
Chapter 1

Trajectory Preprocessing

Wang-Chien Lee and John Krumm

Abstract A spatial trajectory is a sequences of (x,y) points, each with a time stamp.
This chapter discusses low-level preprocessing of trajectories. First, it discusses how
to reduce the size of data required to store a trajectory, in order to save storage costs
and reduce redundant data. The data reduction techniques can run in a batch mode
after the data is collected or in an on-line mode as the data is collected. Part of this
discussion consists of methods to measure the error introduced by the data reduction
techniques. The second part of the chapter discusses methods for filtering spatial
trajectories to reduce measurement noise and to estimate higher level properties of
a trajectory like its speed and direction. The methods include mean and median
filtering, the Kalman filter, and the particle filter.

1.1 Introduction

Owing to the rapid advent of wireless communication and mobile computing tech-
nologies, the vision of pervasive computing is becoming a reality. Mobile devices,
including smart phones, PDAs, navigational systems on vehicles, and RFIDs on
cargos, have played a growing important role in various applications in our dai-
ly life. Nowadays, many of these mobile devices have location positioning and
wireless communicating capabilities and thus are able to locally log or dynami-
cally report their locations to the server.1 Indeed, there is a tremendous demand
for location tracking of moving objects from various location-based services (LBS),
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ranging from fleet management, traffic information services, transportation logistic-
s, location-based games, to location-based social networks. According to forecast
of the 2011-2015 LBS market made by Pyramid Research, revenue of the glob-
al location-based services market is expected to reach US10.3 billions in 2015, up
from 2.8 billions in 2010.2

To support LBS applications, the database community has made a tremendous
research effort on the development of mobile object databases (MODs) in the past
decade [33, 14, 13, 28]. In addition to the conventional search functions of mov-
ing objects, trajectory management are essential operations of MODs since many
LBS applications require analyzing and mining moving phenomenons/patterns of
the monitored objects. Thus, trajectories of moving objects, i.e. their geographical-
temporal traces, are often treated as first-class citizens in MODs. Due to the need to
acquire and preprocess trajectory data before loading them into the MODs, in this
book chapter, we review a number of issues and techniques for trajectory prepro-
cessing, including trajectory data generation, filtering and reduction.
Based on Wikipedia, a trajectory is the path that a moving object follows through

space as a function of time. To capture the accurate and complete trajectory of a
moving object, however, is very difficult and expensive due to the inherent lim-
itations of data acquisition and storage mechanisms. As a result, the continuous
movement of an object is usually obtained in an approximate form as discrete sam-
ples of spatio-temporal location points (or simply location points). Supposedly the
more sample points are acquired in a trajectory, the more accurate the trajectory is.
However, adopting high sampling rates in acquiring the location points of moving
objects to generate the trajectories may result in a massive amount of data lead-
ing to enormous overheads in data storage, communications and processing. Take
the Taipei eBus system as an example.3 The system tracks the trajectories of about
4000 buses daily, covering 287 bus routes in the greater Taipei metropolitan area.
The locations of buses tracked in the system are transmitted to the system server
every 15-25 seconds, generating millions of sampled data points daily. As the posi-
tioning technology and processing power of data acquisition mechanisms continue
to advance rapidly, the problem of data explosion gets only worse. Hence, it’s a
mandate to employ the data reduction techniques in trajectory preprocessing.
In addition to data reduction, trajectories can benefit from filtering to reduce noise

and estimate higher-level properties like speed and direction. Since trajectories are
normally measured by a sensor, they inevitably have some error, including occa-
sional outliers. Simple techniques like mean and median filtering can reduce these
errors. In addition to error reduction, certain filters like the Kalman filter and particle
filter can also give error estimates and inferences on speed and direction.
Figure 1.1 shows a high-level system model for typical location-based services.

As shown, the system consists of three components: 1) the location server, 2) mov-
ing objects, and 3) LBS applications. As in most pervasive computing applications,
we assume wireless communications between the server and moving objects. In

2 See http://www.pyramidresearch.com/store/Report-Location-Based-Services.htm
3 http://www.e-bus.taipei.gov.tw/
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such systems, the locations of tracked moving objects are reported to the location
server in accordance with the adopted reporting schemes, e.g. periodically. The loca-
tion point data (which form trajectories of moving objects) are then uploaded to the
moving object databases. On the other hand, the LBS applications submit queries
to the location server to retrieve moving objects of interests (as well as their at-
tributes such as locations and other phenomenons/patterns discovered from moving
behaviors of objects) to meet various application needs.
As discussed earlier, systems in support of location based services naturally gen-

erate enormous volumes of data with measurement noise. Consequently, the data
reduction and filtering techniques are particularly important for cleansing, trans-
mission, and storage of trajectory data in location based services. Even though ob-
ject movement is continuous, the representation of object trajectories is inevitably
in a discrete form due to the nature of sampling-based data acquisition approach.
Thus, an intuitive strategy to reduce the volumes of trajectory data is to reduce the
sampling rate of data acquisition or to reduce the number of sample points in the
trajectory representation. However, the question is whether we are able to discard
some sample points without sacrificing the quality of trajectory data required for
supporting the targeted applications. Additionally, what techniques can be used to
effectively filter measurement noise not only in the raw location points of trajec-
tories but also in high-level properties of trajectories such as direction and speed.
Fortunately, due to the linear characteristics of the underlying transportation infras-
tructure, object movements in many LBS applications exhibit predictable patterns.
As a result, many redundant and erroneous information can be removed from the
trajectory without compromising much of the application requirements.
In the following, we review some trajectory data reduction strategies for LBSs.

We first consider the location update scenarios and then review the data reduction
strategies under these scenarios. Accordingly, we classify the data reduction strate-
gies into two categories: 1) off-line compression and 2) on-line reporting.
After discussing data reduction, we review filtering techniques, including mean

and median filtering, the Kalman filter, and the particle filter.

Fig. 1.1 A high-level system model for typical location-based services. The locations of tracked
moving objects are reported to the location server via wireless communications. The LBS applica-
tions submit queries to the server to retrieve moving object data for analysis or other application
needs.
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1.2 Trajectory Data Generation

A trajectory is the path that a moving object follows through space as a function of
time. Thus, it can be captured as a time-stamped series of location points, denoted
as {〈x1,y1, t1〉,〈x2,y2, t2〉, ...,〈xN ,yN , tN〉} where xi, yi represent geographic coordi-
nates of the moving object at time ti and N is the total number of elements in the
series. To generate the trajectory, a moving object needs to acquire its coordinates
x, y at time t. There are many positioning technologies, e.g. global positioning sys-
tem (GPS), that can be employed to determine the location of a moving object.
For example, most of the smart phones already have a built-in GPS receiver and
thus can easily derive their own locations. Augmenting the GPS, some positioning
techniques have used wifi access points as the underlying reference system to de-
termine the location of a moving object. Additionally, even in situations where the
GPS signal is poor and there is no nearby wifi access point to serve as a positioning
reference, the “dead reckoning” techniques can be used to estimate the position of
a moving object by advancing from a known position using course, speed, time and
distance to be traveled. In other words, where a moving object will be at a certain
time can be derived based upon known or estimated speeds over elapsed time, and
course. Notice that dead reckoning relies on accurate estimation of speed, elapsed
time and direction, which can be measured by using accelerometers and g-sensors
built in many mobile devices today. Thus, while the traditional navigational methods
of dead reckoning for location acquisition have been replaced by modern position-
ing technologies, it is still very useful for generating trajectory data, especially when
GPS reception is lost, e.g. in a tunnel. Since positions of moving objects calculated
by dead reckoning is based on previous positions and estimated distance and direc-
tions, the errors in subsequent locations are cumulative. Therefore, the dead reck-
oning methods only serve as a remedy when the more accurate modern positioning
techniques are not applicable.
Given that the time-stamped geographical coordinates can be sampled arbitrarily

by a moving object, the next question is whether the moving object needs to report
all the sampled trajectory data to the location server for upload to the mobile ob-
ject database. Obviously the answer is dependent on the application requirements.
Since the data acquisition occurs at the moving object, we assume that the location
data it possesses have the highest precision. On the contrary, the applications may
allow some imprecision based on their requirements. Thus, the data precision at the
location server is not expected to be as high as what the moving object has. In sum-
mary, the data at the moving object are considered as precise and the required data
precision at the location server is determined by the supported LBS applications.
Generally speaking, there are two categories of data reduction techniques report-

ed in the literature of moving object and trajectory management. These approaches
aim to reduce the communication and storage overhead of trajectory data repre-
sentation while not to compromise much precision in the new data representation
of trajectory. The basic idea behind data reduction techniques in the first catego-
ry, called batched compression techniques, is to first collect the full set of sampled
location data points and then compress the data set by discarding redundant loca-
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tion points for transmission to the location server. Because the full data set is taken
into consideration by the compression algorithms, the results tend to approaching
the global optimal better than the techniques in the other category. These batched
compression techniques are very suitable for off-line uploading and analysis of tra-
jectories at various Web 2.0 sites such as Everytrail4 and Bikely5. Take Everytrail
as an example, it provides trajectory logging tools on iphone and Android phones
for users to record their trips. By uploading a trip trajectory (usually after the trip
is completed), a user can annotate the trajectory with pictures and travelogues for
sharing with her friends. Thus, the batched compression techniques can be used to
reduce the transmission and storage overheads for the user and the hosting server.
For many LBS applications which require timely updates of the moving object-

s’ locations, e.g. fleet management and traffic monitoring applications, the batched
compression techniques may not be applied directly. In these applications, the lo-
cation server needs to know the whereabouts of moving objects constantly. Since
continuous location updates of moving objects is infeasible, data reduction of the
sample points in a trajectory is usually achieved on-line by selective updates of the
locations based on specified precision requirements. Thus, this category of trajectory
data reduction techniques is named as on-line data reduction techniques. Two ideas
are usually exploited in this category of on-line data reduction techniques: (i) use a
line segment to fit as many location points in a trajectory as possible; (ii) predict the
object movements and report only those location points deviating significantly from
the prediction. Techniques based on (i) are able to capture the geometric properties
of trajectories pretty well with linear approximation. On the other hand, techniques
based on (ii) may capture additional features, such as speed and headings, of object
movements and use them in prediction. Based on previously reported location of a
moving object, the server is able to predict its next move even though the predicted
location may not be exactly accurate. Later in this chapter we discuss the Kalman fil-
ter and particle filter, which can both be used for trajectory prediction. By obtaining
a prediction model from the server, the moving object applies the same prediction
algorithm on the previously reported object locations to figure out where the server
perceives as its current location. As a result, by comparing the location perceived by
the server and its true location (acquired from its positioning mechanism locally),
the moving object is able to decide whether a location update should be reported to
the server in order to calibrate the precision of object location and trajectory.
Figure 1.2 illustrates a simple update policy, called point policy, that models the

tracked object as a jumping point [5]. This policy assumes that the object jumps to a
distant point from its current location, stays around the new location for a while, then
jumps to another remote location and stays there for a while. The process repeats
in the trajectory of the tracked moving object. As shown in the figure, the object
moves to location A and sends a location update to the location server. At this point,
a circular neighborhood of radius r is set. As long as the object moves within the
neighborhood of location A, no update report is sent to the server. When the object

4 http://www.everytraiil.com
5 http://www.bikely.com

http://www.bikely.com
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Fig. 1.2 The point update policy. A moving object does not update its new locations as long as
they are within the error threshold of the previously reported location.

moves beyond the neighborhood of A to arrive at location B, a new location update
is reported to the server. Similarly, a neighborhood of radius r is set at location B.
Accordingly, there is no location update issued until the object moves to locationC.
In summary, the batched compression techniques rely solely on the moving ob-

ject to decide which sample points can be discarded. Globally optimized precision
in the compressed trajectories may be retained but the required time constraints on
reports may be challenging to meet. On the other hand, the on-line reduction tech-
niques require collaboration between the moving object and location server to meet
the requirement of updating moving object locations timely while optimizing the
precision locally. Notice that the ideas behind the two categories of data reduction
techniques can be combined depending on the time and precision requirements.

1.3 Performance Metrics and Error Measures

The primary goal of the trajectory data reduction techniques is to reduce the data
size of trajectory representation without compromising much of its precision. Ad-
ditionally, for the on-line data reduction techniques, the location of an object needs
to be reported to the server if the imprecision of the predicted location goes beyond
an application-dependent error threshold. Thus, there is a need to find appropriate
metrics and error measures for use in algorithms and performance evaluation. The
following are the main performance metrics often used to evaluate the efficiency
and effectiveness of the trajectory data reduction techniques:

• Processing time: the execution time spent to run a trajectory data reduction algo-
rithm;

• Compression rate: the ratio in the size of an approximate trajectory vs. the size
of its original trajectory;

• Error measure: the deviation of an approximate trajectory from its original tra-
jectory.

Among them, the processing time assesses how efficiently a trajectory data re-
duction technique processing a given trajectory data set. On the other hand, the com-
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pression rate and error measure are used to assess the effectiveness of the examined
technique. Notice that there may be a tradeoff between these two effectiveness met-
rics. Thus, trajectory data reduction techniques are usually compared in a plot of
these two metrics in order to find the Pareto front.
From the above, we can observe that there is a room to further define different

error measures while the definition of compression rate is quite straightforward.
For the rest of the section, we discuss two error measures, namely, perpendicular
Euclidean distance and time synchronized Euclidean distance, that are widely used
in literature since they have an implication in specifying the imprecision allowed by
application and the performance [24, 27, 6].
To specify the allowed imprecision, distance-based error measure is a natural

choice due to its simplicity and ability to deal with positions of points in multi-
dimensional space. Take the error threshold used in on-line data reduction tech-
niques as an example. The distance between a location on the original trajectory
acquired from the positioning mechanism and the estimated location on the approx-
imated trajectory intuitively represents how closely the estimated location approxi-
mates the original location.6 With the same reasoning, the aggregated distance be-
tween the approximated trajectory and the original trajectory can be used to measure
the error introduced by the data reduction process. As mentioned earlier, one of the
error measure is to compute the perpendicular Euclidean distances, i.e. the shortest
distance, from each of the sampled location points in the original trajectory to the
approximated trajectory. As such, we can measure the error by the average or total
distances.
Figure 1.3 illustrates the computation of error measure based on the perpendicu-

lar Euclidean distance between the original trajectory acquired by a moving object
and an approximated trajectory generated by applying one of the trajectory data
reduction algorithms. As shown in the figure, the original trajectory is represent-
ed by a series of time-stamped location points denoted by {p0, p1, ..., p16} where
pi is the location of the moving object at time ti. On the other hand, the approx-
imated trajectory, reduced from the original trajectory, consists of three location
points, p0, p5 and p16. Notice that the approximated trajectory can also be repre-

Fig. 1.3 Error measure based on perpendicular Euclidean distance. This error measure takes into
account the geometric relationship of the trajectories. However, the temporal factor is not incorpo-
rated in this error measure.

6 Note that here we ignore the inherent noises and imprecision from the location acquisition mech-
anism and assume the measured original location to be precise.
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sented as two line segments p0p5 and p5p16. Thus, the approximated trajectory can
be interpreted as the path in which the object moved from p0 to p5 and then to
p16. Based on this interpretation, the sampled location points on the subtrajecto-
ries {p0, p1, ..., p5} and {p5, p6, ..., p16} should be projected to the corresponding
line segments p0p5 and p5p16 for error measurement. Figure 1.3 shows the esti-
mated location points p′0, p′1, ... and p′5 on the line segment p0p5, corresponding to
p0, p1, ... and p5, respectively. Notice that the perpendicular Euclidean distance be-
tween a location point on the original trajectory to the approximated trajectory is
the shortest distance between the point and the approximated trajectory. Thus, the
error between the approximated trajectory and the original trajectory can be cal-
culated by summing up the distances of the projection or computing their average
distance. Notice that the error measurements by total or average are actually quite
sensitive to the number of sampled location points in the original trajectory [24]. A
remedy to this deficiency is to take into consideration all possible location points
on the original trajectory instead of limiting the error measure to only the sampled
location points. This can be achieved by interpolating some pseudo sampled points
on the original trajectory. For example, five pseudo sampled points between p2 and
p3 and their projection on the line segment p0p5 (indicated by the five dash lines)
are illustrated in Figure 1.3. When an infinite number of pseudo sample points are
considered, the area between the original trajectory and the approximated trajectory
naturally measures the error between them.
The aforementioned approach elegantly captures the error in the approximated

trajectory using perpendicular Euclidean distance. The idea of projecting each pos-
sible points in the original trajectory onto the line segments of the approximated tra-
jectory, nevertheless, takes only geometric properties of the trajectories into account.
The temporal factor of object movement in the trajectories is not considered in the
projection. Notice that a sampled data point 〈x,y, t〉 in the original trajectory denotes
the time t when the moving object are located at x,y. Thus, there is a need to also
consider the temporal factor in the projection.
The time synchronized Euclidian distance has been proposed as a new error mea-

sure for approximated trajectories generated by trajectory data reduction algorithm-
s [24, 27]. The intuition is that the movement projected on the approximated tra-
jectory should be synchronized in terms of “time” with the actual movement on the
original trajectory. Consider an original trajectory represented by n sampled loca-
tion points. It can also be seen as consisting of n− 1 line segments. Given one of
those line segments, even though there is no sampled location points acquired on
this line segment, most applications implicitly assume that the object moves in a
constant speed along the specific line segment. This interpretation of object moving
behavior has been made earlier on the approximated trajectory as well. Since the
approximated trajectory is actually a subset of the original trajectory, their location
points can be used naturally for time and spatial synchronization of the represented
object movement on both trajectories. Consider a line segment on an approximated
trajectory and its corresponding subtrajectory on the original trajectory, their end
points are the same and thus synchronized. Moreover, the projection of the sampled
location points on the original trajectory onto the corresponding line segment on the
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approximated trajectory can be determined proportionally by using the time interval
spent to move from a location point to a subsequent location point as the weight.
As such, the time synchronized location points on the approximated trajectory can
be easily determined. Finally, the distance between a location point on the original
trajectory and the corresponding time synchronized location points can be derived
accordingly.
Figure 1.4 illustrates the idea of time synchronized Euclidean distance. As

shown, the location points on the approximated trajectory, i.e. p0, p5 and p16, are
already synchronized by time. The other sampled location points, e.g. p1, p2, p3 and
p4, are projected to time synchronized location points p′1, p′2, p′3 and p′4, on the line
segment p0p5. The projection can be computed easily. For example, the coordinates
of p′1, i.e. x1,y1, can be derived as follows.

x1 = x0+
t1− t0
t5− t0

· (x5− x0)

and
y1 = y0+

t1− t0
t5− t0

· (y5− y0)

To eliminate the sensitivity of the time synchronized Euclidean distance to the
number of sampled location points, we can interpolate pseudo sampled points on
the original trajectory similar to what we discussed earlier regarding the error mea-
sure based on the perpendicular Euclidean distance. As shown in Figure 1.4, five
pseudo sampled points and their projection to the line segments p0p5 are shown by
dash lines. It is also worth noting that the the lengths of line segments on the ap-
proximated trajectory are indicators of the time intervals spent instead of distances
moved between sampled location points on the original trajectory. By comparing
Figure 1.3 and Figure 1.4, it’s easy to observe the difference between these two
error measures for approximated trajectories.

Fig. 1.4 Error measure based on time synchronized Euclidean distance. This error measure takes
into account both the geometric relationship and temporal factor of the trajectories.
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1.4 Batched Compression Techniques

Given a trajectory that consists of a full series of time-stamped location data points,
a batched compression algorithm aims to generate an approximated trajectory by
discarding some location points with negligible error from the original trajectory.
This is similar to the line generalization problem, which has been well studied in
the computer graphics and cartography research communities [18, 32, 25, 6]. Works
on cartographic line generalization aim to derive small-scale map data from the
large-scale high-granularity data. As a result, they can be used to reduce the number
of location points in trajectories and thus save storage space.
Some of the line generalization algorithms are very simple in nature. The idea

is to retain a fraction of the location points in the original trajectory, without con-
sidering the redundancy or other relationships between neighboring data points. For
example, the uniform sampling algorithm may keep the every i-th location points
(e.g. 5th, 10th, 15th, etc) and discard the other points [27]. Since the original trajec-
tory is acquired as a sample of the true trajectory, the new trajectory generated by
the uniform sampling process basically is an approximated trajectory with a more
coarse granularity. The uniform sampling approach is very efficient computation-
ally, but it may not be useful for certain applications that require better capture of
some special trajectory details.
Notice that every location point in the original trajectory may contain different

amount of information required to represent the trajectory and that some neighbor-
ing location points may contain redundant information, the location points in an
approximated trajectory can be selected based on other criteria instead of uniform
sampling. A well-known algorithm, called Douglas-Peucker (DP), can be used to
approximate the original trajectory [9, 15]. The idea is to replace the original trajec-
tory by an approximate line segment. If the replacement does not meet the specified
error requirement, it recursively partitions the original problem into two subprob-
lems by selecting the location point contributing the most errors as the split point.
This process continues until the error between the approximated trajectory and the
original trajectory is below the specified error threshold. The DP algorithm aims to
preserve directional trends in the approximated trajectory using the perpendicular
Euclidean distance as the error measure.
Figure 1.5 illustrates the first two steps of the Douglas-Peucker algorithm when it

is applied on the same trajectory in earlier examples. As shown, in the first step (see
Figure 1.5 (a)), the starting point p0 and end point p16 are selected to generate an
approximate line segment p0p16. The perpendicular Euclidean distance from each
sampled location point on the original trajectory to the approximate line segment
p0p16 is derived. Since some of the perpendicular error distances are greater than the
pre-defined error distance threshold, the sampled location point deviating the most
from p0p16, i.e. p9 in this example, is chosen as the split point. As a result, in the
second step of the algorithm (see Figure 1.5 (b)), a trajectory p0, p9, p16 is used to
approximate the original trajectory. In this step, the original problem is divided into
two subproblems where the line segment p0p9 is to approximate the subtrajectory
{p0, p1, ..., p9} and the line segment p9p16 is to approximate the other subtrajectory
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{p9, p10, ..., p16}. As shown, in the first subproblem, several sampled location points
have their perpendicular error distances to p0p9 greater than the pre-defined error
distance threshold. Therefore, p5, the sampled location point deviating the most
from p0p9, is chosen as the split point and the split subtrajectories are processed
recursively until all the sampled location points have perpendicular distances to their
approximate line segments within the error threshold. On the other hand, in the
second subproblem, the perpendicular distances of all the sample points to the line
segment p9p16 are smaller than the error threshold. Therefore, further splitting is
not necessary.
The Douglas-Peucker algorithm is widely used in cartographic and computer

graphic applications. Several studies have analyzed and evaluated various line gen-
eralization algorithms mathematically and perceptually and ranked the Douglas-
Peucker algorithm highly [18, 32, 25]. Many cartographers considers the Douglas-
Peucker algorithm as one of the most accurate line generalization algorithms avail-
able but some think it is too costly in terms of processing time. The time complexity
of the original Douglas-Peucker algorithm isO(N2)whereN is the number of trajec-
tory location points. Several improvements have been proposed for implementation
of the Douglas-Peucker algorithm and reduce its time complexity toO(NlogN) [15].
As we discussed earlier, the error measure of perpendicular Euclidean distance

used in the Douglas-Peucker algorithm only takes into account the geometric aspec-
t of the trajectory representation. Unfortunately, it does not capture the important
temporal aspect of the trajectories very well. To address this issue, Meratina and de

Fig. 1.5 The Douglas-Peucker algorithm. Line segments are used to approximate the original tra-
jectory. The original trajectory is split into two subtrajectories by selecting the location point con-
tributing the most errors as the split point. In Step (1), p9 is selected as the split point. In Step (2),
p3 is selected as the split point.
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By propose to adopt a new error metrics, called time-distance ratio metric, to re-
place the perpendicular Euclidean distance in the Douglas-Peucker algorithm [24].7

They claim that the improvement is important because this new error measure is not
only more accurate but also taking into consideration both geometric and temporal
properties of object movements. A modified Douglas-Peucker algorithm, called the
top-down time-ratio (TD-TR) algorithm, is proposed in [24] because the Douglas-
Peucker algorithm decomposes the trajectory approximation problem in a top-down
fashion [19].
The Douglas-Peucker algorithm is based on a heuristic that selects the most de-

viating location points for inclusion in the approximated trajectory in order to lower
the introduced error. However, there is no guarantee that the selected split points
are the best choices. To ensure that the approximated trajectory is optimal, dynamic
programming technique can be employed even thought its computational cost is ex-
pected to be high. The Bellman’s algorithm [3] applies the dynamic programming
technique to approximate a continuous function g(x) by a finite number of line seg-
ments. Even though the algorithm considers a one-dimensional value space, it can be
generalized to compute an approximated trajectory in the two-dimensional spatial
space. The optimization problem is formulated as to minimize the “area” between
the original function and the approximate line segments. In this algorithm, including
more line segments in the approximated trajectory fits the original trajectory better
but is less effective in terms of compression rate. Thus, the Bellman’s algorithm can
also adopt a penalty to control the tradeoff between compression rate and quality.
Since Bellman’s algorithm approximates a continuous function, it can not handle

loops, which may occur in trajectory data. Therefore, to employ the Bellman’s algo-
rithm for trajectory data reduction, the trajectories with loops need to be segmented
first to eliminate loops. Additionally, the original Bellman’s algorithm has a time
complexity of O(N3) where N is the number of trajectory location points, which
is very expensive when compared to the Douglas-Peucker algorithm. An improved
implementation has been proposed to reduce its time complexity to O(N2) [23].
A natural complement to the top-down Douglas-Peucker algorithm is the bottom-

up algorithm which, starting from the finest possible approximation of a trajectory,
merges line segments in the approximation until some stopping criteria is met. Giv-
en a trajectory of N location points, the algorithm first creates N/2 line segments,
which represent the finest possible approximation of the trajectory. Next, by calcu-
lating the cost of merging each pair of adjacent line segments, the algorithm begins
to iteratively merge the lowest-cost pair. When a pair of adjacent line segments are
merged, the algorithm needs to perform some book-keeping to make sure the cost of
merging the new line segment with its right and left neighbors are considered. The
algorithm has been used extensively to support a variety of time series data mining
tasks and thus can be extended for trajectory data reduction [19, 22, 20, 21].

7 The time-distance ratio metric is the same as the time synchronized Euclidean distance discussed
in Section 1.3.
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1.5 On-Line Data Reduction Techniques

The batched compression algorithms, especially the Bellman’s algorithm, are ex-
pected to produce high-quality approximations due to the access of the whole trajec-
tory. However, they are not as practical as the on-line algorithms in realistic applica-
tion scenarios. For example, a fleet management application may require trajectory
data from tracked moving objects, e.g. trucks, to be reported in a timely fashion back
to the fleet control center in order to support multiple continuous queries on truck
status in real time. To address the issue of excessive trajectory data continuously
generated, there is a demand for on-line trajectory data reduction techniques.
While it’s important to reduce the data size of trajectories in order to alleviate

storage and communication overheads as well as the computational workload at
the location server, there may be certain trajectory properties to be preserved for
application needs. Therefore, the on-line trajectory data reduction techniques needs
to select some negligible location points intelligently in order to retain a satisfactory
approximated trajectory.
One of the essential requirement for on-line processing algorithms is to be able

to make efficient on-line decisions when a location point is acquired, i.e. to decide
whether to retain the location point in the trajectory or not. The reservoir sampling
algorithms [30] is well suited for processing trajectory data. The basic idea behind
the reservoir sampling algorithms is to maintain a reservoir of size R (or greater
than R) which are used to to generate an approximated trajectory of size R. Since
the location points in an on-going trajectory are acquired continuously, we do not
know in advance the final size of the trajectory. Thus, the key issue is how to select
without replacement an approximated trajectory of size R, i.e. once a location point
is discarded, there is no way to get it back into the reservoir.
The reservoir algorithm works as follows. It puts the first R location points in the

reservoir and decide whether to insert a new location point into the reservoir when
it is acquired. Suppose that the k-th location point is acquired (where k > R). The
algorithm randomly decides, with a probability of R/k, whether this location point
should be included as a candidate point in the final approximated trajectory. If the
decision is positive, one of the R existing candidates in the reservoir is discarded
randomly to make space for the new location point. As such, the algorithm always
maintains only R location points in the reservoir, which form a random sample of
the original trajectory. Evidently, the reservoir algorithm always maintains a uniform
sample of the evolving trajectory without even knowing the eventual trajectory size.
Overall, the time complexity is O(R(1+ logN/R)), where N is the trajectory size.
While the reservoir sampling algorithm is efficient, it does not consider the se-

quential, spatial and temporal properties of a trajectory. Since all the location points
included in the final trajectory are determined randomly and independently, tem-
poral locality and spatial locality in nearby location points are not considered. The
sliding window algorithm developed for time series data mining can be adapted for
trajectory approximation [19, 24]. The idea is to fit the location points in a growing
sliding window with a valid line segment and continue to grow the sliding window
(and its corresponding line segment) until the approximation error exceeds some
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Fig. 1.6 The sliding window algorithm. The idea is to fit the location points in a growing sliding
window with a valid line segment and continue to grow the sliding window and its corresponding
line segment until the approximation error exceeds some error bound.

error bound. The algorithm first initializes the first location point of a trajectory as
the anchor point pa and then starts to grow the sliding window (i.e. by including
the next location point in the window). When a new location point pi is added to
the sliding window, the line segment pa pi is used to fit the subtrajectory consisting
of all the location points within the sliding window. As long as the distance errors
for all the location points in the sliding window derived against the potential line
segment pa pi are smaller than the user-specified error threshold, the sliding win-
dow grows by including the next location point pi+1. Otherwise, the last valid line
segment pa pi−1 is included as part of the approximated trajectory and pi is set as
the new anchor point. The algorithm continues until all the location points in the
original trajectory are visited.
Figure 1.6 illustrates the sliding window algorithm. First, p0 is set as the anchor

point and the initial sliding window is {p0, p1}. Next, p2 is added into the slid-
ing window. Since p0p2 fits {p0, p1, p2} very well, the sliding window grows into
{p0, p1, p2, p3}. Again, all the location points within the sliding window do not have
error greater than a pre-determined error threshold, i.e. p0p3 fits {p0, p1, p2, p3}
sufficiently well. Thus, the algorithm continues to grow the sliding window into
{p0, p1, p2, p3, p4}. This time, the errors for some location points in the sliding win-
dow, i.e. p1, p2 and p3, are greater than the error threshold. Thus, the last valid line
segment, i.e. p0p3, is included as a part of the approximated trajectory. Next, the
anchor point and the sliding window are reset as p3 and {p3, p4}, respectively. The
algorithm continues to process the rest of the trajectory and then eventually chooses
to fit {p3, p4, p5, p6} with p3p6, {p6, p7, p8, p9} with p6p9, and {p9, p10, ..., p16}
with p9p16. Thus, the final approximated trajectory is {p0, p3, p6, p9, p16}.
Meratnia and de By have applied the sliding window algorithm for on-line trajec-

tory data reduction [24]. They consider both of the perpendicular Euclidean distance
and time synchronized Euclidean distance as error measures and rename them as Be-
fore Open Window (BOPW) algorithms, because the location points included in the
final approximate trajectory are located before those that result in excessive error.
Moreover, Meratnia and de By also apply the heuristic of the Douglas-Peucker al-
gorithm in the open window algorithm. Instead of choosing the location points that
result in the longest valid line segments, the new algorithm, called Normal Opening
Window (NOPW), chooses location points with the highest error within their sliding
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window as the closing point of the approximating line segment as well as the new
anchor point. As it is in the Douglas-Peucker algorithm, this heuristic works very
well in reducing the approximation error. With the new anchor point, the NOPW
algorithm continues to process the rest of the trajectory.
Figure 1.7 illustrates the NOPW algorithm. First, p0 is set as the anchor point

and the initial open window is {p0, p1}. Next, p2 is added into the open window.
Similar to the illustration in Figure 1.6, p0p2 and p0p3 respectively fits {p0, p1, p2}
and {p0, p1, p2, p3} sufficiently well, because all the location points within these
windows do not have error greater than a pre-determined error threshold. When
the opening window grows into {p0, p1, p2, p3, p4}, the errors for p1, p2 and p3 are
greater than the error threshold. Instead of choosing p3 as the closing point, the
NOPW algorithm chooses p2 as the closing point to include the line segment p0p2
as a part of the approximated trajectory. Then, the anchor point and the opening
window are reset as p2 and {p2, p3, p4, p5}, respectively. The algorithm continues
to process the rest of the trajectory and then eventually chooses {p2, p2, p5, p8, p16}
as the approximated trajectory.

1.6 Trajectory Data Reduction Based on Speed and Direction

The data reduction techniques described earlier all use a subset of the location points
in the original trajectory as an approximation. In these algorithms, the approxima-
tion error, measured by variants of Euclidean distances such as perpendicular Eu-
clidean distance or time synchronized Euclidean distance, are used to select data
points that represents the original trajectory as close as possible. In [27], Potamias
et. al argue that a data point should be included in the approximated trajectory as
long as it reveals changes in the course of a trajectory. As long as the location of
an incoming data point can be predicted (e.g. by interpolation or dead reckoning)
from the previous movement, this data point can be safely discarded without sig-
nificant loss in accuracy since it contributes little information. They also argue that,
in addition to spatial positions, changes in speed and direction are key factors for

Fig. 1.7 The open window algorithm. The idea is similar to the sliding window algorithm but it
applies the heuristic of the Douglas-Peucker algorithm to choose location points with the highest
error within their sliding window as the closing point of the approximating line segment as well as
the new anchor point.
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Fig. 1.8 The construction of the safe area and the data reduction strategy in a threshold-guided
sampling algorithm. Only the location points fallen out of the projected safe areas are reported to
the location server.

predicting locations in a trajectory.8 Therefore, a decision to include a particular
location point or not needs to take into account changes in speed and direction.
In many real life scenario, e.g. driving on a highway, moving objects usually do

not make dramatic speed and direction changes. In other words, a moving objec-
t may likely to move in the same speed and direction (with some minor changes)
for some time. Thus, the current location of a moving object can usually be pre-
dicted with little cost by using the speed, direction and time from the last observed
location(s).
Based on the specified speed and direction tolerance thresholds, Potamias et.

al propose threshold-guided sampling algorithms to reduce redundant data points
in trajectories [27]. The basic idea is to use a safe area derived from the last two
locations and a given thresholds to efficiently determine whether a newly acquired
location point contains important information. If the new data point, as predicted, is
located within the safe area, then this location point is considered as redundant and
thus can be discarded. On the other hand, if the location point is fallen outside the
safe region, it is included in the approximate trajectory since considerable movement
change has happened.
A key issue in the threshold-guided sampling algorithms is the construction of the

safe area, which is derived based on the last known location point of the trajectory.
Using the last observed speed and the speed tolerance threshold, a circular area
representing all possible points where the moving object may possibly locate, if
it maintains the anticipated speed range, can be derived. On the other hand, the
direction and the direction deviation threshold can be used to determine a partial
plane that captures all possible directions the object may move towards. The safe
area is then obtained by intersection of the above-described two areas.
Figure 1.8 illustrates the construction of the safe area and the data reduction strat-

egy in a threshold-guided sampling algorithm on our running example. We assume
that p0 and p1 are included in the approximated trajectory and that the speed and di-
rection of the moving object at p1 are known. Upon acquisition of the location point

8 To maintain consistency and integrity of discussions in the chapter, here we use the term “direc-
tion” to refer to “heading” considered in [27].
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p2, the safe area based on the speed/direction at p1, the specified speed/direction
thresholds, and the time interval between p2 and p1, a fan-shape safe area for p2
is derived. Since p2 has fallen in its safe area as predicted, the information carried
by p2 is not considered as important. Thus, p2 is discarded. Next, upon acquisition
of the location point p3, the safe area for p3 is derived. This time, p3 has fall-
en outside the safe area and thus been considered as an important location point
for the trajectory. The same decision process has been performed on all the rest of
the trajectory location points. The final approximated trajectory in this example is
{p0, p1, p3, p4, p7, p9, p10, p16}.
Observed that the decisions made based on the above-described safe areas are

vulnerable to the problem of error propagation, which also exists in dead reckoning,
Potamias et. al consider an alternative scheme of constructing a safe area. Instead
of constructing the safe area using the last two points included in the approximated
trajectory to derive the speed and direction, the new scheme derive the speed and
direction from the last two actual location points acquired. Since this scheme is also
susceptible to error propagation, when the object movement exhibits a smooth but
significant change in the object’s direction, Potamias et. al further adopt the joint
safe area intersect by the two safe area schemes described earlier.
While the threshold-guided sampling algorithms may achieve significant trajec-

tory data reduction, they may not be effective under the constraint of limited memo-
ry. Therefore, Potamias et. al propose another on-line sampling algorithm, called
STTrace, to obtain an approximated trajectory under a given memory of known
and constant size [27]. The idea is to insert data points into the sample memory
based on the movement features (e.g., speed and direction) as in the aforementioned
threshold-guided sampling algorithms. However, once the memory used to maintain
the approximated trajectory is full, we need to decide whether to evict an existing
data point (and which one) in order to accommodate a new data point. To address
this issue, SSTrace adopts a deletion scheme based on time-synchronous Euclidean
distance to discard a data point that results in the least distortion to the maintained
approximated trajectory.
In addition to [27], Meratnia and de By also exploit the speed information hidden

in the trajectories [24]. By analyzing the derived speeds at subsequent segments of
a trajectory, they propose to use the speed difference of two subsequent segments as
a criteria to decide whether the location point between the two segments should be
retained in the approximated trajectory. Accordingly, a new class of spatio-temporal
algorithms are obtained by integrating the speed difference threshold and the time
synchronized Euclidean distance with the top-down algorithms and open window
algorithms.
Finally, Hung and Peng propose a model-driven data acquisition technique that

reports the speeds of a moving object [17]. They develop a kernel regression algo-
rithm and derive a set of kernel functions to model a time series of speeds readings.
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1.7 Trajectory Filtering

Spatial trajectories are never perfectly accurate, due to sensor noise and other fac-
tors. Sometimes the error is acceptable, such as when using GPS to identify which
city a person is in. In other situations, we can apply various filtering techniques
to the trajectory to smooth the noise and potentially decrease the error in the mea-
surements. This section explains and demonstrates some conventional filtering tech-
niques using sample data.
It is important to note that filtering is not always necessary. In fact, we rarely use

it for GPS data. Filtering is important in those situations where the trajectory data is
particularly noisy, or when one wants to derive other quantities from it, like speed
or direction.

1.7.1 Sample Data

To demonstrate some of the filtering techniques in this chapter, we recorded a trajec-
tory with a GPS logger, shown in Figure 1.9. The GPS logger recorded 1075 points
at a rate of one per second during a short walk around the Microsoft campus in Red-
mond, Washington USA. For plotting, we converted the latitude/longitude points to
(x,y) in meters. While the walk itself followed a casual, smooth path, the record-
ed trajectory shows many small spikes due to measurement noise. In addition, we
manually added some outliers to simulate large deviations that sometimes appear in
recorded trajectories. These outliers are marked in Figure 1.9. We will use this data
to demonstrate the effects of the filtering techniques we describe below.

1.7.2 Trajectory Model

The actual, unknown trajectory is denoted as a sequence of coordinates xi =(xi,yi)
T .

The index i represents time increments, with i = 1...N. The boldface xi is a two-
element vector representing the x and y coordinates of the trajectory coordinate at
time i.
Due to sensor noise, measurements are not exact. This error is usually modeled

by adding unknown, random Gaussian noise to the actual trajectory points to give
the known, measured trajectory, whose coordinates are given as vectors zi as

zi = xi +vi (1.1)

The noise vector vi is assumed to be drawn from a two-dimensional Gaussian
probability density with zero mean and diagonal covariance matrix R, i.e.
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Fig. 1.9 This is a trajectory recorded by a GPS logger. The outliers were inserted later for demon-
stration.

vi ∼ N(0,R) R =

[
σ2 0
0 σ2

]
(1.2)

With the diagonal covariance matrix, this is the same as adding random noise from
two different, one-dimensional Gaussian densities to xi and yi separately, each with
zero mean and standard deviation σ . It is important to note that Equation (1.1) is just
a model for noise from a location sensor. It is not an algorithm, but an approximation
of how the measured sensor values differ from the true ones. For GPS, the Gaussian
noise model above is a reasonable one [7]. In our experiments, we have observed a
standard deviation σ of about four meters.

1.8 Mean and Median Filters

One simple way to smooth noise is to apply a mean filter. For a measured point zi,
the estimate of the (unknown) true value is the mean of zi and its n−1 predecessors
in time. The mean filter can be thought of as a sliding window covering n temporally
adjacent values of zi. In equation form, the mean filter is
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(a) Results of mean filter (b) Results of median filter

Fig. 1.10 The dark curve show the result of the mean filter in (a) and the median filter in (b).
One advantage of the median filter is that it is less affected by outliers. The gray curve shows the
original measured trajectory.

x̂i =
1
n

i

∑
j=i−n+1

z j (1.3)

This equation introduces another notational convention: x̂i is the estimate of xi.
Figure 1.10(a) shows the result of the mean filter with n= 10. The resulting curve

is smoother.
The mean filter as given in Equation (1.3) is a so-called “causal” filter, because it

only depends on values in the past to compute the estimate x̂i. In fact, all the filters
discussed in this chapter are causal, meaning they can be sensibly applied to real
time data as it arrives. For post-processing, one could use a non-causal mean filter
whose sliding window takes into account both past and future values to compute x̂i.
One disadvantage of the mean filter is that it introduces lag. If the true underly-

ing value xi changes suddenly, the estimate from the mean filter will respond only
gradually. So while a larger sliding window (larger value of n) makes the estimates
smoother, the estimates will also tend to lag changes in xi. One way to mitigate this
problem is to use a weighted mean, where more recent values of zi are given more
weight.
Another disadvantage of the mean filter is its sensitivity to outliers. From Fig-

ure 1.10(a), it is clear that the artificially introduced outliers noticeably pull away
the estimated curve from the data. In fact, it is possible to find an outlier value to
pull the mean to any value we like.
One way to mitigate the outlier problem is to use a median filter rather than

a mean filter. The median filter simply replaces the mean filter’s mean with a
median. The equation for the median filter that corresponds to the mean filter in
Equation (1.3) is

x̂i = median{zi−n+1,zi−n+2, ...,zi−1,zi} (1.4)
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Figure 1.10(b) shows the result of the median filter, where it is clear that it is less
sensitive to outliers and still gives a smooth result.
The mean and median filters are both simple and effective at smoothing a tra-

jectory. They both suffer from lag. More importantly, they are not designed to help
estimate higher order variables like speed. In the next two sections, we discuss the
Kalman filter and the particle filter, two more advanced techniques that reduce lag
and can be designed to estimate more than just location.

1.9 Kalman Filter

The mean and median filters use no model of the trajectory. More sophisticated
filters, like the Kalman and particle filters, model both the measurement noise (as
given by Equation (1.1)) and the dynamics of the trajectory.
For the Kalman filter, a simple example is smoothing trajectory measurements

from something arcing through the air affected only by gravity, such as a soccer ball.
While measurements of the ball’s location, perhaps from a camera, are noisy, we can
also impose constraints on the ball’s trajectory from simple laws of physics. The
trajectory estimate from the Kalman filter is a tradeoff between the measurements
and the motion model. Besides giving estimates that obey the laws of physics, the
Kalman filter gives principled estimates of higher order motion states like speed.
The subsections below develop the model for the Kalman filter for the example

trajectory from above. We use notation from the book by Gelb, which is one of the
standard references for Kalman filtering [1].

1.9.1 Measurement Model

While the mean and median filters can only estimate what is directly measured, the
Kalman filter can estimate other variables like speed and acceleration. In order to
do this, the Kalman formulation makes a distinction between what is measured and
what is estimated, as well as formulating a linear relationship between the two.
As above, we assume that the measurements of the trajectory are taken as noisy

values of x and y:

zi =

(
z(x)i

z(y)i

)
(1.5)

Here z(x)i and z(y)i are noisy measurements of the x and y coordinates.
The Kalman filter gives estimates for the state vector, which describes the full

state of the object being tracked. In our case, the state vector will include both the
object’s location and velocity:
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xi =

⎛
⎜⎜⎝

xi
yi

s(x)i

s(y)i

⎞
⎟⎟⎠ (1.6)

The elements xi and yi are the true, unknown coordinates at time i, and s(x)i and s(y)i
are the x and y components of the true, unknown velocity at time i. The Kalman
filter will produce an estimate of xi, which includes velocity, even though this is not
directly measured. The relationship between the measurement vector zi and the state
vector xi is

zi = Hixi +vi (1.7)

where Hi, the measurement matrix, translates between xi and zi. For our example,
Hi expresses the fact that we are measuring xi and yi to get z(x)i and z(y)i , but we are
not measuring velocity. Thus,

Hi =

[
1 0 0 0
0 1 0 0

]
(1.8)

Hi also neatly accounts for the dimensionality difference between xi and zi. While
the subscript on Hi means it could change with time, it does not in our example.
The noise vector vi in Equation (1.7) is the same as the zero-mean, Gaussian

noise vector in Equation (1.2). Thus Equation (1.7) is how the Kalman filter models
measurement noise. In fact, Gaussian noise has been proposed as a simple model of
GPS noise [7], and for our example it would be reasonable to set the measurement
noise σ to a few meters.

1.9.2 Dynamic Model

If the first half of the Kalman filter model is measurement, the second half is dy-
namics. The dynamic model approximates how the state vector xi changes with
time. Like the measurement model, it uses a matrix and added noise:

xi = Φi−1xi−1+wi−1 (1.9)

This gives xi as a function of its previous value xi−1. The system matrix Φi−1 gives
the linear relationship between the two. For the example problem, we have

Φi−1 =

⎡
⎢⎢⎣
1 0 Δ ti 0
0 1 0 Δ ti
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (1.10)
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Here Δ ti is the elapsed time between the state at time i and time i− 1. Recalling
the state vector from Equation (1.6), the top two rows of the system matrix say that
xi = xi−1+Δ tis

(x)
i and similarly for yi. This is standard physics for a particle with

constant velocity.
The bottom two rows of system matrix say s(x)i = s(x)i−1 and s(y)i = s(y)i−1, which

means the velocity does not change. Of course, we know this is not true, or else
the trajectory would be straight with no turns. The dynamic model accounts for its
own inaccuracy with the noise term wi−1. This is another zero-mean Gaussian noise
term. For our example, we have

wi ∼ N(0,Qi) Qi =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 σ2s 0
0 0 0 σ2s

⎤
⎥⎥⎦ (1.11)

With the first two rows of zeros, this says that the relationship between location
and velocity (e.g. xi = xi−1+Δ tis

(x)
i ) is exact. However, the last two rows say that

the assumption in the system matrix about constant velocity is not quite true, but
that the velocity is noisy, i.e. s(x)i = s(x)i +N(0,σ2s ). This is how the Kalman filter
maintains its assumption about the linear relationship between the state vectors over
time, yet manages to account for the fact that the dynamic model does not account
for everything.

1.9.3 Entire Kalman Filter Model

The Kalman filter requires a measurement model and dynamic model, both dis-
cussed above. It also requires assumptions about the initial state and uncertainty of
the initial state. Here are the all the required elements:

Hi – measurement matrix giving measurement zi from state xi, Equation (1.8).
Ri – measurement noise covariance matrix, Equation (1.2).
Φi−1 – system matrix giving state xi from xi−1, Equation (1.10).
Qi – system noise covariance matrix, Equation (1.11).
x̂0 – initial state estimate.
P0 – initial estimate of state error covariance.

The initial state estimate can usually be estimated from the first measurement.
For our example, the initial position came from z0, and the initial velocity was taken
as zero. For P0, a reasonable estimate for this example is

p0 =

⎡
⎢⎢⎣

σ2 0 0 0
0 σ2 0 0
0 0 σ2s 0
0 0 0 σ2s

⎤
⎥⎥⎦ (1.12)
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The value of σ is an estimate of the sensor noise for GPS. For our example, we set
σ = 4 meters based on earlier experiments with our particular GPS logger. We set
σs = 6.62 meters/second , which we computed by looking at the changes in velocity
estimated naively from the measurement data.

1.9.4 Kalman Filter

For the derivation of the Kalman filter, see [1]. The result is a two-step algorithm
that first extrapolates the current state to the next state using the dynamic model. In
equations, this is

x̂
(−)
i = Φi−1x̂

(+)
i−1 (1.13)

P(−)
i = Φi−1P

(+)
i−1ΦT

i−1+Qi−1 (1.14)

The terms in Equation (1.13) should be familiar. The ∗(−) superscript refers to
the extrapolated estimate of the state vector, and the ∗(+) superscript refers to the
estimated value of the state vector. Equation (1.14) is interesting in that it concerns
an extrapolation Pi of the covariance of the state vector, giving some idea of the error
associated with the state vector.
The first step of the Kalman filter is pure extrapolation, with no use of measure-

ments. The second step incorporates the current measurement to make new esti-
mates. The equations are

Ki = P(−)
i HT

i (HiP
(−)
i HT

i +Ri)
−1 (1.15)

x̂
(+)
i = x̂

(−)
i +Ki(zi−Hix̂

(−)
i ) (1.16)

P(+)
i = (I−KiHi)P

(−)
i (1.17)

Equation (1.15) gives the Kalman gain matrixKi. It is used in Equation (1.16) to give
the state estimate x̂(+)

i and in Equation (1.17) to give the state covariance estimate
P(+)

i .
Applying these equations to the example trajectory gives the plot in Figure 1.11(a).

1.9.5 Kalman Filter Discussion

One of the advantages of the Kalman filter over the mean and median filters is its
lack of lag. There is still some intrinsic lag, because the Kalman filter depends on
previous measurements for its current estimate, but it also includes a dynamic model
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to keep it more current. Another advantage is the richer state vector. In our example,
it includes velocity as well as location, making the Kalman filter a principled way
to estimate velocity based on a sequence of location measurements. It is easy to
add acceleration as another part of the state vector. Yet another advantage is the
Kalman filter’s estimate of uncertainty in the form of the covariance matrix P(+)

i
given in Equation 1.17. Knowledge of the uncertainty of the estimate can be used
by a higher-level algorithm to react intelligently to ambiguity, possibly by invoking
another sensor or asking a user for help.

(a) Kalman filter with σs = 6.62 meters/second (b) Kalman filter with σs = 0.1 meters/second

Fig. 1.11 The dark curve show the result of the Kalman filter. In (a), the process noise σs comes
from an estimate on the original noisy data. The process noise in (b) is much smaller, leading to a
smoother filtered trajectory.

One of the mysteries of the Kalman filter is the process noise, which is embodied
as σs in our example. In our example, this represents how much the tracked object’s
velocity changes between time increments. In reality, this is difficult to estimate in
many cases, including our example trajectory of a pedestrian. A larger value of σs
represents less faith in the dynamic model relative to the measurements. A smaller
value puts more weight on the dynamic model, often leading to a smoother trajec-
tory. This is illustrated in Figure 1.11(b) where we have reduced the value of σs
from our original value of 6.62 meters/second to 0.1 meters/second. The resulting
trajectory is indeed smoother and less distracted by outliers.
One of the main limitations of the Kalman filter is the requirement that the dy-

namic model be linear, i.e. that the relationship between xi−1 and xi be expressed
as a matrix multiplication (plus noise). Sometimes this can be solved with an ex-
tended Kalman filter, which linearizes the problem around the current value of the
state. But this can be difficult for certain processes, like a bouncing ball or an object
constrained by predefined paths. In addition, all the variables in the Kalman filter
model are continuous, without a convenient way to represent discrete variables like
the mode of transportation or goal. Fortunately, the particle filter fixes these prob-
lems, and we discuss it next.
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1.10 Particle Filter

The particle filter is similar to the Kalman filter in that they both use a measurement
model and a dynamic model. The Kalman filter gains efficiency by assuming linear
models (matrix multiplication) plus Gaussian noise. The particle filter relaxes these
assumptions for a more general, albeit generally less efficient, algorithm. But, as
shown by Hightower and Borriello, particle filters are practical for tracking even on
mobile devices [16].
The particle filter gets its name from the fact that it maintains a set of ”parti-

cles” that each represent a state estimate. There is a new set of particles generated
each time a new measurement becomes available. There are normally hundreds or
thousands of particles in the set. Taken together, they represent the probability dis-
tribution of possible states. A good introduction to particle filtering is the chapter by
Doucet et al. [8], and this section uses their notation.

Fig. 1.12 This is the result of the particle filter. It is similar to the result of the Kalman filter in
Figure 3(a) since it uses the same measurement model, dynamic model, and noise assumptions.

As in the previous section on Kalman filtering, this section shows how to apply
particle filtering to our example tracking problem.
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1.10.1 Particle Filter Formulation

As with the Kalman filter discussed above, the particle filter makes estimates x̂i of a
sequence of unknown state vectors xi, based on measurements zi. For our example,
these vectors are formulated just as in the Kalman filter. As a reminder, the state vec-
tor xi has four scalar elements representing location and velocity. The measurement
vector zi has two elements representing a location measurement with some degree
of inaccuracy.
The particle filter’s measurement model is a probability distribution p(zi|xi) giv-

ing the probability of seeing a measurement given a state vector. This distribution
must be provided to the particle filter. This is essentially a model of a noisy sensor
which might produce many different possible measurements for a given state. It is
much more general than the Kalman filter’s measurement model, which is limited
to zi = Hixi +vi, i.e. a linear function of the state plus added Gaussian noise.
To stay consistent with the example, however, we will use the same measurement

model as in the Kalman filter, writing it as

p(zi|xi) = N((xi,yi)
T ,Ri) (1.18)

This says that the measurement is a Gaussian distributed around the actual loca-
tion with a covariance matrix Ri from Equation (1.2). The measurement ignores the
velocity components in xi.
While this is the same measurement model that we used for the Kalman filter, it

could be much more expressive. For instance, it might be the case that the location
sensor’s accuracy varies with location, such as GPS in an urban canyon. The particle
filter’s model could accommodate this.
In addition to the measurement model, the other part of the particle filter for-

mulation is the dynamic model, again paralleling the Kalman filter. The dynamic
model is also a probability distribution, which simply gives the distribution over
the current state xi given the previous state xi−1: p(xi|xi−1). The analogous part of
the Kalman filter model is xi = Φi−1xi−1+wi−1 (Equation (1.9)). The particle filter
version is much more general. For instance, it could model the fact that vehicles of-
ten slow down when climbing hills and speed up going down hills. It can also take
into account road networks or paths through a building to constrain where a trajec-
tory can go. This feature of the particle filter has proved useful in many tracking
applications.
It is not necessary to write out the dynamic model p(xi|xi−1). Instead, it is suf-

ficient to sample from it. That is, given a value of xi−1, we must be able to create
samples of xi that adhere to p(xi|xi−1). For our example, we will use the same dy-
namic model as the Kalman filter, which says that location changes deterministically
as a function of the velocity and that velocity is randomly perturbed with Gaussian
noise:
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xi+1 = xi + v(x)i Δ ti
yi+1 = yi + v(y)i Δ ti
v(x)i+1 = v(x)i +w(x)

i w(x)
i ∼ N(0,σ2s )

v(y)i+1 = v(y)i +w(y)
i w(y)

i ∼ N(0,σ2s )

(1.19)

The above is a recipe for generating random samples of xi+1 from xi. Contrary to
the Kalman filter, the particle filter requires actually generating random numbers,
which in this case serve to change the velocity.
Finally, also paralleling the Kalman filter, we need an initial distribution of the

state vector. For our example, we can say the initial velocity is zero and the initial
location is a Gaussian around the first measurement with a covariance matrix Ri
from Equation (1.2).

1.10.2 Particle Filter

The particle filter maintains a set of P state vectors, called particles: x( j)
i , j = 1...P.

There are several versions of the particle filter, but we will present the Bootstrap
Filter from Gordon [12]. The initialization step is to generate P particles from the
initial distribution. For our example, these particles would have zero velocity and
be clustered around the initial location measurement with a Gaussian distribution as
explained above. This is the first instance of how the particle filter requires actual-
ly generating random hypotheses about the state vector. This is different from the
Kalman filter which generates state estimates and uncertainties directly. We will call
these particles x( j)

0 .
With a set of particles and i > 0, the first step is ”importance sampling,” which

uses the dynamic model p(xi|xi−1) to probabilistically simulate how the particles
change over one time step. This is analogous to the extrapolation step in the Kalman
filter in that it proceeds without regard to the measurement. For our example, this
means invoking Equation (1.19) to create x̃i. The tilde (∼) indicates extrapolated
values. Note that this involves actually generating random numbers for the velocity
update.
The next step computes“importance weights” for all the particles using the mea-

surement model. The importance weights are

w̃( j)
i = p(zi|x̃( j)

i ) (1.20)

Larger importance weights correspond to particles that are better supported by the
measurement. The important weights are then normalized so they sum to one.
The last step in the loop is the “selection step” when a new set of P particles x( j)

i

is selected at random from the x̃( j)
i based on the normalized importance weights.

The probability of selecting an x̃( j)
i for the new set of particles is proportional to its

importance weight w̃( j)
i . It is not unusual to select the same x̃

( j)
i more than once if it
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has a larger importance weight. This is the last step in the loop, and processing then
returns to the importance sampling step with the new set of particles.
While the particles give a distribution of state estimates, one can compute a single

estimate with a weighted sum:

x̃i =
P

∑
j=1

w̃( j)
i x̃

( j)
i (1.21)

Applying the particle filter to our example problem gives the result in Figure 1.12.
We used P = 1000 particles. This result looks similar to the Kalman filter result,
since we used the same measurement model, dynamic model, and noise in both.

1.10.3 Particle Filter Discussion

One potential disadvantage of the particle filter is computation time, which is affect-
ed by the number of particles. More particles generally give a better result, but at
the expense of computation. Fox gives a method to choose the number of particles
based on bounding the approximation error [10].
Even though the particle filter result looks similar to the Kalman filter result in

our example, it is important to understand that the particle filter has the potential to
be much richer. As mentioned previously, it could be made sensitive to a network
of roads or walking paths. It could include a discrete state variable representing the
mode of transportation, e.g. walking, bicycling, in a car, or on a bus.
While it is tempting to add many variables to the state vector, the cost is often

more particles required to make a good state estimate. One solution to this problem
is the Rao-Blackwellized particle filter [26]. It uses a more conventional filter, like
Kalman, to track some of the state variables and a particle filter for the others.

1.11 Summary

In this chapter, we discussed two low-level preprocessing tasks for spatial trajectory
computing and data management: 1) how to reduce the data size for representing a
trajectory; and 2) how to filter spatial trajectories to reduce measurement noise and
to estimate higher level properties of a trajectory. For task 1, the data reduction tech-
niques can run in a batch mode after the data is collected or in an on-line mode as the
data is collected. Due to the inherent spatio-temporal characteristics in spatial tra-
jectories, conventional error measure, e.g. the perpendicular Euclidean distance that
has been widely used in many line generalization algorithms, does not work well
in determining the location points to be included in the approximated trajectory. On
the other hand, the time synchronized Euclidean distance, providing a more precise
error measurement for approximated trajectories, has been incorporated into sev-
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eral trajectory data reduction techniques recently. Moreover, research on trajectory
data reduction techniques have been extended from focusing on location informa-
tion to high-level properties of trajectories such as speed and directions. For task
2, trajectory filtering techniques are employed to reduce measurement noise. Ad-
ditionally, they can be used to estimate high-level properties of a trajectory like its
speed and direction and thus can possibly be integrated with trajectory data reduc-
tion techniques. Trajectory filtering methods, including mean and median filtering,
the Kalman filter, and the particle filter, are important techniques for trajectory data
preprocessing.
Many transportational and recreational activities have left very useful informa-

tion in form of trajectories. In recent years, researchers have started to explore the
semantics, e.g. activity types and transportation modes, behind various trajectories
and thus proposed the notion of semantic trajectories [31, 2, 34, 11]. Accordingly,
semantic compression techniques, while in its infancy, have been proposed [29, 4].
We anticipate more advanced data reduction and filtering techniques for semantic
trajectories to be developed in the coming years as we obtain more in-depth under-
standing of these concepts.
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