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Editor’s Introduction

With profound sadness, we are forced to note that Hal White passed away during
the publication of this volume, at age 61. This Festschrift, thus, now honors both
his academic prowess as well as his memory. During Hal’s short stay on this earth,
he touched so many lives in so many wonderful ways that it is impossible to
enumerate all of them. All of those of us who know Hal have many stories to tell
of how he has shaped our lives, both in academic and non-academic ways. Hal was
always cheerful, intellectually curious, insightful, resourceful, considerate, toler-
ant, humble, hard-working, well spoken, efficient, engaging, encouraging and
energizing. He truly loved and enjoyed everything he did, from teaching and
researching, to working on government “think tank” projects and consulting
projects of all types; and of course to playing his trumpets. His zest for life was
extremely contagious. He gave of himself freely and in some sense with abandon,
spearheading literally hundreds of path-breaking research projects in economet-
rics, financial economics, forecasting, labor economics, causality, law and eco-
nomics, neural networks, and biostatistics. Hal was always optimistic and never
complained about anything. He cared about doing things that would uplift others’
spirits, too. He loved his family dearly, and treated all with a kindness not often
seen. His work ethic was un-paralleled. Once, Norm was surprised to find, upon
meeting Hal at 8am one morning to discuss research, that he had already, that day,
written undergraduate and graduate lectures, worked on his new book, thought
about and worked on research, and gone to the gym. He was one of the best
undergraduate and graduate teachers we have ever known. He was the only
undergraduate statistics/econometrics teacher we know of that was given a
spontaneous standing ovation by more than 100 students at the end of a quarter’s
teaching introductory statistics. His exceptional graduate lectures resulted in so
many of us pursuing careers in econometrics that we number in hundreds. Hal was
extremely smart and knowledgeable, even brilliant, yet he never laughed at any
naive and sometimes stupid questions and comments from his students. He was
always patient with his students. He believed in us and encouraged us even though
some of us had no clue what we were doing or saying. Xiaohong still remembers
vividly that, instead of trying to understand Hal’s papers, she told him that his
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econometrics papers were boring and that some papers on bounded rationality in
decision and game theories were much more interesting. To her surprise, Hal did
not get angry but replied that he would be happy to supervise her even if she
wanted to work on topics in microeconomics. Without Hal’s guidance and
encouragement, many of us would not have been enjoying our professional lives
now.

Hal was not just a renaissance man, but so much more.

Dearly missed by all who have had the good fortune and pleasure to have
known and interacted with him.

Xiaohong Chen and Norm Swanson—April 2012

This volume gathers together 20 original research papers which were presented
at the conference in honor of the pre-eminent econometrician from the University
of California, San Diego, Halbert L. White, organized on the occasion of his
sixtieth birthday, and entitled Causality, Prediction, and Specification Analysis:
Recent Advances and Future Directions. The conference was held at the Rady
School of Management on the UCSD campus during May 6-7, 2011. The con-
ference was attended by over 100 co-authors, colleagues, and students of White.




Editor’s Introduction vii

There is little doubt that Hal White has been one of the most important researchers
in econometric theory and in econometrics in general, over the last 35 years. There
are many ways of measuring the role that he has played in the profession, and the
impact that he has had on research. For example, A Heteroskedasticity-Consistent
Covariance Matrix Estimator and a Direct Test for Heteroskedasticity (Econome-
trica, 1980), also often referred to as the “White Standard Error” paper, had 5738
citations on the Web of Science in one recent count, and is thus one of the most highly
cited papers ever, both in econometrics and in the entire field of economics. Other
seminal papers in econometrics have much lower citation numbers, which indicates
the broad impact of White’s work in economics in general.

According to one recent count, White had more than 130 full-length articles
spanning all of the very top journals in economics, statistics, and finance. He has
also written three seminal books in econometrics, and has edited more than 10
other volumes. His research has had a major impact not only in econometrics and
in economics, but also in statistics, finance, and in computer and cognitive science;
and in recent years his work has also had an impact even in medicine and the
natural sciences. For example, his seminal paper on artificial neural networks (joint
with Kurt Hornik and Max Stinchcombe) entitled Multilayer Feedforward Net-
works are Universal Approximators (Neural Networks, 1989) has 3862 Web of
Science citations. He even has an article recently appearing in the Michigan Law
Review. This multi-discliplinary diversity is indeed a characteristic unique to Hal.

In various discussions, Hal has recounted some details from his “early years”.

I was born and raised in Kansas City, MO, where I attended Southwest High,
graduating in 1968. There, I was salutatorian, having gotten edged out from
the valedictorian spot by a few thousandths of a GPA point. If I had been
smart enough not to take orchestra for credit, I could have been valedictorian,
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but since the valedictorian was smart enough to not do that (damned clarinet
players!) I always figured she deserved it.

I applied to Harvard and Princeton for college and got rejected from
Harvard. Later, when I was deciding whether to stay at Rochester or move, I
ended up choosing the UCSD offer over that from Harvard, but not because
of my undergrad admission experience. Like Groucho Marx, I apparently
wouldn’t want to belong to an organization that would admit someone like
me (except in California).

Luckily, Princeton accepted me, and I was thrilled to go there, expecting
to be a physics major. One problem: I couldn’t understand physics to save
my life. The only way I made it through physics to satisfy my science
requirement was extensive tutoring by Vince Crawford, who was my hall-
mate (Dod Hall) freshman year. By second semester sophomore year, I had
decided economics was much more interesting and doable, and I was for-
tunate in having great professors, among them Steven Goldfeld, Richard
Quandt, Gregory Chow, Ray Fair, William Branson, George DeMenil, Orley
Ashenfelter, Dan Hamermesh, and my senior thesis advisor, Alan Blinder.
Alan was a new assistant professor then, fresh out of MIT.

At Princeton, I played my trumpet in the marching band, the orchestra
(but not for credit), and the Triangle Club, plus a wide variety of student
groups: a brass quintet, several big band jazz groups, and various soul/
rhythm and blues bands, including The Nassau Brothers Soul Revue. This
time I did manage to grab the valedictorian spot, although at Princeton, this
is not determined by GPA, but by departmental nomination and election by
the faculty.

Given the large number of my professors who came from MIT, that
seemed to be the place to go next. So there I went in the Fall of 1972, along
with Vince Crawford. My class at MIT has turned out to be quite distin-
guished, containing not only Vince, but also UCSD’s Roger Gordon, who
was my office mate in an office around the corner from Fisher Black and
Robert Merton. Our office had no windows, but housed both of us (as well as
Zvi Bodie), and gusts of sticky black soot would periodically blow out of the
air vent. My illustrious classmates also include Peter Berck, Glenn Loury,
Steven Sheffrin, Stephen Figlewski, Allan Drazen, Mario Draghi, Jeff Perl-
off, and Dennis Carlton. It was at MIT that I unknowingly established a later
claim to fame by grading the homework of both Ben Bernanke and Paul
Krugman as a TA for Jerry Hausman’s econometrics classes. No surprise—
they both did well. Frequently, I could use Bernanke’s homework as an
answer key!

Of course, the faculty at MIT while I was in grad school were stunning:
Paul Samuelson, Robert Solow, Evsey Domar, Jagdish Bhagwati, Franco
Modigliani, Charles Kindleberger, Frank Fisher, Peter Temin, Stan Fisher,
Rudy Dornbusch, Hal Varian, Robert Hall, and very notably Rob Engle, a
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newly minted Ph.D. from Cornell, and a young Jerry Hausman, fresh out of
Oxford.

I had somewhat of a hard time finding a thesis advisor to supervise my
dissertation in labor economics, but eventually I knocked on the right door—
Jerry’s—and found the best advisor a young grad student could hope for.
Jerry was always available and encouraging and provided ways forward
whenever I hit what seemed to me to be a hopeless roadblock. My disser-
tation committee also included Lester Thurow (with whom I published my
first Econometrica article, in international trade in 1976) and Bob Solow.

My job market experience in 1975-1976 was a harrowing one. I had 27
interviews, including the University of Chicago, where among my inter-
viewers was Jim Heckman. The interview consisted of him demolishing my
labor economics job market paper. I did end up with a good number of
flybacks, including UCSD, but I did not get a UCSD offer (although Vince
Crawford did, and took it!). Nor did I have any top 5 or 10 flybacks, and
especially not Chicago! Only at the last minute, the night before I was just
about to accept a very good but not great offer did I get a call from the
University of Rochester offering me a flyout with a practically guaranteed
offer. After consulting with Jerry, I decided to turn down my existing offer
and bet my future on the Rochester possibility. In hindsight, I strongly
suspect that Jerry was operating behind the scenes to generate that oppor-
tunity, making sure that his #2 thesis advisee (Roger Gordon was his first)
was well treated in the market.

Rochester did come through with an offer, and an extremely attractive one
at that—$16,000 for the academic year! Plus, I was thrilled to be going to a
truly distinguished department, including, among others, Lionel McKenzie,
Sherwin Rosen, Stanley Engerman, Robert Barro, Walter Oi, Eric Hanushek,
Elhannon Helpman, and James Friedman. Econometrician G.S. Maddala had
just left for Florida, but Charles Plosser and Bill Schwert were in the U of R
Graduate School of Management just a few steps away, so I did have
econometric colleagues handy. The thing was, at that time, [ was a primarily
a labor economist and only secondarily an econometrician. So there were
some semesters that I taught macro and urban economics instead of
econometrics. (Not that I knew macro or urban—these were just what was
left over after the more senior faculty had chosen their courses!) I did
accidentally learn a valuable lesson, though, in teaching those classes: make
the first lecture about using the method of Lagrange multipliers to do con-
strained optimization. Not only is almost everything in economics a special
case of this, but it causes half of those enrolled to drop the class immediately.

My transition from labor economist to econometrician took place in the
first few years at U of R. One factor was that all of my labor economics
articles based on my thesis chapters got rejected from all of the field journals.
Another was that I learned measure theory from Bartle’s superb book,

ix
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Measure and Integration, in a small study group consisting of game theorist
Jim Friedman, general equilibrium theorist Larry Benveniste, and myself.
Each week we met and worked through a chapter of Bartle’s book and
presented solutions to the exercises. From this, I finally began to understand
asymptotic distribution theory.

At the same time, I was deeply concerned by the prevalence of misspe-
cification in econometric models and the fact that not much was known at a
general level about the consequences of misspecification. Especially puz-
zling was the then common wisdom that OLS applied to a misspecified
model gave you a Taylor-series approximation to whatever the true relation
was. This made no sense to me, so I wrote a paper called Using Least
Squares to Approximate Unknown Regression Functions. Amazingly to me,
this was accepted by the International Economic Review for publication.
Since, thanks to measure theory, I now seemed to know what I was doing,
and since I had finally succeeded in getting an article published, I then began
to think that maybe econometrics was a better place for me than labor
economics or international trade. (As an interesting aside, the IER paper now
has nearly 300 citations, according to Google Scholar, but there are still lots
of people who think least squares gives you a Taylor approximation!)

This paper then led to my famous Econometrica paper on heteroskedas-
ticity, where my final conversion to an econometrician was effected by a
referee who said that he would recommend publication, provided that the
included labor economics example was removed. Finally, I got it! Econo-
metrics was my way forward.

An especially outstanding feature of the U of R was the wonderful group
of graduate students it attracted. Eventually, I did get to teach the graduate
econometrics classes. Two of my now distinguished students there were
Gary Gorton and Glenn MacDonald. And one of the most important rela-
tionships of my life began when Charley Bates showed up in my office one
day with his little Lhasa Apso dog, Li Po, to see about studying econo-
metrics. Charley had just finished an undergrad degree at UCSD with a
double major in math and economics. Charley ended up taking my econo-
metrics classes, and, after an interesting oddyssey, eventually became my
thesis advisee. As it turned out, that was just the beginning of a lifelong
friendship and collaboration with Charley that has had an extremely positive
impact on both my professional and personal life. Among other things, we
co-founded our economics consulting firm Bates White, LLC, together with
a small group of econ Ph.D.s that Charley had hand-picked. The firm will
soon celebrate its twelfth anniversary, and it now employs over 150 highly
talented people, many of whom have direct or indirect connections to UCSD.
I am especially gratified that the firm is now well known for setting new
quality standards in the economic and econometric analysis of legal
disputes.
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Another transition began in those early days at the U of R, and that was
my transformation from an East Coast type with a Midwestern background to
a California type. That transition began with a phone call in early May of
1977 from Rob Engle, who was by then at UCSD with Clive Granger. Rob’s
call came just one day after Rochester had received three FEET of snow (in
May!) in a still famous blizzard. He inquired if I might be interested in being
a visiting assistant professor at UCSD. I had to think about that for a while—
perhaps ten seconds. As it turned out, I was not able to visit the next aca-
demic year, but it did work out that I was able to visit UCSD in Winter and
Spring quarters of 1979. So it was that in December of 1978 I flew out of
Rochester during a blizzard and arrived in 75° San Diego sunshine to begin a
visiting appointment at UCSD.

)

Hal in the early days

One of the things Hal first did upon arriving at UCSD was to write his book
Asymptotic Theory for Econometricians (1984). This was path breaking. Hal
realized that in order to develop econometric theory, and also in order to be a
competent user, not limited by the availability of ready-to-use procedures, one
should be able to understand and combine all of the relevant tools from probability
theory and mathematical statistics. He was the first to develop and make accessible
to econometricians the necessary tools for deriving the properties of estimators and
constructing tests under a full menu of realistic settings. Hal was the first to teach
us about the interplay between properties of the data (e.g., how much dependence
there is in the series and how many moments are finite) and theoretical features of
the model postulated by the researcher, as dictated by econometric theory. Whe-
ther an estimator has a well defined probability limit depends on the statistical
properties of the data, but the meaning and economic interpretation of that
probability limit depends on the theoretical model. One of the fundamental
insights Hal emphasized is that all models are an approximation to reality, and are
thus generally incorrect. Nevertheless, we can learn important things, even from an
approximation of reality. Furthering this idea, a complete and rigorous treatment
of estimation and inference with misspecified (i.e., generally incorrect models), is
given in his book entitled Estimation, Inference and Specification Analysis (1994).
There is little doubt that modern econometric theory was pioneered by Hal.
Moreover, Hal’s contributions have been fundamental not only to the field of
theoretical econometrics, but also to the field of empirical economics. In particular,
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thanks to Hal’s work, standard econometric tools, such as hypotheses testing and
inference in general, are now utilized correctly, in a variety of realistic contexts.

It is impossible to list all of his contributions. Hence, we confine our attention to
five particular standouts.

White Standard Errors

Empirical work often requires one to test the null hypothesis that a parameter, say
that associated with conveying the returns to an extra year of schooling, is zero or
is instead strictly positive. Standard computer packages have always provided a
ready-to-use solution to this problem. However, the classical solution is correct
only under a particular assumption, known as conditional homoskedasticity. This
assumption states that the variance of the error in a given model, conditional on the
explanatory variables, is constant. This is a very restrictive assumption, often
violated in practice. In fact, often the variance of the error depends on the indi-
vidual covariates, in an unknown manner. However, if conditional homoskedas-
ticity fails to hold, the inference that we draw based on the classical solution is
incorrect, and may lead to the wrong conclusion (e.g., we might conclude than an
extra year of schooling has no effect on wages, when instead it does). This is
because the variance/standard error estimator used by standard packages is only
consistent for the “true” variance/standard error under conditional homoskedas-
ticity. Hal, in A Heteroskedasticity-Consistent Covariance Matrix Estimator and a
Direct Test for Heteroskedasticity (Econometrica, 1980), developed an estimator
of the covariance which is robust to the presence of conditional heteroskedasticity
of unknown form. This estimator is now routinely available in all computer
packages, and is called “White Standard Errors”. It is now common practice to
report both “classical” and “White” standard errors.

White Standard Errors, although crucial to applied econometric analysis, still
require that the error of the model is not autocorrelated (i.e. the error does not
depend on its past). This is typically the case when we have cross-sectional
observations, for example (e.g., we have data on a group of individuals at a given
point in time, rather than data that are measured over time, such as the consumer
price index). If we do have data measured over time, called time-series data, then
the error is not autocorrelated only if the model is “dynamically correctly speci-
fied”. For dynamic correct specification, we mean that both the functional form of
the model and the dynamics specified for the model (e.g. the number of lags or past
values) are correct. However, in practice, dynamic misspecification is more the
rule than the exception. In articles co-authored with Ian Domowitz (Journal of
Econometrics, 1982 and Econometrica, 1984) and as elaborated in his book
Asymptotic Theory for Econometricians (1984), Hal proposed a variance estimator
that is robust to both heteroskedasticity and autocorrelation of unknown form, and
which is now known as a HAC (heteroskedasticity and autocorrelation robust)
estimator. Whitney Newey and Ken West, in a famous Econometrica paper
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published in 1987, refined White’s estimator to ensure positive definiteness, which
is crucial for empirical application, yielding the famous so-called Newey-West
estimator. Of course, all of this work was predicated in large part on the initial
1980 Econometrica paper and Hal’s seminal work with Domowitz.

Maximum Likelihood Estimation of Misspecified Models

Another key contribution due to Hal is Maximum Likelihood Estimation of Mis-
specified Models (Econometrica, 1982). This paper is also among the most cited
ever, with 1389 citations on the Web of Science. The idea underlying Maximum
Likelihood Estimation (MLE) is that the estimators we compute are those maxi-
mizing the probability of observing the sample of data that we actually observe. If
we correctly specify the conditional density of the data, then ML estimators are the
“best estimators”—they are consistent, asymptotically efficient, and invariant to
reparameterization. However, we almost never know the correct conditional
density. For example, sometimes we are able to correctly specify only the con-
ditional mean and maybe the conditional variance; and sometimes we are not even
able to correctly specify the conditional mean. In the end, as Hal emphasized,
models are just approximations of reality and so they are generally incorrect. But,
what happens if we estimate misspecified models using Maximum Likelihood?
Hal shows that the MLE generally converges to the parameter values minimizing
the Kullback-Leibler Information Criterion (KLIC). Namely, MLE always con-
verges to the parameters minimizing the “surprise” that we get when we believe
that our data are generated by a given model, but instead we learn that they are
generated by a different one. Further, if we misspecify the conditional distribution,
but we still correctly specify the conditional mean, then the ML estimator, under
very mild conditions, converges to the same value, as in the case of “full” correct
specification. Nevertheless, the asymptotic variance is different, and this should be
taken into account when performing hypothesis testing. This observation led to the
celebrated Dynamic Fisher Information Matrix test due to Hal. The main practical
implication of his work on MLE with misspecified models, is that one can simply
estimate models via Gaussian Maximum Likelihood (i.e. one can proceed as if the
errors are conditionally normal, even if they are not). This has had tremendous
impact on applied work. Estimation with Gaussian likelihood is very simple to
implement, and it’s incredibly useful to know that it can deliver valid inference
even if conditional normality does not hold.

This work also played a part in inspiring the subsequent literature on the
estimation of conditional autoregressive models (ARCH and GARCH models). In
this context, one postulates a model for the conditional mean and the conditional
variance, even though the conditional density of the error is generally unknown,
and typically has fatter tails than those associated with a normal random variable.
However, Gaussian ML generally gives consistent parameter estimates and allows
for correct inference as a consequence of Hal’s theory. Hal’s 1982 paper was also
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the starting point for a literature based on the use of the KLIC for model speci-
fication and testing (see e.g. the recent applications of the KLIC to measuring
serial dependence by Yongmiao Hong and Hal White in Econometrica in 2005 and
to forecast evaluation by Rafaella Giacomini and Hal White in Econometrica in
2006.

Neural Network and Consistent Specification Tests

Neural network models were introduced by cognitive scientists, in an attempt to
build computers that could learn from experience instead of having to be pro-
grammed. Such models are characterized by input variables (sensory information)
that “pass through” one (or more) hidden processing layers, yielding an “output”
(a classification, prediction, or action) In a series of seminal papers, some joint
with Ron Gallant or with Kurt Hornik and Max Stinchcombe, Hal has shown that
such models have a “universal approximation” property, in the sense that they are
able to approximate any generic function, as well as its derivatives, up to an
arbitrary level of accuracy, given mild conditions. Although not as well known to
economists, one of Hal’s key papers on this subject, entitled Multilayer Feed-
forward Networks are Universal Approximators (Neural Networks, 1989) has
received 3862 citations on the Web of Science, as mentioned above.

Hidden

Output

Fhe workings of a feedforward newral merwork

The flexibility of a neural network model is ensured by its dependence on a
number of parameters, which have to be estimated. Hal developed novel tech-
niques for estimating neural network models and derived their statistical properties
in a number of papers, including Some Asymptotic Results for Learning in Single
Hidden Layer Feedforward Network Models (Journal of the American Statistical
Association, 1989). These fundamental contributions to neural network theory
have had a big impact in the cognitive sciences, medicine, engineering, and
psychology. But what impact have they had in the field of econometrics? For one
thing, artificial neural networks now have their own JEL number, C45. Further,
neural networks play a major role in the crucially important literature on testing for
the correct functional form of a model. Suppose that we want to test whether a
linear model is correctly specified for the conditional mean. In this case, we want
to have a test that is able to detect all possible departures from linearity, including
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small ones. A test that is able to detect any generic deviation from the null
hypothesis is said to be “consistent”. If the linear model is correctly specified, then
the error is uncorrelated with any arbitrary function of the regressors. How can we
approximate any arbitrary function of the regressors? With a neural network, of
course, as they are capable of approximating any generic function. A very nice
example of the use of neural network in testing for the correct functional form of a
model is Hal’s paper with T.H. Lee and Granger entitled Testing for Neglected
Nonlinearity in Time-Series Models: A Comparison of Neural Network Methods
and Standard Tests (Journal of Econometrics, 1993).

Nowadays, a new branch of economics, labeled neuro-economics, is rapidly
gaining momentum. The objective is to study the link between the functioning of
the brain and economic behavior. For example, which part of the brain controls our
behavior when playing the stock market? Which characteristics of the brain make
an individual a “better” player in the stock market? There is little doubt that in the
near future, neural network theory will play a major role in the formalization and
in the development of neuro-economics.

Reality Check and Data Snooping

A Reality Check for Data Snooping (Econometrica, 2000), is one of the most (if
not the most) influential papers in the study of financial econometrics as well as in
forecasting, over the last few years. Begin with a “benchmark” model, typically
the most popular model, or the easiest to estimate, and consider a (potentially long)
list of competing models. Assume that we want to test whether there exists at least
one competitor that truly outperforms the benchmark. Hal starts from the obser-
vation that if we use the same dataset to sequentially test each model versus the
benchmark, then eventually we’re sure to find one or more models that beat it. This
is because of the well known “data-mining” or “data-snooping” problem asso-
ciated with sequentially comparing many models using classical statistical testing
approaches. That is, we will eventually find a model that, simply due to luck,
appears to be superior to the benchmark. Hal provides a novel solution to this
problem. By jointly considering all competing models, his reality check procedure
ensures that the probability of rejecting the null when it is false (i.e., the proba-
bility of a false discovery), is smaller than a prespecified level, say 5 %.
Evaluation of asset trading rules has been one of the most challenging issues in
empirical finance. An investor can choose from a very long list of trading strat-
egies. Say that she wants to pick the strategy giving the highest return. However,
because of the data-snooping problem, she may simply pick a strategy that by luck
appears to be successful, but it is truly not. Hal’s Reality Check provides a formal
way of choosing among trading strategies, controlling for the probability of
picking “winners” just because of luck. This idea is clearly illustrated in his paper
with Ryan Sullivan and Allan Timmermann, entitled, Data Snooping, Technical
Trading Rule Performance, and the Bootstrap (Journal of Finance, 1999).



XVi Editor’s Introduction

Causality and Structural Modeling

In recent years, Hal’s interest has also focused on the issue of measuring causal
effects, in very general settings. This is one of the most challenging problems in
econometrics and statistics. Suppose that we want to evaluate the effect of an
increase of police per capita on the crime rate. However, the crime rate may also
increase in areas because of urban decay, which may be impossible to properly
measure, and police per capita may be (positively or negatively) correlated with
urban decay. Disentangling such cause/effect relationships is a problem that has
been addressed numerous times over the last 100 years, and the problem remains
vexing and complicated. Exactly how can we carry out valid statistical analysis of
the sort needed? The difficulty is that we need to measure the effect of a cause or
treatment that is “endogenous” — that is, the cause of interest (police per capita) is
correlated with unobservable drivers (urban decay) of the response (the crime
rate). The two most common solutions to this problem are the use of instrumental
variables, i.e., the use of variables that are correlated with the observable cause but
independent of the confounding, unobservable cause—i.e. the “error”. The second
approach consists of finding control variables, such that the endogenous cause,
conditional on the control variables, is independent of the unobservable causes.
There is growing consensus that the latter approach is preferable. However, it is
often difficult to find adequate control variables. In this case, one has to rely on the
instrumental variable approach. Still, there is a problem, as this approach works
only for separable models, in which the error enters in an additive manner, that is,
the unobservable causes do not interact with the observable causes.

In one of his recent important works in this area with Karim Chalak and
Susanne Schennach, entitled Estimating Average Marginal Effects in Nonsepa-
rable Structural Systems (2011), Hal studies the case of nonseparable models, in
which the effects of unobserved causes cannot be separated from those of the
observable endogenous causes. They consider a different route to evaluate the
marginal effect of an endogenous cause on the response variable, via use of the
ratio of the marginal effect of the instrument on the response variables and the
marginal effect of the instrument on the endogenous cause. In particular, they
provide sufficient conditions on the structure of the model for the validity of the
approach, and they develop a novel estimator. There is little doubt that this work
will have a large impact on empirical microeconomics, as it considers very general
and realistic settings. In another recent work with Stefan Hoderlein, entitled
Nonparametric Identification in Nonseparable Panel Data Models with General-
ized Fixed Effects (2011), Hal is also considering identification of marginal effects
in nonseparable panel data models with non-additive fixed effects. This is a
daunting challenge, and their results are bound to open new frontiers in both the
nonparametric identification and the nonlinear panel data literatures.

In other recent work with UCSD Ph.D. Xun Lu, (Granger Causality and
Dynamic Structural Systems, 2010) Hal shows that Granger causality is not devoid
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of true causal content. Instead, as Hal shows, it is equivalent to true structural
causality under well defined conditions.

Hal and Teresa at the Xiamen Conference on Specification Testing in 30 Years

Turning our attention to the papers published in this volume, it is worth
stressing that they comprise 20 original research papers. All of the papers inves-
tigate econometric questions in the broad areas of specification analysis, causality,
and prediction. In the first paper, entitled: Improving GDP Measurement: A
Forecast Combination Perspective by Boragan Aruoba, University of Maryland,
Francis X. Diebold, University of Pennsylvania, Jeremy Nalewaik, Federal
Reserve Board, Frank Schorfheide, University of Pennsylvania, and Dongho Song,
University of Pennsylvania, the authors examine a forecast combination approach
to “predict” GDP growth for the U.S., using both income side and expenditure
side versions of GDP, and uncover interesting features of their new measure. In the
second paper, entitled Identification without Exogeneity under Equiconfounding in
Linear Recursive Structural Systems by Karim Chalak, Boston College, the author
provides alternative identification results on structural coefficients in linear
recursive systems of structural equations without requiring that observable vari-
ables are exogenous or conditionally exogenous. He provides conditions under
which equiconfounding supports either full identification or partial identification..
In the third paper, entitled Optimizing Robust Conditional Moment Tests: An
Estimating Function Approach by Yi-Ting Chen, Academia Sinica and Chung-
Ming Kuan, National Taiwan University, survey robust conditional moment
(RCM) tests under partial model specification, discuss a generalized RCM type
test, and introduce methods for improving local asymptotic power of suboptimal
RCM tests. In the fourth paper, entitled Asymptotic Properties of Penalized M
Estimators with Time Series Observations by Xiaohong Chen, Yale University and
Zhipeng Liao, University of California, Los Angeles, the authors establish con-
vergence rates for penalized M estimators with weakly dependent data. They then
derive root-n asymptotic normality results for plug-in penalized M estimators of
regular functionals, and discuss consistent long-run covariance estimation. Turn-
ing our attention again to forecasting, in the fifth paper, entitled A Survey of Recent
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Advances in Forecast Accuracy Comparison Testing with an Extension to Sto-
chastic Dominance by Valentina Corradi, Warwick University and Norman R.
Swanson, Rutgers University, the authors survey recent advances in predictive
accuracy testing, with focus on distributional and density forecasting. They then
introduce a new model selection type forecast accuracy test based on the use of
standard principles of stochastic dominance. The sixth paper is entitled New
Directions in Information Matrix Testing: Eigenspectrum Tests by Richard M.
Golden, University of Texas at Dallas, Steven S. Henley, Martingale Research
Corporation and Loma Linda University, Halbert White, University of California,
San Diego, and T. Michael Kashner, Loma Linda University. In this paper, the
information matrix test of White (1982) is extended by considering various non-
linear functions of the Hessian covariance matrices commonly used when carrying
out such model specification tests. The paper entitled Bayesian Estimation and
Model Selection of GARCH Models with Additive Jumps by Christian Haefke,
Institute for Advanced Studies and Leopold Sogner, Institute for Advanced Studies
is the seventh paper in this volume. In this paper, novel Bayesian simulation
methods are used to carry out parameter estimation and model selection in a class
of GARCH models with additive jumps. In the eighth paper, entitled Hal White:
Time at MIT and Early Days of Research by Jerry Hausman, M.L.T., the author
briefly discusses Hal White’s early experiences at MIT, where he carried out his
graduate work. Hausman then undertakes an interesting examination, via Monte
Carlo simulation, of a variety of different estimators of White heteroskedasticity
consistent standard errors, including one based on a Rothenberg second-order
Edgeworth approximation. Turning now to the paper entitled Open-model Fore-
cast-error Taxonomies by David F. Hendry, University of Oxford and Grayham E.
Mizon, University of Southhampton, we are treated to a paper wherein “forecast-
error taxonomies” are developed when there are unmodeled variables, and forecast
failure to shifting intercept issues is discussed. The tenth paper in the volume is
entitled Heavy-Tail and Plug-In Robust Consistent Conditional Moment Tests of
Functional Form by Jonathan B. Hill, University of North Carolina. In this paper,
the author considers consistent specification test of a parametric conditional mean
function for heavy-tailed time series models, in which the dependent variable has
only finite conditional first moment while all the higher moments could be infinite.
The author derives chi-squared weak limit of his test statistics and provides a
Monte Carlo study.. In the eleventh paper, entitled Nonparametric Identification in
Dynamic Nonseparable Panel Data Models by Stefan Hoderlein, Boston College,
and Halbert White, University of California, San Diego, the authors tackle the
issue of nonparametric identification of covariate-conditioned and average partial
effects in dynamic nonseparable panel data models. They show that the panel
structure can be used to find control functions that in turn can be used for iden-
tification. The paper entitled Consistent Model Selection Over Rolling Windows,
which is the twelfth paper in the volume, and which is written by Atsushi Inoue,
North Carolina State University, Barabara Rossi, Duke University, and Lu Jin,
North Carolina State University, analyzes the asymptotic properties of a test sta-
tistc based on the use of simulated out-of-sample predictive mean square errors
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when carrying out model selection amongst nested models using rolling data
estimation windows. In particular, the authors discuss instances under which test
consistency obtains, hence validating the use of the statistic in empirical contexts.
Next, we have the paper entitled Estimating Misspecified Moment Inequality
Models by Hiroaki Kaido, Boston University and Halbert White, University of
California, San Diego. In this interesting paper, partially identified structures
defined by a finite number of moment inequalities are examined, in the context on
functional misspecification, a pseudo-true identified set whose elements can be
interpreted as the least-squares projections of the moment functions that are
observationally equivalent to the true moment function is found, and a set esti-
mator for the pseudo-true identified set is proposed. The fourteenth paper in the
volume is entitled Model Adequacy Checks for Discrete Choice Dynamic Models
by Igor Kheifets, New Economic School and Carlos Velasco, Universidad Carlos
IIT de Madrid. In this paper, the authors propose a consistent specification test for
possibly nonstationary dynamic discrete choice models. They apply an extension
of the probability integral transformation of data, and convert the null hypothesis
of correct specification of conditional distribution of the original model into test of
uniform marginal with no series dependence of the transformed data. This paper is
followed by the piece entitled On Long-Run Covariance Matrix Estimation with
the Truncated Flat Kernel by Chang-Ching Lin, Academia Sinica and Shinichi
Sakata, University of Southern California, the authors propose simple modifica-
tions to truncated flat kernel estimators of long-run covariance matrices which
enforce positive definiteness and have good small sample properties. The fol-
lowing paper, which is the sixteenth in the volume, and which is entitled Pre-
dictability and Specification in Models of Exchange Rate Determination, is
authored by Esfandiar Maasoumi, Emory University and Levent Bulut, Emory
University. In this paper, metric entropy tests are used to examine a variety of
parametric models of exchange rate determination, and it is found that random
walk models, both with and without drift, almost always dominate models based
on various conditioning information sets. The seventeenth paper in the volume is
entitled Thirty Years of Heteroskedasticity-Robust Inference by James G. MacK-
innon, Queen’s University. In this paper, the author discusses the revolutionary
idea of White (1980) on inference that is robust to heteroskedasticity of unknown
form. He also presents the recent developments to improve the finite sample
properties of White’s original standard error estimators. The eighteenth paper in
the volume, entitled Smooth Constrained Frontier Analysis, is authored by
Christopher F. Parmeter, McMaster University and Jeffrey S. Racine, McMaster
University. In this paper, the authors propose a class of smooth constrained non-
parametric and semiparametric estimators of production functions that are con-
tinuously differentiable and are consistent with the optimization axioms of
production. Turning now to the second last paper in this volume, entitled NoVaS
Transformations: Flexible Inference for Volatility Forecasting by Dimitris Politis,
University of California, San Diego and Dimitrios D. Thomakos, University of
Peloponesse, the authors present some new findings on the NoVas (‘‘normalizing
and variance stabilizing’’) transformation approach to volatility prediction. They
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conduct detailed simulation studies about the relative forecasting performance of
NoVaS with that of a benchmark GARCH(1,1) model.. Finally, we have an
interesting paper entitled Causal Efficacy and the Curse of Dimensionality by
Maxwell B. Stinchcombe, University of Texas, Austin and David M. Drukker,
STATACorp Statistical Software. This paper gives a new geometric representation
of various nonparametric conditional mean regression estimators, including the
sieve least squares estimators (Fourier, wavelet, splines, artificial neural networks),
the kernels and other locally weighted regressions. The authors establish that for
any estimator having their new geometric representation, the nonparametric rate of
convergence does not suffer the well-known curse of dimensionality, at least
asymptotically.
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Improving U.S. GDP Measurement: A Forecast
Combination Perspective

S. Boragan Aruoba, Francis X. Diebold, Jeremy Nalewaik,
Frank Schorfheide and Dongho Song

“A growing number of economists say that the government
should shift its approach to measuring growth. The current
system emphasizes data on spending, but the bureau also
collects data on income. In theory the two should match
perfectly—a penny spent is a penny earned by someone else. But
estimates of the two measures can diverge widely, particularly in
the short term...”

[Binyamin Appelbaum, New York Times, August 16, 2011]

Abstract Two often-divergent U.S. GDP estimates are available, a widely-used
expenditure-side version GDPg, and a much less widely-used income-side version
GDP;. We propose and explore a “forecast combination” approach to combining
them. We then put the theory to work, producing a superior combined estimate
of GDP growth for the U.S., GDP¢. We compare GDP¢ to GDPg and GDP;, with
particular attention to behavior over the business cycle. We discuss several variations
and extensions.
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1 Introduction

GDP growth is surely the most fundamental and important concept in empiri-
cal/applied macroeconomics and business cycle monitoring, yet significant uncer-
tainty still surrounds its estimation. Two often-divergent estimates exist for the U.S.,
awidely-used expenditure-side version, GDPg, and amuch less widely-used income-
side version, GDP;. Nalewaik (2010) makes clear that, at the very least, GDP;
deserves serious attention and may even have properties in certain respects supe-
rior to those of GDPg. That is, if forced to choose between GDPgr and GDPy,
a surprisingly strong case exists for GDP;.

But of course one is not forced to choose between GDPr and GDP;, and a com-
bined estimate that pools information in the two indicators GDPg and G D P; may
improve on both. In this chapter, we propose and explore a method for constructing
such a combined estimate, and we compare our new GDP¢ (“combined”) series to
GDPf and GDP; over many decades, with particular attention to behavior over the
business cycle, emphasizing comparative behavior during turning points.

Our work is motivated by, and builds on, five key literatures. First, and most
pleasing to us, our work is very much related to Hal White’s in its focus on dynamic
modeling while acknowledging misspecification throughout.

Second, we obviously build on the literature examining GDP; and its properties,
notably Fixler and Nalewaik (2009) and Nalewaik (2010). GDP; turns out to have
intriguingly good properties, suggesting that it might be usefully combined with
GDPg.

Third, our work is related to the literature distinguishing between “forecast error”
and “measurement error” data revisions, as for example in Mankiw et al. (1984),
Mankiw and Shapiro (1986), Faust et al. (2005), and Aruoba (2008). In this chapter
we work largely in the forecast error tradition.

Fourth, and related, we work in the tradition of the forecast combination literature
begun by Bates and Granger (1969), viewing GDPg and GDP; as forecasts of GDP
[actually a mix of “backcasts” and “nowcasts” in the parlance of Aruoba and Diebold
(2010)]. We combine those forecasts by forming optimally weighted averages.!

Finally, we build on the literature on “balancing” the national income accounts,
which extends back almost as far as national income accounting itself, as for
example in Stone et al. (1942), who use a quadratic loss criterion to propose weight-
ing different GDP estimates by the inverse of their squared “margins of error.” Stone
refined those ideas in his subsequent national income accounting work, and Byron
(1978) and Weale (1985) formalized and refined Stone’s approach. Indeed a number
of papers by Weale and coauthors use subjective evaluations of the quality of different
U.K. GDP estimates to produce combined estimates; see Barker et al. (1984), Weale

! For surveys of the forecast combination literature, see Diebold and Lopez (1996) and Timmermann
(2006).
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(1988), Solomou and Weale (1991), and Solomou and Weale (1993).2 For example,
Barker et al. (1984) and Weale (1988) incorporate data quality assessments from the
U.K. Central Statistical Office. Weale also disaggregate some of their GDP estimates
to incorporate information regarding differential quality of underlying source data.
In that tradition, Beaulieu and Bartelsman (2004) use input—output tables to disag-
gregate GDPr and GDPy, using what they call “tuning” parameters to balance the
accounts. We take a similar approach here, weighting competing GDP estimates in
ways that reflect our assessment of their quality, but we employ more of a top-down,
macro perspective.

We proceed as follows. In Sect. 2 we consider GDP combination under quadratic
loss. This involves taking a stand on the values of certain unobservable parameters (or
at least reasonable ranges for those parameters), but we argue that a “quasi-Bayesian”
calibration procedure based on informed judgment is feasible, credible, and robust.
In Sect.3 we consider GDP combination under minimax loss. Interestingly, as we
show, it does not require calibration. In Sect.4 we apply our methods to provide
improved GDP estimates for the U.S. In Sect.5 we sketch several extensions, and
we conclude in Sect. 6.

2 Combination Under Quadratic Loss

Optimal forecast combination typically requires knowledge (or, in practice, esti-
mates) of forecast error properties such as variances and covariances. In the present
context, we have two “forecasts,” of true GDP, namely GDPr and GDPy, but true
GDP is never observed, even after the fact. Hence we never see the “forecast errors,”
which complicates matters significantly but not hopelessly. In particular, in this
section we work under quadratic loss and show that a quasi-Bayesian calibration
based on informed judgment is feasible and credible, and simultaneously, that the
efficacy of GDP combination is robust to the precise weights used.

2.1 Basic Results and Calibration

First assume that the errors in GDPr and GDP; growth are uncorrelated. Consider
the convex combination?

GDP¢ = AGDPg + (1 — %) GDP,,

2 Weale also consider serial correlation and time-varying volatility in GDP measurement errors, as
well as time-varying correlation between expenditure- and income-side GDP measurement errors.
3 Throughout this chapter, the variables GDP, GDP, and GDP; that appear in the equations refer
to growth rates.
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where A € [0, 1].# Then the associated errors follow the same weighting,
ec = reg + (1 — Aey,

where ec = GDP—GDP¢, e¢r = GDP—GDPg ande; = GDP—GDP;. Assume that
both GDPg and GDP; are unbiased for GDP, in which case GDP¢ is also unbiased,
because the combining weights sum to unity.

Given the unbiasedness assumption, the minimum-MSE combining weights are
just the minimum-variance weights. Immediately, using the assumed zero correlation
between the errors,

0 = 2o+ (1 — 1%}, (1)
where ag = var(ec), oé = var(eg) and 0,2 = var(ey). Minimization with respect
to X yields the optimal combining weight,

012 1

)\,*z =
a,2+a§ 14 ¢2°

2

where ¢ = og/oy.
Itis interesting and important to note that in the present context of zero correlation
between the errors,

var(eg) + var(e;) = var(GDPg — GDPy). 3)

The standard deviation of GDPr minus GDP; can be trivially estimated. Thus, an
expression of a view about ¢ is in fact implicitly an expression of a view about not
only the ratio of var(er) and var(e;), but about their actual values. We will use this
fact (and its generalization in the case of correlated errors) in several places in what
follows.

Based on our judgment regarding U.S. GDPr and GDP; data, which we will
subsequently discuss in detail in Sect.2.2, we believe that a reasonable range for
¢ is ¢ € [0.75, 1.45], with midpoint 1.10.° One could think of this as a quasi-
Bayesian statement that prior beliefs regarding ¢ are centered at 1.10, with a 90 %
prior credible interval of [0.75, 1.45]. In Fig. 1 we graph A* as a function of ¢, for
¢ € [0.75, 1.45]. 1* is of course decreasing in ¢, but interestingly, it is only mildly
sensitive to ¢. Indeed, for our range of ¢ values, the optimal combining weight
remains close to 0.5, varying from roughly 0.65 to 0.30. At the midpoint ¢ = 1.10,
we have 1* = 0.45.

4 Strictly speaking, we need not even impose 2 € [0, 1], but A ¢ [0, 1] would be highly nonstandard
for two valuable and sophisticated GDP estimates such as GDPg and GDP;. Moreover, as we shall
see subsequently, multiple perspectives suggest that for our application the interesting range of A
is well in the interior of the unit interval.

5 Invoking Eq. (3), we see that the midpoint 1.10 corresponds to o; = 1.30 and o = 1.43, given
our estimate of std(GDPr — GDP;) = 1.93 % using data 1947Q2-2009Q3.
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Fig. 1 A* versus ¢. A* con- S
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It is instructive to compare the error variance of combined GDP, 03, to U% for a
range of A values (including A = A*, A =0, and A = 1).% From (1) we have:

o (-2
aé ¢?

In Fig. 2 we graph Ué/oé for A € [0, 1] with ¢ = 1.1. Obviously the maximum
variance reduction is obtained using A* = 0.45, but even for nonoptimal A, such
as simple equal-weight combination (A = 0.5), we achieve substantial variance
reduction relative to using GDPf alone. Indeed, a key result is that for all 1 (except
those very close to 1, of course) we achieve substantial variance reduction.

Now consider the more general and empirically-relevant case of correlated errors.
Under the same conditions as earlier,

02 =220t + (1 =020} 4 20(1 — M)ogr, “4)

SO

6 We choose to examine oé relative to aé, rather than to 012, because GDPp is the “standard” GDP
estimate used in practice almost universally. A graph of aé / 012 would be qualitatively identical, but
the drop below 1.0 would be less extreme.
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Fig.2 o2/o% for & € [0, 1].
We assume ¢ = 1.1 and
uncorrelated errors. See text
for details
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where o7 = cov(eg, e;) and p = corr(eg, ej).

It is noteworthy that—in parallel to the uncorrelated-error case in which beliefs
about ¢ map one-for-one into beliefs about o and o;— beliefs about ¢ and p now
similarly map one-for-one into beliefs about o and o;. Our definitions of aﬁ- and
012 imply that

o7 = var[GDP;] — 2cov[GDP;, GDP] + var[GDP], j € {E.I}.  (5)

Moreover, the covariance between the GDPr and GDP; errors can be expressed as
or; = cov[GDPg, GDP;] — cov[GDPg, GDP] — cov[GDP;, GDP] 4 var[GDP].
(6)

Solving (5) for cov[GDP;, GDP] and inserting the resulting expressions for j €
{E, I} into (6) yields

1
ok = cov[GDP;, GDP] — (var[GDP1] + var[GDPg] — o7 — ag). (7)

Finally, let og; = pogoy and aé = ¢2012. Then we can solve (7) for 012:
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See text for details

, cov[GDP;, GDPg] — % (var[GDP;] + var[GDPg]) N )
o7 = = —.
: o — 3(1+¢%) D

For given values of ¢ and p we can immediately evaluate the denominator D in (8),
and using data-based estimates of cov[GDP;, GDPg], var[GDP;], and var[GDPg]
we can evaluate the numerator N.

Based on our judgment regarding U.S. GDPg and GDP; data (and again, we will
discuss that judgment in detail in Sect. 2.2), we believe that a reasonable range for p
is p € [0.30, 0.60], with midpoint 0.45. One could think of this as a quasi-Bayesian
statement that prior beliefs regarding p are centered at 0.45, with a 90 % prior credible
interval of [0.30, 0.60].7

7 Again using GDPr and GDP; data 1947Q2-2009Q3, we obtain for the numerator N = —1.87
in Eq. (7) above. And using the benchmark values of ¢ = 1.1 and p = 0.45, we obtain for the
denominator D = —0.61. This implies oy = 1.75 and o = 1.92. For comparison, the standard
deviation of GDP and GDP; growth rates is about 4.2. Hence our benchmark calibration implies
that the error in measuring true GDP by the reported GDPg and GDP; growth rates is potentially
quite large.
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Fig. 4 )1* versus p for various ¢ values. The horizontal line for visual reference is at A* = 0.5.
See text for details

In Fig. 3 we show A* as a function of ¢ for p = 0, 0.3, 0.45, and 0.6; in Fig. 4 we
show A* as a function of p for ¢ = 0.95, 1.05, 1.15, and 1.25; and in Fig. 5 we show
A* as a bivariate function of ¢» and p. For ¢ = 1 the optimal weight is 0.5 for all p, but
for ¢ # 1 the optimal weight differs from 0.5 and is more sensitive to ¢ as p grows.
The crucial observation remains, however, that under a wide range of conditions it is
optimal to put significant weight on both GDPg and GDPj, with the optimal weights
not differing radically from equality. Moreover, for all ¢ values greater than one, so
that less weight is optimally placed on GDPg under a zero-correlation assumption,
allowance for positive correlation further decreases the optimal weight placed on
GDPg. For a benchmark calibration of ¢ = 1.1 and p = 0.45, A* ~ 0.41.

Let us again compare O'é to U% for a range of A values (including A = A*, A =0,
and A = 1). From (4) we have:

2 2
o 1—x
’ =,\2+%+2x(1 —n2
of é ®
In Fig. 6 we graph o2 /o7 for A € [0, 1] with ¢ = 1.1 and p = 0.45. Obviously the
maximum variance reduction is obtained using A* = 0.41, but even for nonoptimal A,
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Fig. 5 1* versus p and ¢. See
text for details

Fig. 6 02/o} for A € [0, 1]. e
We assume ¢ = 1.1 and
p = 0.45. See text for details

/
08

such as simple equal-weight combination (A = 0.5), we achieve substantial variance
reduction relative to using GDPg alone.
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2.2 On the Rationale for our Calibration

We have thus far implicitly asked the reader to defer to our judgment regarding cali-
bration, focusing on ¢ € [0.75, 1.45] and p € [0.30, 0.60] with benchmark midpoint
values of ¢ = 1.10 and p = 0.45. Here we explain the experience, reasoning, and
research that supports that judgment.

2.2.1 Calibrating ¢

The key prior view embedded in our choice of ¢ € [0.75, 1.45], with midpoint 1.10,
is that GDP; is likely a somewhat more accurate estimate than GDPg. This accords
with the results of Nalewaik (2010), who examines the relative accuracy of the GDPg
and GDPy in several ways, with results favorable to GDPy, suggesting ¢ > 1.

Let us elaborate. The first source of information on likely values of ¢ is from
detailed examination of the source data underlying GDPr and GDP,. The largest
component of GDP;, wage, and salary income, is computed using quarterly data from
tax records that are essentially universe counts, contaminated by neither sampling
nor nonsampling errors. Two other very important components of GDP;, corpo-
rate profits, and proprietors’ income, are also computed using annual data from tax
records.® Underreporting and nonreporting of income on tax forms (especially by
proprietors) is an issue with these data, but the statistical agencies make adjustments
for misreporting, and in any event the same misreporting issues plague GDPg as
well as GDPy, as we discuss below.

In contrast to GDPy, very little of the quarterly or annual data used to compute
GDPy; is based on universe counts.® Rather, most of the quarterly GDPg source data
are from business surveys where response is voluntary. Nonresponse rates can be
high, potentially introducing important sample-selection effects that may, moreover,
vary with the state of the business cycle. Many annual GDPg source data are from
business surveys with mandatory response, but some businesses still do not respond
to the surveys, and surely the auditing of these nonrespondents is less rigorous than
the auditing of tax nonfilers. In addition, even the annual surveys do not attempt to
collect data on some types of small businesses, particularly nonemployer businesses
(i.e., businesses with no employees). The statistical agencies attempt to correct some
of these omissions by incorporating data from tax records (making underreporting
and nonreporting of income on tax forms an issue for GDPg as well as GDP;), but
it is not entirely clear whether they adequately plug all the holes in the survey data.

8 The tax authorities do not release the universe counts for corporate profits and proprietors’ income;
rather, they release results from a random sample of tax returns. But the sample they employ is
enormous, so the variance of the sampling error is tiny for the top-line estimates. Moreover, the
tax authorities obviously know the universe count, so it seems unlikely that they would release
tabulations that are very different from the universe counts.

9 Motor vehicle sales are a notable exception.
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Although these problems plague most categories of GDPg, some categories
appear more severely plagued. In particular, over most of history, government sta-
tistical agencies have collected annual source data on less than half of personal con-
sumption expenditures (PCE) for services, a very large category comprising between
a quarter and a half of the nominal value of GDPg over our sample. At the quarterly
frequency, statistical agencies have collected even less source data on services PCE. !0
For this reason, statistical agencies have been forced to cobble together less-reliable
data from numerous nongovernmental sources to estimate services PCE.

A second source of information on the relative reliability of GDPg and GDP;j is
the correlation of the two measures with other variables that should be correlated
with output growth, as examined in Nalewaik (2010). Nalewaik (2010) is careful to
pick variables that are not used in the construction of either GDPg or GDPy, to avoid
spurious correlation resulting from correlated measurement errors.!! The results are
uniformly favorable to GDP; and suggest that it is a more accurate measure of output
growth than GDPg. In particular, from the mid-1980s to the mid-2000s, the period of
maximum divergence between GDPr and GDP;, Nalewaik (2010) finds that GDP;
growth has higher correlation with lagged stock price changes, the lagged slope of
the yield curve, the lagged spread between high-yield corporate bonds and Treasury
bonds, short and long differences of the unemployment rate (both contemporaneously
and at leads and lags), a measure of employment growth computed from the same
household survey, the manufacturing ISM PMI (Institute for Supply Management,
Purchasing Managers Index), the nonmanufacturing ISM PMI, and dummies for
NBER recessions. In addition, lags of GDP; growth also predict GDPg growth (and
GDP; growth) better than lags of GDPg growth itself.

It is worth noting that, as regards our benchmark midpoint calibration of
¢ = 1.10, we have deviated only slightly from an “ignorance prior”” midpoint of 1.00.
Hence our choice of midpoint reflects a conservative interpretation of the evidence
discussed above. Similarly, regarding the width of the credible interval as opposed
to its midpoint, we considered employing intervals such as ¢ € [0.95, 1.25], for
which ¢ > 1 over most of the mass of the interval. The evidence discussed above,
if interpreted aggressively, might justify such a tight interval in favor of GDPy, but
again we opted for a more conservative approach with ¢ < 1 over more than a third
of the mass of the interval.

2.2.2 Calibrating p

The key prior view embedded in our choice of p € [0.30, 0.60], with midpoint
0.45, is that the errors in GDPg and GDP; are likely positively correlated, with a

10 This has begun to change recently, as the Census Bureau has expanded its surveys, but ¢ is meant
to represent the average relative reliability over the sample we employ, so these facts are highly
relevant.

1 For example, the survey of households used to compute the unemployment rate is used in the
construction of neither GDPg nor GDP}, so use of variables from that survey is fine.
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moderately but not extremely large correlation value. This again accords with the
results in Nalewaik (2010), who shows that 26 % of the nominal value of GDPf and
GDP; is identical. Any measurement errors in that 26 % will be perfectly correlated
across the two estimates. Furthermore, GDPg and GDP; are both likely to miss
fluctuations in output occurring in the underground or “gray” economy, transactions
that do not appear on tax forms or government surveys. In addition, the same price
deflator is used to convert GDPr and GDP; from nominal to real values, so any
measurement errors in that price deflator will be perfectly correlated across the two
estimates.

These considerations suggest the lower bound for p should be well above zero,
as reflected in our chosen interval. However, the evidence favoring an upper bound
well below one is also quite strong, as also reflected in our chosen interval. First, and
most obviously, the standard deviation of the difference between GDPg and GDP;
is 1.9 %, far from the 0.0 % that would be the case if p = 1.0. Second, as discussed
in the previous section, the source data used to construct GDPg is quite different
from the source data used to construct GDP;, implying the measurement errors are
likely to be far from perfectly correlated.

Of course, p could still be quite high if GDPg and GDP; were contaminated with
enormous common measurement errors, as well as smaller, uncorrelated measure-
ment errors. But if that were the case, GDPg and GDP; would fail to be correlated
with other cyclically-sensitive variables, such as the unemployment rate, as they both
are. The R? values from regressions of the output growth measures on the change in
the unemployment rate are each around 0.50 over our sample, suggesting that at least
half of the variance of GDPr and GDP; is true variation in output growth, rather than
measurement error. The standard deviation of the residual from these regressions is
2.81 % using GDP; and 2.95 % using GDPg. For comparison, taking our benchmark
value ¢ = 1.1 and our upper bound p = 0.6 produces o; = 2.05 and o = 2.25.
Increasing p to 0.7 produces o; = 2.36 and o = 2.60, approaching the residual
standard error from our regression. This seems like an unreasonably high amount of
measurement error, since the explained variation from such a simple regression is
probably not measurement error, and indeed some of the unexplained variation from
the regression is probably also not measurement error. Hence the upper bound of 0.6
for p seems about right.

3 Combination Under Minimax Loss

Here we take a more conservative perspective on forecast combination, solving a
different but potentially important optimization problem. We utilize the minimax
framework of Wald (1950), which is the main decision-theoretic approach for impos-
ing conservatism and therefore of intrinsic interest. We solve a game between a
benevolent scholar (the Econometrician) and a malevolent opponent (Nature). In
that game the Econometrician chooses the combining weights, and Nature selects
the stochastic properties of the forecast errors. The minimax solution yields the
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combining weights that deliver the smallest chance of the worst outcome for the
Econometrician. Under the minimax approach knowledge or calibration of objects
like ¢ and p is unnecessary, enabling us to dispense with judgment, for better or
worse.

We obtain the minimax weights by solving for the Nash equilibrium in a two-
player zero-sum game. Nature chooses the properties of the forecast errors and the
Econometrician chooses the combining weights A. For expositional purposes, we
begin with the case of uncorrelated errors, constraining Nature to choose p = 0. To
impose some constraints on the magnitude of forecast errors that Nature can choose,
it is useful to re-parameterize the vector (o7, og)’ in terms of polar coordinates; that
is, weleto; = ¥ cos ¢ and o = ¥ sin ¢. We restrict i to the interval [0, 1}] and let
¢ € [0, m/2]. Because cos? ¢ + sin® ¢ = 1, the sum of the forecast error variances
associated with GDPg and GDP;y is constrained to be less than or equal to 1}2. The
error associated with the combined forecast is given by

09,2 =9 [A2sin? g + (1 = 1) cos g ©)
so that the minimax problem is

. 2
_max min oA, @, L), (10)
¥el0,¥], pel0,7/2] 2€[0,1] ¢

The best response of the Econometrician was derived in (2) and can be expressed
in terms of polar coordinates as A* = cos” ¢. In turn, Nature’s problem simplifies to

max Y2 (1 — sin? ®) sin? @,
Y €l0.v], ¢e[0.7/2]

which leads to the solution

o* =arcsiny/1/2, y¥* =y, A*=1/2. (11)

Nature’s optimal choice implies a unit forecast error variance ratio, ¢ = o /o7 = 1,
and hence that the optimal combining weight is 1/2. If, instead, Nature set ¢ = 0
or ¢ = /2, thatis ¢ = 0 or ¢ = oo, then either GDPg or GDP; is perfect and the
Econometrician could choose A = 0 or A = 1 to achieve a perfect forecast leading
to a suboptimal outcome for Nature.

Now we consider the case in which Nature can choose a nonzero correlation
between the forecast errors of GDPg and GDP;. The loss of the combined forecast
can be expressed as

Ué(lﬂ, 0,0, \) = wz [kz sin’ o+ 1- 1)% cos? @ +21(1 — X)p sin g cos go] .
(12)
It is apparent from (12) that as long as A lies in the unit interval the most devious
choice of p is p* = 1. We will now verify that conditional on p* = 1 the solution in
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(11) remains a Nash equilibrium. Suppose that the Econometrician chooses equal
weights, A* = 1/2. In this case

1 1
ot (W, p*, 9, %) = y? |:4_L + 3 sin(pcosgp] )

We can deduce immediately that ¥* = . Moreover, first-order conditions for
the maximization with respect to ¢ imply that cos® ¢* = sin® ¢* which in turn
leads to ¢* = arc sin/1/2. Conditional on Nature choosing p*, ¥*, and ¢*, the
Econometrician has no incentive to deviate from the equal-weights combination
A* = 1/2, because

ot (W*, p*, 9", 0) = %[)\2 + (=274 221 - )»)} =

v

7

In sum, the minimax analysis provides a rational for combining GDPg and GDP;
with equal weights of A = 1/2.

To the best of our knowledge, this section’s demonstration of the optimality of
equal forecast combination weights under minimax loss is original and novel. There
does of course exist some related literature, but ultimately our approach and results
are very different. For example, a branch of the machine-learning literature (e.g.,
Vovk 1998; Sancetta 2007) considers games between a malevolent Nature and a
benevolent “Learner.” The learner sequentially chooses weights to combine expert
forecasts, and Nature chooses realized outcomes to maximize the Learner’s forecast
error relative to the best expert forecast. The Learner wins the game if his forecast
loss is only slightly worse than the loss attained by the best expert in the pool, even
under Nature’s least favorable choice of outcomes. This game is quite different and
much more complicated than ours, requiring different equilibrium concepts with
different resultant combining weights.

4 Empirics

We have shown that combining using a quasi-Bayesian calibration under quadratic
loss produces A close to but less than 0.5, given our prior means for ¢ and p. Moreover,
we showed that combining with A near 0.5 is likely better—often much better—than
simply using GDPg or GDP; alone, for wide ranges of ¢ and p. We also showed
that combining under minimax loss always implies an optimal X of exactly 0.5.
Here we put the theory to work for the U.S., providing arguably-superior combined
estimates of GDP growth. We focus on quasi-Bayesian calibration under quadratic
loss. Because the resulting combining weights are near 0.50, however, one could
also view our combinations as approximately minimax. The point is that a variety
of perspectives lead to combinations with weights near 0.50, and they suggest that
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Fig. 7 U.S. GDP¢ and GDPg growth rates. GDP¢ constructed assuming ¢ = 1.1 and p = 0.45.
GDPc is solid and GDPg, is dashed. In the top panel we show a long sample, 1947Q2-2009Q3. In
the bottom panel, we show a recent sample, 2006Q1-2009Q3. See text for details

such combinations are likely superior to using either of GDPg or GDP; alone, so
that empirical examination of GDP¢ is of maximal interest.

4.1 A Combined U.S. GDP Series

In the top panel of Fig. 7 we plot GDP¢ constructed using A = 0.41, which is
optimal for our benchmark calibration of ¢ = 1.1 and p = 0.45, together with the
“conventional” GDPEg. The two appear to move closely together, and indeed they
do, at least at the low frequencies emphasized by the long time-series plot. Hence
for low-frequency analyses, such as studies of long-term economic growth, use of
GDPE, GDP; or GDPc¢ is not likely to make a major difference.

At higher frequencies, however, important divergences can occur. In the bottom
panel of Fig. 7, for example, we emphasize business cycle frequencies by focusing
on a short sample 2006-2010, which contains the severe U.S. recession of 2007—
2009. There are two important points to notice. First, the bottom panel of Fig. 7
makes clear that growth-rate assessments on particular dates can differ in important
ways depending on whether GDP¢ or GDPg is used. For example, GDPp is strongly
positive for 2007Q3, whereas GDP¢ for that quarter is close to zero, as GDP; was
strongly negative. Second, the bottom panel of Fig. 7 also makes clear that differing
assessments can persist over several quarters, as for example during the financial
crisis episode of 2007Q1-2007Q3, when GDPg growth was consistently larger than
GDP¢ growth. One might naturally conjecture that such persistent and cumulative
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data distortions might similarly distort inferences, based on those data, about whether
and when the U.S. economy was in recession. We now consider recession dating in
some detail.

4.2 U.S. Recession and Volatility Regime Probabilities

Thus far we have assessed how combining produces changes in measured GDP. Now
we assess whether and how it changes a certain important transformation of GDP,
namely measured probabilities of recession regimes or high-volatility regimes based
on measured GDP. We proceed by fitting a regime-switching model in the tradition
of Hamilton (1989), generalized to allow for switching in both means and variances,
as in Kim and Nelson (1999a),

(GDP; — pt5,,) = B(GDP,_| — i, _,) + 0, & (13)
&g ~1idN(,1)
syt ~ Markov(P,), Sg; ~ Markov(P;).

Then, conditional on observed data, we infer the sequences of recession probabilities
[(P(s: = L), where L (“low”) denotes the recession regime] and high-volatility
regime probabilities [(P(s,, = H), where H (“high”) denotes the high-volatility
regime]. We perform this exercise using both GDPg and GDP¢, and we compare
the results.

We implement Bayesian estimation and state extraction using data 1947Q2-
2009Q3.'% In Fig. 8 we show posterior median smoothed recession probabilities.
We show those calculated using GDP¢ as solid lines with 90 % posterior intervals,
we show those calculated using GDPg as dashed lines, and we also show shaded
NBER recession episodes to help provide context. Similarly, in Fig. 9 we show
posterior median smoothed volatility regime probabilities.

Numerous interesting substantive results emerge. For example, posterior median
smoothed recession regime probabilities calculated using GDP¢ tend to be greater
than those calculated using GDP g, sometimes significantly so, as for example during
the financial crisis of 2007. Indeed, using GDP¢ one might date the start of the recent
recession significantly earlier than did the NBER. As regards volatilities, posterior
median smoothed high-volatility regime probabilities calculated by either GDPfg or
GDP¢ tend to show the post-1984 “great moderation” effect asserted by McConnell
and Perez-Quiros (2000) and Stock and Watson (2002). Interestingly, however, those
calculated using GDPg also show the “higher recession volatility” effect in recent
decades documented by Bloom et al. (2009) (using GDPg data), whereas those
calculated using GDP¢ do not.

12 We provide a detailed description in Appendix.
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Fig. 8 Inferred U.S. Recession Regime Probabilities, calculated using GDP¢ versus GDPEg. Solid
lines are posterior median smoothed recession regime probabilities calculated using GDPc, which
we show with 90 % posterior intervals. Dashed lines are posterior median smoothed recession
regime probabilities calculated using GDPg. The sample period is 1947Q2-2009Q3. Dark shaded
bars denote NBER recessions. See text and appendix for details

For our present purposes, however, none of those substantive results are of first-
order importance, as the present chapter is not about business cycle dating, low-
frequency versus high-frequency volatility regime dating, or revisionist history,
per se. Indeed, thorough explorations of each would require separate and lengthy
papers. Rather, our point here is simply that one’s assessment and characteriza-
tion of macroeconomic behavior can, and often does, depend significantly on use of
GDP¢ versus GDPg. Thatis, choice of GDP¢ versus GDPg can matter for important
tasks, whether based on direct observation of measured GDP, or on transformations
of measured GDP such as extracted regime chronologies.

5 Extensions

Before concluding, we offer sketches of what we see as two important avenues for
future research. The first involves real-time analysis and nonconstant combining
weights, and the second involves combining from a measurement error as opposed
to efficient forecast error perspective.



18 S. Boragan Aruoba et al.

Recessions in the 1950s Recessions in the 1960s

H '
i B

| | i i :
1952 1953 1954 1955 1956 1957 1958 1959 1958 1959 1960 1961 1962 1963 1964
Year Year

Recessions in the 194

Recessions inthe 1970s

i o i
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1977 1978 199 1m0 1981 1%E2 1983 19
Year Year

Recessions in the 1990s Recessions in the 2000s

cma? 1985 1989 1980 1951 1962 1993 1984
Year Year

Fig. 9 Inferred U.S. high-volatility regime probabilities, calculated using GDP¢ versus GDPg.
Solid lines are posterior median smoothed high-volatility regime probabilities calculated using
GDPc, which we show with 90 % posterior intervals. Dashed lines are posterior median smoothed
high-volatility regime probabilities calculated using GDPg. The sample period is 1947Q2-2009Q3.
Dark shaded bars denote NBER recessions. See text and appendices for details.

5.1 Vintage Data, Time-Varying Combining Weights,
and Real-Time Analysis

It is important to note that everything that we have done in this chapter has a retro-
spective, or “off-line,” character. We work with a single vintage of GDPg and GDP;
data and combine them, estimating objects of interest (combining weights, regime
probabilities, etc.) for any period ¢ using all datat = 1, ..., T. In all of our analyses,
moreover, we have used time-invariant combining weights. Those two characteristics
of our work thus far are not unrelated, and one may want to relax them eventually,
allowing for time-varying weights, and ultimately, a truly real-time-analysis.

One may want to consider time-varying combining weights for several reasons.
One reason is of near-universal and hence great interest, at least under quadratic loss.
For any given vintage of data, error variances and covariances may naturally change,
as we pass backward from preliminary data for the recent past, all the way through to
“final revised” data for the more distant past.!3> More precisely, let 7 index time mea-
sured in quarters, and consider moving backward from “the present” quarter t = T'.

13 This is the so-called “apples and oranges” problem. To the best of our knowledge, the usage in
our context traces to Kishor and Koenig (2011).



Improving U.S. GDP Measurement: A Forecast Combination Perspective 19

Atinstant v € T (with apologies for the slightly abusive notation), we have vintage-v
data. Consider moving backward, constructing combined GDP estimates GDP“C’ Tk
k =1, ...00. For small k, the optimal calibrations might be quite far from bench-
mark values. As k grows, however, p and ¢ should approach benchmark values as
the final revision is approached. The obvious question is how quickly and with what
pattern should an optimal calibration move toward benchmark values as k — oo.
We can offer a few speculative observations.

First consider p. GDP;, and GDPg share a considerable amount of source data
in their early releases, before common source data are swapped out of GDP; (e.g.,
when tax returns eventually become available and can be used). Indeed Fixler and
Nalewaik (2009) show that the correlation between the earlier estimates of GDP;
and GDPg growth is higher than the correlation between the later estimates. Hence
p is likely higher for dates near the present (small k). This suggests calibrations with
p dropping monotonically toward the benchmark value of 0.45 as k grows.

Now consider ¢. How ¢ should deviate from its benchmark calibration value of
1.1 is less clear. On the one hand, early releases of GDP; are missing some of their
most informative source data (tax returns), which suggests a lower-than-benchmark
¢ for small k. On the other hand, early releases of GDPg growth appear to be noisier
than the early releases of GDP; growth (see below), which suggests a higher-than-
benchmark ¢ for small k. All told, we feel that a reasonable small-k calibration of
¢ is less than 1.1 but still above 1.

Note that our conjectured small-k effects work in different directions. Other things
equal, bigger p pushes the optimal combining weight downward, away from 0.5, and
smaller ¢ pushes the optimal combining weight upward, toward 0.5. In any particular
data set the effects could conceivably offset more-or-less exactly, so that combination
using constant weights for all dates would be fully optimal, but there is of course no
guarantee.

Several approaches are possible to implement the time-varying weights sketched
in the preceding paragraphs. One is a quasi-Bayesian calibration, elaborating on the
approach we have taken in this chapter. However, such an approach would be more
difficult in the more challenging environment of time-varying parameters. Another
is to construct a real-time data set, one that records a snapshot of the data available
at each point in time, such as the one maintained by the Federal Reserve Bank
of Philadelphia. The key is to recognize that each quarter we get not simply one
new observation on GDPg and GDPy, but rather an entire new vintage of data, all
the elements of which could (in principle) change. One might be able to use the
different data vintages, and related objects like revision histories, to infer properties
of “forecast errors” of relevance for construction of optimal combining weights
across various k.

One could go even further in principle, progressing to a truly real-time analysis,
which is of intrinsic interest quite apart from addressing the issue of time-varying
combining weights in the above “apples and oranges” environments. Tracking vin-
tages, modeling the associated dynamics of revisions, and putting it all together to
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produce superior combined forecasts remains an outstanding challenge.!* We look
forward to its solution in future work, potentially in the state-space framework that
we describe next.

5.2 A Model of Measurement Error

In parallel work in progress (Aruoba et al. 2011), we pursue a complementary
approach based on a state-space model of measurement error. The basic model is

GDPEJ _ 1 EEt
Lo = 3 Jooe 7]
GDPy = fo + f1GDPr—1 + 1t (14)

where &; = (g, €11) ~ WN(, Z,), n;, ~ WN(O, 0,72), and &; and 7; are uncorre-
lated at all leads and lags. In this model, both GDPg and GDP; are noisy measures of
the latent true GDP process, which evolves dynamically. The expectation of true GDP
conditional upon observed measurements may be extracted using optimal filtering
techniques such as the Kalman filter.

The basic state-space model can be extended in various directions, for example to
incorporate richer dynamics, and to account for data revisions and missing advance
and preliminary releases of GDP;.!3 Perhaps most important, the measurement errors
¢ may be allowed to be correlated with GDP, or more precisely, correlated with
GDP innovations, 7,. Fixler and Nalewaik (2009) and Nalewaik (2010) document
cyclicality in the “statistical discrepancy” (GDPg — GDPy), which implies failure
of the assumption that &; and 7, are uncorrelated at all leads and lags. Of particular
concern is contemporaneous correlation between 7, and ¢;. The standard Kalman
filter cannot handle this, but appropriate modifications are available.

6 Conclusions

GDP growth is a central concept in macroeconomics and business cycle monitoring,
so its accurate measurement is crucial. Unfortunately, however, the two available
expenditure-side and income-side U.S. GDP estimates often diverge. In this chapter,
we proposed a technology for optimally combining the competing GDP estimates,

14 Nalewaik (2011) makes some progress toward real-time analysis in a Markov-switching envi-
ronment.

15 The first official estimate of GDP; is released a month or two after the first official estimate of
GDPg, so for vintage v the available GDP}; data might be {GDP”E_,},T;II, whereas the available
GDPj vintage might be {GD P} t}zT:_12~ Note that for any vintage v, the available GDP; data differ
by at most one quarter from the available GDPfg data.
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we examined several variations on the basic theme, and we constructed and examined
combined estimates for the U.S.

Our results strongly suggest the desirability of separate and careful calculation
of both GDPg and GDPy, followed by combination, which may lead to different
and more accurate insights than those obtained by simply using expenditure-side or
estimates alone. This prescription differs fundamentally from U.S. practice, where
both are calculated but the income-side estimate is routinely ignored.

Our call for a combined U.S. GDP measure is hardly radical, particularly given
current best-practice “balancing” procedures used at various non-U.S. statistical
agencies to harmonize GDP estimates from different sources. We discussed U.K.
GDP balancing at some length in the introduction, and some other countries also use
various similar balancing procedures.'® All such procedures recognize the potential
inaccuracies of source data and have a similar effect to our forecast combination
approach: the final GDP number lies between the alternative estimates.

Other countries use other approaches to combination. Indeed Australia uses an
approach reminiscent of the one that we advocate in this chapter, albeit not on the
grounds of our formal analysis.17 In addition to GDPg and GDP;, the Australian
Bureau of Statistics produces a production-side estimate, GDPp, defined as total
gross value added plus taxes and less subsidies, and its headline GDP number is the
simple average of the three GDP estimates. We look forward to the U.S. producing a
similarly-combined headline GDP estimate, potentially using the methods introduced
in this chapter.
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Appendix: Estimation of U.S. Recession Probabilities

Here we provide details of Bayesian analysis of our regime-switching model.

A.1 Baseline Model

We work with a simple model with Markov regime-switching in mean and variance:

16 Germany’s procedures, for example, are described in Statistisches Bundesamt (2009).
17 See http://www.abs.gov.au, under Australian National Accounts, Explanatory Notes for Australia.
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(GDP; — 1,,,) = BGDP_| — i, ) + 0y, &1 (A1)
& ~1idN(0,1)

sur ~ Markov(P,), 55 ~ Markov(P;), (A2)

where P, and P, denote transition matrices for high and low mean and variance

regimes,
P, = [ Puy 1- pMH]
l=pu,  pPuL

P — |: Poy 11— PoHi|
Yy = .
1 - Poy, Por.

Overall, then, there are four regimes:

St =1ifsy, =H, s¢st = H (A.3)
S =2if sy =H, st =L
S =3ifsy =L, st =H
Sy =4dif sy =L, ot = L.

For ¢t = 0 the hidden Markov states are governed by the ergodic distribution associ-
ated with P, and P, .

A.2 Bayesian Inference

Priors. Bayesian inference combines a prior distribution with a likelihood function
to obtain a posterior distribution of the model parameters and states. We summarize
our benchmark priors in Table A.1. We employ a normal prior for s¢1 , a gamma prior
for g — pr, inverted gamma priors for o and oy, beta priors for the transition
probabilities, and finally, a normal prior for 8. Our prior ensures that uy > @y and
thereby deals with the “label switching” identification problem.

For 11, the average growth rate in the low-growth state, we use a prior distribution
that is centered at 0, with standard deviation 0.70 %. Note that a priori we do not
restrict the average growth rate to be negative. We also allow for (mildly) positive
values. We choose the prior for gy — g such that the mean difference between the
average growth rates in the two regimes is 2.00 %, with standard deviation 1.00 %.
Our priors for the transition probabilities p,, and p, are symmetric and imply a mean
regime duration between three and 14 quarters. Finally, our choice for the prior of
the autoregressive parameter 8 is normal with zero mean and unit variance, allowing
a priori for both stable and unstable dynamics of output growth rates.
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Table A.1 Prior choices and posterior distributions

Prior GDPE GDPC

Choice Median 5% 95 % Median 5 % 95 %
WH — AL Gamma(2, 1) - - - - - -
WH - 3.50 [3.03 4.12] 3.76 [2.97 4.28]
UL Normal(0,0.5) 1.25 [0.34 2.29] 0.82 [0.17 1.64]
oH InvGamma(2,2) 4.82 [4.35 5.43] 4.64 [4.21 5.13]
oL InvGamma(1,2) 1.92 [1.55 2.34] 1.71 [1.74 2.05]
B Normal(0, 1) 0.31 [0.17 0.45] 0.37 [0.27 0.53]
Pun Beta(25,5) 0.91 [0.82 0.96] 0.92 [0.85 0.96]
Puy Beta(25,5) 0.79 [0.64 0.87] 0.80 [0.67 0.88]
Doy Beta(25,5) 0.91 [0.83 0.96] 0.91 [0.83 0.96]
Doy Beta(25,5) 0.89 [0.81 0.95] 0.91 [0.85 0.95]

Implementation of Posterior Inference. Posterior inference is implemented with a
Metropolis-within-Gibbs sampler, building on work by Carter and Kohn (1994) and
Kim and Nelson (1999b). We denote the sequence of observations by GDPy.7. More-
over, let S1.7 be the sequence of hidden states, and let

9 = (MH? ML? aHs GL? ﬂ)/v and (;b = (p;,LHa p[,LLs pO'Ls pO'H)/'

Our Metropolis-within-Gibbs algorithm involves sampling iteratively from three
conditional posterior distributions. To initialize the sampler we start from (62, ¢©).
Algorithm: Metropolis-within-Gibbs Sampler

Fori=1,...,N:

1.

Draw Sile conditional on 6', ¢', GDPy.7. This step is implemented using the
multi-move simulation smoother described in Sect.9.1.1 of Kim and Nelson
(1999Db).

. Draw ¢i *1 conditional on 6%, S ’1+Tl , GDPj.7. If the dependence of the distribution

of the initial state S1 on ¢ is ignored, then it can be shown that the conditional
posterior of ¢ is of the Beta form (see Sect.9.1.2 of Kim and Nelson 1999b).
We use the resulting Beta distribution as a proposal distribution in a Metropolis—
Hastings step.

. Draw 6/*!, conditional on ¢i+1, sitl GDP;.7. Since our prior distribution is

1.T>
nonconjugate, we are using a random-walk Metropolis step to generate a draw
from the conditional posterior of 8. The proposal distribution is N (6, cS2).

We obtain the covariance matrix €2 of the proposal distribution in Step 3 as follows.

Following Schorfheide (2005) we maximize the posterior density,

p(0, |GDPy.7) o< p(GDPy.7|0, ¢) p(0, ¢),
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to obtain the posterior mode (é , ¢;). We then construct the negative inverse of the
Hessian at the mode and let 2 be the submatrix that corresponds to the parameter
subvector 6. We choose the scaling factor ¢ to obtain an acceptance rate of approxi-
mately 40 %. We initialize our algorithm choosing (8°, ¢°) in the neighborhood of
(é R 43) and use it to generate N = 100, 000 draws from the posterior distribution.!8

Posterior Estimates. Table A.1 also contains percentiles of posterior parameter
distributions. The posterior estimates for the volatility parameters and the transition
probabilities are similar across GDPg and GDP¢. However, the posterior estimate
for py is higher using GDPg than using GDP¢, while the opposite is true for S.
Moreover, the differential between high and low mean regimes is bigger in the case
of GDP, all of which can influence the time-series plot of the recession probabilities.

The Markov-switching means capture low-frequency shifts while the autoregres-
sive coefficient captures high-frequency dynamics. Thus, the presence of the autore-
gressive term may complicate our analysis, because we are trying to decompose the
GDP measurement discrepancy into both low- and highfrequency components. As
a robustness check, we remove the autoregressive term in (A.1) and estimate an iid
model specification. Although the posterior estimates for ;; change, the remaining
parameters are essentially identical to Table A.1. The smoothed recession probabil-
ities remain nearly identical to Fig. 8.

References

Aruoba, B. (2008), “Data Revisions are not Well-Behaved”, Journal of Money, Credit and Banking,
40, 319-340.

Aruoba, S.B. and FX. Diebold (2010), “Real-Time Macroeconomic Monitoring: Real Activity,
Inflation, and Interactions”, American Economic Review, 100, 20-24.

Aruoba, S.B., EX. Diebold, J. Nalewaik, F. Schortheide, and D. Song (2011), “Improving GDP
Measurement: A Measurement Error Perspective”, Manuscript in progress, University of Mary-
land, University of Pennsylvania and Federal Reserve Board.

Barker, T., F. van der Ploeg, and M. Weale (1984), “A Balanced System of National Accounts for
the United Kingdom”, Review of Income and Wealth, 461-485.

Bates, J.M. and C.W.J. Granger (1969), “The Combination of Forecasts”, Operations Research
Quarterly, 20, 451-468.

Beaulieu, J. and E.J. Bartelsman (2004), “Integrating Expenditure and Income Data: What To Do
With the Statistical Discrepancy?” FEDS Working Paper 2004, 39.

Bloom, N., M. Floetotto, and N. Jaimovich (2009), “Really Uncertain Business Cycles”, Manuscript,
Stanford University.

Byron, R. (1978), “The Estimation of Large Social Accounts Matrices”, Journal of the Royal
Statistical Society Series A, 141, Part 3, 359-367.

Carter, C.K. and R. Kohn (1994), “On Gibbs Sampling for State Space Models”, Biometrika, 81,
541-553.

Diebold, FX. and J.A. Lopez (1996), “Forecast Evaluation and Combination”, In G.S. Maddala
and C.R. Rao (eds.) Handbook of Statistics (Statistical Methods in Finance), North- Holland,
241-268.

18 We performed several tests confirming that our choice of N yields an accurate posterior approx-
imation.



Improving U.S. GDP Measurement: A Forecast Combination Perspective 25

Faust, J., J.H. Rogers, and J.H. Wright (2005), “News and Noise in G-7 GDP Announcements”,
Journal of Money, Credit and Banking, 37, 403—417.

Fixler, D.J. and J.J. Nalewaik (2009), “News, Noise, and Estimates of the “True” Unobserved State
of the Economy”’, Manuscript, Bureau of Labor Statistics and Federal Reserve Board.

Hamilton, J.D. (1989), “A New Approach to the Economic Analysis of Nonstationary Time Series
and the Business Cycle”, Econometrica, 57, 357-384.

Kim, C.-J. and C.R. Nelson (1999a), “Has the U.S. Economy Become More Stable? A Bayesian
Approach Based on a Markov-Switching Model of the Business Cycle”, Review of Economics
and Statistics, 81, 608-616.

Kim, C.-J. and C.R. Nelson (1999b), State Space Models with Regime Switching, MIT Press.

Kishor, N.K. and E.F. Koenig (2011), “VAR Estimation and Forecasting When Data Are Subject
to Revision”, Journal of Business and Economic Statistics, in press.

Mankiw, N.G., D.E. Runkle, and M.D. Shapiro (1984), “Are Preliminary Announcements of the
Money Stock Rational Forecasts?”” Journal of Monetary Economics, 14, 15-27.

Mankiw, N.G. and M.D. Shapiro (1986), “News or Noise: An Analysis of GNP Revisions”, Survey
of Current Business, May, 20-25.

McConnell, M. and G. Perez-Quiros (2000), “Output Fluctuations in the United States: What Has
Changed Since the Early 1980s?” American Economic Review, 90, 1464—-1476.

Nalewaik, J.J. (2010), “The Income- and Expenditure-Side Estimates of U.S. Output Growth”,
Brookings Papers on Economic Activity, 1, 71-127 (with discussion).

Nalewaik, J.J. (2011), “Estimating Probabilities of Recession in Real Time Using GDP and GDI”,
Journal of Money, Credit and Banking, in press.

Sancetta, A. (2007), “Online Forecast Combinations of Distributions: Worst Case Bounds”, Journal
of Econometrics, 141, 621-651.

Schortheide, F. (2005), “Learning and Monetary Policy Shifts”, Review of Economic Dynamics,
8,392-419.

Solomou, S. and M. Weale (1991), “Balanced Estimates of U.K. GDP 1870-1913”, Explorations
in Economic History, 28, 54-63.

Solomou, S. and M. Weale (1993), “Balanced Estimates of National Accounts When Measurement
Errors Are Autocorrelated: The U.K., 1920-1938”, Journal of the Royal Statistical Society Series
A, 156 Part 1, 89-105.

Statistisches Bundesamt, Wiesbaden (2009), ‘“National Accounts: Gross Domestic Product in
Germany in Accordance with ESA 1995 - Methods and Sources”, Subject Matter Series, 18.

Stock, J.H. and M.W. Watson (2002), “Has the Business Cycle Changed and Why?”” In M. Gertler
and K. Rogoff (eds.), NBER Macroeconomics Annual, Cambridge, Mass.: MIT Press, 159-218.

Stone, R., D.G. Champernowne, and J.E. Meade (1942), “The Precision of National Income Esti-
mates”, Review of Economic Studies, 9, 111-125.

Timmermann, A. (2006), “Forecast Combinations”, In G. Elliot, C.W.J. Granger and A. Timmer-
mann (eds.), Handbook of Economic Forecasting, North-Holland, 136-196.

Vovk, V. (1998), “A Game of Prediction with Expert Advice”, Journal of Computer and System
Sciences, 56, 153—-173.

Wald, A. (1950), Statistical Decision Functions, John Wiley, New York.

Weale, M. (1985), “Testing Linear Hypotheses on National Accounts Data”, Review of Economics
and Statistics, 90, 685-689.

Weale, M. (1988), “The Reconciliation of Values, Volumes, and Prices in the National Accounts”,
Journal of the Royal Statistical Society Series A, 151 Part 1, 211-221.



Identification Without Exogeneity Under
Equiconfounding in Linear Recursive
Structural Systems

Karim Chalak

Abstract This chapter obtains identification of structural coefficients in linear
recursive systems of structural equations without requiring that observable vari-
ables are exogenous or conditionally exogenous. In particular, standard instrumental
variables and control variables need not be available in these systems. Instead, we
demonstrate that the availability of one or two variables that are equally affected
by the unobserved confounder as is the response of interest, along with exclusion
restrictions, permits the identification of all the system’s structural coefficients. We
provide conditions under which equiconfounding supports either full identification
of structural coefficients or partial identification in a set consisting of two points.

Keywords Causality - Confounding + Covariance Restrictions - Identification -
Structural systems

1 Introduction

This chapter obtains identification of structural coefficients in fully endogenous linear
recursive systems of structural equations. In particular, standard exogenous instru-
ments and control variables may be absent in these systems.! Instead, identification
obtains under equiconfounding that is to say in the presence of (one or two) observ-
able variables that are equally directly affected by the unobserved confounder as is
the response. Examples of equiconfounding include cases in which the unobserved
confounder directly affects the response and one or two observables by an equal
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! Standard instruments are uncorrelated with the unobserved confounder whereas conditioning on
control variables renders the causes of interest uncorrelated with the confounder.
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proportion (proportional confounding) or an equal standard deviation shift. We show
that the availability of one or two variables that are equally (e.g., proportionally)
confounded in relation to the response of interest, along with exclusion restrictions,
permits the identification of all the system’s structural coefficients. We provide con-
ditions under which we obtain either full identification of structural coefficients or
partial identification in a set consisting of two points.

The results of this chapter echo a key insight in Halbert White’s work regard-
ing the importance of specifying causal relations governing the unobservables for
the identification and estimation of causal effects (e.g., White and Chalak 2010,
2011; Chalak and White 2011; White and Lu 2011a,b; Hoderlein et al. 2011).
A single chapter can do little justice addressing Hal’s prolific and groundbreak-
ing contributions to asymptotic theory, specification analysis, neural networks,
time series analysis, and causal inference, to list a few areas, across several disci-
plines including economics, statistics, finance, and computer and cognitive sciences.
Instead, here, we focus on one insight of Hal’s recent work and build on it to intro-
duce the notion of equiconfounding and demonstrate how it supports identification
in structural systems.

To illustrate this chapter’s results, consider the classic structural equation for the
return to education (e.g., Mincer 1974; Griliches 1977)

Y =6,X + a,U + o, Uy, (1)

where Y denotes the logarithm of hourly wage, X determinants of wage with observed
realizations, and U and U, determinants of wage whose realizations are not observed
by the econometrician. Elements of X may include years of education, experience,
and tenure. Interest attaches to the causal effect of X on Y, assumed to be the
constant 3,. Here, U denotes an index of unobserved personal characteristics that
may determine wage and be correlated with X, such as cognitive and noncognitive
skills, and Uy, denote other unobserved determinants assumed to be uncorrelated
with X and U. Endogeneity arises because of the correlation between X and o, U,
leading to bias in the coefficient of a linear regression of ¥ on X. The method of
instrumental variables (IV) permits identification of the structural coefficients under
the assumption that a “valid” (i.e. uncorrelated with o, U + a,Uy) and “relevant”
(i.e. E(XZ') is full raw rank) vector Z excluded from Eq.(1) and whose dimen-
sion is at least as large as that of X is available (e.g., Wooldridge 2002, pp. 83-84).
Alternatively, the presence of key covariates may ensure “conditional exogeneity”
or “unconfoundedness” supporting identification (see e.g., White and Chalak 2011
and the citations therein). We do not assume the availability of standard instruments
or control variables here, so these routes for identification are foreclosed.
Nevertheless, as we show, a variety of shape restrictions®> on confounding can
secure identification of (3,. To illustrate, begin by considering the simplest such

2 Shape restrictions have been employed in a variety of different contexts. For example, Matzkin
(1992) employs shape restrictions to secure identification in nonparametric binary threshold crossing
models with exogeneity.
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possibility in which data on a proxy for o, U, such as I Q score, is available. Let Z
denote the logarithm of 7 Q and assume that the predictive proxy Z for U does not
directly cause Y, and that Z and Y are equiconfounded. In particular, suppose that
Z is structurally generated by

Z =o,U+ a;U,,

with U, as a source of variation uncorrelated with other unobservables. Then, under
this proportional confounding, a one unit increase in U leads to an approximate
100, % increase in wage and I Q ceteris paribus. It is straightforward to see that,
by substitution, (3, is identified from a regression of ¥ — Z on X. Note, however,
that Z is not a valid instrument here (E(Za,U) # 0) since Z is driven by U.

The above simple structure excludes I Q from the equation for Y to ensure that
0, is identified. Suppose instead that X = (X, X7, X /3)/ and that the two variables
X1 and X are structurally generated as follows

X1 =0,U +ay Uy, and X2 =, U+ ay,Uy,,

with Uy, and Uy, sources of variation, each uncorrelated with other unobservables.
‘We maintain that the other elements of X are generally endogenous but we restrict
X1 and X, to be equiconfounded joint causes of Y . For example, X1 may denote the
logarithm of another test score, such as the Knowledge of World of Work (KW W)
score (see e.g., Blackburn and Neumark 1992), and we relabel log(Z Q) to X».
Here, wage, KWW, and I Q are proportionally confounded by U. Substituting for
o, U = X1 — o Uy, in (1) gives

Y — X1 =06,X —a, Uy +a,Uy,

and thus a regression of ¥ — X on X does not identify (3, since X is correlated
with ay, Uy, . Further, although X, and X3 are exogenous in this equation, they are
not excluded from it and thus they cannot serve as instruments for X . Nevertheless,
we demonstrate that in this case [, is fully (over) identified.

In the previous example, two joint causes and a response that are equiconfounded
secure identification. Similarly, one cause and two joint responses that are equicon-
founded can ensure that 3, is identified. For example, let Y| and Y, denote two
responses of interest (e.g., two measures of the logarithm of wage, one reported by
the employer and another by the employee). In particular, suppose that

Y1 = 10X + U +ay Uy and Yy = 52X + U + ay,Uy,.

Note that 31, and 32, need not be equal. As before, we maintain that an element X
(e.g., log(1 Q)) of X is structurally generated by

X1 = auU+ax|pr
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with the remaining elements of X generally endogenous. We demonstrate that here
(81, B5,)" is partially identified in a set consisting of two points.
Various other exclusion restrictions can secure identification of structural coeffi-

cients in the presence of equiconfounding. Consider the classic triangular structure:

Y =6,X + a,U + o, Uy,
X =9%Z+nmU+ ayU.

As before, Uy and Uy denote exogenous sources of variation. The method of IV
identifies (3, provided that the excluded vector Z is valid (E(a,UZ') = 0) and
relevant (E (X Z') full raw rank) and thus has dimension at least as large as that of X.
Suppose instead that Y, Z, and an element X of X are equiconfounded by U':

X1 =%0Z 4+ U + 0y Uy, and Z =, U+ U,

where Uy, and U, are each uncorrelated with other unobservables. The remaining
elements of X are generally endogenous. For example, a researcher may wish to
allow I Q to be a structural determinant of the subsequently administered K WW
test, in order to capture learning effects, and to exclude 7 Q from the equation for Y
if this test’s information is unavailable to employers. Then Z denotes log(I Q) and X
denotes log(K W W). In this structure we refer to Z and X as equiconfounded pre-
cause and intermediate-cause, respectively. We demonstrate that (ﬂ;, %)’ is either
fully identified or partially identified in a set consisting of two points. Importantly,
in contrast to the method of IV, here Z is a scalar endogenous variable.

This chapter is organized as follows. Section 2 introduces notation. Formal identi-
fication results, including for the examples above, are discussed in Sects. 3 to 6. Often
we present the identification results as adjustments to standard regression coefficients
thereby revealing the regression bias arising due to endogeneity. Section 7 contains
a discussion and Sect. 8 concludes. All mathematical proofs as well as constructive
arguments for identification are gathered in the appendix.

2 Notation

Throughout, we let the random k& x 1 vector X and p x 1 vector Y denote the
observed direct causes and responses of interest, respectively. If there are observed
variables excluded from the equation for Y, we denote these by the £ x 1 vector Z.
We observe independent and identically distributed realizations {Z;, X;, Y;}"_, for

3 This chapter considers linear recursive structural systems. Recursiveness rules out “simultaneity”
permitting distinguishing the vectors of primary interest X and Y as the observed direct causes
and responses, respectively. In particular, elements of ¥ are assumed to not cause elements of X.
While mutual causality is absent here, endogeneity arises due to the confounder U jointly driving
the causes X and responses Y.
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Z, X, and Y and stack these into the n x £, n x k, and n x p matrices Z, X, and
Y, respectively. The matrices (or vectors) of structural coefficients , and /3, denote
finite causal effects determined by theory as encoded in a linear structural system
of equations. The scalar index U denotes an unobserved confounder of X, Z, and
Y and the vectors Uy, Uy, and U, of positive dimensions denote unobserved causes
of elements of Z, X and Y, respectively. Without loss of generality, we normalize
the expectations of U, U, Uy, and U, to zero. The structural coefficients matrices
o, a and oy denote the effects of elements of U,, U, and Uy on elements of Z, X
and Y, respectively. Equiconfounding restricts the effect of the confounder U on Y
and certain elements of X and Z to be equal; we denote this restricted effect by «,
and we denote unrestricted effects of U on elements of X by ¢,.

We employ the following notation for regression coefficients and residuals. Let
Y, X, and Z be generic random vectors. We denote the coefficient and residual from
a regression of Y on X by

myx = EQCXVE(XXX)™" and €, =Y — 7y, X.

Similarly, we denote the coefficient associated with X from a regression of ¥ on X
and Z by
Tyx|lz = E(Ey.ze;.z)E(ex.ze;_z)il~

This representation obtains from the Frisch-Waugh-Lovell theorem (Frisch and
Waugh 1993; Lovell 1963; see e.g., Baltagi 1999, p. 159). Noting that

E(ey,€. )= E(Ye, ) — E(YZ)E(ZZ)"'E(Zé, ) = E(Y€, )
= E(YX")— E(YZE(ZZ')"'E(ZX') = E(e, . X)),

We can rewrite my |, as
Tyxle = E(Ye, VE(Xe, )7 = E(ey . X)E(ex . X) 7.

Last, we denote sample regression coefficients by 7, , = (X’ X)~!'X’Y and residuals
by éy.x,i = Yi — 7y xX;, which we stack into the n x p vector €, .. Similarly, we let
Fyale = (€, X)71EL Y.

Throughout, we illustrate a structural system using a directed acyclic graph as in
Chalak and White (2011). A graph G s associated with a structural system S consists
of a set of vertices (nodes) {V,}, one for each variable in S, and a set of arrows
{agn}, corresponding to ordered pairs of distinct vertices. An arrow agj, denotes that
V, is a potential direct cause for Vj, i.e., it appears directly in the structural equation
for Vj, with a corresponding possibly nonzero coefficient. We use solid nodes for
observables and dashed nodes for unobservables. For convenience, we sometimes
use vector nodes to represent vectors generated by structural system S. In this case, an
arrow from vector node Z to vector node X indicates that at least one element of Z is
a direct cause of at least one element of X. We use solid nodes for observable vectors



32 K. Chalak
and dashed nodes for vectors with at least one unobservable element. For simplicity,

we omit nodes for the exogenous vectors U, Uy,and U,. Lastly, we use dashed
arrows emanating from U to Y, X1, Z , and possibly X» to denote equiconfounding.

3 Equiconfounded Predictive Proxy and Response

The simplest possibility arises when the response Y and a scalar predictive proxy
Z for the unobserved confounder U are equiconfounded. The predictive proxy Z
is excluded from the equation for Y. In particular, consider the structural system of
equations Sy with causal graph G:

) Z = U + a.U., Lu

AN
N

@) X1 = ¢uU + axUs

3) Y = B,X + U + oy Uy
with U, Uy, Uy, and Uy,
pairwise uncorrelated
and with X = (X7, 1)".

Graph 1 (G,)
Equiconfounded Predictive Proxy

and Response
Similar to Chalak and White (2011), we use the “Z” potation instead of “=" to
emphasize structural equations. We let £ = p = 1 in S as this suffices for iden-
tification. Here and in what follows, we let the last element of X be degenerate
at 1. The next result shows that the structural vector (3, is point identified. This is
obtained straightforwardly by substituting a,, U with Z — o, U in the equation for Y.

Theorem 3.1 Consider structural system S; withk > 0, £ = p = 1, and expected
values of U, Uy, Uy, Uy normalized to zero. Suppose that E(U?) and E (U, U,) exist
and are finite. Then (i) E(XX'), E(ZX'), and E(Y X') exist and are finite. Suppose
Surther that E(XX') is nonsingular. Then (ii) 3, is fully identified as

Bo = Ty—z.x+

Under standard conditions (e.g., White 2001) the estimator 7y, , = (X’ X)X’
(Y — Z) is a consistent and asymptotically normal estimator for 3,. A heteroskedas-
ticity robust estimator (White 1980) for the asymptotic covariance matrix for 7, .
is givenby X'X)" !0, &2 X X)H(X'X)~L

y—z.X,i
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4 Equiconfounded Joint Causes and Response

Identification in S| requires the predictive proxy Z to be excluded from the equation
for Y. However, 3, is also identified if two causes X| and X and the response Y are
equiconfounded. In particular, consider structural system S, with causal graph Go:

(la) Xl é auU + Qixy les

(16) X2 = a,U + ax, Uy,
(1¢) X31 = ¢uU + ay Uy
(2) Y = BoX + o, U + Uy
with U, Uy, Uy,, Uy, and Uy,
pairwise uncorrelated and
X = (X}, X5, X5, 1) = (X}, X5, X3).

Graph 2 (G,)
Equiconfounded Joint Causes and
Response

We can rewrite 1(a, b, c¢) as
(1) (X}, X5, X5) =0, U + Uy,

with n, = (&, o, ¢},), Uy = (U)/q’ U;z, U;S)/, and «, a block diagonal matrix
with oy, oy, , and «, at the diagonal entries and zeros at the off-diagonal entries.
Here, we let X| and X, be scalars, k; = k» = 1, as this suffices for identification.

The next theorem shows that the structural vector (3, is point identified.

Theorem 4.1 Consider structural system Sy with dim(X3) = k3 > 0, and
k1 = ko = p = 1, and expected values of U, U, Uy, Uy normalized to zero. Suppose
that E(U?) and E(U,U,) exist and are finite. Then (i) E(XX') and E(Y X") exist
and are finite. Suppose further that E(X X') is nonsingular. Then (ii) the vector (3,
is fully (over-)identified by:

By = Bic = myx — [E(X2X}), E(X2X}), ECX1 XDIE(X X)) ™!
=Bl =myx — [ECQX), E(X2 X)), EXaXDIE(XX) ™"

The above result obtains by noting that the moment E (Y X’) identifies 3, when
E(XX’) is nonsingular provided that oy, E(U X’) is identified. But this holds since,
E(X1X}) = E(X2X}) = (Cov(¢,U, o, U)',0) and E(X1X2) = Var(a,U). The
expressions for 37 and B;C emphasize the bias m, , — 7, (or Ty — B}C) in a
regression of ¥ on X arising due to endogeneity. The plug-in estimators ﬁAjC and

3% for 375 and B}_C, respectively:
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n
Bre =y — D [ X2 X{;, Xai X[, X1 X}y, 01X'X) ™!, and

i=1

n
Bre =Ryx — D [ X2 X{;, X2 X{;, X2 X}y, 01X'X) 71,
i=l1

are consistent estimators under conditions sufficient to invoke the laws of large num-
bers.

A testable restriction of structure S, is that Cov(Xy, X3) = Cov(X», X3) =
(o ECU 2)(;5;, 0). Thus, &> can be falsified by rejecting this null. In particular, one
can reject the equiconfounding restrictions in equations 1(a, b, ¢) if E(X1X}) #
E(X>X%). For this, one can employ a standard F-statistic for the overall significance
of the regression of X; — X5 on X3.

5 Equiconfounded Cause and Joint Responses

The availability of a single cause and two responses that are equiconfounded also
ensures the identification of causal coefficients. Specifically, consider structural sys-
tem S3 given by:

(la) X1 = o, U + ay, Uy,

(1b) X21 = ¢y U + ax, Uy,
2a) Y1 = B1oX + U + ay, Uy,

(2b) Y2 = (2o X + U + ay, Uy,
with U, Uy, Ux,, Uy,, and U,,
pairwise uncorrelated and

X = (X}, X}, 1) = (X}, Xb)'.

Graph 3 (G3)
Equiconfounded Cause and Joint Responses

Letting ¥ = (Y,Yy), B, = (B,.0,), U« = (Uy,U,), and
U, =U ;1, U )’,2)’, and letting o, be a block diagonal matrix with diagonal entries
o, and ay, and zero off-diagonal entries, and similarly for cvy, we can write 1(a, b)
and 2(a, b) more compactly as

(D) (X7, X5)" = U + axUx
(2) Y = BoX + aytpU + ayUy,
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with ¢, a p x 1 vector with each element equal to 1 and 7, = (aj,, ¢;)". Here it
suffices for identification that dim(X;) = k; = 1 and p = 2. The next theorem
demonstrates that the structural matrix (3, is partially identified in a set consisting of
two points.

Theorem 5.1 Consider structural system S3 with dim(Xp) = kp > 0, ky = 1,
p = 2, and expected values of U, U, Uy, and Uy normalized to zero. Suppose
that E(U?) and E(U,U)) exist and are finite, then (i) E(XX') and (Y X') exist
and are finite. Suppose further that E(X1X') and E(X2X)) are nonsingular then
(ii.a) Py, = E(€x,x,€y,x,) and Py, = E(ex,x €y, ,,) exist and are finite. If also
Py, and Py, are nonsingular then (ii.b) E(X X') is nonsingular, 7y  and E (ey, +Y3)
exist and are finite, and (ii.c)

2
Ayg = [2Px—11E(X1x;) - 1] —4p; [E(X1X/2)PX_ZIE(X2X/1) + E(eyl,xyz/)] ,
exists, is finite, and is nonnegative.
(iii) B, is partially identified in a set consisting of two points. In particular,
(iii.a) if
Var(ay, Uy,) + Cov(g, U, oy, U)
[Var(¢,U) + Var(ay, Ux,)]~ ' Cov(¢u U, a,,U) — Var(a, U) < 0,

then
0= 0} = EXIX} + 3 Py (1 = /A sp) < 02 EWY), and
ojr = E(X1X)) + %le(—l +VAR) = 2EWU?),
and thus

Bo =g = Tyx — tplofg, EIX)IEXX) ™
(iii.b) If instead the expression in (iii) is nonnegative then
ohp=a2EWU? and 0<a2EU?) < d’p,

and thus .
Bo = By = myx = tplof g EXIX5)IEXX)

Observe here that, unlike for the case of equiconfounded joint causes, (3, is not
point identified but is partially identified in a set consisting of two points. Also,
observe that 31, — 32, is identified from a regression of ¥Y; — Y, on X. How-
ever, 81 ;o — B3 jp = ﬁf JR — ﬁ; s and thus this does not help in fully iden-
tifying B[,. Similar to S, with E(X)’(’) nonsingular, the moment E (Y X') identifies
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B, provided Cov(¢,U, a,,U) and Var(a,U) are identified. While E(X»1X|) =
Cov(¢,U, a,U), identification of Var(«,U) is more involved here than in S;.
Appendix B.1 presents a constructive argument showing that the moment E (Y1Y5)
delivers a quadratic equation in Var(«, U) with two positive roots, 0; g and o p.
Under suitable conditions sufficient to invoke the law of large numbers, the follow-
ing plug-in estimators are consistent for Ayg, o} R, 0’; r B g» and 5;  respectively.

To express these, let f’xl = X; and Px2 = X5. Then

n x1x2 n x2x1

. L1 2 1

A,Rz[szl‘ —xgxl—1] — 4P [ X\X, P ‘—x/x1+ WYz}
n

1, 14 -

O'JRE;XIX1+§PX1 —14++/Ayr and

IR 1, N
UJRE;XIXI +§le —1— AJR 5

. 1 1 -1

Bir=Tyx—tp [&jR, —X’1X2i| (—X’X) , and
n n

. A 1 1 -1

B =yx —tp [a,R, ~Xj Xz} (;X’X) :

Thus, under suitable statistical assumptions, Bj r and BA}  converge to (3} 5 and B'IJ_ R

respectively; under the structural assumptions of S, either 37, or 6}_  identifies the
structural coefficient vector (,.

6 Equiconfounding in Triangular Structures

Next, we consider the classic triangular structure discussed in the Introduction and
show that if one excluded variable Z, one element X; of the direct causes X, and the
response Y are equally confounded by U then all the system’s structural coefficients
are identified. Consider structural system S4 with causal graph G4:
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(1) Z1 = o, U + U,
(2a) X4 = Y1oZ + o, U + axlle
(2b) X21 = 120Z + ¢uU + a, Uy,
(3) Y = BoX + o, U + Uy,
with U, U, Uy, Uy,, and U,
pairwise uncorrelated,
and with Z = (Z, ') = (2}, Z}),
and X = (X|, X5, 1) = (X}, X5)'.

Graph 4 (G,)
Equiconfounded Pre-Cause,

Intermediate-Cause, and Response
To rewrite 2(a, b) more compactly, let v, = (v],,75,) and n, = (v, ¢;,)’, and
write Uy = (U,,, Uy,)’, with oy, and a, the diagonals entries of the block diagonal
matrix o, with zero off-diagonal entries. Then

2 (X}, X5) =Y%Z + U + oy Uy.

We sometimes refer to Z; as a pre-cause variable as it is excluded from the equation
for Y and to X as an intermediate cause as it mediates the effect of Z; on Y. As
discussed in the Introduction, necessary conditions for the method of IV to identify
B, are that E(Z(cy,U + ayUy)) = 0 and that E(XZ') is full raw rank. Both of
these conditions can fail in Sy, since E(Z (o, U)) is generally nonzero and only one
excluded variable suffices for identification here so thatdim(Z) = ¢; = dim(X) =
k1 = p = 1 and thus dim(Z) = ¢ < dim(X) = k. Nevertheless, the next theorem
demonstrates that the structural vectors 7y, and 3, are jointly either point identified
or partially identified in a set consisting of two points.

Theorem 6.1 Consider structural system Sy with dim(X;) = ko > 0, £; =
ki = p = 1, and expected values of U, U,, Uy, Uy normalized to zero. Sup-
pose that E(U?), E(U.U)), and E(U,Uy;) exist and are finite. Then (i) E(ZZ'),
E(XZ,E(XX"), E(YX"), and E(Y Z') exist and are finite. (ii) Suppose further that
P, = E(e;,.;,2)) = E(Z\Z}), and thus E(ZZ'), and E(XX") are nonsingular.
Then (ii.a) Ty ;, T7.x, E(exl_ZXé), and E(ey_xZi) exist and are finite and (ii.b)

’ 2
x.21lz2 "z1.x 71.X11x2 + 1]

—1
+ 4P11 W;Mﬂ [x2 [E(ey_xZQ) + E(exl-ZX/Z) Wél-nl)ﬂ]

Apc = [—7! P

exists, is finite, and nonnegative.
(iii) B, is either point identified or partially identified in a set consisting of two
points. In particular, (iii.a) if
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! —1_ 2 2
Tezilz ™ Zl at 71-Zl ai — P 2P 1, 0 EUT) <0, 2
then
/
™ + 7T —1- APC
U;C = il Toia ZI Silie < aiE(Uz) and
2PZ' 21 X1 |x2
ot = 7TJCleZz le+7rzl xllxz —1+Apc —azE(Uz)
PC — =« ,
2PZ‘ Zl EIEY)

and we have

Vio =V pe = Taz — [0pe. 01E(ZZ) 7!,
Y20 =5 pe = Ty .o — [E(Xa1€,, )1 — aPCP 7Y o1Ezz)7!, and

Bo = ﬁ;C =Tyx — [O-PC(le‘zl\ZZ UPC + D), E(€x1 zxz)
+ 0Py 2y E(XX) T
(iii.b) If instead the expression in (2) is nonnegative then a}f,c = q E (U?) and

O'PC > auE(Uz), and

Mo = pe =Tz — [0pe, 01E(ZZ) 7",
Y20 = 7§,PC = Txgz = [E(X216x1 Il = O'I’CP 171 01E(Z2))” L and

21
Bo = ﬁ;’C =Tyx — [UPC(le.zl\m UPC + D), E(Exl ZX2)
+ O p Ty 2 JEXX) T

Similar to S3, the moment E (Y X”) identifies (3, provided o, E (U X') is identified,
which involves identifying Var(c, U). Appendix B.2 provides a constructive argu-
ment showing that the moment E(Y Z’) delivers a quadratic equation in Var(a,U)
which admits the two roots 0; ¢ and o~ Note that it is possible to give primitive
conditions in terms of system coefficients and covariances among unobservables for
(2) to hold, similar to the condition given for the case of equiconfounded cause and
joint responses. We forego this here but we note that, unlike for the case of equicon-
founded cause and joint responses, if (2) holds, it is possible for a; ¢ to be negative,
leading to aﬁE (U?), and thus (Yo, Bo), to be point identified.

The following plug in estimators are consistent estimators under conditions suit-

able for the law of large numbers. First, we let f’z | =€ 1.2, then
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N A/ A/
Apc = [_ﬂ-x.zllzzﬂ-zwc - zl xw T 1]
b1 1 1
+ 4P Tz1x11x2 Zl + X1 ZX2 11 x2|x1

~ ok —lA/ 1 N
Opc = (2P Tz xllxz) |: Tx.z1)22 21x+7r11x1|x2 I+ Apc

- 1 A/ /A i
(2P z1 X1|x2) |: xm\zz z1 x T T e — 1=y Apc

X
Opc

-1
Ak _ A Ak 1,
"}/LPC = 7TX1<Z — [UPC, 0] (ZZ Z) and
. 1 -1
:Yl',PC =Ty — [(IPC, 0] (ZZ/Z) ,

. . 1o, . “19-1 1 -
Y2,pC = Txar.z — ;X21€x1.z (1- Upc 1.0 nZ Z ,
~F A lo/ o AT —19—1 1 -
Ya.pc = Txzz — ;Xﬂexl_z [1— UPC o 17,0 nZ Z ,

px oA A% ~/ H—1
Bpc =Tyx —0pc Ty 2112 — opcP; + 1) x. €r.2X2
| -1
Ak i /
+‘7PC7rxz.Z||zz] (r_zX X) , and
Bl =Ryx — [6h (R T D. &, X
pPC = Ty.x PC\Tx)z1120% PC ) x1 222

51 A Lxx -
+UPC7Tx2.Z1|22] ; :

7 Discussion

Structures Sy, Sz, 83, and S4 do not exhaust the possibilities for identification under
equiconfounding. An example of another linear triangular structure with equicon-
founding is one involving equiconfounded cause, response, and a post-response vari-
able. For example, assuming that KWW score (a potential cause), hourly wage
(a response), and the number of hours worked (a post response directly affected
by hourly wage but not by the KWW score) are proportionally confounded, with
other determinants of wage generally endogenous, may permit identification of this
system’s structural coefficients.

Roughly speaking, equiconfounding reduces the number of unknowns thereby
permitting identification. In contrast, the method of IV supplies additional moments
useful for identification. In general, equiconfounding leads to covariance restrictions
(see e.g., Chamberlain 1977; Hausman and Taylor 1983) that, along with exclusion
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restrictions, permit identification. For example, in Sy, the absence of a direct causal
effect among X and elements of X; and excluding Z; from the equation for Y
permits identifying Cov(¢, U, o, U) and Var(c,U) given that Z;, X, and Y are
equiconfounded. This then permits identifying S4’s coefficients. Similar arguments
apply to S1, Sz, and S3. This is conveniently depicted in the causal graphs by (1) a
missing arrow between two nodes, one of which is linked to U by a dashed arrow
and the other by a solid arrow (e.g., X1 and X, in S4) and (2) a missing arrow
between two nodes that are both linked to U by a dashed arrow (e.g., Z and Y in Sy).
Recent papers which make use of alternative assumptions that lead to covariance
restrictions useful for identification include Lewbel (2010); Altonji et al. (2011) and
Galvao et al. (2012).

As discussed in Sect. 4, the availability of multiple equiconfounded variables can
overidentify structural coefficients, leading to tests for equiconfounding. Further,
equiconfounding can be used to conduct tests for hypotheses of interest. For exam-
ple, one could test for endogeneity under equiconfounding without requiring valid
exogenous instruments. To illustrate, consider the triangular structure discussed in
structure Sy of Sect.6 then Theorem 6.1 gives that under equiconfounding (3, is
either fully identified or partially identified in {3}, ﬁ; ¢} Theorem 6.1 allows for
the possibility Var(c,U) = 0 of zero confounding or exogeneity. Further, if X is
exogenous then clearly the regression coefficient 7y , also identifies /3,. This over
identification provides the foundation for testing the exogeneity of X without requir-
ing the availability of exogenous instruments with dimension at least as large as
that of X. Instead, it suffices that a scalar Z; and one element X of X are equally
(un)affected by U as is Y. For example, in estimating an Engle curve for a particular
commodity, total income Z is often used as an instrument for total expenditures X
which may be measured with error. Nevertheless, as Lewbel (2010, Sect.4) notes, “it
is possible for reported consumption and income to have common sources of mea-
surement errors” which could invalidate income as an instrument. One possibility for
testing the absence of common sources of measurement error is to assume that the
consumption Y of the commodity of interest, total expenditures X1, and income Z
are misreported by an equal proportion. In the absence of common sources of mea-
surement error, Var(a, U) = 0 and one of the equiconfounding estimands should
coincide with the regression coefficient 7y ., providing the foundation for such a test.
A statistic for this test can be based on the difference between the regression esti-
mator 7, , and the equiconfounding estimators B}i c and B; ¢ for 3, or alternatively
on the estimators 57 and &]; ¢ for Var(a,, U). Such a test statistic must account for
Var (o, U) being possibly partially identified in {07 -, a; c}- We do not study formal
properties of such tests here but we note the possibility of a test statistic based on
min{Gy, &I’C }. A similar test for exogeneity can be constructed in other structures,
e.g., S3.

A key message of this chapter is that, when exogeneity and conditional exogeneity
are not plausible, one can proceed to identify structural coefficients and test hypothe-
ses in linear recursive structures by relying on a parsimonious alternative assumption
that restricts the shape of confounding, namely equiconfounding. Here, we begin to
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study identification via restricting the shape of confounding by focusing on equicon-
founding in linear structures but there are several potential extensions of interest.
One possibility is to maintain the equiconfounding assumption and relax the con-
stant effect structure, e.g., by allowing for random coefficients across individuals.
Another possibility is to maintain the constant effect linear assumption and study
bounding the structural coefficients under shape restrictions on confounding weaker
than equiconfounding. Relaxing the restriction on the shape of confounding could
potentially increase the plausibility of this restriction albeit while possibly leading
to wider identification sets.

8 Conclusion

This chapter obtains identification of structural coefficients in linear systems of struc-
tural equations with endogenous variables under the assumption of equiconfound-
ing. In particular, standard instrumental variables and control variables need not
be available in these systems. Instead, we demonstrate an alternative way in which
sufficiently specifying the causal relations among unobservables, as Hal White rec-
ommends (e.g., Chalak and White 2011; White and Chalak 2010, 2011; White and
Lu 2011a,b; Hoderlein et al. 2011), can support identification of causal effects. In
particular, we introduce the notion of equiconfounding, where one or two observables
are equally affected by the unobserved confounder as is the response, and show that,
along with exclusion restrictions, equiconfounding permits the identification of all
the system’s structural coefficients. We distinguish among several cases by the struc-
tural role of the equiconfounded variables. We study the cases of equiconfounded
(1) predictive proxy and response, (2) joint causes and response, (3) cause and joint
responses, and (4) and pre-cause, intermediate-cause, and response. We provide con-
ditions under which we obtain either full identification of structural coefficients or
partial identification in a set consisting of two points.

As discussed in Sect.7, several extensions of this work are of potential interest
including characterizing identification under equiconfounding in linear structural
systems, developing the asymptotic distributions and properties for the plug-in esti-
mators suggested here, extending the analysis to structures with heterogenous effects,
relaxing the restriction on the shape of confounding, developing tests for equicon-
founding and for endogeneity, as well as employing these results in empirical appli-
cations. We leave pursuing these extensions to future work.
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Appendix A: Mathematical Proofs

Proof of Theorem 3.1 (i) Given that the structural coefficients of S; are finite and
that E(U?) and E (U, U,) exist and are finite, the following moments exist and are
finite:

0, 1
E(ZX') = ayEWUX") = [, E(U?)¢),, 0]
E(YX')=B,E(XX) + o, EUX") = B,E(XX") + [0y EU*)),,  OL.

2\ A ’
E(XX/) _ |:¢ME(U )¢u +leE(Uxe)Oém 0:|

(i7) Substituting for a,, U in (3) with its expression from (1), o, U = Z — U,
gives

Y —Z=03,X—a,U,+a,Uy,and thus E[(Y — 2)X'] = B,E(XX').
It follows from the nonsingularity of E(X X”’) that 3, is point identified as
By =my_rx = EL(Y — Z2)X'IE(XX)~'.0

Proof of Theorem 4.1 (i) Given that the structural coefficients of S» are finite and
that E(U?) and E(U,U +) exist and are finite, we have that

2N,/ A
E(XX') = [”ME(U )+ ax EUxUpa, (1)] and

07
EYX')=B,EXX) + [a,E(UX)), cu EUXY), ay E(UX})), au E(U)]
= BoE(XX') + [2E(U?), a2E(U?), o, E(U?)¢],, 0]

exist and are finite. (ii) Further, a2 E(U?) is identified by o2 E(U?) = E(X2X))
and ¢, E(U?)a, is overidentified by ¢, E(U?) o, = E(X31X) = E(X31X}).Given
that E(X X’) is nonsingular, it follows that (3, is fully (over)identified by

Bo = Bjc =Tyx — [E(XZX/I), E(XZX/l), E(Xlxg)]E(XX/)q
= ﬂ;c = ’/Ty)c - [E(szll)’ E(szll)’ E(szg) ]E(XX/)_ID

Proof of Theorem 5.1 (i) Given that the structural coefficients of S3 and E (U?) and
E(U,U;) exist and are finite we have

2y, A
E(XX') = [WE(U )i+ ax EUxUpa, (1)] and

07
EYX") =B,E(XX') + aup EUX)), E(UX))]
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= BoE(XX") + 1yl g E(U?), [ E(U*)¢),, 01]

exists and are finite.
(ii.a) Given that E(X X)) and E(XX}) are nonsingular, we have
Py, = E(€x,.1,€0, 1) = E(6x; ;X)) = E(X1X}) — T, 1, E(X2X]) and

sz = E(EXZ-XIG;Q.X]) = E(Exz.xlx/z) = E(X2X/2) - ’/sz.xlE(XIX/Z)

exist and are finite. (ii.b) If also Py, and P,, are nonsingular, then E (XX "~ L exists,
is finite, and is given by (e.g., Baltagi 1999, p. 185):

-1 -1 —1
E(XX,)_IZ[E(XMQ), E(Xlxp] =[_WP’”’ ~Tn P }

E(X>2X)), E(X2X)) Y e p!

x1.xtxy

with Px_llml_)62 =Ty szl. It follows that 7y, exists and is finite. To show that

E(ey, xY3) = E(Y1Yy) — EMXYEXX)'EXY))
exists and is finite, note that

E(YY") = E[(BoX + autpU + ayUy) (BoX + autpU + ayUy)']
= BoE(XX")3, 4+ Bo E(XU) )0, + ayty EUX S,
+ pthan E(U?) + oy E(U, U,

Substituting for the diagonal term E(Y1Y}) in the above expression for E(ey, (Y;)
then gives

E(ey, xYy) = BioE(XX") 35, + Bioa E(XU) + a E(UX") 3,
+a2EWU?) — EMMXYEXX)VE(XY)),
and thus E(ey, Y;) exists and is finite given that o, E(UX') = [a%E(Uz),
[ E(U?),., O]].
(ii.c) Next, we have that

Asr =[2P ' E(X1X}) — 117 — 4P ' [E(X1 X)) P  E(X2 X 1) + E(ey, £ Y31,

exists and is finite as it is a function of finite moments and coefficients. We now show
that A is nonnegative. Given the nonsingularity of E(X X’), substituting for

Bo =[E(YX") — a1, EUXE(XX")™",

in the expression for E(YY’) gives
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EYY)=[EXYX) - au,EUXNEXX) 'E(XXE(XX) ' [E(XY)
- EXUN,a, 1+ [E(YX') — aL,L,,E(UX/)]E(XX/)_lE(XU)L/pa;
+aut, EUXVE(XX) ' EXXY") — E(XU)/, 0]
+ 1yt 0n E(U?) + oy E(U, U, ),
= EYXE(XX) 'E(XY') — autp EUXVE(XX) ' E(XU")! cl],
+ 1pth0n E(U?) + oy E(U, U0,

The off-diagonal term then gives

E(ey, 1Y) = E(Y1Y;) — E(YlX’)E(XX’)_lE(XYZ/)
=2EWU? — o, EUX)E(XX) 'E(XU"/,

Substituting for a, E(UX') = [a2EU?), [a,EU?)¢,,0ll = [a2EU?),
E(X1X})] gives

 EUXYE(XX)'E(XU),

P—l R P—l
=[a£E(U2>,E(X1X§>][ oy e }[aﬁE(U%,E(XlX’Z)]’
xl X2t xp 0 X2

= ay E(U*? P! — E(X 1 X)), , P e E(U?)

— ag E(UHT,, . P E(X2 X)) + E(X 1 X5) P  E(X2XY).

Thus, we expand the term E(X1X2) 1E(X2X ) + E(ey, XY )in Ajp as:

E(X1X3) P, E(X2X) + E(ey, < Y3)
= E(xlxg)P—lE(xzxg) +agE(U?) — oy EU? P!
+ E(X1 X)), o, Pilan E(U?) + an E(UHT, . Py,
— E(X1X3) P,  E(X2X))
=—a E(U2)2P_1 +ag E(UD2P; T iy E(X2X7) + 1]
—ayE(WUY? P! + a2 EWUD2P, [E(X1 X)) — Py 1+ 1]
=—atEWw )2 P, +ozuE(U )[2Px11E(X1X1) —1]

'E(X, X))

where we use Px_llﬂ'xl.xz = l'and P, = E(XlX ) — Ty, sz(XQX ). Then

X2.X1 X2
Ajr =[2P ' E(X X)) — 117 —4 —I[E(Xlxp o ECOXY) + E(ey, 1Y)

= 2P 'E(X1X}) — 11 + 40, E(U)* P,
—4P o E(UH2P E(X X)) — 1]
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={2P 'E(X,X}) — 1] = 2P 'ag E(UH)}* > 0.
(iii) We begin by showing that
Var(ay, Uy,) + Cov(¢, U, a, U (A.1)

x [Var(¢,U) + Var(ay, sz)]_ICOV(¢uU, a,U) — Var(a,U)

has the same sign as the expression 2Px_11E(X1X’1) -1 - 2Px_11045E(U2) from
A jr. First, clearly, (A.1) can be negative, zero, or positive (e.g., set dim(X»1) = 1,

Var(ay, Uy,) = 1, and Var(oy,Uy,) = Var(¢,U) = % Then (A.1) reduces

to

1—- %Var(au U) with sign depending on Var(«,, U)). Next, multiplying this expression

by Py, = E(ex,.x, e;l_xz) preserves its sign and we obtain

2E(X1X)) — Py, — 202 E(U?)
=2E(X1X)) — [E(X1X}) — E(X1X5)E(X2X5) ' E(X2X))] — 202 E(U?)
= E(X1 X)) + E(X1X) E(X2X5) " E(X2X]) — 202 E(U?).

But we have

E(X1X}) = ag E(U?) + ay, E(Uy, U}, )0/, and
puEUUG, + g, E(Uy, U}, o}

X2

E(X2Xp) = [ 0 |

Then using [ oy, E(U?)¢),, 0] = E(X|X}) gives

E(X1X}) + E(X1 X EX2X5) "L E(Xo X)) — 202 E(U?)
= a2E(U?) + ax, E(Ux, U} oy, + [ EUD,, 0]

-1
y [@,E(UU’)% + oy EUx, Ul )l 0] [¢ME(U2)au
0, 1 0

= Var(ay, Uy,) + Cov(¢u U, ay U)'[Var(¢,U) + Var(ax, sz)]_l
x Cov(¢p,U, ayU) — Var(ay, U).

] —2a2EWU?)

(iii.a) Now, recall from (ii.c) that

Ajr ={2P'E(X1X}) — 11— 2P o E(UHY.
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Suppose that (3) is negative, then

Arr ‘2Px_11E(X1X/1) —1—2P ' 2EW?)

—2P'E(X X)) + 1+ 2P Lol E(UP),
and we have
1
ohp=EX1X}) + 5P (1= VAR
=2E(X1X]) — Py, — a2E(U?)
= Var(ay, Uy,) + Cov(p, U, a,, U) [Var (¢, U) 4 Var(cx, Uy,)] ™!

x Cov(¢p,U, o, U)
< 2EU?) (and > 0),

and
1
Tir = EXIXD) + 2 P (=1 + VA R) = aGEQU?).
(iii.b) Suppose instead that (A.1) is nonnegative then
_ —1 / -1 2 2
VAR = ’2le E(X X)) — 1 —2P'a2E(U )‘
=2P 'E(X1X]) — 1 —2P_ oy E(U?),

and we have .
a}R = ocﬁE(Uz),

and

0% o = Var(ay, Uy,) + Cov(¢, U, a, U) [Var (¢, U)
+ Var(ay, Uy,)] ™' Cov(¢, U, o, U)
> 2EWU? = 0.

Thus, aﬁE (U?) is partially identified in the set {oj r» 0 g} It follows from the
moment
E(YX') = BoE(XX') + ylag E(U?), E(X1 X5)].

and the nonsingularity of E(XX') that f3, is partially identified in the set {37,
Blg)- O
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Proof of Theorem 6.1 (i) We have that

N [a2EW?, 0
E<ZZ>—[ 0 ]],

n_ o (XL X502 [EZZ) + [mEWU?d, 0]
E(XZ)_E( Z%l )—[ 0. 1] s

, ZE(ZX' WEUX' EWU.X), E(X
E(XX)=|:7 (ZX") +1 E(g(/)wa (U X") (1>]

YE(ZX") + I E(U?)a,, 01, /
+n EUHn,, 01+ [ ax E(UcUx) o, 0], [0, 1] |,
[0, 1], 1

EYX') = B,E(XX") + a, E(UX") = B,E(XX')
+[[aZEU?), 01, + a2 E(U?), [[e2E(U?), 01, + ay E(UH ], 011,
E(YZ)=B,E(XZ) + [a2EU?),0],

Thus, these moments exist and are finite since they are functions of existing finite
coefficients and moments.

(ii.a) Given that P, = E(e;, ., Z}) = E(Z1Z)) is nonsingular and Z> = 1, we
have that

_ P! -l P! EZ1Z)H)7 "o
nN—1 _ z1 .21t 2 _ 149
Bezy = [—W’ P! P! } [ 0 1

21.227 21

is nonsingular and thus 7, ; and E (e, . X5) = E(X1X}) — 7y, . E(ZX}) exist and
are finite. With E (X X’) also nonsingular, 7, , exists and is finite. Also,

E(eyxZ)) = E(Y€,, )
= BoE(Xe,, )+ auEWUE, ) +ayE(Uye, )
=, EWUe

/
o)

Using E(X1X}) = v10E(ZX}) + o, E(U X)) then gives

E(eyxZy) = E(U€, ) = a, E(UZy) — aw E(UXYE(XX)'E(XZ})
QAZEW?) - [[a2EW?), 01y,
+ Q2E(U?), E(X1X5) — 10 E(ZX))]I7!

z1.x

exists and is finite.
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(ii.b) We have that A p¢ exists and is finite as it is a function of finite coefficients

and moments. Next, we verify that Apc > 0. We begin by expanding the term
E(ey.x Zi) in A pc. For this, we substitute for 1, with

Yio = Ty,.. — [@2EU?), 01E(ZZ") ",
in —a, E(UX")r] , which gives

— o E(UX"7,
= —[lag E(U?), O, +aiEWU?), EX1X5) —eEZXb)rl
= [0z E(WU?), Oy, 7. 1 + L0 EWU?), 01E(ZZ)) g EW?), 017!

z.X1]x2
—« E(U )7TZ X1l — E(ex, ZXZ)WZXQL\”] — [auE(Uz) 0]7erZ Zxa
= 2E(U2)7rx1 z1lz2 zx1|x2 +oy E(U2)2 lelxz @ E(U )ﬂ—z x1]x2
- E(exl-ZXZ)ﬁz.xglxl @ E(U2)7rx2 21\227Tz xalx1°

where we make use of [ a2 E(U?), 01E(ZZ)~'[a2E(U?), 0] = aiE(U2)2PZ_11.
Thus,
E(eyrZ}) = 02EWUY) — ay EUX)7,

2
=« E(U )—« E(U )7TX1 1™ 11 X110

71X

2 2
+a EU)P, Zl Xllxz

—auE(U Yl — E(ey,. ZX2)7r

zpx20x

2\2 —1 /
+O‘ EWUS"P, Tz1x1lx2

E(U )7r

z1.X1|x2 x2.211z22™ Zl X2 lxi

=2EWU% — a2E(WUHT!
—a2EWUHT

x.z1122™ 21 X
E (e, ZX2)7T

z1x1lxa z1-x2|x1°

Then
Apc =[-m. z1lz2 7r;1 x 7 21 xil T 1P +4P 21 aibe[E(€yxZ D
+ E(€X1 ZXZ) 7r21 lexl]

= [-n! 7

x.z1lz2 Mz x T 7T21.x1|xz +1]

+4P*‘wz1xllx2[a2E(U2) AEUHT. 7

x.z1lz2 " z1x

2 2 2
+Ol EWU)P Zl X1]x2 - E(U )WZIXI|X2
- E(le ZXZ)’/TZI X2 ]x1 + E(Exl ZX2)7TZI x2|xl]
2\12
= {[7‘(‘; Z]|Zz Zl x + 7'('Z1 X1|X2 1] 2P Z] XI‘XZ E(U )} Z 0
(iii) Suppose that
—1 2

71')/: 21122™ z1 x T 7r21 Xl - 1= 2PZI 7r£1 X1l “E(U ) <0
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Then
Apc= | . 7 4+ —1-2P; Q2EWU?)
PC = [Ty 21122z x 71.x1|x2 11 Xl Su

. ’ . 2

- 7rx.11|22ﬂ-2|.x Zl X1 |x2 + 1 + 2P Zl Xp]x2 ”E(U )’
and thus

/
oo Tzl ™ z1 X +7Tz1 Xl T 1 - VArc
Opc = 2P—1 ’
Tz1x11x2
/ 2
Tx.T ZX +7Tz x1lx2 —-1- P 11 X1 |x2 ”E(U )
- 1 .~
Py Tz1xilx
P a E(U 2)
u
< Zl_/Ill):Z _ aﬁE(Uz),
P Tz1x11x2
and ,
/ /
ot = TezilzTaa T 7rz1 X1lx2 — 1t Varc = azE(UZ)
pc = 1 = Ay :
2P11 7Tz1.x1|x2

Now, with E(ZZ') nonsingular, we have

E(X1Z") = 10E(ZZ') + [a2EU?), 0], or
Yio = Tx 2 — [0he O1E(ZZ) 71

Further, with E(X X”) nonsingular, we have

E(YX') = B,E(XX') + a E(UX'), or
By = {E(YX) — [[@2EU?), 01,
+a2EU?), E(X1X5) — Y1, E(ZX)NE(XX) ™!

Substituting for v, gives
[2EW?), 0]7}, + a2 E(WU?)
=[2EW?), 0], . — [a2EWY), 0] EZZ) ' [a2EW?), 0] + a2 EWU)
=[a2EW?), 0]}, . — o EWUS? P! + aZ E(U?)

=a2EWU? ) (T 2112 —afEWUH P+ D),

and
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E(X1X5) —110E(ZX))
= E(X1X5) — [mx,.. — [2E(U?), 01E(ZZ) " 1E(ZX})
= E(ex, : X5) + [a2EU?), 017, . = E(ex, . X}) + a2E(U?) 7!

X2.2 x2.21122°

so that

Bo =Tyx =05 (T 1o — The Pyt 4+ 1), Eex 2 X)

+ Ut’C 7T;z.mlzz]E(XX/)_l'
Also, we have

E(X1X5)) = Y10E(ZX})) + o E(UX5))

= MoE(ZX%) + ay E(UZb, + ay E(UH,

= o E(ZXy) + [a2EU?), 010, + ay E(U?)¢), and
E(X201Z') = 7,E(ZZ") + [ p, E(U?)al,, 0].

Substituting for
V2o = Txyz — [ G E(U?)a,, 01E(ZZ) ™!

in the expression for £(XX},) gives

E(X1X5)) = MoE(ZX5) + [ag E(U?), O]y,
—[a2EWU?), 01E(ZZ) [ pu E(UHal, 01 + au E(UH Y,
= Y1,E(ZX5)) + [2E(U?), 0],

X21.2

— ag E(UH P o E(U G, + ay E(U?) ).
Further substituting for 71, with [E(X1Z') — [@2E(U?), 011E(ZZ')~! gives

E(X1X5) — [E(X1Z) — [oZE(U?), O]]E(ZZ’)_IE(ZX’ZI) —[aZEWU?), 0]r%
= —ag EUH P au E(UH ), + au E(U) ),

21-2

or
E(X\€,, ) = —a E(U) P ay E(UN ), + au E(U?)4),.

Substituting for
G E(U)a), = E(Xai€, )1 —an EWUH P!

X1.2

in the expression for 2, gives



Identification Without Exogeneity Under Equiconfounding 51

Y20 = Txyz — [Pu E(U)a,, 01E(ZZ")™!
= Ty .z — LE(X21€, 1 — 05 P17 01E(22) 7

(iii.b) Suppose instead that

! ! -1_ 2 2
Tzl ™20 ﬂ-Zl il T - 2Pz1 7-‘-z1.)c1lxzo‘uE(U ) > 0.
Then
— / / )
\/E = |Mxzlz2Terx + 7721 Xl T 2P z1 1o Y E(U )
=7 —-1_ 2
= Txaile™ Zl at 7TZl Xl - 2P11 Tz1xi |x204uE(U )s
and thus
o2 2
opc = o EWUT),
and
! ! / _1_ p—1_ 2
v _ MrazilnTax + 7, x1lx 1 le Ty x| ME(U )
opc = T
<1 21 x|
P G EWU?)
u
SR L = Q2EWUP).
P M1l

It follows that

Yio =) =x .z = Lohe, 01E(ZZ)7Y,

Yoo =V = Ty — LE(X21€,, )1 — UPC 1] L 01EZZ) ",

Bo=4"= Tyx = [UPC (Wm 21z UPC + 1), E(ex, . X5)
+0he Ty E(XX )—1.

Appendix B: Constructive Identification

B.1 Equiconfounded Cause and Joint Responses: Constructive
Identification

We present an argument to constructively demonstrate how the expression for A s
and the identification of ag EWU 2), and thus (3,, in the proof of Theorem 5.1 obtain.
Recall that in S3
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E(YX') = B,E(XX) + 1,[ 2EU?), [a, E(UH ¢, 011

We have that o, E(U?)¢), = E(X1X}). It remains to identify o2 E(U?). For this,
recall that the proof of Theorem 5.1 gives

EQYY)=EYX)EXX) 'E(XXY') - aML,,E(UX’)E(XX’)fla,,E(XU)L;,
+ 1yl an E(U?) + oy E(Uy Uy,
which we rewrite as
Lpthan E(U?) — i, EUXVE(XX) ' E(XU) 0, (B.1)
— E(eyxY") + oy E(U, U, ), = 0.
From the proof of Theorem 5.1, we also have

auE(UX’)E(XX’)_lE(XU)o/
=t EWUHP P — E(X X))
—2EWU? )7r

2 2
iy Pl an E(U?)

S E(X2 X)) + E(X1 X5) P E(X2 X)),

X2.X1 x2

Thus, collecting the off-diagonal terms in Eq. (B.1) gives:

agE(U?) — oy EUM? P + E(X X)), xllazE(U%
—i—a E(U yol P E(XzX/l) E(X1X2) E(XzX) E(eyl_xYQ’)zo.

x2.x1 Txa
This is a quadratic equation in aﬁE (U?) of the form

actE(UH* + ba2E(U%) + ¢ =0,
with

a= P!
b=—[1+ E(X| Xy, szxl + wxm P E(X2X))]

=—[1+ E(X1X2)7rx1 WP P o E(X2 X))

= -l +2P Ty E(X2X1)]

= —[14 2P, [E(X,X]) — Py, )] = —[2P'E(X, X]) — 1], and

c = E(X1X5) leE(szl) + E(ey, £ Y3),

where we make use of Px_llml.x2 = T X_z and Py, = E(X1X)) — Ty
E(X2X}). The discriminant of this quadratic equation gives the expression for

Ajr = b? — 4ac. Theorem 5.1 (ii.c) gives that Ayg > 0 and (iii) gives the
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two roots a;) ¢ and o~ of this quadratic equation

b+ VAR |
EVRIR_ b, {2P*1E(X1X/1) 1+ \/A,R}

2a
— ECX\1 X)) + - le (—1 i\/AJR),

and shows that these are nonnegative. One of these roots identifies ozﬁ E(U?), depend-
ing on the sign of

Var(al,, Uy,) + Cov(¢, U, o, U) [ Var (¢, U)
+ Var(a, Uy,)]1 7' Cov(¢, U, oy, U) — Var(a, U).
S, is then identified from the moment E(YX') = B,E(XX') + tpla2EU?),
E(X1X5)].

B.2 Equiconfounding in Triangular Structures: Constructive
Identification

We present an argument to constructively demonstrate how the expression for A p¢
and the identification of aiE (U?) in the proof of Theorem 6.1 obtain. From the
proof of Theorem 6.1, we have that

By ={E(YX') — a, EUX"WEXX) ' =7y, —a, EUXE(XX")™".
Substituting for 3, in the expression for E(Y Z’) gives

E(YZ') = B,E(XZ') +[a2EU?), 0],
=1y E(XZ) -, EUXVE(XX') 'E(XZ') + [a2EU?), 0], or
— E(eyxZ) — ay EUX)l . +[a2EU?), 0] = 0.

From the proof of Theorem 6.1, we have

—a,E(UX"),
252
— E(U )7Tx1 z1lz2 ZX1|X2 —|—a EW"F le|x2 @ E(U )szlm
2
— E(ey,. zX2)7TZ ol T @ E(U )sz z1\zz7TZX2\X1

Substituting for —ay, E(U X")7., in the above equality then gives
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— E(eyZ)) — 2E(UHT, +a E(UY* P, 7!

x1.21lz2 le\xz z.x1|x2
2
-« E(U )TrZ x1|x2 E(EX] ZX2)7TZ x2|x1 -« E(U )7Tx2 z1\zz7r2x2\x1
+[ogE(U?), 0] =0.
Collecting the first elements of this vector equality gives
212 p—1
- E(eyxZ/) - E(U )7TM 2112 ™ 11 X T a”E(U )7P; 7rz1 x1]x2
2 2
—aE(U L I CRIED € L aE(U )T 2112 Mo sl
+a2EWU?) =0.

This is a quadratic equation in ¢ E (U?) of the from

act E(UH* + b’ E(U%) + ¢ =0,

with
_ p—1,7
a= PZI Tz1x1la2
—_ / / _
b= Tx.z1l227z1.x z1 xin T 1, and

c=—E(eyx /1) — E(exl.ZXz)w

z1.x20x1°

The discriminant of this equation gives the expression for Apc = b> — 4ac in
Theorem 6.1 where it is shown that A pc > 0 and that the solutions to this quadratic
equation are CTI,C and op

—b+ Apc _ 7r;culzz 21X +7Tzl Xilxeo T 1+ Apc
2a 2P111 '

Tz1x11x2

This then enables the identification of ((3,, 7,) as shown in the proof of Theorem 6.1.
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Optimizing Robust Conditional Moment Tests:
An Estimating Function Approach

Yi-Ting Chen and Chung-Ming Kuan

Abstract Robust conditional moment (RCM) tests for partial specifications are
derived without a full specification assumption. Yet, researchers usually claim the
optimality of these RCM tests by reinterpreting them as score tests under certain
full specifications. This argument is in fact incompatible with the rationale of RCM
tests. In this study, we consider a generalized RCM test based on the estimating func-
tion (EF) approach and explore a semi-parametric optimality criterion that does not
require full specifications. Specifically, we derive the upper bound of the noncentral-
ity parameter of the generalized RCM test and propose a method to optimize RCM
tests so as to achieve this upper bound. The optimized RCM test is associated with
the optimal EF method, and it is useful for improving the asymptotic local power of
existing RCM tests. The proposed method thus permits researchers to pursue opti-
mality without sacrificing robustness in estimating and testing partial specifications.
We illustrate our method using various partial specifications and demonstrate the
improved power property of the optimized tests by simulations.

Keywords Conditional mean-and-variance - Conditional quantile + Optimal
estimating function - Quasi-maximum likelihood method + Robust conditional
moment test + Semi-parametric optimality

1 Introduction

The correct specification of an econometric model can often be represented as a
set of conditional moment (CM) restrictions and tested by checking the implied
(finite-dimensional) unconditional moment restrictions. In the context of fully
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specified conditional distribution models, Newey (1985) and Tauchen (1985) intro-
duce a class of maximum-likelihood (ML)-based CM tests for static models; these
tests are extended to dynamic models by White (1987). Such tests can be interpreted
as Rao’s score tests (Lagrange multiplier tests) for some parameter restrictions of
conditional distribution models; see, e.g., White (1984, 1994), Chesher and Smith
(1997), and Bera and Bilias (2001). An ML-based CM test is thus parametrically
optimal against certain local alternatives if the conditional distribution is specified
correctly.

Instead of specifying a complete model for conditional distribution, it is also
common to postulate a partial specification, such as conditional mean, conditional
mean-and-variance, or conditional quantile models. In this context, the ML-based
CM tests need not be asymptotically valid because the underlying assumption of
conditional distribution is likely to be misspecified. This motivates researchers to
derive robust CM (RCM) tests without full specifications. For example, Wooldridge
(1990a) propose a generalized RCM test based on “generalized residuals.” This
generalized test is also the omitted variable test of Davidson and MacKinnon (1990,
1993, 2000) for conditional-mean models and is readily applied to other partial
specifications. RCM tests may also be obtained by replacing the ML method with
certain quasi-ML (QML) methods, e.g., Wooldridge (1991), Berkes et al. (2003),
Wong and Ling (2005), and Chen (2008).

Unlike test robustness, the optimality issue of RCM tests does not receive suffi-
cient attention in the literature. Researchers usually reinterpret RCM tests as some
ML-based CM tests (or score tests) and claim their parametric optimality. For exam-
ple, the RCM tests for conditional mean (and variance) specifications are also the
Gaussian ML-based CM tests under the conditional normality assumption and hence
are as optimal as the latter when the full normality specification is correct. It is there-
fore said that the robustness of RCM tests “is obtained without sacrificing asymptotic
efficiency” (Wooldridge 1990a). This optimality argument is, however, incompatible
with the rationale of RCM tests. While parametric optimality requires full specifi-
cations being correctly specified, RCM tests are robust because they are constructed
without full specifications. This suggests that the optimality of RCM tests should be
studied under a different criterion.

The aim of this chapter is to explore “semi-parametric” optimality for RCM tests.
We base our generalized RCM test on the estimating function (EF) approach, where
the EF involves a generalized residual vector and a set of instrument variables. This
generalized test encompasses many QML-based RCM tests for various partial spec-
ifications and is asymptotically equivalent to the test of Wooldridge (1990a). By
exploring the noncentrality parameter of this generalized test, we observe that the
parametric optimality of this test is crucially dependent on a generalized conditional
homoskedasticity and standardization (GCHS) restriction, which requires the condi-
tional covariance matrix of the generalized residual vector to be an identity matrix.
Given this restriction, a generalized test can be understood as a score test if the asso-
ciated EF is the same as the true score function. This motivates us to standardize the
generalized residual vector using the matrix square root of its conditional covariance
matrix for ensuring the GCHS restriction.
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This standardization leads us to a particular version of the generalized RCM test.
This test is parametrically optimal if its EF is the same as the true score function,
whether or not the original GCHS restriction is satisfied. More importantly, it is
semi-parametrically optimal in the sense that it achieves the upper bound of the non-
centrality parameter of the generalized test without assuming a full specification.
The associated EF is also Godambe (1960)-Durbin (1960)-optimal, in the sense that
it attains the lower bound of the asymptotic covariance matrix of a generalized esti-
mator for partial specifications; see, e.g., Godambe and Kale (1991), Vinod (1997),
Mittelhammer et al. (2000), Bera et al. (2006) and the references therein for more dis-
cussions on the optimal EF. By combining the optimal EF method with this optimized
test, we have an alternative approach to estimating and testing partial specifications
in a semi-parametrically optimal way.

This approach has a simple generalized least square (GLS) interpretation in the
linear regression context and depends on the conditional covariance matrix of the gen-
eralized residual vector. Since this matrix is typically unknown and needs to be esti-
mated or approximated in applications, this approach would be semi-parametrically
optimal if the conditional covariance matrix is consistently estimated; otherwise,
this approach is suboptimal but remains robust. Thus, this approach permits us to
pursue asymptotic efficiency without sacrificing robustness in estimating and testing
partial specifications. To illustrate its usefulness, we consider the conditional mean,
conditional mean-and-variance, and conditional quantile specifications. The GCHS
restriction in these examples implies different higher order CM restrictions. Many
existing RCM tests are likely to be suboptimal because they do not take into account
these restrictions. The proposed method is therefore useful for improving the asymp-
totic local power of these suboptimal tests. We also demonstrate the proposed method
in this respect using two Monte Carlo experiments.

The remainder of this chapter is organized as follows. In Sect.2, we consider a
generalized RCM test built on the EF approach. In Sect.3, we provide examples
of this generalized test in the conditional mean, mean-and-variance, and quantile
contexts. In Sect.4, we derive the upper bound of the noncentrality parameter, pro-
pose the optimized test, and link this test to the optimal EF method. We illustrate
the applicability of the optimized test in Sect.5, based on the examples in Sect. 3.
Section 6 reports the simulation results. We conclude the chapter in Sect.7. The
Appendix summarizes some mathematical derivations.

2 A Generalized RCM Test

Let y; be a finite-dimensional vector of dependent variable(s) with the time or cross-
sectional index ¢, and &’; be the information set available in explaining y,. Suppose
that we are interested in testing a partial specification of y;|X; that has an r x 1 vector
of generalized residuals v; (0) := v;(yr, x¢; 6) for some finite » > dim(y;), in which
x; denotes a vector of A;-measurable explanatory variables, 6 is a p x 1 parameter
vector in the compact set ® C R”. This partial specification is correctly specified if,
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and only if, the martingale difference condition,
H, : E[v(6,)|X;] = 0, (1)

is satisfied for some 6, € ®. As in Wooldridge (1990a), we apply the concept of
generalized residual to unify various partial specifications; see also Cox and Snell
(1968), Gouriéroux et al. (1987), and Cameron and Trivedi (1998, Chap.5). In certain
applications, we may also be interested in testing

H) : (1) and v;(6,) is independent of X;. )

The following discussion focuses on H,, but the results also hold for H, (; because the
former is weaker than the latter.

Let z;(0) be a ¢ x r matrix of X;-measurable misspecification indicators which
may depend on the parameter vector 6, and C;(f) be an r x r A;-measurable
weighting matrix that has a symmetric and positive-definite matrix square root
C;(0)'/2 such that C,(9) = C;(0)Y2C,(0)/2. Denote the standardized vectors
vi(0) = Ci(0)?v,(9) and z5(0) := z,(6)C,(0)'/?. Under H,, the ¢ x 1 testing
function zj (9)v; (0) must satisfy the martingale difference condition:

Elz; (00)v; (6,)1%1 = 2, (6,)E[v; (65)| X;]1 = 0, 3)
which implies the unconditional moment restriction:
Elz; (0)v; (65)] = 0. “4)

Let T be the sample size, and {67} be a sequence of parameters in ® such that
lim7_, o 607 = 6,. A testing of H, that checks the validity of (4) is expected to be
powerful against:

Hir : E[v,(0)|X] = z:(6r) 6T '/2, (5)

with § a g x 1 non-zero vector, because E[z} (07)v] (07)|X;] = zf (Or)z} Or)TsT~1/2
under Hj7. This implies that E[z{ (07) v} (07)] = E[zf (07)z (0r) 16T /% isag x 1
non-zero vector provided that E[zf (07)z] (07)"] is positive definite.

To check the validity of (4), we need to first estimate 6, using the information
implied by H,. Let 7;(0) be a p x r matrix of A;-measurable variables, and sup-
pose that the row vectors of m;(6) and z;(6) are linearly independent of each other.
In addition to (4), H, also implies

E[7;(60)v:(60)] = 0. (6)

Using this information, we may estimate 6, by the EF estimator 7, which solves
the estimating equation:
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1 T
=296 =0, (M
T

for some g;(0) from a class of linearly unbiased EFs:

G = {9:(0)19:(0) = 7:(O)v: ()} ®)

In this class of EFs, g(6) and hence 67 are determined by the choice of 7, (6); see,
e.g., Bera and Bilias (2002) for a survey. Clearly, 67 can also be interpreted as a
(just-identified) generalized-method-of-moments (GMM) estimator for 6,,.

Given the p x r matrix w;(6,) := (VQT]E[U, (Q,)IX;])T which is evaluated under
H,, we denote w;(0) by using 6 in place of the role of 6, in w;(6,). We also define
r as the solution to (7) with the choice of ;(8) = —w;(0)C,;(0). Put differently,
fr is a particular f7 with the EF:

91 () = —w; (O)C1 (O)v, (0) = —w; (O)v; (), ©))

where wi (@) = w,(0)C; (6)'/2. Given this estimator, we can estimate E[z](6,)
v} (6,)] using the empirical moment 71 ZzT=1 z; (éT)vf (éT), and check (4) by eval-
uating the significance of this statistic. As will be discussed in Sect. 3, the estimator
Or encompasses the QML estimators (QMLEs) for some important partial specifica-
tions, and this EF approach is useful for unifying a number of existing tests proposed
in different contexts.
Let 2(0) := E[(zfm(e)vts (9)) (zfm(e)vf(@))T] be the g X g covariance matrix
with
25, (8) := 25 (0) — Elz} O)w (0) 1E[w] ®)w; @) T 'wi®).  (10)

The sample counterpart of ©2(0) is

® 1 d a8 s 28 s
Qr ) = ; (25,005 @) (25, )5 ®)",
with
—1

T T
£5,(0) == 23(0) — [sz(e)wf(ef] [Z wf(@)wf(@)T:| wi).  (11)

=1 =1

Itis standard to derive the asymptotic distribution of 7'~ 172 Zthl z; (éT A (éT) under
Hj7. This derivation involves a set of intermediate results that are presented as the
“high-level” assumptions:

[A.1] The estimator 67 is consistent for 6, and has the asymptotic linear represen-
tation:
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1

VT (Or —6,) = —Elm(0,)w; (6,)' 17" 7

T
> 1 0)i(00) + 0,(1). (12)

=1

[A.2] The statistic 7~1/2 Zthl z; (G_T)vts (07) has the asymptotic expansion:

1 & _ 1 <
- SOV (O7) = — 6,V 0,
ﬁ;jz,(r)v,(n ﬁZZ’( )vS (6,)
+ Elzf @) w! 0) WT 01 —6,) +0,(1).  (13)

[A.3] The sequence {z;,, (65)z; (6,)7} is stationary and ergodic and {z, (60) (vf 0,)
-z} 6,)7 8T/ 2)} obeys a central limit theorem (CLT).

[A.4] The statistic Q7 (/) is positive definite uniformly in 7' and € and is uniformly
consistent for 2 (6) over a neighborhood of 6,,.

These assumptions are quite standard for the first-order asymptotic analysis. Based
on the GMM interpretation of Or, the consistency of 67 in [A.1] can be established
using the conventional GMM theory, e.g., Hall (2005, Theorem 3.1). It is also com-
mon to obtain the asymptotic expansion in (12) when 7; (6) v, (f) is a smooth function
of 0; see, e.g., Newey and McFadden (1994, Sect. 3). Similarly, the asymptotic expan-
sion (13) in [A.2] can be obtained when z; (6)v] (9) is a smooth function of 6, e.g.,
Wooldridge (1990a, pp. 40—42). In the Appendix, we provide a detailed discussion
about [A.1] and [A.2] and their underlying conditions. Note that the asymptotic
expansions in (12) and (13) may also hold when m;(8)v,(9) and z;(6)v;(0) are
based on indicator functions of 8; see Phillips (1991), Andrews (1994, Sect.3.2),
and Newey and McFadden (1994, Sect.7) for more discussions.

In [A.3], the stationarity and ergodicity of {zfyl (60)z; (6,)7} allow us to write
71 Zszl 25, 00)7) (00)" = Elz3, (60)2] (65)"1+0, (1) by the ergodic theorem when
the elements of z;, (65)z; (8,)" have finite absolute moments. Meanwhile, the CLT
of {z3, (6,) (vi(6,) — 2§ (8,)"8T ~'/?)} is mainly due to the martingale difference
property E[z3, (6,) (v§ (6,) — 2 (65)8T ~1/2) | X;] = Ounder Hy7: see White (White
(1994), Theorem A.3.4) for a CLT for a double array of martingale difference and
the associated technical conditions. This CLT requires that 2(6,) exists and has
finite elements. This implicitly assumes that the matrix E[w? (6,)w; (6,)"] must be
positive definite. In [A.4], the positive-definiteness condition is standard in defining
a chi-square test statistic. This condition also requires that ZITZ] w! (@)w; (O)" is
uniformly positive definite. In addition, the uniform consistency of Q7 (0) for 2(6)
holds when {w; (O)w! (0)"}, {z} (O)w(6)"}, and {(z3, @)} (0))(z3,, (O)vf (0))"} are
stationary and ergodic for each § € ©® and obey a uniform law of larger numbers
(ULLN); see, e.g., White (1994, Theorem A.2.2).

Given 7 = O, we can use (12), with the choice of 7;(0) = —w,(0)C,;(6), and
(13) to show that
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1 < 1 <
— S@Or)vi () = — SCAVNCA 1
ﬁgz,(f)v,u) 77 lzw,< )05 (00) + 0,(1)

QI

T

1 ) ! ) _

Sy DI (v1©00) - 2 @) 6T'72)
t=1

1« T
+ |:T ;qu,(eo)Zf(Qo) :| 8 +op(1). (14)

By [A.3] and the fact that E[z;, (6,)w; (6,)"] = 0, we then have under H,7 that

1 d oA oA d ) .
—Z:zA Or)v; Or)— N (Elz}, (0)z}, (02)718, 2(6,)) . (15)
\/Tt_l t t

Denote the r x r conditional covariance matrices:
1 (0o) == Elv: (0o)v; (65)" |1 X;] (16)

and
%5 (00) i= ELvf (6o) 05 (0)T1 X1 = C1(6,)"/221(8,)C1 (6,) 2. (17)

We now define the generalized RCM test as

T Trr -1
Mr = [Z 2 Or)v! <ér>} [Z(zfu, Or)v} Or) (25, (Or)v; (éT»T]
t=1

t=1
T A ~

X [sz(9T)vf(9T):|, (18)
t=1

whigh vxiill be referred to as the M test. In the light of (15), we can estimate €2 (6,)
by Q7 (67) and obtain the following result.

Proposition 1 Given [A.1]-[A.4],

2
d | x“(¢),  under H,,
MT_)[xz(q;v), under Hr,

with the noncentrality parameter:

vi= 8 (El2), (025, (0) IELZ), (00 X (60)2), (00)] T ELZ), (6)25, (6,) 1) 6.
(19)
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The M test defines a class of RCM tests that, with suitable v} (6)’s (and z§ (0)’s),
are readily applied to check various partial specifications. The M test is robust to
the unknown conditional distribution of y;|X; because the martingale difference
property of the moment function z; (6)v; (¢) and the EF in (9) under H,, as well
as the consistency of QT(éT) for €2(6,), does not require a full specification. It is
worth emphasizing that the asymptotic local power of the M test increases in the
noncentrality parameter v, which depends on the choice of C;(6). We will explore
this issue again in Sect.4.

In some applications, we need to extend z;(f) to admit a nuisance parameter
vector ¢ and will write z;(6, ¢); see Sects.4.1 and 6 for examples. Let ¢ be a
T1/2_consistent estimator for some ¢, in the parameter space of ¢. As discussed
in Wooldridge (1990a), the asymptotic validity of an RCM test is not affected if
we replace z; (97) with z, (07, &r), because the estimation effect generated by &7 is
asymptotically negligible. For the same reason, we can use z; (Or, ¢r) in place of the
role of z;(67) in the M test without affecting its asymptotic validity.

The M test is asymptotically equivalent to Wooldridge (1990a) test:

-1

T
= [Zza,(éﬂvf(én] |:Z(Zw,(QT)UIX(Q_T))(%,(éT)U;s(éT))T:|

t=1

T
x [Z 2, 6r)v; (éw} , (20)

t=1

which can be computed as T R?, where R? is the uncentered coefficient of deter-
mination from the artificial regression of 1 on Z (QT)vl (07); see also Davidson
and MacKinnon (1985) for a conditional mean example Compared with the M test,
Wr uses Efw (Or) in place of the role of z§ (O7) in (13). This replacement is in spirit
similar to the transformation in the C(«) test of Neyman (1959). While the C(«)
test is designed for a full specification, Wr is for partial specifications; see Bera and
Bilias (2001) for more discussion about the C(«) test. Note that by the restriction:
Elz3, (0o)w} (6,)7] = 0, the estimation effect in (13) can be eliminated so that

L I
f Zzw, (6r)v; (Or) = 75 > 2, 00)05 (05) + 0, (1), 1)
t=1

Observe that the right-hand side of (21) is the same as the right-hand side of the
first equality of (14). It follows that W7 is asymptotically equivalent to M7 clearly,
Wy would be the same as My when 67 = GT Moreover, Wr can be presented as a
(conditional-heteroskedasticity-)robust Wald test statistic for checking the parameter
restriction y = Oy of the artificial regression:

v (Or) = wi@r)" B+ 2 (Or)"y + error term, (22)
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with 8 a p x 1 parameter vector. Thus, we can also interpret Wy (or M7) as an
omitted variable test; see Davidson and MacKinnon (1990, 1993, 2000), Basawa
(1991), MacKinnon (1992), Cameron and Trivedi (1998, 2005), and Godfrey and
Orme (2001, Sects.3.2 and 3.3).

Although the M test defines a wide class of RCM tests, it does not encompass
nonparametric tests, score tests, and model selection tests. While the M test is based
on a finite-dimensional moment restriction of H, (or H}), the nonparametric test
is for an infinite-dimensional moment restriction of the same hypothesis; see, e.g.,
Bierens (1982, 1994). An advantage of the nonparametric test over the M test is
the consistency of testing H, against all possible misspecifications in large sam-
ples. Nonetheless, the M test can be made powerful against specific misspecification
by choosing a suitable z,(6); this advantage is especially important for refining a
misspecified model. Compared with the M test, the score test also checks a finite-
dimensional moment restriction, but it is developed from a conditional distribution
assumption. The score test would be parametrically optimal or efficient (to be dis-
cussed in Sect.4.1) if this assumption is true. However, the score test need not be
optimal for partial specifications. The robustness to the unknown conditional distri-
bution is an important advantage of the M test relative to the score test. The model
selection test could also be based on a finite-dimensional moment restriction, but it
focuses on the relative performance of models and does not deal with model cor-
rectness; see, e.g., Vuong (1989). Thus, the model selection test and the M test have
different usages in empirical applications.

3 Examples: RCM Tests

In this section, we discuss a number of existing CM tests with dim(y;) = 1, provide
the practical forms of v;(6), w;(0), z:(0), and C;(#) in the conditional mean, mean-
and-variance, and quantile contexts, and demonstrate the general applicability of the
M test in generating RCM tests.

3.1 Conditional-Mean Context

In the conditional-mean context, the partial specification of interest is the regression:

Vi = (e (0) + uy, (23)

where 1;(0) is a Aj-measurable conditional mean specification for y,;|X; and a
smooth function of 6, and u; = u,(0) denotes the error term. This model is cor-
rectly specified for E[y;|A;] under H, with v;(0) = u,(#). This v,;(6) implies that
w(0) = —Vou:(0).

In the literature, there exist a variety of CM tests that check model (23) in
different power directions by examining condition (4) with v, (0) = u;(0),C;(0) = 1,
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and various z;(0)’s. Examples include the tests of Breusch (1978), Godfrey (1978),
and Dezhbakhsh (1990) that choose z;(0) = (u;—1(0), ..., u;—n (0))" for testing a
linear regression against the remaining serial correlation. Similar to Ramsey (1969)
regression specification error test (RESET), the tests of Keenan (1985), Tsay (1986),
Luukkonen et al. (1988), Lee et al. (1993), and Eitrheim and Terdsvirta (1996) check
model (23) against the remaining nonlinearity by choosing some nonlinear z;(6)’s.
The non-nested tests of Davidson and MacKinnon (1981) and Fisher and McAleer
(1981) check model (23) against a competing model by setting z;(6, ¢) according
to the difference between the non-nested specifications, where 6 and ¢ are respec-
tively, the parameter vectors of the model being tested and the alternative model.
These existing tests are often presented as score tests under the conditional normal-
ity assumption: u; (6,)|X; ~ N(0, 0.2), with 0.2 := E[u,(6,)?].

By applying the M test in (18) to v, (0) = u;(0), w:(0) = —Vou,(0), C;(0) = 1,
and the aforementioned z;(6)’s, we can easily make these existing tests free of the
condmonal normality assumption or the conditional homoskedasticity assumption:
02 = o2, where 02 = Elu, 6, )2|X,] In this case, 9T is the least square (LS)

Uy u’
estimator for 6, because the EF in (9) is

91(0) = Vo (0)u; (6).

The resulting RCM tests are asymptotically equivalent to the robust conditional mean
tests in Wooldridge (1990b) that are obtained by Wooldridge (1990a) approach.

3.2 Conditional Mean-and-Variance Context

In the conditional mean-and-variance context, the partial specification is a location-
scale model:
e = (0) +hi(6)' e, (24)

where h;(0) is a X;-measurable conditional variance specification for y;|&; and
a smooth function of 6, and &; = &;(0) represents the standardized error with
zero mean and unit variance. This model extends (23) by specifying the regres-
sion error as u; = h;(0)'/%¢;, and it is correctly specified for E[y,|X;] and
var[y;|X;] under H, with v,(8) = (¢,(8), &(0)%> — 1)". It is also easy to see that
w,(0) = — (Vo () (0)™'12, Voh, (0)h:(0)7")".

Given the specification u;(0), there exist numerous CM tests that check the
conditional variance specification of model (24) by examining condition (4) with
v:(0) = &(0)%2—1,C,(0) = 1, and various z,(0)’s. Examples include the conditional
heteroskedasticity tests of Breusch and Pagan (1979), White (1980), Engle (1982b),
and McLeod and Li (1983) for the conditional-homoskedasticity model: i, (6,) = auz .
In the generalized autoregressive conditional heteroskedasticity (GARCH) literature,
examples also include the modified McLeod-Li test proposed by Li and Mak (1994)
that chooses z;(0) = (;_1(0)>—1, ..., &_n(0)*>—1)" for checkinga GARCH-type
h;(0) against remaining volatility clustering, the news impact curve test of Engle and
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Ng (1993) that checks a GARCH-type h;(0) against remaining volatility asymmetry
by setting z;(0) = I (¢;—1(0) < 0), with the indicator function 7 (¢;_1(#) < 0) =1
if &,_1(0) < 0 and otherwise zero, and the tests of Lundbergh and Terésvirta (2002).
Similar to the tests in Sect. 3.1, these tests are often presented as score tests by adding
the conditional normality assumption: &;(6,)|X; ~ N (0, 1) to model (24).

We can also remove the conditional normality assumption and estimate 6, using
the Gaussian QML method. This method shares the same log-likelihood function
7! Z[T:l In f;(0) as the Gaussian ML method, with the conditional normal proba-
bility density function (PDF):

£:(0) = O — m(enz) : (25)

1 1
N TN (_ 2h,(0)

However, the asymptotic properties of the Gaussian QMLE are established without
the conditional normality assumption; see, e.g., Bollerslev and Wooldridge (1992).
In the GARCH literature, a number of RCM tests have been proposed for testing
the independence hypothesis H, by using this QML method. Specifically, Berkes
et al. (2003) used this QML method to robustify the Li-Mak test for H, in the
presence of conditional non-normality. Wong and Ling (2005) derived an omnibus
test for H against the remaining serial correlation and volatility clustering based on
v(0) = (&,(0), &(0)% — 1)". See also Chen (2008) for further extensions.

Let I, be the r x r identity matrix. Note that we can rewrite the v, (6) for model
(24) as:

1

V2

without distorting H,. By applying the M test to this v, (),

.
v (0) = (8:(9), (&(0)* — 1)) (26)

w,(6) = — (Veﬂz(e) Vehz(é’)) 27)

he (D)2 2k, (6)

C;(0) = I, and various z,(6)’s, we can easily generate different RCM tests. The
associated 07 is the Gaussian QMLE for 6, because the EF in (9) is

9:1(0) = W&(G) + 210

Vo i () Voh, (6) (St(e)z B 1) ’ 28)

so that the estimating equation with (28) is the same as the first-order condition of
the Gaussian QML method. This particular M test extends the applicability of the
aforementioned Gaussian QML-based tests for H,. Wooldridge (1990a, Examples
3.2), considered a Wy-based conditional variance test with v;(6) = u,(0)% — h,(0)
and C;(0)Y/2 = h,(0)~!, whichis asymptotically equivalent to this M test, with z;(6)
replaced by (0;x1,z:(0)). Lundbergh and Terdsvirta (2002) applied Wooldridge
(1990a) approach to make their Gaussian ML-based score tests robust to conditional
non-normality. These robust tests can also be linked to this particular M test.
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3.3 Conditional Quantile Context

In the conditional quantile context, the partial specification is the quantile regression:
Vi =me(0) +uy, (29)

where m. ;(0) is a A;-measurable specification for the 7-th conditional quantile of
v¢|X; and a smooth function of 8, and u;(0) denotes the error term. This model
is correctly specified under H, with v;(0) = I(u;(#) < 0) — 7. Let p(-|X};) be
the conditional PDF of u;(6,)|X;. Under H,, this v;(6) implies that E[v;(0)|X;] =
J75 D p(y = mer 1 (0,)1X)dy — 7 and hence w; (6,) = p(O|X;) Vorz;(6,).

Given the tick function p; (1) := u(t — I (u < 0)), u € R, 6, can be estimated
by minimizing

T

1

? E P (e —me 1 (0));
t=1

see Koenker and Bassett (1978). The resulting estimator for 6, is also the asymmet-
ric Laplace QMLE and encompassed by the tick-exponential QMLE of Komunjer
(2005). In addition, this estimator satisfies the asymptotic first-order condition:

L
T Z%mr,z(Q) (I (u(0) <0) — 1) =0p(1), (30)
=1

and has asymptotic normality with the asymptotic covariance matrix:

Ve (6,) = t(1 — D)E[p(0|X;) Vamy  (6,)Vome 1 (0,) 17!

x E[Vomz ;(8)Vomz 1(0,) TE[p(0|X;) Vome  (0p) Voniz, (0,) 17"
31)

see, e.g., Engle and Manganelli (2004, Theorem 2) and Koenker (2005, p. 124).

By applying the M testtov;(0) = I (u;(0) < 0)—t, w;(0) = p(0|X;)Vgm ;(0),
C:(0) = p(0|Xt)_1, and various z;’s and by estimating p(0|X;), we can generate
different RCM tests. The associated éT is based on the EF:

9:1(0) = =Vgme 1 (0) (I (u(6) <0) — 1), (32)
which can be seen by introducing these v;(9), w;(6), and C;(0) into (9). This Or
is asymptotically equivalent to the asymmetric Laplace QMLE for 6,. To see this

point, note that since {m;(6,)v;(6,)} is a martingale difference sequence under H,,
we may use (12) and a martingale difference CLT to show the result:

VT @7 —0,) S N, V(©6,)). (33)
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in which the asymptotic covariance matrix V (6,) is of the “sandwich” form:

V(0) = Elm; (00)w; (00) "1 EL(T: (00) V1 (00)) (4 (00) 1 (06)) T TE[w; (86) 711 (80) 17"
= Elm; (00)w; (05) 17 Bl (00) 24 (65)7: (65) 'TE[w; (00) 71, (0) 17" (34)

where the last equality is due to the law of iterated expectations. This result holds for
general Or. By plugging 7, (0) = —w;(0)C;(0) and w,(#) and C;(#) above into (34)
and using the fact that ¥,(6,) = (1 — t), we have V(6,) = V;(6,). This verifies
that O is asymptotically equivalent to the asymmetric Laplace QMLE for 6,,.

The M test here is closely related to the dynamic quantile test of Engle and
Manganelli (2004, Theorem 4) that checks condition (4) with v;(0) = I (u;(0) <
0) — v and C;(#) = 1. These two tests coincide when p(0|X;) is a constant for
all £’s.

4 Optimization

4.1 Parametric Optimality

Let f;(-|&}; 6, v) be a postulated conditional PDF of y, | &; with the score functions:
L:(0) == Vgln fi(y|X;; 0, y) and £y,(0) := V,, In fi(y;|X;; 0, y). Suppose that
H, corresponds to the parameter restriction ¥y = 0Oyx1 and Hir corresponds to

y = ST—1/2. Also let éML be the MLE for 6, under H,. It is well known that the
score test,

T T T T
St = {Z zw(éML)} ([Z zyt(éML)ew(éML)T} - [Z ey,(éMmzet(éML)T}

=1 t=1 t=1
-1

T “trr T
x |:Z Cor (Buir) Lor (éML)Ti| |:Z €9/ (OmL) s (éML)T:| |:Z Eyt(éML)i| ,
=1

=1 =1
(35)
is asymptotically most powerful for checking H, against H;r, if f;(y/|X;; 6, v) is

the true conditional PDF of y;|X;; see also Newey (1985) for its optimal CM test
interpretation. In this full specification context, S7 has the asymptotic distribution:

2
d | x“(q), under H,,
ST [xz(q; v%), under Hyr,

with the noncentrality parameter:
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vii=4o" (E[zytwo)ew(eof]
—E[zyt(eo)ze,(90>T]E[eet(90)em(%)T]‘HE[@@,(90>ew(90f1)8; (36)

see, e.g., Eq. (51) of Engle (1982a) and Eq. (8.11) of Basawa (1991).

Under the conditional distribution assumption: £g;(0) = —w;(6)v;(#) and
£y1(0) = —zj(0)v;(0), we can write that Or = O and express the M test
statistic in (18) as:

T Trr -1
My = [Z ey,(éw} [Z(zsw, (OmL) v} (Buin)) 23, (éML)vtS(éML))T}
=1

t=1
T ~
x [Z zy,(eML)} : (37)
t=1

in which
T T -1
2, )] (0) = — | £:(6) — [Z 2 O)w; (eﬂ [Z w! (O)w! (ef] Co:(0)

t=1 =1

by (11). In general, this statistic needs not be asymptotically equivalent to the score
test statistic (35). It is readily seen that, given

2:(90) = Ir, (38)
we can write E[z] (6p)w; (0,)"] = E[€,;(0,)€e:(60,)"] and E[w; (0p)w; (0,)"] =
E[lg;(6,)L9:(0,)7] by the law of iterated expectations. The restriction (38) will be
referred to as the GCHS restriction, because it extends the conditional homoskedas-
ticity and standardization restriction: E[v,z(Qo)lXt] = E[v,;(6,)*] and E[v;(6,)%] = 1

from the special case C;(0) = 1 to a general C;(0). The GCHS restriction yields
asymptotic equivalence between (35) and (37) and also permits simplification of (19):

v = 8T (B2, (0,)2, 0:)" DS,
=4 (E[zi 0)705)']

— Elz] (6o)w; (6,) TELw; (6,)w; (65) 1~ Elw; (6,)z; (Go)T])S- (39)

This v is the same as v’ under the conditional distribution assumption. Thus, under
the conditional distribution assumption and the GCHS restriction, the M test has
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the score test interpretation and hence is “parametrically optimal” for checking H,
against Hyr.

It is interesting to note that when €4, (0) = —w; (9)v] (0), we have E[ V1 £g;(6,)]
= —E[w] (6,)w; (6,)" ] under H,. Recall that under the GCHS restriction, E[w; (6,)
W (6,)"] = E[€g;(65)€o: (6,)" 1. Thus, the GCHS restriction is analogous to the infor-
mation matrix equality on the conditional distribution assumption: E[V,y7£4;(0,)] +
E[£g:(00)€o:(05)"1 = 0.

4.2 Semi-Parametric Optimality

It is clear that the GCHS restriction would not be automatically satisfied for v; (6)
with a general weighting matrix C;(0). However, by choosing C;(0) = (6,71,
v} (0) becomes the standardized version of the generalized residual vector:

v (0) = %,(0,) "0 (60).

where £,(0,)!/? is a symmetric and positive-definite matrix square root of X;(6,).
It follows from the definition of X7 (6,) in (17), the GCHS restriction holds:

E[v} (00)v] (0,)"1X;] = Z4(0,) "' 221 (0,) 1 (0,) /> = I (40)

In view of the discussion in Sect.4.1, it is natural to consider C,(0) = ¥,(0,) ! in
exploring the optimality of the M test.
Given C;(0) = %,(6,)" ", we write

wi(0) == wi(O)Z,(0.) %, 2 (0) =2 (0)T1(0,) /2, (41)

and
25, (0) := 2 (0) — Elz @)w] (0) 1E[w] @)w;(©) " w} ©). (42)

Then by (40), we obtain a particular v:
v =¢" (E[z}“ (00)z7 (0,)"]
— B[z (0,)w; (GO)T]]E[w?‘(90)w§‘(90)T]_1E[w?‘(%)zi‘(@of])5- (43)

The proposition below is a key result of this study, and its proof is given in the
Appendix.
Proposition 2 v < v* for all possible C;(0)’s.

This result shows that v* is the upper bound of the noncentrality parameters within
a class of M tests that have the same v,(6) and z;(0) but different C,(6)’s. As the
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M test is asymptotically equivalent to Wooldridge (1990a) test, the noncentrality
parameter v and Proposition 2 also apply to Wz which allows a general 7. Let M.

be a particular My with C;(0) = > (6,)"" and é; a particular éT that solves the
estimating equation: 7! ZIT: 197 (0) = 0, with

g7 ©) = —w; (0)T:(6,) v, (0). (44)
By Proposition 1, M7 has the asymptotic distribution:

« d [x*(g),  under H,,
My = [ x2(g;v*), underHr, 43)
with the noncentrality parameter v*. It is then clear from Proposition 2 that the M*
test is the optimized M test because its noncentrality parameter is v*.

By applying (40) and the law of iterated expectations to (43), we can see that
v* = v under the conditional distribution assumption: £g,(0) = —w/(0)v;(0)
and £,:(6) = —z/(0)v/(#). In this case, the M* test has the score test interpre-
tation for checking H, against Hir, and the estimator é; is the same as the MLE
for 6,. Unlike the case in Sect. 4.1, this parametric optimality holds without the orig-
inal GCHS restriction (38). Moreover, the M* test is semi-parametrically optimal
because it achieves the upper bound of v without requiring any conditional distribu-
tion assumption.

Since QA; is a particular 67 with the choice of 7;(0) = —w; (0)%,(6,) !, we can
follow (33) to write

VT @5 —0,) S N©, VF©O,)). (46)
where the covariance matrix
V¥(0,) := E[w;(0,) T (0p) " w (0,)" 171, 47)

is obtained from the V (6,) in (34) with this choice of m,(0). The following result
holds without full specification; see Newey (1993, p. 423) for a proof.

Proposition 3 V (6,) — V*(0,) is positive semidefinite for possible 7,(0)’s.

This result means that the g;(0) in (44) is the optimal EF of G, and é; is the
asymptotically most efficient version of 67. The optimal EF was first introduced by
Godambe (1960) and Durbin (1960) for simple regressions and extended by Godambe
(1985) and Godambe and Thompson (1989) to multiple linear regressions; see also
Beraetal. (2006) for arecent survey. In the GMM literature, 77; () = —w; (0) X;(6,) -1
is known as the optimal instrument variable; see Chamberlain (1987) and Newey
(1990, 1993). Also, the optimal EF has an information-matrix-equality-like interpre-
tation under H,, i.e.,

E[Vgr g7 0,)] + Elg; (65)g7 (6,)"]1 = 0,
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whether or not g; (@) is the same as the true score function. As discussed by Heyde
(1997, p. 13), g;(0) is closer to the true score function (with respect to 0) than any
other members of G. As such, g/ () may also be understood as the best “quasi-score”
function for a partial specification.

It should be emphasized that, unlike the parametric optimality of the score test (the
MLE), the semiparametric optimality of the M* test (the estimator é;) is obtained
without a full specification. Compared to the noncentrality parameter v’ for full
specifications, the noncentrality parameter v* is the upper bound of v for partial
specifications. Similarly, compared to the Cramér-Rao lower bound for full speci-
fications, the covariance matrix V) is the lower bound of v, for partial specifica-
tions. This semiparametric optimality is thus compatible with the robustness to the
unknown conditional distribution. This is particularly important for estimating and
testing partial specifications.

This approach indeed has a very simple GLS interpretation in the linear regression
context. To see this point, consider the 1inear regression yt =x/0+ u;, such that
v (0) = ui(0), w(0) = —x;, y(0) = cr . Recall thatat := E[u;(6,)%|X;]. Thus,

the optimal EF in (44) becomes g; () = x,u ' (9) / aut, and the estimator Q;i reduces to

the GLS estimator: 6 = [Zt:l XiX] /am] [thl x,y,/o*uz,]. Here, the M* test is
also a robust Wald test for checking the standardized regression of y; /o, on x; /0y
against the artificial regression of y; /oy, on x; /oy, and z;/0y;; see Engle (1982a,
p. 790) for a “GLS-based Lagrange multiplier test” interpretation. This example
provides an intuition underlying Propositions 2 and 3.

4.3 Computational Aspect

The optimized estimator and test, é* and M *, are both based on the unknown
conditional covariance matrix E,(Gg). To compute the optimized estimator and
test, we need to estimate or approximate X;(6,) by a r x r matrix, denoted as
K; (97) Let 67 and Mr be, respectlvely, the feasible estimator and test that are
obtained usmg K; (97) Spemﬁcally, Orisa particular 67 with the choice of 77; () =
—wt(G)K,(QT) I and MT isa partlcular M+t with the choice of C; (9) =K; 07!
and evaluated at 9 = GT Since GT is T1/2-consistent for 6,, 497 and MT are, respec-
tively, asymptotically equivalent to their K; (6,)-based counterparts. This means that
67 has the asymptotic null distribution (33) with 7:(0) = —w;(0)K; (9) I and M7
has the asymptotic distribution in Proposition 1 with C;(0) = K; o). In the case
where K,(0,) = %;(6,) (or in testing H), as will be explained shortly), the feasible
statistics: 67 and M7 are, respectively, asymptotically equivalent to the infeasible
statistics: é; and M7, and hence are of the semiparametric optimality. In other cases,
the feasible statistics are not ensured to be optimal, but they remain robust to the
unknown conditional distribution. Thus, we could pursue semiparametric optimality
without sacrificing the robustness by choosing a proper K; (7). The difficulty of this
problem depends on the hypothesis being tested.
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In testing the independence hypothesis H, it is natural to choose

. 1l o~
Ki@r) = — > v @) @r)’ (48)

t=1

for all the #’s because X, (6,) becomes E[v,(0,)v;(6,)"] under H) and the estimator
in (48) is consistent for this matrix. In this case, we can easily implement the optimal-
EF-based approach using the feasible statistics 7 and M7 with the choice of (48).

In testing H,, it is challenging to choose a proper K; (éT). One possibility is to
set K; (éT) as a nonparametric estimator for X,0,; see Newey (1993, Sects. 4 and 5).
However, such an estimator may not be easy for practitioners. An alternative strategy
is to choose K; (97) as an estimated conditional covariance model, based on GT,
for unknown X%,(6,). For instance, we may specify a conditional variance model
for K;(0) in testing conditional mean or specify a conditional skewness-kurtosis
model for K;(0) in testing conditional mean-and-variance. A sensible specification
of K,(6) may be obtained by exploring the dynamic characteristics of the sequence
{vt (QT)vt (GT)T} This strategy does not ensure the semiparametric optimality of
67 and M7 because the postulated model K;(0) is likely to be misspecified for
%;(6,). Nonetheless, it is sensible because it reflects the fact that the semiparametric
optimality of a “lower-order” CM estimation and testing method is obtained at the
cost of exp101t1ng the “higher-order” information contained in X >t (6,). Intuitively, the
resulting 6r and M 7 would be closer to the infeasible 9* and M = if K,(6,) provides
a better approximation to X;(6,).

In the case where the estimator 67 needs to be computed numerically (as in the
GARCH example of Sect. 6), we may replace 67 in the proposed approach with the
two-step estimator:

t=1 =1

T “lrr
b = 6r — [Z w,<éT)Kt(éT)—1w,(éT)T] [Z wt(éT)Kt(érrlv,(ér)} :

for computational simplicity. By definition, we have

—1

. . 1< - R R
VT (br — br) =T (Or — 1) — [7 > wi @)K (@r)™! wt(enT}

t=1

1 < . R R
x [ﬁ > w,(er)wr)—lvt(en} : (49)

Using the mean-value expansion and the T''/2-consistency of 67 and 67, we obtain
the asymptotic expansion:
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f N
Il A o A
- |:? Zw,(@T)K;(QT)lwt(QT)T:|

t=1

ﬂ

T
Zwt(er)m(er) v (fr) = —Z w; (Or) K, (Or) " v, (Or)
=1 t=1

VT (br —0r) +0,(1). (50)

Plugging (50) into (49) and using the estimating equation: 7! Z;T 1 Wy (éT)
K; (OT) vy (QT) = 0, we have T1/2(9T — 97) = 0p(1). This shows the asymptotlc
validity of replacing 67 with f7. Similarly, we can also replace M7 with M7, where
the latter is defined using f7.

5 Examples: Optimized Tests

Itis easy to observe from (18) that the test statistics: M7 and M7 are equivalent when
r =1, C;(0) is a constant, and the conditional homoskedasticity restriction holds:

Efv,(0)%1X;] = E[v,(6,)*]. (51)

Thus, the M test is semiparametrically optimal in this special case. In more general
cases, the M test is not necessarily the same as the M* test. We may apply the latter
to refine the former; this is demonstrated below using the examples in Sect. 3.

5.1 Conditional-Mean Context

In Sect.3.1, we considered a class of LS-based M tests for the conditional mean
regression in (23) that are established for the case where v;(6) = u;(0) (hence
r = 1) and C;(9) = 1. These particular M tests would be semi-parametrically opti-
mal if the conditional homoskedasticity restriction: o2, = o2 is satisfied. Since this
restriction is implied by H), these tests are semiparametrically optimal in testing
H/. However, they are not ensured to have this optimality in testing H, because the
conditional homoskedasticity restriction could be misspecified under H,. In many
applications, conditional heteroskedasticity is not exceptional. For instance, a
Bernoulli-dependent variable with the conditional mean specification w,(#) is con-
ditionally heteroskedastic with the conditional variance: auzt = (@) (1 — s (6,))
under H,; see also Cameron and Trivedi (1998, p. 347) for an example of the count
data model. Conditional heteroskedasticity is also a well-known, stylized fact in
financial time series.

In the presence of conditional heteroskedasticity, we may further improve the
asymptotic local powers of the LS-based M tests by applying the M* test to the
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same z;(0)’s. By the same token, the asymptotic efficiency of the LS method can
also be improved using the optimal EF method. In the example of binary choice mod-
els, the proposed optimization can be easily implemented by estimating 6, using Or
because X,(6,) has a closed form auzt = s (0,)(1 — us(6,)). For financial time
series, the functional form of X;(6) is unknown and can be approximated using a
certain K; (@), as discussed in Sect. 4.3. For instance, we may compute K; (ér) as an
estimated GARCH-type model. Such an approximation does not ensure semipara-
metric optimality but may be useful for improving the original LS-based M tests.
This is because the original M tests are based on C,(f) = 1, which amounts to
approximating conditional heteroskedasticity using a constant. Yet, a GARCH-type
K; (éT) ought to be a more sensible approximation to ¥ (6,); our simulation in Sect. 6
provides evidence for this argument.

5.2 Conditional Mean-and-Variance Context

In Sect. 3.2, we discussed a class of Gaussian-QML-based M tests for the conditional
mean-and-variance model in (24), where v,(0) follows (26) (hence r = 2) and
C;(0) = I. In this scenario, the M test would not be the same as the M* test for
both H, and H), unless the condition X, (6,) = I is satisfied. To ensure the GCHS
restriction in (38) with r = 2, denote the conditional skewness s; (9) := E[&,(0)3|X;]
and the conditional kurtosis k;(6) := E[g; (0)4|X,]. To assess the validity of this
condition, we can use (26) to write

/2

¥(0) =
’ [1 (BLe: 001 — Eler 0)1411) 3 (Eler 6)*1%] - 2Eler (6)%1.X1 + 1)

Eler(6)1%] I (Eler©)°141 — Eler 0) 1) }
72

and simplify X;(6,) as:

1 ~7351(60)
£ (6,) = V2 52
/(%) [fistwo)%(kt(eo)—l)} ey

under H, with the v;(0) in (26). Clearly, the condition X, (6,) = I amounts to impos-
ing the conditional skewness and kurtosis restrictions: s;(6,) = 0 and k;(6,) = 3,
which are satisfied under conditional normality: &,;(6,)|X; ~ N (0, 1). This is con-
sistent with the fact that the Gaussian QML-based M tests become the Gaussian
ML-based tests and hence are parametrically optimal.

However, the conditional skewness and kurtosis restrictions are unlikely to be
satisfied under conditional non-normality. This problem is empirically relevant in
financial time series analysis. For example, the standardized errors of GARCH-type
models for financial returns are usually found to be leptokurtic and/or asymmetric;
see, e.g., Bollerslev (1987), Engle and Gonzalez-Rivera (1991), and Park and Bera
(2009), among others. In this scenario, the Gaussian QML method and the associated
M tests may not be semiparametrically optimal. Li and Turtle (2000) suggested
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replacing the Gaussian QML method with the optimal EF method for estimating
GARCH-type models. We may also improve the asymptotic local powers of the
Gaussian QML-based M tests by applying the M* test to the associated v, (6) and
z:(0)’s, i.e., by replacing the weighting matrix C,(0) = I with C;(9) = (6, !
for these particular M tests.

To see the relationship between the optimal EF method and the Gaussian QML

method in this context, note that we can use (26), (27), and (52) to write the optimal
EF in (44) as:

*0) = ! [Vewe) vﬁhzw)Hkr(eo)—l—ﬁs,<eo>] @@
I 100 — 1= 5067 L @172 ango) | L —v2si@o) 2 al=

_ 1y Yom0) _ Vohi (0) _ Vout(0) _ Vohi(9) 2 _
((kz(eo) 1) 20 — s51(60) ﬁw))sf(e) (s,wo)ht(e)l/z ﬁh[(g))@f(e) 2

ki (00) — 1 — 51(6,)2

(53)

see also Li and Turtle (2000, Eq. 14) for the ARCH case of this optimal EF. Clearly,

the optimal EF in (53) includes the Gaussian score function (28) as a special case
where s;(6,) = 0 and k;(6,) = 3. Meanwhile, it is easy to see that the moment func-
tion z} (0)v; () = z; 0)Z;(6,)~ v, (9) also reduces to the original testing function
z:(0)v;(0) inthis case. Thus, the optimal EF method can be viewed as a generalization
of the Gaussian QML method. Under conditional non-normality, this generalization
improves the semiparametric optimality of the Gaussian QML method, because it
combines the conditional mean-and-variance estimation and testing problems with
the higher CM information s;(6,) and k;(6,).

Practical applications of this optimal approach involve the estimation or approx-
imation of s;(6,) and k;(6,). As discussed in Sect.4.3, the implementation of this
approach would be semiparametrically optimal if the higher order CMs, s,(6,) and
k;(0,), are consistently estimated; otherwise, this approach would be suboptimal but it
remains robust. In testing H, itis easy to consistently estimate s; (6,) and k; (6,) using
the sample skewness 7! ZLI &t (ér)3 and the sample kurtosis 7! Zthl &t (é7)4
autoedited1, respectively. In testing H,, we may approximate s; (6,) and k; (6,) using
a conditional skewness-kurtosis specification, such as that implied by the autoregres-
sive conditional density model of Hansen (1994), Rockinger and Jondeau (2002), or
Komunjer (2007). Unlike the case of score test, the higher order CM model discussed
here is considered only for approximating the unknown s;(6,) and k;(6,), and the M
test remains asymptotically valid even if this model is misspecified.

5.3 Conditional Quantile Context

In Sect.3.3, we demonstrated that the M test is also applicable to the quantile
regression in (29) when v;(0) = I(u;(0) < 0) — v and C,(0) = p(OlXt)_l.
In this example, we have r = 1, ¥,(6,) = t(l — 1), but a non-constant C;(0)
in general. (Note that the condition: » = 1 would not be satisfied when v,(6) is
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multidimensional, such as model (29) with various t’s.) Thus, the M test is not
guaranteed to be the same as the M* test.
In the conditional quantile context, the optimal EF in (44) is

1
91(0) = ————pO1X;) Vom +(0) (I (u:(8) <0) — 1), (54)
(l—1)

which encompasses Godambe (2001) optimal EF for the conditional median model.
By comparing (54) with Komunjer (2005, Eq. 8), we may also interpret this optimal
EF as a particular tick-exponential score function. The resulting OA; has the asymptotic
covariance matrix:

V*(6,) = (1 = DE[pOIX,)*Vom (05) Vo (6) 17", (55)

which is obtained by plugging the associated w;(6) and X;(6) into (47). This esti-
mator is asymptotically equivalent to the weighted estimator that minimizes the
weighted objective function: 71 Z;T:1 pO|AX;) pr (yr —m((0)); see, e.g., Koenker
(2005, Theorem 5.1) for the latter. It is asymptotically more efficient than the asym-
metric Laplace QMLE in Sect.3.3. Given this 6%, we can also apply the M* test
to the conditional quantile context by setting C;(0) = > 0,)" =1 /(1 — 1))
and using the associated v, (6) and w,(#). Interestingly, since the M and M* tests
both involve the conditional PDF p(-|&}), their computational cost in estimating this
component are the same. This is different from the conditional mean(-and-variance)
example where the M* test typically has higher computational cost than the M test
in applications.

6 Simulation

In this section, we conduct two Monte Carlo experiments to assess the finite-sample
performance of the M test (with C;(0) = I,), the M* test (with C; = = 0,)7 D,
and the M (or M ) test.

In the first experiment, we apply the M, M*, and M tests to check H, for the
location model: y; = 6 + u,. The data generating processes (DGPs) are in the form

of (24): y, = s + h'/%e,, with &,|X, ~ N(0, 1) and the following (x;, 1,)’s:

AR-CHOMO (conditional homoskedasticity): u; = 6, + y1y:—1 and h; = 1;
AR-EGARCHI: the AR u; and h; = exp(ko + k1 Inh;—1 + k26—1 + k3|8i-11);
AR-EGARCH2: the AR w; and h; = exp(ko + 2«1 Inhy—1 + k28,21 + k3l&i-11);
TAR (threshold AR)-CHOMO: w; = 0, + (y1l(yi—1 = v3) + 2l (yi—1 < y3))
yi—iand hy = 1

e TAR-EGARCHI1: the TAR u; and the EGARCHI h,;

e TAR-EGARCH2: the TAR u; and the EGARCH?2 #4;.

The parameters are set to be 6, = 0, y; = 8T/, with§ = 0,1,3,5, » = —y1,
y3 = 0, k0 = 0.1, k1 = 0.9, ko = —0.15, and k3 = 0.05. The strength of serial
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correlation (nonlinearity) of the AR (TAR) processes increases in 8, and the EGARCH?2
process implies a stronger volatility asymmetry than the EGARCHI process. The
parameter y; = 8T~ !/2 controls the local powers of these tests. In particular, H,
holds under these DGPs when § = 0.

In this experiment, we have v;(0) = u;(0) = y; — 0, w,(@) —1,and C;(0) = 1.
Correspondingly, we estimate 6, by the sample average b =T7! Z[T 1V and com-
pute the test statistic M7 in (18) accordingly. The optimal EF estimator 0; and the

optimized test statistic M7 are computed by setting ¥;(6,) as the true &,. Let h; be
the Gaussu:m QML- based fitted value of the GARCH(I 1) model for the residuals
{u,(@T)} By approximating ¥;(6,) using K; (QT) = ht, we base the feasible test

statistic M7 on this K, (67) and the estimator 67 = [thl l/ht] [thl yt/h,].
This GARCH approximation is misspecified under the EGARCHI1 and EGARCH2
processes because it ignores the volatility asymmetry, and the misspecification under
EGARCHI is milder than that under EGARCH?2. This design reflects the fact that
K;(0) could be misspecified for ¥;(6) in practical applications. In performing the
tests, we consider two sets of z;(0, ¢)’s: (1) 2k = u—k(0), with k = 1,2,3,
and z;; = (ZL,, z;h,z;”)T for testing H, against serial correlations and (ii)
2t = —1(0)F — Elu,—1(0)F], with k = 2,3, 4, and 2, = (2] ,+ 23 > Th )"
for testing H, against nonlinearity Note that zx ¢ is centered and hence involves
the nuisance parameter So = ]E[u, 16, ) ]. We estimate ¢, using the statistic
= (T — )" 3, u,_1(0r)F in th simulation. As explained in Sect.2, this

does not change the asymptotic validity of our tests.
In the second experiment, we apply the M, M*, and M tests to checking H for

the model:

Ve =00 +eh’* and h, =6 + Och_1 + Osu>_|. (56)

The DGPs are also in the form of (24) but with various &;’s or (i, h;)’s:

e AR-GARCH-N: the AR p;, hy = 01 + 62hy—1 + 9314, 1»and &|X; ~ N (O, 1);

e AR-GARCH-LI1: the AR pu,, the GARCH £y, and &;|&; ~ standardized log-
normal distribution with the asymmetry parameter n = 0.3; specifically, &, =
(exp(ner) — @'/) /(@@ — )2, @ := exp(n®), &|X; ~ N(0, 1),

e AR-GARCH-L2: the AR u;,the GARCH h;, and ¢; | X; ~ standardized log-normal

distribution with the asymmetry parameter n = 0.6;

TAR-GARCH-N: the TAR wu;, the GARCH #h;, and &|X; ~ N(0, 1);

e TAR-GARCH-L1: the TAR p;, the GARCH #;, and &|X; ~ standardized log-
normal distribution with the asymmetry parameter n = 0.3;

e TAR-GARCH-L2: the TAR u;, the GARCH #h;, and ¢;|X; ~ standardized log-
normal distribution with the asymmetry parameter n = 0.6.

We set 6; = 0.1, 8, = 0.9, and 83 = 0.05. Other parameters are the same as those
in the first experiment. The L2 process implies a stronger distributional asymmetry
than the L1 process. In these DGPs, H(ﬁ holds when § = 0, and the asymptotic local
powers of the tests increase in §.
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In this experiment, we have 8 = (6, 01, 62, 03)", the v,(9) in (26) with the & ()
given by model (56), and C; = I,. We estimate the true parameter vector 6, of
(56) by the Gaussian QMLE 6r and compute the test statistic M7 accordingly. The
estimator é; and the test statistic M. are computed using the H/-implied value of

2 (6,):
1 L Ele(6,)°]

% (0,) = e ’ 7

) [%E[e,(eoﬁ] 3 (Ele(0,)*1 = 1) o7

that holds for all #’s. Note that the standardized log-normal distribution implies
Ele; (0,)°] = (@ + 2)vo — 1 and E[g,(0,)*] = o* 4+ 20° + 30? — 3; see, e.g.,
Johnson et al. (1994, p. 212). In testing H,, we can consistently estimate X;(6,)
using K;(97) = T~} Zt | Ut (O7)v;(O)", as mentioned in Sect.4.3. The estima-
tor OT and the test statistic MT are computed usmg this K; (OT) and they are,
respectively, asymptotically equivalent to 9* and M 7. In performing the tests, the
2:(8, ¢)’s being considered include (i) zx;; = (s,_k(e), 0), with k = 1,2,3,
and zn = (21,23, 23,,)" for testing H, against serial correlations and (ii)
Tt = (€-1(0)* —Ele;-1(6)F], 0), withk = 2,3, 4, and zur = (2] 1> 23 y> g )
for testing H) against nonlinearity. To perform the tests with zx ,,;, we estimate the
nuisance parameter ¢, = E[e;_1 (90)"] using ¢7 = 7! Z¢T=2 &—1 (éT)k.

For each DGP, we generate T 4 100 observations, and use the last 7 observations
for estimation and testing. Given the nominal size 5 %, the sample sizes T = 500,
1,000, and the number of replications 1,000, we show the empirical rejection fre-
quencies of the M, M*, and M tests for the first experiment in Table 1 and their
counterparts for the second experiment in Table2. The main results of these two
tables are summarized as follows.

First, the M test and the M* test have the same empirical sizes and powers
under the AR-CHOMO and TAR-CHOMO (AR-GARCH-N and TAR-GARCH-N)
processes in the first (second) experiment. This is because these two tests are identical
under conditional homoskedasticity (conditional normality), as discussed in Sect. 4.1
(Sect.4.2). Table 1 (Table2) also shows that the performance of the M test (the M
test) is very similar to that of the M test and the M ™ test in these cases. This reflects the
fact that the GARCH approximation encompasses the conditionally homoskedastic
errors (the estimator 7! Z[T: 1 VUt (éT)v, (QAT)T is consistent for (57)), so that these
tests are asymptotically equivalent and share the same optimality property.

Second, the M tests with various z;(6, ¢)’s have proper empirical sizes close
to the 5% nominal level in most cases. This shows that these tests are robust to
the unknown conditional distribution in checking H, and H). The tests with z4
and z; are somewhat undersized for certain DGPs; this exceptional case is likely
due to the fact that these nonlinear z; (0, ¢)’s are highly sensitive to outliers. These
two tables also show that the M tests with various z;(6, ¢)’s have different power
directions. In particular, the M test with z1 j; (or z;;) and the test with z3 ,; (Or ;1)
are, respectively, powerful against the AR processes and the TAR processes. This is
consistent with the power directions that these two z; (6, ¢)’s are designed to have. In
addition, the empirical powers of the M testat 7 = 500 are close to their counterparts
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at T = 1,000. This is consistent with the parameter setting y; = 87 ~!/? that we
design to simulate the “local” powers of the M test. Importantly, the aforementioned
size and power properties also hold for the M* test and the M test (or the M test).

Thus, these tests are of the same robustness and power directions, and it is essential
to discriminate between them by comparing their relative power performance.

Third, and more importantly, the relative power performance of these tests is
consistent with our theoretical results. Specifically, Table 1 shows that the optimized
M* test and its approximation, the feasible M test, tend to outperform, or at least have
very similar performance to, the (suboptimal) M test in the presence of conditional
heteroskedasticity. Meanwhile, the M test provides a reasonable approximation to
the M* test in view of their power performance. To make these points clear, we
simulate and plot the empirical power curves of the M, M*, and M tests, under
various AR (TAR) processes with z1; (z2,01), T = 500, and § = 0,0.5,1,...,5
in Fig. 1. We focus on this z;(6, ¢) because the testing powers of these tests under
the AR (TAR) processes are mainly contributed by using this z;(6, ¢); see Table 1.
Thus, we may evaluate our theoretical results in a more direct way by focusing on
this z¢(0, ¢).

This figure shows that these tests are indistinguishable under conditional
homoskedasticity. By contrast, the M* test and the M test outperform the M test
under conditional heteroskedasticity. As implied by Proposition 2, the M* test yields
the upper bound of the power curve of the M test. A mild exception appears in Fig. 1f,
in which the M test is marginally more powerful than the M* test when 8 < 1. This
might be due to sampling variation. In general, the power curve of the M test is
between those of the M* test and the M test. This suggests that the M test is useful
for improving the local powers of the M test, even though it is not based on the
true X;(6,). This improvement is likely due to the fact that, despite the conditional
homoskedasticity approximation (C;(0) = 1) implicitly used by the M test and the
GARCH approximation explicitly used by the M test are both misspecified for
the EGARCH processes, the latter obviously provides a better approximation than
the former.

From Table 1 and Fig. 1, we also observe that the “significance” of the power
advantage of the M* and M tests over the M test is data-dependent. Given 7' = 500
and § = 3 (8§ = 5), the M, M*, and M tests with 21,1t (z2,n1) have respective pow-
ers: 81.7 %, 86.5 %, and 83.6 % (43.2 %, 49.8 %, and 46.8 %) under AR-EGARCH1
(TAR-EGARCH]1). These powers are not substantially different. In comparison,
given the same T and §, these tests have respective powers: 67.4 %, 87.9 %, and
75.1% (33.9 %, 57.1 %, and 44.9 %) under AR-EGARCH2 (TAR-EGARCH?2). The
M* and M tests outperform the M test in both cases, but it is particularly important
to replace the suboptimal M test by the M test when conditional heteroskedasticity
becomes stronger.

The second experiment also supports the validity of our theoretical results in
finite samples. Table 2 shows that the M* and M tests tend to generate higher powers
than, or at least very similar powers to, the M test under conditional asymmetry.
For instance, the M, M*, and M tests with 21r (znt) are, respectively, of the powers:
67.1%, 78.2%, and 78.3 % (25.8%, 39.9 %, and 38.9 %) under AR-GARCH-L1
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Fig. 1 Power curves of the M, M*, and M tests. a AR-CHOMO, z1,;; b AR-EGARCHLI, z1,
¢ AR-EGARCH?2, z; ;; d TAR-CHOMO, z» ,; e TAR-EGARCHLI, z3 ,; f TAR-EGARCH?2, 22 ,,;
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(TAR-GARCH-L1) when T = 500 and 6 = 3. Similar to the first experiment, this
also shows the power advantage of the M* test and the M test over the suboptimal
M test. Note that the M* test and the M test have very similar empirical rejection
frequencies in all cases for the second experiment. This reflects the fact that the
feasible M test is based on a consistent estimator for X and hence is asymptotically
equivalent to the infeasible M* test. In this scenario, it is very easy to implement the
optimized test.

From these two experiments, we see that the M* and M (or M) tests are potentially
useful for improving the local powers of the M test without sacrificing their size
performance, that is, without sacrificing their robustness to the unknown conditional
distribution.

7 Conclusions

This chapter is concerned with the optimality of RCM tests. We argue that the con-
ventional score test interpretation is incompatible with the rationale of RCM tests.
Instead, we explore a different type of test optimality by considering a generalized
RCM test based on the EF approach and deriving the upper bound of its noncen-
trality parameter without a conditional distribution assumption. We then propose to
optimize the generalized RCM test and show that the resulting test achieves this
upper bound and is thus semiparametrically optimal. The optimized test is readily
applicable to various partial specifications, such as the conditional mean, mean-and-
variance, and quantile models. Thus, the proposed optimization method is useful for
improving the power property of many existing RCM tests.

The implementation of the optimized test requires estimation (approximation) of
the conditional covariance matrix of the generalized residual vector. The form of this
matrix depends on the partial specifications being tested. When the covariance matrix
can be consistently estimated, the optimized test constructed from this estimate is
semiparametrically optimal. When the covariance matrix is difficult to estimate, it
may be approximated using a sensible model. The power performance of the resulting
test would be better if the postulated model provides a more accurate approximation
to the covariance matrix. Even when the model is misspecified, the optimized test
remains robust. Therefore, the approach proposed in this study allows us to pursue
optimality of RCM tests without sacrificing their robustness to unknown conditional
distributions. This makes the optimized test a practically useful tool.
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Appendix
A.l Assumptions: [A.1]-[A.2]

Because the derivation of the asymptotic results in [A.1] and [A.2] are known in the
literature, the following discussions are provided only for completeness. For ease of
exposition, the discussions are focused on the case where 7, (0) v, (0) and z7 (8)v} (0)
are smooth functions of 6.

Recall that (i) ® is a compact set. Let Q7(6) and Q,(0) be, respectively, the
inner products of ! Zthl w7 (0)v;(0) and E[m;(6)v;(0)]. Given the following
conditions for EF: (ii) {r;(0)v;(0)} is stationary and ergodic for each 6 € O,
(iii) E[m;(0)v;(0)] exists and is finite for each § € ©, and is continuous on ®,
and (iv) E[supycg ll:(@)v:(0)]]] < 0, we may have the uniform convergence:
SUPgee QT (0) — Q0 (0)] LY 0; see, e.g., Hall (2005, Lemma 3.1). The consistency
of O for 6,, stated in [A.1], may follow this result and (v) the identifiable uniqueness
condition: (6) only holds for a unique 6, € ©®; see, e.g., Hall (2005, Theorem 3.1).

If the EF is smooth in the sense that (vi) 7;(0)v;(®) is continuously differen-
tiable on ®, then we can take the mean-value expansion of the estimating equation:
7' > 7:(07)vi(07) = 0 to write that

1 < | < S -
—= Dm0 O0) + = > Var (m@v @) VT@r =0, =0 (AD)
ﬁt:l t=1

for some 07 € © such that |67 — 6,|| < |67 — 6,]. Given the consistency of 67
for 6,, the expansion in (A.1), and the conditions: (vii) {VgT (77;(6)v;(0))} obeys a
ULLN, (viii) E[ VT (7, (6) v, (8))] is continuous on ©, and (ix) E[ V4T (57 (6,) v (6,))]
is positive definite, it is easy to show that

_ —
VT Or = 05) = —ElVyr (, (%)v,(eo))rlﬁ > w0 vi(B0) + 0,p(1); (A2)
t=1

see, e.g., Newey and McFadden (1994, Sect. 3). Following Magnus and Neudecker
(1988, p. 30, Eq. 5), we can write that E[7,(0)v,(0)] = E[(v;(0)" ® Ip)vec(m (0))].
Accordingly, we have

E[Vyr (77 (0)v: (85))] = El771(65) Vg7 02 (85)] + EL(v:(85)" ® 1) Vg vec(m: (6,))]
= E[m; (00)E[Vyr v (65) | X7 1]
+ E[E[v (00| X:]" ® 1) Vigr vec(m; (6,))], (A.3)
where the second equality is due to the law of iterated expectations. Condition (vi)

may allow us to write that w;(6,) = E[ng, (0,)|X;]. Recall that E[v,(6,)|X;] = 0
holds under H,. Given condition (x): E[(z;(0)® I p)ngec(nt (0))] exists and is finite
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for each 0 € ©, and is continuous on ®, this restriction also holds under Hi7 as
T — oo because

E[(E[v; 071X ® 1)V, vee(m (07 )] = T~ Y28 El(z/(07) ® 1) Vg7 vec(m, (07))]
(A4)
=o(1)

and 07 — 6, as T — oo. The asymptotic linear representation in (12) is obtained
from (A.2) and these results. This shows that conditions (i)—(x) serve as a set of
sufficient conditions underlying [A.1].

If the moment function z§ (9)v] (@) is smooth in the sense that (xi) zj (0)v] (0) is
continuously dlfferentlable on ©, then we can also take the mean-value expansion of
the estimated moment: 7~ Zt 123 (QT)UZ (QT) Given the consistency of Or for 6,,
this expansion, and the conditions: (xii) { V4T (2] (6)v} (#))} is stationary and ergodic,
and obeys a ULLN and (xiii) E[ Vg7 (2] (6)v] (8))] is continuous on ©, it is also easy
to show that

ZT: 1 Or)v; (Or) = L ZT:ZS(Go)vS(Go) (A.5)
p— t ﬁ p-— t 12

ﬂl

+ E[V7 (25 (00) v (0o ) INT @1 — 6,) + 0,(1).
Similar to (A.3) and (A.4), given condition (xiii), we can show that, under H,,
E[Vyr (2] (00)v] (0o))] = Elz] (Bo)w; (6,))'].

Given condition (xiv): E[(z](0) ® I,)Vgrvec(z](0))] exists and is finite for each
6 € O, and is continuous on ® this restriction also holds under Hi7 as T — oo.
The asymptotic expansion in [A.2] is due to (A.5) and these results, and conditions:
(1)—(v) and (xi)—(xiv) are a set of sufficient conditions underlying this assumption.

A.2 Proof of Proposition 2

The matrices considered in this proof are all evaluated at 6 = 6,. For notational
brevity, we denote C; = C;(6,), X; = 2;(0,), &} = 27(6,), wf = w(6,),
wy = wi(6,), z} == 20(60), zf = 27 (60), 5 = 25,,(6,), and 2, =z, (6,)
in the proof. Recall that Cl/2 S22 1/2 12

and El/ are symmetric and X, C,
Therefore, we can write ] = (X

vl/Z)T s1/2 sl1)2

. By denoting &y; := z},%; and

&y = zwt(E;I/z)T, we can rewrite (19) as

v =" (Eléu&3 Elgs, ] Elgais] 1) 6. (A6)
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By the definition of z},,, w/, and z}, we can reexpress &j; as:

£ = (20 — Bl w T E[w w1 'w) s~ 172

= (zr — BlZw E[wi w1 w2572,

= (¢} — Elzfw} IE[w} w1~ 'wi)(Z, )-

1/2 1/225—1/2

Since

1/2C1/2 s—1/2 2”2C1/2(21/2C1/2) I

rs

we can simplify the above expression of &;; as

£ =z — Bl wi E[wd w!T] ™ w?
=25, 4 Elzfw E[w w17 — ElzSw E[w! w!T)~Hw?

and show that
El&1:&5,] = Blz},&, 14 Elzfw; TE[w; w1 —Elzf w; 1E[w]w] 1™ HE[w;&;,].
Using the fact that

E[wf 521] =E[wX 1/22;1/2 o ]E[wt 1/2Z1Y1;Tt
= E[w;z ST] = (]E[Zw;w '

we obtain an important result: E[£1,£,,] = E[z,£,,]. By this relationship, we can
present (A.6) as

v =57 (Blep, &L 1Bl 1 Blexzil) 6

According to (43), we can write that v* = §"E[z}, 2% 16. Consequently, we have

Ve — v =8 (Blzh, 25 — Ble, & Blex e, Elex<3]1) 8

= 8'E[£¢,16,
in which ¢, == 2}, — ]E[z*w,s;,]]E[gz,szT,]—lgm. Proposition 2 is proved because the
matrix E[¢;£/] is positive semi-definite. O
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Asymptotic Properties of Penalized M
Estimators with Time Series Observations

Xiaohong Chen and Zhipeng Liao

Abstract The method of penalization is a general smoothing principle to solve
infinite-dimensional estimation problems. In this chapter, we study asymptotic prop-
erties of penalized M estimators with weakly dependent data. We first establish the
convergence rate for any penalized M estimators of unknown functions with station-
ary beta mixing observations. While the existing theories on the convergence rates
with i.i.d. data require that the random criteria have exponential thin tails, we allow
for unbounded random criteria with finite polynomial moments. When specializing
to regression and density estimation of time series models, our rates coincide with
Stone (The Annals of Statistics, 10: 1040-1053, 1982) optimal rates for i.i.d. data.
We then derive root-n asymptotic normality for any plug-in penalized M estimators
of regular functionals, and provide consistent estimates of their long-run variances.

Keywords Penalized M estimation + Weakly dependent data - Convergence rate *
Asymptotic normality + HAC estimation

1 Introduction

Many estimators can be obtained by maximizing an empirical criterion of a sam-
ple average form, L, () = n~! > e, Z;) over a parameter space A (e.g.,
log-likelihood, least squares, least absolute deviation). They are referred to as
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maximum-likelihood-like (M) estimators by Huber (1981), Gallant and White (1988),
and Newey and McFadden (1994), among others.

When the parameter space .A is a compact subset of a finite-dimensional Euclidean
space, exact M estimates are easy to compute and their asymptotic properties are well
established for both independent and dependent observations. For example, if L, («)
is smooth in @ almost surely and A has non-empty interior containing a pseudo-true
parameter of interest «g = arg maxye 4 E[L,(a)], the asymptotic normality of the
M estimator &, can be obtained by Taylor expansion of the corresponding estimating
equations (or the score equation L, (&) = 0, when L, () is the sample average
log-likelihood, or sample moment conditions) around .

When A is an infinite-dimensional, non-compact function space, the exact M
estimates for a general criterion L, () may either not be defined or may have poor
asymptotic properties such as the inconsistency or slow rate of convergence, see, e.g.,
Grenander (1981) for many such examples. Some approximate M estimation meth-
ods such as sieve method and penalization (or regularization) method can outperform
the exact M estimation procedure in infinite-dimensional setting. The sieve M esti-
mates maximize L, («) over a sequence of (smaller and typically compact) approx-
imating parameter spaces .4,, instead of the original infinite-dimensional parame-
ter space A; see e.g., Grenander (1981), White and Wooldridge (1991) and Chen
(2007). The penalized (or regularized) M estimates (Tikhonov 1963) maximize Ly ()
(apenalized or regularized version of L, («)) over the whole parameter space .A. Both
these methods can provide consistent estimates that may have better asymptotic and
finite sample properties than those of exact M estimates. Both methods are very flex-
ible by combining different criterion functions with different sieves (for the sieve
method) and different penalties (for the penalization method). For example, both
could easily implement constraints such as monotonicity and convexity; and both
could handle ill-posed inverse problems; see, e.g., Chen (2007, 2011), Chen and
Pouzo (2012) and the references therein for details.

The asymptotic properties of general sieve M estimates have been relatively well
developed. For example, for sieve M estimation with i.i.d. observations, Shen and
Wong (1994), Birge and Massart (1994), Van de Geer (2000) derived the convergence
rates; Shen (1997) established the /n asymptotic normality of plug-in estimates of
regular functions (i.e., functionals that could be estimated at a root-n rate); Chen
and Liao (2008) derived the asymptotic normality for plug-in estimates of irregular
functionals (i.e., functionals that could be at best estimated at a slower than root-
n rate) and provided simple consistent variance estimates. For sieve M estimation
with weakly dependent data, Chen and Shen (1998) obtained the non-parametric
convergence rates and the \/n-asymptotic normality for plug-in estimates of regular
functionals; Chen et al. (2011) derived the asymptotic normality and proposed auto-
correlation robust inference procedures for plug-in estimates of possibly irregular
functionals.

There are some published work on the asymptotic properties of general penalized
M estimators for i.i.d. data. Earlier theories developed by Wahba (1990), Gu (2002)
and others are confined to the reproducing kernel Hilbert space framework, and
relied on explicit solutions that can be exactly expressed as splines (i.e., smoothing
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splines).! The search for a spline representation for the exact solution often requires
various boundary conditions on the space of functions, which are hard to justify in
most economics applications. When the data are i.i.d. and when the centered random
criterion function has an exponential thin tail, Shen (1997, 1998) and Van de Geer
(2000) obtained the rate of convergence and the /n-asymptotic normality for general
penalized M estimators that may not have a closed form solution expressed as splines.

In this chapter, we give up the search for the exact spline representation, but use
the penalization to make the effective parameter space relatively compact. Thus, it
is very flexible with the choice of parameter spaces as well as the choice of the
penalization. We can use infinitely many terms of spline, Fourier series, wavelet, and
many other basis expansions to implement the estimation with or without economics
constraints. We study the rate of convergence (in a general pseudometric) and the
asymptotic normality of penalized M estimates with weakly dependent data. Our
sufficient conditions for asymptotic properties are more or less the same as those for
sieve M estimates in Chen and Shen (1998) for time series data. Instead of imposing
the strong exponential thin tail condition (as assumed in the existing penalization lit-
erature for i.i.d. data), we allow for polynomial tail of the centered random criterion
function, which is important for economic time series applications. When specializ-
ing to time series regression and density estimation, our rates coincide with Stone’s
(1982) optimal rates for i.i.d. data. We then derive the root-n asymptotic normality
for any plug-in penalized M estimators of regular functionals, and provide consistent
estimates of their long-run variances (LRVs). We point out that this chapter is an
updated and improved version of Chen (1997), which is an old unpublished working
paper that established the rates of convergence of penalized M estimators and the
root-n asymptotic normality of plug-in penalized M estimators of regular function-
als for time series data. But Chen (1997) derived the rate result under the strong
exponential thin tail condition and did not provide any consistent LRV estimators.

The rest of the chapter is organized as follows. Section2 defines the general
penalized M estimates and provides two illustrative examples. Section 3 establishes
the rates of convergence for penalized M estimates with stationary weakly dependent
observations. Section4 develops the root-n asymptotic normality for plug-in penal-
ized M estimates of regular functionals, and Sect.5 provides consistent estimates
of their LRVs. Section 6 briefly concludes. The Appendix contains all the technical
proofs.

2 Definitions and Examples

Throughout the chapter, we let {Z;}}_, be a weakly dependent sequence with Z; €
Z C R% foreacht, (1 < d, < 00), with marginal density Py ,(z) thatisrelated to oo,
the pseudo-true parameter of interest. Let d(-, -) be a general pseudometric on an

! Corradi and White (1995) applied this approach to establish convergence rate for Tikhonov-
regularized neural networks.
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infinite-dimensional parameter space A and L,(x) = nl Z;’:l {(a, Z;) be an
empirical criterion. We assume that the pseudo-true parameter o € A satisfies:

E[Ly(a0)] = sup E[Ly()].

acA

Let K (ag, ) = n~! Z:’zl E [l(ag, Z;) — €(a, Z;)]. Notice that K (ag, ) is the
Kullback-Leibler information number based on n observations if the criterion is a
log-likelihood.

One way to overcome the difficulties of optimizing over an infinite dimensional
non-compact parameter space is to include a penalty describing the plausibility of
each parameter value to the empirical criterion to be optimized. The penalty effec-
tively forces the optimization to be carried out within compact subsets depending on
sample size. More specifically, we denote

Lp(@) = Ly(@) — Ay J (@),

where J(«) is a non-negative penalty function and A, is the tuning parameter. An
approximate penalized M estimate, denoted by @, is defined as an approximate
maximizer of L, («) over A, i.e.,

Ly(@y) > sup Ly(a) — ay, (1)
ac A

where a, = 0,(1). The above procedure is called the method of penalization (see
e.g., Tikhonov 1963 and Wahba 1990). Let p(-) : A — R be a known functional.
Sometimes p () is also the parameter of interest. The plug-in penalized M estimate
for p(a) is simply p(a,).

In this chapter, we study asymptotic properties of penalized M estimates with time
series data. LetZ" __ and s j be o — fields generated, respectively, by (Z_c, - - -, Z;)
and (Z;4j, - -, Zoo). Define

P(A)>0,BeT®,).

—00°? l‘-‘rj

¢(j) = SlllPSUP{IP(BIA) —P(B)|:AeT!

B()) = SLtIPEsup{IP(BIZioo) —P(B)|: BeLY;}

The process {Z;}2_., is called uniform mixing if ¢(j) — 0 as j — oo; is
B-mixing or absolutely regular if B(j) — 0 as j — oo. The well-known rela-
tion is: B(j) < ¢(j). There exist random sequences which are S-mixing but not
uniform mixing; see Bradley (1986), Doukhan (1994) and White (2004) for details.
Many nonlinear Markov processes have been shown to satisfy stationary S-mixing
with exponential decay rates (i.e., B(j) < Boexp(—cj) for some By, c > 0); see,
e.g., Chen (2011) for a long list of many econometrics time series models that are
beta mixing.
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Example 2.1 (Semiparametric additive AR(p) mean regression): suppose that the

time series data {Y;}'_, is generated according to
P
=D Yiifoi+ Z ho,i—p1 (Y—i) + e, EledYs—i, 1 < i < p] = 0.
i=1 i=p1+1
The parameters of interestare 0 = (6, - -+ , 0,,)" € @and h(-) = (h1 ("), - hp_p,

(1)) € H,where ® = (=1, P, and H = H x - X Hp_p,, Hj = WML ””2([0 1)
is a Sobolev space with degree of smoothness m; | measured by L, ,(leb) norm (see,
Adams 1975). Let o9 = (0g, hg) € A =0 x H.

Denote Xi; = (Yi—1,---,Y;—p)) and no(X2,) = Z;”:,,l+1ho,z—p1(Yz_z).
2
Let Ly(a) = n~' S0 ble, Z)), ble Z) = —4 [Y, —x;,te—n(xz,t)] . Let

- _ 1/my,
Lu(@) = La(@) = {20 k@), where Ji@) = [ 3 (V™ o2 x|

with m;; > 1 and m;» > 1. Then @, = @,h) € A that solves L,@,) >
SUPy e A I:n(a) — 0,(1) becomes the penalized Least Squares estimator of cg. To
implement this, we can use wavelet to represent any functions in . The theory of
this chapter can be applied to derive the convergence rate of T, the root-n asymptotic
normality of 0, and a consistent estimate of its asymptotic variance.

Example 2.2 (Non-parametric ARX(p,q) quantile regression): suppose {Y;};_; is
generated according to:

Yi=ho(Yi—1, - Yip, Xey oo s Xi—pry1) + &
with : E[T —I{e; <0} Y;—q,--- Yip Xey o aXt—pz—i-l] =0. ()

The function hg : RP' x R%P2 — R is the parameter of interest, where py, ps, dy >
1 are fixed and known integers. {¥;} is stationary 8-mixing under certain conditions
on ho, {X,} and {e;}. Let d = p; + d, p2. Suppose hg € H = W™P([by, by]%)
(Sobolev space).

Previously Koenker et al. (1994) estimated a nonparametric quantile regression
with i.i.d. data via the penalized smoothing spline technique. Chen and White (1999)
estimated this time series quantile model via neural network sieve M estimation.
Let Z, = (Y;, W) and Wy = (Yi—1,---, Yt—m» Xy, th—pz+l)~ Let Ln(h) =
n! D 1 Uh, Zy) — rnd (h), where £(h, z) = [1(y < h(w)) — 7] (y — h(w)) and
J) = [[ 109D @) [Pdw]"'" withm = 1,min(p, 2) x m > d. Then & € H that

solves L (h ) = suppen L (h) — 0p(1) becomes the penalized quantile regression
estimator of /. To implement this, we can use Fourier series, spline, or wavelet to
represent any functions in H. The theory of this chapter can be applied to derive the
convergence rate of Tn, and the root-n asymptotic normality of plug-in penalized
estimate ,0(71\,,) of any regular functionals p (ko).
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3 Convergence Rate of the Penalized M Estimate

For simplicity we let the parameter space (A, d) be a Banach space, and J(«) be
a semi-norm type of smoothness penalty such that A, J(¢) < J(A,a) > 0. In this
section, we establish the convergence rate (in d(-, -)) of the approximate penalized
M estimate with dependent data. We first provide a set of sufficient conditions.

Condition 3.1 (Dependence) {Z,};_, is a strictly stationary process that is either
uniform mixing with ¢ (j) < ¢oj~® for some ¢y > 0, w > 2, or B-mixing with
B(j) < Boj~ for some fo > 0, w > 2.

Condition 3.2 (Identification) There exist finite constants cy > 0, y1 > 0 such that
for all small § > 0,

inf K (ag, @) > o8 (3)
{d(ag,a)>8,ac A}

In the following, for any finite positive constants §; and §> > 1, we denote

As s, =l e A:61/2 <d(ap, @) <61, J(a) < 82}
and .7:51,52 ={l(a,Z) —L(ag, Z) :x € Aglﬁgz}.

Condition 3.3 (Variance) There exist finite constants ¢c1 > 0 and y» € [0, 1) such
that for all finite 51 > 0 and 5, > 1,

n
sup n”'Var [Z (€, Z;) — £(cto, z,»} < a8 1+ (67 + 87,

€A 5, =1

Condition 3.4 (Tails behavior) There exist finite constants c; > 0, y3 € (0, 2yy),
ya € [0, 1) and a random variable U (Z) such that for all finite 51 > 0 and 6, > 1,

sup | €(a, Z) — L(ao, Z)| < c2U(Z)5]° 85"

a€As) 5,

with E [{U(Z)}5] < oo for some ys > 2.

LetG = {g(a, Z) : @ € A} be a class of measurable functions mapping A x Z to
‘R such that E[g(«, Z)1? is finite for all « € A. Let I, be the Ly-norm on G, i.e.,
for any g(a1, 2), g(a2,2) € G,

57172
llg(@1, 2) = glaz, DI |2 = [ E lgler, 2) = gler, 22P] .

Let £, be the completion of G under |-|l,. We use the bracketing average L,
metric entropy to measure the size of G (see, e.g., Pollard 1984), that is, for any
given € > 0, suppose there exists S(e, N) = {gl1 LR ,gﬁv, gy} C L such that
max|<j<y ||g7 - g§.||2 < € and for any g € G, there existsa j € {1,---, N} with
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gz. <g< gj'4 almost surely, then Hjj(e, G) = log(min{N : S(e, N)}) is the bracket-
ing L, metric entropy of the space G, i.e., the logarithm of the minimal cardinality
of e-covering of the space G in the L, metric with bracketing.

Let J(op) < 00, Jo = max(J(ap), 1) and Fs, 5, = {€(a, Z) — l(p, Z) t ¢ €
Asy.8,)-

Condition 3.5 (Size of the space) There exists some €, € (0, 1) such that 1, Jog <
2y d
c3&, an

as?l (5?”1 +87) (147272 "

f H[] (w, fgl,gz)dw
_ bhn (67 +52) |
g, =iInf 1 >0: sup o < cy4n?
{61=1,60>1} )\-n (81 + 82)

for some constants a, b, c3, c4 > 0.

Condition 3.1 assumes that the data is mixing and imposes the decay rate on the
weak dependence. Condition 3.2 is the identifiable uniqueness condition. Similar
condition is used in White and Wooldridge (1991) to show the consistency of the
sieve M estimates. In most applications, we can choose d («p, &) = K 12, o) and
y1 = | and then Condition 3.2 becomes the case considered in Shen (1998) for i.i.d.
data. Condition 3.3 generalizes Assumption B in Shen (1998) for i.i.d. data to time
series setting. Condition 3.4 relaxes the strong exponential thin tail Assumption C
in Shen (1998) in order to allow for a wide range of semi-nonparametric time series
applications. It is similar to the polynomial tail condition A.4 imposed in Chen and
Shen (1998) for sieve M estimation of time series models. Condition 3.5 is similar
to Assumption D in Shen (1998), which measures the complexity of the cell spaces
F 81,82+

In the following we let P* (-) denote the outer measure (see, Pollard 1984).

Theorem 3.6 Suppose that Conditions 3.1-3.5 hold. Then there exist finite constants
dy, dr, d3 > 0 such that for all large x > 1 and for all integer n,

P sup [Ln(@) — Ln(ag)] = —(xen)??! /2 ) < na(x). with
{d(p.a)>xe,,ac A}
dy N dy N 4352;/3}/5
exp(ex2r1(1=y) 27271y (xCr=ya) 4@ @ (xCri=y3)a,)vsnys/2”

“)

nn(x) =

Hence for the penalized M estimate defined in (1) with a, = 0(83)/1 ), we have for all
x>1,
P (d(ap, an) > x&) < Np(x).
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We next show that the penalized M estimate falls into the set {& € A : J (@) <
[1 4+ o(1)]J (xxg)} with probability approaching 1.

Theorem 3.7 Let conditions in Theorem 3.6 hold. For any 0 < § < 1/4, if (1 —
8)(xen)" < n, then: Pr[J @n) = (1 +48)Jo] < (x).

Theorem 3.7 indicates that the penalized M estimation is effectively equivalent to
the infeasible constrained M estimation over the subspace {@ € A : J(a) < ¢J (o)}
where ¢ is some large but finite positive constant.

Applying Theorems 3.6 and 3.7, we immediately obtain the following Corollary.

Corollary 3.8 Let conditions of Theorem 3.6 hold with y; = 1. If

: 2.2 2.72y3 w4
min {nknsn Jhh g 77, n"T A, >c>0 asn— oo,

then: (1) d (@0, ) = 0(8) with 8, = max (en. />); (2) J @) < (1+0,(1))Jo.

Remark 3.9 Corollary 3.8 implies that the convergence rate of the penalized M
estimator depends on the local entropy ¢, of the parameter space and the tuning
parameter X,. The optimal convergence rate is achieved by setting 1, < 83” and
the optimal rate is §, < &,. This result is very similar to Theorem 1 in Chen and
Shen (1998) for the convergence rate of sieve M estimator with dependent data. When
d(ap, o) = K'?(a, @) (hence y; = 1), and the data {Z,} isi.i.d., our Corollary 3.8
becomes Corollary 2 in Shen (1998), except that we replace his strong exponential
thin tail Assumption C by the weaker polynomial tail Condition 3.4.

4 Asymptotic Normality of Plug-In Penalized M Estimates

Since @, is an approximate penalized M estimate over an infinite-dimensional func-
tion space, @, may not be a solution to vL,(a) = 0, and hence we could not
follow the typical approach of Taylor expansion to derive the asymptotic normality
of p (@) — p(ao).

Given the global convergence rate results in the previous section, to establish
the asymptotic normality of p (&) — p(ag), it suffices to have “good” (to be more
precise below) linear approximations to L, (o) — L, (cg) and p() — p(cg) within
some shrinking neighborhood of «y.

Let (A, d) be a subspace of a certain normed linear space £ equipped with an
inner product-induced norm || - || such that ||l — ap|| < cd (g, ) for some constant
¢ > 0and that |J@ — ag|l < K'/*(ag, @) within a small d-neighborhood of «rg. We
assume that there exists some local approximation of ¢(«, Z), i.e.,

Lo, Z) = Loy, Z) + Ao, Z)[oe — ap] + 1 (o, Z)[a — ap, o —apl/2,  (5)
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for all & in a shrinking neighborhood of o, where A (g, Z)[v] and r(xg, Z)[v1, v2]
are the (possibly smoothed) first and second pathwise derivatives of £(c, Z) w.r.t. o
in the direction v and (vy, v2), respectively. Suppose the functional of interest p(-)
has the following local linear approximation such that

lp(e) = p(a0) = pyyla — aoll = O(lla —aol|”) as [l — ol = 0, (6)

where w is a positive number, ,0(;0 [ — ] is linear in (o« — op). We say that p(-) is
a regular functional if the following condition holds

| 04 [t — ]|
Il 0 || = sup = _—
{weA:la—aol>0) o — a0l

Let V be the Hilbert space generated by A — {«o} under the norm || - ||, with (-, )
denoting the corresponding inner product. By the Riesz representation theorem, there
exists v* € V such that

P[] = (v, v%) forallv eV,

and that [[v*]| = || o, |I-

To derive the asymptotic normality for n 121 p(@y) — p(ap)], we will approximate
p(a,) — p(ap) locally by a bounded linear functional (@, — ag, v*). The latter can
also be approximated by n~! > Aleo, Zy)[v*], which is the local linear approxi-
mation to the random criterion difference of L, (&) — L, (&;, £ &,v*), provided that
o +e,v* € Ais alocal alternative value of any « in a shrinking neighborhood of
o, with &, = o(n™1/%).

Essentially, the penalty J (o), which controls the global properties of the esti-
mates, plays no role in the local approximation of the criterion difference within a
neighborhood of «g. However, to control the local behavior of the linear approxima-
tion of the criterion function with penalty, certain assumptions on J(«) and A, are
needed.

Let 8, be the convergence rate of the approximate penalized M estimate under the
norm || - ||, i.e., [|[@, — aol| = O,(8,). Let C be a finite positive constant such that
C > max{J(ag), J(v*)} > 0. Denote

Np={aeA:lla—agl| < 3y loglogn, J(a) < C}

as a shrinking neighborhood of ag. Then @,, € N, with probability approaching one
(wpal). Let w,[f(a, Z)] = n~! >t Af(e, Zy) — E[f(a, Z,)]} be the empirical
process indexed by «. Denote u* = £v* and &, = o(n~'/?). We now formulate the
set of regularity conditions.
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Condition 4.1 (Stochastic equicontinuity)
sup uy (€, Z) — Aleo, Z)[e — o] — {€(e + e,u™, Z)
aeN,
— A@o, D)l + equ™ — agl}) = O (e;)

Condition 4.2 (Expected value of criterion difference)

llor + a1 — o> = o = ?

sup |E[l(a, Z) — b(a + gyu™, Z)] —

= 0(&?).
aeN, 2 n

Condition 4.3 (Penalty) There is a finite constant ¢ > 0 such that
J(a + ) < ¢ x [J(ar) + J(@)] for any ay, a2 € Ny;

In addition A, J (e,u*) = O(e2).
Condition 4.4 (Gradient) sup,, . N, Mn {A(ao, D)a —apl} = Op(en).

Condition 4.5 (CLT) n'/2p, {A(ag, Z)[v*]} =4 N (0, %) with

n
ovz* = nll)néo n'Var (z A(ag, Z,)[v*]) € (0, 00).

t=1

Condition 4.1 specifies linear approximation of the empirical criterion by its
derivative within a small neighborhood of «g. Condition 4.2 characterizes the
local quadratic behavior of the expected value of the criterion difference. When
A is an infinite-dimensional space, @, is often on the boundary of A, where interior
points of A with respect to ||-|| may not exist. The corresponding score function spec-
ified by the directional derivative evaluated at @, may not be close to zero when A is
very large. Conditions 4.3 and 4.4 are generalization of the usual assumption that o
is an interior point of .4. Condition 4.5 only requires a traditional finite-dimensional
CLT, which is weaker than the need of CLTs in an infinite-dimensional Hilbert space
[see, e.g., Chen and White (1998)]. Condition 4.5 is satisfied by many weakly depen-
dent data structures. For example, suppose that {Z,}7° is strictly stationary strong
mixing with mixing coefficients « (i) satisfying Z?il [@()]¥92/1 < oo and that
A(ao, Z)[v*] has finite gth moments (¢ > 2). Then Condition 4.5 is satisfied with

o = Var(Aao, Z)[*]) +2 D Cov(A(ao, ZD)[v*], Ao, Z))[v*)).
j=2

Theorem 4.6 Suppose that Conditions 4.1-4.5 hold and p (-) satisfies (6) with ||a,, —
aol|” = op (n=Y?). Then for the plug-in penalized M estimate p(@y), we have:



Asymptotic Properties of Penalized M Estimators with Time Series Observations 107

Vi lp@n) — plao)] —a N0, 02).

This asymptotic normality result is very similar to that in Chen and Shen (1998)
and Chen (2007, Theorem 4.3) for plug-in sieve M estimates. In particular, both
estimators share the same asymptotic variance avz* for weakly dependent data. This
confirms the well-known result by Newey (1994) for i.i.d. data that the asymptotic
variances of 1/n-consistent semiparametric two-step estimators do not depend on the
choice of first step nonparametric estimators.

5 Consistent Estimation of the Long-Run Variance

In this section, we provide a consistent estimator for the LRV avz* of the plug-in
penalized M estimate p (&, ) of aregular functional p (). Using the expressionin (5),
we define the norm || - || as |[v]|> = —E {r(Z, ao)[v, v]}. Let V be the Hilbert space
generated by A — & under the norm || - || with the corresponding inner product (-, -).
Let V, be a k, —dimensional Hilbert space under the norm || - || that becomes dense
in}V as k, — oo. We compute a sieve Riesz representor v € V, as

|04, 1]

2 __
pho il = I = :
veV,,v#0 lvll

Then by the property of Hilbert space we have: ||v,’f||2 A |lv*||? and lvi —v*| =0
as k,, —> oo.

We can define an empirical seminorm as ||v||% = % > r(Z,ay)lv, v] for
all v € V. Using the empirical seminorm || - ||, we can define an empirical Riesz

representor v as

/ 2
|pg, [V]I o, o

2 _
ph [0 = 05112 = .
veV,,v£0 ”v“n

Using the penalized M estimate @, and the empirical Riesz representor v\, we
introduce an estimator of crvz* as

n—1
5i= 3 k(o) rw@n [ 97]. ®

t=—n+1
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where
n
2 Y A@. ZOWIA@, Zi-)[D;]  fort =0
Cos@ [0, 5] =1 2 ~ ’
2 Y A@, ZOWA@,, Ziy) V] fort <0
k=—t+1

KC (+) is some kernel density function and m,, denotes its bandwidth. This estimator is
an extension of Newey and West (1987) or Andrews’ (1991) estimator for parametric
time series models to the penalized M estimation of semi-nonparametric time series
models.

We next present sufficient conditions for the consistency of 3,,2.

Condition 5.1 Let W, = {v € V, : ||v|| = 1} and 8+, = o(1) be some positive
sequence.

(i) sup Mn {r(Z, o) [vi, v2l} = Op(ﬁv*,n);
aeN, veW,

(ii) sup  |E{r(Z,a)[v1, v2] — r(Z, a0) [v1, v2]}| = O (8u+.) :
aeN,,veW,

Pulv] = Pl [V]] = OBy ); (V) vy — v*|| = O ().

Under Condition 5.1(i)—(iii), we can invoke Lemma 5.1 of Chen et al. (2011) to
deduce that ||V} — v|l = O, (8y+,,). By definitions of the Riesz representors v* € V
and v} € V), we have p&o[v] = (v, v)) = (v, v*) for any v € V,. Hence we can
deduce that v* — v} is orthogonal to V,. This and Condition 5.1(iv) imply that

(iii) SUPyeN,,,veW,

2 2 2 2 2
15 — 0112 = 155 — o} 112 + v} — v*11% = 0,62, +72). ©)

Denote 8} = max{8y* », 7, }, then it is clear that under Condition 5.1, U} is a consis-
tent estimate of v* w.r.t. the norm ||-|| at the convergence rate §;.

Condition 5.2 (i) There arer € (2,4) and p > r such that Z?OZO B>/ =1/ <
o0 and || A(ag, Z)[v*]||p < 00, (ii) there is a finite constant ¢ > 0 such that for
all v e (V, : |lv—1v*|| < 6 loglogn}, we have E(IA(ao,Z)[v—v*]|2> <
cllv — v*||?; (iii) there is a finite constant ¢’ > 0 such that for all « € N, we have
E| sup |A(Z, a)[v] — A(Z,ao)[v]|2:| < o — gl (iv) mu(8a Vv 87) = o(1)
veW,

and n71+2/’m% = o(l), (v) K () is symmetric, continuous at zero and satisfies
K©) =1, sup, I[K(x)| < 1, [p|K@x)|dx < oo and [ |x|p(x)dx < oo where
¢ (x) is a nonincreasing function such that |KC(x)| < ¢ (x) for almost all x € R.

Theorem 5.3 Suppose that Conditions 5.1 and 5.2 hold and that @, € N, with
probability approaching one. Then:
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~2 2
Oy —>p O (10)

Using the results of Theorems 4.6 and 5.3, we can apply the Slutsky theorem to
deduce that

Vilp@,) = p(@0)] _ Vnlp@) — p(0)] o

On Oy On

=4 N, 1). an

It is clear that confidence intervals (CIs) of p(«) can be constructed using the above
Gaussian approximation.

6 Conclusion

In this chapter and for semi-nonparametric time series models with stationary beta-
mixing observations, we provide a general theory on the convergence rate of penal-
ized M estimates and root-n asymptotic normality of plug-in penalized M estimates
of regular functionals. We establish these results under conditions similar to those
for sieve M estimates in Chen and Shen (1998) for time series data. Instead of impos-
ing the strong exponential thin tail condition as assumed in the existing theories on
penalized M estimation with i.i.d. data, we allow for polynomial tail of the centered
random criterion function, which is very important for time series applications. We
also present simple consistent estimates of LRV of the penalized M estimates of reg-
ular functionals, which can be used to construct confidence intervals or Wald-based
tests.

We are working on various extensions. First, we plan to establish the asymp-
totic normality of the plug-in penalized M estimates of irregular (i.e., slower than
root-n estimable) functionals. Second, we could entertain semi-nonparametric time
series models with other types of temporal dependence properties, such as near
epoch dependent functions of mixing processes considered in White and Wooldridge
(1991).
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comments. Chen acknowledges financial support from the National Science Foundation under
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Appendix

The following Lemma is a useful exponential inequality for uniform mixing
processes, which is similar to Lemma 1 in Chen and Shen (1998, Appendix) for
beta-mixing processes.
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Lemma A.1 Let {Y;} be either m-dependent or uniform mixing. Suppose

2 -1 "
0%z supn~Var [ f(Z)] and T = sup | £(Z) sy
feF - feF

and in addition, for any 0 < & < 1,

M < &0?/4,
and
oT1/2
/ H'?(u, Fydu < Mn'?£32 210,
EM /32
Then

P (sup ' (F) — Ef(Y) = M)

feF =1

< 3cexp (—(1 — S)L)

- 202(1+T&/12) )
Proof of Theorem 3.6 We prove this theorem for beta-mixing processes, while the
proof for uniform-mixing case is the same except using Lemma A.l instead of
Lemma 1 in Chen and Shen (1998). Without loss of generality, we assume that
x> 1, max{A,, &,} < 1 and we use ¢ to denote a generic positive finite constant.
Let {(x, Z) = 4(a, Z) — 1, J (). Denote

I = P*( Sup [Zn(a) — Zn(ao)] z _(xgn)z;/l /2)

{d(ap,a)>xe,,ae A}

= p* sup {un[Ee, Z2) — Uao, 2)]

{d(ap,)>xey, 0 A}

+E(Zn(a) - Zn(OlO))} = _(xgn)zy1 /2)

Since
wn [Ue, Z) — U, 2)] = pa [(e, Z) = £(ap, 2)],
E (Ln(a) — Lp(atg)) = — [K (@0, @) + An(J (@) — J (20))],
we have:
I= P*( sup wn (e, Z) — L(ap, Z)]
{d(ap,0)>x8y,a€A}

> inf [K (@0, @) + 2 (J (@) — J (@0))] — (x£,)>" /2) :

T {d(a,0)>xen,0eA)



Asymptotic Properties of Penalized M Estimators with Time Series Observations 111
Forany i, j € N7, define
A= {a € A:2 ke, < d(ag, @) < 2xe, and 20 Jy < J(a) < 2/'J0} :
Aig = {(x € A: 2\ xe, < d(ag, @) < 2xe, and J (@) < Jo} ,
then it is clear that
szo Aij= [Zi_lxen < d(ag, o) < 2'xe,,a € .A} ,

Uizl,jzo A ={d(ap, o) > x&,, 0 € A} (A.1)

and A;, j, and A;, j, are disjoint for any i1 # iz or ji # j2. By Condition 3.2 (with
co = 1 for notational simplicity), we have

inf [K (o0, 0) + 10 (] (@) = J (@0))] = @' xen)™! + 2, (2771 = 1)J (o)

and inf [K (e, &) + An(J (@) = J (@0))] = Q7 xe) ™ — ad (@), (A2)
i,0

Hence

sup L (er) — Ly (ct0)] < sup pan [€(et, Z) — £(at0. Z)]

Ajj A j

- @ e 4 1@ - D@ A3
for j > 1, and

sup [L, (e) — Ly (ct0)] < sup pn [€(er, Z) — (o0, 2)]

Aio Aio

_ [(2"—1%«;")”1 - knl(ao)] . (A4)

Since x > 1, Joh, < c3(xen)*, max{X,, &,} < 1, using the results in (A.1), (A.2),
(A.3) and (A.4), we can deduce that

I< Z pP* (supun [l(a, Z) — Lo, Z)] > Mi,j)

i j=1 Aij

I

+> Pt (sup 1 [, Z) — (a0, Z)] > M,-), (A.5)

i=1 Ai,O

6]
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where M;; = % [0 + (277 = DJ(@p)] and M; = c(2"xe,) 1. We
now bound the term /; by modifying the proof of Theorem 3 in Chen and Shen
(1998, Appendix). Let By, ;,j be some truncation sequence such that B, ; ; — o0,
By jen’ — 0and anl,i,jB2 js,%m — 0 asn — oo for any fixed i and j, where

an1,i,j is defined later. Then we have

Aj J

(supl‘cn [L(a, Z) — L(ao, 2)]I(U < By, ])} > M; ])

(SUPMn (e, Z) — Lo, Z)1 I (U > By, /)} > M;, /)

e¢]

11”—1- Z hoj =1+ 1. (A.6)
i,j=1

=3
,ii

We use Lemma 1 in Chen and Shen (1998) (on beta mixing) to bound /11 ; ; for any
fixed i and j. By Condition 3.3, we have

supn~ ! Var [Z (e, Z;) — (o, z,))}

Aij t=1
<}, =c12xe,) [1 F (@) 4 2!'10)V2].

Under Condition 3.4 we have

sup ||[€(et, Z) — €(o, 2)11(U < Byi,j)|

Aij

By (2 xey) 73 (20 Jo)r.

sup -

Denote T; ; = min{Bn,,-,j(Z"xsn)W(ZjJO)V“,8/c1} and ofj = vl.2’jTi’j. We can
define an1;; = [nM; ;j/(14T; )] and anz; ; = [n/Qan1, ;)] = [7T;;/M; ],
then it is easy to see that a,1;; — o0 and au;; — 00 as n — oo, and
an2,i;j = 6T; ;/M; ;. As Joh, < ca(xen)!, we can deduce that M;; = %"
[@10)2 + /71— DI ()] < gafj/4 for some & € (0, 1). By the definition
of ¢, and Condition 3.5 we have

V1 (s2V1 (I+y)/2 1
ST L agy” (877" +82)0 12 -
i Y HG w Fipdu Hyj (u, 7i j)du
<c

bM; ; bhn (32” +82)

=

= 3 <cn
M; An (877" + 82)

where §; = 2/x, 8, = 2/Jp and F; j = {€(a, Z) — (0, Z) : @ € A; j}. Now we
can invoke Lemma 1 in Chen and Shen (1998) to deduce that
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I,j=P* (Sup,un {[t(@) — L)) I(U < By i j)} = Mi,j)

A,,J
nM?.
<6expi—c LJ + 2(an2,i,j — DBan1,i,j)
[ o [1+an.i T ] o o

a2 227 + 27 I (ag)]' 7
< 6exp {_ [COT IO T g
&n

(A7)

Using virtually the same arguments as in the proof of Theorem 3 in Chen and Shen
(1998, Appendix), we obtain

o0
_ . . I—y
I11 <6 Z exp I—cnkﬁsn 271 [(2’36)2)’1 + 2’](0{0)] 2]
ij=1

1+ 2y1) (14 )yw(1+W) 1+
+ 4Bon" A, (I4@)  (y3 =2y (1 += BanJU

o (2173 (27 Jo)* l+m
) i; [(21')% n ZjJ(Olo)}

< d exp{ —ex =1y 2, 2m}+d2x<m 2w —w, ~(4w) (A g)

To bound Z;X; 11 s following the proof of Theorem 3 in Chen and Shen (1998),
we can show that, with M; ; = %2 2 [0 4+ 277 = DI (a0)]

2 n
Iy < Z P*(n > suplb(e, 2) — £, Z)| I(U > B j) = Mi,,;)

t=1 Aij

Z U ](U B ) CI’lM,'yj
> e < o -
1 =1 t t = (2'xen)r3 (27 Jo)14

A [@T TP 4 27 - 1)1(“0)])

<

:Mg i

L]

;&8

(2’);))’3 (2] Jo)v4

VS]
i,j=

< cx(y3—2)/1))/5(n—%)\;lng)ys_ (A.9)

P* (”Mn [UtI(Ut > By,i j)] ?
n

i,j=1

— [@) 421 )]
T Q@)@

<c

ﬁ-Mz

[W,, [V W > Bui p]I"™ |1

i 1
[es] i i Vs

< cnYs/2pvs/2 (81’3”71)\71))’5 Z (2')"3 (27 Jo)™

= n n 1 [(zix)z;/l + 2jJ(Olo)]
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From the results in (A.8, A.9), we can deduce that

]1 < dl + dz
= exp(cxn (171/2),1)\%8;2;/1 ) xCni 7y3)(1+w)nwk}l+w
d382{3y5
xCr=r)ysprs/2) )5

=, (x).

I> can be bounded by the same bound using virtually the same arguments. Hence,
we can deduce that I < 7, (x). Finally, by definition of @;,, we have for all x > 1
and with a, = o(e2"),

P (d(ao, @n) > x&p) < P*( sup [La(@) — Ly(ao)] = —an)

{d(ag,@)>xey, €A}

~ - 2y
<P sip [Lue) — Lalog)] = — 222
{d(ap,a)>xe,,ac A} 2
< na(x).
Proof of Theorem 3.7 For any x > 1 and j € N, define
Aj = {a € A:d(ag, @) < xe, and 27~ Jy < J(a) < 2fJ0} ,
Ag={a e A:d(ap,a) < xe, and J () < Jo}.

First note that

Ap — 8(xep)?M

<Pr {)\n [J @) — J (0)] = 8(xen)™" [J @) + J(ao)]} . (A.10)
By definition of @,,, we have:

P [€@n) — €(ct0)] = Ay [J (@) — J (et0)] + K (et &) — an,
which and (A.10) imply that

[ + 8(xen)™] T (a0)
An — 8(xg,)2n

Pr |:J(&n) = :| < I3 +Pr{d(ao, @p) > x&,},
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where
I3 =Pr [Mn[ﬁ(&n) — U(a0)] = 8(xen) ' [J @n) + T (c0)] + K (0, @n)
—ay, d(ag, ay) < xsn].
By Condition 3.2,

inf [K(ao, o) + 8(xen) " (J (@) + J(oto))] > M;

G{GA]'

where M; = 2j8(xs,,)2V1 Jo, hence we get

<> Pr isup o [[£@) — €@0)] (U < Bja)] = M,-}

j=l1 j

o
+ ZPr [sup n [[€(e) — L)1 I (U > Bj )] = Mj] )
j=1 i

Using the same arguments as in the proof of Theorem 3.6, we can show that I3 <
1n(x). By Theorem 3.6, we also have: Pr {d(ag, @,) > x&,} < n,(x). Based on the
above results, we can deduce that

dn + 8(xe,)N

Pr|J(@,) >
r|: @) = An — S(XEn)Zyl

J(Oto)] < M (x). (A.1D)

Under 0 < 8 < 1/4 and (1 — 8)(x&,)*"" < An,

dn + 8(xe,)N 28

2
=1 <14+ —5<1+46. A.12
T —3GEn T e —s = 1250 =T (A.12)

The claimed result now follows from (A.11) and (A.12). O

Proof of Theorem 4.6 In the following we denote Rle — «p,z] = (o, 27) —
(g, 2) — Alag, 2)[e — ag] and o*(a, &,) = o + gu* € A with u* = +v*
and &, = o(n~'/?). By the definition of the penalized extremum estimator, we have
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- Op(gﬁ) = n”! Z [E(&\na Z)— (@™ (@, &n), Zt)] —An [J(an)_-](a*(an’ Sn))]

=1
= E[@pn, Z;) — L™ @n, &), ZD] + pn (A0, Z)[@n — ™ @, £0)])
+un (RI@, — @0, Z] — Rla* @y, £2) — 20, Z])
Ao [ @ + Equ™) — T (@n)]
< 0 [(@ — a0, u™) = pn (A0, 2D)[u*])] + Op(ey) + hnJ (au™)
= &, [(@ — a0, u™) — ptu (Aleo, D)[u*1)] + Op(en) (A13)

where the last equality is by Condition 4.1-4.4. By the definition of u*, the inequality
in (A.13) implies that

|(@n — @0, v*) — wn (Ao, 2)[V¥])| = Op(en). (A.14)

On the other hand, using (6) and the assumption on the convergence rate, we can
deduce that

Vlp@n) = p(@o0)] = Vnpy,l@, — aol +op(1) = Vn(@ — ao, v*) +op(1).

(A.15)
The claimed result in Theorem 4.6 now follows from (A.14), (A.15) and the
Condition 4.5. (I

Proof of Theorem 5.3 This Theorem is proved by following similar arguments in
Chen et al. (2011) for sieve semiparametric two-step GMM estimators with depen-
dent data. See their paper for more details. Denote

n—1

~ t
UUZ* = Z K (m_) Ty (@0) [v*, v*] ,

t=—n+1
then by the triangle inequality, we have

~2 2

52— 02| < )82 — 52 . (A16)

n v*

+ (53* —E [53*]

First note that by the triangle inequality

’E [55*] — 03*

<)

-1

1n—1
S;Z

=

> |E{A@o, Zolv 1A o, Zin)[v*1}]

k=t+1

((2)-

n

> E{Ao, Zolv* 1A, Zit)[v¥])
k=—1+1

’
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where

2(3-3) )
|E { Ao, Z)[v 1A (@0, Zik-)[v*]}| < 68 | Ao, ZoW|}, < B;

for the beta mixing process. Thus we can deduce that

’E [53*] — 02| < 2cnz_i K (mL) - 1‘ ,31.2(’1_” -0 (A.17)
i=0 n

where the last result is by Condition 5.2(i) and the dominated convergence theorem.
For the second term at the right-hand side of inequality (A.16), note that by
Minkowski’s inequality

n—1
~2 ~2 ! * 0k
2 - £[2]] , = DR (m—)\ [T (eo) [0*, o]
—E [T (o) [v", v"]] ||r/2
2 ! t 1
<cmpn” " IK (m—)’ — =o(l), (AI8)
fm——n+1 n n

where the second inequality follows from Lemma 2 in Hansen (1992) and the proof
of Theorem 2 in Jong (2000), and the last equality is by Condition 5.2(iv)(v):

min=1t +; = o(1) and ZI——n-H) ( d )‘ e < [xIKx)|dx < oo. Now, the

mn

result in (A.18) implies that

(A.19)

v*

We next deal with the first term at the right-hand side of inequality (A.16). First
by the triangle inequality, we have

n—1
~) o~ 1 ~
-5t = 3 [ ()| Imn@n [5:.91] - Pt [57.57]
t=—n+1 n
n—1
> /c( )\|rn,<ao>r:;,~,: ~ Toseo) [v* 73]
t=—n+1
n—1 ¢
+ > /c(m—)‘ |Tn,e (@) [v%, Ty ] = Ty (o) [0*, 0]
t=—n+1 n

= [l,n + Iz,n + 13,}1« (AZO)
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For I3 ,,, note that

E |Tui(ao) [v*, 0] = T (o) [v*, v*]]
1 n
<~ 2 ElA(o, Ze v 1A, ZOT; — 7|
k=t+1
n

— | Ao, Ze-nlv*1], | Ateo. ZOI5; - 7|

<

. (A21)

where the last inequality is by the Holder inequality. Now using (A.21), the conver-
gence rate of U and Condition 5.2 (ii), we have

n—1

|10 1 < cmp8 Z

i=—n+1

i

K (—)‘m,;l < cmnS;';/ IK (x)| dx = o(1).
R

mpy

(A.22)
Using similar arguments, we can show that

(i)

n—1

|1l 1 < cmp8 Z

i=—n+1

my; ! < cmns,’;/ IK (x)| dx = o(1).
R

(A.23)
Finally, we bound I ,. Since

L3 Al ZOWA@ Z)[5;] forr =0

n

Do) [0, 0] = 1"=,2+1 ,
LS Al Z0BiA (e, Ziy)[07] fort <0
k=—1t+1

we have that for ¢ > 0,

[T @) [07, 93] = Tos (o) [0, 23]

1 < _ _
=~ > A@w. ZOWA@. Zi-)[T;] — Aleo. ZO[T;]A (0. Zi—)[0}]]
k=t+1

By the triangle inequality, Cauchy—Schwarz inequality and Minkowski inequality,
we have uniformly in r > 0,
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[T @) [0, 5] = Ds 00 [0, 93]

|
< =~ 2 |A@. Z0[;) ~ Ateo. ZOID|
k=1

n ] n
> |AG. ZoE] - Ao, ZOEE | =D Ao, Z0[T; — v
n

1
+2 |-
n k=1 k=1

1 < I -
+2 [ = D |A@w. Zo5E] - Ao, ZOIT] | = D 1A, Zolv*P
= N
= 0,(82) + 0,8, X 8) 4+ 0,(5y)

where the last equality is due to Condition 5.2 (i)—(iii) and the Markov inequality.
Similarly we get the same probability bound uniformly in ¢t < 0. Hence,

n’>-n

sup | Ty @) [05, 0] — T (o) [0, 03] = Op(80)- (A.24)
t

Using (A.24), we get

n—1 .
i 1
Iy <my 0[;(8”) E K (I’l’l_) m_ = my Op(8n)/ I (x)|dx = 0[7(1)~
i=—n+1 n n R

(A.25)
From (A.20), (A.22), (A.23) and (A.25), we can deduce that [ — 52| = 0,(1),
which together with the results in (A.17) and (A.19), gives the claimed result.
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A Survey of Recent Advances in Forecast
Accuracy Comparison Testing, with an
Extension to Stochastic Dominance

Valentina Corradi and Norman R. Swanson

Abstract In recent years, an impressive body of research on predictive accuracy
testing and model comparison has been published in the econometrics discipline. Key
contributions to this literature include the paper by Diebold and Mariano (J Bus Econ
Stat 13:253-263, 1995) which sets the groundwork for much of the subsequent work
in the area, West (Econometrica 64:1067—1084, 1996) who considers a variant of
the DM test that allows for parameter estimation error in certain contexts, and White
(Econometrica 68:1097-1126, 2000) who develops testing methodology suitable for
comparing many models. In this chapter, we begin by reviewing various key testing
results in the extant literature, both under vanishing and non-vanishing parameter
estimation error, with focus on the construction of valid bootstrap critical values
in the case of non-vanishing parameter estimation error, under recursive estimation
schemes, drawing on Corradi and Swanson (Int Econ Rev 48:67-109, 2007a). We
then review recent extensions to the evaluation of multiple confidence intervals and
predictive densities, for both the case of a known conditional distribution Corradi and
Swanson (J Econ 135:187-228, 2006a; Handbook of economic forecasting Elsevier,
Amsterdam, pp 197-284) and of an unknown conditional distribution. Finally, we
introduce a novel approach in which forecast combinations are evaluated via the
examination of the quantiles of the expected loss distribution. More precisely, we
compare models looking at cumulative distribution functions (CDFs) of prediction
errors, for a given loss function, via the principle of stochastic dominance, and we
choose the model whose CDF is stochastically dominated, over some given range of
interest.
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1 Introduction

One of the key contributions permeating the econometric research of Halbert White
is the development of statistical tools for specification, estimation, and inference
with possibly misspecified models. His main message is that, even though models
are merely (crude) approximations to reality, important things can be learned from
carrying out inference and generally analyzing “wrong” models. Certainly, the notion
of misspecification is absolutely crucial in the context of out-of-sample prediction.
After all, if one is carrying out a predictive accuracy assessment in order to “choose”
between two competing models, then, at the very least, one of the models is probably
misspecified.

In this chapter, we begin by assuming that we are given multiple predictions,
arising from multiple different models. Our objective is either to select the model(s)
producing the more accurate predictions, for a given loss function, or alternatively,
to eliminate the models giving the least accurate predictions. Furthermore, in many
such situations, we can choose a benchmark or reference model. This can be a model
suggested by economic theory, can be the winner of past competitions, or can simply
be amodel commonly used by practitioners. The key challenge in this case is to assess
whether there exists a competing model that outperforms the benchmark. However,
if we sequentially compare the reference model with each of its competitors, we may
run into problems. In fact, as the number of competitors increases, the probability
of picking an alternative model just by “luck”, and not because of its intrinsic merit,
increases and eventually will reach one. This is the well-known problem of data
mining or data snooping.

The starting point for our discussion is Diebold and Mariano (1995), who develop
the “workhorse” of predictive accuracy tests. Two models are compared by assessing
their relative predictive losses, given a particular loss function. Assuming that para-
meter estimation error vanishes asymptotically and that the models are nonnested
ensures that the DM test is asymptotically normally distributed, regardless of whether
or not the loss function is differentiable.! West (1996) allows for non-vanishing para-
meter estimation error in the DM test, although at the cost of assuming differentia-
bility. In White (2000), a sequence of DM tests are constructed, and the supremum
thereof (called the reality check) is used to test whether a given “benchmark” model
is at least as accurate as all competitors. The null hypothesis is thus that no com-
peting model can produce a more accurate prediction than the benchmark model,
for a given loss function. The key contribution of White (2000) is that he recog-
nizes the importance of sequential test bias when comparing many (rather than two,
say) models, and he develops the asymptotic theory allowing for the valid construc-

1 For a discussion of nested models in the current context, see Clark and McCracken (2001); Corradi
and Swanson (2006b).
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tion of critical values for his reality check, using, for example, block bootstrap and
related bootstrap techniques. In related work, Corradi and Swanson (2006a,2006b
and 2007a,2007b) extend the reality check version of the DM test to the evaluation of
confidence intervals and predictive densities (rather than focussing on the evaluation
of point predictive loss measures). They additionally develop bootstrap techniques
for addressing parameter estimation error, and allow for the evaluation of condi-
tional distributions of both known and unknown functional form. By discussing all
of the above papers, we undertake to construct a path describing developments in the
predictive accuracy testing literature.

Of note is that if any of the above tests fail to reject the null hypothesis that no
competitor outperforms the benchmark model, the obvious consequence is to base
prediction only on the benchmark model. The tests, thus, are of a “model selection”
variety. This is somewhat in contrast with the alternative approach of using forecast
combination (see Elliott and Timmermann 2004) to construct “optimal” predictions.
In light of this observation, we conclude this chapter by proposing a new stochastic
dominance type test that combines features of DM and reality check tests with fore-
cast combination. In particular, we suggest a model selection method for selecting
among alternative combination forecasts constructed from panel of forecasters. More
broadly, we close by arguing that the notions of stochastic dominance discussed in
this context may have a variety of uses in the predictive accuracy testing literature.

Before turning to our discussion of the above tests, it is worth making two com-
ments that further underscore the sense in which the results of the above papers
build on one another. In particular, recall that the prediction errors used to construct
DM-type tests arise in at least two ways. First, there are situations in which we have
series of prediction errors, although we do not know the models used to generate
the underlying predictions. For example, this situation arises when we have fore-
casts from different agents, or professional forecasters. Alternatively, we may have
a sequence of Sharpe ratios or returns from different trading rules, as in the financial
applications of Sullivan et al. (1999, 2001). Second, there are situations in which
we are interested in comparing estimated models. For example, we may want to
decide whether to predict tomorrow’s inflation rate using an autoregressive model,
a threshold model, or a Markov switching model. The parameters of these models
are generally estimated. If the number of observations used to estimate the model is
larger than the number of observations used for forecast evaluation, or if the same
loss function is used for in-sample estimation and out-of-sample prediction (e.g.,
estimation by ordinary least squares (OLS) and a quadratic loss function), then the
contribution of estimated parameters can be ignored. Otherwise, it has to be taken
into account. Corradi and Swanson (2006a, 2007a) develop bootstrap procedures
which properly capture the contribution of parameter estimation error in the case of
rolling or recursive estimation schemes, respectively.

Additionally, and as mentioned above, DM- and reality check-type tests compare
point forecasts (and forecast errors) from two or multiple models, respectively. For
example, we may want to pick the model producing the most accurate point pre-
dictions of the inflation rate. However, there are situations in which we are instead
interested in finding the model producing the most accurate interval predictions (e.g.
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that inflation will be within a given interval). Predictive interval accuracy is partic-
ularly important in the management of financial risk in the insurance and banking
industries, where confidence intervals or entire conditional distributions are often
examined. Evaluation of Value at Risk and Expected Shortfall are two main exam-
ples (see Duffie and Pan (1997) for further discussion). Corradi and Swanson (2005,
2006a,b, 2007b) extend the DM and reality check tests to the case of intervals and
conditional distributions, using both simulated and historical data.

The rest of the chapter is organized as follows. In Sect.2 we discuss the DM and
reality check tests, and outline how to construct valid bootstrap p-values in the case of
non-vanishing parameter estimation error, with both recursive and rolling estimation
schemes. In Sect.3 we extend the DM and reality check tests to the evaluation of
multiple confidence intervals and predictive densities. Finally, in Sect.4 we outline
a new technique that draws together concepts of forecast combination with multiple
model evaluation. Namely, we introduce a stochastic dominance-type approach in
which forecast combinations are evaluated via the examination of the quantiles of the
expected loss distribution. More precisely, we compare models by prediction error
CDFs, for given loss functions, via the principle of stochastic dominance, and we
choose the model whose CDF is stochastically dominated, over some given range of
interest.

2 DM and Reality Check Tests

2.1 The Case of Vanishing Estimation Error

We begin by outlining the DM (1995) and White (2000) tests, when parameter
estimation error is asymptotically negligible. Consider a collection of K 4 1 models,
where model O is treated as the benchmark or reference model and models k =
1, ..., K compose the set of competing models. For the DM test, K = 1. For the
reality check, K > 1. The h-step ahead forecast error associated with model k, is
Uirth = Yiwh — (27, HZ). As HZ is unknown, we do not observe the prediction
error ug ;+j, but we only observe Uy ;1 = Yi+n — ox(Z7, ?‘?\k,,), where é\k,, is an
estimator of 9,1 based on observations available at time z.

The common practice in out-of-sample prediction is to split the total sample of
T observations into two subsamples of length R and P, with R + P = T. One uses
the first R observations to estimate a candidate model, and construct the first z-step
ahead prediction error. Then, one uses R + 1 observations to re-estimate the model
and compute the second %-step ahead prediction error, and so on, until one has a
sequence of (P — h + 1) h-step ahead prediction errors.” If we use this recursive

2 Here, we use a recursive estimation scheme, where data up to time ¢ > R are used in estimation.
West and McCracken (1998) also consider a rolling estimation scheme, in which a rolling windows
of R observations is used for estimation.
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estimation scheme, at each step the estimated parameters are given by

. 1<
Or ; = argmax { — (Xrkr, 0 fort > R, 1
k.t g 1 tjzlfﬂw( kit Ok) > (1)

where gy ; can be thought of as the quasi-likelihood function associated with model
k.3 Under stationarity, QZ = argmaxg, E(qr,j (Xk.r. 0k) -

Hereafter, for notational simplicity, we consider only the case of 7 = 1.

For a given loss function, g, the DM test evaluates the following hypotheses®:

Ho : E (9(uo,i+1) — g(u1,41)) =0

versus
Hy : E (g(uos1) — g(ui+1)) # 0.

If R — oo at a faster rate than P — oo, as T — oo, then, assuming that models
“0” and “1” are nonnested, the limiting distribution of

-1

ﬁ tZZR (g(if\o,tﬂ) - g(ﬁl,t—q—l)) /Ts

DMp =
is N (0, 1), when scaled appropriately by s, a heteroscedasticity and autocorrelation
consistent (HAC) estimation of the variance of \/LF ZIT:_RI 9o 1+1) — g1 141)-

Evidently, Eﬁp is the HAC t-statistic associated with the intercept in a regression
of the loss differential series, g(#0 ¢+1) —g(#1.++1), on a constant. For a discussion of
the limit distribution of this test statistic when the two forecasting models are nested,
see Clark and McCracken (2001). Note also that g need not be differentiable, unless
one wishes to adjust the limit distribution for the effect of parameter estimation
error in cases where P/R — 7w, as P,R,T— > 00, 0 < m < 00, as in West
(1996). Moreover, even if P/R — m,as P, R,T— > oo, 0 < m < 00, parameter
estimation error is asymptotic negligible whenever we use the same loss function for
in-sample estimation and out-of-sample prediction (see below for further discussion).

Now, for a given loss function, g, the reality check evaluates the following
hypotheses:

3 If we instead use a rolling estimation scheme, then

~ 1 !
O, = argmax { — i ( Xk, 0, R<t<T.
k.t g Hkx R j:§+14k.] ( k.t k) =t =

4 See Christoffersen and Diebold (1996, 1997) and Elliott and Timmermann (2004, 2005) for a
detailed discussion of loss functions used in predictive evaluation.
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.....

versus

Hy : (Jmax E (g(uo.i+1) — 9(up.+1)) > 0.

The null hypothesis is that no competing model outperforms the benchmark (i.e.,
model “07), for a given loss function, while the alternative is that at least one com-
petitor outperforms the benchmark. By jointly considering all competing models, the
reality check controls the family-wise error rate (FWER), and circumvents so-called
“data snooping” problems. In fact, the test is designed to ensure that the probability
of rejecting the null when it is false is smaller than or equal to a fixed nominal level, a.
The reality check statistic is given by:

Sp= max Sp(0,k), )
k=1,...,.K
where
1 T—1
Sp(0,k) = NG 2 (90, +1) — gk 141)), k=1,...,K.
Letting Sp(0, k) = # Zzngel (g(uo,,H) — g(uk,,H)), it is immediate to see that,
- ,
5p(0.0) = 0.0 = (Viggwo.s0) —= > (o =)
P 1=R+1
> (1)
—E (Vo guiii) —= 2. (Oke —0]) +0p(1). (3)
ﬁ t=R+T1

Now, if g = gy, then by the first-order conditions, E (V@kg(uk),ﬂ)) = 0. Thus, if
we use the same loss function for estimation and prediction (e.g., we estimate the
model by OLS and use a quadratic loss function), then parameter estimation error is
asymptotically negligible. Furthermore, if P/R — 0, as P, R, T— > oo (i.e., the
sample used for estimation grows at a faster rate than the sample used for forecast
evaluation), then parameter estimation is again asymptotically negligible. Otherwise,
it has to be taken into account.
Proposition 2.2 in White (2000) establishes that

=1,...,

T-1
1 - ~ d
(X 7 t:zR ((9@0,141) — 9Qk,i+1)) — 1) = (A Zy,
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where jy = E (9(H0,11) — 9@k41)), Z = (Z1,..., Z)" is distributed as
N (0, V) and V has typical element
| T
Vjk = Ph_r)noo Cov (ﬁt % (9Gio,i4+1) — 9(@j.141)) .
=R+T7

1 T
— (9o, 141) — g(ﬁk,,+1>)). 4)
\/F t;r

Because the maximum of a Gaussian process is not a Gaussian process, the con-
struction of p-values for the limiting distribution above is not straightforward. White
proposes two alternatives: (i) a simulation-based approach and (ii) a bootstrap-based
approach. The first approach starts from a consistent estimator of V, say V. Then,

for each simulations = 1, ..., S, we construct
—(s) ~ ~ 1/2
o d\'p ook \ (Y
S . . . .
s o B P o]
S ) Ty s
dg'p VK1 VKK Nk
(s) ®) '
where (n] e Mg ) is drawn from a N(0, Ix). Next, we compute maxx—i,. x
‘a/?;f ) , and the (1 — a)-percentile of its empirical distribution. This simulation- based

approach requires the estimation of V. Note that we can use an estimator of V
which captures the contribution of parameter estimation error, along the lines of
West (1996) and West and McCracken (1998). However, if K is large, and forecasting
errors exhibit a high degree of time dependence, estimators of the long-run variance
become imprecise and ill-conditioned, making inference unreliable, especially in
small samples. This problem can be overcome using bootstrap critical values.

White (2000) outlines the construction of bootstrap critical values when the con-
tribution of parameter estimation error to the asymptotic covariance matrix is asymp-
totically negligible. In this case, we resample blocks of g(up ;+1) — g(Uk.1+1) and,
for each bootstrap replication b = 1, ..., B, calculate

T
1 .~ N

— g @o,141) — 9" WUk ,141))

R

— (9G0.+1) — gk.141)) -

5500,00 =

Then, we compute the bootstrap statistic as maxg—1,. . ‘?;)(b) 0, k) — §p O, k))
and the (1 — «)-percentile of the empirical distribution of B statistics is used for
inference. Evidently, the same approach discussed above can be used for the DM
test, although such is clearly not needed, given the earlier results discussed, in cases
where parameter estimation error vanishes asymptotically.
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Before turning to the issue of constructing DM and reality check p-values in the
case of non-vanishing parameter estimation error, it is worthwhile to review some
other recent developments in the reality check literature.’

2.1.1 Controlling for Irrelevant Models

From the statistic in (2), it is immediate to see that any model which is strictly
dominated by the benchmark does not contribute to the limiting distribution, simply
because it does not contribute to the maximum. On the other hand, all models con-
tribute to the limiting distribution of either the simulated or the bootstrap statistic.
Thus, by introducing irrelevant models, the overall p-value increases. In fact, for
a given level «, the probability of rejecting the null when it is false is o when all
models are as good as the benchmark (i.e. when E (g(uo,tﬂ) — g(uk,,_H)) =0 for
k=1,..., K), otherwise the probability of rejecting the null is smaller than «, and
decreases as the number of irrelevant models increases. While the reality check is
able to control the family-wise error rate, and so avoids the issue of data snooping,
it may thus be rather conservative.

For this reason, attempts have been made to modify the reality check in such a
way as to control for both the family-wise error rate and the inclusion of irrelevant
models. Hansen (2005) suggests a variant of the reality check, called the Superior
Predictive Ability (SPA) test, which is less sensitive to the inclusion of poor models
and thus less conservative. The SPA statistic is given by

1 T -
TF ZI=R+T dk,l
Tp = max 70, max

k=1,....K [0k '

where Zl\k,, = (g(’l/t\()’[_i_l) — g(ﬁk,lﬂ)) and U is defined as in (4). The bootstrap
counterpart to Tp at replication b, T;(b) is given by

1 () _ 7
D (dk,; —diilim s 520 P/P})
#(b)

t=R+T1
Tp,™ =max 10, max
k=1,...

K VVk k

Here, p-values for the SPA statistic are given by 1/B Zf: 11 { 70 g } The logic
p =ip

underlying the construction of the SPA p-values is the following. When a model is
too slack, and so it does not contribute to Tp, the corresponding bootstrap moment
condition is not recentered, and so the bootstrap statistic is also not affected by the

5 In the sequel, for ease of notation, the version of the DM test that we discuss will be §p 0, k),
with k = 1.
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irrelevant model. The fact that very poor models do not contribute to the bootstrap
p-values makes the SPA p-values less conservative than the reality check p -values.
Nevertheless, it cannot be established that the SPA test is uniformly more powerful
than the reality check test. Corradi and Distaso (2011), using the generalized moment
selection approach of Andrews and Soares (2010), derive a general class of superior
predictive accuracy tests, that control for FWER and for the contribution of irrelevant
models. They show that Hansen’s SPA belongs to this class. Additionally, Romano
and Wolf (2005) suggest a multiple step extension of the reality check which ensures
tighter control of irrelevant models. A review of alternative ways of controlling for the
overall error rate is provided in Corradi and Distaso (2011), and references contained
therein.

2.1.2 Conditional Predictive Ability

In the Diebold-Mariano framework, as well as in the reality check framework, model
k and model O are considered equally good, in terms of a given loss function,
g, if E(g (Mz,o) -9 (u,,k)) = 0. This is a statement about forecasting models. In
fact, the null hypothesis is evaluated at the “pseudo-true” value for the parameters.
Giacomini and White (2006) propose a novel approach in which model k and model
0 are considered equally good if E(g (@;,0) — g (#:.k) 1G:) = 0, where G; is an
information set, containing (part of) the history available up to time . The two
key differences between unconditional and conditional predictive accuracy tests are:
(i) model comparison is based on estimated parameters in the GW approach, rather
than on their probability limits, and (ii) models in the GW approach are evaluated
according to the expected loss conditional on a given information set G;, rather than
unconditionally. The above is a statement about forecasting methods rather than fore-
casting models. The notion is that not only the model, but also the way it is estimated
matters. Needless to say, if a large number of observations is used for estimation,
the estimated parameters get close to their probability limits. For this reason, GW
suggest using relatively short observation windows, whose length is fixed and does
increase with the sample size. In this way, estimated parameters can be treated as
strong mixing random variables.

Recall also that the 5]\7;: is the HAC t-statistic associated with the intercept
in a regression of the loss differential series, g(0.1+1) — (i1 ¢++1), On a constant.
Evidently, DM and subsequent tests are easily made conditional by including other
conditioning variables in the regression.

2.2 Bootstrap Critical Values for Recursive Estimation Schemes

Whenever g # gy, for at least some k, and P/R — 7 # 0, then parameter esti-
mation error contributes to the variance of the limiting distribution of the DM and



130 V. Corradi and N. R. Swanson

reality check tests. One reason for using a different loss function for estimation and
prediction occurs when, for example, we use OLS for estimation, but then we want
to use an asymmetric loss function which penalizes positive and negative errors in a
different manner, when comparing predictive accuracy (see Zellner 1986; Christof-
fersen and Diebold 1997). More specifically, when parameter estimation error does

not vanish, we need to take into account the contribution of \# thz Rir (@\k, - 92)

to the asymptotic variance in (4). Hence, we need a bootstrap procedure which is
valid for recursive m-estimators, in the sense that its use suffices to mimic the limiting
distribution of L 314 (9., — 0]).

One approach to the above issue of parameter estimation error is to use the block
bootstrap for recursive m-estimators for constructing critical values. In this context, it
is important to note that earlier observations are used more frequently than temporally
subsequent observations, when forming test statistics. On the other hand, in the stan-
dard block bootstrap, all blocks from the original sample have the same probability
of being selected, regardless of the dates of the observations in the blocks. Thus, the
bootstrap estimator which is constructed as a direct analog of 6; is characterized by a
location bias that can be either positive or negative, depending on the sample that we
observe. In order to circumvent this problem, Corradi and Swanson (2007a) suggest
a recentering of the bootstrap score which ensures that the new bootstrap estimator,
which is no longer the direct analog of 0 ;, is asymptotically unbiased. It should be
noted that the idea of recentering is not new in the bootstrap literature for the case of
full sample estimation. In fact, recentering is necessary, even for first-order validity,
in the case of overidentified generalized method of moments (GMM) estimators (see
e.g. Hall and Horowitz 1996; Andrews 2002; Inoue and Shintani 2006). This is due
to the fact that, in the overidentified case, the bootstrap moment conditions are not
equal to zero, even if the population moment conditions are. However, in the context
of m—estimators using the full sample, recentering is needed only for higher order
asymptotics, but not for first-order validity, in the sense that the bias term is of smaller
order than 7~ /2 (see e. g. Andrews 2002; Goncalves and White 2004). In the case
of recursive m—estimators, on the other hand, the bias term is instead of the order
T~1/2, 50 that it does contribute to the limiting distribution. This points to a need for
recentering when using recursive estimation schemes.

To keep notation simple, suppose that we want to predict, y; using one of its past
lags, and one lag of vector of additional variables, X;, and let Z; = (y;, X;). Using
the overlapping block resampling scheme of Kunsch (1989), at each replication, we
draw b blocks (with replacement) of length [ from the sample W; = (y;, Z;—1),
where bl = T — 1. Let W} = (y/, Z;_,) denote the resampled observations. As
a bootstrap counterpart to @\k,t, Corradi and Swanson (2007a) suggest constructing

A;C‘J, defined as follows:
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R 1l T-1
O, = argmin Z(Clk(y}ﬁ Zi 1,66 — 91/{( > Voakn. Zn-1. O z)))
k

j=1 h=1
®)
where R <t <T—-1,k=0,1,

Note that 9,’; , is not the direct analog of 9k ¢ in (1). Heuristically, the additional
recentering term in (5) has the role of offsetting the bias that arises due to the fact
in the that earlier observations have the same chance of being drawn as tempo-
rally subsequent observations. Theorem 1 in Corradi and Swanson (2007a) estab-

lishes that the limiting distribution of f z (Gl’gt — Gk ,) is the same as that

of — \/» z (Ok ;—0 ) , conditional on the sample, and for all samples except a

set with probab1l1ty measure approaching zero. We can easily see how this result
allows for the construction of valid bootstrap critical values for the reality check. Let

Ukt+1 = Vil — Ok (Zt, @,) andii’,‘;l_H = Vi1 — bk (Z,* @ft) , 80 that the reality
check statistic Sp is defined as in (2). The bootstrap counterpart of Spis given by

-~

Sp = S50, k),
T A

where
T—1
ok 1 * * 7k * * 7k
S5O0 = —= > | (9074 = 0(Z7. B0 — 9071 — ox(Z B)
t=R
= R R
T (9j41 — ¢0(Zj, 00.0)) — 9(vjr1 — ok (Zj, Ok.0))
j=1

(6)

It is important to notice that the bootstrap statistic in (6) is different from the
“usual” bootstrap statistic, which is defined as the difference between the statistic
computed over the sample observations and over the bootstrap observations. In fact,
in §”,§ (0, k), the bootstrap (resampled) component is constructed only over the last
P observations, while the sample component is constructed over all 7' observations.
The percentiles of the empirical distribution of :S’\j; can be used to construct valid
bootstrap critical values for Sp, in the case of non-vanishing parameter estimation
error. Their first-order validity is established in Proposition 2 in Corradi and Swanson
(2007a). Valid bootstrap critical values for the rolling estimation case are outlined in
Corradi and Swanson (2006a).



132 V. Corradi and N. R. Swanson

3 Extending the DM and Reality Check Tests to Forecast
Interval Evaluation

3.1 The Case of Known Distribution Function

Thus far, we have discussed pointwise predictive accuracy testing (i.e. wherein mod-
els are evaluated on the basis of selecting the most accurate pointwise forecasts of
a given variable). However, there are several instances in which merely having a
“good” model for the conditional mean and/or variance may not be adequate for the
task at hand. For example, financial risk management involves tracking the entire
distribution of a portfolio, or measuring certain distributional aspects, such as value
at risk (see e.g. Duffie and Pan 1997). In such cases, models of conditional mean
and/or variance may not be satisfactory. A very small subset of important contribu-
tions that go beyond the examination of models of conditional mean and/or variance
include papers which: assess the correctness of conditional interval predictions (see
e.g. Christoffersen 1998); assess volatility predictability by comparing unconditional
and conditional interval forecasts (see e.g. Christoffersen and Diebold 2000); and
assess conditional quantiles (see e.g. Giacomini and Komunjer 2005). A thorough
review of the literature on predictive interval and predictive density evaluation is
given in Corradi and Swanson (2006b).

Corradi and Swanson (2006a) extend the DM and reality check tests to predictive
density evaluation, and outline a procedure for assessing the relative out-of-sample
predictive accuracy of multiple misspecified conditional distribution models that can
be used with rolling and recursive estimation schemes. The objective is to com-
pare these models in terms of their closeness to the true conditional distribution,
Fo(u|Z', 00) = Pr(yi+1 < u|Z").% In the spirit of White (2000), we choose a partic-
ular conditional distribution model as the “benchmark” and test the null hypothesis
that no competing model can provide a more accurate approximation of the “true”
conditional distribution, against the alternative that at least one competitor outper-
forms the benchmark model. Following Corradi and Swanson (2005), accuracy is
measured using a distributional analog of mean square error. More precisely, the
squared (approximation) error associated with model k, k = 1,..., K, is mea-

2
sured in terms of the average over U of E (Fk(u|Z’, 9;) — Fo(u|Z?, 90)) ,

where u € U, and U is a possibly unbounded set on the real line. Addition-
ally, integration over u in the formation of the actual test statistic is governed by
¢(u) > 0, where fU ¢(u) = 1. Thus, one can control not only the range of u,
but also the weights attached to different values of u, so that more weight can be
attached to important tail events, for example. We also consider tests based on an
analogous conditional confidence interval version of the above measure. Namely,

6 With a slight abuse of notation, in this section the subscript 0 denotes the “true” conditional
distribution model, rather than the benchmark model; and the subscript 1 thus now denotes the
benchmark model.
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E (((Fk(W’, 0D = FwlZ'. 6)) — (FoG@|Z" 60) — Fo(w|Z", 00»)2) . where

u and u are “lower” and “upper” bounds on the confidence interval to be evaluated.
For notational simplicity, in the sequel we focus on conditional forecast interval
comparison, and set 4 = —oo and u = u. For example, we say that model 1 is more
accurate than model 2, if

E ((Fl(mzf, o) — FowlZ'.60)) — (FawiZ'.6) — Fow|Z" 90))2) =0

This measure defines a norm and it implies a standard goodness of fit measure.

Another measure of distributional accuracy available in the literature
is the Kullback-Leibler Information Criterion, KLIC (see e.g. White 1982; Vuong
1989; Fernandez-Villaverde and Rubio-Ramirez 2004; Amisano and Giacomini
2007; Kitamura 2004). According to the KLIC approach, we should choose Model
1 over Model 2 if

E (log f1 (ye112".67) —tog f2 (ve112".63) ) > 0.

The KLIC is a sensible measure of accuracy, as it chooses the model which on
average gives higher probability to events which have actually occurred. The draw-
back is that the KLIC approach cannot be easily generalized to compare conditional
intervals.

The hypotheses of interest are formulated as:

=Z,..

. 208 2
Hy s max (piw) =) <0

versus
Hy : maxK (,u%(u) — ,u%(u)) > 0,

k=2,...,
¥ 2
where 2(u) = E ((1{yt+1 <u)j— Fk(u|Z’,9k)) ) k =1,...,K. Note that

for any given u, E(1{y;+1 < u}|Z") = Pr(y;11 < ulZ') = Fy(u|Z', 6p). Thus,
Wyrer < u} — Fr(u|Zt, 0?) can be interpreted as an “error” term associated with
computation of the conditional expectation under Fy.

The statistic is:

Zp = k:%lflf[( Zpur(1,k), (7

with
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1Tl

Zru(. 0= —= 3 (11 <0 = A@lZ 61)°
1

I
=

— (W = ) = F@lZ', n)’)

where, asusual, R+ P = T, and @\k ; can be either a recursive or a rolling estimator.
The limiting distribution of (7) is established in Proposition 1(a) in Corradi and
Swanson (2006a), who also suggest how to construct valid bootstrap critical values,
for both the recursive and the rolling estimation cases.

3.2 The Case of Unknown Distribution Function

There are cases in which the distribution function is not known in closed form. This
problem typically arises when the variable we want to predict is generated by highly
nonlinear dynamic models. Very important examples are Dynamic Stochastic Gen-
eral Equilibrium (DSGE) Models, which generally cannot be solved in closed form
(see Bierens (2007), for a discussion of different ways of approximating DSGEs).
Since the seminal papers by Kydland and Prescott (1982), Long and Plosser (1983)
and King et al. (1988a,b), there has been substantial attention given to the problem
of reconciling the dynamic properties of data simulated from DSGE models, and in
particular from real business cycle (RBC) models, with the historical record. A partial
list of advances in this area includes: (i) the examination of how RBC-simulated data
reproduce the covariance and autocorrelation functions of actual time series (see e.g.,
Watson 1993); (ii) the comparison of DSGE and historical spectral densities (see e.g.
Diebold et al. 1998); (iii) the evaluation of the difference between the second order
time series properties of vector autoregression (VAR) predictions and out-of-sample
predictions from DSGE models (see e.g. Schmitt-Grohe 2000); (iv) the construction
of Bayesian odds ratios for comparing DSGE models with unrestricted VAR models
(see e.g. Gomes and Schorfheide 2002; Fernandez-Villaverde and Rubio-Ramirez
2004); (v) the comparison of historical and simulated data impulse response func-
tions (see e.g. Cogley and Nason 1995); (vi) the formulation of “Reality” bounds
for measuring how close the density of an DSGE model is to the density associated
with an unrestricted VAR model (see e.g. Bierens and Swanson 2000); and (vii) loss
function based evaluation of DSGE models (see e.g. Schorfheide 2000).

The papers cited above evaluate the ability of a given DSGE model to reproduce a
particular characteristic of the data. Corradi and Swanson (2007b) use a DM (reality
check) approach to evaluate DSGEs in terms of their ability to match (with historical
data) the joint distribution of the variables of interest, and provide an empirical
application in terms of the comparison of several variants of the stochastic growth
model of Christiano (1988). As the distribution function is not known in closed form,
we replace it with its simulated counterpart.
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To keep notation simple, as above, we consider the case of confidence intervals,
setting ¥ = —oo, and u = oo. Hereafter, F represents the joint distribution of a
variable of interest, say Y; ( e.g. output growth and hours worked). The hypotheses
are:

2 2
Hy : max ((Fo(u; 0o) — Fi(u; 9})) - (Fo(u; 0o) — Fr(u; GZ)) ) <0

.....

2 2
Hy: max ((Fo(u; 00) = Fi(u: 0))) " — (Fotus 60) — Filu: ) ) > 0.

Thus, under Hy, no model can provide a better approximation of the joint CDF than
model 1. In order to test Hy versus Hy, the relevant test statistic is +/T Z7 s, where

Zrs= max NTZyrsw). ®)
1 < 13 ’
Zirs) = — Z(lm sup= < 2 W@ < u})
t=1 n=1
2

I < 1S _
- ?E(l{Y, <up— Ezl{Yk,n(ak,T) < u}) ;

n=1

and Ykﬁn(@(’T) represents simulated counterparts of Y; (i.e., the variables simulated
under model k at simulation 7, using the estimated parameters @(,T). Heuristically,
if S grows sufficiently fast with respect to 7', then % 25:1 l{Yk,n(ﬁk,T) < u} can
be treated as the “true” distribution of the data simulated under model k. Broadly
speaking, we are comparing different DSGE models, on the basis of their ability
to match a given simulated joint CDF with that of the historical data. As we are
comparing joint CDFs, the statistic in (8) provides an in-sample test.

When constructing the bootstrap counterpart of Z; 7.5, we need to distinguish
between the case in which 7/S — 0 and that in which T/S — ¢ # 0. Whenever
T/S — 0, simulation error is asymptotically negligible, and thus there is no need to
resample the simulated observations. In this case, the bootstrap statistic is given by
maxy—2 . K \/TZ;;T’S(M), where

Zi s

S 2

1 1 ~
=7 > (I{Y,* =ub-3 D Y@ ) < u})

t=1 n=1
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2

1< .
- (1{Y, sup =< 2 W@ < u})

n=1
1 1S 2
-7 ; (I{Yt* <u}-— gg 1{Yk,n(9]tj) < u})
1S _ ?
_(I{Yt Su}_ggl{yk’"(ak’” fu}) (%))

On the other hand, whenever T/S — J # 0, then simulation error contributes
to the limiting distribution. In this case, one has to additionally resample the simu-
lated Aobservations, aEd thus Y1 , (QT’T) and Y (07(‘]) in (9) should be replaced by
Yf’j .07 1) and Y, ,;“ 207 7). In both cases, the validity of bootstrap critical values is
been established in Proposition 2 of Corradi and Swanson (2007b).

4 Stochastic Dominance: Predictive Evaluation Based
on Distribution of Loss

In this section, we discuss a predictive accuracy testing approach based on distrib-
utional loss, as in the previous sections. However, rather than focusing on DM- and
reality check-type approaches, we incorporate notions of stochastic dominance in
our analysis. Namely, we introduce a criterion that is designed to include cases of
generic predictive accuracy testing, forecast model selection, and forecast combina-
tion. The criterion is constructed via evaluation of error loss distributions using basic
principles of stochastic dominance, wherein one examines whether or not one CDF
lies “above” another, for example. In our discussion, we are concerned only with the
evaluation of alternative panels or combinations of forecasts, such as are available
when analyzing the Survey of Professional Forecasters (SPF) dataset available on
the webpages of the Federal Reserve Bank of Philadelphia. Moreover, we consider
first-order stochastic dominance. Evidently, the ideas presented here can be adapted
to many varieties of predictive accuracy testing, and extension to second and higher
order stochastic dominance will also play an important role in such applications.
These and related issues are left to future research, and our example below is meant
as a starting point in this sort of analysis.

4.1 Motivation

Central Banks and financial institutions have regular access to panels of forecasts for
key macroeconomic variables that are made by professional forecasters. A leading
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example is the SPF. Using this dataset, much focus has centered on how to combine
predictions (see e.g. Capistran and Timmermann 2009) and how to assess forecast
rationality (see e.g. Elliott et al. 2008). With regard to forecast combination, Capistran
and Timmermann (2009), as well as Elliott and Timmermann (2004, 2005), estimate
combination weights by minimizing a given loss function, ensuring that the weights
converge to those minimizing expected loss. Wallis (2005) proposes combining fore-
casts using a finite mixture distribution, and Smith and Wallis (2009) suggest the use
of simple averages. With regard to rationality assessment, Elliott et al. (2008) test
whether forecasters taking part in the SPF are rational for some parameterization
of a flexible loss function. This is clearly an important approach when testing for
rationality. However, in many instances, users already have a given loss function in
mind, and only assess the accuracy of available forecasts under this loss function.
Here, we take the loss function as given, and discuss predictive combination and
accuracy assessment of datasets such as the SPF. However, this is done via analysis
of cumulative loss distributions rather than synthetic measures of loss accuracy such
as mean square error and mean absolute error.

More specifically, the objective is to introduce an alternative criterion for pre-
dictive evaluation which measures accuracy via examination of the quantiles of the
expected loss distribution. The criterion is based on comparing empirical CDFs
of predictive error loss, using the principle of stochastic dominance. The heuristic
argument underpinning our approach is that the preferred model is one for which the
error loss CDF is stochastically dominated by the error loss CDF of every competing
model, at all evaluation points. In this sense, a model that has smaller quantiles at
all regions of the loss distribution is selected, rather than a model that minimizes a
single criterion, such as the mean square error. If a model is not strictly dominated,
then our approach allows us to pinpoint the region of the loss distribution for which
one model is preferred to another.

As alluded to above, applications for which the criterion is designed include:
generic predictive accuracy testing; forecast model selection; and forecast combina-
tion. For example, in the context of the SPF, a panel of N, forecasts for a given variable
are made by professionals at each point in time, 7. Both the number of individuals
taking part in the survey, as well as the specific individuals generally change, from
period to period. In this context, the criterion can be applied as follows. Assume that
objective is to select and combine forecasts from the SPF. A set of rules, including
for example, the simple mean or median across all forecasters, and quantile-based
weighted combinations across forecasts are defined. Then, the loss function of the
forecast errors implied by the rules are evaluated using tests based on the stochastic
dominance criterion.

4.2 Setup

In each period ¢, we have a panel of N; forecasts. The objective is to choose among
k possible combinations of the available forecasts, under a given loss function, g (-) .
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In order to allow for frequent possible entry and exit into the panel, the combinations
are simple rules, which are applied each period, regardless of the composition of
the panels. Examples are: (i) simple average, (ii) simple average over a given range,
such as the 25th-75th percentiles, or (iii) assigning different weights to different
interquantile groups from the panel, such as a weight of 0.75 for the average over
the 25th—75th percentile and 0.125 for the average over the first and last quartiles.

Define ¢; ; = y; — ytf’h’i, i =1,...,k, to be the forecast error associated with
the h—step ahead prediction constructed using combination i. Let g;; = g (e,-,,) ,
where g (-) is a generic loss function. Also, let F ; (x) be the empirical distribution
of g (ej,) evaluated at x, and let I?g‘,-,r(x) be its sample analog, i.e.,

T

= 1
Foir() = — > 1{g(eis) < x}.

t=1

The hypotheses of interest are:

Hj : max inf (Fg,l(x) — Fg,i(x)) >0
i>1 xeX
versus
H, : max inf( (Fg’l(x) — Fg,i(x)) < 0.

i>1 xe

For the sake of simplicity suppose that k = 2. If F; 1(x) — F,2(x) > 0 for all x,
then the CDF associated with rule 1 always lies above the CDF associated with
rule 2. Then, heuristically, g (e; ;) is (first order) stochastically dominated by g (e2,)
and rule 1 is the preferred combination. This is because all of the quantiles of g (e, ,)
are smaller than the corresponding quantiles of g (ez, ,). More formally, for a given x,
suppose that

Fg1(x) =01 and Fy2(x) = 0,

then we choose rule 1if §; > 6,. This is because x is the 6 —quantile under F; | and
the 6> —quantile under F; > and, as )y > 05, the 6,— quantile under Fy, | is smaller
than under F,>. Thus, for all evaluation points smaller than x, g (e 1, t) has more
probability mass associated with smaller values than g (ez, ,) does.

It follows that if we fail to reject the null, rule 1 is selected. On the other hand,
rejection of the null does not imply that rule 1 should be discarded. Instead, further
analysis is required in order to select a rule. First, one needs to discriminate between
the cases for which the various CDFs do not cross, and those for which they do
cross. This is accomplished by proceeding sequentially as follows. For all i # j
i,j=1,...,k, sequentially test

Hy'  sup (Fyi(x) — Fy (X)) <0 (10)

xeX
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versus its negation. Eliminate rule i, if H ' is not rejected. Otherwise, retain rule i.
There are two possible outcomes.

It If there is a rule which is stochastically dominated by all other rules, we even-
tually discard all the “dominating” rules and remain with only the dominated one.
This is always the case when no CDFs cross, and also clearly occurs in cases when
various CDFs cross, as long as the dominated CDF cross no other CDF.

II: Otherwise, we remain with a subset of rules, all of which have crossing CDFs,
and all of which are stochastically dominated by the eliminated rules.

Note that the logic underlying the outlined sequential procedure is reminiscent
of the idea underlying the Model Confidence Set approach of Hansen et al. (2011),
in which the worst models are eliminated in a sequential manner, and one remains
with a set of models that are roughly equally good, according to the given evaluation
criterion.

In the case where there are crossings, further investigation is needed. In particular,
in this case, some rules are clearly dominant over certain ranges of loss, and are
dominated over others. At this point, one might choose to plot the relevant CDFs,
and examine their crossing points. Then, one has to make a choice. For example, one
can choose a rule which is dominant over small values of x and is dominated over
large values of x. This is the case in which one is concerned about making larger
losses than would be incurred, where the other rule used, in a region where losses
are large; while not being concerned with the fact that they are making larger losses,
relative to those that would be incurred, where the other rule used, when losses are
relatively small. Needless to say, one can also use a model averaging approach over
the various survivor rules.

4.3 Statistic

In order to test Hy versus H4 construct the following statistic:

LgT——IIlaXIIlf\/_( Fy11(x) — qu(x))

i>1 xeX

where fq j,7(x), j = 1is defined above; and where the negative sign in front of the
statistic ensures that the statistic does not diverge to minus infinity under the null
hypothesis. On the other hand, in order to test Ho , we instead suggest the following
statistic,

L —sup VT (Fyi7(x) — Fy j.r(x)) .

xeX
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In the context of testing for stochastic dominance, Linton et al. (2005) construct
critical values via subsampling. Here we instead use the “m out of n” bootstrap.’
Proceed to construct critical values as follows:

(i) We have T observations. Set " < T.

(ii)) Draw b blocks of length I, where bl = Y. One block consists, simultaneously, of
draws on the actual data as well as the rule- based combination forecasts. Thus,
if there are two rules, say, and the block length is 5, then a “block” consists of
a 3 x 1 vector of length 5. This yields one bootstrap sample, which is used to
construct a bootstrap statistic,

;T = —max inf NS (f;LT(X) - F;i,T(x))

i>1 xeX

where
T

~ 1
F;’LT()C) = ? Z 1 {g* (ei,t) < x}

t=1
g (i) =g (y?‘ — y,?;l)

(iii) Construct B bootstrap statistics and then compute their empirical distribution.
The sample statistic is then compared against the percentile of this empirical
distribution.

5 Concluding Remarks

In this chapter, we have reviewed the extant literature on Diebold and Mariano (1995)
type predictive accuracy testing. We discuss pairwise and multiple model compari-
son (i.e., DM and reality check type predictive accuracy tests) using differentiable
pointwise prediction accuracy measures such as mean square forecast error, as well
as using non-differentiable loss functions. We also discuss valid inference under both
asymptotically negligible and non-negligible parameter estimation error. Extensions
to pairwise and multiple model comparison using predictive densities, distributions,
intervals, and conditional distributions are then outlined, with emphasis on inference
using these more complicated varieties of DM and reality check-type tests. Finally,
extension and generalization of all of these testing approaches using notions of sto-
chastic dominance are introduced, and future research directions, including the use
of second and higher order stochastic dominance are outlined.

Acknowledgments This chapter has been prepared for the Festschrift in honor of Halbert L. White
in the event of the conference celebrating his sixtieth birthday, entitled “Causality, Prediction, and

7 The basic difference between subsampling and “m out of n” bootstrap is that in the latter case we
resample overlapping blocks.
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Abstract Model specification tests are essential tools for evaluating the appropriate-
ness of probability models for estimation and inference. White (Econometrica, 50:
1-25, 1982) proposed that model misspecification could be detected by testing the
null hypothesis that the Fisher information matrix (IM) Equality holds by comparing
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linear functions of the Hessian to outer product gradient (OPG) inverse covariance
matrix estimators. Unfortunately, a number of researchers have reported difficulties
in obtaining reliable inferences using White’s (Econometrica, 50: 1-25, 1982) orig-
inal information matrix test (IMT). In this chapter, we extend White (Econometrica,
50: 1-25, 1982) to present a new generalized information matrix test (GIMT) theory
and develop anew Adjusted Classical GIMT and five new Eigenspectrum GIMTs that
compare nonlinear functions of the Hessian and OPG covariance matrix estimators.
We then evaluate the level and power of these new GIMTs using simulation studies
on realistic epidemiological data and find that they exhibit appealing performance
on sample sizes typically encountered in practice. Our results suggest that these new
GIMTs are important tools for detecting and assessing model misspecification, and
thus will have broad applications for model-based decision making in the social,
behavioral, engineering, financial, medical, and public health sciences.

Keywords Eigenspectrum + Goodness-of-fit + Information matrix test - Logistic
regression + Specification analysis

1 Introduction

A correctly specified probability model has the property that it contains the probabil-
ity distribution that generates the observed data. Model specification tests examine
the null hypothesis that a researcher’s probability model is correctly specified. If the
researcher’s model of the observed data is not correct (i.e., misspecified), then the
interpretation of parameter estimates and the validity of inferences obtained from
the resulting probability model may be suspect. Thus, to avoid misleading infer-
ences, the effects of model specification must be considered. For example, in the
social and medical sciences (e.g., Kashner et al. 2010), the incompleteness of behav-
ioral and medical theories mandates the need for principled specification analysis
methods that use empirical observations to assess quality of a particular theory. This
situation, all too common in statistical modeling, provides considerable impetus for
the development of improved model specification tests.

1.1 Model Misspecification

When viewed from a practical perspective, the problem of model misspecification
is essentially unavoidable. Although ideally a correctly specified model is always
preferable, in many fields of science such as econometrics, medicine, and psychology
some degree of model misspecification is inevitable. Indeed, all probability models
are abstractions of reality, so the issue of model misspecification is fundamentally an
empirical issue that is dependent upon how the model will be developed and applied
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in practice (e.g., Fisher 1922; White 1980, 1981, 1982, 1994; Begg and Lagakos
1990; Cox 1990; Lehmann 1990).

A variety of methods have been developed for the purpose of the assessment of
model misspecification. For example, graphical residual diagnostics are useful for
identifying the presence of model misspecification for the class of generalized lin-
ear models (e.g., Davison and Tsai 1992) and the larger class of exponential family
nonlinear models (e.g., Wei 1998, Chap. 6). However, these methods require more
subjective interpretations because results are expressed as measures of fit rather than
as hypothesis tests. Moreover, specification tests such as chi-square goodness-of-fit
tests (e.g., Hosmer et al. 1991, 1997) are not applicable in a straightforward manner
when the observations contain continuous random variables. Link specification tests
(Collett 2003; Hilbe 2009) are applicable for testing the assumption of linearity in
the link function (e.g., logit), but are not designed to detect other types of model mis-
specification. Further, the applicability of these methods to more complex probability
models such as hierarchical (e.g., Agresti 2002; Raudenbush and Bryk 2002), mixed
(e.g., Verbeke and Lesaffre 1997), and latent variable (e.g., Gallini 1983; Arminger
and Sobel 1990) models may not always be obvious.

1.2 Specification Analysis for Logistic Regression

Logistic regression modeling (Christensen 1997; Hosmer and Lemeshow 2000;
Harrell 2001; Agresti 2002; Collett 2003; Hilbe 2009) is an important and widely
used analysis tool in various fields; however, the number of available options for the
assessment of model misspecification is relatively limited (see Sarkar and Midi 2010
for areview). Typically, the detection of model misspecification in logistic regression
models is based upon direct comparison of the observed conditional frequencies of
the response variable with predicted conditional probabilities (Hosmer et al. 1997).
Unfortunately, the observed conditional frequencies of the response variable can only
be compared with predicted conditional probabilities for a particular pattern of pre-
dictor variable values in a given data record. In practice, patterns of predictor variable
values may rarely be repeated for more complex models involving either multiple
categorical predictor variables or continuous-valued predictor variables. Because the
number of distinct predictor patterns often increases as the number of records (i.e.,
sample size) increases, such applications of classical “fixed-cell asymptotic” results
are problematic (e.g., Osius and Rojek 1992). To address this problem, “grouping”
methods have been proposed that require artificially grouping similar, yet distinct
predictor patterns (Bertolini et al. 2000; Archer and Lemeshow 2006).

A variety of test statistics that explicitly compare predicted probabilities with
observed frequencies using grouping methods have been proposed, and include chi-
square test methods (e.g., Hosmer and Lemeshow 1980; Tsiatis 1980; Hosmer et al.
1988, 1997; Copas 1989; Qin and Zhang 1997; Zhang 1999; Archer and Lemeshow
2006; Deng et al. 2009), sum-squared comparison methods (Copas 1989; Kuss 2002),
and the closely related likelihood ratio test deviance-based comparison methods
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(e.g., Hosmer and Lemeshow 2000, pp. 145-146; Kuss 2002). Without employing
such grouping methods, the resulting test statistics associated with direct compari-
son of observed conditional frequencies and predicted conditional probabilities will
have excessive degrees of freedom and thus poor power. However, when such group-
ing methods are applied, they may actually have the unintended consequence of
redefining the probability model whose integrity is being evaluated (Hosmer et al.
1997).

One solution to dealing with the “grouping” problem is to introduce appropriate
regularity conditions intended to characterize the asymptotic behavior of the test
statistics while allowing the number of distinct predictor patterns to increase with
the sample size (e.g., Osius and Rojek 1992). Another important solution to the
“grouping” problem is to embed the probability model whose specification is being
scrutinized within a larger probability model and then compare the predicted proba-
bilities of both models (e.g., Stukel 1988). Other approaches have explored improved
approximations to Pearson’s goodness-of-fit statistic (McCullagh 1985; Farrington
1996). Yet, despite these approaches, the variety of methods available for assessing
the presence of model misspecification is surprisingly limited, and these limitations
are particularly striking in the context of logistic regression modeling (e.g., Sarkar
and Midi 2010).

1.3 Information Matrix Test

White (1982; also see 1987, 1994) proposed a particular model specification test
called the information matrix test (IMT). Unlike chi-square goodness-of-fit tests
and graphical diagnostics, IMTs are based upon the theoretical expectation that
the Hessian inverse covariance matrix estimator (derived from the Hessian of the
log-likelihood function) and the outer product gradient (OPG) inverse covariance
matrix estimator (derived from the first derivatives of the log-likelihood function)
are asymptotically equivalent whenever the researcher’s probability model is cor-
rectly specified. We define a full IMT as a statistical test that tests the null hypothesis
of asymptotic equivalence of the Hessian and OPG asymptotic covariance matrix
estimators.

An important virtue of the IMT method is that it is applicable in a straightforward
manner to a broad class of probability models. This includes not only linear and
nonlinear regression models, but also even more complex models such as: limited
dependent variables models (e.g., Maddala 1999; Greene 2003), exponential fam-
ily nonlinear models (e.g., Wei 1998), generalized linear models (e.g., McCullagh
and Nelder 1989), generalized additive models (e.g., Hastie and Tibshirani 1986,
1990), hierarchical models (e.g., Agresti 2002; Raudenbush and Bryk 2002), mixed
models (e.g., Verbeke and Lesaffre 1997), latent variable models (e.g., Gallini 1983;
Arminger and Sobel 1990), conditional random fields (e.g., Winkler 1991), and time
series models (e.g., Hamilton 1994; White 1994; Box et al. 2008; Tsay 2010). How-
ever, despite the broad applicability of the IMT, the majority of the research in the
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development and evaluation of IMTs has focused on linear regression (Hall 1987;
Taylor 1987; Davidson and MacKinnon 1992, 1998), logistic regression (Aparicio
and Villanua 2001; Zhang 2001), probit (Davidson and MacKinnon 1992, 1998;
Stomberg and White 2000; Dhaene and Hoorelbeke 2004), and Tobit (Horowitz
1994, 2003) modeling.

1.4 Empirical Performance of the Information Matrix Test

Although theoretically attractive, the IMT has not been widely used to detect model
misspecification. In particular, some researchers have found the full IMT (White
1982) both analytically and computationally burdensome because its derivation and
computation require third derivatives of the log-likelihood. To address this prob-
lem, Chesher (1983) and Lancaster (1984) demonstrated how the calculation of the
third derivatives of the log-likelihood function could be avoided for the full IMT
by showing that when the OPG and Hessian inverse covariance matrix estimators
are asymptotically equivalent, the third derivatives of the log-likelihood may be
expressed in terms of the first and second derivatives of the log-likelihood. This
particular version of the White (1982) full IMT is commonly referred to as the
OPG IMT. Unfortunately, OPG full IMTs were subsequently found to exhibit poor
performance in various simulation studies for logistic regression (Aparicio and Vil-
lanua 2001) and linear regression (Taylor 1987; Davidson and MacKinnon 1992;
Dhaene and Hoorelbeke 2004). This prompted some researchers (Davidson and
MacKinnon 1992, 1998; Stomberg and White 2000; Dhaene and Hoorelbeke 2004)
to re-evaluate the original formulation by White (1982), which involves explicit
analytical computation of the third derivatives of the log-likelihood function.

In a series of simulation studies, researchers (e.g., Orme 1990; Stomberg and
White 2000) have demonstrated that both the original White (1982) formulation and
the OPG-IMT method exhibit relatively erratic performance and require excessively
large sample sizes to ensure that the test statistic behaves properly. This led a number
of researchers (e.g., Davidson and MacKinnon 1992; Stomberg and White 2000;
Aparicio and Villanua 2001; Dhaene and Hoorelbeke 2004 ) to suggest that the erratic
behavior of the full IMT for linear regression is due to excessive test statistic variance,
since the degrees of freedom of the full IMT increase as a quadratic function of the
number of free parameters of the probability model.

Further, researchers (Taylor 1987; Orme 1990; Horowitz 1994, 2003) have pro-
vided empirical evidence that the poor level performance of the OPG IMT is due to
failure to incorporate the third derivatives of the log-likelihood functions as originally
recommended by White (1982). Stomberg and White (2000) have shown demon-
strable improvements using a bootstrapped version of the full IMT, but this method
requires substantial computational resources.
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1.5 Nondirectional and Directional Tests

A “nondirectional IMT” examines the null hypothesis that the Hessian and OPG
covariance matrix estimators are asymptotically equivalent. White’s (1982) Clas-
sical Full IMT is an example of a nondirectional information matrix test. If the
null hypothesis of a nondirectional information test is false, it directly follows from
Fisher’s Information Matrix Equality that the probability model is misspecified.

A “directional IMT” compares functions of the OPG and Hessian covariance
matrix estimators for the purpose of identifying specific types of model misspecifi-
cation, rather than implementing a full covariance matrix estimator comparison. Two
potential advantages of directional tests are: (1) gaining important insights regarding
how to improve the quality of a misspecified model by identifying specific aspects
of a model that appear to be correctly or incorrectly specified, and (2) better level
performance and greater statistical power in the detection of model misspecification.
White (1982) explicitly emphasized that improved specification testing performance
and specific specification tests could be obtained through the use of directional infor-
mation matrix tests. Nonetheless, as previously described, the majority of research
has focused upon the full IMT rather than on particular directional versions of the
full IMT as recommended by White (1982).

Directional tests also may, in some cases, provide improved statistical power if
such tests are appropriately designed. However, despite the advantages of directional
specification testing, little theoretical or empirical research has been conducted to
more thoroughly explore directional IMTs as viable alternatives to White’s (1982)
nondirectional Classical Full IMT. Such insights may also be helpful for suggest-
ing specific modifications to a researcher’s model to improve its quality. Although,
nondirectional tests are useful for overall assessments of model misspecification, but
directional tests provide insights into which properties of a model are sensitive to the
effects of model misspecification.

Prior research on directional versions of the full IMT has focused upon the detec-
tion of skewness, kurtosis, and heteroskedasticity in linear regression models, with a
few notable exceptions (i.e., Henley et al. 2001, 2004; Alonso et al. 2008). For exam-
ple, Bera and Lee (1993; also see Hall 1987; Chesher and Spady 1991) have shown
how to derive directional information matrix tests for linear regression models using
White’s (1982) theoretical framework. These directional information matrix tests
were shown to be mathematically equivalent (see White 1982; Hall 1987; Chesher
and Spady 1991; Beraand Lee 1993 for relevant reviews) to commonly used statistical
tests for checking for the presence of autoregressive conditional heteroskedasticity
as well as checking for normality in the residual errors.

1.6 Logistic Regression Modeling IMTs

The IMT method is particularly attractive in the context of logistic regression mod-
eling because it does not require the use of grouping mechanisms, and the degrees
of freedom are solely dependent upon the number of free parameters in the model
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rather than the degree to which the predictor patterns in the data set are replicated.
However, the application of IMTs to the problem of the detection of misspecification
in categorical regression (Agresti 2002) and, in particular, logistic regression model-
ing (Hosmer and Lemeshow 2000; Hilbe 2009) is less common (but see Orme 1988;
Aparicio and Villanua 2001; Zhang 2001; Kuss 2002), despite the major role that
logistic regression plays in applied statistical analysis (Christensen 1997; Hosmer
and Lemeshow 2000; Harrell 2001; Agresti 2002; Collett 2003; Hilbe 2009).

1.7 Generalized Information Matrix Test Theory

In this chapter, we introduce the essential ideas of our Generalized Information
Matrix Test (GIMT) theory (Henley et al. 2001, 2004, 2008). GIMT theory includes
the IMTs previously discussed in the literature, as well as a larger class of direc-
tional and nondirectional IMTs. We apply GIMT theory to develop six specific new
GIMTs. We begin with a new version of the original k(k + 1)/2 degrees of freedom
White (1982) Classical Full IMT, called the “Adjusted Classical GIMT”, which is
applicable to a k parameter model. In addition, we explore information matrix testing
by introducing and empirically evaluating five new Information Matrix Tests based
upon comparing specific nonlinear functions of the eigenspectra of the Hessian and
OPG covariance matrices (rather than their inverses) developed by Henley et al.
(2001, 2004, 2008). The first of these directional tests is the k-degree of freedom
“Log Eigenspectrum GIMT” based on the null hypothesis that the k eigenvalues of
the Hessian and OPG covariance matrices are the same. The one-degree of freedom
“Log Determinant GIMT” tests the null hypothesis that the products of the eigen-
values of the Hessian and OPG covariance matrices are identical. Log Determinant
GIMTs are exceptionally sensitive to small differences in the eigenstructures. The
“Log Trace GIMT” is a one-degree of freedom GIMT that tests the null hypothesis
that the sums of the eigenvalues of the Hessian and OPG covariance matrices are
identical. Log Trace GIMTs focus on differences in the major principal components
of the Hessian and OPG covariance matrices. The fourth eigenspectrum test is the
two-degree of freedom “Generalized Variance GIMT” that tests the composite null
hypothesis that the Log Determinant and Log Trace GIMTSs’ null hypotheses hold.
In particular, the Generalized Variance GIMT exploits the complementary features
of the Log Trace and Log Determinant GIMTs, since the Log Determinant GIMT is
sensitive to small differences in the entire eigenspectrum of the Hessian and OPG
covariance matrices, while the Log Trace GIMT tends to focus on the larger eigen-
values. Finally, if the Hessian and OPG covariance matrices are identical, then the
Hessian covariance matrix multiplied by the inverse of the OPG covariance matrix
will be the identity matrix. This observation suggests a fifth type of GIMT called
the “Log Generalized Akaike Information Criterion (GAIC) GIMT” for examining
the average relative deviation between the eigenspectra of the Hessian and OPG
covariance matrices. The Log GAIC GIMT, like the Log Determinant and Log Trace
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GIMTs, is also a one-degree of freedom test sensitive to small differences in the
eigenstructures of the Hessian and OPG covariance matrices.

We then provide a series of simulation studies to investigate the level and power
properties of the new Eigenspectrum GIMTs and the Adjusted Classical GIMT. Our
simulation studies are intended to achieve three specific objectives. First, we evaluate
the reliability of the large sample approximations for estimating Type I error prob-
abilities (level) for the Adjusted Classical GIMT and our five new Eigenspectrum
GIMTs. Second, we evaluate the level-power performance of the new Eigenspectrum
GIMTs relative to the Adjusted Classical GIMT. Finally, we evaluate the applica-
bility of the new GIMTs to detect model misspecification in representative, realistic
epidemiological data.

2 Theory

2.1 Information Matrix Equality

In what follows, we do not give formal results. For the most part, the necessary
theory can already be found in White (1982, 1994). We use the following notation.
Let the d-dimensional real column vectors Xi, ..., X, be realizations of the i.i.d.
random variables X1, ..., X, having support R Let the parameter space OCRF
be a compact set with non-empty interior. Let f : X x @ — [0, oo) be defined
such that f (-; @) is a Radon-Nikodym density for each § € ©. Let f(x;; §) denote
the likelihood of an observation x; for parameter vector . Let B, = n~! >"_, B,
where B; = g;g! and g; = —Vylog f(Xi; ). Let A, =n~! 37| A; where A,
—Vg log f(X;; -). Let A and B denote the respective expected values of A, and 1_3,,
(when they exist). Suppose the maximum likelihood estimator §,,, which maximizes
the likelihood function [1!_, f (Xl, 0), converges almost surely to §* € int ©. Let

= A(0") and B* = B(9*). Let An = A, (0,) and B,, =B, (0,) . We say the model
is correctly specified if there exists Qg such that f (-; @p) is the true density of X;. In
this case, it holds under general conditions that §* = 6. The GIMT is based upon the
critical observation that under correct specification, the Fisher Information Matrix
equality holds, that is, A* = B* (e.g., White 1982, 1994). This hypothesis may be
tested by comparing A, and B,,. Rejecting the null hypothesis that A* = B*, thus
indicates the presence of model mlsspeaﬁcatlon In this situation, the classic Hessian
covariance matrix estimator A !and classic OPG covariance matrix estimator B !
for \/n ((-)n — 9*) are inconsistent and the robust estimator Cn = An anAn Ue.g.,
Huber 1967; White 1982, 1994; Golden 1996) is consistent and should be used
instead.
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2.2 The Null Hypothesis for a Generalized IMT

Let YA*k ¢ R¥*k be a compact set that contains A* and B* in its interior. Let s

Ykxk s vkxk _, R’ be continuously differentiable in both of its matrix arguments
where ris a positive integer less than or equal to k(k+ 1) /2. The function s is called a
Generalized Information Matrix Test (GIMT) Hypothesis Function when it satisfies
the condition that: Forevery A, B € Y**k if A = B, thens (A, B) = 0,.. Throughout
this chapter, we assume that the GIMT Hypothesis function s : YF*k s Yhxk . Rr
is a continuously differentiable function of both its arguments and that %:)’B(o))
evaluated at @* has full row rank r. It will also be convenient to let s* = s (A*, B*).

A GIMT is defined as a test statistic §,, = s (An, ﬁn) that tests the null hypothesis:
Hy:s"=0,.

We distinguish between “nondirectional” and “directional” GIMT hypothesis func-
tions. A GIMT hypothesis function s is called nondirectional when s has the property
that: For every A, B € Yk A = B, if and only if s (A, B) = 0,.. Otherwise, the
GIMT hypothesis function s is called directional.

2.3 Asymptotic Behavior of the Generalized IMT Statistic

We now define the Generalized Information Matrix Test (GIMT) statistic:

- -1

Wa=n()' 2 6. (1)

A1
Where the estimator z is an estimator of the asymptotic covariance matrix of

sl’h ZS (0* .
Under standard regularity conditions, W, has a chi-squared distribution with r
degrees of freedom when the null hypothesis Hy : s* = 0, holds. Let &; = g; ((f)n),

o _ | vec (A (8)
T vec (B; (6))

estimator >, ¢ is given by:

> )] @[ (5) I (5)]

where Q,, is computed from d;, An, vd,, g; and On following the approach of White
(1982).

], and Vd, (§) = n~'>"_, Vd; (§). The covariance matrix
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When the r-dimensional matrix >’ (§*) is singular and has rank g where 0
<g < r, it is often possible to replace the original GIMT hypothesis function
s @ YKk 5 YRk . R’ with an alternative “adjusted” GIMT hypothesis func-
tion§ : WXk 5 Ykxk _ RS that tests a similar null hypothesis yet has the property
that the resulting asymptotic covariance matrix of n'/%§, is nonsingular. Let the
adjusted hypothesis projection matrix T be a rectangular matrix with g rows and r
columns with full row rank. Then, a decision indicating the “adjusted” null hypoth-
esis Hoy : Ts* = 0, should be rejected also implies that the original null hypothesis
Hp : s* = 0, should be rejected as well. Note that the adjusted null hypothe-
sis projects the original GIMT hypothesis function from the original r-dimensional

space into a g-dimensional subspace. Let §,, = T§,. Let Zn s = Tzn STT Then

W, =nG,)" Zn’s (Sp) is called an “adjusted” GIMT, having g degrees of freedom
(rather than r degrees of freedom) and testing the null hypothesis: Hy : Ts* = 0.

Finally, although calculation of Vd; () requires using the derivative of A;, which
requires third derivatives of the log-likelihood, one can use the Lancaster-Chesher
formula for Vd; (), denoted Vd; (). This avoids third derivatives by expressing
Vd; (@) in terms of the first and second derivatives of the log-likelihood function
when the null hypothesis that the model is correctly specified holds (Lancaster 1984;
also see Chesher 1983).

Thus, this yields six distinct GIMT statistics that can be used to test a single null
hypothesis specified by a given GIMT Hypothesis function. When the GIMT null
hypothesis holds either B Lor G, may be used instead of A ! to calculate Q,.
Furthermore, the assumption that the GIMT null hypothesm holds permits the
use of the Lancaster-Chesher formula Vd; (9) to avoid explicitly computing the

third derivatives of the log-likelihood function (i.e., Vd; (9)). A Hessian-GIMT
~ \—1 ~ \—1
statistic corresponds to the case denoted by [(An) , Vd; (9)] where (An)

is estimated by the Hessian covariance matrix estimator. An OPG-GIMT statis-
PN A\l
tic corresponds to the case denoted by I (Bn) , Vd; ((-))] where (Bn) is esti-

mated by the OPG covariance matrix estimator (Lancaster 1984; also see Qhesher
1983) and Vd; (@) is calculated using the Lancaster-Chesher formula Vd; ().
To the best of our knowledge, the use of the remaining four GIMT statistics

(i.e., [(A,,)_l ¥4, (e)] , {C vd; (e)} , [(ﬁ,,)_l V4, (e)] : {C vd; (e)})

associated with a single specific GIMT Hypothesis function for estimating the GIMT
covariance matrix have not been discussed in the literature. However, in preliminary
studies not reported here (Henley et al. 2001, 2004) we have found that these new
statistics exhibit promising size and power properties.

It can be shown that for all six distinct GIMT statistics, the asymptotic distribution
of W, is chi- square with r degrees of freedom when Hp : s (A*, B*) = 0, holds,
under appropriate further regularity conditions and with a few minor modifications
to the analysis presented by White (1982; see Proof of Theorem4.1). Further, it can
be shown that Wn — oo almost surely when Hp : s (A*, B¥) = 0, is false. Thus,
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Wn (or similarly the adjusted version W,,) can be used as a test statistic for the
purpose of detecting the presence of model misspecification.

2.4 Classical IMT Family

White (1982) describes a family of IMTs that can be represented by a GIMT Hypoth-
esis Function s of the form s (A, B) = S vech (A — B), where the selection matrix
S € R™kk+D/2 i5 some user-specified constant rectangular matrix of row rank r.
The Classical Full IMT that has been widely discussed in the literature corresponds to
the case where the selection matrix is a k(k+1)/2-dimensional identity matrix. White
(1982) proposed the Classical Full IMT null hypothesis Hy : A* = B* that can be rep-
resented by a nondirectional GIMT hypothesis function. White (1982) also proposed
a family of IMTs that could be represented as a set of directional GIMT hypothesis
functions of the form: s (A, B) = S vech (A — B) where S € R >***+D/2 hag row
rank z Thus, the GIMT hypothesis function introduced in this chapter is a nonlinear
generalization of the original Information Matrix Test hypothesis function described
by White (1982), which is limited to the representation of linear combinations of
the elements of the A and B matrices. Note that White’s (1982) IMT theory may be
viewed as special case of the GIMT theory presented in this chapter.

2.4.1 Classical Full IMT

The Classical Full IMT as described in White (1982, 1994) corresponds to the case
where the Classical Full IMT Hypothesis Function s : YK*k x Ykxk s RI ig
defined such that for every A, B € Y**k:

s (A, B) = vech(A) — vech(B)

yielding the null hypothesis Hy : vech (A*) = vech (B*). The Classical Full IMT is
a nondirectional GIMT, but suffers from the disadvantage of an excessive number of
degrees of freedom, k(k + 1)/2. Thus, the associated excessive variance may yield
erratic test performance for typical values of k.

2.4.2 Adjusted Classical GIMT

In simulation studies, we found that the covariance matrix of the GIMT hypothesis
function estimator for White’s (1982) Classical IMT tended to be singular and so
we always used the “adjusted version” of the Classical Full IMT (see the discussion
in Sect.2.3), called the Adjusted Classical GIMT. We emphasize that although the
performance of the Adjusted Classical GIMT has not been systematically investi-
gated in previous empirical studies, it is actually a particular member of the family
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of directional IMTs explicitly discussed in White’s (1982) original paper. We also
comment that the performance of the adjusted version of the Classical Full IMT
depends upon the researcher’s choice of the row dimension g of the adjusted hypoth-
esis projection matrix. Theoretically, the appropriate choice of g is straightforward,
but in practice, numerical definitions of the presence of excessive multicollinearity
are required. To examine the presence of excessive multicollinearity we compute
the ratio of the largest to the smallest eigenvalues as well as the magnitude of the
largest and smallest eigenvalues of the GIMT statistic covariance matrix estimator.
The performance of the Adjusted Classical GIMT in our simulation studies (and other
simulation studies not reported here) tended to vary depending upon how stringently
we defined a GIMT statistic covariance matrix estimator as singular or non-singular
(Henley et al. 2001, 2004). Our results suggest that care in this regard is a previously
unappreciated crucial element to obtaining good IMT statistic performance.

2.5 Eigenspectrum GIMT Family

The essential idea of the classical IMT family (White 1982) was to directly compare
linear combinations of the elements of and A* and B*. In this section, we propose a
new approach that compares the eigenvalues of (A*)~" and (B*)~! to determine if
the Fisher Information Matrix Equality holds for a probability model.

Assume A* is real symmetric positive definite and that all eigenvalues of A* are
distinct. Let A ; o+ denote the jth eigenvalue associated with the jth unique orthonor-
mal eigenvector e; A+~ of A*. Then there exists a neighborhood of A*, Nax C RIxk s
such that: Aejax (A) = Aja+(A)eja«(A) for all A € N o+ where Ajax
Na+ — Risan infinitely differentiable function such that A j o+ (A*) = A A+, and
Ej A% : Nas = RFK is an infinitely differentiable function such that &; o+ (A*) =
e; A+ (Magnus (1985) Theorem 1; also see Magnus and Neudecker (1999) p. 180).
Furthermore, dj;gA* (A*) =ej A+ (e i, A*)T. Let Aax : Max — R¥ be defined such
that for all N gx € R : Apx = [Al,A*, e Ak‘A*]. Similarly, when B* is real
symmetric positive definite with distinct eigenvalues, there exists a neighborhood of
B*, N'g+ € R¥K such that: Be; g« (B) = A g (B) & p+ (B) for all B € Np-.

Let ¢ : (0, o00)* x (0, 00)k — R’ be continuously differentiable in both of
its arguments. An Eigenspectrum IMT Family is a collection of GIMT selection

functions where each selection function s : M+ x Mg+ — R’ has the property
that: s (A, B) = ¥ (Aa+ (A), A+ (B)) for all A € N o+ and for all B € Ng+.

2.5.1 Log Eigenspectrum GIMT

Let log Ao+ (A) = [log A ax(A), ..., log Ay A (A)]T. The Log Eigenspectrum
GIMT Hypothesis Function is defined such that for all A, B € TK*k:
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A1 Ax (A_l) Ak Ax (A_l)
S(A,B) = |log{ ———=)...., logl ————=
( [ g(w B)) o e 8)
—log Ap- (A*‘) —log Ap- (B*‘) .
Thus, the null hypothesis of the log eigenspectrum GIMT is given by:
Ho:s (A% B") =log Ax- ((4) ") — log Ap- ((B") ') =0y

The Log Eigenspectrum GIMT is a directional GIMT because cases exist where
A* #£ B*, yet the eigenspectra of A* and B* are identical. For example,

. _ 1 [0.7025 B
A :(1)[_0'7117 [0.7025 —0.7117]

~0.7117 1.5065 0.5
+@ [—0.7025] (07117 ~07025] = [0.5 1.4935}

and

. —0.8206 7
B =(1)[0.5715 }[ 0.8206 0.5715 |

0.5715 13266 0.4690
+@ [0.8206] [0.5715 08200] = [0.4690 1.6734]

both have the same eigenvalues (1 and 2), yet A* % B*. On the other hand, such
situations are rarely expected to occur in practice, so the Log Eigenspectrum GIMT
essentially exhibits the behavioral properties of a nondirectional GIMT.

Note that the number of degrees of freedom for the Log Eigenspectrum GIMT is
equal to the number of free parameters k, which is a substantial reduction from the
k(k+1)/2 degrees of freedom of the Classical Full IMT statistic. Thus, it is expected
that the variance of the Log Eigenspectrum GIMT statistic will be less than that of
the Classical Full IMT statistic for even moderately small k.

2.5.2 Log Determinant GIMT
The Log Determinant GIMT Hypothesis Function is defined such that for every
A, BeTkxk;

s (A, B) = logdet (A_lB) .

Thus, the null hypothesis of the Log Determinant GIMT is given by:
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Hy:s (A*, B*) = log det ((A*)71 B*)

= log det ((A*)_l) — log det ((B*)_l) =0.

The determinant of (A*)f1 (i.e., the product of the eigenvalues of (A*)fl) can be
interpreted as a measure of the magnitude of the Hessian covariance matrix (A%~
and is sometimes referred to as the “generalized variance” (Cramér 1946, Sect.22.7;
Serfling 1980, p. 139). Thus, the Log Determinant GIMT hypothesis function com-
pares the generalized variance of the Hessian covariance matrix (A*)~ ! to the gener-
alized variance of the OPG covariance matrix (B*)_l. The Log Determinant GIMT
is expected to have good statistical power for two reasons: (1) it is a one degree of
freedom GIMT regardless of the complexity of the model or the complexity of the
data, and (2) it is equally sensitive to changes in the largest eigenvalues as well as
changes in the smallest eigenvalues.

2.5.3 Log Trace GIMT

The Log Trace GIMT is a one-degree of freedom test that compares the magnitude
of the Hessian covariance matrix (A"‘)_1 to the magnitude of the OPG covariance
matrix (B*)_1 by constructing the Log Trace GIMT hypothesis function. The Log
Trace GIMT hypothesis function is defined such that for every A, B € TX*:

s(A,B) =logtr (Afl) — logtr (Bfl) .

The null hypothesis of the Log Trace GIMT is given by:
Hy:s (A*, B*) =logtr ((A*)_l) —logtr ((B*)_l) =0.

Note that the Log Trace GIMT hypothesis function may be interpreted as com-
paring the log sum of the on-diagonal variances of the Hessian covariance matrix
(A*)~! to that of the OPG covariance matrix (B*) ™! or equivalently, comparing the
log sum of the eigenvalues of (A*)~! with that of (B*)™".

The Log Trace GIMT compares the Hessian and OPG covariance matrix structures
based upon the larger eigenvalues while tending to ignore the smaller eigenvalues.
This is equivalent to comparing the sums of the largest on-diagonal variance elements
of both covariance matrices. Thus, the Log Trace GIMT is more sensitive to changes
in the larger eigenvalues of the covariance matrices and less sensitive to changes in
the smaller eigenvalues (i.e., focuses upon the major principal components of the
Hessian and OPG covariance matrices). It is thus expected to be a less sensitive
GIMT than the Log Determinant GIMT (i.e., it may have reduced statistical power).
Depending upon the situation, this latter property of the Log Trace GIMT may be
more or less desirable.
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2.5.4 Log Generalized Variance GIMT

The Log Generalized Variance GIMT Hypothesis Function is defined such that for
every A, B € Yhxk,

S(A.B) — [logdet (A7) — log det (Bl)] .

logtr (A71) —logtr (B™)

The null hypothesis of the Log Generalized Variance GIMT is given by:
log det A*~!) — log det B!
Ho s (A*, B*) = ( 1) ( 1) 2[0].
logtr ((A*)_ ) — logtr ((B*)_ ) 0

The Log Generalized Variance GIMT is a two degree of freedom GIMT and
combines the Log Determinant GIMT, which focuses on both major and minor
principal components of the Hessian and OPG covariance matrices, with the Log
Trace GIMT, which focuses only upon the major principal components of the Hessian
and OPG covariance matrices.

2.5.5 Log GAIC GIMT

Takeuchi (1976; for relevant reviews see Konishi and Kitagawa 1996; Bozdogan
2000) showed that the GAIC defined by the formula:

n
GAIC = ~2log[ ] f (Xi: b) + 2TRACE (A;'B,)
i=1

is an unbiased estimator of the expected value of —2log [ [/, f (X, ; é,,) in the pres-
ence of model misspecification. When the model is correctly specified, then almost
surely: A Bn — Iy where I is the k-dimensional identity matrix. Furthermore,

since 2TRACE (An an) — 2k, GAIC reduces to Akaike’s (1973) Akaike Informa-
tion Criterion (AIC) defined as:

n
AIC = =2log [ | f (Xi: 6a) + 2k.
i=1

Let (Aas (W)™ = [(Arar )7 (Akar (A) '] and let © denote
the Hadamard product (i.e., element-wise vector multiplication) operator. If a
simultaneous diagonalization of A* and B* exists, TRACE [(A*)_l B*] = 17

[(A A* (A*))_1 © Ap+ (B*)]. This observation suggests a new GIMT called the Log
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GAIC IMT. The Log GAIC GIMT Hypothesis Function is defined such that for every
A, B e Tkxk:

k ~
1 rjps (B
J.A¥

j=1
1 ~ -1 .
= log (%TRACE [(xm (A)) O ip (B)]) .
Thus, the null hypothesis of the Log GAIC IMT is given by:
1 ~ -1 .
Ho : s (A%, B*) = log (%TRACE [(xA* (4%)) o ip (B*)D =0.

The Log GAIC GIMT is also a one-degree of freedom IMT, and is more similar
to the Log Determinant GIMT than to the Log Trace GIMT because the Log GAIC
GIMT is sensitive to all differences in the eigenspectra of (A*)_1 and (B*)_l. How-
ever, the Log GAIC GIMT differs from the Log Determinant GIMT because these
changes are combined additively instead of multiplicatively.

3 Simulation Studies

In this section we describe and report findings from simulation studies designed to
investigate the level and power properties of the five new Eigenspectrum GIMTs and
the Adjusted Classical GIMT. Our studies here investigate the reliability of the large
sample approximations for estimating Type I error probabilities (level) and evaluate
the performance of the new Eigenspectrum GIMTs relative to the new Adjusted
Classical GIMT. They also demonstrate the applicability of the new Eigenspectrum
GIMTs: to detect and assess model misspecification using a realistic epidemiological
data analysis problem.

3.1 Epidemiological Data Sample

Our simulation studies were conducted using a random sample (n = 16,189) of dei-
dentified patient discharges from the Department of Veterans Affairs (VA) Patient
Treatment File between October 1, 1995 and September 30, 1996. The “deidenti-
fied Extraction Sample” of 16,189 patients included a single binary response variable
(ALC) indicating the presence or absence of a primary or secondary discharge diagno-
sis of either: (i) alcohol dependence (IDC9#303), or (ii) alcohol abuse (ICD9#305.0),
based on diagnostic codes from the International Classification of Diseases 9th
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Edition (ICD9) (DHHS 1980). The simulation data contains only adults, with the
ICD9 alcohol disorders occurring in approximately 20.3 % (3,283) of all patients,
where in the sample 4 % are female, 25.1 % are divorced, and 4.2 % are minorities.

3.2 Logistic Regression Models

In this chapter, we investigate the performance of our new GIMTs with respect to
binary logistic regression (logit) models (Christensen 1997; Hosmer and Lemeshow
2000; Harrell 2001; Agresti 2002; Collett 2003; Hilbe 2009) in which the probability
that a binary response random variable R takes on the values of zero or one is
functionally dependent upon d — 1 predictor variable values denoted by the d — 1-
dimensional vector u € RY~!. Define a logistic regression model using

. [p(R =1 B)] _ g7 [u]
p (R =0lu; B) 1
where the last element of the k-dimensional parameter vector f corresponds to the
intercept parameter. In order to relate this logistic regression model to the discussion

in Sect.2, let R = x; and u = [xp,...,xg] so that x = [R,u] € R? and let
0=Be0BOC R¥ where d = k. Using this notation, we define

f&x0) =[xip(R=1uwp)+ 1 —x1)pR=00up)]px,... x0)

where the joint predictor density p (x2, ..., xg) is not functionally dependent upon
B € R?. Because of this latter property, the GIMT formulas are not functionally
dependent on p (x2, ..., xg). Thus in the i.i.d. case the log-likelihood for a logistic
regression model with sample size n is

LB = Z{Ri In[p(Ri =1u;; B+ (1 — R)In[l — p (R = 1u;; B)J}

i=1

where

p(R=1up) = (1 +exp [— (uTB)])_l .

3.2.1 Logistic Regression Model with Binary Predictors

We first fitted a logistic regression model to the n = 16,189 deidentified Extraction
Sample using maximum likelihood estimation to predict the presence or absence
of “alcohol-disorder” (ALC) from the binary predictors “female” (FEMALE),
“married” (MARRIED), recoded categorical predictor ethnicity containing “black”
(BLACK) and “white” (WHITE), and the recoded predictor “age” (AGE).
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The ethnicity variable was recoded into a three category design variable (white, black,
other) using reference cell coding (Hosmer and Lemeshow 2000) where “other” is
the reference variable. Also, the numerical AGE predictor was trichotomized into a
three category design variable by applying optimally estimated cut values y; = 55.4
and y» = 68.2 (Henley et al. 2000; Kashner et al. 2002, 2003, 2007, 2010) where
the first binary design variable AGE; (age < 55.4) is the reference variable.

In addition to reporting our model fit results using a negative log-likelihood score,
we report fitness results in terms of a GAIC, also known as the Takeuchi Information
Criterion (TIC) (Takeuchi 1976; Konishi and Kitagawa 1996; Bozdogan 2000). GAIC
is a misspecification robust extension of the Akaike Information criterion (AIC)
(Akaike 1973; Burnham and Anderson 2002, pp. 65, 362-372). The resulting fitted
logistic regression model had a negative log-likelihood of 6,718.2 (GAIC/2n =
0.415420, p = 0.0000) with estimated parameter values

Bo = —0.7397, Bi = —1.3099, B, = —2.2946, B3 = —1.4249,
Bs = —0.9784, Bs = 1.0000, B¢ = 0.6822

respectively for the intercept, AGE, (55.4 < age < 68.2), AGE3 (68.2 < age <
85), FEMALE, MARRIED, BLACK, and WHITE predictors. Wald tests computed
using robust standard errors (e.g., Wald 1943; White 1982; Golden 1996) showed
each estimated parameter value was significantly different from zero (p < 0.001).
All six GIMTs applied to this model failed to reject the null hypothesis (Adjusted
Classical, p = 0.6113; Log Eigenspectrum, p = 0.3618; Log Determinant, p =
0.6138; Log Trace, p = 0.4063; Log Generalized Variance, p = 0.6890; Log GAIC,
p = 0.6004) indicating no evidence of model misspecification. Thus, simulated data
samples generated from this fitted model were expected to be more representative of
real world data.

3.2.2 Alternative Logistic Regression Model with Numerical
and Binary Predictors

We also fitted a different (alternative) logistic regression model that replaced the tri-
chotimized age predictor with the numerical predictor for “age” (AGE*) and added
a “divorced” (DIVORCED*) binary variable so each model had seven free parame-
ters. The model was otherwise identical to the first one. The resulting fitted logistic
regression model had a negative log-likelihood of 6,743 (GAIC/2n = 0.416965, p =
0.0000) with estimated parameter values

Bo = 1.8448, B = —0.0646, pr = —1.6057, B3 = —0.7972,
Bs = 0.3353, Bs =1.0082, e = 0.7065

respectively for the intercept, AGE*, FEMALE, MARRIED, DIVORCED*,
BLACK, and WHITE predictors. Wald tests computed using robust standard errors
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(e.g., Wald 1943; White 1982; Golden 1996) again showed each estimated parameter
value was significantly different from zero (p < 0.001). All six GIMTs applied to the
alternative logit model rejected the null hypothesis (Adjusted Classical, p = 0.0000;
Log Eigenspectrum, p = 0.0000; Log Determinant, p = 0.0028; Log Trace,
p = 0.0282; Log Generalized Variance, p = 0.0112; Log GAIC, p = 0.0026)
indicating the presence of model misspecification.

In practice, researchers may inadvertently use a misspecified model that never-
theless provides a good fit, as measured by log-likelihood or GAIC, to the observed
data. We selected an alternative logistic regression model, which provided a fit
(GAIC/2n = 0.416965, p = 0.0000) to the observed data that is comparable to
the fit (GAIC/2n = 0.415420, p = 0.0000) of the original logit model described in
Sect. 3.2.1. This difference in model fit was not statistically significant (p = 0.1960)
using the Discrepancy Risk Model Selection Test (DRMST) (Vuong 1989; Golden
2000, 2003; Henley et al. 2000, 2003, 2008) for comparing nonnested and possibly
misspecified models.

3.3 Simulation Study

3.3.1 GIMT Level and Power Estimation Procedures

The procedure for estimating the observed level of a GIMT is shown in Fig. 1. Four
simulated data samples of n* records (n* = 1,619, n* = 4,047, n* = 8,095, and
n* = 16,189) were generated by sampling with replacement from the original rep-
resentative sample (see Politis et al. 1999; Davison et al. 2003). This process was
repeated m times for each of four sample sizes. The conditional probability for the
binary ALC outcome variable was then computed and assigned the value one or zero,
based on the minimum probability of decision error rule, for each record using pre-
dictor values and the estimated coefficients of the seven-parameter logistic regression
model with binary predictors. Thus, all simulated data samples had predictor values
with synthetic ALC outcome values that had been generated from the specified logis-
tic regression model estimated on the original representative sample (n = 16,189).
To calculate level estimation results, we then fit the logistic regression model to each
of the m simulated data samples for the four sample sizes and computed 10,000
significance levels in the range of zero to one for all the GIMTs. The percentage of
times that a GIMT incorrectly rejects the null hypothesis of correct specification as
the “observed incorrect rejection rate” or “observed level” was calculated.

The procedure for estimating the observed power of a GIMT is shown in (Fig. 2).
In this experiment we created an alternative logistic regression model by changing
two of the six binary predictor variables in the logistic regression model from the
level estimation procedure (Fig.1). As previously described, the numerical AGE
and binary DIVORCED predictor variables in the original representative data sam-
ple replaced the binary design variables AGE, and AGE3. This predictor variable
change introduced a relatively subtle, but realistic misspecification into the alterna-
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[ J
[ J

Compute MLE and then
compute GIMT using
Simulated Data Sample m
of size n*.

Fig. 1 Simulation procedure for estimation of level

tive model because the known (i.e., simulated) data generating process stems from
the original logistic regression model containing only binary predictors. Further, the
use of observationally equivalent original and alternative logit models (see discus-
sion in Sect.3.2.2) for the simulation design minimizes the confounding issue of
model fit (GAIC) with specification, thus enabling the effects of model specification
(goodness-of-fit) on GIMT performance to be more effectively studied. To calculate
power estimation results, we then fit the alternative logistic regression model to each
of the simulated data samples from the level analysis for the four sample sizes and
computed 10,000 significance levels in the range of zero to one for all the GIMTs.
The percentage of times that a GIMT correctly rejects the null hypothesis of cor-
rect specification as the “observed correct rejection rate” or “observed power” was
calculated.

In our simulation studies, an MLE was defined as a set of parameter values such
that the sup norm of the gradient of the negative log-likelihood evaluated at the MLE
was less than le—8. Further, we avoided fitting models to degenerate simulated
data by omitting samples with condition numbers greater than 4.5e+14 to insure
numerical stability. The condition number is defined as the maximum eigenvalue
divided by the minimum eigenvalue of the inverse of the Hessian covariance matrix
estimator. Each simulation was run until m = 100,000 simulated data samples of
size n* was reached. The sample sizes n* for the simulated data represented 10 %,
25 %, 50 %, and 100 % of the original 16,189 record data set. In all simulations, we
utilized the Hessian-GIMT statistic as defined in Sect.2.3.
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Fig. 2 Simulation procedure for estimation of power

3.3.2 Simulation Study Results

In this section we present level-discrepancy and level-power simulation results for
the proposed GIMTs.

Level-Discrepancy Analyses

We first examined the performance for the six GIMTs using a P-value plot analysis
(Davidson and MacKinnon 1998). This method plots the empirical level (observed
rejection rate of the null hypothesis, i.e., Type I error) of a GIMT against its nominal
level (specified rejection rate of the null hypothesis). To enable P-value plot com-
parisons, we also define a summary deviation measure for the level-discrepancy as
the root mean square error (RMSE) between empirical and nominal levels over the
specified range of interest (e.g., [0, 0.1] or [0, 1.0]). Thus, an ideal estimation of the
Type I error rate corresponds to a level-discrepancy of zero (i.e., RMSE = 0). In our
studies, the level-discrepancy for each GIMT was estimated on simulated data for
each sample size.

The Adjusted Classical GIMT is a member of the family of Classical IMTs
that includes White (1982) Full IMT. Figure 3 depicts the P-value plots with level-
discrepancies for the Adjusted Classical GIMT on 100,000 simulated data samples
for n ranging from 1,619 to 16,189 for level ranges on [0, 0.10]. These results show
that the level-discrepancy deviation decreases from 0.0261 to 0.0091 RMSE as sam-
ple size increases, thus approaching an ideal estimation Type I error rate at larger
sample sizes. Further, the exhibited Type I error rate convergence for the Adjusted
Classical GIMT indicated level-discrepancy performance that was much better than
the performance of the Classical Full IMT (not shown). We attribute this to the par-
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Fig.3 P-value plots for the White’s (1982) Adjusted Classical GIMT show empirical level [0, 0.1]
versus nominal level [0, 0.1] by sample size. The displayed level-discrepancy is defined as the root
mean square error (RMSE) between the empirical and nominal levels. Thus, an ideal estimation of
the Type I error rate corresponds to a discrepancy between the empirical (simulated) and nominal
levels of zero (i.e., RMSE = 0). The data points on the graphs are computed for 100,000 simulated
data samples for n* = 1,619, n* = 4,047, n* = 8,095 and n* = 16,189

ticular care with which singularity or near-singularity of the test statistic covariance
matrix is handled.

Next, we present the simulation results for the new Log Eigenspectrum GIMT.
Figure4 depicts the P-value plots with level-discrepancies for the Log Eigenspec-
trum GIMT on 100,000 simulated data samples for n ranging from 1,619 to 16,189,
which again shows RMSE decreasing as sample size increases. Notably, the level-
discrepancy (RMSE = 0.0030) for the Log Eigenspectrum GIMT at n = 16,189 is
less than the level-discrepancy (RMSE = 0.0091) for the Adjusted Classical GIMT
(Fig.3).

The simulation results for the new Log GAIC GIMT, which is a directional GIMT,
are also presented for comparison. Figure5 shows the P-value plots with level-
discrepancies for the Log GAIC GIMT on 100,000 simulated data samples for n
ranging from 1,689 to 16,189. Again, the empirical and nominal levels of interest
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Fig.4 P-value plots for the Log Eigenspectrum GIMT show empirical level [0, 0.1] versus nominal
level [0, 0.1] by sample size. The level-discrepancy is defined as the deviation measured by root
mean square error (RMSE) between the empirical and nominal levels. Thus, an ideal estimation of
the Type I error rate corresponds to a discrepancy between the empirical (simulated) and nominal
levels of zero (i.e., RMSE = 0). The data points on the graphs are computed for 100,000 simulated
data samples for n* = 1,619, n* = 4,047, n* = 8,095 and n* = 16,189. The level-discrepancy
(RMSE = 0.0030) at n = 16,189 for the Log Eigenspectrum GIMT with seven degrees of freedom
is less than the level-discrepancy (RMSE = 0.0091) reported for the Adjusted Classical GIMT
(Fig.3), which has up to 28 degrees of freedom

range over [0, 0.10]. These simulation results show the level-discrepancy for the Log
GAIC GIMT is converging to zero as sample size increases. The level-discrepancy
(RMSE = 0.0045) at n = 16,189 for the directional Log GAIC GIMT is greater
than the level-discrepancy (RMSE = 0.0030) reported for the Log Eigenspectrum
GIMT (Fig.4), but less than the level-discrepancy (RMSE = 0.0091) reported for
the Adjusted Classical Full GIMT (Fig. 3). A similar pattern of results was observed
using the P-value plot analyses for the remaining three new directional Eigenspec-
trum GIMTs. All observed rejection rates were very close to the nominal levels.
The level-discrepancy performance of all GIMTs is depicted in Fig.6, which
displays P-value plot results as a function of sample size. As shown, the new Eigen-
spectrum GIMTs exhibit excellent performance for large sample sizes. In addi-
tion, they exhibited better performance than the Adjusted Classical GIMT with
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Fig. 5 P-value plots for the directional Log GAIC GIMT show empirical level [0, 0.1] versus
nominal level [0, 0.1] by sample size. The level-discrepancy is defined as the deviation measured by
root mean square error (RMSE) between the empirical and nominal levels. Thus, an ideal estimation
of the Type I error rate corresponds to a discrepancy between the empirical (simulated) and nominal
levels of zero (i.e., RMSE = 0). The data points on the graphs are computed for 100,000 simulated
data samples for n* = 1,619, n* = 4,047, n* = 8,095 and n* = 16,189. The level-discrepancy
(RMSE = 0.0045) at n = 16,189 for the directional Log GAIC GIMT with one-degree of freedom
is larger than the level-discrepancies obtained for the Log Eigenspectrum GIMT (RMSE = 0.0030),
though smaller than the Adjusted Classical GIMT (RMSE = 0.0091) shown respectively in Figs.3
and 4

level-discrepancies approaching zero in all cases. The Log Eigenspectrum GIMT
exhibited the best (i.e., smallest) level-discrepancy performance of all GIMTs at
larger sample sizes.

The observed rejection rates (estimated Type 1 errors) for each of the six new
GIMTs are reported in Table 1 for the nominal significance levels of 0.001, 0.005,
0.01, 0.025, 0.05, and 0.10 for the full sample size of n = 16,189. The simulated
standard errors of the estimated Type I error rates are shown in parentheses. Note
that these standard errors will converge to zero as m — oo for a fixed sample
size n = 16,189. Our findings show that the estimated Type I error rates for all
six new GIMTs are, in general, very close to their specified error rates. The Log
Eigenspectrum GIMT exhibited the smallest level-discrepancy of all GIMTs at the
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Fig. 6 Level-discrepancy performance by sample size for the six GIMTSs in the simulation study.
Each data point corresponds to 100,000 simulated data samples. The Adjusted Classical GIMT and
all the Eigenspectrum GIMTs exhibit level-discrepancy convergence towards zero as sample size
increases. The Log Eigenspectrum GIMT exhibited the smallest level-discrepancy of all GIMTs at
the larger sample sizes

larger sample sizes. We also performed additional simulation studies (Henley et al.
2001, 2004), and found that the performance of the six new GIMTs was always better
than White’s (1982) Classical Full IMT.

Level-Power Analyses

Next, we perform a level-power analysis to examine all six GIMTs by generating
alevel-power curve (Davidson and MacKinnon 1998) for each GIMT. A level-power
curve plots the power (i.e., 1-Type II error) of a statistical test as a function of the
level (rejection rate or Type I error). Accordingly, we interpret a statistical test as
a binary classifier that divides the decision space into two regions: reject or fail to
reject (Wickens 2002; Pepe 2004, p. 152).

An important performance measure for the evaluation of binary classifiers is the
Area Under the Response Operating Characteristic Curve (AUROC; also known as
AUC) (Hanley and McNeil 1982; Bradley 1997; Wickens 2002; Pepe 2004; Fawcett
2006). In the context of a level-power analysis, this corresponds to the area under the
level-power curve. A level-power AUROC equal to one corresponds to perfect clas-
sification (i.e. test) performance. Figure 7 shows the level-power curves for the Log
Eigenspectrum GIMT for m = 100,000 simulated data samples with sample sizes
of n* = 1,619, n* = 4,047, n* = 8,095, and n* = 16,189. The Log Eigenspectrum
GIMT exhibited ideal level-power performance (AUROC = 1.00) at the two larger
samples sizes (not shown).

Level-power curves for all sample sizes (n* = 1,619, n* = 4,047, n* = 8,095,
and n* = 16,189) were also generated for the other GIMTs using 100,000 simulated
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Fig. 7 Level-power curves for Log Eigenspectrum GIMT exhibit convergence to ideal GIMT
decision performance as sample size increases using simulated epidemiological data. Each data point
on the graphs represents 100,000 simulated data samples under the null and alternative hypotheses
for the sample sizes n* = 1,619 and n* = 4,047 respectively. This two graph sequence depicts
convergence to an ideal level-power curve (i.e., AUROC = 1.00). The level-power performance for
the larger sample sizes n* = 8,095 and n* = 16,189 (not shown) achieved an ideal AUROC = 1.00

data samples per data point under the null and alternative hypotheses. Figure 8 depicts
the level-power performance of all GIMTs as a function of sample size. As shown, the
new Log Figenspectrum GIMT and the Adjusted Classical GIMT have good power
for both small and large sample sizes, although all of the GIMTs exhibit useful power
for large sample sizes. A possible explanation for the increased power of the Log
Eigenspectrum and the Adjusted Classical GIMTs is that these GIMTs test more
comprehensive composite null hypotheses that result in increased opportunities to
detect the presence of model misspecification.

4 Summary and Conclusions

In this chapter, we have introduced a general approach to the development of Gener-
alized Information Matrix Tests that are intended to detect the presence of model mis-
specification. Such situations occur when the Hessian inverse covariance matrix A*
and the OPG inverse covariance matrix B* are different. In particular, we introduced
the new Generalized Information Matrix Test (GIMT) that tests Hy : s (A*, B*) = 0,
and provided a Wald test version of the GIMT based on the asymptotic distribution of
nl/2g, = nl/%s (An, ﬁn), along the lines of (White 1982, Theorem4.2). For a given
GIMT Selection Hypothesis Function, we also provided six distinct formulas for
computing each GIMT test statistic and introduced the new concept of an “adjusted”

GIMT statistic for dealing with issues of multicollinearity and demonstrated its utility
by applying it to White’s (1982) Classical Full IMT.
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AUROC (Level-Power) vs. Sample Size
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Fig. 8 AUROC (level-power) performance as a function of sample size for the six GIMTs in the
simulation study. Each data point corresponds to 100,000 simulated data samples under the null
and 100,000 simulated data samples under the alternative hypothesis. The Adjusted Classical and
Log Eigenspectrum GIMTs converged at a faster rate to ideal level-power (i.e., AUROC = 1.00)
as sample size increases, indicating more efficient level-power performance when compared to the
other GIMT's

Further, we introduced the idea of constructing GIMTSs by comparing nonlinear
functions of the eigenspectra of the Hessian and OPG covariance matrices. Next, we
developed five new GIMTs based upon the Eigenspectrum GIMT Family. These are
the Log Eigenspectrum GIMT, Log Determinant GIMT, Log Trace GIMT, Gener-
alized Variance GIMT, and Log GAIC GIMT. Analytic formulas for these five new
Eigenspectrum GIMTs were derived and implemented in computer software.

We studied the performance of these five new Eigenspectrum GIMTs and an
adjusted version of White’s (1982) Classical Full IMT (i.e., Adjusted Classical
GIMT) in a series of simulation experiments using a realistic 16,189 record data
set typical of data encountered in epidemiological studies. By comparing a correctly
specified model and a misspecified model with approximately equivalent fits to the
observed data, our simulation studies focus specifically on the effects of model mis-
specification. Using P-value plots and level-power plots, we found that the Adjusted
Classical GIMT and the five new Eigenspectrum GIMTs exhibited reliable perfor-
mance, in the sense that their asymptotic behavior was correctly captured by the
large sample statistical theory under the null. In particular, the empirically observed
Type I error rates for all six new GIMTs were very close to their nominal error rates.
Additionally, they also exhibited useful power. This is in stark contrast to the familiar
poor performance of the unadjusted form of White (1982) Classical Full IMT (e.g.,
Davidson and MacKinnon 1992; Stomberg and White 2000; Aparicio and Villanua
2001).



New Directions in Information Matrix Testing: Eigenspectrum Tests 173

For the larger sample sizes, the level-discrepancy performance (i.e., Type I error
performance) of the high degree of freedom GIMT (i.e., Log Eigenspectrum) was
better than those of all the low degree of freedom GIMTs (i.e., Log Determinant,
Log Trace, Log Generalized Variance, Log GAIC), which in turn exceeded the per-
formance of the high degree of freedom Adjusted Classical GIMT. However, the
power performance (i.e., Type II error performance) of the Adjusted Classical and
Log Eigenspectrum GIMTs was always superior to that of the low degree of freedom
GIMTs over all sample sizes. We conjecture that the reduced variance of the low
degree of freedom GIMTs decreased the efficiency of the large sample approxima-
tion when compared to the Log Eigenspectrum GIMT. We further conjecture that
because the Eigenspectrum GIMTs have fewer degrees of freedom they were more
robust to sampling error when compared to the Adjusted Classical GIMT, which
adjusts its degrees of freedom to control for multicollinearity. The greater power of
the larger degree of freedom GIMTs is most likely explained by noting that these
GIMTs are simultaneously testing multiple hypotheses, thus providing additional
opportunities to detect model misspecification.

We used our Adjusted Classical GIMT instead of White’s (1982) Classical Full
IMT because in additional simulation studies not reported here, the asymptotic
covariance matrix for the Classical Full IMT was frequently observed to be sin-
gular and exhibited much worse performance in our investigations. However, in all
cases, the level-discrepancy and the level-power performance of the new Adjusted
Classical GIMT and the new Eigenspectrum GIMTs were superior to those of the
Classical Full IMT. Moreover, the reliable performance of the Adjusted Classical
GIMT as compared to the Classifical Full IMT is notable, and we emphasize that
this GIMT is a special case of the original IMT theory proposed by White (1982).

In conclusion, the generalized IMT theory (Henley et al. 2001, 2004, 2008)
presented here provides a novel framework for developing a wide range of model
specification tests for a broad range of probability models. In particular, the new
Eigenspectrum Family GIMTs have degrees of freedom less than or equal to k, in
contrast to the Classical Full IMT (White 1982), which has k(k + 1)/2 degrees of
freedom for a k-parameter model. Further, our five new Eigenspectrum GIMTs and
new Adjusted Classical GIMT for logistic regression models all have appealing level
and power properties, as seen in a series of simulation experiments involving a real-
istic epidemiologic modeling problem. These six new GIMTs are therefore expected
to provide useful new tools for detecting model misspecification across a broad class
of probability models (Hastie and Tibshirani 1986; McCullagh and Nelder 1989; Wei
1998; Harrell 2001; Hastie et al. 2009), thus decreasing the chance that a misspecified
model is inadvertently used to make inferences in practice. The reduction of incorrect
statistical inferences, in turn, has fundamentally important consequences for making
critical decisions in many areas, including the social, behavioral, and physical sci-
ences, as well as engineering, financial, medical, and public health research (Kashner
et al. 2002, 2003, 2007, 2010).
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Bayesian Analysis and Model Selection
of GARCH Models with Additive Jumps

Christian Haefke and Leopold Sogner

Abstract This article investigates parameter estimation and model selection of
GARCH models with additive jumps. Continuous noise is driven by Student-t
innovations. Since the likelihood is not available in closed form, Bayesian simu-
lation methods are applied to estimate the model parameters and perform model
selection. Simulations suggest that the parameters of the jump process are difficult to
estimate. Informative priors based on sample moments and tests on jumps are neces-
sary to obtain reliable parameter estimates. In an application using S&P 500returns
we estimate a 3 % jump intensity. In addition, our model allows us to infer the impact
of a jump on future volatility. Our estimates show that the impact of jumps on the
conditional volatility is large compared to the impact of continuous innovations.

Keywords GARCH - Additive jumps * Bayes factors - Model selection

1 Introduction

One of the recent challenges in modeling the volatility of asset returns is whether
jumps are present in the time series and how—if there are any jumps—such drastic
changes propagate forward into the asset’s volatility. The literature on this topic
(Sakata and White 1998; Harvey and Chakravarty 2008) suggests that jumps have
no or only small impact on future volatility such that standard GARCH settings
tend to overestimate the effect of jumps on volatility. The goal of this chapter is to
estimate the effect of jumps on future volatility in a univariate GARCH specification.

C. Haefke (X)) - L. Sogner

Department of Economics and Finance, Institute for Advanced Studies,
Stumpergasse 56, 1060 Vienna, Austria

e-mail: Christian.haefke @ihs.ac.at

L. Sogner
e-mail: soegner @ihs.ac.at

X. Chen and N. R. Swanson (eds.), Recent Advances and Future Directions 179
in Causality, Prediction, and Specification Analysis, DOI: 10.1007/978-1-4614-1653-1_7,
© Springer Science+Business Media New York 2013



180 C. Haefke and L. Sogner

In addition, we perform Bayesian model selection to test whether a model with jumps
is superior to a model without jumps.

Most models in the mathematical finance literature use Brownian motion to
model asset returns. To account for drastic changes a jump component is included
(see e.g. Duffie et al. 2000; Barndorff-Nielsen and Shephard 2001; Lamberton and
Lapeyre 2008). Multivariate extensions with jumps in the return process and/or the
underlying volatility process have been developed in recent years (see e.g. Ait-Sahalia
et al. 2009; Barndorff-Nielsen and Stelzer 2009; Mayerhofer et al. 2010 etc.). Tests
and evidence for jumps in financial time series, mostly constructed for high fre-
quency data, have been provided e.g. in Barndorff-Nielsen and Shephard (2006),
Andersen et al. (2007), Lee and Mykland (2008) and Corsi et al. (2008). With
respect to GARCH models Grossi (2004) developed tools to detect jumps (which are
outliers in this framework). Based on Engle (2002) and Engle and Gallo (2003),
Hansen et al. (2010) proposed a GARCH setting which provides a nice mix-
ture between the strengths of GARCH models and realized volatility estimates,
where the realized volatility estimates enter into the conditional volatility term of a
GARCH model. By this setting high degrees of persistence of GARCH conditional
volatilities—already discussed in Andersen et al. (2003, 2007)—can be substituted
for by a much smaller degree of serial correlation of the GARCH volatility term and
a strong dependence on the realized volatility. The parameter estimates verify this
claim.

Our setting approaches the modeling of jumps in a different way. Without working
with high frequency data to estimate the realized volatility, a naive estimate of the
realized volatility is already given by the last squared return. The effect of this term
is already included in usual GARCH settings. To overcome the potential problem of
less persistence of the conditional GARCH volatility with respect to extreme events,
we shall follow Boudt et al. (2011) and work with a setting with additive jumps
(bounded innovation propagation GARCH). Other settings with jumps have been
constructed in Duan et al. (2006, 2007).

For models with additive jumps estimation procedures taking care of outliers
can be adapted. Usually, robust estimation is performed with a quasi maximum
likelihood procedure where some down-weighting is applied to extreme events. Such
estimators have been derived e.g. in Charles and Darn (2005), Muler and Yohai
(2008) and Boudt and Croux (2010). Gran and Veiga (2010) use wavelet transforms
to account for outliers. In contrast to these articles, our chapter explicitly specifies
the distribution of jumps, performs an exact Bayesian analysis (alternatively the EM
algorithm could be used in this setting), and—in contrast to robust estimation—
allows us to study whether jumps impact future volatility differently than continuous
innovations. Potentially, we can estimate the jump intensity, the distribution of the
jump sizes and in addition, the posterior distribution of the latent jump process.

In this article, the continuous innovations follow an asymmetric t-distribution
as applied in Mittnik and Paolella (2000) and Bauwens and Laurent (2005). The
t-distribution is more flexible than the normal distribution to model tail behavior.
Since financial returns are known for their fat tails, a model with t-distributions
allows for parsimonious models with accurate fit in the tails, which is important
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for all kinds of risk management. To speed up computations we extend the results
of Giacomini et al. (2008)—who provided closed form solutions for mixtures of
cumulative distribution functions and quantiles for the Student t-distribution—to
skew extensions of the t-distribution. Identification, however, is difficult to show for
the general case, and we therefore restrict ourselves to mixtures of t-distributions
with exogenously specified degrees of freedom. Yu and Daal (2005) claimed that an
asymmetric t-model (of Hansen type) outperforms a jumps setting in the univariate
case.

Parameter estimation is performed by means of Bayesian simulation techniques.
Although the likelihood is not fully available in closed form, the likelihood con-
ditional on the latent jump process will be given by an asymmetric t-distribution.
This allows us to apply data augmentation (Tanner and Wong 1987) with the goal
of simulating the joint posterior distribution of the model parameters and the latent
processes.

We propose Bayesian model selection to test whether additive jumps play a
significant role. Therefore, we are going to develop an algorithm to calculate Bayes
factors (posterior odds-ratios) by means of importance sampling techniques (here we
follow Friihwirth-Schnatter 2004, 2006). The latent jump process will be integrated
out by means of particle filtering techniques recently developed in Shephard and Pitt
(1999), Doucet and Johansen (2008) and Andrieu et al. (2010). The MCMC sampler
successfully selects models for simulated data. When applied to S&P 500returns
for the time span 11/2007-9/2009 the estimated number of jumps is between 9
and 16. Identified jumps differ from large innovations with respect to their persis-
tence on future return volatility.

This chapter is organized as follows: Sect. 2 introduces and extends multivariate
GARCH settings. Section 3 investigates parameter estimation in a Bayesian frame-
work, while Sect. 4 describes Bayesian model selection. Then Sect. 5 applies our
methodology to simulated and empirical data. Section 6 concludes.

2 A GARCH Setting with Additive Jumps

Consider a risky asset with one period—mean adjusted—net returns of r,, n = 1,
..., N, that follow a GARCH process with additive jumps J, € R:

In = hpey + Jy

p q
hn = Ao+ D Aj(ra—jr = Juej)> + D Bjhu—j +CJ. ()
j'=1 j=1

Let h, describe the conditional volatility and e, be a standardized iid noise term
with absolutely continuous density. Fat tails for e, will be modeled by means of
t-distributed innovations. Ag accounts for the level, A j for the dependence of i, on
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past realizations of E, = (r, — J,)?> = hye?. Equation (1) implies that E,, = r2 in
the absence of jumps, which corresponds to the basic GARCH setting. While with
a standard GARCH model (i.e. zero J and C), any J,—; # 0O enters into h, via
”3—1’ the specification in (1) distinguishes between the impact of the “continuous”
component e, on asset volatility %, and the impacts of jumps. The persistence of the
volatility /, is described by B; while C captures the effect of jumps on 4,,. To keep
things simple—and in line with the later application where we restrict ourselves to
p = g = l—only J,_1 but no higher order lags are included in (1). The parameters
are collected in the vector 6.

To allow for drastic changes in the yields, we include the jump component J,, by
following Boudt et al. (2011) who introduced additive jumps in a GARCH setting.
Their motivation for additive jumps was the observation of a short run impact of
extreme returns on the future return. Our approach differs with respect to their
model by including J,,_ in the conditional volatility function /,,. From a quantitative
finance point of view, C measures how jumps propagate forward into volatility. If
C = 0 then jumps have no memory. In addition since A # C, different decays of
different innovations in the volatility equation are allowed.

The econometric challenge is to estimate the model parameters 6. Note that, &,
depends on Ey, E1, ..., E,_1 and Jo, Ji, ..., J,—1. Neither E, nor J, are observ-
able which complicates the econometric analysis. Let us start a description of the
continuous noise term e,,. Let £, follow an asymmetric t-distribution (see Mittnik and
Paolella 2000; Bauwens and Laurent 2005) with density function w7 (v, (). As
described in Appendix A this distribution has mean i, and variance crg > 0 which
depends on the degrees of freedom v and the non-centrality parameter (. With { = 1
we obtain a standard t-distribution with mean zero and variance v/(v — 2);if { = 1
we shall use the notation 77 (.|v). e, is a standardized variable such that

en = 2 te )

O¢

Appendix A provides more details on this distribution and extends the derivation
of a closed form solution for the cumulative distribution function by Giacomini
et al. (2008). Throughout the chapter, we assume that the fourth moment of ¢,, exists,
which is guaranteed by the assumption » > 4. Summing up, the continuous noise
part is described by the density

m(enl0) = (enlv, C, e, 03) = oot (Enlv, Q). 3)
The jumps are constructed by means of
Jp =Y, Sp. (4)

The jump indicator Y, equals one in the case of a jump in period n, otherwise it
is zero. Following Duan et al. (2006, 2007) we use normal jump sizes. S, is iid
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normal with mean zero and variance 0’3. For notational convenience define rV =

(Fiy ooy Fpy e rn), YN = (X1, ..., Yy), and SN = (S1, ..., Sn).

Jump times and jump sizes are jointly independent. Each Y, follows a Bernoulli

distribution with probability py : = 1 —exp(—X\).! Hence 7(YV|0) = HflV: 1 p/l\(y”:”

(1 — py)l=01_ S, is normal with mean zero and variance 03. This yields
7 (Sul¥n, 0) = 11y, =1y7Ar(Sal(0, 7)) + Liy,=0)05,=0(Sh),

N
a(SVIYN,0) = [ [ 7(SalYa. 0) 5)

n=1

N
r(rV16) = T P (1 = pn)'e=land
n=1
g(IN10) = w (SN, YN0) = a(SM|YN, 0)m(¥ " |60) (6)
where mar(.) stands for a standard normal density, ds,—0(S,) is the Dirac mass at
S, = 0, i.e., equal to one at S,, = 0 and zero elsewhere. The parameters 6 consist
of: v, ¢ (parameters of skewed-Student t-distributions), Ag, A;, Bj and C, with

j=1,....,p,j = 1,...,q (GARCH parameters) and the jump parameters A
and o%.

3 Parameter Estimation

For the model structure described in Sect. 2 Bayes’ Theorem results in
T(ralr™ 1, 0) oc w(ry [P, T, 0) g (I 0)7(6). (7)
Conditional on the current and past realizations of the jump process we derive
en = (hn)~"(rw = J) ®)

such that the conditional density of the returns is given by

T lr" 1 I, 0) = - Te(en)0) = oo (enlv, ©). (9)

1
(v

We get the joint density of returns and jumps by means of

|det(h,) /2|

! Z,}lv:l 1;y,—1) follows binomial distribution with parameters N and p) = 1 — exp()).
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Ty Tl I 0) = 7, 17 T, TN, 0)9(J0160)

1
= —— . og.m7(en|, J. |0
|\/E| e T( n| C)g( n| )
(™, IV ro, Jo, eo, ho, 0) = TN w(ry, Julr" 1, 7771, 0). (10)

Note that, if C = 0 then 7 (r,, |r"_1, J", 0) depends on J,, only, while for C # 0
this density depends of the whole history of J,,. That is to say we need the initial
values X = (ho, Jo, ro) to reconstruct /. The distribution of the jumps J" is given
by densities already described by (5) and (6).

Posterior distribution. Although the density

710 = [ (M7 S5 187 Y7 X0, ) d(S”, Y7, Xo)

n=1
(11)
is not available in closed from, the structure in (7) is sufficient to perform an exact
Bayesian analysis. Given priors for the parameters ¢ and the initial values Xy, the
joint posterior is given by Bayes’ Theorem:

7@, SN, YN, Xolr™V) o n(rN ISV, YN, Xo, O)w(SV, YV |10)7 (6, Xo)

where the jumps are parameterized by Y and SV. The initial values X are required
to calculate A (see (1)). If p or g are larger than one, then X( has to be adapted to
the dimension required by the model. The set of augmented parameters consisting
of 6, YN, SN and X o is collected in W. Although not available in closed form, the
log-likelihood £(6; V) would be given by the log of Eq.(11) evaluated at the data
N .

r*', while

e@; rNVISN, YNy = logm(rN ISV, YV, X0, 0) (12)

will be called the partial likelihood in the following.

Prior distribution. To derive the joint posterior (12), we have to specify our prior
(0, Xo). We assume that this prior factorizes into 7(0)mw(Yy, So|60)m(ho)7(rg). We
put a Gamma prior (wg(.|1, 1)) on hg, while for ry and Sp we use a normal prior with
mean zero and variance 1000. For Yy we use a Bernoulli distribution with probability
pr=1—exp(=A).

mw(0) is the prior for the parameters v, (, A, 03, Ag, Ajr, Bj and C, with Jj =
I,...,pand j = 1,...,q. v is fixed at v = 8 and will not be estimated.? For
the parameters \ and 03 informative priors based on sample moments and a priori
running a Lee and Mykland (2008) jump test have been used. For more details see
Appendix C. For A we use a truncated normal prior 77 A(.| Ao, Ao, A, A). The left

2 Sampling v (with a truncated gamma distribution with truncation value 4, accounting for v > 4)
resulted in a very poor performance of the sampler, the standard deviation of v was high. This was
observed in a model with and without jumps, respectively. Also maximum likelihood estimation
in a model without jumps but with v not fixed resulted in weak performance of the estimation
procedure.
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Table 1 Overview MCMC sampling

Step 1 sample Ag, A/, Bj, C from (Ao, Ay, B, ClrV, YV, SN X, 0_))
Step 2 sample A, 03 from w(\, (73 PN, YN, SN X, 0

Step 3 sample ¢ from 7r(<|rN, YN, SV X,,, 0-)

Step 4 sample YV, SV from 7(YN, SNV, Xy, 0)

Step 5 sample X from w(Xo|r™, YN, SN, 9)

MCMC Bayesian sampling of the augmented parameters W is performed in five steps. 6 always
stands for the remaining parameters. After a burn-in phase, Steps 1-5 provide us with the samples
wY v =1,...,V, from the posterior

boundary, A\ of this distribution is specified as one quarter of the jump probability
obtained by the Lee and Mykland (2008) test. X is set to 0.25, to prevent too frequent
jumps.® Based on simulation evidence for our sample sizes we note that the Lee and
Mykland (2008) test underestimates the number of jumps arising from our GARCH
model approximately by a factor of two. Therefore, the location parameter )\ is set
to two times the number of jumps inferred by the test, which turns out to give a
relatively good proxy for the true jump intensity. The variance parameter Ag is fixed
at 0.1. Appendix C uses the output of the jump test to construct a truncated normal
prior for 03 in a similar way.

To ensure non-negativity of Ao, A/, Bj, and C the support of these parameters
has been truncated at zero. In addition, we constructed a prior based on the GMLO —
(AP0, A;",’ Lo B M L0 EMLOYT obtained in the starting phase of the sampler. Step 1
below describes how AML is obtained. Based on this we use a truncated normal prior
with mean parameter A{)” L0 and variance parameter cfw; the support of Ag is R™.
In the same way, (A ) = WTN(AJ-M??LO, ), m(B)) = WN(Bjuéj.‘“O, )
and m(C) = w7 (CICMLO, 2 ). We set ¢4, ¢2,, ¢%, and cZ, all equal to 0.1.
We assume |A%E(eﬁ) + Blz| < 1 which implies weak stationarity for p,q = 1.*
For more details see the derivation in Appendix B. In addition, we use the second

to fourth sample moments of the returns to construct an informative prior for the
parameters 6. For more details see Appendix C (Table 1).

MCMC Step 1: Sampling of the MGARCH parameters Ao, A/, Bj and C

We propose from the maximizer ML = (Ag/ﬂ“, Aljv,[ of the con-
ditional likelihood (12). Then A" = AML 4 cq0e with ¢ ~ mar(.]0, 1) or

log Ag" = log A%/H‘ + cao¢, etc. Then cag, cal, cp1 and ccp used here corre-

L pML AML\T
7B] aC )

3 This can be thought of an identification assumption to disentangle the innovation variance and the
jump intensity.
4 The innovation e, was defined in Eq. (2) as the standardized innovation to our GARCH model.
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spond to the parameters in the prior. The updates of Ag and B, are performed in one
block, the remaining parameters are updated in separate Metropolis Hastings steps.

. . . . . . 2
MCMC Step 2: Sampling of the jump intensity and size parameters A, o

For both parameters we apply log-random walk proposals. In addition, we use the fact
that for Y,, = 1, the setting corresponds to a regression model with innovation given
by S,,. Based on this we get cg = Zflv:l 1iy,=1; and Cs = Zflvzl l{ynzl}Srzl, where
03 is now proposed from an inverse gamma distribution with parameters c;, Cs. This
proposal is then used in a Metropolis—Hastings sampler. The Metropolis—Hastings
step becomes necessary, since non-conjugate priors are used for this parameter.

For the jump probability % Z,}l\;l Lyy,=ny = % Z}/:le Y, can be used. In a
Bayesian context, we know that based on the model assumptions Y, follows a
binomial distribution with probability py = 1 — exp(—\), such that with a con-
jugate Beta prior with parameters ayg, 3y, the conditional posterior is given by p) ~
m5Clao+ 3N Liy,=1y, Bo+ N — 3N 1(y,=1)) (see Robert 1994, p. 104); 75(.|.)
stands for a beta-distribution. This distribution can be used to propose A as follows:
sample py from the above w5(.|.) distribution. A follows from A = —log(1 — p)),
while the proposal density g () is given by the product of a beta-density with the
above parameters and factor ﬁ arising from the density transformation formula.

MCMC Step 3: Sampling of the parameter driving the asymmetric
t-distribution ¢

For ( a log proposal based on QA'ML has been applied.
MCMC Step 4: Sampling of the latent jump indicators and jump sizes Y~ sV

Jumps are proposed from filtered estimates. To see how this works, first suppose that
Y, = 1 for all n. Then we get from (1):

fn =+hpe, + Sy (13)
Sn :O'Sn—l +<n7

where ¢, ~ N(0, 03), such that (13) corresponds to a model in state space form.

Given the parameters 6 and Xy, filtered estimates of S,, can be derived by means of
the Kalman filter. E.g., from Frithwirth-Schnatter (2006) (p. 404) we get:

1. Propagation step—derive the predictive density 7(S,|r" !, Y™ = 1):
Sulr" ™"~ N @1, Pajn—1) With xppp1 =0, Poppor =075, (14)
2. Prediction step—derive the forecast density 7(r,, [r" !, Y™ = 1):
YY"~ N Gun—1, Capn—1) With Ypju—1 =0, Cyjut = hy + 5. (15)

3. Correction step—derive the filter density 7 (S,|r", Y" = 1):
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Salr™ ~ N Gnjns Pajn) With Xnjn = Ky,

2
95

Z o P =05(1 — Kp). (16)
J n

n=

Based on the filter we propose S,, from a normal distribution with mean x,, and
variance P, . Itis also worth noting that running the filter is not as simple as it looks,
since anfl enters into %,,. Therefore, we have to start with X and run this filter from
n =1,..., N.In each of these steps #,, has to be recalculated.

Now that we understand the choice of the parameters for the jump size, consider
(1) as a regime switching state space model with a degenerated state at ¥,, = 0. In
other words, we consider a switching model with S, ~ N(0, 0%) in state ¥,, = 1
with probability py = 1 — exp(—2), and a degenerated state with Y;,, S, = 0 with
probability 1 — p) = exp(—\) yielding r,, = \/hpe, + Y, S,.

By means of Bayes’ Theorem, we are able to calculate the conditional probabilities
of the state indicators Y, (see e.g. Frithwirth-Schnatter 2006, p. 324):

7Y, = 117", Y"1 S, 5771 9)
T |Y" =1, 8, "1, r"=1 Xo, 0)(1 — exp(=)\))
- () Spy 1, Y11 pn=1, X, 0)
7l Sn, ™1, YL L X, 6)
=a(rp|Y, =1, Y"1, S, "1 7 X0, 0)(1 — exp(=)))
+ (YT =0, Y"1 S, 8" T X, 0) exp(— ). (17)

Therefore, the jump sizes S, are proposed from a normal distribution with mean x,,,,
and variance P,,. For eachn = 1... N we propose Y, from a Bernoulli trial with
probability w(Y,, = 1|r"*, Y n=1 g ~§7°=1 @), This results in the proposal density
q(Yy, Sp),n = 1,..., N. Equipped with samples from g (Y, S,), the jump flags
and sizes are updated by means of the Metropolis Hastings algorithm. If only a block
fromng > 1ton; < N should be updated we proceed in the same way. The filtering
procedure works particularly well if p) is close to the true jump probability. In the
applied part, we mix between full updates of (Y,, S,),n =1, ..., N and updates of
smaller blocks of mean block size ten.

MCMC Step 5: Sampling of the initial values rg, i, Yo, So

X is proposed by means of a normal random walk proposal. Note that, all of rp,
hg and Y, Sp enter into i1, and therefore propagate forward by the autoregressive
structure of £,,.

MCMC: General considerations and pre-sampling phase

Before the sampler is started at sweep v = 1, we alter between a maximization step of
the partial likelihood given J " and sampling J " as described in Step 4;v, (, Aare
kept fixed here. For A we used Ao, ¥ = 8 while ¢ was fixed at one. This presampling
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phase corresponds to a basic EM update of the parameters (see e.g. McLachlan
and Krishnan 1997). After a few steps, this procedure already approaches the true
parameters given that \ is initially chosen rather close to the true jump intensity.
Therefore, the Lee and Mykland (2008) test of jumps is necessary to obtain good
starting values for the jump intensity. In the Bayesian estimation starting after this
initial phase, A is not kept fixed but rather sampled as one of the parameters of the
MCMC sampler.

4 Model Selection

Consider a finite set of models M, with elements M; and the corresponding para-
meters and augmented parameters, 6; and Wy, respectively. The marginal likelihood
7(rN| M) follows from Bayes’ Theorem:

log 7(rN |IM;) = log (" 0;, M) + log w(0|M;) — log (017N, M). (18)

The prior of the parameters described in Sect. 3 for any fixed M; € M is denoted
by m(0;|M;) and 7(6;|r", M;) is the posterior density of model M; where jumps
and initial values have already been integrated out. While the non-normalized pos-
terior (12) was sufficient to construct a Bayesian sampler, all terms in (18) have to
be densities. Since the normalized 7r(91|rN , M) is not available in closed form, a
numerical estimate of the model likelihood 7 (" | M;) has to be constructed. To this
end, we derive a numerical approximation of the integral

N

(N |My) :/ [H (" r" 1 IV, Xo, 9)] dr(JN, Xo, 0). (19)

n=1

This will be done in two steps: First, we integrate out the jumps JV and the initial
values X given a fixed latent parameter 9}. This provides us with the likelihood
7(rV 0%, M;) evaluated at 9}. In a second step, we integrate over 6;. In the following
paragraphs we skip the model index /.

From Bayes’ Theorem we get

T(ralr" ™1, 0) oc ([P YT, S, Xo, ) (Y™, S"|0)m(Xo|6). (20)

To derive 7(rV|0) = I, 7@y |r"~1,0) the latent process J~ —parameterized by
X, = (Y, S;)—and the initial values X are integrated out by means of particle
filtering. The recent literature on particle filtering e.g. Flury and Shephard (2009),
Omori et al. (2007), Malik and Pitt (2009), Chib (1995), Pitt and Shephard (1999),
Shephard and Pitt (1999), Doucet and Johansen (2008), Chib and Jeliazkov (2001)
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and Andrieu et al. (2010) provides tools to do this integration step. We denote the
importance density by go(X|r") and will specify it later.”

We use a filter based on standard importance sampling. With 6 fixed at 6, the
joint distribution of "V, Xo and X" is given by:

N
o1 (Y, X0, XN) = s (X)w (XN) - [ | g Gralr™ =", X™)
n=1
N
= mpi (Xo)mgs (YN, SNy . H Tpi (|1, Y, 8™, Xo). (21)

n=1

The joint density of XV follows from (5), and 1 (n "1, X,)is defined in Eq. (7).6
We sample the particles k, k = 1, ..., K, as follows:

Step P1. Create particles for the initial values X:

(a) Sample X5 = (hf, r(]f, Yé‘, S(})‘) from gyi (Xo).

(b) mpi(Xo) is a prior on the initial values.

(c) Compute the ratio:

(XK
wo(XOK) = Lg) . (22)
99 (Xg)
Step P2. Sample particles Xﬁf: forn=1,...,N:
(a) Sample X,]f from ggi (Xp).
(b) Compute the ratio
N
i (XNK) —1 k
wy (XNF) = S T ] g T XR) (23)
Qo (XN’k) nl;[ 61i\'n
Step P3. An estimate of the marginal likelihood 7y: (r) is now derived as:
1 K
o () = = D wn (XN g (XH). (24)

k=1

Importance Densities. We know from the literature (Shephard and Pitt 1999;
Doucet and Johansen 2008) that the best way to sample is to use gyi (X,) =
i (Xu|r", X,,—1). However, for our setting the normalizing constant of the con-
ditional posterior X,|r", X"1 is not available. Based on the MCMC output WV,

5 We also implemented a sequential importance sampling scheme as e.g. used in Andrieu et al.
(2010); however this algorithm was too demanding from a computational point of view.

6 With MCMC we derived samples from 7 (6, XV |rV) o« #(y", XV |0)7(6), where 6 is a random
variable.
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v = 1,...,V, we get an estimate of the jump probabilities p) , by calculating the
fractions Y,/ V. The sample means of S/, n = 1,..., N, resultin 3‘,1, the estimates
of sample variances are §2. Based on these estimates the particles ¥, are sampled
from a Bernoulli distribution with a parameter py ,, : = max{pmin, Min{pmax, P}l
forn =1,..., N where ppin = 0.02 and pmax = 0.98. This results in YNk For the
jump sizes we sample S¥ from a Student t-distribution with ten degrees of freedom;
the level and variance are given by S, and 52 = max{0.01, §2}. We sample from a
Student-t distribution to apply importance densities with sufficiently strong tails as
required in Robert and Casella (1999) (p. 84) and the literature cited there. Similar to
(5) we derive the proposal density gg: (YV'¥, S¥-¥). The conditional distribution of

SN,k|YN’k is given by Hrlzvzl I{Y#:”ﬁﬂ"f ((S,]f — S‘n)/\/gu()) + 1{Y#=0}6S,1f=()’

where 77 (.|10) stands for a standard Student-t density with 10 degrees of freedom.

The assumption of a Bernoulli distribution implies qg(Y,f) such that qg(YN Ky =

N k N vl(Y,},(=l
Hn:l q@(Yn )= Hn:l p,\,n
densities of XV¥. For g1 (Xo) we used the MCMC means and variances of this
parameters and sample from t-distributions with the same level and scale parameter.

Model Likelihood. Last but not least, we calculate the model likelihood 7T(FN |M)),
by following some arguments in Malik and Pitt (2009). With the above particle filter
we are already equipped with samples from 7 (¥ |6}, M;), which are Tpi (rN) for
some fixed Gli, i = 1,...,1; 1 is the model index while i is a sample index. By
means of importance sampling we sample an estimate of w(rV|M;). 7(rV | M) =
fﬂ(rN|91, Mpdm(6;\M;), where 7(0;|M;) is the prior in (18). By choosing an
importance density g (0|M;) we get the samples Hli, i=1,..., I, and an estimate
of the model likelihood

}(1 — ﬁ,\,n)l‘yﬁtzm. This provides us with the proposal

1 < 7 N0f, MmO} M)
~, N l
FoMM) = =) G :

i=l1

(25)

Each 7 (rV |0}, M;) can now be estimated by Steps P1-P3.

5 Performance in Simulated and Empirical Data

5.1 Simulated Data

The objective of this exercise is to test the performance of the Bayesian sampler
in a controlled environment similar to the data we are later going to use. Based on
maximum likelihood estimates of a standard GARCH(1,1) model (N = 500 observa-
tions of S&P 500returns; November 2007-September 2009; parameter estimates in
Table 2) we therefore pick the model parameters for the simulation to be Ag = 0.006,
A1 = 0.07, By = 0.9, and v = 8. In addition to these parameters we add a jump
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Table 2 Maximum likelihood estimate for a GARCH(1,1)
ML estimates of S&P 500returns

MLE SE p-value
Ao 0.0064 0.0025 0.0102
Al 0.0692 0.0096 <0.001
B 0.9284 0.0090 <0.001
v 7.8708 1.1353 <0.001

Data are mean adjusted S&P 500returns from November 2007 to September 2009. N = 500
observations. MLE stands for the maximum likelihood estimate of the corresponding parameter,
SE for the standard errors

component with an intensity A = 0.05 and a jump size parameter of 03 = 4. The
parameter C was set to 0.2 while ¢ = 1.

We use model (1) to generate series of N = 500 observations each. Table3
presents typical output from the Bayesian sampler. The results presented in this table
are descriptive statistics derived from the samples of the posterior YV, v =1, ...,V,
obtained by means of the Monte Carlo methods described in Sect. 3. IEF stands for the
Chib (2001) inefficiency factor, which provides a measure of how many samples have
to be generated by the Markov chain compared to a situation where we would be able
to draw independent samples from the posterior. Although IEF is not low with our
sampler, we observe that using the filter based updates of the jumps and proposals of
the parameters based on a maximum likelihood routine results in fast convergence and
stable sampling properties. The application of the filtered jump times and sizes and
proposals based on maximizing the partial likelihood by far outperformed the other
alternatives [e.g. a “regression based proposal” used in Kaufmann and Frithwirth-
Schnatter (2002) or random walk proposals]. Although these two sampling steps are
computationally demanding, they are very important to get reasonable parameter
estimates—in addition convergence of the sampler is fast when using these tools.

To check the convergence properties of the sampler we checked/observed the
following: With simulated data, we observed that our hybrid sampler starting with
an EM type pre-sampling phase combined with the application of the Bayesian
sampler as described in Sect. 3 quite rapidly arrives at samples concentrated around
the true parameter values. In addition, we checked whether the sampler produces
multimodal posteriors; however, this was not the case. Moreover, we compared the
posterior distributions produced by the sampler when starting it with the same data
with a different seed and different starting values. Here, the histograms from the
posterior-samples are close to each other. In addition, we implemented the Gelman
and Rubin (1992) test and its modified version in Brooks and Gelman (1998), the
Geweke (1991) convergence diagnostic as well as the Geweke (1991) convergence
diagnostic applied to the likelihood as proposed by Cowles and Carlin (1996). We
observe that the Gelman and Rubin (1992) and Brooks and Gelman (1998) criterion
based on comparing MCMC output of different chains is always passed. With the
Geweke (1991) procedure we obtain reasonable results in most cases, however, as
already pointed out by Cowles and Carlin (1996) the results of this test is sensitive
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Table 3 Estimation results for simulated data with jumps

Data generated from model with jumps
true mean sd min max Q(0.025) median Q(0.975) IEF

Parameter estimates for model without jumps

Ap 0.0060 0.0456 0.0265 0.0080 0.0981 0.0080 0.0470  0.0865 45.4807
Ay 0.0700 0.1505 0.0259 0.0959 0.2303 0.1198 0.1382  0.2132 101.1872
Bi 09000 0.8546 0.0266 0.7941 0.9019 0.7993 0.8539  0.9013 26.1383

€ 0.2000 0.0000 Fixed
v 8.0000 — Fixed
¢ 10000 09892 0.0162 0.9495 10442 0.9554 09886 1.0218  2.4594
A 00500 — Fixed
o 40000 - Fixed

Parameter estimates for model with jumps
Ao 0.0060 0.0155 0.0071 0.0055 0.0366 0.0055 0.0152  0.0249 111.2976
A 0.0700 0.1332 0.0149 0.0977 0.1647 0.0998 0.1324  0.1576 83.1306
1 09000 0.8399 0.0141 0.8057 0.8832 0.8226 0.8327  0.8763 179.1291
0.2000 0.1778 0.0403 0.0706 0.3304 0.1134 0.1768  0.2578 1.7911
8.0000 — Fixed
1.0000 1.0007 0.0152 0.9583 1.0472 0.9753 1.0018 1.0356 4.8794
0.0500 0.0597 0.0054 0.0416 0.0658 0.0470 0.0596  0.0658 66.0968
03 4.0000 3.6387 0.5911 2.4246 6.0296 2.6572 3.6085 5.0154 31.5103
N = 500 observations. The true parameter values are given in the column ‘true’. ‘mean’ is the
sample mean from the posterior, ‘sd’ the standard deviation, Q(0.025), Q(0.975) are quantiles.
IEF is the Chib (2001) inefficiency factor

AT AW

to the subsamples chosen to run this test. When the Geweke (1991) convergence test
is applied to the log-likelihood, the test indicates good convergence properties.

Even with the strong priors on A and 03, the estimated jump sizes exhibit some
downward bias and still too many small jumps which are difficult to distinguish from
large innovations e,—especially if the innovations follow a Student-t distribution.
The GARCH parameters Ag, A1, By and C are difficult to estimate. Especially the
estimates of Ag show a substantial degree of variation. Since Ag accounts for the
level of the conditional volatility, this high Ag is compensated by a lower By and a
small jump intensity A (see (B.6) in Appendix B).

We also simulated data without jumps and then again estimated parameters of a
model with and without jumps. The parameter estimates are presented in Table4.
For both specifications the parameter ( is estimated with high precision.

The second important insight—apart from the precision of the parameter
estimates—that we would like to glean from the simulation is the reliability of the
model selection step as described in Sect. 4. For each of our simulated time series we
estimated a model with and without jumps7 (Miump and M pojump) and the marginal
likelihood as described in Sect. 4. Then the estimation and model selection step is
repeated with a different seed. In each step, we derive four estimates of the model
likelihood and its standard deviation (SD). When comparing the model likelihoods

7 Each of these estimation and model selection steps is done with the same seed.
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Table 4 Estimation results for simulated data without jumps

Data generated from model without jumps
true mean sd min max Q(0.025) median Q(0.975) IEF

Parameter estimates for model without jumps

Ap 0.0060 0.0202 0.0115 0.0049 0.0490 0.0049 0.0184 0.0412 105.9971
Ay 0.0700 0.0226 0.0178 0.0003 0.0984 0.0012 0.0235  0.0599 112.0275
Bi  0.9000 0.8832 0.0597 0.7455 0.9715 0.7496 0.8803  0.9715 110.0528

C — — fixed
v 8.0000 — fixed
¢ 1.0000 1.0014 0.0136 0.9586 1.0456 0.9724 1.0011  1.0298 6.6382
A - — fixed
03 - — fixed

Parameter estimates for model with jumps

Ap 0.0060 0.0126 0.0071 0.0044 0.0499 0.0044 0.0096  0.0266 46.0598

A;  0.0700 0.0346 0.0229 0.0026 0.1309 0.0064 0.0257  0.0851 99.8631

1 0.9000 0.9033 0.0497 0.7525 0.9549 0.8068 0.9246  0.9549 84.5283
— 0.0770  0.0551 0.0002 0.3332 0.0036 0.0681 0.2019 5.0042
8.0000 — fixed
1.0000 1.0004 0.0143 0.9645 1.0487 0.9719 1.0009  1.0266 5.2674
— 0.0255 0.0066 0.0134 0.0351 0.0148 0.0250  0.0351 83.6257

03 - 0.2029 0.0489 0.1552 0.4288 0.1560 0.1871  0.3451 36.6597

N = 500 observations, the data are generated from a model without jumps. The true parameter

values are given in the second column. ‘mean’ is the sample mean from the posterior, sd the standard
deviation, Q(0.025), Q(0.975) are quantiles. IEF is the Chib (2001) inefficiency factor

AT A

we observe that 10/\g7r(rN [Miump) > @w(rN | Mpojump) in all our simulation runs.
In addition, we checked whether

1og 7(r [ Mjump) — aSD(log 7 (™ | Mjump))
> lOl.é7T(7'N|-/\/1nojump) + Ofgl\)(l()g 71'("N |Mn0jump)) (26)

for o = 1, 2, 3. Inequality (26) was satisfied for all simulation runs with « = 1, 2,
and approximately 97.5 % of the simulation runs for & = 3. That is to say, if the
data was generated by a model with jumps, the marginal likelihood obtained by the
sampler is a highly reliable tool to find the correct model.

If the true model is the model without jumps, the above inequality should not
be satisfied, i.e., the marginal likelihood of the model without jumps should be
higher, which was indeed the case for all point estimates of the marginal likelihood.
To investigate the question whether the marginal likelihoods differ significantly,
we once again look at (26) for « = —1, —2, —3. With « = —1, we observe that
for approximately 70 % of the simulation runs inequality (26) does not hold; with
o = —2 and —3, these numbers decrease to 42 and 23 % respectively. So unlike the
case with jumps, in the absence of jumps the distributions of marginal likelihoods
overlap more for the two different specifications.
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Fig.1 S&P 500 returns and estimated volatility. Top panel S&P 500 returns form January 11,2007
to September 30, 2009 measured in percentage terms. Bottom panel Estimated volatility process
and jump dates (dots)

We summarize that the parameter estimation for Ag and A is rather imprecise
in the simulation. Based on the marginal likelihood 7 (Y) and its standard deviation
S/]\)(W(Y)) the true model with jumps is clearly preferred to the model without jumps.
When the artificial data is generated without jumps, the selection algorithm again
always picks the correctly specified model.

5.2 Empirical Data

We applied the sampler to N = 500 daily S&P 500returns; the time span was
November 2007 to September 2009. A maximum likelihood estimate with ( fixed at
one but with variable v has already been presented in Table 2. Figures 1 and 2 provide
a graphical illustration of our estimation results. Figure 1 shows the S&P 500 time
series used to estimate the model parameters and the posterior estimates of #,, for the
model with jumps. The posterior estimates of the jump times are denoted by dots.
Interestingly, we infer jumps in the relatively calm periods of the time series. The
more volatile last months of 2008 are driven by continuous innovations. To highlight
these differences we focus on estimates of A, for different sub-periods in Fig. 2
(upper panel with jumps, lower panel are estimates without jumps). E.g., at the first
jump inferred in April 2008, the increase in /,, is smaller than in the estimates without
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jumps. In addition, we observe that especially in October and November 2008 £, is
much more volatile in the standard GARCH(1,1) model. Since the estimates of C are
larger than zero, the jumps should not be considered as pure outliers. In addition, the
impact of /hye, or J, on future 4, is smaller in the model with jumps (parameter
estimates of A1 and C with jumps, smaller than A without jumps in Table 5).

30 30
25
hp hp 2
20 20
15 15
10 10
5 I\I\\/\l\/»\,\/\\._/\/\/ °
0—e o * 0 .
Apr08 May08 Julog Aug08 Oct08 Dec08
30 30
25 25
hn hn
20 20
15 15
10 10
5 w 5
0 0
Apr08 May08 Julog Aug08 Oct08 Dec08

Fig. 2 Posterior estimates of of /,,, “zoom in” to modest period (/eft figures) and the beginning of
the financial crises (right figures). Top panel Posterior estimates of a model with jumps, estimates
of the jump dates marked by a dot. Bottom panel Posterior estimates of a model without jumps

The prior parameter Ao = 0.022 is obtained by the procedure described in Sect. 3
and data for the pre-estimation period 2000-2007. The estimated jump intensity
based on the Lee and Mykland (2008) test for 2000-2007 data is slightly smaller
than for the actual estimation sample 2007-2009, because the latter contains the
financial crisis. However, as a robustness check we compared the posterior estimates
for priors based on the pre-sample period 2000-2007 and priors based on 2007-2009
and found no important difference. The importance of the Lee and Mykland (2008)
test is not to construct a “good” prior but to provide a reasonable initial value for the
parameter A\ which is important for step 4 of the MCMC sampler.

The Bayesian parameter estimates for a model with and without jumps are pre-
sented in Table 5. The upper part of this table shows the estimates for a model without
jumps. Although the models considered are not exactly the same, compared to the
maximum likelihood estimates (see Table2) the Bayesian estimate of Aj is larger
while Bj is smaller. More importantly, since the model likelihood is much larger with
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Table 5 Estimation results for S&P 500returns
mean sd min max Q(0.025) median Q(0.975) IEF

Parameter estimates for model without jumps
Ay 0.1792 0.0239 0.1328 0.2365 0.1328 0.1803  0.2365 51.6182
A; 01136 0.0092 0.0996 0.1386 0.1018 0.1097  0.1380 137.5502

By 0.8549 0.0099 0.8307 0.8719 0.8307 0.8592  0.8719 112.6735
C 0.0000 fixed

v 8.0000 fixed

¢ 0.9957 0.0112 0.9659 1.0233 0.9768 0.9958  1.0191 2.8678

Togm (N | Muojump) = —1236.4168, SD(log 7 (N | Mpojump)) = 6.1863

Parameter estimates for model with jumps

Ap 0.0348 0.0087 0.0059 0.0631 0.0167 0.0356  0.0506 82.9480

Ap 0.0760 0.0060 0.0630 0.0922  0.0652 0.0753  0.0918 153.5819

By 09116 0.0067 0.8944 0.9264 0.8964 09115  0.9241 162.6749

C  0.1331 0.0426 0.0067 0.3211 0.0542 0.1307  0.2241 23.8281

v 8.0000 fixed

¢ 0.9950 0.0116 09512 1.0403 0.9710 0.9952  1.0173 12.2026

A1 0.0302 0.0087 0.0099 0.0839 0.0162 0.0289  0.0515 61.5177

rﬁ 79145 0.9969 5.1770 /\9.5260 5.8054 8.0274  9.4365 222376
logm (rY [ Mjump) = —1130.6176, SD(log 7 (" | Mjump)) = 10.8231

Time span from November 2007 to September 2009, N = 500. ‘mean’ is the sample mean
from the posterior, sd the ﬁandard deviation, Q(0.025), Q(0.975) are quantiles. IEF is Chib
(2001) inefficiency factor. logm (rV| M) is the point estimate of the log of the model likelihood,
SD(log 7(rN|M))) is the estimated standard deviation. 10,000 MCMC steps, 1,000 burn in

jumps, the model selection tool clearly prefers a model with jumps. The estimated
jump intensity is about 3 %, for the 500 periods considered we inferred 9—16 jumps.

Interestingly, the estimate of A; is substantially smaller than the estimate of C.
Therefore, the persistence of non-jump innovations is much smaller than that of
jump innovations. That is to say those drastic changes which have been inferred to
be a jump have a higher impact on /,4;, j > 1, than changes in v/h,e,. While
robust estimation techniques reduce the impact of extreme observations to improve
parameter estimation, our estimates suggest that extreme observations picked up by
J, have a stronger impact on the volatility estimate than higher levels in h,,e,% and
allowing for them substantially improves the estimation.

6 Conclusions

This chapter developed tools for parameter estimation and model selection for a
GARCH model with additive jumps. Lagged jumps significantly enter into the con-
ditional volatility term. Simulation suggests, that the model selection algorithm is
successful in distinguishing between models with and without jumps for samples of
the same size as our actual data. The data clearly favor a model with additive jumps
rather than a standard GARCH setting, even with Student-t distributed innovations.
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Appendix A: The Skewed Student-t Distribution

In the following steps, we augment Giacomini et al. (2008) and calculate the
cumulative distribution function for the univariate asymmetric Student-t distribution.
First, we repeat some results concerning the distribution function for the univariate
symmetric case. The density of a standard Student t-distribution with v degrees of
freedom is given by:

v+1

7 (x|v) = ) (1 + ﬁ)_Q . (A.1)
NZ IR

The random variable X has an expectation of zero and the variance %5 if v > 1 and
v > 2, respectively. Giacomini et al. (2008) derived the first and the second anti-
derivative for univariate t-distributed random variables by using the hypergeometric
series

_ @ $Ta+blre+ht
G (a,b,c,z) = Fr o) ; rrEs—T (A.2)

Fora, b, c,z € Cand |z| < 1 this hypergeometric series converges, for non-negative
integers n = v/2 — 1 the infinite sum stops after n terms. Then the first antiderivative
D~ '7w7(x|v) provides us with the distribution function Fz (x|v):

Fricn) = ~ 4+ — = Gn(ti_v3 _© (A3)
==+ —— e .
I P A

12

v

where

Ry = —————

Vvl (5)
- ( X (A4)

The second antiderivative of 7 (x|v) can be derived by means of

x2

D217 (x|v) x VIS o (ZL vl (A.5)
rrxly)= -4+ ——-—- — ==, -, ). .
7 2 w—r, P\ T2 T 222w

By the properties of (A.2), G12(.) terminates after /2 — 1 terms.
Remark To derive (A.3) an incomplete beta integral has to be solved:

X

/t”*‘u — 't = B(x, o, B), (A.6)

0
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where B(x, a, 3) is the incomplete beta-function with parameters «, 3 > 0. The
regularized incomplete beta-function Bregularized (X, ¢, ) is the fraction of B(x, «, 3)
and B(«, (), where B(«, [3) is the beta-function. For beta-functions we know that

1/B(1/2,v/2) r (VTH) (A7)
,V[2) = ——=—. .
VAT (3)
Therefore
r _ lB(C, 1/2,v/2) _ Bregularized(cv a, )
/7r7-(x|1/)dx =3 B/2.0/2) = > . (A.8)
0

By the definition and the properties of the hypergeometric function, the reader can
verify that (A.3) and the calculation of the cumulative distribution function based on
(A.8) have to agree.

Distribution Function—Asymmetric Case. Consider the scalar ¢ > 0. An asym-
metric Student-t density can be derived by means of:

mr(xlv, () =2

v+l _vtl
2 <2x2 2
IXZO +{1+ T 1)c<0 . (A9)

The construction of (A.9) follows from Fernandez and Steel (1998), Mittnik and
Paolella (2000) and Bauwens and Laurent (2005). This construction allows us to get
samples from this distribution as follows:

X =W|ZIC— (1 —W)|Z|C!, (A.10)

where W is a Bernoulli random variable with probability ¢2/(1 + ¢?); this is also
the probability that X > 0. Z is standard t-distributed with mean zero and variance

—75. The moments of X are given by:

r+1 —1) r+1
CH et
C+1/¢
In our application where the symmetric distribution is a Student-t distribution, we

getE (X"|X > 0, ¢ = 0) by means of Mittnik and Paolella (2000) or Paolella (2007)
(p- 274). With v > r we get

EX"v, Q) =

(2'12 > 0,(=0). (A.11)
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V2 T (55)
NEENCO I

where I'(.) is the Euler-Gamma function. Equipped with (A.11) define pu, =
E(X'v, ¢) and 03 = EX?v, () — uz. If the first and the second moments exist,
we get the standardized random variable € = (X — )/ 02'5.

Next we derive the cumulative distribution function: We abbreviate the factors of
(A.9) as follows:

E(X"|X >0,(=0) =

(A.12)

=)

(
I (3) vmv

Co=2

20-1N\2\ 2
and,cz:(l—}—x(C)) ’

1+ T y

¢ r
where ¢! = (1,50/¢+1,-0¢)and I = —1ifx > 0and I = 1ifx < 0. To calculate
the distribution function P(X < x) := Fr(x|v, (), x € R, we have to solve the
integral

x TN
Fr(xlv, Q) = coci / (1+(Z<U) ) dz, 8 = 1/42—1. (A.13)

The transformation y = ¢’z and the change of variable formula (such thatdy = ¢/dz
and dz = Ci,dy) yield

y(x) -3

1 y2
FT(xlv,O=coc1/<, (1+ ) dy. (A.14)

y(x) is the upper bound of the integral. CL’ is constant on the sets A; = {y|y > 0}

and A, = {y|y < 0};i.e. we have I = —1 on A; while / = 1 on A;. The structure
of the integrals remains the same, such that (A.14) becomes

1 o0 y(x)
Frxlv, ) =1, <ococy Z/(H ) dy——/(1+ ) dy
A M A
+ Ly>ococ] —/(1+—) dy—i—C/ (1+—) dy
¢ v v
0 0

(A.15)
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Apply the following substitution:

v v vt
5> =1—tsuchthatr =1— 5 and y =
v+4y v—y 1 —1t

(A.16)

For y € [0, 00), 1 —1 € (0, 1) since v > 0. The first derivative is given by

dy 1 /1—-¢ v 1 05 05 ~15
A e = V292 =7, A.17
ar 2V =2 2" (=0 (A-17)

Applying the substitution (A.16) in (A.15) and using (A.17) results in:

1
11
Fr(x|v, g)=1x<0c0c1y0-5§ Z/z—“ (1=
0
: by (y(x))
_Z / 1705 (1 _t)ﬁfl.sdt

1

11
+1x20C0C1V0'5§ Z/t_o,:-,(l ERCREPS
0

0

{ by (y(x))
+ZCZ / l70'5 (] _ t)ﬁ*l.S dr

(A.18)

By (A.16) the lower bound of the integrals remain 0, the upper bound when
integrating to z is b, (y(x)) = 1 — H—y# for the upper bound going to infinity
this results in b, (00) = 1. Therefore, the cumulative distribution function (A.18)
is the sum of beta integrals. For the complete beta integral in (A.18) we directly
apply (A.7) where fo‘ 17051 =0 dr = B, L, %) = (1/e)(1/v%), while
Joe O =05 (1 — 1)=15 dr = B(by (y(x)), 1, %) by (A.6). These facts, (A.7) and
some algebra yield:

1 1
FT@MAC)=1me123(1—%Hv93(hxyﬁﬁ,§,g))

+ Lo (1 + Pe1/vB (bu (r(x)), % g))

1+¢2
1

3 r(4H) 1 v
= 1x<01 T 42 (1 - WB (bu(y(x)), z, 5)
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1 » (5 v
+ 1x201 _|_C2 (1 +C r (%) ﬁB (bu()’(x)), 7’ 2)

P (1_3(17“@()6)),%,5))

1+¢2 B(. %)
1 Bbu(y(x)), 5. %)
leoo—— |1+ ¢ EARE B A.19
! —°1+<2( B0 ) R

Remark Note that we can easily check that (A.9) is a density. Since ( + 1/( =
(14 ¢?)/¢ we obtain

ya _coclﬁ 1 v Ceocia/v 1 v
| v oo = 2% B(E’E)“LTB(E’E)

—00

_ I
= coc1— (1/C+C)c1ﬁ_l'

Remark A further useful property is given by the fact that if Z is standard normal
and Y = VU /v, where U ~ ma2(|v), then X = Z/Y is standard t-distributed
with v degrees of freedom. If Z follows an asymmetric normal distribution based
on Fernandez and Steel (1998), then X = Z/Y follows the asymmetric t-distributed

described by (A.9). To show this fact, it is sufficient to show that 77 (x/(|v, 1) =
2—1//2+] Vl//2

J Iy ey /Qmdy. () = 25— y" " exp(=(y*)/2)1,20 follows from
the 2 density and the transformation rule. o (.) and 7,2 (.) are densities of the stan-
dard normal and a y? distribution, respectively. This equality follows from straight-
forward integration. For the symmetric case this is presented in Paolella (2007)

(p. 80).

Appendix B: Moments and Weak Stationarity

Conditions for strict stationarity for a GARCH setting without jumps have been
derived in Francq and Zakoian (2005), Liu (2006) and Abramson and Cohen (2007).
Here, we check whether our model with jumps is weakly stationary. A time series
is called weakly stationary if the first and second moments exist and do not depend
on the time index, in addition the autocovariances Cx g(rn, rn—s) are independent
of n. Consider the model (1):

rm = hpe, + Jy (B.1)
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P q
hn=Ao+ D AyE,_j+ > Bihy_j+CJL,
j'=1 j=1
= Ao+ A(L)E + B(L)hy. (B.2)

Since E(e,) = E(J,) = 0 we get E(r,;,) = 0. By the model assumptions we also
know that V(e,) = 1. The k-th moment of e, exists for v > k. V(J,) = pAar? by
the construction of the jump component J,,. J,, and e,_; are independent for all
n,n— j; pr=1—exp(=\). With E,, = (r, — J,)> = hpe? we get

14 q
hn=Ao+ D Ajhy_ren_y + > Bihy_j+CJ7_|. (B.3)
j'=1 j=1

By (B.3), h,, follows an AR({) process with random coefficients, such that

)2
hn = (Ao+CJ7 )+ D (Ajen_; + Bhu_j, (B.4)
j=1

¢ = max{p, g}, where A; or B; = 0 for j > p or j > q respectively. Suppose the
second moments of ¢,, and J,, exist.

Given p = g = 1, v > 4 and the assumptions from Sect. 2, Meyn and Tweedie
(2009) (Theorem 16.5.1) imply that (4,) is second order stationary if |A%E(e4) +
Bf| < 1. For p, g > 1 this result can be adapted if necessary.® This yields

p q
E(hn) = Ao+ > ApE(hy) + D BjE(hy) + CE(J;_ ;) such that
j'=1 j=1
1

p q
-2 A+ 201 B

E(h) = - (Ao n Cp;p%) . (B.5)

Since V(X) = E(V(X|F)) + V(E(X|F)) (see e.g. Casella and Berger 2001) and
E(r,|hy) = 0 for any h,,, we get
V(ra) = E(hy) + pro5. (B.6)

For the autocovariance we also use the fact that Cov(r,, r,—s) = E(Couv(r,,
Fn_slhn_s)) + Cov(E(r,|h,_s), E(rp_s|h,—s)). The second term is zero since

8 This can be done by increasing the dimension of the process. While Meyn and Tweedie (2009)
(Theorem 16.5.1) require a positive density with respect to the Lebesgue measure for the stochastic
component, it should be noted that /4, lives on R. On this set there is always a density always
positive. Following Meyn and Tweedie (2009) (Chap. 6) we observe that (%,,) is an aperiodic and
irreducible T-chain as required in the proof of Theorem 16.5.1. Hence, Theorem 16.5.1 still holds
with this slight modification of the process (4,) living on non-negative reals.
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E@rp—s|hy—s) = 0 for arbitrary n and s, while Cov(X,,, X,,—s|h,—s) = 0 for any
s # 0 since e,, ey—s, Jn, Ju—s are jointly independent. This yields

Cov(ry, ru—s) =0 foralls # 0. (B.7)

In addition, we derive some higher order moments: by (A.11) from Appendix A the
kth moment M. ; of €, can be derived as long as v > k. Since ¢, = 5”;“ ¢, where

e =M. and 02 := M., — Mgzl, we get the moments of e,, by means of

M. . — r
M) = (—°” “e) . (B.8)

In the following, we shall approximate the skewness. To derive, it is necessary to
calculate IE(r;Z); we already know that E(r,,) = 0. Here, we get

E(r}) = B((Vhnen + Jn)?)

=E(h)/*ed) + 3E(hye2 J,) + 3E(/hnenJ?) + E(J2)
= E(h)/)E(eD). (B.9)

The second on the third term become zero since h,,, e, J,, are independent and e,
and J,, have an expectation of zero. The expectation of J? is zero by the assumption

of normal jump sizes. For the expected value of E(h;:/ 2) we can perform a Taylor
series approximation (see e.g. Paolella 2007, p. 86), such that

3 1

3/2y o 3/2
E(h ~ (E(h . . B.10
)~ © ) + 50— (B.10)
By using only the constant term of this approximation we derive
EG)  _ EMDEE)  E()lEE) B11)
EEZ (Eha) + prop)3? (Ehg) + prog)¥? '
In a similar way we derive the kurtosis. Suppose v > 4, then
E(r) = E(Whaen + Jn)h)
=E(h2el) + 4B (hy e 1) + 6E(h, 2 J2) + 4E(hy *e, J2) + E(J)
= E(h2)E(ey) +4 -0+ 6E(h,) pros +4 -0+ p\3a5. (B.12)

The second and the fourth term in the second line are zero by the independence
assumption and the fact that E(J,) = ]E(J,?) = 0. The second term follows from
the independence of J,, e, and h, plus taking expectations. The last term follows
from the independence of jump sizes and jump times and the properties of the normal



204 C. Haefke and L. Sogner

distribution. E(efl) follows from (A.11) and the discussion above. It remains to derive
E(h2). Thus,

2
14 q
Eh2) =E| [ Ao+ Z AjE,_ ji+ Z Bjh,—; +CJZ,
j/: j/:1
2

14 14
=E A(2)+2AOZAJ-/E”_1-/+ ZAJ-/E,,_]-/
Jj=1 j'=1

q 14 q
+2E [ A0 D Bjhuj+AcCII  + [ D AyEa i | [ D] Bihaj
j'=1 Jj'=1 Jj'=1

q
+ D Bjhj | CIl,
j'=1

2
q q
+E (D Bihuj| +2( D] Bjhaj | CIi +C?Iy
=1 j/:1
2
p 14
= A§+240 D AJEE)+E | [ D AJE,_j
j'=1 j'=1

q p q
+2 [ A0 D BjEM,) + AcCpacy + | D AJEE) | | D Bjhu-;
j'=1 j'=1 j'=1

q
+{ D BiE(—j) | CE(U} )
=1

q q
+ > BIE(h) +2 [ D] BjE(h) | Cpacy + C?pa3o. (B.13)
j'=1 Jj'=1

Note that E(hye2) = E(h,)E(e,) = E(hy,) and E(h2ed) = Eh2)E(e}) =
E(h,zl)MeA. For p,q < 1 the above expression can be simplified. The kurtosis
E(r)
Er2))?
the denominator is given by (B.6).

follows from the fraction where the numerator follows from (B.12) while
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Appendix C: Construction of an Informative Prior

To arrive at reliable parameter estimates, it was necessary to include some
“additional” information in the data obtained by other statistical procedures. In the
Bayesian sampler, this resulted in informative priors on A and 03.

Tests on Jumps. Lee and Mykland (2008) developed a test on jumps for continuous
time processes. This test is primary design for high frequency data. We apply this test
to daily data. The test provides us with estimates of time point where the process 7,
jumps, this estimates are abbreviated by Y. Since E(y/A1,¢,) = 0 for our GARCH
model we get an estimate of the jump size by means of S};M = r, with sample
variance WA/(S,';M)

In the simulated data, we observe that for a sufficiently large U%, this test detects
approximately 20-50 % of the jumps J,,. > YM/N | therefore underestimates the
probability of a jump p,. Based on this observation we set the mean parameter
used in the truncated normal prior to two times pIXM => Y"™/N. In more details
A = —log(l — « pkM), with o = 2. In addition, we observe that the test gets the
large jumps, such that 0'3 should be smaller than the sample variance of the jumps
heights inferred by this test. Thus, we calculated the variance of the jump size S,I;M
and constructed a truncated normal prior, such that the mean is half the variance of
S,I;M, the variance parameter is set to 2, the lower bound is the variance of the returns,
while for the upper bound we used eight times WA’(S,%M).

Moments of r,. From (B.8) and Pascal’s triangle we get

E ((e0)" hn) = (Ui)rﬂa((en — o)) = (Ui) > (r)E ()l €y

e e =0 J

For the third moment we can use the proxy

E(r}) = E(hy))E(ed) ~ ((E(hn))3/2 L3

TG )2) E(e).  (C2)

where E(h,,) follows from (B.5). For the fourth moment (B.12) provides us with
E(r}) = E(h3)E(e}) 4 6E(h,) pros + pr3oT . (C.3)

With p = g = 1 the term E(h%) becomes

E(h2) = [A%, +2A0A E(hy)

1 — A3E(e}) — B}
+2 (A0BIE(h,) + AoCpr0S + A1 BIE(h)* + BiE(h)Cpro) |

1
+ [
1 — A?E(e}) — B?

2BE(h)Cpacs + C2pp3ot]. (C.4)
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IE(efl) can be obtained by means of (C.1). By comparing the j-th moments
based on these expressions to the sample moments m (rV) we get the scores
g;i(rN,0) = En(ri) — mj(r"). By means of d(rV,0) = g;(rV,0)TQg;(rV, 0)
we map these deviations to one real number. If the parameters perfectly match the
empirical moments d = 0. Therefore, we also use the prior d N, 0 ~x A (d]0, af,),
where aﬁ = 100 controls for the dispersion. The weight matrix €2 is diagonal with
entries (0, 1, 0.1, 0.0001). By this prior we put a joint prior on all model parameters.
By our choice of 2 the impact of this prior on the parameters 6 is neglectably small.
This prior only puts low mass on those # where the empirical moments and the model
moments are very different.
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Jerry Hausman

I am pleased to write a note in honor of Hal’s sixtieth birthday. As memory is a
tricky thing, I hope the following is accurate, but I can make no guarantees. Hal was
among my first three Ph.D. students at MIT who are Roger Gordon, Hal White, and
Paul Krugman. Since my first and only job has been at MIT, I found this supervision
enjoyable and remarkably easy. However, using these three sample points to predict
the future would have been grossly inaccurate, although mostly I have enjoyed the
many MIT (and some Harvard) students I have supervised over the years.

Hal’s thesis was in applied labor economics: “A Microeconomic Model of Wage
Determination: Econometric Estimation and Application”. His other supervisors
were Bob Solow and Lester Thurow. While the thesis uses interesting econometric
methods, the question may arise of why Hal did not write an econometric method-
ology thesis. My memory is as follows. In those days MIT students finished in four
years. Then and now, MIT has much less fellowship money than Harvard and other
universities which can guarantee a longer period. Nevertheless, MIT has far outdis-
tanced other universities in the past 40 years in producing top graduate students.
I told Hal that if by May of his third year he did not have an Econometrica level
paper in process he should do an applied thesis so he could be sure to finish on time.
Perhaps I was too young and inexperienced at the time to give better thesis advice.
However, the initial conditions of his thesis being in an applied topic had no effect
on his subsequent research which I now turn to.

Hal took three econometrics courses from me so, of course, I chose him as one
of my teaching assistants (TA). He was the TA for all three courses so we talked
about the topics in the courses a lot since my yellow note pages were just beginning
to take shape at that time. Hal was a terrific TA, which the students appreciated
given my teaching approach. He led the way for many subsequent TAs including
Bernanke, Paul Ruud, Mark Machina, Whitney Newey, and Ken West over the next
few years after Hal.
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1 My Approach Before White Standard Errors

In the introductory econometrics course I discussed at length the problem of inference
when the covariance matrix was not diagonal. How to estimate (X’ X) ™1 (X’ AX) (X' X) ™!
where A is a diagonal matrix of unknown form? I pointed out that estimation of
the middle matrix followed from the approach of the Berndt—Hall-Hall-Hausman
(BHHH) algorithm: D = ¥ X;¢;¢. X! where D is an estimate of the middle matrix
and (e ) is the least squares estimate of the residual. I missed the “ White standard
error” formula, but instead I took two alternative approaches. I taught that one could
do FGLS (feasible GLS) using a specification for 8i2 using a general polynomial
approach based on the X;s. I emphasized that the specification did not have to be
“correct” since in large samples the estimates of the slope parameters would continue
to be consistent and hopefully have reduced variance relative to the OLS estimates.
However, in the absence of the correct specification for 8,~2 the correct standard errors
and t-tests were not available.

My other approach was to explore “how bad” things could be if one did OLS.
Here I used “ Watson’s bound” (Watson 1967; Hannan 1970), to derive a formula
in the single regressor setup.! The question at hand is how badly will OLS perform
relative to GLS where the answer depends on both X and A. The efficiency measure

is EB easy to compute:
2\
_ i
EBX.A) =D ~ .
i i

Thus, the relationship of x; and oiz is clear. Now for fixed X the approach is to
maximize over A which is a straightforward characteristic value problem. Let us
arrange the A;s from smallest to largest, 0 < A} < --- < Ax where N is the sample
size. Watson’s bound, which is attainable, is

where the estimates of al.z can replace the A% in the efficiency bound formula. Cal-
culating the bound for some illustrative values of the ratio of the largest to smallest
variance yields:

Efficiency Bounds

Ratio 1.2 15 2 5 10 100
Bound 0.992 0.960 0.889 0.556 0.331 0.039

! T also did analysis with multiple right-hand side variables but I will not discuss the results here
since they are more complicated.
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Thus, for cross-sectional data the loss in efficiency is typically not very large.
Indeed, for typical inid cross-section Xs, a refined calculation demonstrates that the
efficiency losses tend to be even smaller. However, as the number of right-hand side
variables grows, the bound deteriorates. Thus, the efficiency loss in a given sample
for fixed X's could be calculated and a bound over all Xs was also available. However,
unless we know the correct specification for the variances in the FGLS approach, we
still did not have an estimate of the standard errors, since this period preceded the
bootstrap approach.

Here, Hal solved the problem with his formula for “White standard errors”, (White
1980). I first heard Hal’s paper at the weekly joint Harvard—MIT Thursday economet-
rics seminar. [ remember walking out of the seminar and saying to my close friend
and co-author Zvi Griliches that Hal’s paper would change the way we do econo-
metrics. Zvi was less enthusiastic, perhaps since Hal had not been his student, but
my prediction appears correct given the presence of Hal’s formula in all econometric
software packages and the large number of citations. Two further points. I talked
with Hal when he was my TA about the “Hausman specification test” approach,
and his comments were quite helpful. Second, the “Newey-West standard errors”
for time series applications followed from two subsequent TAs for my econometrics
courses. So I am pleased thinking that all applied econometrics computer output for
regressions should have output arising from my TAs at MIT.

2 Finite Sample Approach

As Hal’s thesis supervisor, I now propose a possible finite sample improvement to
his approach. James MacKinnon (2011) in his paper in this volume has explored
various bootstrap approaches to improve the finite sample performance of White
standard error estimation. Since I am interested in inference, I will explore possible
improvements in the behavior of the “t-test” using Hal’s approach. However, if one is
interested in the estimated standard errors, one can derive an estimate using division
on the refined t-test divided by the OLS estimate of the parameter.

In large samples the asymptotic approximation assumes we know the true aizs.
However, in finite samples we use estimates of these parameters. Guido Keurstiener
and I explored this effect in inference from FGLS applied to difference-in-differences
models in Hausman and Kuersteiner (2008). We found that taking account of the
unknown variance estimates using Rothenberg (1988) second order Edgeworth
expansion approach led to much more accurate sized tests. Also, we found that
the second order expansion approach did better than the bootstrap in terms of power.
Thus, I have applied a modification to the second order expansion to calculation of
t-tests based on estimated White standard errors.” I have used the design framework

2 This research is done jointly with Christopher Palmer, one of my current TAs. See Hausman and
Palmer (2012).
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from James MacKinnon’s paper to see how his bootstrap approaches compare with
the second-order refinement approach.

I consider the test statistic for linear combinations of the parameters and the null
hypothesis Hy : ¢'B = ¢'By. The associated t-statistic is

B~ Bo
VeVe

We first consider the size of various tests where the estimate of X in the middle
matrix X’ X takes various forms:3

T = (1)

1. HCO: White approach using the OLS residuals to estimate
T = diag {uz} 2

2. HCI: this approach adjusts for degrees of freedom and is the most commonly
used form:
Y =

- - diag faz) 3)

3. HC2: this approach adjusts for the “leverage” values h;, where £ is the diagonal
of the projection matrix.

~2
. u;
Y= dlag[l ; ] “4)
— h;

where h = diag (Py) and Py = X(X’X)_IXl is the projection matrix of X.

4. HC3: this approach is an approximation to the jackknife covariance matrix HCJ,
which I emit here because it is computationally more complicated and provides
nearly identical results. HC3 is a slight modification of HC2:

()
¥ = diag (l—h-) )

See MacKinnon (zou) for results containing HC4, which I omit because of its
poor size performance in this design.

I compare these estimators to the Rothenberg second order Edgeworth approxi-
mation. This approach modifies the traditional two-sided critical values Z, /2 for a
t-statistic of null hypothesis Ho> C’8 = C'By with the equation:

t ==+ 1—A 6
= Za/Z( Z) (6)

where 7 is the sample size and

3 Tuse the same notation that MacKinnon uses in his paper in this volume.
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A= %(1 +20)Vw —azg,—1) —b
_ o XA
3 (X f2a3)
NG
- ZfZ"Z
> Qi
ZfZ 2
F=nxx'x)"'cC
_ Mzf
VIEf/n
0 =n(MEM —Y)
M=1-Py

b=

and u; are the fitted residuals.

However, the experience of applying this formula in Hausman and Palmer (2012)
was that it has significant size distortions. Thus, I apply a non-parametric bootstrap
to estimate . For B bootstrap iterations, I resample (X, y) with replacement from
the original data, forming a bootstrap sample (X*, y*). For each iteration j, I then
calculate B} = (X*¥X*)~1X*y* and take V to be

g3 R ).

J=1

I use this estimated covariance matrix to calculate the test statistic in equation (1)

and make interference by comparing it with the adjusted critical value obtained from

equation (6), an approach. I refer to as the ““ second order bootstrap”, or SOB, method.
To test our approach I use the same simulation design as MacKinnon (2011)

5
i =B+ D BiXik +ui
k=2
Ui = 0;&
&~ N(O, 1)
0i = 2(y) (XiB)”
Xix ~LN@O,1) for k>2
Br=1 for k<5
Bs =0
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where y = 0 corresponds to homoskedasticity, and the degree of heteroskedasticity
increases with y, and z(y) is a scaling factor which ensures that the average variance
of u; is equal to 1.

I first consider the sizes of the various approaches. I test Hy : B5 = 0 with a size of
a = 0.05. In Graph 1 we see that HCO rejects much too often as is well-recognized.

Rejection frequencies for Hn: Bn=0, n=40, «=.05
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The alternatives HC1, HC2, and HC3 offer improvements, but all have significant
size distortions. The “second order bootstrap” (SOB) approach has acceptable size
performance, being the best of the alternatives considered.*

I now consider power performance and compare the SOB approach to a bootstrap
approach to the White test. It is well recognized, e.g., (Hall 1992), the bootstrapped
test statistic for a pivotal situation has the same order of approximation as the second-
order approach. MacKinnon finds the wild bootstrap to perform the best using the
following specification. The wild bootstrap involves forming B bootstrap samples
using the data generating process

vi = XiB + f@)v},

4 1 do not consider the bootstrap form of the White test since Hausman and Palmer (2012) find it
has significant size distortions and will be inferior in terms of the higher order expansions to the
bootstrap version of the test I consider below.
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where #i; are residuals from an estimate 8 of S, f () is one of several candidate
transformations of the estimated residuals, and vl?k is a random variable with mean
0 and variance 1, such that E ( f (ﬁi)v;k) = 0. For each bootstrap sample {X i) yl?k},

I estimate ,BA;‘ where j indexes the bootstrap sample, j = 1, ..., B, and calculates
the test statistic of interest, as in (1), using a particular heteroskedasticity-robust
estimator of the variance of ﬁ

MacKinnon (2011) shows that using the wild bootstrap to estimate the distribution
of test statistics based on HC1, using v} € {—1, 1} with equal probability, restricted
residuals (i.e. B is estimated imposing the null hyptothesrs) and a transformation
of the residuals corresponding to HC3, f(u;) = (Where h an element of the

diagonal of the restricted projection matrix Py) performs best in terms of size and
power.

I now compare the second order-bootstrap (SOB) approach to the best bootstrap
approach found by MacKinnon. In Graph 2, we see that the SOB approach has good
size properties as does the wild bootstrap (WB), by construction.

Rejection frequencies for Hn: BI}=D’ n=40, «=.05, y=1

However, the SOB statistic has considerably greater power than the WB. In Graph
3 for the case of severe heteroskedasticity, we find a similar result.
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Rejection frequencies for HU: BD=U, n=40, «=.05, y=2
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The size of both tests is quite accurate, but the power of the SOB approach exceeds
the power of the WB by a considerable margin. Thus, I conclude that the second
order bootstrap (SOB) approach appears to be better than alternative approaches to
calculating the White test in finite samples.

The refinement to the t-tests arising from the second-order bootstrap approach
is straightforward to program for econometric software. Thus, I recommend that
econometric software providers include the refined SOB formula since it is typically
(weakly) more accurate than the standard White formula.’

Hal has written many other important papers since his heteroscedasticity paper.
I recommend to the reader the papers in this volume to see the breadth of Hal’s
research interests and contributions. I take great pride in Hal’s accomplishments
over the years and congratulate him and the conference organizers for celebrating
Hal’s sixtieth birthday.

Acknowledgments I thank Christopher Palmer for assisting in the preparation of this note.

3 Similar refinements could be quite useful in the case of Newey-West and GMM estimated covari-
ance matrices, where the number of unknown parameters estimates is significantly larger than in
the heteroscedasticity situation.
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Open-Model Forecast-Error Taxonomies

David F. Hendry and Grayham E. Mizon

Abstract We develop forecast-error taxonomies when there are unmodeled vari-
ables, forecast ‘off-line’. We establish three surprising results. Even when an open
system is correctly specified in-sample with zero intercepts, despite known future
values of strongly exogenous variables, changes in dynamics can induce forecast
failure when they have nonzero means. The additional impact on forecast failure
of incorrectly omitting such variables depends only on unanticipated shifts in their
means. With no such shifts, there is no reduction in forecast failure from forecast-
ing unmodeled variables relative to omitting them in 1-step or multi-step forecasts.
Artificial data illustrations confirm these results.

Keywords Forecasting - Forecast-error taxonomies * Location shifts - Open models

1 Introduction

Our pleasure at contributing a chapter on forecasting to a volume in honor of Hal
White, for whom forecasting was a salient research topic, has been completely dashed
by Hal’s tragic and premature death. Nevertheless, we should still celebrate a won-
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derful and generous individual who will be sorely, missed as well as the many major
research findings that flowed from Hal’s immensely creative mind.

There are a number of taxonomies of the sources of forecast errors in closed
systems where every variable to be forecast is modeled: see for example, Clements
and Hendry (1998), Clements and Hendry (2006) and Hendry and Hubrich (2011).
Such taxonomies have clarified the problems facing forecasters when parameters
change. Forecasting variables as part of systems that are subjected to unanticipated
changes is difficult, as recent floods, tsunamis, and the financial crisis demonstrate.
Systematic forecast errors and forecast failures are mainly due to location shifts,
namely changes in the previous unconditional means of the variables being forecast,
and changes in other parameters can be hard to detect, as shown in Hendry (2000)
and illustrated by Hendry and Nielsen (2007).

In practice, many forecasting systems include unmodeled determinants, whose
future values are determined ‘off-line’ by a separate process: examples include com-
modity prices, exchange rates, and outputs of trading partners. There are many rea-
sons for not modeling some variables, namely those that are exceptionally difficult
to forecast accurately, other variables that are policy instruments determined outside
the system in use, and some weakly exogenous variables where conditioning on them
incurs no loss of information for modeling: see Engle etal. (1983). Using a taxonomy
of the consequences of including or excluding ‘off-line’ variables as inputs in fore-
casting models, we clarify the forecasting problems which could result. Even when
the forecasting model is correctly specified in-sample having accurately estimated
coefficients, with unmodeled variables that are strongly exogenous and known into
the future, nevertheless changes in the dynamics of the system can induce forecast
failure simply because the unmodeled variables have nonzero means.

At first sight such a claim seems counter-intuitive: if a variable y, is determined
by

Ve =VYYi—1+ Az + &

say, when &, ~ IN[O, 082], and z; is strongly exogenous, then for known Az;:

Ot —Az)) = yyi—1+ & (D

where the right-hand side has no intercept. Hence it might seem that (1) is in the
class of models where change is hard to detect. However, if z; has a nonzero mean,
then so does y;, and that alone makes the model susceptible to forecast failure after
any parameters change, and as we show below, that result holds whether or not z; is
included in the model.

There are four distinct scenarios to consider for 1-step ahead forecasts, when
facing parameter shifts in the data-generation process (DGP). First, where strongly
exogenous variables with known future values are correctly included in the fore-
casting model and all parameters are known (or sufficiently precisely estimated that
sampling variation is a second-order issue). Second, when the strongly exogenous
variables are unknowingly and incorrectly omitted. Third, when the strongly exoge-
nous variables need to be forecast, either within the system or ‘off-line’. Finally,
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allowing for parameter-estimation uncertainty, model misspecification for the DGP
and measurement errors at the forecast origin, a setting which in principle is applica-
ble to all three previous cases but here is only considered for the third. An analo-
gous four scenarios arise for multi-step forecasts, but as the key results seem little
affected, we focus on the first four scenarios and briefly note extensions to forecasting
more than one period ahead.

Section 2 investigates a correctly-specified 1(0) open system to consider the
sources of forecast failure that can result from changes in the parameters when
the m unmodeled strongly exogenous variables, z;, have nonzero means. Section 2.1
investigates any additional impacts from unknowingly omitting the z,, and Sect. 2.2
compares 1-step forecasts one period later in both those settings. Section 3 develops
1-step taxonomies, first for excluding the z;, then in §3.1 when they are forecast
‘off-line’, also allowing for parameter-estimation uncertainty, measurement errors at
the forecast origin, and mis-forecasting the z,. Section 4 provides an artificial data
illustration of the analytical results. Section5 considers multi-step forecasts when
the exogenous process is known in the future, then §5.1, §5.2 and §5.3, respectively
consider the impacts of omitting the unmodeled variables, forecasting them, then
parameter estimation. Section 6 briefly notes the transformations needed to reduce
an initially 1(1) system to 1(0). Section7 concludes. The appendix compares fore-
casting in open and closed 1(0) systems.

2 Forecasting in an Open 1(0) System

Consider an open 1(0) system conditional on a set of m strongly exogenous variables
{z;},! which are known into the future (lagged unmodeled variables can be stacked
within z,) where the conditional DGP overt =1, ... T is:

Vi=T+7Tyi—1+ 12 + & (2
when & ~ IN, [0, £] and E [¢z; ...2745] = 0. A system which is I(1) and
cointegrated is considered in §6. When all the variables are weakly stationary in-
sample, so the eigenvalues of 7" lie within the unit circle, and we initially set all
parameters to be constant, taking expectations in (2) when E [z,] = p:

E[y,]=¢=1+T¢>+FE[Z,]=I+T¢+F,0,
so the in-sample equilibrium mean of y is:

=0, —T1)"" (t+Ip) 3)

Consequently, we can re-write (2) as:

I Corresponding to ¥,y = 0 in the Appendix.
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Yi—=¢=T 1 =)+ 1 (2 —p)+& “4)

Below, we use whichever parametrization (2) or (4) proves most convenient, although
it must be remembered that how the means ¢ and p are connected in (3) depends on
the invariants of the underlying behavior represented by agents’ plans. For example,
(3) only entails co-breaking between ¢ and p so long as the other parameters remain
constant when p shifts: see Hendry and Massmann (2007), for an analysis of co-
breaking. Concerning notation for forecast values, y denotes a correctly specified
model with known future z; ¥ denotes when z is omitted from the model; and ¥ is
when the z are included in the model, but future values need to be forecast; and if
needed, ? for that last case when parameters are estimated. Y7 denotes an estimated
forecast-origin value.

We first consider a 1-step ahead forecast from time 7 for known z7; from a
model that is correctly specified in-sample with known parameter values, denoted:

Yreyr =T+ 1yr + I'eryg (5)

However, the DGP in the next period in fact changes to:
Yr+1 =t +T*yr + Izri1 + e (6)
where all the parameters shift, including the dynamic feedback, and p shifts to

E [ZT+1] = p*. The resulting forecast error between (5) and (6) is €717 = yr+1 —
Y7417 and hence:

grrr =" =)+ (Y =")yr + (I’ —=T) zr41 + e741 (7)
so that:

Efereir] = (" =) + (7" = T)Eyr] + (I = ) E[zr41]
=(t" =)+ (r* ="1)¢p+ (I'*—r)p* t))
Consequently, even if 7* = 7 = 0 so (7) has no intercept and I'* = I" and p* = p,
so (8) then does not depend directly on z7 4| which anyway has constant parameters,
nevertheless forecast failure can occur for p # 0 when T* # 71" as then:

Elerur]=(r*=7) @, -1~ I'p ©)

which reveals an equilibrium-mean shift occurs in {y,}.
This outcome may be clearer when (4) is written using (3) as:

V=@ —T) "' @H+Tp)+T (yo1 — @)+ I (2 — p) + & (10)
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sothateven when t = 0, although (y;—1 — ¢), I" (z; — p) and &; all have expectations
of zero, (10) entails an equilibrium mean of

L —1)""'Ip (11)

which is zero only if p = 0 when I" # 0.

This is our first main result: despite correctly including unmodeled strongly exoge-
nous variables z, with known future values in a forecasting equation with no intercept
and known parameters, a change in dynamics alone can induce forecast failure when
the z; have nonzero means.

More surprising still is that such failure is little different to that resulting either
from modeling and forecasting z; (see §3) possibly by a vector autoregression (VAR)
say, or even excluding z; entirely from the model, either deliberately or inadvertently,
as we now show in §2.1.

2.1 Omitting the Exogenous Variables

If it is not known that z, is relevant, so it is inadvertently omitted, the misspecified
model of (4) is:
Yi=¢+ T (-1 — ) +uy (12)

where the subscript , in (12) denotes the finite-sample expected value following
misspecification (i.e., E[Y] = T.). Then w; = I, (z; — p) + & with E[u,] = 0.
Provided there have not been any equilibrium mean shifts in-sample, then ¢, = ¢.
The forecast using the expected parameter values (to abstract from sampling uncer-
tainty) is:

Yr+nyr = ¢ + Ye (yr — @) (13)

with Uz 17 = yr+41 — ¥7+1)7 Where (6) is reparametrized as:
yre1 =" + 7" (yr — ") + I (2041 — p*) + 711 (14)
where ¢* = (I,, — 5! (t* + I'*p™*). Then:
urpyr = (0" — @) + Y (yr — ") = Ve (yr — ) + I (2011 — p¥) + €711
=L—=7")(¢* =)+ (Y = 7o) yr — ) + I (2041 — p*) + 82;%1)

with:
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E[ursir] = L —7") (¢* —9)
= -1)+ (Y =")p+ (I =T)p*+ T (p*—p) (16)

Thus, (8) and (16) only differ by I" (p* — p), and hence are the same when p* = p
despite the mis-specification. When also t* = t = 0 and I'* = I", both are nonzero
at the value in (9). However, the forecast-error variances will differ between (15) and
(7), with the former being larger in general.

This is our second main result: the additional impact on forecast failure of incor-
rectly omitting strongly exogenous variables depends only on shifts in their means.
Combining these first two results, as the comparison of and (8) (16) shows, when
their means are constant at zero, then irrespective of whether or not these strongly
exogenous variables are included in the forecasting system, they neither cause nor
augment forecast failure.

2.2 1-Step Forecasts One Period Later

The analyses of forecasting one period after a break in Clements and Hendry (2011)
show that results can be substantively altered because of the impacts of the breaks
on later data. From (6):
Yr+2 =T+ T yr + T zra +er42 a7
so that as E [ZT+2] = p*:
2 2
Elyri2] = + Y Elyrs1| + TE[zr42] = (In - (r") )¢* +(r)°e
2
=¢* = (") (¢" - 0) (18)

as¢* = (I, — T*) "' (t* + I'p*) and E [yr41] = ¢* = T* (¢* — ¢). Forecasting
from (5) updated one period, but still with in-sample known parameters, so:”

Yror41 =T+ Yyrqp + '2rpo (19)

the resulting forecast error 742|741 = Y742 — yT+2|T_H is:

2 Recursive or moving windows updating will drive the forecasting system toward the robust device
considered in §2.3.
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g1 =L+ Y =)L = T") (¢" — 9) (Ua)

+(r*=7) (yr+1 — E[yr+1]) (I1a)

+eri (111a)

+ (I =T) (2142 — p%) (IVa)
—I'(p*—p) (Va) (20)

with
Elersori] = L+7"=7) (L =) (" —¢) =T (0" —p) (2D
Similarly, omitting the z7 >, so using:

Yr42r+1 =@ + Vo (Y741 — @) (22)

then as:

Yri2 =¢" — (T*)2 (¢* — @)+ 71" (yrs1 —E[yra1]) + I'* (zr2 — p*) + 6742

(23)
the forecast error €74274+1 = Y742 — Y742/7+1 18:
rrr =L+ Y =)L, =T (¢" —9¢) U
+(r*=7.) (yr+1 — E[yr+1]) (I1b)
+ers2 (I11b)
+ I (ZT+2 - ,0*) (1Vb) (24)
with:
Elfriars] =L+ T"=7) (L = T%) (6" — ¢) (25)

Consequently, unlike Clements and Hendry (2011), comparing (21) and (25) shows
that there are no substantive changes compared to the baseline case here, and those
two formulae are essentially the same when p* = p.

2.3 Avoiding Systematic Forecast Failure

One implication of §2.2 is that until the forecasting model is changed, systematic
forecast failure will persist. Out of the many possible methods for updating a model by
intercept corrections, modeling the break, recursive or moving window re-estimation
and differencing, we only note the last here: see Hendry (2006). In place of (22),
consider simply using the first-difference forecast, Ay7 2741 = 0:



226 D. F. Hendry and G. E. Mizon
Yrior41 = Y141 = ¢+ T* (yr — %) + I'* (2741 — p*) + 6711
so that using (23), §T+2|T+l =Yyr42 — S"T+2|T+l is:

ETi2r41 = ¢ — (T*)2 (¢* =) +T* (yre1 —E[yrs1]) + T (zr12 — 0%)
+er2—¢" +T (0" —¢) —T* (yr—¢) — I'* (2141 — p*) — e741
=T (L, —7") (¢* —¢) + T* (yr+1 — E[yr+1])
—T*(yr —¢) + ' Azrio + Aer2

SO:
Eleri2rt1] =7 (L = 7") (¢* — 9) (26)

which considerably dampens the forecast-error bias relative to (20) and (24) (e.g.,
for a univariate y,, then 7* (1 — T*) < 0.25).

3 1-Step Taxonomies

We now also allow for parameter estimation uncertainty, the misspecification of
omitting z, and possible mismeasurement at the forecast origin, so the forecast-period
DGP remains (14), whereas the forecasting model becomes:

Yrsur =6+ 7 (Yr — ) 27

The forecast error, €717 = Yr+1 — Yr+1 7 can be decomposed into eleven
empirically-relevant sources when ¢, # ¢:

ErpiT = (I,, — T*) (¢* — ¢) [1] equilibrium-mean shift
+(Y*=7)(yr—¢) [2]dynamic shift
+{, = 7) (¢ — o) [3] equilibrium-mean mis-specification
+ T -T)Gr—¢) [4
+ @ =T (e —9) 5
+ (Te — 17) T — ¢) [6] dynamic estimation (28)

+ 7. (yr —¥7) [7] forecast origin mis-measurement

]

]

]

] dynamic mis-specification

] equilibrium-mean estimation

]
]

+(T-7.)(¢—9) [8] estimation covariance

+ (’17 —7.)(yr —¥r) [9] measurement covariance

+eT41 [10] innovation error

+ I'* (2741 — p¥) [11] omitted variables
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As with earlier taxonomies, terms in (28) can be divided into those with nonzero
expected values that lead to forecast biases, namely [1] and possibly [3] and [7]
(noting that [8]is O,, (T~1)), and those with zero means that only affect forecast error
variances, namely all the other terms, noting that E[y; — ¢] = E[z74+1 — p*] = 0.
Thus, despite estimating a misspecified system with omitted variables:

Eleriyr] = L = 7") (6" —¢) + 1o (¢ — E[¥7])

which matches (16) when E [’yT] = ¢.

This outcome could be compared directly with that from including the known z; in
estimation and forecasting by dropping line [10], stacking X; = (y; z;) and redefining
parameters, estimates, and variables accordingly. Indeed, when I'* = I = 0, (28)
becomes the forecast error taxonomy for a VAR.

3.1 Forecasting the Unmodeled Variables

However, the more interesting and realistic case is where z7 | is known to be relevant
and has to be forecast with its parameters estimated in (2), which we now consider
via:

Yrenr =6+ 7 (Y1 — @) + T @re1 — P) (29)

compared to (6). Although the following derivation is under the correct specifica-
tion of (29), the results above show that misspecification does not create important
additional problems, and for the dynamics, is already reflected in (28). Then, letting
Er41/T = Y7+1 — Y7+1)7, all the terms from (28) remain other than [11] (still allow-
ing for finite-sample biases in the dynamics, so 7, # 7, but for simplicity taking
E[p] = p and E[f ] &~ I') with the following 9 terms replacing the old [11].

Ty = [1]-[10] in (28)
—T (p* = p) [11] exogenous mean shift
+ (I'* = T) (zr41 — p*)  [12] exogenous slope shift
+T (p—p) [13] exogenous-mean estimation

— (F — 1") (ZT+1 — ,o*) [14] exogenous slope estimation (30)

+ I (2741 — E[Zr11]) [15] exogenous mean mis-forecast

+ (F —T) (@ —p) [16] estimation covariance

— (f — F) (,o* — ,o) [17] exogenous mean shift covariance
+r (E [ir+1] —iT+1) [18] exogenous mis-forecast.

+ (f — F) (Zr+1 —Zr41) [19] exogenous mis-forecast covariance
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We focus on the terms in (30) with non-zero expectations, where E [zr+1] = p*,
and for simplicity covariances are ignored as a smaller order of magnitude. Then
combined with (28):

E[eriur]~ (L —7%) (¢" —¢) = I (0" = p) + Y. (6 — E[¥r])
+ I (p* — E[Zr41])
=(t*—1)+(r*=")¢+(I'*—T)p*+7.(¢p —E[¥r])
+ I (0" —E[Zr+1])

from (16). As before, when 7+ = 7 = 0 and I'* = I, with E [y ] = ¢:
Elersir]~ (r*=7)¢+ I (0" — E[zr41])

compared to E [d7417] = (Y* =) ¢ + I (p* — p), so:
E[érsiyr] — E[dr4nr] = =T (E[Zr41] — p) (31)

This is our third main result: exogenous variable forecasts have to be closer to the
new mean p* than the old mean p to deliver a smaller forecast error bias than arises
from omitting them.

When p* = p, E [2T+1] = p is necessary for E [§T+1|T] = E [ﬁr+1|r],
and even then there will be variance effects both from parameter estimation and
(E [iT+1] —iT+1). This is our fourth main result: when p* = p, there is no reduc-
tion in forecast failure from accurately forecasting the exogenous variables relative
to omitting them.

Our fifth main result is: this outcome does not depend on the strong exogeneity
of the unmodeled variables, and holds even when they are only weakly exogenous.

Without strong assumptions about the dependencies between the many mean-zero
terms in the taxonomy, it is not possible to derive explicit forecast error variances, but
it is clear there are many contributions beyond the innovation error variance, some
of which could well be O p(1), such as mis-forecasting the unmodeled variables, and
forecast-origin mismeasurement. Moreover, as forecast errors could arise from every
possible (non-repetitive) selection from the 19 terms, namely Z,igz 191/ (19 — k! =~
3.3 x 10'7, delineating their source must be nearly impossible.

4 Artificial Data Illustration

We consider a bivariate system with one unmodeled (strongly exogenous) variable,
with known future values, where the baseline parameter values are t = 0 and p = 0

when:
050 1
T:(o 0.5) r= (1) (32)
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Fig. 1 Forecast failure for correct and misspecified models
with X =I,, T =100,and & = 1, ..., 5 1-step ahead forecasts after the break. The
parameter shift investigated is:
0.750
*
r= (0 0.5) (33)

first for the baseline, then when p = 0 but:

T= (g) (34)
and finally when t = 0 but p = 5.
The two equations are decoupled in this first experiment, whereas in the second:

0.5 05
r= (—0.3 0.5) (35)
again for the same scenarios.

The results of the first set are reported in Fig. 1.

Panel a records forecasts yi 744 |7+hr—1 from a single draw of the initial process
in (32) when parameters are estimated, shown with error bands of 2671, and when
including parameter estimation uncertainty, shown with bars. There is a very small
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increase in forecast uncertainty from adding parameter variances, consistent with an
O,(1/T) effect.

Panel b reports forecasts when z; is omitted both in estimation and forecasting.
Although the forecast intervals are wider, forecasts are similar and remain within
their ex ante forecast intervals.

Panel c is for the correct specification but after the shift in (33), still with 7 = 0
and p = 0. Despite the break in the dynamics, forecasts remain within their ex
ante forecast intervals, even though those are now incorrect. Panel d augments the
problem by the incorrect omission of z;, but hardly differs from Panel b.

Although we do not report the outcomes for a constant model and nonzero t, they
are well-behaved around the new data outcomes. The same cannot be said for the
outcomes in Panels e & f for the nonzero value of t in (34) after the break in 7" in
(33): forecast failure is manifest, and almost unaffected by whether z; is included or
omitted.

Finally, for p = 5, Panels g & h show the forecasts for the same break when the
model is correctly specified by including z;, and incorrect by omitting it. Despite the
known future values of z; and the absence of forecast failure after the break when
p = 0, failure is again manifest and similar to Panels e & f.

The second setting in (35) yielded similar results, even though throughout both
sets of experiments, the second variable was correctly forecast. All these results are
consistent with the implications of the taxonomy in (28).

5 h-Step Ahead Forecasts

We now consider the outcomes when an investigator needs to forecast h-steps
ahead, 1 > 1. As the impacts of parameter-estimation uncertainty, mis-forecasting
the unmodeled variables, and forecast-origin mismeasurement are similar to those
derived above, we first derive the outcomes for known parameters to highlight the
impacts of breaks when there are unmodeled variables. Thus, the in-sample system
remains:

Vi=¢+T G — @)+ T (@ —p)+e

forecasting from 7'+ h — 1 to T + h by:

YT 4nT+h—1 =S+ Y (Yr4n-11+h—2 — @) + T @141 — p)
leading to the multi-step forecast:

h—1

Yrenr = ¢+ D YT (arpn-i —p) + " (yr — ¢) (36)
i=0

If the system remained constant, the outcome would be:
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h—1

Yo =9+ D [T @rani = p)+ Yeroni |+ T 01 —0) 6T
i=0

so a known future {z,} enters the same way as the cumulative error process. Then
qu:_ol Yier n_; would be the only source of forecast error when equation (36)
was used. However, that will not remain the case once there are changes in para-
meters, misspecification of the model, or mis-estimation of I" in (2), or unantici-
pated changes to p in the forecast period when the {z7,—;} are not known with
certainty.

As before, we allow for structural change in the DGP, but to highlight the key
problem, we first analyze a setting without estimation of, or misspecification in, the
econometrician’s model for the DGP in-sample, so the in-sample parameter values
are known. Under changes in all parameters of (37), the actual future outcomes will
be:

h—1
Yron =¢* + z (r*)’ [ (274h—i — p*) + e1n—i ] + (T*)h (yr —¢*) (38)
i=0

When (36) is used, the forecast error vy 7 = Y71 — Y7447 becomes:

Vit =% — ¢+ (V)" (yr —¢*) = 7" (yr — ¢)
h h—1
+ D (YY) I (2rsn—i = 0%) = D X'T @rn-i — p)
i=0

|
—_

Il
=}

= ~
—_

+ (T*)i ET+h—i

i

Il
=}

Taking these rows one at a time, and using:

h—1
S A= (1,, - Ah) I, —A)~!
i=0

first:

¢ —o+ () (yr —¢") =" yr — )
= (L= ()Y @ -9)+ () = 7") 57— )

where the terms respectively represent equilibrium-mean and slope shifts. Next:
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h—1 h—1
z (r*) I'* (zr4n—i — p*) — ZTiF (ZT4h—i — P)
i= i=0
h . ‘ h=1
= [(T*)l r*— T’F] (27 4n—i — p*) — ZT’F (p* = p)
' i=0

|
—

Il
=}

where the first component has mean zero and the second is part of the exogenous
mean shift. Finally, combining:

VIthT = (In — (T*)h) (45* - ¢>) [A] equilibrium-mean shift
+ ((T*)h - Th) 47 — ) [B] dynamic shift
— (I,, — Th) @, — ’f)_1 r (,0* — p) [C] exogenous mean shift
(39)

h—1
+ Z [(T*)l r*— T’T] (zr+n—i — p*) [D] exogenous slope shift
i=0
h—1 _
+ Z (T*)l ET+h—i [E] innovation error
i=0

This outcome matches the earlier taxonomy specialized appropriately, namely [1],
[2], [9], plus new [11], and [12]. As terms [A] and [C] have nonzero means, and the
others have zero means:

h _
E[vra] = (L= (r)") @ =) = (L= 7") @ =77 1 (0" = p) (40)
Thus, even h-steps ahead, when p* = p, forecast biases depend on (¢* — ¢) which
is nonzero whenever p # 0 despite t* =17 = 0.

This is our sixth main result: the first two results continue to hold for multi-step
forecasts.

5.1 Omitting the Unmodeled Variables in h-Step Ahead Forecasts

The forecasting model in-sample is now (4) leading to the multi-step forecasts:

Yranr = ¢+ ()" (yr — ¢) (41)

When (41) is used, the forecast error V747 = Y744 — YT+4|T becomes:
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Vranr = (¢* — ¢) + (Y%)" (yr — 6*) — (V)" (yr — @) + Vrin
= (L)) (@ -9)+ ((T*)” - (") 4r - )
h—1
+ Z( T¥) Cerin—i + Z *(2r4n—i — p*) (42)
i=0 =

matching the four terms in (15), where:
h—1 ‘
VT4h = Z (Y*) [T* (2r4h-i — p%) + eT4h—i]

i=0

with E [v74] = 0, so that:

E[Fraur] = (1. - (r9)") (" - 9) (43)

This is our seventh main result: the previous conclusions about forecast failure based
on the 1-step analyses are essentially unaltered: when p* = p, (40) and (43) are equal,
so forecast failure is only reduced by the inclusion of unmodeled variables when they
have mean shifts.

5.2 Forecasting the Unmodeled Variables in h-Step Ahead

Forecasts
Now:
h—1 )
Yronr =6+ O VT Groni —p)+ 7" (yr — ¢) (44)
i=0

with the forecast error Vi1 = Yr4h — YI+4|T:
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-1 .
Vranr = (¢ —¢) + (T*)h (yr — &) — (T (yr —¢) + z (r*) erqn—i
i=0
h-1 ‘ el
+ Z (r*) I'* (zr4n—i — p*) — ZT'F ZT4h—i — P)
i=0 i=0
h h - '
= L= ") (6"=9) + ()" = ") o7 =) + D () e

i=0
h—1 h—1

+ Z ((T*)i F*—Tif) rsn—i—p*) — ZTiF ZT+h—i — ZT+h—i)

i=0 i=0
— ZT’T (p* = p) (45)
i=0

In the second block, the first three terms are identical to those in (42), and
Z?;ol (Y*)! I'* (z74n—i — p*) has been replaced by terms relating to the shift in
the dynamics (with mean zero), the forecast mistake, and the shift in the mean of the
exogenous variables, as in (16).

5.3 Parameter Estimation in h-Step Ahead Forecasts

The estimated model forecasts are now:
h—1
Yrinr =+ D> 1T Groni —p)+ 7" (¥r — 9) (46)
i=0
Thus, facing (38), the forecast error§7+h|7 =Y7+h —?TJFMT is:

Bronr = </>* — ¢+ (T*)h (yr —¢*) = 7" (¥r — ¢)

h—1
+ Z [T (z74n-i — )] - Z?if@T+h—i -0)

i= i=0
+ Z (T*)i ET+h—i
i=0

which can be decomposed into the equivalent 19 terms as the earlier 1-step taxonomy
in §3, analogous to the relation between (7) and (39). However, no new insights seem
to be gained by doing so, and it is clear that the third result above still holds.
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6 Transforming an I(1) System to 1(0)

Consider an n-dimensional I(1) VAR with p lags and an innovation error n, ~
IN, [0, £2,,] written as:

p
W=+ > Tiwe i+ (47)

i=1

where some of the np eigenvalues of the polynomial |I, — >-7_, TT;L?| in L lie on,
and the rest inside, the unit circle. Then I' = (I, — Zle I1;) has reduced rank
0 < r < n, and can be expressed as I' = o’ where « and B are n x r with rank r:
see e.g., Johansen (1995). Also m = y + ou, so when (e.g.) p = 2:

Aw, =y + T — L) (Aw,—1 —y) —a (B'Wi—o — ) + (48)

with E [ﬂ/wt] = pand E [Aw;] = y where both Aw; and B'w; are |(0) even though
w; is I(1). Then r of the X, above are f'w; and n — r are o, Aw; where | is
nx (n—r)withe @ =0and (« : a1 ) is non-singular.

Partitioning w; into endogenous (modeled) variables y; conditional on unmodeled
z, then produces an open system as analyzed in §7. Thus, our results hold in an open
cointegrated system.

7 Conclusion

Even when a model is correctly specified in-sample, and the unmodeled variables,
Z,, are strongly exogenous with the correctly estimated coefficients, changes in the
dynamics alone can induce forecast failure simply because the unmodeled variables
have nonzero means. When the mean of z, is constant, this forecast bias does not
depend substantively on whether or not z; is included in the forecasting model, but
only on its nonzero mean. Including z, in the forecasting model is beneficial when
its mean shifts, but that advantage can be lost when future values z7j have to be
forecast ‘off-line’. These results are explicitly derived for 1-step ahead forecasts
and known parameters, but continue to hold when extended to estimated models, to
multi-step forecasting, and to a later forecast origin following a break.
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Appendix: Comparing Open with Closed 1(0) Systems

Here, we relate the forecast error taxonomy of the open conditional [(0) system in
(2) to that for a closed VAR(1). Let X, = (y; z;), then the DGP overt = 1,..., T
for y; and z; is now:

X =Y +W¥x_1+V (A.1)
when v, = (V;I,V;[) ~ INpym [0, 2] and 2 = (QX QZ

When all the variables are weakly stationary in-sample, taking expectations in (A.1):

) with 2,y = 27,

E[Xz]zl/f‘f"pE[Xz—l]:‘/f‘f‘lpH:Ms

SO:

_ i, (Elv]\_ (¢
= Egm—¥) ‘”—(E[zf])—(p)' (A.2)

Consequently, we can re-write (A.1) as:
X — =¥ X1 — ) +V (A.3)
fort=1,2,...T.
We first consider a 1-step ahead forecast from time 7" from a model that is correctly
specified in-sample with known parameter values:
X717 =V + ¥Xr (A4)
but where the DGP in the next period has shifted to:

X741 = Y* + UFXr + Vrg (A.S)

with vr41 ~ IN, 1+, [0, £2]. The resulting forecast error between (A.4) and (A.5) is
VT+1\T = X741 — iT+l|T and hence:

Ve = (V= ¥) + (¥F =) xr 4+ vrp (A.6)

so that:3

3 Note that although E [x,] = v + lI/E[x,,|] =v+V¥u=pfort =1,2,...T whent > T
E [xr+j] = Z,];ol (WHiy* + (W) for j 2 1 which for an I(0) {x,} process converges to
i — U5 1Y* = ¥ as j — oo.
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E[Vreur] = (W*—v) + (¢* —¥)E[xr] = (1" — ). (A7)

From (A.2), we can partition (A.7) as:
< ¢*—¢)
E(v =
rearl = (%2
() (it ) ()
(1//Z* — WZ) (lpz*y —¥) (lpz*z —¥2) P
() (25
Vi, V¥, V&, p
where V denotes a change in a parameter, with:

wa = (W; - Wy) sz = (WZ* - wz) leyy = (ll/;y — L]/yy)
V‘I/yl = (w;z — "I/yz) Vlllzy = (lI/;; — lI/Zy) VWZZ — (lI/Z*Z _ sz)

Partitioning u = (I, — %)~ ¢ yields:

(0)= (%" ar0) ()
P -y In — ¥22) Y,

A_l _A_llpyz(lm - zz)_l wy
— (L — W), AT B [

A_lw' - A_IW’Z(IW! - wzz)_IWZ
(sz - v, Ay, ) (A.8)

when A =[(I, — ¥yy) — ¥y (L, — ¥;;) "', ] and
B = I — W) 'Ly + ¥y A=W, (I, — ¥.;)"!]. Therefore (A.7) has the form:

_ Vi vy, V¥ Ay, — AN (@, — )y
Elv — y + ( yy yz) ( Yy )z_m 22 b4
[Vrs1ir] (wz) V., V. JABY. — (@, — ) e, ATy

Hence, if the mean of the {z;} process is constant (Vir, = 0, V¥, =0, V¥, = 0),
and there is no intercept in the {y,} process (1//;‘ = vy = 0), the mean of the forecast
error becomes:

E [VT+1|T] - (({)VW)’ZB - VlI/yyAillI/yZ(Im - quz)il} 1pZ)

so if there is a change in the dynamics of the {y;} process and {z;} has a nonzero
mean, there will be forecast failure. Further, even if z; is strongly exogenous for the
parameters of the {y,} process (¥, = 0), there will be forecast failure as:
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E[Vrir] = (({)V%Z — VW ATy} (I — W) lPz)

which will be nonzero provided ¥, # 0 and there is a change in the dynamics of
the {y;} process, consistent with the closed system results in Clements and Hendry
(1999).

These closed system results can be mapped to an open system using a conditional
and marginal factorization of the joint distribution. From (A.1), the conditional dis-
tribution of y; given z; and the past is:

Vi = Wy —EV) + Wyy—E W) Vi1 + B2+ Wy~ E W) 21+ (yr + EVz)
=0 + (")y171 + Ezt + AZl—l + V¢ (A9)

when & = 2 yzQz_zl- The initial VAR formulation induces one lag longer in z, with:
Ely] =0+ ©E[y1]+ EE[z]+ AE[z,1] =0+ O¢p + (E+ A)p=¢

so that:
p=>0—0)" o+ (8 + A)p)

and:
Y= =0 -1 —P)+E @ —p)+ AZ—1 — p) + 11

The forecast error from predicting yr+1 by Y717 =6 + Oy;—1 + Ezr41 + Azr
with known parameters and z7 1 and z7 is:

V741 =Yr+1 — Yrq1r = VO +VOY,—1 + VEZry + VAZr + vrg
hence:

E[Vr+1]=V0+VO¢p+(VE+VA)p
=VO+VO@, —O0) {0+ (E+A)p}+(VE+VA)p

with
p =By, — T, — zz)illpzyAill/fy
Vo = (VY —VEY, — EVYy)
VO = (V¥,, — VEY,, — EVY,,)
VA = (V¥,, — VEW,, — EVY,,)

If the {z,} process is constant (Vi = 0, V¥;, = 0, V¥,, = 0) and there is no
intercept in the {y;} process (w;‘ = v, = 0) then p = By, and the mean of the
forecast error becomes:
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— — — — -1 5
E[vre1] = —-IVE + (V¥,y, — VEW,) (I, — ¥, + EW,,) " ENY;
— — -1 = —

+ [(nyy—w Wey) =Yy + 5 W) " (E+A)+ (VE +VA)] By,
which, when z, is strongly exogenous for the parameters of the {y;} process
(¥,y = 0), simplifies to:

— — -1 -
E[vri1] = —-IVE + V¥, (L — ¥,y) Ely:
-1, — _

+ [V (L= 9)) T (E+ )+ (VE+VH] W - w0y
so again will be non-zero when v, # 0 and there is a change in the dynamics of the
{y:} process (i.e., at least one of V¥,,, V& and V A is non-zero). This result mirrors
that in (8) noting that p = (I, — ¥,,)~ !4 in this case.

An analogous result is obtained when we close the open conditional 1(0) system
in (2) by endogenizing z, in:

Vi= T+ Ty + T +e (A.10)
2 =A+ @y + 1z + 1y (A.11)
so that:
Elzl =2+ @E[y,—1] + NE[zi-1] = A+ PP+ Tp=p
or:
A=0,—I)p— PP
leading to:

Z —p) =P (i1 =)+ (zi—1 —p) + 1

Then,as ¢ = (I, — V)~ (z + I'p)*:

YVi—¢=T -1 =)+ 1 (2 —p)+&
=T +TP) (Y1 =)+ T (z-1—p)+ (I, + &)

These results allow a general evaluation of the relative impacts of breaks when z; is
treated as ‘external’ or ‘internal’.

4 This is true whether or not z; is strongly exogenous (i.e., @ = 0) for the parameters of y; in the
VAR.
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Heavy-Tail and Plug-In Robust Consistent
Conditional Moment Tests of Functional Form

Jonathan B. Hill

Abstract We present asymptotic power-one tests of regression model functional
form for heavy-tailed time series. Under the null hypothesis of correct specification
the model errors must have a finite mean, and otherwise only need to have a fractional
moment. If the errors have an infinite variance then in principle any consistent plug-in
is allowed, depending on the model, including those with non-Gaussian limits and/or
asub-/n-convergence rate. One test statistic exploits an orthogonalized test equation
that promotes plug-in robustness irrespective of tails. We derive chi-squared weak
limits of the statistics, we characterize an empirical process method for smoothing
over a trimming parameter, and we study the finite sample properties of the test
statistics.

1 Introduction

Consider a regression model

yi = f(xt, B) + €(B) (D

where f : R? x B — R is a known response function for finite p > O,
continuous and differentiable in 8 € B where B is a compact subset of R, and
the regressors x;, € R” may contain lags of y; or other random variables. We are
interested in testing whether f(x;, B) is a version of E[y,|x,] for unique ,30, with-
out imposing higher moments on y;, while under misspecification we only require
Elsupgep € (B)|'] < oo and each E[supgep [(3/9B;) f (x:, B)|'] < oo for some tiny
¢ > 0. Heavy tails in macroeconomic, finance, insurance and telecommunication
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time series are now well-documented (Resnick 1987; Embrechts et al. 1997, Finken-
stadt and Rootzen 2003; Gabaix 2008). Assume E|y;| < oo to ensure E[y;|x;] exists
by the Radon—Nikodym theorem, and consider the hypotheses

Ho : E [yix] = f(xq, ﬁo) a.s. for unique ﬁo € B, versus
Hy :max P (E [y/lx,] = f(x;, B)) < 1.
BeB

We develop consistent conditional moment (CM) test statistics for general alter-
natives that are both robust to heavy tails and to a plug-in for 8°. Our focus is Bierens’
(1982, 1990) nuisance parameter indexed CM test for the sake of exposition, with
neural network foundations in Gallant and White (1989), Hornik (1989, 1990), and
White (1989a), and extensions to semi- and non-parametric models in Chen and Fan
(1999). Let {y, x; };‘zl be the sample with sizen > 1, let ,3,, be a consistent estimator

of ﬂo, and define the residual ¢; (,3,1) =y — f(xs, ,én). The test statistic is

2
T, (y) = —(Ze,wm w/f,))

Va(Bn, v)
where F (y Wt) = exp {y/lﬂ;} and ¥; 1= ¥ (x;), (2

where v is a bounded one-to-one Borel function from R” to R”, Vn (,én, y) estimates
E[C) & (/§n)F(y/1pt))2], and y € R? is a nuisance parameter.

If Ele;| < oo and E[¢;|x;] # 0 with positive probability then E[e; F (y'¥;)] # 0
for all y on any compact I' C R” with positive Lebesgue measure, except possibly
for y in a countable subset S C I' (Bierens 1990, Lemma 1). This seminal result
promotes a consistent test: if €, and supge [(3/9f:) f (x;, B)| have finite 4 + (th-

moments for tiny ¢ > 0, and the NLLS estimator ﬁn = B0+ 0,1/ n'/2) then

fn y) —d> Xz(l) under Hj and f‘n y) 2 oo under Hi forally eI'/S. Such moment
and plug-in conditions are practically de rigueur (e.g. Hausman 1978; White 1981;
Davidson et al. 1983; Newey 1985; White 1987; Bierens 1990; Jong 1996; Fan and
Li 1996; Corradi and Swanson 2002; Hong and Lee 2005).

The property E[e; F(y'v;)] # 0 under H; for all but countably many y carries
over to non-polynomial real analytic F : R — R, including exponential and trigono-
metric classes (Lee et al. 1993; Bierens and Ploberger 1997; Stinchcombe and White
1998), and compound versions where S may be empty (Hill 2008a, 2008b), and has
been discovered elsewhere in the literature on universal approximators (Hornik et al.
1989; 1990; Stinchcombe and White 1989; White 1989b; 1990). Stinchcombe and
White (1998, Theorem 3.1) show boundedness of v ensures {F(y'y (x;)): y € '}
is weakly dense on the space on which x; lies, a property exploited to prove F is
revealing.!

I We use the term “revealing” in the sense of “generically totally revealing” in Stinchcombe
and White (Stinchcombe and White 1998, p. 299). A member & of a function space H reveals
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The moment E|¢;| < oo is imposed to ensure E[¢;|x;] exists under either hypoth-
esis, but if £(x;, B°) is misspecified then there is no guarantee ¢, is integrable when
E [y,z] = oo precisely because f (x;, 8) need not be integrable. Suppose x; is an inte-
grable scalar with an infinite variance, and f (x;, 8)=(x; +pB)2. Then E ¢, (B) |=00 for
any 8 € B, hence E[¢,(8)|x,] is not well-defined for any 8. Clearly we only need
Ely:| < oo to ensure E[y;|x;] exists for a test of (1), while heavy tails can lead to
empirical size distortions in a variety of test statistics (Lima 1997; Hill and Aguilar
2011).

In this chapter we apply a trimming indicator IA,,,,(ﬂ) € {0, 1} to €/(pB) in order
to robustify against heavy tails. Define the weighted and trimmed errors and test
statistic

1

T, (y) =
$2(Bu, )

2
(Zrﬁn (B, V)) where 7% (B, ) := & (B)In (B)F (V')

where 3,%(,3, y) is a kernel estimator of E[(3__, n%;t(,én, ¥))?] defined by

n

S:B.y) =D (s — 1) /by) {1 (B, y) — (B )} (s (B, y) — (B, v)}

s,t=1

withmk (B, y) =1/n> ), nity (B, v),and w(-) is akernel function with bandwidth
by, — oo and b,/n — 0. By explomng methods in the tail-trimming literature we
construct In .(B) inaway that ensures sufficient but negligible trimming: 1,1 (B)=0
for asymptotically infinitely many sample extremes of €, () representing a vanishing
sample portion. This promotes both Gaussian asymptotics under Hy and a consistent
test.

Tail truncation by comparison is not valid when E [e,] oo because sample
extremes of €, are replaced by a tail order statistic of ¢, that increases with n: too
many large values are allowed for Gaussian asymptotics (Csorgo et al. 1986). On
the other hand, trimming or truncating a constant sample portion of €;(f) leads
to bias in general, unless €; is symmetrically distributed about zero under Hy and
symmetrically trimmed or truncated. In some cases, however, symmetry may be
impossible as in a test of ARCH functional form (see Sect. 4.2).

We assume F(u) is bounded on any compact subset of its support, covering
exponential, logistic, and trigonometric weights, but not real analytic functions like
(1 —u)~Von[—1, 1]. Otherwise we must include F (y wt) in the trimming indicator

I1,,+(B) which sharply complicates proving 7, (y) obtains an asymptotic power of

(Footnote 1 continued)

misspecification E[y|x] # f when E[(y— f)h] # 0. A space H is generically totally revealing if all
but a negligible number of i € H have this property. In the index function case i (x) = F(y v (x)),
where the weight 4 aligns with y and the class H with I', this is equivalent to saying all y € I'/S
where § has Lebesgue measure zero.
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oneon I'/S . A HAC estimator 3‘3(,3 , ¥) is required in general unless ¢; is iid under
Hy: even if €, is a martingale difference m,, ; (,30, y) may not be due to trimming.
Inlieu of the test statistic form a unique advantage exists in heavy-tailed cases since
1/n>_, ny (8°, y) is sub-n'/?>-convergent. Depending on the data generating
process, a plug-in Bn may converge fast enough that it does not impact the limit
distribution of TA; (y)under Hy, including estimators with a sub-n 172 rate and/or a non-

Gaussian limit. Conversely, if Bn £ B° at a sufficiently slow rate we either assume
B is asymptotically linear, or in the spirit of Wooldridge (1990) exploit an orthogonal
transformation of i1, (B, ) that is robust to any ﬁn with a minimal convergence rate
that may be below n'/? for heavy-tailed data. Orthogonal transformations have not
been explored in the heavy-tail robust inference literature, and they do not require
n'/2-convergent or asymptotically normal Bn in heavy-tailed cases.

Model (1) covers Nonlinear ARX with random volatility errors of an unknown
form, and Nonlinear strong and semi-strong ARCH. Note, however, that we do not
test whether E[y;|z/—1, 212, ...] = f(x:, B°) a.s., where z; = [y;, x; 1]’ such that
theerrore; = y,— f (xy, /30) is amartingale difference under Hyp. Thisrules out testing
whether a Nonlinear ARMAX or Nonlinear GARCH model is correctly specified.
We can, however, easily extend our main results to allow such tests by mimicking
de Jong’s (1996, Theorem 2) extension of Bierens’ (1990, Lemma 1) main result.

Consistent tests of functional form are widely varied with nonparametric, semi-
parametric, and bootstrap branches. A few contributions not cited above include
White (1989a), Chan (1990), Eubank and Spiegelman (1990), Yatchew (1992), Har-
dle and Mammen (1993), Dette (1996), Zheng (1996), Fan and Li (1996, 2000), and
Hill (2012). Inherently robust methods include distribution-free tests like indicator
or sign-based tests (e.g. Brock et al. 1996), the m-out-of-n bootstrap with m = o(n)
applied to (2) (Arcones and Giné 1989; Lahiri 1995), and exact small sample tests
based on sharp bounds (e.g. Dufour et al. 2006; Ibragimov and Muller 2010).

In Sect. 2 we construct IA,L ¢(B) and characterize allowed plug-ins. In Sect. 3 we
discuss re-centering after trimming to remove small sample bias that may arise due to
trimming. We then construct a p-value occupation time test that allows us to bypass
choosing a particular number of extremes to trim and to commit only to a functional
form for the sample fractile. Sect. 4 contains AR and ARCH examples where we
present an array of valid plug-ins. In Sect. 5 we perform a Monte Carlo study and
Sect. 6 contains concluding remarks.

We use the following notation conventions. Let J; := o (y;,x741 : T < 1),
and let M and N be finite integers. Amin(A) and Apmax(A) are the minimum and
maximum eigenvalues of a square matrix A € RM*M The L p-norm of stochastic

A € RN s |Al], = (XL1Y,_| E|A; j1P)!/P, and the spectral norm of A €
RM*N is [|All = (Amax(A’A))/2. For scalar z write (z)4 := max{0, z}, and let [z]
be the integer part of z. K > 0 is a finite constant and ¢ > 0 is a tiny constant, the
values of which may change from line-to-line; L(n) is a slowly varying function

where L(n) — oo as n — 0o, the rate of which may change from line-to-line.” If
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{A,(¥), Ba(y)}n>1 are sequences of functions of y and Sup, cr |[A,(y)/Bn(y)| —
1 we write A, (y) ~ By(y) uniformly on I', and if sup,, cp |A(y)/Bn () 2 1 we

write A, (y) £ B, (y) uniformly on I'. = denotes weak convergence on C[I'], the
space of continuous real functions on I'. The indicator function is I (a) = 1 if a is
true, and O otherwise. A random variable is symmetric if its distribution is symmetric
about zero.

2 Tail-Weighted Conditional Moment Test

2.1 Tail-Trimmed Equations

Compactly denote the test equation, and the error evaluated at 8

mi(B,y) =& (BYF(y'Y) and € = & (8°).

By the mean-value-theorem the residuals ¢; (,3,1) reflect the plug-in Bn, the regression
error €;, and the response gradient written variously as

9B = [gia B, = g(xi. B) == ﬁf(xr, B) € RY.

We should therefore trim €,(8) by setting IA,,,,(/3) = 0 when ¢,(B) or gi:(B) is an
extreme value. This idea is exploited for a class of heavy-tail robust M-estimators
in Hill (2011b), and similar ideas are developed in Hill and Renault (2010) and Hill
and Aguilar (2011).

In the following let z;(8) € {e:(B), gi.+B)}, define tail-specific observations

2B == 2B (z(B) <0) and z”(B) := (B (z(B) = 0),

andletz (,B)bethetthsampleorderstahshcofzﬁ)(ﬁ) z(l))(,B) < e Szg;))(ﬂ) <0

andzgff(ﬁ) > 2200 (B) 2 0. Let {kjen: j = 1.2} and {kj i : j = 1.2} be

sequences of posmve integers taking values in {1, ..., n}, define trimming indicators

fene® =1(c) B =a® =€) B)
) —1( 9 i B =9 B =g, (B)

Lyns (B) = H Lini (B)

i=1

2 Slow variation implies lim,_, oo L(An)/L(n) = 1 for any A > 0 (e.g. a constant, or (In(n))“ for
finite a > 0: see Resnick 1987). In this chapter we always assume L(n) — oo.
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Lit(B) = Ien i (B) X Lyni(B),

and trimmed test equations
riy ¢ (B, y) = my (B, y) X It (B) = €(B) x Tt (B) x F(y'¥).

Thus In + (B) = 0 when any € (B) or gi.(B) is large. Together with some plug-in
ﬂn and HAC estimator S (,3”, ) we obtain our test statistic I, (y) = S 2(,3,,, Y)
(Z¢:1 mn,t(ﬂn’ V))z-

We determine how many observations of €; () and g; ;(8) are extreme values by
assuming {kj ¢} and {k;; ,} are intermediate order sequences. If {k; ; ,} denotes
any one of them, then

1 <kizn+kyzn<n, kj;n—> 00 and kj,,/n— 0.

The fractile k; , , represents the number of m, (B, y) trimmed due to a large left-
or right-tailed €,(8) or g; ((B). Since we trim asymptotically infinitely many large
values k; ; , — oo we ensure Gaussian asymptotics, while trimming a vanishing
sample portionk; ; ,/n — 0 promotes identification of Hy and H; 3 The reader may
consult Leadbetter et al. (1983, Chap. 2), Hahn et al. (1991) and Hill (201 1a) for the
use of intermediate order statistics in extreme value theory and robust estimation.
See Sect. 3 for details on handling the fractiles k; ; .
If any z; is symmetric then symmetric trimming is used:

I (|Zz(ﬂ)| < Z(a) )(,3)) where z(”) = |z|, kgn — 00 and ky,/n— 0. (3)

If a component takes on only one sign then one-sided trimming is appropriate, and if
z¢(B) has afinite variance then it can be dropped from IA,,, ¢ (B).In general tail thickness
does not need to be known because our statistic has the same asymptotic properties
for thin or thick tailed data, while unnecessary tail trimming is both irrelevant in
theory, and does not appear to affect the test in small samples.

2.2 Plug-In Properties

The plug-in ,Bn needs to be consistent for a unique point 8° € B.* In particular, we
assume there exists a sequence of positive definite matrices {V.}, where V,, € R7%4

3 Consider if ¢, is iid and asymmetric under Hp, but symmetrically and non-negligibly trimmed
with Tuesday, May 22, 2012 at 12:37 pmkj ¢, = k2.e.n ~ An where A € (0, 1). Then f"n ) LS
oo under Hj is easily verified. The test statistic reveals misspecification due entirely to trimming
itself.

4 Under the alternative 8° is the unique probability limit of B, a “quasi-true” point that optimizes
a discrepancy function, for example, a likelihood function, method of moments criterion or the
Kullback-Leibler Information Criterion. See White (1982) amongst many others.
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and V; ; , — oo, and

72" (B — 8°) = 0,1,

As we discuss below, in the presence of heavy tails ,3,, need not have n'/?-convergent
components, and depending on the model may have components with different rates
172,

~ 1
l l/ ,, below, at or above n

Precisely how fast convergence ,B,, LS B0 is gauged by exploiting an asymptotic
expansion of S (,Bn, Y) 2 ity ,(,3,,, y) around B°. We therefore requlre the non-
random quantile sequences in which the order statistics e((k)j o) (B) and gl. (k - B)

approach asymptotically. The sequences are positive functions {I; ,(B), u; ,(B)}
denoting the lower kj ; ,/nth and upper k3 . ,/nth quantiles of z;(8) in the sense

ka2 n

kl Z,n
P (z(B) < —L..a(B)) = n and P (z:(B) > uzn(B)) = - “)

Distribution smoothness for €, (8) and g; ; (8) ensures {I; ,(B), u; ,(B)} existforall 8
and any chosen fractile policy {k ; ., k2. »}. See Appendix A for all assumptions. By

construction {z( ) )(,3), zE,:LZ{ ’1)(/3)}estimate{—lz,,,(ﬂ), u; »(B)} and are uniformly

consistent, e.g. supﬁelg 20 (B uzn(B) — 1] = 0,(1/k;’2,). See Hill (2011,
Lemma C.2). h
Now construct indicators and a trimmed test equation used solely for asymptotics:

in general write I, , ;(B) := I (=1, ,(B) < z:(B) < uz,(B)), and define

q
In,t(,B) = e n (B) x Hli,n,t B) = €,n,t (B) x Ig,n,t (B) and

i=1

My (B, y) i=m (B, y) X In((B).

We also require covariance, Jacobian, and scale matrices:

n 2
S2(B.y)=E (Z {m;, (B.y)— Elm},, (8. y)]}) and

=1

d
(B y) : ——ﬂE[ m, (B, y)] e R

Va (B, y) =128 (B, y) X Ju (B, ) Ju (B, 7) € R.

Now drop B° throughout, e.g. g; = g,(8°), m} , (v) = m}; (8%, ) and S? (y) =
S,%(ﬂo, y). We may work with m; ,(y) for asymptotic theory purposes since

Z i, ) —mi, (N} =0, (1),

yeI‘
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while trimming negligibility and response function smoothness ensure the following
expansion:

1 L A I 12 A 0
> B ) X mi )+ Va2 ) (Ba— B°). (5
S0 (B v) tzzl ! Sn () ; ! ( )

See Lemmas B.2 and B.3 in Appendix A. Thus 7A71(y) tests Hy if ,é,, LS BY fast
enough in the sense Sup,, e [ Vn ()/)Vn_1 || = O(1). In the following we detail three
plug-in cases denoted P1, P2, and P3.

Case P1 (fast (non)linear plug-ins). In this case sup,, . ||Vn(y)\~/n’l || = O hence

ﬁn does not impact ’f;,(y) asymptotically, which is evidently only possible if ¢;
and/or g; ; are heavy tailed. If {¢;, g;} are sufficiently thin tailed then under regularity
conditions minimum distance estimators ,3,, are n!/ 2-convelrgent while V,,(y)/n —
V(y) = S~2(y)J(y) J(y) is finite for each y € TI'.5 In the presence of heavy

tails, however, a unique advantage exists since Sup,, e ||Vn1/ 2(y)|| = o(n'/?) may

hold allowing many plug-ins to satisfy sup,, . [|V, ()/)‘N/n*1 || — 0. See Sect. 4 for
examples.

Case P2 (slow linear plug-ins). If V, is proportional to V;,(y) then ﬁn impacts ’fn (y)
asymptotically. This is the case predominantly encountered in the literature since
\7,,/n — Vand V, (y)/n — V(y) for sufficiently thin tailed {e;, g;}. At least two
solutions exist. First, under the present case B, is assumed to be asymptotically lin-
ear and normal, covering many minimum discrepancy estimators when {e¢;, g;} are
sufficiently thin tailed, or heavy tail robust linear estimators like Quasi-maximum
tail-trimmed likelihood (QMTTL) (Hill 201 1b). Linearity rules out quantile estima-
tors like LAD and its variants, including Log-LAD for GARCH models with heavy
tailed errors (Peng and Yao 2003) and least absolute weighted deviations (LWAD)
for heavytailed autoregressions (Ling 2005).

Case P3 ((non)linear plug-ins for orthogonal equations). If V, is proportional to
V. (y) then our second solution is to exploit (Wooldridge’s 1990) orthogonal trans-
formation for a new test statistic, ensuring plug-in robustness, and allowing nonlinear
plug-ins. Other projection techniques are also evidently valid (e.g. Bai 2003).
Define a projection operator 73,,J (y) and filtered equations r?z,J;’t B,v):

n -1

. s oo 1 . . A

Pui(y)=1- gt/(ﬂn)ln,t(ﬂn)(; E gr(,Bn)gf(ﬁn)F()/’wz)In,t(ﬂn))
i=1

1< . n .
X Zgt(ﬂn)F(V’t/ft)In,z(ﬂn)n%n,t(ﬂ, y) =nt, (B, ¥) X Puy(¥).
t=1

5 The rate of convergence for some minimum discrepancy estimators may be below n'/2, even for
thin tailed data, in contexts involving weak identification, kernel smoothing, and in-fill asymptotics.
We implicitly ignored such cases here.
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The test statistic is now

2

. 1 z .

I = a5\ 2B )
! $i2(Ba v) ;

where 3’,}2(,3, y) is identically 3’3(,3, y) computed with n%,f’,(ﬁ, y).

The asymptotic impact of B is again gauged by using the non-random thresholds
{lz.n, uz.n} to construct orthogonal equations and their variance and Jacobian:

Pas () =1 =g Lus (E [0:0,F ') s]) " % E [:F(¥'v)1] and
my, (B.y) =mp, (B.y) X Pus (¥)

n

2
S (B.y) = E(Z {mic, 8.v) = Elmit, 8, y)]}) and

t=1

1 . i 1 x1
T8, y) = B [m (6| € B

VEBy) i=nPSy T (Boy) x JiE (B, v) T (B.y) € R

Notice P, ; (y) is o(x;)-measurable, and uniformly L;-bounded by Lyapunov’s
inequality and boundedness of F (u), thus by dominated convergence E[m ,Jl- ()=
0 under Hy. By imitating expansion (5) and arguments in Wooldridge (1990), it
can easily be shown if an(y)l/z(,én — B% = 0,(1) then ‘SA’,,L_](,BAH, Y) D n%,f’,
(,3", y) £ S,f-’l >, mtt(y). In general the new statistic TA;IJ- (y) is robust to
Bn, allowing nonlinear estimators, as long as

\7”1/2 (An — /30) = Op(1) and lim sup sup

n—>o0 yell

vig)v! H <oc0.  (6)

2.3 Main Results

Appendix A contains all assumptions concerning the fractiles and non-degeneracy of
trimmed moments (F1-F2); identification of the null (I1); the kernel and bandwidth
for the HAC estimator (K1); the plug-in (P1-P3); moments and memory of regression
components (R1-R4); and the test weight (W1). We state the main results for both
’j;, (y) and ’]A;IJ- (), but for the sake of brevity limit discussions to ’fn (y). Throughout
I" is a compact subset of R?” with positive Lebesgue measure.

Our first result shows tail-trimming does not impact the ability of F(y'v) to
reveal misspecification.
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Lemma 2.1 Let u, ,(y) denote either m;‘l’l(y) or m,{:t(y). Under the null E[j,
(y)] — O. Further, if test weight property W1 and the alternative Hy hold then
liminf,— oo |E[ptn s (¥)]] > O for all y € T except possibly on a set S C T with
Lebesgue measure zero.

Remark 1 Under Hj it is possible in small samples for E [mj,,(y)] = 0 due to
excessive trimming, and |E[m, ,(y)]| — oo due to heavy tails. The test weight
F (u) therefore is still revealing under tail-trimming for sufficiently large n.

Next, the test statistics converge to chi-squared processes under Hy and are con-
sistent. Plug in cases are discussed in Sect. 2.2

Theorem 2.2 Let FI-F2, 11, KI, RI-R4, and W1 hold.

i. Under Hy and plug-in cases P1 or P2 there exists a Gaussian process {z(y) : y €
'} on C[T"] with zero mean, unit variance, and covariance function E[z(y1)z(y2)]
such that {T,(y) 1y e T} = {z(y)2 y € T}.

ii. UnderHi and P1 or P2, '271()/) L4 ooVy € I'/Swhere S has Lebesgue measure
zero. .
iii. Under plug-in case P3 ’];f‘ (y) satisfies (i) and (ii).

Remark 1 The literature offers a variety of ways to handle the nuisance parameter y .
Popular choices include randomly selecting y* €T (e.g. Lee et al. 1993), or com-
puting a continuous test functional h(’]}l(y)) like the supremum sup,, . 7, 7, (y) and

average fr 771 (y)u(dy), where w(y) is a continuous measure (Davies 1977; Bierens

1990). In the latter case h(j; ) i) h(z(y)z) =: ho under Hy by the mapping the-
orem.

Hansen’s 1996 bootstrapped p-value for non-standard 4 exploits an iid Gaussian
simulator. The method therefore applies only if €, is a martingale difference under Hy
and the trimmed error €, I ,, ; becomes a martingale difference sufficiently fast in the
sense (n/E[m}%(y)DV/?Ele/Ie n.¢|3—1]1 — 0. It therefore suffices for € to be iid
and symmetric under Hoy and symmetrically trimmed since then E[€; 1 . (|S:—1] =
EleiIc 1] = 0, orif ¢ is asymmetric and E[e;] = 0 under either hypothesis then ¢,
can be symmetrically trimmed with re-centering as in Sect. 3, below. See Hill (201 1c,
Sect. C.1), the supplemental appendix to this chapter, for details on Hansen’s p-value
under tail-trimming.

Remark 2 As long as S,% (y) = E[m;t(y)m;,(y)’] x (1 +o(1)) then a HAC esti-
mator is not required, including when ¢, /¢ ,, ; becomes a martingale difference suf-
ficiently fast under Hy as above. If we do not use a plug-in robust equation then an
estimator S (ﬁn, y) must control for sampling error associated with ,B,, For example,

if ﬁn is the NLLS estimator then (e.g. Bierens 1990, Eq. (14))

A S s e - s 2
S2 o) = D BbnaB) < {Fo v = 0,47 5B} (@
t=1
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where G, (B) = gi(B)lgni(B), by = 1/n X G5, (B)F(y'¥) and A, :=
1/n >0 g5 (B)G: (B). However, if S;2 (y) ~ Elm;,(y)m;-,(y)'] then by
orthogonality we need only use

S22 Bury) = D iy B vy (B ). ©)

t=1

3 Fractile Choice

We must choose how much to trim k; ; , for each variable z; € {¢, g;,} and any
given n. We first present a case when symmetric trimming with re-centering is valid
even when ¢, is asymmetric under Hy. We then discuss an empirical process method
that smooths over a class of fractiles.

Symmetric Trimming with Re-Centering. If E[¢;] = 0 even under the alternative, and
€; is independent of x; under Hyp, then we may symmetrically trim for simplicity and
re-center to eradicate bias that arises due to trimming, and still achieve a consistent
test statistic. The test equation is

R 1< R
iy (By) = (Et(ﬂ)ln,t B — - Zet(ﬁ)ln,t (ﬂ)) x F(y'yy) 9

t=1

where fn,t B) = IAE,,,,, B) H?Zl IA,',,,,, (B) as before, with symmetric trimming
indicators T (B) = I(e(B)] < € (B). and [y (B) = I(lgis(B)] <

9\, (B))- By independence m}; (B, ¥) = (:(B)lns (B) — Ele(B) I (B)]) x
F(y’lpt) satisfies E[mj;),(y)] = 0 under Hy for any {kc ,, k; »}, hence identification
I1 is trivially satisfied. Under H; the weight F (u) is revealing by Lemma 2.1 since
Ele;] = 0, F(u) is bounded, and trimming is negligible: lim inf,,_, oo |E[m;t W1l =
liminf,, o |E[€: 1, F (y'¥;)]| > 0Vy € T'/S. A test of linear AR where the errors
may be governed by a nonlinear GARCH process, or a test of linear ARCH, provide
natural platforms for re-centering. See Sect. 4 for ARCH.

The moment condition E[e;] = 0 under either hypothesis rules out some response
functions depending on the tails of {y;, x;} . See Sect.1 for an example.

P—Value Occupation Time. Assume symmetric trimming to reduce notation and
define the error moment supremum k. := argsup{e > 0 : E|€|* < oo} . Under
Hy any intermediate order sequences {ke ., k; »} are valid, but in order for our test
to work under H; when €; may be exceptionally heavy tailed xc < 1, we must
impose k., /n>(17¢e)/(2=¢e) _ o0 to ensure sufficient trimming for test consistency
(see Assumption F1.b in Appendix A). Thus k¢ , ~ n/L(n) is valid for any slowly
varying L(n) — oo. Consider ke, = ki, ~ An/In(n) where X is taken from a
compact set A := [A, 1] for tiny A > 0, although any slowly varying L(n) — oo
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may replace In(n). The point A = 0 is ruled out because the untrimmed ’]A;l(O) is
asymptotically non-chi-squared under Hy when E [ef] = 00.

We must now commit to some A. Other than an arbitrary choice, Hill and Aguilar
(2011) smooth over a space of feasible A’s by computing p-value Joccupation time.
We construct the occupation time below, and prove its validity for 7, (y) and T L(y)
in Appendix B. The following easily extends to k¢, # ki », asymmetric trimming,
and functionals h(7, (y))onTl.

Write T (v, A) and T L(J/, A) to reveal dependence on A, let p, (v, A) denote the
asymptotic p-value 1 — F, (’271()/, A)) where F, is the x 2(1) distribution, and define
the «-level occupation time

1
(Y, o) = m/[ (pn(y,A) <a)di €[0,1], where a € (0, 1).

Thus 7, (v, «) is the proportion of A’s satisfying p, (¥, 1) < « hence rejection of Hy
at level «. Similarly, define the occupation time rL(y, «) for Tl(y, A).

Theorem 3.1 Let FI-F2,11, K1, Pl or P2, RI-R4, and W1 hold. Let {u(}) : & € A}
be a stochastic process that may be different in different places: in each case it
has a version that has uniformly continuous sample paths, and u(})) is uniformly

distributed on [0, 1]. Under the null t,(y, ) LY (1—n"! f)} IT(wu(}) < a)dXr and
r,f-(y, o) —d> (11— &)_1 f)} I(u()) < a)dX, and under the alternative 7, (y, o) 21
and tnL(y, o) Lyl Vy € T except possibly on subsets with measure zero.

Remark 1 Since u (1) is a uniform random variable it follows lim,,_, oo P (7, (Y, o) >
o|Hp) < o. A p-value occupation test therefore rejects Hy atlevel o if 7,,(y, o) > «.
In practice a discretized version is computed, for example

1 n
Ty o) =~ D L (palyifn) <a)x I(i/n= 1) (10)
= i=1

where ny, := >}, I(i/n > }) is the number of discretized points in [A, 1].

Remark 2 In Sect. 4 we show f, has a larger impact on ’j;,(y, A) in small samples
when the error has an infinite variance k. < 2, each g;; has a finite mean «; > 1,
and the number of trimmed errors k¢ , is large (see Remark 3 of Lemma 4.1). This
translates to the possibility of plug-in sensitivity of 7, (y, «) in small samples. We
show in our Monte Carlo study of Sect. 5 that when k. < 2 and x; > 1 the occupation
time 7, (y, ) results in size distortions that are eradicated when the plug-in robust
fni(y, «) is used.

In Fig. 1, we plot sample paths {p, (v, 1), pnl(y, A) 1 A €[0.01, 1.0]} based on
two samples {y;};_, of size n = 200: one sample is drawn from an AR(1) process
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10 ARP-Value 031
0.3 -

SETARP-Value

024 pn-orth
0.2 4

0.1 4

0.1 4

= = pn = pn-orth \ -,
0.0 . =
0.01 0.11 0.21 0.31 041 0.51 0.61 0.71 0.81 0.91 0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91
Lambda Lambda

Fig. 1 P-value functions p, (1) and pj-(k). Note pn = p, (1), and pn-orth = pf;()n)

and the other from a Threshold AR(1) process, each with iid Pareto errors €; and
tail index 1.5. See Sect. 5 for simulation details. We estimate an AR(5) model by
OLS, compute 7,,(y, ») and 7-(y, 1) with weight F(y'¥(x;)) = exp{y’¥ (x;)}.
¥(x;) = [1,arctan(x;)’]" where X is centered X, = [yi—1, ..., yi—5)’, and y is
uniformly randomize on [.1, 21°. In this case at the 5% level 7,, fnl = 0, 0 for the
AR sample hence we fail to reject Hy, and 7, fnL = 0.59, 1.0 for the SETAR sample
hence we reject Hy.

Notice in the AR case p,(y, A) is smallest for large A > 0.9, and p,(y,A) <
pi-(y, A) for most A : p,(y, 1) is more likely to lead to a rejection than the plug-in
robust pf; (v, ») and for large 1. Although we only use one AR sample here, in Sect. 5
we show plug-in sensitivity does indeed lead to over-rejection of Hy.

4 Plug-In Choice and Verification of the Assumptions

We first characterize V,, (y) to show how fast ﬁn in ’j;, (y) must be in view of expan-
sion (5). Synonymous derivations carry over to portray VnJ- (y). We then verify
the assumptions for AR and ARCH models and several plug-in estimators. Define
moment suprema k. := argsup{e > 0 : E|¢|* < oo} and k; := argsup{ae > O:
Elgis* < oo).

Lemma 4.1 Let FI-F2, 11, RI-R4 and W1 hold. If k; < 1 then assumeP (|g; ;| >
g) =dig“i(1 +o0(1)) for somed; > 0. Let L(n) — oo be slowly varying, and let
{£,} be a sequence of positive constants: liminf, .~ £, > 1 and £, = O (In(n)),
and if € is finite dependent then £, = K. In the following L(n) and £, may be
different in different places.

i. Let min{x;} > 1. If ke > 2 then V,, (y) = On) ; if ke = 2 then V,, (y) ~
n/L(n); and ifkc < 2 then V, (y) ~ Kn(ken/n)> =1/,

ii. Let some ki < 1. If ke > 2 then V, (y) ~ Kn max,-;,(i<1{(n/k,-,n)z/"ifz}; if
ke = 2 then V, (y) ~ Kn max,-:,(,.<1{(n/ki,n)z/""_z}/L(n); and if ke < 2 then
Vu(y) ~ Kn maXi:K,~<l{(n/ki,n)z/Ki_z} X (ke,n/”)z/l{g_l/’gm
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iii. Ifmin{k;} = 1 then replace max;., <1{(n/ki ,)*/*\=2} in (b ) withL(n).

Remark 1 The term £, arises due to f-mixing and heavy tails: clearly S,%(y) ~
KnE [m%’t] if € is finite dependent or has a finite variance, but otherwise we can

only show S2(y) ~ nE[m?,] x O(In(n)), cf. Hill (2011b, Lemma B.2)

Remark 2 1f E[etz] = oo then V,, (y) = o(n) as long as all k; > 1, hence ;é,, may
be sub-n!/2-convergent. This arises, for example, in integrable AR models or ARCH
models with square integrable errors as we verify below.

Remark 3 1fk. < 2andeachk; > 1thenV, (y) ~ Kn(ke ,/n)*/*<~1/£,. Combine
this with expansion (5) to deduce a higher error trimming rate k. , — oo amplifies
the impact of /§n on the test statistic 7,, (y) in small samples, even when fast plug-in
Assumption P1 holds. This suggests the plug-in robust statistic ’f,f-(y) should be
used when k. , is chosen to be large relative to n. This is supported by experiments
in Sect. 5 where the p-value occupation which smooths over small and large & ,
performs substantially better when ’ZA:ZJ-()/) is used.

4.1 Linear AR

Consider a stationary AR(p) y; = 8%x; + €; where x; = [y;_1, ..., Vi—pl', € isiid
and E [¢;] = 0. Assume ¢; has an absolutely continuous symmetric distribution with
a uniformly bounded density sup g (0/9¢) P(e; < ¢) < oo, and Paretian tail:

P(el>€e)=de A +01)), d>0, «>1. (11)

Since y; is symmetric with a power law tail and the same index « (Brockwell and
Cline 1985), and g; ; = y;—;, we use symmetric trimming (3) with common frac-
tiles ke , = ky , denoted k. Let ,3n be computed by OLS, LAD, LWAD by Ling
(2005), least tail-trimmed squares (LTTS) by Hill (2011b), or generalized method of
tail-trimmed moments (GMTTM) by Hill and Renault (2010) with estimating equa-
tions [€,(B)y;—;];_, for some r > p.6

Lemma 4.2 Assumptions F2, 11, and RI-R4 hold. If k < 2 then V,(y) ~
Kn(k, /n)z/" U and if then Vn(y) ~ Kn/Ln) uniformly on T. Therefore
each ,8,, satisfies P1 and P3 sz[et = oo and P3 sz[ef] < 0o, and if E[e ] < 00
then only OLS, LTTS, and GMTTM satisfy P2.

Remark 1 The F1 fractile properties are controlled by the analyst. Each plug-in is
super-n!/ 2-convergent when E[et] = oo, and OLS and LAD have non-Gaussian
limits when E [e ] = oo (Davis et al. 1992; Ling 2005; Hill and Renault 2010; Hill

6 Other over-identifying restrictions can easily be included, but the GMTTM rate may differ from
what we cite in the proof of Lemma 4.2 if they are not lags of y;. See Hill and Renault (2010).
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2011b) while V,,l/z(y) = o(n'’?) by Lemma 4.1. Hence each ,én satisfies fast plug-
in P1. However, if ¢, has a finite variance then V,, (y) ~ Kn and each ,3” has rate
n'/2, ruling out LAD and LWAD for the non-orthogonalized 7, (y) since P2 requires
estimator linearity.

4.2 Linear ARCH

Now consider a strong-ARCH(p) y; = h;u, where u, i (0, 1) and ht2 =o'+

le a?ytz_i = ﬁO/x,, ¥ > 0, and a? > (). Assume at least one a? > ( for brevity,
let Z{;l alo < 1, and assume the distribution of u; is non-degenerate, symmetric,
absolutely continuous, and bounded sup,.-.((d/dc)P(u; < ¢) < oo. Let k, be the
moment supremum arg supf{o > 0 : E|u,|°7 < 00}. If k, € (2, 4] then assume u; has
tail (11) with index «,,.

A test of omitted ARCH nonlinearity can be framed in terms of errors u? — 1 or
y2—BYx; = (u?—1)h?. Since the former only requires u? and not y? to be integrable,
consider € (B) = uf(B) — 1 := y?/(B'x;) — 1. In this case (3/0B)e;(B)|g0 =
—u,zx, / h,2 has tails that depend solely on the iid error u, since we impose ARCH
effects oz? > 0: [|x;/ h,2 || < Ka.s. We therefore do not need to use information from
x; for trimming. The error ¢, = utz — 1 may be asymmetric but we can symmetrically
trim with re-centering as in Sect. 3. The trimmed equation with re-centering assuming
ARCHeffectsism}; (B, y) = {€len i (B)—1/n D1 €1e nt (B)} X F (y'v;) where
Ieni(B) = I(le(B)] < € ().

In the following we consider plug-ins ,3,, computed by QML, Log-LAD by Peng
and Yao (2003), QMTTL by Hill (2011b), or GMTTM with QML-type equations
{utz(ﬁ) — 1}z;(B) where z;(8) = [(,B/Xt_,-)_lx,_i]fzo for some r > 0O (Hill and
Renault 2010).

Lemma 4.3 Assumptions F2, I1, and RI-R4 hold. Further a. GMTTM and QMTTL
satisfy P1 if k, € (2,4], P2 ifk, > 4, and P3 in general; b. QML satisfies P2 and
P3 if k, = 4, but does not satisfy PI-P3 when k, € (2,4); c. Log-LAD satisfies Pl
if E [uf] = 00, it does not satisfy P2 if k, > 4, and it satisfies P3 in general.

Remark 1 QML is too slow when the ARCH error has an infinite fourth moment
Ky € (2,4). This arises due both to feedback with the error u,, and to the F1.b lower
bound on the error trimming rate k;  ,/n>(17%)/G=%) — oo which ensures test
consistency when E|e€;| = oo: the former implies |Vall = Kn'=2ku = o(n'/?)
(Hall and Yao 2003), while the latter guarantees infy cr ||V, (¥)Il/ nl=2/k 5 oo .
Each remaining estimator has a Gaussian limit since «,, > 2. Log-LAD is not linear
so orthogonalization is required when E [uf] < 00.
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5 Simulation Study

We now present a small-scale simulation study where we test for omitted nonlin-
earity in three models: linear AR(2) y; = 0.8y,_; — 0.4y,_» + ¢, Self-Exciting
Threshold AR(1) [SETAR] y; = 0.8y,—11(y;—1 < 0) —0.4y,—11(y;—1 > 0) + €,
and Bilinear [BILIN] y; = 0.9y,_1€,—1 + €;,. We generate 10,000 samples of size
n € {200, 800, 5000} by using a starting value y; = €1, generating 2n observations
of y;, and retaining the last n. The errors {¢,} are either iid N (0, 1); symmetric Pareto
P(e; < —c) = P(e; = ¢) = 0.5(1 + ¢) % with index k. = 1.5; or IGARCH(1,1)
€; = hyu; where h,2 =03+ -4”12—1 +O.6ht2_l and u; i N(0, 1), with starting value
h% = 0.3. The errors ¢, therefore have possible moment suprema «. € {1.5, 2, co}.
Each process is stationary geometrically ergodic and therefore geometrically B-
mixing (Pham and Tran 1985; An and Huang 1996; Meitz and Saikkonen 2008). We
estimate an AR(5) model y; = Zle ,31.0 vi—i + €; by OLS for each series, although
LTTS and LWAD render essentially identical results.

5.1 Tail-Trimmed CM Test

Write x; := [y/—1, ..., yt_p]’. Recall from Sect. 3k ¢ , ~ n/L(n) for slowly varying
L(n) — oo promotes test consistency when E |€;| = oo under the alternative. Consid-
ering €; and y,_; have the same moment supremum k. and are symmetric under Hy,
we simply use symmetric trimming with k, = [An/In(n)] for each ¢; and y;—;. We
re-center by using 1, ,(B, y) defined in (9), and compute the orthogonal equations
n%,f’t(ﬁ, y) with the re-centered 771, ,(f, y) and operator 75,,,, y)=1 —x,’fn,,(ﬁn) X
Sy XX FY) Ino (Bn)) ™' x > xtF(y' i) 1, (Bn). We use an exponential
weight F(y'y (x;)) = exp{y’¥ (x;)} and argument ¥ (x;) = [1, arctan(x)'] € R®
with x;"t =xi,—1/n Z;’:l x; ¢ (cf. Bierens 1990, Sect. 5), and then compute ’fn(y)

and ’ZA}()/). We use scale estimators (7) and (8) with g; = x; for the sake of com-
parison with our choice of additional test statistics discussed below. We randomly
draw y from a uniform distribution on I' = [0.1, 2]® for each sample generated,
and fix A = 0.025 or compute p-value occupation times 7, (y, &) and fnl(y, o) on
[0.01, 1.0] a la (10) for nominal levels @ € {0.01, 0.05, 0.10}. Notice A = 0.025
implies very few observations are trimmed, e.g. at most 1.5 % of a sample of size
800.”

7If n = 800 then k, = [0.025 x 800/ 1n(800)] = 2 for each {¢;, y;—1, ..., yr—5}. Hence at most
2 x 6 = 12 observations are trimmed, which is 1.5 % of 800.
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5.2 Tests of Functional Form

The remaining tests are based on untrimmed versions of ’ZA;(J/) and ’Z;l(y) where
critical values are obtained from a Xz(l) distribution; Hong and White’s 1995 non-
parametric test, Ramsey’s 1969 regression error specification test (RESET), Li’s
1983 test, and a test proposed by Tsay (1986). Hong and White’s 1995 statistic is
1, = QInn)~'2(s;2 3" &bn,— Inn) with components 52 := 1/n 3" &2
and 9, := f; — B/ x;, and nonparametric estimator f;, = > ln(”) ¢i exply/x} of
E[y¢|x:], cf. Gallant (1981) and Bierens (Bierens 1990, Corollary 1) The parameters
y; are for each sample uniformly randomly selected from I, and ¢ is estimated by
least squares.® If certain regularity conditions hold, including independence of ¢; and

E [e ] < o0, then M —> N(0, 1) under Hy, while M — 00 in probability under
Hj, hence a one-sided test is performed. The RESET test is an F-test on the auxiliary
regression €, = ¢x; + qu:z Zkz oi. /xti j where we use k; = k, = 3; the
McLeod-Li statistic is > _; (€2 — 2)(et W =S/ D0 (€2 — s2)? with lags h = 3;
and Tsay’s test is based on first regressing vech[xtx 1= S X; + uy, and then com-

puting Fy, == > (&) [Dy_y deit)]” Zt |y Fy 4 x2(p(p+1)/2) under
Hj as long as E[ef] < 0.

5.3 Simulation Results

See Tables 1, 2, 3 for test results, where empirical power is adjusted for size dis-
tortions. We only present results for n € {200, 800}: see the supplemental appendix
Hill (2011c¢, Sect. C.4) for n = 5,000.

Write 7,,-Fix or 7,,-OT for tests based on fixed A = 0.025 or occupation time.
The results strongly suggest orthogonalization is required if we use occupation time
because 7,,-OT exhibits large size distortions, while TJ- OT has fairly sharp size and
good power. This follows from the dual impact of samphng error associated with
ﬁ” and the loss of information associated with trimming. Our simulations show this
applies in general, irrespective of heavy tails, while Remark 3 of Lemma 4.1 shows
when k. = k; € (1, 2) then a large amount of trimming k, amplifies sensitivity of
7, to B, in small samples. Orthogonalization should play a stronger role when A is
large, hence ’j;,l-OT should dominate ’j;,-OT, at least when the variance is infinite.

In heavy-tailed cases 7,,-Fix and ’ZA;J--OT in general exhibit the highest power,
although all tests exhibit low power when the errors are IGARCH and n € {200, 800}.
It should be noted the Hong-White, RESET, McLeod-Li, and Tsay tests are all
designed under the assumption ¢; is independent under Hy and E [e;1 ] < o0, hence
IGARCH errors are invalid due both to feedback and heavy tails. If ¢, is iid Gaussian

8 See Hong and White (1995, Theorem 3.2) for defense of a slowly varying series length In(n).
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then trimming does not affect the power of the CM statistic, although Hong-White,
McLeod-Li, and Tsay tests exhibit higher power.

The untrimmed CM statistics tend to under-reject Hy and obtain lower power
when the error variance is infinite. RESET and McLeod-Li statistics under-reject
when . < 2, while RESET performs fairly well for an AR model with IGARCH
error, contrary to asymptotic theory. The McLeod-Li statistic radically over-rejects
Hj for AR-IGARCH, merely verifying the statistic was designed for iid normal errors
under Hy. Tsay’s F-statistic radically over-rejects for iid and GARCH errors with
infinite variance: empirical power and size are above 0.60. In these cases heavy tails
and/or conditional heteroscedasticity simply appear as nonlinearity (cf. Lima 1997,
Hong and Lee 2005; Hill and Aguilar 2011). Hong and White’s (1995) nonparametric
test exhibits large, and sometimes massive, size distortions when variance is infinite,
even for iid errors.

6 Conclusion

We develop tail-trimmed versions of Bierens’ (1982, 1990), and Lee et al. (1993)
tests of functional form for heavy-tailed time series. The test statistics are robust
to heavy tails since trimming ensures standard distribution limits, while negligible
trimming ensures the revealing nature of the test weight is not diminished. We may
use plug-ins that are sub-n'/2-convergent or do not have a Gaussian limit when tails
are heavy, depending on the model and error-regressor feedback, and Wooldridge’s
(1990) orthogonal projection promotes robustness to an even larger set of plug-ins.

A p-value occupation time test allows the analyst to by-pass the need to choose a
trimming portion by smoothing over a class of fractiles. A large amount of trimming,
however, may have an adverse impact on the test in small samples due to the loss of
information coupled with sampling error due to the plug-in. This implies the p-value
occupation time may be sensitive to the plug-in in small samples, but when computed
with the plug-in robust orthogonal test equation delivers a sharp test in controlled
experiments.

Future work may seek to include other trimming techniques like smooth weight-
ing; adaptive methods for selecting the fractiles; and extensions to other classes of
tests like Hong and White (1995) nonparametric test for iid data, and Hong and Lee
(2005) spectral test which accommodates conditional heteroscedasticity of unknown
form.

Acknowledgments The author thanks an anonymous referee and Co-Editor Xiaohong Chen for
constructive remarks.
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Appendix A: Assumptions’

Write thresholds and fractiles compactly ¢; ,(-) = max{l; ,(-), u; ,(-)} and k; , =
max {kj.en, kj 10 kjqn} define 02(B,y) := E [mzzl (B.y)] and

Je B v) i=—ge BYF (y'¥i) s Iy (B.y) = T (B, ¥) In s (B),
7% r * 1 S *
T B.y) = LB (BT By) = — > (B y),

t=1

A A
By =~ DI By,
t=1

Drop ,30, define §; = o (x;41, yr : T < t), and let I" be any compact subset of R”
with positive Lebesgue measure. Six sets of assumptions are employed. First, the
test weight is revealing.

W1 (weight). a.F : R — R is Borel measurable, analytic, and nonpolyno-
mial on some open interval Ry € R containing 0. b.sup, .y, |[F(u)| < K and
inf,cy |F(u)| > 0 on any compact subset U C Sr, with S the support of F.

Remark 1 The W1.b upper bound allows us to exclude F(y’,) from the trimming
indicators which greatly simplifies proving test consistency under trimming, and is
mild since it applies to repeatedly cited weights (exponential, logistic, sine, cosine).
The lower bound in W1.b helps to establish a required stochastic equicontinuity
condition for weak convergence when €; may be heavy tailed, and is easily guaranteed
by centering F (y’,) if necessary.

Second, the plug-in B, is consistent. Let My ; be J;-measurable mappings from
BcRItoR",r > q, and {\7”} a sequence of non-random matrices 17,, e R1*¢
where V;;, — o0. Stack equations M (Boy) = [my, (B, y),m, (B €
R’*!, and define the covariances S, B) = Z?,t:l El{mn s(B) — Elm, s(B)]} x
{rin, (B)—Elritn, (B} 1and &5 (B, y) := 25,y E{M;; (B, ¥)—EIM;; (B, ¥)]}x
MG (B.y) — EIM; (B, )I}'), hence [&7; (B, )1[231 2] = 8, (B). We abuse
notation since G (8, y) may not exist for some or any f. Let f.d.d. denote finite
dimensional distributions.

P1 (fast (non)linear plug-ins). \7,,1/2(,4@” — ,30) = 0p(1) and Sup, cr A ()/)\7,1_1 |
— 0.

P2 (slow linear plug-ins). G (y) exists for each n, specifically sup,, er | Gl <
oo and liminf,_ oo inf 1 Amin (&}, (y)) > 0. Further:

9 We ignore for notational economy measurability issues that arise when taking a supremum over
an index set. Assume all functions in this chapter satisfy Pollard (1984) permissibility criteria,
the measure space that governs all random variables is complete, and therefore all majorants are
measurable. Probability statements are therefore with respect to outer probability, and expectations
over majorants are outer expectations. Cf. Dudley (1978) and Stinchcombe and White (1992).
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a. V2(By— B = 0,(1) and V,, ~ K(y)Vy(y), where K : T — R4*4 and
infyel" Amin(KC(y)) > 0.

b Va2 (Bu = %) = An X0 Utny —Elitnsl}x (1+ 0, ()4 o) (1) where
nonstochastic A, € R1*" has full column rank and A, 3;1A~;1 — 1.

c. Thefdd. of &} (y)~1/2 (M, [ (y) = EIM;; (y)]} belong to the same domain
of attraction as the f.d.d. of Sn’l(y){m;,(y) —E[my (y)].

P3 (orthogonal equations and (non)linear plug-ins). an/z (Bn —-p% = 0,(1) and
limsup, _, o, sup,, cr ||V,,J-(;/)Vn_l || < oo.

Remark 2 3,, effects the limit distribution of ’fn(y) under P2 hence we assume ,3”
is linear. P3 is invoked for orthogonalized equations r?zf,j, B, v)-

Third, identification under trimming.
11 (identification by m,, ,(y)). Under the null Sup,, e |nSn_l (Y)E[my, , (y)]| = 0.

Remark 3 1f m,(y) is asymmetric there is no guarantee E[m,, , (y)] = 0, although
E[my, , (y)] — 0 under Hy by trimming negligibility and dominated convergence.
The fractiles {k; ¢ », k; ; n} must therefore promote I1 for asymptotic normality in
view of expansion (5) and mean centering. Since sup, cr{Sn(y)/n} = o(l) by
Lemma B.1, below, I1 implies identification of Hy sufficiently fast. The property
is superfluous if E[e;] = 0 under either hypothesis, ¢, is independent of x; under
Hy, and re-centering is used since then E[m;; , (y)] = 0 under Hy (see Sect. 3).

Fourth, the DGP and properties of regression model components.

R (response). f (-, B) is for each B € BB a Borel measurable function, continuous,
and differentiable on B with Borel measurable gradient g;(8) = g(x;, B) =
@/98) f (1. B).

R2 (moments). E|y;| < oo, and E(supﬂeB | f(xs, B < oo and E(supﬂeB|
(0/0Bi) f (xt, B)|") < oo for each i and some tiny ¢ > 0.

R3 (distribution).

a. The finite dimensional distributions of {y;, x;} are strictly stationary, non-
degenerate, and absolutely continuous. The density function of €;(B) is uni-
formly bounded SUpPge3 sup,cri(d/9a)P(&(B) < a)} < oo.

b. Define k¢(B) := argsup, - o{Ele;(B)|% < oo} € (0, oo] , write ke = ke (B2),
and let By denote the set of B such that the error variance is infinite
ke(B) < 2. If ke(B) = 2 then P(le(B)] > ¢) = d(B)e P (1 + o(1))
where infgep, . d(B) > 0 and infgep,  ke(B) > 0, and o(1) is not a function

of B, hence lim._, oo supgep,  [d(B) e P P(le (B)| > ¢) — 1| = 0.
R4 (mixing). {y:, x;} are geometrically B-mixing: SUP gc3to E|P(AIS" ) —
Srt
P(A)| = o(p") for p € (0, ).
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Remark 1 Response function smoothness R1 coupled with distribution continuity
and boundedness R3.a imply >/, n%;’t(ﬁn, y) can be asymptotically expanded
around B°, cf. Hill (2011b, Appendices B and C). Power-law tail decay R3.b is
mild since it includes weakly dependent processes that satisfy a central limit theo-
rem (Leadbetter et al. 1983), and simplifies characterizing tail-trimmed variances in
heavy-tailed cases by Karamata’s Theorem.

Remark 2 The mixing property characterizes nonlinear AR with nonlinear random
volatility errors (Pham and Tran 1985; An and Huang 1996; Meitz and Saikkonen
2008).

Fifth, we restrict the fractiles and impose nondegeneracy under trimming. Recall
kjn = max{kjen,kj1n,-.-skjqgn} the R3.b moment supremum «. > 0, and
o (B.y) = EIm;%(B. v)].

F1 (fractiles).

a. kjen/In(n) — oo;
b. If ke € (0, 1) then kj e n/n>1 74/ 2K — oo,

F2 (nondegenerate trimmed variance). liminf,,_, oo infﬁeg,yer{S,% B,y)/n} >0
and supgepyer (nog (B, ¥)/S;(B. )} = O(D).

Remark 1 Fl.a sets a mild lower bound on k. ,, that is useful for bounding trimmed
variances 0,12(,3, y) and S,%(,B, y). F1.b sets a harsh lower bound on k. , if, under
misspecification, €; is not integrable: as «. \ 0 we must trim more k., /' n in
order to prove a LLN for my, ,(y) which is used to prove j},(y) is consistent. Any
ke n ~ n/L(n) for slowly varying L(n) — oo satisfies F1.

Remark 2 Distribution nondegeneracy under R3.a coupled with trimming negligibil-
ity ensure trimmed moments are not degenerate for sufficiently large n, for example
liminf, o infges,yer a,% (B, y) > 0. The long-run variance S,% (B, y), however,
can in principle be degenerate due to negative dependence, hence F2 is imposed. F2
is standard in the literature on dependent CLT’s and exploited here for a CLT for
my (B, y), cf. Dehling et al. (1986) .

Finally, the kernel w(-) and bandwidth b,,.

K1 (kernel and bandwidth). o (-) is integrable, and a member of the class w : R —
[—1, w(0) = 1, 0(x) = o(—x)Vx € R, [%_|o(x)|dx < oo, [0 [0(§)|dE <
00, () is continuous at 0 and all but a finite number of points }, where ¥ () :=
@m)~! [%, o (x)e’* dx < oo.Further >} | lo((s—1)/bn)| = 0(n?), max<y<y |
> w((s —1)/by)| = o(n) and b, = o(n).

Remark 1 Assumption K1 includes Bartlett, Parzen, Quadratic Spectral, Tukey-
Hanning, and other kernels. See Jong and Davidson (2000) and their references.
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Appendix B: Proofs of Main Results

We require several preliminary results proved in the supplemental appendix Hill
(2011c, Sect. C.3). Throughout the terms 0, (1), O (1), 0o(1) and O (1), do not depend
on B, y, and . We only state results that concern n%j’t(ﬂ, y), and mj’t(,B, y), since
companion results extend to ’ﬁn,t (B, v),and m,ﬂ-’t (B, v).LetF1-F2,K1,R1-R4, and
W1.b hold. Recall (8, y) = E[m}% (B, ¥)].

Lemma B.1 (variance bounds)

2
2 _ * 2 I )
a. (B y) = o (rmax {1, (Elm}, 8. DY), sup [ max {1, (Elm}, ()12 ]
= o(n/In(n));

b. S,%(y) = Ennanz(y) = 0(n?) for some sequence {£,} that satisfies lim inf,,_,
£, > 0, £, = K if ¢ is finite dependent or E[etz] < 00, and otherwise
£, < K In(n/minjeq1 2y {kj.e.)) < K In(n).

Lemma B.2 (variance bounds)

a. sup,cr 1S, () i g () — mik ()} = o0,(1).
b. Define fi;; (B, y) :=n, (B, y) —m,(B,y) and u; (B, y) :=m, (B,y) —
m’(B, y). If additionally P1 or P2 holds SUp, cr |Sn_2()/) Z?,,zl w((s —1)/by)

B VRE Buv) — 1 s ()} = 0p(L).

Lemma B.3 (variance bounds) Let 3, B € B. For some sequence {Bn.x} in B sat-
isfying 1Bn.«— Bl < |IB — Bl|, and for some tiny « > 0 and arbitrarily large

finite § > 0 we have sup,cr iy (B.y) — (B y) = i (B v) (B = B) =
n= < |IB = BIIV x 0, (1).

Lemma B.4 (Jacobian) Under P1 or P2sup.,r- || (Bu. ) — Ju () (1 +0,(1)]]
0,(1).

Lemma B.5 (HAC) Under P1 or P2 sup,,r- |S2(B, v)/S2(y) —1] 5 0.

Lemma B.6 (ULLN) Let inf,>y |E[m;}, (y)]| > O for some N € Nand all y €

'/S where S has measure zero. Then sup,,cr/s{1/n 22—y my, (y)/Elmy ()]} 5
L.

Lemma B.7 (UCLT) (S, () X1 (m},, () — Elm, (1)) 1 y € T) = (z() :
y € T}, a scalar (0,1)-Gaussian process on C[I'] with covariance function
Elz(y1)2(y2)] and a.s. bounded sample paths. If P2 also holds then (G, /> () 37,
(M ()= EIM: (W] y eT} = {Z2(y): y € T} anr + 1 dimensional
Gaussian process onC [T ] with zero mean, covariance I+, and covariance function
E[Z(yDZ()'].
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Proof of Lemma 2.1 We only prove the claims for my (8, y). In view of the
o (x;) -measurability of P, ;(y) and sup, cp E[Py(y)| < oo the proof extends
to m,f (B, v) with few modifications. Under Hy the claim follows from trimming
negligibility and Lebesgue’s dominated convergence: E [m;’t(y)] — E[m;(y)] = 0.

Under the alternative there are two cases: E|¢;| < oo, or E|€;| = oo such that
Ele;|x:] may not exist.
Case 1 (Ele;| < o0). Property W1, compactness of I', and boundedness of
imply F(y'v;) is uniformly bounded and revealing: E[¢;F(y'v)] # 0 for all
y € I'/S where S has Lebesgue measure zero. Now invoke boundedness of F (y'v;)
with Lebesgue’s dominated convergence theorem and negligibility of trimming
to deduce |E[e,(1 — I, ((B°)F(y'¥)]l — O, hence E[e; 1, (BO)F(y'v¥)] =
E[eF(y'y)] +o(1) # Oforall y € T/S and all n > N for sufficiently large
N.
Case 2 (Ele;| = 00). Under H; since I, () — la.s. and E|e;| = oo, by the
definition of conditional expectations there exists sufficiently large N such that
ming,>y | Elé€; In,,(,BO)lx,]| > 0 with positive probability Vu > N. The claim there-
fore follows by Theorem 1 of Bierens and Ploberger (1997) and Theorem 2.3 of
Stinchcombe and White (1998): lim inf,,_, |E[E,In,t(ﬂO)F(y’1ﬁt)]| > 0 for all
y el'/S. QED.

Proof of Theorem 2.2 Define M (B, y) = m} (B.y) — E[m} (B.y)] and

M;,"’,(ﬂ, y) = my, (B, y) — Elny (B, y)]. We first state some required proper-

ties. Under plug—in properties P1 or P2 Bn — B0 = op (1). Identification I1 imposes
under Hy

sup [, () Elm, (1)1] = o(1/m). (B.1)

yel

which implies the following long-run variance relation uniformly on I":

n 2
E(ZM:{,M) = S2(y) —n* (E[m, B, 1))’ = S2») (1 +0(1). (B.2)
=1

Uniform expansion Lemma B.3, coupled with Jacobian consistency Lemma B.4 and

Bn L B° imply for any arbitrarily large finite § > 0,

| A R R _
per |1 2. {mﬁ,t(ﬂn, V) = mn,z()’)} —Jn (v (ﬁn - 50) (140, (D) =0p (n7°).
ve =1
(B.3)
Finally, by uniform approximation Lemma B.2.a
n
su iy (V) —my, (P} =o0p (1), (B.4)
0 | Sa 22 Um0 = ) = 0
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and by Lemma B.5 we have uniform HAC consistency:

sup [S2(Bu. v)/Sa(y) — 1| = 0,(1). (B.5)
yell

Claim i (f',, (y) : Null Hy). Under fast plug-in case P1 we assume SUp, e [ Va(y)
\7”_1|| — 0, hence

sup 1571 () S ) (Ba = 8°)| = 05 (D). (B.6)
yell

Since § > 0 in (B.3) may be arbitrarily large, liminf, o infy, cr S, (y) > 0 by
nondegeneracy F2, and Egs. (B.1)—(B.6) are uniform properties, it follows uniformly
onT

n , 2
A 1 Jn A _
Tnmf’i(s o M+ (ﬂn—ﬂ°)+op(s'zy)n ‘3))

t=1

n 2
1
= M* D) =M@, B.7
(SnW),:z] n,t(y>+op(>) 2() (B.7)

say. Now apply variance relation (B.2), UCLT Lemma B.7 and the mapping theorem
to conclude E[Mﬁ ()] — 1 and {’f}l (y) iy €T} = {Z>(y) : y € '}, where
z(y) is (0, 1)-Gaussian process on C[I'] with covariance function E[z(y1)z(y2)].
Under slow plug-in case P2 a similar argument applies in lieu of plug-in linearity
and UCLT Lemma B.7. Since the steps follow conventional arguments we relegate
the proof to Hill (Hill 201 1c, Sect. C.2).
Claim ii (fn (y) : Alternative Hy). Lemma 2.1 ensures inf,,> y |E[m:;,t(y)]| > 0 for
some N € Nandall y € I'/S where S C I' has Lebesgue measure zero. Choose
any y € I'/S, assume n > N and write

n 2
~ 1 ~
T ()= =——=—— D 1y, (Bu.¥)

(Snwn,y); ! )

N 2
n? (E [m3,()])° (l/n i1 71 B, V)\
2B v) E [m3s, ()]

In lieu of (B.5) and the Lemma B.l.a,b variance property n|E[m (y)]l/
S, (y) — 00, the proof is complete if we show M,, (B4, ¥) := [1/n > n%n),(ﬁn,

WI/IEms ()1l 5 1.
By (B.3), (B.4) and the triangle inequality M, (B,, y) is bounded by
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Zm”’(” E [mw]l

o T
(A= £°) (140, (1) +""(n ,E[m;;,,<y>]|)’

where sup,,cr/s{1/n 2>y my, (y)/Elm;, (y)]} % 1 by Lemma B.6. Further,
combine fast or slow plug-in P1 or P2, the construction of V, (y) and variance
relation Lemma B.1.a,b to obtain

| [ nt(y)

o) (B=8) 1 +0, )| 5 )
<
|E [mZt(V)“ T n |E [mZt(J/)]
Sy
2 )~ K )

n|E [m, ()]

Therefore M,, (,3”, ¥) 2.

Claim iii (YA"HJ- (y) ). The argument simply mimics claims (7) and (i7) since under plug-
in case P3 it follows §;-(Ba, 1) ™" 30 it By v) £ SE) VY mik,(v) by
construction of the orthogonal equations (Wooldridge 1990), and straightforward
generalizations of the supporting lemmas. QED.

The remaining proofs exploit the fact that for each z; € {e, gi} the prod-
uct z; F (y’ w,) has the same tail decay rate as z;: by weight boundedness W1.b
P(lzi sup,er Fw)| > ¢) = P(Iz:F; () | > ¢) = P(|z;inf,er F(w)| > ¢). Fur-
ther, use I, ; = I¢ n,114n,» dominated convergence and each I ; ; 231 to deduce
Ellze F/"Yol Ini ] = Ellze F(Y'¥)I" I ni] x (14 o(1)) for any r > 0. Hence
higher moments of z; F (y'v) 1, and z;1, ,, ; are equivalent up to a constant scale.

|an @) S ()

—o(l).

Proof of Theorem 3.1 The claim under H; follows from Theorem 2.2. We prove
T, (o) —d> 1 - A)_l f)} I(u(X) < a)di under Hyp for plug-in case P1 since the
remaining cases follow similarly. Drop y and write rﬁn’t(ﬁn, A) and 3,%(,3,,, A) to
express dependence on A € A := [A, 1]. Define Z, (%) := S‘n_l(,é,,, ) D
(,3,1, A). We exploit weak convergence on a Polish spaceloz we write {2,, )
A€ A} =™ {z(A) : L € A} on ly(A), where {z(X) : A € A} is a Gaussian
process with a version that has unlformly bounded and uniformly continuous sam-

ple paths with respect to || - ||2, if Z, (L) converges in f.d.d. and tightness applies:
lims_,o lim sup,,_, o P(SUPHA%HSS |Z A) — Z (M)] > &) = OVe > 0.

We need only prove {2,1()0 A € A} =™ {z(A) : A € A} since the claim
follows from multiple applications of the mapping theorem. Convergence in f.d.d.

10 See Hoffmann-Jgrgensen (1991), cf. Dudley (1978).
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follows from sup, . 5 |3‘n_1(,3n, M rﬁz’,(,@n, =St >0, my (M) 20
by (B.3)—(B.5) under plug-in case P1, and the proof of UCLT Lemma B.7.
Consider tightness and notice by (B.3)—(B.6) and plug-in case P1

n

R 1 "
SUp | Zn(2) — Z, (1)| > 0 where 2, (1) 1= D ——mily, (W) = D 25, ().
AEA = 5 =1

hence we need only to consider Z, (A) for tightness. By Lemma B.1.b and inf{A} >
0 it is easy to verify infep S,%()») = ”%2 for some sequence {0,%} that satisfies
liminf,_ o 0> > 0. Therefore

n ~ 1 n ~
>z =200} = = m {0 —In,,m}‘
=1 =1
Sp(L) | -
— —1 LM =A1,,(, A
S, (0 ’ X S, (0 ;mt ) 1,n( )
+ Az (1, A).

By subadditivity it suffices to prove each lims_.o lim sup,,_, o, P(Sup||x—i||5s Ain

(A, %) > &) =0Ve > 0.

Consider Ay , (2, X) and note I, ; (1) can be approximated by a sequence of con-
tinuous, differentiable functions. Let {/;;} be a sequence of positive numbers to be
chosen below, and define a smoothed version of 7, ; (1),

1

TN (1) = / Lt(@)S N, (@ — 1) dew

0
A+1/N; =1/ (1=NZ(@—1)?) Ny
_ I o x dw,
/ n.t (@) Ll] e~ V—wd)gy e ING
A—1/N,

where S(u) is a so-called “smudge” function used to blot out I, ;(zw) when @ is
outside the interval (A — 1/N;, A + 1/N;). The term {-} after the second equality
defines S(u) on[—1, 1]. The random variable J s, , ; (1) is 3, -measurable, uniformly
bounded, continuous, and differentiable for each A, and since k, (1) > k, (5\) for
A > A then Jp7, ps(A) < In, ns(R)a.s. CE. Phillips (1995).

Observe A;j , (A, 1) = Bin, n (X, 1)+ Ba N, (M) + 82,/\/”,”(5») where
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e T ) = I D)
BiNyn O 2) =D Yo ,
n

t=1

Bz,NH,n(x>=z’"’{ 1 >1 Nt O}

nl/2g,
=1 n

Consider By a7, » (A, ):), define Dps, (X)) := (3/0X)TInr, .1 (A), and let {b, (X, 1)}
for infinitessimal ¢ > 0 be any sequence of positive numbers that satisfies P (|m,| >
bp(A, 1)) = A — ¢ € (0, 1), hence lim,—, o0 SUP;cp bn(, 1) < 00. By the mean-
value-theorem jN (A — JN n, t()”) = DN n.t (s )()L - A) for some A, € A,

A — Ayl < A — 5»|. But since sup; cp [1,,:(A) — 1] 230 it must be the case
that sup,cp |DA,, (M) — Oa.s. as n — oo for any N, — oo. There-
fore, for N sufficiently large, all n > N, any p > 0 and some {b, (X, )}
we have sup, p E|m;Dpr, . (MIP < Ksupyep Elmd(Im:| < by(A, )P <
K supyca b? (A, 1) whichis bounded on N. This impliesm; Dy, ,,:(A)is L, -bounded
for any p > 2 uniformly on A x N, and geometrically S-mixing under R4. In view
of liminf,_, o o,% > 0 we may therefore apply Lemma 3 in Doukhan et al. (1995)
to obtain sup; < |n’1/2c7n’1 Zle mDps, 0t (M) = Op(1). This suffices to deduce

lims_,o lim sup,,_, o, P(SupH)\*XHSB IB1 A (A, 1)| > ¢) is bounded by

x5>8) 0.

Further, since the rate N;, — oo is arbitrary, we can always let A, — oo so fast that
limsup,,_, o, P(sup;cp B2, A, .n(M)] > €) = 0, cf. Phillips (1995). By subadditivity
this proves lims—o lim sup,, _, oo P(sup|, 3, 5 A1n (A, 1) > &) = 0Ve > 0.

Now consider A , (%, 5»). By UCLT Lemma B.7 sup; .5 |S{l A) Z:lzl mely
(M| = 0p(1) for any compact subset A of (0, 1]. The proof is therefore com-
plete if we show [S,(1)/S,(A) — 1| < K[ — A|'/2. By Lemma B.1.b $2(1) =
Sn(k)nE[m,zI,,,,(A)]. Compactness of A C (0, 1] ensures liminf,_, o infycp £,
(A) > Oand sup; 5 £,(A) = O(In(n)), and by distribution continuity E[mtzln,t()\)]
is differentiable, hence | S, (1) /Sy (A)—1| < K (supycp {|Gn )|}/ E[m? L, (W)])/? x
A — A2 = &|n — A|'/? where G, (1) := (3/dA) E[m?1,,(1)]. Since k, ~
An/In(n) it is easy to verify limsup,,_, ., Supycp En < 001 if E[mtz] < oo then the
bound s trivial, and if E[m?] = oothenusec, , = K (n/k,)"/* = K (In(n))'/<x =1/«
and Karamata’s Theorem (Resnick 1987, Theorem 0.6). QED.

lim lim sup P (K sup
n!

=0 n—oo rEA

1
Zmﬂ?/v ni(A)
Un —

Proof of Lemma 4.1 By Lemma B.7 in Hill (2011b) J,(y) = —Elg: F;(y) 1] %
(1 4+ o(1)) hence it suffices to bound (E[g;,F; (¥) I,.11)*/S2(y). The claim fol-
lows from Lemma B.1.b, and the following implication of Karamata’s theorem (e.g.
Resnick 1987, Theorem 0.6): if any random variable w; has tail P(Jw;| > w) =
dw™ (14 o0(1)), and wy; ; := w I (|we| < cwn)s P(lwi| > cyn) = kyu/n = o(1)
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and ky,, — oo, then E|wy |P is slowly varying if p = «, and E|w; |7 ~
Kl (kyn/n) = K(n/ky )P Vif p > k. QED.

Proof of Lemma 4.2 First some preliminaries. Integrability of €; is assured by
k > 1, and y; has tail (11) with the same tail index x« (Brockwell and Cline 1985).
Stationarity ensures €;(8) = Z?io Vi(B)€—i, where SUPges i (B)] < K,oi for
p € (0,1), wo(ﬂo) = l and v; (,30) = 0Vi > 1. Since ¢; is iid with tail (11) itis easy
to show ¢, () satisfies uniform power law property R3.b by exploiting convolution
tail properties developed in Embrechts and Goldie (1980). Use (4) and (11) to deduce
cen =K (”/kn)l/K-

F2 follows from the stationary AR data generating process and distribution con-
tinuity. I1 holds since E[m;, ,(y)] = 0 by independence, symmetry, and symmetric
trimming. R1 and R2 hold by construction; (11) and the stated error properties ensure
R3; see Pham and Tran (1985) for R4.

Now P1-P3. OLS and LAD are n!/* -convergent if k € (1, 2] (Davis et al. 1992);
LTTS and GMTTM are n'/¢ /L(n) -convergent if k € (1, 2] (Hill and Renault 2010;
Hill 2011b)'!; and LWAD is n!/ 2-convergent in all cases (Ling 2005). It remains
to characterize V, (y). Each claim follows by application of Lemma 4.1. If « > 2
then V,,(y) ~ Kn, so OLS, LTTS and GMTTM satisfy P2 [LAD and LWAD are not
linear: see Davis et al. (1992)]. If k € (1, 2) then V,,(y) ~ Kn (ky/n)>/*~! = o(n),
while each B, satisfies \711/ i /n'? — oo, hence P1 applies for any intermediate
order {k,}. The case k = 2 is similar.

Finally, Lemma 4.1 can be shown to apply to VnJ-(y) by exploiting the fact that
€:9i1 = €Yi—; have the same tail index as €, (Embrechts and Goldie 1980). The
above arguments therefore extend to m ,J,-,, (B, v) under P3. QED.

Proof of Lemma 4.3 The ARCH process {y,} is stationary geometrically S-mixing
(Carrasco and Chen 2002). In lieu of re-centering after trimming and error indepen-
dence, all conditions except P1-P3 hold by the arguments used to prove Lemma 4.2.

Consider P1-P3. Note ¢; = utz — 1 is iid, it has tail index «,/2 € (1,2] if
E[u}] = oo, and (3/3B)e/(B)|go = —u}x;/h} is integrable. Further S (y) =
nE[mZ?,(y)] by independence and re-centering. Thus V,,(y) ~ Kn if E[u;‘] < 00,
and otherwise apply Lemma 4.1 to deduce V,,(y) ~ Kn (k,/n)***~Vifk, < 4, and
Vu(y) ~n/L(n) ifk, = 4.

GMTTM with QML-type equations and QMTTL have a scale Val] ~ n /L(n)
if E [uf] = 00, hence P1, otherwise ||V, || ~ Kn hence P2 (Hill and Renault 2010;
Hill 2011b). Log-LAD is n'/2-convergent if E[u,z] < 00, hence P1 if x, < 4, and
if k, > 4 then it does not satisfy P2 since it is not linear. QML is n'/?-convergent

' LTTS and GMTTM require trimming fractiles for estimation: GMTTM requires fractiles &, ,
for each estimating equation m1; , ; , and LTTS requires fractiles IEG, » and l;y, n for e, and y;—;. The
given rates of convergence apply if for GMTTM k; , ~ A In(n) (Hill and Renault 2010), and for
LTTS Igeq,, ~ An/In(n) and 12”, ~ Aln(n) (Hill 2011b), where A > 0 is chosen by the analyst and
may be different in different places.
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if E[u?] < oo hence P2, and if E[u}] = oo then the rate is n!=2/%« /L(n) when
Ky € (2,4] (Hall and Yao 2003, Theorem 2.1). But if k,, < 4 then n(k, /n)**«—! =
kﬁ/ wlp2=dfi 5 p2=4/k, /L (n) for any slowly varying L(n) — oo and intermediate
order {k,} hence QML does not satisfy P1 or P2. Synonymous arguments extend to
m,ﬂ-’, () under P3 by exploiting Lemma 4.1. QED.
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Nonparametric Identification in Dynamic
Nonseparable Panel Data Models

Stefan Hoderlein and Halbert White

Abstract We consider the identification of covariate-conditioned and average partial
effects in dynamic nonseparable panel data structures. We demonstrate that a control
function approach is sufficient to identify the effects of interest, and we show how
the panel structure may be helpful in finding control functions. We also provide new
results for the nonparametric binary dependent variable case with a lagged dependent
variable.

Keywords Nonseparable Models - Identification + Dynamic - Panel data -
Semiparametric + Binary choice

1 Introduction

We consider nonparametric identification of covariate-conditioned and average par-
tial effects of causes of interest (“effects of interest”) in panel structures. Identification
is nonparametric in that the structural relations generating the data are not assumed
to have a parametric representation, nor do we assume that this structure is separable
between observables and unobservables or that it possesses any monotonicity prop-
erties on the right-hand-side variables. We permit the observable causes of interest
to be endogenous, as they need not be independent of the unobservables. Compared
to previous work, a key innovation is that we allow for lagged dependent variables,
and we analyze both the effect of the lagged dependent variable as well as the effect
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of other explanatory variables in structural systems with lagged dependent variables.
We consider both continuous and binary lagged dependent variables.

For the same structure but without lagged dependent variables (the “static case”),
Hoderlein and White (2011, henceforth HW) establish nonparametric identification
of covariate-conditioned and average partial effects of endogenous causes for the
subpopulation of “stayers” (i.e., the subpopulation for which the explanatory vari-
ables stay unchanged between two time periods), without imposing independence
between the persistent unobservables and the causes of interest. A similar result
is obtained in Graham and Powell (2010, henceforth GP) for the subpopulation of
“movers” (the complement population to the stayers), if the structure is known to
be linear in the explanatory variables. Finally, Chernozhukov, Fernandez-Val, Hahn,
and Newey (2009) obtain results for average discrete variation in causes of interest
for the subpopulation of stayers, without imposing independence.

Both the HW and the GP approaches restrict the dependence of the regressors
on the past in a way that rules out lagged dependent variables. In contrast, Altonji
and Matzkin (2005) and Bester and Hansen (2008) restrict the dependence in a way
that may allow for lagged dependent variables. We follow a similar strategy here,
as it does not appear that effects in the general dynamic case can be point identified
otherwise. To make the main ideas clear, we first lay out this strategy in the static case,
followed by an analysis of the dynamic case. An important feature of our contribution
here is our focus on the content of the identifying assumptions, especially for the
dynamic case.

Although our main focus is on providing new identification results, we also con-
sider their implications for estimation. We recommend local linear regression, with
explicit allowance for the case of mixed continuous-discrete regressors, as in Li and
Racine (2004). Interestingly, the asymptotic theory relevant to our estimators has
not yet been fully settled; development is ongoing. As the challenges of this theory
are significant, its further development lies beyond the scope of this chapter. Thus,
we focus on describing our proposed estimators, discussing their known properties,
suggesting useful directions for the further development of the asymptotic theory,
and examining estimator finite-sample properties via simulation experiments.

The structure of the chapter is as follows: In the second section, we set out the
main structural assumptions and briefly describe the effects of interest. In Sect. 3, we
present our main identification results. We start with the static case and then discuss
in more detail the dynamic case. Section 4 discusses estimation. Section 5 contains
a summary and concluding remarks.

2 The Data Generating Process and Effects of Interest

In this section we specify the structure generating the data and describe the effects of
interest. We begin by specifying a dynamic triangular structural system that generates
the data. We write NT := {1,2,...} and N := {0} U Nt. We also write Nt :=
N*t U {oo} and N := {0} UNT.
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Assumption A.1 (a)(i) Let (2, F, P) be a complete probability space. Let k, €
N+, let Yy be a ky x 1 random vector on (€2, F, P), and let the random k, x 1
vectors Y, be determined by a dynamic triangular structural system as

Yl:¢(Y[—17X[7517Ut;AsB)1 t:1,2,...,

where ¢ is an unknown measurable k, x 1 function; X;, S;, and U, are vectors of
time-varying random variables on (2, F, P) of dimensions k, € N*, k; € N, and
k, € N*: and A and B are vectors of time-invariant random variables on (2, F, P)
of dimensions k, € NT and kj, € N.

Suppose also that W; and C are random vectors on (2, F, P) of dimensions
ky € Nand k. € N, time-varying and time-invariant, respectively. (ii) The triangular
structure is such that neither Y;, Y;_1, nor X, structurally determines W;; Y;_1 does
not structurally determine X;, S;, or U;; and X, does not structurally determine S,
or U;.

(b) Realizations of U; and A are not observed. Realizations of all other random
variables are observed.

We observe a panel of data generated according to Assumption A.1, e.g.,
Yi,t=¢(Yi,l717xi‘l7si,[7Ui,l;Ai7Bi)7 t:1’27"'; i:1729""

We assume the data are identically distributed across i and accordingly drop the i
subscript.

We are interested only in the effects of X; on Y, or of ¥;_; on Y; (the dynamics).
A finite number of lags is readily accommodated; for simplicity, we specify only a
single lag of Y;. Given these interests, we also write

G (Yi—1) = oY1, X4, S, Up; A, B) or ¢ (Xy) = ¢(Yy—1, Xi, St, Urs A, B),
suppressing all but the causes of interest. Interest attaches to the marginal effects

Dy (Yi—1) and Dy (Xy),

where Dy = 0/dy_ and D, = 9/0x and denote the derivatives with respect to the
first and second arguments of ¢, respectively. The triangularity restrictions imposed
in A.2(a.ii) ensure that these are the full effects of the variables of interest; there
are no indirect effects here. Because ¢ is unknown and U; and A are unobserv-
able, these effects cannot be directly measured. Instead, we consider identifying the
conditionally expected effects

E[Dy¢:(Y;-1)1G:] and E[Dx¢(X:)[H;],

where G; and H; denote suitable conditioning information sets. As the notation sug-
gests, different conditioning information may be involved in identifying the effects
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of Y, and X,. The random variables W, and C will be used in generating G,
and H;.

Observe that covariate-conditioned effects of this sort are more informative about
the underlying effects, Dy¢;(Y;—1) or Dy¢;(X;), than are unconditional averages
or partial means, as conditional expectations give mean-squared-error optimal pre-
dictions and thus necessarily have smaller prediction variance for effects of interest
than unconditional averages or partial means.

3 Identification of Average Marginal Effects

3.1 The Static Case

For clarity and to ease the notational burden, we begin with an analysis of the static
case, ¢:(X;) = ¢(X:, St, Us; A, B). A direct way to identify effects in this case
makes use of the conditional expectation

ElY: X =x, Q; =ql =E[¢:(X)) | X; =x, Oy =¢q], (D

where Q; represents observable “covariates,” both time-varying and time-invariant.
For example, time-varying components of Q; include S;, as well as observed drivers
of X;, such as lagged X;’s, together with W;’s acting as proxies for U; and for
unobserved drivers of X;. The time-invariant components of Q; are B and C. C
may include observable proxies for A; observable attributes explaining X,; and
observable proxies for unobservable attributes explaining X;. For concreteness, let
0, = (8, X;—1, W;, B, C) for the moment. We further discuss Q; below.

The conditional expectation on the left of Eq. (1) exists whenever E(Y) < oo;
it has no necessary structural meaning. Under Assumption A.1 (a.i), however, the
structurally meaningful representation on the left of Eq. (1) holds. It is helpful to also
provide an integral representation of this object. For this, we suppress the dependence
of ¢ on S; and B, and write

Elg:(X1) | Xi =x, Q1 =¢q] = /¢(x, w;a) dF (u,a | x, q).

Here,dF (u, a | x, g) defines the conditional density of (U;, A) given (X; = x, Q; =
q). This distribution may depend on ¢, but we suppress this dependence here and in
what follows for notational simplicity. We also let the argument list implicitly specify
the relevant random variables. This integral representation holds, provided that the
associated conditional distribution is regular (e.g., Dudley (2002), Chap. 10.2). In
what follows, we assume implicitly that any referenced conditional distribution is
regular.
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As interest attaches to the marginal effect of X;, we take the derivative of E[Y; |
X; = x, Q; = q] with respect to x. This gives

D E[Y:|X; = x, Q1 = ¢]

= / D¢ (x,u;a) dF(u,a | x,q) +/¢(x, u;a)Dy dF (u,a | x, q).

The representation holds with differentiability for ¢ and dF (u,a | x,q) and
regularity permitting the interchange of derivative and integral. This includes an
assumption that the domain of integration does not depend on x. Under mild condi-
tions, DydF = D, IndF dF; letting

(St = DX lndF(U[, A | Xl‘a Qt)a
be the exogeneity score of White and Chalak (2011), we can write

D,E[Y; | X, =x, Oy =¢q]
=E[Dy¢(Xy) | X; =x, Oy =ql +E[¢(X)d | X; =x, Oy =q].

The first term on the right is a main item of interest: it is an average marginal effect
of the sort discussed above. The second term on the right is an “endogeneity” bias.
Whenever this is nonzero, it interferes with using D, E[Y; | X; = x, Q; = ¢q] to
measure the effect of interest. See White and Chalak (2011) and White and Lu (2011)
for further discussion.

We thus seek conditions that make this bias vanish. A standard condition for this is
the assumption that (U;, A) is independent of X, given Q,. Following Dawid (1979),
we write this

Ui, A) L X | Qs 2

This type of “control function” assumption has been used in related contexts by
Altonji and Matzkin (2005), Imbens and Newey (2009), and Hoderlein (2011),
to name just a few. White and Chalak (2011) refer to this as a “conditional exo-
geneity” assumption, given its similarity to the assumption of strict exogeneity
(here, (U;, A) L X;). When (U;, A) L X, fails, we have the case commonly
referred to as “fixed effects” (Wooldridge, 2002). Condition (2) allows fixed effects
((U;, A) L X;), while still delivering identification of effects of interest.

To see how, observe that (2) ensures that for all (u, a, x, g), we have

dF(u,a|x,q) =dF(u,a|q),
so that §; is identically zero. This guarantees that the effect bias vanishes, so that

D.E[Y;|X; =x, Q; =q]
=E[Dy¢: (X)) | X; =x, Oy = q]l = E[Dx¢(x) | Or = ql.
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The first equality holds because the effect bias vanishes. The second equality follows
as a further consequence of conditional independence.

Thus, under Assumption A.1(a), conditional exogeneity, and sufficient differentia-
bility and regularity, D, E[Y; | X; = x, O; = ¢] has a clear structural interpretation
as an average marginal effect. In this case, we say that D, E[Y; | X; = x, Q; = ¢q]
is “identified” (cf. Hurwicz, 1950). Under Assumption A.1(b), all variables entering
the conditional expectation on the right are observable, so this effect measure can be
straightforwardly estimated from available data.

Before stating a formal result, we offer further insight into the content of the
conditional exogeneity assumption. To develop this, it is useful to split Q, explicitly
into its time-varying and time-invariant components, say Q; := (&, B, C), and to
write the conditional exogeneity restriction (U;, A) L X; | &, B, C equivalently as

U L X 14,A,B,C 3)
Al X |&,B,C. “)

This representation permits us to appreciate the differing roles of (B, C) and &;.

The role of & is foremost in (3). The more closely related are & and Uy, the less
useful X; is as a predictor of U; (given &, etc.) and therefore the more plausible is
(3). Viewed in this way, it is useful to have &, include proxies for U;. Specifically,
&; should include variables W; driven by U;. Components of S; may also act as
proxies for U;. Symmetrically, the more closely related are &; and X, the less useful
U, is as a predictor of X, (given &, etc.) and therefore the more plausible is (3).
Accordingly, one might choose &; to include drivers of X;, such as S;, X;_1, and
W;, or to include proxies for unobserved drivers of X;. Nevertheless, as White and
Lu (2011) show, including drivers of X; in & leads to less precise effect estimates;
in the limit, predicting X, too well leads to the analog of extreme multicollinearity.

The role of (B, C) is foremost in (4), where it acts as a proxy for A. Here, the
more closely related are (B, C) and A, the less useful X; is as a predictor of A
(given (B, C), etc.) and therefore the more plausible is (4). Similarly, the more
closely related are & and X;, the less useful A is as a predictor of X;, and the
more plausible is (4). Again, however, efficiency considerations suggest that it is
preferable to include proxies for A and avoid including variables correlated with
X;. These considerations motivate our specification that Q; = (S;, X;—1, Ws, B, C)
above.

Finally, observe that if one’s goal is to estimate E[ D, ¢;(X;) | X; = x, O = ¢q]
for arbitrary ¢, x, and g, then Eq. (2) is necessary, as otherwise the effect bias is
nonzero for some (generally most) values of x and/or ¢. Fortunately, the latitude in
choosing Q; (afforded by the latitude in the choice of W, and C) provides flexibility
in plausibly ensuring conditional exogeneity.

As White and Kennedy (2009) discuss, suitable covariates can contain further lags
of X;_1 and lags (or even leads) of S; and W;. We let Xf:iv = Xi—gps oo, Xi—1)

denote a lag history of X;, and we let S;i;‘f = (Sr—z; 15> St+1,,) and W:j;z"lz =

(Si—ty.1» -+ -+ Sit,,) denoted lead and lag histories of S; and W;. We adopt the
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convention that when 7, = 0, X f:ix is empty. Formally, o (X") denotes the o —field

(information set) generated by the random vector &X’; we impose

Assumption A.2 Let 1y, 7,1, T52, Tw,1, and 7,2 belong to N, and let k, € NT,

The observable k; x 1 random vector Q, is measurable—o (X ﬁ:lx, S,t:rf ‘12, W,tj;"f’f,
B, C), and (S;, B) is measurable —o (Q;).

Assumption A.2 potentially extends the observability of the covariates Q; to
periods before + = 1. We understand implicitly that these observations are generated
by the structure of A.1 for whatever time periods are required. The requirement that
(S¢, B) is measurable—o (Q;) ensures that Q, essentially includes (S;, B).

To proceed, we impose the validity of the interchange of integral and derivative
used above. White and Chalak (2011) give detailed primitive conditions for this. For
simplicity and conciseness here, we just impose the needed high-level assumption.

Assumption A.3 The distribution of (U;, A) | (X;, Q;) and the structural function
¢ are such that for all admissible (x, g), we have

Dx/qﬁ(x, s,uy;a,b)ydF(u,a | x,q)
=/Dx¢(x,s,u;a,b) dF(u,alx,q)
+/¢(x,s,u;a,b)DX In dF(u,a | x,q)dF(u,a | x,q).

Next, we impose conditional exogeneity.
Assumption A4 (U;, A) L X, | O;.

To state our first formal result, we let supp(-) denote the support of the indicated
random variable, that is, the smallest closed set containing that random variable with
probability one. We also let supp(- | -) denote the support of the first indicated random
variable, given the specified value for the second. The identification result for the
static case is

Proposition 3.1 GivenA.1-A.4withY; = ¢ (X, S;, Us; A, B), forallg € supp(Qy)
and x € supp(X; | QO = q),

DiE[Y/|X: = x, Q1 = q] = E[Dx¢:(Xy) | Xi = x, Qr =q]
=E[Dx¢s(x) | Qr =ql.t =1,2,....
Averaged versions of these effect measures are also recoverable. Specifically,

when the conclusions of Proposition 3.1 hold, then one can recover average marginal
effects of the form

Er[Dedy(X0)] = / E[D.y(x) | Qs = q1 dF (x. q).
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where dF is some density of interest specified by the researcher. Specifically, we
have

Er[Dady(X0)] = / DLELY: | X, = x, O = q] dF (x, q).

3.2 The Dynamic Case

Now suppose data are generated according to the fully dynamic version of Assump-
tion A.1(a),
Yi =¢(Yi—1, X:, S, U A, B). &)

We consider two different effects. First, we consider the effect of X; on Y;. Then we
consider dynamic effects, that is, the effect of Y;_; on Y;.
3.2.1 The Effect of X;
Given the results above, extending the static case to include Y;_ is now easy. We
therefore keep our discussion here to a minimum. With ¢, (X;) := ¢ (Yi—1, X+, St, Uy
A, B), A.1 gives

E[Yt | Y[—l =Y, X[ =X, Ql = CI] = E[d)l(Xl) | Yf—l =Y, Xt =X, Ql = Q]
The content of Q; is still governed by A.2. The analog of A.3 is simply

Assumption A.3' The distribution of (U;, A) | (Y;_1, X;, O;) and the structural
function ¢ are such that for all admissible (y, x, g), we have

Dx/d)(y,x,s,u;a,b)dF(u,a |y, x,q)
= / Do (y,x,s,u;a,b)dF(u,aly,x,q)
+/¢(y,x,s,u;a,b)Dx IndF(u,a|y,x,q)dF(u,aly,x,q).
The conditional exogeneity assumption becomes
Assumption A4 (U;, A) L X, | Y1, O;.

The dynamic version of Proposition 3.1 is

Proposition 3.2 GivenA.1,A.2,A.3', and A.4, for all (y, q) € supp (Y;_1, Q;) and
x €supp (X¢ | Yi—1 =y, Qr =q),
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D)CE[YI|YT*1 =Y, Xt =X, Qt :5]]
=E[Dy¢; (X)) | Y1 =y, X, =x, 0, =q]
=E[Dy¢i(x) | Vi1 =y, 0r=¢ql, t=12.... (6)

Using the obvious notation, an analogous argument applied to
M (Yi—2, Xi, Xi—1) := Qe (e (Yi—2, Xi—1), Xi)
under the assumption1 that for all ¢,
Ui, U1, A) L X¢ | Y2, Xi—1, Q1
yields

DEY | Y=y, X =x,Xi—1 =x_-1, Qr = q]
=E[Dy¢; Y1, x) | Yio=y, X1 =x_1, 0, =q]. (7)

Generally, the average marginal effects measured by Egs.(6) and (7) will differ.
Nevertheless, in special cases, these may coincide; examples are when ¢ is suitably
separable or partially linear. Comparing estimators of the conditional expectations
on the left in Egs. (19) and (7) may therefore support tests of these properties.

3.2.2 The Effect of Y;_1

We emphasize that the results so far identify only average marginal effects of X;.
They do not identify any dynamic impacts associated with D ¢. Nevertheless, under
suitable conditions we can recover certain dynamic effects. Because X; is no longer
a cause of interest, we absorb it into S;, and drop explicit reference to X;. Thus, we
write ¥; = ¢ (Yi—1) :== ¢ (Yi—1, S, Us; A, B).

Now consider

ElYi|Yi-1 =y, 07 = ¢ 1=El¢(Yi—1) | Yi-1 =y, O = ¢"]. ®)

We write Q} instead of Q; to make it clear that different covariates may be rel-
evant here than when considering the effects of X,. Similar to Q;, Q; represents
both observable time-varying covariates and observable time-invariant covariates.
Qf obeys an analog of A.2:

! The elements of Q; may need to be augmented with elements of Q;_; here. We leave the notation
unchanged for simplicity.
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Assumption A.2" Let Ty, Ts,1, Ts,2, Tw,1, and 7, 2 belong to N, and let k,« € NT.
The observable k,+ x 1 random vector Q7 is measurable —o (¥, tt__fzy, lt:t:f, W;j;:f ,
B, C), and (S;, B) is measurable —o (Q}).

We further discuss the content of O} below.
Suppressing the dependence of ¢ on S; and B, we have the integral representation

Elg (Y1) | ¥io1 = y, OF = ¢*] = /¢<y, wia)dF(u,a | y. q").

Taking the derivative of E[Y; | Y;—1 = y, Qf = ¢™] with respect to y gives

Dy]E[Yllyt—l =Y, Q;k = q*] :/Dy¢(y7uva) dF(M,Cl | Y, q*)

+/¢(y,a; u)DydF(u,a|y.q")

=E[Dy¢;(Yi—1) | Yic1 =y, OF = q7]
+Elg;(Y;—1)8] | Yi—1 =y, OF =¢"1,

where
5; = DyIndF(Us, A | Y. Q).

following an argument precisely parallel to that for the static case.

From this, we see that we can recover a useful measure of the effect of Y,_
on Y;, provided that the effect bias §; vanishes. An analog of A.4’ will ensure this.
The analog of A.3' is

Assumption A.3" The distribution of (U, A) | (Yy—1, Q7) and the structural func-
tion ¢ are such that for all admissible (y, ¢*), we have

D}'/(ﬁ(yssvuga?b) dF(M,a | y9q*)
:/qub(y,s,u;a,b) dF(u,a |y, q")
—i—/d)(y,s,u;a,b)Dy In dF(u,al|y,qg")dF(u,aly,q").

Assumption A.4" (U, A) LY, || Q%

Making the time-varying and time invariant components of Q} explicit, as say
Qf := (&', B, C), this condition is equivalent to

U LY, 1 |&. A B,C 9)
ALY, | |&. B.C. (10)
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To investigate the plausibility of A.4”, we separately consider (9) and (10). As
we see, this provides insight into appropriate choices for &/*.

First, consider the plausibility of (9). For simplicity and concreteness, let £ =
(S;, Si—1, Si—2, Y; 2, Y;_3), and for now let B and C have dimension zero, so that
Y; = ¢(Yi—1, S;, Us; A). Suppose further that

U L U1 |§ A, (1)

which is plausible when {U, } is viewed as a sequence of innovations. This corresponds
to (and extends) the strict exogeneity assumption usually made in this literature.
By Dawid (1979, lemmas 4.1 and 4.2(i)), this implies that for any function f we
have
U L f(U-1. &5 A) | & A

NOW Yl—l = ¢(Yt—21 Sl—ls Ul—l; A)a taklng f(Ul—ls st*v A) = ¢(Yl—2v Sl—lv
Ui—1; A) gives

U LY 1 |&A,
as desired. Note that we did not use the S;_» or ¥;_3 components of §*; we use these
next. We also did not use the S, component of &, but we carry this along to ensure
A2,

Now consider A L Y;_1 | &. For this, suppose that ¢ depends invertibly on an
index of A :

O(Yi—2,8-1,Ui—1; A) = oo (Y2, St —1, Ur—1; $1(A)). (12)

This includes the separable case, ¢ (Y;—2, St—1, Ur—1; A) = ¢po(Yi—2, St—1, Ur—1) +
¢1(A), popular in the literature. Then

¢1(A) = ¢y (Yi—2, Si-1, Ur—1; Yi-1).
If we also assume
AL U—1,Ui2 | S, Si—1, Si—2, Yi—2, Y13, (13)
we have by Dawid (1979, lemmas 4.1 and 4.2(1)) that
AL go(Yioa, Sim1, U1 ¢y (Yi—3, Si-2, Ur—2; Yy -2)) | &

that is, as desired,
ALY, |&.

Here, we use each component of & except S;.
More generally, ¢ may depend on multiple indexes of A. This dependence need
not create difficulties for identification, as the panel structure of the data can be
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exploited to ensure the needed conditional exogeneity, provided ¢ is sufficiently
well behaved. Specifically, suppose that ¢ depends on 7" indexes of A such that

dYi—1, 51, Urs A) = po(Yi—1, St, Ur; $1(A), ..., ¢1(A)). (14)
Write the T equations fort = 1,..., T as
YT =gor¥y ' ST, UT: 97 (A)),

where YT := (¥1,...,Yr) (and similarly for S, U7, and ¢”) and YOT_1 =
Yo, ..., Yr—1).

Now suppose that this system of 7' equations in the 7 unknowns ¢ (A) has a
unique solution, the natural extension of the invertibility imposed in the single index

case:
o7 (A) = ¢ vy ST UT Y.

To ensure that, as desired, A 1. Yp_ | E;, i.e.,
A Lgo(Yroa, Sr1. Ur—1: ¢ 1o (Y'572 ST 2 U2 v T 7)) | &5,

it suffices to assume
ALUT st v 2 (15)

From this, we see that the appropriate choice for &7 is
* T—1 T-2
sT == S—l N Y_2 .

If the first observation available is for ¢+ = 0, this implies that t = T + 2 is the first
observation to have available all the data required for estimation.

So far, we have not taken advantage of the availability of observable time-invariant
covariates B and C. These can help ensure (10) for general contexts in which ¢ does
not have the index structure just discussed. Specifically, suppose there exists an
unobservable random variable € such that for an (unknown) measurable function «,

A=u(B,C,¢), (16)

where
elY 1]&.B,C, (17)

with, for example, & = (S;, S;—1, ¥;—2). Then Dawid (1979, 4.1 and 4.2(i)) ensures
that, as desired, (10) holds:
ALY, 1|&.B.C.
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We also require (9), U; L Y;—1 | &, A, B, C. Given A = a(B, C, ¢) and (17), a
straightforward derivation shows that it suffices that

U LU~_|§,B,C,e. (18)
Given the latitude in choosing C, this provides another means? of plausibly ensuring

A3
The identification of dynamic effects now follows:

Proposition 3.3 GivenA.1, A.2', A.3", and A.4", for all (y, q*) € supp (Y;_1, Q;),

DyE[Y,|Y;—1 =y, Of = ¢"1 = E[Dy¢,(Y;—1) | Yim1 =y, OF = q"]
=E[Dyp:(» 1 Q0 =¢"], t=12,.... (19

3.3 Binary Choice Structures

Now consider the case of a binary dependent variable, Y;, and continuous X;, with
potential dependence between (Y;_, X;) and (U;, A). As mentioned in the introduc-
tion, this case can be treated with arguments similar to those above, but not exactly
in the same fashion.

3.3.1 Effects of X,

To obtain identification results for the effects of X;, we suitably modify our previous
assumptions. In particular, we specify the structure of interest as follows, absorbing
B into S;.

Assumption A.1’ Assumption A.1 holds with

dYi1, Xi, S, Uy A) =1{go(Y;—1, X4, Si3 A) + Up > 0},

where ¢ is an unknown measurable function and U; is a random scalar.

2 With the structure imposed here, one can define 43, say, such that @(Yt,l, X,,U,B,C,¢) :=
¢ (Yi—1, X¢, U, (B, C, ¢), B). In the ¢~> representation, € plays the role previously played in the
¢ representation by A, and (B, C) now plays the role previously played by B alone. It is thus
natural that the conditions to be satisfied with respect to ¢ are entirely parallel to those previously
required with respect to A. We maintain our original representation in terms of ¢, because we wish
to maintain variable interpretations and analysis for the non-invertible dynamic case as parallel as
possible to the other cases, and the assumption that A = «(B, C, ) with suitably behaved ¢ need
not play an explicit role elsewhere. Moreover, explicitly introducing this relation here provides
insight into the roles of B and C generally.
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Assumption A.1” formally specifies a data generating process where a latent
variable determined by a separable structure determines a binary outcome. This
reduces to the textbook binary choice fixed-effects case if ¢o(Y;—1, X;, Sr; A) =
Yi—180 + X|Bo + S} ¥ + 2 (A) for some unknown vectors 8,, B,, and ¥, and some
unknown function «. Here, however, the effect of X; may depend on its own level and
may also vary across the population as a function of both the persistent unobservable
A (e.g., think of A as preferences) and the observable ;. For simplicity, we restrict
U, to enter in an additively separable fashion. In view of previous results, this is not
necessary, but to provide concrete results, we refrain from the greatest possible gener-
ality. Instead, we specify a structure that immediately nests the textbook case where
Yy = I{Y,—180 + X Bo + S{¥o + Uy + A > 0}, with (8,, B,. ¥») nonrandom and
A a scalar. We also provide results covering this important special case below. Our
more general case is nevertheless useful, as it nests random coefficient structures
(eg, Y =1 {Y,_lé(A) + X/ B(A) + Sy (A + U + a(A) > O}), allowing us to
treat applications in, e.g., consumer demand or empirical industrial organizations,
where individual consumers have heterogeneous responses, or in other fields where
heterogeneity in individual responses is crucial.

Parallel to our approach in the previous sections, consider

ﬂ*(y’x,CI) =D,EY, | Y1 =y, X, =x, 0 =¢q]
= Dx/IE”[Y, =11Y—1=y.X,=x,0,=q.A=a]| dF(a | y.x.q).

We also consider the average partial derivative

B =E[B*(Yi—1. X1, Q)T (Yi—1, X1, Q0]

where t is a user-supplied measurable weighting or trimming function. Both
B*(y,x,q) and B involve only the joint distribution of observable random vari-
ables and can therefore be recovered from the available data.

Parallel to A.3’, we ensure the validity of the interchange of derivative and integral
with

Assumption A.3" The distribution of (U, A) | (Yi—1, Xy, Qy) and the structural
function ¢ are such that for all admissible (y, x, ¢), we have

D, [ B[ =1l = 3. X, =x.0 =g, A =a] dF (@ | y.x.0)
Z/D)C]P)[Yl‘=1|yl7] =y7Xl:x9 Qtzq’Aza] dF(a|y,x,CI)

+/P[Yt=1|Y1—1=y,Xt=X,Qt=q,A=a]Dx

xIndF(a |y, x,q)dF(a|y,x,q).
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Here, A.4’ continues to apply. We also add convenient properties for ¢pg and U, .

Assumption A.5 (i) For each admissible (y, s, a), ¢o(y, -, s; a) is differentiable on
supp(X;); (ii) For each admissible (a, vy, q), U; | (A =a, Y;—1 =y, Q; = ¢q) has
a continuous distribution with conditional density f(- | a, y, q).

We obtain the following identification result for the case of binary Y;.
Proposition 3.4 SupposeA.I’,A.2, A.3", A4, and A.5 hold. (i) Then forall (y, q) €
supp (Yi—1, Qr), x €supp (X; | Y11=y, 0r=¢q),andt = 1,2, ...,

B*(y,x,q) = E[D,P [Yz = 11Y;-1, Xy, Qs A] [ Yio1 =y, X: =x, Oy =q]

= —E(Dxpo(Yi-1, x, S;; A)
X.f(_d)O(Yt—l’xa St; A) | Aa Yl‘—15 Ql) | Yf—] =Y Qt = q)'

(iz) If po(y, x,s,a) = x'B, + (]Bo(y, s, a), where B, is an unknown real vector

and ¢ is an unknown measurable function, then for all (y, q) € supp (Y;—1, Q;)
and x € supp (X; | Yi-1 =y, Q1 = q),

ﬁ*(yv-xv t]) = ﬁo I/_f(y’xv Q) where
Y, x,q) = —E(f(=po(Yi—1,x, S5 A) | A, Yi—1, Q) | Yie1 = y, Q1 = q).

Consequently,

:3: X Bo.

3.3.2 Effects of Y;_;

Because Y;_ is binary, we are interested in discrete effects, and not marginal effects.
The situation is closely parallel to the classical treatment effects framework, where
interest attaches to the effects of a binary treatment, such as the average effect of
treatment on the treated or the average affect of treatment.

Here, we relax Assumption A.1" to remove the separability in U;. We now absorb
both X; and B into S;.

Assumption Al Assumption A.1 holds with
¢(Yl‘717 Sl’ Ulv A) = ]I{qsl(Yt*lv Sl’ Ul" A) > 0} )

where ¢ is an unknown measurable function.

To define the effects of interest, we first define the potential responses associated
with our data generating process. The potential responses for y = 0, 1 are

Yy =iy, S, Us; A) > 0}
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The analog of the covariate-conditioned effect of treatment on the treated is then
vi(g") :==E[Y1; — Yo, | Yi—1 =1, 0] =q7].
The analog of the average effect of treatment on the treated is
=BV = Yo, | Yio1 = U=EEY1, — Yo | Yio1 =1, 071 Y-y = 1).
Analogous effects can be defined for the effect of treatment on the untreated or the
average effect of treatment, but, as the analysis is similar, we leave this aside for

brevity.
To identify the desired effects, we observe that for all y, y’ € {0, 1} we have

E[YilYier =, 0; =47
- /H{«pl(y,s, wia)> 0} dF(u.aly.q*) (byA.1")
- / T{é1(y. 5. usa) > 0) dF(u.a | ¢*) (byA.4")
- /H{dn(y,s, wia) =0} dF,aly.q%) (byAd")
- /[/H{qsl(y,s, w;a) >0} dF@ |y, q* @) dF(a |y, q")
- /E[Yy,t Y=, 0f =q*, A=aldFa| ¥, q").
It follows that
]E|:Y1,z Yol Yio1=1,0] = q*}
- /E[Yl,, ~You Y1 =1,0} =q¢* A=aldF(a| 1,¢%)
- /E[Yl,, Yo =1,0f =¢* A=aldF(a] 1,4")

—/E[Yo,z Y = 1,0 =g A=aldF(a | 1,4")

=ElY: | Vi1 =1,0; =¢"1 - E[Y: | ;-1 =0, Q] = ¢"].

Formally, we have

Proposition 3.5 Suppose A.1”, A.2, and A.4" hold. (i) Then for all g* € supp (Q7)

@) =ElY; | Y1 =1, 07 =¢"1 - E[Y; | Y;-1 =0, 07 = ¢"].
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(ii) We also have

371 = ]E[Yt | Yi 1 = 1] —E(E[Yt | i1 = 0, Q;(] | Yi 1 = 1)-

4 Estimation

Although our main goal is to obtain the new identification results of Sect. 3, the impli-
cations of these results for estimation deserve careful consideration. The identified
effects can be represented either in terms of conditional expectations (Proposition
3.5(1)), derivatives of conditional expectations (Proposition 3.1-3.4(i)), or partial
means (averages) of conditional expectations or their derivatives (Proposition 3.5(ii)
and 3.4(ii)). To estimate these effects, we thus seek a convenient estimator of condi-
tional expectation that also reliably estimates the conditional expectation derivatives
and lends itself to averaging. We propose using local linear regression (e.g., Cleveland
1979), as it readily meets these criteria.

Significantly, the presence of both continuous and discrete regressors is essen-
tial for realistic application of Propositions 3.1-3.3 and necessary for application
of Propositions 3.4 and 3.5. The traditional analysis of local linear regression (e.g.,
Fan (1992), Ruppert and Wand (1994), Fan and Gijbels (1996), and Masry (1997))
assumes continuous regressors. The available asymptotic theory for local linear
regression in the mixed continuous-discrete case rests on foundational work by Li
and Racine (2004). Nevertheless, the theory required for our proposed estimators is
not yet available. Development of this theory is actively under way, but the challenges
it presents place further development here well beyond our present scope. Accord-
ingly, our goals for this section are restricted to describing our proposed estimators,
discussing their known or expected properties, and suggesting useful directions for
their further development.

4.1 Estimating Covariate-Conditioned Effects

We assume that for each period r we have data on a panel of n = n; individuals. For
simplicity, we assume that observations are independent and identically distributed
(IID) and that any missing observations are missing at random. Consistent with our
nonparametric approach, we propose estimating separate relationships for each time
period. This is the nonparametric analog of the parametric practice of including time
dummies for each period.

The local linear regression estimator solves the weighted least squares problem

n
. . 5
0.1 (w) = arg min E [Yi: — g(Wi,, O K, (Wi — w).

i=1
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Depending on the application, W; ; may be (X; ;, Q;,;) (Proposition3.1), (¥; ;—1, Xi s,
Q;.+) (Proposition 3.2 and 3.4), or (Yi—1, Q;"t) (Proposition 3.3 and 3. 5) Wc
denotes the continuously distributed elements of W;;. The term g(W ”, 0) =
a+ WC/ B represents the local linear regression, with parameters 6 = («, ).
For Proposmons 3.4 and 3.5, we have a binary lagged dependent varlable, Yii—1,
so W; ; necessarily contains one or more discretely distributed components, denoted
Wl.‘ft. Whenever derivatives of the conditional expectation are of interest, the asso-
ciated variables (i.e., X;; and Y; ,_1) are elements of Wift. Other regressors may
belong to either W/, or Wd

When all elements of W,, = (Wise, £ = 1,...,q) are continuous, K; is a
product kernel:

. Wite — we
Ky Wip —w) =[] A/ k(——).
(=1 he

where w = (wy, ..., wq)/ defines the regressor values of interest; k is a univariate
kernel; and hy is a variable-specific bandwidth, either given a priori or data deter-
mined. Li and Racine (2004) recommend choosing hy by cross-validation or by using
the corrected AIC method of Hurvich, Simonoff and Tsai (1998).

When W; ; contains discrete regressors, Li and Racine (2004) distinguish between
discrete variables having a natural ordering (e.g., income categories), denoted W t,

and those that do not (e.g., ethnicity), denoted W{',, so that W, := (W, W) In
this case the kernel is

q WC _ wC r = d d r wrd —d
_ A ite [ AW =il ~IWE, Fwg)
K;I(W,‘J—w)_llhe k(ﬁ—)xll)tz X Il Ap ,
=1 ¢ =1 t=ri+1

where A¢ € [0,1] is a variable-specific weighting parameter, either given a priori
or data determined (e.g., using the corrected AIC). See Li and Racine (2004) and
Li, Racine, and Wooldridge (2009) for further background and details. A computer
implementation of these procedures is available in the R library package np.

When we are interested in covariate-conditioned average marginal effects, i.e., for
all cases except that of Proposition 3.5, we use ﬁn,,(w) as our estimator. When we
are interested in the conditional expectation, as in Proposition 3.5(i), we use &, ; (w).

Determining the properties of én,t (w) is an active area of research. So far, only the
properties of &y ;(w) in the mixed continuous-discrete case with data-determined h
and A have been fully settled (Li and Racine 2004, Theorem 3.2). Study of the
propertles of ,3n +(w) in the mixed continuous-discrete case with data-determined h
and A is underway, but so far results for this case are not available. In fact, results are
not yet available even for B,, +(w) in the mixed continuous-discrete case with h and
A given a priori (rather than being data determined). Nevertheless, based on results
so far available, we may expect that ,3,1, +(w) will be asymptotically normal, with a
rate identical to that known for &, ; (w).
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On the other hand, results for given h = h, when all regressors are continuous,
as may hold for Propositions 3.1-3.3, are immediately available from Li and Racine
(2007, Theorem 2.7). As the currently available asymptotic normality results of Li
and Racine (2007, Theorem 2.7) and Li and Racine (2004, Theorem 3.2) apply to the
estimators recommended here directly and without any modification in this case, we
conserve space by not restating those results. See also Hoderlein and White (2011).

We hope that the identification results of the previous section will act as motivation
and encouragement for the development of asymptotic distribution results for B,,,t (w)
in the general case. We further suggest that it would be of interest to have results
describing the joint distribution of Bn,,(w), t=1,...,T, for fixed finite T. Such
results could be used to test whether effects are stable across time. Moreover, when
effects are plausibly stable over time (either a priori or empirically) such results
would enable construction of a more efficient estimator of the effects of interest as a
suitably weighted average of the estimators for individual time periods.

4.2 Estimating Partial Means

To estimate the average partial derivative
By =E[B* (Y1, Xi, Q)T (-1, Xe, Q1]

one can form

n
e
Bems =n"">" BuiWist. Xis Qi) T(Yis1. Xis, Qi)

i=1

This quantity is a partial mean, so once a suitable asymptotic representation is avail-
able for B,,,t(w), Theorem 4.1 of Newey (1994) can be applied to give conditions
ensuring the asymptotic normality of ,é,,n,t. The analysis for this is expected to
closely parallel that of Hoderlein and White (2011, Theorem 5).

For the binary lagged dependent variable case, we avoid problems associated with
the tails of O} by considering a trimmed version of y; analogous to 8, namely

Vi =E[n@Q) u@) | Vi =1],

where 71 is a trimming function that downweights observations in the tails of Q}.
A straightforward estimator of y;*_ follows by averaging Ant(Yis—1, Q7 ,) over the
sample where V; ;1 = 1:

~ -1 N
Yiz,nt = Ny Z an,t(l» Q;k)f)fl(Q;k)z)v

{i:Yi—1=1}
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where n1 is the number of observations in period ¢ with ¥; ;1 = 1.
Alternatively, one can form an estimator using the propensity score, parallel to
Li, Racine, and Wooldridge (2009). Following their approach, we can write

Y = YO,I + V(Q;k)yt—l + &,

where &, :== Y, — E(Y; | Y;—1, OF) and y(Qf) := E[Y1, — Yo, | Yi—1, Qf] =
E[Y); — Yo | QF]. It follows that

n=EEY1;—Yo, | Yio1=1,0/11Y-1 =) =E@(Q)) | Yi-1 = D).

We also have y (QF) = cov(Y;, Y1 | QF)/var(Y;—1 | Qf). Letting p(Qf) :=
P[Y;—1 = 1 | Qf] represent the propensity score relevant here, we have

5 = E(Yt(yt—l - p(QE)) Y, = 1) _ E(Y‘(]_—I’(Q;ki) | Y,y = 1)
var(Y;—1 | OF) var(Yi—1 | Q)

_ E( Y, (1 - p(27) Y, = 1) :E(L Y, = 1)’
p(@H U — p(QN) p(Qf)

where we use the fact that var(Y;—1 | Q7)) = p(Q7)(1 — p(Q7)), since Y;_; is
binary.

Li, Racine, and Wooldridge (2009) propose a local linear estimator of p(Q;) for
the mixed continuous-discrete case, say py;(Q7). Using this, we can construct an
estimator of yy*, as

- _ Yi:
Yi,o,n,t = 1N ! E 5 < (ZQ* )TI(QT;)
iy, =1 Prii&i

From this, it is clear that the trimming should remove values of p, (Q;*’ ;) close to
zZero.

Developing the formal asymptotic distribution theory for p; ¢, and py ¢ is
beyond our scope here. But see Li, Racine, and Wooldridge (2009) for further details
and a complete asymptotic theory for a nonparametric propensity score-based esti-
mator of the average effect of treatment in the mixed continuous-discrete case.

S Summary and Concluding Remarks

This chapter provides an approach to identifying effects of interest in nonsepara-
ble panel data models when the relationship of interest depends structurally on the
lagged dependent variable. This case is important, as it falls outside the scope of
the approaches of Graham and Powell (2010) and Hoderlein and White (2011).
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Our approach relies on the use of control functions (covariates) to ensure the inde-
pendence between the causes of interest (Y;_; or X;) and the transitory and persistent
unobservables, U, and A, conditional on appropriate controls, which may contain
both time-varying and time-invariant components. The time-varying components
may include both leads and lags relative to time ¢. We further show how suitable
control variable candidates can arise from the panel data structure. Finally, we show
how this method extends to cover the identification of effects in dynamic panel data
binary choice models with endogenous causes and state dependence.

As we discuss, convenient estimators for the effects identified here can be con-
structed using local linear regression for the mixed continuous-discrete regressor
case. Theory for these estimators applicable to the present context is still under
development. The results given here should serve as motivation and encouragement
for this effort. We also suggest useful directions for the further development of this
theory.

Mathematical Appendix

The proofs of Propositions 3.1-3.3 and 3.5 are as given in the text.

Proof of Proposition 3.4 (i) Given A.1’, A.2, and A.3", we have

ﬂ*(y’xvq):Dx/P[Ytz1|YT—1=y1XI:x7 Qt=q7A=a] dF(a|y7x7Q)
=/DXP[YI=1|Y171=y9Xt=-x’ Qt=q7A=a] dF(a|y7x7q)

+/P[Yl=1|ylflZanl‘Zx?QIZQaAZa]DX

xIndF(a|y,x,q)dF(a |y, x,q).

Given A.4’, this becomes

ﬁ*(y,x,q>=/DxP[Y,= WY =y, X =x,0 =g, A=a] dF(a|y,q).
Now
DXIP[YI‘ = 1|Yt—1 = )’»Xt =X, Qt = q7A == a]
- DX/H{qso(y,x,s; @) +u>00dF |a,y,x.q) (byAl)

- Dx/ﬂ{qso(y,x,s; @) +u>00dF |a,y.q) (by Ad)
== DXF(_¢O(yvva; (,l) | a,y, q)
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= _Dx¢0(y’xﬂ S35 a) f(_¢0(y7x75; (1) | a,y, ‘Z) (by AS)

Thus,

(3. x.q) /—Dx¢o<y,x,s; @) f(=po(y x.5:0) | @, v, ) dF(a | v, q)
_E(Dsdo(Yio1, x. Sii A)

X f(po(Yi—1,x, 853 A) | A, Yi—1, Q1) | Vi1 =y, Q1 = q).

(i1) The proof is immediate and is omitted.
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Consistent Model Selection: Over Rolling
Windows

Atsushi Inoue, Barbara Rossi and Lu Jin

Abstract In this chapter we analyze asymptotic properties of the simulated out-of
-sample predictive mean squared error (PMSE) criterion based on a rolling window
when selecting among nested forecasting models. When the window size is a fixed
fraction of the sample size, Inoue and Kilian (J Econ 130: 273-306, 2006) show that
the PMSE criterion is inconsistent. We consider alternative schemes under which the
rolling PMSE criterion is consistent. When the window size diverges slower than
the sample size at a suitable rate, we show that the rolling PMSE criterion selects
the correct model with probability approaching one when parameters are constant
or when they are time varying. We provide Monte Carlo evidence and illustrate the
usefulness of the proposed methods in forecasting inflation.

1 Introduction

Itis acommon practice to compare models by out-of-sample predictive mean squared
error (PMSE). For example, Meese and Rogoff (1983a,b) and Swanson and White
(1997) compare models according to their PMSE calculated in rolling windows.
Another common practice is to use a consistent information criterion such as the
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Schwarz Information Criterion (SIC), used for example in Swanson and White
(1997). Information criteria and the out-of-sample PMSE criteria deal with the issue
of overfitting inherent in the in-sample PMSE criterion. Information criteria penalizes
overparameterized models via penalty terms and are easy to compute. The out-of-
sample PMSE criteria simulate out-of-sample forecasts and are very intuitive.!

In a recent chapter, Inoue and Kilian (2006) show that the recursive and rolling
PMSE criteria are inconsistent and recommend that consistent in-sample informa-
tion criteria, such as the SIC, be used in model selection. They also show that even
when there is structural change these out-of-sample PMSE criteria are not neces-
sarily consistent. Their results are based on the assumption that the window size is
proportional to the sample size.

In this chapter we consider an alternative framework in which the window size
goes to infinity at a slower rate than the sample size. Under this assumption we show
that the rolling-window PMSE criterion is consistent for selecting nesting linear
forecasting models. When the nesting model is the truth, the criterion selects the
nesting model with probability approaching one because the parameters and thus
the PMSE are consistently estimated as the window size diverges. When the nested
model is generating the data, the quadratic term in the quadratic expansion of the loss
difference becomes dominant when the window size is small. Because the quadratic
form is always positive, the criterion will select the nested model with probability
approaching one. When the window size is large, however, the linear term and the
quadratic term are of the same order and the sign cannot be determined. By letting the
window size diverge slowly, the rolling PMSE criterion is consistent under a variety
of environments, when parameters are constant or when they are time varying.

When the window size diverges at a slower rate than the sample size, the rolling
regression estimator can be viewed as a nonparametric estimator (Giraitis et al.
2011) and time-varying parameters are consistently estimated. We show that our
rolling-window PMSE criterion remains consistent even when parameters are time
varying. When the window size is large, that is, when it is assumed to go to infinity
at the same rate as the total sample size, the criterion is not consistent because the
rolling regression estimator is oversmoothed. In the time-varying parameter case, the
conventional information criterion is not consistent in general.

This chapter is related to, and different from, the works by West (1996); Clark
and McCracken (2001); Giacomini and White (2006); Giacomini and Rossi (2010),
and Rossi and Inoue (2011) in several ways. West (1996) and Clark and McCracken
(2001) focus on comparing models’ relative to forecasting performance when the
window size is a fixed fraction of the total sample size,whereas Giacomini and

! The out-of-sample PMSE criteria are based on simulated out-of-sample predictions where para-
meters are estimated from a subsample to predict an observation outside the subsample. When
subsamples always start with the first observation and use consecutive observations whose number
is increasing, we call the simulated quadratic loss the recursive PMSE criterion. When subsamples
are based on the same number of observations and are moving, we call the simulated quadratic loss
the rolling PMSE criterion and the number of observations in the subsamples is the window size.
See Inoue and Kilian (2006) for more technical definitions of these criteria.
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White (2006) focus on the case where the window size is constant; this chapter
focuses instead on the case where the window size goes to infinity but at a slower
rate than the total sample size. Giacomini and Rossi (2010) argue that, in the presence
of instabilities, traditional tests of predictive ability may be invalid, since they focus
on the forecasting performance of the models on average over the out-of-sample
portion of the data. To avoid the problem, they propose to compare models’ relative
predictive ability in the presence of instabilities by using a rolling window approach
over the out-of-sample portion of the data. The latter helps them to follow the relative
performance of the models as it evolves over time. In this chapter we focus on
consistent model selection procedures, instead, rather than testing; furthermore, our
focus is not to compare models’ predictive performance over time, rather to select the
best forecasting model asymptotically. Rossi and Inoue (2011) focus on the problem
of performing inference on predictive ability that is robust to the choice of the window
size. In this chapter, instead, we take as given the choice of the window size and our
objective is not to perform tests; we focus instead on understanding whether it is
possible to consistently select the true model depending on the size of the window
relative to the total sample size.

The rest of this chapter is organized as follows: In Sect. 2 we establish the consis-
tency of the rolling PMSE criterion under the standard stationary environment as well
as under the time-varying parameter environment. In Sect. 3 we investigate the finite-
sample properties of the rolling-window PMSE criterion. Section4 demonstrates the
usefulness of our criteria in forecasting inflation. Section 5 concludes.

2 Asymptotic Theory

Consider two nesting linear forecasting models, models 1 and 2, to generate h-steps
ahead direct forecasts (where £ is finite):

Model 1 : v = a™x; + uppp, (D)
Model 2 : yip = B'zs +vign = o'x; 4y wi + vign, (2)

where dim(w) = k and dim(8) = [. The first terms on the right-hand sides of
Egs.(1) and (2), «*x; and B’z, are the population linear projections of y;1; on
x; and z;, respectively. Thus, z; is uncorrelated with v;yp, @ = [E (xtx,’)]_1

E(x;yin) and B = [E(z:2)] " E G yisn)-
Define the population quadratic loss of each model by

T—h T—h
2 1 1 2 - 1 2
of =limre0 7= le E[(yi1n —o'x)7] = lim7 00 7 Zl E(u;,,),
1= =

T—h T—h
0F =limrooo 77 > Elin — B2 =limro oo 7 > E(W2,).
t=1 t=1
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Our goal is to select the model with smallest quadratic loss.

Let the window size used for parameter estimation be denoted by W for some
W > h. Define the rolling ordinary least squares (OLS) estimators as follows, for
t=W+1,..,T:

—1

t—h t—h
&,,W:( 5 ) S seen ®
") s

=t—W =t—W
t—h -1y
Biw = ( > Zszé) > zoysens )
s=t—W s=t—W
and the associated rolling PMSEs by:
~2 ~2
oiw = Z Ut o)
T—h—W
t W41
~2 _
O w = T_h_w Z Uz+h» (6)
t W+1

where i1, = Yiyn — Q) yXe, Viph = Yigh — 3; w<i- We say that the rolling PMSE
criterion is consistent if

el 12 w < 6% W with probability approaching one if 012 = 022; and
° 8ﬁW > 8§W with probability approaching one if 012 > 022,

Under what conditions on the window size is the rolling PMSE criterion consis-
tent? The existing results are not positive. When the window size is large relative
to the sample size (i.e., IA € (0, 1) s.t. W = AT + o(T)), Inoue and Kilian (2005)
show that the criterion is not consistent. Specifically, when 012 = 022, they show that
the criterion selects model 2 with a positive probability resulting in the overparame-
terized model. We will discuss this result in more detail in the next section, where
we will compare it with the theoretical results proposed in this chapter.

When the window size is very small (i.e., W is a fixed constant), it is straight-
forward to show that the criterion may not be consistent. For example, compare
the zero-forecast model (x; = #) and the constant-forecast model (w; = 1) with
W = h = 1. Suppose that y;+1 = ¢+ u;4+1, where u; ~ iid(c, o2). Note that

012 =c?+o0%and 022 = o2, Since

A2 1 N2 P 2
Oi1 =71 Zlyz+1 —>c"+o7,
t=

T—1

1 2P 2

021 = T-1 Z:l(ytﬂ —y)° — 207,
=
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however, 67 < 63| with probability approaching one whenever ¢* < 0. This is
because parameter estimation uncertainty never vanishes even asymptotically, when
the window size is fixed.

The goal of the next section is to show that the criterion is consistent if the window
size is small, but not too small, relative to the sample size in the following sense:
W — ocoand W/T — 0as T — oo. Following Clark and McCracken (2000),

we use the following notation: Let g2, = z:z}, q1,; = XX/, B = [E(qit)]_l,
| ich - | ich
Bi(t) = |y 22 dgis| > Hi() = w5 2 xOsn — @¥xy), o) =
s=t—W s=t—W
t—h
WL;, ZW ZsVsah, Where i is either 1or2and Wy, = W — h + 1.
s=1—

2.1 Consistency of the Rolling-Window PMSE Criterion When
Parameters are Constant

First, consider the case where the parameters are constant.
Assumption1 As T — oo, TY/2/W = O(1) and W/T — 0.

Assumption 2 (a) {[x] z; y;+,]'}is covariance stationary and has finite 10 moments
with E (z;z}) positive definite and By (#) positive definite for all # almost surely.

(b) WY2(B;(t) — B;) and W'/% H;(¢) have finite fourth moments uniformly in  for
i=1,2.

(¢) E(vi+n]F;) = 0 with probability one for 1,2, ..., where F; is the o field
generated by {(ys. 29))' ).

(d) E[H]{(t) By (ax]—E (xix)) BLH ()] = o(W ™) and E[H}(1) By (242}~ E (212)))
ByHy ()] = o(W ™) uniformly in 7.

(e

T—h
Cov [Vech( > H/(t)(Bi(t) — Bi)qi..(Bi(t) — Bi)Hi (t))]

t=W+1

T—h
= 0( >" Cov|[vech (H/(t)(Bi(t) — Bi)gi (Bi(t) — B H; <r>)]),

t=W+1

T—h
Cov |:VCC( Z H/(t)Biqi:(Bi(t) — B;)H; (t))j|

t=W+1

T—h
= 0( Z Cov [vec (H/(t)Bigi, (Bi (1) — B,-)Hi(z))]),

t=W+1
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T—h
Cov |:V€Ch( Z Hi/(l)Biqi,tBiHi(t))]

t=W+1

T—h
- 0( > Cov|[vech (H/(t)Bigi.B; Hi)]),

r=W+1
fori =1, 2.

Remark When the window size is assumed to be proportional to the sample size,

= [rT] for r € [0, 1], the functional central limit theorem (FCLT) is often used
to find the asymptotic properties of the recursive and rolling regression estimators
(e.g., Clark and McCracken 2001). For example, if h = 1,

-1
. 1 t—1
VT Brw —B) = (; > zsz;) Z 25Vt

s=t—W s=t—W

and if vech(z,z;) and z; v satisfy the FCLT, we obtain
VT By = B) = LIEG1 " Bi(r)

where B;(r) is the /-dimensional standard Brownian motion, provided [z} v;4+1] is
covariance stationary. Thus, we have ,3,, w—B8 = 0, (T~'/2) uniformly in . When
the window size diverges slower than the sample size it is tempting to use the same
analogy and claims ,BAI’W - B = OP(W’I/Z) uniformly in ¢. This result does not
follow from the FCLT, however, even though ,BAZ,W -8B = 0 p(W’]/ 2) pointwise
in . To see why, let z; = 1. Then

t—W-1

t—1
BI,W_:BZ%EU5+1 Z Us+1
t—1 t—W—1
SR OXAEL By

\/_

uniformly in ¢, where the last equality follows from \/LT ST v — f Szl
Vg1 = 0p(1) by the FCLT and W = o(T). Thus, the FCLT alone does not imply
B,’W - B = OP(W_I/Z) uniformly in ¢ in general. This is why we need some
high-level assumption, such as Assumptions 2(b)(d)(e).

Us+1
s=1
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Assumption | requires that W diverges slower than 7. This assumption makes
the convergence rates of terms in the expansion of the PMSE differential uneven
which helps to establish the consistency of this criterion when the nested model is
generating the data. Assumption 2(c) requires that the nesting model is (dynamically)
correctly specified. Assumption 2(d) is trivially satisfied if z, is strictly exogenous
and allows for weak correlations between z, and vs. Assumption 2(e) is a high-level
assumption and imposes that the variance of the sum is in the same order of the sum
of variances. In other words, the summands are only weakly serially correlated so that
their autocovariances decay fast enough. This assumption is somewhat related to the
concept of essential stationarity of Wooldridge (1994, pp. 2643-2644). Assumptions
somewhat similar to this condition are used in the central limit theorem for stationary
and ergodic processes (e.g., Theorem 5.6 of Hall and Heyde 1980, p. 148) and
the central limit theorem for near epoch-dependent processes (e.g., Theorem 5.3 of
Gallant and White 1988, p. 76; Assumption C1 of Wooldridge and White 1988).

Theorem 1 Under Assumptions I and 2, the rolling-window PMSE criterion is
consistent.

To compare our consistency result and the inconsistency result of Inoue and Kilian
(2006), consider two simple competing models, y; 1+, = u;4; (model 1) and y; 4, =
¢ + vi4p, (model 2) where v;4, is 1.i.d. with mean zero and variance 022 and h = 1.
The difference of the out-of-sample PMSE can be written as

T—1
2 1
U22W_012W = TT_w-1 Z ¢ — v + ———— T W= Z (Ct—c)2
t=W+1 t=W+1

where ¢, = (1/ W) zs —t—w Ys+1. Assume that ¢ = 0 in population.
When W = [AT] for some A € (0, 1), it follows from Lemmas A6 and A7 of
Clark and McCracken (2000) that

N N 2
T(Uzz,w_glz,w) o —mffzz/(B(r)—B(r—)»))dB(r)

WUZ /(B(r) B(r — 1) (B(r) — B(r — A))dr

where B(-) is the standard Brownian motion. Because the probability that the right-
hand side is negative is nonzero, the criterion is inconsistent when ¢ = 0. This is the
inconsistency result in Inoue and Kilian (2006).

When W = o(T/1+29) for some ¢ € (0, 1/2), the case considered in this
chapter, we have:
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ZW%J,_E T—1 1 t—1
~2 ~2
W@iw = 6w =77 2 ( — 2 Us+1)vr+1

s \W2te STy
{ T-1 = 2
o — > ven
T_W_IZZ%FI(Wés:tz—W +)
) T-1 L ! 2
=T _w_1 Z (E Z Us+1) +0,(1)
t=W+1 s=t—W

Because the right-hand side remains positive even asymptotically, the criterion will
choose model 1 with probability approaching one. The key for the consistency result
is that the last quadratic term in the expansion dominates the middle cross-term when
the window size is small.

Lastly, it should be noted that our consistency result does not imply that the result-
ing forecast based on a slowly diverging window size is optimal. When parameters
are constant, one would expect that the optimal forecast for the T + 1st observation
should be based on all T observations, not on the last W observations. Assumption 1
is merely a device to obtain the consistency of the rolling PMSE criterion.

2.2 Consistency of the Rolling-Window PMSE Criterion When
Parameters are Time Varying

Sometimes it is claimed that out-of-sample PMSE comparisons are used to protect
practitioners from parameter instability. As Inoue and Kilian (2006) show this is not
always the case. In this section we show that the rolling PMSE criterion with small
window sizes delivers consistent model selection even when parameters are time
varying.

Suppose that the slope coefficients are time varying in the sense that

t U
Yrio+h = B (7) 2Tt + VT i4h (N

where B(r) = [a(r) y(r)'] for r € [0, 1]. When the slope coefficients are time
varying, the second moments are also time varying. Let

= | Tux (7) Cuw (7) Tuy (7)
[ T (7) Tyw (7) T (7)
_E[XT,tx;*’t] E[XT,tw/T,t] E[XT,t)’T,t]

= | Elwr,x7 ] Elwr wy ] Elwr yr.d |,
| Elyr.xy,] Elyr.awy, ] Elyi,]

L [ Tae (7) Taw (7) Ty (1)
()]
Iy T

~
—_~

|~
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fort =1,2,...,Tand T = 1,2, ... Let B (§) = [E(xrx} )] and By (§) =
[E(zr127 )17". Then () = [Tz ()]~ Ty (-). We compare

t I
VTi+h = o (7) XT + UT 140 ®)

and (7), where (7) simplifies to (8) if y (u) = O for all u € [0, 1].
Assumption3 As T — oo, T'/2/W = O(1) and W = o(T?/3).
Assumption 4 (a)
/
& = vech [ |: ZT‘IZT}Z ZT’tzyT’Hh i| - |:F (%) [oy (%) ]] )
YTt+hZr: VT 1+h Ty (7) Tyy (7)
has finite fifth moments with B»(7) positive definite for all 7 almost surely.
(b) W'2(B;(t) — B; (%)) and W'/2 H; (¢) have finite fourth moments uniformly in
tfori =1,2.
(¢) E(vr,i+r|F1s) = 0 with probability one for 1, 2, ..., where F7; is the o field
generated by {(yT,s+4» zTS)}";}l'.

@ E[H/()B; (1) (qi 1. — E(qi,1.0)Bi () Hi()] = o(W~") uniformly in 7 for
i =1,2,where qi.7, = xr X7, and g2, 74 = Zr,tz/“.

(e
T—h ; ;
Cov {V“h < Z H{ (1) (Bi () — B (f)) 4Tt (Bi - B (?)) H; (ﬂ)}
t=W+1
T—h
—0 ( > Cov [vech (Hf(t) (B~(t) _B (i) ar (B-(t) _B (i)) H~(z))j|)
1 1 1 T 1, ,t 1 15 T 1 £
t=W+1

c T—h _ P
ov | vec 2 H](t)B; (T) qi T (Bi(t) — B (?)) H;(t)
t=W+1
T—h _ P
- 0( Z Cov [vec (H ()B; (T) qiT. (B,-(t) - B; (?)) H,-(r))D,
t=W+1
T—h ¢
Cov |:vech( > H/®0)B (T)q,T,B (T) H,-(t)):|
t=W+1
T—h P
- 0( z Cov [vech(H (1)B; ( )q, 7.1 B (T)H)])
=W+1

wherei =1, 2.
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() I';;(u) is positive definite for all u € [0, 1], and o (.) = [y () -1 Iy (-) and
B()=T_() ! I";y (-) satisfy a Lipschitz condition of order 1.

Remark Assumption 3 is more restrictive than Assumption 1 to keep the bias of
the rolling regression estimator from interfering the consistency of the rolling PMSE
estimator. Assumptions 4(a)(b) requires that & behaves like a stationary process with
enough many moments. Assumptions 4(b)—(e) are analogs of Assumptions 2(b)—(e).
Assumption 4(f) requires that the second moments change very smoothly.

Theorem 2 Suppose Assumptions 3 and 4 hold. Then the rolling-window PMSE
criterion is consistent.

Remark The above consistency resultis intuitive once itis recognized that the rolling
regression estimator is a nonparametric regression estimator of parameters with a
truncated kernel. For example, Cai (2007) establish the consistency and asymptotic
normality of nonparametric estimators of time-varying parameters, and Giraitis et al.
(2011) prove the consistency and asymptotic normality of nonparametric estimators
for stochastic time-varying coefficient AR(1) models.

In general, the conventional information criteria, such as SIC, are not consistent
when parameters are time varying. To show why that is the case consider comparing
two competing models y;4+, = usy, and y;4p, = ¢ + vy for h = 1 when the data

are generated from:

t 1
)’t=7—§+8t (10)

where &, is i.i.d. with mean zero and variance o->. Then the population in-sample
PMSE of the zero forecast model is

71 ! 2
TlimooE(ﬁZt lym) = +/("§) =t n
= 0

The population in-sample PMSE of the forecast model that estimates the constant in
rolling windows is also

-1 1

T]i_)moo mcin E (ﬁ Z(Ytﬂ - 6)2) = mcin o+ /(r —o)ldr| =o%+ 11—2
=1 0

Thus, the SIC would select the zero forecast model while the true DGP is a time-

varying constant forecast model. Our criterion, by re-estimating the constantin rolling

windows, is robust to time variation in the parameters and will select the second model

with probability approaching unity asymptotically.
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3 Monte Carlo Evidence

In this section we investigate the finite-sample performance of the rolling-window
PMSE criterion in two Monte Carlo experiments. In the first experiment, we use the
data generating process (DGP) of Clark and McCracken (2005) as it is similar to the
empirical application that we will consider in the next section. In the second experi-
ment, we use a simple DGP in which the dependent and independent variables both
follow first-order autoregressive processes, and consider both constant parameter and
time-varying parameter cases.

3.1 Simulation 1: DGP2 in Clark and McCracken (2005)

The second DGP of Clark and McCracken (2005) is based on estimates based on
quarterly 1957:1-2004:3 data of inflation (¥) and the rate of capacity utilization in
manufacturing (x). We consider restricted and unrestricted forecasting models as
follows:

Model 1 : AY;&H =(¥0+(X1AY;+O{2AY17] +M1,t+] (11)
Model 2 : AY;11 = ap + a1 AY; + o AY_ 1 + yixi—1 + yaXi—2 + V3% -3
+ VaXi—4 +uz 1 (12)

When the restricted model (11) is true, the DGP is parameterized using Eq.(7) in
Clark and McCracken (2005):

AY, = —0316AY,_; — 0.214AY, 5 +uy ,, (13)
x; = —0.193AY,_; — 0.242AY,_» — 0.240AY;_3 — 0.119AY,_4
+1.427x,_1 — 0.595x,_7 + 0.294x,_3 — 0.174x,_4 + ux;,  (14)

Uy, | iid 0 1.792 0.244
[ux,t} N([O]’[O.2441.463 : (as)
When the unrestricted model (12) is the truth, the DGP is parameterized using Eq. (9)
in Clark and McCracken (2005).

where

AY, = — 0.419AY,_| — 0.258AY,_»
+0.331x,_1 — 0.423x, 5 +0.309x,_3 — 0.139x; 4 + 1y, (16)

where x; is defined as in Eq. (14) and
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Table 1 Selection probabilities of the SIC

A. Inoue et al.

T The restricted model is true The unrestricted model is true
100 0.9901 0.6640

250 0.9977 0.9847

500 0.9997 1

1000 0.9997 1

Table 2 Selection probabilities of the PMSE criterion when the window size is a fixed fraction of
the total sample size

T T The restricted model is true The unrestricted model is true
0.2 100 0.9955 0.2326
250 0.9914 09113
500 0.9907 0.9997
1000 0.9916 1
0.5 100 0.7459 0.8101
250 0.7353 0.9845
500 0.7383 0.9995
1000 0.7427 1
0.8 100 0.3385 0.8476
250 0.3682 0.9411
500 0.3735 0.9841
1000 0.3719 0.9985

uy | iid 0 1.517 0.244

[ux,t} N([o}’[o.zzm 1.463})’ a7
In both (15) and (17), the initial values of AY; and x; are generated with draws from
the unconditional normal distribution. We compare the performance of the SIC and
the rolling window PMSE criteria; the latter is implemented with a window size that
is either (i) fixed relative to the sample size; (ii) proportional to the sample size; or
(iii) diverging slower than the sample size. The number of Monte Carlo replications
is set to 10,000. Tables 1, 2, 3, 4 report the empirical probabilities of selecting the
correct model. If the procedure is correct, the corresponding probabilities in the tables
should be unity.

Tables 1, 2 and 3 report the results for the SIC, the PMSE criterion with W
proportional to 7', and the PMSE criterion with fixed W, respectively. As expected,
the SIC selects the correct model with probability approaching one as the sample
size increases. The second last column of Table 2 shows that, when the window size
is set to a fraction of the total sample size, W = [7T], the PMSE criterion tends
to overparameterize the model when 7 is not very small. When the window size is
fixed to a small number (W = 10), the PMSE criterion tends to underparameterize
the model. The results for W = [0.2T], W = 50, and W = 90 seem to contradict
our claim that these specifications of the window size should yield inconsistent
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Table 3 Selection probabilities of the PMSE criterion when the window size is constant

W T The restricted model is true. The unrestricted model is true.
10 100 1 0.0008
250 1 0
500 1 0
1000 1 0
50 100 0.7459 0.8101
250 0.9914 0.9113
500 1 0.9729
1000 1 0.9972
90 100 0.1937 0.8612
250 0.8959 0.9840
500 0.9954 0.9990
1000 1 1

Table 4 Selection probabilities of the PMSE criterion when the window size is slowly diverging

W T The restricted model is true The unrestricted model is true
T3 100 N/A N/A
250 1 0
500 1 0
1000 1 0
T2 100 1 0.0008
250 1 0.0016
500 1 0.0532
1000 1 0.5512
T3/4 100 0.9500 0.5947
250 0.9749 0.9619
500 0.9883 0.9998
1000 0.9953 1

model selection; however, for reasonably large sample sizes, these specifications
are observationally equivalent to the small window size specification we propose.
Table 4 shows the results when the window size is small but diverging, W = o(T).
The results for W = T3/% support our consistency results. Although the window size
W = T'/3 and W = T'/? does not satisfy our sufficient condition (Assumption 1),
the resulting criterion chooses the restricted model with probability approaching one
when it is true. However, the PMSE criterion with W = T'1/3 fails to choose the
unrestricted model when it is the truth.”

Overall, our results suggest that a window size that is a fixed fraction of the total
sample size does not appear to give consistent results when Model 1 is the true
data generating process. On the other hand, a constant window size W = 10 is not

2 When T = 100, W = T'/3 is too small to compute a rolling estimator.
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consistent when Model 2 is true. The divergent window size, in general, consistently
selects the correct model, asymptotically. When W = T'!/3, the consistency is not
obvious due to the small window size, but unreported results show that the frequency
of consistency will eventually converge to 1 when the total sample size becomes
infinitely large.

The SIC does select the correct model asymptotically, and it appears to do so with
an even higher probability that the PMSE criterion with a slowly diverging window
size. However, as we will show in the next set of Monte Carlo simulations, the SIC
will not select the correct model in the presence of time variation.

3.2 Simulation 2:Autoregressive DGP With/Without
a Time-Varying Parameter

Next we consider two forecasting models

Model 1: ys = ay,—1 +ui;
Model 2: y; = ay;—1 + yx; + uz;

where the data are generated by

xp = 0.5x1 + Uy,

v =05y -1 +yx; + Uy 1,

uy, ~ iid N(0,1) and uy, ~ iid N(0O, 1) are independent of each other. We
consider four cases: y = 0; y =0.25;y =05andy =¢t/T —0.5. Wheny =0
Model 1 is true. Under the cases where y = 0.5 or 0.25, Model 2 is true. Even when
yr.: = t/T —0.5, Model 2 should be selected since the true data generating process
does include a constant, although the constant is time varying. The number of Monte
Carlo replications is set to 10,000.

Tables 5, 6, 7, and 8 report the empirical probabilities of selecting the right
model for the SIC and the rolling-window PMSE criterion with W = [ T], W
being a constant, and W = o(T), respectively, when y is time invariant. As before,
the SIC is consistent and the PMSE criterion tends to either overparameterize or
underparameterize the model when W is a large fraction of 7" or when W is a small
constant. The results when W is a small fraction of 7' (7t = 0.2) or when W is 50 or
90 show that the PMSE criterion selects the correct model. This may be due to finite
samples in which these window sizes are consistent with slowing diverging ones.
The results in Table 8 show that the PMSE criterion selects the correct forecasting
model with probability approaching one as the sample size increases when W — oo
and T'/2/W = O(1) as T grows.

The aforementioned results indicate that while the PMSE criterion with a slowly
diverging window size is consistent the SIC tends to perform better. One advantage
of the PMSE criterion over the SIC is that the PMSE criterion is robust to parameter
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Table 5 Selection probabilities of the SIC

T y =0 y =0.25 y =0.5
100 0.9645 0.7548 0.9989
250 0.9815 0.9826 1
500 0.9881 1 1

1000 0.9926 1 1

Table 6 Selection probabilities of the PMSE criterion when the window size is a fixed fraction of

the sample
b4 T y =0 y =0.25 y =05
0.2 100 0.9364 0.5497 0.9795
250 0.9411 0.9360 1
500 0.9414 0.9981 1
1000 0.9422 1 1
0.5 100 0.8075 0.7433 0.9759
250 0.8100 0.9368 0.9998
500 0.8089 0.9914 1
1000 0.8182 0.9998 1
0.8 100 0.6724 0.6944 0.8784
250 0.6787 0.8338 0.9753
500 0.6882 0.9205 0.9971
1000 0.6963 0.9800 0.9999
Table 7 Selection probabilities of the PMSE criterion when the window size is constant
w T y =0 y =0.25 y =05
10 100 0.9859 0.2170 0.8569
250 0.9998 0.1118 0.9591
500 1 0.0449 0.9945
1000 1 0.0054 0.9996
50 100 0.8075 0.7433 0.9759
250 0.9411 0.9360 1
500 0.9856 0.9909 1
1000 0.9982 1 1
90 100 0.6145 0.6421 0.7845
250 0.8688 0.9568 1
500 0.9479 0.9980 1
1000 0.9885 1 1

instabilities. Table 9 reports the selection probabilities of the SIC and PMSE criterion
when yr; = t/T — 0.5. yr; is modeled so that the in-sample PMSE of Model 2
equals that of Model 1 while the out-of-sample PMSE of Model 2 is smaller than that
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Table 8 Selection probabilities of the PMSE criterion when the window size is slowly diverging

w T y =0 y =0.25 y =0.5
T3 100 0.9983 0.0092 0.0970
250 0.9999 0.0040 0.4060
500 1 0.0008 0.7201
1000 1 0.0016 0.9959
T2 100 0.9859 0.2170 0.8569
250 0.9982 0.4115 0.9987
500 0.9997 0.7848 1
1000 1 0.9901 1
T3/4 100 0.8909 0.6889 0.9858
250 0.9213 0.9506 1
500 0.9361 0.9980 1
1000 0.9551 1 1

Table 9 Selection probabilities when a parameter is time varying

T SIC W="T53 W=T: W=r3
100 0.0489 0.0063 0.1943 0.4904
250 0.0313 0.0026 0.4567 0.8703
500 0.0215 0.0005 0.8664 0.9953

1000 0.0139 0.0015 0.9982 1.0000

of Model 1. Table 9 shows that the PMSE criterion selects Model 2 with empirical
probability approaching one while the SIC selects Model 1.3

To summarize, the Monte Carlo results are consistent with our asymptotic theory
and the PMSE criterion with a slowly diverging window size chooses the correct
forecasting model with probability approaching one, no matter whether the parame-
ters are time varying or not. On the other hand, although the SIC is consistent when
the parameter is constant over time, it is inconsistent when the parameter is time
varying.

4 Empirical Application

We consider forecasting quarterly inflation 4 -periods into the future. Let the regres-
sion model be:

Vo=t L x+y L)y +uly t=1,....T (18)

3 Technically, the window size W = T2/3 does not satisfy our sufficient condition but yields good
results.
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where the dependent variable is ylh+h = (400/h) In(Psyp/P;) —4001In (P;/Pi—1)
where P; is the price level (CPI) at time ¢, & is the forecast horizon and equals
four, so that the forecasts involve annual percent growth rates of inflation. y; (L) =
i_ovijL? and ya (L) = 3_, 2L/, where L is the lag operator. Following
Stock and Watson (2003), we consider several explanatory variables, x;, one at a
time. The explanatory variable, x;, is either an interest rate or a measure of real
output, unemployment, price, money, or earnings. The data are transformed to elim-
inate stochastic or deterministic trends and to quarterly frequencies. For a detailed
description of the variables that we consider, see Table 10. We utilize quarterly, finally
revised data available in January 2011. The earliest starting point of the sample that
we consider is January 1959, although both M3 and the exchange rate series have a
later starting date due to data availability constraints. Overall, this implies that the
total sample size is about 240 observations. In the out-of-sample forecasting exer-
cise, we estimate the number of lags (p and g) recursively by BIC; the estimation
scheme is rolling with a window size of 40 observations. The benchmark model is
an autoregressive model:

yzh+h =y+r (L)yt+uﬁ’+h, t=1,..,T. (19)

Results are reported in Fig. 1. The figure reports the ratio of the MSFE of the model,
Eq.(18), relative to the MSFE of the autoregressive benchmark model, Eq. (19).
According to the Monte Carlo simulations in the previous section, the most successful
window sizes are between T''/2 and T2/3, which, given the available sample of data,
implies between 16 and 39 observations.

Panel A reports results for predictors (x;) that include real output measures. It
is well known that such measures should be good predictors of inflation according
to the Phillips curve. Several studies have documented the empirical success of
Phillips curve models, see for example Stock et al. (1999a,b) and 2003, although the
empirical results in Marcellino et al. (2003) suggests that the ability of such measures
to forecast inflation in Europe is more limited than in the United States. The figure
shows that capacity utilization, employment, and unemployment measures are very
useful predictors for inflation. In fact, when the window size is less than about 80,
the MSFE of the model is always smaller than that of the autoregressive benchmark,
sometimes even substantially. Note that for larger window sizes the PMSE criterion
would however suggest that the AR benchmark forecasts better than the economic
model.

Earnings, instead, is not a successful predictor: in window sizes in the range
between T2 and T?/3, it is significantly worse, and occasionally better, although
only for larger window sizes. However, recall from the discussion in Sect. 2 that when
the window size is large relative to the total sample size, Inoue and Kilian (2005)
have shown that the PMSE criterion tends to select overparameterized models. When
the window sizes are between T'!/2 and T?2/3, the previous sections showed that the
PMSE criterion tends to select the correct model. This suggests that earnings are
particularly unreliable for forecasting inflation.
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Fig.1 QLR break test

The performance of industrial production and real GDP predictors, instead, is less
clear: the ratio can be either above or below unity depending on the window size. Even
for window sizes in the range between T1/2 and T?/3, the ratio can be either above
or below unity. These results suggest instabilities in the forecasting performance
of these predictors, and are consistent with the results in Rossi and Sekhposyan
(2010), although the latter were interested in testing equal predictive ability rather
than consistently selecting the correct model, as we do here. Rossi and Sekhposyan
(2010) empirical evidence documented that the economic predictors have forecasting
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ability in the early part of their sample, but the predictive ability disappears in the
later part of their sample. The reversals in predictive ability happened, according
to their tests, around the time of the Great Moderation, which the literature dates
back to 1983-1984 (see McConnell and Perez-Quiros 2000), similar to the results
in D’ Agostino et al. (2006).
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Fig. 1 continued

Panel B focuses on monetary measures. M1, M2, and M3 never have predictive
ability except for some selected window sizes, again pointing to the presence of
instabilities.

Panel C focuses on interest rates. The results are quite interesting. They show that
interest rates (such as 1-year or 10-year bonds) appear to be very good predictors of
inflation for medium window sizes, below 120-140 observations. Again, however,
for very large window sizes the PMSE criterion would select the smaller model.
Short-term interest rates tend to be useful predictors only when the window size is
large, but again the ratio is below unity for some selected window sizes and above
unity for others. Again, we conjecture that instabilities are important, as discussed
in Rossi and Sekhposyan (2010).

Panel D focuses on other monetary variables. Stock prices are never useful for
predicting inflation. Interestingly, the producer price index is a good predictor for
inflation: the figure shows that for the relevant window sizes, the ratio of the MSFE
of the model relative to that of the benchmark is always lower than unity, and it
becomes higher than unity only for large window sizes.

Overall, our empirical results suggest that traditional Phillips curve predictors
such as capacity utilization and unemployment are useful in forecasting inflation, as
well as the producer price index. The empirical results for the other macroeconomic
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Table 11 QLR break test P-values

Indicator P-value

A. Real output measures

Capacity utilization 0.00
Unemployment 0.00
Employment 0.00
Earnings 0.00
Industrial production 0.05
Real GDP 0.00
B. Money measures

MO 0.00
M1 0.00
M2 0.00
M3 0.00
C. Interest rates

Fed funds 0.00
Real 3-mo. Treasury bill 0.00
1-Year bond 0.04
10-Year bond 0.04
D. Other nominal measures

Stock prices 0.03
Producer price index 0.00

Notes The table reports results for Andrews (1993) QLR test for structural breaks implemented with
a HAC covariance estimator with a bandwidth equal to (1/5)T

predictors are not clearcut, and might signal the importance of instabilities in the data.
In order to provide more information on the instability in the forecasting regressions
we consider, we report joint tests for structural breaks in the parameters of Eq. (18)
using Andrews (1993) test for structural breaks. Table 11 reports the p-values of the
test, which confirm that instabilities are extremely important.

5 Concluding Remarks

There is a known break, forecasters tend to use post-break observations when they
make forecasts. In other words, they base their forecasts on a “truncated window”
instead of the full sample. This chapter shows that this type of ideas can deliver the
consistency of the rolling PMSE criterion not only when parameters are time varying
but also when they are constant over time.

In this chapter we focus on the rolling scheme. Inoue and Kilian (2006) show
that the PMSE criterion based on the recursive scheme is inconsistent if the number
of initial observations is large, i.e., a fixed fraction of the sample size, while Wei
(1992) proves that it is consistent if the number of initial observations is very small,
i.e., a fixed constant. One might be able to extend Wei (1992) result to the case in
which the number of initial observations diverges at a rate slower than the sample
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size. However, such a model selection criterion might not be robust to parameter
instability.

It should be noted that our consistency results are based on correctly specified
nested models. Although information criteria are not robust to parameter instabilities,
they are robust to misspecification and nonnestedness (Sin and White 1996). We leave
PMSE criterion-based model comparison of misspecified or non-nested models for
future research.

The main object of forecasters is often to minimize PMSE rather than identify the
true model. We are currently developing a data-dependent method for choosing the
window size to achieve this goal in a separate chapter

Appendix
A.l1 Lemmas

Next, we present a lemma similar to Lemma A2 of Clark and McCracken (2000).
Lemma 1 Suppose that Assumptions 1 and 2 hold and that y = 0. Then:

(@) 7= S wenxi BUO HL (1) = 0, ().
(b) 7= ST vnz Ba (O Ha () = 0p ().

T—h T—1
() 7= > H{OBIOxx;Bi(OH\() = 7—— >, H{()BH (1)
=W+1 t=W+h
+op (%)
T—h T—h
@d) == > HOBOuz,By()Hy(t) = 7—— > Hy(t)BaHa(t)
r=W+1 t=W+1
+op (%)

Proof of Lemma 1: The proofs for (a) and (c) are very similar to those for (b) and

(d), respectively. For brevity, we only provide the proofs of (b) and (d). The results

for (a) and (c) can be easily derived by replacing z; and B by x; and «, respectively.
Note that

T—h T—h
1
—_— By(t)Hy(t) = ——— By Hy(t
w2 Ve BaOH () = 0 > vz By Ha (1)
t=W+1 t=W+1
T—h
RN > vipnz(Ba(t) — By) Ha (1)
T—h_w 1+hZt (52 2) 2
t=W+1

By Assumption 2(b) and Holder’s inequality, the second moments of the summands
on the right-hand side are of order OW=1 and O(W—2), respectively. Thus, it
follows from Assumption 2(c) that the variance of the left-hand side is of order
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O(T~'w~1). By the Chebyshev inequality and Assumption 1, the left-hand side is
op(W=h).

The proof of (d) is composed of two stages. In the first stage, we show that B;(¢)
in the equation can be approximated by its expectation B,, which is

T—h
1 , ,
T—h—W > Hy(t)Ba(t)z,z) Bo(t) Ha(1)
t=W+1
! T—h |
— / /
= t_%] H(t) Bz, By (t) + 0, (W) (A.1)

Since the left-hand side of Eq. (A.1) contains four terms,

T—h
1 , ,
T—h—W > HOB()zzBa(t) Ha (1)
t=W+1
1 T—h
=T _n_w Z H,(t)Baz:2, By Ha (1)
t=W+1
T—h
1 , ,
to—y 2 OB — Bz (Bat) — B (1)
t=W+1
| T—h
- / /
+ T—h—W Z Hz(t)BQZ;Zt(Bz(I) — By)H> (1)
t=W+1
T—h
o > Hy(t)(Ba(t) — B2)ziz; By Ha(t) (A.2)
T=h=W 57 ’ o ’ '

which include the first term in the right-hand side of Eq. (A.1).

By Assumption 2(b) and Holder’s inequality, the second moments of the sum-
mands in the last three terms are of order O(W_4), O(W‘3), and 0(W‘3), respec-
tively. Thus, their first moments are at most OW=3) = oW, By using these
and Assumption 2(e), the second moments of the last three terms are thus of the
order O(T'W=4), o(T~'W=3) and O(T~'w~1), respectively. By the Cheby-
shev inequality and Assumption 1, these last three terms are of the order o, ( w1,
proving (A.1).

The second stage of the proof of (d) is to show that we can further approximate
7,2z, in the first term in the right-hand side of Eq.(A.2) by its expectation E(z;z}).
Adding and subtracting E (z;z}), we obtain

T—h

1
T w Z H,(t)Byz;z, By Ha (1)
(=W
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T—h
1
T T—-h-w Z H;(1) By E (2,2;) By Ha (1)
= W+1
T—h
+ ; Z Hzl(l‘)BZ(ZtZ/ — E(z;2)B2Hy (1) (A.3)
T—h=W 47, ' !

The mean of the second termis o, w1 by Assumption 2(d). The second moments
of the summand in the second term is O (W ~2) by Assumption 2(b). Using these and
Assumption 2(e), the second moment of the second term is of the order o( W2, By
the Chebyshev inequality, (A.3) is o p(W_l).

Lemma 2 Suppose that Assumptions 3 and 4 hold and that y (-) = 0.

(@) 7= S ur X BUOHI(1) = 0p ().
(b) == S vunzra B2 (O Ha (1) = 0p (1)
T—h

(¢) 7=i—w > H{(OBi(O)xr,x7 Bi(t)Hi (1)
t=W+1

1 ch no(t 1
T—h—W H{()B1 () Hi(t) + 0 (v)-

t=W+1

T—h
@ Tﬁ}LW t=%+1 Hy()Bay()zr 127 B2 () Ha (1)
T—h .
= > HO)By (L) Hat) +op ().
t=W+1

Proof of Lemma 2 Under Assumptions 3 and 4 the proof of Lemma 2 takes exactly
the same steps as the proof of Lemma 1 except that B;, u;, and v, are replaced by
B; (%), ur,, and vr ;, respectively. This is because Lemma 2 is written in terms of

ur,; and v, rather than in terms of & w — & (%) and Biw — B (#) which we deal
with in the proof of Theorem 2.

A.2 Proofs of Theorems

Proof of Theorem I Note that the PMSEs 6% w and 622’ w can be expanded as

T—h

“ 1 o
Siw =7 I:%H (yesn — @lx,)
1 T 2
TT-h-W > e — et — (@x — a¥'x,))

t=W+1
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1 % )
= T w (yt+h - a*/xt)
r—h-w t=W+1
2 T—h
T _w Z (Ve — @™'x;) x; (@ — o)
T—h=W 5
1 T—h
o > (@ =) xx @ —a¥) (Ad)
T=h=W 7,
and
1 T—h )
6'22,W = m IZ%I (yl+/1 - EZ[)
1 T—h )
= Z (yt+h — Bz — (,B\,'Zt — ,B/Z[))
r—h-w t=W+1
1 Tz‘fj )
= _w (yt+h - ,3/2;)
T—h=W 5
2 T—h R
- T—h—W Z (yt+h - ,B/ZI)Z; (,3; — ,3)
=W+l
1 T—h
+ T—h—W z (B\z,_ﬂ/)ztzé (lgt—ﬂ), (A.S5)
t=W+1

respectively, where a* = [E (xtx,’)]_lE (x¢yr+n). There are two cases: the case in
which the data are generated from model 1, i.e., y = 0 (case 1) and the case in which
the data are generated from model 2, i.e., y # 0 (case 2).

In case 1, the actual model is y,+; = &’x; + v;4;,. The first component of &22,“, in

Eq. (A.5) is numerically identical to the first component of &E w in Eq. (A.4) because
y = 0 and o — o* = 0. Note that all the other components converge to zero faster
since all parameters are consistently estimated. Under the case where Model 1 is true,
the difference between the probability limit of 612_ w and 6% w 18 zero, which does not
identify which model is the true model. Only comparing the probability limits of 6ﬁ w
and 6% w as T and W go to infinity and W diverges slowly than T is not sufficient for
the model selection to indicate that lim7_, oo, w—o00 P (6ﬁ w < 622’ w) = 1. However,
if we can tell whether 6ﬁ w is always smaller than 6% w along the path of convergence
of T and W toward infinity, the true model can still be identified. Since the models
are nested u;4j, = vi4p, it follows from (A.4) and (A.5) that
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A A ) T—h o o
02%w - ‘712,w =T _h=w 12%1 [vi4nz; (Br — B) — vignx, @ — )]
! T—h
t o 2 LB =Bz (B p)
T—h—W 4= ! !
—(@; — o )xix; @ — )]
5 T—h
= ———— > vz Ba) Ha(t) — vinx, Bi (1) Hi (1)
r—h-w t=W+1 t t
: T—h
+———— > [Hat) Ba(t)ziz; Ba(t) Ha(1)
T-h—-W t=W+1 t
—Hi (1) B1(1)x;x{ Bi (t) H (1) ]
1 =l 1
Rl y—— Z [Ha(t) ByHa (1) — Hy (1) BH (1) + 0, (W)

t=W+1
(A.6)

where the last equality follows from Lemma 1(a)—(d).
To get the sign of Eq. (A.6), we first define Q by

[EGxD]™h O “[E St

_ N1 N1—=1
0 = [E(zzp)]? I[E(ZrZ,)] [ 0uiet Oty weot)

as in Lemma A.4 of Clark and McCracken (2000). Clark and McCracken (2000) show
that the Q matrix is symmetric and idempotent. An idempotent matrix is positive
semidefinite, which means for all v € R¥, v7 Qv > 0. It implies that

/

1 t—h 1 t—h
— z ZsVUs+h [E(Zzzg)]_l - Z ZsUs+h

th s=t—W th s=t—W
1 t—h ' 1 t—h
N1—1
— | = D xovsen | [EGaDI™ | —F D0 xoveun
th s=t—W th s=t—W

/

1 t—h A
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L 0— 0 _
W7 2w k=Dxt Q=) x (k1)
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X | —T Z s Us+h
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/

1 = 1
= > zovenn | [EGEDT - Q- [Ezp] 2
thlW
§jamw >0 (A8)
thtW

Note that the probability that [E (z;z,)]~ 1/ 2W_1/ 2 Z;;ﬁ‘_w Zs Vg1, lies in the null
space of Q for infinitely many ¢ approaches zero because the dimension of the
null space is [ < k. Thus, the average of (A.8) over ¢ is positive with probability
approaching one. Combining the results in Egs. (A.6) and (A.8), we find that the sign
of W(&zz) W &E w) 1s always positive with probability approaching one. Therefore,
when y =0, &f’w < &22’W with probability approaching one.

In case 2, that is, when Model 2 is the true model, we have y; 1, = B'z; + veqp =
o' x; 4y wr + vy1p. By Assumptions 2(a)(b), the second and third terms on the right-
hand sides of (A.4) and (A.5) are both o, (TY2/W) and op(T/ w2), respectively.
Thus, they are 0,(1) by Assumption 1. The first term on the right-hand side of
Eqg. (A.5) converges to the variance of v,y as the sample size 7' goes to infinity:

T—h
1
T 2 e Bu) = § Vi > 03 (A9)
t=W+1 t=W+1

Similarly, the first term on the right-hand side of Eq.(A.4) converges in probability
to the variance of u; 1y = yrop — o™ x;:

T-1
1 2
A2 /
WS T i —w t_%h (Ve+n — @ x)” 4 0,(1)

4
— E [(}’t+h - a*/xt)z]
=E [(a/xt + ¥ w; 4 vigh — a*/xt)z]

=K [(vt+h + @@ —a)x + y’w,)2]

_ 2 a—a* E(x:x)) E(x;,w)) o — ot R
_02+|: 14 ][E(wtxt;)E(wtwt;)][ y :| > 0. (A.10)

Therefore, when Model 2 is true, the PMSEs satisfy P(&l2 w > &2% w) =1lasT — oo
and W — oo, where W diverges slower than 7.

Proof of Theorem 2 Note that the PMSEs, 6ﬁ w and &i w can be expanded as
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respectively. If we show that each of
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1 T—h
T T_h_—w D Vresnr, B Ha(0), (A.15)

t=W+1
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T—h N
! 2 t PR S t
T—h—W Z (,3[ - B (?) ) LT 1274 (,Bt - B (?))
t=W+1
T—h
. Z Hy(t)' Bo()z7,1 27, Ba (1) Ha (1) (A.16)
ATt 9 .

T—h=W 7,

are 0,,(1/ W) when the data are generated from model 1 (case 1) and are 0, (1) when
the data are generated from model 2 (case 2), the proof of Theorem 2 takes exactly the
same steps as the proof of Theorem 1. Thus, it remains to show that (A.13)-(A.16)
are op (W~ incase 1 and o p(1)in case 2. Note that the bias of the rolling regression
estimator can be written as:

t—h

A t 1 , s t
Pw.i— B (7) = BZ(Z)WhSZ[Z_:WZs |:Us+h + 2 (/3 (7) - B (7))]
_ B() Nt (o (8 '
= B0 M0 + S:tz_:w 257, (ﬁ (?) iy (?)) (A.17)
Thus, the difference (A.15) is
1 T—h 1 t—h s ;
T—hn_w Z vr,z+hz’T,,Bz(t)W Z 252 (,3 (;) - B (7)) )
=W+1 h i w
1 = A N B s ;
= W Z VT, +hZr B2 (?) A 252 (ﬁ (7) -B (T))
t=W+1 h s=t—W
| T—h / y .
YT hw Z UT.t+h2T 1 (32(1) - B (7)) Wi
t=W+1
t—h s /
566 )

By Assumption 4(c), the summands have zero mean. By Holder’s inequality and

Assumptions 4(b)(c)(e)(f), the second moments of the right-hand side terms are

O(W/T?). By Chebyshev’s inequality, (A.15) is O,(W!/2/T) which is 0,,(1/ W)

by Assumption 3. It can be shown that (A.13) is also 0,,(1/ W) in a similar fashion.
The difference (A.16) is the sum of the following three terms:

T—h t—h
1

e Y v B0 Y i (ﬂ (%)_ﬁ(%))

1=W+1 hs—i—w
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T—h t—h

1 \\ 1 , )
T—h—-—W Z ('B (%) - B (?)) Wh Z ZSZSBZ(Z)ZT,IZT)[UT,I-"-I’!:
- - (A.20)
1 T—h s ¢ "1 t—h
T—h—W Z (ﬁ (?) -p (?)) Wh Z 252 Ba(O)zr
t=W+1 s=t—W
, R , s t
X Zr,th(t)Wh z 252y (.3 (7) - B (7)) , (A.21)
s=t—W

Using Chebyshev’s inequality, Holder’s inequality, Assumptions 3 and 4(b)(c)(e)(f),
it can be shown that (A.19), (A.20), and (A.21) are O,(W!/2T~2), 0,(W!/2T~2)
and OP(WZT’Z) all of which are op(W’l). It can be shown that (A.14) is also
0p(1/W) when y (-) = 0 in an analogous fashion.

The rest of the proof of Theorem 2 takes exactly the same steps as the proof of
Theorem 1 except that o™, B, B;, uy, vs, X, Y, z; and Lemma 1 is replaced by « (%)
B (%), B,- (%), urs, V1, XT1, Y71, 27 and Lemma 2, respectively.
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Estimating Misspecified Moment
Inequality Models

Hiroaki Kaido and Halbert White

Abstract This chapter studies partially identified structures defined by a finite
number of moment inequalities. When the moment function is misspecified, it
becomes difficult to interpret the conventional identified set. Even more seriously,
this can be an empty set. We define a pseudo-true identified set whose elements can
be interpreted as the least-squares projections of the moment functions that are obser-
vationally equivalent to the true moment function. We then construct a set estimator
for the pseudo-true identified set and establish its O, (n=1/2) rate of convergence.

1 Introduction

This chapter develops a new approach to estimating structures defined by moment
inequalities. Moment inequalities often arise as optimality conditions in discrete
choice problems or in structures where economic variables are subject to some type
of censoring. Typically, parametric models are used to estimate such structures. For
example, in their analysis of an entry game in the airline markets, Ciliberto and
Tamer (2009) use a linear specification for airlines’ profit functions and assume
that unobserved heterogeneity in the profit functions can be captured by independent
normal random variables. In asset pricing theory with short sales prohibited, Luttmer
(1996) specifies the functional form of the pricing kernel as a power function of
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consumption growth, based on the assumption that the investor’s utility function is
additively separable and isoelastic.

Any conclusions drawn from such methods rely on the validity of the model spec-
ification. Although commonly used estimation and inference methods for moment
inequality models are robust to potential lack of identification, typically they are
not robust to misspecification. Compared to cases where the parameter of interest is
point identified, much less is known about the consequences of misspecified moment
inequalities. As we will discuss, these can be serious. In general, misspecification
makes it hard to interpret the estimated set of parameter values; an even more serious
possibility is that the identified set could be an empty set. If the identified set is empty,
every nonempty estimator sequence is inconsistent. Furthermore, it is often hard to
see if the estimator is converging to some object that can be given any meaning-
ful interpretation. An exception is the estimation method developed by Ponomareva
and Tamer (2010), which focuses on estimating a regression function with interval
censored outcome variables.

This chapter develops a new estimation method that is robust to potential para-
metric misspecification in general moment inequality models. Our contributions are
three-fold. First, we define a pseudo-true identified set that is nonempty under mild
assumptions and that can be interpreted as the projection of the set of function-valued
parameters identified by the moment inequalities. Second, we construct a set esti-
mator using a two-stage estimation procedure, and we show that the estimator is
consistent for the pseudo-true identified set in Hausdorff metric. Third, we give con-
ditions under which the proposed estimator converges to the pseudo-true identified
set at the n~1/%-rate.

The first stage is a nonparametric estimator of the true moment function. Given
this, why perform a parametric second-stage estimation? After all, the nonparametric
first stage estimates the same object of interest, without the possibility of paramet-
ric misspecification. There are a variety of reasons a researcher may nevertheless
prefer to implement the parametric second stage: first is the undeniably appealing
interpretability of the parametric specification; second is the much more precise esti-
mation and inference afforded by using a parametric specification; and third, the
second term of the second-stage objective function may offer a potentially useful
model specification diagnostic. Future research may permit deriving the asymptotic
distribution of this term under the null of correct parametric specification to provide
a formal test. The two-stage procedure proposed here delivers these benefits, while
avoiding the more serious adverse consequences of potential misspecification.

The chapter is organized as follows. Section 2 describes the data generating
process and gives examples that fall within the scope of this chapter. We also introduce
our definition of the pseudo-true identified Sect. 3 defines our estimator and presents
our main results. We conclude in Sect. 4. We collect all proofs into the appendix.
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2 The Data Generating Process and the Model

Our first assumption describes the data generating process (DGP).

Assumption 2.1 Let (€2, §, Pg) be a complete probability space. Let k, £ € N. Let
X : Q — R be a Borel measurable map, let X € R¥ be the support of X, and let
Py be the probability measure induced by X on X. Let pg : X — R be an unknown
measurable function such that E[pg(X)] exists and

Elpo(X)] =0, (D

where the expectation is taken with respect to Py.

In what follows, we call pg the true moment function. The moment inequalities (1)
often arise as an optimality condition in game-theoretic models (Bajari et al. 2007,
Ciliberto and Tamer 2009) or models that involve variables that are subject to some
kind of censoring (Manski and Tamer 2002). In empirical studies of such models, it
is common to specify a parametric model for py.

Assumption 2.2 Let p € Nand let ® be a subset of R” with nonempty interior. Let
m: X x ® — R be such that m(-, §) is measurable for each 8 € © and m(x, -)
is continuous on ®, a.e. — Py. Foreach 6 € ©, m(-,0) € L% ={f: X - RY :
ELf(X) f(X)] < oo}.

Throughout, we call m(-, -) the parametric moment function.

Definition 2.1 Let my () := m(-, 0). Define Mg = {my € L,% 10 € ©). Mg is
correctly specified (— Pp) if there exists 6y € © such that

Polpo(X) = m(X, 6p)] = 1.

Otherwise, the model is misspecified.

If the model is correctly specified, we may define the set of parameter values that
can be identified by the inequalities in (1):

@ :=10 € ®: E[m(X, )] <0}.

We call ®; the conventional identified set. This set collects all parameter values that
yield parametric moment functions that are observationally equivalent to pg.

It becomes difficult to interpret ®; when the model is misspecified, as pointed
out by Ponomareva and Tamer (2010) for a regression model with an interval-valued
outcome variable. Suppose first that the model is misspecified but ®; is nonempty.
The set is still a collection of parameter values that are observationally equivalent
to each other, but since there is no 0 in ®; that corresponds to the true moment
function, further structure is required to unambiguously interpret ®; as a collection
of “pseudo-true parameter(s)”. Further, ®; may be empty, especially if Mg is a
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small class of functions. This makes the interpretation of ®; even more difficult. In
fact, interpretation is impossible, as there is nothing to interpret.

Often, the economics of a given problem impose further structure on the DGP.
To specify this, we let 0 < L < £, and for measurable s : X' — RE, let IIsllz =
E[s(X)s(X)]"/2. Let L3 :={s : X — RL, ||s]|, < co},and letS < L?.

Assumption 2.3 There exists ¢ : X x S — R’ such that for each x € X, ¢(x, -)
is continuous on S and for each s € S, ¢(-, ) is measurable. Further, there exists
so € S such that

po(x) = @(x,s0), VxekX.

When pg € L% and there is no further structure on pg available, we let L = £,
S = L%, and take ¢ to be the evaluation functionale : X x S — RY:

p(x,s) = e(x,s) = s(x),

as then ¢(x, po) = e(x, pgp) = po(x) and s9 = pg. In this case, it is not necessary to
explicitly introduce ¢. Often, however, further structure on the form of pg is available.
Typically, this is reflected in s depending non-trivially only on a strict subvector of X,
say X 1. In such cases, we may write S C L%YI for clarity. We give several examples
below.

When Assumption 2.3 holds, we typically parametrize the unknown function sg.
For example, it is common to specify s¢ as a linear function of some of the components
of x. As we will see in the examples, a common modeling assumption is

Assumption 2.4 There exists 7 : X x ©® — RZ such that with ry := r(-0),
m(x,0) = @(x,rg), V(x,0) e X x 0.

Thus, misspecification occurs when there is no 6y in ® such that sp = rg,.

More generally, misspecification can occur because the researcher mistakenly
imposes Assumption 2.3, in which case sq fails to exist and there is again no 6y in
® such that pp(x) = @(x, rg,). As 5o is an element of an infinite-dimensional space,
we may refer to this as “nonparametric” misspecification. To proceed, we assume
that, as is often plausible, the researcher is sufficiently able to specify the structure
of interest that nonparametric misspecification is not an issue, either because correct
@ restrictions are imposed or no ¢ restrictions are imposed. We thus focus on the
case of parametric misspecification, where s exists but there is no 6y in ® such that
50 = Tg,-
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2.1 Examples

In this section, we present several motivating examples and also give commonly used
parametric specifications in these examples. For any vector x, we use x/) to denote
the jth component of the vector. Similarly, for a vector valued function f(x), we use
f () (x) to denote the jth component of f(x).

Example 2.1 (Interval censored outcome) Let Z : Q — R be a regressor with
support Z. Let Y : Q — R be an outcome variable that is generated as:

Y = s50(Z) +e, 2)

where 59 € S 1= LZZ, say, and € satisfies E[€|Z] = 0. We let ) denote the support
of Y. Suppose Y is unobservable, but there exist (Y, Yy)' : @ — ) x ) such that
Yy <Y < Yy almost surely. Then, (Y., Yy, Z)' satisfies the following inequalities
almost surely:

E[YL|Z] = 50(Z) =0 3)
so(Z) — E[Yy|Z] < 0. “4)

Letx = (yr, yu,z) € X := Y x Y x Z.Given a collection {Ay, ..., Ax} of Borel
subsets of Z, the inequalities in (3), (4) imply that the moment inequalities in (1)
hold with

— | yL —s0(2)
po(x) = ¢(x, 50) := [so(z) _ yU] ® 14(2), 4)
where 14(z) := (1{z € A(},...,1{z € AK})’.1 Foreach x € X and s € S, the
functional ¢ evaluates vertical distances of 7 (z) from y; and yy and multiplies them
by the indicator function evaluated at z. Additional information on pg available in
this example is that the moment functions are based on the vertical distances.

A common specification for sg is s0(z) = rg,(z) = 26 for some ) € © < Rz,
The parametric moment function is then given foreachx € X' bym(x, 0) = ¢(x, rp).
Therefore, this example satisfies Assumption 2.4.

Example 2.2 Tamer (2003) considers a simultaneous game of complete information.
Foreach j =1,2,1et Z; : Q — R9Z and €j : & — R be firm j’s characteristics
that are observable to the firms. The econometrician observes the Z’s but not the €’s.
For each j,let g; : Z x {0, 1} — R. These functions are known to the firms but not
to the econometrician. Suppose that each firm’s payoff is given by

wi(Z;, Y, Y_j) =(ej —g;(Z;, Y-;))Y;, j=1,2,

! Here, we take the indicators (or instruments) 1,(z) as given. The indicators 14(z) could be
replaced by any finite vector of measurable non-negative functions of z. Andrews and Shi (2011)
give examples of such functions.
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where Y; € YV := {0, 1} is firm j’s entry decision, and Y_; € ) is the other firm’s
entry decision. The econometrician observes these decisions. Given (z1, z2), the
firms’ payoffs can be summarized in Table 1.

Suppose the firms and the econometrician know that g(z, 1) > g(z, 0) for any
value of z. This means that, other things equal, the opponent’s entry would reduce
the firm’s own profit. In this setting, there are several possible equilibrium outcomes
depending on the realization of (e1, €2). If €1 > g1(z1, 1) and €2 > g2(z2, 1), then
(1, 1) is the unique Nash equilibrium (NE) outcome. Similarly, if €; > ¢1(z1, 1)
and €2 < ¢2(z2, 1), (1, 0) is the unique NE outcome, and if €; < g1(z1, 1) and
€ > g2(z2, 1), (0, 1) is the unique NE outcome. Now, if €] < g1(z1, 1) and €5 <
g2(z2, 1), there are two Nash equilibria, and they give the outcomes (1, 0) and (0, 1).
Let Fj, j = 1,2 be the unknown CDFs of €; and €.2 Without any assumptions
on the equilibrium selection mechanism, the model predicts the following set of
inequalities:

PY1=1,Yr2=11Z1=z1,Z2 =22) = (1 — Fi1(g1(z1, D)))(1 — F2(92(22, 1)))

(6)
P =1,Y2=01Z=z1,Z=22) =2 (1 = Fi(g1(z1, D) F2(92(z2, 1)) (7)
PY1=1,Y2=0|Z) =z21,Z2 = 22) < F2(g2(22, 1)). (®)

Letx := (y1,y2,21,22) € X =Y xYVYxZx Z. Letsg € S:={s ¢ LZZxZ :
s(z1,22) € [0, 112, ¥(z21, 22) € Z x Z} be defined by

s (21, 22) := Fi(g1(z1, 1))
s& @1, 22) = Falga(z2, 1)).

Here, s(()] )(zl , Z2) is the conditional probability that firm j’s profit upon entry is
negative given z; and z». Given a collection {A;, j = 1, ..., K} of Borel subsets
of Z x Z,let 14(z) := (1{(z1, 22) € A1}, ..., 1{(z1, 22) € Ak}). The inequalities
(6)—(8) imply the moment inequalities in (1) hold with

po(x) = @(x, so)
iy =1Ly =1} — (1 —s{ 21, 22) (1 = 55721, 22))
(1 =51, 22)0 =P @ z20) = Uy =1,y = 1)
(1 =587 (21, 22)5 (21, 22) = Hy1 = 1, y2 = 0}
=1,y =0} — 55 (21, 22)

®14(2).

The additional information on py is that it is based on the differences between some
combinations of the conditional probabilities s¢(z1, z2) and indicators for specific
events.

2 The players do not need to know the F’s, but these are important to the econometrician.



Estimating Misspecified Moment Inequality Models 337

Table 1 The entry game

payoff matrix r. 0 1
0 (O, 0) (()’ & — ¢ (Zz, 0))
1 (€1 —91(z1,0),0) (1 —g1(z1, ), &2 — g2(z2, 1))

A common parametric specification for g; is g;(zj, y—;) = z’j Yo — y—jBj.o0 for
some Bjoe BCRiandyy el C R9Z 1t is also common to assume that Fi,j=
1,2 belong to a known parametric class {F(-; &), « € A} of distributions. Then
the parametric moment function can be defined for each x by m(x, 0) := ¢(x, rg),
where 0 := (a1, a2, B1, B2, ¥) and

rV (@1, 22) = F(Zyy — Bis an) )
rP (21, 22) = F(zhy — Ba; @2). (10)

This example also satisfies Assumption 2.4.

Example 2.3 (Discrete choice) Suppose an agent chooses Z € R? from a set Z :=
{z1, ..., zx} in order to maximize her expected payoff E[so(Y, Z) | Z], where Y is
a vector of observable random variables, s) € R := L%,X  1s the payoff function,
and 7 is the agent’s information set. The optimality condition for the agent’s choice
is given by:

Elso(Y,zj) —so(Y,2) |11 <0, j=1,.. K. (11)

Let x := (y,2) € X := ) x Z. The optimality conditions in (11) imply that the
unconditional moment inequalities in (1) hold with

s0(y, z21) — s0(y. 21) |
: x Hz =21}
so(ys zk) —so(y, 21) |
po(x) = @(x, 50) = :
s0(y, 21) — s0(y, 2K) |
: x Iz = zk}
s0(y, zx) — s0(y, 2x) |

For given y, the functional ¢ evaluates the profit differences between a given choice
z (e.g., 1) and every other possible choice. The additional information on py is that
it is based on the profit differences.

A common specification for sg is so(y, z) = rg, (¥, 2) = ¥ (¥, z; 20) + 2/ o + €,
for some known function v, unknown (&g, Bo) € ® C Ré«+dg and an unobservable
choice-dependent error €. For simplicity, we assume that €, satisfies E[e;; — €;; |
T] = 0 for any i, j; see Pakes et al (2006) and Pakes (2010) for detailed discussions.
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The parametric moment function is then given foreachx € X' bym(x, 0) = ¢(x, rp).
This example satisfies Assumption 2.4.

Example 2.4 (Pricing kernel) Let Z : @ — R% be the payoffs of dz securities that
are traded atapriceof P € P C R9z 1f short sales are not allowed for any securities,
then the feasible set of portfolio weights is restricted to Riz and the standard Euler
equation does not hold. Instead, the following Euler inequalities hold (see Luttmer
1996):

Elso(Y)Z — P] <0,

where Y : 2 — ) is a state variable, e.g. consumption growth, and s9 € S := {s €
L%J 1 5(y) = 0,Vy € Y} is the pricing kernel function. The moment inequalities
thus hold with the true moment function:

po(x) = @(x, s0) = so(y)z — p,

where x := (y, z, p) € Y x Z x P. This function evaluates the pricing kernel r at
y and computes a vector of pricing errors. The additional information on py is that
it is based on the pricing errors.

A common specification for sg is so(y) = rg,(y) = Boy *°, where fp € B C
[0, 1] is the investor’s subjective discount factor and yp € I' € R is the relative
risk aversion coefficient. Let 6 := (B, )’. The parametric moment function is then
given for each x € X by m(x, 0) = ¢(x, rp), satisfying Assumption 2.4.

2.2 Projection

The inequality restrictions E[¢(X, so)] < 0 may not uniquely identify sg. Define
So:={s€S: Elp(X,s)] <0}.

We define a pseudo-true identified set of parameters as a collection of projections

of elements in Sp. Let W be a given non-random finite L x L symmetric positive-

definite matrix. For each s € S, define the norm ||s||w := E[s(X)Ws(X)]'/%. For

eachs € Sand A C S, the projection map I14 : S — A is the map such that

s — Masllw = inf |ls —allw.
acA
Let Re := {rg € S : 6 € ®}. Given Assumption 2.4, we can define
O, :=1{0 €@ :rg =TIRys,s € So}.

When ¢ is the evaluation map e, O, is simply ©, := {0 € O : myg = [Ipq,S5,5 €
So}.
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©®. can be interpreted as the set of parameters that correspond to the elements mg
in the R -projection of Sp. This set is nonempty (under some regularity conditions),
and each element can be interpreted as a projection of s inducing a functional ¢(-, s)
that is observationally equivalent to pg. In this sense, each element in ®, has an
interpretation as a pseudo-true value. Thus, we call ®,, the pseudo-true identified set.
[White (1982) uses 6, to denote the unique pseudo-true value in the fully identified
case.]

We illustrate the relationship between ®; and ®, with an example. Consider
Example 2.1. Let ©® C R% _ The conventional identified set is given by

Or={0e€e®:E[(YL—Z'0)l{Z e Aj}] <0,
and E[(Z'0 —Yy){Z € Aj}1 <0, j=1,...K}. (12)

The pseudo-true identified set is given by
O, ={0e0®:0=E[ZZ1'E[Zs(Z)],s € S}. (13)

Let D be adz x K matrix whose jth column is E[Z 1{Z € A}}]. For this example,
the following result holds:

Proposition 2. 1 Let the conditions of Example 2.1 hold, and let ©, be given as
in (13). Let ©f be given as in (12). Then ®; C O,. Suppose further that Mg is
correctly specified, that E[Yy|Z] = E[Y.|Z] = Z'0y a.s, and that d7 < rank(D).
Then ®; = O, = {6p}.

As this example shows, unless there is some information that helps restrict Sy
very tightly, ®; is often a proper subset of ®,. This is because without such infor-
mation, Sy is typically a much richer class of functions than Rg. Another important
point to note is that, although ©®, is well-defined generally, ®; can be empty quite
easily. In particular, for any x,x’ € X, let x; = Ax + (1 —A)x’,0 < A < 1.
©®y is empty if there exists (x,x’) and A € [0, 1] such that (i) x, € X and
(E[YL|x] = EYylx])/llx. — x|l > (E[Yy|x'] = E[YylxD/lIx" — x| or (ii) x;, € X
and (E[Yy|x,]— E[YL|x])/Ilx,. — x|l < (E[Y|x'1— E[YL|x])/|x"— x]|.% Figure 1,
which is similar to Fig. 1 in Ponomareva and Tamer (2010), illustrates an example
that satisfies condition (i) for the one-dimensional case.

In this example, each element in ®, solves the following moment restrictions:

E[Z(Z'0 — Y)] = E[Zu(X)], (14)

withu(x) = s(z) —y forsome s € Sg. This can be viewed as a special case of incom-
plete linear moment restrictions studied in Bontemps, Magnac, and Maurin (2011)

3 For this example, ©; is never empty as long as the number (2K) of moment inequalities equals
the number of parameters (£).
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Fig. 1 An example with an
empty conventional identified
set

2=0 / Ty ! X

(BMM, henceforth).* BMM shows that the set of parameters that solves incomplete
linear moment restrictions is necessarily convex and develops an inference method
that exploits this property.

We note here that this connection to BMM’s work only occurs when the para-
metric class is of the form: Rg = {ry : r9(z) = 7’6, 6 € ®}. The elements of
®., however, do not generally solve incomplete linear moment restrictions when
‘Re includes nonlinear functions of 8. Therefore, BMM’s inference method is only
applicable when ry is linear. Our estimation procedure is more flexible than theirs
in the following two respects. First, one may allow projection to a more general
class of parametric functions that includes nonlinear functions of 6. Second, as a
consequence of the first point, we do not require ®, to be convex. We, however,
pay a price for achieving this generality. We require s to satisfy suitable smoothness
conditions, which are not required by BMM. We discuss these conditions in detail
in the following section.

3 Estimation

3.1 Set Estimator

For W as above and each (6, s) € ® x S, let the population criterion function be
defined by

0, s) = E[(s(X;) = ro(X) W (s(X;) — ro(Xi))]
- ,912% E[(s(X;) — ro (X)) W (s(X;) — rg (X)]. 15)

4 We are indebted to an anonymous referee for pointing out a relationship between BMM’s frame-
work and ours. General incomplete linear moment restrictions are given by E[V(Z'0 — Y)] =
E[Vu(V)], where V is a vector of random variables, and « is an unknown bounded function. See
BMM for details.
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Using the population criterion function, the “pseudo-true” identified set ®, can be
equivalently written as

O.,={0:00,s) =0, seS}.

Given a sample {X1, ..., X;;} of observations, let the sample criterion function be
defined for each (0, s) € ® x S by

1 < ,
0,00,5) = — E (X)) —rg(X)) W(s(X;) —ro(X;))
n i=1

n

1
—ggg);;(S(Xi) —rg (X)) W(s(Xi) —rp(Xi)).  (16)

Ideally, we would like to estimate ®, by (:)n, say, where (:)n =1{0: 0,0,s) <
cn, s € So}. But Sy is unknown, so we must estimate it. Thus, we employ a two-stage
procedure, similar to that studied in Kaido and White (2010). Section 3.3 discusses
how to construct a first-stage estimator of Sp. For now, we suppose that such an
estimator exists. For this, let 7 (A) be the set of closed subsets of a set A. See Kaido
and White (2010) for background, including discussion of Effros measurability.

Assumption 3.1 (First-stage estimator) For each n, let S,, € S. S‘n Q= F(Sy)
is (Effros-) measurable.

Given a first-stage estimator, we define a set estimator for the pseudo-true identi-
fied set. Let {c,} be a sequence of non-negative constants. The set estimator for ®,
is defined by

O, :={0€O:0,0,s) <cnseS). (17)

We establish our consistency results using the Hausdorff metric. Let || - || denote
the Euclidean norm, and for any closed subsets A and B of a finite-dimensional
Euclidean space (e.g., containing 9), let

dp (A, B) := max{dy (A, B),du (B, A)}, du(A, B) = SUP;ng lla —bll, (18)
€

acA

where dy and C?H are the Hausdorff metric and directed Hausdorff distance
respectively.

Before stating our assumptions, we introduce some additional notation. Let Dy
denote the differential operator 9% /06" -~89z” with || := Zle oj. Similarly,
we let DY denote the differential operator Bﬁ/axf‘ -~-8x,’f" with |8] = 21;=1 Bj.
For a function f : X — R and y > 0, let y be the smallest integer smaller than y
and define B
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B () — DP
171 = max sup [DF /)| + max. sup |DEf () = DEF0]
Pl=r BI=y xyex  llx——y|”L

Let C]};, (X) be the set of all continuous functions f : X — R such that | f,, < M.
Let C,’(,LL(X) ={f: X > RL: fU) ¢ C}(,I(X),j = 1, ..., L}. Finally, for any
n>0letS) :={s €S infyecs, IIs —s'llw < n}

Our first assumption places conditions on the parameter spaces ® and S. We let
int(®) denote the interior of ©.

Assumption 3.2 (i) ® is compact; (ii) S is a compact convex set with nonempty
interior; (iii) there exists y > k/2 such that S C CX,I 1 (X); (iv) Re is a convex
subset of S; (v) ®, C int(®).

Assumption 3.2 (i) is standard in the literature of extremum estimation and also
ensures the compactness of the pseudo-true identified set. Assumption 3.2 (iii)
imposes a smoothness requirement on each component of s € S. Together with
Assumption (ii), this implies that S is compact under the uniform norm, which will
be also used for establishing the Hausdorff consistency of S, inthe following section.
For the Hausdorff consistency of O,, the requirement y > k/2 can be relaxed to
y > 0, and it also suffices that the smoothness requirement holds for functions in
neighborhoods of Sp. The stronger requirement given here, however, will be useful
for deriving the rates of convergence of O, and S,.

For ease of analysis, we assume below that the observations are from a sample of
[ID random vectors.

Assumption 3.3 The observations {X;,i = 1,...,n} are independently and
identically distributed.

The following two assumptions impose regularity conditions on rg.

Assumption 3.4 (i) r(x, -) is twice continuously differentiable on the interior of ®
a.e. — Py, and for any j, x, and || < 2, there exists a measurable bounded function
C : X — Rsuch that |Dgry” (x) — DEri (x)| < C(x)[16 — 6']; (i) there exists a
measurable bounded function R : X — R such that

max  sup |Dgréj)(x)| < R(x).
j=L..l geo

_For each x, let Vgrg(x) be a L x p matrix whose jth row is the gradient vector of
r{ with respect to 6. For each x € X and i, j € {1, ..., L}, let 92/36;36,r4(x) be

a L x 1 vector whose kth component is given by 8%/36;96; rgk) (x).Foreach6 € ©®,
s € S,and x € X, let Hy (6, s, x) be a p x p matrix whose (i, j)th component is
given by

2 /
96,30, re(X)) W(re(x) — s(x)). 19)

HY 0,5, %) = 2(
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Let n > 0. For each 5 € Sg and € > 0, let V¢(s) be the neighborhood of 6, (s)
defined by
VE(s) :={0 € ®: ||6 — 0(s)| < ¢€}.

Let Ve == {(#,5) : 0 € V<(s),5 € Sg} be the graph of the correspondence V¢
onS;.

Assumption 3.5 There exist ¢ > 0 and n > 0 such that the Hessian matrix
V92Q(9, s) = E[Hw(®,s, X;) + 2Vgre(X;) WVyre(X;)] is positive definite uni-
formly over N j.

Assumption 3.4 imposes a smoothness requirement on rg as a function of 9,
enabling us to expand the first order condition for minimization, as is standard in
the literature. Assumption 3.5 requires that Hessian of Q(6, s) with respect to 0
to be positive