be asymmetric but we can symmetrically

trim with re-centering as in Sect. 3. The trimmed equation with re-centering assuming
ARCH effects is m̂∗

n,t (β, γ ) = {εt Îε,n,t (β)−1/n
∑n

t=1 εt Îε,n,t (β)}×F(γ ′ψt )where

Îε,n,t (β) := I (|εt (β)| ≤ ε
(a)
(kε,n)

(β)).

In the following we consider plug-ins β̂n computed by QML, Log-LAD by Peng
and Yao (2003), QMTTL by Hill (2011b), or GMTTM with QML-type equations
{u2

t (β) − 1}zt (β) where zt (β) = [(β ′xt−i )
−1xt−i ]ri=0 for some r ≥ 0 (Hill and

Renault 2010).

Lemma 4.3 Assumptions F2, I1, and R1–R4 hold. Further a.GMTTM and QMTTL
satisfy P1 if κu ∈ (2, 4], P2 if κu > 4, and P3 in general; b. QML satisfies P2 and
P3 if κu ≥ 4, but does not satisfy P1–P3 when κu ∈ (2, 4); c. Log-LAD satisfies P1
if E[u4

t ] = ∞, it does not satisfy P2 if κu > 4, and it satisfies P3 in general.

Remark 1 QML is too slow when the ARCH error has an infinite fourth moment
κu ∈ (2, 4). This arises due both to feedback with the error ut , and to the F1.b lower
bound on the error trimming rate k j,ε,n/n2(1−κε)/(2−κε) → ∞ which ensures test
consistency when E |εt | = ∞: the former implies ||Ṽn|| = K n1−2/κu = o(n1/2)

(Hall and Yao 2003), while the latter guarantees infγ∈� ||Vn(γ )||/n1−2/κu → ∞ .
Each remaining estimator has a Gaussian limit since κu > 2. Log-LAD is not linear
so orthogonalization is required when E[u4

t ] < ∞.
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5 Simulation Study

We now present a small-scale simulation study where we test for omitted nonlin-
earity in three models: linear AR(2) yt = 0.8yt−1 − 0.4yt−2 + εt , Self-Exciting
Threshold AR(1) [SETAR] yt = 0.8yt−1 I (yt−1 < 0) − 0.4yt−1 I (yt−1 ≥ 0) + εt ,
and Bilinear [BILIN] yt = 0.9yt−1εt−1 + εt . We generate 10,000 samples of size
n ∈ {200, 800, 5000} by using a starting value y1 = ε1, generating 2n observations
of yt , and retaining the last n. The errors {εt } are either iid N (0, 1); symmetric Pareto
P(εt ≤ −c) = P(εt ≥ c) = 0.5(1 + c)−κε with index κε = 1.5; or IGARCH(1,1)

εt = ht ut where h2
t = 0.3+ .4u2

t−1 +0.6h2
t−1 and ut

iid∼ N (0, 1), with starting value
h2

1 = 0.3. The errors εt therefore have possible moment suprema κε ∈ {1.5, 2,∞}.
Each process is stationary geometrically ergodic and therefore geometrically β-
mixing (Pham and Tran 1985; An and Huang 1996; Meitz and Saikkonen 2008). We
estimate an AR(5) model yt = ∑5

i=1 β
0
i yt−i + εt by OLS for each series, although

LTTS and LWAD render essentially identical results.

5.1 Tail-Trimmed CM Test

Write xt := [yt−1, ..., yt−p]′. Recall from Sect. 3 k j,ε,n ∼ n/L(n) for slowly varying
L(n) →∞promotes test consistency when E |εt | = ∞under the alternative. Consid-
ering εt and yt−i have the same moment supremum κε and are symmetric under H0,
we simply use symmetric trimming with kn = [λn/ ln(n)] for each εt and yt−i . We
re-center by using m̂∗

n,t (β, γ ) defined in (9), and compute the orthogonal equations

m̂⊥
n,t (β, γ )with the re-centered m̂∗

n,t (β, γ ) and operator P̂n,t (γ ) = 1− x ′
t În,t (β̂n)×

(
∑n

t=1 xt x ′
t F(γ ′ψt ) În,t (β̂n))

−1× ∑n
t=1 xt F(γ ′ψt ) În,t (β̂n). We use an exponential

weight F(γ ′ψ(xt )) = exp{γ ′ψ(xt )} and argument ψ(xt ) = [1, arctan(x∗
t )

′]′ ∈ R
6

with x∗
i,t = xi,t − 1/n

∑n
t=1 xi,t (cf. Bierens 1990, Sect. 5), and then compute T̂n(γ )

and T̂ ⊥
n (γ ). We use scale estimators (7) and (8) with gt = xt for the sake of com-

parison with our choice of additional test statistics discussed below. We randomly
draw γ from a uniform distribution on � = [0.1, 2]6 for each sample generated,
and fix λ = 0.025 or compute p-value occupation times τ̂n(γ, α) and τ̂⊥

n (γ, α) on
[0.01, 1.0] a la (10) for nominal levels α ∈ {0.01, 0.05, 0.10}. Notice λ = 0.025
implies very few observations are trimmed, e.g. at most 1.5 % of a sample of size
800.7

7 If n = 800 then kn = [0.025 × 800/ ln(800)] = 2 for each {εt , yt−1, ..., yt−5}. Hence at most
2 × 6 = 12 observations are trimmed, which is 1.5 % of 800.
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5.2 Tests of Functional Form

The remaining tests are based on untrimmed versions of T̂n(γ ) and T̂ ⊥
n (γ ) where

critical values are obtained from a χ2(1) distribution; Hong and White’s 1995 non-
parametric test, Ramsey’s 1969 regression error specification test (RESET), Li’s
1983 test, and a test proposed by Tsay (1986). Hong and White’s 1995 statistic is
M̂n = (2 ln n)−1/2(s−2

n
∑n

t=1 ε̂t v̂n,t− ln n) with components s2
n := 1/n

∑n
t=1 ε̂

2
t

and v̂n,t := f̂t − β̂ ′
n xt , and nonparametric estimator f̂t = ∑[ln(n)]

i=1 φi exp{γ ′
i xt } of

E[yt |xt ], cf. Gallant (1981) and Bierens (Bierens 1990, Corollary 1). The parameters
γi are for each sample uniformly randomly selected from �, and φ is estimated by
least squares.8 If certain regularity conditions hold, including independence of εt and

E[ε4
t ] < ∞, then M̂n

d→ N (0, 1) under H0, while M̂n → ∞ in probability under
H1, hence a one-sided test is performed. The RESET test is an F-test on the auxiliary
regression ε̂t = φ′

0xt + ∑k1
i=2

∑k2
j=2 φi, j x i

t− j + ut where we use k1 = k2 = 3; the

McLeod-Li statistic is
∑n

t=1(ε̂
2
t − s2

n )(ε̂
2
t−h − s2

n )/
∑n

t=1(ε̂
2
t − s2

n )
2 with lags h = 3;

and Tsay’s test is based on first regressing vech[xt x ′
t ] = ξ ′xt + ut , and then com-

puting Fn := ∑n
t=1(ε̂t ût )[∑n

t=1 ût û′
t ]−1 ∑n

t=1(ε̂t û′
t ): Fn

d→ χ2(p(p + 1)/2) under
H0 as long as E[ε4

t ] < ∞.

5.3 Simulation Results

See Tables 1, 2, 3 for test results, where empirical power is adjusted for size dis-
tortions. We only present results for n ∈ {200, 800}: see the supplemental appendix
Hill (2011c, Sect. C.4) for n = 5,000.

Write T̂n-Fix or T̂n-OT for tests based on fixed λ = 0.025 or occupation time.
The results strongly suggest orthogonalization is required if we use occupation time
because T̂n-OT exhibits large size distortions, while T̂ ⊥

n -OT has fairly sharp size and
good power. This follows from the dual impact of sampling error associated with
β̂n and the loss of information associated with trimming. Our simulations show this
applies in general, irrespective of heavy tails, while Remark 3 of Lemma 4.1 shows
when κε = κi ∈ (1, 2) then a large amount of trimming kn amplifies sensitivity of
T̂n to β̂n in small samples. Orthogonalization should play a stronger role when λ is
large, hence T̂ ⊥

n -OT should dominate T̂n-OT, at least when the variance is infinite.
In heavy-tailed cases T̂n-Fix and T̂ ⊥

n -OT in general exhibit the highest power,
although all tests exhibit low power when the errors are IGARCH and n ∈ {200, 800}.
It should be noted the Hong-White, RESET, McLeod-Li, and Tsay tests are all
designed under the assumption εt is independent under H0 and E[ε4

t ] < ∞, hence
IGARCH errors are invalid due both to feedback and heavy tails. If εt is iid Gaussian

8 See Hong and White (1995, Theorem 3.2) for defense of a slowly varying series length ln(n).
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then trimming does not affect the power of the CM statistic, although Hong-White,
McLeod-Li, and Tsay tests exhibit higher power.

The untrimmed CM statistics tend to under-reject H0 and obtain lower power
when the error variance is infinite. RESET and McLeod-Li statistics under-reject
when κε < 2, while RESET performs fairly well for an AR model with IGARCH
error, contrary to asymptotic theory. The McLeod-Li statistic radically over-rejects
H0 for AR-IGARCH, merely verifying the statistic was designed for iid normal errors
under H0. Tsay’s F-statistic radically over-rejects for iid and GARCH errors with
infinite variance: empirical power and size are above 0.60. In these cases heavy tails
and/or conditional heteroscedasticity simply appear as nonlinearity (cf. Lima 1997;
Hong and Lee 2005; Hill and Aguilar 2011). Hong and White’s (1995) nonparametric
test exhibits large, and sometimes massive, size distortions when variance is infinite,
even for iid errors.

6 Conclusion

We develop tail-trimmed versions of Bierens’ (1982, 1990), and Lee et al. (1993)
tests of functional form for heavy-tailed time series. The test statistics are robust
to heavy tails since trimming ensures standard distribution limits, while negligible
trimming ensures the revealing nature of the test weight is not diminished. We may
use plug-ins that are sub-n1/2-convergent or do not have a Gaussian limit when tails
are heavy, depending on the model and error-regressor feedback, and Wooldridge’s
(1990) orthogonal projection promotes robustness to an even larger set of plug-ins.

A p-value occupation time test allows the analyst to by-pass the need to choose a
trimming portion by smoothing over a class of fractiles. A large amount of trimming,
however, may have an adverse impact on the test in small samples due to the loss of
information coupled with sampling error due to the plug-in. This implies the p-value
occupation time may be sensitive to the plug-in in small samples, but when computed
with the plug-in robust orthogonal test equation delivers a sharp test in controlled
experiments.

Future work may seek to include other trimming techniques like smooth weight-
ing; adaptive methods for selecting the fractiles; and extensions to other classes of
tests like Hong and White (1995) nonparametric test for iid data, and Hong and Lee
(2005) spectral test which accommodates conditional heteroscedasticity of unknown
form.

Acknowledgments The author thanks an anonymous referee and Co-Editor Xiaohong Chen for
constructive remarks.
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Appendix A: Assumptions9

Write thresholds and fractiles compactly cz,n(·) = max{lz,n(·), uz,n(·)} and k j,n =
max

{
k j,ε,n, k j,1,n, ..., k j,q,n

}
, define σ 2

n (β, γ ) := E
[
m∗2

n,t (β, γ )
]

and

Jt (β, γ ) := −gt (β) F
(
γ ′ψt

)
, J ∗

n,t (β, γ ) := Jt (β, γ )In,t (β),

Ĵ ∗
n,t (β, γ ) = Jt (β) În,t (β)J

∗
n (β, γ ) := 1

n

n∑
t=1

J ∗
n,t (β, γ ),

Ĵ ∗
n (β, γ ) := 1

n

n∑
t=1

Ĵ ∗
n,t (β, γ ).

Drop β0, define �t = σ(xτ+1, yτ : τ ≤ t), and let � be any compact subset of R
p

with positive Lebesgue measure. Six sets of assumptions are employed. First, the
test weight is revealing.

W1 (weight). a.F : R → R is Borel measurable, analytic, and nonpolyno-
mial on some open interval R0 ⊆ R containing 0. b. supu∈U |F(u)| ≤ K and
infu∈U |F(u)| > 0 on any compact subset U ⊂ SF , with SF the support of F.

Remark 1 The W1.b upper bound allows us to exclude F(γ ′ψt ) from the trimming
indicators which greatly simplifies proving test consistency under trimming, and is
mild since it applies to repeatedly cited weights (exponential, logistic, sine, cosine).
The lower bound in W1.b helps to establish a required stochastic equicontinuity
condition for weak convergence when εt may be heavy tailed, and is easily guaranteed
by centering F(γ ′ψt ) if necessary.

Second, the plug-in β̂n is consistent. Let m̃n,t be �t -measurable mappings from
B ⊂ Rq to Rr , r ≥ q, and {Ṽn} a sequence of non-random matrices Ṽn ∈ R

q×q

where Ṽi,i,n → ∞. Stack equations M∗
n,t (β, γ ) := [m∗

n,t (β, γ ) , m̃′
n,t (β)]′ ∈

Rr+1, and define the covariances S̃n (β) := ∑n
s,t=1 E[{m̃n,s(β) − E[m̃n,s(β)]} ×

{m̃n,t (β)−E[m̃n,t (β)]}′] andS∗
n(β, γ ) :=

∑n
s,t=1 E[{M∗

n,s(β, γ )−E[M∗
n,s(β, γ )]}×

{M∗
n,t (β, γ )− E[M∗

n,t (β, γ )]}′], hence [S∗
i, j,n(β, γ )]r+1,r+1

i=2, j=2 = S̃n (β). We abuse
notation since S∗

n(β, γ ) may not exist for some or any β. Let f.d.d. denote finite
dimensional distributions.

P1 (fast (non)linear plug-ins). Ṽ 1/2
n (β̂n −β0) = Op(1) and supγ∈� ||Vn(γ )Ṽ −1

n ||
→ 0.
P2 (slow linear plug-ins). S∗

n(γ ) exists for each n, specifically supγ∈� ||S∗
n(γ )|| <

∞ and lim infn→∞ infγ∈� λmin(S
∗
n(γ )) > 0. Further:

9 We ignore for notational economy measurability issues that arise when taking a supremum over
an index set. Assume all functions in this chapter satisfy Pollard (1984) permissibility criteria,
the measure space that governs all random variables is complete, and therefore all majorants are
measurable. Probability statements are therefore with respect to outer probability, and expectations
over majorants are outer expectations. Cf. Dudley (1978) and Stinchcombe and White (1992).
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a. Ṽ 1/2
n (β̂n − β0) = Op(1) and Ṽn ∼ K(γ )Vn(γ ), where K : � → R

q×q and
infγ∈� λmin(K(γ )) > 0.

b. Ṽ 1/2
n (β̂n − β0) = Ãn

∑n
t=1{m̃n,t −E[m̃n,t ]}× (1 + op (1))+ op (1) where

nonstochastic Ãn ∈ R
q×r has full column rank and Ãn S̃−1

n Ã′
n → Iq .

c. The f.d.d. of S∗
n (γ )

−1/2 {M∗
n,t (γ )− E[M∗

n,t (γ )]} belong to the same domain
of attraction as the f.d.d. of S−1

n (γ ){m∗
n,t (γ ) −E[m∗

n,t (γ )] .

P3 (orthogonal equations and (non)linear plug-ins). Ṽ 1/2
n (β̂n −β0) = Op(1) and

lim supn→∞ supγ∈� ||V ⊥
n (γ )Ṽ

−1
n || < ∞.

Remark 2 β̂n effects the limit distribution of T̂n(γ ) under P2 hence we assume β̂n

is linear. P3 is invoked for orthogonalized equations m̂⊥
n,t (β, γ ).

Third, identification under trimming.
I1 (identification by m∗

n,t (γ )). Under the null supγ∈� |nS−1
n (γ )E[m∗

n,t (γ )]| → 0.

Remark 3 If mt (γ ) is asymmetric there is no guarantee E[m∗
n,t (γ )] = 0, although

E[m∗
n,t (γ )] → 0 under H0 by trimming negligibility and dominated convergence.

The fractiles {k j,ε,n, k j,i,n} must therefore promote I1 for asymptotic normality in
view of expansion (5) and mean centering. Since supγ∈�{Sn(γ )/n} = o(1) by
Lemma B.1, below, I1 implies identification of H0 sufficiently fast. The property
is superfluous if E[εt ] = 0 under either hypothesis, εt is independent of xt under
H0, and re-centering is used since then E[m∗

n,t (γ )] = 0 under H0 (see Sect. 3).

Fourth, the DGP and properties of regression model components.

R1 (response). f (·, β) is for each β ∈ B a Borel measurable function, continuous,
and differentiable on B with Borel measurable gradient gt (β) = g(xt , β) :=
(∂/∂β) f (xt , β).
R2 (moments). E |yt | < ∞, and E(supβ∈B | f (xt , β)|ι) < ∞ and E(supβ∈B |
(∂/∂βi ) f (xt , β)|ι) < ∞ for each i and some tiny ι > 0.
R3 (distribution).

a. The finite dimensional distributions of {yt , xt } are strictly stationary, non-
degenerate, and absolutely continuous. The density function of εt (β) is uni-
formly bounded supβ∈B supa∈R{(∂/∂a)P(εt (β) ≤ a)} < ∞.

b. Define κε(β) := argsupα > 0{E |εt (β)|α < ∞} ∈ (0,∞] , write κε = κε(β
0),

and let B2,ε denote the set of β such that the error variance is infinite
κε(β) ≤ 2. If κε(β) ≤ 2 then P(|εt (β)| > c) = d(β)ε−κε(β)(1 + o(1))
where infβ∈B2,ε d(β) > 0 and infβ∈B2,ε κε(β) > 0, and o(1) is not a function
of β, hence limc→∞ supβ∈B2,ε

|d(β)−1εκε(β)P(|εt (β)| > c)− 1| = 0.

R4 (mixing). {yt , xt } are geometrically β-mixing: supA⊂�+∞
t+l

E |P(A|�t−∞) −
P(A)| = o(ρl) for ρ ∈ (0, 1).
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Remark 1 Response function smoothness R1 coupled with distribution continuity
and boundedness R3.a imply

∑n
t=1 m̂∗

n,t (β̂n, γ ) can be asymptotically expanded
around β0, cf. Hill (2011b, Appendices B and C). Power-law tail decay R3.b is
mild since it includes weakly dependent processes that satisfy a central limit theo-
rem (Leadbetter et al. 1983), and simplifies characterizing tail-trimmed variances in
heavy-tailed cases by Karamata’s Theorem.

Remark 2 The mixing property characterizes nonlinear AR with nonlinear random
volatility errors (Pham and Tran 1985; An and Huang 1996; Meitz and Saikkonen
2008).

Fifth, we restrict the fractiles and impose nondegeneracy under trimming. Recall
k j,n = max{k j,ε,n, k j,1,n, ..., k j,q,n}, the R3.b moment supremum κε > 0, and
σ 2

n (β, γ ) = E[m∗2
n,t (β, γ )].

F1 (fractiles).

a. k j,ε,n/ ln(n) → ∞;
b. If κε ∈ (0, 1) then k j,ε,n/n2(1−κε)/(2−κε) → ∞.

F2 (nondegenerate trimmed variance). lim infn→∞ infβ∈B,γ∈�{S2
n (β, γ )/n} > 0

and supβ∈B,γ∈�{nσ 2
n (β, γ )/S2

n (β, γ )} = O(1).

Remark 1 F1.a sets a mild lower bound on kε,n that is useful for bounding trimmed
variances σ 2

n (β, γ ) and S2
n (β, γ ). F1.b sets a harsh lower bound on kε,n if, under

misspecification, εt is not integrable: as κε ↘ 0 we must trim more kε,n ↗ n in
order to prove a LLN for m∗

n,t (γ ) which is used to prove T̂n(γ ) is consistent. Any
kε,n ∼ n/L(n) for slowly varying L(n) → ∞ satisfies F1.

Remark 2 Distribution nondegeneracy under R3.a coupled with trimming negligibil-
ity ensure trimmed moments are not degenerate for sufficiently large n, for example
lim infn→∞ infβ∈B,γ∈� σ 2

n (β, γ ) > 0. The long-run variance S2
n (β, γ ), however,

can in principle be degenerate due to negative dependence, hence F2 is imposed. F2
is standard in the literature on dependent CLT’s and exploited here for a CLT for
m∗

n,t (β, γ ), cf. Dehling et al. (1986) .

Finally, the kernel ω(·) and bandwidth bn .
K1 (kernel and bandwidth).ω(·) is integrable, and a member of the classω : R →

[−1, 1]|ω(0) = 1, ω(x) = ω(−x)∀x ∈ R,
∫ ∞
−∞ |ω(x)|dx < ∞,

∫ ∞
−∞ |ϑ(ξ)|dξ <

∞, ω(·) is continuous at 0 and all but a finite number of points }, where ϑ(ξ) :=
(2π)−1

∫ ∞
−∞ ω(x)eiξ x dx < ∞. Further

∑n
s,t=1 |ω((s−t)/bn)| = o(n2),max1≤s≤n |∑n

t=1 ω((s − t)/bn)| = o(n) and bn = o(n).

Remark 1 Assumption K1 includes Bartlett, Parzen, Quadratic Spectral, Tukey-
Hanning, and other kernels. See Jong and Davidson (2000) and their references.
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Appendix B: Proofs of Main Results

We require several preliminary results proved in the supplemental appendix Hill
(2011c, Sect. C.3). Throughout the terms op(1), Op(1), o(1) and O(1), do not depend
on β, γ , and t . We only state results that concern m̂∗

n,t (β, γ ), and m∗
n,t (β, γ ), since

companion results extend to m̂⊥
n,t (β, γ ), and m⊥

n,t (β, γ ). Let F1–F2, K1, R1–R4, and
W1.b hold. Recall σ 2

n (β, γ ) = E[m∗2
n,t (β, γ )].

Lemma B.1 (variance bounds)

a. σ 2
n (β, γ ) = o

(
n max

{
1, (E[m∗

n,t (β, γ )])2
})

, sup
γ∈�

{
σ 2

n (γ )

max
{
1, (E[m∗

n,t (γ )])2
}
}

= o(n/ ln(n));
b. S2

n (γ ) = Lnnσ 2
n (γ ) = o(n2) for some sequence {Ln} that satisfies lim infn→∞

Ln > 0, Ln = K if εt is finite dependent or E[ε2
t ] < ∞, and otherwise

Ln ≤ K ln(n/min j∈{1,2}{k j,ε,n}) ≤ K ln(n).

Lemma B.2 (variance bounds)

a. supγ∈� |S−1
n (γ )

∑n
t=1{m̂∗

n,t (γ )− m∗
n,t (γ )}| = op(1).

b. Define μ̂∗
n,t (β, γ ) := m̂∗

n,t (β, γ ) − m̂∗
n(β, γ ) and μ∗

n,t (β, γ ) := m∗
n,t (β, γ ) −

m∗
n(β, γ ). If additionally P1 or P2 holds supγ∈� |S−2

n (γ )
∑n

s,t=1 ω((s − t)/bn)

{μ̂∗
n,s(β̂n, γ )μ̂

∗
n,t (β̂n, γ )− μ∗

n,s(γ )μ
∗
n,t (γ )}| = op(1).

Lemma B.3 (variance bounds) Let β, β̃ ∈ B. For some sequence {βn,∗} in B sat-
isfying ||βn,∗− β̃|| ≤ ||β − β̃||, and for some tiny ι > 0 and arbitrarily large
finite δ > 0 we have supγ∈� |m̂∗

n(β, γ ) − m̂∗
n(β̃, γ ) − Ĵ ∗

n (βn,∗, γ )′(β − β̃)| =
n−δ × ||β − β̃||1/ι × op(1).

Lemma B.4 (Jacobian) Under P1 or P2 supγ∈� ||J ∗
n (β̂n, γ )− Jn(γ )(1+op(1))|| =

op(1).

Lemma B.5 (HAC) Under P1 or P2 supγ∈� |Ŝ2
n (β̂n, γ )/S2

n (γ ) −1| p→ 0.

Lemma B.6 (ULLN) Let infn≥N |E[m∗
n,t (γ )]| > 0 for some N ∈ N and all γ ∈

�/S where S has measure zero. Then supγ∈�/S{1/n
∑n

t=1 m∗
n,t (γ )/E[m∗

n,t (γ )]}
p→

1.

Lemma B.7 (UCLT) {S−1
n (γ )

∑n
t=1(m

∗
n,t (γ )− E[m∗

n,t (γ )]) : γ ∈ �} =⇒ {z(γ ) :
γ ∈ �}, a scalar (0, 1)-Gaussian process on C[�] with covariance function
E[z(γ1)z(γ2)] and a.s. bounded sample paths. If P2 also holds then {S−1/2

n (γ )
∑n

t=1{M∗
n,t (γ )− E[M∗

n,t (γ )] : γ ∈ �} =⇒ {Z(γ ) : γ ∈ �} an r + 1 dimensional
Gaussian process on C[�] with zero mean, covariance Ir+1 , and covariance function
E[Z(γ1)Z(γ2)

′].
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Proof of Lemma 2.1 We only prove the claims for m∗
n,t (β, γ ). In view of the

σ(xt ) -measurability of Pn,t (γ ) and supγ∈� E |Pn,t (γ )| < ∞ the proof extends
to m⊥

n,t (β, γ ) with few modifications. Under H0 the claim follows from trimming
negligibility and Lebesgue’s dominated convergence: E[m∗

n,t (γ )] → E[mt (γ )] = 0.

Under the alternative there are two cases: E |εt | < ∞, or E |εt | = ∞ such that
E[εt |xt ] may not exist.
Case 1 (E |εt | < ∞). Property W1, compactness of �, and boundedness of ψ
imply F(γ ′ψt ) is uniformly bounded and revealing: E[εt F(γ ′ψt )] �= 0 for all
γ ∈ �/S where S has Lebesgue measure zero. Now invoke boundedness of F(γ ′ψt )

with Lebesgue’s dominated convergence theorem and negligibility of trimming
to deduce |E[εt (1 − In,t (β

0))F(γ ′ψt )]| → 0, hence E[εt In,t (β
0)F(γ ′ψt )] =

E
[
εt F(γ ′ψt )

] + o(1) �= 0 for all γ ∈ �/S and all n ≥ N for sufficiently large
N .
Case 2 (E |εt | = ∞). Under H1 since In,t (β) → 1 a.s. and E |εt | = ∞, by the
definition of conditional expectations there exists sufficiently large N such that
minn≥N |E[εt In,t (β

0)|xt ]| > 0 with positive probability ∀n ≥ N . The claim there-
fore follows by Theorem 1 of Bierens and Ploberger (1997) and Theorem 2.3 of
Stinchcombe and White (1998): lim infn→∞ |E[εt In,t (β

0)F(γ ′ψt )]| > 0 for all
γ ∈ �/S. QED.

Proof of Theorem 2.2 Define M∗
n,t (β, γ ) := m∗

n,t (β, γ ) − E[m∗
n,t (β, γ )] and

M̂∗
n,t (β, γ ) := m̂∗

n,t (β, γ ) − E[m̂∗
n,t (β, γ )]. We first state some required proper-

ties. Under plug–in properties P1 or P2 β̂n − β0 = op (1). Identification I1 imposes
under H0

sup
γ∈�

∣∣∣S−1
n (γ )E[m∗

n,t (γ )]
∣∣∣ = o(1/n), (B.1)

which implies the following long-run variance relation uniformly on �:

E

(
n∑

t=1

M∗
n,t (γ )

)2

= S2
n (γ )− n2 (

E
[
m∗

n,t (β, γ )
])2 = S2

n (γ ) (1 + o (1)) . (B.2)

Uniform expansion Lemma B.3, coupled with Jacobian consistency Lemma B.4 and

β̂n
p→ β0 imply for any arbitrarily large finite δ > 0,

sup
γ∈�

∣∣∣∣∣
1

n

n∑
t=1

{
m̂∗

n,t (β̂n, γ )− m̂∗
n,t (γ )

}
− Jn (γ )

′ (β̂n − β0
) (

1 + op (1)
)∣∣∣∣∣ = op

(
n−δ) .
(B.3)

Finally, by uniform approximation Lemma B.2.a

sup
γ∈�

∣∣∣∣∣
1

Sn(γ )

n∑
t=1

{
m̂∗

n,t (γ )− m∗
n,t (γ )

}∣∣∣∣∣ = op (1) , (B.4)
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and by Lemma B.5 we have uniform HAC consistency:

sup
γ∈�

∣∣∣Ŝ2
n (β̂n, γ )/S2

n (γ )− 1
∣∣∣ = op(1). (B.5)

Claim i (T̂n (γ ) : Null H0). Under fast plug-in case P1 we assume supγ∈� ||Vn(γ )

Ṽ −1
n || → 0, hence

sup
γ∈�

∣∣∣nS−1
n (γ ) Jn (γ )

′ (β̂n − β0
)∣∣∣ = op(1). (B.6)

Since δ > 0 in (B.3) may be arbitrarily large, lim infn→∞ infγ∈� Sn(γ ) > 0 by
nondegeneracy F2, and Eqs. (B.1)–(B.6) are uniform properties, it follows uniformly
on �

T̂n (γ )
p∼

(
1

Sn(γ )

n∑
t=1

M∗
n,t (γ )+ n Jn (γ )

′

Sn(γ )

(
β̂n − β0

)
+ op

(
n

Sn(γ )
n−δ

))2

=
(

1

Sn(γ )

n∑
t=1

M∗
n,t (γ )+ op (1)

)2

= M2
n (γ ) , (B.7)

say. Now apply variance relation (B.2), UCLT Lemma B.7 and the mapping theorem
to conclude E[M2

n (γ )] → 1 and {T̂n (γ ) : γ ∈ �} =⇒ {z2(γ ) : γ ∈ �}, where
z(γ ) is (0, 1)-Gaussian process on C[�] with covariance function E[z(γ1)z(γ2)].

Under slow plug-in case P2 a similar argument applies in lieu of plug-in linearity
and UCLT Lemma B.7. Since the steps follow conventional arguments we relegate
the proof to Hill (Hill 2011c, Sect. C.2).
Claim ii (T̂n (γ ) : Alternative H1). Lemma 2.1 ensures infn≥N

∣∣E[m∗
n,t (γ )]

∣∣ > 0 for
some N ∈ N and all γ ∈ �/S where S ⊂ � has Lebesgue measure zero. Choose
any γ ∈ �/S, assume n ≥ N and write

T̂n (γ ) =
(

1

Ŝn(β̂n, γ )

n∑
t=1

m̂∗
n,t (β̂n, γ )

)2

= n2
(
E

[
m∗

n,t (γ )
])2

Ŝ2
n (β̂n, γ )

⎛
⎝

∣∣∣1/n
∑n

t=1 m̂∗
n,t (β̂n, γ )

∣∣∣∣∣E [
m∗

n,t (γ )
]∣∣

⎞
⎠

2

.

In lieu of (B.5) and the Lemma B.1.a,b variance property n|E[m∗
n,t (γ )]|/

Sn(γ ) → ∞, the proof is complete if we show Mn(β̂n, γ ) := |1/n
∑n

t=1 m̂∗
n,t (β̂n,

γ )|/|E[m∗
n,t (γ )]|

p→ 1.

By (B.3), (B.4) and the triangle inequality Mn(β̂n, γ ) is bounded by
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1∣∣E [
m∗

n,t (γ )
]∣∣

∣∣∣∣∣
1

n

n∑
t=1

m∗
n,t (γ )

∣∣∣∣∣ + 1∣∣E [
m∗

n,t (γ )
]∣∣

∣∣∣Jn (γ )
′ (β̂n − β0

) (
1 + op (1)

)∣∣∣ + op

(
Sn (γ )

n
∣∣E [

m∗
n,t (γ )

]∣∣
)
,

where supγ∈�/S{1/n
∑n

t=1 m∗
n,t (γ )/E[m∗

n,t (γ )]}
p→ 1 by Lemma B.6. Further,

combine fast or slow plug-in P1 or P2, the construction of Vn (γ ) and variance
relation Lemma B.1.a,b to obtain

∣∣∣Jn (γ )
′
(
β̂n − β0

) (
1 + op (1)

)∣∣∣∣∣E [
m∗

n,t (γ )
]∣∣ ≤ Sn (γ )

n
∣∣E [

m∗
n,t (γ )

]∣∣n Jn (γ )
′ S−1

n (γ )

V −1/2
n (γ ) ∼ K

Sn (γ )

n
∣∣E [

m∗
n,t (γ )

]∣∣ = o (1) .

Therefore Mn(β̂n, γ )
p→ 1.

Claim iii (T̂ ⊥
n (γ ) ). The argument simply mimics claims (i) and (i i) since under plug-

in case P3 it follows Ŝ⊥
n (β̂n, γ )

−1 ∑n
t=1 m̂⊥

n,t (β̂n, γ )
p∼ S⊥

n (γ )
−1 ∑n

t=1 m⊥
n,t (γ ) by

construction of the orthogonal equations (Wooldridge 1990), and straightforward
generalizations of the supporting lemmas. QED.

The remaining proofs exploit the fact that for each zt ∈ {εt , gi,t } the prod-
uct zt F

(
γ ′ψt

)
has the same tail decay rate as zt : by weight boundedness W1.b

P(|zt supu∈R F(u)| > c) ≥ P(|zt Ft (γ ) | > c) ≥ P(|zt infu∈R F(u)| > c). Fur-

ther, use In,t = Iε,n,t Ig,n,t , dominated convergence and each Iz,n,t
a.s.→ 1 to deduce

E[|zt F(γ ′ψt )|r In,t ] = E[|zt F(γ ′ψt )|r Iz,n,t ] × (1 + o(1)) for any r > 0. Hence
higher moments of zt F(γ ′ψt )In,t and zt Iz,n,t are equivalent up to a constant scale.

Proof of Theorem 3.1 The claim under H1 follows from Theorem 2.2. We prove

τn(α)
d→ (1 − λ)−1

∫ 1
λ

I (u(λ) < α)dλ under H0 for plug-in case P1 since the

remaining cases follow similarly. Drop γ and write m̂∗
n,t (β̂n, λ) and Ŝ2

n (β̂n, λ) to

express dependence on λ ∈ � := [λ, 1]. Define Ẑn(λ) := Ŝ−1
n (β̂n, λ)

∑n
t=1 m̂∗

n,t

(β̂n, λ). We exploit weak convergence on a Polish space10: we write {Ẑn(λ) :
λ ∈ �} =⇒∗ {z(λ) : λ ∈ �} on l∞(�), where {z(λ) : λ ∈ �} is a Gaussian
process with a version that has uniformly bounded and uniformly continuous sam-
ple paths with respect to || · ||2, if Ẑn(λ) converges in f.d.d. and tightness applies:
limδ→0 lim supn→∞ P(sup||λ−λ̃||≤δ |Ẑn(λ)− Ẑn(λ̃)| > ε) = 0∀ε > 0.

We need only prove {Ẑn(λ) : λ ∈ �} =⇒∗ {z(λ) : λ ∈ �} since the claim
follows from multiple applications of the mapping theorem. Convergence in f.d.d.

10 See Hoffmann-Jørgensen (1991), cf. Dudley (1978).
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follows from supλ∈� |Ŝ−1
n (β̂n, λ)

∑n
t=1 m̂∗

n,t (β̂n, λ) − S−1
n (λ)

∑n
t=1 m∗

n,t (λ)|
p→ 0

by (B.3)–(B.5) under plug-in case P1, and the proof of UCLT Lemma B.7.
Consider tightness and notice by (B.3)–(B.6) and plug-in case P1

sup
λ∈�

∣∣∣Ẑn(λ)− Zn (λ)

∣∣∣ p→ 0 where Zn (λ) :=
n∑

t=1

1

Sn(λ)
mt In,t (λ) =

n∑
t=1

Zn,t (λ) ,

hence we need only to consider Zn (λ) for tightness. By Lemma B.1.b and inf{�} >
0 it is easy to verify infλ∈� S2

n (λ) = nσ 2
n for some sequence {σ 2

n } that satisfies
lim infn→∞ σ 2

n > 0. Therefore

∣∣∣∣∣
n∑

t=1

{
Zn,t (λ)− Zn,t (λ̃)

}∣∣∣∣∣ ≤
∣∣∣∣∣

1

n1/2σn

n∑
t=1

mt

{
In,t (λ)− In,t (λ̃)

}∣∣∣∣∣
+

∣∣∣∣ Sn(λ)

Sn(λ̃)
− 1

∣∣∣∣ ×
∣∣∣∣∣

1

Sn(λ)

n∑
t=1

mt In,t (λ)

∣∣∣∣∣ = A1,n(λ, λ̃)

+ A2,n(λ, λ̃).

By subadditivity it suffices to prove each limδ→0 lim supn→∞ P(sup||λ−λ̃||≤δ Ai,n

(λ, λ̃) > ε) = 0∀ε > 0.
Consider A1,n(λ, λ̃) and note In,t (λ) can be approximated by a sequence of con-

tinuous, differentiable functions. Let {Nn} be a sequence of positive numbers to be
chosen below, and define a smoothed version of In,t (λ),

INn ,n,t (λ) :=
1∫

0

In,t (�)S (Nn (� − λ)) d�

=
λ+1/Nn∫
λ−1/Nn

In,t (�)

{
e−1/(1−N 2

n (�−λ)2)∫ 1
−1 e−1/(1−w2)dw

× Nn

e� 2/N 2
n

}
d�,

where S(u) is a so-called “smudge” function used to blot out In,t (�) when � is
outside the interval (λ − 1/Nn, λ + 1/Nn). The term {·} after the second equality
defines S(u) on [−1, 1]. The random variable INn ,n,t (λ) is �t -measurable, uniformly
bounded, continuous, and differentiable for each Nn , and since kn(λ) ≥ kn(λ̃) for
λ ≥ λ̃ then INn ,n,t (λ) ≤ INn ,n,t (λ̃)a.s. Cf. Phillips (1995).

Observe A1,n(λ, λ̃) = B1,Nn ,n(λ, λ̃)+ B2,Nn ,n(λ)+ B2,Nn ,n(λ̃) where
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B1,Nn ,n(λ, λ̃) =
n∑

t=1

mt

{
INn ,n,t (λ)− INn ,n,t (λ̃)

}
n1/2σn

,

B2,Nn ,n(λ) =
n∑

t=1

mt
{

In,t (λ)− INn ,n,t (λ)
}

n1/2σn
.

Consider B1,Nn ,n(λ, λ̃), define DNn ,n,t (λ) := (∂/∂λ)INn ,n,t (λ), and let {bn(λ, ι)}
for infinitessimal ι > 0 be any sequence of positive numbers that satisfies P(|mt | >
bn(λ, ι)) → λ − ι ∈ (0, 1), hence limn→∞ supλ∈� bn(λ, ι) < ∞. By the mean-
value-theorem INn ,n,t (λ) − INn ,n,t (λ̃) = DNn ,n,t (λ∗)(λ − λ̃) for some λ∗ ∈ �,

|λ − λ∗| ≤ |λ − λ̃|. But since supλ∈� |In,t (λ) − 1| a.s.→ 0 it must be the case
that supλ∈� |DNnn ,n,t (λ)| → 0a.s. as n → ∞ for any Nn → ∞. There-
fore, for N sufficiently large, all n ≥ N , any p > 0 and some {bn(λ, ι)}
we have supλ∈� E |mtDNn ,n,t (λ)|p ≤ K supλ∈� E |mt I (|mt | ≤ bn(λ, ι))|p ≤
K supλ∈� bp

n (λ, ι)which is bounded on N. This implies mtDNn ,n,t (λ) is L p -bounded
for any p > 2 uniformly on �× N, and geometrically β-mixing under R4. In view
of lim infn→∞ σ 2

n > 0 we may therefore apply Lemma 3 in Doukhan et al. (1995)
to obtain supλ∈� |n−1/2σ−1

n
∑n

t=1 mtDNn ,n,t (λ)| = Op(1). This suffices to deduce
limδ→0 lim supn→∞ P(sup||λ−λ̃||≤δ |B1,Nn ,n(λ, λ̃)| > ε) is bounded by

lim
δ→0

lim sup
n→∞

P

(
K sup
λ∈�

∣∣∣∣∣
1

n1/2σn

n∑
t=1

mtDNn ,n,t (λ)

∣∣∣∣∣ × δ > ε

)
= 0.

Further, since the rate Nn → ∞ is arbitrary, we can always let Nn → ∞ so fast that
lim supn→∞ P(supλ∈� |B2,Nn ,n(λ)| > ε) = 0, cf. Phillips (1995). By subadditivity
this proves limδ→0 lim supn→∞ P(sup||λ−λ̃||≤δ A1,n(λ, λ̃) > ε) = 0∀ε > 0.

Now consider A2,n(λ, λ̃). By UCLT Lemma B.7 supλ∈� |S−1
n (λ)

∑n
t=1 mt In,t

(λ)| = Op(1) for any compact subset � of (0, 1]. The proof is therefore com-
plete if we show |Sn(λ)/Sn(λ̃) − 1| ≤ K |λ − λ̃|1/2. By Lemma B.1.b S2

n (λ) =
Ln(λ)nE[m2

t In,t (λ)]. Compactness of � ⊂ (0, 1] ensures lim infn→∞ infλ∈� Ln

(λ) > 0 and supλ∈� Ln(λ) = O(ln(n)), and by distribution continuity E[m2
t In,t (λ)]

is differentiable, hence |Sn(λ)/Sn(λ̃)−1| ≤ K (supλ∈�{|Gn(λ)|}/E[m2
t In,t (λ)])1/2×

|λ − λ̃|1/2 =: En|λ − λ̃|1/2 where Gn(λ) := (∂/∂λ) E[m2
t In,t (λ)]. Since kn ∼

λn/ ln(n) it is easy to verify lim supn→∞ supλ∈� En < ∞: if E[m2
t ] < ∞ then the

bound is trivial, and if E[m2
t ]= ∞ then use cε,n = K (n/kn)

1/κ = K (ln(n))1/κλ−1/κ

and Karamata’s Theorem (Resnick 1987, Theorem 0.6). QED.

Proof of Lemma 4.1 By Lemma B.7 in Hill (2011b) Jn(γ ) = −E[gt Ft (γ )In,t ] ×
(1 + o(1)) hence it suffices to bound (E[gi,t Ft (γ ) In,t ])2/S2

n (γ ). The claim fol-
lows from Lemma B.1.b, and the following implication of Karamata’s theorem (e.g.
Resnick 1987, Theorem 0.6): if any random variable wt has tail P(|wt | > w) =
dw−κ(1 + o(1)), and w∗

n,t := wt I (|wt | ≤ cw,n), P(|wt | > cw,n) = kw,n/n = o(1)
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and kw,n → ∞, then E |w∗
n,t |p is slowly varying if p = κ , and E |w∗

n,t |p ∼
K cp

w,n(kw,n/n) = K (n/kw,n)p/κ−1 if p > κ . QED.

Proof of Lemma 4.2 First some preliminaries. Integrability of εt is assured by
κ > 1, and yt has tail (11) with the same tail index κ (Brockwell and Cline 1985).
Stationarity ensures εt (β) = ∑∞

i=0 ψi (β)εt−i , where supβ∈B |ψi (β)| ≤ Kρi for
ρ ∈ (0, 1),ψ0(β

0) = 1 andψi (β
0) = 0∀i ≥ 1. Since εt is iid with tail (11) it is easy

to show εt (β) satisfies uniform power law property R3.b by exploiting convolution
tail properties developed in Embrechts and Goldie (1980). Use (4) and (11) to deduce
cε,n = K (n/kn)

1/κ .
F2 follows from the stationary AR data generating process and distribution con-

tinuity. I1 holds since E[m∗
n,t (γ )] = 0 by independence, symmetry, and symmetric

trimming. R1 and R2 hold by construction; (11) and the stated error properties ensure
R3; see Pham and Tran (1985) for R4.

Now P1–P3. OLS and LAD are n1/κ -convergent if κ ∈ (1, 2] (Davis et al. 1992);
LTTS and GMTTM are n1/κ/L(n) -convergent if κ ∈ (1, 2] (Hill and Renault 2010;
Hill 2011b)11; and LWAD is n1/2-convergent in all cases (Ling 2005). It remains
to characterize Vn(γ ). Each claim follows by application of Lemma 4.1. If κ > 2
then Vn(γ ) ∼ K n, so OLS, LTTS and GMTTM satisfy P2 [LAD and LWAD are not
linear: see Davis et al. (1992)]. If κ ∈ (1, 2) then Vn(γ ) ∼ K n (kn/n)2/κ−1 = o(n),
while each β̂n satisfies Ṽ 1/2

i,i,n/n1/2 → ∞, hence P1 applies for any intermediate
order {kn}. The case κ = 2 is similar.

Finally, Lemma 4.1 can be shown to apply to V ⊥
n (γ ) by exploiting the fact that

εtgi,t = εt yt−i have the same tail index as εt (Embrechts and Goldie 1980). The
above arguments therefore extend to m⊥

n,t (β, γ ) under P3. QED.

Proof of Lemma 4.3 The ARCH process {yt } is stationary geometrically β-mixing
(Carrasco and Chen 2002). In lieu of re-centering after trimming and error indepen-
dence, all conditions except P1–P3 hold by the arguments used to prove Lemma 4.2.

Consider P1–P3. Note εt = u2
t − 1 is iid, it has tail index κu/2 ∈ (1, 2] if

E[u4
t ] = ∞, and (∂/∂β)εt (β)|β0 = −u2

t xt/h2
t is integrable. Further S2

n (γ ) =
nE[m∗2

n,t (γ )] by independence and re-centering. Thus Vn(γ ) ∼ K n if E[u4
t ] < ∞,

and otherwise apply Lemma 4.1 to deduce Vn(γ ) ∼ K n (kn/n)4/κu−1 if κu < 4, and
Vn(γ ) ∼ n/L(n) if κu = 4.

GMTTM with QML-type equations and QMTTL have a scale ||Ṽn|| ∼ n/L(n)
if E[u4

t ] = ∞, hence P1, otherwise ||Ṽn|| ∼ K n hence P2 (Hill and Renault 2010;
Hill 2011b). Log-LAD is n1/2-convergent if E[u2

t ] < ∞, hence P1 if κu ≤ 4, and
if κu > 4 then it does not satisfy P2 since it is not linear. QML is n1/2-convergent

11 LTTS and GMTTM require trimming fractiles for estimation: GMTTM requires fractiles k̃i,n

for each estimating equation m̃i,n,t , and LTTS requires fractiles k̃ε,n and k̃y,n for εt and yt−i . The
given rates of convergence apply if for GMTTM k̃i,n ∼ λ ln(n) (Hill and Renault 2010), and for
LTTS k̃ε,n ∼ λn/ ln(n) and k̃y,n ∼ λ ln(n) (Hill 2011b), where λ > 0 is chosen by the analyst and
may be different in different places.
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if E[u4
t ] < ∞ hence P2, and if E[u4

t ] = ∞ then the rate is n1−2/κu/L(n) when
κu ∈ (2, 4] (Hall and Yao 2003, Theorem 2.1). But if κu < 4 then n(kn/n)4/κu−1 =
k4/κu−1

n n2−4/κu > n2−4/κu/L(n) for any slowly varying L(n) → ∞ and intermediate
order {kn} hence QML does not satisfy P1 or P2. Synonymous arguments extend to
m⊥

n,t (γ ) under P3 by exploiting Lemma 4.1. QED.
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Nonparametric Identification in Dynamic
Nonseparable Panel Data Models

Stefan Hoderlein and Halbert White

Abstract We consider the identification of covariate-conditioned and average partial
effects in dynamic nonseparable panel data structures. We demonstrate that a control
function approach is sufficient to identify the effects of interest, and we show how
the panel structure may be helpful in finding control functions. We also provide new
results for the nonparametric binary dependent variable case with a lagged dependent
variable.

Keywords Nonseparable Models · Identification · Dynamic · Panel data ·
Semiparametric · Binary choice

1 Introduction

We consider nonparametric identification of covariate-conditioned and average par-
tial effects of causes of interest (“effects of interest”) in panel structures. Identification
is nonparametric in that the structural relations generating the data are not assumed
to have a parametric representation, nor do we assume that this structure is separable
between observables and unobservables or that it possesses any monotonicity prop-
erties on the right-hand-side variables. We permit the observable causes of interest
to be endogenous, as they need not be independent of the unobservables. Compared
to previous work, a key innovation is that we allow for lagged dependent variables,
and we analyze both the effect of the lagged dependent variable as well as the effect
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of other explanatory variables in structural systems with lagged dependent variables.
We consider both continuous and binary lagged dependent variables.

For the same structure but without lagged dependent variables (the “static case”),
Hoderlein and White (2011, henceforth HW) establish nonparametric identification
of covariate-conditioned and average partial effects of endogenous causes for the
subpopulation of “stayers” (i.e., the subpopulation for which the explanatory vari-
ables stay unchanged between two time periods), without imposing independence
between the persistent unobservables and the causes of interest. A similar result
is obtained in Graham and Powell (2010, henceforth GP) for the subpopulation of
“movers” (the complement population to the stayers), if the structure is known to
be linear in the explanatory variables. Finally, Chernozhukov, Fernandez-Val, Hahn,
and Newey (2009) obtain results for average discrete variation in causes of interest
for the subpopulation of stayers, without imposing independence.

Both the HW and the GP approaches restrict the dependence of the regressors
on the past in a way that rules out lagged dependent variables. In contrast, Altonji
and Matzkin (2005) and Bester and Hansen (2008) restrict the dependence in a way
that may allow for lagged dependent variables. We follow a similar strategy here,
as it does not appear that effects in the general dynamic case can be point identified
otherwise. To make the main ideas clear, we first lay out this strategy in the static case,
followed by an analysis of the dynamic case. An important feature of our contribution
here is our focus on the content of the identifying assumptions, especially for the
dynamic case.

Although our main focus is on providing new identification results, we also con-
sider their implications for estimation. We recommend local linear regression, with
explicit allowance for the case of mixed continuous-discrete regressors, as in Li and
Racine (2004). Interestingly, the asymptotic theory relevant to our estimators has
not yet been fully settled; development is ongoing. As the challenges of this theory
are significant, its further development lies beyond the scope of this chapter. Thus,
we focus on describing our proposed estimators, discussing their known properties,
suggesting useful directions for the further development of the asymptotic theory,
and examining estimator finite-sample properties via simulation experiments.

The structure of the chapter is as follows: In the second section, we set out the
main structural assumptions and briefly describe the effects of interest. In Sect. 3, we
present our main identification results. We start with the static case and then discuss
in more detail the dynamic case. Section 4 discusses estimation. Section 5 contains
a summary and concluding remarks.

2 The Data Generating Process and Effects of Interest

In this section we specify the structure generating the data and describe the effects of
interest. We begin by specifying a dynamic triangular structural system that generates
the data. We write N

+ := {1, 2, . . .} and N := {0} ∪ N
+. We also write N̄

+ :=
N

+ ∪ {∞} and N̄ := {0} ∪ N̄
+.
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Assumption A.1 (a)(i) Let (�,F , P) be a complete probability space. Let ky ∈
N

+, let Y0 be a ky × 1 random vector on (�,F , P), and let the random ky × 1
vectors Yt be determined by a dynamic triangular structural system as

Yt = φ(Yt−1, Xt , St ,Ut ; A, B), t = 1, 2, . . . ,

where φ is an unknown measurable ky × 1 function; Xt , St , and Ut are vectors of
time-varying random variables on (�,F , P) of dimensions kx ∈ N

+, ks ∈ N, and
ku ∈ N̄

+; and A and B are vectors of time-invariant random variables on (�,F , P)
of dimensions ka ∈ N̄

+ and kb ∈ N.
Suppose also that Wt and C are random vectors on (�,F , P) of dimensions

kw ∈ N and kc ∈ N, time-varying and time-invariant, respectively. (ii) The triangular
structure is such that neither Yt , Yt−1, nor Xt structurally determines Wt ; Yt−1 does
not structurally determine Xt , St , or Ut ; and Xt does not structurally determine St

or Ut .
(b) Realizations of Ut and A are not observed. Realizations of all other random

variables are observed.

We observe a panel of data generated according to Assumption A.1, e.g.,

Yi,t = φ(Yi,t−1, Xi,t , Si,t ,Ui,t ; Ai , Bi ), t = 1, 2, . . . ; i = 1, 2, . . . .

We assume the data are identically distributed across i and accordingly drop the i
subscript.

We are interested only in the effects of Xt on Yt or of Yt−1 on Yt (the dynamics).
A finite number of lags is readily accommodated; for simplicity, we specify only a
single lag of Yt . Given these interests, we also write

φt (Yt−1) = φ(Yt−1, Xt , St ,Ut ; A, B) or φt (Xt ) = φ(Yt−1, Xt , St ,Ut ; A, B),

suppressing all but the causes of interest. Interest attaches to the marginal effects

Dyφt (Yt−1) and Dxφt (Xt ),

where Dy = ∂/∂y−1 and Dx = ∂/∂x and denote the derivatives with respect to the
first and second arguments of φ, respectively. The triangularity restrictions imposed
in A.2(a.i i) ensure that these are the full effects of the variables of interest; there
are no indirect effects here. Because φ is unknown and Ut and A are unobserv-
able, these effects cannot be directly measured. Instead, we consider identifying the
conditionally expected effects

E[Dyφt (Yt−1)|Gt ] and E[Dxφt (Xt )|Ht ],

where Gt and Ht denote suitable conditioning information sets. As the notation sug-
gests, different conditioning information may be involved in identifying the effects
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of Yt−1 and Xt . The random variables Wt and C will be used in generating Gt

and Ht .
Observe that covariate-conditioned effects of this sort are more informative about

the underlying effects, Dyφt (Yt−1) or Dxφt (Xt ), than are unconditional averages
or partial means, as conditional expectations give mean-squared-error optimal pre-
dictions and thus necessarily have smaller prediction variance for effects of interest
than unconditional averages or partial means.

3 Identification of Average Marginal Effects

3.1 The Static Case

For clarity and to ease the notational burden, we begin with an analysis of the static
case, φt (Xt ) := φ(Xt , St ,Ut ; A, B). A direct way to identify effects in this case
makes use of the conditional expectation

E[Yt |Xt = x, Qt = q] = E[φt (Xt ) | Xt = x, Qt = q], (1)

where Qt represents observable “covariates,” both time-varying and time-invariant.
For example, time-varying components of Qt include St , as well as observed drivers
of Xt , such as lagged Xt ’s, together with Wt ’s acting as proxies for Ut and for
unobserved drivers of Xt . The time-invariant components of Qt are B and C. C
may include observable proxies for A; observable attributes explaining Xt ; and
observable proxies for unobservable attributes explaining Xt . For concreteness, let
Qt = (St , Xt−1,Wt , B,C) for the moment. We further discuss Qt below.

The conditional expectation on the left of Eq. (1) exists whenever E(Y ) < ∞;
it has no necessary structural meaning. Under Assumption A.1 (a.i), however, the
structurally meaningful representation on the left of Eq. (1) holds. It is helpful to also
provide an integral representation of this object. For this, we suppress the dependence
of φ on St and B, and write

E[φt (Xt ) | Xt = x, Qt = q] =
∫
φ(x, u; a) dF(u, a | x, q).

Here, dF(u, a | x, q) defines the conditional density of (Ut , A) given (Xt = x, Qt =
q). This distribution may depend on t, but we suppress this dependence here and in
what follows for notational simplicity. We also let the argument list implicitly specify
the relevant random variables. This integral representation holds, provided that the
associated conditional distribution is regular (e.g., Dudley (2002), Chap. 10.2). In
what follows, we assume implicitly that any referenced conditional distribution is
regular.

http://dx.doi.org/10.1007/978-1-4614-1653-1_10
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As interest attaches to the marginal effect of Xt , we take the derivative of E[Yt |
Xt = x, Qt = q] with respect to x . This gives

DxE[Yt |Xt = x, Qt = q]
=

∫
Dxφ(x, u; a) dF(u, a | x, q)+

∫
φ(x, u; a)Dx dF(u, a | x, q).

The representation holds with differentiability for φ and dF(u, a | x, q) and
regularity permitting the interchange of derivative and integral. This includes an
assumption that the domain of integration does not depend on x . Under mild condi-
tions, Dx dF = Dx ln dF dF; letting

δt := Dx ln dF(Ut , A | Xt , Qt ),

be the exogeneity score of White and Chalak (2011), we can write

DxE[Yt | Xt = x, Qt = q]
= E[Dxφt (Xt ) | Xt = x, Qt = q] + E[φt (Xt )δt | Xt = x, Qt = q].

The first term on the right is a main item of interest: it is an average marginal effect
of the sort discussed above. The second term on the right is an “endogeneity” bias.
Whenever this is nonzero, it interferes with using DxE[Yt | Xt = x, Qt = q] to
measure the effect of interest. See White and Chalak (2011) and White and Lu (2011)
for further discussion.

We thus seek conditions that make this bias vanish. A standard condition for this is
the assumption that (Ut , A) is independent of Xt given Qt . Following Dawid (1979),
we write this

(Ut , A) ⊥ Xt | Qt . (2)

This type of “control function” assumption has been used in related contexts by
Altonji and Matzkin (2005), Imbens and Newey (2009), and Hoderlein (2011),
to name just a few. White and Chalak (2011) refer to this as a “conditional exo-
geneity” assumption, given its similarity to the assumption of strict exogeneity
(here, (Ut , A) ⊥ Xt ). When (Ut , A) ⊥ Xt fails, we have the case commonly
referred to as “fixed effects” (Wooldridge, 2002). Condition (2) allows fixed effects
((Ut , A) �⊥ Xt ), while still delivering identification of effects of interest.

To see how, observe that (2) ensures that for all (u, a, x, q), we have

dF(u, a | x, q) = dF(u, a | q),

so that δt is identically zero. This guarantees that the effect bias vanishes, so that

DxE[Yt |Xt = x, Qt = q]
= E[Dxφt (Xt ) | Xt = x, Qt = q] = E[Dxφt (x) | Qt = q].
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The first equality holds because the effect bias vanishes. The second equality follows
as a further consequence of conditional independence.

Thus, under Assumption A.1(a), conditional exogeneity, and sufficient differentia-
bility and regularity, DxE[Yt | Xt = x, Qt = q] has a clear structural interpretation
as an average marginal effect. In this case, we say that DxE[Yt | Xt = x, Qt = q]
is “identified” (cf. Hurwicz, 1950). Under Assumption A.1(b), all variables entering
the conditional expectation on the right are observable, so this effect measure can be
straightforwardly estimated from available data.

Before stating a formal result, we offer further insight into the content of the
conditional exogeneity assumption. To develop this, it is useful to split Qt explicitly
into its time-varying and time-invariant components, say Qt := (ξt , B,C), and to
write the conditional exogeneity restriction (Ut , A) ⊥ Xt | ξt , B,C equivalently as

Ut ⊥ Xt | ξt , A, B,C (3)

A ⊥ Xt | ξt , B,C. (4)

This representation permits us to appreciate the differing roles of (B,C) and ξt .
The role of ξt is foremost in (3). The more closely related are ξt and Ut , the less

useful Xt is as a predictor of Ut (given ξt , etc.) and therefore the more plausible is
(3). Viewed in this way, it is useful to have ξt include proxies for Ut . Specifically,
ξt should include variables Wt driven by Ut . Components of St may also act as
proxies for Ut . Symmetrically, the more closely related are ξt and Xt , the less useful
Ut is as a predictor of Xt (given ξt , etc.) and therefore the more plausible is (3).
Accordingly, one might choose ξt to include drivers of Xt , such as St , Xt−1, and
Wt , or to include proxies for unobserved drivers of Xt . Nevertheless, as White and
Lu (2011) show, including drivers of Xt in ξt leads to less precise effect estimates;
in the limit, predicting Xt too well leads to the analog of extreme multicollinearity.

The role of (B,C) is foremost in (4), where it acts as a proxy for A. Here, the
more closely related are (B,C) and A, the less useful Xt is as a predictor of A
(given (B,C), etc.) and therefore the more plausible is (4). Similarly, the more
closely related are ξt and Xt , the less useful A is as a predictor of Xt , and the
more plausible is (4). Again, however, efficiency considerations suggest that it is
preferable to include proxies for A and avoid including variables correlated with
Xt . These considerations motivate our specification that Qt = (St , Xt−1,Wt , B,C)
above.

Finally, observe that if one’s goal is to estimate E[Dxφt (Xt ) | Xt = x, Qt = q]
for arbitrary φ, x, and q, then Eq. (2) is necessary, as otherwise the effect bias is
nonzero for some (generally most) values of x and/or q. Fortunately, the latitude in
choosing Qt (afforded by the latitude in the choice of Wt and C) provides flexibility
in plausibly ensuring conditional exogeneity.

As White and Kennedy (2009) discuss, suitable covariates can contain further lags
of Xt−1 and lags (or even leads) of St and Wt . We let Xt−1

t−τx
:= (Xt−τx , . . . , Xt−1)

denote a lag history of Xt , and we let S
t+τs,2
t−τs,1

:= (St−τs,1 , . . . , St+τs,2) and W
t+τw,2
t−τw,1 :=

(St−τw,1 , . . . , St+τw,2) denoted lead and lag histories of St and Wt . We adopt the
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convention that when τx = 0, Xt−1
t−τx

is empty. Formally, σ(X ) denotes the σ−field
(information set) generated by the random vector X ; we impose

Assumption A.2 Let τx , τs,1, τs,2, τw,1, and τw,2 belong to N, and let kq ∈ N
+.

The observable kq × 1 random vector Qt is measurable−σ(Xt−1
t−τx

, S
t+τs,2
t−τs,1

,W
t+τw,2
t−τw,1 ,

B,C), and (St , B) is measurable −σ(Qt ).

Assumption A.2 potentially extends the observability of the covariates Qt to
periods before t = 1. We understand implicitly that these observations are generated
by the structure of A.1 for whatever time periods are required. The requirement that
(St , B) is measurable−σ(Qt ) ensures that Qt essentially includes (St , B).

To proceed, we impose the validity of the interchange of integral and derivative
used above. White and Chalak (2011) give detailed primitive conditions for this. For
simplicity and conciseness here, we just impose the needed high-level assumption.

Assumption A.3 The distribution of (Ut , A) | (Xt , Qt ) and the structural function
φ are such that for all admissible (x, q), we have

Dx

∫
φ(x, s, u; a, b) dF(u, a | x, q)

=
∫

Dxφ(x, s, u; a, b) dF(u, a | x, q)

+
∫
φ(x, s, u; a, b)Dx ln dF(u, a | x, q) dF(u, a | x, q).

Next, we impose conditional exogeneity.

Assumption A.4 (Ut , A) ⊥ Xt | Qt .

To state our first formal result, we let supp(·) denote the support of the indicated
random variable, that is, the smallest closed set containing that random variable with
probability one. We also let supp(· | ·) denote the support of the first indicated random
variable, given the specified value for the second. The identification result for the
static case is

Proposition 3.1 Given A.1–A.4 with Yt = φ(Xt , St ,Ut ; A, B), for all q ∈ supp(Qt )

and x ∈ supp(Xt | Qt = q),

DxE[Yt |Xt = x, Qt = q] = E[Dxφt (Xt ) | Xt = x, Qt = q]
= E[Dxφt (x) | Qt = q], t = 1, 2, . . . .

Averaged versions of these effect measures are also recoverable. Specifically,
when the conclusions of Proposition 3.1 hold, then one can recover average marginal
effects of the form

EF [Dxφt (Xt )] :=
∫

E[Dxφt (x) | Qt = q] dF(x, q),
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where dF is some density of interest specified by the researcher. Specifically, we
have

EF [Dxφt (Xt )] =
∫

DxE [Yt | Xt = x, Qt = q] dF(x, q).

3.2 The Dynamic Case

Now suppose data are generated according to the fully dynamic version of Assump-
tion A.1(a),

Yt = φ(Yt−1, Xt , St ,Ut ; A, B). (5)

We consider two different effects. First, we consider the effect of Xt on Yt . Then we
consider dynamic effects, that is, the effect of Yt−1 on Yt .

3.2.1 The Effect of Xt

Given the results above, extending the static case to include Yt−1 is now easy. We
therefore keep our discussion here to a minimum. Withφt (Xt ) := φ(Yt−1, Xt , St ,Ut ;
A, B), A.1 gives

E[Yt | Yt−1 = y, Xt = x, Qt = q] = E[φt (Xt ) | Yt−1 = y, Xt = x, Qt = q].

The content of Qt is still governed by A.2. The analog of A.3 is simply

Assumption A.3′ The distribution of (Ut , A) | (Yt−1, Xt , Qt ) and the structural
function φ are such that for all admissible (y, x, q), we have

Dx

∫
φ(y, x, s, u; a, b)dF(u, a | y, x, q)

=
∫

Dxφ(y, x, s, u; a, b)dF(u, a | y, x, q)

+
∫
φ(y, x, s, u; a, b)Dx ln dF(u, a | y, x, q) dF(u, a | y, x, q).

The conditional exogeneity assumption becomes

Assumption A.4′ (Ut , A) ⊥ Xt | Yt−1, Qt .

The dynamic version of Proposition 3.1 is

Proposition 3.2 Given A.1, A.2, A.3′, and A.4′, for all (y, q) ∈ supp (Yt−1, Qt ) and
x ∈ supp (Xt | Yt−1 = y, Qt = q),
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DxE[Yt |Yt−1 = y, Xt = x, Qt = q]
= E[Dxφt (Xt ) | Yt−1 = y, Xt = x, Qt = q]
= E[Dxφt (x) | Yt−1 = y, Qt = q], t = 1, 2 . . . . (6)

Using the obvious notation, an analogous argument applied to

λt (Yt−2, Xt , Xt−1) := φt (φt (Yt−2, Xt−1), Xt )

under the assumption1 that for all t ,

(Ut ,Ut−1, A) ⊥ Xt | Yt−2, Xt−1, Qt

yields

DxE[Yt | Yt−2 = y, Xt = x, Xt−1 = x−1, Qt = q]
= E[Dxφt (Yt−1, x) | Yt−2 = y, Xt−1 = x−1, Qt = q]. (7)

Generally, the average marginal effects measured by Eqs. (6) and (7) will differ.
Nevertheless, in special cases, these may coincide; examples are when φ is suitably
separable or partially linear. Comparing estimators of the conditional expectations
on the left in Eqs. (19) and (7) may therefore support tests of these properties.

3.2.2 The Effect of Yt−1

We emphasize that the results so far identify only average marginal effects of Xt .
They do not identify any dynamic impacts associated with Dyφ.Nevertheless, under
suitable conditions we can recover certain dynamic effects. Because Xt is no longer
a cause of interest, we absorb it into St , and drop explicit reference to Xt . Thus, we
write Yt = φt (Yt−1) := φ(Yt−1, St ,Ut ; A, B).

Now consider

E[Yt |Yt−1 = y, Q∗
t = q∗] = E[φt (Yt−1) | Yt−1 = y, Q∗

t = q∗]. (8)

We write Q∗
t instead of Qt to make it clear that different covariates may be rel-

evant here than when considering the effects of Xt . Similar to Qt , Q∗
t represents

both observable time-varying covariates and observable time-invariant covariates.
Q∗

t obeys an analog of A.2:

1 The elements of Qt may need to be augmented with elements of Qt−1 here. We leave the notation
unchanged for simplicity.
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Assumption A.2′ Let τy, τs,1, τs,2, τw,1, and τw,2 belong to N, and let kq∗ ∈ N
+.

The observable kq∗ ×1 random vector Q∗
t is measurable −σ(Y t−2

t−τy
, S

t+τs,2
t−τs,1

,W
t+τw,2
t−τw,1 ,

B,C), and (St , B) is measurable −σ(Q∗
t ).

We further discuss the content of Q∗
t below.

Suppressing the dependence of φ on St and B, we have the integral representation

E[φt (Yt−1) | Yt−1 = y, Q∗
t = q∗] =

∫
φ(y, u; a) dF(u, a | y, q∗).

Taking the derivative of E[Yt | Yt−1 = y, Q∗
t = q∗] with respect to y gives

DyE[Yt |Yt−1 = y, Q∗
t = q∗] =

∫
Dyφ(y, u; a) dF(u, a | y, q∗)

+
∫
φ(y, a; u)DydF(u, a | y, q∗)

= E[Dyφt (Yt−1) | Yt−1 = y, Q∗
t = q∗]

+ E[φt (Yt−1)δ
∗
t | Yt−1 = y, Q∗

t = q∗],

where
δ∗t := Dy ln dF(Ut , A | Yt−1, Q∗

t ),

following an argument precisely parallel to that for the static case.
From this, we see that we can recover a useful measure of the effect of Yt−1

on Yt , provided that the effect bias δ∗t vanishes. An analog of A.4′ will ensure this.
The analog of A.3′ is

Assumption A.3
′′

The distribution of (Ut , A) | (Yt−1, Q∗
t ) and the structural func-

tion φ are such that for all admissible (y, q∗), we have

Dy

∫
φ(y, s, u; a, b) dF(u, a | y, q∗)

=
∫

Dyφ(y, s, u; a, b) dF(u, a | y, q∗)

+
∫
φ(y, s, u; a, b)Dy ln dF(u, a | y, q∗) dF(u, a | y, q∗).

Assumption A.4
′′
(Ut , A) ⊥ Yt−1 | Q∗

t .

Making the time-varying and time invariant components of Q∗
t explicit, as say

Q∗
t := (ξ∗

t , B,C), this condition is equivalent to

Ut ⊥ Yt−1 | ξ∗
t , A, B,C (9)

A ⊥ Yt−1 | ξ∗
t , B,C. (10)
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To investigate the plausibility of A.4′′, we separately consider (9) and (10). As
we see, this provides insight into appropriate choices for ξ∗

t .

First, consider the plausibility of (9). For simplicity and concreteness, let ξ∗
t =

(St , St−1, St−2,Yt−2,Yt−3), and for now let B and C have dimension zero, so that
Yt = φ(Yt−1, St ,Ut ; A). Suppose further that

Ut ⊥ Ut−1 | ξ∗
t , A, (11)

which is plausible when {Ut } is viewed as a sequence of innovations. This corresponds
to (and extends) the strict exogeneity assumption usually made in this literature.

By Dawid (1979, lemmas 4.1 and 4.2(i)), this implies that for any function f we
have

Ut ⊥ f (Ut−1, ξ
∗
t , A) | ξ∗

t , A.

Now Yt−1 = φ(Yt−2, St−1,Ut−1; A); taking f (Ut−1, ξ
∗
t , A) = φ(Yt−2, St−1,

Ut−1; A) gives
Ut ⊥ Yt−1 | ξ∗

t , A,

as desired. Note that we did not use the St−2 or Yt−3 components of ξ∗
t ; we use these

next. We also did not use the St component of ξ∗
t , but we carry this along to ensure

A.2′.
Now consider A ⊥ Yt−1 | ξ∗

t . For this, suppose that φ depends invertibly on an
index of A :

φ(Yt−2, St−1,Ut−1; A) = φ0(Yt−2, St−1,Ut−1;φ1(A)). (12)

This includes the separable case, φ(Yt−2, St−1,Ut−1; A) = φ0(Yt−2, St−1,Ut−1)+
φ1(A), popular in the literature. Then

φ1(A) = φ−1
0 (Yt−2, St−1,Ut−1; Yt−1).

If we also assume

A ⊥ Ut−1,Ut−2 | St , St−1, St−2,Yt−2,Yt−3, (13)

we have by Dawid (1979, lemmas 4.1 and 4.2(i)) that

A ⊥ φ0(Yt−2, St−1,Ut−1;φ−1
0 (Yt−3, St−2,Ut−2; Yt−2)) | ξ∗

t ,

that is, as desired,
A ⊥ Yt−1 | ξ∗

t .

Here, we use each component of ξ∗
t except St .

More generally, φ may depend on multiple indexes of A. This dependence need
not create difficulties for identification, as the panel structure of the data can be
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exploited to ensure the needed conditional exogeneity, provided φ is sufficiently
well behaved. Specifically, suppose that φ depends on T indexes of A such that

φ(Yt−1, St ,Ut ; A) = φ0(Yt−1, St ,Ut ;φ1(A), . . . , φT (A)). (14)

Write the T equations for t = 1, . . . , T as

Y T = φ0,T (Y
T −1
0 , ST ,U T ;φT (A)),

where Y T := (Y1, . . . ,YT ) (and similarly for ST ,U T , and φT ) and Y T −1
0 :=

(Y0, . . . ,YT −1).
Now suppose that this system of T equations in the T unknowns φT (A) has a

unique solution, the natural extension of the invertibility imposed in the single index
case:

φT (A) = φ−1
0,T (Y

T −1
0 , ST ,U T ; Y T ).

To ensure that, as desired, A ⊥ YT −1 | ξ∗
T , i.e.,

A ⊥ φ0(YT −2, ST −1,UT −1;φ−1
0,T −2(Y

T −3
−2 , ST −2

−1 ,U T −2
−1 ; Y T −2

−1 )) | ξ∗
T ,

it suffices to assume
A ⊥ U T −1

−1 | ST −1
−1 ,Y T −2

−2 . (15)

From this, we see that the appropriate choice for ξ∗
T is

ξ∗
T = ST −1

−1 ,Y T −2
−2 .

If the first observation available is for t = 0, this implies that t = T + 2 is the first
observation to have available all the data required for estimation.

So far, we have not taken advantage of the availability of observable time-invariant
covariates B and C. These can help ensure (10) for general contexts in which φ does
not have the index structure just discussed. Specifically, suppose there exists an
unobservable random variable ε such that for an (unknown) measurable function α,

A = α(B,C, ε), (16)

where
ε ⊥ Yt−1 | ξ∗

t , B,C, (17)

with, for example, ξ∗
t = (St , St−1,Yt−2). Then Dawid (1979, 4.1 and 4.2(i)) ensures

that, as desired, (10) holds:
A ⊥ Yt−1 | ξ∗

t , B,C.
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We also require (9), Ut ⊥ Yt−1 | ξ∗
t , A, B,C . Given A = α(B,C, ε) and (17), a

straightforward derivation shows that it suffices that

Ut ⊥ Ut−1 | ξ∗
t , B,C, ε. (18)

Given the latitude in choosing C, this provides another means2 of plausibly ensuring
A.3′′.

The identification of dynamic effects now follows:

Proposition 3.3 Given A.1, A.2′, A.3′′, and A.4′′, for all (y, q∗) ∈ supp (Yt−1, Qt ),

DyE[Yt |Yt−1 = y, Q∗
t = q∗] = E[Dyφt (Yt−1) | Yt−1 = y, Q∗

t = q∗]
= E[Dyφt (y) | Q∗

t = q∗], t = 1, 2, . . . . (19)

3.3 Binary Choice Structures

Now consider the case of a binary dependent variable, Yt , and continuous Xt , with
potential dependence between (Yt−1, Xt ) and (Ut , A). As mentioned in the introduc-
tion, this case can be treated with arguments similar to those above, but not exactly
in the same fashion.

3.3.1 Effects of Xt

To obtain identification results for the effects of Xt , we suitably modify our previous
assumptions. In particular, we specify the structure of interest as follows, absorbing
B into St .

Assumption A.1′ Assumption A.1 holds with

φ(Yt−1, Xt , St ,Ut ; A) = I {φ0(Yt−1, Xt , St ; A)+ Ut > 0} ,

where φ0 is an unknown measurable function and Ut is a random scalar.

2 With the structure imposed here, one can define φ̃, say, such that φ̃(Yt−1, Xt ,Ut , B,C, ε) :=
φ(Yt−1, Xt ,Ut , α(B,C, ε), B). In the φ̃ representation, ε plays the role previously played in the
φ representation by A, and (B,C) now plays the role previously played by B alone. It is thus
natural that the conditions to be satisfied with respect to ε are entirely parallel to those previously
required with respect to A.We maintain our original representation in terms of φ, because we wish
to maintain variable interpretations and analysis for the non-invertible dynamic case as parallel as
possible to the other cases, and the assumption that A = α(B,C, ε) with suitably behaved ε need
not play an explicit role elsewhere. Moreover, explicitly introducing this relation here provides
insight into the roles of B and C generally.
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Assumption A.1′ formally specifies a data generating process where a latent
variable determined by a separable structure determines a binary outcome. This
reduces to the textbook binary choice fixed-effects case if φ0(Yt−1, Xt , St ; A) =
Yt−1δo + X ′

tβo + S′
tγo + α(A) for some unknown vectors δo, βo, and γo and some

unknown function α. Here, however, the effect of Xt may depend on its own level and
may also vary across the population as a function of both the persistent unobservable
A (e.g., think of A as preferences) and the observable St . For simplicity, we restrict
Ut to enter in an additively separable fashion. In view of previous results, this is not
necessary, but to provide concrete results, we refrain from the greatest possible gener-
ality. Instead, we specify a structure that immediately nests the textbook case where
Yt = I

{
Yt−1δo + X ′

tβo + S′
tγo + Ut + A > 0

}
, with (δo, βo, γo) nonrandom and

A a scalar. We also provide results covering this important special case below. Our
more general case is nevertheless useful, as it nests random coefficient structures
(e.g., Yt = I

{
Yt−1δ(A)+ X ′

tβ(A)+ S′
tγ (A)+ Ut + α(A) > 0

}
), allowing us to

treat applications in, e.g., consumer demand or empirical industrial organizations,
where individual consumers have heterogeneous responses, or in other fields where
heterogeneity in individual responses is crucial.

Parallel to our approach in the previous sections, consider

β∗(y, x, q) : = DxE[Yt | Yt−1 = y, Xt = x, Qt = q]
= Dx

∫
P

[
Yt = 1|Yt−1 = y, Xt = x, Qt = q, A = a

]
dF(a | y, x, q).

We also consider the average partial derivative

β∗
τ := E

[
β∗(Yt−1, Xt , Qt )τ (Yt−1, Xt , Qt )

]
,

where τ is a user-supplied measurable weighting or trimming function. Both
β∗(y, x, q) and β∗

τ involve only the joint distribution of observable random vari-
ables and can therefore be recovered from the available data.

Parallel to A.3′, we ensure the validity of the interchange of derivative and integral
with

Assumption A.3
′′′

The distribution of (Ut , A) | (Yt−1, Xt , Qt ) and the structural
function φ are such that for all admissible (y, x, q), we have

Dx

∫
P

[
Yt = 1|Yt−1 = y, Xt = x, Qt = q, A = a

]
dF(a | y, x, q)

=
∫

DxP
[
Yt = 1|Yt−1 = y, Xt = x, Qt = q, A = a

]
dF(a | y, x, q)

+
∫

P
[
Yt = 1|Yt−1 = y, Xt = x, Qt = q, A = a

]
Dx

× ln dF(a | y, x, q) dF(a | y, x, q).
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Here, A.4′ continues to apply. We also add convenient properties for φ0 and Ut .

Assumption A.5 (i) For each admissible (y, s, a), φ0(y, ·, s; a) is differentiable on
supp(Xt ); (ii) For each admissible (a, y, q), Ut | (A = a,Yt−1 = y, Qt = q) has
a continuous distribution with conditional density f (· | a, y, q).

We obtain the following identification result for the case of binary Yt .

Proposition 3.4 Suppose A.1′, A.2, A.3′′′, A.4′, and A.5 hold. (i) Then for all (y, q) ∈
supp (Yt−1, Qt ), x ∈ supp (Xt | Yt−1 = y, Qt = q), and t = 1, 2, . . . ,

β∗(y, x, q) = E[DxP
[
Yt = 1|Yt−1, Xt , Qt , A

] | Yt−1 = y, Xt = x, Qt = q]
= −E(Dxφ0(Yt−1, x, St ; A)

× f (−φo(Yt−1, x, St ; A) | A,Yt−1, Qt ) | Yt−1 = y, Qt = q).

(ii) If φ0(y, x, s, a) = x ′βo + φ̃0(y, s, a), where βo is an unknown real vector
and φ̃0 is an unknown measurable function, then for all (y, q) ∈ supp (Yt−1, Qt )

and x ∈ supp (Xt | Yt−1 = y, Qt = q),

β∗(y, x, q) = βo ψ̄(y, x, q) where

ψ̄(y, x, q) : = −E( f (−φ0(Yt−1, x, St ; A) | A,Yt−1, Qt ) | Yt−1 = y, Qt = q).

Consequently,
β∗
τ ∝ βo.

3.3.2 Effects of Yt−1

Because Yt−1 is binary, we are interested in discrete effects, and not marginal effects.
The situation is closely parallel to the classical treatment effects framework, where
interest attaches to the effects of a binary treatment, such as the average effect of
treatment on the treated or the average affect of treatment.

Here, we relax Assumption A.1′ to remove the separability in Ut .We now absorb
both Xt and B into St .

Assumption A.1
′′

Assumption A.1 holds with

φ(Yt−1, St ,Ut ; A) = I {φ1(Yt−1, St ,Ut ; A) > 0} ,

where φ1 is an unknown measurable function.

To define the effects of interest, we first define the potential responses associated
with our data generating process. The potential responses for y = 0, 1 are

Yy,t := I {φ1(y, St ,Ut ; A) > 0} .
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The analog of the covariate-conditioned effect of treatment on the treated is then

γ1(q
∗) := E[Y1,t − Y0,t | Yt−1 = 1, Q∗

t = q∗].

The analog of the average effect of treatment on the treated is

γ̄1 := E[Y1,t − Y0,t | Yt−1 = 1] = E(E[Y1,t − Y0,t | Yt−1 = 1, Q∗
t ] | Yt−1 = 1).

Analogous effects can be defined for the effect of treatment on the untreated or the
average effect of treatment, but, as the analysis is similar, we leave this aside for
brevity.

To identify the desired effects, we observe that for all y, y′ ∈ {0, 1} we have

E

[
Yt |Yt−1 = y, Q∗

t = q∗]

=
∫

I {φ1(y, s, u; a) > 0} dF(u, a | y, q∗) (byA.1′′)

=
∫

I {φ1(y, s, u; a) > 0} dF(u, a | q∗) (byA.4′′)

=
∫

I {φ1(y, s, u; a) > 0} dF(u, a | y′, q∗) (byA.4′′)

=
∫

[
∫

I {φ1(y, s, u; a) > 0} dF(u | y′, q∗, a)] dF(a | y′, q∗)

=
∫

E[Yy,t | Yt−1 = y′, Q∗
t = q∗, A = a] dF(a | y′, q∗).

It follows that

E

[
Y1,t − Y0,t | Yt−1 = 1, Q∗

t = q∗
]

=
∫

E[Y1,t − Y0,t | Yt−1 = 1, Q∗
t = q∗, A = a]dF(a | 1, q∗)

=
∫

E[Y1,t | Yt−1 = 1, Q∗
t = q∗, A = a] dF(a | 1, q∗)

−
∫

E[Y0,t | Yt−1 = 1, Q∗
t = q∗, A = a] dF(a | 1, q∗)

= E[Yt | Yt−1 = 1, Q∗
t = q∗] − E[Yt | Yt−1 = 0, Q∗

t = q∗].

Formally, we have

Proposition 3.5 Suppose A.1′′, A.2′, and A.4′′ hold. (i) Then for all q∗ ∈ supp (Q∗
t )

γ1(q
∗) = E[Yt | Yt−1 = 1, Q∗

t = q∗] − E[Yt | Yt−1 = 0, Q∗
t = q∗].
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(ii) We also have

γ̄1 = E[Yt | Yt−1 = 1] − E(E[Yt | Yt−1 = 0, Q∗
t ] | Yt−1 = 1).

4 Estimation

Although our main goal is to obtain the new identification results of Sect. 3, the impli-
cations of these results for estimation deserve careful consideration. The identified
effects can be represented either in terms of conditional expectations (Proposition
3.5(i)), derivatives of conditional expectations (Proposition 3.1–3.4(i)), or partial
means (averages) of conditional expectations or their derivatives (Proposition 3.5(ii)
and 3.4(ii)). To estimate these effects, we thus seek a convenient estimator of condi-
tional expectation that also reliably estimates the conditional expectation derivatives
and lends itself to averaging. We propose using local linear regression (e.g., Cleveland
1979), as it readily meets these criteria.

Significantly, the presence of both continuous and discrete regressors is essen-
tial for realistic application of Propositions 3.1–3.3 and necessary for application
of Propositions 3.4 and 3.5. The traditional analysis of local linear regression (e.g.,
Fan (1992), Ruppert and Wand (1994), Fan and Gijbels (1996), and Masry (1997))
assumes continuous regressors. The available asymptotic theory for local linear
regression in the mixed continuous-discrete case rests on foundational work by Li
and Racine (2004). Nevertheless, the theory required for our proposed estimators is
not yet available. Development of this theory is actively under way, but the challenges
it presents place further development here well beyond our present scope. Accord-
ingly, our goals for this section are restricted to describing our proposed estimators,
discussing their known or expected properties, and suggesting useful directions for
their further development.

4.1 Estimating Covariate-Conditioned Effects

We assume that for each period t we have data on a panel of n = nt individuals. For
simplicity, we assume that observations are independent and identically distributed
(IID) and that any missing observations are missing at random. Consistent with our
nonparametric approach, we propose estimating separate relationships for each time
period. This is the nonparametric analog of the parametric practice of including time
dummies for each period.

The local linear regression estimator solves the weighted least squares problem

θ̂n,t (w) = arg min
θ∈�

n∑
i=1

[Yi,t − g(W c
i,t , θ)]2 Kĥ (Wi,t − w).
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Depending on the application, Wi,t may be (Xi,t , Qi,t ) (Proposition 3.1), (Yi,t−1, Xi,t ,

Qi,t ) (Proposition 3.2 and 3.4), or (Yi,t−1, Q∗
i,t ) (Proposition 3.3 and 3.5). W c

i,t
denotes the continuously distributed elements of Wi,t . The term g(W c

i,t , θ) =
α + W c′

i,t β represents the local linear regression, with parameters θ := (α, β ′)′.
For Propositions 3.4 and 3.5, we have a binary lagged dependent variable, Yi,t−1,

so Wi,t necessarily contains one or more discretely distributed components, denoted
W d

i,t . Whenever derivatives of the conditional expectation are of interest, the asso-
ciated variables (i.e., Xi,t and Yi,t−1) are elements of W c

i,t . Other regressors may

belong to either W c
i,t or W d

i,t .

When all elements of Wi,t := (Wi,t,�, � = 1, . . . , q) are continuous, Kĥ is a
product kernel:

Kĥ (Wi,t − w) =
q∏
�=1

ĥ −1
� k(

Wi,t,� − w�

ĥ�
),

where w := (w1, . . . , wq)
′ defines the regressor values of interest; k is a univariate

kernel; and ĥ� is a variable-specific bandwidth, either given a priori or data deter-
mined. Li and Racine (2004) recommend choosing ĥ� by cross-validation or by using
the corrected AIC method of Hurvich, Simonoff and Tsai (1998).

When Wi,t contains discrete regressors, Li and Racine (2004) distinguish between
discrete variables having a natural ordering (e.g., income categories), denoted W̃ d

i,t ,

and those that do not (e.g., ethnicity), denoted W̄ d
i,t , so that W d

i,t := (W̃ d′
i,t , W̄ d′

i,t )
′. In

this case the kernel is

Kĥ (Wi,t − w) =
q∏
�=1

ĥ −1
� k(

W c
i,t,� − wc

�

ĥ�
)×

r1∏
�=1

λ̂
|W̃ d

i,t,�−w̃d
� |

� ×
r∏

�=r1+1

λ̂
I{W̄ d

i,t,� �=w̄d
� }

� ,

where λ̂� ∈ [0, 1] is a variable-specific weighting parameter, either given a priori
or data determined (e.g., using the corrected AIC). See Li and Racine (2004) and
Li, Racine, and Wooldridge (2009) for further background and details. A computer
implementation of these procedures is available in the R library package np.

When we are interested in covariate-conditioned average marginal effects, i.e., for
all cases except that of Proposition 3.5, we use β̂n,t (w) as our estimator. When we
are interested in the conditional expectation, as in Proposition 3.5(i), we use α̂n,t (w).

Determining the properties of θ̂n,t (w) is an active area of research. So far, only the
properties of α̂n,t (w) in the mixed continuous-discrete case with data-determined ĥ
and λ̂ have been fully settled (Li and Racine 2004, Theorem 3.2). Study of the
properties of β̂n,t (w) in the mixed continuous-discrete case with data-determined ĥ
and λ̂ is underway, but so far results for this case are not available. In fact, results are
not yet available even for β̂n,t (w) in the mixed continuous-discrete case with ĥ and
λ̂ given a priori (rather than being data determined). Nevertheless, based on results
so far available, we may expect that β̂n,t (w) will be asymptotically normal, with a
rate identical to that known for α̂n,t (w).
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On the other hand, results for given ĥ = hn when all regressors are continuous,
as may hold for Propositions 3.1–3.3, are immediately available from Li and Racine
(2007, Theorem 2.7). As the currently available asymptotic normality results of Li
and Racine (2007, Theorem 2.7) and Li and Racine (2004, Theorem 3.2) apply to the
estimators recommended here directly and without any modification in this case, we
conserve space by not restating those results. See also Hoderlein and White (2011).

We hope that the identification results of the previous section will act as motivation
and encouragement for the development of asymptotic distribution results for β̂n,t (w)

in the general case. We further suggest that it would be of interest to have results
describing the joint distribution of β̂n,t (w), t = 1, . . . , T, for fixed finite T . Such
results could be used to test whether effects are stable across time. Moreover, when
effects are plausibly stable over time (either a priori or empirically) such results
would enable construction of a more efficient estimator of the effects of interest as a
suitably weighted average of the estimators for individual time periods.

4.2 Estimating Partial Means

To estimate the average partial derivative

β∗
τ := E

[
β∗(Yt−1, Xt , Qt )τ (Yt−1, Xt , Qt )

]
,

one can form

β̂τ,n,t := n−1
n∑

i=1

β̂n,t (Yi,t−1, Xi,t , Qi,t ) τ (Yi,t−1, Xi,t , Qi,t ).

This quantity is a partial mean, so once a suitable asymptotic representation is avail-
able for β̂n,t (w), Theorem 4.1 of Newey (1994) can be applied to give conditions
ensuring the asymptotic normality of β̂τ,n,t . The analysis for this is expected to
closely parallel that of Hoderlein and White (2011, Theorem 5).

For the binary lagged dependent variable case, we avoid problems associated with
the tails of Q∗

t by considering a trimmed version of γ̄1 analogous to β∗
τ , namely

γ ∗
1,τ := E

[
γ1(Q

∗
t ) τ1(Q

∗
t ) | Yt−1 = 1

]
,

where τ1 is a trimming function that downweights observations in the tails of Q∗
t .

A straightforward estimator of γ ∗
1,τ follows by averaging α̂n,t (Yi,t−1, Q∗

i,t ) over the
sample where Yi,t−1 = 1:

γ̂1,τ,n,t := n−1
1

∑
{i :Yi,t−1=1}

α̂n,t (1, Q∗
i,t )τ1(Q

∗
i,t ),
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where n1 is the number of observations in period t with Yi,t−1 = 1.
Alternatively, one can form an estimator using the propensity score, parallel to

Li, Racine, and Wooldridge (2009). Following their approach, we can write

Yt = Y0,t + γ (Q∗
t )Yt−1 + εt ,

where εt := Yt − E(Yt | Yt−1, Q∗
t ) and γ (Q∗

t ) := E[Y1,t − Y0,t | Yt−1, Q∗
t ] =

E[Y1,t − Y0,t | Q∗
t ]. It follows that

γ̄1 = E(E[Y1,t − Y0,t | Yt−1 = 1, Q∗
t ] | Yt−1 = 1) = E(γ (Q∗

t ) | Yt−1 = 1).

We also have γ (Q∗
t ) = cov(Yt ,Yt−1 | Q∗

t )/var(Yt−1 | Q∗
t ). Letting p(Q∗

t ) :=
P[Yt−1 = 1 | Q∗

t ] represent the propensity score relevant here, we have

γ̄1 = E

(
Yt (Yt−1 − p(Q∗

t ))

var(Yt−1 | Q∗
t )

| Yt−1 = 1

)
= E

(
Yt (1 − p(Q∗

t ))

var(Yt−1 | Q∗
t )

| Yt−1 = 1

)

= E

(
Yt (1 − p(Q∗

t ))

p(Q∗
t )(1 − p(Q∗

t ))
| Yt−1 = 1

)
= E

(
Yt

p(Q∗
t )

| Yt−1 = 1

)
,

where we use the fact that var(Yt−1 | Q∗
t ) = p(Q∗

t )(1 − p(Q∗
t )), since Yt−1 is

binary.
Li, Racine, and Wooldridge (2009) propose a local linear estimator of p(Q∗

t ) for
the mixed continuous-discrete case, say p̂n,t (Q∗

t ). Using this, we can construct an
estimator of γ ∗

1,τ as

γ̃1,τ,n,t := n−1
1

∑
{i :Yi,t−1=1}

Yi,t

p̂n,t (Q∗
i,t )
τ1(Q

∗
i,t ).

From this, it is clear that the trimming should remove values of p̂n,t (Q∗
i,t ) close to

zero.
Developing the formal asymptotic distribution theory for γ̂1,τ,n,t and γ̃1,τ,n,t is

beyond our scope here. But see Li, Racine, and Wooldridge (2009) for further details
and a complete asymptotic theory for a nonparametric propensity score-based esti-
mator of the average effect of treatment in the mixed continuous-discrete case.

5 Summary and Concluding Remarks

This chapter provides an approach to identifying effects of interest in nonsepara-
ble panel data models when the relationship of interest depends structurally on the
lagged dependent variable. This case is important, as it falls outside the scope of
the approaches of Graham and Powell (2010) and Hoderlein and White (2011).



Nonparametric Identification in Dynamic Nonseparable Panel Data Models 295

Our approach relies on the use of control functions (covariates) to ensure the inde-
pendence between the causes of interest (Yt−1 or Xt ) and the transitory and persistent
unobservables, Ut and A, conditional on appropriate controls, which may contain
both time-varying and time-invariant components. The time-varying components
may include both leads and lags relative to time t. We further show how suitable
control variable candidates can arise from the panel data structure. Finally, we show
how this method extends to cover the identification of effects in dynamic panel data
binary choice models with endogenous causes and state dependence.

As we discuss, convenient estimators for the effects identified here can be con-
structed using local linear regression for the mixed continuous-discrete regressor
case. Theory for these estimators applicable to the present context is still under
development. The results given here should serve as motivation and encouragement
for this effort. We also suggest useful directions for the further development of this
theory.

Mathematical Appendix

The proofs of Propositions 3.1–3.3 and 3.5 are as given in the text.

Proof of Proposition 3.4 (i) Given A.1′, A.2, and A.3′′′, we have

β∗(y, x, q) = Dx

∫
P

[
Yt = 1|Yt−1 = y, Xt = x, Qt = q, A = a

]
dF(a | y, x, q)

=
∫

DxP
[
Yt = 1|Yt−1 = y, Xt = x, Qt = q, A = a

]
dF(a | y, x, q)

+
∫

P
[
Yt = 1|Yt−1 = y, Xt = x, Qt = q, A = a

]
Dx

× ln dF(a | y, x, q) dF(a | y, x, q).

Given A.4′, this becomes

β∗(y, x, q) =
∫

DxP
[
Yt = 1|Yt−1 = y, Xt = x, Qt = q, A = a

]
dF(a | y, q).

Now

DxP[Yt = 1|Yt−1 = y, Xt = x, Qt = q, A = a]
= Dx

∫
I {φ0(y, x, s; a)+ u > 0} dF(u | a, y, x, q) (by A.1′)

= Dx

∫
I {φ0(y, x, s; a)+ u > 0} dF(u | a, y, q) (by A.4′)

= Dx F(−φ0(y, x, s; a) | a, y, q)
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= −Dxφ0(y, x, s; a) f (−φ0(y, x, s; a) | a, y, q). (by A.5)

Thus,

β∗(y, x, q) =
∫

−Dxφ0(y, x, s; a) f (−φ0(y, x, s; a) | a, y, q) dF(a | y, q)

= −E(Dxφ0(Yt−1, x, St ; A)

× f (φ0(Yt−1, x, St ; A) | A,Yt−1, Qt ) | Yt−1 = y, Qt = q).

(ii) The proof is immediate and is omitted.
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Consistent Model Selection: Over Rolling
Windows

Atsushi Inoue, Barbara Rossi and Lu Jin

Abstract In this chapter we analyze asymptotic properties of the simulated out-of
-sample predictive mean squared error (PMSE) criterion based on a rolling window
when selecting among nested forecasting models. When the window size is a fixed
fraction of the sample size, Inoue and Kilian (J Econ 130: 273–306, 2006) show that
the PMSE criterion is inconsistent. We consider alternative schemes under which the
rolling PMSE criterion is consistent. When the window size diverges slower than
the sample size at a suitable rate, we show that the rolling PMSE criterion selects
the correct model with probability approaching one when parameters are constant
or when they are time varying. We provide Monte Carlo evidence and illustrate the
usefulness of the proposed methods in forecasting inflation.

1 Introduction

It is a common practice to compare models by out-of-sample predictive mean squared
error (PMSE). For example, Meese and Rogoff (1983a,b) and Swanson and White
(1997) compare models according to their PMSE calculated in rolling windows.
Another common practice is to use a consistent information criterion such as the
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Schwarz Information Criterion (SIC), used for example in Swanson and White
(1997). Information criteria and the out-of-sample PMSE criteria deal with the issue
of overfitting inherent in the in-sample PMSE criterion. Information criteria penalizes
overparameterized models via penalty terms and are easy to compute. The out-of-
sample PMSE criteria simulate out-of-sample forecasts and are very intuitive.1

In a recent chapter, Inoue and Kilian (2006) show that the recursive and rolling
PMSE criteria are inconsistent and recommend that consistent in-sample informa-
tion criteria, such as the SIC, be used in model selection. They also show that even
when there is structural change these out-of-sample PMSE criteria are not neces-
sarily consistent. Their results are based on the assumption that the window size is
proportional to the sample size.

In this chapter we consider an alternative framework in which the window size
goes to infinity at a slower rate than the sample size. Under this assumption we show
that the rolling-window PMSE criterion is consistent for selecting nesting linear
forecasting models. When the nesting model is the truth, the criterion selects the
nesting model with probability approaching one because the parameters and thus
the PMSE are consistently estimated as the window size diverges. When the nested
model is generating the data, the quadratic term in the quadratic expansion of the loss
difference becomes dominant when the window size is small. Because the quadratic
form is always positive, the criterion will select the nested model with probability
approaching one. When the window size is large, however, the linear term and the
quadratic term are of the same order and the sign cannot be determined. By letting the
window size diverge slowly, the rolling PMSE criterion is consistent under a variety
of environments, when parameters are constant or when they are time varying.

When the window size diverges at a slower rate than the sample size, the rolling
regression estimator can be viewed as a nonparametric estimator (Giraitis et al.
2011) and time-varying parameters are consistently estimated. We show that our
rolling-window PMSE criterion remains consistent even when parameters are time
varying. When the window size is large, that is, when it is assumed to go to infinity
at the same rate as the total sample size, the criterion is not consistent because the
rolling regression estimator is oversmoothed. In the time-varying parameter case, the
conventional information criterion is not consistent in general.

This chapter is related to, and different from, the works by West (1996); Clark
and McCracken (2001); Giacomini and White (2006); Giacomini and Rossi (2010),
and Rossi and Inoue (2011) in several ways. West (1996) and Clark and McCracken
(2001) focus on comparing models’ relative to forecasting performance when the
window size is a fixed fraction of the total sample size,whereas Giacomini and

1 The out-of-sample PMSE criteria are based on simulated out-of-sample predictions where para-
meters are estimated from a subsample to predict an observation outside the subsample. When
subsamples always start with the first observation and use consecutive observations whose number
is increasing, we call the simulated quadratic loss the recursive PMSE criterion. When subsamples
are based on the same number of observations and are moving, we call the simulated quadratic loss
the rolling PMSE criterion and the number of observations in the subsamples is the window size.
See Inoue and Kilian (2006) for more technical definitions of these criteria.
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White (2006) focus on the case where the window size is constant; this chapter
focuses instead on the case where the window size goes to infinity but at a slower
rate than the total sample size. Giacomini and Rossi (2010) argue that, in the presence
of instabilities, traditional tests of predictive ability may be invalid, since they focus
on the forecasting performance of the models on average over the out-of-sample
portion of the data. To avoid the problem, they propose to compare models’ relative
predictive ability in the presence of instabilities by using a rolling window approach
over the out-of-sample portion of the data. The latter helps them to follow the relative
performance of the models as it evolves over time. In this chapter we focus on
consistent model selection procedures, instead, rather than testing; furthermore, our
focus is not to compare models’ predictive performance over time, rather to select the
best forecasting model asymptotically. Rossi and Inoue (2011) focus on the problem
of performing inference on predictive ability that is robust to the choice of the window
size. In this chapter, instead, we take as given the choice of the window size and our
objective is not to perform tests; we focus instead on understanding whether it is
possible to consistently select the true model depending on the size of the window
relative to the total sample size.

The rest of this chapter is organized as follows: In Sect. 2 we establish the consis-
tency of the rolling PMSE criterion under the standard stationary environment as well
as under the time-varying parameter environment. In Sect. 3 we investigate the finite-
sample properties of the rolling-window PMSE criterion. Section 4 demonstrates the
usefulness of our criteria in forecasting inflation. Section 5 concludes.

2 Asymptotic Theory

Consider two nesting linear forecasting models, models 1 and 2, to generate h-steps
ahead direct forecasts (where h is finite):

Model 1 : yt+h = α∗′xt + ut+h, (1)

Model 2 : yt+h = β ′zt + vt+h = α′xt + γ ′wt + vt+h, (2)

where dim(α) = k and dim(β) = l. The first terms on the right-hand sides of
Eqs. (1) and (2), α∗′xt and β ′zt are the population linear projections of yt+h on
xt and zt , respectively. Thus, zt is uncorrelated with vt+h , α∗ = [E(xt x ′

t )]−1

E(xt yt+h) and β = [E(zt z′
t )]−1 E(zt yt+h).

Define the population quadratic loss of each model by

σ 2
1 = limT →∞ 1

T −h

T −h∑
t=1

E[(yt+h − α′xt )
2] = limT →∞ 1

T −h

T −h∑
t=1

E(u2
t+h),

σ 2
2 = limT →∞ 1

T −h

T −h∑
t=1

E[(yt+h − β ′zt )
2] = limT →∞ 1

T −h

T −h∑
t=1

E(v2
t+h).
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Our goal is to select the model with smallest quadratic loss.
Let the window size used for parameter estimation be denoted by W for some

W > h. Define the rolling ordinary least squares (OLS) estimators as follows, for
t = W + 1, ..., T :

α̂t,W =
(

t−h∑
s=t−W

xs x ′
s

)−1 t−h∑
s=t−W

xs ys+h, (3)

β̂t,W =
(

t−h∑
s=t−W

zs z′
s

)−1 t−h∑
s=t−W

zs ys+h, (4)

and the associated rolling PMSEs by:

σ̂ 2
1,W = 1

T − h − W

T −h∑
t=W+1

û2
t+h, (5)

σ̂ 2
2,W = 1

T − h − W

T −h∑
t=W+1

v̂2
t+h, (6)

where ût+h = yt+h − α̂′
t,W xt , v̂t+h = yt+h − β̂ ′

t,W zt .We say that the rolling PMSE
criterion is consistent if

• σ̂ 2
1,W < σ̂ 2

2,W with probability approaching one if σ 2
1 = σ 2

2 ; and

• σ̂ 2
1,W > σ̂ 2

2,W with probability approaching one if σ 2
1 > σ 2

2 .

Under what conditions on the window size is the rolling PMSE criterion consis-
tent? The existing results are not positive. When the window size is large relative
to the sample size (i.e., ∃λ ∈ (0, 1) s.t. W = λT + o(T )), Inoue and Kilian (2005)
show that the criterion is not consistent. Specifically, when σ 2

1 = σ 2
2 , they show that

the criterion selects model 2 with a positive probability resulting in the overparame-
terized model. We will discuss this result in more detail in the next section, where
we will compare it with the theoretical results proposed in this chapter.

When the window size is very small (i.e., W is a fixed constant), it is straight-
forward to show that the criterion may not be consistent. For example, compare
the zero-forecast model (xt = ∅) and the constant-forecast model (wt = 1) with
W = h = 1. Suppose that yt+1 = c + ut+1, where ut ∼ i id(c, σ 2). Note that
σ 2

1 = c2 + σ 2 and σ 2
2 = σ 2. Since

σ̂ 2
1,1 = 1

T −1

T −1∑
t=1

y2
t+1

p→ c2 + σ 2,

σ̂ 2
2,1 = 1

T −1

T −1∑
t=1
(yt+1 − yt )

2 p→ 2σ 2,
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however, σ̂ 2
1,1 < σ̂ 2

2,1 with probability approaching one whenever c2 < σ 2. This is
because parameter estimation uncertainty never vanishes even asymptotically, when
the window size is fixed.

The goal of the next section is to show that the criterion is consistent if the window
size is small, but not too small, relative to the sample size in the following sense:
W → ∞ and W/T → 0 as T → ∞. Following Clark and McCracken (2000),
we use the following notation: Let q2,t = zt z′

t , q1,t = xt x ′
t , Bi = [E(qit )]−1,

Bi (t) =
[

1
Wh

t−h∑
s=t−W

qi,s

]−1

, H1(t) = 1
Wh

t−h∑
s=t−W

xs(ys+h − α∗′xs), H2(t) =

1
Wh

t−h∑
s=t−W

zsvs+h , where i is either 1 or 2 and Wh = W − h + 1.

2.1 Consistency of the Rolling-Window PMSE Criterion When
Parameters are Constant

First, consider the case where the parameters are constant.

Assumption 1 As T → ∞, T 1/2/W = O(1) and W/T → 0.

Assumption 2 (a) {[x ′
t z′

t yt+h]′} is covariance stationary and has finite 10 moments
with E(zt z′

t ) positive definite and B2(t) positive definite for all t almost surely.
(b) W 1/2(Bi (t)− Bi ) and W 1/2 Hi (t) have finite fourth moments uniformly in t for

i = 1, 2.
(c) E(vt+h |Ft ) = 0 with probability one for 1, 2, . . ., where Ft is the σ field

generated by {(ys+h, zs)}t−h
s=1.

(d) E[H ′
1(t)B1(xt x ′

t−E(xt x ′
t ))B1 H1(t)] = o(W −1) and E[H ′

2(t)B2(zt z′
t−E(zt z′

t ))

B2 H2(t)] = o(W −1) uniformly in t .
(e)

Cov

[
vech

(
T −h∑

t=W+1

H ′
i (t)(Bi (t)− Bi )qi,t (Bi (t)− Bi )Hi (t)

)]

= O

(
T −h∑

t=W+1

Cov
[
vech

(
H ′

i (t)(Bi (t)− Bi )qi,t (Bi (t)− Bi )Hi (t)
)])

,

Cov

[
vec

(
T −h∑

t=W+1

H ′
i (t)Bi qi,t (Bi (t)− Bi )Hi (t)

)]

= O

(
T −h∑

t=W+1

Cov
[
vec

(
H ′

i (t)Bi qi,t (Bi (t)− Bi )Hi (t)
)])

,
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Cov

[
vech

(
T −h∑

t=W+1

H ′
i (t)Bi qi,t Bi Hi (t)

)]

= O

(
T −h∑

t=W+1

Cov
[
vech

(
H ′

i (t)Bi qi,t Bi Hi
)])

,

for i = 1, 2.

Remark When the window size is assumed to be proportional to the sample size,
W = [rT ] for r ∈ [0, 1], the functional central limit theorem (FCLT) is often used
to find the asymptotic properties of the recursive and rolling regression estimators
(e.g., Clark and McCracken 2001). For example, if h = 1,

√
T (β̂t,W − β) =

(
1

T

t−1∑
s=t−W

zs z′
s

)−1
1√
T

t−1∑
s=t−W

zsvs+1

and if vech(zt z′
t ) and ztvt+1 satisfy the FCLT, we obtain

√
T (β̂[rT ] − β) ⇒ σ

r
[E(zt z

′
t )]−1/2 Bl(r)

where Bl(r) is the l-dimensional standard Brownian motion, provided [z′
t vt+1]′ is

covariance stationary. Thus, we have β̂t,W −β = Op(T −1/2) uniformly in t . When
the window size diverges slower than the sample size it is tempting to use the same
analogy and claims β̂t,W − β = Op(W −1/2) uniformly in t . This result does not
follow from the FCLT, however, even though β̂t,W − β = Op(W −1/2) pointwise
in t . To see why, let zt = 1. Then

β̂t,W − β = 1

W

t−1∑
s=1

vs+1 − 1

W

t−W−1∑
s=1

vs+1

=
√

T

W

1√
T

t−1∑
s=1

vs+1 −
√

T

W

1√
T

t−W−1∑
s=1

vs+1

= op

(√
T

W

)

uniformly in t , where the last equality follows from 1√
T

∑t−1
s=1 vs+1 − 1√

T

∑t−W−1
s=1

vs+1 = op(1) by the FCLT and W = o(T ). Thus, the FCLT alone does not imply
β̂t,W − β = Op(W −1/2) uniformly in t in general. This is why we need some
high-level assumption, such as Assumptions 2(b)(d)(e).



Consistent Model Selection: Over Rolling Windows 305

Assumption 1 requires that W diverges slower than T . This assumption makes
the convergence rates of terms in the expansion of the PMSE differential uneven
which helps to establish the consistency of this criterion when the nested model is
generating the data. Assumption 2(c) requires that the nesting model is (dynamically)
correctly specified. Assumption 2(d) is trivially satisfied if zt is strictly exogenous
and allows for weak correlations between zt and vs . Assumption 2(e) is a high-level
assumption and imposes that the variance of the sum is in the same order of the sum
of variances. In other words, the summands are only weakly serially correlated so that
their autocovariances decay fast enough. This assumption is somewhat related to the
concept of essential stationarity of Wooldridge (1994, pp. 2643–2644). Assumptions
somewhat similar to this condition are used in the central limit theorem for stationary
and ergodic processes (e.g., Theorem 5.6 of Hall and Heyde 1980, p. 148) and
the central limit theorem for near epoch-dependent processes (e.g., Theorem 5.3 of
Gallant and White 1988, p. 76; Assumption C1 of Wooldridge and White 1988).

Theorem 1 Under Assumptions 1 and 2, the rolling-window PMSE criterion is
consistent.

To compare our consistency result and the inconsistency result of Inoue and Kilian
(2006), consider two simple competing models, yt+h = ut+h (model 1) and yt+h =
c + vt+h (model 2) where vt+h is i.i.d. with mean zero and variance σ 2

2 and h = 1.
The difference of the out-of-sample PMSE can be written as

σ̂ 2
2,W − σ̂ 2

1,W = − 2

T − W − 1

T −1∑
t=W+1

(ĉt − c)vt+1 + 1

T − W − 1

T −1∑
t=W+1

(ĉt − c)2

where ĉt = (1/W )
∑t−1

s=t−W ys+1. Assume that c = 0 in population.
When W = [λT ] for some λ ∈ (0, 1), it follows from Lemmas A6 and A7 of

Clark and McCracken (2000) that

T
(
σ̂ 2

2,W − σ̂ 2
1,W

)
d→ − 2

λ (1 − λ)
σ 2

2

1∫
λ

(B(r)− B(r − λ))dB(r)

+ 1

λ2 (1 − λ)
σ 2

2

1∫
λ

(B(r)− B(r − λ))′(B(r)− B(r − λ))dr

where B(·) is the standard Brownian motion. Because the probability that the right-
hand side is negative is nonzero, the criterion is inconsistent when c = 0. This is the
inconsistency result in Inoue and Kilian (2006).

When W = o(T 1/(1+2ε)) for some ε ∈ (0, 1/2), the case considered in this
chapter, we have:
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W (σ̂ 2
2,W − σ̂ 2

1,W ) = − 2W
1
2 +ε

T − W − 1

T −1∑
t=W+1

(
1

W
1
2 +ε

t−1∑
s=t−W

vs+1

)
vt+1

+ 1

T − W − 1

T −1∑
t=W+1

(
1

W
1
2

t−1∑
s=t−W

vs+1

)2

= 1

T − W − 1

T −1∑
t=W+1

(
1

W
1
2

t−1∑
s=t−W

vs+1

)2

+ op(1)

Because the right-hand side remains positive even asymptotically, the criterion will
choose model 1 with probability approaching one. The key for the consistency result
is that the last quadratic term in the expansion dominates the middle cross-term when
the window size is small.

Lastly, it should be noted that our consistency result does not imply that the result-
ing forecast based on a slowly diverging window size is optimal. When parameters
are constant, one would expect that the optimal forecast for the T + 1st observation
should be based on all T observations, not on the last W observations. Assumption 1
is merely a device to obtain the consistency of the rolling PMSE criterion.

2.2 Consistency of the Rolling-Window PMSE Criterion When
Parameters are Time Varying

Sometimes it is claimed that out-of-sample PMSE comparisons are used to protect
practitioners from parameter instability. As Inoue and Kilian (2006) show this is not
always the case. In this section we show that the rolling PMSE criterion with small
window sizes delivers consistent model selection even when parameters are time
varying.

Suppose that the slope coefficients are time varying in the sense that

yT,t+h = β

(
t

T

)′
zT,t + vT,t+h (7)

where β(r) = [α(r)′ γ (r)′]′ for r ∈ [0, 1]. When the slope coefficients are time
varying, the second moments are also time varying. Let

[
�zz

( t
T

)
�zy

( t
T

)
�yz

( t
T

)
�yy

( t
T

) ]
=

⎡
⎣ �xx

( t
T

)
�xw

( t
T

)
�xy

( t
T

)
�wx

( t
T

)
�ww

( t
T

)
�wy

( t
T

)
�yx

( t
T

)
�yw

( t
T

)
�yy

( t
T

)
⎤
⎦

=
⎡
⎣ E[xT,t x ′

T,t ] E[xT,tw
′
T,t ] E[xT,t yT,t ]

E[wT,t x ′
T,t ] E[wT,tw

′
T,t ] E[wT,t yT,t ]

E[yT,t x ′
T,t ] E[yT,tw

′
T,t ] E[y2

T,t ]

⎤
⎦ ,
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for t = 1, 2, ..., T and T = 1, 2, .... Let B̄1
( t

T

) = [E(xT,t x ′
T,t )]−1 and B̄2

( t
T

) =
[E(zT,t z′

T,t )]−1. Then β(·) = [�zz(·)]−1�zy(·). We compare

yT,t+h = α

(
t

T

)′
xT,t + uT,t+h (8)

and (7), where (7) simplifies to (8) if γ (u) = 0 for all u ∈ [0, 1].
Assumption 3 As T → ∞, T 1/2/W = O(1) and W = o(T 2/3).

Assumption 4 (a)

ξt = vech

{[
zT,t z′

T,t zT,t yT,t+h

yT,t+hz′
T,t y2

T,t+h

]
−

[
�zz

( t
T

)
�zy

( t
T

)
�yz

( t
T

)
�yy

( t
T

)
]}

(9)

has finite fifth moments with B2(t) positive definite for all t almost surely.
(b) W 1/2

(
Bi (t)− B̄i

( t
T

))
and W 1/2 Hi (t) have finite fourth moments uniformly in

t for i = 1, 2.
(c) E(vT,t+h |FT t ) = 0 with probability one for 1, 2, ..., where FT t is the σ field

generated by {(yT,s+h, zT s)}t−h
s=1.

(d) E[H ′
i (t)B̄i

( t
T

)
(qi,T,t − E(qi,T,t ))B̄i

( t
T

)
Hi (t)] = o(W −1) uniformly in t for

i = 1, 2, where q1,T,t = xT,t xT,t and q2,T,t = zT,t z′
T,t .

(e)

Cov

⎡
⎣vech

⎛
⎝ T −h∑

t=W+1

H ′
i (t)

(
Bi (t)− B̄i

(
t

T

))
qi,T,t

(
Bi (t)− B̄i

(
t

T

))
Hi (t)

⎞
⎠

⎤
⎦

= O

⎛
⎝ T −h∑

t=W+1

Cov

[
vech

(
H ′

i (t)

(
Bi (t)− B̄i

(
t

T

)
qi,T,t

(
Bi (t)− B̄i

(
t

T

))
Hi (t)

)])
,

Cov

[
vec

(
T −h∑

t=W+1

H ′
i (t)B̄i

(
t

T

)
qi,T,t

(
Bi (t)− B̄i

(
t

T

))
Hi (t)

)]

= O

(
T −h∑

t=W+1

Cov

[
vec

(
H ′

i (t)B̄i

(
t

T

)
qi,T,t

(
Bi (t)− B̄i

(
t

T

))
Hi (t)

)])
,

Cov

[
vech

(
T −h∑

t=W+1

H ′
i (t)B̄i

(
t

T

)
qi,T,t B̄i

(
t

T

)
Hi (t)

)]

= O

(
T −h∑

t=W+1

Cov

[
vech

(
H ′

i (t)B̄i

(
t

T

)
qi,T,t B̄i

(
t

T

)
Hi

)])
,

where i = 1, 2.
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(f) �zz(u) is positive definite for all u ∈ [0, 1], and α (.) ≡ �xx (·) −1 �xy(·) and
β (.) ≡ �zz(·) −1 �zy(·) satisfy a Lipschitz condition of order 1.

Remark Assumption 3 is more restrictive than Assumption 1 to keep the bias of
the rolling regression estimator from interfering the consistency of the rolling PMSE
estimator. Assumptions 4(a)(b) requires that ξt behaves like a stationary process with
enough many moments. Assumptions 4(b)–(e) are analogs of Assumptions 2(b)–(e).
Assumption 4(f) requires that the second moments change very smoothly.

Theorem 2 Suppose Assumptions 3 and 4 hold. Then the rolling-window PMSE
criterion is consistent.

Remark The above consistency result is intuitive once it is recognized that the rolling
regression estimator is a nonparametric regression estimator of parameters with a
truncated kernel. For example, Cai (2007) establish the consistency and asymptotic
normality of nonparametric estimators of time-varying parameters, and Giraitis et al.
(2011) prove the consistency and asymptotic normality of nonparametric estimators
for stochastic time-varying coefficient AR(1) models.

In general, the conventional information criteria, such as SIC, are not consistent
when parameters are time varying. To show why that is the case consider comparing
two competing models yt+h = ut+h and yt+h = c + vt+h for h = 1 when the data
are generated from:

yt = t

T
− 1

2
+ εt (10)

where εt is i.i.d. with mean zero and variance σ 2. Then the population in-sample
PMSE of the zero forecast model is

lim
T →∞ E

(
1

T − 1

T −1∑
t=1

y2
t+1

)
= σ 2 +

1∫
0

(
r − 1

2

)2

dr = σ 2 + 1

12

The population in-sample PMSE of the forecast model that estimates the constant in
rolling windows is also

lim
T →∞ min

c
E

(
1

T − 1

T −1∑
t=1

(yt+1 − c)2
)

= min
c

⎛
⎝σ 2 +

1∫
0

(r − c)2dr

⎞
⎠ = σ 2 + 1

12

Thus, the SIC would select the zero forecast model while the true DGP is a time-
varying constant forecast model. Our criterion, by re-estimating the constant in rolling
windows, is robust to time variation in the parameters and will select the second model
with probability approaching unity asymptotically.
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3 Monte Carlo Evidence

In this section we investigate the finite-sample performance of the rolling-window
PMSE criterion in two Monte Carlo experiments. In the first experiment, we use the
data generating process (DGP) of Clark and McCracken (2005) as it is similar to the
empirical application that we will consider in the next section. In the second experi-
ment, we use a simple DGP in which the dependent and independent variables both
follow first-order autoregressive processes, and consider both constant parameter and
time-varying parameter cases.

3.1 Simulation 1: DGP2 in Clark and McCracken (2005)

The second DGP of Clark and McCracken (2005) is based on estimates based on
quarterly 1957:1–2004:3 data of inflation (Y ) and the rate of capacity utilization in
manufacturing (x). We consider restricted and unrestricted forecasting models as
follows:

Model 1 : 
Yt+1 = α0 + α1
Yt + α2
Yt−1 + u1,t+1 (11)

Model 2 : 
Yt+1 = α0 + α1
Yt + α2
Yt−1 + γ1xt−1 + γ2xt−2 + γ3xt−3

+ γ4xt−4 + u2,t+1 (12)

When the restricted model (11) is true, the DGP is parameterized using Eq. (7) in
Clark and McCracken (2005):


Yt = −0.316
Yt−1 − 0.214
Yt−2 + uy,t , (13)

xt = −0.193
Yt−1 − 0.242
Yt−2 − 0.240
Yt−3 − 0.119
Yt−4

+ 1.427xt−1 − 0.595xt−2 + 0.294xt−3 − 0.174xt−4 + ux,t , (14)

where [
uy,t

ux,t

]
i id∼ N

([
0
0

]
,

[
1.792 0.244
0.244 1.463

])
. (15)

When the unrestricted model (12) is the truth, the DGP is parameterized using Eq. (9)
in Clark and McCracken (2005).


Yt = − 0.419
Yt−1 − 0.258
Yt−2

+ 0.331xt−1 − 0.423xt−2 + 0.309xt−3 − 0.139xt−4 + uy,t , (16)

where xt is defined as in Eq. (14) and
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Table 1 Selection probabilities of the SIC

T The restricted model is true The unrestricted model is true

100 0.9901 0.6640
250 0.9977 0.9847
500 0.9997 1
1000 0.9997 1

Table 2 Selection probabilities of the PMSE criterion when the window size is a fixed fraction of
the total sample size

π T The restricted model is true The unrestricted model is true

0.2 100 0.9955 0.2326
250 0.9914 0.9113
500 0.9907 0.9997

1000 0.9916 1
0.5 100 0.7459 0.8101

250 0.7353 0.9845
500 0.7383 0.9995

1000 0.7427 1
0.8 100 0.3385 0.8476

250 0.3682 0.9411
500 0.3735 0.9841

1000 0.3719 0.9985

[
uy,t

ux,t

]
i id∼ N

([
0
0

]
,

[
1.517 0.244
0.244 1.463

])
, (17)

In both (15) and (17), the initial values of
Yt and xt are generated with draws from
the unconditional normal distribution. We compare the performance of the SIC and
the rolling window PMSE criteria; the latter is implemented with a window size that
is either (i) fixed relative to the sample size; (ii) proportional to the sample size; or
(iii) diverging slower than the sample size. The number of Monte Carlo replications
is set to 10,000. Tables 1, 2, 3, 4 report the empirical probabilities of selecting the
correct model. If the procedure is correct, the corresponding probabilities in the tables
should be unity.

Tables 1, 2 and 3 report the results for the SIC, the PMSE criterion with W
proportional to T , and the PMSE criterion with fixed W , respectively. As expected,
the SIC selects the correct model with probability approaching one as the sample
size increases. The second last column of Table 2 shows that, when the window size
is set to a fraction of the total sample size, W = [πT ], the PMSE criterion tends
to overparameterize the model when π is not very small. When the window size is
fixed to a small number (W = 10), the PMSE criterion tends to underparameterize
the model. The results for W = [0.2T ], W = 50, and W = 90 seem to contradict
our claim that these specifications of the window size should yield inconsistent
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Table 3 Selection probabilities of the PMSE criterion when the window size is constant

W T The restricted model is true. The unrestricted model is true.

10 100 1 0.0008
250 1 0
500 1 0

1000 1 0
50 100 0.7459 0.8101

250 0.9914 0.9113
500 1 0.9729

1000 1 0.9972
90 100 0.1937 0.8612

250 0.8959 0.9840
500 0.9954 0.9990

1000 1 1

Table 4 Selection probabilities of the PMSE criterion when the window size is slowly diverging

W T The restricted model is true The unrestricted model is true

T 1/3 100 N/A N/A
250 1 0
500 1 0

1000 1 0
T 1/2 100 1 0.0008

250 1 0.0016
500 1 0.0532

1000 1 0.5512
T 3/4 100 0.9500 0.5947

250 0.9749 0.9619
500 0.9883 0.9998

1000 0.9953 1

model selection; however, for reasonably large sample sizes, these specifications
are observationally equivalent to the small window size specification we propose.
Table 4 shows the results when the window size is small but diverging, W = o(T ).
The results for W = T 3/4 support our consistency results. Although the window size
W = T 1/3 and W = T 1/2 does not satisfy our sufficient condition (Assumption 1),
the resulting criterion chooses the restricted model with probability approaching one
when it is true. However, the PMSE criterion with W = T 1/3 fails to choose the
unrestricted model when it is the truth.2

Overall, our results suggest that a window size that is a fixed fraction of the total
sample size does not appear to give consistent results when Model 1 is the true
data generating process. On the other hand, a constant window size W = 10 is not

2 When T = 100, W = T 1/3 is too small to compute a rolling estimator.
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consistent when Model 2 is true. The divergent window size, in general, consistently
selects the correct model, asymptotically. When W = T 1/3, the consistency is not
obvious due to the small window size, but unreported results show that the frequency
of consistency will eventually converge to 1 when the total sample size becomes
infinitely large.

The SIC does select the correct model asymptotically, and it appears to do so with
an even higher probability that the PMSE criterion with a slowly diverging window
size. However, as we will show in the next set of Monte Carlo simulations, the SIC
will not select the correct model in the presence of time variation.

3.2 Simulation 2:Autoregressive DGP With/Without
a Time-Varying Parameter

Next we consider two forecasting models

Model 1: yt = αyt−1 + u1,t

Model 2: yt = αyt−1 + γ xt + u2,t

where the data are generated by

xt = 0.5xt−1 + ux,t ,

yt = 0.5yt−1 + γ xt + uy,t ,

ux,t ∼ i id N (0, 1) and uy,t ∼ i id N (0, 1) are independent of each other. We
consider four cases: γ = 0; γ = 0.25; γ = 0.5 and γ = t/T − 0.5. When γ = 0
Model 1 is true. Under the cases where γ = 0.5 or 0.25, Model 2 is true. Even when
γT,t = t/T − 0.5, Model 2 should be selected since the true data generating process
does include a constant, although the constant is time varying. The number of Monte
Carlo replications is set to 10,000.

Tables 5, 6, 7, and 8 report the empirical probabilities of selecting the right
model for the SIC and the rolling-window PMSE criterion with W = [πT ], W
being a constant, and W = o(T ), respectively, when γ is time invariant. As before,
the SIC is consistent and the PMSE criterion tends to either overparameterize or
underparameterize the model when W is a large fraction of T or when W is a small
constant. The results when W is a small fraction of T (π = 0.2) or when W is 50 or
90 show that the PMSE criterion selects the correct model. This may be due to finite
samples in which these window sizes are consistent with slowing diverging ones.
The results in Table 8 show that the PMSE criterion selects the correct forecasting
model with probability approaching one as the sample size increases when W → ∞
and T 1/2/W = O(1) as T grows.

The aforementioned results indicate that while the PMSE criterion with a slowly
diverging window size is consistent the SIC tends to perform better. One advantage
of the PMSE criterion over the SIC is that the PMSE criterion is robust to parameter
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Table 5 Selection probabilities of the SIC

T γ = 0 γ = 0.25 γ = 0.5

100 0.9645 0.7548 0.9989
250 0.9815 0.9826 1
500 0.9881 1 1

1000 0.9926 1 1

Table 6 Selection probabilities of the PMSE criterion when the window size is a fixed fraction of
the sample

π T γ = 0 γ = 0.25 γ = 0.5

0.2 100 0.9364 0.5497 0.9795
250 0.9411 0.9360 1
500 0.9414 0.9981 1

1000 0.9422 1 1
0.5 100 0.8075 0.7433 0.9759

250 0.8100 0.9368 0.9998
500 0.8089 0.9914 1

1000 0.8182 0.9998 1
0.8 100 0.6724 0.6944 0.8784

250 0.6787 0.8338 0.9753
500 0.6882 0.9205 0.9971

1000 0.6963 0.9800 0.9999

Table 7 Selection probabilities of the PMSE criterion when the window size is constant

W T γ = 0 γ = 0.25 γ = 0.5

10 100 0.9859 0.2170 0.8569
250 0.9998 0.1118 0.9591
500 1 0.0449 0.9945

1000 1 0.0054 0.9996
50 100 0.8075 0.7433 0.9759

250 0.9411 0.9360 1
500 0.9856 0.9909 1

1000 0.9982 1 1
90 100 0.6145 0.6421 0.7845

250 0.8688 0.9568 1
500 0.9479 0.9980 1

1000 0.9885 1 1

instabilities. Table 9 reports the selection probabilities of the SIC and PMSE criterion
when γT,t = t/T − 0.5. γT,t is modeled so that the in-sample PMSE of Model 2
equals that of Model 1 while the out-of-sample PMSE of Model 2 is smaller than that
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Table 8 Selection probabilities of the PMSE criterion when the window size is slowly diverging

W T γ = 0 γ = 0.25 γ = 0.5

T 1/3 100 0.9983 0.0092 0.0970
250 0.9999 0.0040 0.4060
500 1 0.0008 0.7201

1000 1 0.0016 0.9959
T 1/2 100 0.9859 0.2170 0.8569

250 0.9982 0.4115 0.9987
500 0.9997 0.7848 1

1000 1 0.9901 1
T 3/4 100 0.8909 0.6889 0.9858

250 0.9213 0.9506 1
500 0.9361 0.9980 1

1000 0.9551 1 1

Table 9 Selection probabilities when a parameter is time varying

T SIC W = T
1
3 W = T

1
2 W = T

2
3

100 0.0489 0.0063 0.1943 0.4904
250 0.0313 0.0026 0.4567 0.8703
500 0.0215 0.0005 0.8664 0.9953

1000 0.0139 0.0015 0.9982 1.0000

of Model 1. Table 9 shows that the PMSE criterion selects Model 2 with empirical
probability approaching one while the SIC selects Model 1.3

To summarize, the Monte Carlo results are consistent with our asymptotic theory
and the PMSE criterion with a slowly diverging window size chooses the correct
forecasting model with probability approaching one, no matter whether the parame-
ters are time varying or not. On the other hand, although the SIC is consistent when
the parameter is constant over time, it is inconsistent when the parameter is time
varying.

4 Empirical Application

We consider forecasting quarterly inflation h -periods into the future. Let the regres-
sion model be:

yh
t+h = γ0 + γ1 (L) xt + γ2 (L) yt + uh

t+h, t = 1, . . . , T (18)

3 Technically, the window size W = T 2/3 does not satisfy our sufficient condition but yields good
results.
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where the dependent variable is yh
t+h = (400/h) ln(Pt+h/Pt ) − 400 ln (Pt/Pt−1)

where Pt is the price level (CPI) at time t , h is the forecast horizon and equals
four, so that the forecasts involve annual percent growth rates of inflation. γ1 (L) =∑p

j=0 γ1 j L j and γ2 (L) = ∑q
j=0 γ2 j L j , where L is the lag operator. Following

Stock and Watson (2003), we consider several explanatory variables, xt , one at a
time. The explanatory variable, xt , is either an interest rate or a measure of real
output, unemployment, price, money, or earnings. The data are transformed to elim-
inate stochastic or deterministic trends and to quarterly frequencies. For a detailed
description of the variables that we consider, see Table 10. We utilize quarterly, finally
revised data available in January 2011. The earliest starting point of the sample that
we consider is January 1959, although both M3 and the exchange rate series have a
later starting date due to data availability constraints. Overall, this implies that the
total sample size is about 240 observations. In the out-of-sample forecasting exer-
cise, we estimate the number of lags (p and q) recursively by BIC; the estimation
scheme is rolling with a window size of 40 observations. The benchmark model is
an autoregressive model:

yh
t+h = γ0 + γ2 (L) yt + uh

t+h, t = 1, ..., T . (19)

Results are reported in Fig. 1. The figure reports the ratio of the MSFE of the model,
Eq. (18), relative to the MSFE of the autoregressive benchmark model, Eq. (19).
According to the Monte Carlo simulations in the previous section, the most successful
window sizes are between T 1/2 and T 2/3, which, given the available sample of data,
implies between 16 and 39 observations.

Panel A reports results for predictors (xt ) that include real output measures. It
is well known that such measures should be good predictors of inflation according
to the Phillips curve. Several studies have documented the empirical success of
Phillips curve models, see for example Stock et al. (1999a,b) and 2003, although the
empirical results in Marcellino et al. (2003) suggests that the ability of such measures
to forecast inflation in Europe is more limited than in the United States. The figure
shows that capacity utilization, employment, and unemployment measures are very
useful predictors for inflation. In fact, when the window size is less than about 80,
the MSFE of the model is always smaller than that of the autoregressive benchmark,
sometimes even substantially. Note that for larger window sizes the PMSE criterion
would however suggest that the AR benchmark forecasts better than the economic
model.

Earnings, instead, is not a successful predictor: in window sizes in the range
between T 1/2 and T 2/3, it is significantly worse, and occasionally better, although
only for larger window sizes. However, recall from the discussion in Sect. 2 that when
the window size is large relative to the total sample size, Inoue and Kilian (2005)
have shown that the PMSE criterion tends to select overparameterized models. When
the window sizes are between T 1/2 and T 2/3, the previous sections showed that the
PMSE criterion tends to select the correct model. This suggests that earnings are
particularly unreliable for forecasting inflation.
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Fig. 1 QLR break test

The performance of industrial production and real GDP predictors, instead, is less
clear: the ratio can be either above or below unity depending on the window size. Even
for window sizes in the range between T 1/2 and T 2/3, the ratio can be either above
or below unity. These results suggest instabilities in the forecasting performance
of these predictors, and are consistent with the results in Rossi and Sekhposyan
(2010), although the latter were interested in testing equal predictive ability rather
than consistently selecting the correct model, as we do here. Rossi and Sekhposyan
(2010) empirical evidence documented that the economic predictors have forecasting
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Fig. 1 continued

ability in the early part of their sample, but the predictive ability disappears in the
later part of their sample. The reversals in predictive ability happened, according
to their tests, around the time of the Great Moderation, which the literature dates
back to 1983–1984 (see McConnell and Perez-Quiros 2000), similar to the results
in D’Agostino et al. (2006).
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Fig. 1 continued

Panel B focuses on monetary measures. M1, M2, and M3 never have predictive
ability except for some selected window sizes, again pointing to the presence of
instabilities.

Panel C focuses on interest rates. The results are quite interesting. They show that
interest rates (such as 1-year or 10-year bonds) appear to be very good predictors of
inflation for medium window sizes, below 120–140 observations. Again, however,
for very large window sizes the PMSE criterion would select the smaller model.
Short-term interest rates tend to be useful predictors only when the window size is
large, but again the ratio is below unity for some selected window sizes and above
unity for others. Again, we conjecture that instabilities are important, as discussed
in Rossi and Sekhposyan (2010).

Panel D focuses on other monetary variables. Stock prices are never useful for
predicting inflation. Interestingly, the producer price index is a good predictor for
inflation: the figure shows that for the relevant window sizes, the ratio of the MSFE
of the model relative to that of the benchmark is always lower than unity, and it
becomes higher than unity only for large window sizes.

Overall, our empirical results suggest that traditional Phillips curve predictors
such as capacity utilization and unemployment are useful in forecasting inflation, as
well as the producer price index. The empirical results for the other macroeconomic
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Table 11 QLR break test P-values

Indicator P-value

A. Real output measures
Capacity utilization 0.00
Unemployment 0.00
Employment 0.00
Earnings 0.00
Industrial production 0.05
Real GDP 0.00
B. Money measures
M0 0.00
M1 0.00
M2 0.00
M3 0.00
C. Interest rates
Fed funds 0.00
Real 3-mo. Treasury bill 0.00
1-Year bond 0.04
10-Year bond 0.04
D. Other nominal measures
Stock prices 0.03
Producer price index 0.00

Notes The table reports results for Andrews (1993) QLR test for structural breaks implemented with
a HAC covariance estimator with a bandwidth equal to (1/5)T

predictors are not clearcut, and might signal the importance of instabilities in the data.
In order to provide more information on the instability in the forecasting regressions
we consider, we report joint tests for structural breaks in the parameters of Eq. (18)
using Andrews (1993) test for structural breaks. Table 11 reports the p-values of the
test, which confirm that instabilities are extremely important.

5 Concluding Remarks

There is a known break, forecasters tend to use post-break observations when they
make forecasts. In other words, they base their forecasts on a “truncated window”
instead of the full sample. This chapter shows that this type of ideas can deliver the
consistency of the rolling PMSE criterion not only when parameters are time varying
but also when they are constant over time.

In this chapter we focus on the rolling scheme. Inoue and Kilian (2006) show
that the PMSE criterion based on the recursive scheme is inconsistent if the number
of initial observations is large, i.e., a fixed fraction of the sample size, while Wei
(1992) proves that it is consistent if the number of initial observations is very small,
i.e., a fixed constant. One might be able to extend Wei (1992) result to the case in
which the number of initial observations diverges at a rate slower than the sample
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size. However, such a model selection criterion might not be robust to parameter
instability.

It should be noted that our consistency results are based on correctly specified
nested models. Although information criteria are not robust to parameter instabilities,
they are robust to misspecification and nonnestedness (Sin and White 1996). We leave
PMSE criterion-based model comparison of misspecified or non-nested models for
future research.

The main object of forecasters is often to minimize PMSE rather than identify the
true model. We are currently developing a data-dependent method for choosing the
window size to achieve this goal in a separate chapter

Appendix

A.1 Lemmas

Next, we present a lemma similar to Lemma A2 of Clark and McCracken (2000).

Lemma 1 Suppose that Assumptions 1 and 2 hold and that γ = 0. Then:

(a) 1
T −h−W

∑T −h
t=W+1 ut+h xt B1(t)H1(t) = op

( 1
W

)
.

(b) 1
T −h−W

∑T −h
t=W+1 vt+hzt B2(t)H2(t) = op

( 1
W

)
.

(c) 1
T −h−W

T −h∑
t=W+1

H ′
1(t)B1(t)xt x ′

t B1(t)H1(t) = 1
T −h−W

T −1∑
t=W+h

H ′
1(t)B1 H1(t)

+ op
( 1

W

)
.

(d) 1
T −h−W

T −h∑
t=W+1

H ′
2(t)B2(t)zt z′

t B2(t)H2(t) = 1
T −h−W

T −h∑
t=W+1

H ′
2(t)B2 H2(t)

+ op
( 1

W

)
.

Proof of Lemma 1: The proofs for (a) and (c) are very similar to those for (b) and
(d), respectively. For brevity, we only provide the proofs of (b) and (d). The results
for (a) and (c) can be easily derived by replacing zt and β by xt and α, respectively.

Note that

1

T − h − W

T −h∑
t=W+1

vt+h zt B2(t)H2(t) = 1

T − h − W

T −h∑
t=W+1

vt+h zt B2 H2(t)

+ 1

T − h − W

T −h∑
t=W+1

vt+h zt (B2(t)− B2)H2(t)

By Assumption 2(b) and Hölder’s inequality, the second moments of the summands
on the right-hand side are of order O(W −1) and O(W −2), respectively. Thus, it
follows from Assumption 2(c) that the variance of the left-hand side is of order
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O(T −1W −1). By the Chebyshev inequality and Assumption 1, the left-hand side is
op(W −1).

The proof of (d) is composed of two stages. In the first stage, we show that B2(t)
in the equation can be approximated by its expectation B2, which is

1

T − h − W

T −h∑
t=W+1

H ′
2(t)B2(t)zt z

′
t B2(t)H2(t)

= 1

T − h − W

T −h∑
t=W+1

H ′
2(t)B2zt z

′
t B2 H2(t)+ op

(
1

W

)
(A.1)

Since the left-hand side of Eq. (A.1) contains four terms,

1

T − h − W

T −h∑
t=W+1

H ′
2(t)B2(t)zt z

′
t B2(t)H2(t)

= 1

T − h − W

T −h∑
t=W+1

H ′
2(t)B2zt z

′
t B2 H2(t)

+ 1

T − h − W

T −h∑
t=W+1

H ′
2(t)(B2(t)− B2)zt z

′
t (B2(t)− B2)H2(t)

+ 1

T − h − W

T −h∑
t=W+1

H ′
2(t)B2zt z

′
t (B2(t)− B2)H2(t)

+ 1

T − h − W

T −h∑
t=W+1

H ′
2(t)(B2(t)− B2)zt z

′
t B2 H2(t), (A.2)

which include the first term in the right-hand side of Eq. (A.1).
By Assumption 2(b) and Hölder’s inequality, the second moments of the sum-

mands in the last three terms are of order O(W −4), O(W −3), and O(W −3), respec-
tively. Thus, their first moments are at most O(W −3) = o(W −1). By using these
and Assumption 2(e), the second moments of the last three terms are thus of the
order O(T −1W −4), O(T −1W −3) and O(T −1W −1), respectively. By the Cheby-
shev inequality and Assumption 1, these last three terms are of the order op(W −1),
proving (A.1).

The second stage of the proof of (d) is to show that we can further approximate
zt z′

t in the first term in the right-hand side of Eq. (A.2) by its expectation E(zt z′
t ).

Adding and subtracting E(zt z′
t ), we obtain

1

T − h − W

T −h∑
t=W+1

H ′
2(t)B2zt z

′
t B2 H2(t)
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= 1

T − h − W

T −h∑
t=W+1

H ′
2(t)B2 E(zt z

′
t )B2 H2(t)

+ 1

T − h − W

T −h∑
t=W+1

H ′
2(t)B2(zt z

′
t − E(zt z

′
t ))B2 H2(t) (A.3)

The mean of the second term is op(W −1) by Assumption 2(d). The second moments
of the summand in the second term is O(W −2) by Assumption 2(b). Using these and
Assumption 2(e), the second moment of the second term is of the order o(W −2). By
the Chebyshev inequality, (A.3) is op(W −1).

Lemma 2 Suppose that Assumptions 3 and 4 hold and that γ (·) = 0.

(a) 1
T −h−W

∑T −h
t=W+1 uT,t+h xT,t B1(t)H1(t) = op

( 1
W

)
.

(b) 1
T −h−W

∑T −h
t=W+1 vT,t+hzT,t B2(t)H2(t) = op

( 1
W

)
.

(c) 1
T −h−W

T −h∑
t=W+1

H ′
1(t)B1(t)xT,t x ′

T,t B1(t)H1(t)

= 1
T −h−W

T −h∑
t=W+1

H ′
1(t)B̄1

( t
T

)
H1(t)+ op

( 1
W

)
.

(d) 1
T −h−W

T −h∑
t=W+1

H ′
2(t)B2(t)zT,t z′

T,t B2(t)H2(t)

= 1
T −h−W

T −h∑
t=W+1

H ′
2(t)B̄2

( t
T

)
H2(t)+ op

( 1
W

)
.

Proof of Lemma 2 Under Assumptions 3 and 4 the proof of Lemma 2 takes exactly
the same steps as the proof of Lemma 1 except that Bi , ut , and vt are replaced by
B̄i

( t
T

)
, uT,t , and vT,t , respectively. This is because Lemma 2 is written in terms of

uT,t and vT,t rather than in terms of α̂t,W − α
( t

T

)
and β̂t,W − β

( t
T

)
which we deal

with in the proof of Theorem 2.

A.2 Proofs of Theorems

Proof of Theorem 1 Note that the PMSEs σ̂ 2
1,W and σ̂ 2

2,W can be expanded as

σ̂ 2
1,W = 1

T − h − W

T −h∑
t=W+1

(
yt+h − α̂′

t xt
)2

= 1

T − h − W

T −h∑
t=W+1

(
yt+h − α∗′xt − (̂

α′
t xt − α∗′xt

))2
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= 1

T − h − W

T −h∑
t=W+1

(
yt+h − α∗′xt

)2

− 2

T − h − W

T −h∑
t=W+1

(
yt+h − α∗′xt

)
x ′

t

(̂
αt − α∗)

+ 1

T − h − W

T −h∑
t=W+1

(̂
α′

t − α∗′) xt x
′
t

(̂
αt − α∗) (A.4)

and

σ̂ 2
2,W = 1

T − h − W

T −h∑
t=W+1

(
yt+h − β̂ ′

t zt
)2

= 1

T − h − W

T −h∑
t=W+1

(
yt+h − β ′zt − (

β̂ ′
t zt − β ′zt

))2

= 1

T − h − W

T −h∑
t=W+1

(
yt+h − β ′zt

)2

− 2

T − h − W

T −h∑
t=W+1

(
yt+h − β ′zt

)
z′

t

(
β̂t − β

)

+ 1

T − h − W

T −h∑
t=W+1

(
β̂ ′

t − β ′)zt z
′
t

(
β̂t − β

)
, (A.5)

respectively, where α∗ = [E(xt x ′
t )]−1 E(xt yt+h). There are two cases: the case in

which the data are generated from model 1, i.e., γ = 0 (case 1) and the case in which
the data are generated from model 2, i.e., γ 
= 0 (case 2).

In case 1, the actual model is yt+h = α′xt + vt+h . The first component of σ̂ 2
2,W in

Eq. (A.5) is numerically identical to the first component of σ̂ 2
1,W in Eq. (A.4) because

γ = 0 and α − α∗ = 0. Note that all the other components converge to zero faster
since all parameters are consistently estimated. Under the case where Model 1 is true,
the difference between the probability limit of σ̂ 2

1,W and σ̂ 2
2,W is zero, which does not

identify which model is the true model. Only comparing the probability limits of σ̂ 2
1,W

and σ̂ 2
2,W as T and W go to infinity and W diverges slowly than T is not sufficient for

the model selection to indicate that limT →∞, W→∞ P(σ̂ 2
1,W < σ̂ 2

2,W ) = 1. However,

if we can tell whether σ̂ 2
1,W is always smaller than σ̂ 2

2,W along the path of convergence
of T and W toward infinity, the true model can still be identified. Since the models
are nested ut+h = vt+h , it follows from (A.4) and (A.5) that
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σ̂ 2
2,W − σ̂ 2

1,W = 2

T − h − W

T −h∑
t=W+1

[
vt+hz′

t (β̂t − β)− vt+h x ′
t (̂αt − α)

]

+ 1

T − h − W

T −h∑
t=W+1

[(
β̂ ′

t − β ′)zt z
′
t

(
β̂t − β

)

−(̂
α′

t − α′)xt x
′
t (̂αt − α)

]

= 2

T − h − W

T −h∑
t=W+1

[
vt+hz′

t B2(t)H2(t)− vt+h x ′
t B1(t)H1(t)

]

+ 1

T − h − W

T −h∑
t=W+1

[
H2(t)

′B2(t)zt z
′
t B2(t)H2(t)

−H1(t)
′B1(t)xt x

′
t B1(t)H1(t)

]

= 1

T − h − W

T −h∑
t=W+1

[
H2(t)

′B2 H2(t)− H1(t)
′B1 H1(t)

] + op

(
1

W

)

(A.6)

where the last equality follows from Lemma 1(a)–(d).
To get the sign of Eq. (A.6), we first define Q by

Q = [E(zt z
′
t )]

1
2

{
[E(zt z

′
t )]−1 −

[ [E(xt x ′
t )]−1 0l×(k−l)

0(k−l)×l 0(k−l)×(k−l)

]}
[E(zt z

′
t )]

1
2

(A.7)
as in Lemma A.4 of Clark and McCracken (2000). Clark and McCracken (2000) show
that the Q matrix is symmetric and idempotent. An idempotent matrix is positive
semidefinite, which means for all v ∈ �k , vT Qv ≥ 0. It implies that

⎡
⎣ 1

W
1
2

h

t−h∑
s=t−W

zsvs+h

⎤
⎦

′
[E(zt z

′
t )]−1

⎡
⎣ 1

W
1
2

h

t−h∑
s=t−W

zsvs+h

⎤
⎦

−
⎡
⎣ 1

W
1
2

h

t−h∑
s=t−W

xsvs+h

⎤
⎦

′
[E(xt x

′
t )]−1

⎡
⎣ 1

W
1
2

h

t−h∑
s=t−W

xsvs+h

⎤
⎦

=
⎡
⎣ 1

W
1
2

h

t−h∑
s=t−W

zsvs+h

⎤
⎦

′ {
[E(zt z

′
t )]−1 −

[ [E(xt x ′
t )]−1 0l×(k−l)

0(k−l)×l 0(k−l)×(k−l)

]}

×
⎡
⎣ 1

W
1
2

h

t−h∑
s=t−W

zsvs+h

⎤
⎦
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=
⎡
⎣ 1

W
1
2

h

t−h∑
s=t−W

zsvs+h

⎤
⎦

′
[E(zt z

′
t )]−

1
2 · Q · [E(zt z

′
t )]−

1
2

×
⎡
⎣ 1

W
1
2

h

t−h∑
s=t−W

zsvs+h

⎤
⎦ ≥ 0 (A.8)

Note that the probability that [E(zt z′
t )]−1/2W −1/2

h

∑t−h
s=t−W zsvs+h lies in the null

space of Q for infinitely many t approaches zero because the dimension of the
null space is l < k. Thus, the average of (A.8) over t is positive with probability
approaching one. Combining the results in Eqs. (A.6) and (A.8), we find that the sign
of W (σ̂ 2

2,W − σ̂ 2
1,W ) is always positive with probability approaching one. Therefore,

when γ = 0, σ̂ 2
1,W < σ̂ 2

2,W with probability approaching one.
In case 2, that is, when Model 2 is the true model, we have yt+h = β ′zt + vt+h =

α′xt +γ ′wt +vt+h . By Assumptions 2(a)(b), the second and third terms on the right-
hand sides of (A.4) and (A.5) are both op(T 1/2/W ) and op(T/W 2), respectively.
Thus, they are op(1) by Assumption 1. The first term on the right-hand side of
Eq. (A.5) converges to the variance of vt+h as the sample size T goes to infinity:

1

T − h − W

T −h∑
t=W+1

(
yt+h − β ′zt

)2 = 1

T − h − W

T −h∑
t=W+1

v2
t+h

p→ σ 2
2 . (A.9)

Similarly, the first term on the right-hand side of Eq. (A.4) converges in probability
to the variance of ut+h ≡ yt+h − α∗′xt :

σ̂ 2
1,W = 1

T − h − W

T −1∑
t=W+h

(
yt+h − α∗′xt

)2 + op(1)

p→ E
[
(yt+h − α∗′xt )

2
]

= E
[
(α′xt + γ ′wt + vt+h − α∗′xt )

2
]

= E
[
(vt+h + (α′ − α∗′

)xt + γ ′wt )
2
]

= σ 2
2 +

[
α − α∗
γ

]′ [ E(xt x ′
t ) E(xtw

′
t )

E(wt x ′
t ) E(wtw

′
t )

] [
α − α∗
γ

]
> σ 2

2 . (A.10)

Therefore, when Model 2 is true, the PMSEs satisfy P(σ̂ 2
1,W > σ̂ 2

2,W ) = 1 as T → ∞
and W → ∞, where W diverges slower than T .

Proof of Theorem 2 Note that the PMSEs, σ̂ 2
1,W and σ̂ 2

2,W can be expanded as
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σ̂ 2
1,W = 1

T − h − W

T −h∑
t=W+1

(
yT,t+h − α∗

(
t

T

)′
xT,t

)2

− 2

T − h − W

T −h∑
t=W+1

(
yT,t+h − α∗

(
t

T

)′
xT,t

)
x ′

T,t

(
α̂t − α∗

(
t

T

))

+ 1

T − h − W

T −h∑
t=W+1

(
α̂′

t − α∗
(

t

T

))′
xT,t x

′
T,t

(
α̂t − α∗

(
t

T

))

(A.11)

and

σ̂ 2
2,W = 1

T − h − W

T −h∑
t=W+1

(
yT,t+h − β ′

(
t

T

)
zT,t

)2

−
(

2

T − h − W

) T −h∑
t=W+1

(
yT,t+h − β ′

(
t

T

)
zT,t

)
z′

T,t

(
β̂t − β

(
t

T

))

+ 1

T − h − W

T −h∑
t=W+1

(
β̂ ′

t − β ′
(

t

T

))′
zt z

′
t

(
β̂t − β

(
t

T

))
, (A.12)

respectively. If we show that each of

1

T − h − W

T −h∑
t=W+1

(
yT,t+h − α∗

(
t

T

)′
xT,t

)
x ′

t

(
α̂t − α∗

(
t

T

))

− 1

T − h − W

T −h∑
t=W+1

uT,t+h x ′
T,t B1(t)H1(t), (A.13)

1

T − h − W

T −h∑
t=W+1

(
α̂′

t − α∗
(

t

T

))′
xT,t x

′
T,t

(
α̂t − α∗

(
t

T

))

− 1

T − h − W

T −h∑
t=W+1

H1(t)
′B1(t)zT,t z

′
T,t B2(t)H2(t), (A.14)

1

T − h − W

T −h∑
t=W+1

(
yT,t+h − β

(
t

T

)′
zT,t

)
z′

T,t

(
β̂t − β

(
t

T

))

− 1

T − h − W

T −h∑
t=W+1

vT,t+hz′
T,t B2(t)H2(t), (A.15)



328 A. Inoue et al.

1

T − h − W

T −h∑
t=W+1

(
β̂ ′

t − β

(
t

T

)′)′
zT,t z

′
T,t

(
β̂t − β

(
t

T

))

− 1

T − h − W

T −h∑
t=W+1

H2(t)
′B2(t)zT,t z

′
T,t B2(t)H2(t), (A.16)

are op(1/W )when the data are generated from model 1 (case 1) and are op(1)when
the data are generated from model 2 (case 2), the proof of Theorem 2 takes exactly the
same steps as the proof of Theorem 1. Thus, it remains to show that (A.13)–(A.16)
are op(W −1) in case 1 and op(1) in case 2. Note that the bias of the rolling regression
estimator can be written as:

β̂W,t − β

(
t

T

)
= B2(t)

1

Wh

t−h∑
s=t−W

zs

[
vs+h + z′

s

(
β

( s

T

)
− β

(
t

T

))]

= B2(t)H2(t)+ B2(t)

Wh

t−h∑
s=t−W

zs z′
s

(
β

( s

T

)
− β

(
t

T

))
(A.17)

Thus, the difference (A.15) is

1

T − h − W

T −h∑
t=W+1

vT,t+hz′
T,t B2(t)

1

Wh

t−h∑
s=t−W

zs z′
s

(
β

( s

T

)
− β

(
t

T

))
.

= 1

T − h − W

T −h∑
t=W+1

vT,t+hz′
T,t B̄2

(
t

T

)
1

Wh

t−h∑
s=t−W

zs z′
s

(
β

( s

T

)
− β

(
t

T

))

+ 1

T − h − W

T −h∑
t=W+1

vT,t+hz′
T,t

(
B2(t)− B̄2

(
t

T

))
1

Wh

×
t−h∑

s=t−W

zs z′
s

(
β

( s

T

)
− β

(
t

T

))
. (A.18)

By Assumption 4(c), the summands have zero mean. By Hölder’s inequality and
Assumptions 4(b)(c)(e)(f), the second moments of the right-hand side terms are
O(W/T 2). By Chebyshev’s inequality, (A.15) is Op(W 1/2/T ) which is op(1/W )

by Assumption 3. It can be shown that (A.13) is also op(1/W ) in a similar fashion.
The difference (A.16) is the sum of the following three terms:

1

T − h − W

T −h∑
t=W+1

vT,t+hzT,t z
′
T,t B2(t)

1

Wh

t−h∑
s=t−W

zs z′
s

(
β

( s

T

)
− β

(
t

T

))
,

(A.19)
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1

T − h − W

T −h∑
t=W+1

(
β

( s

T

)
− β

(
t

T

))′ 1

Wh

t−h∑
s=t−W

zs z′
s B2(t)zT,t z

′
T,tvT,t+h,

(A.20)

1

T − h − W

T −h∑
t=W+1

(
β

( s

T

)
− β

(
t

T

))′ 1

Wh

t−h∑
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Using Chebyshev’s inequality, Hölder’s inequality, Assumptions 3 and 4(b)(c)(e)(f),
it can be shown that (A.19), (A.20), and (A.21) are Op(W 1/2T −2), Op(W 1/2T −2)

and Op(W 2T −2) all of which are op(W −1). It can be shown that (A.14) is also
op(1/W ) when γ (·) = 0 in an analogous fashion.

The rest of the proof of Theorem 2 takes exactly the same steps as the proof of
Theorem 1 except that α∗, β, Bi , ut , vt , xt , yt , zt and Lemma 1 is replaced by α

( t
T

)
,

β
( t

T

)
, B̄i

( t
T

)
, uT t , vT t , xT t , yT t , zT t and Lemma 2, respectively.
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Estimating Misspecified Moment
Inequality Models

Hiroaki Kaido and Halbert White

Abstract This chapter studies partially identified structures defined by a finite
number of moment inequalities. When the moment function is misspecified, it
becomes difficult to interpret the conventional identified set. Even more seriously,
this can be an empty set. We define a pseudo-true identified set whose elements can
be interpreted as the least-squares projections of the moment functions that are obser-
vationally equivalent to the true moment function. We then construct a set estimator
for the pseudo-true identified set and establish its Op(n−1/2) rate of convergence.

1 Introduction

This chapter develops a new approach to estimating structures defined by moment
inequalities. Moment inequalities often arise as optimality conditions in discrete
choice problems or in structures where economic variables are subject to some type
of censoring. Typically, parametric models are used to estimate such structures. For
example, in their analysis of an entry game in the airline markets, Ciliberto and
Tamer (2009) use a linear specification for airlines’ profit functions and assume
that unobserved heterogeneity in the profit functions can be captured by independent
normal random variables. In asset pricing theory with short sales prohibited, Luttmer
(1996) specifies the functional form of the pricing kernel as a power function of
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consumption growth, based on the assumption that the investor’s utility function is
additively separable and isoelastic.

Any conclusions drawn from such methods rely on the validity of the model spec-
ification. Although commonly used estimation and inference methods for moment
inequality models are robust to potential lack of identification, typically they are
not robust to misspecification. Compared to cases where the parameter of interest is
point identified, much less is known about the consequences of misspecified moment
inequalities. As we will discuss, these can be serious. In general, misspecification
makes it hard to interpret the estimated set of parameter values; an even more serious
possibility is that the identified set could be an empty set. If the identified set is empty,
every nonempty estimator sequence is inconsistent. Furthermore, it is often hard to
see if the estimator is converging to some object that can be given any meaning-
ful interpretation. An exception is the estimation method developed by Ponomareva
and Tamer (2010), which focuses on estimating a regression function with interval
censored outcome variables.

This chapter develops a new estimation method that is robust to potential para-
metric misspecification in general moment inequality models. Our contributions are
three-fold. First, we define a pseudo-true identified set that is nonempty under mild
assumptions and that can be interpreted as the projection of the set of function-valued
parameters identified by the moment inequalities. Second, we construct a set esti-
mator using a two-stage estimation procedure, and we show that the estimator is
consistent for the pseudo-true identified set in Hausdorff metric. Third, we give con-
ditions under which the proposed estimator converges to the pseudo-true identified
set at the n−1/2-rate.

The first stage is a nonparametric estimator of the true moment function. Given
this, why perform a parametric second-stage estimation? After all, the nonparametric
first stage estimates the same object of interest, without the possibility of paramet-
ric misspecification. There are a variety of reasons a researcher may nevertheless
prefer to implement the parametric second stage: first is the undeniably appealing
interpretability of the parametric specification; second is the much more precise esti-
mation and inference afforded by using a parametric specification; and third, the
second term of the second-stage objective function may offer a potentially useful
model specification diagnostic. Future research may permit deriving the asymptotic
distribution of this term under the null of correct parametric specification to provide
a formal test. The two-stage procedure proposed here delivers these benefits, while
avoiding the more serious adverse consequences of potential misspecification.

The chapter is organized as follows. Section 2 describes the data generating
process and gives examples that fall within the scope of this chapter. We also introduce
our definition of the pseudo-true identified Sect. 3 defines our estimator and presents
our main results. We conclude in Sect. 4. We collect all proofs into the appendix.
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2 The Data Generating Process and the Model

Our first assumption describes the data generating process (DGP).

Assumption 2.1 Let (�,F,P0) be a complete probability space. Let k, � ∈ N. Let
X : � → R

k be a Borel measurable map, let X ⊆ R
k be the support of X , and let

P0 be the probability measure induced by X on X . Let ρ0 : X → R
� be an unknown

measurable function such that E[ρ0(X)] exists and

E[ρ0(X)] ≤ 0, (1)

where the expectation is taken with respect to P0.

In what follows, we call ρ0 the true moment function. The moment inequalities (1)
often arise as an optimality condition in game-theoretic models (Bajari et al. 2007;
Ciliberto and Tamer 2009) or models that involve variables that are subject to some
kind of censoring (Manski and Tamer 2002). In empirical studies of such models, it
is common to specify a parametric model for ρ0.

Assumption 2.2 Let p ∈ N and let� be a subset of R
p with nonempty interior. Let

m : X × � → R
� be such that m(·, θ) is measurable for each θ ∈ � and m(x, ·)

is continuous on �, a.e. − P0. For each θ ∈ �, m(·, θ) ∈ L2
� := { f : X → R

� :
E[ f (X)′ f (X)] < ∞}.

Throughout, we call m(·, ·) the parametric moment function.

Definition 2.1 Let mθ (·) := m(·, θ). Define M� := {mθ ∈ L2
� : θ ∈ �}. M� is

correctly specified (−P0) if there exists θ0 ∈ � such that

P0[ρ0(X) = m(X, θ0)] = 1.

Otherwise, the model is misspecified.

If the model is correctly specified, we may define the set of parameter values that
can be identified by the inequalities in (1):

�I := {θ ∈ � : E[m(X, θ)] ≤ 0}.

We call�I the conventional identified set. This set collects all parameter values that
yield parametric moment functions that are observationally equivalent to ρ0.

It becomes difficult to interpret �I when the model is misspecified, as pointed
out by Ponomareva and Tamer (2010) for a regression model with an interval-valued
outcome variable. Suppose first that the model is misspecified but �I is nonempty.
The set is still a collection of parameter values that are observationally equivalent
to each other, but since there is no θ in �I that corresponds to the true moment
function, further structure is required to unambiguously interpret �I as a collection
of “pseudo-true parameter(s)”. Further, �I may be empty, especially if M� is a
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small class of functions. This makes the interpretation of �I even more difficult. In
fact, interpretation is impossible, as there is nothing to interpret.

Often, the economics of a given problem impose further structure on the DGP.
To specify this, we let 0 < L ≤ �, and for measurable s : X → R

L , let ‖s‖L :=
E[s(X)′s(X)]1/2. Let L2

L := {s : X → R
L , ‖s‖L < ∞}, and let S ⊆ L2

L .

Assumption 2.3 There exists ϕ : X × S → R
� such that for each x ∈ X , ϕ(x, ·)

is continuous on S and for each s ∈ S, ϕ(·, s) is measurable. Further, there exists
s0 ∈ S such that

ρ0(x) = ϕ(x, s0), ∀x ∈ X .

When ρ0 ∈ L2
� and there is no further structure on ρ0 available, we let L = �,

S = L2
�, and take ϕ to be the evaluation functional e : X × S → R

�:

ϕ(x, s) = e(x, s) ≡ s(x),

as then ϕ(x, ρ0) = e(x, ρ0) ≡ ρ0(x) and s0 = ρ0. In this case, it is not necessary to
explicitly introduceϕ. Often, however, further structure on the form ofρ0 is available.
Typically, this is reflected in s depending non-trivially only on a strict subvector of X,
say X1. In such cases, we may write S ⊆ L2

X1
for clarity. We give several examples

below.
When Assumption 2.3 holds, we typically parametrize the unknown function s0.

For example, it is common to specify s0 as a linear function of some of the components
of x . As we will see in the examples, a common modeling assumption is

Assumption 2.4 There exists r : X ×� → R
L such that with rθ := r(·, θ),

m(x, θ) = ϕ(x, rθ ), ∀(x, θ) ∈ X ×�.

Thus, misspecification occurs when there is no θ0 in � such that s0 = rθ0 .

More generally, misspecification can occur because the researcher mistakenly
imposes Assumption 2.3, in which case s0 fails to exist and there is again no θ0 in
� such that ρ0(x) = ϕ(x, rθ0). As s0 is an element of an infinite-dimensional space,
we may refer to this as “nonparametric” misspecification. To proceed, we assume
that, as is often plausible, the researcher is sufficiently able to specify the structure
of interest that nonparametric misspecification is not an issue, either because correct
ϕ restrictions are imposed or no ϕ restrictions are imposed. We thus focus on the
case of parametric misspecification, where s0 exists but there is no θ0 in� such that
s0 = rθ0 .



Estimating Misspecified Moment Inequality Models 335

2.1 Examples

In this section, we present several motivating examples and also give commonly used
parametric specifications in these examples. For any vector x , we use x ( j) to denote
the j th component of the vector. Similarly, for a vector valued function f (x), we use
f ( j)(x) to denote the j th component of f (x).

Example 2.1 (Interval censored outcome) Let Z : � → R
dZ be a regressor with

support Z . Let Y : � → R be an outcome variable that is generated as:

Y = s0(Z)+ ε, (2)

where s0 ∈ S := L2
Z , say, and ε satisfies E[ε|Z ] = 0. We let Y denote the support

of Y . Suppose Y is unobservable, but there exist (YL ,YU )
′ : � → Y × Y such that

YL ≤ Y ≤ YU almost surely. Then, (YL ,YU , Z)′ satisfies the following inequalities
almost surely:

E[YL |Z ] − s0(Z) ≤ 0 (3)

s0(Z)− E[YU |Z ] ≤ 0. (4)

Let x = (yL , yU , z)′ ∈ X := Y × Y × Z . Given a collection {A1, . . ., AK } of Borel
subsets of Z , the inequalities in (3), (4) imply that the moment inequalities in (1)
hold with

ρ0(x) = ϕ(x, s0) :=
[

yL − s0(z)
s0(z)− yU

]
⊗ 1A(z), (5)

where 1A(z) := (1{z ∈ A1}, . . ., 1{z ∈ AK })′.1 For each x ∈ X and s ∈ S, the
functional ϕ evaluates vertical distances of r(z) from yL and yU and multiplies them
by the indicator function evaluated at z. Additional information on ρ0 available in
this example is that the moment functions are based on the vertical distances.

A common specification for s0 is s0(z) = rθ0(z) = z′θ0 for some θ0 ∈ � ⊆ R
dZ .

The parametric moment function is then given for each x ∈ X by m(x, θ) = ϕ(x, rθ ).
Therefore, this example satisfies Assumption 2.4.

Example 2.2 Tamer (2003) considers a simultaneous game of complete information.
For each j = 1, 2, let Z j : � → R

dZ and ε j : � → R be firm j’s characteristics
that are observable to the firms. The econometrician observes the Z ’s but not the ε’s.
For each j , let g j : Z × {0, 1} → R. These functions are known to the firms but not
to the econometrician. Suppose that each firm’s payoff is given by

π j (Z j ,Y j ,Y− j ) = (ε j − g j (Z j ,Y− j ))Y j , j = 1, 2,

1 Here, we take the indicators (or instruments) 1A(z) as given. The indicators 1A(z) could be
replaced by any finite vector of measurable non-negative functions of z. Andrews and Shi (2011)
give examples of such functions.
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where Y j ∈ Y := {0, 1} is firm j’s entry decision, and Y− j ∈ Y is the other firm’s
entry decision. The econometrician observes these decisions. Given (z1, z2), the
firms’ payoffs can be summarized in Table 1.

Suppose the firms and the econometrician know that g(z, 1) ≥ g(z, 0) for any
value of z. This means that, other things equal, the opponent’s entry would reduce
the firm’s own profit. In this setting, there are several possible equilibrium outcomes
depending on the realization of (ε1, ε2). If ε1 > g1(z1, 1) and ε2 > g2(z2, 1), then
(1, 1) is the unique Nash equilibrium (NE) outcome. Similarly, if ε1 > g1(z1, 1)
and ε2 < g2(z2, 1), (1, 0) is the unique NE outcome, and if ε1 < g1(z1, 1) and
ε2 > g2(z2, 1), (0, 1) is the unique NE outcome. Now, if ε1 < g1(z1, 1) and ε2 <

g2(z2, 1), there are two Nash equilibria, and they give the outcomes (1, 0) and (0, 1).
Let Fj , j = 1, 2 be the unknown CDFs of ε1 and ε2.2 Without any assumptions
on the equilibrium selection mechanism, the model predicts the following set of
inequalities:

P(Y1 = 1,Y2 = 1|Z1 = z1, Z2 = z2) = (1 − F1(g1(z1, 1)))(1 − F2(g2(z2, 1)))

(6)

P(Y1 = 1,Y2 = 0|Z1 = z1, Z2 = z2) ≥ (1 − F1(g1(z1, 1)))F2(g2(z2, 1)) (7)

P(Y1 = 1,Y2 = 0|Z1 = z1, Z2 = z2) ≤ F2(g2(z2, 1)). (8)

Let x := (y1, y2, z1, z2)
′ ∈ X := Y × Y × Z × Z . Let s0 ∈ S := {s ∈ L2

Z×Z :
s(z1, z2) ∈ [0, 1]2,∀(z1, z2) ∈ Z × Z} be defined by

s(1)0 (z1, z2) := F1(g1(z1, 1))

s(2)0 (z1, z2) := F2(g2(z2, 1)).

Here, s( j)
0 (z1, z2) is the conditional probability that firm j’s profit upon entry is

negative given z1 and z2. Given a collection {A j , j = 1, . . ., K } of Borel subsets
of Z × Z , let 1A(z) := (1{(z1, z2) ∈ A1}, . . ., 1{(z1, z2) ∈ AK })′. The inequalities
(6)–(8) imply the moment inequalities in (1) hold with

ρ0(x) = ϕ(x, s0)

=

⎛
⎜⎜⎜⎝

1{y1 = 1, y2 = 1} − (1 − s(1)0 (z1, z2))(1 − s(2)0 (z1, z2))

(1 − s(1)0 (z1, z2))(1 − s(2)0 (z1, z2))− 1{y1 = 1, y2 = 1}
(1 − s(1)0 (z1, z2))s

(2)
0 (z1, z2)− 1{y1 = 1, y2 = 0}

1{y1 = 1, y2 = 0} − s(2)0 (z1, z2)

⎞
⎟⎟⎟⎠⊗ 1A(z).

The additional information on ρ0 is that it is based on the differences between some
combinations of the conditional probabilities s0(z1, z2) and indicators for specific
events.

2 The players do not need to know the F’s, but these are important to the econometrician.
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Table 1 The entry game
payoff matrix

Y1\Y2 0 1
0 (0, 0) (0, ε2 − g2(z2, 0))
1 (ε1 − g1(z1, 0), 0) (ε1 − g1(z1, 1), ε2 − g2(z2, 1))

A common parametric specification for g j is g j (z j , y− j ) = z′
jγ0 − y− jβ j,0 for

some β j,0 ∈ B ⊆ R+ and γ0 ∈ � ⊆ R
dZ . It is also common to assume that Fj , j =

1, 2 belong to a known parametric class {F(·;α), α ∈ A} of distributions. Then
the parametric moment function can be defined for each x by m(x, θ) := ϕ(x, rθ ),
where θ := (α1, α2, β1, β2, γ )

′ and

r (1)θ (z1, z2) = F(z′
1γ − β1;α1) (9)

r (2)θ (z1, z2) = F(z′
2γ − β2;α2). (10)

This example also satisfies Assumption 2.4.

Example 2.3 (Discrete choice) Suppose an agent chooses Z ∈ R
dZ from a set Z :=

{z1, . . ., zK } in order to maximize her expected payoff E[s0(Y, Z) | I], where Y is
a vector of observable random variables, s0 ∈ R := L2

Y×Z is the payoff function,
and I is the agent’s information set. The optimality condition for the agent’s choice
is given by:

E[s0(Y, z j )− s0(Y, Z) | I] ≤ 0, j = 1, . . ., K . (11)

Let x := (y, z)′ ∈ X := Y × Z . The optimality conditions in (11) imply that the
unconditional moment inequalities in (1) hold with

ρ0(x) = ϕ(x, s0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎣

s0(y, z1)− s0(y, z1)
...

s0(y, zK )− s0(y, z1)

⎤
⎥⎦× 1{z = z1}

...⎡
⎢⎣

s0(y, z1)− s0(y, zK )
...

s0(y, zK )− s0(y, zK )

⎤
⎥⎦× 1{z = zK }

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For given y, the functional ϕ evaluates the profit differences between a given choice
z (e.g., z1) and every other possible choice. The additional information on ρ0 is that
it is based on the profit differences.

A common specification for s0 is s0(y, z) = rθ0(y, z) = ψ(y, z;α0)+ z′β0 + εz

for some known functionψ , unknown (α0, β0) ∈ � ⊂ R
dα+dβ , and an unobservable

choice-dependent error εz . For simplicity, we assume that εz satisfies E[εzi − εz j |
I] = 0 for any i, j ; see Pakes et al (2006) and Pakes (2010) for detailed discussions.
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The parametric moment function is then given for each x ∈ X by m(x, θ) = ϕ(x, rθ ).
This example satisfies Assumption 2.4.

Example 2.4 (Pricing kernel) Let Z : � → R
dZ be the payoffs of dZ securities that

are traded at a price of P ∈ P ⊆ R
dZ . If short sales are not allowed for any securities,

then the feasible set of portfolio weights is restricted to R
dZ+ and the standard Euler

equation does not hold. Instead, the following Euler inequalities hold (see Luttmer
1996):

E[s0(Y )Z − P] ≤ 0,

where Y : � → Y is a state variable, e.g. consumption growth, and s0 ∈ S := {s ∈
L2

Y : s(y) ≥ 0,∀y ∈ Y} is the pricing kernel function. The moment inequalities
thus hold with the true moment function:

ρ0(x) = ϕ(x, s0) = s0(y)z − p,

where x := (y, z, p)′ ∈ Y × Z × P . This function evaluates the pricing kernel r at
y and computes a vector of pricing errors. The additional information on ρ0 is that
it is based on the pricing errors.

A common specification for s0 is s0(y) = rθ0(y) = β0 y−γ0 , where β0 ∈ B ⊆
[0, 1] is the investor’s subjective discount factor and γ0 ∈ � ⊆ R+ is the relative
risk aversion coefficient. Let θ := (β, γ )′. The parametric moment function is then
given for each x ∈ X by m(x, θ) = ϕ(x, rθ ), satisfying Assumption 2.4.

2.2 Projection

The inequality restrictions E[ϕ(X, s0)] ≤ 0 may not uniquely identify s0. Define

S0 := {s ∈ S : E[ϕ(X, s)] ≤ 0}.

We define a pseudo-true identified set of parameters as a collection of projections
of elements in S0. Let W be a given non-random finite L × L symmetric positive-
definite matrix. For each s ∈ S, define the norm ‖s‖W := E[s(X)′W s(X)]1/2. For
each s ∈ S and A ⊆ S, the projection map �A : S → A is the map such that

‖s −�As‖W = inf
a∈A

‖s − a‖W .

Let R� := {rθ ∈ S : θ ∈ �}. Given Assumption 2.4, we can define

�∗ := {θ ∈ � : rθ = �R�
s, s ∈ S0}.

When ϕ is the evaluation map e, �∗ is simply �∗ := {θ ∈ � : mθ = �M�
s, s ∈

S0}.
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�∗ can be interpreted as the set of parameters that correspond to the elements mθ

in the R� -projection of S0. This set is nonempty (under some regularity conditions),
and each element can be interpreted as a projection of s inducing a functional ϕ(·, s)
that is observationally equivalent to ρ0. In this sense, each element in �∗ has an
interpretation as a pseudo-true value. Thus, we call�∗ the pseudo-true identified set.
[White (1982) uses θ∗ to denote the unique pseudo-true value in the fully identified
case.]

We illustrate the relationship between �I and �∗ with an example. Consider
Example 2.1. Let � ⊆ R

dZ . The conventional identified set is given by

�I = {θ ∈ � : E[(YL − Z ′θ)1{Z ∈ A j }] ≤ 0,

and E[(Z ′θ − YU )1{Z ∈ A j }] ≤ 0, j = 1, . . ., K }. (12)

The pseudo-true identified set is given by

�∗ = {θ ∈ � : θ = E[Z Z ′]−1 E[Zs(Z)], s ∈ S0}. (13)

Let D be a dZ × K matrix whose j th column is E[Z 1{Z ∈ A j }]. For this example,
the following result holds:

Proposition 2. 1 Let the conditions of Example 2.1 hold, and let �∗ be given as
in (13). Let �I be given as in (12). Then �I ⊆ �∗. Suppose further that M� is
correctly specified, that E[YU |Z ] = E[YL |Z ] = Z ′θ0 a.s, and that dZ ≤ rank(D).
Then �I = �∗ = {θ0}.

As this example shows, unless there is some information that helps restrict S0
very tightly, �I is often a proper subset of �∗. This is because without such infor-
mation, S0 is typically a much richer class of functions than R�. Another important
point to note is that, although �∗ is well-defined generally, �I can be empty quite
easily. In particular, for any x, x ′ ∈ X , let xλ := λx + (1 − λ)x ′, 0 ≤ λ ≤ 1.
�I is empty if there exists (x, x ′) and λ ∈ [0, 1] such that (i) xλ ∈ X and
(E[YL |xλ]− E[YU |x])/‖xλ− x‖ > (E[YU |x ′]− E[YU |x])/‖x ′ − x‖ or (ii) xλ ∈ X
and (E[YU |xλ]− E[YL |x])/‖xλ− x‖ < (E[YL |x ′]− E[YL |x])/‖x ′ − x‖.3 Figure 1,
which is similar to Fig. 1 in Ponomareva and Tamer (2010), illustrates an example
that satisfies condition (i) for the one-dimensional case.

In this example, each element in �∗ solves the following moment restrictions:

E[Z(Z ′θ − Y )] = E[Zu(X)], (14)

with u(x) = s(z)− y for some s ∈ S0.This can be viewed as a special case of incom-
plete linear moment restrictions studied in Bontemps, Magnac, and Maurin (2011)

3 For this example, �I is never empty as long as the number (2K ) of moment inequalities equals
the number of parameters (�).
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Fig. 1 An example with an
empty conventional identified
set

(BMM, henceforth).4 BMM shows that the set of parameters that solves incomplete
linear moment restrictions is necessarily convex and develops an inference method
that exploits this property.

We note here that this connection to BMM’s work only occurs when the para-
metric class is of the form: R� = {rθ : rθ (z) = z′θ, θ ∈ �}. The elements of
�∗, however, do not generally solve incomplete linear moment restrictions when
R� includes nonlinear functions of θ . Therefore, BMM’s inference method is only
applicable when rθ is linear. Our estimation procedure is more flexible than theirs
in the following two respects. First, one may allow projection to a more general
class of parametric functions that includes nonlinear functions of θ . Second, as a
consequence of the first point, we do not require �∗ to be convex. We, however,
pay a price for achieving this generality. We require s to satisfy suitable smoothness
conditions, which are not required by BMM. We discuss these conditions in detail
in the following section.

3 Estimation

3.1 Set Estimator

For W as above and each (θ, s) ∈ � × S, let the population criterion function be
defined by

Q(θ, s) = E[(s(Xi )− rθ (Xi ))
′W (s(Xi )− rθ (Xi ))]

− inf
ϑ∈� E[(s(Xi )− rϑ(Xi ))

′W (s(Xi )− rϑ(Xi ))]. (15)

4 We are indebted to an anonymous referee for pointing out a relationship between BMM’s frame-
work and ours. General incomplete linear moment restrictions are given by E[V (Z ′θ − Y )] =
E[V u(V )], where V is a vector of random variables, and u is an unknown bounded function. See
BMM for details.
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Using the population criterion function, the “pseudo-true” identified set �∗ can be
equivalently written as

�∗ = {θ : Q(θ, s) = 0, s ∈ S0}.

Given a sample {X1, . . ., Xn} of observations, let the sample criterion function be
defined for each (θ, s) ∈ �× S by

Qn(θ, s) := 1

n

n∑
i=1

(s(Xi )− rθ (Xi ))
′W (s(Xi )− rθ (Xi ))

− inf
ϑ∈�

1

n

n∑
i=1

(s(Xi )− rϑ(Xi ))
′W (s(Xi )− rϑ(Xi )). (16)

Ideally, we would like to estimate �∗ by �̃n , say, where �̃n := {θ : Qn(θ, s) ≤
cn, s ∈ S0}. But S0 is unknown, so we must estimate it. Thus, we employ a two-stage
procedure, similar to that studied in Kaido and White (2010). Section 3.3 discusses
how to construct a first-stage estimator of S0. For now, we suppose that such an
estimator exists. For this, let F(A) be the set of closed subsets of a set A. See Kaido
and White (2010) for background, including discussion of Effros measurability.

Assumption 3.1 (First-stage estimator) For each n, let Sn ⊆ S. Ŝn : � → F(Sn)

is (Effros-) measurable.

Given a first-stage estimator, we define a set estimator for the pseudo-true identi-
fied set. Let {cn} be a sequence of non-negative constants. The set estimator for �∗
is defined by

�̂n := {θ ∈ � : Qn(θ, s) ≤ cn, s ∈ Ŝn}. (17)

We establish our consistency results using the Hausdorff metric. Let || · || denote
the Euclidean norm, and for any closed subsets A and B of a finite-dimensional
Euclidean space (e.g., containing θ ), let

dH (A, B) := max{ �dH (A, B), �dH (B, A)}, �dH (A, B) := sup
a∈A

inf
b∈B

‖a − b‖, (18)

where dH and �dH are the Hausdorff metric and directed Hausdorff distance
respectively.

Before stating our assumptions, we introduce some additional notation. Let Dα
θ

denote the differential operator ∂α/∂θα1
1 · · · ∂θαp

p with |α| := ∑p
j=1 α j . Similarly,

we let Dβ
x denote the differential operator ∂β/∂xβ1

1 · · · ∂xβk
k with |β| := ∑k

j=1 β j .
For a function f : X → R and γ > 0, let γ be the smallest integer smaller than γ
and define
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‖ f ‖γ := max|β|≤γ sup
x∈X

∣∣Dβ
x f (x)

∣∣+ max|β|=γ sup
x,y∈X

∣∣Dβ
x f (x)− Dβ

x f (x)
∣∣

‖x − −y‖γ−γ .

Let CγM (X ) be the set of all continuous functions f : X → R such that ‖ f ‖γ ≤ M .
Let CγM,L(X ) := { f : X → R

L : f ( j) ∈ CγM (X ), j = 1, . . ., L}. Finally, for any
η > 0, let Sη0 := {s ∈ S : infs′∈S0 ‖s − s′‖W < η}.

Our first assumption places conditions on the parameter spaces � and S. We let
int(�) denote the interior of �.

Assumption 3.2 (i) � is compact; (ii) S is a compact convex set with nonempty
interior; (iii) there exists γ > k/2 such that S ⊆ CγM,L(X ); (iv) R� is a convex
subset of S; (v) �∗ ⊆ int(�).

Assumption 3.2 (i) is standard in the literature of extremum estimation and also
ensures the compactness of the pseudo-true identified set. Assumption 3.2 (iii)
imposes a smoothness requirement on each component of s ∈ S. Together with
Assumption (ii), this implies that S is compact under the uniform norm, which will
be also used for establishing the Hausdorff consistency of Ŝn in the following section.
For the Hausdorff consistency of �̂n , the requirement γ > k/2 can be relaxed to
γ > 0, and it also suffices that the smoothness requirement holds for functions in
neighborhoods of S0. The stronger requirement given here, however, will be useful
for deriving the rates of convergence of �̂n and Ŝn .

For ease of analysis, we assume below that the observations are from a sample of
IID random vectors.

Assumption 3.3 The observations {Xi , i = 1, . . ., n} are independently and
identically distributed.

The following two assumptions impose regularity conditions on rθ .

Assumption 3.4 (i) r(x, ·) is twice continuously differentiable on the interior of �
a.e.− P0, and for any j , x, and |α| ≤ 2, there exists a measurable bounded function
C : X → R such that |Dα

θ r ( j)
θ (x)− Dα

θ r ( j)
θ ′ (x)| ≤ C(x)‖θ − θ ′‖; (ii) there exists a

measurable bounded function R : X → R such that

max
j=1,...,l
|α|≤2

sup
θ∈�
∣∣Dα

θ r ( j)
θ (x)
∣∣ ≤ R(x).

For each x , let ∇θrθ (x) be a L × p matrix whose j th row is the gradient vector of
r ( j)
θ with respect to θ . For each x ∈ X and i, j ∈ {1, . . ., L}, let ∂2/∂θi∂θ j rθ (x) be

a L × 1 vector whose kth component is given by ∂2/∂θi∂θ j r
(k)
θ (x). For each θ ∈ �,

s ∈ S, and x ∈ X , let HW (θ, s, x) be a p × p matrix whose (i, j)th component is
given by

H (i, j)
W (θ, s, x) = 2

(
∂2

∂θi∂θ j
rθ (x)

)′
W (rθ (x)− s(x)). (19)
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Let η > 0. For each s ∈ Sη0 and ε > 0, let V ε(s) be the neighborhood of θ∗(s)
defined by

V ε(s) := {θ ∈ � : ‖θ − θ∗(s)‖ ≤ ε}.

Let Nε,η := {(θ, s) : θ ∈ V ε(s), s ∈ Sη0 } be the graph of the correspondence V ε

on Sη0 .

Assumption 3.5 There exist ε̄ > 0 and η̄ > 0 such that the Hessian matrix
∇2
θ Q(θ, s) := E[HW (θ, s, Xi ) + 2∇θrθ (Xi )

′W∇θrθ (Xi )] is positive definite uni-
formly over Nε̄,η̄.

Assumption 3.4 imposes a smoothness requirement on rθ as a function of θ ,
enabling us to expand the first order condition for minimization, as is standard in
the literature. Assumption 3.5 requires that Hessian of Q(θ, s) with respect to θ
to be positive definite uniformly on a suitable neighborhood of �∗ × S0. For the
consistency of �̂n , it suffices to assume that the Hessian is uniformly non-singular
over Nε̄,η̄, but a stronger condition given here will be useful to ensure a quadratic
approximation of the criterion function, which is crucial for the

√
n-consistency

of �̂n .
Further, we assume that Ŝn is consistent for S0 in a suitable Hausdorff metric.

Specifically, for subsets A, B of S, let

dH,W (A, B) := max

{
sup
a∈A

inf
b∈B

‖a − b‖W , sup
b∈B

inf
a∈A

‖a − b‖W

}
.

Assumption 3.6 dH,W (Ŝn,S0) = op(1).

Theorem 3.1 is our first main result, which establishes the consistency of the set
estimator defined in (17) with cn set to 0. This result is established by extending the
standard consistency proof for extremum estimators to the current setting. Note that,
under Assumption 3.2 (iv), the projection θ∗(s) := �R�

s of each point s ∈ S to
R� exists and is uniquely determined. In other words, for each s ∈ S, θ∗(s) is point
identified. By setting cn = 0, the set estimator is then asymptotically equivalent to
the collection of minimizers θ̂n(s) := argminθ ′∈�Qn(θ, s) of the sample criterion
function. The main challenge for establishing Hausdorff consistency is to show that
θ̂n(s) − θ∗(s) vanishes in probability over a sufficiently large neighborhood of S0.
The proof of the theorem in the appendix formally establishes this and gives the
desired result.

Theorem 3.1 Suppose Assumptions 2.1–2.4 and 3.1–3.6 hold. Let �̂n be defined as
in (17) with cn = 0 for all n. Then dH (�̂n,�∗) = op(1).

The result of Theorem 3.1 is similar to that of Theorem 3.2 in Chernozhukov et al.
(2007), who establish the Hausdorff consistency of a level-set estimator with cn = 0
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when Qn degenerates on a neighborhood of the identified set.5 When Assumption
3.2 (iv) fails to hold, this estimator may not be consistent. We, however, conjecture
that it would be possible to construct a Hausdorff consistent estimator of�∗ even in
such a setting by choosing a positive sequence {cn} of levels that tends to 0 as n → ∞
and by exploiting the fact that Ŝn converges to S0 in a suitable Hausdorff metric.
In fact, Kaido and White (2010) establish the Hausdorff consistency of their two-
stage set estimator using this argument, but in their analysis, the first-stage parameter
(s in our setting) must be finite dimensional. Extending Theorem 3.1 to a more general
one that allows non-convex parametric classes is definitely of interest, but to keep
our tight focus here, we leave this as a future work.

3.2 The Rate of Convergence

Theorem 3.1 uses the fact that dH (�̂n,�∗) can be bounded by dH,W (Ŝn,S0).
Although Ŝn does not converge at a parametric rate generally, the convergence rate of
�̂n can be improved when Ŝn converges to S0 at a rate op(n−1/4). This is analogous
to the results obtained for the point identified case; see, for example, Newey (1994),
Ai and Chen (2003), and Ichimura and Lee (2010).

Assumption 3.7 dH,W (Ŝn,S0) = op(n−1/4).

Theorem 3.2 Suppose the conditions of Theorem 3.1 hold. Suppose in addition
Assumption 3.7 holds. Let �̂n be defined as in (17) with cn = 0 for all n. Then,
dH (�̂n,�∗) = Op(n−1/2).

For this, setting cn to 0 is crucial for achieving the Op(n−1/2) rate. We here
note that Theorem 3.2 builds on Lemma A.2 in the appendix, which establishes
the convergence rate (in directed Hausdorff distance) of �̂n in (17) with a possibly
nonzero level cn . This lemma does not require Assumption 3.2 (iv) but assumes
the Hausdorff consistency of �̂n as a high-level condition. This is why Theorem
3.2 is stated for �̂n with cn = 0. As previously discussed, however, if Theorem
3.1 is extended to allow non-convex parametric classes, this lemma can be used to
characterize the estimator’s convergence rate under a more general setting.

3.3 The First-Stage Estimator

This section discusses how to construct a first-stage set estimator. A challenge is that
the object of interest S0 is a subset of an infinite-dimensional space. This requires us to
use a nonparametric estimation technique for estimating S0. This type of estimation

5 Their framework does not consider misspecification. Their object of interest is therefore the
conventional identified set �I . In our setting, the sample criterion function degenerates, i.e.,
Qn(θ, s) = 0, on a neighborhood of �∗ × S0 under Assumption 3.2 (iv).
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problem was recently analyzed in Santos (2011), who studies estimation of linear
functionals of function-valued parameters in nonparametric instrumental variable
problems. We rely on his results on consistency and the rate of convergence, which
extend Chernozhukov et al. (2007) analysis to a nonparametric setting. Specifically,
for each s ∈ S, let

Qn(s) :=
l∑

j=1

(1

n

n∑
i=1

ϕ( j)(Xi , s)
)2

+. (20)

This is a sample criterion function defined on S. For instance, Qn for Example 2.1
is given by

Qn(s) =
K∑

j=1

(1
n

n∑
i=1

(YL ,i −s(Zi ))1A j (Zi )
)2

++
K∑

j=1

(1
n

n∑
i=1

(s(Zi )−YU,i )1A j (Zi )
)2

+.

Our first-stage set estimator is a level set of Qn over a sieve Sn ⊆ S. Given a sequence
of non-negative constants {an} and {bn}, define

Ŝn := {s ∈ Sn : Qn(s) ≤ bn/an}. (21)

We add regularity conditions on ϕ, {Sn}, and {(an, bn)} to ensure the Hausdorff
consistency of Ŝn and derive its convergence rate. The following two assumptions
impose smoothness requirements on the map ϕ.

Assumption 3.8 For each j , there is a function B j : X → R+ such that

|ϕ( j)(x, s)− ϕ( j)(x, s′)| ≤ B j (x)ρ(s, s′), ∀s, s′ ∈ S,

where ρ(s, s′) := supx∈S max j=1,...,l |s( j)(x)− s′( j)(x)|.
For each s ∈ S, let I(s) := { j ∈ {1, . . ., l} : E[ϕ( j)(Xi , s)] > 0}. I(s) is the set

of indexes whose associated moments violate the inequality restrictions. For each j ,
let ϕ̄( j) := E[ϕ( j)(Xi , s)].
Assumption 3.9 (i) For each s ∈ S and j , ϕ̄( j) : S → R is continuously Fréchet
differentiable with the Fréchet derivative ϕ̇( j)

s : S → R, and for each s ∈ S, the
operator norm ‖ϕ̇( j)

s ‖op of ϕ̇( j)
s is bounded away from 0 for some j ∈ {1, . . ., l};

(ii) for each s /∈ S0, there exist j ∈ I(s) and C j > 0 such that E[ϕ( j)(Xi , s)] ≥
C j‖s − s0‖W for some s0 ∈ S0.

We also add regularity conditions on Sn , which can be satisfied by commonly used
sieves including polynomials, splines, wavelets, and certain artificial neural network
sieves.
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Assumption 3.10 (i) For each n, Sn ⊆ S, and both Sn and S are closed with respect
to ρ; (ii) for every s ∈ S, there is�ns ∈ Sn such that sups∈S ‖s −�ns‖W = O(δn)

for some sequence {δn} of non-negative constants such that δn → 0.

Theorem 3.3 Suppose Assumptions 2.1–2.3, 3.2 (i)–(iii), 3.3, 3.8, 3.9 (i), and 3.10
hold. Let an = O(max{n−1, δ2

n}−1) and bn → ∞ with bn = o(an). Then

dH,W (Ŝn,S0) = op(1).

In addition, suppose that Assumption 3.9 (ii) holds. Then

dH,W (Ŝn,S0) = Op
(√

bn/an
)
.

Theorem 3.3 can be used to establish Assumptions 3.6 and 3.7, which are imposed
in Theorems 3.1 and 3.2. These conditions are satisfied for Example 2.1 with a single
regressor.

In what follows, for any two sequences of positive constants {cn}, {dn}, let cn � dn

mean there exist constants 0 < C1 < C2 < ∞ such that C1 ≤ |cn/dn| ≤ C2 for
all n.

Corollary 3.1 In Example 2.1, suppose that Z is a compact convex subset of
the real line and rθ (z) = θ(1) + θ(2)z, where θ ∈ � ⊆ R

2. Suppose that �
is compact and convex. Suppose further that {(YL ,i ,YU,i , Zi )}i=1,...,n is a ran-
dom sample from P0 and that P0(Z ∈ Ak) > 0 for all k and V ar(Z) > 0.
Let S := {s ∈ L2

Z,1 : Z → R : ‖s‖∞ ≤ M, |s(z)−s(z′)| ≤ M‖z−z′‖,∀z, z′ ∈ Z}
for some M > 0. Let {rq(·)}Jn

q=1 be splines of order two with Jn knots on Z . Define

Sn := {s : s(z) =∑Jn
q=1 βqrq(z)} with Jn � nc1, c1 > 1/3. Let Ŝn be defined as in

(21) with an � nc2 , where 2/3 < c2 < 1 and bn � ln n. Then: (i) Ŝn is (Effros-) mea-
surable;
(ii) dH,W (Ŝn,S0) = op(1); (iii) dH,W (Ŝn,S0) = op(n−1/4).

Given these results, we further show that the estimator of the pseudo-true identified
set is consistent and converges at a n−1/2-rate.

Corollary 3.2 Suppose that the conditions of Corollary 3.1 hold. Let Q be defined
as in (15) with W = 1. Let Qn be defined as in (16) and �̂n be defined as in (17)
with cn = 0 and Ŝn as in Corollary 3.1. Then dH (�̂n,�∗) = Op(n−1/2).

4 Concluding Remarks

Moment inequalities are widely used to estimate discrete choice problems and struc-
tures that involve censored variables. In many empirical applications, potentially
misspecified parametric models are used to estimate such structures. This chapter
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studies a novel estimation procedure that is robust to misspecification of moment
inequalities. To overcome the challenge that the conventional identified set may be
empty under misspecification, we defined a pseudo-true identified set as the least
squares projection of the set of functions at which the moment inequalities are sat-
isfied. This set is nonempty under mild assumptions. We also proposed a two-stage
set estimator for estimating the pseudo-true identified set. Our estimator first esti-
mates the identified set of function-valued parameters by a level-set estimator over
a suitable sieve. The pseudo-true identified set can then be estimated by projecting
the first-stage estimator to a finite-dimensional parameter space. We give condi-
tions, under which the estimator is consistent for the pseudo-true identified set in the
Hausdorff metric and converges at a rate Op(n−1/2). Developing inference proce-
dures based on the proposed estimator would be an interesting future work. Another
interesting extension would be to study the optimal choice of the weighting matrix.
In this chapter, we maintained the assumption that W is fixed and does not depend on
(θ, s). Given the form of the criterion function, the most natural choice of W would
be the inverse matrix of the variance covariance matrix of s(Xi ) − rθ (Xi ). This
matrix is generally unknown but can be consistently estimated by its sample ana-
log: Ŵn(θ, s) := ( 1

n

∑n
i=1(s(Xi )−rθ (Xi ))(s(Xi )−rθ (Xi ))

′)−1.Defining a sample

criterion function using Ŵn(θ, s) as a weighting matrix would lead to a three-step
procedure. Such a procedure may result in more efficient estimation of �∗.6 Yet,
another interesting direction would be to develop a specification test for the moment
inequality models based on the current framework. This direction would extend the
results of Guggenberger et al. (2008), which studies a testing procedure that tests the
nonemptiness of the identified set.

A Mathematical Proofs

A.1 Notation

Throughout the appendix, let ‖·‖ denote the usual Euclidean norm. For each s, s′ ∈ S,
let ρ(s, s′) := supx∈S max j=1,...,l |s( j)(x) − s′( j)(x)|. For each a × b matrix A, let
‖A‖op := min{c : ‖Av‖ ≤ c‖v‖, v ∈ R

b} be the operator norm. For any symmetric
matrix A, let ξ(A) denote the smallest eigenvalue of A.

For a given pseudometric space (T, ρ), let N (ε, T, ρ) be the covering number,
i.e., the minimal number of ε-balls needed to cover T . For each measurable function
f : X → R and 1 ≤ p < ∞, let ‖ f ‖L p := E[| f (X)|p]1/p provided that the
integral exists. Similarly, let ‖ f ‖∞ := inf{c : P(| f (X)| > c) = 0}. For a given
function space G equipped with a norm ‖ · ‖G and l, u ∈ G, let [l, u] := { f ∈ G :
l ≤ f ≤ u}. For each f ∈ G, let Bε, f := {[l, u] : l ≤ f ≤ u, ‖l − u‖G < ε}
be the ε-bracket of f . The bracketing number N[ ](ε,G, ‖ · ‖G) is the minimum
number of ε-brackets needed to cover G. An envelope function G of a function

6 We are indebted to an anonymous referee for this point.
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class G is a measurable function such that g(x) ≤ G(x) for all g ∈ G. For each
δ > 0, the bracketing integral of G with an envelope function G is defined as
J[](δ,G, ‖ · ‖G) := ∫ δ0 √1 + ln N[](ε‖G‖G,G, ‖ · ‖G)dε.

A.2 Projection

Proof of Proposition 2.1 Note that under the conditions of Example 2.1, Assumption
2.3 holds. This ensures S0 is nonempty. By Eq. (13), �∗ is nonempty. Furthermore,
let θ ∈ �I , and for each z ∈ Z , let rθ (z) := z′θ . Note that rθ ∈ S0. Thus, (13) holds
with s = rθ , which ensures the first claim.

For the second claim, note that the condition E[YU |Z ] = E[YL |Z ] = Z ′θ0 a.s
implies that any θ ∈ �I must satisfy

E[Z1{Z ∈ A j }]′(θ0 − θ) = 0, j = 1, 2, . . ., K . (A.1)

By the rank condition on D, the unique solution to (A.1) is θ0 − θ = 0. Thus,
{θ0} = �I . Since {θ0} ⊆ �∗ by the first claim, it suffices to show that θ0 is the
unique element of �∗. For this, note that under our assumptions, S0 = {s0} with
s0(z) = z′θ0. Thus, �∗ = {θ0}. This completes the proof. ��

A.3 Consistency of the Parametric Part

For each s ∈ S, let θ∗(s) := arg minθ∈� Q(θ, s) and θ̂n(s) := arg minθ∈� Qn(θ, s).

Lemma A.1 Suppose that Assumptions 3.4 and 3.2 (iv) hold. Then, (i) for each
x ∈ X and any s, s′ ∈ S, there exists a function C1 : X → R+ such that

∥∥∥rθ∗(s)(x)− rθ∗(s′)(x)
∥∥∥ ≤ C1(x)ρ(s, s′); (A.2)

(ii) For each x ∈ X , j = 1, . . ., L , and any s, s′ ∈ S, there exists a function
C2 : X → R+ such that

∥∥∥∇( j)
θ rθ∗(s)(x)− ∇( j)

θ rθ∗(s′)(x)
∥∥∥ ≤ C2(x)ρ(s, s′). (A.3)

Proof of Lemma A.1 Assumption 3.4 ensures that

∥∥∥rθ∗(s)(x)− rθ∗(s′)(x)
∥∥∥ ≤ L1/2C(x)

∥∥∥θ∗(s)− θ∗(s′)
∥∥∥. (A.4)

Assumption 3.2 (iv) ensures that for each s ∈ L2
S,L , θ∗(s) = �R�

s is uniquely

determined, where �R�
is the projection mapping from the Hilbert space L2

S,L to
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the closed convex subset R�. Furthermore, Lemma 6.54 (d) in Aliprantis and Border
(2006) and the fact that ρ is stronger than ‖ · ‖W imply

∥∥∥θ∗(s)− θ∗(s′)
∥∥∥ ≤
∥∥∥s − s′

∥∥∥
W

≤ cρ(s, s′), (A.5)

for some c > 0. Combining (A.4) and (A.5) ensures (i). Similarly, Assumption 3.4
ensures that for each x ∈ X

∥∥∥∇( j)
θ rθ∗(s)(x)− ∇( j)

θ rθ∗(s′)(x)
∥∥∥ ≤ J 1/2C(x)

∥∥∥θ∗(s)− θ∗(s′)
∥∥∥. (A.6)

Combining (A.5) and (A.6) ensures (ii). ��
Proof of Theorem 3.1 Step 1: Let s ∈ S be given. For each θ ∈ �, let Qs(θ) :=
Q(θ, s) and Qn,s(θ) := Qn(θ, s). By Assumption 3.2 (iv) and Theorem 6.53 in
Aliprantis and Border (2006), Qs is uniquely minimized at θ∗(s). By Assump-
tion 3.2 (i), � is compact. By Assumption 3.2, Q(θ) is continuous. Furthermore,
Assumption 3.4 ensures the applicability of the uniform law of large numbers. Thus,
supθ∈� |Qn,s(θ)−Qs(θ)| = op(1). Hence, by Theorem 2.1 in Newey and McFadden
(1994), θ̂n(s)− θ∗(s) = op(1).

By Assumptions 3.2 (v), 3.4 (ii), and the fact that θ̂n(s) is consistent for θ∗(s),
θ̂n(s) solves the first order condition:

∇θ Qn(θ, s) = 1

n

n∑
i=1

∇θrθ (Xi )
′W (s(Xi )− rθ (Xi )) = 0, (A.7)

with probability approaching one. Expanding this condition at θ∗(s) using the mean-
value theorem applied to each element of ∇θ Qn(θ, s) yields

∇2
θ Qn(θ̄n(s), s)(θ̂n(s)− θ∗(s)) = 1

n

n∑
i=1

∇θrθ∗(s)(Xi )
′W (s(Xi )− rθ∗(s)(Xi )),

(A.8)
where θ̄n(s) lies on the line segment that connects θ̂n(s) and θ∗(s).7 For each s ∈ S η̄0 ,
let

ψs(x) := ∇θrθ∗(s)(x)′W (s(x)− rθ∗(s)(x)). (A.9)

Below, we show that the function class � := { fs : fs = ψ
( j)
s , s ∈ S η̄0 , j =

1, 2, . . ., J } is a Glivenko–Cantelli class.

7 Since the mean value theorem only applies element by element to the vector in (A.8), the mean
value θ̄n differs across the elements. For notational simplicity, we use θ̄n in what follows, but the
fact that they differ element to element should be understood implicitly. For the measurability of
these mean values, see Jennrich (1969) for example.
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By Assumption 3.4 (ii), Lemma A.1, the triangle inequality, and the Cauchy–
Schwarz inequality, for any s, s′ ∈ S,

|ψ( j)
s (x)− ψ

( j)
s′ (x)| ≤

∥∥∥(∇( j)
θ rθ∗(s)(x)− ∇( j)

θ rθ∗(s′)(x))
′W
∥∥∥

×
∥∥∥s(x)− rθ∗(s)(x)

∥∥∥+
∥∥∥∇( j)

θ rθ∗(s′)(x)
′W
∥∥∥

×
∥∥∥[s(x)− s′(x)] + [rθ∗(s′)(x)− rθ∗(s)(x)]

∥∥∥
≤ (C2(x)‖W‖op(M + R(x))+ (1 + C1(x))‖W‖op R(x))

× sup
x∈S

∥∥∥s(x)− s′(x)
∥∥∥

≤ F(x)ρ(s, s′), (A.10)

where F(x) := (C2(x)‖W‖op(M + R(x))+ (1 + C1(x))‖W‖op R(x))× √
L . For

any ε > 0, let u := ε/2‖F‖L1 . By, Theorem 2.7.11 in van der Vaart and Wellner
(1996) and Assumption 3.2 (ii), we obtain

N[](ε,�, ‖ · ‖L1) = N[](2u‖F‖L1 , �, ‖ · ‖L1)

≤ N (u,S η̄0 , ρ). (A.11)

For each j = 1, . . ., L , let S η̄,( j)
0 := {s( j) : s ∈ S η̄0 }. For each j, g ∈ S η̄,( j)

0 ,

and ε > 0, let B( j)
ε (g) := { f ∈ S η̄,( j)

0 : ‖ f − g‖∞ < ε}. Similarly, for each

s ∈ S η̄0 , let Bu,ρ(s) := { f ∈ S η̄,( j)
0 : ρ( f, s) < ε}. As we will show below, N j :=

N (u,S η̄,( j)
0 , ‖ · ‖∞) is finite for all j . Thus, for each j there exist f1, j , . . ., fN j , j ∈

S η̄,( j)
0 such that S η̄,( j)

0 ⊆⋃N j
l=1 B( j)

u ( fl, j ). We can then obtain a grid of distinct points

f1, . . ., fN ∈ S η̄0 such that f ( j)
i = fl, j for some 1 ≤ l ≤ N j , where N =∏L

j=1 N j .

Then, by the definition of ρ, S η̄0 ⊆⋃N
i=1 Bu,ρ( fi ). Thus,

N
(
u,S η̄0 , ρ

) ≤
L∏

j=1

N
(
u,S η̄,( j)

0 , ‖ · ‖∞
) ≤ N

(
u, CγM (X ), ‖ · ‖∞

)L
< ∞, (A.12)

where the last inequality follows from Assumption 3.2 (ii)–(iii) and Theorem 2.7.1
in van der Vaart and Wellner (1996). By Theorem 2.4.1 in van der Vaart and Wellner
(1996), � is a Glivenko–Cantelli class.

Note that, by Assumptions 3.2 (v) and 3.4, θ∗(s) solves the population analog of
(A.7). Thus,

E[∇θrθ∗(s)(Xi )
′W (s(Xi )− rθ∗(s)(Xi ))] = E[ψs(x)] = 0. (A.13)
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These results together with the strong law of large numbers whose applicability is
ensured by Assumptions 3.3 and 3.4 (ii) imply

sup
s∈S η̄0

∣∣∣∣∣
1

n

n∑
i=1

ψ
( j)
s (Xi )

∣∣∣∣∣ = op(1), j = 1, . . ., J. (A.14)

Step 2: In this step, we show that the Hessian ∇2
θ Qn(θ, s) is invertible with prob-

ability approaching 1 uniformly over Nε̄,η̄. Let H := {hθ,s : X → R : hθ,s(x) =
H (i, j)

W (θ, s, x) + 2∇θr (i)θ (x)′W∇θr ( j)
θ (x), 1 ≤ i, j ≤ p, θ ∈ �, s ∈ S η̄0 }. Note that

hθ,s takes the form:

hθ,s(x) = 2
L∑

k=1

L∑
h=1

∂2r (h)θ (x)

∂θi∂θ j
W (h,k)(s(k)(x)− r (k)θ (x)

)

+
L∑

k=1

L∑
h=1

∂r (h)θ (x)

∂θi
W (h,k) ∂r (k)θ (x)

∂θ j

for some 1 ≤ i, j ≤ p, θ ∈ �, and s ∈ S η̄0 . Consider the function classes F1 :=
{Dα

θ r (k)θ : θ ∈ �, |α| ≤ 2, k = 1, . . ., L} and F2 := {s(k) : s ∈ S η̄0 , k = 1, . . ., L}.
Assumptions 3.2 (i), 3.4, and Theorem 2.7.11 in van der Vaart and Wellner (1996)
ensure N[](ε,F1, ‖ · ‖L2) ≤ N (u,�, ‖ · ‖) < ∞ with u := ε/2‖C‖L2 . Assump-
tion 3.2 (ii)–(iii) and Corollary 2.7.2 in van der Vaart and Wellner (1996) ensure
N[](ε,F2, ‖ ·‖L2) ≤ N[](ε, CγM (X ), ‖ ·‖L2) < ∞. Since H can be obtained by com-
bining functions in F1 and F2 by additions and pointwise multiplications, Theorem
6 in Andrews (1994) implies N[](ε,H, ‖ · ‖L2) < ∞. This bracketing number is
given in terms of the L2-norm, but we can also obtain a bracketing number in terms
of the L1-norm. For this, let h1, . . ., h p be the centers of ‖ · ‖L2 -balls that cover H.
Then, the brackets [hi − ε, hi + ε], i = 1, . . ., p cover H, and each bracket has
length at most 2ε in ‖ · ‖L1 . Thus, N[](ε,H, ‖ · ‖L1) < ∞. By Theorem 2.7.1 in van
der Vaart and Wellner (1996), H is a Glivenko–Cantelli class. Hence, uniformly over
�× S η̄0 ,

∇2
θ Qn(θ, s) = 1

n

n∑
i=1

HW (θ, s, Xi )+ 2∇θrθ (Xi )
′W∇θrθ (Xi )

p→ E[HW (θ, s, Xi )+ 2∇θrθ (Xi )
′W∇θrθ (Xi )]. (A.15)

Note that dH,W (Ŝn,S0) = op(1) by Assumption 3.6. Thus, (θ̄n(s), s) ∈ Nε̄,η̄ with
probability approaching one. By Assumption 3.5 and (A.15), there exists δ > 0 such
that ∇2

θ Qn(θ̄n(s), s)’s smallest eigenvalue is above δ uniformly over Nε̄,η̄. Thus, the
Hessian ∇2

θ Qn(θ̄n(s), s) in (A.8) is invertible with probability approaching 1.
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Step 3: Steps 1–2 imply that, uniformly over S η̄0 ,

‖θ∗(s)− θ̂n(s
′)‖ = ‖θ∗(s)− θ∗(s′)+ θ∗(s′)− θ̂n(s

′)‖

≤ ‖θ∗(s)− θ∗(s′)‖ + 2δ−1 sup
s∈S η̄0

∥∥∥∥∥
1

n

n∑
i=1

ψs(Xi )

∥∥∥∥∥
≤ ‖s − s′‖W + op(1), (A.16)

where we used the fact that ‖θ∗(s) − θ∗(s′)‖ ≤ ‖s − s′‖W by Lemma 6.54 (d) in
Aliprantis and Border (2006).

Step 4: Finally, note that by Step 3,

�dH (�∗, �̂n) = sup
θ∈�∗

inf
θ ′∈�̂n

‖θ − θ ′‖ = sup
s∈S0

inf
s′∈Ŝn

‖θ∗(s)− θ̂n(s
′)‖

≤ sup
s∈S0

inf
s′∈Ŝn

‖s − s′‖W + op(1) (A.17)

�dH (�̂n,�∗) = sup
θ ′∈�̂n

inf
θ∈�∗

‖θ − θ ′‖ = sup
s′∈Ŝn

inf
s∈S0

‖θ∗(s)− θ̂n(s
′)‖

≤ sup
s′∈Ŝn

inf
s∈S0

‖s − s′‖W + op(1). (A.18)

Equation (18) and Assumption 3.6 then ensure the desired result. ��

A.4 Convergence Rate

The following lemma controls the rate at which �̂n covers �∗. Given a sequence
{ηn} such that ηn → 0, we let V δ1n (s) := {θ ′ : ‖θ ′ − θ(s)‖ ≤ en, en = Op(ηn)}
and let Nηn ,0 := {(θ, s) : θ ∈ V ηn (s), s ∈ S0}.
Lemma A.2 Suppose Assumptions 2.1–2.3, 3.1–3.2, and 3.6 hold. Let {δ1n} and {εn}
be sequences of non-negative numbers converging to 0 as n → ∞. Let G : �×S →
R+ be a function such that G is jointly measurable and lower semicontinuous. For
each n, let Gn : �×�×S → R be a function such that for each ω ∈ �, Gn(ω, ·, ·)
is jointly measurable and lower semicontinuous, and for each (θ, s) ∈ � × S,
Gn(·, θ, s) is measurable. Let �∗ := {G(θ, s) = 0, s ∈ S0} and �̂n := {θ ∈ � :
Gn(θ, s) ≤ infθ∈� Gn(θ, s) + cn, s ∈ Ŝn}. Suppose that dH (�̂n,�∗) = Op(δ1n).
Suppose further that there exists a positive constant κ and a neighborhood V (s) of
θ∗(s) such that

G(θ, s) ≥ κ‖θ − θ∗(s)‖2 (A.19)

for all θ ∈ V (s), s ∈ S0. Suppose that uniformly over Nδ1n ,0,

Gn(θ, s) = G(θ, s)+ Op(‖θ−θ∗(s)‖/√n)+op(‖θ−θ∗(s)‖2)+ Op(εn). (A.20)
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Then
�dH (�∗, �̂n) = Op(max{c1/2

n , ε
1/2
n , 1/

√
n}).

Proof of Lemma A.2 The proof of this Lemma is similar to Theorem 1 in Sherman
(1993). By (A.19), (A.20), and the Hausdorff consistency of �̂n , it follows that,
uniformly over Nδ1n ,0,

cn ≥ κ‖θ−θ∗(s)‖2 + Op(‖θ−θ∗(s)‖/√n)+op(‖θ−θ∗(s)‖2)+ Op(εn), (A.21)

with probability approaching 1. As in Theorem 1 in Sherman (1993), write Kn‖θ −
θ(s)‖ for the Op(‖θ − θ∗(s)‖/√n) term, where Kn = Op(1/

√
n) and also note

that op(‖θ − θ∗(s)‖2) is bounded from below by − κ
2 ‖θ − θ∗(s)‖2 with probability

approaching 1. Thus, we obtain

κ

2
‖θ − θ∗(s)‖2 + Kn‖θ − θ∗(s)‖ ≤ cn + Op(εn). (A.22)

Completing the square, we obtain

1

2
κ(‖θ − θ∗(s)‖ − Kn/κ)

2 ≤ cn + Op(εn)+ 1

2
K 2

n/κ = cn + Op(εn)+ Op(1/n).

(A.23)
Taking square roots gives

‖θ − θ∗(s)‖ ≤ (2/κ)1/2c1/2
n + Kn/κ + Op(ε

1/2
n )+ Op(1/

√
n) (A.24)

= Op(c
1/2
n )+ Op(ε

1/2
n )+ Op(1/

√
n). (A.25)

Thus,

�dH (�∗, �̂n) = sup
s∈S0

inf
θ∈�̂n

‖θ − θ∗(s)‖ (A.26)

≤ sup
s∈S0

inf
θ∈V δ1n (s)

‖θ − θ∗(s)‖

≤ Op(c
1/2
n )+ Op(ε

1/2
n )+ Op(1/

√
n). (A.27)

This completes the proof. ��
The following lemma controls the rate at which �̂n is contracted into a neighbor-

hood of �∗. Given s ∈ S and a sequence {δn} such that δn → 0, let U δn (s) := {θ ∈
� : ‖θ − θ∗(s)‖ ≥ δn}.
Lemma A.3 Suppose Assumptions 2.1–2.3, 3.1–3.2, and 3.6 hold. Let Gn be defined
as in Lemma A.2. Suppose that there exist positive constants (k, κ2) and a sequence
{δ1n} such that

Gn(θ, s) ≥ κ2‖θ − θ∗(s)‖2 (A.28)
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with probability approaching 1 for all θ ∈ U δn (s) with δn := (kδ1n/
√

n)1/2 and
s ∈ S η̄0 . Then,

�dH (�̂n,�∗) = Op(δ
1/2
1n /n1/4)+ Op(c

1/2
n ).

Proof of Lemma A.3 Note first that Ŝn is in S η̄0 with probability approaching 1
by Assumption 3.6. Let c̃n := √

ncn and c̄n := max{κ2kδ1n, c̃n}. Let εn :=
(c̄n/κ2

√
n)1/2. Then, uniformly over S η̄0 ,

inf
�∩U εn (s)

√
nGn(θ, s) ≥ κ2

√
nε2

n ≥ c̄n . (A.29)

Since
√

nGn(θ̂n(s), s) ≤ c̃n for all s ∈ Ŝn , the results above ensure

�dH (�̂n,�∗) = sup
s∈Ŝn

inf
θ∈�∗

‖θ̂n(s)− θ‖

≤ sup
s∈Ŝn

‖θ̂n(s)− θ∗(s)‖ ≤ εn = Op(δ
1/2
1n /n1/4)+ Op(c̃

1/2
n /n1/4).

This ensures the claim of the Lemma. ��
Proof of Theorem 3.2 We first show (A.19) holds with G(θ, s) = Q(θ, s). For this,
we use the second-order Taylor expansion of Q(θ, s). For θ ∈ V δ1n (s), it holds by
Assumptions 3.2 (v) and 3.4 that

Q(θ, s) = Q(θ∗(s), s)+ ∇θ Q(θ∗(s), s)′(θ − θ∗(s))

+ 1

2
(θ − θ∗(s))′∇2

θ Q(θ̄(s), s)(θ − θ∗(s)), (A.30)

where θ̄ (s) is on the line segment that connects θ and θ∗(s). By (15), Q(θ∗(s), s) = 0,
and by the first order condition of the optimality, ∇θ Q(θ∗(s), s) = 0. Thus, it follows
that

Q(θ, s) = 1

2
(θ − θ∗(s))′∇2

θ Q(θ̄(s), s)(θ − θ∗(s)) ≥ κ‖θ − θ∗(s)‖2, (A.31)

where κ := infθ∈�,s∈S0 ξ(∇2
θ Q(θ, s))/2, and κ > 0 by Assumption 3.5.

We next show that (A.20) holds for

Gn(θ, s) = 1

n

n∑
i=1

(s(Xi )− rθ (Xi ))
′W (s(Xi )− rθ (Xi ))

− 1

n

n∑
i=1

(s(Xi )− rθ∗(s)(Xi ))
′W (s(Xi )− rθ∗(s)(Xi )). (A.32)
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In what follows, let Ên denote the expectation with respect to the empirical distrib-
ution. Using the Taylor expansion of Gn and G with respect to θ at θ∗(s), we may
write

Gn(θ, s)− G(θ, s) = S1,n(θ, s)+ S2,n(θ, s), (A.33)

where

S1n(θ, s) := −2(θ − θ∗(s))′(Ên − E)[∇θrθ∗(s)(x)′W (s(x)− rθ∗(x))]
+op(‖θ − θ∗(s)‖2) (A.34)

S2n(θ, s) := (θ − θ∗(s))′(Ên − E)[∇θrθ∗(s)(x)′W∇θrθ∗(s)(x)](θ − θ∗(s)).
(A.35)

Thus, for (A.20) to hold, it suffices to show that S1n(θ, s) = Op(‖θ−θ∗(s)‖/√n)+
op(‖θ − θ∗(s)‖2) and S2n(θ, s) = Op(εn) for some εn → 0. For S1n , note that our
assumptions suffice for the conditions of Lemma A.4. Thus,� is a P0-Donsker class.
This ensures S1n(θ, s) = Op(‖θ−θ∗(s)‖/√n)+op(‖θ−θ∗(s)‖2). We now consider
S2n . For each s ∈ S0 and x ∈ X , let φs(x) := ∇θrθ∗(s)(x)′W∇θrθ∗(s)(x). Note that

E

[
sup

(θ,s)∈Nδ1n ,0

|S2n(θ, s)|
]

≤ δ2
1nn−1/2 E

[
sup
s∈S0

|Gnφs |
]

≤ n−1/2δ2
1nC J[](1,S0, ‖ · ‖L2)

∥∥∥∥∥ sup
s∈S0

|φs |
∥∥∥∥∥

L2

, (A.36)

where the last inequality follows from Lemma B.1 of Ichimura and Lee (2010). Now,
Markov’s inequality, Lemma A.4, and Assumption 3.4 (ii) ensure that S2n = Op(εn),
where εn = n−1/2δ2

1n .
We further set cn = 0. Note that the estimator defined in (17) with cn = 0

equals the set estimator �̂n = {θ : Gn(θ, s) ≤ infθ∈� Gn(θ, s)}. By Assumption
3.7 and Step 4 of the proof of Theorem 3.1, we may take δ1n = Op(n−1/4) as an

initial rate. Lemma A.2 then implies that �dH (�∗, �̂n) = Op(ε
1/2
n ), where εn =

Op(n−1/2δ2
1n) = Op(n−1). Thus, �dH (�∗, �̂n) = Op(n−1/2).

Now we consider �dH (�̂n,�∗). We show that (A.28) holds for Gn . For each θ
and s, let Ln(θ, s) := 1

n

∑n
i=1(s(Xi )− rθ (Xi ))

′W (s(Xi )− rθ (Xi )). Let s ∈ S η̄0 and
θ ∈ U δ1n (s). A second-order Taylor expansion of Gn(θ, s) = Ln(θ, s)−Ln(θ∗(s), s)
with respect to θ at θ∗(s) gives

Gn(θ, s) = ∇θ Ln(θ∗(s), s)′(θ − θ∗(s))+ 1

2
(θ − θ∗(s))′∇2

θ Ln(θ̄n(s), s)(θ − θ∗(s))

= op(1)+ 1

2
(θ − θ∗(s))′∇2

θ Ln(θ̄n(s), s)(θ − θ∗(s))

≥ κ2‖θ − θ∗(s)‖2, (A.37)
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with probability approaching 1 for some κ2 > 0, where θ̄n(s) is a point on the line
segment that connects θ and θ∗(s). The last inequality follows from Step 3 of the
proof of Theorem 3.1 and Assumption 3.5.

Set c̃n = 0. Then, Lemma A.3 implies �dH (�̂n,�∗) = Op(δ
1/2
1n /n1/4). Setting

δ1n = Op(n−1/4) refines this rate to Op(n−3/8). Repeated applications of Lemma
A.3 then implies �dH (�̂n,�∗) = Op(n−1/2). As both of the directed Hausdorff
distances converge to 0 at the stochastic order of n−1/2, the claim of the theorem
follows. ��
Lemma A.4 Suppose Assumptions 3.2 and 3.4 hold. Then� is a P0-Donsker class.

Proof of Lemma A.4 The proof of Theorem 3.1 shows that each fs ∈ � is Lipschitz
in s. For any ε > 0, Assumption 3.2 (ii)–(iii), Theorems 2.7.11 and 2.7.2 in van der
Vaart and Wellner (1996), and (A.12) imply

ln N[](ε‖F‖L2 , �, ‖ · ‖L2) ≤ ln N (ε/2,Sδ2
0 , ρ)

L ≤ C(1/ε)k/γ , (A.38)

where C is a constant that depends only on k, γ, L , and diam(X ). Thus, for any
δ > 0,

J[](δ,�, ‖ · ‖L2) ≤
δ∫

0

√
1 + C(1/ε)k/γ dε < ∞. (A.39)

Example 2.14.4 in van der Vaart and Wellner (1996) ensures that � is P0-
Donsker. ��

A.5 First Stage Estimation

In the following, we work with the following population criterion function. For each
s ∈ S, let Q be defined by

Q(s) :=
l∑

j=1

E[ϕ( j)(Xi , s)]2+. (A.40)

Lemma A.5 Suppose that Assumption 3.9 (i) holds. Let the criterion function be
given as in (A.40). Then, there exists a positive constant C2 such that

Q(s) ≤ inf
s0∈S0

C2‖s − s0‖2
W .

Proof of Lemma A.5 Let s ∈ S be arbitrary. For any s0 ∈ S, E[ϕ( j)(X, s0)] ≤ 0 for
j = 1, . . ., l. Let V be an open set that contains s and s0. Assumption 3.9 (i) and
Theorem 1.7 in Lindenstrauss et al. (2007), it holds that
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Q(s) ≤
l∑

j=1

(
E[ϕ( j)(Xi , s)] − E[ϕ( j)(Xi , s0)]

)2
+

≤
⎛
⎝ l∑

j=1

‖ sup
g∈Ṽ j

ϕ̇( j)
g ‖2

op

⎞
⎠ ‖s − s0‖2

W , (A.41)

where Ṽ j := {g ∈ V : ϕ̇( j)
g exists}. Let C2 :=∑l

j=1 ‖ supg∈S ϕ̇
( j)
g ‖2

op. It holds that
0 < C2 < ∞ by the hypothesis. We thus obtain

Q(s) ≤ C2‖s − s0‖2
W (A.42)

for all s0 ∈ S0. Note that s0 �→ ‖s − s0‖W is continuous and S0 is compact by
Assumption 3.2 (ii)–(iii) and Assumption 3.10 (i). Taking infimum over S0 then
ensures the desired result. ��
Lemma A.6 Suppose Assumption 3.9 (ii) holds. Let the criterion function be given
as in (A.40). Then there exists a positive constant C such that

Q(s) ≥ inf
s0∈S0

C3‖s − s0‖2
W .

Proof of Lemma A.6 If s ∈ S0, the conclusion is immediate. Suppose that s /∈ S0.

By Assumption 3.9 (ii), there exists s0 ∈ S0

Q(s) =
∑

j∈I(s)
(E[ϕ( j)(Xi , s)])2 ≥ C j‖s − s0‖2

W . (A.43)

Let C3 := C j . Thus, the claim of the lemma follows. ��
In the following, let G := {g : g(x) = ϕ

( j)
s (x), s ∈ S, j = 1, . . ., l}.

Lemma A.7 Suppose Assumptions 3.2, 3.4 , and 3.8 hold. Then G is a P0-Donsker
class.

Proof of Lemma A.7 By Assumption 3.8, ϕ( j)
s is Lipschitz in s. The rest of the proof

is the same as that of Lemma A.4. ��
Proof of Theorem 3.3 We establish the claims of the theorem by applying Theorem
B.1 in Santos (2011). Note first that Assumption 3.2 (ii)–(iii) and Assumption 3.10
(i) ensure that S is compact. This ensures condition (i) of Theorem B.1 in Santos
(2011). Condition (ii) of Theorem B.1 in Santos (2011) is ensured by Assumption
3.10. Lemma A.7 ensures that uniformly over �n

Qn(s) = Q(s)+ Op(n
−1). (A.44)
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Thus, condition (iii) of Theorem B.1 in Santos (2011) hold with C1 = 1 and c2n =
n−1. Lemma A.5 ensures that Q(s) ≤ infs0∈S0 C2‖s −s0‖2

W for some C2 > 0. Thus,
condition (iv) of Theorem B.1 in Santos (2011) hold with κ1 = 2. Now, the first
claim of Theorem B.1. in Santos (2011) establishes

dH,W (Ŝn,S0) = op(1). (A.45)

Furthermore, Lemma A.6 ensures Q(s) ≥ infs0∈S0 C3‖s −s0‖2 for some C3 > 0.
This ensures condition (v) of Theorem B.1 in Santos (2011) with κ2 = 2. Now, the
second claim of Theorem B.1. in Santos (2011) ensures

dH,W (Ŝn,S0) = Op(max{(bn/an)
1/2, δn}). (A.46)

Since (bn/an)
1/2/δn → ∞, the claim of the theorem follows. ��

Proof of Corollary 3.1 In what follows, we explicitly show Qn’s dependence on ω
∈ �. Let Qn : �×S → R be defined by Qn(ω, s) =∑l

j=1(
1
n

∑n
i=1 ϕ(Xi (ω), s))2+.

By Assumption 2.3, ϕ is continuous in s for every x and measurable for every s.
Also note that Xi is measurable for every i . Thus, by Lemma 4.51 in Aliprantis and
Border (2006), Qn is jointly measurable in (ω, s) and lower semicontinuous in s for
every ω. Note that S is compact by Assumptions 3.2 (ii)–(iii) and 3.10 (i), which
implies S is locally compact. Since S is a metric space, it is a Hausdorff space.
Thus, by Proposition 5.3.6 in Molchanov (2005), Qn is a normal integrand defined
on a locally compact Hausdorff space. Proposition 5.3.10 in Molchanov (2005) then
ensures the first claim.

Now we show the second claim using Theorem 3.3 (i). Assumptions 2.1–2.3
hold with ϕ defined in (5). Assumption 3.2 holds by our hypothesis with γ = 1.
Assumption 3.3 is also satisfied by the hypothesis. Note that for each j , ϕ( j)(x, s) =
(yL − s(z))1Ak (z) or ϕ( j)(x, s) = (s(z) − yU )1Ak (z) for some k ∈ {1, . . ., K }.
Without loss of generality, let j be an index for which ϕ( j)(x, s) = (yL −s(z))1Ak (z)
for some Borel set Ak . For any s, s′ ∈ S,

|ϕ( j)(x, s)− ϕ( j)(x, s′)| = |(s′(z)− s(z))1Ak (z)| ≤ ρ(s, s′). (A.47)

It is straightforward to show the same result for other indexes. Thus, Assumption 3.8
is satisfied.

Now for j such that ϕ( j)(x, s) = (yL − s(z))1Ak (z), note that

|ϕ̄( j)(s + h)− ϕ̄( j)(s)− E[h(Z)(−1Ak (Z))]| = 0. (A.48)

Thus, the Fréchet derivative is given by ϕ̇( j)
s (h) = E[h(Z)(−1Ak (Z))]. By Propo-

sition 6.13 in Folland (1999), the norm of the operator is given by ‖ϕ̇( j)
s ‖op =

E[| − 1Ak (Z)|2]1/2 = P0(Z ∈ Ak) > 0, which ensures the boundedness (continu-
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ity) of the operator. It is straightforward to show the same result for other indexes.
Hence, Assumption 3.9 (i) is satisfied. By construction, Assumption 3.10 (i) is satis-
fied, and Assumption 3.10 (ii) holds with δn � J−1

n (See Chen 2007). These ensure
the conditions of Theorem 3.3 (i). Thus, the second claim follows.

For the third claim, let s ∈ S \S0. Then, there exists j such that E[ϕ( j)(Xi , s)] >
0. Without loss of generality, suppose that E[ϕ( j)(Xi , s)] = E[(YL ,i − s(Zi ))1Ak

(Zi )] ≥ δ > 0. Let s0 ∈ S0 be such that

E[(YL ,i − s0(Zi ))1Ak (Zi )] = 0. (A.49)

Such s0 always exists by the intermediate value theorem. Then, for j with which
ϕ( j)(x, s) = (yL − s(z))1Ak (z), it follows that

E[ϕ( j)(Xi , s)] = E[(YL ,i − s(Zi ))1Ak (Zi )] − E[(YL ,i − s0(Zi ))1Ak (Zi )]
= E[(s0(Zi )− s(Zi ))1Ak (Zi )] > 0 (A.50)

Thus, we have
E[ϕ( j)(Xi , s)] ≥ C‖s0 − s‖W , (A.51)

where C := infq∈E E[q(Zi )1Ak (Zi )] and E := {q ∈ S : ‖q‖W = 1, E[q(Zi )1Ak

(Zi )] > 0}. Since C is the minimum value of a linear function over a convex set, it is
finite. Furthermore, by the construction of E , it holds that C > 0. Thus, Assumption
3.9 (ii) holds. Thus, by Theorem 3.3 (ii), the third claim follows. ��
Proof of Corollary 3.2 We show the claim of the corollary using Theorem 3.2. Note
that we have shown, in the proof of Corollary 3.1, that Assumptions 2.1–2.3, 3.2
(i)–(iii), and 3.3 hold. Thus, to apply Theorem 3.2, it remains to show Assumptions
2.4, 3.2 (iv), and 3.4–3.7.

Assumption 2.4 is satisfied by the parameterization rθ (z) = θ(1) + θ(2)z. For
Assumption 3.2 (iv), note that R� is given by

R� = {rθ : rθ = θ(1) + θ(2)z, θ ∈ �}.
Since� is convex, for any λ ∈ [0, 1], it holds that λrθ + (1 − λ)rθ ′ = rλθ+(1−λ)θ ′ ∈
R�. Thus, Assumption 3.2 (iv) is satisfied. For Assumption 3.4, note first that
rθ is twice continuously differentiable on the interior of �. Because rθ is linear,
max|α|≤2 |Dα

θ rθ (z) − Dα
θ rθ ′(z)| = (1 + z2)1/2‖θ − θ ′‖ by the Cauchy–Schwarz

inequality. By the compactness of Z , C(z) := (1+z2)1/2 is bounded. Thus, Assump-
tion 3.4 (i) is satisfied. Similarly, max|α|≤2 supθ∈� |Dα

θ rθ | ≤ max{1, |z|,C(1 +
z2)1/2} =: R(z), where C := supθ∈� ‖θ‖. By the compactness of Z and �, R
is bounded. Thus, Assumption 3.4 (ii) is satisfied. Note that the Hessian of Q(θ, s)
with respect to θ is given by 2E[(1, z)(1, z)′], which does not depend on θ nor s and
is positive definite by the assumption that V ar(Z) > 0. Thus, Assumption 3.5 is
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satisfied. Assumptions 3.6 and 3.7 are ensured by Corollary 3.1. Now the conditions
of Theorem 3.2 are satisfied. Thus, the claim of the Corollary follows. ��
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Abstract This chapter proposes new parametric model adequacy tests for possibly
nonlinear and nonstationary time series models with noncontinuous data distribu-
tion, which is often the case in applied work. In particular, we consider the cor-
rect specification of parametric conditional distributions in dynamic discrete choice
models, not only of some particular conditional characteristics such as moments or
symmetry. Knowing the true distribution is important in many circumstances, in par-
ticular to apply efficient maximum likelihood methods, obtain consistent estimates
of partial effects, and appropriate predictions of the probability of future events. We
propose a transformation of data which under the true conditional distribution leads
to continuous uniform iid series. The uniformity and serial independence of the new
series is then examined simultaneously. The transformation can be considered as an
extension of the integral transform tool for noncontinuous data. We derive asymptotic
properties of such tests taking into account the parameter estimation effect. Since
transformed series are iid we do not require any mixing conditions and asymptotic
results illustrate the double simultaneous checking nature of our test. The test statis-
tics converges under the null with a parametric rate to the asymptotic distribution,
which is case dependent, hence we justify a parametric bootstrap approximation. The
test has power against local alternatives and is consistent. The performance of the
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1 Introduction

Dynamic choice models are important econometric tools in applied macroeconomics
and finance. These are used to describe the monetary policy decisions of central banks
(Hamilton and Jorda 2002; Basu and de Jong 2007), for recession forecasting (Kauppi
and Saikkonen 2008; Startz 2008) and to model the behavior of agents in financial
markets (Rydberg and Shephard 2003). In the simplest framework, a binary dynamic
model explains the value of an indicator variable in period t, Yt ∈ {0, 1}, in terms of
an information set�t available at this period. Then Yt conditional on�t is distributed
as a Bernoulli variable with expectation pt = E(Yt |�t ) = P(Yt = 1|�t ) = F(πt )

where πt = π(�t ) summarizes the relevant information and F is a cumulative
probability distribution function (cdf) monotone increasing.Typical specifications of
the link function F are the standard normal cdf, �, and the logistic cdf.

We can describe the observed values of Yt as Yt = 1
{
Y ∗

t > 0
}

where Y ∗
t is given

by the latent variable model
Y ∗

t = πt + εt

and εt ∼ F = Fε are iid observations with zero mean.
In a general specification πt is a linear combination of a set of exogenous variables

Xt observable in t, but not necessarily contemporaneous, plus lags of Yt and πt itself,

πt = α0 + α (L)πt + δ (L) Yt + X ′
tβ,

where δ (L) = δ1L + · · · + δq Lq and α (L) = α1L + · · · + αp L p. When q = 0,
p = 1 and Fε = � this leads to the dynamic probit model of Dueker (1997),

πt = π0 + δ1Yt−1 + X ′
tβ,

and if the roots of 1 −α (L) are out of the unit circle, πt can be represented in terms
of infinite lags of Yt and Xt .

Many nonlinear extensions have been considered in the literature, such as inter-
actions with lags of Yt , to describe the state of the economy in the past,

πt = π0 + δ1Yt−1 + X ′
tβ + (Yt−1 Xt )

′ γ

or with the sign of other variables in Xt , both stressing different reaction functions in
several regimes defined in terms of exogenous variables at period t . Other specifica-
tions consider heteroskedasticity corrections, so that Var(εt ) = σ2 (�t ), for example
a two regimes conditional variance, Var(εt ) = σ2 (Yt−1) .

In the general ordered discrete choice model, the dependent variable takes J + 1
values in a set J , and the parametric distribution P(Yt = j |�t ) can be modeled
using the unobserved latent continuous dependent variable Y ∗

t . In the typical case
where Yt = j if μ j−1 ≤ Y ∗

t ≤ μ j for j ∈ J , J = {0, 1, 2, ..., J } and εt ∼ Fε,
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with μ−1 = −∞ and μJ = ∞, we have that

P(Yt = j |�t ) = Fε(μ j − πt )− Fε(μ j−1 − πt )

with α0 = 0.
Forecasting is one of the main uses of discrete choice models. In that case for

the calculation of predictions it might be necessary to resource to recursive methods
when δ (L) �= 0.However, in almost all situations parameters are unknown, but con-
ditional maximum likelihood (ML) estimation is straightforward given the binomial
or discrete nature of data, with typically well-behaved likelihoods and asymptotic
normal estimates if the model is properly specified. The existence, representation and
probability properties of these models have been studied under general conditions
by de Jong and Woutersen (2011), who also report the consistency and asymptotic
normality of ML estimates when the parametric model is correct. However, if not,
estimates will be inconsistent and predictions can be severely biased.

This leads to the need of diagnostic and goodness-of-fit techniques, which should
account for the main features of these models, discrete nature, and dynamic evolution.
The first property entails nonlinear modeling and renders invalid many methods
specifically tailored for continuous distributions. Although the latent disturbance εt

is continuous and with a well-specified distribution, it is unobservable. Simulation
methods could be used to estimate the distribution of such innovations, but we follow
an alternative route by “continuing” the discrete observations Yt , so that they have
a continuous and strictly increasing conditional distribution in [−1, J ] given �t .
This distribution inherits the dependence on a set of parameters and on a conditional
information set and can serve as a main tool to evaluate the appropriateness of the
hypothesized model.

Conditional distribution specification tests are often based on comparing para-
metric and nonparametric estimation as in Andrews (1997) conditional Kolmogorov
test, or on the integral transform (see Bai 2003; Corradi and Swanson 2006). The
former approach is developed for different data types, while the latter can be used
only for data with continuous distribution. The integral transform does not require
strong conditions on the data dependence structure, so it is very useful in testing
dynamic models. However, applying the integral transform to noncontinuous data
will not bring to uniform on [0, 1] series, and therefore this approach can not be
applied directly to dynamic discrete choice models. To guarantee that adequacy tests
based on the integral transform enjoy nice asymptotic properties we propose the fol-
lowing procedure: first, make data continuous by adding a continuous random noise
and then apply the modified conditional distribution transformation to get uniform
iid series.

The first step can be called the continuous extension of a discrete variable which
has been employed in different situations. For example Ferguson (1967) uses some
type of extension for simple hypothesis testing, Denuit and Lambert (2005) and
Neslehova (2006) use it to apply a copulas technique for discrete and discontinuous
variables. The second step is the probability integral transform (PIT) of the continued
variables, which we will call randomized PIT. Resulting uniform iid series can be



366 I. Kheifets and C. Velasco

tested using Bai (2003) or Corradi and Swanson (2006) tests. However, in some cases
these tests can not distinguish certain alternatives, so we also propose test based on
comparing joint empirical distribution functions with the product of its theoretical
uniform marginals by means of Cramer-von Mises or Kolmogorov-Smirnov (KS)
type statistics, developed by Kheifets (2011) for continuous distributions.

In a general setup, we do not know the true parameters, while the integral trans-
form using estimated parameters does not necessary provide iid uniform random
variates. Hence, asymptotic properties and critical values of the tests with estimated
parameters have to be addressed. The estimation effect changes the asymptotic dis-
tribution of the statistics and makes it data dependent. Andrews (1997) proves
that parametric bootstrap provides correct critical values in this case using linear
expansion of the estimation effect, which arises naturally under the ML method. The
idea of orthogonal projecting the test statistics against the estimation effect due to
Wooldridge (1990) has been used in parametric moment tests, see Bontemps and
Meddahi (2005). The continuous version of the projection, often called Khmaladze
(1981) transformation, was employed in the tests of Koul and Stute (1999) to specify
the conditional mean, and of Bai and Ng (2001), Bai (2003), Delgado and Stute
(2008) to specify the conditional distribution. These projection tests are not model
invariant since they require to compute conditional mean and variance derivatives,
and also projections may cause a loss in power. In this paper, we apply a bootstrap
approach instead. In the case of ordered choice models an extensive Monte Carlo
comparison of specification tests has been done by Mora and Moro-Egido (2007)
in a static cross-section context. They study two types of tests based on moment
conditions and on comparison of parametric and nonparametric estimates.

Despite that there is some work on nonstationary discrete data models, cf. Phillips
and Park (2000), we stress stationary situations, but some ideas could be extended
to a more general setup as far as the conditional model provides a full specification
of the distribution of the dependent discrete variable.

The contributions of this paper are following: (1) a new specification test for
dynamic discontinuous models is proposed, (2) we show that the test is invariant to
the choice of distribution of the random noise added, (3) parameter estimation effect
of the test is studied, (4) under standard conditions we show the asymptotic properties
of such tests, and (5) since asymptotic distribution is case dependent, critical values
can not be tabulated and we prove that a bootstrap distribution approximation is valid.

The rest of the paper is organized as follows. Section 2 introduces specification
test statistics. Asymptotic properties and bootstrap justification provided in Sect. 3.
Monte Carlo experiments are reported in Sect. 4. Section 5 concludes.

2 Test Statistics

In this section we introduce our goodness-of-fit statistics. Suppose that a sequence
of observations (Y1, X1), (Y2, X2), ..., (YT , XT ) is given. Let �t = {Xt , Xt−1,

. . . ; Yt−1,Yt−2, . . .} be the information set at time t (not including Yt ).
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We consider a family of conditional cdf’s F(y|�t , θ), parameterized by θ ∈ �,
where � ⊆ RL is a finite dimensional parameter space. We could allow for non-
stationarity by permitting the change in the functional form of the cdf of Yt using
subscript t in Ft . Our null hypothesis of correct specification is

H0 : The conditional distribution of Yt conditional on �t is in the parametric
family F(y|�t , θ) for some θ0 ∈ �.

For example, for dynamic ordered discrete choice model the null hypothesis would
mean that ∃θ0 ∈ �, ∀ j = 0, . . . , J, P (Yt = j |�t ) = p j (�t , θ0), i.e. that all
conditional probabilities are in a given parametric family.

For further analysis, we assume that the support of the conditional distributions
F(y|�t , θ) is a finite set of nonnegative integers {0, . . . , J } and F(y|�t , θ) =∑

j≤y PF ( j |�t , θ), where PF is the probability function at the discrete points.
The first step is to obtain a continuous version of Y . For any random variable Z ∼

Fz with support in [0, 1] and Fz continuous (but not necessary strictly increasing)
define the continued by Z version of Y ,

Y † = Y + Z − 1.

Then the distribution of the continued version of Y is

F† (y|�t ) = P
(

Y † ≤ y|�t

)
= F ([y]|�t )+ Fz(y − [y])P ([y] + 1|�t ) , (1)

which is strictly increasing on [−1, J ] . The typical choice for Z is the uniform in
[0, 1] , so that

F† (y|�t ) = F([y]|�t )+ (y − [y])P([y] + 1|�t ). (2)

The binary choice case renders F† (y|�t ) = (y −[y]) (1 − pt ) for y ∈ [−1, 0) and
F† (y|�t ) = (1 − pt )+ (y − [y])pt for y ∈ [0, 1]. Note, that F† coincides with F
in the domain of F . We state next an “invariance property”: for our purpose, it does
not matter how to continue Y and what distribution Fz of the noise Z to add. The unit
support of Z is needed to get a simple expression for F† in (1), otherwise the result-
ing distribution will be a convolution F† (y|�t ) = ∑J

j=0 Fz (y + 1 − j)P ( j |�t ).
Continuation idea has been used to deal with discrete distributions, for example, to
work with copulas with discrete marginals as in Denuit and Lambert (2005).

The following proposition generalizes results about the PIT.

Proposition 1 (a) Under H0 random variables Ut = F†(Y †
t |�t , θ0)are iid uniform;

(b) Invariant property of randomized PIT: realizations of Ut are the same for any
distribution Fz in (1) both under H0 and under the alternative.

Part (a) is a property of usual PIT with a continuous distribution F†. Part (b) that
realizations of Ut are the same, means the following. Consider continuations of Yt

by arbitrary Z ∼ Fz and uniform Zu ∼ FU . Fix realizations {yt }, {zt } and {zut } from
respective distributions. If zut = Fz(zt ), then
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F†Fz (yt + zt − 1|�t , θ0) = F†FU (yt + zut − 1|�t , θ0),

where F†Fz stresses dependence of F† on Fz in (1), F†FU is as F† in (2), continued by
uniform, and�t denotes here realized past. Therefore, although a continued variable
Y †

t and its distribution F† depends on Fz , F†(Y †
t |�t , θ0) is not and we can always

use uniform variables Z for continuation without affecting any properties of tests
based on Ut .

Now we can use the fact that under the null hypothesis Ut = F†(Y †
t |�t , θ0),

t = 1, . . . , T , are uniform on [0,1] and iid random variables, so that P(Ut−1 ≤
r1,Ut−2 ≤ r2, . . . ,Ut−p ≤ rp) = r1r2 . . . rp, for r = (

r1, . . . , rp
) ∈ [0, 1]p. This

motivates us to consider the following empirical processes

VpT (r) = 1√
T − (p + 1)

T∑
t=p+1

⎡
⎣ p∏

j=1

I (Ut− j ≤ r j )− r1r2 . . . rp

⎤
⎦ .

If we do not know θ0 either {(Yt , Xt ), t ≤ 0}, we approximate Ut with Ût =
F†

t (Y
†
t |�̃t , θ̂) where θ̂ is an estimator of θ0 and the truncated information set is

�̃t = {Xt , Xt−1, . . . , X1; Yt−1,Yt−2, . . . ,Y1} and write

V̂pT (r) = 1√
T − (p + 1)

T∑
t=p+1

⎡
⎣ p∏

j=1

I (Ût− j ≤ r j )− r1r2 . . . rp

⎤
⎦ (3)

and
DpT = �(V̂pT (r))

for any continuous functional �(·) from �∞([0, 1]p), the set of uniformly bounded
real functions on [0, 1]p, to R. In particular we use the Cramer-von Misses (CvM)
and Kolmogorov Smirnov test statistics

DCvM
pT =

∫
[0,1]p

V̂pT (r)
2dr or DKS

pT = max[0,1]p

∣∣∣V̂pT (r)
∣∣∣ . (4)

One further possibility is to test for j-lag pairwise independence, using the process

V̂2T, j (r) = 1√
T − j

T∑
t= j+1

[
I (Ût ≤ r1)I (Ût− j ≤ r2)− r1r2

]
, (5)

and corresponding test statistics DCvM
2T, j and DKS

2T, j , say.
We can aggregate across p or j summing possibly with different weights k(·),

obtaining generalized statistics
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ADPT =
T −1∑
p=1

k(p)DpT , or ADJT =
T −1∑
j=1

k( j)D2T, j . (6)

For p = 1, DKS
1T delivers a generalization of Kolmogorov test to discrete distribu-

tions. Usually, this test captures general deviations of marginal distribution but lacks
power if only dynamics is misspecified. In particular, it does not have power against
alternatives where Ut are uniform on [0,1] but not independent. For general p, VpT

delivers a generalization of Kheifets (2011) to discrete distributions. This test should
capture both deviations of marginal distribution and deviations in dynamics.

A more direct approach is based in Box and Pierce (1970) type of statistics, we
could consider

BPUm := T
m∑

j=1

ρ̂T,U ( j)2 ,

m = 1, 2, . . . , and ρ̂T,U ( j) are the sample correlation coefficients of the U ′
t s at

lag j . Noting that Ut should be uniform continuous iid random variables under the
null of correctly specified model, but might be correlated under alternative hypothesis
of wrong specification, BPUm is a good basis to design goodness-of-fit tests. This idea
is related to the tests of Hong (1998). Alternatively, we can check autocorrelations
of Gaussian residuals �(Ut )

BPNm := T
m∑

j=1

ρ̂T,�(U ) ( j)2 ,

and normality of �(Ut ) with Jarque-Bera test (JB). In addition we can check auto-
correlations of discrete innovations,

et = Yt − E [Yt |�t ]

(Var [Yt |�t ])1/2
,

which are just the usual standardized probit residuals. We can define

BPDm := T
m∑

j=1

ρ̂T,e ( j)2

and other statistics based on autocorrelations of squares of different types of residuals.
The asymptotic distribution of these statistics can be approximated by chi square
distributions when the true parameters θ0 are known. Unlike tests based on empirical
process, these tests can not capture some alternatives, for example if misspecification
involves only higher order moments.

Parameter estimation affects the asymptotic distribution of these statistics, as well
as that of those tests based on the empirical distribution of the U ′

t s. There are different
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bootstrap and sampling techniques to approximate asymptotic distribution, see for
example Shao and Dongsheng (1995), Politis et al. (1999). Since under H0 we know
the parametric conditional distribution, we apply parametric bootstrap to mimic the
H0 distribution. We introduce the algorithm now for statistics �(V̂2T ).

1. Estimate model with initial data (Yt , Xt ), t = 1, 2, . . . , T , get parameter estimator
θ̂, get test statistic �(V̂2T ).

2. Simulate Y ∗
t with F(·|�∗

t , θ̂) recursively for t = 1, 2, . . . , T , where the bootstrap
information set is �∗

t = (Xt , Xt−1, . . . ,Y ∗
t−1,Y ∗

t−2, . . .).

3. Estimate model with simulated data Y ∗
t , get θ∗, get bootstrapped statistics�(V̂ ∗

2T ).
4. Repeat 2–3 B times, compute the percentiles of the empirical distribution of the

B boostrapped statistics.
5. Reject H0 if �(V̂2T ) is greater than the corresponding (1 − α)th percentile.

We will prove that �(V̂ ∗
2T ) has the same limiting distribution as �(V̂2T ). Boot-

strapping other statistics is similar.

3 Asymptotic Properties of Specification Tests

In this section, we derive asymptotic properties of the statistics based on V2T . We
start with the simple case when we know parameters, then study how the asymptotic
distribution changes if we estimate parameters. We provide analyses under the null,
under the local and fixed alternatives. We first state all necessarily assumptions and
propositions, then discuss them.

Let ‖ ·‖ denote Euclidean norm for matrices, i.e. ‖A‖ = √
tr(A′ A) and for ε > 0,

B(a, ε) is an open ball in RL with the center in the point a and the radius ε. In
particular, for some M > 0 denote BT = B

(
θ0,MT −1/2

) = {θ : ‖θ − θ0‖ ≤
MT −1/2}.

For any discrete distributions G and F , with probability functions PG and PF ,
and r ∈ [0, 1] define

d (G, F, r) = G
(

F−1 (r)
)

− F
(

F−1 (r)
)

+ r − F
(
F−1(r)

)
PF

(
F−1(r)+ 1

) (
PG

(
F−1(r)+ 1

)
− PF

(
F−1(r)+ 1

))
.

We have d (F, F, r) = 0, but d (G, F, r) is not symmetric in G and F .

Assumption 1 Uniform boundedness away from zero: ∀ε > 0, ∃δ > 0, such that
|F(0|�t , θ)| > ε and |F( j |�t , θ)− F( j −1|�t , θ)| > ε for j = 1, . . . , J uniformly
in θ ∈ B(θ0, δ).

Assumption 2 Smoothness with respect to parameters:
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(2.1)

E max
t=1,...,T

sup
u∈BT

max
y

|F (y|�t , u)− F (y|�t , θ0)| = O
(

T −1/2
)
.

(2.2) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞) and ∀δ > 0

max
y

1√
T

T∑
t=1

sup
||u−v||≤M2T −1/2−δ

u,v∈BT

|F (y|�t , u)− F (y|�t , v)| = op (1) .

(2.3) ∀M ∈ (0,∞), there exists a uniformly continuous (vector) function h(r) from
[0, 1]2 to RL , such that

sup
v∈BT

sup
r∈[0,1]2

∣∣∣∣∣
1√
T

T∑
t=2

ht (r, v)− h(r)′
√

T (θ0 − v)

∣∣∣∣∣ = op(1),

where

ht (r, v) = d (F (·|�t−1, θ0) , F (·|�t−1, v) , r2) r1

+ d (F (·|�t , θ0) , F (·|�t , v) , r1) I (F (Yt−1|�t−1, θ0) ≤ r2) .

Assumption 3 A Linear expansion of the estimator: when the sample is generated
by the null Ft (y|�t , θ0), the estimator θ̂ admits a linear expansion

√
T (θ̂ − θ0) = 1√

T

T∑
t=1

� (Yt ,�t )+ op(1), (7)

with EFt (� (Yt ,�t ) |�t ) = 0 and 1
T

∑T
t=1 � (Yt ,�t ) � (Yt ,�t )

′ pFt→ �.

Dynamic probit/logit and general discrete choice models considered in Introduc-
tion can easily be adjusted to satisfy all these assumptions. Discrete support allows
a simple analytical closed form of conditional distribution of continued variable by
any continuous random variable on unit support as in (2). Assumption 1 in partic-
ular requires that F(0|�t , θ) and F( j |�t , θ) − F( j − 1|�t , θ) for j = 1, . . . , J
are bounded away from zero uniformly around θ0. To study parameter estimation
effect we need to assume some smoothness of the distribution with respect to the
parameter in Assumption 2 and a linear expansion of the estimator in Assumption 3.
Note, the smoothness of the distribution with respect to the parameter is preserved
after continuation, therefore Assumption 2 is similar to continuous case in Kheifets
(2011); local Lipschitz continuity or existence of uniformly bounded first deriv-
ative of the distribution w.r.t. parameter is sufficient. For bootstrap we will need
to strengthen Assumption 3 (see Assumption 3B below), although both conditions
are standard and satisfied for many estimators, for example for MLE. Note, that to
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establish the convergence of the process V2T (with known θ0) under the null (the
following Proposition 2), we do not need these assumptions.

We now describe the asymptotic behavior of the process V2T (r) under H0.
Denote by “⇒” weak convergence of stochastic processes as random elements of
the Skorokhod space D

([0, 1]2
)
.

Proposition 2 Under H0
V2T ⇒ V2∞,

where V2∞(r) is bi-parameter zero mean Gaussian process with covariance

Cov2∞(r, s) = (r1 ∧ s1)(r2 ∧ s2)+ (r1 ∧ s2)r2s1 + (r2 ∧ s1)r1s2 − 3r1r2s1s2.

To take into account the estimation effect on the asymptotic distribution, we use
a Taylor expansion to approximate V̂2T (r) with V2T (r),

V̂2T (r) = V2T (r)+ √
T

(
θ̂ − θ0

)′
h(r)+ op(1)

uniformly in r . To identify the limit of V̂2T (r), we need to study limiting distribution
of

√
T (θ̂ − θ0), using the expansion from Assumption 3. Define

CT (r, s, θ) = E

(
V2T (r)

1√
T

∑T
t=1 � (Yt ,�t )

)(
V2T (s)

1√
T

∑T
t=1 � (Yt ,�t )

)′

and let (V2∞(r),ψ′∞)′ be a zero mean Gaussian process with covariance function
C(r, s, θ0) = limT →∞ CT (r, s, θ0). Dependence on θ on right hand side (rhs) comes
through Ut and � (·, ·).

Suppose the conditional distribution function H(y|�t ) is not in the parametric
family F(y|�t , θ) but has the same support. For any T0 ∈ {0, 1, 2, . . . , } and T ≥ T0
define conditional on �t conditional df

GT (y|�t , θ) =
(

1 −
√

T0√
T

)
F(y|�t , θ)+

√
T0√
T

H(y|�t ).

Now we define local alternatives:
H1T : Conditional cdf of Yt is equal to GT (y|�t , θ0) with T0 �= 0.
Conditional cdf GT (y|�t , θ0) allow us to study all three cases: H0 if T0 = 0,

H1T if T = T0, T0 + 1, T0 + 2, . . . and T0 �= 0 and H1 if we fix T = T0. In the
next proposition we provide the asymptotic distribution of our statistics under the
null and under the local alternatives.

Proposition 3 a) Suppose Assumptions 1–3 hold. Then under H0

�(V̂2T )
d→ �(V̂2∞),
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where V̂2∞(r) = V2∞(r)− h(r)′ψ∞.
b) Suppose Assumptions 1–3 hold. Then under H1T

�(V̂2T )
d→ �

(
V̂2∞ + √

T0k − √
T0ξ

′h
)
,

where

k(r) = plim
T →∞

1

T

T∑
t=2

{d (H (·|�t−1) , F (·|�t−1, θ0) , r2) r1

+ d (H (·|�t ) , F (·|�t , θ0) , r1) I (F (Yt−1|�t−1, θ0) ≤ r2)} ,

and

ξ = plim
T →∞

1

T

T∑
t=1

� (Yt ,�t ) . (8)

Under GT , the random variables Ut = F†(Y †
t |�t , θ0) are not anymore iid, instead

U∗
t = G†

T (Y
†
t |�t , θ0) are uniform iid. The first term in k(r) controls for the lack

of uniformity of Ut (and it is similar to Bai’s (2003) k(r)), it is zero when Ut are
uniform. The second term in k(r) adds control for independence of Ut , cf. Kheifets
(2011).

Under the alternative we may have also that (7) is not centered around zero, since

EGT (� (Yt ,�t ) |�t ) =
√

T0√
T

EH (� (Yt ,�t ) |�t ), therefore ξ may be nonzero, which
stands for information from estimation. This term does not appear in Bai (2003)
method, since his method projects out the estimation effect.

For the case of the one parameter empirical process, we can provide the following
corollary, which is similar to Bai (2003)’s single parameter results.

Corollary 1 a) Suppose Assumptions 1–3 hold. Then under H0

�(V̂1T (·)) d→ �(V̂2∞(·, 1)),

where V̂1∞(·) = V1∞(·)− h(·, 1)′ψ∞ and V1∞(·) = V2∞(·, 1).
b) Suppose Assumptions 1–3 hold. Then under H1T

�(V̂1T (·)) d→ �(V̂1∞ (·)+ √
T0k1 (·)− √

T0h(·, 1)′ξ),

where for r ∈ [0, 1]

k1(r) = plim
T →∞

1

T

T∑
t=2

d (H (·|�t ) , F (·|�t , θ0) , r) .
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Note then that tests based on V̂1T are not consistent against alternatives for which
k1 = 0 and h(·, 1) = 0 but k �= 0 or h(·, 1) �= 0 on some set of positive measure.

We will justify our bootstrap procedure now, i.e., we prove that �(V̂ ∗
2T ) has

the same limiting distribution as �(V̂2T ). We say that the sample is distributed
under {θT : T ≥ 1} when there is a triangular array of random variables
{YT t : T ≥ 1, t ≤ T } with (T, t) element generated by F(·|�T t , θT ), where
�T t = (Xt−1, Xt−2, . . . ,YT t−1,YT t−2, . . .). Similar arguments can be applied to
other statistics.

Assumption 3B For all nonrandom sequences {θT : T ≥ 1} for which θT → θ0,
we have

√
T (θ̂ − θT ) = 1√

T

T∑
t=1

� (YT t ,�T t )+ op(1),

under {θT : T ≥ 1}, where E [� (YT t ,�T t ) |�T t ] = 0 and

1

T

T∑
t=1

� (YT t ,�T t ) � (YT t ,�T t )
′ p→ �.

Note that the function � (·, ·) now depends on θT and is assumed to be the same
as in Assumption 3. We require that estimators of close to θ0 points have the same
linear representation as the estimator of θ0 itself.

Proposition 5 Suppose Assumptions 1, 2, and 3B hold. Then for any nonrandom
sequence {θT : T ≥ 1} for which θT → θ0, under {θT : T ≥ 1},

�(V̂2T (r))
d→ �(V̂2∞(r)).

4 Monte Carlo Simulation

In this section, we investigate the finite sample properties of our bootstrap tests
using Monte Carlo exercise. We use a simple dynamic Probit model with one exoge-
nous regressor with autoregressive dynamics. We consider three specifications of
dynamics

Static model : πt = π0 + βXt ,

Dynamic model : πt = π0 + δ1Yt−1 + βXt ,

Dynamic model with interactions : πt = π0+δ1Yt−1+γ1Yt−1 Xt+βXt , γ1 = −2β,
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Table 1 Different scenarios
for Monte Carlo experiments

DGP Null

1 probti static probit static
2 probit dynamic probit dynamic
3 probit interactions probit interactions
4 logit static probit static
5 chi2 static probit static
6 logit dynamic probit static
7 chi2 dynamic probit static
8 logit interactions probit dynamic
9 chi2 interactions probit dynamic
10 logit interactions probit static
11 chi2 interactions probit static

where in all specifications Xt follows an AR(1) process,

Xt = α1 Xt−1 + et , et ∼ I I N (0, 1) ,

and we set π0 = 0,β = 1, δ1 = 0.8,α1 = 0.8.
We try 11 different scenarios of data generating processes (DGP) and null hypothe-

ses (see Table 1). In the first three, we study the size properties of static, dynamic,
and dynamic with interactions probit models. Other scenarios check power when
dynamics and/or marginals are misspecified. We take logit and

(
χ2

1 − 1
)
/21/2 as

alternative distributions. We use sample sizes T = 100 (Table 2), 300 (Table 3)
and 500 (Table 4) with 1,000 replications. To estimate the Bootstrap percentages
of rejections we use a Warp bootstrap Monte Carlo (see Giacomini et al. 2007) for
all considered test statistics. For tests based on “continued” residuals we consider
one-parameter (p = 1) and two-parameter empirical processes (p = 2) with j = 1
and j = 2 lags and CvM and KS criterions. To make the results more readable, we
denote them as CvM0 = DCvM

1T , CvM1 = DCvM
2T,1 , CvM2 = DCvM

2T,2 and KS0 = DKS
1T ,

KS1 = DKS
2T,1, KS2 = DKS

2T,2. We consider Box-Pierce type tests for Gaussian and
discrete residuals with m = 1, 2, 25. We also check normality of Gaussian residu-
als with a bootstrapped JB. The results of empirical process tests with further lags
j = 3, 4, 5 and correlation tests on uniform residuals do not provide additional
information and are omitted.

Now we discuss the performance of empirical process based tests in comparison
with traditional correlation tests. For T = 100 almost all test statistics are slightly
undersized (cases 1–3). The situation improves with larger T , and CvM statistics
approach faster to nominal rates than KS. Overall, empirical size at T = 500 is very
good. The situation with power is not unambiguous. No test can capture static logit
alternative to the null hypothesis of static probit model even at T = 500 (case 4).
On the other hand, when static χ2 alternative to the null hypothesis of static probit is
considered (case 5), there is some power at T = 300 which improves with T = 500
for all empirical process based tests. Since under the null and under the alternative
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Table 2 Percentage of rejections of test statistics with T = 100

CvM0 CvM1 CvM2 KS0 KS1 KS2 BPN1 BPN2 BPN25 JB BPD1 BPD2 BPD25

1 10 % 8.8 7.4 10.4 8.4 10.1 9.2 9.5 9.6 9.3 8.3 10.1 10.6 8.8
5 % 3.5 4.3 4.3 3.9 4.8 4.7 4.6 3.7 3.8 4.4 5.5 5.1 3.4
1 % 0.3 0.9 0.4 0.5 1.1 1.7 1.5 0.8 0.3 2.1 0.8 0.6 0.3

2 10 % 7.9 8.3 8.7 7.0 9.6 9.2 9.0 10.6 7.0 11.2 9.5 10.7 12.8
5 % 3.0 3.6 4.0 2.8 4.9 4.5 6.0 4.0 2.1 5.9 4.0 4.4 6.1
1 % 0.0 0.4 0.1 0.8 1.2 1.0 0.9 1.3 0.3 1.5 0.4 1.1 0.7

3 10 % 8.9 10.0 9.5 7.7 10.6 9.4 10.1 11.3 8.9 10.7 9.2 9.2 10.1
5 % 4.1 4.1 3.9 3.6 4.9 5.0 5.5 5.5 4.5 5.4 5.5 3.8 5.4
1 % 0.1 0.1 0.2 1.1 0.5 0.8 1.2 1.1 0.5 1.1 0.6 0.8 0.5

4 10 % 8.1 9.0 7.6 8.4 8.9 9.9 7.2 8.8 7.5 9.9 9.0 9.2 9.0
5 % 3.9 4.6 3.5 3.6 4.1 3.7 3.5 4.1 3.6 3.0 5.1 4.6 4.1
1 % 0.5 0.4 0.3 0.6 0.6 0.6 1.2 0.7 0.6 0.5 1.0 1.9 0.7

5 10 % 10.4 9.5 10.2 12.0 10.1 11.1 9.2 11.5 10.7 20.3 8.0 7.5 9.2
5 % 4.9 6.1 5.6 5.9 5.2 5.7 5.7 6.3 6.1 12.6 4.6 3.7 4.8
1 % 0.5 0.9 0.3 0.8 1.2 0.3 1.0 1.0 0.7 4.3 1.8 1.6 0.9

6 10 % 9.5 11.0 7.6 9.2 9.8 9.3 19.1 15.4 11.7 11.0 43.0 35.3 16.8
5 % 4.6 4.9 3.5 3.5 5.2 4.6 10.7 9.0 6.6 4.7 29.4 20.5 9.4
1 % 0.4 0.5 0.8 0.5 1.4 0.9 2.9 2.3 0.8 0.9 11.0 5.7 2.9

7 10 % 10.3 10.9 9.4 9.2 10.0 9.3 28.3 26.4 14.5 13.7 60.0 50.6 24.6
5 % 4.8 5.2 4.7 3.9 4.7 5.2 20.6 16.4 8.5 7.7 47.1 37.0 16.7
1 % 0.1 1.5 0.1 1.2 1.3 0.5 9.4 6.0 2.6 2.3 26.0 16.4 5.6

8 10 % 9.7 9.2 13.7 9.9 10.1 13.0 14.0 26.6 16.2 9.9 46.2 57.4 30.1
5 % 4.0 3.7 7.8 3.6 5.5 7.8 6.5 18.8 10.1 3.8 36.9 45.1 18.6
1 % 0.8 0.8 2.5 0.8 1.1 1.3 0.6 6.4 2.3 0.3 17.1 27.6 5.0

9 10 % 14.4 16.9 29.1 16.0 20.6 34.4 18.1 55.7 33.5 20.0 79.0 82.2 64.9
5 % 8.9 10.0 21.1 9.9 12.5 18.5 11.2 48.4 23.1 12.4 72.9 81.0 59.8
1 % 0.9 1.8 3.9 1.4 4.2 3.8 3.4 26.9 11.6 3.1 58.1 77.2 43.8

10 10 % 8.6 14.7 18.1 7.6 15.5 13.0 28.0 42.0 21.3 9.2 50.1 79.8 43.6
5 % 2.8 8.5 9.5 3.8 7.6 6.6 17.5 29.0 12.9 3.9 35.7 69.8 30.4
1 % 0.6 1.4 2.1 0.4 1.3 0.5 5.3 12.4 4.4 0.3 22.4 45.6 10.7

11 10 % 9.0 28.1 33.6 8.1 29.2 28.4 53.1 85.1 60.3 8.8 72.0 99.9 94.2
5 % 3.4 17.6 19.8 3.3 17.1 11.8 40.7 76.3 43.1 5.3 61.6 99.7 90.5
1 % 0.2 6.1 4.2 0.2 3.4 1.4 23.2 57.1 22.0 0.6 40.8 98.4 72.3

we have static models, correlation tests do not have power. Normality test (JB) is
doing well only in the latter case. When there is a slight dynamic misspecification
added to logit (case 6), CvM1 and KS1 improve, but when it is added to χ2 our tests
and JB doing worse (case 7). Correlation tests, on the contrary display power against
these dynamic alternatives. When the alternative has dynamic interactions, and the
null is a dynamic probit (cases 8 and 9), all tests (but JB for logit) are doing well, and
even better if higher lags are taken into account. Finally, when dynamic interactions
are taken versus static model (cases 10 and 11), power is very good, and increases
when more lags are considered. Exceptions are “marginal tests” CvM0, KS0, and JB.
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Table 3 Percentage of rejections of test statistics with T = 300

CvM0 CvM1 CvM2 KS0 KS1 KS2 BPN1 BPN2 BPN25 JB BPD1 BPD2 BPD25

1 10 % 8.3 9.2 9.2 9.1 9.0 10.4 8.0 8.3 8.6 8.0 8.3 8.2 10.2
5 % 4.1 4.7 4.6 5.2 4.8 4.6 3.6 3.9 4.4 2.7 4.2 3.1 4.8
1 % 0.7 1.0 0.6 0.8 0.6 0.4 0.6 0.7 1.1 0.6 0.6 0.6 1.0

2 10 % 9.3 8.9 10.2 9.3 9.8 11.6 7.6 10.0 9.7 9.6 9.0 6.9 7.4
5 % 5.5 4.4 5.9 5.2 4.9 6.4 3.8 4.6 4.8 3.8 3.7 3.6 3.2
1 % 1.0 1.1 0.9 1.4 1.1 0.9 0.5 0.7 1.4 0.7 0.5 0.2 0.6

3 10 % 8.5 12.3 8.7 8.7 12.2 9.9 8.1 9.9 10.1 9.0 10.1 9.4 13.5
5 % 4.5 5.1 5.1 3.3 5.4 5.3 4.4 5.2 5.9 4.2 5.3 4.2 5.1
1 % 1.1 1.0 1.5 1.2 0.6 0.9 0.9 1.0 1.3 0.5 0.6 1.2 1.5

4 10 % 9.9 10.2 9.2 9.5 10.8 9.8 8.6 9.3 10.0 11.2 8.5 9.6 8.5
5 % 4.8 4.9 4.6 5.3 5.2 4.9 4.4 5.1 4.0 6.1 3.3 3.2 3.6
1 % 0.9 1.1 0.6 0.9 1.3 1.1 0.5 0.5 1.0 0.7 0.8 0.5 0.9

5 10 % 16.5 15.1 14.9 15.8 14.9 14.4 11.8 11.2 8.7 41.4 6.0 7.2 9.0
5 % 8.8 7.9 8.3 9.6 7.5 8.5 5.0 6.1 4.1 30.4 4.6 6.3 6.7
1 % 1.6 2.0 1.8 1.8 2.2 1.4 0.9 1.4 1.0 9.6 3.0 3.1 2.9

6 10 % 8.8 15.4 11.3 9.0 13.7 10.1 38.3 29.9 16.0 9.6 79.1 69.0 29.2
5 % 4.7 9.8 4.8 5.4 7.9 6.1 25.1 21.8 8.5 5.8 65.2 58.1 19.3
1 % 0.5 2.0 0.3 0.6 1.5 1.5 11.8 5.8 1.5 0.7 43.7 36.6 6.8

7 10 % 11.8 12.2 14.4 12.3 8.8 13.2 42.5 35.1 15.6 24.5 55.6 47.1 24.0
5 % 7.0 5.9 9.4 6.2 4.1 6.3 31.2 25.0 9.9 16.3 44.6 39.5 15.0
1 % 1.1 1.3 1.9 1.2 1.2 2.0 15.3 9.2 2.6 3.3 35.3 20.2 5.8

8 10 % 12.5 18.3 44.9 13.0 17.2 44.0 19.5 67.0 30.0 12.6 91.4 96.5 72.0
5 % 6.3 12.5 31.6 6.4 10.3 28.9 10.6 55.7 19.3 6.2 85.6 94.0 59.5
1 % 1.0 2.6 9.8 0.9 2.7 8.5 2.7 31.3 7.4 1.4 71.4 87.7 37.3

9 10 % 32.9 42.5 81.0 29.5 46.9 88.8 34.3 92.0 71.3 24.8 99.0 99.7 98.8
5 % 17.3 25.9 65.2 19.7 36.3 80.2 25.2 88.8 64.7 17.6 98.0 99.6 97.8
1 % 3.0 7.8 36.3 3.9 14.3 56.4 12.3 77.1 42.1 4.0 94.5 99.1 95.6

10 10 % 8.7 33.1 44.9 9.7 28.3 33.7 51.9 83.2 49.4 9.3 81.7 99.6 84.6
5 % 4.4 22.4 30.0 4.7 17.7 21.4 36.8 74.5 35.2 5.5 69.5 98.8 78.7
1 % 1.1 9.0 11.1 0.8 6.8 5.2 18.2 54.0 17.0 1.2 37.9 97.1 48.1

11 10 % 8.6 46.2 76.7 9.1 46.7 76.9 63.8 99.5 89.7 11.0 81.5 100.0 100.0
5 % 4.3 32.8 63.9 4.3 36.1 67.8 51.0 98.8 81.8 5.6 68.2 100.0 100.0
1 % 0.4 11.7 37.3 0.4 18.4 42.8 31.7 94.9 63.9 0.9 39.4 100.0 99.3

To summarize, dynamic misspecification can be captured well by empirical process
statistics and correlation tests. Misspecification in marginals, on the contrary, can not
be distinguished at all by correlation tests but empirical process statistics, possibly
multi-parameter, still work, although further research in improving power of these
tests is needed.

To develop our omnibus type tests we introduce additional continuous noise.
An important question is the effect of this noise on the power of the tests. Since
correlation tests based on discrete residuals BPD j do not use additional noise, while
correlation tests based on continuous residuals BPN j do, we can use the difference in
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Table 4 Percentage of rejections of test statistics with T = 500

CvM0 CvM1 CvM2 KS0 KS1 KS2 BPN1 BPN2 BPN25 JB BPD1 BPD2 BPD25

1 10 % 10.2 8.1 9.2 9.8 8.6 8.0 11.9 11.7 11.1 11.3 10.1 8.6 9.8
5 % 4.7 4.5 4.9 4.2 3.9 4.3 6.0 5.4 5.6 5.3 5.2 4.7 4.7
1 % 0.5 1.0 0.7 0.7 0.6 1.0 0.6 0.8 0.8 1.2 1.1 0.4 1.1

2 10 % 9.1 8.0 8.3 10.2 8.6 10.7 11.6 11.5 8.4 9.2 8.6 9.9 10.6
5 % 4.3 4.9 4.4 4.7 3.8 4.1 5.6 4.8 3.9 4.6 4.3 5.7 5.6
1 % 0.7 0.8 0.8 0.5 0.2 0.6 0.6 1.4 0.5 0.5 1.4 0.8 0.8

3 10 % 9.1 8.9 9.9 9.2 8.6 8.5 10.0 11.6 10.7 11.0 10.7 10.2 10.0
5 % 4.1 3.9 3.1 4.8 4.5 4.9 5.7 7.1 5.4 5.2 4.6 5.3 4.8
1 % 0.7 1.1 1.0 1.0 0.4 0.4 1.1 1.0 1.9 1.5 1.5 2.0 1.6

4 10 % 10.7 8.9 10.9 10.7 10.8 8.8 11.5 9.2 10.2 7.8 10.0 10.4 12.3
5 % 5.2 4.3 4.8 5.2 3.9 4.1 6.1 3.5 5.2 4.4 5.1 6.7 7.2
1 % 0.4 0.8 1.0 0.7 0.6 0.4 0.7 1.1 0.7 0.7 1.4 1.3 1.9

5 10 % 17.1 16.8 17.0 20.0 19.4 17.8 11.8 12.1 8.5 53.2 7.9 8.0 14.0
5 % 11.4 10.0 9.7 13.4 12.0 12.1 4.4 5.5 3.8 45.1 5.6 5.4 9.1
1 % 3.6 3.7 3.2 4.5 4.9 3.3 1.3 1.7 0.7 23.6 3.4 3.7 5.3

6 10 % 8.7 17.1 9.8 10.2 15.5 8.9 46.1 36.2 17.6 9.3 88.7 81.2 42.0
5 % 5.3 8.9 4.9 4.9 6.9 3.4 32.9 27.3 11.8 3.7 82.9 69.0 y29.5
1 % 0.6 1.5 1.0 0.9 1.1 0.8 17.2 8.9 2.4 0.6 53.0 46.8 8.5

7 10 % 15.2 11.9 14.8 13.3 11.3 15.9 39.9 36.3 18.0 38.0 53.7 42.6 21.5
5 % 8.1 5.6 10.8 7.5 4.8 8.0 28.5 28.0 10.6 27.9 41.0 34.4 16.5
1 % 2.2 1.3 2.8 2.5 1.7 3.0 12.0 9.4 3.0 8.2 18.2 19.5 9.4

8 10 % 22.6 34.0 90.1 25.1 35.9 92.9 23.7 97.6 76.7 10.0 99.9 100.0 99.6
5 % 12.6 23.3 83.8 14.7 25.9 86.5 16.7 95.9 65.1 5.0 99.7 100.0 99.2
1 % 3.4 7.6 53.9 4.0 10.4 65.0 5.1 87.6 44.7 1.1 99.2 99.9 97.1

9 10 % 56.1 73.2 98.8 58.3 78.1 99.6 62.6 99.5 96.9 30.4 100.0 100.0 100.0
5 % 39.9 59.9 97.0 41.9 69.9 98.8 51.2 99.3 95.4 20.5 100.0 100.0 100.0
1 % 13.4 38.7 88.5 16.1 48.2 95.6 31.1 98.6 91.4 10.7 100.0 100.0 99.8

10 10 % 9.9 58.4 90.5 10.3 52.8 88.7 74.8 99.6 93.6 7.9 98.7 100.0 100.0
5 % 5.2 43.1 82.2 5.0 38.2 79.8 65.2 99.3 89.4 4.5 95.9 100.0 100.0
1 % 1.1 14.3 59.4 0.6 14.1 39.6 44.5 97.3 78.0 1.3 86.0 100.0 99.7

11 10 % 10.0 74.7 99.1 11.3 81.3 98.0 86.8 100.0 100.0 9.4 99.6 100.0 100.0
5 % 3.6 62.5 96.7 4.8 71.3 95.6 78.9 100.0 99.9 4.6 98.6 100.0 100.0
1 % 0.5 38.5 87.5 0.8 33.1 80.7 64.0 100.0 99.9 1.3 87.1 100.0 100.0

rejection rates between these sets of statistics under dynamic misspecification as an
indirect measure of the effect of the introduced noise, though correlation tests are not
consistent against static alternatives. From our Monte Carlo simulations we see that
for all scenarios we consider, correlation tests based on discrete residuals perform
better, indicating that some power losses may indeed be attributed to the introduced
noise. To overcome this problem, we plan to develop tests for discrete models based
on alternative transformations of the data without introducing additional noise, but
still consistent against a wide range of nonparametric alternative hypotheses.
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5 Conclusion

In this chapter, we have proposed new tests for checking goodness-of-fit of con-
ditional distributions in nonlinear discrete time series models. Specification of the
conditional distribution (but not only conditional moments) is important in many
macroeconomics and financial applications. Due to the parameter estimation effect,
the asymptotic distribution depends on the model and specific parameter values.
We show that our parametric bootstrap provides a good approximation to asymp-
totic distributions and renders feasible and simple tests. Monte Carlo experiments
have shown that tests based on empirical processes have power if misspecification
comes from dynamics. If misspecification affects marginals alone, correlation tests
are inconsistent, while tests based on empirical processes have some power. Com-
paring to the continuous case, we may conclude that there is a reduction of power
due to the additional noise which distribution is known under the alternative too.
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fully acknowledged.

Appendix

Proof of Proposition 1 Part (a) is a property of dynamic PIT with a continuous con-
ditional distribution F†

t , the proof can be found in Bai (2003). Part (b) follows from
the fact that (omitting dependence on t , �t and θ)

F† (Y + Z − 1) = F ([Y + Z − 1])+ ZU P ([Y + Z ])
= F (Y − 1)+ ZU P (Y ) ,

where
ZU = Fz (Y + Z − 1 − [Y + Z − 1]) = Fz (Z)

is uniform for any Z ∼ Fz continuous and with [0, 1] support, by the usual static
PIT property. Therefore, although a continued variable Y † and its distribution F†

depends on Fz , F†(Y †) does not.

�

Proof of Proposition 2 Assumption 1 in Kheifets (2011) is satisfied automatically
after applying continuation defined in (2), therefore Proposition 1 of Kheifets (2011)
holds.

�
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Proof of Proposition 3 Follows from Kheifets (2011), we need only to check that
Assumption 2 in Kheifets (2011) is satisfied.

Let r = F† (y) .Note that [y] = F−1(r) but F ([y]) = F
(
F−1(r)

)
equals r only

when y = [y]. The inverse of F† is

y =
(

F†
)−1

(r) = [y] + r − F ([y])
P ([y] + 1)

= [y] + 1 + r − F ([y] + 1)

P ([y] + 1)

= F−1(r)+ r − F
(
F−1(r)

)
P

(
F−1(r)+ 1

) .

Note also that (r − F ([y])) /P ([y] + 1) = y − [y] ∈ [0, 1]. Take distribution G
with the same support as F . We have different useful ways to write d (G, F, r):

d (G, F, r) = η† (r)− r = G†
((

F†
)−1

(r)

)
− r = G† (y)− r

= G ([y])− F ([y])+ (y − [y]) (PG ([y] + 1)− PF ([y] + 1)) (A.1)

= G ([y] + 1)− F ([y] + 1)

+ (y − [y] − 1) (PG ([y] + 1)− PF ([y] + 1)) (A.2)

= G
(

F−1 (r)
)

− F
(

F−1 (r)
)

+ r − F
(
F−1(r)

)
PF

(
F−1(r)+ 1

) (
PG

(
F−1(r)+ 1

)
− PF

(
F−1(r)+ 1

))
.

(A.3)

Thus, noting that P (·) is bounded away from zero, we have that Assumption 2 in this
paper is sufficient for Assumption 2 in Kheifets (2011):

(K2.1)

E sup
t=1,...,T

sup
u∈BT

sup
r∈[0,1]

∣∣∣η†
t (r, u, θ0)− r

∣∣∣ = O
(

T −1/2
)
.

(K2.2) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞) and ∀δ > 0

sup
r∈[0,1]

1√
T

T∑
t=1

sup
||u−v||≤M2T −1/2−δ

u,v∈BT

∣∣∣η†
t (r, u, θ0)− η†

t (r, v, θ0)

∣∣∣ = op (1) .

(K2.3) ∀M ∈ (0,∞), ∀M2 ∈ (0,∞) and ∀δ > 0

sup
|r−s|≤M2T −1/2−δ

1√
T

T∑
t=1

sup
u∈BT

∣∣∣η†
t (r, u, θ0)− η†

t (s, u, θ0)

∣∣∣ = op (1) .
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(K2.4) ∀M ∈ (0,∞), there exists a uniformly continuous (vector) function h(r)
from [0, 1]2 to RL , such that

sup
u∈BT

sup
r∈[0,1]2

∣∣∣∣∣
1√
T

T∑
t=2

ht − h(r)′
√

T (u − θ0)

∣∣∣∣∣ = op(1).

where

ht =
(
η†

t−1 (r2, u, θ0)− r2

)
r1 +

(
η†

t (r1, u, θ0)− r1

)
I
(

F†
t−1

(
Y †

t−1|u
)

≤ r2

)
.

For Part (a), take d(F(·|�t , θ0), F(·|�t , θ̂)). Then (K2.1), (K2.2), (K2.4) follow
from (2.1), (2.2) and (2.3) because of representation (A.3). If we compare (A.1) and
(A.2) we see that d(·) is not only continuous in r , but piece-wise linear, so (K2.3) is
satisfied automatically.

For Part (b), take d(GT (·|�t , θ0), F(·|�t , θ̂)) and use the additivity of d(·) in the
first arguments:

d(GT (·|�t , θ0), F(·|�t , θ̂)) =
(

1 −
√

T0√
T

)
d(F(·|�t , θ0), F(·|�t , θ̂))

+
√

T0√
T

d(H(·|�t ), F(·|�t , θ̂)).

�

Proof of Proposition 5 The proof is similar if we consider d(F(·|�t , θT ), F(·|�t ,

θ̂T )) under {θT : T ≥ 1}.
�
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On Long-Run Covariance Matrix Estimation
with the Truncated Flat Kernel

Chang-Ching Lin and Shinichi Sataka

Abstract Despite its large sample efficiency, the truncated flat kernel (TF) estimator
of long-run covariance matrices is seldom used, because it occasionally gives a non-
positive semidefinite estimate and sometimes performs poorly in small samples,
compared to other familiar kernel estimators. This paper proposes simple mod-
ifications to the TF estimator to enforce the positive definiteness without sacri-
ficing the large sample efficiency and make the estimator more reliable in small
samples through better utilization of the bias-variance trade-off. We study the
large sample properties of the modified TF estimators and verify their improved
small-sample performances by Monte Carlo simulations.

1 Introduction

The precision of an estimator is often assessed using its consistently estimated
(asymptotic) covariance matrix or standard error. When using time series data, the
asymptotic covariance matrix can be consistently estimated by a long-run covari-
ance matrix. This paper is concerned with kernel estimation of long-run covariance
matrices using the truncated flat kernel proposed by White and Domowitz (1984),
which we call the truncated flat kernel (TF) estimator.

While the TF estimator is a natural method to estimate long-run covariance matri-
ces in the presence of serial correlations in an unknown form, it has a drawback
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that it may deliver a non-positive semidefinite estimate. A conventional solution to
overcome this difficulty is to suitably downweight the estimated autocovariances, as
Newey and West’s (1987) Bartlett kernel (BT) and Andrews’ (1991) Quadratic Spec-
tral kernel (QS) estimators do. As demonstrated in Gallant and White (1988), there
are many kernels that guarantees positive semidefiniteness of long-run covariance
matrices. Hansen (1992), de Jong and Davidson (2000), and Jansson (2003) show
the general conditions sufficient for the kernel estimators to be consistent.

An interesting fact pointed out in the literature on spectral density estimation
(e.g., Priestley (1981) and Hannan (1970)) is that the asymptotic bias is negligible
relative to the asymptotic variance in TF estimation unless the growth rate of the
bandwidth is very low. This means that, unlike the other familiar kernel estimators
subject to the usual trade-off between the asymptotic bias and variance, use of a
slowly growing bandwidth can make the variance converge fast in the TF estimation,
still keeping the bias negligible. The TF estimator is thus asymptotically efficient
relative to the other familiar kernel estimators in typical scenarios. The small-sample
behavior of the TF estimator is, however, sometimes dissimilar to what the large-
sample theory indicates. As shown in Andrews (1991), the TF estimator performs
considerably better or worse than the other commonly used kernel estimators. This
counterintuitive fact has not been investigated at our best knowledge.

The contribution of this paper is twofold. First, we propose a simple method
to modify a non-positive semidefinite estimator to generate a positive semidefinite
(p.s.d.) estimator. Unlike the other approach in the literature such as the one in Politis
(2011) that replaces all negative eigenvalues in the eigenvalue decomposition of the
non-p.s.d.estimate with zeros, our method never makes the mean square error (MSE)
of the estimator larger than the original one.

Second, we reconcile the puzzling discrepancy between the asymptotic efficiency
and finite sample performance of the TF estimator. Unlike the other familiar esti-
mators that are continuously related to their bandwidths, a change in the bandwidth
affects the TF (and ATF) estimate only when crossing an integer value. This feature
severely limits the opportunity to balance the finite sample bias and variance of the
TF (and ATF) estimator. To eliminate this restriction, we propose linearly interpo-
lating the TF estimators at the nearest two integer bandwidths for each non-integer
bandwidth. Though the kernel used in the extended TF (ETF) estimation is analogous
to the flat-top kernel estimators of Politis and Romano (1996, 1999), the width of
the sloped part of the kernel is always one in the ETF estimation, while it is pro-
portional to the bandwidth in the flat-top kernel estimation. For this reason, the ETF
estimator is more closely linked to the TF estimator than the latter. Our Monte Carlo
simulations verify that the relationship between the ETF and QS estimators in small
samples is in line with the large sample theory.

The rest of the paper is organized as follows. We introduce a simple method
to generate a p.s.d. covariance matrix estimator from a non-p.s.d. estimator in
Sect. 2 and discuss its computation and basic properties in Sects. 3 and 4, respec-
tively. We then establish the asymptotic properties of the ATF estimator in Sect. 5
and propose the ETF estimator in Sect. 6. We also assess the finite sample perfor-
mance of the proposed estimators relative to those of the QS and BT estimators by
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Monte Carlo experiments in Sect. 7. Further, we discuss the behavior of our estima-
tors with data-based bandwidths in Sect. 8 and examine the finite sample performance
of the estimators with data-based bandwidths by Monte Carlo experiments in Sect. 9.
The mathematical proofs of selected results are found in the Appendix, while the
proofs of the other results are available from the authors upon request.

Throughout this paper, each vector is a column vector, and limits are taken along
the sequence of sample sizes (denoted T ) growing to infinity, unless otherwise indi-
cated. For each metric space A, B(A) denotes the Borel σ -field on A. For the Euclid-
ean spaces, write B p ≡ B(Rp) for simplicity.

2 Estimators Adjusted for Positive Semidefiniteness

In this section, we propose a method to adjust a square-matrix-valued estimate to
obtain an estimate with guaranteed positive semidefiniteness. As its usefulness is not
limited to estimation of covariance matrices. we keep our analysis in this section
general, though we make the following assumption for concreteness.

Assumption 1 Let (�,F , P) be a probability space, and � a nonempty subset of
R

p (p ∈ N). The sequence {Zt }t∈Z consists of measurable functions from (� ×
�,F ⊗ B(�)) to (Rv,Bv) (v ∈ N) such that for each θ ∈ � and each t ∈ Z,
E[Zt (·, θ)′Zt (·, θ)] < ∞. Also, for each T ∈ N, θ̂T is a p ×1�-valued estimator of
θ∗ ∈ �. Further, {Z∗

t ≡ Zt (·, θ∗)}t∈Z is a zero-mean covariance stationary process.

The random function Zt in Assumption 1 is the score vector for the t th observation
in maximum likelihood estimation (MLE). In the generalized method-of-moment
(GMM) estimation, Zt is a vector consisting of moment functions. Suppose that
{Z∗

t }t∈N is not a martingale difference sequence, and its autocovariance func-
tion is not truncated at a known lag. Our goal is to accurately estimate ST ≡
var[T −1/2 ∑T

t=1 Z∗
t ] = �T (0) + ∑T −1

τ=1 (�T (τ ) + �′
T (τ )), where T ∈ N is

the sample size, and for each τ ∈ {1, 2, . . . , T − 1}, �T (τ ) ≡ (T − τ)/T
cov[Z∗

τ+1, Z∗
1 ].

Let k be an even function from R to R that is continuous at the origin and discon-
tinuous at most at a finite number of points. Suppose that θ∗ is known. Then a kernel
estimator of ST using the kernel k and a bandwidth mT ∈ (0,∞) is

S̃k
T ≡ k(0) �̃T (0)+

T −1∑
τ=1

k
( τ

mT

)(
�̃T (τ )+ �̃′

T (τ )
)
, T ∈ N, (1)

where �̃T (τ ) ≡ T −1 ∑T
t=τ+1 Z∗

t Z∗′
t−τ , (τ ∈ {1, 2, . . . , T − 1}, T ∈ N). When

θ∗ is unknown, as is the case in typical applications, we need to replace the
unknown θ∗ with its estimator θ̂T to obtain a feasible estimator of ST . Let ẐT,t

denote the random vector obtained by replacing θ∗ with θ̂T in Z∗
t . Also, set
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�̂T (τ ) ≡ T −1 ∑T
t=τ+1 Ẑt Ẑ ′

t−τ , (τ ∈ {1, 2, . . . , T − 1}, T ∈ N). Then the fea-
sible estimator is

Ŝk
T ≡ k(0)�̂T (0)+

T −1∑
τ=1

k
( τ

mT

)(
�̂T (τ )+ �̂′

T (τ )
)
, T ∈ N.

While ST is p.s.d., being a covariance matrix, S̃k
T and Ŝk

T may not be so, depending
on the kernel k. A way to avoid a non-p.s.d. estimate is to use certain kernels such
as BT or QS. Here, we instead propose pushing a non-p.s.d. estimate back to the
space of symmetric p.s.d. matrices. This approach has an advantage that no limit is
imposed on our choice of the kernel.

On R
a1×a2 , where (a1, a2) ∈ N

2, define a real valued function‖·‖W : R
a1×a2 →R

by ‖A‖W ≡ (vec(A)′ W vec(A))1/2 (A ∈ R
a1×a2 ), where W is a (a1a2) × (a1a2)

symmetric p.s.d. matrix, and vec(A) is the column vector made by stacking the
columns of A vertically from left to right. If W is the identity matrix, ‖ ·‖W becomes
the Frobenius norm, denoted ‖ · ‖ for simplicity. Let Pv be the set of all v × v,
symmetric p.s.d. matrices.

Definition 1 Given an estimator ŜT of ST and a v2 × v2 symmetric p.s.d. random
matrix WT for each T ∈ N, the Pv-valued random matrix Ŝ A

T satisfying that for
each T ∈ N, ‖ŜT − Ŝ A

T ‖WT = infs∈Pv ‖ŜT − s‖WT , provided that it exists, is called
the estimator that adjusts ŜT for positive semidefiniteness or simply the adjusted
estimator (with weighting matrix WT ).

Because Pv is a convex set, and s 
→ ‖ŜT − s‖WT is a convex function, the
minimization problem in the adjustment is a convex programming. It is easy to verify
that the solution of the minimization problem exists for every possible realization.
Given this fact, the existence of the adjusted estimator can be established by using
Brown and Purves (1973, Corollary 1, pp. 904–905).

Theorem 2.1 Suppose that Assumption 1 holds. Then for each estimator ŜT of ST

and each symmetric p.s.d. random matrix WT , the estimator that adjusts ŜT for
positive semidefiniteness with the weighting matrix WT exists.

3 Algorithm of Adjustment for Positive Definiteness

The minimization problem in the adjustment for positive definiteness has no closed-
form solution. Despite that it is a convex programming problem with a smooth objec-
tive function, a challenge is that our choice set is Pv , the set of all symmetric p.s.d.
matrices. Though Pinheiro and Bates (1996) list a few ways to parameterize Pv ,
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the objective function becomes non-convex, once we employ such a parameteri-
zation. In addition the number of parameters in this approach is large. Thus, the
gradient search combined with Pinheiro and Bates’ (1996) parameterization is slow
and unreliable in our problem. We below take a different approach.

Let S
v denote the space of all v× v symmetric matrices. Define a objective linear

function φ from R
(v(v+1)/2) to S

v by

φ(x) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 · · · xv
x2 xv+1 xv+2 · · · x2v−1

x3 xv+2 x2v · · · x3v−3

...
...

... · · · ...
xv x2v−1 x3v−3 · · · xv(v+1)/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, x ≡

⎛
⎜⎜⎜⎝

x1
x2
...

xv(v+1)/2

⎞
⎟⎟⎟⎠ ∈ R

(v(v+1)/2).

Let ŜT be an estimator of ST . If x∗ is a solution of the problem:

min
x∈Rv(v+1)/2

‖ŜT − φ(x)‖WT subject to the constraint that φ(x) is p.s.d., (2)

then φ(x∗) is Ŝ A
T , the estimator that adjusts ŜT for positive definiteness.

Now, decompose WT as WT = VT V ′
T by the Cholesky decomposition. Then we

have that

‖ŜT − φ(x)‖WT = (V ′
T (vec(ŜT )− vec(φ(x))))′(V ′

T (vec(ŜT )− vec(φ(x)))).

Note that for each (v(v+1)/2)×1 vector y and each g ∈ R, it holds that y′y ≤ g
if and only if

(
Iv(v+1)/2 y

y′ g

)
=

(
Iv(v+1)/2 0(v(v+1)/2)×1

y′ 1

)

×
(

Iv(v+1)/2 0

0 g − y′y

) (
Iv(v+1)/2 0(v(v+1)/2)×1
y′ 1

)′

is p.s.d. It follows that for each g ∈ R, it holds that ‖ŜT − φ(x)‖WT ≤ g if and only
if

D(x, g) ≡
(

Iv(v+1)/2 V ′
T (vec(ŜT )− vec(φ(x)))

(V ′
T (vec(ŜT )− vec(φ(x))))′ g

)
is p.s.d.

Thus, the problem (2) is equivalent to choice of (x, g) ∈ R
v(v+1)/2×R to minimize

g subject to the constraint that
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(
φ(x) 0v×(v(v+1)/2+1)
0(v(v+1)/2+1)×v D(x, g)

)
=

⎛
⎝ 0 0v×(v(v+1)/2) 0v×1

0(v(v+1)/2)×v Iv(v+1)/2 V ′
T vec(ŜT )

01×v (V ′
T vec(ŜT ))

′ 0

⎞
⎠

−
⎛
⎝−φ(x) 0v×(v(v+1)/2) 0v×1

0(v(v+1)/2)×v 0(v(v+1)/2)×(v(v+1)/2) V ′
T vec(φ(x))

01×v (V ′
T vec(φ(x)))′ −g

⎞
⎠ (3)

is p.s.d. In this problem, the objective function is a linear function of x and g. Also,
on the right-hand side in (3), both terms are symmetric matrices, and the second term
is linear in x and g. Thus, this problem is a (dual-form) semidefinite programming
problem, which can be solved quickly and reliably using existing computation algo-
rithms (see, e.g., Vandenberghe and Boyd (1996) for the semidefinite programming
in general). In our Monte Carlo simulations, we use SeDuMi Sturm (1999) among
them.

4 Properties of Adjustment for Positive Definiteness

Now, let ŜT be an arbitrary estimator of ST and WT a symmetric p.s.d. v2×v2 random
matrix (T ∈ N). Then, whenever ŜT ∈ Pv , it apparently holds that ‖Ŝ A

T − ŜT ‖WT = 0.
Moreover:

Theorem 4.1 Suppose that Assumption 1 holds. Then:

(a) For every possible realization of the data and each T ∈ N, it holds that
‖Ŝ A

T − ST ‖WT ≤ ‖ŜT − ST ‖WT , where the equality holds if and only if

‖Ŝ A
T − ŜT ‖WT = 0.

(b) For each T ∈ N, the adjusted estimator Ŝ A
T uniquely minimizes the function

s 
→ ‖s − ST ‖WT over Pv whenever WT is positive definite (p.d.).

Because Theorem 4.1(a) means that the adjustment moves the estimator toward
ST in terms of the norm ‖ · ‖WT for sure, the performance of the adjusted estimator
cannot be worse than the original estimator. Theorem 4.1(b) means that the adjusted
estimator is unique with a probability approaching one as T → ∞ in a typical
application, in which the weighting matrix WT is positive definite with a probability
approaching one. The violation of the positive definiteness of WT possibly arises,
however, when a user desires to estimate a covariance matrix of a subvector of
T −1/2 ∑T

t=1 Z∗
t and puts zeros in the weighting matrix WT to ignore the part of the

covariance matrix irrelevant in the user’s analysis. In such a situation, the adjusted
estimator is equivalent to the procedure that first eliminates from ŜT and WT their
rows and columns corresponding to the irrelevant elements in T −1/2 ∑T

t=1 Z∗
t and

then adjusts the resulting ŜT using the resulting WT (which should be p.d.). Thus,
the adjusted estimator again has the uniqueness property in estimation the submatrix
of ST the user cares. The positive definiteness of WT or its limit is imposed in some
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of the results presented later. The above discussion on Theorem 4.1(b) would apply
to such results.

Here are a few implications of Theorem 4.1(a).

Corollary 4.2 Under Assumption 1:

(a) For each T ∈ N, E
[‖Ŝ A

T − ST ‖2
WT

] ≤ E
[‖ŜT − ST ‖2

WT

]
.

(b) If {ŜT }T ∈N is consistent for {ST }T ∈N (i.e., {‖ŜT − ST ‖}T ∈N converges in
probability-P to zero), and WT = OP (1), then {‖Ŝ A

T − ST ‖WT }T ∈N converges
in probability-P to zero. If in addition {WT }T ∈N converges in probability-P to
a nonsingular matrix W , then {Ŝ A

T }T ∈N is consistent for {ST }T ∈N.

(c) Let {bT }T ∈N be an arbitrary sequence of positive real numbers. If {ŜT }T ∈N is
consistent for {ST }T ∈N, and {ST } is asymptotically uniformly p.d., then ‖Ŝ A

T −
ŜT ‖WT = oP (bT ). If in addition WT converges in probability-P to a nonsingular
matrix W , then Ŝ A

T − ŜT = oP (bT ).

Corollary 4.2 demonstrates that adjustment for positive definiteness never worsens
the performance of an estimator. It improves the MSE of the estimator. If the estimator
is consistent, so is the adjusted estimator. If {ST }T ∈N is asymptotically uniformly p.d.
as is typically expected, the difference between the original and adjusted estimators
is asymptotically negligible in a very strict sense, as the difference converges to zero
at an arbitrary fast rate.

In our asymptotic analysis of consistent estimators, we magnify the MSE of
each of the estimators, because otherwise, the MSEs would converge to zero as
T → ∞ in a typical setup. Given an estimator ŜT of ST , a v2 × v2 symmetric p.s.d.
random matrix WT , and a positive real constant aT (magnification factor), write
MSE(aT , ŜT , WT ) ≡ aT E

[‖ŜT − ST ‖2
WT

]
. Using this scaled MSE, we now state

asymptotic equivalence of the adjusted and original estimators.

Theorem 4.3 Suppose that Assumption 1 holds. If for some sequence {aT ∈
(0,∞)}T ∈N, {aT ‖ŜT − ST ‖2

WT
}T ∈N is uniformly integrable, then MSE(aT , ŜT ,

WT )− MSE(aT , Ŝ A
T , WT ) → 0.

In this theorem, the required uniform integrability of {aT ‖ŜT − ST ‖2
WT

}T ∈N

implies uniform integrability of {aT ‖Ŝ A
T − ST ‖2

WT
}T ∈N, so that both MSE

(aT , ŜT , WT ) and MSE(aT , Ŝ A
T , WT ) are finite under the conditions imposed in

Theorem 4.3.
When the parameter θ∗ is unknown, our analysis must take into account the

effect of the parameter estimation on the long-run covariance estimators. In order for
MSE(aT , ŜT , WT ) to be finite, ẐT,t must have finite fourth moments. Nevertheless,
the fourth moments of ẐT,t may be infinity due to the effect of the estimation of θ∗,
even when the fourth moments of Z∗

t are finite. For this reason, Andrews (1991) uses
the truncated MSE instead of the MSE defined above, and so do we.

The truncated MSE of an estimator ŜT of ST scaled by aT and truncated at
h ∈ (0,∞) is defined to be MSEh(aT , ŜT ,WT ) ≡ E[min{aT ‖ŜT − ST ‖2

WT
, h}].
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The MSEs of multiple estimators truncated at a high value h allow us to compare
the performance of the estimators, ignoring the far tails of the distributions of the
estimators. In reflection of this feature, most of our results presented below focus on
the limit of the truncated MSEs, letting the truncation point grow to infinity.

Because for each h ∈ (0,∞), the function x 
→ min{x, h} : [0,∞) → R is a
nondecreasing function, the relationship between the adjusted and original estimators
stated in Corollary 4.2(a) carries over even if we replace the MSEs with the truncated
MSEs, i.e., MSEh(aT , Ŝ A

T ,WT ) ≤ MSEh(aT , ŜT ,WT ).
A consistent estimator and its adjusted estimator are asymptotically only neg-

ligibly different. If {ST }T ∈N is asymptotically uniformly p.d., as Corollary 4.2(c)
states. The asymptotically negligible difference between the original and adjusted
estimators is inherited by the truncated MSE, when a suitable scaling factor is used.
That is:

Theorem 4.4 Suppose that Assumption 1 holds. If limh→∞ limT →∞ MSEh(aT , ŜT ,

WT ) exists and is finite, {ST }T ∈N is asymptotically uniformly p.d., and a1/2
T (ŜT −

ST ) = OP (1), then

lim
h→∞ lim

T →∞ MSEh(aT , Ŝ A
T ,WT ) = lim

h→∞ lim
T →∞ MSEh(aT , ŜT ,WT ).

5 Truncated Flat Kernel Estimator Adjusted for Positive
Semidefiniteness

For each τ ∈ Z, write �(τ) ≡ cov[Z∗
0 , Z∗

τ ]. Also, for arbitrary a1, a2, a3, a4 in
{1, . . . , v} and arbitrary t1, t2, t3, t4 in Z, let κa1,a2,a3,a4(t1, t2, t3, t4) denote the fourth-
order cumulant of (Z∗

t1,a1
, Z∗

t2,a2
, Z∗

t3,a3
, Z∗

t4,a4
). Andrews (1991, Proposition 1) shows

the asymptotic bias and variance of each kernel estimator with known θ∗, imposing
the following memory conditions on {Z∗

t }t∈Z.

Assumption 2
∑∞
τ=−∞ ‖�(τ)‖ < ∞, and for each a, b, c, d in {1, 2, . . . , v},
∞∑

τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

|κa,b,c,d(0, τ1, τ2, τ3)| < ∞.

Andrews (1991, pp. 827 and 853) also demonstrates that a wide range of kernel
estimators satisfy the uniform integrability condition imposed in Theorem 4.3 with
a suitably chosen scaling factor, if:

Assumption 3 The process {Z∗
t }t∈Z is an eighth-order stationary process with

∞∑
τ1=−∞

· · ·
∞∑

τ7=−∞
κa1,...,a8(0, τ1, · · · , τ7) < ∞, (a1, . . . , a8) ∈ {1, . . . , v}8,
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where for arbitrary t1, …, t8 in Z, κa1,··· ,a8(t1, . . . , t8) denotes the eighth-order cumu-
lant of (Z∗

t1,a1
, . . . , Z∗

t8,a8
).

Write S(q) ≡ (2π)−1 ∑∞
τ=−∞ |τ |q�(τ) for each q ∈ [0,∞). Then, under

Assumption 2, the series S ≡ S(0) converges, and {ST }T ∈N converges to S. In most
applications, it is reasonable to assume:

Assumption 4 The matrix S is p.d.

Given Assumptions 1–4, we can assess the asymptotic MSEs of the TF estimator
(without the estimated parameters) and its adjusted version by applying Andrews
(1991, Proposition 1(c)) along with Corollary 4.2(a) and Theorem 4.3 of this paper.
Let S̃TF

T (mT ) denote the TF estimator with bandwidth mT , which is obtained by

setting the TF kernel to k in (1), and S̃TF,A
T (mT ) the estimator that adjusts ŜTF

T (mT )

for positive semidefiniteness. Also, let Kv,v denote the v2 ×v2 commutation matrix,
i.e., Kv,v ≡ ∑v

i=1
∑v

j=1 ei e′
j ⊗ e j e′

i , where ei is the i th elementary v × 1 vector,
and ⊗ is the Kronecker product operator.

Proposition 5.1 Suppose that Assumptions 1 and 2 hold and that {mT ∈ (0, T −
1)}T ∈N satisfies that m2q+1

T /T → γ ∈ (0,∞) for some q ∈ (0,∞) for which the
series S(q) converges. Also, let W be a v2 × v2 symmetric p.s.d. matrix. Then we
have:

(a)

lim
T →∞ MSE

( T

mT
, S̃TF,A

T (mT ), W
)

≤ lim
T →∞ MSE

( T

mT
, S̃TF

T (mT ), W
)

= 8π2tr(W (I + Kv,v)S ⊗ S). (4)

(b) If in addition Assumptions 3 and 4 hold, (4) holds with equality.

Proposition 5.1 means that the convergence rates of both the ATF and TF estima-
tors can be made as fast as T −q/(2q+1), provided that the bandwidth is suitably chosen,
and S(q) converges. In particular, when S(q) converges for some q > 2, employing
a bandwidth mT ∼ T 1/(2q+1) (i.e., mT = O(T 1/(2q+1)) and T 1/(2q+1) = O(mT ))
makes the TF estimators converge to ST faster in terms of the MSE than the QS and
BT estimator, whose convergence rates never exceed T −1/3 and T −2/5, respectively.

We next investigate the behavior of the adjusted and unadjusted TF estimators
with θ∗ estimated by θ̂T . To do this, we add a few assumptions related to the effect
of the parameter estimation on the long-run covariance matrix estimation.

Assumption 5 (a) θ̂T − θ∗ = Op(T −1/2).
(b) There exists a uniformly L2-bounded sequence of random variables {η1,t }t∈Z

such that for each t ∈ Z, ‖Z∗
t ‖ ≤ η1,t and supθ∈� ‖∂/∂θ Zt (·, θ)‖ ≤ η1,t .



392 C.-C. Lin and S. Sataka

Assumption 6 (a) The sequence {ζt ≡ (Z∗′
t , vec(∂/∂θ ′Zt (·, θ∗) − E[∂/∂θ ′

Zt (·, θ∗)])′)′}t∈Z is a fourth-order stationary process such that Assumption 2
holds with Zt replaced by ζt .

(b) There exists a uniformly L2-bounded sequence of random variables {η2,t }t∈Z

such that for each t ∈ Z supθ∈� ‖∂2/∂θ∂θ ′Zt,a(·, θ)‖ ≤ η2,t ,(a = 1, . . . , v).

Assumption 5 requires that {θ̂T }T ∈N is
√

T -consistent, as is typically the case
in ML and GMM estimation. The Lipschitz type conditions imposed on the deriv-
atives of the random function Zt in Assumptions 5 and 6 are standard. The higher
order stationarity and memory condition stated in Assumption 6(a) is natural given
Assumptions 1–3. For simplicity, we hereafter focus on the case, in which the weight-
ing matrix is convergent in probability.

Assumption 7 {WT }T ∈N is a sequence of v2 ×v2 symmetric p.s.d. random matrices
that converges in probability-P to a constant v2 × v2 matrix W .

Under Assumptions 1 and 4, the difference between any estimator consistent for
S and the estimator that adjusts it for positive definiteness converges in probability to
zero at an arbitrarily fast rate (Corollary 4.2(c)). The ATF estimator therefore inherits
the large sample properties of the TF kernel estimator.

Theorem 5.2 Let {mT }T ∈N be a sequence of positive real numbers growing to
infinity.

(a) If Assumptions 1, 2, 5, and 7 hold, and m2
T /T → 0, then ‖ŜTF,A

T (mT ) −
ST ‖WT → 0 in probability-P. If in addition W is p.d., then {ŜTF,A

T (mT )}T ∈N is
consistent for {ST }T ∈N.

(b) If Assumptions 1 and 4–7 hold, and m2q+1
T /T → γ ∈ (0,∞) for some

q ∈ (0,∞) for which S(q) converges, then ‖ŜTF,A
T (mT )− ST ‖WT = OP ((mT /

T )−1/2) and ‖ŜTF,A
T (mT )− ŜTF

T (mT )‖WT = oP ((mT /T )1/2).

(c) If, in addition to the conditions of part (b), W is p.d., then ŜTF,A
T (mT ) − ST =

OP ((mT /T )1/2) and ŜTF,A
T (mT )− ŜTF

T (mT ) = oP ((mT /T )1/2).
(d) Under the conditions of part (b) plus Assumption 3,

lim
h→∞ lim

T →∞ MSEh(T/mT , ŜTF,A
T (mT ),WT )

= lim
h→∞ lim

T →∞ MSEh(T/mT , ŜTF
T (mT ),WT )

= lim
T →∞ MSE(T/mT , S̃TF

T (mT ),W )

As Theorem 5.2 shows, the presence of the estimated parameters has no effect on
the asymptotic properties of ATF estimators, as is the case for the TF estimator. In
particular, it enjoys the same large sample efficiency as the TF estimator does.
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6 Extended Truncated Flat Kernel Estimator

In the TF estimation, all bandwidths between two adjacent nonnegative integers
give the same estimator. Suppose that we have two adjacent integer bandwidths that
result in good performances of the TF estimator. Given the familiar argument that
the bandwidth should be chosen to balance the bias and variance of the estimator,
one might desire to consider an estimator “between” the two estimators picked by
the two integer bandwidths. A natural way to create a smooth transition path from
an integer bandwidth to the next is to linearly interpolate the TF estimator between
each pair of adjacent integer bandwidths. We call such estimators the extended TF
(ETF) estimators. The ETF estimator based on ŜTF

T with bandwidth m ∈ [0,∞) is
defined to be

ŜETF
T (m) ≡ (�m� + 1 − m) ŜTF

T (m)+ (m − �m�) ŜTF
T (m + 1)

= ŜTF
T (m)+ (m − �m�) (�̂T (�m� + 1)+ �̂T (�m� + 1)′), T ∈ N,

where �·� : R → R is the floor function, which returns the greatest integer not
exceeding the value of the argument, and we employ the rule that ŜTF(0) = �̂T (0).
The ETF estimator based on S̃TF

T is analogously defined. Each version of the ETF
estimators coincides with the corresponding version of the TF estimator if the band-
width m is an integer. In general, provided that the bandwidth m is less than T − 1,
each version of the ETF estimator with a bandwidth m, compared to the correspond-
ing version of the TF estimator with the same bandwidth, brings in the fraction
(m − �m�) of the autocovariance matrix estimator at lag �m� + 1.

We below investigate the large sample behavior of the ETF estimators. We first
study the large sample properties of S̃ETF

T , the ETF estimator with known θ∗. To do
this, we examine the behavior of the last autocovariance matrix estimator fractionally
incorporated in the ETF estimator.

Lemma 6.1 Suppose that Assumptions 1 and 2 hold. Then:

(a) supτ∈{0,1,...,T −1} E[ ‖�̃T (τ )− �T (τ )‖2 ] = O(T −1).

(b) Suppose that {mT ∈ (0, T − 1)}T ∈N grows to ∞. If S(q) converges for some
q ∈ (0,∞), then mq

T E[�̃T (�mT + 1�)] → 0.

(c) Suppose that {mT ∈ (0, T − 1)}T ∈N grows to ∞. If, in addition, m2q+1
T /T →

γ ∈ (0,∞) for some q ∈ (0,∞) for which the series S(q) converges, then
E[‖�̃T (�mT + 1�)‖2] = o(mT /T ).

From Lemma 6.1(c), one might conjecture that the autocovariance estimator at
the last lag is asymptotically negligible in the ETF estimation. It is indeed the case
as the next proposition states.

Proposition 6.2 Suppose that Assumptions 1, and 2 hold and {mT ∈ (0, T −1)}T ∈N

satisfies that m2q+1
T /T → γ ∈ (0,∞) for some q ∈ (0,∞) for which the series

S(q) converges. Also, let W be a v2 × v2 symmetric p.s.d. matrix. Then
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lim
T →∞ MSE(T/mT , S̃ETF

T (mT ), W ) = lim
T →∞ MSE(T/mT , S̃TF

T (mT ), W ).

Note that the ETF estimator may deliver a non-p.s.d. estimate, being a convex
combination of the TF estimators that have the same problem. Thus, the estimator that
adjusts it for positive semidefiniteness is useful. As is the case with the TF estimation,
the adjustment improves the MSE of the ETF estimator in small samples (Corollary
4.2(a)). The next proposition states that the adjusted ETF (AETF) estimator performs
at least as well as the ETF estimator in large samples.

Proposition 6.3 Proposition 5.1 holds when {S̃TF
T }T ∈N and {S̃TF,A

T }T ∈N are replaced

with {S̃ETF
T }T ∈N and {S̃ETF,A

T }T ∈N, respectively.

We now turn to ŜETF
T , the ETF estimator in the presence of estimated parameters,

θ̂T . The next theorem demonstrates that θ̂T has no effect on the large sample properties
on the ETF estimator, as is the case for the TF and ATF estimators.

Theorem 6.4 Suppose that {mT ∈ (0, T − 1)}T ∈N grows to infinity.

(a) If Assumptions 1, 2, and 5 hold, and m2
T /T → 0, then {ŜETF

T (mT )}T ∈N is
consistent for {ST }T ∈N.

(b) If Assumptions 1, 5, and 6 hold, and m2q+1
T /T → γ ∈ (0,∞) for some q ∈

(0,∞) for which S(q) converges, then ŜETF
T (mT )− ST = OP ((mT /T )1/2) and

ŜETF
T (mT )− S̃ETF

T (mT ) = oP ((mT /T )1/2).
(c) Under the conditions of part (b) plus Assumption 3,

lim
h→∞ lim

T →∞ MSEh(T/mT , ŜETF
T (mT ),WT )

= lim
T →∞ MSE(T/mT , S̃ETF

T (mT ),W )

= lim
T →∞ MSE(T/mT , S̃TF

T (mT ),W )

Also, it follows from Corollary 4.2, that the relationship between the ETF estimator
and the AETF estimator is parallel to that between the TF estimator and the ATF
estimator. Thus:

Theorem 6.5 Theorem 5.2 holds when {ŜTF
T }T ∈N and {ŜTF,A

T }T ∈N are replaced with

{ŜETF
T }T ∈N and {ŜETF,A

T }T ∈N, respectively.

In sum, the ETF and AETF estimators have the same large sample properties as
TF and ATF estimators. In particular, the TF, ATF, ETF, and AETF estimators share
the large sample efficiency.
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7 Finite-Sample Performance of the ATF
and AETF Estimators

In this section, we conduct Monte Carlo simulations to examine the small-sample
performance of the proposed estimators in comparison with the familiar QS and BT
estimators, borrowing the experiment setups from Andrews (1991). In each of the
experiments, {(yt , x ′

t )
′}t∈N is a stationary process, where yt is a random variable,

and xt is a v × 1 random vector. The coefficients θ∗ in the population regression of
yt on xt are parameters of interest. In this setup, we examine the MSE of each of the
covariance matrix estimators and the size of the t-test of an exclusion restriction in
the OLS regression, using each of the covariance matrix estimators. Thus, we have
that Zt (·, θ∗) = xt ut (t ∈ N), where ut = yt − x ′

tθ
∗. The regressor vector xt consists

of a constant set equal to one and four random variables xt2, xt3, xt4, and xt5, i.e.,
xt = [1, xt2, xt3, xt4, xt5]′. The regression coefficients θ∗ are set equal to zeros.

The experiments are split into two groups: the AR(1)-HOMO and MA(1)-HOMO
experiments. In the AR(1)-HOMO experiments, the sequence of disturbances {ut }t∈N

is a univariate stationary Gaussian AR(1) process with mean zero and variance
one. To generate the four nonconstant regressors, we first generate four indepen-
dent sequences (that are also independent from the disturbance ut ) in the same way
as we generate the disturbance sequence; then normalize them to obtain xt such
that T −1 ∑T

t=1 xt x ′
t = I . Because of this normalization, the estimated long-run

covariance matrix is equal to the estimated asymptotic covariance matrix of the
OLS estimator of θ∗. The data generating process in MA(1)-HOMO experiments
are the same as the AR(1)-HOMO experiments, except that the disturbance term and
the regressors (prior to the normalization) are Gaussian stationary MA(1) processes
with mean zero and variance one. The number of Monte Carlo replications is 25,000
in each of the experiments. In each replication, 500 + T observations are generated
and the last T observations are used.

We first compare the performance of the ATF estimator against that of the TF
estimator to assess the effect of the adjustment for positive semidefiniteness on the
performance. While Corollary 4.2 claims that the MSE of the ATF estimator never
exceeds that of the TF estimator, Theorem 5.2(d) suggests that the efficiency gain
from the adjustment is asymptotically negligible. We seek to check if the negligibility
of the efficiency gain by the adjustment carries over in small samples.

We calculate the efficiency of the ATF estimator relative to that of TF estimator in
the AR(1)-HOMO and MA(1)-HOMO experiments with sample size T = 128 and
bandwidths m ∈ {1, 3, 5, 7}, where the efficiency of an estimator relative to another
is the MSE of the latter divided by that of the former. We use the AR coefficients
ρ ∈ {0, 0.3, 0.5, 0.7, 0.9, 0.95,−0.3,−0.5} in the AR(1)-HOMO experiments and
the MA coefficients ϑ ∈ {0.1, 0.3, 0.5, 0.7, 0.99,−0.3,−0.7} in the MA(1)-HOMO
experiments. Following Andrews (1991, p. 836), we employ the weighting matrix
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WT =
((

T −1
T∑

t=1

xt x
′
t

)−1

⊗
(

T −1
T∑

t=1

xt x
′
t

)−1)
W̃

((
T −1

T∑
t=1

xt x
′
t

)−1

⊗
(

T −1
T∑

t=1

xt x
′
t

)−1)
,

where W̃ is a v2 × v2 diagonal matrix whose diagonal elements are set equal to

vec

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 2 1 1 1
0 1 2 1 1
0 1 1 2 1
0 1 1 1 2

⎞
⎟⎟⎟⎟⎠ .

(We ignore the normalization of the regressors, i.e., T −1 ∑T
t=1 xt x ′

T = I , just for
now, to explain the role of WT .) With the weighting matrix WT , the MSE of an
estimator ŜT of ST is

E

[∥∥∥∥
(

T −1
T∑

t=1

xt x
′
t

)−1

ŜT

(
T −1

T∑
t=1

xt x
′
t

)−1

−
(

T −1
T∑

t=1

xt x
′
t

)−1

ST

(
T −1

T∑
t=1

xt x
′
t

)−1)′∥∥∥∥
W̃

]

(note that the weighting matrix in the formula on the right-hand side of the above
equality is W̃ ). Thus, the MSE measures the discrepancy between the estimated
covariance matrix of the OLS estimator of θ∗ using ŜT and the estimated covariance
matrix using ST (the true covariance matrix unknown to us in practice), using the
weighting matrix W̃ . The zeros among the diagonal elements of W̃ let us focus on the
covariance matrix of the slopes in the OLS estimator of θ∗. The weighting matrix W̃
puts equal weights on all elements in the upper (or lower) triangle of the covariance
matrix of the slope estimators, taking into account that the estimated covariance
matrix is symmetric.

Once we put the normalization of the regressors back into the picture, the MSE of
ŜT simply equals E

[‖ŜT −ST ‖W̃

] = E
[
vec(ŜT −ST )

′W̃ vec(ŜT −ST )
]
. Nevertheless,

it should be understood that the MSE still measures the discrepancy between the
estimated covariance matrix of the OLS estimator of θ∗ using ŜT with the estimated
covariance matrix using ST , as discussed above.

Our simulation results on the efficiency of the ATF estimator relative to the TF
estimator are so simple that we do not tabulate them. Our finding is that the efficiency
of the ATF estimator relative to the TF estimator is 1.00 in the vast majority of our
experiments, and it exceeds 1.01 in none of the experiments. This reflects the fact
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Table 1 The Efficiency of the estimators relative to the QS estimator using fixed optimum band-
widths in Andrews (1991) experiments
AR(1)-HOMO

ρ

T Estimator 0 0.3 0.5 0.7 0.9 0.95 -0.3 -0.5

64 BT 1.00 1.00 0.99 0.96 0.97 0.98 1.00 0.99
ATF 1.00 1.00 0.91 1.05 1.03 1.02 1.00 0.89
AETF 1.00 1.00 0.99 1.05 1.03 1.02 1.00 0.99

128 BT 1.00 1.00 0.97 0.94 0.95 0.96 1.00 0.97
ATF 1.00 0.99 0.99 1.04 1.04 1.03 0.99 0.97
AETF 1.00 1.00 1.02 1.06 1.04 1.03 1.00 1.02

256 BT 1.00 1.00 0.95 0.92 0.93 0.95 1.00 0.95
ATF 1.00 0.91 1.08 1.09 1.06 1.05 0.90 1.08
AETF 1.00 1.00 1.08 1.09 1.06 1.05 1.00 1.08

MA(1)-HOMO
ϑ

T Estimator 0.1 0.3 0.5 0.7 0.9 0.99 -0.3 -0.7

64 BT 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99
ATF 1.00 1.00 0.99 0.94 0.91 0.91 0.99 0.94
AETF 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99

128 BT 1.00 1.00 0.99 0.99 0.99 0.99 1.00 0.99
ATF 1.00 1.00 0.89 0.84 0.87 0.87 1.00 0.80
AETF 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99

256 BT 1.00 1.00 0.99 0.96 0.95 0.95 1.00 0.96
ATF 1.00 0.95 0.84 0.93 0.96 0.96 0.95 0.91
AETF 1.00 1.00 1.00 1.03 1.04 1.04 1.00 1.02

Note The efficiency of each estimator is the ratio of the MSE of the QS estimator to that of the
estimator

that the probability that the TF estimator is not p.s.d. is close to zero in all of the
experiments.

We next investigate the potential efficiency gain from using the estimators in the
TF family instead of the QS, BT, ATF, and AETF estimators. In this comparison,
we let each of the estimators use its fixed optimum bandwidth. We here mean by
the fixed optimum bandwidth of a kernel estimator the nonstochastic bandwidth that
minimizes the (finite sample) MSE of the estimator, which we numerically find by
using the grid search method through the Monte Carlo experiments. Table 1 displays
the efficiency of the BT, TF, ATF, ETF, and AETF estimators relative to the QS
estimator with sample sizes 64, 128, and 256.

The relationship between the ATF and QS estimators is similar to that between the
TF and QS estimators reported in Andrews (1991). The ATF estimator outperforms
the QS estimator clearly in some cases, and the complete opposite happens in some
other cases. On the other and, the AETF estimator never has a MSE larger than
the ATF estimator and sometimes brings in substantial improvement over the ATF
estimator, in particular, when the ATF estimator poorly performs relatively to the
QS estimator. As a result, the MSE of the AETF estimator is smaller than or about
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the same as that of the QS estimator in all experiments. Not surprisingly, the fixed
optimum bandwidth for the AETF estimator is close to the midpoint between a pair
of adjacent integers when the AETF estimator outperforms the ATF estimator by a
large margin.

The large sample theory indicates that the efficiency of the ATF and AETF esti-
mators relative to the QS and BT estimators becomes higher as the sample size
increases. Table 1 indeed confirms that the relative efficiency of the AETF increases,
though gradually, as the sample size grows. On the other hand, the relative efficiency
of the ATF estimator shows more complicated moves. That is, the relative efficiency
of the ATF may decrease when the sample size increases. To understand why this
happens, it is useful to view the ATF estimator as a restricted version of the AETF
estimator that can only use an integer bandwidth in the AETF estimation. Suppose
that the fixed optimum bandwidth for the AETF estimator is close to an integer with
the initial sample size. Then the ATF and AETF estimators perform equally well with
the initial sample size. When the sample size increases, however, the optimum band-
width for the AETF may be close to the midpoint between a pair of adjacent integers.
The restriction imposed on the ATF estimator now becomes a severe penalty. Thus,
the efficiency of the ATF estimator relative to the QS estimator can decrease, while
the relative efficiency of the AETF increases.

8 TF Estimation with Data-Based Bandwidth

The optimum bandwidth is unknown in practice. We need a way to choose a band-
width based on data. For consistency of the TF, ATF, ETF, and AETF estimators
with data-based bandwidths, a data-based bandwidth m̂T only needs to satisfy the
following assumption.

Assumption 8 The sequence {mT ∈ (0, T − 1)}T ∈N satisfies that mT → ∞
and m2

T /T → 0. Also, a sequence of random variables {m̂T }T ∈N satisfies that
| log(m̂T /mT )| = OP (1). Note that Assumption 8 imposes the same conditions
on {mT }T ∈N as the consistency results for the ATF, ETF, and AETF estimators in
Theorems 5.2(a), 6.4(a), and 6.5(a).

To establish results on the rate of convergence and the asymptotic truncated MSE
of the estimators, we impose stronger conditions on the bandwidth.

Assumption 9 The sequence {mT ∈ (0, T − 1)}T ∈N satisfies that mT → ∞ and
m2q+1

T /T → γ ∈ (0,∞) for some q ∈ (0,∞) for which S(q) absolutely converges.
Also, a sequence of random variables {m̂T }T ∈N satisfies that for some sequence
{dT ∈ (0,∞)}T ∈N such that d−1

T m1/2
T → 0, dT |m̂T − mT |/mT = OP (1).

The conditions imposed on {mT } in Assumption 9 are the same as those imposed
in Theorems 5.2(b)–(d), 6.4(b), (c), and 6.5(b)–(d).
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Remark In Andrews (1991) and Newey and West (1994), though they do not con-
sider the TF estimator, the data-based bandwidth takes a form of m̂T = ĉT T r where
r is some positive real number and ĉT is an estimator of some constant c ∈ (0,∞).
With such m̂T , the condition | log(m̂T /mT )| = OP (1) in Assumption 8 coincides
with Assumption E of Andrews (1991), because log(m̂T /mT ) = log(ĉT /cT ). Also,
we have that dT |m̂T − mT |/mT = dT (ĉT − c) = OP (1) for a suitably chosen
dT ∈ (0,∞) under Assumption 9. In order for d−1

T m1/2
T to converge to zero, q

in Assumption 9 needs to be sufficiently large. If dt = T 1/2, as is the case in the
data-based bandwidth of Andrews (1991), it must hold that q > 1/2.

We are now ready to state results on the large sample behavior of the TF, ATF,
ETF, and AETF estimators with data-based bandwidths.

Theorem 8.1 (a) Suppose that Assumptions 1, 2, 5, and 8 hold. Then the estimators
{ŜTF

T (m̂T )}T ∈N and {ŜETF
T (m̂T )}T ∈N are consistent for {ST }T ∈N, and it holds that

‖ŜT (m̂T )−ST ‖WT → 0 in probability-P, ŜT ∈ {ŜTF
T , ŜTF,A

T , ŜETF
T , ŜETF,A

T }.
(5)

If in addition W is p.d., then {ŜTF,A
T (m̂T )}T ∈N and {ŜETF,A

T (m̂T )}T ∈N are also
consistent for {ST }T ∈N.

(b) If Assumptions 1, 4–7, and 9 hold. Then we have:

(T/mT )
1/2(ŜTF

T (m̂T )− ŜTF
T (mT )) = oP (1),

(T/mT )
1/2(ŜTF

T (m̂T )− ST ) = OP (1),
(6)

(T/mT )
1/2(ŜETF

T (m̂T )− ŜETF
T (mT )) = oP (1),

(T/mT )
1/2(ŜETF

T (m̂T )− ST ) = OP (1),
(7)

(T/mT )
1/2‖ŜT (m̂T )− ST ‖WT = OP (1),

ŜT ∈ {ŜTF
T , ŜTF,A

T , ŜETF
T , ŜETF,A

T }, (8)

(T/mT )
1/2‖ŜT (m̂T )− ŜT (mT )‖WT = oP (1),

ŜT ∈ {ŜTF
T , ŜTF,A

T , ŜETF
T , ŜETF,A

T }. (9)

(c) If, in addition to the conditions of part (b), W is p.d., then

(T/mT )
1/2(ŜTF,A

T (m̂T )− ŜTF,A
T (mT )) = oP (1),

(T/mT )
1/2(ŜTF,A

T (m̂T )− ST ) = OP (1),
(10)

(T/mT )
1/2(ŜETF,A

T (m̂T )− ŜETF,A
T (mT )) = oP (1),

(T/mT )
1/2(ŜETF,A

T (m̂T )− ST ) = OP (1).
(11)
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(d) Under the conditions of part (b) plus Assumption 3, for each ŜT ∈ {ŜTF
T , ŜTF,A

T ,

ŜETF
T , ŜETF,A

T },

limh→∞ limT →∞ MSEh(T/mT , ŜT (m̂T ),WT )

= limh→∞ limT →∞ MSEh(T/mT , ŜT (mT ),WT ).

The results presented in Theorem 8.1 indicate that the more slowly the bandwidth
grows, the faster the MSE shrinks in the TF, ATF, ETF, and AETF estimation, pro-
vided that �(τ) converges to zero fast enough as τ → ∞. The complete flat shape of
the TF kernel at the origin makes the convergence rate of the bias so fast that the bias
is asymptotically negligible relative to the variance in the TF estimation, virtually
regardless of the growth rate of the bandwidth. This means that given a sequence of
bandwidths in TF estimation, we can always find another sequence of bandwidths
with a slower growth rate that makes faster the convergence rate of the TF estimator.
The rate results in Theorem 8.1 reflect this fact.

Andrews (1991) and Newey and West (1994) propose ways to choose bandwidths
based on data in kernel estimation. Their approach is based on the trade-off between
the asymptotic bias and asymptotic variance of typical kernel estimators: the more
slowly the bandwidth grows, the more slowly the asymptotic bias shrinks and the
faster the variance shrinks, loosely speaking. Their approach sets the growth rate of
the bandwidth in such a way that the convergence rates of the squared bias and the
variance are equated, so that the MSE of the estimator reaches the fastest possible
convergence rate. It then chooses the proportional constant for the bandwidth by
minimizing the suitably scaled asymptotic MSE.

The approach of Andrews (1991) and Newey and West (1994) is inapplicable in
the TF estimation, given the absence of the trade-off between the asymptotic bias
and asymptotic variance of the TF estimator. Nevertheless, it is possible to choose a
bandwidth sequence that makes the TF estimator asymptotically more efficient than
the QS estimator. Let m QS

T and m̃ QS
T denote the “oracle” and data-based bandwidths

of Andrews (1991), respectively (for the precise mathematical formulas of m QS
T and

m̃ QS
T , see Eqs. (5.1), (6.1), and (6.8) in Andrews (1991)). If we set m̂T = am̃ QS

T for
any a ∈ (0, 1/2], then we have by Theorem 8.1(d) that

lim
h→∞ lim

T →∞ MSEh(T/m QS
T , ŜTF

T (m̂T ),WT )

= lim
h→∞ lim

T →∞ aMSEh(T/(am QS
T ), ŜTF

T (m̂T ),WT )

= 8aπ2tr(W (I + Kv,v)S ⊗ S) ≤ 4π2tr(W (I + Kv,v)S ⊗ S).

Because the right-hand side of this equality is equal to the asymptotic variance of
the QS estimator with bandwidth m̃ QS

T , which is no greater than the asymptotic MSE
of the QS estimator, the TF estimator with bandwidth m̂T is asymptotically more
efficient than the QS estimator with bandwidth m̃ QS

T . We can, of course, apply the
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same bandwidth m̂T in the ATF and AETF estimation to attain the same asymptotic
MSE.

A practical question is what value we should use for a. Though the asymptotic
MSE of the TF estimator with the bandwidth m̂T can be made arbitrarily small by
setting a sufficiently small value to a, too small a value for a would result in a
large magnitude of bias in the TF estimation in small samples, because there is a
trade-off between the bias and the variance in finite samples. In our Monte Carlo
simulations in the next section, we use a = 1/2 for the ATF estimator and a = 1/3
for the AETF estimator, though these choices are arguably ad hoc. We use a larger
value for a in the ATF estimation than in the AETF estimation, because the ATF
estimator effectively rounds down the data-based bandwidth m̂T , due to the equality
ŜATF(m̂T ) = ŜATF(�m̂T �).

9 Finite-Sample Performance of the ATF and AETF Estimators
with Data-Based Bandwidths

In this section, we conduct Monte Carlo experiments to examine the performances
of the ATF and AETF estimators in comparison with the BT, QS, and Politis and
Romano’s (1996, 1999) flat-top kernel estimators using data-based bandwidths, bor-
rowing the experiment designs from Newey and West (1987) and Politis (2011) in
addition to the design of Andrews (1991) used earlier in Sect. 7. In what follows,
PoID, PoPR, PoQS, and PoBT denote the flat-top kernel estimators with infinitely
differential tail, Parzen’s type tail, QS type tail, and Bartlett tail, respectively. The
shape parameters of these flat-top kernel estimators are set to the values used in
Politis (2011) (i.e., for PoID: c = 0.05, b = 0.25; for PoPR: c = 0.75; for PoQS:
c = 1, b = 4; and for PoBT: c = 0.5).

Our experiments use the bandwidth selection methods that work stably in all of
our experiments without manual tuning or intervention. Our choice of the data-based
bandwidth for the QS and BT estimators are that of Andrews (1991). In the ATF and
AETF estimation, we use the method described in Sect. 8. For the flat-top kernel
estimators, we adjust the bandwidth for the ATF and AETF, replacing the formula
for the asymptotic variance for the TF estimator with those of the flat-top kernel
estimators (the bandwidths for the PoID, PoPR, PoQS, and PoBT are 0.6439m̃ QS

T ,

0.3269m̃ QS
T , 0.2266m̃ QS

T and 0.5m̃ QS
T ). Though we in theory could use Newey and

West’s (1994) method instead of Andrews’ (1991) method in the bandwidth selection,
we have found that Newey and West’s (1994) method is not suitable for our purpose,
because the simulation results heavily depend on its tuning parameter. We have
also found that the bandwidth selection method recommended by Politis (2011)
sometimes results in terrible performance without some human intervention (which
is impossible in Monte Carlo experiments).

Table 2 reports the efficiency of the estimators relative to the QS estimator in
the AR(1)-HOMO and MA(1)-HOMO experiments. The relationship among the



402 C.-C. Lin and S. Sataka

estimators are analogous to that in Table 1 of the experiments with fixed optimum
bandwidths, though the randomness of the data-based bandwidth introduces extra
variability in the results. The MSE of the AETF estimator is smaller than or at least
comparable to that of the QS estimator in all of our experiments, while the effi-
ciency of the ATF estimator relative to the QS estimator varies from an experiment
to another. The efficiency of the PoID, PoPR, PoQS, and PoBT varies across differ-
ent underlying data generating processes, and the flat-top kernel estimators do not
uniformly outperform the other estimators.

We now turn to the experiments of Newey and West (1994) and Politis (2011).
The first two experiments borrowed from Newey and West (1994), NW-A1 and
NW-A2, feature a time-series regression model with AR processes for its regressors
and disturbance, while the third experiment NW-B1 incorporates truncated memory
and GARCH(1,1) effects. In Politis (2011) experiments, Po1 and Po2, {Z∗

t }t∈N is a
bivariate process that involves no unknown parameter θ∗. In Po1, the two components
of {Z∗

t } are independent from each other. The first component is an AR(1) process
with coefficient 0.75, while the second component is an MA(1) process weighting
the current and lagged innovations equally. In Po2, the first component is an MA(1)
process with coefficient -1, and the second component is the sum of an AR(1) process
with coefficient −0.75 and the first component at the seventh lag, so that its cross-
autocovariance jumps up at lag 7.

Table 3 presents the efficiency of the estimators relative to the QS estimator in NW-
A1, NW-A2, NW-B1, Po1, and Po2. In NW-A1, NW-A2, NW-B1, and Po1, the QS,
AETF, and flat-top kernel estimators perform comparably. In Po2, however, the QS,
BT, and Politis flat-top estimators clearly outperform the ATF and AETF estimators.
This seems to reflect the unusual feature of Po2 that the cross autocovariance jumps at
the seventh lag. The ATF and AETF estimators miss the jump completely unless their
bandwidths are greater than six, while the other estimators more easily capture the
jump at least partially thorough the sloped part of the kernel. This reveals a possible
drawback of the ATF and AETF estimators, though we doubt typical economic
applications involve such an exotic autocovariance structure.

In summary, the relationship between the AETF and QS estimators is consistent
with what the large sample theory suggests, unlike the relationship between the ATF
and QS estimators. Though the relationship between flat-top kernel estimators and
the AETF estimator is somewhat unclear, they perform comparably in many cases.

10 Conclusion

In this paper, we modify the truncated flat kernel (TF) estimator of long-run covari-
ance matrices proposed by White and Domowitz (1984) to propose estimators with
guaranteed positive semidefiniteness and finite sample performance stably consis-
tent with the large sample efficiency of the TF estimator. We analytically prove the
“large sample equivalence” of the proposed estimators and the TF estimator and
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Table 2 The efficiency of the estimators relative to the QS estimator using data-dependent band-
widths in Andrews (1991) experiments
AR(1)-HOMO

ρ

T Estimator 0 0.3 0.5 0.7 0.9 0.95 -0.3 -0.5
64 BT 1.02 1.01 1.00 0.99 1.00 1.00 1.01 1.00

ATF 1.03 1.01 1.01 1.01 1.00 1.00 1.01 1.02
AETF 1.01 1.01 1.02 1.01 1.00 1.00 1.01 1.02
PoID 1.03 1.00 0.97 0.99 1.00 1.00 0.99 0.98
PoPR 1.03 1.00 0.97 0.99 1.00 1.00 0.99 0.97
PoQS 1.03 1.00 0.97 0.99 1.00 1.00 0.99 0.97
PoBT 1.03 1.00 0.97 0.99 1.00 1.00 0.99 0.97

128 BT 1.03 1.02 0.99 0.98 0.99 1.00 1.02 1.00
ATF 1.03 1.00 1.03 1.02 1.01 1.00 1.00 1.03
AETF 1.01 1.01 1.03 1.02 1.00 1.00 1.01 1.03
PoID 1.06 1.00 0.98 0.99 1.00 1.00 1.00 0.99
PoPR 1.07 1.00 0.98 0.99 1.00 1.00 1.00 0.98
PoQS 1.07 1.00 0.98 0.99 1.00 1.00 1.00 0.98
PoBT 1.07 1.00 0.98 0.99 1.00 1.00 1.00 0.98

256 BT 1.04 1.02 0.99 0.97 0.98 0.99 1.02 0.99
ATF 1.04 0.99 1.03 1.03 1.01 1.01 0.99 1.03
AETF 1.01 1.01 1.05 1.03 1.00 1.00 1.01 1.05
PoID 1.08 0.99 0.99 1.00 1.00 1.00 0.99 1.00
PoPR 1.09 0.98 1.00 0.99 1.00 1.00 0.98 1.01
PoQS 1.09 0.98 1.00 0.99 1.00 1.00 0.98 1.01
PoBT 1.09 0.99 0.99 0.99 1.00 1.00 0.99 1.00

MA(1)-HOMO
ϑ

T Estimator 0.1 0.3 0.5 0.7 0.9 0.99 -0.3 -0.7
64 BT 1.02 1.01 1.00 0.99 0.99 0.99 1.01 1.00

ATF 1.02 1.01 1.01 1.01 1.02 1.02 1.01 1.02
AETF 1.01 1.01 1.01 1.02 1.02 1.02 1.01 1.02
PoID 1.03 1.00 0.97 0.97 0.97 0.97 1.00 0.97
PoPR 1.03 1.00 0.97 0.96 0.96 0.96 1.00 0.97
PoQS 1.03 1.00 0.97 0.96 0.96 0.96 1.00 0.97
PoBT 1.03 1.00 0.97 0.97 0.97 0.97 1.00 0.97

128 BT 1.03 1.02 1.00 1.00 0.99 0.99 1.02 1.00
ATF 1.01 1.01 1.02 1.03 1.04 1.04 1.01 1.04
AETF 1.01 1.01 1.02 1.03 1.04 1.04 1.01 1.04
PoID 1.06 1.01 0.98 0.98 0.99 0.99 1.01 0.99
PoPR 1.06 1.01 0.97 0.97 0.98 0.98 1.01 0.98
PoQS 1.06 1.01 0.97 0.97 0.98 0.98 1.01 0.98
PoBT 1.06 1.01 0.97 0.98 0.98 0.99 1.01 0.99

(continued)
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Table 2 Continued
AR(1)-HOMO

ρ

T Estimator 0 0.3 0.5 0.7 0.9 0.95 -0.3 -0.5

256 BT 1.04 1.02 1.00 0.99 0.99 0.99 1.02 0.99
ATF 1.03 0.98 1.04 1.05 1.06 1.05 0.98 1.05
AETF 1.01 1.01 1.03 1.06 1.07 1.07 1.01 1.06
PoID 1.08 1.01 0.99 1.02 1.03 1.03 1.01 1.02
PoPR 1.08 1.00 0.97 1.01 1.03 1.04 1.00 1.01
PoQS 1.08 1.00 0.97 1.01 1.03 1.04 1.00 1.02
PoBT 1.08 1.01 0.98 1.01 1.03 1.03 1.01 1.01

See the note of Table 1

Table 3 The efficiency of the estimators relative to the QS estimator using data-dependent band-
widths in Newey and West (1994) and Politis’ (2011) experiments

NW-A1 NW-A2 NW-B1 Po1 Po1 Po2 Po2
T 100 200 300 100 500 100 500

BT 0.97 1.00 0.84 1.13 1.07 1.15 1.10
ATF 0.97 0.95 0.98 0.98 0.99 0.94 0.83
AETF 0.99 0.98 1.01 1.01 1.00 0.95 0.88
PoID 0.99 1.01 1.02 1.06 1.01 1.37 1.20
PoPR 0.99 0.99 1.02 1.05 1.01 1.40 1.21
PoQS 0.99 0.99 1.02 1.05 1.01 1.40 1.21
PoBT 0.99 1.00 1.02 1.06 1.00 1.40 1.23

See the note of Table 1

demonstrate the improved performance of the proposed estimators over that of the
TF estimator in Monte Carlo experiments.
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Appendix A Mathematical Proofs

For each symmetric p.s.d. matrix A, A1/2 denotes a p.s.d. symmetric matrix such
that A1/2 A1/2 = A. Also, for each (a, b) ∈ R

2, a ∨ b, and a ∧ b denote the smaller
and larger between a and b, respectively. In some of the proofs given below, we will
use the following lemma.

Lemma A.1 Suppose that Assumption 1 holds. Let Ŝ1,T and Ŝ2,T be estimators of
ST , WT a v2 × v2 symmetric p.s.d. random matrix, and aT a positive real num-
ber (T ∈ N). If a1/2

T (Ŝ1,T − ST ) = OP (1), and a1/2
T ‖Ŝ1,T − Ŝ2,T ‖WT → 0
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in probability-P, then for each h ∈ (0,∞) for which MSEh(aT , Ŝ1,T ,WT ) con-
verges to a (finite) real number, it holds that limT →∞ MSEh(aT , Ŝ2,T ,WT ) =
limT →∞ MSEh(aT , Ŝ1,T ,WT ).

Proof of Lemma A.1 The proof is available upon request. Q.E.D.

We omit the proofs of Theorem 2.1, Corollary 4.2, Proposition 5.1, Theorem 5.2,
Propositions 6.2, 6.3, Lemma 6.1, Theorem 6.4, and Theorem 6.5, given the imposed
space constraint. They are available from the authors upon request.

Proof of Theorem 4.1 To prove (a), fix T ∈ N, and ω ∈ � arbitrarily and suppose
that ŜT (ω) �∈ Pv . Write ŝ A ≡ Ŝ A

T (ω) and w ≡ ŴT (ω), and let A, V, x̂ , and x̂ A be as
in the proof of Theorem 2.1. Also, let x̄ ≡ A′vec(ST ). Then the desired inequality
is equivalent to ‖x̂ − x̄‖ ≥ ‖x̂ A − x̄‖. Also, the equality of ‖ŝ A − ŝ‖w to zero is
equivalent to the equality of ‖x̂ − x̂ A‖ = infx∈V ‖x̂ − x‖ to zero, which is further
equivalent to that x̂ ∈ V, because V is closed.

The inequality in question trivially holds with equality if x̂ ∈ V, because it
then holds that x̂ A = x̂ . Now, suppose that x̂ �∈ V and let B denote the Euclidean
closed ball in R

rank(A) with radius ‖x̂ A − x̂‖ centered at x̂ . It then clearly holds
that V ∩ int B = ∅. Also, V is convex, and B is convex with a nonempty interior,
having a positive radius. By the Eidelheit Separation Theorem (Luenberger 1969,
pp. 133–134,Theorem3), it follows that there exists a hyperplane H1 separating V
and B. Because x̂ A belongs to both V and B, H1 contains x̂ A, so that H1 is the unique
tangency plane of the Euclidean closed ball B at x̂ A.

Now shift H1 so that it contains x̄ and call the resulting hyperplane H2. Let x̌ be
the projection of x̂ onto H2. Then x̂ A is on the line segment connecting x̂ and x̌ , and
x̌ − x̄ is perpendicular to both x̂ − x̌ and x̂ A − x̌ . We thus have that

‖x̂ − x̄‖2 = ‖x̂ − x̌‖2 + ‖x̌ − x̄‖2 > ‖x̂ A − x̌‖2 + ‖x̌ − x̄‖2 = ‖x̂ A − x̄‖2

The desired result therefore follows.
The claim of (b) immediately follows from the fact that if WT is p.d., Ŝ A

T is the
minimizer of a function s 
→ ‖ŜT − s‖WT that is strictly convex on the convex set
Pv . Q.E.D.

Proof of Theorem 4.3 The sequence {aT ‖ŜT − ST ‖2
WT

}T ∈N converges in

probability-P to zero, because P[ŜT − ST = 0] → 1 by the consistency of {ŜT }T ∈N

for {ST }T ∈N and the asymptotic uniform positive definiteness of {ST }. Because

MSE(aT , ŜT , WT )− MSE(aT , Ŝ A
T , WT )

= E[aT ‖ŜT − ST ‖2
WT

− aT ‖Ŝ A
T − ST ‖2

WT
], T ∈ N,

and {aT ‖ŜT − ST ‖2
WT

−aT ‖Ŝ A
T − ST ‖2

WT
}T ∈N is uniformly integrable under the cur-

rent assumption, it suffices to show that {aT ‖ŜT − ST ‖2
WT

− aT ‖Ŝ A
T − ST ‖2

WT
}

converges to zero in probability-P . Let ε be an arbitrary positive real number.
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Then

P
[∣∣ aT ‖ŜT − ST ‖2

WT
− aT ‖Ŝ A

T − ST ‖2
WT

∣∣ > ε
]

≤ P
[∣∣ aT ‖ŜT − ST ‖2

WT
− aT ‖Ŝ A

T − ST ‖2
WT

∣∣ �= 0
] ≤ P[ŜT �∈ P] → 0,

where the last inequality follows from the consistency of {ŜT }T ∈N for {ST }T ∈N and
the asymptotic uniform positive definiteness of {ST } by Theorem 4.1(a). The result
therefore follows. Q.E.D.

Proof of Theorem 4.4 By Corollary 4.2(c), a1/2
T (Ŝ A

T − ŜT ) → 0 in probability-P .
Applying Lemma A.1, taking {ŜT }T ∈N for {Ŝ1,T }T ∈N and {Ŝ A

T }T ∈N for {Ŝ2,T }T ∈N

respectively yields the desired result. Q.E.D.

Proof of Theorem 8.1 (a) Suppose that ŜTF
T (m̂T )− ŜTF

T (mT ) → 0 in probability-P .
Then {ŜTF

T (m̂T )}T ∈N is consistent for {ST }T ∈N, because

‖ŜTF
T (m̂T )− ST ‖ ≤ ‖ŜTF

T (m̂T )− ŜTF
T (mT )‖ + ‖ŜTF

T (mT )− ST ‖, T ∈ N,

where the first term on the right-hand side converges to zero by hypothesis, and the
second term converges in probability-P to zero by Andrews (1991, Theorem 1(a)).
Also, {ŜETF

T (m̂T )}T ∈N is consistent for {ST }T ∈N by Theorem 6.4(a). The conver-
gences of (5) with ŜT = ŜTF

T and ŜT = ŜETF
T respectively follow from the consistency

of {ŜTF
T (m̂T )}T ∈N and {ŜETF

T (m̂T )}T ∈N by the Slutsky Theorem. Then, applying

Corollary 4.2(b) to {ŜTF,A
T (m̂T )}T ∈N and {ŜETF,A

T (m̂T )}T ∈N establishes the rest of the
claims in (a). Thus, it suffices to show that ŜTF

T (m̂T )− ŜTF
T (mT ) → 0 in probability-

P , i.e., for each ε ∈ (0, 1], P[‖ŜTF
T (m̂T )−ŜTF

T (mT )‖ ≥ ε] < ε for almost all T ∈ N.

Pick ε ∈ (0, 1] arbitrarily. Then, by Assumption 8, there exists �ε ∈ (1,∞)

such that for each T ∈ N, P[ m̂T �∈ [(1/�ε)mT , �εmT ] ] < ε/2. When m̂T ∈
[(1/�ε)mT , �εmT ], we have that

‖ŜTF
T (m̂T )− ŜTF

T (mT )‖

=
∥∥∥∥

�m̂T ∨mT �∑
τ=�m̂T ∧mT �+1

(
�̂T (τ )+ �̂′

T (τ )
)∥∥∥∥

≤
∥∥∥∥

�m̂T ∨mT �∑
τ=�m̂T ∧mT �+1

(
(�̂T (τ )− �T (τ ))+ (�̂T (τ )− �T (τ ))

′)∥∥∥∥

+
∥∥∥∥

�m̂T ∨mT �∑
τ=�m̂T ∧mT �+1

(�T (τ )+ �(τ)′)
∥∥∥∥

≤ 2A1,T + 2A2,T , T ∈ N, where (A.1)
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A1,T ≡
��εmT �∑

τ=�(1/�ε)mT �+1

‖�̂T (τ )− �T (τ ))‖,

A2,T ≡
��εmT �∑

τ=�(1/�ε)mT �+1

‖�T (τ )‖, T ∈ N.

By using the Minkowski inequality and Lemma 6.1(a), we obtain that

E[A2
1,T ]1/2 ≤

��εmT �∑
τ=�(1/�ε)mT �+1

E[‖�̂T (τ )− �T (τ ))‖2]1/2

= O(mT /T 1/2) = o(1).

By the Markov inequality, it follows that A1,T → 0 in probability-P . Also, the
absolute convergence of S(0) implies that A2,T ≤ ∑��εmT �

τ=�(1/�ε)mT �+1 ‖�(τ)‖ ≤∑∞
τ=�(1/�ε)mT �+1 ‖�(τ)‖ = o(1). Thus, 2A1,T + A2,T → 0 in probability-P .

We now have that

P[‖ŜTF
T (m̂T )− ŜTF

T (mT )‖ ≥ ε] ≤ P[ m̂T �∈ [(1/�ε)mT , �εmT ] ]
+P[2A1,T + 2A2,T ≥ ε], T ∈ N.

The first term on the right-hand side of this equality is no greater than ε/2 for each
T ∈ N, while the second term is smaller than ε/2 for almost all T ∈ N. The desired
result therefore follows.

(b) Suppose that the first equality in (6) holds. Then the second equality also holds,
because

‖(T/mT )
1/2(ŜTF

T (m̂T )− ST )‖ ≤ ‖(T/mT )
1/2(ŜTF

T (m̂T )− ŜTF
T (mT ))‖

+‖(T/mT )
1/2(ŜTF

T (mT )− ST )‖,

T ∈ N, where the first term on the right-hand side converges to zero by hypothesis,
and the second term is OP (1) by Andrews (1991, Theorem 1(b)). Also, (7) can be
easily derived from (6) by using the definition of the ETF estimator and the triangle
inequality. Given (6)–(7), it is straightforward to establish (8) and (9) by using the
definition of ‖·‖WT and applying the basic rules about stochastic order of magnitudes
in additions and multiplications. Thus, it suffices to show the first equality in (6) to
prove the current claim.

The first equality in (6) is equivalent to that for each ε ∈ (0, 1],

P[(T/mT )
1/2‖ŜTF

T (m̂T )− ŜTF
T (mT )‖ ≥ ε] < ε for almost all T ∈ N. (A.2)
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Pick ε ∈ (0, 1] arbitrarily. Then, by Assumption 9, there exists�ε ∈ (0,∞) such that
for each T ∈ N, P[ m̂T �∈ [(1 − d−1

T �ε)mT , (1 + d−1
T �ε)mT ] ] < ε/2. Derivation

analogous to (A.1) yields that when m̂T ∈ [(1 − d−1
T �ε)mT , (1 + d−1

T �ε)mT ],

‖(T/mT )
1/2(ŜTF

T (m̂T )− ŜTF
T (mT ))‖ ≤ 2A3,T + 2A4,T , T ∈ N, where

A3,T ≡ (T/mT )
1/2

�(1+d−1
T �ε)mT �∑

τ=�(1−d−1
T �ε)mT �+1

‖�̂T (τ )− �T (τ ))‖,

A4,T ≡ (T/mT )
1/2

�(1+d−1
T �ε)mT �∑

τ=�(1−d−1
T �ε)mT �+1

‖�T (τ )‖.

By using the Minkowski inequality and Lemma 6.1(a), we obtain that

E[A2
3,T ]1/2 ≤ (T/mT )

1/2
�(1+d−1

T �ε)mT �∑
τ=�(1−d−1

T �ε)mT �+1

E[‖�̂T (τ )− �T (τ ))‖2]1/2 = O(d−1
T m1/2

T ).

Because d−1
T m1/2

T → 0 by Assumption 9, it follows that E[A2
3,T ]1/2 → 0. By the

Markov inequality, A3,T → 0 in probability-P . Also, we have that

A4,T ≤ (T/mT )
1/2

�(1+d−1
T �ε)mT �∑

τ=�(1−d−1
T �ε)mT �+1

‖�T (τ )‖

≤ (T/mT )
1/2

�(1+d−1
T �ε)mT �∑

τ=�(1−d−1
T �ε)mT �+1

‖�(τ)‖

≤ (T/mT )
1/2

∞∑
τ=�(1−d−1

T �ε)mT �+1

‖�(τ)‖

≤ (T/mT )
1/2

∞∑
τ=�mT /2�+1

‖�(τ)‖,

where the last inequality holds for almost all T ∈ N, as 1−d−1
T �ε ≥ 1/2 for almost

all T ∈ N. Write γT ≡ (m2q+1
T /T ) for each T ∈ N. Then γT converges to �, and
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(T/mT )
1/2 = (T/mT )

1/2γ
1/2
T γ

−1/2
T

= γ
−1/2
T mq

T = 2qγ
−1/2
T (mT /2)

q , T ∈ N.

It follows that A4,T ≤ 2qγ
−1/2
T

∑∞
τ=�mT /2�+1 τ

q‖�(τ)‖ = o(1), given the absolute

convergence of S(q).
We now have that for each T ∈ N,

P

[(
T

mT

)1/2

‖ŜTF
T (m̂T )− ŜTF

T (mT )‖ ≥ ε

]

≤ P

[
m̂T �∈

[(
1 − �ε

dT

)
mT ,

(
1 + �ε

dT

)
mT

] ]
+ P[2A3,T + 2A4,T ≥ ε].

Because the first term on the right-hand side of this equality is no greater than ε/2
for each T ∈ N, and the second term is smaller than ε/2 for almost all T ∈ N, (A.2)
holds, and the desired result follows.

(c) The results follow from (8) and (9) setting ŜT = ŜTF,A
T and ŜT = ŜETF,A

T ,
respecitvely, by arguments analogous to the proof of Theorem 4.2(b).

(d) The result follows from the corresponding result (9) by Lemma A.1. Q.E.D.
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Predictability and Specification in Models
of Exchange Rate Determination

Esfandiar Maasoumi and Levent Bulut

Abstract We examine a class of popular structural models of exchange rate
determination and compare them to a random walk with and without drift. Given
almost any set of conditioning variables, we find parametric specifications fail. Our
findings are based on a broad entropy function of the whole distribution of vari-
ables and forecasts. We also find significant evidence of nonlinearity and/or “higher
moment” influences which seriously questions the habit of forecast and model evalu-
ation based on mean-variance criteria. Taylor rule factors may improve out of sample
“forecasts” for some models and exchanges, but do not offer similar improvement for
in-sample (historical) fit. We estimate models of exchange rate determination non-
parametrically so as to avoid functional form issues. Taylor rule and some other vari-
ables are smoothed out, being statistically irrelevant in sample. The metric entropy
tests suggest significant differences between the observed densities and their in- and
out- of sample forecasts and fitted values. Much like the Diebold-Mariano approach,
we are able to report statistical significance of the differences with our more general
measures of forecast performance.

1 Introduction

Rational expectation hypothesis is at the core of the modern exchange rate deter-
mination models: assuming the “true” structural model of the economy is known,
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forecasts are unbiased, uncorrelated, and efficient. In out of sample forecastabality
of the change in spot rates, popular models seemingly fail to systematically beat
a random walk based on standard point forecast criteria. In an influential chapter,
Meese and Rogoff (1983) examined this “puzzle,” and based on data from 1970s,
they found that the random walk model performs as well as any estimated structural
or various time series models. In other words, knowing the past, current and even
one period ahead true values of exchange rate fundamentals, such as income, money
supply growth rates, inflation rates, output gaps, and interest rates for two countries
seemingly fails to produce better forecasts of the change in the nominal exchange rate,
than simply using the current nominal exchange rate. This uncomfortable finding is
known as the “Exchange rate disconnect puzzle” or the “Meese–Rogoff Puzzle.”

Meese and Rogoff (1983) findings have been reexamined in the literature. One
line of research reexamines different currency pairs, different time periods, real time
versus revised macrodata, and different linear structural models to assess the evidence
based on the first and second moments of the distribution of the forecast errors. In
this line of research, until recently, different attempts had failed to show forecasting
power in the short run. A few, for example, Mark (1995) and Engel et al. (2007), find
better performing structural models only at horizons 2–4 years out! Cheung et al.
(2005) applied a wide range of structural models and adopted different test statistics,
yet failed to show that structural models consistently outperform the random walk
model. Some researchers, instead of revised data, examined real-time data since it
was the only available information at the time of decision making. Faust et al. (2003)
found better performing structural models in out-of-sample by using fully revised
data, yet they failed to outperform random walk model. Other studies extend the set
of structural models by including further macro variables such as the Taylor-rule
principles. Molodtsova and Papell (2009) test the out-of-sample predictive power
of Taylor-rule based exchange rate models and find that those models significantly
outperform the random walk model in the short horizon. Rogoff and Stavrakeva
(2008), on the other hand, are critical of the findings in Molodtsova and Papell (2009);
Gourinchas and Rey (2007), and Engel et al. (2007), arguing that they are not robust to
alternative time windows and alternative tests. They notably speculate that this lack of
robustness to alternative time windows may be due to potential nonlinearities and/or
structural breaks. We agree, and would add inadequate conditioning sets and other
mispecifications to the list of potential culprits. A very recent literature pioneered
by Evans and Lyons (2002, 2005) incorporates the micro determinants of exchange
rates (micro-structured models) into macro exchange rate models to form a “hybrid”
model. In this approach, the order flows (the detail on the size, direction, and initiator
of the transactions of exchange rates) are considered as signals of heterogeneous
investor expectations and it is suggested that the order flows contain information on
(and changing expectations of) exchange rate fundamentals that are more timely than
the data releases. While there is some evidence of exchange rate predictability and
forecastability of the “hybrid” model with the very high frequency data (where data
on exchange rate fundamentals do not exist), at higher forecast horizons (one month
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or longer), the evidence based on the conventional point forecast accuracy criteria is
mixed (see Berger et al. (2008) and Chinn and Moore (2011)).1

A second related line of research questions model specification and seeks alter-
native, mostly nonlinear/nonparametric, specifications to overcome the Meese and
Rogoff (1983) findings. Diebold and Nason (1990) use univariate nonparametric time
series methods to forecast the conditional mean of the spot exchange rates but fail
to find better prediction performance over the random walk. Meese and Rose (1991)
look for nonlinear relationship between the exchange rates and their fundamentals
to minimize the potential misspecification in the linear models. They use nonpara-
metric techniques and conclude that the poorer explanatory power of the structural
models over random walk cannot be attributed to nonlinearities. This is suggestive
of inadequate conditioning variables which we confirm in this chapter.

Finally, an emergent third strand in the literature questions the conventional point
forecast accuracy criteria and offers some alternatives, such as the density forecast
approach. In this approach, the model-based forecast distributions are compared with
the true (data-driven) distribution of the actual change in exchange rate series. Were
these densities to be fully characterized by second moments, as in the case of the
linear/Gaussian processes, this approach would find the same results obtained with
Diebold and Mariano (1995) and West (1996) type second moment tests. As for
the evaluation of density forecasts, several different methods have been proposed.
Diebold et al. (1998) propose to first estimate the forecast density of the model and
transform it by the probability integral at each observed value over the forecast period.
They suggest testing the implied i.i.d.’ness of these uniformly distributed transformed
series. Clements and Smith (2000) test for the implied uniform distribution using the
Kolmogorov-Smirnov statistic. In particular, Berkowitz (2001) proposes to trans-
form Diebold et al. (1998) transformed statistics to a normal distribution to avoid
the difficulties of testing for a uniform null. Although Berkowitz (2001) method-
ology helps understanding how well a model’s predictive density approximates the
predictive density of the data, it does not allow for model comparison. To solve that
problem Corradi and Swanson (2006), in the spirit of Diebold and Mariano (1995),
test for equal point forecast accuracy by proposing a testing strategy which tests the
null of equal density forecast accuracy of two competing models. Along this line of
research, and more encouragingly, Wang and Wu (2010) estimate the semiparametric
interval distribution of change in exchange rates to compare their forecast interval
range with random walk model. They find supporting evidence of better forecast
performance of Taylor-rule based structural models over the random walk model.

The approach in this chapter encompasses the second and third strands of research
highlighted above. We examine the same set of popular structural models of exchange
rate determination, and compare them to a random walk with and without drift. Our
criterion for assessment of closeness between distributions is a general entropy func-
tional of such distributions. This reflects our critical view of mean squared type

1 It might be interesting to evaluate the performance of the “hybrid” model by using the metric
entropy criterion, but we leave that to future studies.
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performance criteria as inadequate and/or inappropriate. Given almost any set of
conditioning variables, we find parametric specifications fail by our criterion. We find
significant evidence of nonlinearity and/or “higher moment” influences which seri-
ously questions the habit of forecast and model evaluation based on mean-variance
criteria. Conditioning variables, such as Taylor rule factors may improve out-of-
sample “forecasts” for some models and exchanges, but do not offer uniform improve-
ment for in-sample (historical) fit. Our findings benefit from nonparametric estima-
tion. This is consistent with findings of nonlinear effects of fundamental and Taylor
rule variables, as in this chapter, Wang and Wu (2010), and Rogoff and Stavrakeva
(2008). Such findings suggest the “Meese-Rogoff puzzle” may be an artifact of the
parametric specifications of the traditional models, as well as due to inordinate focus
on the first two moments of the forecast distributions. The tightness of the distribu-
tion of the forecast errors reported by Wang and Wu (2010) may be accompanied by
other differences in asymmetry, kurtosis, and higher order moments. This is impor-
tant information in risk management. All of the potential additional effects can be
picked up by broader “distribution metrics”, such as “entropy” that go well beyond
the variance for non-Gaussian/nonlinear processes.

The metric entropy criterion was suggested in Maasoumi and Racine (2002), and
Granger et al. (2004). It is capable of contrasting whole distributions of (conditional)
predictions of parametric and nonparametric models, as well as that of random walk.
It serves equally well as a measure of in-sample and out-of-sample fit or model
adequacy, and it can assess the (nonlinear) affinity between the actual series and their
predictions obtained from various models. This same metric serves as a measure of
generic “dependence” in time series, as demonstrated in Granger et al. (2004).

Our findings, being robust to functional form misspecification, forecast criteria
limitations, and a large set of popular explanatory variables, indicate the parametric
forms are misspecified, and no current theory provides uniformly good forecast of
the distribution of the observed changes in exchange rates.

The nonparametric approach suggests Taylor rule and some other variables are
smoothed out, being statistically irrelevant in sample. The metric entropy tests sug-
gest significant difference between forecast and fitted densities, on the one hand,
and densities of the corresponding observed series. We are able to report statistical
significance of differences for our more general measures of forecast performance.
A by-product of our work is a more complete characterization of the gains over tra-
ditional specifications obtained from nonparametric implementations and additional
fundamental variables and Taylor rule effects.

1.1 Entropy Measure of Dependence for Forecast Performance

• As a Measure of Association

Diebold and Mariano (1995) employed a quadratic loss function and computed
the squared prediction errors. They tested the null of equal predictive accuracy by
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estimating whether the population mean of the difference between loss differential
functions of two contestant models is zero. Such testing strategy is focused on the
first and second moments of functions of predictions errors, and not designed to
capture differences in higher moments. Given a set of conditioning variables, con-
ditional mean is known as the best predictor under mean squared error criterion.
Here we adopt the nonparametric entropy measure of dependence, as suggested in
Granger et al. (2004), to compare forecasting power of several different models. It
has been documented that this metric entropy has good power in detecting depen-
dence structure of various linear and nonlinear models. The measure is similar to
the Kullback–Leibler information criteria, but unlike the latter, it satisfies the trian-
gularity property of metrics, and is a normalized Bhattacharya-Matusita-Hellinger
measure as follows:

Sρ1 = 1

2

∞∫
−∞

∞∫
−∞

(
f 1/2
1 − f 1/2

2

)2
dadb, (1)

where f1 = f (a, b) is a joint density and f2 = g(a)h(b) is the product of the
marginal densities of the random variables a and b. Two random variables are inde-
pendent if and only if f1 = f2 which implies Sρ1 = 0. For continuous variables,
the upper limit of the function is normalized to unity, but for discrete variables the
upper limit depends on the underlying distributions (see Giannerini et al. (2011) for
details). A statistically significant positive value of Sρ1 implies existence of possi-
bly nonlinear dependence/association. Theoretical properties of the cross validated,
nonparametric estimation of Sρ1 are examined in a number of chapter by Skaug
and Tjøstheim (1996); Su and White (2008); Granger et al. (2004), and lately by
Giannerini et al. (2011) under more demanding sample dependence assumptions for
time series. Giannerini et al. (2011) consider both surrogate method and bootstrap
resampling approaches. Bootstrap is adequate to the task at hand in this chapter, and
is widely known to be a major improvement over the asymptotic approximate theory
for these entropy measures.

In this chapter, we utilize this entropy-based measure of dependence for two
traditionally distinct purposes: as an in-sample goodness-of-fit measurement, and as
a test of predictive performance of alternative models. To measure the in-sample
goodness-of-fit of a model i , we set a = yt and b = ŷi

t (t = 1, 2, ..., T ), where yt

refers to observed change in nominal exchange rate, while ŷi
t indicates the fitted value

for yt generated by model i . Based on existing empirical evidence, we assume that
the change in nominal exchange rate is a stationary continuous random variable with a
marginal density g(yt ).An adequate model is expected to produce strong relationship
between the actual and the fitted values of exchange rate change series. Therefore,
higher values of Sρ1 imply well-performing models with higher predictive ability,
much as R2 as a goodness of fit measure for linear models. This metric reduces to a
monotonically increasing function of the correlation coefficient for linear Gaussian
processes. Nothing is lost by employing this metric when correlation analysis may
suffice!
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Similarly, when measuring and testing predictive performance of model i , we set
a = yt and b = ŷi

t (t = R+1, R+2, ..., T ), where yt refers to actual out-of-sample
change in nominal exchange rate, whereas ŷi

t indicates the non-recursive forecast of
yt generated by model i based on the estimates obtained from the training sample
of size R.2 The higher Sρ1 the better the fit and forecast performance of a model.

• As an Alternative Measure of Density

We also use the same entropy measure to test the equality of densities for two uni-
variate random variable a and b as suggested in Maasoumi and Racine (2002).We
use the nonparametric kernel estimates of the following metric entropy statistics:

Sρ2 = 1

2

∫ (
f 1/2
1 − f 1/2

2

)2
da (2)

but, now f1 = f (a) and f2 = f (b) are both marginal densities of the random
variables a and b. As before, a = yt and b = ŷi

t may indicate either the in-sample
fitted values or the non-recursive forecast of yt generated by model i . Specifically
random variables yt and ŷi

t are identically distributed if and only if the marginal
densities are equal. Under the null of equality, Sρ2 = 0. Here the lower values of
Sρ2 indicate better predictive performance, or better fit.

In the following sections, we will first discuss the exchange rate forecasting
methodology, then we will briefly summarize the data and the structural models
considered in this chapter. Finally, we will discuss our estimation results and com-
pare them with the traditional point forecast accuracy criterion.

2 Out-of-Sample Exchange Rate Forecasting

For each model, we construct the first 1 month ahead forecast with the first estimation
window, then repeat the process by rolling the window one period ahead in the sample
until all the observations are exhausted. Let st denote the natural logarithm of the
nominal exchange rate at time t , and the change in the logged nominal exchange rate
as yt+1 = st+1 −st . If Xt is a vector of “fundamentals” at time t , a typical parametric
model in our set may be represented as follows:

yt+1 = α + β ′ Xt + εt+1. (3)

In this regression equation (3), the change in the natural logarithm of exchange
rates is determined by some fundamentals and unexpected shocks. Under rational
expectations, the unobservable expectation of one period ahead exchange rate will be
the conditional expectation implied by the structural model, assuming uncorrelated,

2 The detailed information about the structural models and the out-of-sample forecasting method-
ology will be provided in the following section.



Predictability and Specification in Models of Exchange Rate Determination 417

Table 1 Model description

Model name List of explanatory variables

Model 1: Asymmetric taylor rule
with no smoothing

(ygap − y∗
gap), (π − π∗), q and a

constant
Model 2: Symmetric taylor rule with

no smoothing
(ygap − y∗

gap), (π − π∗), and a
constant

Model 3: Asymmetric taylor rule
with smoothing

(ygap − y∗
gap), (π −

π∗), q, it−1, i∗t−1, and a
constant

Model 4: Symmetric taylor rule with
smoothing

(ygap − y∗
gap), (π − π∗), it−1, i∗t−1

and a constant
Model 5: Purchasing power parity

model
q and a constant

Model 6: Interest parity model (i − i∗) and a constant
Model 7: Monetary model (m − m∗)− (y − y∗)− s
Model 8: Driftless random walk none
Model 9: Random walk with a drift a constant

Variable definitions

ygap Quasi-real quadratic trending based measure of the output gap in US.
y∗

gap Quasi-real quadratic trending based measure of the output gap in the foreign country.
π Inflation rate in US.
π∗ Inflation rate in the foreign country.
p Price level in US.
p∗ Price level in the foreign country.
q Real exchange rate in the foreign country. It is calculated as: q = p − p∗ − s.
i Monthly nominal interest rate in U.S.
it−1 One-month lagged monthly interest rate in U.S.
i∗ Monthly nominal interest rate in the foreign country.
i∗t−1 One-month lagged monthly interest rate in the foreign country.
m Natural logarithm of the money supply in U.S.
m∗ Natural logarithm of the money supply in the foreign country.
y Natural logarithm of the real GDP in U.S.
y∗ Natural logarithm of the real GDP in the foreign country.
s Natural logarithm of the dollar price of foreign currency.
�s Percentage change in the Natural logarithm of the nominal spot exchange rate.

In outputgap measurement, we follow Molodtsova and Papell (2009) and calculate the potential
output (quadratic trending output) by using the “quasi-real-time” data: we still use ex-post revised
output data at time t − 1 (not the future observations) to calculate the potential output at time t ,
and for the following each year, we update the sample and calculate potential output at that year
accordingly

and mean-zero error terms. In rolling regressions with a sample of size N , a sub-
sample of size R is designated as the training or estimation sample to produce P
forecasts where N = R + P. For example, the first R observations may be used
to obtain estimates α̂ and β̂; then the realized values of economic fundamentals at
time (t + 1) are employed to produce an out-of-sample forecast as follows:
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Table 2 Kernel consistent model specification test results

Models 1 2 3 4 5 6 7

AUS 0.032** 0.452 0.068* 0.288 0.540 0.136 0.126
CAN 0.566 0.564 0.106 0.202 0.540 0.268 0.044**
DEN 0.362 0.544 0.030** 0.000*** 0.536 0.002*** 0.548
FRA 0.014** 0.008*** 0.002*** 0.012** 0.546 0.040** 0.008***
GER 0.810 0.456 0.048** 0.006*** 0.596 0.002*** 0.010**
ITL 0.074* 0.092* 0.000*** 0.000*** 0.582 0.020** 0.004***
JPN 0.000*** 0.004*** 0.000*** 0.014** 0.556 0.004*** 0.002***
NTH 0.556 0.118 0.002*** 0.004*** 0.552 0.000*** 0.152
POR 0.032** 0.144 0.052* 0.294 0.546 0.526 0.032**
SWE 0.020** 0.022** 0.006*** 0.000*** 0.626 0.000*** 0.046**
SWI 0.202 0.482 0.060* 0.058* 0.542 0.314 0.532
U.K. 0.000*** 0.000*** 0.022** 0.004*** 0.592 0.066* 0.592

The table shows the test results for correct specification of parametric regression models as described
in Hsiao et al. (2007). The numbers show the p-values at which we reject the null of correctly
specified parametric model. The distribution of the test statistics is derived with 500 IID bootstrapped
replications. ***, **, and * denote significance at 1%, 5%, and 10%, respectively

ŷt+1 = α̂ + β̂ ′ Xt+1. (4)

The process is repeated by rolling the window by one period ahead: the first
observation is dropped from the sample and (R + 1)th observation is added to the
sample, leaving the sample size constant. This produces the new estimates of α̂ and
β̂. Eventually, P number of forecasts are produced for each model to be used for
forecast comparison.

2.1 Data and the “Structural” Models

In the selection of countries, data coverage and model selection, we follow the
predominant choices in the recent literature. The data is taken from Molodtsova
and Papell (2009) who employed monthly data from March 1973 through Decem-
ber 1998 for Euro area countries (France, Germany, Italy, Netherlands, and Portu-
gal), and through June 2006 for the remaining OECD countries (Australia, Canada,
Denmark, Japan, Sweden, Switzerland, and the United Kingdom).3 The US dollar is
treated as the “home currency,” and exchange rate is defined as the US Dollar price of
one unit of foreign currency. An increase in the exchange rate indicates depreciation
of the dollar.

The conditioning variables are total income yt (y∗
t ), inflation rate �t (�

∗
t ), out-

put gap ygap(y∗
gap), the real exchange rate qt (q∗

t ), money supply mt (m∗
t ), price level

3 Meese and Rogoff (1983) also uses monthly data in their chapter, while some studies such as
Engel and West (2005); Cheung et al. (2005), and Gourinchas and Rey (2007) use quarterly data.
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Table 3 Cross-validated bandwidths in out-of-sample forecasts
Cross-validated bandwidths in each rolling window

Bandwidths
Median 10th percentile 90th percentile st. dev.

AUS ỹt
gap 35260.74 0.02 218779.24 0.04

�̃t 1.59 0.80 5877020.38 2.54
qt 0.04 0.03 9925.49 0.11
it−1 1.95 0.66 2508301.63 2.42
i∗t−1 0.88 0.44 4973632.00 2.74

CAN ỹt
gap 0.04 0.02 366035.50 0.03

�̃t 4973061.80 1.21 26125346.44 1.36
qt 0.28 0.02 703888.32 0.08
it−1 228159.48 0.54 17470521.79 2.28
i∗t−1 185809.19 1.36 310479024.80 2.58

DEN ỹt
gap 241385.39 0.11 1201050.51 0.06

�̃t 0.91 0.45 8097023.70 1.53
qt 101566.07 0.08 1946581.91 0.15
it−1 4.42 0.73 25549599.61 2.42
i∗t−1 4.71 1.62 101520853.43 2.88

FRA ỹt
gap 0.03 0.02 271520.01 0.04

�̃t 228337.87 0.74 11918011.74 1.86
qt 215631.05 0.25 1050485.47 0.16
it−1 2897456.10 1.12 46750812.45 2.84
i∗t−1 12.50 0.82 31944044.52 2.50

GER ỹt
gap 82145.73 0.03 410423.70 0.04

�̃t 14.81 0.98 9947322.06 1.99
qt 64493.60 0.07 1434618.94 0.16
it−1 2.55 0.83 11222742.85 2.84
i∗t−1 0.96 0.80 3867907.12 2.34

ITL ỹt
gap 39073.22 0.02 548697.67 0.04

�̃t 890113.88 0.98 13898521.08 2.49
qt 0.26 0.03 926787.13 0.15
it−1 2.79 1.07 17138191.42 2.84
i∗t−1 1.93 0.67 22555640.87 2.92

JPN ỹt
gap 0.03 0.02 148294.40 0.05

�̃t 0.62 0.41 2.09 1.68
qt 23719.70 0.12 853226.44 0.15
it−1 1.61 0.67 1295104.14 2.42
i∗t−1 1.01 0.64 1.76 1.81

NTH ỹt
gap 0.04 0.02 22294.20 0.04

�̃t 1657121.24 2.41 12788187.32 2.06
qt 148929.61 0.24 1138899.70 0.16
it−1 10.29 0.64 20898299.67 2.84
i∗t−1 2.48 1.06 7561953.49 2.32

(continued)
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Table 3 (continued)
Cross-validated bandwidths in each rolling window

Bandwidths
Median 10th percentile 90th percentile st. dev.

POR ỹt
gap 150939.94 0.07 632244.74 0.06

�̃t 1.97 1.49 3485564.84 3.46
qt 218204.39 0.23 1160393.73 0.15
it−1 0.53 0.43 0.68 2.04
i∗t−1 8548160.95 29.25 63600482.45 3.50

SWE ỹt
gap 0.04 0.02 120508.07 0.05

�̃t 348965.98 0.91 13828866.69 2.34
qt 37012.03 0.19 1427051.78 0.20
it−1 6.13 0.85 12613983.53 3.18
i∗t−1 7.14 1.72 9869856.03 3.09

SWI ỹt
gap 0.04 0.02 228780.81 0.04

�̃t 652660.54 0.40 18467288.02 1.55
qt 338518.86 0.17 1588662.72 0.15
it−1 2.00 0.39 8179778.01 2.23
i∗t−1 3.95 0.70 22462155.95 2.00

UK ỹt
gap 16759.44 0.02 297811.95 0.03

�̃t 2411331.57 1.61 13253603.52 1.76
qt 29224.76 0.07 818628.17 0.12
it−1 2.22 0.67 9449292.76 2.42
i∗t−1 1.72 0.60 7189358.43 2.77

The table shows the summary statistics of the least squared cross-validated bandwidth selections for
each explanatory variable of Model 3 (the largest model) in each rolling window. The last column
shows the standard deviation of the regressor

p(p∗), and short-term interest rates it (i∗t ).4 Nominal interest rates are defined in per-
centages, while all other variables are transformed by taking the natural logarithm
multiplied by 100. In the original database the seasonally adjusted industrial produc-
tion index is used as proxy for total income. Inflation rate is measured by the annual
growth rate of monthly CPI index pt . Output gap is measured (by using the quasi-real
data) as the percentage deviation of industrial production from its quadratic trending
level. Real exchange rate for the foreign country is calculated as qt = st + p∗

t − pt .
As for the money supply, for the majority of countries with available data, M1 is
used as a proxy for the quantity of money, and M2 for a few.

We estimate nine exchange rate models, Models 1–7 are the structural models
extant in the literature, Model 8 is the driftless random walk model, and Model 9 is
the random walk with drift. These models are not nested. An “encompassing model”
is sometimes a convenient statistical construct, and may be stated as follows:

�yt+1 = α+β1 ỹt
gap +β2�̃t +β3qt +β4it−1 +β5i∗t−1 +β6 ĩt +β7m∗

t + εt+1. (5)

4 Variables in parentheses denote the foreign country counterparts.
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For any variable x, we denote by x̃ the fundamental variable x in the home country
(United States), minus the fundamental variable x∗ in the foreign country (such that
x̃ = x − x∗). m∗

t = (mt −m∗
t )− (yt − y∗

t )−st refers to the predictor in the monetary
model. Each parametric model may be viewed as a restricted form of the this artificial
comprehensive form.

Table 1 in the appendix summarizes these models. Model 1 is the Taylor rule
model examined in Wang and Wu (2010) as their benchmark. It is asymmetric with
no smoothing. Models 2–4 are also Taylor rule models studied in Molodtsova and
Papell (2009). Model 2 is the constrained (symmetric) Taylor rule that assumes PPP,
Model 3 is the smoothing Taylor rule, and Model 4 is the constrained (symmetric)
smoothing Taylor rule model where the lagged value of interest rate is included to
control for the potential interest rate smoothing affect. Model 5 is the PPP model
with a single variable qt . Model 6 is the uncovered interest parity model, and Model
7 is the monetary model.5

2.2 Evaluating Point Forecasts

The literature does the out-of-sample forecast comparison by comparing the predic-
tion error implied by the structural model with the one implied by the benchmark
model; here in our chapter, we will use both the driftless random walk (Model 8) and
random walk with drift (Model 9) for model comparison. 2-state markov-switching
model is commonly used in the literature to control for long periods of appreciations
and depreciations in nominal exchange rates. Instead, we follow a strategy which can
be characterized as a P-period markov-switching model when the model produces P
out-of-sample forecasts. In other words, we define the drift in each estimation win-
dow as the mean of the first differences of the actual exchange rates in the training
sample.

Following the methodology of Diebold and Mariano (1995) and West (1996),
we first evaluate the out-of-sample performance of the models based on the mean-
squared prediction error (MSPE) comparison. In this approach, the quadratic loss
functions for the structural model i and the benchmark model b are defined as follows:

L(yi
t ) = (yt − ŷi

t )
2, L(yb

t ) = (yt − ŷb
t )

2, (6)

where yt is the actual series and ŷi
t and ŷb

t are the forecasts obtained from the
structural model i and the benchmark model b, respectively. The forecast accuracy

5 See Molodtsova and Papell (2009) and Wang and Wu (2010) for the derivation of the models. A
specification search approach to these models may be a worthy topic of research. The appropriate
approach in that setting would be the data snooping techniques proposed by White (2000) in which
no model may be correctly specified. This realism is an enduring aspect of techniques developed
by Hal White. The object of inference in such settings would be the “pseudo parameters” which are
afforded a compelling and clear definition based on entropy concepts such as the ones employed in
this chapter.
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Table 6 S-rho 1 (Sρ1) Measure of goodness of fit: In-sample NP fits versus the actual series

Models 1 2 3 4 5 6 7

AUS 0.019 0.011 0.181 0.024 0.026 0.014 0.018
0.000 0.016 0.000 0.000 0.000 0.006 0.094

CAN 0.021 0.007 0.034 0.014 0.011 0.011 0.010
0.000 0.024 0.000 0.000 0.068 0.116 0.000

DEN 0.015 0.005 0.024 0.016 0.010 0.011 0.008
0.000 0.546 0.000 0.000 0.264 0.000 0.572

FRA 0.016 0.018 0.034 0.016 0.009 0.012 0.017
0.000 0.096 0.000 0.000 0.182 0.472 0.000

GER 0.019 0.018 0.042 0.018 0.016 0.012 0.019
0.000 0.000 0.000 0.000 0.386 0.158 0.000

ITL 0.024 0.019 0.084 0.049 0.010 0.016 0.018
0.000 0.000 0.000 0.000 0.006 0.280 0.000

JPN 0.010 0.007 0.034 0.018 0.011 0.021 0.047
0.000 0.002 0.000 0.000 0.026 0.000 0.006

NTH 0.012 0.015 0.034 0.038 0.012 0.011 0.011
0.140 0.000 0.000 0.000 0.070 0.000 0.448

POR 0.023 0.014 0.108 0.041 0.024 0.011 0.035
0.000 0.000 0.000 0.000 0.268 0.174 0.752

SWE 0.015 0.013 0.021 0.042 0.010 0.007 0.000
0.000 0.000 0.000 0.000 0.546 0.000 0.000

SWI 0.030 0.034 0.032 0.060 0.010 0.014 0.010
0.000 0.000 0.000 0.000 0.052 0.000 0.520

UK 0.030 0.022 0.088 0.036 0.010 0.016 0.014
0.000 0.000 0.000 0.000 0.002 0.000 0.124

The first row for each country gives the integral version of the nonparametric metric entropy Sρ1
for testing pairwise nonlinear dependence between the densities of the actual series and the NP fits
in-sample. The second row shows the p-values generated with 500 bootstrap replications. Under
the null, actual series and the in-sample NP fits are independent, hence the integrated value of the
dependence matrix Sρ1 (Maasoumi and Racine 2002) takes the value of zero

testing is based on whether the population mean of the loss differential series dt is
zero where:

dt = L(yb
t )− L(yi

t ) = (yt − ŷb
t )

2 − (yt − ŷi
t )

2. (7)

In Diebold and Mariano (1995) and West (1996), the null of equal predictive
accuracy is:

H0 : E[dt ] = E[L(yb
t )− L(yi

t )] = MSPEb − MSPEi = 0. (8)

Clark and McCracken (2001) show that when comparing nested models, Diebold
and Mariano (1995) test statistics will be non-normal and the use of standard critical
values results in poorly sized tests. Accordingly, Clark and West (2006) propose
a corrected Diebold-Mariano statistic which takes into account the fact that under
the null, MSPE of the structural model and the benchmark model are not the same.
If the null is true, estimation of the structural model produces a noisy estimate
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Table 7 S-rho 1 (Sρ1) Measure of predictability:
Out-of-sample NP forecasts versus the actual series

Models 1 2 3 4 5 6 7 9

AUS 0.011 0.005 0.008 0.005 0.015 0.020 0.010 0.016
0.888 0.906 0.640 0.380 0.650 0.000 0.094 0.126

CAN 0.007 0.005 0.008 0.010 0.002 0.013 0.007 0.012
0.342 0.164 0.036 0.390 0.258 0.030 0.014 0.174

DEN 0.008 0.006 0.005 0.003 0.008 0.006 0.004 0.011
0.110 0.146 0.942 0.882 0.328 0.504 0.652 0.768

FRA 0.005 0.005 0.005 0.007 0.006 0.004 0.008 0.018
0.654 0.632 0.022 0.460 0.704 0.916 0.134 0.344

GER 0.005 0.010 0.011 0.016 0.011 0.004 0.013 0.008
0.342 0.048 0.088 0.012 0.978 0.312 0.006 0.852

ITL 0.010 0.006 0.009 0.010 0.011 0.014 0.008 0.012
0.026 0.020 0.008 0.006 0.100 0.000 0.172 0.090

JPN 0.009 0.004 0.004 0.008 0.003 0.007 0.006 0.017
0.162 0.892 0.274 0.230 0.172 0.024 0.314 0.166

NTH 0.005 0.006 0.006 0.006 0.009 0.007 0.004 0.007
0.498 0.400 0.736 0.178 0.930 0.340 0.876 0.786

POR 0.007 0.007 0.010 0.007 0.021 0.027 0.014 0.023
0.196 0.290 0.764 0.864 0.018 0.412 0.664 0.018

SWE 0.006 0.009 0.011 0.008 0.011 0.006 0.004 0.012
0.138 0.010 0.034 0.016 0.102 0.006 0.910 0.262

SWI 0.008 0.009 0.008 0.003 0.006 0.011 0.012 0.014
0.898 0.356 0.110 0.336 0.882 0.096 0.302 0.118

UK 0.004 0.006 0.006 0.010 0.009 0.014 0.002 0.015
0.636 0.018 0.366 0.164 0.020 0.014 0.448 0.032

The first row for each country gives the integral version of the nonparametric metric entropy Sρ1
for testing pairwise nonlinear dependence between the densities of the actual series and the NP out-
of-sample forecasts. The second row shows the p-values generated with 500 bootstrap replications.
Under the null, actual series and the out-of-sample NP forecasts are independent, hence the integrated
value of the dependence matrix Sρ1 (Maasoumi and Racine 2002) takes the value of zero

of the parameter, supposed to be zero in population, increasing the MSPE in the
sample. They suggest an adjusted MSPE for the alternative model which is adjusted
downwards to have equal MSPEs under the null. Accordingly, the loss differential
function can be adjusted as follows:

d − adjt = L(yb
t )− L(yi

t )− adj = (yt − ŷb
t )

2 − (yt − ŷi
t )

2 − (ŷb
t − ŷi

t )
2. (9)

Clark and West (2006) test if the population mean of the adjusted series d − ad jt is
zero, based on the following statistic:

CW = d̃

(̂avar(d̃))1/2
= MSPEb − MSPEi

adj

(̂avar(MSPEb − MSPEi
adj))

1/2
, (10)
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Table 8 S-rho 2 (Sρ2): Metric Entropy Density Equality Test Results for the Fitted (in-sample)
Values

Models 1 2 3 4 5 6 7

AUS 0.257* 0.549* 0.023* 0.188* 0.552* 0.453* 0.607*
CAN 0.273* 0.517* 0.182* 0.344* 0.635* 0.571* 0.668*
DEN 0.380* 0.703* 0.241* 0.360* 0.721* 0.551* 0.788*
FRA 0.325* 0.581* 0.177* 0.347* 0.685* 0.714* 0.458*
GER 0.336* 0.353* 0.144* 0.364* 0.671* 0.638* 0.433*
ITL 0.269* 0.273* 0.096* 0.169* 0.780* 0.712* 0.452*
JPN 0.380* 0.451* 0.144* 0.289* 0.712* 0.468* 0.541*
NTH 0.662* 0.397* 0.224* 0.268* 0.667* 0.451* 0.830*
POR 0.192* 0.291* 0.039* 0.185* 0.625* 0.584* 0.627*
SWE 0.408* 0.407* 0.246* 0.128* 0.659* 0.588* 0.632*
SWI 0.253* 0.243* 0.206* 0.138* 0.590* 0.534* 0.788*
UK 0.195* 0.299* 0.082* 0.218* 0.680* 0.533* 0.742*

The table shows the consistent univariate density difference metric entropy test statistics for the
NP fitted values (in-sample) and the actual series. Under the null of equality of densities, * denote
significance at 1 %. The null distribution is obtained with 500 bootstrap replications

where d̃ refers to mean of d − adjt , and MSPEi
adj refers to MSPE for the structural

model adjusted for the bias. If the CW test statistics is significantly positive, one
may conclude that the structural model outperforms the random walk model. Clark
and West (2006) suggest standard normal critical values for inference in comparing
these nested models.6

Note that, these procedures assume an encompassing form that correctly nests the
competing models. Misspecifications of functional form and/or omitted variables are
not accommodated. We find evidence for both types of misspecification. To see this,
consider Table 2 in which the parametric models are subjected to the nonparametric
specification test proposed by Hsiao et al. (2007). Note that for each model, this
test takes the conditioning variables as given. But cross validation in NP estimation
is indeed capable of identifying irrelevant variables (see Table 3 in the appendix
on full sample smoothing of the largest model, Model 3, through least-square cross
validated bandwidth selection).

As can be seen from Table 2 p-values, most parametric model-currency combina-
tions are rejected. Only Model 5, with a single variable q, is generally parametrically
(linearly) well-specified! Additional variables appear to have nonlinear effects, to var-
ious degrees, for different exchange rates. In relative terms, the Symmetric Taylor
rule models with no smoothing (Model 2) do better in sample. Addition of linear
interest rate smoothing variables (in Models 3 and 4) tends to be rejected.

A shed further light on the possibility of irrelevant explanatory variables, we exam-
ine more closely a nonparametric estimation of the largest model above, Model 3

6 Rogoff and Stavrakeva (2008) argue that CW test statistics cannot be used to evaluate forecasting
performance as it is not testing the null of equal predictive accuracy, hence they suggest to use
bootstrapped critical values. There is less evidence in favor of Taylor-rule based models when CW
test statistics with bootstrapped critical values are used.
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(Asymmetric Taylor Rule with no smoothing), which contains the majority of
explanatory variables in any of the 7 models. Smoothing with cross validation in
kernel estimation is known to be able to smooth out irrelevant regressors; see Li
and Racine 2007, Chap. 4. Table 3 in the appendix supports the following infer-
ences: Taylor rule variables appear to be insignificant in the full sample, when all
the conditioning variables are considered together! Output gap differences, inflation
differences, and real exchange rates are smoothed out in at least 5 currencies for
the full sample (not-shown in the appendix) and in at least half of the currencies for
the rolling regressions. While irrelevant variables may not generally induce bias or
inconsistency in estimation, they do increase uncertainty, be it through MSPEs (as
observed in the CW tests), and as will be seen in our metric entropy examination
of the whole forecast distribution. Combined with the parametric tests in Table 2, it
would seem that many of these models suffer from parametric misspecifications, as
well as inappropriate set of conditioning variables. In this setting one has to seriously
question the propriety of the conditional mean forecasting paradigm based on the
mean squared error assessments.

With above caveat in mind, in Table 4, we report the CW test statistics and
p-values for each model and currency when the benchmark model is the driftless
random walk. This is done to provide a benchmark for what can be learned from our
broader distribution metrics. For 1-month ahead forecasts of exchange rates changes,
the following observations are indicated:

(a) Neither OLS nor NP forecasts provide enough evidence in favor of the
exchange rate models 1 (Asymmetric Taylor Rule with no smoothing) and 5 (PPP);
(b) With NP out-of-sample forecasting, there is some evidence in favor of models for
five currencies in Models 2 and 3, and for four currencies in Models 4 and 7 where
OLS estimates did not do well; (c) For Model 3, only NP forecasts provide favorable
evidence for five currencies (Australian Dollar, British Pound, Deutsche Mark, Dutch
Guilder, and Swiss Franc), all of which exhibit specification problems (see Table 2).
For Model 4, with NP forecasts, there is evidence in favor for four currencies, three
of which involve specification issues. A similar pattern is present in the rest of the
models except Models 1 and 2; (d) Out of 15 currency–model pairs where both OLS
and NP forecasts produce favorable results, nine cases have parametric specification
problems. This does not support the idea that NP estimation is a panacea for pre-
diction from misspecified models. Out of 20 currency-model pairs where we have
evidence in favor of some NP empirical exchange rate models, we reject the null of
parametric specification in 12 cases. So, NP forecasts tend to produce better results
in favor of the exchange rate models relative to a driftless random walk; (e) Only
for the Japanese yen, we see evidence in favor of the random walk with drift against
driftless random walk. This suggests a constant growth in that exchange series.

In Table 5 the CW test results are given with the null of a random walk with drift. In
CW test of equal predictability of two nested models, under the null the series follows
a martingale difference against the alternative that the series is linearly predictable.
However, Clark and West (2006) argue that the same asymptotic distribution critical
values can be applied even for nonlinear and Markov Switching models. Nikolsko-
Rzhevskyy and Prodan (2011) also show that their simulation results imply properly

http://dx.doi.org/10.1007/978-1-4614-1653-1_4
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Table 9 S-rho 2 (Sρ2): Metric entropy density equality test results for forecasted (out-of-sample)
values

PANEL-A: Metric entropy density equality test
Statistics (NP Forecasts vs. Actual series)

Models 1 2 3 4 5 6 7
AUS 0.063* 0.206* 0.025* 0.040* 0.507* 0.279* 0.200*
CAN 0.188* 0.284* 0.086* 0.143* 0.523* 0.338* 0.287*
DEN 0.166* 0.350* 0.080* 0.119* 0.448* 0.425* 0.218*
FRA 0.215* 0.270* 0.103* 0.115* 0.424* 0.335* 0.127*
GER 0.201* 0.220* 0.075* 0.071* 0.506* 0.241* 0.161*
ITL 0.195* 0.202* 0.090* 0.114* 0.477* 0.490* 0.235*
JPN 0.131* 0.151* 0.021* 0.027* 0.575* 0.193* 0.178*
NTH 0.223* 0.206* 0.113* 0.120* 0.483* 0.239* 0.310*
POR 0.163* 0.157* 0.083* 0.082* 0.405* 0.569* 0.257*
SWE 0.147* 0.173* 0.066* 0.078* 0.480* 0.289* 0.309*
SWI 0.057* 0.144* 0.023* 0.046* 0.518* 0.296* 0.193*
UK 0.168* 0.338* 0.078* 0.125* 0.489* 0.327* 0.277*

PANEL-B: Relative Sρ2 against random walk
with a drift null in out-of-sample forecasting

Models 1 2 3 4 5 6 7
AUS 0.097 0.318 0.039 0.062 0.784 0.431 0.308
CAN 0.302 0.457 0.138 0.230 0.841 0.543 0.461
DEN 0.278 0.586 0.134 0.199 0.750 0.712 0.364
FRA 0.394 0.495 0.189 0.211 0.777 0.614 0.233
GER 0.312 0.342 0.116 0.110 0.786 0.374 0.251
ITL 0.329 0.341 0.152 0.193 0.806 0.828 0.396
JPN 0.231 0.266 0.037 0.048 1.014 0.340 0.314
NTH 0.356 0.329 0.180 0.191 0.770 0.381 0.494
POR 0.331 0.319 0.169 0.167 0.823 1.157 0.523
SWE 0.236 0.277 0.106 0.125 0.769 0.463 0.495
SWI 0.087 0.219 0.035 0.070 0.788 0.451 0.294
UK 0.271 0.546 0.126 0.202 0.790 0.528 0.448

Panel-A shows the consistent univariate density difference metric entropy test statistics for the
NP forecasted values (out-of-sample) and the actual series. Under the null of equality of densities
(Sρ2 = 0), * denote significance at 1%. The null distribution is obtained with 500 bootstrap
replications. Panel-B shows, in out-of-sample forecasting, the ratio of the integrated value of the
metric entropy measure of univariate density differences, Srho-2 (Sρ2), for each model to the (Sρ2)
for the benchmark (random walk drift) model. Higher Srho-2 measures imply lower predictive
powers. Therefore, a ratio less than 1 implies that structural model out-predicts the null (random
walk with a drift) model

sized CW test in the case of the nonlinear models. Therefore, we use the asymptotic
normal critical values. We allow drift to change for every forecast window. In the
NP forecasts, we compute the least-squares cross-validated bandwidths for the local
linear estimators. For each currency model pair, the first entry shows the CW statistics
while the one below it is the p-value. The first columns are parametric (OLS), the
second columns are NP values. Our results show that random walk with drift model
outperforms the driftless random walk model in 3 out of 12 currencies.
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Table 10 S-rho 1 (Sρ1) Measure of goodness of fit: In-sample OLS fits versus the actual series

Models 1 2 3 4 5 6 7

AUS 0.016 0.017 0.011 0.010 0.026 0.013 0.025
0.000 0.020 0.002 0.008 0.000 0.002 0.016

CAN 0.008 0.007 0.008 0.009 0.011 0.011 0.019
0.014 0.024 0.000 0.000 0.068 0.084 0.002

DEN 0.007 0.005 0.007 0.008 0.010 0.014 0.008
0.102 0.546 0.000 0.000 0.264 0.008 0.572

FRA 0.010 0.011 0.013 0.018 0.009 0.015 0.010
0.066 0.302 0.012 0.002 0.182 0.266 0.332

GER 0.008 0.008 0.007 0.010 0.016 0.010 0.014
0.070 0.022 0.002 0.000 0.386 0.008 0.004

ITL 0.010 0.015 0.010 0.012 0.010 0.006 0.021
0.002 0.014 0.002 0.046 0.006 0.334 0.000

JPN 0.009 0.010 0.014 0.010 0.011 0.018 0.012
0.034 0.636 0.000 0.000 0.026 0.000 0.068

NTH 0.012 0.009 0.008 0.008 0.012 0.013 0.009
0.142 0.132 0.050 0.090 0.070 0.000 0.660

POR 0.009 0.010 0.012 0.013 0.024 0.011 0.037
0.002 0.004 0.058 0.206 0.268 0.174 0.366

SWE 0.010 0.006 0.004 0.004 0.010 0.004 0.014
0.058 0.142 0.000 0.000 0.546 0.000 0.032

SWI 0.009 0.008 0.009 0.015 0.010 0.016 0.010
0.062 0.364 0.014 0.000 0.052 0.034 0.520

UK 0.014 0.012 0.007 0.010 0.010 0.013 0.013
0.006 0.008 0.002 0.000 0.002 0.000 0.120

The first row for each country gives the integral version of the nonparametric metric entropy Sρ1 for
testing pairwise nonlinear dependence between the densities of the actual series and the OLS fits
in-sample. The second row shows the p-values generated with 500 bootstrap replications. Under
the null, actual series and the in-sample OLS fits are independent, hence the integrated value of the
dependence matrix Sρ1 (Maasoumi and Racine 2002) takes the value of zero

According to the results in Table 5, when the null is a random walk with a drift,
parametric, and NP forecasts reach the same conclusion (in favor of the empirical
models) more than the case where the null is a driftless random walk. One noteworthy
finding is that, similar to the results in Table 4, out of 21 currency-model pairs where
we have evidence in favor of the NP models, we reject the null of parametric models
in 16 cases. So, at times where we have a model specification problem, NP forecasts
tend to produce better results in favor of exchange rate models against the null of
random walk with drift.

3 Constructing and Evaluating Density Forecasts

In estimating Sρ1, we use Guassian kernel density estimates of the marginal density
functions for the actual series g(yt ), the in-sample fitted values for each structural
model h(ŷi

t )(i = 1, 2, .., 7), and the bivariate density of the actual and fitted values
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Table 11 S-rho 1 (Sρ1) Measure of predictability: Out-of-sample OLS forecasts versus the actual
series

Models 1 2 3 4 5 6 7 9

AUS 0.009 0.019 0.007 0.012 0.011 0.013 0.014 0.016
0.256 0.800 0.262 0.098 0.336 0.016 0.014 0.126

CAN 0.011 0.012 0.009 0.009 0.008 0.014 0.011 0.012
0.026 0.108 0.080 0.076 0.346 0.024 0.030 0.174

DEN 0.005 0.009 0.005 0.005 0.009 0.009 0.007 0.011
0.696 0.476 0.126 0.062 0.446 0.446 0.072 0.768

FRA 0.005 0.011 0.008 0.010 0.015 0.015 0.007 0.018
0.478 0.174 0.338 0.086 0.830 0.008 0.832 0.344

GER 0.006 0.008 0.007 0.007 0.012 0.011 0.008 0.008
0.506 0.360 0.140 0.120 0.986 0.226 0.146 0.852

ITL 0.011 0.014 0.010 0.012 0.011 0.031 0.012 0.012
0.030 0.070 0.000 0.000 0.024 0.000 0.106 0.090

JPN 0.007 0.010 0.010 0.011 0.011 0.012 0.011 0.017
0.346 0.114 0.018 0.006 0.004 0.000 0.018 0.166

NTH 0.008 0.016 0.005 0.010 0.011 0.013 0.010 0.007
0.258 0.534 0.434 0.222 0.970 0.006 0.230 0.786

POR 0.014 0.015 0.016 0.022 0.020 0.024 0.023 0.023
0.100 0.012 0.264 0.350 0.008 0.278 0.428 0.018

SWE 0.011 0.007 0.008 0.009 0.015 0.003 0.013 0.012
0.022 0.054 0.020 0.024 0.138 0.184 0.134 0.262

SWI 0.007 0.007 0.007 0.014 0.015 0.013 0.012 0.014
0.848 0.920 0.080 0.106 0.802 0.120 0.750 0.118

UK 0.007 0.008 0.008 0.015 0.012 0.013 0.017 0.015
0.150 0.362 0.030 0.150 0.000 0.002 0.010 0.032

The first row for each country gives the integral version of the nonparametric metric entropy Sρ1 for
testing pairwise nonlinear dependence between the densities of the actual series and the OLS out-
of-sample forecasts. The second row shows the p-values generated with 500 bootstrap replications.
Under the null, actual series, and the out-of-sample OLS forecasts are independent, hence the
integrated value of the dependence matrix Sρ1 Maasoumi and Racine 2002 takes the value of zero

f (yt, ŷi
t ).Least-squares cross-validation is employed to select the optimal bandwidth.

Results are shown in Table 6.7 As stated earlier, this is a “goodness of fit” indicator
of general dependence, comparable to “R2” assessments of “association” in linear
models. The higher the values of the Sρ1 the better is the in-sample and out-of-
sample performance of a model. The critical levels under the null were generated
by bootstrap methods as described in the NP package in R (see Hayfield and Racine
(2008)).

Only Models 3 and 4 perform consistently well across different currencies, and
only Australian Dollar and Japanese Yen can be consistently predicted well by all
models. We do find the fitted values are statistically significantly “related” with the
actual series in more than half of the currencies. Specifically, Model 3, Constrained

7 Metric entropy measurements are done in R by using the np package (Hayfield and Racine (2008))
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Table 12 S-rho 2 (Sρ2): Metric entropy density equality test results
for the OLS fitted (in-sample) and forecasted (out-of-sample) values

PANEL-A: S-rho 2 (Sρ2): Metric entropy density equality test
Results for the OLS fitted (in-sample) values

Models 1 2 3 4 5 6 7

AUS 0.464* 0.547* 0.374* 0.377* 0.552* 0.570* 0.622*
CAN 0.507* 0.517* 0.420* 0.445* 0.635* 0.497* 0.560*
DEN 0.689* 0.703* 0.437* 0.464* 0.721* 0.602* 0.788*
FRA 0.479* 0.602* 0.441* 0.498* 0.685* 0.649* 0.960*
GER 0.579* 0.577* 0.420* 0.466* 0.671* 0.686* 0.665*
ITL 0.440* 0.559* 0.365* 0.510* 0.780* 0.718* 0.622*
JPN 0.563* 0.649* 0.341* 0.386* 0.712* 0.436* 0.706*
NTH 0.662* 0.786* 0.469* 0.569* 0.667* 0.546* 0.930*
POR 0.353* 0.375* 0.396* 0.483* 0.625* 0.584* 0.622*
SWE 0.652* 0.718* 0.399* 0.396* 0.659* 0.741* 0.853*
SWI 0.580* 0.674* 0.431* 0.506* 0.590* 0.527* 0.788*
UK 0.510* 0.553* 0.390* 0.443* 0.680* 0.537* 0.742*

PANEL-B: S-rho 2 (Sρ2): Metric entropy density equality test
Results for the OLS forecasted (out-of-sample) values

Models 1 2 3 4 5 6 7 9
AUS 0.320* 0.448* 0.230* 0.278* 0.550* 0.358* 0.487* 0.647*
CAN 0.355* 0.392* 0.314* 0.284* 0.553* 0.476* 0.391* 0.622*
DEN 0.339* 0.439* 0.305* 0.334* 0.484* 0.485* 0.338* 0.597*
FRA 0.335* 0.439* 0.328* 0.299* 0.441* 0.526* 0.450* 0.546*
GER 0.325* 0.426* 0.316* 0.293* 0.527* 0.399* 0.320* 0.644*
ITL 0.327* 0.306* 0.245* 0.272* 0.479* 0.426* 0.349* 0.592*
JPN 0.282* 0.276* 0.220* 0.168* 0.611* 0.339* 0.272* 0.567*
NTH 0.411* 0.454* 0.332* 0.305* 0.492* 0.331* 0.501* 0.627*
POR 0.339* 0.328* 0.438* 0.375* 0.397* 0.571* 0.500* 0.492*
SWE 0.334* 0.309* 0.279* 0.275* 0.496* 0.418* 0.421* 0.624*
SWI 0.364* 0.412* 0.268* 0.235* 0.544* 0.419* 0.332* 0.657*
UK 0.264* 0.376* 0.221* 0.275* 0.493* 0.370* 0.432* 0.619*

Panel-A shows the consistent univariate density difference metric entropy test statistics for the
OLS fitted values (in-sample) and the actual series. Panel-B shows the consistent univariate density
difference metric entropy test statistics for the OLS forecasted values (out-of-sample) and the actual
series. Under the null of equality of densities (Sρ2 = 0), * denote significance at 1 %. The null
distribution is obtained with 500 bootstrap replications

(Asymmetric) smoothing Taylor-rule model, is the best performing as it produces
significant relation with the actual series for all currencies, having the highest depen-
dence in 8 out of 12 currencies.

To consider the performance of the random walk models with or without drift, we
note that these models have unique values for Sρ1. A driftless random walk (RW)
model suggests yt+1 = εt+1, predicting a zero change. On the other hand, the
RW model with drift, Model 9, is yt+1 = c + εt+1 where c is a constant. For each
period, it will predict c as its forecast. The marginal density functions for RW models
are thus degenerate. Accordingly, the bivariate density of the actual values and the
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forecasts from RW models will be the marginal density function for the actual series.
Therefore Sρ1 = 0 for RW models. Consequently, the rejection of the null hypothesis
of “independence” with the entropy metric constitutes a rejection of the random walk
hypothesis, supporting the inference that the models with statistically significant non-
zero Sρ1 perform better than the random walk model. And the findings indicate that,
quite a few models for each currency do a better job than the random walk model in
terms of our general in-sample goodness of fit criteria, especially so when the models
are estimated nonparametrically.

Table 7 shows the out-of-sample predictive performance of alternative models.
While there are a few model-currency pairs which suggest some predictability, these
results indicate a generally poor in-and out-of-sample association between the actual
series and the forecast values from these models. Very few of these values are sig-
nificantly larger than zero. The fact that some of these distributions may have lower
second moments, when suggested by the CW type tests, is not comforting, given
significant evidence of higher order differences between the series and its forecasts.

In Table 7 where the higher moment effects are considered, we find that the per-
formance of the structural models against the driftless random walk model improves
significantly. We find that for those models where CW test has failed to show a better
performance, metric entropy Sρ1 values show that, out of 12 countries, structural
models outperform the random walk model in three currencies for Models 2, 5, and
6, and in two currencies for Models 3, 4, and 7.

By including higher moment effects, our entropy-based nonparametric Sρ1 statis-
tic reveals that the RW with drift does even better against the linear models compared
with the assessments based on the traditional second moment tests, see Table 7: for
Italy, RW with drift has higher pairwise relation with the actual series than five out
of six well-performing models. For Portugal, RW with drift produces higher pair-
wise relation with the actual series than the single well-performing structural model.
Finally, for the UK, RW with drift has the highest pairwise relation with the observed
series over the three well-performing models.

3.1 Density of Forecasts

Table 8 and Panel-A of Table 9 show the nonparametric estimation results of the
metric Sρ2 tests. Large values of this statistic provide evidence against the struc-
tural models. The results are rather emphatic with these consistent and powerful
entropy tests. These models generally fail to produce forecasts close in distribu-
tions to observed series. There is good reason why they do not forecast well, “on
average.” Broadly speaking Taylor-rule based models produce smaller Sρ2 values
both in-and out-of-sample. We also calculate the Sρ2 value for the RW with drift for
out-of-sample forecasting. Therefore, we can calculate the relative Sρ2 values for
model comparison. As shown in Panel-B of Table 9, except for two currency/model
pairs, the relative Sρ2 value is less than 1, indicating that structural models produce
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densities of exchange rate forecasts out-of-sample that are closer than the densities
implied by the RW with drift model (Tables 10, 11, 12, 13).

4 Conclusion

Whether structural models of exchange rate movements are predictive or not is
not well suited to mean squared prediction error criteria, and the underlying series
appear to have distributions with significant higher order moments characteristics.
Conditioning variables such as have been proposed so far appear to have nonlinear
effects, at best, which are more robustly examined with nonparametric estimation.
Comparison with forecasts from random walk models is somewhat misleading, as this
may indicate “good relative performance” for models that have very poor forecasting
ability, as clearly demonstrated with our entropy distance metrics. Our measures are
metric and allow a ranking of closeness of forecasts to realized values.
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Thirty Years of Heteroskedasticity-Robust
Inference

James G. MacKinnon

Abstract White (Econometrica, 48:817–838, 1980) marked the beginning of a new
era for inference in econometrics. It introduced the revolutionary idea of inference
that is robust to heteroskedasticity of unknown form, an idea that was very soon
extended to other forms of robust inference and also led to many new estimation
methods. This paper discusses the development of heteroskedasticity-robust infer-
ence since 1980. There have been two principal lines of investigation. One approach
has been to modify White’s original estimator to improve its finite-sample proper-
ties, and the other has been to use bootstrap methods. The relation between these
two approaches, and some ways in which they may be combined, are discussed.
Finally, a simulation experiment compares various methods and shows how far
heteroskedasticity-robust inference has come in just over 30 years.

1 Introduction

White (1980), which appears to be the most cited paper in economics, ushered in
a new era for inference in econometrics. The defining feature of this new era is
that the distributional assumptions needed for asymptotically valid inference are no
longer the same as the ones needed for fully efficient asymptotic inference. The latter
still requires quite strong assumptions about disturbances, but the former generally
requires much weaker assumptions. In particular, for many econometric models, valid
inference is possible in the presence of heteroskedasticity of unknown form, and it
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is often possible as well in the presence of various types of unknown dependence,
such as serial correlation and clustered disturbances.

The linear regression model dealt with in White (1980) can be written as

yi = X i β + ui , i = 1, . . . , n, (1)

where the 1×k vectors of regressors X i may be fixed or random, the disturbances ui

are independent but, in general, not identically distributed, with unknown variances
σ2

i that may depend on the X i , and certain regularity conditions must be imposed
on the pairs (X i , ui ). The paper proved a number of important asymptotic results,
of which the key one is that

V̂ n ≡ 1

n

n∑
i=1

û2
i X i

�X i
a.s.−−→ 1

n

n∑
i=1

E(u2
i X i

�X i ), (2)

where ûi ≡ yi − X i β̂ is the ith OLS residual.
In 1980, this was a startling result. The rightmost quantity in (2) is an average of

n matrix expectations, and each of those expectations is unknown and impossible
to estimate consistently. For many decades, despite a few precursors in the statistics
literature such as Eicker (1963, 1967) and Hinkley (1977), econometricians believed
that it is necessary to estimate each expectation separately in order to estimate an
average of expectations consistently. The key contribution of White (1980) was to
show that it is not necessary at all.

The result (2) makes it easy to obtain the asymptotic covariance matrix estimator

(X�X/n)−1V̂ n(X�X/n)−1, (3)

and it is shown in White (1980) that (3) consistently estimates the asymptotic covari-
ance matrix of

√
n(β̂−β0). As the author remarks in a masterpiece of understatement,

“This result fills a substantial gap in the econometrics literature, and should be useful
in a wide variety of applications.”

The finite-sample covariance matrix estimator that corresponds to (3) is

(X�X)−1
( n∑

i=1

û2
i X i

�X i

)
(X�X)−1, (4)

in which the factors of n have been removed. This estimator, which later came
to be known as HC0, was the first heteroskedasticity-consistent covariance matrix
estimator, or HCCME, in econometrics. Estimators that look like (4) are generally
referred to as sandwich covariance matrix estimators.

Although White (1980) uses the notation
∑n

i=1 û2
i X i

�X i to denote the filling of

the sandwich, most discussions of HCCMEs use the notation X�Ω̂X instead, where
Ω̂ is an n ×n diagonal matrix with typical diagonal element û2

i . The latter notation is
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certainly more compact, and I will make use of it in the rest of the paper. However, the
more compact notation has two disadvantages. It tends to obscure the fundamental
result (2), and it can lead to very inefficient computer programs if they are written in
a naive way, because it involves an n × n matrix.

The key result that averages of expectations can be estimated consistently
even when individual ones cannot has had profound implications for economet-
ric theory and practice. It did not take long for econometricians to realize that, if
heteroskedasticity-robust inference is possible, then so must be inference that is
robust to both heteroskedasticity and autocorrelation of unknown form. Key early
papers on what has come to be known as HAC estimation include Hansen (1982),
White and Domowitz (1984), Newey and West (1987, 1994), Andrews (1991), and
Andrews and Monahan (1992). New estimation methods, notably the generalized
method of moments (Hansen 1982) and its many variants and offshoots, which would
not have been possible without HCCMEs and HAC estimators, were rapidly devel-
oped following the publication of White (1980). There were also many important
theoretical developments, including White (1982), the key paper on misspecified
models in econometrics.

This paper discusses the progress in heteroskedasticity-robust inference since
White (1980). Section 2 deals with various methods of heteroskedasticity-consistent
covariance matrix estimation. Section 3 deals with bootstrap methods both as an
alternative to HCCMEs and as a way of obtaining more reliable inferences based on
HCCMEs. Section 4 briefly discusses robust inference for data that are clustered as
well as heteroskedastic. Section 5 presents simulation results on the finite-sample
properties of some of the methods discussed in Sects. 2 and 3, and the paper concludes
in Sect. 6.

2 Better HCCMEs

The HC0 estimator given in expression (4) is not the only finite-sample covariance
matrix estimator that corresponds to the asymptotic estimator (3). The matrix (4)
depends on squared OLS residuals. Since OLS residuals are on average too small,
it seems very likely that (4) will underestimate the true covariance matrix when the
sample size is not large. The easiest way to improve (4) is to multiply it by n/(n −k),
or, equivalently, to replace the OLS residuals by ones that have been multiplied by√

n/(n − k). This is analogous to dividing the sum of squared residuals by n − k
instead of by n when we estimate the error variance. This estimator was called HC1
in MacKinnon and White (1985).

MacKinnon and White (1985) also discussed two more interesting procedures.
The first of these, which they called HC2 and was inspired by Horn et al. (1975),
involves replacing the squared OLS residuals û2

i in (4) by

ù2
i ≡ û2

i /(1 − hi ),
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where hi is the i th diagonal element of the projection matrix P X ≡ X(X�X)−1 X�,
which is sometimes called the hat matrix. Because E(û2

i ) = (1 − hi )σ
2 when the

disturbances are homoskedastic with variance σ2, it is easy to see that HC2 will be
unbiased in that case. In contrast, for HC1 to be unbiased under homoskedasticity,
the experimental design must be balanced, which requires that hi = k/n for all i , a
very special case indeed.

The final procedure discussed in MacKinnon and White (1985) was based on the
jackknife. In principal, the jackknife involves estimating the model n additional times,
each time dropping one observation, and then using the variation among the delete-1
estimates that result to estimate the covariance matrix of the original estimate. For
the model (1), this procedure was shown to yield the (finite-sample) estimator

n − 1

n
(X�X)−1

( n∑
i=1

ú2
i X i

�X i − 1

n
X�úú�X

)
(X�X)−1, (5)

where the vector ú has the typical element

úi = ûi/(1 − hi ).

Notice that, since ùi is unbiased when the disturbances are homoskedastic, úi must
actually be biased upwards in that case, since úi = ùi/(1 − hi )

1/2, and the denomi-
nator here is always less than one.

MacKinnon and White (1985) called the jackknife estimator (5) HC3, and that is
how it is referred to in much of the literature. However, Davidson and MacKinnon
(1993) observed that the first term inside the large parentheses in (5) will generally
be much larger than the second, because the former is Op(n) and the latter Op(1).
They therefore (perhaps somewhat cavalierly) redefined HC3 to be the covariance
matrix estimator

(X�X)−1
( n∑

i=1

ú2
i X i

�X i

)
(X�X)−1, (6)

which has exactly the same form as HC0, HC1 when the individual OLS residuals
are rescaled, and HC2. The modern literature has generally followed this naming
convention, and so I will refer to (6) as HC3 and to (5) as HCJ.

Another member of this series of estimators was proposed in Cribari-Neto (2004).
The HC4 estimator uses

ü2
i = û2

i /(1 − hi )
δi , δi = min(4, nhi/k),

instead of the û2
i in (4). The idea is to inflate the i th residual more (less) when hi is

large (small) relative to the average of the hi , which is k/n. Cribari-Neto and Lima
(2009) provide simulation results which suggest that, for the set of models they study,
the coverage of confidence intervals based on HC j for j = 0, . . . , 4 always increases
monotonically with j . However, HC4 actually overcovers in some cases, so it is not
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always better than HC3. Poirier (2010) provides an interpretation of HC2 through
HC4 in terms of the Bayesian bootstrap. There is also an HC5 estimator, which is
quite similar to HC4; see Cribari-Neto et al. (2007).

All of the HC j series of estimators simply modify the (squared) residuals in
various ways, but a few papers have taken different approaches. Furno (1996) uses
residuals based on robust regression instead of OLS residuals in order to minimize
the impact of data points with high leverage. Qian and Wang (2001) and Cribari-Neto
and Lima (2010) explicitly correct the biases of various HCCMEs in the HC j series.
The formulae that result generally appear to be complicated and perhaps expensive to
program when n is large. Both papers present evidence that bias-corrected HCCMEs
do indeed reduce bias effectively. However, there appears to be no evidence that
they perform particularly well in terms of either coverage for confidence intervals
or rejection frequencies for tests. Since those are the things that matter in practice,
and bias-corrected HCCMEs are more complicated to program than any of the HC j
series, there does not seem to be a strong case for employing the former in applied
work.

The relative performance of test statistics and confidence intervals based on dif-
ferent HCCMEs depends principally on the hi , which determine the leverage of the
various observations, and on the pattern of heteroskedasticity. There are valuable
analytical results in Chesher and Jewitt (1987), Chesher (1989), and Chesher and
Austin (1991). When the sample is balanced, with no points of high leverage, these
papers find that HC1, HC2, and HCJ all tend to work quite well. But even a single
point of high leverage, especially if the associated disturbance has a large variance,
can greatly distort the distributions of test statistics based on some or all of these
estimators. Thus, it may be useful to see whether the largest value of hi is unusually
large.

The papers just cited make it clear that HCJ is not always to be preferred to HC2,
or even to HC1. In some cases, tests based on HCJ can underreject, and confidence
intervals can overcover. The results for HCJ must surely apply to HC3 as well. Similar
arguments probably apply with even more force to HC4, which inflates some of the
residuals much more than HC3 does; see Sect. 5.

3 Bootstrap Methods

There are two widely used methods for bootstrapping regression models with inde-
pendent but possibly heteroskedastic disturbances. Both methods can be used to
estimate covariance matrices, but they do so in ways that are computationally ineffi-
cient and have no theoretical advantages over much simpler methods like HC2 and
HC3. In most cases, this is not very useful. What is much more useful is to combine
these bootstrap methods with statistics constructed using HCCMEs in order to obtain
more reliable inferences than the latter can provide by themselves.

The oldest of the two methods is the pairs bootstrap (Freedman 1981), in which
the investigator resamples from the entire data matrix. For a linear regression model,
or any other model where the data matrix can be expressed as [ y X], each bootstrap
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sample [ y∗ X∗] simply consists of n randomly chosen rows of the data matrix.
We can write a typical bootstrap sample as

[ y∗ X∗] =
⎡
⎢⎣

y1∗ X1∗
y2∗ X2∗
...

...
yn∗ Xn∗

⎤
⎥⎦,

where each of the indices 1∗ through n∗, which are different for each bootstrap
sample, takes the values 1 through n with probability 1/n. Thus if, for example,
1∗ = 27 for a particular bootstrap sample, the first row of the data matrix for that
sample will consist of the 27th row of the actual data matrix. Technically, the pairs
bootstrap data are drawn from the empirical distribution function, or EDF, of the
actual data. This is similar to bootstrap resampling for a single variable as originally
proposed in Efron (1979, 1982).

Since the regressor matrix will be different for each of the bootstrap samples, the
pairs bootstrap does not make sense if the regressors are thought of as fixed in repeated
samples. Moreover, to the extent that the finite-sample properties of estimators or
test statistics depend on a particular X matrix, the pairs bootstrap may not mimic
these properties as well as we would hope because it does not condition on X .
The pairs bootstrap as just described does not impose any restrictions. However, a
modified version for regression models that does allow one to impose restrictions on
the bootstrap DGP was proposed in Flachaire (1999).

The original idea of bootstrapping was to estimate standard errors, or more gener-
ally the covariance matrices of estimates of parameter vectors, by using the variation
among the estimates from the bootstrap samples. If β̂

∗
j denotes the estimate of β

from the j th bootstrap sample and β̄
∗

denotes the average of the β̂
∗
j over B boot-

strap samples, the bootstrap estimate of the covariance matrix of β̂ is simply

V̂ar
∗
(β̂) = 1

B − 1

B∑
j=1

(β̂
∗
j − β̄

∗
)(β̂

∗
j − β̄

∗
)�. (7)

Although bootstrap covariance matrix estimators like (7) can be useful in some cases
(for example, complicated nonlinear models or nonlinear functions of the coefficient
estimates in regression models), the matrix (7) is actually just another HCCME, and
not one that has any particular merit in finite samples. In fact, Lancaster (2006) shows
that the covariance matrix of a delta method approximation to the distribution of the
β̂

∗
j is simply HC0. In practice, when B is large enough, the matrix (7) is probably

somewhat better than HC0, but no better than HC2 or HC3.
The main advantage of the pairs bootstrap is that it can be used with a very wide

variety of models. For regression models, however, what is generally acknowledged
to be a better way to deal with heteroskedasticity is the wild bootstrap, which was
proposed in Liu (1988) and further developed in Mammen (1993). For the model (1)
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with no restrictions, the wild bootstrap DGP is

y∗
i = X i β̂ + f (ûi )v

∗
i , (8)

where f (ûi ) is a transformation of the i th residual ûi , and v∗
i is a random variable

with mean 0 and variance 1. A natural choice for the transformation f (·) is

f (ûi ) = ûi

(1 − hi )1/2 . (9)

Since this is the same transformation used by HC2, we will refer to it as w2. Using
(9) ensures that the f (ûi ) must have constant variance whenever the disturbances
are homoskedastic. Alternatively, one could divide ûi by 1 − hi , which is the trans-
formation that we will refer to as w3 because it is used by HC3. The fact that v∗

i has
mean 0 ensures that f (ûi )v

∗
i also has mean 0, even though f (ûi ) may not.

Transformations very similar to w2 and w3 can also be useful in the context of
bootstrap prediction with homoskedastic errors, where the bootstrap DGP resamples
from the rescaled residuals. Stine (1985) suggested using what is essentially w2,
and Politis (2010) has recently shown that using predictive (or jackknife) residuals,
which effectively use w3, works better.

There are, in principle, many ways to specify the random variable v∗
i . The most

popular is the two-point distribution

F1 : v∗
i =

{−(
√

5 − 1)/2 with probability (
√

5 + 1)/(2
√

5),

(
√

5 + 1)/2 with probability (
√

5 − 1)/(2
√

5).

This distribution was suggested in Mammen (1993). Its theoretical advantage is that
the skewness of the bootstrap error terms is the same as the skewness of the residuals.
A simpler two-point distribution, called the Rademacher distribution, is just

F2 : v∗
i =

{−1 with probability 1
2 ,

1 with probability 1
2 .

This distribution imposes symmetry on the bootstrap error terms, which it is good to
do if they actually are symmetric.

In some respects, the error terms for the wild bootstrap DGP (8) do not resemble
those of the model (1) at all. When a two-point distribution like F1 or F2 is used,
the bootstrap error term can take on only two possible values for each observation.
Nevertheless, the wild bootstrap mimics the essential features of the true DGP well
enough for it to be useful in many cases.

For any bootstrap method,
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β̂
∗
j − β̄

∗ = (X�X)−1 X�y∗
j − β̄

∗

= (X�X)−1 X�(Xβ̂ + u∗
j ) − β̄

∗

= (X�X)−1 X�u∗
j + (β̂ − β̄

∗
), (10)

where y∗
j and u∗

j denote, respectively, the regressand and the vector of error
terms for the j th bootstrap sample. If we use the wild bootstrap DGP (8), and the OLS
estimator is unbiased, then the expectation of the bootstrap estimates β̂

∗
j will just be β̂,

and so the last term in the last line of (10) should be zero on average.
The first term in the last line of (10) times itself transposed looks like a sandwich

covariance matrix, but with u∗
j u∗

j
� instead of a diagonal matrix:

(X�X)−1 X�u∗
j u∗

j
�X(X�X)−1.

It is particularly easy to see what this implies when the bootstrap errors are generated
by F2. In that case, the diagonal elements of u∗

j u∗
j
�are simply the squares of the f (ûi ).

The off-diagonal elements must have expectation zero, because, for each bootstrap
sample, every off-diagonal element is a product of the same two transformed residuals
multiplied either by +1 or −1, each with probability one-half. Thus, as B becomes
large, we would expect the average of the u∗

j u∗
j
� to converge to a diagonal matrix

with the squares of the f (ûi ) on the diagonal. It follows that, if the transformation
f (·) is either w2 or w3, the bootstrap covariance matrix estimator (7) must converge
to either HC2 or HC3 as B → ∞.

So far, we have seen only that the pairs bootstrap and the wild bootstrap provide
computationally expensive ways to approximate various HCCMEs. If that was all
these bootstrap methods were good for, there would be no point using them, at least
not in the context of making inferences about the coefficients of linear regression
models. They might still be useful for calculating covariance matrices for nonlinear
functions of those coefficients.

Where these methods, especially the wild bootstrap, come into their own is when
they are used together with heteroskedasticity-robust test statistics in order to obtain
more accurate P values or confidence intervals. There is a great deal of evidence that
the wild bootstrap outperforms the pairs bootstrap in these contexts; see Horowitz
(2001), MacKinnon (2002), Flachaire (2005), and Davidson and Flachaire (2008),
among others. Therefore, only the wild bootstrap will be discussed.

Consider the heteroskedasticity-robust t statistic

τ (β̂l − β0
l ) = β̂l − β0

l√[
(X�X)−1 X�Ω̂X(X�X)−1

]
ll

, (11)

in which the difference between β̂l , the OLS estimate of the l th element of β in
(1) and its hypothesized value β0

l is divided by the square root of the l th diagonal
element of any suitable HCCME, such as HC2, HC3, or HC4, depending on precisely
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how Ω̂ is defined. This test statistic is asymptotically distributed as N(0, 1) under
quite weak assumptions. But its finite-sample distribution may or may not be well
approximated by the standard normal distribution. Because (11) is asymptotically
pivotal, bootstrap methods should provide an asymptotic refinement, that is, more
rapid convergence as the sample size increases.

To calculate a wild bootstrap P value for the test statistic (11), we first estimate
the model (1) under the null hypothesis to obtain restricted estimates β̃ and restricted
residuals ũ. We then generate B bootstrap samples, using the DGP

y∗
i = X i β̃ + f (ũi )v

∗
i . (12)

As in (8), there are several choices for the transformation f (·). We have already
defined w2 in Eq. (9) and w3 just afterwards. Another possibility, which we will call
w1, is just

√
(n/(n − k + 1) ũi . The random variates v∗

i could be drawn from F1,
F2, or possibly some other distribution with mean 0 and variance 1.

For each bootstrap sample, indexed as usual by j , we calculate τ∗
j (βl), the boot-

strap analog of the test statistic (11), which is

τ∗
j (β̂

∗
l j − β0

l ) = β̂∗
l j − β0

l√[
(X�X)−1 X�Ω̂∗

j X(X�X)−1
]
ll

. (13)

Here, β̂∗
l j is the OLS estimate for the j th bootstrap sample, and X�Ω̂∗

j X is computed

in exactly the same way as X�Ω̂X in (11), except that it uses the residuals from the
bootstrap regression.

Davidson and Flachaire (2008) have shown, on the basis of both theoretical analy-
sis and simulation experiments, that wild bootstrap tests based on the Rademacher
distribution F2 can be expected to perform better, in finite samples, than ones based
on the Mammen distribution F1, even when the true disturbances are moderately
skewed. Some of the results in Sect. 5 strongly support this conclusion.

Especially when one is calculating bootstrap P values for several tests, it is easier
to use unrestricted rather than restricted estimates in the bootstrap DGP, because
there is no need to estimate any of the restricted models. The bootstrap data are then
generated using (8) instead of (12), and the bootstrap t statistics are calculated as
τ∗

j (β̂
∗
l j − β̂l), which means replacing β0

l by β̂l on both sides of Eq. (13). This ensures
that the bootstrap test statistics are testing a hypothesis which is true for the bootstrap
data.

When using studentized statistics like (11) and other statistics that are asymptoti-
cally pivotal, it is almost always better to use restricted estimates in the bootstrap DGP,
because the DGP is estimated more efficiently when true restrictions are imposed;
see Davidson and MacKinnon (1999). However, this is not true for statistics which
are not asymptotically pivotal; see Paparoditis and Politis (2005). The advantage of
using restricted estimates can be substantial in some cases, as will be seen in Sect. 5.



446 J. G. MacKinnon

Once we have computed τ̂ = τ (β̂l − β0
l ) and B instances of τ∗

j , which be either

τ∗
j (β̂

∗
l j − β0

l ) or τ∗
j (β̂

∗
l j − β̂l), the bootstrap P value is simply

p̂∗(τ̂ ) = 2 min

(
1

B

B∑
j=1

I(τ∗
j ≤ τ̂ ),

1

B

B∑
j=1

I(τ∗
j > τ̂ )

)
. (14)

This is an equal-tail bootstrap P value, so called because, for a test at level α, the
rejection region is implicitly any value of τ̂ that is either less than the α/2 quantile or
greater than the 1−α/2 quantile of the empirical distribution of the τ∗

j . It is desirable
to choose B such that α(B + 1)/2 is an integer; see Racine and MacKinnon (2007).

For t statistics, it is generally safest to use an equal-tail P value like (14)
unless there is good reason to believe that the test statistic is symmetrically dis-
tributed around zero. For any test that rejects only when the test statistic is in
the upper tail, such as a heteroskedasticity-robust F statistic or the absolute value
of a heteroskedasticity-robust t statistic, we would instead compute the bootstrap
P value as

p̂∗(τ̂ ) = 1

B

B∑
j=1

I(τ∗
j > τ̂ ). (15)

In this case, it is desirable to choose B such that α(B + 1) is an integer, which must
of course be true whenever α(B + 1)/2 is an integer.

In many cases, we are interested in confidence intervals rather than tests. The
most natural way to obtain a bootstrap confidence interval in this context is to use
the studentized bootstrap, which is sometimes known as the percentile-t method.
The bootstrap data are generated using the wild bootstrap DGP (8), which does
not impose the null hypothesis. Each bootstrap sample is then used to compute a
bootstrap test statistic τ∗

j (β̂
∗
l j − β̂l). These are sorted, and their α/2 and 1 − α/2

quantiles obtained, which is particularly easy to do if α(B + 1)/2 is an integer. If
q∗
α/2 and q∗

1−α/2 denote these empirical quantiles, and s(β̂l) denotes the (presumably

heteroskedasticity-robust) standard error of β̂l, then the studentized bootstrap interval
at level α is [

β̂l − s(β̂l)q∗
1−α/2, β̂l − s(β̂l)q∗

α/2

]
. (16)

As usual, the lower limit of this interval depends on the upper tail quantile of the
bootstrap test statistics, and the upper limit depends on the lower tail quantile. Even
if the true distribution of the τ∗

j happens to be symmetric around the origin, it is
highly unlikely that the empirical distribution will be. Therefore, the interval (16)
will almost never be symmetric.

Another way to find confidence intervals is explicitly to invert bootstrap P values.
The confidence interval then consists of all points for which the bootstrap P value
(14) is greater than α. Solving for such an interval can be a bit complicated, since the
null hypotheses that correspond to each end of the interval must be imposed on the
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bootstrap DGP. However, this technique can be more reliable than the studentized
bootstrap method; see Davidson and MacKinnon (2010, 2011).

The discussion so far may have incorrectly given the impression that the only
reason to use the wild bootstrap is to reduce the size distortion of tests, or the cov-
erage errors of confidence intervals, that are associated with HCCMEs which are
not entirely reliable in finite samples. In cross-section regressions with samples of
several hundred observations or more, those errors are often quite modest. But there
may well be other sources of much larger size distortions or coverage errors that can
also be reduced by using bootstrap methods. Although the primary reason for boot-
strapping may not be heteroskedasticity of unknown form, it is often wise to use a
technique like the wild bootstrap together with heteroskedasticity-robust covariance
matrices.

An important example is two-stage least squares (or generalized IV) estimation
with possibly heteroskedastic disturbances when the instruments are not strong.
Davidson and MacKinnon (2010) proposed a wild bootstrap procedure for this case.
When there are just two endogenous variables, the model is

y1 = β y2 + Zγ + u1 (17)

y2 = Wπ + u2. (18)

Equation (17) is a structural equation, and Eq. (18) is a reduced-form equation. The
n-vectors y1 and y2 are vectors of observations on endogenous variables, Z is an
n × k matrix of observations on exogenous variables, and W is an n × l matrix of
exogenous instruments with the property that S(Z), the subspace spanned by the
columns of Z, lies in S(W), the subspace spanned by the columns of W. Typical
elements of y1 and y2 are denoted by y1i and y2i respectively, and typical rows of
Z and W are denoted by Zi and W i .

Davidson and MacKinnon (2010) discusses several wild bootstrap procedures for
testing the hypothesis that β = β0. The one that works best, which they call the wild
restricted efficient (or WRE) bootstrap, uses the bootstrap DGP

y∗
1i = β0 y∗

2i + Zi γ̃ + f1(ũ1i )v
∗
i (19)

y∗
2i = W i π̃ + f2(ũ2i )v

∗
i , (20)

where γ̃ and the residuals ũ1i come from an OLS regression of y1 − β0 y2 on Z,
π̃ comes from an OLS regression of y2 on W and ũ1, and ũ2 ≡ y2 − Wπ̃. The
transformations f1(·) and f2(·) could be any of w1, w2, or w3.

This bootstrap DGP has three important features. First, the structural Eq. (19)
uses restricted (OLS) estimates instead of unrestricted (2SLS) ones. This is very
important for the finite-sample properties of the bootstrap tests. Note that, if 2SLS
estimates were used, it would no longer make sense to transform the û1i , because
2SLS residuals are not necessarily too small. Second, the parameters of the reduced-
form Eq. (20) are estimated efficiently, because the structural residuals are included
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as an additional regressor. This is also very important for finite-sample properties.
Third, the same random variable v∗

i multiplies the transformed residuals for both
equations. This ensures that the correlation between the structural and reduced-form
residuals is retained by the structural and reduced-form bootstrap error terms.

Davidson and MacKinnon (2010) provides evidence that bootstrap tests of
hypotheses about β based on the WRE bootstrap perform remarkably well whenever
the sample size is not too small (400 seems to be sufficient) and the instruments are
not very weak. What mostly causes asymptotic tests to perform poorly is simultane-
ity combined with weak instruments, and not heteroskedasticity. The main reason to
use the WRE bootstrap is to compensate for the weak instruments.

Ideally, one should always use a heteroskedasticity-robust test statistic together
with the wild bootstrap, or perhaps some other bootstrap method that is valid in
the presence of heteroskedasticity. However, it is also asymptotically valid to use
a nonrobust test statistic together with the wild bootstrap, or a robust test statistic
together with a bootstrap method that does not take account of heteroskedasticity.
The simulation evidence in Davidson and MacKinnon (2010) suggests that both of
these approaches, while inferior to the ideal one, can work reasonably well.

4 Cluster-Robust Covariance Matrices

An important extension of heteroskedasticity-robust inference is cluster-robust infer-
ence. Consider the linear regression model

y ≡

⎡
⎢⎢⎢⎣

y1
y2
...

ym

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

X1
X2
...

Xm

⎤
⎥⎥⎥⎦β +

⎡
⎢⎢⎢⎣

u1
u2
...

um

⎤
⎥⎥⎥⎦ ≡ Xβ + u.

Here, there are m clusters, indexed by j , the observations for which are stacked into
the vector y and the matrix X . Clusters might correspond to cities, counties, states,
or countries in a cross-section of households or firms, or they might correspond to
cross-sectional units in a panel dataset. The important thing is that there may be
correlation among the disturbances within each cluster, but not across clusters.

If we know nothing about the pattern of variance and covariances within each
cluster, then it makes sense to use a cluster-robust covariance matrix estimator. The
simplest such estimator is

V̂ar(β̂) = (X�X)−1
( m∑

j=1

X j
�û j û j

�X j

)
(X�X)−1, (21)
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where û j is the vector of OLS residuals for the j th cluster. This has the familiar sand-
wich form of an HCCME, except that the filling in the sandwich is more complicated.
It is robust to heteroskedasticity of unknown form as well as to within-cluster corre-
lation. The estimator (21) was first proposed by Froot (1989), introduced into Stata
by Rogers (1993), and extended to allow for serial correlation of unknown form, as
in HAC estimation, by Driscoll and Kraay (1998). It is widely used in applied work.

Cameron et al. (2008) recently proposed a wild bootstrap method for clustered
data. As in the usual wild bootstrap case, where the bootstrap disturbance for
observation i depends on the residual ûi , all the bootstrap disturbances for each
cluster depend on the residuals for that cluster. The wild bootstrap DGP is

y∗
j i = X j i β̂ + f (û j i )v

∗
j , (22)

where j indexes clusters, i indexes observations within each cluster, and the v∗
j

follow the Rademacher (F2) distribution. The key feature of (22) is that there are
only as many v∗

j as there are clusters. Thus, the bootstrap DGP preserves the variances
and covariances of the residuals within each cluster. This method apparently works
surprisingly well even when the number of clusters is quite small.

5 Simulation Evidence

Simulation experiments can be used to shed light on the finite-sample performance
of various HCCMEs, either used directly for asymptotic tests or combined with
various forms of the wild bootstrap. This section reports results from a number of
experiments that collectively deal with a very large number of methods. Most of the
experiments were deliberately designed to make these methods perform poorly.

Many papers that use simulation to study the properties of HCCMEs, beginning
with MacKinnon and White (1985) and extending at least to Cribari-Neto and Lima
(2010), have simply chosen a fixed or random X matrix for a small sample size—
just 10 in the case of Davidson and Flachaire (2008)—and formed larger samples
by repeating it as many times as necessary. When X matrices are generated in this
way, there will only be as many distinct values of hi as the number of observations in
the original sample. Moreover, all of those values, and in particular the largest one,
must be exactly proportional to 1/n; see Chesher (1989). This ensures that inference
based on heteroskedasticity-robust methods improves rapidly as n increases. Since
very few real datasets involve X matrices for which all of the hi are proportional to
1/n, this sort of experiment almost certainly paints an excessively optimistic picture.
Some evidence on this point is provided below.

In contrast, the model employed here, which is similar to one used for a much
more limited set of experiments in MacKinnon (2002), is
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Fig. 1 Rejection frequencies for heteroskedasticity-robust t tests, n = 40

yi = β1 +
5∑

k=2

βk Xik + ui , ui = σi εi , εi ∼ N(0, 1), (23)

where all regressors are drawn randomly from the standard lognormal distribution,
βk = 1 for k ≤ 4, β5 = 0, and

σi = z(γ)
(
β1 +

5∑
k=2

βk Xik
)γ

. (24)

Here, z(γ) is a scaling factor chosen to ensure that the average variance of ui is equal
to 1. Thus, changing the parameter γ changes how much heteroskedasticity there is
but does not, on average, change the variance of the disturbances. In the experiments,
0 ≤ γ ≤ 2. Note that γ = 0 implies homoskedasticity, and γ >> 1 implies rather
extreme heteroskedasticity.

The DGP consisting of Eqs. (23) and (24) was deliberately chosen so as to make
heteroskedasticity-robust inference difficult. Because the regressors are lognormal,
many samples will contain a few observations on the Xik that are quite extreme,
and the most extreme observation in each sample will tend to become more so as
the sample size increases. Therefore, the largest value of hi will tend to be large
and to decline very slowly as n → ∞. In fact, the average value of hmax

i is nearly
0.80 when n = 20 and declines by a factor of only about 3.5 as the sample size
increases to 1,280, with the rate of decline increasing somewhat as n becomes larger.
It is likely that few real datasets have hi which are as badly behaved as the ones in
these experiments, so their results almost certainly paint an excessively pessimistic
picture.
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Fig. 2 Rejection frequencies for asymptotic HC3 t tests, various sample sizes

Figures 1 and 2 show the results of several sets of experiments for asymptotic tests
of the hypothesis that β5 = 0 based on test statistics like (11) and the standard normal
distribution. The figures show rejection frequencies as functions of the parameter γ.
They are based on 1,000,000 replications for each of 41 values of γ between 0.00
and 2.00 at intervals of 0.05.

Rejection frequencies for five different HCCMEs when n = 40 are shown in
Fig. 1. As expected, tests based on HC1 always overreject quite severely. Perhaps
somewhat unexpectedly, tests based on HC4 always underreject severely. This is
presumably a consequence of the very large values of hmax

i in these experiments.
Tests based on the other estimators sometimes overreject and sometimes underreject.
In every case, rejection frequencies decline monotonically as γ increases. For any
given value of γ, they also decline as j increases from 1 to 4 in HC j . It is reassuring to
see that the results for HC3 and HCJ are extremely similar, as predicted by Davidson
and MacKinnon (1993) when they introduced the former as an approximation to the
latter and appropriated its original name.

Note that, as Davidson and Flachaire (2008) emphasized, restricting attention to
tests at the 0.05 level is not inconsequential. All the tests are more prone to overreject
at the 0.01 level and less prone to overreject at the .10 level than they are at the 0.05
level. In other words, the distributions of the test statistics have much thicker tails
than does the standard normal distribution. Even HC4, which underrejects at the 0.05
level for every value of n and γ, always overrejects at the 0.01 level for some small
values of γ.

Figure 2 focuses on HC3, which seems to perform best among the HC j estimators
for n = 40. It shows results for seven values of n from 20 to 1,280. The surprising
thing about this figure is how slowly the rejection frequency curves become flatter as
the sample size increases. The curves actually become steeper as n increases from 20
to 40 and then to 80. The worst overrejection for γ = 0 and the worst underrejection
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Fig. 3 Rejection frequencies for asymptotic HC3 t tests, 20 rows of X repeated

for γ = 2 both occur when n = 80. As n increases from 80 to 160, 320, 640, and
finally 1280, the curves gradually become flatter, but they do so quite slowly. It seems
likely that we would need extremely large samples for rejection frequencies to be
very close to the nominal level of 0.05 for all values of γ. This is a consequence of the
experimental design, which ensures that hmax

i decreases very slowly as n increases.
An alternative to generating the entire regressor matrix for each sample size is

simply to generate the first 20 rows and then repeat them as many times as necessary
to form larger samples with integer multiples of 20 observations. As noted earlier,
hmax

i would then be proportional to 1/n. Figure 3 contains the same results as Fig. 2,
except that the matrix X is generated in this way. The performance of asymptotic tests
based on HC3 now improves much faster as n increases. In particular, the rejection
frequency curve changes dramatically between n = 20 and n = 40. It is evident that
the way in which X is generated matters enormously.

The remaining figures deal with wild bootstrap tests. Experiments were performed
for 12 variants of the wild bootstrap. There are three transformations of the residuals
(denoted by w1, w2, or w3, because they are equivalent to HC1, HC2, or HC3), two
types of residuals (restricted and unrestricted, denoted by r or u), and two ways of
generating the v∗

j (F1 or F2, denoted by 1 or 2). The 12 variants are
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Fig. 4 Rejection frequencies for bootstrap HC3 t tests, n = 40

w1r1 and w1r2: u∗
i = √

n/(n − k + 1)ũi

w1u1 and w1u2: u∗
i = √

n/(n − k)ûi

w2r1 and w2r2: u∗
i = ũi

(1 − h̃i )1/2

w2u1 and w2u2: u∗
i = ûi

(1 − hi )1/2

w3r1 and w3r2: u∗
i = ũi

(1 − h̃i )

w3u1 and w3u2: u∗
i = ûi

(1 − hi )

In the expressions for w2r1, w2r2, w3r1, and w3r2, h̃i denotes the i th diagonal of
the hat matrix for the restricted model.

The experimental results are based on 100,000 replications for each of 21 values
of γ between 0.0 and 2.0 at intervals of 0.1, with B = 399. In practice, it would
be better to use a larger number for B in order to obtain better power, but 399 is
adequate in the context of a simulation experiment; see Davidson and MacKinnon
(2000). There are five different HCCMEs and 12 different bootstrap DGPs. Thus,
each experiment produces 60 sets of rejection frequencies. It would be impossible to
present all of these graphically without using an excessively large number of figures.

Figures 4 and 5 present results for HC3 and HC1 respectively, combined with
eight different bootstrap DGPs for n = 40. Results are shown only for w2 and w3,
because the diagram would have been too cluttered if w1 had been included, and
methods based on w1 usually performed less well than ones based on w2. HC3 was
chosen because asymptotic tests based on it performed best, and HC1 was chosen
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Fig. 5 Rejection frequencies for bootstrap HC1 t tests, n = 40

because asymptotic tests based on it performed worst. Note that the results for HC0
would have been identical to the ones for HC1, because the former is just a multiple
of the latter. This implies that the position of τ̂ in the sorted list of τ̂ and the τ∗

j must
be the same for HC0 and HC1, and hence the P value must be the same.

In Fig. 4, we see that only two of the wild bootstrap methods (w3r2 and w2r2)
yield tests that never overreject. The size distortion for w3r2 is always less than for
w2r2. The curve for w1r2, not shown, lies everywhere below the curve for w2r2. The
other six wild bootstrap methods do not perform particularly well. They all overreject
for all or most values of γ. For small values of γ, the four worst methods are the ones
that use unrestricted residuals. But w2r1 and w3r1 also work surprisingly poorly.

Figure 5 shows results for the same eight wild bootstrap methods as Fig. 4, but this
time the test statistic is based on HC1. The results are similar to those in Fig. 4, but
they are noticeably better in several respects. Most importantly, w3r2 and, especially,
w2r2 underreject less severely, and all of the tests that use unrestricted residuals
overreject somewhat less severely.

The remaining figures focus on the effects of sample size. Figure 6 shows rejection
frequencies for tests based on HC1 for six sample sizes, all using the w3r2 wild
bootstrap. In striking contrast to the asymptotic results in Fig. 2, the improvement as
n increases is quite rapid. Except for the largest values of γ, the rejection frequencies
are very close to 0.05 for n = 640.

Figure 7 shows that using unrestricted residuals harms performance greatly for all
sample sizes. Although there is much faster improvement with n than for the asymp-
totic tests in Fig. 2, overrejection for small values of γ is actually more severe for the
smaller sample sizes. Both overrejection for small values of γ and underrejection for
large ones remain quite noticeable even when n = 640.

Figure 8 is similar to Fig. 6, except that the matrix X consists of the first 20 rows
repeated as many times as necessary. Results are presented only for n = 40, 60, 80,
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Fig. 7 Rejection frequencies for w3u2 bootstrap HC1 t tests

120, and 160. Results for n = 20 are omitted, because they may be found in Fig. 6,
and including them would have required a greatly extended vertical axis. Results for
sample sizes larger than 160 are omitted for obvious reasons. To reduce experimental
error, these results are all based on 400,000 replications.

The performance of all the bootstrap tests in Fig. 8 is extremely good. Simply
making the bottom half of the X matrix repeat the top half, as happens when n = 40,
dramatically improves the rejection frequencies. Results would have been similar
for tests based on HC2, HC3, HCJ, or HC4. It is now very difficult to choose among
bootstrap tests that use different HCCMEs, as they all work extremely well.
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Although Fig. 8 only shows results for the w3r2 variant of the wild bootstrap, other
bootstrap methods also perform much better when the regressor matrix consists of the
first 20 rows repeated than when the entire matrix is generated randomly. But there
still seem to be clear benefits from using restricted residuals and the F2 distribution,
at least for smaller values of n.

Like most of the work in this area, the experiments described so far focus exclu-
sively on the performance of tests under the null. However, test power can be just as
important as test size. The remaining experiments therefore address two important
questions about power. The first is whether the choice of HCCME matters, and the
second is whether there is any advantage to using unrestricted rather than restricted
residuals in the bootstrap DGP. These experiments use the w3 bootstrap and the F2
distribution. The sample size is 40, there are 100,000 replications, and B = 999. The
number of bootstrap samples is somewhat larger than in the previous experiments,
because power loss is proportional to 1/B; see Jöckel (1986).

Figure 9 shows power functions for wild bootstrap (w3r2) tests of the hypothesis
that β5 = 0 in Eq. 11 as a function of the actual value of β5 when γ = 1. Experiments
were performed for 71 values of β5: −0.70, −0.68, . . ., 0.68, 0.70. This figure has
two striking features. First, the power functions are not symmetric. There is evidently
greater power against negative values of β5 than against positive ones. This occurs
because of the pattern of heteroskedasticity in Eq. (24). For γ > 0, there is more
heteroskedasticity when β5 > 0 than when β5 < 0. This causes the estimate of β5 to
be more variable as the true value of β5 increases. When γ = 0, the power functions
are symmetric.

The second striking feature of Fig. 9 is that power decreases monotonically from
HC1 to HC2, HC3, and finally HC4. Thanks to the bootstrap, all the tests have
essentially the same performance under the null. Thus, what we see in the figure is
a real, and quite substantial, reduction in power as we move from HC1, which pays
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Fig. 9 Power of wild bootstrap (w3r2) heteroskedasticity-robust t tests, γ = 1, n = 40

no attention to the leverage of each observation, to robust covariance matrices that
take greater and greater account thereof. At least in this case, there appears to be a
real cost to using HCCMEs that compensate for leverage (they overcompensate, in
the case of HC3 and HC4). It seems to be much better to correct for the deficiencies
of HC1 by bootstrapping rather than by using a different HCCME.

Although there is still the same pattern for similar experiments in which the X
matrix is generated by repeating the first 20 observations (results not shown), the
loss of power is much less severe. Thus, it may well be that the power loss in Fig. 9
is just about as severe as one is likely to encounter.

It is widely believed that using unrestricted residuals in a bootstrap DGP yields
greater power than using restricted residuals. The argument is that, when the null is
false, restricted residuals will be larger than unrestricted ones, and so the bootstrap
error terms will be too big if restricted residuals are used. Paparoditis and Politis
(2005) show that there is indeed a loss of power from using restricted residuals
whenever a test statistic is asymptotically nonpivotal. However, their theoretical
analysis yields no such result for asymptotically pivotal statistics like the robust t
statistic (11) studied here. Using restricted residuals does indeed cause the bootstrap
estimates to be more variable, but it also causes the standard errors of those estimates
to be larger. Thus, there is no presumption that bootstrap critical values based on the
distribution of the bootstrap t statistics will be larger if one uses restricted residuals.

Figure 10 shows two power functions, one for the w3r2 bootstrap, which is iden-
tical to the corresponding one in Fig. 9, and one for the w3u2 bootstrap. Using
unrestricted residuals causes the test to reject more frequently for most, but not all,
values of β5, including β5 = 0. Ideally, one would like to adjust both tests to have
precisely the correct size, but this is very difficult to do in a way that is unambigu-
ously correct; see Davidson and MacKinnon (2006). If one could do so, it is not clear
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that the w3u2 bootstrap would ever have greater power than the w3r2 bootstrap, and
it is clear that it would actually have less power for many positive values of β5.

It can be dangerous to draw conclusions from simulation experiments, especially
in a case like this where the details of the experimental design are evidently very
important. Nevertheless, it seems to be possible to draw several qualified conclusions
from these experiments. Many of these echo previous theoretical and simulation
results that may be found in Chesher and Austin (1991), Davidson and Flachaire
(2008), and other papers, but others appear to be new.

• The best HCCME for asymptotic inference may not be the best one for bootstrap
inference.

• When regressor matrices of various sizes are created by repeating a small number
of observations as many times as necessary, both asymptotic and bootstrap tests
perform better than they do when there is no repetition and hmax

i decreases slowly
as n increases.

• Rejection frequencies for bootstrap tests can improve much more rapidly as n
increases than ones for asymptotic tests, even when hmax

i decreases very slowly as
n increases.

• Although well-chosen bootstrap methods can work much better than purely asymp-
totic ones, not all bootstrap methods work particularly well when hmax

i decreases
slowly as n increases.

• There can be a substantial gain from using restricted residuals in the wild bootstrap
DGP, especially when hmax

i decreases slowly as n increases.
• There can be a substantial gain from using F2 rather than F1 to generate the

bootstrap error terms, especially when hmax
i decreases slowly as n increases.

• The power of bootstrap tests based on different HCCMEs can differ substantially.
The limited evidence presented here suggests that HC1 may yield the greatest
power and HC4 the least.

• There is no theoretical basis for, and no evidence to support, the idea that using
unrestricted residuals in the bootstrap DGP will yield a more powerful test than
using restricted residuals when the test statistic is asymptotically pivotal.

All the experiments focused on testing rather than confidence intervals. However,
studentized bootstrap confidence intervals like (16) simply involve inverting boot-
strap t tests based on unrestricted residuals. Thus, the poor performance of tests that
use unrestricted residuals in the bootstrap DGP when hmax

i decreases slowly suggests
that studentized bootstrap confidence intervals may not be particularly reliable when
the data have that feature. In such cases, it is likely that one can obtain bootstrap con-
fidence intervals with much better coverage by inverting bootstrap P values based
on restricted residuals; see Davidson and MacKinnon (2011).

The base case for these experiments, in which the regressors are randomly gen-
erated from the log-normal distribution, is probably unrealistic. In practice, the per-
formance of heteroskedasticity-robust tests may rarely be as bad for moderate and
large sample sizes as it is in these experiments. But the other case, in which the
rows of the regressor matrix repeat themselves every 20 observations, is even more
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Fig. 10 Power of wild bootstrap HC1 t tests, γ = 1, n = 40

unrealistic. The many published simulation results that rely on this type of experi-
mental design are almost certainly much too optimistic in their assessments of how
well heteroskedasticity-robust tests and confidence intervals perform.

6 Conclusion

White (1980) showed econometricians how to make asymptotically valid inferences
in the presence of heteroskedasticity of unknown form, and the impact of that paper
on both econometric theory and empirical work has been enormous. Two strands of
later research have investigated ways to make more accurate inferences in samples of
moderate size. One strand has concentrated on finding improved covariance matrix
estimators, and the other has focused on bootstrap methods. The wild bootstrap is
currently the technique of choice. It has several variants, some of which are closely
related to various HCCMEs. The wild bootstrap is not actually a substitute for a good
covariance matrix estimator. Instead, it should be used in conjunction with one to
provide more accurate tests and confidence intervals. This paper has discussed both
strands of research and presented simulation results on the finite-sample performance
of asymptotic and bootstrap tests.
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Smooth Constrained Frontier Analysis

Christopher F. Parmeter and Jeffrey S. Racine

Abstract Production frontiers (i.e., “production functions”) specify the maximum
output of firms, industries, or economies as a function of their inputs. A variety
of innovative methods have been proposed for estimating both “deterministic” and
“stochastic” frontiers. However, existing approaches are either parametric in nature,
rely on nonsmooth nonparametric methods, or rely on nonparametric or semipara-
metric methods that ignore theoretical axioms of production theory, each of which
can be problematic. In this chapter we propose a class of smooth constrained non-
parametric and semiparametric frontier estimators that may be particularly appealing
to practitioners who require smooth (i.e., continuously differentiable) estimates that,
in addition, are consistent with theoretical axioms of production.
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1 Overview

Estimating production relationships is a key component of both applied micro- and
macroeconomic research. Modern analysis traces its roots to the pioneering empirical
work of Cobb and Douglas (1928), Klein (1947) and Arrow et al. (1961). Though
this work was notable for the application of statistical methodology to the estimation
of a fundamental object in economics (the “production function”), the field continues
to evolve in innovative and sometimes controversial ways; see Leibenstein (1966)
for a case in point. The theory of production has matured considerably since its early
days. The modern theoretical framework for production analysis stems from the
path breaking work of Debreu (1951), Shephard (1953, 1970), and Diewert (1971),
to name a few.

A continuing theme in applied production analysis is the specification of economic
functionals of interest, specifically production, profit and cost functions. The appeal
of deploying nonparametric methods in these settings is that “Approximation of
these functions and their derivatives can aid in confirmation or refutation of particular
theories of the firm. . .” (Hornik et al. 1990, p. 552). Here we embrace the full essence
of these considerations and develop nonparametric estimators for both deterministic
and stochastic frontiers which respect theoretical conditions on the derivatives.

We do not restrict ex ante which constraints should be imposed in a given setting
as this is clearly application specific. Rather, we propose an approach that can easily
handle numerous constraints simultaneously. As such, the methods proposed herein
ought to be of general utility in keeping with Amsler et al. (2009, p. 22) who comment
“Of course we can always estimate a regression consistently by purely nonparametric
methods like kernels or nearest neighbors, but there ought to be advantages of impos-
ing the restrictions that economic theory dictates.” We demonstrate that indeed there
are substantial advantages to imposing restrictions dictated by economic theory on
nonparametric frontier methods, thus the constrained nonparametric kernel estima-
tors we propose address one of the outstanding issues in applied frontier analysis.1

The interpretation of the “advantages” that using constrained methods provides does
not necessarily lie on the statistical side. Rather, while constrained nonparametric
methods may fail to improve rates of convergence or are asymptotically equivalent
to their unconstrained counterparts (when the constraints are “correct,” i.e., consis-
tent with the data generating process (“DGP”)), the real benefits lie in the ability to
implement estimators which respect economic theory for the data at hand and the
ability to test economic restrictions.

In this chapter we propose three kernel-based frontier estimators that satisfy requi-
site axioms of production and are continuously differentiable. Two are deterministic
frontier estimators while the third is a stochastic frontier estimator. All three of these
methods incorporate general axioms of production by exploiting recent advances in
constrained kernel estimation; see Hall and Huang (2001) and Du et al. (2010) for

1 Amsler et al. (2009) continue, “We predict that in the foreseeable future the methodology will
exist for routine application of the stochastic frontier model without a parametric specification of
the frontier.”
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details. They therefore represent smooth nonparametric generalizations of Aigner
and Chu (1968) goal programming approach, Winsten (1957) constrained ordinary
least squares (COLS) method, and Aigner et al. (1977) stochastic frontier approach.
The first deterministic frontier method envelopes the data directly and is termed
“smooth goal programming” (SGP) and may be of interest to those currently using
data envelopment analysis (DEA) approaches. The second deterministic frontier
method “corrects” a smooth nonparametric conditional mean function and is termed
“smooth corrected programming” (SCP), and may be of interest to those currently
using corrected deterministic frontier methods. As such, the second approach can be
thought of as the smooth counterpart of Kuosmanen and Johnson (2010). The third
method is a constrained version of Fan et al. (1996) but where the resulting estimator
is guaranteed to satisfy general production axioms and is termed “smooth stochastic
frontier” (SSF), and this method may be of interest to those using flexible stochas-
tic frontier methods. Additionally, we show how concavity can be imposed using
simple linear constraints as opposed to more computationally demanding nonlinear
constraints (O’Donnell and Coelli 2005; Henderson and Parmeter 2009), which con-
stitutes an extension to constrained kernel methods not done elsewhere that may be
of general interest.

The appeal of this chapter lies in its contribution to the applied econometric
literature on empirical constrained nonparametric methods. A number of empirical
chapters use constrained nonparametric methods to investigate a range of topics
including Briesch et al. (2002), who estimate a constrained nonparametric model of
consumer brand choice focusing on the utility of price and discounts, Yatchew and
Härdle (2006), who deploy constrained methods to estimate the state price density
(a key object of interest in option pricing theory), Haag et al. (2009), who impose
the Slutsky symmetry conditions in a demand system (which they estimate using
nonparametric kernel methods), and Blundell et al. (2012), who use methods similar
to those contained herein to measure the price elasticity of gasoline demand imposing
the Slutsky shape restriction, to name but a few.2

The outline of the rest of this chapter is as follows. Section 2 outlines the restricted
nonparametric estimators upon which our proposed smooth constrained frontier esti-
mators are based. Section 3 formally describes our approach and establishes the
requisite theoretical properties. Section 4 provides several Monte Carlo simulations
designed to examine the finite-sample performance of the methods while Sect. 5
provides an illustrative example. Section 6 provides concluding remarks.

2 See the webpage for the conference “Shape Restrictions in Non- and Semiparametric Estimation of
Econometric Models” hosted by Northwestern University’s Center for Econometrics on November
5-6, 2010 (http://www.wcas.northwestern.edu/cfe/conferences.html).

http://www.wcas.northwestern.edu/cfe/conferences.html
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2 Constrained Nonparametric Regression

The three frontier methods we outline below require as input a nonparametric model
constrained to obey axioms of production theory. We adopt the approach of Du et al.
(2010) and direct the reader to that article for theoretical underpinnings and further
details. Below we provide a brief sketch of their approach for the interested reader.

In what follows we let {(xi , yi )}n
i=1 denote sample pairs of inputs and outputs

and x a point of support at which we evaluate the frontier. Our goal is to nonpara-
metrically estimate the unknown production frontier m(x) subject to constraints on
m(s)(x)where s is a k-vector corresponding to the dimension of x . The elements of s
represent the order of the partial derivative corresponding to each element of x . Thus
s = (0, 0, . . ., 0) represents the function itself, while s = (1, 0, . . . , 0) represents
∂m(x)/∂x1. In general, for s = (s1, s2, . . . , sk) we have

m(s)(x) = ∂s1m(x)

∂xs1
1

, . . . ,
∂sk m(x)

∂xsk
k

. (1)

We consider the class of kernel regression smoothers that can be written as linear
combinations of the output yi , i.e.,

m̂(x) =
n∑

i=1

n−1 Ai (x)yi , (2)

which is a very broad class. For instance, the local constant Nadaraya-Watson esti-
mator uses

Ai (x) = nKγ (xi , x)∑n
j=1 Kγ (X j , x)

, (3)

where Kγ (·) is a generalized product kernel that admits both continuous and cate-
gorical inputs, and γ is a vector of bandwidths; see Racine and Li (2004) for details.
Though we restrict attention to the class of kernel regression smoothers, there is no
barrier preventing the application of these methods to other nonparametric estimators
such as artificial neural networks (White 1989).

In order to impose constraints on a nonparametric frontier, we shall require a
nonparametric estimator that satisfies constraints of the form

l(x) ≤ m̂(s)(x) ≤ u(x) (4)

for arbitrary l(·), u(·), and s, where l(·) and u(·) represent (local) lower and upper
bounds, respectively.

The constrained estimator is obtained by introducing an n-vector of weights, p,
chosen so that the resulting estimator satisfies (4). We define the constrained estimator
to be
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m̂(x |p) =
n∑

i=1

pi Ai (x)yi , (5)

such that (4) is satisfied. Construction of (5) proceeds as follows. Let pu be an
n-vector with elements 1/n and let p be the vector of weights to be selected. In order
to impose our constraints, we choose p = p̂ to minimize the distance from p to
the uniform weights pu using the distance metric D(p) = (pu − p)′(pu − p). The
constrained estimator is then obtained by selecting those weights p that minimize
D(p) subject to constraints such as those given in (8), (9) and (10) below, which can
be cast as a general nonlinear programming problem. For the constraints we need to
impose (frontier behavior, monotonicity and concavity) we will have inequalities that
are linear in p, which can be solved using standard quadratic programming methods
and off-the-shelf software.3 The appropriate bandwidth(s) for our unknown function
can be estimated using any of the commonly available data-driven procedures and
require estimation of the unrestricted function only. For notational simplicity we
shall drop the “|p” notation with the understanding that the constrained estimator is
that defined in (5) above.

Before proceeding to discuss constrained estimation of frontier functions, we note
that the derivatives which the constraints are applied to depend on the estimator used.
For example, consider the local linear estimator of m(x) and its derivatives,

δ̂(x) = min
δ(x)

(Y − X δ(x))′K(x)(Y − X δ(x)),

where Y is an n ×1 vector with i th component yi , X is an n ×(1+d)matrix with i th
row

(
1, (xi − x)′

)
, K(x) is the n × n diagonal matrix having i th diagonal element

Kγ (xi , x), and γ is a vector of bandwidths. The vector δ(x) contains the conditional
mean evaluated at x (first component) as well as the d first order derivatives of m(x)
(the 2 through d +1 components). The vector δ̂(x) is a consistent estimator for m(x)
and its d first order derivatives (Li and Racine 2007, Theorem 2.7).

The derivative estimates arising directly from the local linear estimator (elements
2 through d +1 of δ̂(x)), will differ from the analytical derivatives, even though they
are asymptotically equivalent under standard conditions required for consistency.
Thus, if economic constraints are imposed on the direct derivatives, this may produce
an estimated surface which is not consistent with the constraints. Fortunately this
can be avoided by imposing the constraints on the analytical derivatives of the local
polynomial estimator being used.

We now deploy the constrained estimator outlined above for smooth constrained
nonparametric estimation of both deterministic and stochastic frontier models.

3 For example, in the R language it is solved using the quadprog package, in GAUSS it is solved
using the qprog command, and in MATLAB the quadprog command. Even when n is quite
large the solution is computationally fast using any of these packages.
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3 Smooth Constrained Nonparametric Frontier Estimation

The starting point for modeling production frontiers is

yi = m(xi )+ εi , i = 1, . . . , n, (6)

where yi represents output, xi a k-vector of inputs, m(·) the frontier (i.e., maximum
output given x), and εi is either one-sided technical inefficiency (deterministic fron-
tier) or a two-part composed error term (stochastic frontier) consisting of a one-sided
term representing inefficiency (ui ) and a two-sided term representing statistical noise
(vi ) such that εi = vi − ui .

We shall first consider constrained nonparametric extensions of two popular
approaches used to estimate deterministic frontiers, and then proceed to estimate
constrained semiparametric stochastic frontiers (SSFs). Naturally, the constraints
will be those dictated by the axioms of production theory.

3.1 Constrained Nonparametric Deterministic Frontiers

The deterministic frontier approach models εi = −ui as a one-sided process, i.e.,
εi ≤ 0. One could estimate the frontier directly using programming type methods
such as DEA or, by specifying the functional form for m(·), could proceed indirectly
via COLS,4 which necessarily places joint restrictions on εi and m(·). We briefly
outline COLS in a linear production function setting by way of illustration. Presume
that the deterministic frontier model is

yi = α + x ′
iβ + εi , i = 1, . . . , n, (7)

and that one estimates this model ignoring the error structure to obtain estimates α̂
and β̂. Since E[εi |xi ] �= 0, α̂ is a biased estimate of α. Moreover, the production
function will not lie above all of the data which is inconsistent with the notion that
m(xi ) = α+ x ′

iβ is a frontier. To remedy this COLS corrects the estimated intercept
to guarantee that the adjusted frontier function does indeed lie above the observed
outputs. That is α̂c = α̂ + maxi ε̂i and the residuals are corrected in the opposite
direction, ε̂c

i = ε̂i − maxi ε̂i . Greene (1980) shows that this procedure will produce
consistent estimates for α and εc

i presuming the model is correctly specified and
given that a set of regularity conditions hold. However, in applied settings one may
worry about misspecification, or one may test for correct parametric specification

4 The idea of shifting an estimated production function stems from Winsten (1957) comment on
Farrell (1957) description of an industry “envelope” isoquant, namely, that the estimated regres-
sion represents an average production function which could be shifted vertically to estimate the
production frontier itself.
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and reject one’s model using, say, Hong and White (1995) test. In either case, models
that are robust to misspecification would have obvious appeal.

In what follows we propose two alternate nonparametric deterministic frontier
estimators, one that bounds the data and (unlike DEA) is smooth everywhere, requir-
ing only one stage, and one that can be considered the smoothed version of the
estimator proposed by Kuosmanen and Johnson (2010). Due to the fact that this
setup will allow us to incorporate restrictions on the frontier and on its derivatives,
imposing bounds, monotonicity and concavity is straightforward. Let our constrained
estimator defined in (5) satisfy the following restrictions:

n∑
i=1

pi Ai (xi )yi − yi ≥ 0, (8)

n∑
i=1

pi

⎡
⎣∑

s∈S1

A(s)i (x)

⎤
⎦ yi ≥ 0, (9)

n∑
i=1

pi

⎡
⎣∑

s∈S2

A(s)i (x)

⎤
⎦ yi ≤ 0, (10)

where S1 is [
(1, 0, . . . , 0) (0, 1, . . . , 0) · · · (0, 0, . . . , 1)

]
k ,

while S2 is [
(2, 0, . . . , 0) (0, 2, . . . , 0) · · · (0, 0, . . . , 2)

]
k .

These three conditions guarantee that the estimated frontier lies (weakly) above all
observed output while respecting monotonicity and necessary conditions for concav-
ity. This direct one-step estimator can be thought of as the smooth, nonparametric
variant of Aigner and Chu (1968) parametric goal programming approach which we
term m̂SGP(xi ) SGP.

Note that for k = 1 the above conditions are both necessary and sufficient for
concavity, however, for k ≥ 2 they may not be sufficient. To ensure that sufficiency is
met we shall, in addition, impose additional linear conditions. While these additional
conditions are known under a variety of names, they are commonly termed the Afriat
conditions (or inequalities); see Kuosmanen (2008). Note that if, instead, one were to
focus attention on the matrix of second derivatives this would involve nonlinear con-
straints which are more complicated, computationally speaking, than Afriat (1967)
approach (the Afriat conditions are linear in the constraint weights).5 Assuming that
the unknown frontier is first order differentiable,6 Afriat (1967) conditions state that
a function is (globally) concave if and only if

5 See Henderson and Parmeter (2009) for a detailed exposition on imposing concavity using the
Hessian in this setting.
6 Note that the class of nonparametric estimators considered herein also rely on this assumption.
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m(z)− m(x) ≤ ∂m

∂x1
(x)(z1 − x1)+ · · · + ∂m

∂xk
(x)(zk − xk), ∀z, x. (11)

In our framework these inequalities can be handled directly without resorting to
nonlinear constrained optimization, though of course this does not reduce the number
of overall inequalities that must be imposed (a total of n × (n − 1)× k inequalities
for k ≥ 2).7

Before proceeding, a few words on constraining production frontiers are in order.
Though concavity8 is sometimes warranted and imposed on estimated production
functions (Chambers 1988), it may be viewed as a special case and practitioners
frequently estimate models (e.g., the translog) which, by definition, cannot be con-
cave without destroying their flexibility (Ryan and Wales 2000). The failure to verify
whether concavity is satisfied using well-established tests (Hanoch and Rothschild
1972) is not uncommon; see the discussion in O’Donnell and Coelli (2005, p. 495)
on the importance of imposing and checking theoretical constraints when estimating
production relationships. Functional forms which can accommodate both long and
short run behavior have been proposed in the literature, and by construction are not
globally concave. By way of example, Duggal et al. (1999, p. 47) note that their
production function has a form which “allows for an S-shaped production function
which embodies not only the properties of a long-run production function but also
those exhibited in the short run.” We therefore wish to alert the reader to the fact that,
though our method is capable of imposing concavity (in addition to a range of other
constraints), in applied production settings it may be unwise to impose concavity on
production functions without further investigation (Duggal et al. 2007). Of course,
it is trivial to drop this restriction while maintaining (weak) monotonicity, and our
method is quite general and can handle concavity which is theoretically needed in
the context of cost (revenue) function estimation, concavity (convexity) in prices,
and so forth.

Powerful and flexible nonsmooth conditional mean-based deterministic frontier
methods that satisfy requisite constraints have been proposed (Kuosmanen and John-
son 2010; Kuosmanen and Kortelainen 2011). The following corrected method will
produce a smooth counterpart to Kuosmanen and Johnson (2010). Thus, as an alter-
native to the SGP estimator proposed above, if one is willing to impose a set of
regularity conditions on the inefficiency and base the frontier on a conditional mean,
then a simple two step estimator can be constructed by estimating the mean pro-
duction function in Eq. (5) subject to the constraints in (9) and (11) (Eq. (10) would
suffice if k = 1). Having estimated the constrained conditional mean (which we shall
call ĝ(xi ) to distinguish it from the frontier estimator m̂(xi )) we can obtain residuals
(i.e., ε̂i = yi − ĝ(xi )) and then use maxi ε̂i to correct our estimate. The following
procedure will yield our SCP deterministic frontier estimator:

7 The use of these conditions to impose concavity is not uncommon and is used by Matzkin (1991) in
a utility theoretic context and also by Kuosmanen and Johnson (2010) in the nonsmooth production
context.
8 In some settings quasi-concavity is assumed instead of concavity, and our approach is applicable
for both.
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(i) First, estimate the conditional mean ĝ(xi ) imposing the constraints in (9) and
(11) (or (10)) and obtain the residuals, ε̂i .

(ii) Second, shift the estimated conditional mean so that it envelopes the data, i.e.,
construct

m̂SCP(xi ) = ĝ(xi )+ max
i
ε̂i .

(iii) Finally, calculate estimates of producer inefficiency,

ε̂SCP
i = m̂SCP(xi )− yi = ε̂i − max

i
ε̂i .

We drop the lower bound constraint on ĝ(xi ) since Kuosmanen and Johnson (2010,
Theorem 4.2) show that the discriminatory power of C2NLS is greater than that of a
DEA estimator. The reason for this is as follows; input values in either the extreme
lower or upper end of the support tend to reflect the frontier estimator downward,
resulting in a biased estimate of a firm’s efficiency level. The two-step procedure
that corrects the entire frontier is not impacted to the same degree as the one step
method since all observations are used in the smoothing. Below we show that this
relationship holds between our SGP and SCP estimators.

3.2 Constrained Semiparametric Stochastic Frontiers

Unlike the fully nonparametric deterministic approach outlined above, the approach
we now outline for stochastic frontiers is, strictly speaking, a semiparametric method
as it relies on parametric structure for the composed error distribution. Smooth esti-
mation of a stochastic frontier was proposed by Fan et al. (1996). They note that
standard maximum likelihood methods are infeasible when one does not specify (i.e.,
parameterize) the production function. They further note that direct nonparametric
estimation of the conditional mean would result in a biased estimate when one ignores
the inefficiency term. Fan et al. (1996) solution is to correct this (downward) bias
by retaining standard distributional assumptions from the SFA literature (e.g., nor-
mal noise, half-normal inefficiency) and estimating the corresponding distributional
parameters via maximum likelihood on the nonparametric residuals from a standard
kernel regression. Once these parameters are determined, the estimated conditional
mean can be shifted (bias-corrected) by the estimated mean of the inefficiency dis-
tribution (mean correction factor). Under weak conditions Fan et al. (1996) show
that the parameters of the composed error distribution can be estimated at the para-
metric

√
n rate. Their simulations reveal that the semiparametric method produces

estimates of the distributional parameters that are competitive with the same distri-
butional parameter estimates produced from correctly specified production frontiers
in the standard maximum likelihood framework. One drawback of their approach,
however, is that they do not constrain the estimator so that it satisfies general axioms
of production. As such, there is room for improvement.
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A key distinction between the previous work of Fan et al. (1996) and that pro-
posed here is that the proposed semiparametric estimator is guaranteed to satisfy
the theoretical axioms of producer theory (production, cost, profit, etc.). This is
especially important if one is interested in returns to scale or technical change. For
example, returns to scale is defined as the sum of input elasticities (which are to be
non-negative), and it is essential that these restrictions are satisfied at all data points.
In an unconstrained semiparametric setting this is not guaranteed to be the case.
Furthermore, empirical results may not be of much use for policy purposes if, for
example, the scale measure is defined at the mean (which may not be indicative of
any producer in the sample), or if production restrictions are violated for individual
producers. These situations could arise in an unconstrained semiparametric frame-
work which underscores the importance of deploying constrained nonparametric
estimation in a production setting.

Our approach to estimating stochastic frontiers follows directly along the lines
of Fan et al. (1996) thereby affording the researcher the same flexibility that the
estimator of Fan et al. (1996) provides, but in addition we constrain the resulting
stochastic frontier to satisfy general axioms of production as was done for the two
deterministic approaches defined above. This is achieved by replacing the unknown
conditional mean in Fan et al. (1996, (13), p. 462) with one based upon (5) defined
above. No further changes are necessary, and all results of Fan et al. (1996) follow
without modification.

Fan et al. (1996) assume that the noise follows a mean zero normal distributive law
and that the technical inefficiency stems from a half-normal distributive law. Given
these presumptions and given the constrained estimate (5) one would construct the
smooth constrained stochastic semiparametric frontier model as follows:

(i) Compute the (constrained) smooth conditional expectation, E[yi |xi ], as
described above and call this ĝ(xi ). Let the residuals be denoted ε̂i = yi − ĝ(xi ).

(ii) Define the concentrated variance of the composed error term σ 2(λ) as a function
of λ = σu/σv , σ 2 = σ 2

u + σ 2
v , as follows:

σ̂ 2(λ) =
n−1

n∑
i=1

ε̂2
i

1 − 2λ2

π(1+λ2)

. (12)

(iii) Define the mean correction factor μ(λ) as a function of λ, i.e.,

µ̂(λ) =
√

2σ̂ λ{
π(1 + λ2)

}1/2 . (13)

(iv) Estimate λ by maximizing the concentrated log likelihood function consistent
with the presumed distributional assumptions. In this setting we have
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λ̂ = max
λ

(
−n ln σ̂ (λ)+

n∑
i=1

ln(�(−ε̃iλ/σ̂ (λ))− (2σ̂ 2(λ))−1
n∑

i=1

ε̃2
i

)
, (14)

where ε̃i = ε̂i − μ̂(λ) and �(·) is the cumulative distribution function for a
standard normal random variate.

(v) The constrained smooth stochastic production frontier m(xi ) is consistently esti-
mated by

m̂SSF(xi ) = ĝ(xi )+ μ̂, (15)

where μ̂ = √
2σ̂ λ̂/

(
π(1 + λ̂2)

)
and where σ̂ =

√
σ̂ 2(λ̂). See Fan et al. (1996)

for further details.

Again, the sole difference between the approach of Fan et al. (1996) and m̂SSF(xi )

defined above is that, in addition to being a semiparametric smooth estimate, m̂SSF(xi )

will satisfy the axioms of production which it inherits from ĝ(xi ) above. We show
below that this difference is non-trivial.

3.3 Theoretical Properties

We now outline some elementary properties of the proposed estimators.

Theorem 3.1 For independent and identically distributed inefficiency terms,
ε1, . . . , εn, which are uncorrelated with the covariates X, if f (εi ) > 0 at εi = 0,
the SCP efficiency estimator is consistent. That is

plim
n→∞

ε̂SCP
i = εi , ∀i = 1, . . ., n.

Proof of Theorem 3.1 Lettingμ = E[εi ], Du et al. (2010) (Theorem 2.2(i)) guarantees
that ε̂i (obtained from the first stage) is a consistent estimator for εi − μ ∀ i since
E[εi −μ] = 0. The arguments in Greene (1980, pp. 32–34) show that plim

n→∞
ε(1) = 0,

where ε(1) is the first order statistic of ε. This implies that plim
n→∞

ε̂(1) = μ. Therefore,

plim
n→∞

ε̂SCP
i = plim

n→∞
ε̂i − plim

n→∞
max j ε̂ j = (εi − μ)− plim

n→∞
ε̂(1) = εi . �

This result implies that our corrected procedure will produce consistent estimates
of producer inefficiency when regularity conditions on the inefficiency distribution
are met. Moreover, this result implies that our efficiency estimates are asymptoti-
cally unbiased as well, albeit only in an iid framework. Additionally, in a comment
to Schmidt (1985), Yatchew (1985, Proposition 1) proves consistency of a nonpara-
metric deterministic frontier assuming compact support of the vector of inputs and
that the unknown function comes from a family of functions which are equicon-
tinuous and bounded. Consistency is also obtained by replacing the equicontinuity
assumption with an appropriate Lipschitz condition on the family of functions.
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Theorem 3.2 We have that a) ε̂SCP
i ≤ ε̂SGP

i ≤ 0 ∀i and b) ε̂SCP
i ≤ ε̂SSF

i ∀i .

Proof of Theorem 3.2 For (a), suppose not. Then for an arbitrary firm j , ε̂SCP
j ≥ ε̂SGP

j .
Since our nonparametric goal programming method envelopes the data and both the
SGP and SCP frontiers are concave there must exist at least one firm such that
ε̂SGP

i = 0 and ε̂SCP
i ≥ 0. However, this implies that ε̂SCP

i = ε̂i − max j ε̂ j ≥ 0 which
implies that ε̂i ≥ max j ε̂ j which is a contradiction.

For (b) we see immediately that since ε̂SCP
i = ε̂i −max j ε̂ j and ε̂SSF

i = ε̂i −μ̂(λ),
ε̂SCP

i ≤ ε̂SSF
i since the estimator of the mean of the one-sided distribution cannot be

larger than the largest composed error residual. Moreover, since both m̂SCP(x) and
m̂SSF(x) employ identical first stage estimates, they differ only in the amount of their
(upward) correction. �

Theorem 3.2 states that our two stage corrected deterministic estimator lies every-
where above our single stage goal programming approach. This result does not, how-
ever, provide insight into the efficiency (statistically speaking) of the estimates which
we therefore investigate via Monte Carlo simulation in the next section. Additionally,
because the SCP estimator (as well as COLS, MOLS and C2NLS) is based upon a
(shifted) conditional mean, there is no guarantee that the microeconomic features of
interest (returns to scale (henceforth RTS), technical change, elasticities of substitu-
tion) are equivalent among methods. This can be seen immediately in Fig. 1.9 Here
we have generated data from a single input frontier with one-sided inefficiency and
fit the model using both SGP and SCP. If we were to shift the average production
frontier so that it encapsulated all of the data, it would severely distort estimates of
inefficiency.

The second part of Theorem 3.2 states that our SSF estimator is everywhere below
our SCP estimator, which is intuitive since the SSF estimator and the SCP estimator
use identical first stage estimates. We cannot generalize a result between the SSF
estimator and the SGP estimator without further assumptions on the error terms
(composed or not). Even though both the SGP and SSF estimators have the same
smoothness constraints imposed (monotonicity and concavity), the SGP constraint
is imposed at the frontier while the SSF constraint is imposed at the mean thus the
shape of the SGP and the SSF curves could well differ. Further, this implies that
there could exist a crossing of the SGP and SSF frontiers which rules out a strict
relationship between their inefficiency estimates.

The point here is that while these estimators may be consistent, the behavior
of shifted average estimators may not be consistent with direct frontier estimators
in finite-sample settings. Unfortunately, the fact that SGP and DEA bound the data
leaves them susceptible to outliers.10 Kuosmanen and Johnson (2010, pp. 17–18) note
that “In contrast to DEA, however, all observations influence the shape of the C2NLS

9 For this figure, the input was generated U[0, 5], the frontier was given by
√

input/2, the inefficiency
was half-normal with mean zero and standard deviation 0.15, and negative output values were set
to zero.
10 Timmer (1971) proposed an ad hoc upper bound to mitigate the effect of outliers in a
goal programming setting. Alternative strategies for dealing with outliers in the DEA context
include Cazals et al. (2002) who proposed a robust method for approximating the frontier for the free
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Fig. 1 Deterministic Frontier. Conditional mean-based (SCP) versus maximal (SGP) output Esti-
mation. The top two lines represent frontier estimates, the bottom line the conditional mean

frontier. Thus, a single outlier located above the frontier does not distort the shape of
the C2NLS frontier as severely as in DEA. Further, C2NLS utilizes the information
that inefficient observations contain about the frontier.” We note that SGP contains
the same desirable features of C2NLS, i.e., all observations influence the shape of the
frontier (via local smoothing) but the presence of outliers can (and will) distort both
the SGP and SCP estimators described here as well as the C2NLS estimator. Again,
these estimators are designed for estimation of deterministic frontiers and data with
substantial noise should not be modelled using these methods. We do, however, wish
to point out that kernel methods have recently been proposed that admit outliers
and these approaches might be applicable in such instances; we direct the interested
reader to Leung (2005) and the references therein.

Figure 2 presents the counterpart to Fig. 1 for a stochastic frontier. In Fig. 2 we
compare the proposed smooth corrected semiparametric frontier (SSF) versus the
smooth uncorrected semiparametric frontier (“U-SSF”) of Fan et al. (1996). It is
evident that imposing the requisite constraints of production theory can bring the
semiparametric estimate in line with basic production axioms (one can observe neg-

(Footnote 10 continued)
disposal hull (FDH) estimator. This estimator is known as the “order-m frontier estimator” (as
m → ∞ this approaches the standard FDH estimator). For small values of m the order-m frontier
does not bound the data and is not heavily influenced by outliers, while if one were to convexify
the estimator it represents a robust (to outliers) DEA type estimator.
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Fig. 2 Stochastic Frontier. Smooth corrected semiparametric frontier (SSF) versus the smooth
uncorrected semiparametric frontier (U-SSF)

ative marginal productivity estimates present in the U-SSF estimator, for example,
i.e., a negative slope of the U-SSF frontier for some firms).

4 Finite-Sample Behavior

In this section we undertake a series of Monte Carlo experiments designed to assess
the finite-sample performance of the proposed approaches. The same underlying
models are used for both the deterministic and stochastic frontier simulations though
with differential treatment of ε. For simulations we make use of the R environment
for statistical computing (R Development Core Team 2009) and the R packages np
(Hayfield and Racine 2008), DEA (Diaz-Martinez and Fernandez-Menendez. 2008),
cobs (Ng and Maechler 2009) and quadprog (Berwin A. Turlach 2007).

4.1 Deterministic Frontiers

First, we restrict our attention to the two deterministic frontier estimators consid-
ered above as well as COLS using a correctly specified parametric model (“COLS”),
COLS using an incorrectly specified linear parametric model (“L-COLS”), COLS
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using an incorrectly specified quadratic parametric model (“Q-OLS”), the DEA
approach (“DEA”), and where appropriate the SGP model that does not impose
concavity but does impose monotonicity (“M-SGP”). We consider the following
DGPs:

(i) m(x) = 3 + 4 × ln(x)+ 3 × √
x ,

(ii) m(x) = 3 +�(x − 3.5).

For each experiment we consider sample sizes of n = 200, 400, 600, 800 while x is
distributed independently U[1, 10]. Our one-sided error is generated as |N (0, σ 2

ε )|.
For each scenario we conduct M = 1,000 Monte Carlo simulations. Note that DGP
(i) is globally concave while DGP (ii) uses the R function pnorm(·), the Standard
Gaussian CDF which delivers a frontier having a sigmoidal shape consistent with
parametric specifications outlined in Duggal et al. (1999, p. 47).

To assess the finite-sample performance of the deterministic frontier estimators,
we consider the above DGPs and let σ 2

ε equal 0.2, 0.4 and 0.8. We use the local
linear11 kernel estimator with bandwidths obtained via least squares cross-validation.
For DGP (i) our monotonicity and concavity constraints are imposed on a grid of 100
equally spaced points while for DGP (ii) we impose monotonicity only. We report
ratios of median mean square error (MSE) taken over all M Monte Carlo replications,
with the numeraire being that for the SGP estimator. For each run MSE is calculated
as the average squared difference between each estimators’ fit and the true frontier
values on the same set of grid points used to impose the constraints. Results for the
deterministic frontier simulation are reported in Table 1.

4.2 Stochastic Frontiers

In order to assess the finite-sample performance of the SSF estimator we consider
the same DGPS as above, but now add noise in addition to inefficiency. In our setting
we use the same values of λ and σ 2 as Fan et al. (1996) did in their simulations.12

Here we estimate the unrestricted nonparametric stochastic frontier as in Fan et al.
(1996) (“U-SSF”), the proposed smooth constrained “SSF” as well as shifted para-
metric conditional mean models, both correctly and incorrectly specified (“COLS,”
“L-COLS” and “Q-COLS,” respectively), and where appropriate the SSF model
that does not impose concavity but does impose monotonicity (“M-SSF”). As with
our previous simulations we consider sample sizes of n = 200, 400, 600, 800. Our
one-sided error is generated as |N (0, σ 2

u )| while our two-sided error, generated
independently from u and x is N (0, σ 2

v ). For each scenario we conduct 1,000 Monte
Carlo simulations and let (λ, σ 2) = (1.66, 1.88), (1.24, 1.63) and (0.83, 1.35).13

11 Results for the local constant estimator are qualitatively similar and are excluded for space
considerations.
12 These are also identical to the values employed by Aigner et al. (1977).
13 This corresponds to σ 2

u = 1.379, 0.901, 0.536 and σ 2
v = 0.500, 0.339, 0.294, respectively.
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Table 1 Deterministic Frontier Monte Carlo
DGP (i), Deterministic Frontier

m(x) = 3 + 4 × ln(x)+ 3 × √
x

SCP COLS L-COLS Q-COLS DEA M-SGP
σ 2

u = 0.2

200 1.01 0.147 250 36 0.833 1.48
400 1.68 0.181 603 91.9 0.879 1.44
600 2.62 0.245 1100 175 1.14 1.48
800 3.37 0.255 1590 263 1.27 1.45

σ 2
u = 0.4

200 1.19 0.2 163 23 0.919 1.44
400 2.04 0.273 409 60.7 1.07 1.44
600 2.96 0.343 717 110 1.38 1.43
800 3.69 0.399 1040 162 1.54 1.41

σ 2
u = 0.8

200 1.21 0.228 96 13.3 0.89 1.38
400 2.51 0.401 279 41.1 1.29 1.42
600 3.5 0.444 478 72.2 1.62 1.44
800 4.32 0.492 746 114 2.27 1.45

DGP (ii), Deterministic Frontier
m(x) = 3 + pnorm(x − 3.5)

SCP COLS L-COLS Q-COLS
σ 2

u = 0.2

200 5.44 0.399 151 28.8
400 9.44 0.476 398 92.8
600 12.7 0.668 714 189
800 14.8 0.621 1030 300

σ 2
u = 0.4

200 5.99 0.531 97.6 18.8
400 10.3 0.685 259 53.4
600 13.8 0.904 458 106
800 17.2 1.15 720 191

σ 2
u = 0.8

200 6.05 0.593 56.4 11.8
400 11.1 0.889 164 35.9
600 13.7 1.04 274 62.3
800 18.1 1.27 427 100

Ratio of median MSE for each estimator in the respective column heading relative to that for the
SGP estimator. Numbers larger than 1 indicate superior MSE performance of the SGP method
(results accurate to three significant digits)

As before, we use the local linear estimator with bandwidths obtained via least
squares cross-validation. Our monotonicity and concavity constraints are imposed
on a grid of 100 equally spaced points. We report the ratio between each estimator’s
MSE against that for the SSF estimator where the median is taken over all M =
1,000 replications. For each run MSE is calculated as the average squared difference
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Table 2 Stochastic Frontier Monte Carlo
DGP (i), Stochastic Frontier

m(x) = 3 + 4 × ln(x)+ 3 × √
x

U-SSF COLS L-COLS Q-COLS M-SSF
σ 2

u = 0.536, σ 2
v = 0.294

200 1.51 0.525 30.9 3.22 1.12
400 1.42 0.513 50.6 4.88 1.13
600 1.33 0.585 58.2 5.5 1.1
800 1.37 0.606 75.9 7.02 1.12

σ 2
u = 0.901, σ 2

v = 0.339
200 1.33 0.582 18.1 2.29 1.09
400 1.34 0.609 28.5 3.26 1.13
600 1.32 0.673 34 3.79 1.1
800 1.24 0.705 36.2 3.99 1.07

σ 2
u = 1.379, σ 2

v = 0.500
200 1.35 0.544 12.3 1.76 1.12
400 1.32 0.617 19.2 2.53 1.1
600 1.25 0.714 20.1 2.66 1.07
800 1.18 0.743 22.9 2.95 1.06

σ 2
u = 1.379, σ 2

v = 0.500
m(x) = 3 + pnorm(x − 3.5)

U-SSF COLS L-COLS Q-COLS

σ 2
u = 0.536, σ 2

v = 0.294
200 1.25 0.527 1.95 0.919
400 1.27 0.578 2.68 1.07
600 1.24 0.615 3.27 1.14
800 1.12 0.672 3.32 1.23

σ 2
u = 0.901, σ 2

v = 0.339
200 1.23 0.596 1.53 0.888
400 1.22 0.676 1.99 1.02
600 1.17 0.718 2.23 1.08
800 1.14 0.794 2.2 1.09

σ 2
u = 1.379, σ 2

v = 0.500
200 1.19 0.683 1.3 0.937
400 1.24 0.711 1.6 0.956
600 1.18 0.755 1.75 1.02
800 1.17 0.826 1.89 1.06

Ratio of median MSE for each estimator in the respective column heading relative to that for the
SSF estimator. Numbers larger than 1 indicate superior MSE performance of the SSF approach
(results accurate to three significant digits)

between each of the estimators and the true frontier values on the same set of grid
points used to impose the constraints.14 Results for the stochastic frontier simulation
are reported in Table 2.

14 Note that frontier behavior is evaluated at the sample realizations, not the grid points, and the
DEA estimator is evaluated at the sample realizations for all constraints.
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4.3 Discussion

First, consider results for the deterministic frontier case summarized in Table 1.
Of the two direct nonparametric frontier estimators (SGP and DEA), the proposed
SGP approach dominates except in quite small samples. Of the shifted methods (SCP,
COLS, L-COLS, Q-COLS), the proposed SCP estimator improves dramatically over
the misspecified linear and quadratic COLS estimators (L-COLS, Q-COLS) that are
prevalent in applied settings. Furthermore, the nonparametric SGP estimator can
even outperform a correctly specified parametric model as n increases which some
may consider impossible (DGP ii), COLS). The key to interpreting these entries is
to recognize that the proposed SGP estimator is a direct estimator of the frontier,
while COLS and its ilk (including Kuosmanen and Johnson (2010)) involve shifting
a conditional mean.15 These entries simply highlight potential benefits of direct
estimation of the frontier. Finally, imposing concavity where appropriate appears to
improve on that imposing monotonicity only (M-SGP).

It is worth noting that the performance gains of SGP relative to DEA are to be
expected given the theoretical results of Banker and Maindiratta (1988) which show
that DEA delivers a lower bound on the family of production possibilities sets which
rationalize the observed data. Given the concavity of the SGP estimator it cannot lie
below the DEA estimator which may therefore result in improved estimates of the
frontier.

Next, consider results for the stochastic frontier case summarized in Table 2.
Recall that each of these methods involve shifting a conditional mean model, hence
in this case the correctly specified parametric model cannot be beat. However, as
n increases the proposed nonparametric method converges to the correctly speci-
fied parametric model for both DGPs considered (consider the COLS column as n
increases). Furthermore, the proposed smooth SSF method outperforms the popular
linear and quadratic specifications (except for small samples for DGP ii) for Q-OLS)
with the relative performance improving as n increases. Finally, as expected, the
restricted SSF estimator proposed here dominates the unrestricted nonparametric
stochastic frontier (“U-SSF”).

The simulation results comparing the performance of unrestricted and restricted
nonparametric conditional mean models are also novel for the class of estimators
proposed in Du et al. (2010). While Hall and Huang (2001) did quantify the gains
from imposing monotonicity on a conditional mean, their simulations were limited to
a single simulated example. Our work here shows that imposing conditions consistent
with economic theory can have large impacts on the finite-sample performance of a
nonparametric estimator, regardless of context.

15 Though we do not include Kuosmanen and Johnson (2010) approach in our simulation, theirs is
a “shifted” (indirect) method that relies on a nonparametric estimate of the conditional mean, thus
its performance would be comparable to the SCP approach and it too would be dominated by the
(direct) SGP approach.
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5 Application

To illustrate how the proposed methods perform in applied settings we use the classic
production data of U.S. electricity companies in 1970 studied by Christensen and
Greene (1976).16 The data consist of a single output, millions of kilowatt hours of
electricity generated (y), and three inputs, labor (l), capital (c) and fuel ( f ). Overall,
though this data set is small (n = 123), it provides us with a well known setting
in which we can evaluate the proposed methods. The dimensionality of the data is
consistent with a large number of applied production studies; Kumbhakar and Tsionas
(2011) analyze electricity generation using the same three inputs to the production
process.

Our production frontier is

yi = m(li , ci , fi )+ εi , i = 1, . . . , n, (16)

which we estimate using a local constant estimator with cross-validated bandwidths.
Our primary interest is in deviations from the frontier (inefficiency) and RTS. Since
we are not using a logarithmic transformation, RTS is defined here as

̂RTSi =
(
∂m̂(li , ci , fi )

∂l
· li + ∂m̂(li , ci , fi )

∂c
·ci + ∂m̂(li , ci , fi )

∂ f
· fi

)
1

m̂(li , ci , fi )
.

(17)
We use both of the frontier methods described above, SGP and SCP, as well as
SSF to analyze RTS and inefficiency. We impose both monotonicity and concavity
across the inputs and bandwidths are selected using least squares cross validation
(Li and Racine 2004). We summarize the distribution of RTS and inefficiency for
both methods by plotting their (smooth) CDFs, which are provided in Figs. 3 and 6,
respectively.

Figure 3 displays the CDF of estimated RTS17 using a standard unrestricted kernel
estimator of the production function, a monotonically restricted (in all inputs) kernel
estimator, the SCP estimator (which is equivalent to imposing monotonicity and
concavity since the frontier is a neutral shift) and our SGP estimator (which also
bounds the data). As noted above, the distribution of RTS differs considerably across
the SGP and SCP methods. Also, it appears that imposing both monotonicity and
concavity severely limits the RTS across all firms in the sample. This is consistent
with the parametric cost function findings of Christensen and Greene (1976) who
find mostly decreasing RTS and several firms with estimated diseconomies of scale.

Delving further into this issue, consider Figs. 4 and 5 which plot the unrestricted
output against the restricted output, i.e., qi versus n p̂i ·qi , when imposing monotonic-
ity only and both monotonicity and concavity, respectively. Deviations from the 45
degree line signify observations for which the constraint weights deviate from the

16 This data is freely available in cost function form in the Ecdat library (Croissant 2006) in R
(R Development Core Team 2009).
17 We use Silverman’s rule-of-thumb bandwidth for all smoothed distribution plots.
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Fig. 3 Estimated distributions of RTS for four nonparametric production function/frontier
estimators
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Fig. 4 Constraint weighted output (n p̂i · qi ) against actual output (qi ) imposing monotonicity



Smooth Constrained Frontier Analysis 483

0 20000 40000 60000

0
20

00
40

00
60

00

Unrestricted Output

R
es

tr
ic

te
d 

O
ut

pu
t

Fig. 5 Constraint weighted output (n p̂i · qi ) against actual output (qi ) imposing monotonicity and
concavity

uniform (unconstrained) weights. These plots are useful for understanding how much
“movement” of the regressand is required in order to satisfy the constraints. We notice
that for imposing monotonicity only, a majority of the points lie along the 45 degree
line, while those that differ are still close, suggesting very little difference between
p̂i and pu . However, Fig. 5 implies that almost every point received a constraint
weight different from the uniform weights in order to impose both monotonicity
and concavity. This is suggestive that imposing concavity on top of monotonicity is
not only more restrictive, but also impacts the estimation of the surface everywhere,
as opposed to being more of a localized issue which is the case when we impose
monotonicity only.

We note that an apparent first order stochastic dominance relationship exists
between the estimated RTS for the SGP and SCP estimators, while the unrestricted
and monotonically restricted nonparametric production function produce nearly iden-
tical distributions of RTS. The imposition of concavity on our frontier produces a
flatter estimate of the production frontier which is what produces the noticeably left
shifted distributions of RTS relative to the estimators that do not impose concavity. It
appears that almost all firms possess estimated RTS less than 0.5 when using the SCP
estimator whereas roughly 60 % of firms have estimated RTS less than 0.5 when using
the SGP estimator. This is in contrast to the approximately 20 % of firms who have
RTS less than 0.5 using either a standard nonparametric conditional mean model or
a monotonically constrained conditional mean model. This is to be expected as con-
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Fig. 6 Estimated distributions of estimates of inefficiency (% terms) for SGP and SCP

cave functions are more severely shaped constrained than monotonically restricted
estimators.

The estimated CDFs of inefficiency measured in percentage terms, i.e., (m̂−y)/m̂,
for our SGP and SCP estimation routines presented in Fig. 6 both tend to suggest that
a majority of electricity plants are largely inefficient. Inefficiency estimates from
the SCP estimator are stochastically dominated by those from the SGP estimator.
What this apparent dominance relationship suggests, along with our results from the
distribution of estimated RTS, is that the SGP and SCP estimators provide different
estimates of the frontier, which we highlighted earlier as a fundamental difference
between direct estimation of the frontier and estimation of a conditional mean that
is shifted to allow it to mimic a frontier. This is particularly noteworthy as both RTS
and efficiency are measures routinely used by policy makers, thus estimator choice
matters. Furthermore, SFA and COLS/MOLS, being conditional-mean based, are
liable to the same critique as all such shifted estimators. Moreover, this result is to
be expected in light of Theorem 3.2.

What is missing from Fig. 6 is the distributions of inefficiency for our stochastic
methods, SSF and U-SSF. But for this application we obtain residuals with the wrong
skewness (positive instead of negative) implying that estimation of σ 2 and λ is trivial
as in these cases it is widely known that λ̂ = 0 (Olson et al. 1980).

We tested our residuals for symmetry using the bootstrap test of Kuosmanen
and Fosgerau (2009), who follow the time series procedure of Pérez-Alonso (2007).
This test provides evidence against negative symmetry of the residuals. With 1,000
bootstrap replications, we obtain a bootstrap p-value of 0.795 with no constraints
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imposed, 0.790 with monotonicity imposed and 0.99 with both monotonicity and
concavity imposed. In sum, the outcomes of this test lend further statistical credence
to the finding of no inefficiency for the SSF and U-SSF estimators. Interestingly,
Kuosmanen and Fosgerau (2009) use the same data deployed here and find contrast-
ing results. The reason for the difference in findings is that Kuosmanen and Fosgerau
take natural logarithms of all of their variables prior to estimation of the production
function whereas we elect to keep all of our variables in level form given the use of a
nonparametric model. It should also be noted that Kuosmanen and Fosgerau (2009)
find several instances of the wrong skew using logarithms albeit when focusing
attention on the cost function.

Simar and Wilson (2010) show that even with one million observations, the prob-
ability of observing a random draw of composed errors with the wrong skewness
is almost 50 % when the variance ratio is set equal to 0.01. They also mention “. . .
we know of no published chapters reporting an estimate of zero for the variance
parameter of the one-sided component in a stochastic frontier model.” (Simar and
Wilson (2010, p. 10)). A common response to this issue is to either select a different
sample or to re-specify one’s model, neither of which is attempted here. In our case
re-specification is of no value as we are using methods robust to misspecification. An
alternative would be to resort to either local polynomial methods or ad hoc methods
of bandwidth selection. However, this is not necessary. Simar and Wilson (2010)
have proposed a simple bagging approach to handle samples that display the wrong
skewness so that inference can still be conducted.

The finding of such high levels of inefficiency (in % terms) may seem trou-
bling. However, our data stem from electricity generation plants in the 1970s, which
was a heavily regulated industry (Christensen and Greene 1976 as discussed in).
Also, given the limited nature of the data we cannot control for additional differ-
ences of firms which may be misconstrued as inefficiency, such as age of the firm
or how the electricity is generated (coal or gas-fired). Further, as presented, these
measures of inefficiency do not allow for statistical inference and it very well could
be the case that many of these firms have inefficiency levels that do not differ signifi-
cantly from 0. Beyond this, deterministic frontier methods usually have higher levels
of inefficiency given that all unobservable features are characterized as inefficiency,
whereas stochastic methods do not. This example was adopted primarily to showcase
how the proposed methods can be used to impose economic constraints within the
applied production arena.

6 Concluding Remarks

Frontier methods provide powerful tools for assessing technical inefficiency among
a sample of firms. The results from a frontier study have played important roles in
guiding policy and assessing which firms are performing well (or poorly) in a given
industry. Flexible estimation methodologies that impose as little structure as possible
are axiomatically desirable, however, one can run the risk of not imposing sufficient
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structure. In this chapter we propose a triad of methods for flexible frontier analysis
that place minimal structure on the frontier while delivering a smooth continuously
differentiable frontier that, in addition, satisfies requisite conditions dictated by basic
axioms of production theory. We propose two deterministic frontier methods and
one stochastic frontier method that each exploit recent developments in constrained
kernel estimation techniques. Our two deterministic alternatives have close links to
the earlier goal programming literature as well as to the recent work on corrected
concave nonparametric least squares.

A simulation study reveals that the methods perform remarkably well relative to
their peers, while an empirical example illustrates the ease with which these methods
can be employed. Additionally, the empirical example highlights the differences that
can arise between the use of a shifted average production estimate versus an estimator
that attempts to estimate the frontier directly. We find that, in a cross section of
electricity generating plants, decreasing RTS is indicative of the entire sample while
a majority of firms are inefficient.

We hope that these approaches are of interest to practitioners who worry about
parametric misspecification and who are looking for smooth flexible alternatives
that are consistent with basic production axioms. We further hope that our discus-
sion underscores the importance of sound specification analysis which incorporates
imposing economic constraints in nonparametric settings, a point that Hal White has
championed throughout his career.
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NoVaS Transformations: Flexible Inference
for Volatility Forecasting

Dimitris N. Politis and Dimitrios D. Thomakos

Abstract In this chapter we present several new findings on the NoVaS transforma-
tion approach for volatility forecasting introduced by Politis (Model-Free Volatility
Prediction, UCSD Department of Economics Discussion Paper 2003–16; Recent
advances and trends in nonparametric statistics, Elsevier, North Holland; J Financ
Econ 5:358–389, 2007). In particular: (a) we present a new method for accurate
volatility forecasting using NoVaS; (b) we introduce a “time-varying” version of
NoVaS and show that the NoVaS methodology is applicable in situations where
(global) stationarity for returns fails such as the cases of local stationarity and/or
structural breaks and/or model uncertainty; (c) we conduct an extensive simulation
study on the forecasting ability of the NoVaS approach under a variety of realis-
tic data generating processes (DGP); and (d) we illustrate the forecasting ability of
NoVaS on a number of real data sets and compare it to realized and range-based
volatility measures. Our empirical results show that the NoVaS -based forecasts lead
to a much ‘tighter’ distribution of the forecasting performance measure. Perhaps our
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most remarkable finding is the robustness of the NoVaS forecasts in the context of
structural breaks and/or other nonstationarities of the underlying data. Also striking
is that forecasts based on NoVaS invariably outperform those based on the bench-
mark GARCH(1,1) even when the true DGP is GARCH(1,1) when the sample size is
moderately large, e.g., 350 daily observations.

Keywords ARCH · Forecasting · GARCH · Local stationarity · Robustness· Structural breaks · Volatility.

1 Introduction

Accurate forecasts of the volatility of financial returns is an important part of
empirical financial research. In this chapter we present a number of new findings
on the NoVaS transformation approach to volatility prediction. The NoVaS method-
ology was introduced by Politis (2003a,b, 2007) and further expanded in Politis and
Thomakos (2008). The name of the method is an acronym for ‘Normalizing and Vari-
ance Stabilizing’ transformation. NoVaS is based on exploratory data analysis ideas,
it is model-free, data-adaptive, and—as the chapter at hand hopes to demonstrate—
especially relevant when making forecasts in the context of underlying data gen-
erating processes (DGPs) that exhibit nonstationarities (e.g. locally stationary time
series, series with parameter breaks or regime switching, etc.). In general, NoVaS
allows for a flexible approach to inference, and is also well suited for application to
short time series.

The original development of the NoVaS approach was made in Politis (2003a,b,
2007) having as its ‘spring board’ the popular ARCH model with normal innovations.
In these chapters, the main application was forecasting squared returns (as a proxy for
forecasting volatility), and the evaluation of forecasting performance was addressed
via the L1-norm (instead of the usual MSE) since the case was made that financial
returns might not have finite 4th moment.

In the chapter at hand we further investigate the performance of NoVaS in a pure
forecasting context.1 First, we present a method for bona fide volatility forecast-
ing, extending the original NoVaS notion of forecasting squared returns. Second,
we conduct a very comprehensive simulation study about the relative forecasting
performance of NoVaS: we consider a wide variety of volatility models as data gen-
erating processes (DGPs), and we compare the forecasting performance of NoVaS
with that of a benchmark GARCH(1,1) model. We introduce the notion of a “time-
varying” NoVaS approach and show that it is especially relevant in these cases where
the assumption of global stationarity fails. The results of our simulations show that
NoVaS forecasts lead to a much ‘tighter’ distribution of the forecasting performance
measure (mean absolute deviation of the forecast errors), when compared to the
benchmark model, for all DGPs we consider. This finding is especially relevant in

1 See also Politis and Thomakos (2008).
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the context of volatility forecasting for risk management. We further illustrate the use
of NoVaS for a number of real data sets and compare the forecasting performance of
NoVaS-based volatility forecasts with realized and range-based volatility measures,
which are frequently used in assessing the performance of volatility forecasts.

The literature on volatility modeling, forecasting, and the evaluation of volatil-
ity forecasts is very large and varied in the topics covered. Possibly related to
the chapter at hand is the work by Hansen (2006) in which the problem of form-
ing predictive intervals is addressed using a semiparametric, transformation-based
approach. Hansen works with a set of (standardized) residuals from a parametric
model, and then uses the empirical distribution function of these residuals to com-
pute conditional quantiles that can be used in forming prediction intervals. The main
similarity between Hansen’s work and NoVaS is that both approaches use a transfor-
mation of the original data and the empirical distribution to make forecasts. The main
difference, however, is that Hansen works in the context of a (possibly misspecified)
model whereas NoVaS is totally model-free.

We can only selectively mention here some recent literature related to the fore-
casting problems we address: Mikosch and Starica (2004) for change in structure
in volatility time series and GARCH modeling; Meddahi (2001) for an eigenfunc-
tion volatility modeling approach; Peng and Yao (2003) for robust LAD estimation
of GARCH models; Poon and Granger (2003) for assessing the forecasting perfor-
mance of various volatility models; Hansen Lunde and Nason (2003) on selecting
volatility models; Andersen et al. (2004, 2005) on analytic evaluation of volatil-
ity forecasts and the use of realized volatilities in evaluating volatility forecasts;
Ghysels and Forsberg (2007) on the use and predictive power of absolute returns;
Francq and Zakoïan (2005), Lux and Morales-Arias (2010) and Choi et al. (2010) on
switching regime GARCH models, structural breaks and long memory in volatility;
Hillebrand (2005) on GARCH models with structural breaks; Hansen and Lunde
(2005, 2006) for comparing forecasts of volatility models against the standard
GARCH(1,1) model and for consistent ranking of volatility models and the use
of an appropriate series as the ‘true’ volatility; Ghysels et al. (2006) for predict-
ing volatility by mixing data at different frequencies and Ghysels and Sohn (2009)
for the type of power variation that predicts well volatility in the context of mixed
data frequencies. Andersen et al. (2007) for modeling realized volatility when jump
components are included; Chen et al. (2008) examine volatility forecasting in the
context of threshold models coupled with volatility measurement based on intraday
range. The whole line of work of Andersen, Bollerslev, Diebold, and their various co-
authors on realized volatility and volatility forecasting is nicely summarized in their
review article “Volatility and Correlation Forecasting”, in the Handbook of Economic
Forecasting, see Andersen et al. (2006). Bandi and Russell (2008) discuss the selec-
tion of optimal sampling frequency in realized volatility estimation and forecasting;
Patton and Sheppard (2008) discuss the evaluation of volatility forecasts while Patton
and Sheppard (2009) present results on optimal combinations of realized volatility
estimators in the context of volatility forecasting. Fryzlewicz et al. (2006, 2008) and
Dahlhaus and Subba-Rao (2006, 2007) all work in the context of local stationarity
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and a new class of ARCH processes with slowly varying parameters. Of course this
list is by no means complete.

The rest of the chapter is organized as follows: in Sect. 2 we briefly review the
general development of the NoVaS approach; in Sect. 3 we present the design of our
simulation study and discuss the simulation results on forecasting performance; in
Sect. 4 we present empirical applications of NoVaS using real-world data; finally, in
Sect. 5 we offer some concluding remarks.

2 Review of the NoVaS Methodology

In this section we present a brief overview of the NoVaS transformation, the implied
NoVaS distribution, the methods for distributional matching, and NoVaS forecast-
ing. For a more comprehensive review of the NoVaS methodology see Politis and
Thomakos (2008).

2.1 NoVaS Transformation and Implied Distribution

Let us consider a zero mean, strictly stationary time series {Xt }t∈Z corresponding to
the returns of a financial asset. We assume that the basic properties of Xt correspond
to the ‘stylized facts’2 of financial returns:

1. Xt has a non-Gaussian, approximately symmetric distribution that exhibits excess
kurtosis.

2. Xt has time-varying conditional variance (volatility), denoted by h2
t

def= E
[

X2
t |F t−1

]

that exhibits strong dependence, where Ft−1
def= σ(Xt−1, Xt−2, . . .).

3. Xt is dependent although it possibly exhibits low or no autocorrelation which
suggests possible nonlinearity.

These well-established properties affect the way one models and forecasts financial
returns and their volatility and form the starting point of the NoVaS methodology.

The first step in the NoVaS transformation is variance stabilization to address the
time-varying conditional variance property of the returns. We construct an empir-
ical measure of the time-localized variance of Xt based on the information set

Ft |t−p
def= {

Xt , Xt−1, . . ., Xt−p
}

γt
def= G(Ft |t−p;α, a), γt > 0 ∀t (1)

2 Departures from the assumption of these ‘stylized facts’ have been discussed in Politis and
Thomakos (2008); in this chapter, we are mostly concerned about departures/breaks in stationarity—
see Sect. 2.4 in what follows.
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where α is a scalar control parameter, a
def= (a0, a1, . . ., ap)

� is a (p+1)×1 vector of
control parameters and G(·;α, a) is to be specified.3 The function G(·;α, a) can be
expressed in a variety of ways, using a parametric or a semiparametric specification.
To keep things simple we assume that G(·;α, a) is additive and takes the following
form:

G(Ft |t−p;α, a)
def= αst−1 +

p∑
j=0

a jg(Xt− j )

st−1 = (t − 1)−1
t−1∑
j=1

g(X j )

(2)

with the implied restrictions (to maintain positivity for γt ) that α ≥ 0, ai ≥ 0,
g(·) > 0 and ap �= 0 for identifiability. Although other choices are possible, the
natural choices for g(z) are g(z) = z2 or g(z) = |z|. With these designations,
our empirical measure of the time-localized variance becomes a combination of an
unweighted, recursive estimator st−1 of the unconditional variance of the returns

σ 2 = E
[

X2
1

]
, or of the mean absolute deviation of the returns δ = E|X1|, and a

weighted average of the current4 and the past p values of the squared or absolute
returns.

Using g(z) = z2 results in a measure that is reminiscent of an ARC H(p) model
which was employed in Politis (2003a,b, 2007). The use of absolute returns, i.e.,
g(z) = |z| has also been advocated for volatility modeling; see e.g., Ghysels and
Forsberg (2007) and the references therein. Robustness in the presence of outliers in
an obvious advantage of absolute versus squared returns. In addition, note that the
mean absolute deviation is proportional to the standard deviation for the symmetric
distributions that will be of current interest.

The second step in the NoVaS transformation is to use γt in constructing a stu-
dentized version of the returns, akin to the standardized innovations in the context
of a parametric (e.g. GARCH-type) model. Consider the series Wt defined as:

Wt ≡ Wt (α, a)
def= Xt

φ(γt )
(3)

where φ(z) is the time-localized standard deviation that is defined relative to our
choice of g(z), for example φ(z) = √

z if g(z) = z2 or φ(z) = z if g(z) = |z|. The
aim now is to choose the NoVaS parameters in such a way as to make Wt follow
as closely as possible a chosen target distribution that is easier to work with. The
natural choice for such a distribution is the normal—hence the ‘normalization’ in the
NoVaS acronym; other choices (such as the uniform) are also possible in applications,
although perhaps not as intuitive. Note that by solving for Xt in Eq. (3), and using the
fact that γt depends on Xt , it follows that we have the implied model representation:

3 See the discussion about the calibration of α and a in the next section.
4 The necessity and advantages of including the current value is elaborated upon by Politis (2003a,b,
2004, 2007).
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Xt = Ut At−1 (4)

where Ut is the series obtained from the transformed series Wt in (3) and is required
for forecasting—see Politis and Thomakos (2008). The component At−1 depends
only on past square or absolute returns, similar to the ARCH component of a GARCH
model.

Remark 1 Politis (2003b, 2004, 2007) makes the case that financial returns seem
to have finite second moment but infinite 4th moments. In that case, the normal
target does not seem to be compatible with the choice of absolute returns—and the
same is true of the uniform target—as it seems that the case g(z) = |z| might be
better suited for data that do not have a finite second moment. Nevertheless, there
is always the possibility of encountering such extremely heavy-tailed data, e.g.,
in emerging markets, for which the absolute returns might be helpful.5 The setup
of potentially infinite 4th moments has been considered by Hall and Yao (2003)
and Berkes and Horvath (2004) among others, and has important implications on an
issue crucial in forecasting, namely the choice of loss function for evaluating forecast
performance. The most popular criterion for measuring forecasting performance is
the mean-squared error (MSE) which, however, is inapplicable in forecasting squared
returns (and volatility) when the 4th moment is infinite. In contrast, the mean absolute
deviation (MAD) is as intuitive as the MSE but does not suffer from this deficiency,
and can thus be used in evaluating the forecasts of either squared or absolute returns
and volatility; this L1 loss criterion will be our preferred choice in this chapter.6

2.2 NoVaS Distributional Matching

We next turn to the issue of optimal selection of the NoVaS parameters. The free para-
meters are p (the NoVaS order), and (α, a). The parameters α and a are constrained
to be non-negative to ensure the same for the variance. In addition, motivated by
unbiasedness considerations, Politis (2003a,b, 2007) suggested the convexity con-
dition α + ∑p

j=0 a j = 1. Finally, thinking of the coefficients ai as local smoothing
weights, it is intuitive to assume ai ≥ a j for i > j . We now discuss in detail the case
when α = 0; see Remark 2 for the case of nonzero α. A suitable scheme that satisfies
the above conditions is given by exponential weights in Politis (2003a,b, 2007):

a j =
⎧⎨
⎩

1/
p∑

j=0
exp(−bj) for j = 0

a0 exp(−bj) for j = 1, 2, . . ., p

⎫⎬
⎭ (5)

5 This might well be the case of the EFG data set of Sect. 4 in what follows.
6 See also the recent chapter by Hansen and Lunde (2006) about the relevance of MSE in evaluating
volatility forecasts.
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where b is the exponential rate. We require the calibration of two parameters: a0 and b.

In this connection, let θ
def= (p, b) 	→ (α, a), and denote the studentized series as

Wt ≡ Wt (θ) rather than Wt ≡ Wt (α, a). For any given value of the parameter vector
θ we need to evaluate the ‘closeness’ of the marginal distribution of Wt with the
target distribution.

Many different objective functions could be used for this. Let us denote such
an objective function by Dn(θ), that obeys Dn(θ) ≥ 0 and consider the following
algorithm given in Politis (2003a, 2007):

• Let p take a very high starting value, e.g., let pmax ≈ n/4.

• Let α = 0 and consider a discrete grid of b values, say B
def= (b(1), b(2), . . ., b(M)),

M > 0. Find the optimal value of b, say b∗, that minimizes Dn(θ) over b ∈ B,
and compute the optimal parameter vector a∗ using Eq. (5).

• Trim the value of p by removing (i.e., setting to zero) the a j parameters that do
not exceed a pre-specified threshold, and renormalize the remaining parameters
so that their sum equals one.

The solution then takes the general form:

θ∗
n

def= argmin
θ

Dn(θ) (6)

Such an optimization procedure will always have a solution in view of the
intermediate value theorem and is discussed in the previous work on NoVaS.7

In empirical applications with financial returns it is usually sufficient to consider
kurtosis-matching and thus to have Dn(θ) to take the form:

Dn(θ)
def=

∣∣∣∣∣∣∣∣

n∑
t=1
(Wt − W̄n)

4

ns4
n

− κ∗

∣∣∣∣∣∣∣∣
(7)

where W̄n
def= (1/n)

∑n
t=1 Wt denotes the sample mean, s2

n
def= (1/n)

∑n
t=1(Wt−W̄n)

2

denotes the sample variance of the Wt (θ) series, and κ∗ denotes the theoretical
kurtosis coefficient of the target distribution. For the normal distribution κ∗ = 3.

Remark 2 The discussion so far was under the assumption that the parameter α, that
controls the weight given to the recursive estimator of the unconditional variance, is
zero. If desired one can select a non-zero value by doing a direct search over a discrete
grid of possible values while obeying the summability condition α + ∑p

j=0 a j = 1.

7 This part of the NoVaS application appears similar at the outset to the Minimum Distance Method
(MDM) of Wolfowitz (1957). Nevertheless, their objectives are quite different since the latter is
typically employed for parameter estimation and testing whereas in NoVaS there is little interest in
parameters—the focus lying on effective forecasting.
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For example, one can choose the value of α that optimizes out-of-sample predictive
performance; see Politis (2003a,b, 2007) for more details.

2.3 NoVaS Forecasting

Once the NoVaS parameters are calibrated one can compute volatility forecasts. In
fact, as Politis (2003a,b, 2007) has shown, one can compute forecasts for different
functions of the returns, including higher powers (with absolute value or not). The
choice of an appropriate forecasting loss function, both for producing and for eval-
uating the forecasts, is crucial for maximizing forecasting performance. As per our
Remark 1, we focus on the L1 loss function for producing the forecasts and the mean
absolute deviation (MAD) of the forecast errors for assessing forecasting perfor-
mance. After optimization of the NoVaS parameters we now have both the optimal
transformed series W ∗

t = Wt (θ
∗
n) but also the series U∗

t , the optimized version of the
component of the implied model of Eq. (4). For a complete discussion of how one
obtains NoVaS forecasts see Politis and Thomakos (2008). In this section we present
new results on NoVaS volatility forecasting.

Consider first the case where forecasting is performed based on squared returns. In
Politis and Thomakos (2008) it is explained in detail that we require two components
to forecast squared returns: one component is the conditional median of U 2∗

n+1 series
and the other is the (known at time n) component A2∗

n . The rest of the procedure
depends on the dependence properties of the studentized series W ∗

n and the target
distribution. From our experience, what has invariably been observed with financial
returns is that their corresponding W ∗

n series appears—for all practical purposes—to
be uncorrelated.8 If the target distribution is the normal then—by the approximate
normality of its joint distributions—the W ∗

n series would be independent as well.
The series U∗

n would inherit the W ∗
n s independence by Eqs. (3) and (4), and therefore

the best estimate of the conditional median of U 2∗
n+1 is the unconditional sample

median. Based on the above discussion we are now able to obtain volatility forecasts
ĥ2

n+1 in a variety of ways: (a) we can use the forecasts of squared (or absolute) returns;
(b) we can use only the component of the conditional variance A2

n for φ(z) = √
z or

An for φ(z) = z, akin to a GARCH approach; (c) we can combine (a) and (b) and
use the forecast of the empirical measure γ̂n+1.

The volatility forecast based on (a) above would be:

ĥ2
n+1,1 ≡ X̂2

n+1
def= ̂Med

[
U 2∗

n

]
A2∗

n . (8)

When using (b) the corresponding forecast would just be the power of the A∗
n com-

ponent, something very similar to an ARCH(∞) forecast:

8 This is an empirical finding; if, however, the W ∗
n series is not independent then a slightly different

procedure involving a (hopefully) linear predictor would be required—see Politis (2003a, 2007)
and Politis and Thomakos (2008) for details.
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ĥ2
n+1,2

def= A2∗
n . (9)

However, the most relevant and appropriate volatility forecast in the NoVaS context
should be based on (c), i.e., on a forecast of the estimate of the time-localized variance
measure γ̂n+1, which was originally used to initiate the NoVaS procedure in Eq. (1).
What is important to note is that forecasting based on γ̂n+1 is neither forecasting
of squared returns nor forecasting based on past information alone. It is, in fact,
a linear combination of the two, thus incorporating elements from essentially two
approaches. Combining Eqs. (1–4), (8) and (9) it is straightforward to show that γ̂n+1
can be expressed as:

γ̂n+1 ≡ ĥ2
n+1,3

def=
{

a∗
0
̂Med

[
U 2∗

n

]
+ 1

}
A2∗

n

= a∗
0 ĥ2

n+1,1 + ĥ2
n+1,2. (10)

Equation (10) is our new proposal for volatility forecasting using NoVaS. In his orig-
inal work, Politis (2003a) used Eq. (8), and in effect conducted forecasting of the
one-step-ahead squared returns via NoVaS. By contrast, Eq. (10) is a bona fide pre-
dictor of the one-step-ahead volatility, i.e., the conditional variance. For this reason,
Eq. (10) will be the formula used in what follows, our simulations and real data
examples.

Forecasts using absolute returns are constructed in a similar fashion, the only
difference being that we will be forecasting directly standard deviations ĥn+1 and
not variances. It is straightforward to show that the forecast based on (c) would be
given by:

γ̂n+1 ≡ ĥn+1,3
def=

{
a∗

0
̂Med

[|U∗
n |] + 1

}
|A∗

n|
= a∗

0 ĥn+1,1 + ĥn+1,2 (11)

with ĥn+1,1 and ĥn+1,2 being identical expressions to Eqs. (8) and (9) which use the
absolute value transformation.

2.4 Departures from the Assumption of Stationarity:
Local Stationarity and Structural Breaks

Consider the case of a very long time series {X1, . . ., Xn}, e.g., a daily series of
stock returns spanning a decade. It may be unrealistic to assume that the stochastic
structure of the series has stayed invariant over such a long stretch of time. A more
realistic model might assume a slowly changing stochastic structure, i.e., a locally
stationary model as given by Dahlhaus (1997).
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Recent research has tried to address this issue by fitting time-varying GARCH
models to the data but those techniques have not found global acceptance yet, in part
due to their extreme computational cost. Fryzlewicz et al. (2006, 2008) and Dahlhaus
and Subba-Rao (2006, 2007) all work in the context of local stationarity for a new
class of ARCH processes with slowly varying parameters.

Surprisingly, NoVaS is flexible enough to accommodate such smooth/slow
changes in the stochastic structure. All that is required is a time-varying NoVaS
fitting, i.e., selecting/calibrating the NoVaS parameters on the basis of a rolling win-
dow of data as opposed to using the entire available past. Interestingly, as will be
apparent in our simulations, the time-varying NoVaS method works well even in the
presence of structural breaks that would typically cause a breakdown of traditional
methods unless explicitly taken into account. The reason for this robustness is the
simplicity in the NoVaS estimate of local variance: it is just a linear combination of
(present and) past squared returns. Even if the coefficients of the linear combination
are not optimally selected (which may happen in the neighborhood of a break), the
linear combination remains a reasonable estimate of local variance.

By contrast, the presence of structural breaks can throw off the (typically nonlin-
ear) fitting of GARCH parameters. Therefore, a GARCH practitioner must always be
on the lookout for structural breaks, essentially conducting a hypothesis test before
each application. While there are several change point tests available in the litera-
ture, the risk of non-detection of a change point can be a concern. Fortunately, the
NoVaS practitioner does not have to worry about structural breaks because of the
aforementioned robustness of the NoVaS approach.

3 NoVaS Forecasting Performance: A Simulation
Analysis

It is of obvious interest to compare the forecasting performance of NoVaS-based
volatility forecasts with the standard benchmark model, the GARCH(1,1), under a
variety of different underlying DGPs. Although there are numerous models for pro-
ducing volatility forecasts, including direct modeling of realized volatility series, it
is not clear which of these models should be used in any particular situation, and
whether they can always offer substantial improvements over the GARCH bench-
mark. In the context of a simulation, we will be able to better see the relative perfor-
mance of NoVaS -based volatility forecasts versus GARCH-based forecasts and, in
addition, we will have available the true volatility measure for forecast evaluation.
This latter point, the availability of an appropriate series of true volatility, is impor-
tant since in practice we do not have such a series of true volatility. The proxies range
from realized volatility—generally agreed to be one of the best (if not the best) such
measure—, to range-based measures, and to squared returns. We use such proxies in
the empirical examples of the next section.
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3.1 Simulation Design

We consider a variety of models as possible DGPs.9 Each model j = 1, 2, . . .,M(=7)
is simulated over the index i = 1, 2, . . ., N (=500) with time indices t = 1, 2, . . .,
T (=1250). The sample size T amounts to about 5 years of daily data. The parameter
values for the models are chosen so as to reflect annualized volatilities between about
8 to 25 %, depending on the model being used. For each model we simulate a volatility
series and the corresponding returns series based on the standard representation:

Xt,i j
def= μ j + ht,i j Zt,i j

h2
t,i j

def= h j (h
2
t−1,i j , X2

t−1,i j , θ t j ) (12)

where h j (·) changes depending on the model being simulated.
The seven models simulated are: a standard GARCH, a GARCH with discrete

breaks (B-GARCH), a GARCH with slowly varying parameters (TV-GARCH), a
Markov switching GARCH (MS-GARCH), a smooth transition GARCH
(ST-GARCH), a GARCH with an added deterministic function (D-GARCH), and
a stochastic volatility model (SV-GARCH). Note that the parameter vector θ t will
be time-varying for the Markov switching model, the smooth transition model, the
time-varying parameters model, and the discrete breaks model. For the simulation
we set Zt ∼ t(3), standardized to have unit variance.10

We next present the volatility equations of the above models. For ease of notation
we drop the i and j subscripts when presenting the models. The first model we
simulate is a standard GARCH(1,1) with volatility equation given by:

h2
t = ω + αh2

t−1 + β(Xt−1 − μ)2 (13)

The parameter values were set toα = 0.9,β = 0.07 andω = 1.2e−5, corresponding
to an annualized volatility of 10 %. The mean return was set to μ = 2e − 4 (same
for all models, except the MS-GARCH) and the volatility series was initialized with
the unconditional variance.

The second model we simulate is a GARCH(1,1) with discrete changes (breaks) in
the variance parameters. These breaks depend on changes in the annualized uncondi-
tional variance, ranging from about 8 % to about 22 % and we assume two equidistant
changes per year for a total of B = 10 breaks. The model form is identical to the
GARCH(1,1) above:

9 In our design we do not just go for a limited number of DGPs but for a wide variety and we also
generate a large number of observations, totalling over 4 million, across models and replications.
Note that the main computational burden is the numerical (re)optimization of the GARCH model over
300 K times across all simulations—and that involves (re)optimization only every 20 observations!.
10 We fix the degrees of freedom to their true value of 3 during estimation and forecasting, thus
giving GARCH a relative advantage in estimation.
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h2
t = ωb + αbh2

t−1 + βb(Xt−1 − μ)2, b = 1, 2, . . ., B (14)

The αb parameters were drawn from a uniform distribution in the interval [0.8, 0.99]
and the βb parameters were computed as βb = 1 −αb − c, for c either 0.015 or 0.02.
The ωb parameters were computed as ωb = σ 2

b (1 − αb − βb)/250, where σ 2
b is the

annualized variance.
The third model we simulate is a GARCH(1,1) with slowly varying variance

parameters, of a nature very similar to the time-varying ARCH models recently
considered by Dahlhaus and Subba-Rao (2006, 2007). The model is given by:

h2
t = ω(t)+ α(t)h2

t−1 + β(t)(Xt−1 − μ)2 (15)

where the parameters satisfy the finite unconditional variance assumption α(t) +
β(t) < 1 for all t . The parameters functions α(t) and β(t) are sums of sinusoidal
functions of different frequencies νk of the form c(t) = ∑K

k=1 sin(2πνk t), for c(t) =
α(t) or β(t). For α(t) we set K = 4 and νk = {1/700, 1/500, 1/250, 1/125} and
for β(t) we set K = 2 and νk = {1/500, 1/250}. That is, we set the persistence
parameter function α(t) to exhibit more variation than the parameter function β(t)
that controls the effect of squared returns.

The fourth model we simulate is a two-state Markov Switching G ARC H(1, 1)
model, after Francq and Zakoïan (2005). The form of the model is given by:

h2
t =

2∑
s=1

1 {P(St = s)}
[
ωs + αsh2

t−1 + βs(Xt−1 − μs)
2
]

(16)

In the first regime (high persistence and high volatility state) we set α1 = 0.9,
β1 = 0.07 andω1 = 2.4e−5, corresponding to an annualized volatility of 20 %, and
μ1 = 2e − 4. In the second regime (low persistence and low volatility state) we set
α2 = 0.7, β2 = 0.22 and ω2 = 1.2e − 4 corresponding to an annualized volatility
of 10 %, and μ2 = 0. The transition probabilities for the first regime are p11 = 0.9
and p12 = 0.1 while for the second regime we try two alternative specifications
p21 = {0.3, 0.1} and p22 = {0.7, 0.9}.

The fifth model we simulate is a (logistic) smooth transition G ARC H(1, 1); see
Taylor (2004) and references therein for a discussion on the use of such models. The
form the model takes is given by:

h2
t =

2∑
s=1

Qs(Xt−1)
[
ωs + αsh2

t−1 + βs(Xt−1 − μs)
2
]

(17)

where Q1(·)+ Q2(·) = 1 and Qs = [
1 + exp(−γ1 Xγ2

t−1)
]−1

is the logistic transition
function. The parametersαs, βs, ωs andμs are set to the same values as in the previous
MS-GARCH model. The parameters of the transition function are set to γ1 = 12.3
and γ2 = 1.
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The sixth model we simulate is a G ARC H(1, 1) model with an added smooth
deterministic function yielding a locally stationary model as a result. For the con-
venient case of a linear function we have that the volatility equation is the same as
in the standard G ARC H(1, 1)model in Eq. (13) while the return equation takes the
following form:

Xt = μ+ [a − b(t/T )] ht Zt (18)

To ensure positivity of the resulting variance we require that (a/b) > (t/T ). Since
(t/T ) ∈ (0, 1] we set a = α + β = 0.97 and b = (β/α) ≈ 0.078 so that the
positivity condition is satisfied for all t .

Finally, the last model we simulate is a stochastic volatility model with the volatil-
ity equation expressed in logarithmic terms and taking the form of an autoregression
with normal innovations. The model now takes the form:

log h2
t = ω + α log h2

t−1 + wt ,wt ∼ N (0, σ 2
w) (19)

and we set the parameter values to α = 0.95, ω ≈ −0.4 and σw = 0.2.
For each simulation run i and for each model j we split the sample into two parts

T = T0 + T1, where T0 is the estimation sample and T1 is the forecast sample. We
consider two values for T0, namely 250 or 900, which correspond respectively to
about a year and three and a half years of daily data. We roll the estimation sample
T1 times and thus generate T1 out-of-sample forecasts. In estimation the parameters
are re-estimated (for GARCH) or updated (for NoVaS) every 20 observations (about
one month for daily data). We always forecast the volatility of the corresponding
return series we simulate (Eqs. (10) and (11)) and evaluate it with the known, one-
step-ahead simulated volatility. NoVaS forecasts are produced for using a normal
target distribution and both squared and absolute returns. The nomenclature used in
the tables is as follows:

1. SQNT, NoVaS forecasts made using squared returns and normal target.
2. ABNT, NoVaS forecasts made using absolute returns and normal target.
3. GARCH, L2-based GARCH forecasts.
4. M-GARCH, L1-based GARCH forecasts.

The naïve forecast benchmark is the sample variance of the rolling estimation sample.
Therefore, for each model j being simulated we produce a total of F = 4 forecasts;
the forecasts are numbered f = 0, 1, 2, . . ., F with f = 0 denoting the naïve

forecast. We then have to analyze T1 forecast errors et,i j f
def= h2

t+1,i j − ĥ2
t+1,i j f .

Using these forecast errors we compute the mean absolute deviation for each model;
each forecast method and each simulation run as:

mi j f = M ADi j f
def= 1

T1

T∑
t=T0+1

|et,i j f | (20)
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The values
{
mi j f

}
i=1,...,N ; j=1,...,M; f =0,...,F now become our data for meta-

analysis. We compute various descriptive statistics about their distribution (across i ,
the independent simulation runs and for each f the different forecasting methods)
like mean (x̄ f in the tables), std. deviation (̂σ f in the tables), min, the 10, 25, 50, 75,
90 % quantiles and max (Q p in the tables, p = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1). For
example, we have that:

x̄ j f
def= 1

N

N∑
i=1

mi j f (21)

We also compute the percentage of times that the relative (to the benchmark)
M AD’s of the NoVaS forecasts are better than the GARCH forecasts. Define
mi j,N

def= mi j f /mi j0, f = 1, 2 to be the ratio of the M AD of any of the NoVaS

forecasts relative to the benchmark and mi j,G
def= mi j f /mi j0, f = 3, 4 to be the ratio

of the M AD of the two GARCH forecasts relative to the benchmark. That is, for each
model j and forecasting method f we compute (dropping the j model subscript):

P̂ f
def= 1

N

N∑
i=1

1
(
mi j,N ≤ mi j,G

)
. (22)

Then, we consider the total number of times that any NoVaS forecasting method had
a smaller relative M AD compared to the relative M AD of the GARCH forecasts

and compute also P̂
def= ∪ f P̂ f as the union across. So P̂ f , for f = 1, 2 corresponds

to the aforementioned methods NoVaS methods SQNT and ABNT, respectively, and
P̂ corresponds to their union.

3.2 Discussion of Simulation Results

The simulation helps compare the NoVaS forecasts to the usual GARCH forecasts,
i.e., L2-based GARCH forecasts, and also to the M-GARCH forecasts, i.e., L1-based
GARCH forecasts, the latter being recommended by Politis (2003a, 2004, 2007). All
simulation results, that is the statistics of the MAD’s of Eq. (20) and the probabilities
of Eq. (22), are compacted in three tables, Table 1 through Table 3. In Tables 1 and 2
we have the statistics for the MAD’s (Table 1 has the case of 1000 forecasts (smaller
estimation sample) while Table 2 has the case of 350 forecasts (larger estimation
sample). Table 3 has the statistics on the probabilities.

The main result that emerges from looking at these tables is the very good and
competitive performance of NoVaS forecasts, even when the the true DGP is GARCH
(DGP1 in the tables).11 While it would seem intuitive that GARCH forecasts would

11 The phenomenon of poor performance of GARCH forecasting when the DGP is actually GARCH
may seem puzzling and certainly deserves further study. Our experience based on the simulations
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Table 1 Summary of simulation results across DGP and models, T1 = 1,000

x̄ f DGP1 DGP2 DGP3 DGP4a DGP4b DGP5 DGP6 DGP7

Naive 0.24 0.43 0.31 0.36 0.48 0.32 0.16 0.26
SQNT 0.14 0.17 0.14 0.20 0.18 0.15 0.12 0.21
ABNT 0.21 0.28 0.15 0.30 0.26 0.24 0.18 0.23
GARCH 2.64 29.10 1.70 1.33 3.21 2.05 1.62 1.50
M-GARCH 1.56 16.15 1.02 0.88 1.91 1.25 0.98 0.95
σ̂ f DGP1 DGP2 DGP3 DGP4a DGP4b DGP5 DGP6 DGP7
Naive 0.33 0.96 0.53 0.42 2.34 0.34 0.17 0.16
SQNT 0.08 0.47 0.23 0.12 0.15 0.07 0.04 0.13
ABNT 0.09 0.47 0.16 0.14 0.15 0.10 0.05 0.11
GARCH 13.43 385.48 14.11 3.04 23.07 10.15 9.01 8.74
M-GARCH 7.39 212.13 7.78 1.68 12.71 5.60 4.96 4.81
Q0.10 DGP1 DGP2 DGP3 DGP4a DGP4b DGP5 DGP6 DGP7
Naive 0.09 0.13 0.12 0.15 0.13 0.12 0.08 0.17
SQNT 0.09 0.10 0.06 0.14 0.12 0.11 0.10 0.15
ABNT 0.16 0.17 0.09 0.23 0.19 0.19 0.15 0.18
GARCH 0.10 0.15 0.10 0.17 0.13 0.12 0.09 0.18
M-GARCH 0.16 0.18 0.11 0.24 0.19 0.18 0.14 0.22
Q0.50 DGP1 DGP2 DGP3 DGP4a DGP4b DGP5 DGP6 DGP7
Naive 0.15 0.22 0.19 0.24 0.23 0.21 0.10 0.23
SQNT 0.11 0.12 0.09 0.17 0.15 0.13 0.10 0.19
ABNT 0.19 0.20 0.11 0.27 0.23 0.22 0.16 0.22
GARCH 0.34 0.50 0.20 0.41 0.31 0.26 0.21 0.33
M-GARCH 0.29 0.40 0.17 0.37 0.30 0.26 0.20 0.32
Q0.90 DGP1 DGP2 DGP3 DGP4a DGP4b DGP5 DGP6 DGP7
Naive 0.45 0.71 0.51 0.61 0.62 0.62 0.28 0.32
SQNT 0.19 0.21 0.19 0.26 0.24 0.20 0.15 0.26
ABNT 0.28 0.36 0.20 0.37 0.33 0.32 0.22 0.28
GARCH 3.53 4.19 1.51 2.88 2.83 2.53 1.78 2.71
M-GARCH 2.04 2.51 0.91 1.79 1.69 1.53 1.13 1.62

Notes (1) DGPi denotes the ith data generating process as follows: 1 for GARCH, 2 for B-GARCH,
3 for TV-GARCH, 4a and 4b for MS-GARCH, 5 for ST-GARCH, 6 for D-GARCH, and 7 for
SV-GARCH (2) Table entries give statistics of the MAD of the forecast errors over 500 replications
and T1 = 1,000 denotes the number of forecasts generated for computing MAD in each replication
(3) x̄ f denotes the sample mean, σ̂ f denotes the sample std. deviation, and Q p denotes the pth
sample quantile of the MAD distribution over 500 replications (4) Naïve denotes forecasts based
on the rolling sample variance, SQNT (ABNT) denotes NoVaS forecasts based on a normal target
distribution and squared (absolute) returns, GARCH and M-GARCH denote L2 and L1 based
forecasts from a standard GARCH model

(Footnote 11 continued)
suggests that the culprit is the occasional instability of the numerical MLE used to fit the GARCH
model (computations performed in R using an explicit log-likelihood function with R optimization
routines). Although in most trials the GARCH fitted parameters were accurate, every so often the
numerical MLE gave grossly inaccurate answers which, of course, affect the statistics of forecasting
performance. This instability was less pronounced when the fitting was done based on a large sample
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Table 2 Summary of simulation results across DGP and models, T1 = 350

x̄ f DGP1 DGP2 DGP3 DGP4a DGP4b DGP5 DGP6 DGP7

Naive 0.26 0.39 0.31 0.37 0.47 0.31 0.13 0.26
SQNT 0.14 0.10 0.13 0.20 0.20 0.15 0.11 0.22
ABNT 0.21 0.22 0.15 0.32 0.27 0.25 0.17 0.24
GARCH 0.22 0.65 0.20 2.70 5.56 0.19 0.12 0.24
M-GARCH 0.24 0.47 0.20 1.65 3.21 0.24 0.15 0.27
σ̂ f DGP1 DGP2 DGP3 DGP4a DGP4b DGP5 DGP6 DGP7
Naive 0.39 0.87 0.58 0.70 1.95 0.42 0.19 0.33
SQNT 0.13 0.09 0.30 0.16 0.30 0.12 0.05 0.36
ABNT 0.13 0.32 0.19 0.33 0.26 0.17 0.06 0.28
GARCH 0.75 4.99 0.37 42.77 84.17 0.31 0.22 0.98
M-GARCH 0.49 2.75 0.38 23.68 46.39 0.27 0.14 0.58
Q0.10 DGP1 DGP2 DGP3 DGP4a DGP4b DGP5 DGP6 DGP7
Naive 0.07 0.12 0.13 0.11 0.11 0.10 0.04 0.16
SQNT 0.09 0.07 0.06 0.13 0.11 0.10 0.10 0.13
ABNT 0.15 0.12 0.09 0.21 0.18 0.17 0.14 0.16
GARCH 0.04 0.07 0.08 0.08 0.07 0.06 0.04 0.13
M-GARCH 0.09 0.09 0.10 0.14 0.12 0.12 0.08 0.16
Q0.50 DGP1 DGP2 DGP3 DGP4a DGP4b DGP5 DGP6 DGP7
Naive 0.14 0.21 0.19 0.22 0.20 0.20 0.08 0.22
SQNT 0.11 0.08 0.08 0.16 0.14 0.12 0.10 0.19
ABNT 0.18 0.15 0.11 0.25 0.21 0.21 0.15 0.21
GARCH 0.10 0.13 0.12 0.15 0.13 0.12 0.07 0.18
M-GARCH 0.17 0.15 0.13 0.23 0.19 0.19 0.13 0.23
Q0.90 DGP1 DGP2 DGP3 DGP4a DGP4b DGP5 DGP6 DGP7
Naive 0.48 0.56 0.49 0.64 0.67 0.56 0.24 0.34
SQNT 0.20 0.13 0.19 0.27 0.27 0.21 0.13 0.28
ABNT 0.29 0.28 0.20 0.40 0.37 0.30 0.20 0.30
GARCH 0.35 0.37 0.28 0.45 0.42 0.34 0.18 0.26
M-GARCH 0.33 0.34 0.29 0.47 0.46 0.34 0.20 0.34

Notes (1) DGPi denotes the ith data generating process as follows: 1 for GARCH, 2 for B-GARCH,
3 for TV-GARCH, 4a and 4b for MS-GARCH, 5 for ST-GARCH, 6 for D-GARCH, and 7 for
SV-GARCH (2) Table entries give statistics of the MAD of the forecast errors over 500 replications
and T1 = 1,000 denotes the number of forecasts generated for computing MAD in each replication
(3) x̄ f denotes the sample mean, σ̂ f denotes the sample std. deviation and Q p denotes the pth
sample quantile of the MAD distribution over 500 replications (4) Naïve denotes forecasts based
on the rolling sample variance, SQNT (ABNT) denotes NoVaS forecasts based on a normal target
distribution and squared (absolute) returns, GARCH and M-GARCH denote L2 and L1 based
forecasts from a standard GARCH model

have an advantage in this case we find that any of the NoVaS methods (SQNT, ABNT)
is seen to outperform both GARCH and M-GARCH in all measured areas: mean

(Footnote 11 continued)
(case of 900). Surprisingly, a training sample as large as 250 (e.g. a year of daily data) was not
enough to ward off the negative effects of this instability in fitting (and forecasting) based on the
GARCH model.
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Table 3 Summary of simulation results across DGP and models percentage of times that NoVaS
forecasts are better than the benchmarks

DGP Benchmark P̂1 P̂2 P̂ P̂1 P̂2 P̂

DGP1 GARCH 0.93 0.66 0.93 0.43 0.13 0.43
M-GARCH 1.00 0.74 1.00 0.86 0.35 0.86

DGP2 GARCH 0.98 0.76 0.98 0.86 0.35 0.86
M-GARCH 0.99 0.87 0.99 0.96 0.42 0.96

DGP3 GARCH 0.98 0.85 1.00 0.89 0.52 0.98
M-GARCH 0.99 0.98 1.00 0.96 0.91 0.99

DGP4a GARCH 0.94 0.62 0.94 0.42 0.14 0.42
M-GARCH 1.00 0.73 1.00 0.85 0.30 0.86

DGP4b GARCH 0.90 0.60 0.90 0.45 0.18 0.46
M-GARCH 1.00 0.75 1.00 0.87 0.36 0.89

DGP5 GARCH 0.91 0.55 0.91 0.47 0.14 0.47
M-GARCH 1.00 0.67 1.00 0.91 0.31 0.92

DGP6 GARCH 0.76 0.55 0.76 0.24 0.09 0.24
M-GARCH 1.00 0.61 1.00 0.77 0.19 0.77

DGP7 GARCH 0.90 0.70 0.91 0.36 0.17 0.40
M-GARCH 0.97 0.99 1.00 0.84 0.73 0.91

Notes (1) DGPi denotes the ith data generating process as follows: 1 for GARCH, 2 for B-GARCH,
3 for TV-GARCH, 4a and 4b for MS-GARCH, 5 for ST-GARCH, 6 for D-GARCH, and 7 for
SV-GARCH (2) Table entries give the proportion of times that the NoVaS MAD relative to the
naïve benchmark was smaller than the GARCH MAD relative to the same benchmark, see Eq. (22)
in the main text

of the M AD distribution (x̄ f , mean error), tightness of M AD distribution (σ̂ f and
the related quantiles), and finally the % of times NoVaS M AD was better. Actually,
in this setting, the GARCH forecasts are vastly underperforming as compared to
the Naive benchmark. The best NoVaS method here is the SQNT that achieves a
mean error x̄ f almost half of that of the benchmark, and with a much tighter M AD
distribution. Comparing Tables 1 and 2 sheds more light in this situation: it appears
that a training sample of size 250 is just too small for GARCH to work well; with
a training sample of size 900 the performance of GARCH is greatly improved, and
GARCH manages to beat the benchmark in terms of mean error (but not variance).
SQNT NoVaS however is still the best method in terms of mean error and variance;
it beats M-GARCH in terms of the P̂1 percentage, and narrowly underperforms as
compared to GARCH in this criterion. All in all, SQNT NoVaS volatility forecasting
appears to beat GARCH forecasts when the DGP is GARCH—a remarkable finding.
Furthermore, GARCH apparently requires a very large training sample in order to
work well; but with a sample spanning 3–4 years questions of non-stationarity may
arise that will be addressed in what follows.

When the DGP is a GARCH with discrete breaks (B-GARCH, DGP2 in the tables)
it is apparent here that ignoring possible structural breaks when fitting a GARCH
model can be disastrous. The GARCH forecasts vastly underperform compared to
the Naive benchmark with either small (Table 1) or big training sample (Table 2).
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Interestingly, both NoVaS methods are better than the benchmark with SQNT seem-
ingly the best again. The SQNT method is better than either GARCH method at least
86 % of the time. It should be stressed here that NoVaS does not attempt to estimate
any breaks; it applies totally automatically, and is seemingly unperturbed by struc-
tural breaks. When we have a DGP of a GARCH with slowly varying parameters
(TV-GARCH) the results are similar to the previous case except that the perfor-
mance of GARCH is a little better as compared to the benchmark—but only when
given a big training sample (compare Tables 1 and 2 for DGP3). However, still both
NoVaS methods are better than either GARCH method. The best is again SQNT.
Either of those beats either GARCH method at least 88 % of the time (Table 3). For
the Markov switching GARCH (MS-GARCH) (DGPs 4a and 4b in the tables) the
results are essentially the same as with DGP2: GARCH forecasts vastly underper-
form the Naive benchmark with either small or big training sample. Again, all NoVaS
methods are better than the benchmark with SQNT being the best.

For the fifth DGP, the smooth transition GARCH (ST-GARCH) (DGP5 in the
tables) the situation is more like the first one (where the DGP is plain GARCH); with
a large enough training sample, GARCH forecasts are able to beat the benchmark,
and be competitive with NoVaS. Still, however, SQNT NoVaS is best, not only
because of smallest mean error but also in terms of tightness of M AD distribution.
The results are also similar to the next DGP, GARCH with deterministic function
(D-GARCH) (DGP6 in the tables), where given a large training sample, GARCH
forecasts are able to beat the benchmark, and be competitive with NoVaS. Again,
SQNT NoVaS is best, not only because of smallest mean error but also in terms of
tightness of M AD distribution. Finally, for the last DGP, stochastic volatility model
(SV-GARCH) (DGP7 in the tables) a similar behavior to the above two cases is
found, but although (with a big training sample) GARCH does well in terms of mean
error, note the large spread of the M AD distribution.

The results from the simulations can be summarized as follows:

• GARCH forecasts are extremely off-the-mark when the training sample is not
large (of the order of 2–3 years of daily data). Note that large training sample sizes
are prone to be problematic if the stochastic structure of the returns changes over
time.

• Even given a large training sample, NoVaS forecasts are best; this holds even when
the true DGP is actually GARCH!

• Ignoring possible breaks (B-GARCH), slowly varying parameters (TV-GARCH),
or a Markov switching feature (MS-GARCH) when fitting a GARCH model can
be disastrous in terms of forecasts. In contrast, NoVaS forecasts seem unperturbed
by such gross nonstationarities.

• Ignoring the presence of a smooth transition GARCH (ST-GARCH), a GARCH
with an added deterministic function (D-GARCH), or a stochastic volatility model
(SV-GARCH) does not seem as crucial at least when the the implied nonstationarity
features are small and/or slowly varying.
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• Overall, it seems that SQNT NoVaS is the volatility forecasting method of choice
since it is the best in all examples except TV-GARCH (in which case it is a close
second to ABNT NoVaS).

4 Empirical Application

In this section we provide an empirical illustration of the application and potential of
the NoVaS approach using four real data sets. In judging the forecasting performance
for NoVaS we consider different measures of ‘true’ volatility, including realized and
range-based volatility.

4.1 Data and Summary Statistics

Our first data set consists of monthly returns and associated realized volatility for
the S&P500 index, with the sample extending from February 1970 to May 2007 for
a total of n = 448 observations. The second data set consists of monthly returns and
associated realized, range-based volatility for the stock of Microsoft (MSFT). The
sample period is from April 1986 to August 2007 for a total of n = 257 observations.
For both these data sets the associated realized volatility was constructed by summing
daily squared returns (for the S&P500 data) or daily range-based volatility (for the
MSFT data). Specifically, if we denote by rt,i the ith daily return for month t then the

monthly realized volatility is defined as σ 2
t

def= ∑m
i=1 r2

t,i , where m is the number of
days. For the calculation of the realized range-based volatility denote by Ht,i and Lt,i

the daily high and low prices for the ith day of month t . The daily range-based volatil-

ity is defined as in Parkinson (1980) as σ 2
t,i

def= [
ln(Ht,i )− ln(Lt,i )

]2
/ [4 ln(2)]; then,

the corresponding monthly realized measure would be defined as σ 2
t

def= ∑m
i=1 σ

2
t,i .

Our third data set consists of daily returns and realized volatility for the US dol-
lar/Japanese Yen exchange rate for a sample period between 1997 and 2005 for a
total of n = 2236 observations. The realized volatility measure was constructed as
above using intraday returns. The final data set we examine is the stock of a major
private bank in the Athens Stock Exchange, EFG Eurobank. The sample period is
from 1999 to 2004 for a total of n = 1403 observations. For lack of intraday returns
we use the daily range-based volatility estimator as defined before.

Descriptive statistics of the returns for all four of our data sets are given in Table 4.
We are mainly interested in the kurtosis of the returns, as we will be using kurtosis-
based matching in performing NoVaS. All series have unconditional means that are
not statistically different from zero and no significant serial correlation, with the
exception of the last series (EFG) that has a significant first order serial correlation
estimate. Also, all four series have negative skewness which is, however, statistically
insignificant except for the monthly S&P500 and MSFT series where it is significant
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Table 4 Descriptive statistics for empirical series

Series n x̄ (%) σ̂ (%) S K N r̂(1)

S&P500, monthly 448 1.01 4.35 −0.37 5.04 0.00 0.00
MSFT, monthly 257 0.00 1.53 −1.75 9.00 0.00 −0.10
USD/Yen, daily 2236 −0.00 0.72 −0.70 8.52 0.00 0.00
EFG, daily 1403 −0.07 2.11 −1.24 24.32 0.00 0.14

Notes (1) n denotes the number of observations, x̄ denotes the sample mean, σ̂ denotes the sample
standard deviation, S denotes the sample skewness, K denotes the sample kurtosis (2) N is the
p-value of the Cramer-Von Misses test for normality of the underlying series (3) r̂(1) denotes the
estimate of the first order serial correlation coefficient

at the 5 % level. Finally, all series are characterized by heavy tails with kurtosis
coefficients ranging from 5.04 (monthly S&P500) to 24.32 (EFG). The hypothesis
of normality is strongly rejected for all series.

In Figs. 1, 2, 3, 4, 5, 6, 7, 8 we present graphs for the return series, the corre-
sponding volatility and log volatility, the quantile–quantile (QQ) plot for the returns
and four recursive moments. The computation of the recursive moments is useful
for illustrating the potential unstable nature that may be characterizing the series.
Figures 1 and 2 are for the monthly S&P500 returns, Figs. 3 and 4 are for monthly
MSFT returns, Figs. 5 and 6 are for the daily USD/Yen returns and Figs. 7 and 8 are
for the daily EFG returns. Of interest are the figures that plot the estimated recur-
sive moments. In Fig. 2 we see that the mean and standard deviation of the monthly
S&P500 returns are fairly stable while the skewness and kurtosis exhibit breaks. In
fact, the kurtosis exhibits the tendency to rise in jolts/shocks and does not retreat
to previous levels thereby indicating that there might not be an finite 4th moment
for this series. Similar observations can be made for the other four series as far as
recursive kurtosis goes. This is especially relevant about our argument that NoVaS
can handle such possible global nonstationarities.

4.2 NoVaS Optimization and Forecasting Specifications

Our NoVaS in-sample analysis is performed for two possible combinations of target
distribution and variance measures, i.e, squared and absolute returns using a normal
target, as in the simulation analysis. We use the exponential NoVaS algorithm as
discussed in Sect. 2, withα = 0.0, a trimming threshold of 0.01 and pmax = n/4. The
objective function for optimization is kurtosis-matching, i.e., Dn(θ) = |Kn(θ)|, as in
Eq. (7)—robustness to deviations from these baseline specification is also discussed
below. The results of our in-sample analysis are given in Table 5. In the table we
present the optimal values of the exponential constant b∗, the first coefficient a∗

0 ,
the implied optimal lag length p∗, the value of the objective function Dn(θ

∗), and
two measures of distributional fit. The first is the QQ correlation coefficient for
the original series, Q Q X , and the second is the QQ correlation coefficient for the
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Fig. 1 Return, volatility, and QQ plots for the monthly S&P500 series

transformed series Wt (θ
∗) series, Q QW . These last two measures are used to gage

the ‘quality’ of the attempted distributional matching before and after the application
of the NoVaS transformation.

Our NoVaS out-of-sample analysis is reported in Tables 6, 7, 8 and 9. All forecasts
are based on a rolling sample whose length n0 differs according to the series exam-
ined: for the monthly S&P500 series we use n0 = 300 observations; for the monthly
MSFT series we use n0 = 157 observations; for EFG series we use n0 = 900
observations; for the daily USD/Yen series we use n0 = 1250 observations. The
corresponding evaluation samples are n1 = {148, 100, 986, 503} for the four series
respectively. Note that our examples cover a variety of different lengths, ranging
from 157 observations for the MSFT series to 1250 observations for the USD/Yen
series. All forecasts we make are ‘honest’ out-of-sample forecasts: they use only
observations prior to the time period to be forecasted. The NoVaS parameters are
reoptimized as the window rolls over the entire evaluation sample (every month
for the monthly series and every 20 observations for the daily series). We forecast
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Fig. 2 Recursive moments for the monthly S&P500 series

volatility both by using absolute or squared returns (depending on the specifica-
tion), as described in the section on NoVaS forecasting, and by using the empirical
variance measure γ̂n+1—see Eqs. (10) and (11).12 To compare the performance of the
NoVaS approach we estimate and forecast using a standard G ARC H(1, 1) model
for each series, assuming a t(ν) distribution with degrees of freedom estimated from
the data. The parameters of the model are re-estimated as the window rolls over, as
described above. As noted in Politis (2003a,b, 2007), the performance of GARCH
forecasts is found to be improved under an L1 rather than L2 loss. We therefore report
standard mean forecasts as well as median forecasts from the GARCH models. We
always evaluate our forecasts using the ‘true’ volatility measures given in the previ-
ous section and report several measures of forecasting performance. This is important

12 All NoVaS forecasts were made without applying an explicit predictor as all Wt (θ
∗) series were

found to be uncorrelated.
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Fig. 3 Return, volatility, and QQ plots for the monthly MSFT series

as a single evaluation measure may not always provide an accurate description of
the performance of competing models.

We first calculate the mean absolute deviation (MAD) and root mean-squared

(RMSE) of the forecast errors et
def= σ 2

t − σ̂ 2
t , given by:

M AD(e)
def= 1

n1

n∑
t=n0+1

|et |, RM SE(e)
def=

√√√√ 1

n1

n∑
t=n0+1

(et − ē)2 (23)

where σ̂ 2
t denotes the forecast for any of the methods/models we use. As a Naive

benchmark we use the (rolling) sample variance. We then calculate the Diebold and
Mariano (1995) test for comparing forecasting models. We use the absolute value
function in computing the relevant statistic and so we can formally compare the
MAD rankings of the various models.
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Fig. 4 Recursive moments for the monthly MSFT series

Finally, we calculate and report certain statistics based on the forecasting unbi-
asedness regression (also known as ‘Mincer-Zarnowitz regression’). This regression
can be expressed in several ways and we use the following representation:

et = a + bσ̂ 2
t + ζt (24)

where ζt is the regression error. Under the hypothesis of forecast unbiasedness
we expect to have E

[
et |Ft−1

] = 0 and therefore we expect a = b = 0 (and
E

[
ζt |Ft−1

] = 0 as well.) Furthermore, the R2 from the above regression is an indi-
cation as to how much of the forecast error variability can still be explained by the
forecast. For any two competing forecasting models A and B we say that model A
is superior to model B if R2

A < R2
B , i.e., if we can make no further improvements in

our forecast.
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Fig. 5 Return, volatility, and QQ plots for the daily USD/Yen series

Our forecasting results are summarized in Tables 6 and 7 for the MAD and
RMSE rankings and in Tables 8 and 9 for the Diebold-Mariano test and forecasting
unbiasedness regressions. Similar results were obtained when using a recursive sam-
ple and are available on request.

4.3 Discussion of Results

We begin our discussion with the in-sample results and, in particular, the degree of
normalization achieved by NoVaS. Looking at the value of the objective function in
Table 5 we see that it is zero to three decimals for practically all cases. Therefore,
NoVaS is very successful in reducing the excess kurtosis in the original return series.
In addition, the quantile–quantile correlation coefficient is very high (in excess of
0.99 in all cases examined, frequently being practically one). One should compare the
two QQ measures of before and after the NoVaS transformation to see the difference
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Fig. 6 Recursive moments for the daily USD/Yen series

that the transformation has on the data. The case of the EFG series is particularly
worth mentioning as that series has the highest kurtosis: we can see from the table that
we get a QQ correlation coefficient in excess of 0.998; this is a very clear indication
that the desired distributional matching has been achieved for all practical purposes.
A visual confirmation of the differences in the distribution of returns before and after
NoVaS transformations is given in Figs. 9, 10, 11 and 12. In these figures we have
QQ plots for all the series and four combinations of return distributions, including the
uniform for visual comparison. It is apparent from these figures that normalization
has been achieved in all cases examined. Finally, a second noticeable in-sample result
is the optimal lag length chosen by the different NoVaS specifications. In particular,
we see from Table 16 that the optimal lag length is greater when using squared returns
than when using absolute returns. As expected, longer lag lengths are associated with
a smaller a∗

0 coefficient.
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Fig. 7 Return, volatility, and QQ plots for the daily EFG series

We now turn to the out-of-sample results on the forecasting performance of
NoVaS, which are summarized in Tables 6–9. The results are slightly different across
the series we examine but the overall impression is that the NoVaS-based forecasts
are superior to the GARCH forecasts, based on the combined performance of all
evaluation measures. We discuss these in turn.

If we look at the MAD results in Table 6 the NoVaS forecasts outperform both the
Naive benchmark and the GARCH-based forecasts. Note that the use of squared
returns gives better results in the two series with the smallest sample kurtosis
(S&P500 and USD/Yen series) while the use of absolute returns gives better results in
the two series with the highest kurtosis (MSFT and EFG series). Its also worthwhile
to note that the most drastic performance improvement, vis-a-vis the benchmark,
can be seen for the MSFT series (smallest sample size) and the EFG series (highest
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Fig. 8 Recursive moments for the daily EFG series

kurtosis).13 This is important since we expected NoVaS to perform well in both these
cases: the small sample size makes inference difficult while high kurtosis can be the
result of nonstationarities in the series. Finally, the results are similar if we consider
the RMSE ranking in Table 7. Based on these two descriptive evaluation measures
the NoVaS forecasts outperform the benchmark and GARCH models.

To examine whether there are statistically significant differences between the
NoVaS and GARCH forecasts and the benchmark, we next consider the results from
the application of the Diebold and Mariano (1995) test for comparing forecasting
performance. Looking at Table 7 we can see that there are statistically significant

13 Note also the performance improvement from the use of the median GARCH versus the mean
GARCH forecasts for the MSFT series. Recall that our simulation results showed that the perfor-
mance of a GARCH model could be way off the mark if the training sample was small; here we use
only 157 observations for training the MSFT series and the GARCH forecasts cannot outperform
even the Naive benchmark.
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Table 5 Full-sample NoVaS summary measures

Type b∗ Dn(θ
∗) a∗

0 p∗ Q Q X Q QW

S&P500 monthly
SQNT 0.039 0.000 0.052 34 0.989 0.996
ABNT 0.070 0.000 0.078 27 0.989 0.996
MSFT monthly
SQNT 0.175 0.000 0.171 15 0.916 0.988
ABNT 0.251 0.000 0.231 12 0.916 0.986
USD/Yen daily
SQNT 0.062 0.000 0.071 29 0.978 0.999
ABNT 0.121 0.000 0.124 20 0.978 0.999
EFG daily
SQNT 0.089 0.007 0.096 24 0.943 0.999
ABNT 0.171 0.000 0.166 16 0.943 0.999

Notes (1) SQNT, ABNT denote NoVaS made forecasts based on square and absolute returns and a
normal target distribution (2) b∗, a∗

0 and p∗ denote the optimal exponential constant, first coefficient,
and implied lag length (3) Dn(θ

∗) is the value of the objective function based on kurtosis matching
(4) Q Q X and Q QW denote the QQ correlation coefficient of the original series and the transformed
series respectively

Table 6 Mean absolute deviation (MAD) of forecast errors

Series Naïve SQNT ABNT Mean Median
GARCH GARCH

S&P500, monthly 0.152 0.118 0.134 0.139 0.157
MSFT, monthly 1.883 1.030 0.551 43.28 23.67
USD/Yen, daily 0.026 0.016 0.018 0.022 0.016
EFG, daily 0.251 0.143 0.120 0.225 0.141

differences between the NoVaS forecasts and the Naive benchmark for the S&P500
series and the MSFT series, with the NoVaS forecasts being significantly better.14 For
the other two series the test does not indicate a (statistically) superior performance
of any of the other models compared to the benchmark.

Our empirical results so far clearly indicate that the NoVaS forecasts offer
improvements in forecasting performance, both over the Naive benchmark and the
GARCH models. We next discuss the results from the forecasting unbiasedness
regressions of Eq. (24), where we try to see whether the forecasts are correct ‘on
average’ and whether they make any systematic mistakes. We start by noting that the
estimates from a regression like Eq. (24) suffer from bias since the regressor used,
σ̂ 2

t , is estimated and not measured directly. Therefore, we should be interpreting our
results with some caution and connect them with our previous discussion. Looking at
Table 9 we can see that in many cases the constant term a is estimated to be (numer-

14 For the MSFT series the benchmark forecasts are also significantly better than the GARCH
forecasts.
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Table 7 Root mean-squared (RMSE) of forecast errors

Series Naïve SQNT ABNT Mean Median
GARCH GARCH

S&P500, monthly 0.243 0.206 0.206 0.224 0.232
MSFT, monthly 0.530 1.552 0.951 162.0 89.17
USD/Yen, daily 0.031 0.028 0.028 0.030 0.029
EFG, daily 0.227 0.208 0.194 0.211 0.212

Notes (1) All forecasts computed using a rolling evaluation sample (2) The evaluation sample used
for computing the entries of the tables is as follows: 148 observations for the monthly S&P500 series,
100 observations for the monthly MSFT series, 986 observations for the daily USD/Yen series, and
503 observations for the daily EFG series (3) Table entries are the values of the evaluation measure
(MAD for Table 18 and RMSE for Table 19) multiplied by 100 (S&P500 and MSFT monthly
series) and by 1000 (USD/Yen and EFG daily series) respectively (4) SQNT, ABNT denote NoVaS
made forecasts based on square and absolute returns and normal target distribution (5) Mean and
median GARCH forecasts denote forecasts made with a GARCH model and an underlying t error
distribution with degrees of freedom estimated from the data (6) The Naive forecast is based on the
rolling sample variance

Table 8 Diebold-mariano test for difference in forecasting performance NoVaS and GARCH
against the Naive benchmark

Series SQNT ABNT Mean Median
GARCH GARCH

S&P 500, monthly
Test value 3.369 1.762 1.282 −0.414
p-value 0.000 0.078 0.200 0.679
MSFT, monthly
Test value 2.931 7.022 −2.671 −2.559
p-value 0.003 0.000 0.007 0.010
USD/Yen, daily
Test value 0.101 0.083 0.037 0.096
p-value 0.919 0.933 0.971 0.924
EFG, daily
Test value 1.077 1.301 0.259 1.095
p-value 0.281 0.190 0.795 0.274

Notes (1) See Tables 17 and 18 for column nomenclature (2) The entries of Table 19 are the test and
p-values for the Diebold and Mariano (1995) test for comparing forecasting accuracy. The tests use
the absolute value function for the calculation of the statistic and are expressed relative to the Naive
benchmark (3) Positive values indicate that the competing model is superior, negative values that
the Naive benchmark is superior

ically close to) zero, although it is statistically significant. The slope parameter b
estimates show that there is still bias in the direction of the forecasts, either positive
or negative, but the NoVaS estimates of b are in general much lower than those of
the benchmark and the GARCH models, with the exception of the MSFT series.
Furthermore, for the S&P500 and the EFG series the slope parameter is not statis-
tically significant, at the 10 % level, indicating a possibly unbiased NoVaS forecast.
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Table 9 Forecast unbiasedness regressions

Series Naïve SQNT ABNT Mean Median
GARCH GARCH

S&P500,
monthly
Estimates (−0.003,1.824) (0.000,0.317) (0.000,0.879) (−0.002,1.685) (−0.002,3.879)
p-values (0.597,0.540) (0.527,0.055) (0.344,0.000) (0.000,0.000) (0.000,0.000)
R2 0.003 0.025 0.111 0.118 0.177
MSFT,
monthly
Estimates (−0.025,0.242) (0.004,−0.859) (0.004,−0.729) (0.007,−1.000) (0.007,−1.000)
p-values (0.000,0.276) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000)
R2 0.012 0.871 0.689 1.000 1.000
USD/Yen,
daily
Estimates (0.000,−1.099) (0.000,−0.476) (0.000,0.355) (0.000,−0.803) (0.000,0.642)
p-values (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000) (0.000,0.000)
R2 0.188 0.055 0.017 0.136 0.029
EFG, daily
Estimates (0.000,−0.767) (0.000,−0.378) (0.000,0.058) (0.000,0.138) (0.000,0.567)
p-values (0.017,0.000) (0.000,0.000) (0.000,0.518) (0.038,0.318) (0.038,0.025)
R2 0.072 0.062 0.001 0.002 0.002

Notes (1) See Tables 17 and 18 for column nomenclature (2) The entries of Table 20 are the coefficient
estimates (̂a, b̂) (first line), corresponding p-values (second line) and R2 (third line) from the forecast
unbiasedness regression et = a + bσ̂ 2

t + ζt (3) Under the hypothesis of forecast unbiasedness we
must have a = b = 0 and R2 → 0. For any two competing models A and B for which we have
that R2

A < R2
B we say that model A is superior to model B

The R2 values from these regressions are also supportive of the NoVaS forecasts
(remember that low values are preferred over high values): the corresponding R2

values from the NoVaS forecasts are lower than both the benchmark and the GARCH
values by at least 30 %. Note that for the S&P500 series where the value of the R2 of
the benchmark is lower than the corresponding NoVaS value, we also have a (numer-
ically) large value for the slope parameter b for the benchmark compared to NoVaS.
The only real problem with the R2 from these regressions is for the MSFT series
which we discuss below in Remark 4. All in all the results from Table 9 support the
superior performance of NoVaS against its competitors and show that is a much less
biased forecasting procedure.

Remark 3 Can we obtain further improvements using the NoVaS methodology? In
particular, how do changes in the value of the α parameter affect the forecasting
performance? This is an empirically interesting question since our results can be
affected both by the small sample size and the degree of kurtosis in the data. The
MSFT series exhibits both these problems and it is thus worthwhile to see whether
we can improve our results by allowing the unconditional estimator of the variance to
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Fig. 9 QQ plots of the NoVaS -transformed W series for the monthly S&P500 series

enter the calculations.15 We repeated our analysis for the MSFT series using α = 0.5
and our results improved dramatically. The MAD and RMSE values from the ABNT
NoVaS method dropped from 0.551 to 0.360 and from 0.951 to 0.524 respectively,
with the Diebold-Mariano test still indicating a statistically significant performance
over the Naive benchmark. In addition, the results from the forecasting unbiasedness
regression are now better than the benchmark for the ABNT NoVaS method: the
estimate of the slope parameter b is −0.145 and not statistically significant while the
R2 value is 0.010 compared to 0.012 for the benchmark.

In summary, our results are especially encouraging because they reflect on the
very idea of the NoVaS transformation: a model-free approach that can account for
different types of potential DGPs, that include breaks, switching regimes, and lack
of higher moments. NoVaS is successful in overcoming the parameterization and
estimation problems that one would encounter in models that have variability and

15 Changing the value of α did not result in improvements in the other three series.
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Fig. 10 QQ plots of the NoVaS -transformed W series for the monthly MSFT series

uncertainty not only in their parameters but also in their functional form. Of course
our results are specific to the data sets examined and, it is true, we made no attempt to
consider other types of parametric volatility models. But this is one of the problems
that NoVaS attempts to solve: we have no a priori guidance as to which parametric
volatility model to choose, be it simple GARCH, exponential GARCH, asymmetric
GARCH, and so on. With NoVaS we face no such problem as the very concept of a
model does not enter into consideration.

5 Concluding Remarks

In this chapter we have presented several findings on the NoVaS transformation
approach for volatility forecasting introduced by Politis (2003a,b, 2007) and extended
in Politis (2007). It was shown that NoVaS can be a flexible method for forecast-
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Fig. 11 QQ plots of the NoVaS -transformed W series for the daily USD/Yen series

ing volatility of financial returns that is simple to implement, and robust against
nonstationarities.

In particular, we focused on a new method for volatility forecasting using NoVaS
and conducted an extensive simulation to study its forecasting performance under
different DGPs. It was shown that the NoVaS methodology remains successful in
situations where (global) stationarity fails such as the cases of local stationarity
and/or structural breaks, and invariably outperforms the GARCH benchmark for all
non-GARCH DGPs. Remarkably, the NoVaS methodology was found to outperform
the GARCH forecasts even when the underlying DGP is itself a (stationary) GARCH
as long as the sample size is only moderately large. It was also found that NoVaS
forecasts lead to a much ‘tighter’ distribution of the forecasting performance measure
used (the M AD) for all DGPs considered. Our empirical illustrations using four real
data sets are also very supportive of the excellent forecasting performance of NoVaS
compared to the standard GARCH forecasts.
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Fig. 12 QQ plots of the NoVaS -transformed W series for the daily EFG series

Extensions of the current work include, among others, the use of the NoVaS
approach on empirical calculations of value at risk (VaR), the generalization to more
than one assets and the calculation of NoVaS correlations, and further extensive
testing on the out-of-sample forecasting performance of the proposed method. Some
of the above are pursued by the authors.
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Regression Efficacy and the Curse
of Dimensionality

Maxwell B. Stinchcombe and David M. Drukker

Abstract This chapter gives a geometric representation of a class of nonparametric
regression estimators that includes series expansions (Fourier, wavelet, Tchebyshev,
and others), kernels and other locally weighted regressions, splines, and artificial
neural networks. For any estimator having this geometric representation, there is no
curse of dimensionality—asymptotically, the error goes to 0 at the parametric rate.
Regression efficacy measures the amount of variation in the conditional mean of the
dependent variable, Y , that can be achieved by moving the explanatory variables
across their whole range. The dismally slow, dimension-dependent rates of conver-
gence are calculated using a class of target functions in which efficacy is infinite,
and the analysis allows for the possibility that the dependent variable, Y , may be an
ever-receding target.

1 Introduction

The starting point is a probability space (�,F , P) and an independent and identically
distributed (iid) sequence (Yi , (X1,i , X2,i , . . .))

n
i=1 in L p(�,F , P), p ∈ [1,∞).

Interest centers on estimating the target functions,

fd(x1, . . . , xd) := E (Y |(X1, . . . , Xd) = (x1, . . . , xd)) (1)

from the realization (Yi (ω), (X1,i (ω), . . . , Xd,i (ω)))
n
i=1. This paper provides an

asymptotic analysis of the question, “How large must n be to nonparametrically
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estimate fd(·) to any given degree of precision?” Of particular interest is the relation
between d and n.

1.1 Different Answers

There are, in the literature, two very different answers, the usual one, due to Stone
(1982), is applicable to all nonparametric regression techniques, the second due
to Barron (1993), is applicable to the nonparametric regression technique known
as single-layer feedforward (slff) artificial neural networks (ann’s) with sigmoidal
activation functions.

1. The usual asymptotic analysis yields the following answer: if fd belongs to a
particular dense class, V

Lip
d , then for a desired degree of precision, ε, there is a

constant C , independent of ε, such that n must satisfy n− 1
2+d < Cε. The C may

depend on the distribution of the data and the nonparametric technique. Further,
all nonparametric techniques have this property.

2. The slff ann analysis yields the following answer: if fd belongs to a different
dense class, V

ann
d , then for a desired degree of precision, ε, there is a constant C ,

independent of ε but dependent on d, such that n must satisfy n− 1
2 < Cε. As

above, C may also depend on the distribution governing the data and on the non-
parametric regression technique through the specific choice of sigmoidal activa-
tion function.

If Cε = 1/100 for both approaches, and d is a largish positive integer, say 7, the
usual analysis suggests that one needs 1018 independent observations, not a practical
data requirement, while the ann analysis suggests that one needs but 104 independent
observations, a large but not impractical data requirement. This impracticality is
known as “the curse of dimensionality.”1 It should be noted that the dependence of
C on d in the ann analysis might, in principle, lead to the re-emergence of the curse.
This paper shows that the ann type of analysis can be done with a constant that does
not depend on d for a very wide collection of nonparametric techniques.

1.2 The Source of the Difference

The difference in the two types of analysis arises from different assumptions about
the classes, V

Lip
d ,Vann

d ⊂ L p(�,F , P), containing the target functions fd(·). In
both cases, the assumed classes are dense, and being dense, they are impossible to

1 The immense literature following on Stone’s analysis has expanded the curse results far beyond
his use of the sup norm to include the L p-norms, the Sobolev norms, examined the partial role
that smoothness of the target can play in overcoming the curse, and extended the analysis well
beyond regression problems. Barron worked with single-layer feedforward ann’s, as did Mhaskar
and Michelli (1995) in a slightly different context. Yukich et al. (1995) improved Barron’s result in
several directions, Chen and White (1999) improved it even further, Chen (2007) is a survey.
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reject on the basis of data with smooth measurement error. The regression efficacy of
explanatory variables is the amount by which the conditional mean of Y varies as the
values of (X1, . . . , Xd)move across their range.2 The boundedness/unboundedness
of regression efficacy and the possibility/impossibility of ever-receding targets are
two of the ways in which the classes differ.

1. In the dense class V
Lip
d used in the curse analysis, efficacy is unbounded in

d, the number of explanatory variables. This means that there may infinitely
many groups of explanatory variables, each of them having the same ability
to vary the conditional mean of Y . By contrast, the dense classes used in the
ann analysis have a bound on efficacy that is independent of d. This argument
should not be taken as being a final statement of affairs, although unbounded
regression efficacy is counter-intuitive, we give an example below of a sequence
(Y, (X1, X2, . . . , Xd , Xd+1, . . .)) with efficacy that is unbounded in d.

2. The target functions in (1) above work with a fixed Y , as does the ann analysis.
In particular, this means that there is a fixed joint distribution governing the data.
Implicit in the curse analysis is the possibility that we are varying Y as we vary d—
instead of calculating the errors in our attempts to estimate E (Y |(X1, . . . , Xd)),
we may be calculating the errors in an attempt to estimate E (Yd |(X1, . . . , Xd))

where the sequence Yd may be divergent, i.e., ever-receding.

1.3 Outline

The next section begins with notation, two norms, and the basic implications that
come from breaking up total errors into an approximation errors and estimation
errors. It then explains how the main result of the paper, Theorem 1 yields the result
that the total error is bounded by the estimation error in nonparametric regression.
The two norms are the Lipschitz norm and the efficacy norm, which is a variant
of Arzelá’s multidimensional variation norm.3 The approximation error part of the
curse analysis uses sets of targets functions having uniformly bounded Lipschitz
norm, the approximation error part of the ann analysis uses sets of targets having
uniformly bounded efficacy norm.

The following section gives two kinds of intuition about efficacy. The first has to
do with the change in the amount of ‘information’ contained in (X1, . . . , Xd) and
the amount contained in (X1, . . . , Xd+1). The second compares the implications
of Lipschitz bounds and of efficacy bounds in the special case that the conditional
mean functions are affine and the regressors, (X1, . . . , Xd) are independent. In this
particular case, one can directly see how bounded/unbounded efficacy works, and
how ever-receding targets can arise.

2 From the Oxford English Dictionary, efficacy is the “Power or capacity to produce effects.” While
we think of regression efficacy as causal efficacy, the referee has quite correctly pointed out that
there need not be a causal or even a structural component to efficacy as discussed here.
3 See Adams and Clarkson (1933) for an extensive comparison of the many non-equivalent defini-
tions of bounded variation for functions of two or more variables.
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The penultimate section gives the dimension independent geometric representa-
tion of nonparametric regression estimators, and demonstrates that several of the
well-known estimators have this structure. The last section gives possible extensions
and conclusions.

2 Norms, Density, and Rates

We begin with notation, then turn to the contrasting norms and their basic denseness
property. After this, we turn to the source of the curse results and the contrast with
the ann results.

2.1 Notation

L0 = L0(�,F , P)denotes the set of R-valued random variables, L p = L p(�,F , P)
⊂ L0 the set of random variables with finite p’th norm, p ∈ [1,∞). For any sub-
σ -field G ⊂ F , L0(G) ⊂ L0 is the set of G-measurable random variables and
L p(G) := L p ∩ L0(G).

X = {Xa : a ∈ N} ⊂ L2 denotes the set of possible explanatory variables, Xd

denotes σ(X1, . . . , Xd), the smallest σ -field making X1, . . . , Xd measurable, and
X denotes σ(X), the smallest σ -field making every Xa in X measurable. We assume
that Y ∈ L p for some p ∈ [1,∞) so that the set of all conceivable target functions
is L p(X ). The set of all possible targets based on some finite set of regressors is⋃

d L p(Xd), and this set is dense in L p(X ).

2.2 A Tale of Two Norms

By Doob’s Theorem [e.g. Dellacherie and Meyer (1978, Theorem I.18, p. 12–13)],
L p(Xd) is the set of functions of the form ω �→ g(X1(ω), . . . , Xd(ω)) having finite
p’th moment, g a measurable function from R

d to R.
For each d ∈ N, C(Rd) denotes the set of continuous functions on R

d , and the
obvious extension/restriction identifies C(Rd) with Cd ⊂ C(RN), the elements of
C(RN) that depend on only the first d components, (x1, . . . , xd) of the infinite length
vectors (x1, x2, . . . , xd , xd+1, . . .). For x, y ∈ R

d , ed(x, y) := √
(x − y) · (x − y)

denotes the Euclidean distance between the d-dimensional vectors x and y.

Definition 1 The Lipschitz norm of an fd ∈ C(Rd) is

‖ fd‖Lip = supx∈Rd | fd(x)| + supx 
=y
| fd (x)− fd (y)|

ed (x,y)
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whenever this is finite. The Lipschitz constant of fd is supx 
=y
| fd (x)− fd (y)|

ed (x,y)
.

CLip
d (B) ⊂ C(Rd) denotes the set of fd with Lipschitz norm B or less. A sequence

of functions fd in C(RN) with fd ∈ Cd is uniformly Lipschitz if for some B, each
fd belongs to CLip

d (B).

We will be interested in the maximal total variability in the conditional mean of
Y as the explanatory variables move monotonically across their range. Recall that
the total variation of a function f : R → R is T V ( f ) = sup

∑
i | f (xi+1)− f (xi )|

where the supremum is taken over all finite subsets x1 < x2 < · · · < xI of R. A
wide-sense monotonic path in R

d is a function t �→ x(t) from R to R
d such that for

each i ∈ {1, . . . , d}, the function xi (t) is either non-decreasing or non-increasing.

Definition 2 The monotonic total variation of a function fd ∈ C(Rd) is MTV( f )
= supx T V ( fd ◦ x) where the supremum is taken over wide-sense monotonic paths
in R

d .4 The monotonic total variation norm or efficacy norm is

‖ fd‖MTV = | fd(0)| + MTV( fd)

whenever this is finite. CMTV
d (B) ⊂ C(Rd) denotes the set of fd with monotonic

total variation norm B or less. A sequence of functions fd in C(RN) with fd ∈ Cd

is uniformly efficacy bounded if for some B, each fd belongs to CMTV
d (B).

The range of functions with a Lipschitz constant B grows with d, but not so
quickly as their monotonic total variation.

Example 1 If fd : [−1,+1]d → R belongs to CLip
d (B), then

[
maxx∈[−1,+1]d fd(x)− miny∈[−1,+1]d fd(y)

] ≤ 2B
√

d (2)

because maxx,y∈[−1,+1]d e(x, y) = 2
√

d. By contrast, for fd having Lipschitz con-
stant B, MTV( fd) ≤ 2Bd because the longest monotonic paths in [−1,+1]d are of
length 2d. 5

An implication of the previous example is that the ratio ‖ f ‖MTV/‖ f ‖Lip is
unbounded on those parts of C(RN) for which both norms are finite. The next exam-
ple demonstrates that ‖ f ‖Lip/‖ f ‖MTV is also unbounded.

Example 2 For fd(x) := max{0, 1−ed(x, 0)} and fd,n(x) := 1
n fd(n2x), ‖ fd,n‖Lip

↑ ∞ and ‖ fd,n‖MTV ↓ 0.

Lusin’s theorem and standard approximation results deliver the following.

Lemma 1 If Y ∈ L p(�,F , P), f (x1, x2, . . .) = E (Y |(X1, X2, . . .) = (x1, x2,

. . .)), p ∈ [1,∞) and ε > 0, then there exists g ∈ C(RN) such that ‖ f − g‖p < ε

4 Taking the supremum over the subset of monotonic increasing paths delivers the Arzelá norm.
5 One could reconcile these by replacing e(x, y) by the distance d1(x, y) = ∑

i≤d |xi − yi | in the
definition of Lipschitz functions, but this seems to be contrary to common usage.
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and the sequence gd := E (Y |(X1, . . . , Xd) = (x1, . . . , xd)) is both uniformly
Lipschitz and uniformly efficacy bounded.

2.3 Estimation and Approximation Errors

Reiterating, interest centers on estimating fd(x1, . . . , xd) := E (Y |(X1, . . . , Xd) =
(x1, . . . , xd)) from iid data (Yi , (X1,i , . . . , Xd,i ))

n
i=1 assuming that each fd belongs

to some vector subspace, V
′
d , of Vd := L p(Xd). Let μ be the true joint distribution

of the data and μ̂n(ω) the empirical joint distribution of the data. A sequence of
nonparametric estimators, f̂n , is typically of the form

f̂n = argming∈�κ(n)

[∫
(y − g(x))2 dμ̂n(y, x)

]1/2

(3)

where (�κ)∞κ=1 is a sequence of subsets of V
′
d , κ(n) ↑ ∞ and (�κ)∞κ=1 are chosen

so that f ∈ climinf�κ(n) with probability 1 (where climinf An = {g ∈ V : ∀ε >
0, ‖g − An‖ < ε for all largen} is the closed liminf of a sequence of sets An).

A useful contrast with (3) arises if μ is perfectly known. Define f ∗
κ(n) as

f ∗
κ(n) = arg min

g∈�κ(n)

[∫
(y − g(x))2dμ(y, x)

]1/2

. (4)

The total error, ‖ f̂n − f ‖, can be bounded by the sum of an estimation error, εn ,
and an approximation error, an ,

εn + an := ‖ f̂n − f ∗
κ(n)‖︸ ︷︷ ︸

estimation error

+‖ f ∗
κ(n) − f ‖︸ ︷︷ ︸

approx. error

≥ ‖ f̂n − f ‖. (5)

The larger is �κ(n), the smaller is an . The tradeoff is that a larger �κ(n) leads to
overfitting, which shows up as a larger εn . Most analyses of ‖ f̂n − f ‖ begin with a
dense set, V

′
d ⊂ Vd , of targets. The set V

′
d is chosen so that one can calculate εn(κ)

and an(κ) as functions of κ . With this in place, one then chooses κ(n) to minimize
εn(κ)+ an(κ).

Stone (1982) showed that the “optimal” rate of convergence is rn = n−1/(2+d).
By optimal, Stone meant that if the sequence fd is uniformly Lipschitz, then for any
nonparametric regression technique, any sequence of estimators, f̂n , satisfies

‖ f̂n − f ‖ ≥ OP (n
−1/(2+d)), (6)

and that some sequence satisfies (6) with equality.
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By denseness, no data with smooth measurement error can reject the hypothesis
that fd ∈ CLip

d . It seems that this should make the Lipschitz assumption unobjection-
able, but it is where dimensionality enters. An extremely clear example of how this
works in L2(X ) is Newey (1996). He shows that, if μ satisfies some easy-to-verify
and quite general conditions and the target, f , satisfies the uniform approximation
condition supx infg∈�κ | f (x)− g(x)| = O ( 1

κα

)
, then

‖ f − f̂n‖2 = OP

(
κ
n + 1

κ2α

)
. (7)

Ignoring some of the finer detail, the κ/n term in Newey’s result corresponds to
the square of the estimation error, and the κ−2α to the square of the approximation
error.6 To balance the tradeoffs, one picks κ = κ(n) to minimize κ

n + 1
κ2α .

If f : [−1,+1]d → R has Lipschitz constant B, we must evaluate f at roughly( 2B
ε

)d
(carefully chosen) points to pin down f to within ε at all points in its domain.

For many classes �κ this yields, for every f ∈ CLip
d , supx infg∈�κ | f (x)− g(x)| =

O ( 1
κα

)
with α = 1

d . Minimizing κ
n + 1

κ2/d yields κ = n
d

2+d , evaluating the minimand
at the solution gives the cursed rate from (6),

‖ f − f̂n‖2 = OP

(
κ
n + 1

κ2/d

)
= OP

(
n− 2

2+d

)
, or ‖ f − f̂n‖ = OP

(
n− 1

2+d

)
.

(8)
Artificial neural networks can accurately fit sparse high dimensional data. A the-

oretical basis for this empirical observations was given in Barron (1993). He showed
that for every d, there is a dense set of functions, V

ann
d , depending on the archi-

tecture of the networks, such that for all f ∈ V
ann
d , the following variant of the

uniform approximation condition (7), supx infg∈�κ | f (x) − g(x)| ≤ C(d)
( 1
κα

)
,

is satisfied with α = 1
2 . Ignoring the dependence on d in the constant C(d), we have

‖ f − f̂n‖2 = OP

(
κ
n + 1

κ2α

)
= OP

(
κ
n + 1

κ

)
. Minimizing yields κ(n) = √

n so that

‖ f − f̂n‖2 = O
(

1√
n

)
.

It is in principle possible that d �→ C(d) grows explosively enough to vitiate this
analysis and return us to the curse world. As we will see, this need not happen, either
for ann estimators, nor for any of the other main classes of nonparametric estimators.

Theorem 1 (below) shows that for any estimator having a particular geometric
representation, for any rn converging to 0, no matter how quickly, and any κ(n)
increasing to ∞, no matter how slowly, there exists a dense V

′ ⊂ V for which
the approximation error satisfies an = O(rn). The geometric representation covers
a class of nonparametric regression estimators that includes, but is not limited to,
series expansions (Fourier, wavelet, Tchebyshev and others), kernels and other locally
weighted regressions, splines, wavelets, and artificial neural networks.

Through the following steps, we have dimension independent rates of
convergence: First, pick κ(n) ↑ ∞ in such a fashion that consistency is

6 See his Eq. (A.3), p. 163, for the omitted detail.
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guaranteed, typically this requires κ(n)/n ↓ 0; Second, calculate en = ‖ f̂n − f ∗
κ(n)‖;

Third, invoke Theorem A to guarantee the existence of a dense class of targets,
V

′, such that for all f ∈ V
′, an = ‖ f ∗

κ(n) − f ‖ = O(en). Fourth, observe that

‖ f̂n − f ‖ ≤ en + an = O(en).

3 Intuitions About Efficacy

To gain intuition about bounded/unbounded efficacy, we will first discuss the possible
decrease in the amount of ‘information’ gained about Y in the move from the set of
regressors (X1, . . . , Xd) to the set of (X1, . . . , Xd+1). After this we will specialize
to the case of affine conditional expectations and bounded range, non-degenerate,
independent explanatory vectors (X1, . . . , Xd). Here, one can directly see how ever-
receding targets may arise, and also count the differences in the numbers of regressors
that matter.

3.1 The Information Contained in a Set of Regressors

In general, one does not expect that the Xk should be mutually independent. This
might arise if the Xk are random draws from some larger set of possible explana-
tory variables. We first discuss the intuitions from the case that they arise from iid
draws from L2(�,F , P), then from the case that they arise from processes that are
approximately recurrent.

Let 	(L2(�,F , P)) denote the set of probability distributions on L2(�,F , P),
here viewed as the set of possible explanatory variables. Suppose first that the Xk

are iid draws from some ν ∈ 	(L2), that is, suppose that there is some probability
law generating the regressors from amongst all possible regressors. By the gener-
alized Glivenko–Cantelli theorem, the empirical distribution, νd , of (X1, . . . , Xd)

converges to ν. This means that the additional explanatory power to be gained by
projecting Y onto the span of (X1, . . . , Xd) must be going to 0. Another way to see
how this is operating is to note that the support of any ν must be approximately flat.

Another sort of intuition would come into play if the process generating the Xk had
the property that one long set of regressors, say Xk, . . . , Xk+n1 , contained much the
same information about Y as could be found in Xk′ , . . . , Xk′+n2 , where k′ > k + n1.
Such a situation would arise if e.g., the Xk were drawn according to a smooth Markov
process with a unique ergodic distribution ν. When the random variables Xk and Xk′
are close to each other in L2(�,F , P), then continuity would tend to make the
distribution of the next excursion from the neighborhood containing the two of them
have close to the same distribution. This would mean that we would expect that
the information in Xk′ , . . . , Xk′+n2 that is above and beyond what can be found in
Xk, . . . , Xk+n1 should be small.7

7 I am grateful to Graham Elliot and Jim Hamilton for these points.
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3.2 Affine Conditional Expectations and Iid Regressors

In the case where the regressors are iid and all of the conditional expectations of Y
given X1, . . . , Xd are affine, it is particularly easy to see how the difference between
bounded and unbounded efficacy works, and how ever-receding targets can arise.
For the rest of this section, and only for the rest of this section, we assume that:

(1) the Xk , are mutually independent, take values in [−1,+1], have mean 0, and are
not degenerate in the limit, i.e., lim infk Var(Xk) = σ > 0, and

(2) the condition expectation of Y is an affine function for all d, i.e., fd(x1, . . . , xd) =
E (Y |(X1, . . . , Xd) = (x1, . . . , xd)) is of the form β0 + ∑

a≤d βa xa for some
sequence (βa)a∈N.

In this context, we examine how efficacy interacts with properties of Y ; how the
uniform Lipschitz assumption allows ever-receding targets; and how bounds on the
numbers of important regressors work.

Several of the arguments depend on the three series theorem—if Ra is a sequence
of independent random variables, then the convergence of the three series,

∑
a P

(|Ra | > c),
∑

a E
(
Ra · 1|Ra |≤c

)
, and

∑
a Var

(
Ra · 1|Ra |≤c

)
for some c > 0 implies

that
∑

a Ra converges a.e., and if
∑

a Ra converges a.e., then the three series converge
for all c > 0 [see e.g. Billingsley (2008, p. 290)].

We begin with an elementary result.

Lemma 2 If βa ∈ R, a ∈ {0, 1, . . .} is a sequence in R, then the sequence of affine
function fd = β0 +∑

a≤d βa xa on [−1,+1]d has uniform Lipschitz bound B if and

only if supA⊂N

∑
a∈A |βa | ≤ B

√
# A, and has uniform efficacy bound 2B if and only

if
∑

a |βa | ≤ B.

Proof For any non-empty A ⊂ N, if f is affine and |βa | 
= 0 only for a ∈ A,
then maxx 
=y | f (x)− f (y)|/e(x, y) is

∑
a∈A |βa |/√# A, yielding the first part of the

Lemma. For the second part, note that the monotonic total variation of an affine f
on [−1,+1]d is 2

∑
a≤d |βa |. ��

The condition
∑

a |βa | ≤ B is the crucial part of Tibshirani’s (1996) least absolute
shrinkage and selection operator (lasso) models, and we will examine the connection
in more detail in Sect. 3.4. Somewhat counterintuitively, one can have integrable Y ,
affine conditional expectations, and unbounded efficacy, i.e.,

∑
a |βa | = ∞.

Example 3 Suppose that the Xa are iid and that βa = O ( 1
a

)
. For any c > 0, for

all large a, P(|Ra | > c) = 0. This implies that for large a, E
(
Ra · 1|Ra |≤c

) = 0

and Var
(
Ra · 1|Ra |≤c

) = O
(

1
a2

)
. The requisite three series converge, so Yd :=

β0 + ∑
a≤d βa Xa converges a.e. to some random variable Y . Since the variance of

the Yd is uniformly bounded, the Yd are uniformly integrable, hence Y is integrable.
Thus, conditional expectations can be affine while

∑
a |βa | = ∞.
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3.3 Receding Targets

The affine structure plus the minimal assumptions on Y necessary for the existence
of a target function lead to further restrictions on the βa’s.

Lemma 3 If Y ∈ L1(�,F , P) and E (Y |(X1, . . . , Xd) = (x1, . . . , xd)) = β0 +∑
a≤d βa xa, then

∑
a |βa |2 < ∞.

Since Var(Y ) = E (Var(Y |X1, . . . , Xd)) + Var(E (Y |X1, . . . , Xd)), we know
that the variance of the fd(X1, . . . , Xd) is bounded in d when Y ∈ L2(�,F , P).
A slightly more involved argument yields the same conclusion more generally.

Proof Martingale convergence implies that Yd := E (Y |(X1, . . . , Xd)) → YX :=
E (Y |X ) a.e. If

∑
a |βa |2 diverges, then there exists an increasing sequence 1 =

D1 < D2 < · · · < Dk < · · · such that
∑Dk+1−1

a=Dk
|βa |2 > 2. For every ω for which

Yd(ω) converges, the random variables Rk(ω) := ∑Dk+1−1
a=Dk

βa Xa(ω) must go to 0.
However, for all large k, the variance of Rk is at least 3σ , contradicting the three
series theorem. ��

If Y 
∈ L1(�,F , P), then E (Y |X) does not exist for any random vector X . The
following example gives a uniformly Lipschitz class of affine fd(·)’s for which no
Y ∈ L1(�,F , P) can satisfy E (Y |(X1, . . . , Xd)) = fd(X1, . . . , Xd).

Example 4 If |βa | = 1√
a

, then
∑

a∈A |βa | = O(√# A) so that the sequence

fd = β0 + ∑
a≤d βa xa is uniformly Lipschitz by Lemma 2. Since

∑
a β

2
a diverges,

Lemma 3 implies that there is no Y ∈ L1(�,F , P) having affine conditional expec-
tations fd(x1, . . . , xd) = β0 + ∑

a≤d βa xa .

If we define Yd = β0 + ∑
a≤d βa Xa in Example 4, then, by the three series

theorem, the sequence Yd diverges. The implication is that the Lipschitz worst case
analyses may be based on ever-receding targets, so that, instead of calculating the
errors in our attempts to estimate E (Y |(X1, . . . , Xd)), we may be calculating
the errors in an attempt to estimate E (Yd |(X1, . . . , Xd)) for an ever receding
sequence Yd .

3.4 Number of Regressors Intuitions

The condition
∑

a |βa | ≤ B for uniformly bounded efficacy (Lemma 2) implies
that as the number of regressors grows, the amount by which any further regressors
can affect the conditional mean of Y goes to 0. Another model which suggests this
involves random parameters, and is also related to Tibshirani’s (1996) lasso models.
We will suppose that the βa’s are independent random variables with E |βa | = 1,
scale them as a function of d so that the functions β0 +∑

a≤d βa xa satisfy Lipschitz
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or efficacy bounds, and ask the question, “How many of the d regressors can be
ignored while still making an error of less than ε?”

Satisfying the Lipschitz constraint on average and being requires multiplying
the βa’s by something on the order of 1/

√
d . By contrast, if we bound the causal

efficacy of the explanatory variables, we must multiply the βa’s by something on
the order of 1/d. Let |β|(a) be the a’th order statistic of the |βa |’s. For given d and
ε > 0, let N = N (d, ε) be the largest integer satisfying 1√

d

∑
a≤N E |β|(a) < ε and

M = M(d, ε) the largest satisfying 1
d

∑
a≤M E |β|(a) < ε.

Example 5 If the |βa | are independent exponentials with mean 1, then the difference
between the order statistics, |β|(a+1) − |β|(a), are independent exponentials with
means 1/(d − a) [e.g. Feller (1971, I.6, pp. 19–20)]. From this, N (20, 0.05) = 4
while M(20, 0.05) = 13. On average, 4 of the 20 regressors can be ignored if f has
a Lipschitz constant of 1, while 13 of 20 can be ignored if the monotonic total norm
of f is 1.

Since the βa are multiplied by something going to 0 as d increases, it is their tail
behavior that determines N (d, ε) and M(d, ε) when d is larger. If the tails of the
|βa | are thinner than the exponential tails, e.g. they have Gaussian tails, then even
fewer of the regressors matter, both N and M are smaller. For some tail behaviors,
the ratios N/d and M/d go to 0 at different rates as d ↑ ∞.

The dimension dependent growth of total efficacy is behind the slower rates of
convergence in higher dimensions. Here, variation of the distributional assumptions
about the regression coefficients shows that this may not be the relevant approxima-
tion. One suspects that in many empirical situations, the total efficacy is often small
relative to d because relatively few regressors turn out to matter very much. This is
behind the success of Tibshirani’s (1996) lasso models, and, as part of an extended
comparison of parametric and nonparametric methods, Breiman (2001) discusses
several general classes of high-dimensional situations in which this kind of ratio
result holds.

4 The Geometry of Dimension Independent Rates

The previous section strongly suggests that the rate of convergence analyses of non-
parametric regression should focus on efficacy bounded classes of functions rather
than the efficacy unbounded class of Lipschitz functions. The result in this section
goes further, and gives a unified, dimension-independent, geometric representation
of a class of nonparametric regression estimators that includes, but is not limited
to, series expansions (Fourier, wavelet, Tchebyshev, and others), kernels and other
locally weighted regressions, splines, wavelets, and artificial neural networks. The
geometric representation allows one to identify, for each of these regression tech-
niques, classes that function as Barron’s efficacy bounded class, V

ann
d .
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4.1 Spaces of Targets

Let μ denote the distribution of (Y, (X1, . . . , Xd)) in R
1+d and μX the (marginal)

distribution of the explanatory variables, (X1, . . . , Xd). The target function is x �→
f (x) := E (Y |X = x) from the support of μX to R. Throughout, the target is
assumed to belong to a space of functions V ⊂ L p(Rd , μX ) for some p ∈ [1,∞)

endowed with a norm that makes it a separable, infinite dimensional Banach space
such as the following.

(1) V = L2(Rd , μX ), typically used in Fourier series analysis, wavelets, and other
orthogonal series expansions.

(2) V = L p(Rd , μX ) spaces, p ∈ [1,∞), typically used when higher (or lower)
moment assumptions are appropriate.

(3) V = C(D), the continuous functions on a compact domain D ⊂ R
d satisfying

μX (D) = 1, with norm ‖ f ‖∞ := maxx∈D | f (x)|.
(4) V = Cm(D), the space of m-times continuously differentiable functions, m ∈ N,

on a compact domain D having a smooth boundary and satisfying μX (D) = 1,
with norm supx∈D

∑
|α|≤m |Dα f (x)|, typically used when smoothness of the

target is an appropriate assumption.8

(5) V = Sm,p(Rd , μX ), p ∈ [1,∞), the Sobolev spaces, defined as the completion
of the set Cm,p(Rd , μX ), the m-times continuously differentiable functions on

R
d , with norm ‖ f ‖ = ∑

|α|≤m

[∫ |Dα f (x)|p dμX (x)
] 1

p < ∞, are typically
used when approximation of a function and its derivatives rather than uniform
approximation is appropriate.

The sets CLip
d , CMTV

d , and CLip
d ∩ CMTV

d are dense in all of these spaces. They are
also negligible in a sense to be made clear below.

4.2 Compactly Generated Two-Way Cones

An estimator of an f ∈ V is a sequence of functions f̂n ∈ V where each f̂n depends
on the data (Yi (ω), (X1,i (ω), . . . , Xd,i (ω)))

n
i=1. For the nonparametric techniques

studied here, the f̂n are of the form f̂n(x) = ∑
k βkck(x) where βk ∈ R and ck ∈ V.

What varies among the estimators are the functions ck , the number of terms in the
summation, and the dependence of both on ω. The geometry that is common to
nonparametric regression estimators is that there is a sequence, Cκ(n) = Cκ(n)(ω) ⊂
V of compactly generated two-way cones with the property that f̂n ∈ Cκ(n).

U = { f ∈ V : ‖ f ‖ < 1} denotes the unit ball in V, its closure is U , and
∂U = { f ∈ V : ‖ f ‖ = 1} is its boundary. For E ⊂ V, sp E is the span of E , that is
the set of all finite linear combinations of elements of E , and sp E is the closure of
the span of E .

8 Here, α is a multi-index, α = (α1, . . . , αd ), αi ∈ {0, 1, . . .}, and |α| := ∑
i αi .
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For S ⊂ R, S · E := {s · f : f ∈ E, s ∈ S} is the set of scalar multiples of
elements of E with scalars belonging to S. It is worth noting that in the following
definition, a cone need not be convex, e.g., the non-negative axes in R

d are a cone,
and that a two-way cone may contain linear subspaces.

Definition 3 A set F ⊂ V is a cone if F = R+ · F , that is, if F is closed under
multiplication by non-negative scalars. A set C ⊂ V is a two-way cone if C = R·C .
A two-way cone is compactly generated if there exists a compact E ⊂ U , 0 
∈ E ,
such that C = R · E .

4.3 Examples

We turn to examples of commonly used nonparametric estimators that belong to
sequences of compactly generated two-way cones. Series estimators (Fourier series,
wavelets, splines, and the various polynomial schemes), as well as broad classes
of artificial neural network estimators belong to nested sequences of compactly
generated two-way cones. Kernel estimators and other locally weighted regression
schemes on compact domains belong to a non-nested sequence of compactly gener-
ated two-way cones. Throughout, it is important to note that the sequence of cones
will often depend not only on n, the number of data points, but on ω through the
data, (Yi (ω), (X1,i (ω), . . . , Xd,i (ω)))

n
i=1.

4.3.1 Series Estimators

Fourier series, wavelets, splines, and the various polynomial schemes specify a count-
able set E = {ek : k ∈ N} ⊂ ∂U with the property that sp E = V. Descriptions
of the specific ek for Fourier series, for the various polynomial schemes, and for
wavelets are widely available. The estimator based on n data points, f̂n , is a function
of the form

f̂n(x) =
∑

k≤κ(n)
β̂kek(x). (9)

The dependence on ω arises because the function is chosen to best fit the data.
The estimators f̂n belong to Cκ(n) := sp {e1, . . . , eκ(n)}. Being a finite dimension
subspace of V, each Cκ(n) is a compactly generated two-way cone, e.g. generated by
sp {e1, . . . , eκ(n)} ∩ ∂U .

Since sp E = V, having limn κ(n) = ∞ guarantees that the f̂n can approximate
any function. To avoid overfitting and its implied biases, not letting κ(n) go to infinity
too quickly, e.g. κ(n)/n → 0 guarantees consistency. If κ(n) → ∞ is regarded a
sequence of parameters to be estimated e.g., by cross-validation, then κ(n) also
depends on ω, which yields the random sequence ω �→ Cκ(n)(ω).
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4.3.2 Kernel and Locally Weighted Regression Estimators

Kernel estimators for functions on a compact domain typically begin with a function
K : R → R, supported (i.e., non-zero) only on [−1,+1], having its maximum at 0
and satisfying three integral conditions:

∫ +1
−1 K (u) du = 1,

∫ +1
−1 uK (u) du = 0, and∫ +1

−1 u2 K (u) du 
= 0. Univariate kernel regression functions are (often) of the form

f̂n(x) =
n∑

i=1
β̂ig(x|Xi , hn) =

n∑
i=1

β̂i K
(

1
hn
(x − Xi )

)
. (10)

Here, κ(n) = n and Cκ(n)(ω) = sp {K ( 1
hn
(x − Xi (ω)) : i = 1, . . . , n}.

When the kernel function, K (·), is smooth and its derivatives satisfy lim|u|→1 K (α)

(u) = 0, and the Xi belong to a compact domain, D, the estimator f̂n belongs to
Cm(D) for any m, and the Cm(D)-norm or one of the S p

m-norms might be used. If
the kernel function, K (·), function is continuous but not smooth, the f̂n belong to
Cb(R), hence to L p(R, μX ). For any compact D ⊂ R, the restrictions of the f̂n to
D belong to C(D).

In all of these cases, the n-data points, Xi , i = 1, . . . , n, and the window-size
parameter hn , define n non-zero functions, g(·|θi,n), θi,n = (Xi , hn). The estimator,
f̂n , belongs to the span of these n functions. As established above, the span of a finite
set of non-zero functions is a compactly generated two-way cone.

The considerations for choosing the window-sizes, hn , parallel those for choosing
the κ(n) in the series expansions. They can be chosen, either deterministically or
by cross-validation, so that hn → 0, to guarantee that the kernel estimators can
approximate any function, but not too quickly, so as to avoid overfitting.

The considerations for multivariate kernel regression functions are almost entirely
analogous. These estimators are often of the form

f̂n(x) =
n∑

i=1

β̂ig(x|Xi , hn) =
n∑

i=1

β̂i K

(
1

hn
‖x − Xi‖

)
(11)

where hn ↓ 0 and the Xi are points in the compact domain D ⊂ R
d .

Locally weighted linear/polynomial regressions have different gi (·|θi,n), see e.g.,
Stone (1982). In all of these cases, when the domain is compact, so are the sets
of possible parameters for the functions gi , and the mapping from parameters to
functions is continuous. This again implies that the f̂n belong to the span of a finite
(hence compact) set not containing 0.

4.3.3 Artificial Neural Networks

Single hidden layer feedforward (slff) estimators with activation function g : R → R

often take E ⊂ V as E = {x �→ g(γ ′ x̃) : γ ∈ �}. Here x ∈ R
d , x̃ ′ := (1, x ′)′ ∈
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R
d+1, and� is a compact subset of R

d+1 with non-empty interior. The slff estimators
are functions of the form

f̂n(x) =
∑

k≤κ(n)
β̂kg(γ̂

′
k x̃), (12)

where the γ̂k belongs to �. Specifically, Cκ(n) = {∑k≤κ(n) βkck : ck ∈ E} is the
compactly generated two-way cone of slff estimators.

If κ(n) → ∞, κ(n)/n → 0, and sp E = V, then the total error goes to 0.
Various sufficient conditions on g that guarantee sp E = V with compact � in the
Banach spaces listed above are given in Hornik et al. (1989, 1990), Stinchcombe and
White (1990, 1998), Hornik (1993), Stinchcombe (1999). Also as above, κ(n) may
be regarded as a parameter, estimated by cross-validation.

When g is continuous and � is compact, then E is a compact subset of C(D)
for any compact D ⊂ R

d . When g is bounded, as is essentially always assumed,
E is a compact subset of L p(Rd , μX ) for any p ∈ [1,∞). When g is bounded and
measurable, as in the case of the frequently used ‘hard limiter,’ g(x) = 1[0,∞)(x),
and μX has a density with respect to Lebesgue measure, E is a compact subset of
L p(Rd , μX ), p ∈ [1,∞). When g is smooth, e.g., the ubiquitous logistic case of
g(x) = ex/(1 + ex ), and � compact, then E is a compact subset of Cm(D), and
of S p

m(R
d , μX ) for any m and any p ∈ [1,∞).

Aside from notational complexity, essentially the same analysis shows that mul-
tiple hidden layer feedforward networks output functions are also expressible as the
elements of the span of a compact set E .9

Radial basis network estimators most often take En to be a set of the form En =
{x �→ g( 1

λn
(x − γ )′�(x − γ )) : γ ∈ �, λn ≥ λn}, � a compact subset of R

d

containing the domain,� a fixed positive definite matrix, λn ↓ 0 but not too quickly,
g a continuous function. The estimators are functions of the form

f̂n(x) =
∑

k≤κ(n)
β̂kg(γ̂

′
k x̃), (13)

The continuity of g implies that the En have compact closure. For the common
choices of g in the literature, g(0) 
= 0 so that 0 
∈ En .

4.4 Rates and Consistency

In the examples just given, the sequence of compactly generated two-way cones
become dense, and may be either deterministic or random. The cones becoming
dense is consistency.

9 Consistency issues for multiple layer feedforward networks are addressed in the approximation
theorems of Hornik et al. (1989, 1990), and Hornik (1993).
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Definition 4 A random sequence of compactly generated two-way cones, ω �→
Cκ(n)(ω), is consistent if for all g ∈ V, P(∪N ∩n≥N [d(g,Cκ(n)(·)) < ε]) = 1.

4.5 Results

For any sequence of sets, Bn , [Bn i.o.] := ⋂
m

⋃
n≥m Bn is read as “Bn infinitely

often,” while [Bn a.a.] := ⋃
m

⋂
n≥m Bn is read as “Bn almost always.” For a com-

pactly generated two-way cone, C , of estimators, and r > 0, the set C + r · U is the
set of all targets that are within r of set of estimators contained in C . Consistency
can be rewritten as “for all ε > 0, P([Cκ(n) + ε · U a.a.] = V) = 1.” Of particular
interest will be sets of the form [Cκ(n) + rn · U a.a.] where rn → 0 and Cκ(n) is a
sequence of compactly generated two-way cones.

This section proves Lemmas 4 and 5, which yield the following.

Theorem 1 For any consistent nonparametric regression technique with estimators
belonging to a sequence, Cκ(n), of compactly generated two-way cones, and for any
rn → 0, a dense, shy set of targets can be approximated at the rate O(rn).

“Shyness” is defined below, and provides useful information about the sets of
targets. Within the Banach spaces of functions listed above (and many others), CLip

d
and CMTV

d form dense, shy sets of functions, as does their intersection.
For M ∈ N, define AM

n := Cκ(n) + Mrn · U . Fix a sequence of sets of estimators
Cκ(n). For g ∈ V, there exists a subsequence, n′, such that d(g,Cn′) = O(rn′) if and
only if g ∈ [AM

n i.o.] for some M ∈ N. If we do not allow subsequences, we have
d(g,Cn) = O(rn) if and only if g ∈ [AM

n a.a.] for some M .

Definition 5 The set of O(rn)-accumulatable targets is ∪M [AM
n i.o.], and the set

of O(rn)-approximable targets is T (rn) := ∪M [AM
n a.a.].

Lemma 4 P(T (rn) is dense ) = 1 if and only if the Cκ(n) are consistent.

Proof Suppose that Cκ(n) is consistent. Let G = {g j : j ∈ N} be a dense subset of V.
Define Bm

j = ∪N ∩n≥N [(g j + 1
m · U ) ∩ (Cκ(n)(ω)+ rn · U ) 
= ∅]. Since the Cκ(n)

are consistent, P(Bm
j ) = 1. Therefore, P(∩m, j Bm

j ) = 1. Finally, the event that
d(g j , T (rn)) < 1/m for every m contains ∩m, j Bm

j .
Suppose now that Cκ(n) is not consistent, i.e., there exists g ∈ V and ε > 0 such

that P([d(g,Cκ(n)) < ε a.a.]) < 1, equivalently, P([d(g,Cκ(n)) ≥ ε i.o.]) > 0. For
all M , Mrn < ε for all but finitely many n. Therefore, P(T (rn)∩(g+ε ·U ) = ∅) > 0.
That is, the probability that T (rn) is dense is less than 1. ��

The Lipschitz functions and the functions with bounded efficacy satisfy the fol-
lowing notion of a negligible subset of an infinite dimensional space.10

10 There are several related notions of negligible sets in infinite dimensional spaces, detailed in
Benyamini and Lindenstrauss (2000, Chap. 6). Anderson and Zame’s (2001) cover some of the uses
of shy (Haar null) sets in economic theory, and greatly extend the applicability of the notion.
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Definition 6 A subset S of a universally measurable S′ ⊂ V is shy or Haar null
if there exists a compactly supported probability η such that η(S′ + g) = 0 for all
g ∈ V.

Lemma 5 If rn goes to 0 more slowly than r ′
n, then T (rn) \ T (r ′

n) is shy.

For ease of later reference, we separately record the following easy observation.

Lemma 6 If C is a compactly generated two-way cone, then it is closed, has empty
interior, and C ∩ F is compact for every closed, norm bounded F.

Proof of Lemma 5 It is sufficient to show that the set of O(rn)-accumulatable targets
is shy because T (rn) = ∪M [AM

n a.a.] ⊂ ∪M [AM
n i.o.], and any subset of a shy set is

shy.
A set F ⊂ V is approximately flat if for every ε > 0, there is a finite dimensional

subspace W of V such that F ⊂ W +ε ·U . Every compact set is approximately flat—
let Fε be a finite ε-net and take W = sp Fε . From Stinchcombe (2001, Lemma 1),
for any sequence Fn of approximately flat sets, [(Fn + rn · U ) i.o.] is shy. Since the
countable union of shy sets is shy, ∪M [(Fn + Mrn · U ) i.o.] is shy.

Fix arbitrary R > 0. It is sufficient to prove that (R · U ) ∩ [AM
n i.o.] is shy. Fix

arbitrary η > 0. R · U is a subset of the closed, norm bounded set R · (1 + η)U .
By Lemma 6, the set Fn = Cn ∩ (R · (1 + η)U ) is compact. Since compact sets
are approximately flat, S = [(Fn + Mrn · U ) i.o.] is shy. Since rn → 0 and η > 0,
[(R · U ) ∩ [AM

n i.o.]] ⊂ S. ��
Proof of Theorem 1 Lemma 4 shows that consistency of the nonparametric regres-
sion technique with estimators given by a sequence Cκ(n) of compactly generated
two-way cones and denseness of T (rn) are equivalent. Lemma 5 shows that T (rn)

is shy. ��

5 Conclusions and Complements

Most of the analyses of the rates of convergence for nonparametric regression
arrive at dismal results with even a moderate number of regressors. The key assump-
tion driving these results is that the target function, f (x1, . . . , xd) = E(Y |(X1, . . . ,

Xd) = (x1, . . . , xd)) is uniformly Lipschitz. This assumption can never be rejected
by data. Replacing the Lipschitz functions by sets of functions sharing this unre-
jectability shows that the order of the rate of convergence is given by the order of the
estimation error, that dimension-dependent approximation error need play no role.

Examples suggest that dimension dependence of the complexity of a regression
function is more tightly tied to its monotonic total variation than to any measure
of its smoothness. These examples also demonstrate that how the variation depends
on the dimensionality may vary from one set of problems or distribution over prob-
lems to another. Experience suggests that the variation, both in linear and nonlinear
regression, is often small.
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Together, the results and examples suggest that rates of convergence calculated
using Lipschitz functions are misleading, that what matters is some measure of
variability. This puts correspondingly more weight on the criteria of interpretability
and generalization for the judging competing nonparametric approaches.

There are a number of subsidiary points to be made.

5.1 Comparison and Estimation of Dense Sets

As well as comparing T (rn) and T (r ′
n) for the same nonparametric regression tech-

nique, one can also compare these sets across regression techniques. For example,
Barron (1993) fixes a pair of rates, rn and r ′

n with r ′
n = o(rn), and shows that for

the ann techniques that he considers, Tann(r ′
n) cannot be approximated by any series

expansion at a rate rn . Reversing his example in L2 requires a permutation of the
basis elements, and gives rise to a set Tseries(r ′

n) that cannot be approximated by any
variant of his ann technique at a rate rn .

This seems to be part of a more general pattern. Pick a pair of sequences rn, r ′
n

with r ′
n = o(rn). From Lemma 4, T (rn) \ T (r ′

n) and T (r ′
n) are disjoint, dense

sets of nonparametric targets. We conjecture that for generic pairs of sequences,
C1,κ(n) and C2,κ ′(n), of compactly generated two-way cones, T1(r ′

n) \ T2(rn) 
= ∅
and T2(r ′

n) \ T1(rn) 
= ∅.
As has been noted, with smooth classical measurement error (or with errors in

variables), it is not possible to reject (say) HEff : fd is uniformly efficacy bounded in
favor of the larger alternative hypothesis, HLip : fd is uniformly Lipschitz bounded.
If one could estimate Lipschitz or efficacy norms, then in principle one could test
the alternative hypotheses against each other, but this estimation problem seems
extraordinarily difficult.

5.2 Comparisons Across Rates

If rn and r ′
n both go to 0 but rn goes more slowly, then the dense class T (rn) is larger

than the dense class T (r ′
n). Lemma 5 shows that the difference between the sets,

T (rn) \ T (r ′
n), is shy. Shy subsets are an infinite dimensional extension of the finite

dimensional Lebesgue null set notion non-genericity. This gives partial information
about the size of the difference between the two sets. It is only partial information
because the proof simply shows that the larger of the two sets is Haar null, and any
subset of a null set is a null set. Two points:

(1) Much to be desired is an improvement on this partial result. Something that
would, despite the impossibility of data ever distinguishing between the dense
sets, allow one to distinguish, at least theoretically, more finely between sets
of targets T (rn) and T (r ′

n). However, Lemma 5 shows that trying to resurrect
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the curse of dimensionality in rates of convergence requires one to say that one
non-generic dense set of functions is clearly preferable to another non-generic
dense set of functions, and that it’s preferable because it yields worse results.

(2) For finite dimensional parametric estimation, superefficiency can happen on
Lebesgue null sets [e.g. Lehmann and Casella (1998), Chap. 6.2)]. For infinite
dimensional nonparametric estimation, Brown et al. (1997) show that it can
happen “everywhere,” that is, at all points in the dense sets of targets T (rn) that
are typically used. It seems that behind this result is the same approximately-
flat-but-not-flat infinite dimensional geometry that yields the denseness of the
T (rn) classes.11

5.3 Smoothness

Another aspect of the work on the curse rates of approximation is that smoother
targets lead to faster approximation. For example, if the target f is assumed to
have s continuous derivatives, and these derivatives are Lipschitz, then Stone’s rate
of approximation is increased to OP (n−1/(2+[d/s])). The dense classes, Vann, in the
dimension independent ann rate of approximation work are defined by an integrability
condition on various transforms of the gradient of the target. Niyogi and Girosi (1999)
note that this suggests that s = s(d) in such a fashion that [d/s] stays small for the
Vann and d increases.

One might guess that something similar is at work in the classes T (rn) that are
analyzed here. However, this kind of smoothness argument is problematic for three
separate kinds of reasons. First, for many classes of ann’s, the dense set of targets are
not only infinitely smooth, they are analytic. It is hard to see how smoothness could
vary with dimension in this context. Second, for many other classes of ann’s, the dense
set of targets contain discontinuous functions, and smoothness cannot enter. Finally,
the work here provides a plethora of dense classes for which the dimensionality of the
regressors plays no role, and it seems unlikely that there is some special smoothness
structure common to the different dense sets that work for the different techniques.

5.4 More on Negligible Sets

By definition, S is shy if and only if η(S + g) is shy for all g and some compactly
supported probability η. If V = R

k , the finite dimensional case here ruled out by
assumption, one can take η to be the uniform distribution on [0, 1]k and show that S
is shy if and only if it is a Lebesgue null set if and only if for every non-degenerate
Gaussian distribution ν, ν(S) = 0. Stinchcombe (2001) showed that there is no
similar comfortable Bayesian interpretation of shy sets in the infinite dimensional

11 I am grateful to Xiaohong Chen and Jinyong Hahn for these last two points.
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contexts studied here. The complement of a shy set is a prevalent set. Other relevant
properties of this class of shy sets are:

(1) shy sets have no interior so that prevalent sets are dense;
(2) the countable union of shy sets is shy, equivalently the countable intersection of

prevalent sets is prevalent; and
(3) if V is infinite dimensional if and only if compact sets are shy.

Lemmas 5 and Theorem 1 used shy sets. These results would not hold if we
replaced shy sets with the original, more restrictive, class of infinite dimensional
null sets due to Aronszajn (1976). These are now called Gauss null sets because
Aronszajn’s definition is now known to be equivalent to the following: S is Gauss
null if and only if for every non-degenerate Gaussian distribution, ν, on V, ν(S) = 0
(see Benyamini and Lindenstrauss 2000, Chap. 6). Every Gauss null set is shy, but
the reverse is not true. It can be shown that the sets ∪nCκ(n) of estimators are Gauss
null, but not that [Cκ(n) + rn · U a.a.] is not.

5.5 Possible Extensions and Generalizations

There are several additional points to be made.

1. One can think of the analysis of affine conditional means with independent regres-
sors of Sect. 3 as a very special class of parametrized models. Suppose, more
generally, that Cκ is smoothly parametrized by a κ-dimensional vector with κ
fixed. Standard results imply that ‖ f̂n − f ∗

κ ‖ = εκ,n = O(n−1/2). If instead of
being fixed, we let κ depend on d and on n. If κ(d, n) ↑ ∞, as required for
consistency, but κ(d, n) grows very slowly, then the n−1/2 rate of approximation
slows as little as one desires.

2. If the data is not iid but has some time series structure, one expects that the
estimation error in (5) will not be O(n−1/2) for fixed κ , but something slower.
Again, since Lemmas 4 and 5 concern approximation error, total error for the
nonparametric regressions covered here would also go to 0 at this ineluctably
slower rate if we were outside of the iid case.

3. It is hard to imagine nonparametric techniques with estimators that do not belong
to a sequence of compactly generated two-way cones. For example, in the above
discussion of the locally weighted regression schemes and the artificial neural
network estimators, we made use of compact domain assumptions to ease the
exposition, and this led to the compactly generated conclusion. However, since
the distribution of the data is tight, one can replace the compact domains with
a sequence of compact domains having the property that with probability 1, the
estimators belong to the associated sequence of compactly generated two-way
cones.
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4. The proof of Lemma 4 can be easily adapted to show that consistency is equivalent
to T (rn) containing a dense linear subspace of V with probability 1. Cohen et al.
(2001) characterize some of these dense linear subspaces for wavelet expansions.

5. All of the above has been phrased as regression analysis of conditional means.
Since Lemmas 4 and 5 concern the approximation error, one could also, with
essentially no changes, consider, e.g., conditional quantile regression and/or loss
functions other than mean squared loss. At whatever rate the estimation error goes
to 0, there is a dense class of nonparametric targets with the approximation error
going to 0 at the same rate.

6. The use of Banach spaces for the set of targets is not crucial. The compactly
generated assumption must be slightly modified in locally convex, complete,
separable, metric vector spaces, but the main result driving the shyness proofs is
Stinchcombe (2001, Lemma 1), which applies in such spaces. For example, one
could take V = C(Rd)with the topology of uniform convergence on compact sets,
or any other of the other Frechet spaces that appear in nonparametric regression
analyses.

7. It is a reasonable conjecture that the same results hold for density estimation
as hold for regression analysis. Following Davidson and McKinnon (1987), the
target densities can be modeled as points in a convex subset of the positive orthant
in a Hilbert space. Lemma 4 should go through fairly easily, but Lemma 5 may
be more difficult. The shyness argument requires extending Stinchcombe (2001,
Lemma 1) to Anderson and Zame’s (2001) relatively shy sets.

8. It can be shown that if C is a compactly generated two-way cone, then the open
set C + U is not dense in V. The role of the compact set E not containing 0 in
the definition of compactly generated cones can be seen in the following, which
should be compared to Lemma 6.

Example 6 If xn is a countable dense subset of ∂U and E is the closure of {xn/n :
n ∈ N}, then E is a compact subset of the closed, norm bounded set U . However, the
two-way cone R · E is not compactly generated, not closed, and is dense, so that R ·
E + ε · U = V for any ε > 0.

5.6 Studying the Difficulty of Nonparametric Problems

Finally, some rather preliminary simulation data suggest that it is possible to charac-
terize the difficulty of nonparametric problems by studying when the root-n consis-
tency “kicks in.” More specifically, let d be the number of regressors and let n(d) be
the number of data points beyond which the root-n asymptotics provide a reasonable
guide. The higher is the function d �→ n(d), the more difficult the problem. The fact
of being uniformly higher for many different nonparametric techniques constitutes
a strong indication that the problem is considerably more difficult. We leave this for
future research.
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