
Dynamic Creation of Monitoring Infrastructures

Howard Foster and George Spanoudakis

1 Introduction

As a key part of monitoring and management, systems developed with a Service-
Oriented Architecture (SOA) design pattern should utilise negotiated agreements
between service providers and requesters. Typically, the results of these negotia-
tions are specified in Service Level Agreements (SLAs), which are then used to
monitor key levels of service provided, and to optionally specify preconditions and
actions in case these levels are violated. Responsibility for monitoring SLAs (and
often individual parts within them) must be dynamically allocated to different mon-
itoring components, since SLAs — and the components available for monitoring
them — may change during the operation of a service-based system [4]. The com-
plexity of SLA terms, however, often means that several monitoring components
may need to be selected for a single SLA-guaranteed term expression (e.g. avail-
ability > 90%), since each part of the expression may be reasoned by a physically
different provider. Existing work has shown examples of decomposition based upon
simple decomposition of expressions [4], but there is also a need to consider vari-
ations between different monitors (e.g. trustworthiness or access constraints) in a
dynamic monitoring configuration process.

In this chapter, we show how complex SLA terms specified in the SLA@SOI
SLA (Chapter ‘The SLA Model’) can be decomposed into manageable monitoring
configurations, and include a mechanism to support the selection of preferred mon-
itoring components. Advanced configuration is supported by a MonitoringManager
component which mechanically parses an SLA, generates a formal Abstract Syntax
Tree (AST) and decomposes the terms of the AST into expressions for monitoring.
Each expression is then used to select appropriate reasoning or service sensor mon-
itoring components. The main contribution of this work is that both the monitoring

Howard Foster, George Spanoudakis,
Department of Computing, City University London, Northampton Square, EC1V 0HB, London.
e-mail: {howard.foster.1,g.e.spanoudakis}@city.ac.uk

DOI 10.1007/978-1-4614-1614-2_8, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 123

124 Howard Foster, George Spanoudakis

configurator and the monitoring configuration specification are generic, reusable
artifacts able to be incorporated into other frameworks where configuration of mon-
itoring components is required. The monitoring configurator is already offered as
a reusable service that uses standard web-service protocols to enable the use of re-
placeable selection criteria for candidate monitors; selection criteria can be driven
from preferences for monitor provider and/or offered features.

The chapter is structured as follows: Section 2 illustrates the service monitoring
architecture and components, whilst Section 3 describes the overall approach to
monitoring configuration. In Section 4 we describe the parsing and decomposition of
SLAs, and in Section 5, the monitoring component selection algorithms. In Section
6 we discuss implementation and testing of the approach, and in Section 7 we briefly
discuss related work. Section 8 concludes the chapter with a discussion of present
and future work.

2 Architecture

Fig. 1 A Service Monitoring Architecture

An overview architecture for service monitoring in the SLA@SOA project is
illustrated in Figure 1. In this chapter, we focus on the GenericSLAManager (pro-
viding generic support for planning, optimisation, adjustment and configuration of
monitoring) and monitoring component features (such as reasoners, sensors and ef-
fectors). The Planning and Optimization Component (POC) is a local executive con-
troller for a service manager. It is responsible for assessing and customising SLA
offers, evaluating available service implementations, and planning optimal service
provisioning and monitoring strategies. The POC generates a suitable execution plan

Dynamic Creation of Monitoring Infrastructures 125

for monitoring (based upon a configuration obtained from the MonitoringManager
component) and passes this to the Provisioning and Adjustment Component (PAC).
The PAC collects information from the Low Level Monitoring System, analyses the
incoming events, decides if a problem has occurred or is about to occur, identifies
the root cause, and then (if possible) decides on and triggers the best corrective or
proactive action. If the problem cannot be solved at a local level, the PAC escalates
the issue to a higher level component, namely the POC. In the case of an SLA vio-
lation, such an adjustment can trigger re-planning and reconfiguration, and/or alert
higher-level SLA monitoring. These capabilities are considered important in order
to assure preservation of service provision and resource quality.

The MonitoringManager (MM) coordinates the generation of a monitoring con-
figuration for the system. The MM uses configurable selection criteria to determine
which is the most appropriate monitoring configuration for each SLA specification
instance it receives. Each monitoring configuration describes which components
to configure and how their configurations can be used to best monitor guaranteed
states. The Low Level Monitoring Manager is a central entity for storing and pro-
cessing monitoring data. It collects raw observations, processes them, computes de-
rived metrics, evaluates the rules, stores the history, and offers all this data to other
components (accessible via the service manager). It also implements the monitoring
part of a ProvisioningRequest, containing constraint-based rules (time- and data-
driven evaluations) and ServiceInstance-specific sensor-related configurations. It is
general by design, and thus capable of monitoring software services, infrastructure
services and other resources. Since POC and PAC functionality is very closely re-
lated to domain-specific requirements, they are provided as extendible components.
For SLA@SOI case studies, they are already extended for either software service
monitoring or infrastructure service monitoring. The MM aims to be generic for all
solutions and is provided as one solution.

There are three types of monitoring feature in the monitoring system: First, sen-
sors, which collect information from a service instance. Their designs and imple-
mentations are domain-specific. Sensors can be injected into the service instance
(e.g., service instrumentation), or can be outside the service instance (e.g. intercept-
ing service operation invocations). A sensor can send the collected information to a
communication infrastructure (e.g. an Event Bus), or other components can request
(query) information from it. There can be many types of sensors, depending on the
type of information they are designed to collect, but they all implement a common
sensor interface. The interface provides methods for starting, stopping, and config-
uring a sensor. The second type of monitoring feature is an effector. Effectors are
components for configuring service instance behaviour. Their designs and imple-
mentations are also domain-specific. Like sensors, effectors can be injected into a
service instance or can interface with a service configuration. There can be many
types of effectors, depending on the service instance to be controlled, but they all
implement a common effector interface. The interface provides methods for config-
uring a service. The third type of monitoring feature is a reasoner (also known as
a Reasoning Engine), which performs a computation based upon a series of inputs
provided by events or messages sent from sensors or effectors. An example rea-

126 Howard Foster, George Spanoudakis

soner may provide a function to compute the average completion time of a service
request. In this case, it accepts events from sensors detecting both requests for and
responses to a service operation, and computes an average over a period of time.
Reasoners also provide access to generic runtime monitoring frameworks, such as
EVEREST [15].

2.1 Monitoring Features Specification

In addition to an SLA specification (Chapter ‘The SLA Model’), the Monitoring-
Manager requires a set of feature specifications for monitoring feature types (intro-
duced at the beginning of this section). Component monitoring features are specified
for a type of monitoring component and offered for a type of service (Chapter ‘The
Service Construction Meta-Model’ for details of the Service Construction Meta-
Model). A feature specification has two instance variables: The type variable holds
the type of the component, and the permitted types are sensor, effector and reasoner.
A sensor provides information about a service, an effector changes the properties of
a service, and a reasoner processes information to produce a monitoring result (for
example, it consumes information provided by sensors and reports whether or not an
SLA is violated). The second instance variable is the UUID variable, which uniquely
identifies the component with the monitoring features. This variable has the same
value as the service UUID. Furthermore, each component feature contains a list
of monitoring features. The example in Figure 2 illustrates the component features
of an example service. In this example, the sensor component has two monitoring
features: one for events reporting cpu-load, and another for reporting the number
of logged-users. The example also illustrates a reasoner component with two mon-
itoring features: one providing a greater-than comparison of two input parameter
numbers, and the other providing an MTTR (Mean Time To Repair) computation
output based upon request and response input events.

Basic monitoring features are used to distinguish between ‘event’ and ‘primitive’
monitoring features. There is a single parameter type for the type of basic monitor-
ing feature. In the case of primitive monitoring features, allowed types correspond
to the Java primitive types (e.g., Long, Boolean, String, etc). In the case of an event
monitoring feature, allowed types are currently request, response and computation
(as a result of a function). A basic monitoring feature with a sub-type of primitive
is used to advertise an ability to report about primitive service information (e.g.,
cpu load, logged users, available memory, etc). Sensors are the typical components
with this kind of feature. A primitive feature has two instance variables: First, a type
holds the variable type. This can be, for instance, one of the Java standard primi-
tive types. It can also be any other type defined in an SLA vocabulary. The second
instance variable is a unit, which holds the monitoring feature unit of measurement
(e.g., mt, km, kg, etc.). Event monitoring features are used to advertise an ability
to report about service interactions or service states (e.g., service operation requests
and responses, service failures, etc.). Sensors and reasoners are the typical compo-

Dynamic Creation of Monitoring Infrastructures 127

Fig. 2 Component Monitoring Features as XML Elements

nents with this kind of feature. An event basic sub-type has one instance variable:
a type. This type holds the event type as either request, response or computation.
Domain-specific event types can also be defined and used here.

Function monitoring features are used to advertise an ability to perform a compu-
tation and report its result (e.g., availability, throughput, response time). Reasoners
are the typical components with this kind of feature. The class Function has two
instance variables: the first is input, which holds the list of function input parame-
ters. The second is output, which holds the output parameters. Reasoner features are
described by a type (the term or operator performed), one or more input parameters,
and one output parameter.

3 Approach to Configuration

Given an SLA specification and a set of component monitoring features, our ap-
proach to dynamic configuration of monitoring infrastructures is based on the pro-
cess illustrated in Figure 3.

128 Howard Foster, George Spanoudakis

Fig. 3 SLA Monitoring Configuration Activities

The process starts by extracting the guaranteed states from AgreementTerms of
the SLA specification. The terms are then parsed into a formal Abstract Syntax
Tree (AST) for the expression of the states. The AST is then used as input to se-
lect each expression of each state (by traversal of the AST), and to match each
left-hand-side (lhs), operator, and right-hand-side (rhs) of the expression with ap-
propriate component monitoring features. The matching algorithms are discussed in
Section 5. Following selection, the delegate components form a Selected Compo-
nents list, which is used to generate a complete Monitoring System Configuration
(MSC) for an SLA. If no suitable monitoring configuration can be formed (i.e. all
monitoring requirements could not be matched), then an empty configuration is re-
turned for a particular agreement term. This approach can be used in two types of
situation: firstly, to configure the monitoring system when a new SLA needs to be
monitored, and secondly, to perform adjustments to an existing configuration when
requirements change or violations are detected. The main focus in this chapter is the
first of these situations: we assume a new SLA is to monitored and therefore do not
consider how this would affect the current state of monitoring.

Dynamic Creation of Monitoring Infrastructures 129

4 SLA Term Decomposition

The MM abstracts the guaranteed states (guarantees made by any of the parties in-
volved in the agreement) that certain states of affairs will hold for the service. We
abstract these states from the agreement terms and parse the terms using a grammar
based upon the Backus Normal Form (BNF) specification of the SLA specifica-
tion [14]. The grammar for the parser is currently based only upon the agreement
terms and guaranteed state expressions. A sample part of the grammar is listed in
Figure 4.

1/**
2* SLA: The Specification of agreement terms
3**/
4void SLA() : {} {
5AgreementTerm()* }
6/**
7* Agreement: AgreementTerms in SLA Model
8**/
9void AgreementTerm() : {} {

10GuaranteeTerm()((TermOperator()) GuaranteeTerm())* }
11/**
12* GuaranteeTerm: A guaranteed state expression
13**/
14void GuaranteeTerm() : {} {
15<QUOTED_STRING> (Term())(Comparator())(Term())}
16/**
17* Term: One or more TermFunctions or Identifier
18**/
19void Term() : {} {
20LOOKAHEAD(TermFunction()) TermFunction() | <STRING> | <QUOTED_STRING> }
21/**
22* Comparator: Operators in Term expression
23**/
24void Comparator() : {} {
25(<EQUALS> | <NOTEQUAL> | <LTHAN> | <GTHAN> | <LEQUAL> | <GEQUAL> |
26 <ISEQUALTO>) }

Fig. 4 Partial JavaCC Grammar for SLA Term Decomposition

The grammar is used as input to the Java Compiler Compiler (JavaCC) [16],
which generates compiler source code to accept and parse source files specified in a
defined grammar language. The resulting AST is built to represent the SLA specifi-
cation terms and expressions. Beginning with the SLA declaration (lines 4–5), one
or more AgreementTerms are parsed. Each AgreementTerm (lines 9–10) is parsed
as one or more GuaranteeTerms, separated by a comparison operator. Each Guar-
anteeTerm (lines 14–15) is then parsed as an Identifier (which holds the ID label
of the GuaranteeTerm), and a basic Term followed by a comparison operator and
then followed by another basic Term. Each basic Term (lines 19–20) is represented
by either one or more TermFunctions (similar to a normal function call syntax), a
string Identifier (representing a variable of the SLA specification. The JavaCC func-
tion LOOKAHEAD informs the parser to check whether the next symbol to parse is

130 Howard Foster, George Spanoudakis

a function or string. Finally, the Comparator operators (lines 24–26) list the accept-
able types of operators that can be used between GuaranteeTerms.

Since Term decomposition is based upon a generated parser, other SLA specifi-
cation formats may generate their own parsers and transform their SLA specification
to the AST input required by the MonitoringManager. In this way, the implemen-
tation of the configurator is generic and reusable. In addition, the generated AST
compiler can be reused by monitorability agents (which accept the monitoring sys-
tem configuration as a result of matching monitoring components). These Agents
can translate the SLA terms into their own language specification. As an example,
we have performed such a translation for the EVEREST monitoring language [15],
which is based on Event Calculus and is used to analyse expressions in use cases of
the SLA@SOI project SLA (Chapter ‘Introduction to the SLA@SOI Industrial Use
Cases’).

5 Monitoring Configuration

5.1 Monitor Selection

A main configuration algorithm MonitorConfig (illustrated in Figure 5) is responsi-
ble for selecting all the term expressions from the prepared SLA term tree (Terms
AST), obtaining a match for the expression terms with available monitoring com-
ponent features, and then building a suitable monitoring system configuration. The
algorithm begins by selecting the root of each AgreementTerm expression, which in
turn holds one or more guaranteed state expressions (GuaranteeTerms). An Agree-
mentTerm expression is predefined as a set of Boolean expressions (where all must
result in true for the AgreementTerm to be upheld). Each GuaranteeTerm has a left-
hand-side term, a right-hand-side term, and an operator. From these terms, a set of
input types is determined. Two term monitors (M1 and M2) are set to analyse the
terms, and a reasoner monitor is set to analyse the entire expression. If the left-
hand-side of the expression is itself an expression, then the second monitor (M2) is
recursively configured using the same algorithm (MonitorConfig). If this is not the
case, then the value of the right-hand-side of the expression is used as the monitor.
Furthermore, a reasoner monitor is assigned to select a monitor appropriate to the
input types, operation, and required monitor features .

The MonitorConfig algorithm uses a SelectMonitor algorithm (Figure 5) to match
the required types and operations (or term names) to the monitoring component fea-
tures. The algorithm begins by iterating the monitoring component features avail-
able and building an appropriate feature list, (FeaturedMonitors), by selecting the
monitors that match the type of term or operator. Each FeaturedMonitor is then se-
lected and checked for appropriate input types. For example, the operator < (less
than) can be provided for numeric input types. If the feature and types match, the
FeaturedMonitor is added to a list of selected monitors (SelectedMonitors). In the

Dynamic Creation of Monitoring Infrastructures 131

Function: MonitorConfig. Given an agree-
ment, select the most appropriate
monitoring components.

Input(s): 1) Terms AST: an AST of the Guar-
anteed Agreement Terms. 2) Fea-
tures: a list of service monitoring
features.

Output(s): a set of monitoring components with
configurations.

Algorithm: Given the Terms AST and a set of
monitoring features
1) select root of AST and extract ex-
pressions
2) extract lhs, rhs, operation and se-

lect input-types
3) set M1 to MonitorConfig(lhs)

4) if node.lhs is expression then
(a) set M2 to MonitorConfig(rhs)

otherwise set M2 to rhs.value
5) set RM to SelectMonitor(input-
types,operation,Features)

6) store delegate for expression

SelectMonitor. Given a set of input
types and a monitor term, select the
first monitor that matches the term or
event types required.
1) Input Types: a set of types (e.g.
Number, Event, etc.). 2) Term: a term
or operation to be monitored (e.g.
completion-time or ¡ (operator)). 3)
Features: a list of service monitoring
features.
A monitoring component offering the
types and operation/term.

Given the input types, Monitor-
ingFeatures and Term:
1) for each MonitoringFeature in
Features do

(a) select FeaturedMonitors where
type equals the Term
2) for each Monitor in FeaturedMon-
itors do

(a) for each type in input types do

(i) if Monitor has Type, then
(ia) add Monitor to Selected-

Monitors
3) select the first Monitor in Selected-
Monitors (*replaceable selection cri-
teria)
4) return SelectedMonitor

Fig. 5 Algorithms for MonitorConfig (left) and SelectMonitor (right)

current implementation of the work, we simply select the first monitor matched. It
is envisaged that an enhanced implementation will use some optimisation algorithm
(at step 3. of the SelectMonitor algorithm), which will be based on criteria specified
by the user (or indeed, specified as part of the overall SLA). This could also include
assessing use of the same provider of features to group related monitors, reduce
financial cost and optimise messaging.

5.2 System Configuration

As briefly discussed in Section 2, the MSC defines an entire configuration for mon-
itoring an SLA within the monitoring system. An example MSC is illustrated in
Figure 6, showing a reasoner component (for monitoring a guaranteed state), and a
set monitoring feature components for each part of the guaranteed state expressions.

132 Howard Foster, George Spanoudakis

The MSC contains a list of components representing sensors, effectors or reasoners
selected to support the GuaranteeTerms of agreements in an SLA.

Fig. 6 A Monitoring System Configuration

Each component in an MSC contains one or more component configurations for
each of the different components. For example, an MSC can contain a reasoner com-
ponent that has component configurations for two sensor components and one ad-
ditional reasoner component. The sensor component configuration contains a Mon-
itoringFeature (that used to advertise features during selection of the sensor compo-
nent) and one or more OutputReceiver(s). An OutputReceiver is another component
which expects the result (as an event or value) to perform its own function. A rea-
soner component configuration also specifies one or more OutputReceivers, but a
specification component replaces the MonitoringFeature component. The specifica-
tion component lists the guaranteed states required by the component for reasoning.

5.3 Configuration Deployment

Here we briefly outline configuration deployment as an aid to the reader in under-
standing how the output is leveraged in the environment. As illustrated in Figure 1,
a generated MSC is passed to a service manager, which links a service instance with
a service manageability agent. The manageability agent exposes a method to accept
a configuration and then, on behalf of the service under agreement, starts depen-
dent components to monitor the service activities and to generate any notifications
as part of that agreement. For example, each AgreementTerm has a reasoner (the

Dynamic Creation of Monitoring Infrastructures 133

sum of evaluating all guaranteed states in the SLA). Each GuaranteeTerm also has
a reasoner (to evaluate the expression of each guaranteed state). Once the service
manageability agent is initialised, each reasoner is configured with the appropri-
ate part of the MSC (e.g. for a cpu load evaluation). The results generated by the
reasoners and sensors in this configuration will be monitored by the manageability
agent and appropriately routed from the Event Bus.

6 Implementation and Validation

6.1 The MonitoringManager Packages

The approach and algorithms discussed in this chapter are supported by a number
of implementation packages. In particular the MonitoringManager component is
available as an OSGI-enabled [10] JAVA package and can also be hosted as a web-
service. In this section, we describe each of these packages with classes and their
relationships (as depicted in Figure 7).

Fig. 7 Core Implementation Packages of the MonitoringManager

The MonitoringManager module is split into a number of packages: The core
package implementation supports the MonitorConfig algorithm (as described in Sec-
tion 5) provided by a checkMonitorability method, which accepts an SLA model
(Chapter ‘The SLA Model’), and a set of monitoring features (Chapter ‘The Service
Construction Meta-Model’). In turn, the implementation package depends initially
on a parser package to support parsing of each AgreementTerm in the SLA model.
The parser package provides an AgreementTerm class containing a parse method
which accepts an AgreementTerm of the SLA and produces an expression AST (as
described in Section 4). A sub-package of the parser package is the core parser itself,
built from the compilation of a JavaCC grammar for the SLA agreements.

134 Howard Foster, George Spanoudakis

The implementation package also references the methods of a SelectionManager
class contained within the selection package. This class provides methods and an
overall framework for matching and selecting the most appropriate monitoring fea-
ture components with that of the expressions parsed previously (i.e. the SelectMon-
itor algorithm). To enable future dynamic configuration of selection algorithms, the
SelectionManager refers to an extendable ComponentSelector module, offering a
flexible selectAppropriateComponent method which may be redefined for preferred
component selection strategies. Finally, the configuration package is used by the
checkMonitorability method to configure the component selections into a required
MonitoringSystemConfiguration format (Chapter ‘The Service Construction Meta-
Model’ for format specification).

6.2 Testing and Validation

To thoroughly test the implementation scope and suitability of configurations pro-
duced, we devised an SLA coverage test based upon each of the model elements
described in the SLA@SOI SLA Model and the features available using a monitor-
ing engine. Aligned with the work on translation and monitoring of SLAs (Chap-
ter ‘Translation of SLAs into Monitoring Specifications’), we listed: each element
along with its specifications in a test SLA (SLA-ID), the events that required moni-
toring (Events), whether the model element expression in the SLA could be parsed
by the MonitoringManager (Parsed), whether a suitable configuration was produced
(MSC), whether the configuraton was accepted by a client monitoring component
(Client), and whether any violation or service request and response events were
successfully captured (Monitored). (Table 1 lists a sample of the results.) As we dis-
cussed in Section 4, the grammar for the SLA parser is currently based only upon
the AgreementTerm and GuaranteeTerm expressions. Thus future work is required
to enable guaranteed actions to be parsed and monitored. In addition, we also tested
SLA model metrics (such as units of time) and primitive types (such as BOOL,
CONST, TIME, etc.), mixing them and providing permutations for exhaustive test-
ing.

The other main tests that have been carried out related to the use cases featured in
the SLA@SOI project; The SLA specifications for both B4 (Chapter ‘The Enterprise
IT Use Case Scenario’) and B6 (Chapter ‘The eGovernment Use Case Scenario’)
have been fully covered in testing. We also expect to continue testing with other
monitoring engines, for example, the ASTRO Project’s [11] SLA monitoring tools
can be tested with infrastructure monitoring components.1s

1 The MonitoringManager implementation, EVEREST monitoring framework, and SLA@SOI test
cases are an integrated part of the SLA@SOI project platform showcase and are available from:
http://sourceforge.net/projects/sla-at-soi/

Dynamic Creation of Monitoring Infrastructures 135

Table 1 Sample Test Cases for SLA Elements, Parsing, Configuration and Monitoring

Model SLA-ID Events Parsed MSC Client Monitored

InterfaceDeclrs ID1 None Yes Yes Yes No
AgreementTerms AT1 Violation Yes Yes Yes Yes
Guaranteed Actionsa GA1 Violation No No No No
Guaranteed States GS1 Violation Yes Yes Yes Yes
VariableDeclrs VD1 Computation Yes Yes Yes Yes

Terms SLA-ID Events Parsed MSC Client Monitored

core:and GS1 Computation Yes Yes Yes Yes
core:equals GS1 Computation Yes Yes Yes Yes
core:sum GS1 Computation Yes Yes Yes Yes
core:series GS2 Computation Yes Yes Yes Yes
core:availability GS1 Request-

Response
Yes Yes Yes Yes

a The element is not currently supported

7 Related Work

Background and related work in this chapter falls within two areas: First, we con-
sider the definition and translation of SLAs, and second, the runtime monitoring of
service-based systems based upon monitoring features.

Several projects have focused on SLA definitions and provisioning in the con-
text of both web and grid services. The Adaptive Services Grid (ASG) project, for
example, has designed an architecture for establishing and monitoring SLAs in grid
environments [8]. In this architecture, the monitoring rules and parameters as well as
the architecture for SLA monitoring are statically defined and cannot be updated at
runtime. The TrustCOM project has also produced a reference implementation for
SLA establishment and monitoring [17]. This implementation, however, does not
involve the dynamic setup of monitoring infrastructures. The SLA Monitoring and
Evaluation architecture presented within the IT-Tude project [7] has several sim-
ilarities with the approach presented in this chapter, such as the need to separate
SLAs from service management. This work focuses, however, on statically binding
services and monitors, whilst the SLA@SOI work focuses on dynamically allocat-
ing monitors to SLA parts, based upon matching the exact terms that need to be
monitored and the monitoring capabilities available for different services. Further,
in the IRMOS project architecture [19], service monitors are used to gather infor-
mation about QoS levels. The SLA@SOI approach splits these monitors into three
types, providing greater flexibility and catering for changing services (with effec-
tors) as the need arises. With regards to SLA translation, in [18, 12], the authors
describe decomposing an SLA of resource requirements (with the purpose of build-
ing a system that represents the SLA required). This approach is focused more on

136 Howard Foster, George Spanoudakis

building a system rather than monitoring existing services; however, it also employs
techniques to optimise and arrange efficient configurations based upon the SLA ex-
pressions stated. In [13], the authors consider evaluating expressions for conditions
of properties of services (e.g. response time), however, their SLA format appears to
offer only single assertions rather than complex expressions.

Work on runtime monitoring of service-based systems has resulted in the de-
velopment of different types of monitors. These monitors realise either intrusive
or event-based monitoring. Intrusive monitoring relies on weaving the execution
of monitoring activities at runtime using code that realises the service itself or the
orchestration process. In the case of composite services, this can be done directly
in a process engine, by interleaving monitoring code with the process executable
code as in [2, 3, 1, 9]. The assessment of monitoring service properties required by
SLAs cannot be easily achieved through this paradigm, since the properties to be
monitored and the actions required for monitoring must be interleaved with service
execution code, and therefore known a priori by the system designer.

The work described in this chapter extends existing approaches to dynamic gen-
eration of monitoring system configurations [4, 5, 6]. Specifically, we consider in-
dividual agreement terms within an SLA by decomposition of complex guarantee
expressions, utilise a wider spectrum of monitoring components (e.g. sensors and
effectors), and support complex monitoring configurations that can engage different
monitoring components for checking the same SLA term if necessary.

8 Conclusions and Future Work

In this chapter we have described an approach to advanced configuration of service
systems, in particular, systems in which an SLA agreement has been established
and concerns services that require monitoring. The work aims to provide a generic
module, applicable not only to the architecture illustrated, but also to other archi-
tectures (although still based upon SLAs and monitoring component features). This
work will be extended to cover further elements of the SLA specification (such as
guaranteed actions, which are not presently considered), and also to include prefer-
ential selection of monitoring components. Preferential selection of components is
useful where there are multiple monitoring components offered for the same term.
Preferences could be based upon monitoring cost (either in terms of computing re-
sources or financially) or non-functional requirements. The existing implementation
is already part of the wider SLA@SOI project monitoring platform, providing inte-
gration and validation testing, and we are keen to seek other environments in which
to test it.

Dynamic Creation of Monitoring Infrastructures 137

References

[1] Baresi, L., Bianculli, D., Ghezzi, C.: Validation of Web Service Compositions.
IET Software 1(6), 219–232 (2007)

[2] Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes.
In: International Conference on Service-Oriented Computing (ICSOC) (2005)

[3] Bianculli, D., Ghezzi, C.: Monitoring Conversational Web Services. In:
2nd International Workshop on Service Oriented Software Engineering (IW-
SOSWE) (2007)

[4] Comuzzi, M., Spanoudakis, G.: Dynamic Set-up of Monitoring Infrastructures
for Service-Based Systems. In: 25th Annual ACM Symposium on Applied
Computing, Track on Service Oriented Architectures and Programming (SAC
2010). ACM, Sierre, Switzerland (2010)

[5] Foster, H., Spanoudakis, G.: Model-Driven Service Configuration with For-
mal SLA Decomposition and Selection. In: The 4th International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA). Crete, Greece (2010)

[6] Foster, H., Spanoudakis, G.: Advanced Service Monitoring Configurations
with SLA Decomposition and Selection. In: 26th Annual ACM Symposium
on Applied Computing (SAC) Track on Service Oriented Architectures and
Programming (SOAP). ACM, TaiChung, Taiwan (2011)

[7] IT-Tude: SLA Monitoring and Evaluation Technology Solution. Available
from: http://www.it-tude.com/?id=gridipedia (2009)

[8] Jank, K.: Reference Architecture: Adaptive Services Grid Deliverable D6.V-1.
Available from: http://asg-platform.org/twiki/pub/Public/ProjectInformation
(2005)

[9] Lazovik, A., Aiello, M., Papazoglou, M.: Planning and Monitoring the Ex-
ecution of Web Service Requests. International Journal of Digital Libraries
(2006)

[10] OSGi Alliance: OSGi Service Platform Core Specification Version 4.2. Avail-
able from: http://www.osgi.org/Download/Release4V42 (2011)

[11] Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and
Monitoring Web Service Composition. In: AIMSA, pp. 106–115 (2004)

[12] Richter, J., Baruwal, C., Kowalczyk, R., Quoc Vo, B., Adeel Talib, M., Col-
man, A.: Utility Decomposition and Surplus Redistribution in Composite SLA
Negotiation. In: IEEE International Conference on Services Computing (2010)

[13] Sahai, A., Machiraju, V., Sayal, M., Jin, L.J., Casati, F.: Automated SLA Mon-
itoring for Web Services. In: IEEE/IFIP DSOM, pp. 28–41. Springer-Verlag
(2002)

[14] SLA@SOI: Deliverable D.A1a: Framework Architecture. Available from:
http://sla-at-soi.eu/publications/deliverables (2009)

[15] Spanoudakis, G., Kloukinas, C., Mahbub, K.: The SERENITY Runtime Mon-
itoring Framework. In: Security and Dependability for Ambient Intelli-
gence,Information Security Series. Springer (2009)

138 Howard Foster, George Spanoudakis

[16] Sun Microsystems: The Java Compiler Compiler (JavaCC). Available from:
https://javacc.dev.java.net/ (1999)

[17] TrustCOM: Deliverable 64: Final TrustCoM Reference Implementation
and Associated Tools and User Manual. Available from: http://www.eu-
trustcom.com/ (2007)

[18] Yuan, C., Iyer, S., Liu, X., Milojicic, D., Sahai, A.: SLA Decomposition:
Translating Service Level Objectives to System Level Thresholds. In: Fourth
International Conference on Autonomic Computing (ICAC) (2007)

[19] Menychtas, A., Gogouvitis, S., Katsaros, G., Konstanteli, K., Kousiouris,
G., Kyriazis, D., Oliveros, E., Umanesan, G., Malcolm, M., Oberle, K.,
Voith, T., Boniface, M., Bassem, M., Berger, S.: Deliverable D3.1.3:
Updated version of IRMOS Overall Architecture. Available from:
http://www.irmosproject.eu/Deliverables/ (2010)

	Dynamic Creation of Monitoring Infrastructures
	1 Introduction
	2 Architecture
	2.1 Monitoring Features Specification

	3 Approach to Configuration
	4 SLA Term Decomposition
	5 Monitoring Configuration
	5.1 Monitor Selection
	5.2 System Configuration
	5.3 Configuration Deployment

	6 Implementation and Validation
	6.1 The MonitoringManager Packages
	6.2 Testing and Validation

	7 Related Work
	8 Conclusions and Future Work
	References

