
The SLA Model

Abstract This chapter describes the SLA model that has been developed by the
SLA@SOI project. It defines a syntax for machine-readable Service Level Agree-
ments (SLAs) and SLA templates (SLA(T)). Historically, the SLA was developed
as a generalisation and refinement of the web service-specific XML standards: WS-
Agreement, WSLA, and WSDL. Instead of web services, however, the SLA model
deals with services in general, and instead of XML, it is language independent.
The SLA model provides a specification of SLA(T) content at a fine-grained level
of detail, which is both richly expressive and inherently extensible: supporting con-
trolled customisation to arbitrary domain-specific requirements. The model has been
applied to a range of industrial use-cases, including: ERP hosting, Enterprise IT,
live-media streaming, and health-care provision. At the time of writing, the abstract
syntax has been realised in concrete form as a Java API, XML-Schema, and BNF
Grammar.

1 Introduction

This chapter describes the SLA Model employed within SLA@SOI. An SLA is
an agreement between a service provider and service customer about the required
quality-of-service (QoS) characteristics of some service(s) delivered by the provider
to the customer. Properly speaking, the agreement as such is the intangible under-
standing, or accord, that exists between the provider and customer. The SLA Model
is not concerned with the intentional aspects of an agreement. It is only concerned

Engineering Ingegneria Informatica spa, Via Riccardo Morandi, 32, 00148 Roma, Italy,
e-mail: keven.kearney@eng.it

Francesco Torelli
Engineering Ingegneria Informatica spa, Via Riccardo Morandi, 32, 00148 Roma, Italy,
e-mail: francesco.torelli@eng.it

DOI 10.1007/978-1-4614-1614-2_4, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 43

Keven T. Kearney and Francesco Torelli

Keven T. Kearney

mailto:keven.kearney@eng.it
mailto:francesco.torelli@eng.it

44

with modelling the physical document that serves as the formal, concrete represen-
tation of an agreement. The SLA Model is therefore a document model. In particular,
it is an abstract syntax, specifying, in a language independent manner, the formal
serialised content of SLA and SLA Template (SLAT) documents. The SLA Model
assumes the basic domain concepts of ‘SLA’, ‘SLA Template’ and ‘service’ de-
scribed elsewhere in this book, but it is not a conceptual model of this domain. For
present purposes, an SLA is a document, the formal syntactic content of which is
specified in an abstract way by the SLA Model presented here.

The key objective in developing the SLA Model is to meet two ostensibly con-
flicting requirements of SLA@SOI: On one side, the model needs to support the
generic capabilities encapsulated by the ‘Generic SLA Manager’ (GSLAM; de-
scribed in Chapter ‘GSLAM – The Anatomy of the Generic SLA Manager’), requir-
ing that QoS guarantees and party obligations be specified in a domain-independent
manner at a fine-grained level of detail. On the other side, however, in order to meet
the diverse domain-specific requirements of the SLA@SOI test-bed scenarios and
real-world applications, the model must remain open to extension and customisa-
tion.

The domain-independent operations of the GSLAM span the entire SLA life-
cycle and include:

• quality-of-service (QoS) based service discovery,
• SLA negotiation, planning and optimisation of service delivery systems to

achieve the goals expressed in SLAs, and
• the subsequent monitoring and potential modification of these systems to

ensure these goals are indeed satisfied.

While complex and diverse, these capabilities can all, in essence, be characterised as
entailing some form of multiple constraint satisfaction, where the constraints to be
satisfied are the QoS guarantees expressed in SLAs. Accordingly, the SLA Model
must provide a common, domain-independent means for the detailed and precise
expression of these constraints. At the same time, however, it is impossible to fore-
see and enumerate all the possible requirements of domain-specific applications.
Thus the SLA Model also needs to support the definition and expression of custom
constraints.

To meet these conflicting requirements, the SLA Model is designed as a domain-
independent model of SLA(T)1 content grounded in an abstract constraint lan-
guage, the concrete elements of which are formally specified by ‘plug-in’ domain-
specific vocabularies. The constraint language provides a consistent, fine-grained
language supporting operations research, while the vocabularies provide for con-
trolled extensibility.

Historically, the SLA Model has been developed as a generalisation and refine-
ment of the web-service specific XML standards WS-Agreement [1], WSLA [2],
and WSDL [3] abstracting the notion of ‘web-service’ to the more generic ‘ser-
vice’, and eliminating the unnecessary restriction to XML as a representational for-
mat. The SLA Model thus supports the formulation of SLAs in any language for

1 We use the acronym SLA(T) to refer collectively to SLAs and SLATs

Keven T. Kearney, Francesco Torelli

The SLA Model 45

any service. To support as wide a range of domain-specific scenarios as possible,
the SLA Model only specifies the minimal content of SLA(T)s, encapsulating only
those aspects of SLA(T)s necessary for the generic functions of the GSLAM.

This chapter is organised as follows: Section 2 introduces the basic modelling
approach and provides foundational definitions. Sections 3 to 6 then describe, in or-
der, the content of SLA(T)s, service interface specifications, the abstract constraint
language, and domain-specific vocabularies. Section 7 closes the chapter with a de-
tailed walk-through of an example SLA Template represented in concrete XML
syntax.

2 Basic Concepts

The SLA Model is an abstract syntax specifying the formal content of serialised
SLA(T) documents. In purely formal terms, we define a document in generic terms
as an hierarchical organisation of symbols. This book, for example, is a document
comprised of a sequence of letters and punctuation marks (the symbols), hierarchi-
cally divided into chapters, sections, subsections, paragraphs, and so on. The SLA
Model is a syntax because it serves to specify the organisation of symbols in an SLA
document, but it is abstract in that it leaves unspecified the particular symbols used
to instantiate this organisation.

We will refer to any organisation of symbols as an expression (this sentence,
for example, is an expression), and to classes of expressions as expression-types.
The SLA Model is specified in terms of expression-types. Formally, we treat each
expression-type as a set whose members are the expressions which instantiate that
type. In the remainder of this chapter, we will use the terms type and expression-type
interchangeably. To avoid ambiguity, we will also use token (meaning an ’instance
of a type’) as synonymous with expression.

The SLA Model also draws a distinction between tokens per se and tokens that
are references to tokens. Specifically, if T is an expression-type, then:

• T : denotes the set of tokens of type T,
• ↑T : denotes the set of references to tokens of type T,
• ⇑T : denotes the set of references to (subtypes of) type T, while
• (↑)T : denotes either a token, or a reference to a token, of type T.

The universal type, which is the set of all possible expressions, is denoted by the
symbol L* (where ‘L’ may be read as ‘legal expressions’, or simply ‘language’).
The asterix is used here, and in subsequent type names, to indicate that the type is
abstract (meaning that it cannot be directly instantiated).

To capture the hierarchical organisation of documents, we introduce a first high-
level expression-type, E* ⊂ L*, denoting a class of entity expressions, each token
of which is just a collection of key/value attribute pairs. Attribute values can be
any kind of expression, including other entity expressions, which thus permits the
hierarchical nesting of entities. Formally:

46

E* ⊂ V* : each token is an unordered collection of ordered key/value attribute pairs <k,v>,
where: k ∈ NAME is the name (key) of the attribute, and v ∈ L* gives the attribute’s value.

The NAME type referred to in this definition is a datatype, in this case denoting
a class of simple names. All datatypes belong to a second high-level expression-
type, V* ⊂ L*, denoting a class of value expressions. In particular, a datatype is
a specialisation of a generic Constant* ⊂ V* type denoting constant values (e.g.
Boolean values (‘true’ or ‘false’) or metric quantities (‘4 s’, ‘10 bytes’, etc.), web
and e-mail addresses, and so on). We will describe V*, and explain datatypes in
more detail, in Section 5. Additional datatypes will be introduced in the text as the
need arises.

Every document is an entity expression, that is, a token of type E*. From the def-
inition above, this means that a document is just an ordered collection of key/value
attributes. In order to specify a document, therefore, we need to specify the partic-
ular entity-expression-types — i.e. subtypes of E*, henceforth just ‘entity-type’ —
from which the document is composed. As a first step, we introduce a generic doc-
ument-type, encapsulating the common attributes of all documents. We define this
document-type as follows (the notation is explained below):

Document* ⊂ E*
vocabularies ⊂ (↑)Vocabulary [0+]

The first line of this definition declares Document* as an expression-type that
specialises (i.e. is a subset of) the type E*. Each subsequent line defines a key/value
attribute pair, or attribute-type. In this case, there is only one attribute-type, whose
key is ‘vocabularies’ and whose value-type (denoted by the ⊂ relation) is an array
of 0+ (zero or more) (↑)Vocabulary expressions (i.e. either tokens or references
to tokens of the type Vocabulary). The type Vocabulary is the generic entity-type
for all vocabulary documents, and will be explained in detail in Section 6. For now,
it suffices to state that a vocabulary is a collection of expression-type definitions.
Semantically, the vocabularies attribute of a Document* token lists all the vocabu-
laries required to specify, and hence validate, the content of that Document* token.

To specify an SLA, we will also require two further entity-types — NamedEn-

tity* and Macro — which have the following definitions:

NamedEntity* ⊂ E*
name ⊂ NAME [1]

Macro ⊂ NamedEntity*
expression ⊂ V* [1]

A NamedEntity* token is simply an entity expression which carries a single
name attribute, the value of which can be used to refer to the token from other parts
of the document. Macro inherits the name attribute from NamedEntity*, and also
carries a second expression attribute, whose value can be any token of type V*. A
Macro token serves a similar purpose to a NamedEntity* token, but this time its

Keven T. Kearney, Francesco Torelli

The SLA Model 47

name value, when used as a reference, is always interpreted as referring to the value
of the token’s expression attribute, rather than the token itself. A Macro token with
the name ‘X’ and expression ‘abcdef’, for example, permits the expression ‘X’ to be
used in place of ‘abcdef’. Macros are essentially a convenience feature, providing a
means to decompose complex value expressions, and hence improve readability.

The next section builds on these basic definitions to specify the content of
SLA(T) documents.

3 SLAs and SLA Templates

Historically, the high-level structure of an SLA(T), as defined by the SLA Model,
has its roots in, and still maintains much in common with, WS-Agreement. Briefly,
an SLAT is a document which comprises three sections, describing:

• the parties to the agreement,
• the relevant services, specified in terms of their functional interfaces, and
• the agreement terms, including quality-of-service (QoS) guarantees and

other party obligations.

In formal terms, this document structure is captured by the following entity-type
definition:

SLAT ⊂ Document*
parties ⊂ Party [2+]

interfaceDeclrs ⊂ InterfaceDeclr [1+]

agreementTerms ⊂ AgreementTerm [1+]

macros ⊂ Macro [0+]

The types Party, InterfaceDeclr (interface declaration) and AgreementTerm

are all entity-types which we will define formally in the subsections below.
The SLAT entity-type also includes an optional macros attribute. Although

macros are essentially a convenience feature (as described earlier), their essentially
symbolic (referential) properties can be exploited to serve more significant purposes.
In SLA(T)s we exploit macros in order to encode customer options. This is done by
introducing a Macro subtype, Customisable, defined as follows:

Customisable ⊂ Macro
domain ⊂ Domain [1]

The Domain type is part of the abstract constraint language and will be defined
formally in Section 5.1. For now, it suffices to state that the domain attribute spec-
ifies a set of alternative values, with the value of the expression attribute then de-
noting a particular selection from these alternatives. In an SLAT this selection is
interpreted as the ‘default option’, while in SLAs it is interpreted as the ‘option

48

chosen by the customer’. The example SLAT in Section 7 illustrates this use of the
Customisable macro.

An SLA document has the same structure as an SLAT, but with additional at-
tributes giving the time at which the SLA was agreed, its effective lifespan, and a
reference to the template (if any) from which it was derived. To denote a specific
point-in-time, or time-stamp (e.g. ‘Wed Dec 15 18:38:0.0 CET’), we introduce a
DATETIME datatype. For the template reference we use a reference type (as ex-
plained in the previous section), in this case ↑SLAT. An SLA document can then be
modelled formally as:

SLA ⊂ SLAT
agreedAt ⊂ DATETIME [1]

effectiveFrom ⊂ DATETIME [1]

effectiveUntil ⊂ DATETIME [1]

template ⊂ ↑SLAT [0..1]

These two definitions completely capture the high-level structure of SLAs and
SLATs. In the following subsections we move stepwise through the document hier-
archy to specify SLA(T) content in more detail.

3.1 SLA(T) Parties

Information about a particular agreement party (e.g. the service provider, or the
service customer) is captured using a Party entity-type, which is a concrete special-
isation of a more generic Actor* entity-type. The relevant definitions are:

Actor* ⊂ NamedEntity*

Party ⊂ Actor*
role ⊂ ENUM [1]

operatives ⊂ Operative [0+]

The role attribute of Party serves to identify the role played by the party in
the agreement. Typically, this role will be either ‘service provider’ or ‘service cus-
tomer’, but there may be other roles peculiar to specific domains. Within any given
domain, however, there will only be a handful of valid roles. As such, we need a
mechanism by which we can state that the value of an attribute will be drawn from a
limited set of domain-specific alternatives. The ENUM datatype, denoting an enu-
merated list, serves this purpose (the enumerated items themselves are specified in
domain-specific vocabularies using DataValue tokens, described in Section 6).

Conceptually, each party to an SLA may be acting as an agent, or proxy, on behalf
of others. A company executive, for example, can sign a contract for a catering
service on behalf of the company’s employees, who are the end consumers proper

Keven T. Kearney, Francesco Torelli

The SLA Model 49

of the service. In the SLA Model, the individuals, if any, represented by a party
are referred to as ‘operatives’. A single SLA(T) may offer different QoS guarantees
to different categories of operative, with each category described by an Operative

entity-type expression:

Operative ⊂ Actor*

Note that both Party and Operative specialise the abstract Actor* type, and thus
describe SLA ‘actors’. As with all definitions in the SLA* model, the Party and Op-

erative definitions are intended to capture only the minimal information and/or dis-
tinctions required to specify the agreement terms. It is expected that domain-specific
vocabularies will extend these actor definitions to add more detailed information.

3.2 SLA(T) Interface Declarations

All information about the functional capabilities of a service is captured in the form
of an Interface entity-type, a detailed description of which will be given later in
Section 4. For the moment, it is sufficient to note that the Interface type essentially
encapsulates the information found in traditional ‘service descriptions’ (in partic-
ular, WSDL documents). What is important in an SLA(T) is that all the relevant
interfaces are declared, and this is achieved using an InterfaceDeclr entity-type,
which has the following definition (the parent Service* type will also be defined in
Section 4):

InterfaceDeclr ⊂ Service*
provider ⊂ ↑Actor* [1]

consumers ⊂ ↑Actor* [1+]

endpoints ⊂ Endpoint [1+]

interface ⊂ (↑)Interface [1]

Each InterfaceDeclr entry in an SLA(T) asserts an obligation on the part of
one of the SLA(T) actors, as given by the provider attribute, to provide specific
functional capabilities to one or more other actors, given by the consumers attribute.
Note that both provider and consumers attributes accept references to any actor —
i.e. to any Party or Operative — regardless of that actor’s role in the agreement.
It may be, for example, that we wish to oblige a service provider to send regular
status reports to the service customer, a prerequisite for which is that the customer
provides a suitable interface for receiving these reports.

In addition to specifying the relevant actors, each InterfaceDeclr also enumer-
ates one or more endpoints, each of which provides a location (address) and a com-
munications protocol by which interface operations may be invoked:

Endpoint ⊂ NamedEntity*

50

protocol ⊂ ENUM [1]

location ⊂ TEXT [0..1]

Just as with the Party role attribute (Section 3.1 above), the ENUM value-type
defined for the protocol attribute indicates that values will be drawn from some lim-
ited set of domain-specific alternatives, such as ‘SOAP’, ‘HTTP’, ‘e-mail’, ‘voice-
telephony’, ‘SMS’, and so on. The choice of protocol also determines the appro-
priate form for location values. For example, for ‘e-mail’, an e-mail address is re-
quired, while for ‘voice-telephony’, the location would be a telephone number. Ac-
cordingly, we define the value-type of the location attribute as TEXT, a datatype
denoting some opaque string constant. Note that the location attribute is optional,
since it is not necessarily the case that locations can be fixed in advance.

Finally, the interface that is the subject of the declaration is given by the interface
attribute, whose value may be an embedded Interface document, or more typically,
a reference to an Interface document accessible from some external source. Note
that several endpoints may be defined for a single interface, and that the same inter-
face may appear in multiple interface declarations.

3.3 SLA(T) Agreement Terms

The agreement terms section of an SLA(T) specifies the QoS guarantees and other
party obligations that form the substantive content of the agreement. An SLA(T)
may contain multiple agreement terms, each of which can define multiple guarantees
effective under varying conditions. The AgreementTerm entity-type is defined as
follows:

AgreementTerm ⊂ NamedEntity*
pre ⊂ Constraint* [0..1]

macros ⊂ Macro [0+]

guarantees ⊂ Guarantee* [1+]

The pre attribute specifies (optional) pre-conditions on the agreement term, defin-
ing the conditions under which the agreement term is effective. (If none are given the
agreement term is always effective.) These pre-conditions take the form of a Con-

straint* expression, which is part of the abstract constraint language and will be
explained in detail in Section 5.1. The macros attribute is provided for convenience
or for encoding agreement-term-specific options (cf. the use of the Customisable

macro described earlier).
The most significant part of an agreement term are its guarantees, which come

in two forms: guaranteed states and guaranteed actions. Formally, we first define
an abstract Guarantee* type to capture the common attributes of both states and
actions; namely, these are a reference to the actor obligated to ensure the guarantee is

Keven T. Kearney, Francesco Torelli

The SLA Model 51

satisfied, and an optional Constant* (described in Section 5.2) serving as a domain-
specific indication of the guarantee’s priority:

Guarantee* ⊂ NamedEntity*
priority ⊂ Constant* [0..1]

obligated ⊂ ↑Actor* [1]

A guaranteed state describes some state of affairs that the obligated actor is re-
sponsible for maintaining. Typically, this will be a QoS constraint, such as comple-
tion time of service X is less than 5 s or service X has greater than 90% availability.
We refer to this state of affairs as the guarantee’s post-condition (since it represents
the desired effect of the guarantee). To allow for multiple guaranteed states effec-
tive under different contingencies, an optional pre-condition is also permitted. Thus
a guaranteed state is a Guarantee* with additional pre and post constraints:

State ⊂ Guarantee*
pre ⊂ Constraint* [0..1]

post ⊂ Constraint* [1]

A guaranteed action, instead, describes an obligation on an actor to perform (or
refrain from performing) some specific action under specific conditions. Simple ex-
amples include obligations on the service provider to send periodic reports to the
customer, or to pay penalties in the case of SLA violations. The description of a
guaranteed action entails four elements:

• a ‘policy’ stating whether the action is mandatory, forbidden or optional,
• a specification of the (class of) events which trigger (or, depending on policy,

inhibit) the action, referred to as the guaranteed action’s pre-condition,
• a time limit within which the action must be performed (or during which the

action is prohibited),
• a description of the action itself, which leads to the guaranteed action’s post-

condition,

The entity-type definition encapsulating this information is as follows:

Action ⊂ Guarantee*
policy ⊂ ENUM [1]

pre ⊂ ↑EventClass* [1]

limit ⊂ DURATION [1]

post ⊂ ActionDef* [1]

Formally, the action’s pre-condition (trigger) is given as a reference to an Event-

Class*, identifying a class of events. The SLA Model defines several classes of
event, the simplest of which are DATETIME constants (i.e. time-stamps). Addi-
tional classes of event can be defined by domain-specific vocabularies (Section 6).

52

The action’s post-condition, instead, is given as an ActionDef*, which is essen-
tially an empty placeholder to be filled by domain-specific action descriptions:

ActionDef* ⊂ E*

By way of illustration, the SLA Model defines an ActionDef* subtype represent-
ing a ‘payment’, i.e. a transfer of economic value. Since the actor obliged to make
the payment is already given (see Guarantee*), the formal definition of a payment
need only identify the recipient and the value:

Payment ⊂ ActionDef*
recipient ⊂ ↑Actor* [1]

value ⊂ V* [1]

Other action ActionDef* subtypes defined by the SLA Model are:

• Invocation : denoting the invocation of a specific interface operation,
• Termination : denoting the termination of an SLA,
• Workflow : denoting a composition of actions.

The example SLA Template presented in Section 7 illustrates the use of both
guaranteed states and actions.

4 Interface Specifications

The functional capabilities of services are captured as functional interface specifica-
tions. The notion of ‘interface’ employed in the SLA Model is essentially a gener-
alisation of WSDL 2.0, abstracting from web-service to ‘service’, and from the use
of XML as concrete syntax. Accordingly, an interface is essentially a collection of
named operations. For modularity, each interface specification may be a document
in its own right, and interfaces may obtain specialisation hierarchies (i.e. extension,
with operation inheritance). The Interface entity-type is defined as follows:

Interface ⊂ Document*
extended ⊂ ↑Interface [0+]

operations ⊂ Operation [0+]

An interface operation is effected by a choreographed exchange of messages,
specified by assigning appropriate message types to particular roles, or slots, in a
standard exchange pattern. Potential faults (or exceptions) are specified in a similar
fashion (we refer readers to the WSDL 2.0 specification for a more detailed expla-
nation of these concepts). The Operation entity-type is defined as follows, with the
value of the message label attribute identifying the relevant pattern slot:

Keven T. Kearney, Francesco Torelli

The SLA Model 53

Operation ⊂ Service*
pattern ⊂ UUID [1]

messages ⊂ Message [0+]

faults ⊂ Message [0+]

Message ⊂ E*
message label ⊂ NAME [1]

valuetype ⊂ ⇑MessageType* [1]

MessageType* ⊂ E*

Service* ⊂ NamedEntity*

Note that the MessageType* entity-type is defined as an empty specialisation of
E*, which means that messages may have arbitrary content. MessageType* sub-
types are defined in vocabularies (Section 6) in just the same way that any domain-
specific entity-type is defined (an example is given in Section 7).

The parent type of Operation is the abstract entity-type Service*, which we first
encountered in the previous section as the parent of InterfaceDeclr. To recap, an
InterfaceDeclr comprises an Interface, which in turn comprises a set of Opera-

tions. The Service* type can therefore be understood as encapsulating (through its
subtypes) a collection of service Operations.

In formal terms, an Operation, as we have just defined it, is essentially a pre-
scription, or protocol, for exchanging messages. In contrast, when we speak of the
invocation of an Operation, we are instead referring to the execution of this proto-
col; that is, we refer to a particular exchange of particular messages. In other words,
an invocation is a specific physical event occurring at a specific point in space in
time. Distinct invocations of the same Operation will thus have idiosyncratic prop-
erties (e.g. time and place) which are not represented at the level of protocol de-
scription. To describe such event properties, the SLA Model provides a dedicated
EventClass* type (see also guaranteed actions in the previous section). For invoca-
tion events in particular, the model provides InvocationClass*, the formal definition
of which is as follows:

InvocationClass* ⊂ EventClass* ⇐⇒ Service*
invocation uuid ⊂ UUID [1]

request time ⊂ DATETIME [1]

reply time ⊂ DATETIME [1]

endpoint uuid ⊂ UUID [1]

consumer uuid ⊂ UUID [1]

The attributes of InvocationClass* denote properties of invocation events. The
value of request time, for example, gives the point in time at which an invocation re-
quest was received, while the value of endpoint uuid identifies the endpoint at which

54

the request was received. As such, it should be clear that tokens of the Invocation-

Class* type, or indeed of any EventClass* type, always constitute descriptions of
particular events.

This, however, constitutes a problem. Since the purpose of a SLA(T) is to con-
strain future events (those constituting the service to be delivered), it is unlikely that
EventClass* tokens will ever appear in SLA(T)s. Nevertheless, it is useful to refer
to event properties. We may wish, for example, to define different QoS guarantees
for a given service according to the request time, or endpoint uuid of invocations.
To permit this, the SLA Model requires that each EventClass* type is associated
with a corresponding entity-type. In the case of InvocationClass*, the associated
entity-type is Service* (indicated by the ⇐⇒ symbol in the formal definition). This
association permits InvocationClass* attributes to be referenced as if they were
attributes of a Service* token.

This completes the SLA Model specification of SLA, SLAT and Interface docu-
ment types. As stated in the introduction, all these definitions are minimal, encapsu-
lating only the common, domain-independent content of SLA(T) documents. As we
will see in Section 6, all the entity-types defined here may be arbitrarily extended
by domain-specific vocabularies.

5 Value Types (the abstract constraint language)

The entity-type definitions presented in preceding sections made use of two im-
portant — but as yet undefined — expression types, namely: Constraint* (used for
specifying QoS guarantees) and Constant* (the abstract supertype of all datatypes).
These types both specialise the high-level type V* ⊂ L*, which denotes a class of
‘value types’. A third value-type, thus far unmentioned, is Parametric ⊂ V*, denot-
ing an extensible set of expressions with a parametric, or functional, form. Examples
include arithmetic and set operators (+, ×, ⊂, ∈, etc), and QoS ‘metrics’ (e.g. com-
pletion time, arrival rate, availability, etc). Taken together, these types constitute
an abstract constraint language, which we describe in the following subsections.

5.1 Constraint Expressions

The starting point in the abstract constraint language, is the Constraint* expression
type. A constraint expression is some statement, or formula, which places bounds
on the permitted value of some variable. A constraint may be atomic or compound.
Examples of atomic constraints include the following:

• X < 4,
• X + Y >= Z,
• foo(Y) ! = goo(Z),
• Z ∈ { a, b, c },

Keven T. Kearney, Francesco Torelli

The SLA Model 55

• completion time(S) < 10 s,

In general, an atomic constraint could be defined as an ordered relation between
a variable and a value. The expression ‘X < 4’, for example, would comprise the
relation ‘<’ between values ‘X’ and ‘4’. In the SLA Model, however, we take a
slightly more convoluted approach, and define an atomic constraint as a variable
(e.g. ‘X’) bound to lie in some domain (e.g. ‘< 4’). This approach allows the domain
part of the expression to be employed independently of constraints.

A compound constraint is some logical combination of sub-constraints. For max-
imum flexibility we also allow both atomic and compound domains, where a com-
pound domain is some logical combination of sub-domains (e.g. the conjunction ‘>
4 and < 10’).

To model constraints, we first introduce the following abstract types:

Constraint* ⊂ V* : the abstract supertype of constraints,

Domain* ⊂ V* : the abstract supertype of domains,

Constant* ⊂ V* : the abstract supertype of constants,

The concrete atomic and compound versions of constraints and domains are then
given by the following expression type definitions:

AtomicConstraint ⊂ Constraint* : each token is an ordered pair <c,d>, where c is a non-
empty array (an ordered list) of Constant* values, each member of which is constrained to
lie in the domain d ∈ Domain*.

CompoundConstraint ⊂ Constraint* : each token is an ordered pair <o,C>, where o ∈
UUID uniquely identifies a compound operator (e.g. ‘and’, ‘or’, or ‘not’), and C ⊂ Con-

straint* is an unordered set of sub-constraints.

AtomicDomain ⊂ Domain* : each token is an ordered pair <o,c>, where o ∈ UUID

uniquely identifies a domain operator (e.g. <, >=, ! =, etc), and c ∈ Constant* specifies a
domain boundary (according to the semantics of the domain operator).

CompoundDomain ⊂ Domain* : each token is an ordered pair <o,D>, where o ∈ UUID

uniquely identifies a compound operator (e.g. ‘and’, ‘or’, or ‘not’), and D ⊂ Domain* is an
unordered set of sub-domains.

Note that the constrained variable in an AtomicConstraint is defined as an array.
So, for example, the constraint ‘X < 4’ would represent ‘[X] < 4’ (where ‘[..]’
denotes an array). Semantically, a constraint such as ‘[X,Y] < 4’ could equally
be expressed as a conjunction ‘(X < 4) and (Y < 4)’. Constraints are defined in
this way to ensure a consistent semantics for EventClass* types (Section 4), a full
discussion of which is beyond the scope of this chapter.

The SLA Model predefines several domain operators, namely: the standard com-
parison operators (<, >, <=, >=, = and ! =), a ‘matches’ operator for comparing
character strings against regular expressions, and a set membership operator (‘mem-
ber of’). Three compound (logical) operators are also defined: ‘and’ (conjunction),
‘or’ (disjunction) and ‘not’ (negation). If required, additional, domain-specific op-
erators can be specified using vocabularies, as described in Section 6.

56

5.2 Constants and Datatypes

Constant expressions, encapsulated by the abstract type Constant*, are the most
primitive expressions of the SLA Model, constituting the terminal nodes in docu-
ment content hierarchy. Constant expressions include such things as metric quan-
tities (e.g. ‘4 s’, ‘10 MB’, ‘90%’, etc.), e-mail and web addresses (e.g. ‘http://sla-
at-soi.eu/’), Boolean values (e.g. ‘true’ and ‘false’), time-stamps (e.g. ‘Wed Dec 15
18:38:0.0 CET’), and others. The term datatype is used informally to refer to any
subtype of Constant*.

We have already encountered some of the datatypes built-in to the SLA Model.
The complete list is as follows:

• TEXT : opaque (unparsed) character strings,
• REGEX : regular expressions (explained below),
• ENUM : enumerations (e.g. Section 3.1),
• PATH : typically takes the form of a navigable route through the document hierarchy,

identifying some target expression token,
• UUID : a universally unique identifier (e.g. a URI),
• NAME : used in particular as the name of a NamedEntity*,
• CARD : cardinality constraints (e.g. ‘0..1’, ‘1+’), etc.
• BOOL : Boolean values,
• STND : standard forms (explained below),
• NUMERIC* : abstract supertype of numeric quantities.

The NUMERIC* datatype is an abstract supertype encapsulating numeric con-
stants, and, in particular, metric quantities. The SLA Model provides the following
built-in specialisations:

• QUANTITY : non-metric real values, e.g. ‘1.435’, ‘pi’,
• COUNT : non-metric integer values,
• PERCENT : percentiles, e.g. ‘90%’,
• DURATION : periods of time, e.g. ‘4 s’, ‘2 days’,
• CURRENCY : e.g. ‘10 Euros’,
• DATASIZE : e.g. ‘5 bytes’, ‘100 GB’,
• DATARATE : e.g. ‘1 GB per s’ (gigabytes per second),
• TXRATE : transaction rates, e.g. ‘2 tx per day’ (transactions per day),
• LENGTH : e.g. ‘4 m’, ‘10 cm’,
• AREA : e.g. ‘10 m2’ (metres squared),
• FREQUENCY : e.g. ‘200 Hz’, ‘33 rpm’,
• WEIGHT : e.g. ‘25 kg’,
• POWER : e.g. ‘300 mW’,
• ENERGY : e.g. ‘37 KWh’,

To compare and validate constant expressions, we require a means to determine
the datatype of any given constant token. To determine that the phrase ‘4 kg < 10 J’
is invalid, for example, we need to know that ‘4 kg’ and ‘10 J’ denote measures with
different (and incomparable) datatypes (WEIGHT and ENERGY respectively). To
achieve this, datatypes can be associated with regular expressions, which constrains
the format of tokens, and allows for the determination of type by pattern matching.
The WEIGHT datatype, for example, has an associated regular expression ‘[x] kg’,
where ‘[x]’ is interpreted as a placeholder for a number, such that any character

Keven T. Kearney, Francesco Torelli

http://sla-at-soi.eu/%E2%80%99%00
http://sla-at-soi.eu/%E2%80%99%00
http://sla-at-soi.eu/%E2%80%99%00

The SLA Model 57

sequence matching ‘[x] kg’ will be interpreted as a WEIGHT token. The built-in
REGEX datatype denotes the class of such regular expressions.

The STND datatype extends this use of regular expressions to also allow def-
initions of data-conversion formula. The REGEX token ‘[x] hrs’, for example, is
mapped onto the STND token ‘[x*3600] s’ (which is referred to as its standard
form), and serves to encode the formula required to convert a duration expressed in
hours into the equivalent duration expressed in seconds.

All the datatypes listed above are defined as part of the SLA Model. In Section
6 we will see how vocabularies can be used to define additional datatypes to meet
domain-specific requirements.

5.3 Parametrics

The third, and final class of value tokens is the Parametric ⊂ V* type, denoting ex-
pressions which have a parametric, or functional, form. Common examples include:

• arithmetic operations, e.g. ‘X + 4’, ‘8 × 12’,
• aggregate operations, e.g. ‘sum([1,2,3])’, ‘mean([4,5,6])’
• set operators, e.g. ‘X ∈ [a,b,c] ∪ [d,e,f]’,
• QoS metrics, e.g. ‘completion time(S)’, where S denotes a set of service invocations.

The formal definition of Parametric type is as follows:

Parametric ⊂ V* : each token is an ordered pair <f,P>, where f uniquely identifies an
operator (i.e. a ‘function’ or ‘predicate’ name), and P ⊂ V* is an ordered set of parameters.

For validation purposes, we also need a means to specify, for each function name
(i.e. f in the preceding definition) the required arity and types of its parameters.
In addition, Parametric expressions have the special property that, as well as con-
forming to a syntactic type, they also obtain a semantic ‘role’, which is defined
as the syntactic type to which the expression evaluates when interpreted. The to-
ken ‘sum([2 mins, 3 s])’, for example, denotes the summation over the durations ‘2
mins’ and ‘3 s’ which evaluates to the single duration ‘123 s’. The semantic role
of the token ‘sum([2 mins, 3 s])’ is the type of this evaluated result, namely, the
datatype DURATION. The significance of the semantic role is that Parametric ex-
pressions may be used anywhere that tokens with their semantic role are permitted.
If a DURATION constant is required, for example, then any Parametric expression
which evaluates to a DURATION constant may be used instead.

The SLA Model allows all this information to be captured formally in vocabu-
laries (Section 6). The sum operator, for example, is formally defined as a single
non-empty array of some numeric type N ⊂ NUMERIC as parameter, and as eval-
uating to a single value of the same type. We can express this concisely with the
following notation:

• sum(N[1+]) → N[1] ⊂ NUMERIC.

58

The SLA Model defines many built-in Parametric* types covering, among oth-
ers, the common arithmetic, aggregation and set operators as well as QoS metrics.
A complete description of all the parametric types would require more space than
is available here. To give some flavour of the model, however, the following is a
complete list of formal definitions for the built-in QoS metrics:

• accessibility(↑InvocationClass*[1]) → QUANTITY[0+].
• arrival rate(↑InvocationClass*[1]) → TXRATE[0+].
• availability(↑InvocationClass*[1]) → QUANTITY[0+].
• completion time(↑InvocationClass*[1]) → DURATION[0+].
• isolation(↑InvocationClass*[1]) → BOOL[0+].
• mttf (↑InvocationClass*[1]) → DURATION[1].
• mttr(↑InvocationClass*[1]) → DURATION[1].
• non repudiation(↑InvocationClass*[1]) → TEXT[1].
• regulatory(↑InvocationClass*[1]) → TEXT[1+].
• supported standards(↑InvocationClass*[1]) → TEXT[1+].
• throughput(↑InvocationClass*[1]) → TXRATE[1].

To close this section, we should mention two additional Parametric types that
will be used in the example SLAT in Section 7:

• violation(↑Guarantee*[1]) → E[1] ⊂ ↑EventClass*.
• union(E[2+]) → E[1] ⊂ ↑EventClass*.

The first of these, violation, is used to specify a class of events whose mem-
bers are the individual occurrences of the violation of some guarantee. The second,
union, serves to combine diverse classes of event into a single event class. By com-
bining the two, we can specify a class of events whose members are the occurrences
of violations of any of a given set of guarantees.

Additional domain-specific Parametric types can be specified using vocabular-
ies, which we describe in the next section.

6 Domain-Specific Vocabularies

The previous sections outlined the basic content of the SLA Model, which, by way
of summary, comprises an abstract constraint language (Section 5), a document
model for Interface specifications (Section 4), and, building on these, document
models for SLAs and SLATs (Section 3). Many aspects of the SLA Model, however,
are open and extensible, supporting customisation to domain-specific requirements.
Extensions to the model are specified using vocabularies, which we describe in this
section.

A vocabulary is a document comprising a list of vocabulary terms, each of which
specifies a particular extension to the SLA Model. Formally, a vocabulary is encap-
sulated by the entity-type Vocabulary:

Vocabulary ⊂ Document*
terms ⊂ Term* [1+]

Keven T. Kearney, Francesco Torelli

The SLA Model 59

The type Term* is the abstract supertype of all vocabulary terms, of which there
are seven concrete specialisations, each serving a different purpose. For reasons of
space we can not present their complete formal definitions, but the following list
provides brief informal descriptions:

Term* ⊂ E* : abstract supertype of vocabulary terms.

EntityType ⊂ Term* : each token provides a formal definition of an entity-type (i.e. a sub-
type of E*). All the formal entity-type definitions provided in this chapter — for example,
the Vocabulary definition above — are perfectly valid examples of EntityType tokens.

DataType ⊂ Term* : each token provides a formal definition of a datatype (i.e. a subtype
of Constant*), which comprises a unique identifier (UUID) and supertype.

DataValue ⊂ Term* : each token associates a datatype with a regular expression (REGEX)
and optional standard form (STND), the purposes of which are explained in Section 5.2.

ParametricType ⊂ Term* : each token specifies a parametric operator (UUID), together
with its required arity and parameter types, and its semantic role. The ‘QoS metrics’ listed
in Section 5.3 are all valid examples of ParametricType tokens.

DomainOp ⊂ ParametricType : each token specifies a domain operator (cf the definition
of AtomicDomain in section 5.1).

CompoundOp ⊂ Term* : each token specifies a compound operator (cf. the definitions of
CompoundConstraint and CompoundDomain in Section 5.1).

EventClass* ⊂ Term* : each token specifies a class of events, defining a unique identifier
(UUID) for the class, the entity-type with which it is associated, and a list of monitorable
attributes. The InvocationClass* defined in Section 4 is a valid example of an EventClass*

token.

Vocabulary documents thus allow for a considerable degree of domain-specific
customisation, supporting the definition of new entity-types, datatypes and data-
formats, parametric, domain and compound operators, and classes of event.
Domain-specific applications may pick and choose from existing vocabularies, or
create entirely new ones, as per their needs, thus supporting a modular approach to
development. Individual vocabularies are identified by a URI, which also constitutes
a namespace (in the manner of XML) for the terms defined in that vocabulary.

Thus the SLA Model itself can in large part be specified using vocabularies. The
SLA Model is specified in four distinct parts: The first, referred to as the ‘core’,
comprises all the basic definitions given in Section 2, the abstract constraint lan-
guage (Section 5), and the definition of vocabulary documents (this section). In-
terface specifications (Section 4), SLAs and SLATs (Section 3), and QoS Metrics
(Section 5.3) are then each specified in distinct vocabularies. The namespace URIs
of these vocabularies are as follows:

• Core : http://www.slaatsoi.org/coremodel#
• Interfaces : http://www.slaatsoi.org/interfaces#
• SLA(T)s : http://www.slaatsoi.org/slamodel#
• QoS Metrics : http://www.slaatsoi.org/commonTerms#

http://www.slaatsoi.org/coremodel#
http://www.slaatsoi.org/interfaces#
http://www.slaatsoi.org/slamodel#
http://www.slaatsoi.org/commonTerms#

60

For simplicity, we have until now ignored these namespace URIs. It
should be borne in mind, however, that all the expression types defined
by the SLA Model are formally identified by URIs. The formal identifier
for the NamedEntity* entity-type, to take a random example, is the URI
http://www.slaatsoi.org/coremodel#NamedEntity.

In the final section, below, we provide an example SLAT which illustrates how
the SLA Model is applied, and how diverse vocabularies work together.

7 An Example SLA

We close this chapter on the SLA Model with a concrete example of an SLA Tem-
plate. Since the SLA Model is an abstract syntax, the first task is to choose an
appropriate concrete syntax for the example. For simplicity, we will use XML1,
assuming that it is familiar to most readers. Line numbers are added to facilitate
description. The content of the SLAT will be described as the example progresses.

We start by describing the service that is the subject of the SLAT. Since our fo-
cus is the SLAT itself, we will keep the service simple and intuitive: a product pur-
chasing service comprising a single operation, ‘BuyProduct’, offered by a provider
‘Fred’. The interface for the service is specified as an interface document, i.e., an
instance (token) of the entity-type Interface (described in Section 4). The complete
document is as follows:

1: <iface:Interface
2: xmlns:iface = "http://www.slaatsoi.org/interfaces#"
3: >
4: <vocabularies>
5: http://www.fred.com/freds_vocab
6: </vocabularies>
7: <operations>
8: <iface:Operation>
9: <name>BuyProduct</name>
10: <pattern>http://www.w3.org/ns/wsdl/in-out</pattern>
11: <messages>
12: <iface:Message>
13: <message_label>In</message_label>
14: <valuetype>
15: http://www.fred.com/freds_vocab#BuyProduct.In
16: </valuetype>
17: </iface:Message>
18: </messages>
19: </iface:Operation>
20: </operations>
21: </iface:Interface>

1 For reasons of space we do not provide an XML Schema. The mapping from the abstract syntax
to XML should be, however, self-evident.

Keven T. Kearney, Francesco Torelli

http://www.slaatsoi.org/coremodel#NamedEntity
http://www.slaatsoi.org/interfaces#
http://www.fred.com/freds_vocab
http://www.w3.org/ns/wsdl/in-out</pattern
http://www.fred.com/freds_vocab#BuyProduct.In

The SLA Model 61

The opening element (lines 1–3) announces the document to be an instance (to-
ken) of the entity-type iface:Interface, where ‘iface’ denotes the URI namespace
‘http://www.slaatsoi.org/interfaces#’, defined by the SLA Model for interface docu-
ment terms. The first child element (lines 4–6) lists the various vocabularies against
which the document content must be validated. In this case, just one vocabulary is
used (available at the URI ‘http://www.fred.com/freds vocab’), which we will de-
scribe shortly.

The remaining content (lines 7–20) defines an interface operation with the name
‘BuyProduct’ (line 9), and standard ‘in-out’ messaging pattern, as identified by
the URI ‘http://www.w3.org/ns/wsdl/in-out’ (line 10). Lines 12–17 then assign a
message-type, identified as ‘http://www.fred.com/freds vocab#BuyProduct.In’ (line
15), to the pattern role ‘In’ (line 13). For modularity, the message type is defined in
the imported domain-specific vocabulary (line 5). This vocabulary is a distinct doc-
ument, whose content is as follows:

1: <core:Vocabulary
2: xmlns:core = "http://www.slaatsoi.org/coremodel#"
3: xmlns:iface = "http://www.slaatsoi.org/interfaces#"
4: >
5: <vocabularies>
6: http://www.slaatsoi.org/interfaces
7: </vocabularies>
8: <terms>
9: <core:EntityType>

10: <uuid>
11: http://www.fred.com/freds_vocab#BuyProduct.In
12: </uuid>
13: <supertype>
14: http://www.slaatsoi.org/interfaces#MessageType
15: </supertype>
16: <concrete>yes</concrete>
17: <definition>
18: defines the ’In’ message of ’BuyProduct’
19: </definition>
20: <attributeTypes>
21: <core:AttributeType>
22: <name>product_id</name>
23: <valuetype>
24: http://www.slaatsoi.org/coremodel#TEXT
25: </valuetype>
26: <cardinality>1</cardinality>
27: <definition>
28: identifies the product to buy
29: </definition>
30: </core:AttributeType>
31: </attributeTypes>
32: </core:EntityType>
33: </terms>
34: </core:Vocabulary>

As before, the opening element announces the document entity-type, which is
now core:Vocabulary, with ‘core’ denoting ‘http://www.slaatsoi.org/coremodel#’,

http://www.slaatsoi.org/interfaces#%E2%80%99
http://www.fred.com/freds
http://www.w3.org/ns/wsdl/in-out%E2%80%99
http://www.fred.com/freds
http://www.slaatsoi.org/coremodel#
http://www.slaatsoi.org/interfaces#
http://www.slaatsoi.org/interfaces
http://www.fred.com/freds_vocab#BuyProduct.In
http://www.slaatsoi.org/interfaces#MessageType
http://www.slaatsoi.org/coremodel#TEXT
http://www.slaatsoi.org/coremodel#%E2%80%99

62

the URI namespace of the core SLA Model terms. Since the purpose of this vocabu-
lary is to define the message-type used by the ‘BuyProduct’ operation, we first need
to import (in lines 5–7) the ‘http://www.slaatsoi.org/interfaces’ vocabulary in which
‘iface:MessageType’ is defined (the core vocabulary is imported automatically and
does not need to be included). Vocabulary imports are transitive in the SLA Model,
which means that the interfaces vocabulary is also automatically available to the
interface specification document.

The message-type required for the interface is specified using an
core:EntityType vocabulary term (lines 9–32). This term defines
a new concrete (line 16) subtype of iface:MessageType (line 13),
‘http://www.fred.com/freds vocab#BuyProduct.In’ (line 11), whose purpose
is described in the scope-note (lines 17–19). It has a single attribute, defined in
lines 20–31, with the name ‘product id’ (line 22), whose value is a single (line
23) opaque character string (datatype core:TEXT; line 24). Using the notation
introduced in Section 2, we would write this entity-type definition as:

http://www.fred.com/freds vocab#BuyProduct.In ⊂ iface:MessageType*
product id ⊂ core:TEXT [1]

These two documents fully specify the service interface. The last step is to cre-
ate an SLAT to specify quality constraints and party obligations in respect of this
service.

In outline, the SLAT will provide customers the option of two ‘service levels’:
basic and premium. At the basic level, the customer is guaranteed a completion
time for service invocations of less than 2 hours, while at the premium level, this is
improved to less than 30 minutes. Each time a guarantee is violated, the provider,
‘Fred’, is given two weeks to pay a penalty of 10 Euros. The complete SLAT is
given by the remaining XML listings below, which for ease of description we will
explain section by section.

The opening XML elements are straightforward, announcing that the document
is an SLAT, and enumerating namespace abbreviations. In addition, for convenience
only, we have also added XML entity declarations (lines 1–6) denoting the core,
interface, SLA(T) and QoS Metric URIs. The SLAT also needs to explicitly import
the SLA(T) and QoS Metric vocabularies (lines 13–16).

1: <!DOCTYPE E [",
2: <!ENTITY core "http://www.slaatsoi.org/coremodel#">
3: <!ENTITY iface "http://www.slaatsoi.org/interfaces#">
4: <!ENTITY sla "http://www.slaatsoi.org/slamodel#">
5: <!ENTITY qos "http://www.slaatsoi.org/commonTerms#">
6:]>",
7: <sla:SLAT>
8: xmlns:core = "&core;"
9: xmlns:iface = "&iface;"
10: xmlns:sla = "&sla;"
11: xmlns:qos = "&qos;"
12: >
13: <vocabularies>

Keven T. Kearney, Francesco Torelli

http://www.slaatsoi.org/interfaces%E2%80%99
http://www.fred.com/freds
http://www.fred.com/freds
http://www.slaatsoi.org/coremodel#
http://www.slaatsoi.org/interfaces#
http://www.slaatsoi.org/slamodel#
http://www.slaatsoi.org/commonTerms#

The SLA Model 63

14: <item>http://www.slaatsoi.org/commonTerms</item>
15: <item>http://www.slaatsoi.org/slamodel</item>
16: </vocabularies>

The first content proper of the SLAT is a parties section (lines 17–26), which
in this case distinguishes just two SLA actors: the provider, ‘Fred’, and customer,
‘TheCustomer’. Note that the SLA Model requires merely that relevant parties are
distinguished and assigned SLA(T) roles. Additional party information can be in-
cluded, but is treated as domain-specific; that is, additional party information needs
to be specified by domain-specific extensions to the basic SLA(T) document defini-
tion.

17: <parties>
18: <sla:Party>
19: <name>Fred</name>
20: <role>provider</role>
21: </sla:Party>
22: <sla:Party>
23: <name>TheCustomer</name>
24: <role>customer</role>
25: </sla:Party>
26: </parties>

Having identified the key actors, we next declare (in lines 27–43) all the service
interface(s) which are the subject of the SLAT. In this case, there is only the prod-
uct purchase interface defined earlier, whose interface specification document we
will reference (line 40) using the URI ‘http://www.fred.com/freds service’. Note,
however, that the use of a URI here is not obligated by the SLA Model. Refer-
ences may take any form, and the mechanism(s) by which references are resolved
is application-specific. The SLA@SOI implementation assumes the use of URIs
mapped to URLs.

The sla:InterfaceDeclr entity token specifies that this interface is to be provided
by ‘Fred’ (line 30), that the intended consumer is ‘TheCustomer’ (line 31), and that
it is accessible only by ‘e-mail’ (line 36) at the address ‘fred@xyz.com’ (line 35).
We employ an e-mail protocol here for no other reason than to emphasise that the
SLA Model is not restricted to standard web-service protocols. For internal refer-
ence, both the sla:InterfaceDeclr and sla:Endpoint token are assigned identifiers:
‘IF1’ and ‘EPR1’ (resp.).

27: <interfaceDeclrs>
28: <sla:InterfaceDeclr>
29: <name>IF1</name>
30: <provider>Fred</provider>
31: <consumers>TheCustomer</consumers>
32: <endpoints>
33: <sla:Endpoint>
34: <name>EPR1</name>
35: <location>fred@xyz.com</location>
36: <protocol>e-mail</protocol>
37: </sla:Endpoint>
38: </endpoints>

http://www.slaatsoi.org/commonTerms</item
http://www.slaatsoi.org/slamodel</item
http://www.fred.com/freds
mailto:fred@xyz.com%E2%80%99

64

39: <interface>
40: http://www.fred.com/freds_service
41: </interface>
42: </sla:InterfaceDeclr>
43: </interfaceDeclrs>

In the next section, macros (lines 44–63), we introduce the ‘service level’ options
together with any other macros that may be useful. The ‘service level’ options are
encoded in lines 45–56 as a sla:Customisable macro ‘X’ (line 46), denoting an
expression whose value must be either ‘premium’ (line 51) or ‘basic’ (line 52),
with ‘premium’ as the default option (line 47). For convenience, we also define a
second macro ‘S’ (line 58), denoting the expression ‘IF1/interface[0]/BuyProduct’
(line 60). This expression is a core:PATH token which resolves to the ‘BuyProduct’
iface:Operation entity in the embedded interface document. (As with all references,
the particular format of the path is application-specific.) As such, the value ‘S’ can
from now on be used to refer to the ‘BuyProduct’ operation.

44: <macros>
45: <sla:Customisable>
46: <name>X</name>
47: <expression>premium</expression>
48: <domain>
49: <core:AtomicDomain op="&core;member_of">",
50: <array>
51: <item>premium</item>
52: <item>basic</item>
53: </array>
54: </core:AtomicDomain>
55: </domain>
56: <sla:Customisable>
57: <core:Macro>
58: <name>S</name>
59: <expression>
60: IF1/interface[0]/BuyProduct
61: </expression>
62: </core:Macro>
63: </macros>

The final section of the SLAT details the agreement terms. For the present exam-
ple, there is only one agreement term, given the name ‘AT1’. The opening elements
are as follows (lines 64–67):

64: <agreementTerms>
65: <sla:AgreementTerm>
66: <name>AT1</name>
67: <guarantees>

The required completion time and penalty guarantees (see above) will be encoded
as two guaranteed states and a guaranteed action, named ‘G1’, ‘G2’ and ‘G3’ (re-
spectively). The first guaranteed state (lines 68–89) encodes an obligation on ‘Fred’
(line 70) to ensure that, in the case that the ‘basic’ service level is selected, the com-
pletion time of any invocation of the ‘BuyProduct’ operation (line 82) is less than

Keven T. Kearney, Francesco Torelli

http://www.fred.com/freds_service

The SLA Model 65

2 hours (line 85). In a more concise form, we may express this guarantee as the
following rule: if X = ‘basic’, then completion time(S) < 2 hrs.

68: <sla:State>
69: <name>G1</name>
70: <obligated>Fred</obligated>
71: <pre>
72: <core:AtomicConstraint>
73: <item>X</item>
74: <core:AtomicDomain op="&core;equals">
75: basic
76: </core:AtomicDomain>
77: </core:AtomicConstraint>
78: </pre>
79: <post>
80: <core:AtomicConstraint>
81: <core:Parametric op="&qos;completion_time">
82: S
83: </core:Parametric>
84: <core:AtomicDomain op="&core;less_than">
85: 2 hrs
86: </core:AtomicDomain>
87: </core:AtomicConstraint>
88: </post>
89: </sla:State>

In the same manner, the second guaranteed state (lines 90–111) encodes the fol-
lowing rule: if X = ‘premium’, then completion time(S) < 30 mins.

90: <sla:State>
91: <name>G2</name>
92: <obligated>Fred</obligated>
93: <pre>
94: <core:AtomicConstraint>
95: <item>X</item>
96: <core:AtomicDomain op="&core;equals">
97: premium
98: </core:AtomicDomain>
99: </core:AtomicConstraint>

100: </pre>
101: <post>
102: <core:AtomicConstraint>
103: <core:Parametric op="&qos;completion_time">
104: S
105: </core:Parametric>
106: <core:AtomicDomain op="&core;less_than">
107: 30 mins
108: </core:AtomicDomain>
109: </core:AtomicConstraint>
110: </post>
111: </sla:State>

The third and final guarantee encodes the penalty action. The trigger (precon-
dition) for the action (lines 112–135) is the occurrence of a violation of either of

66

the guaranteed states ‘G1’ and ‘G2’ (Section 5.3 for an explanation of the union
and violation parametrics). The guarantee specifies that, in case of such a violation,
there is a ‘mandatory’ (line 115) obligation on ‘Fred’ (line 114) to make a payment
of ‘10 Euros’ (line 1132) to ‘TheCustomer’ (line 131), with a payment deadline of
‘2 weeks’ (line 128) from the violation trigger event. The guarantee is violated if
‘Fred’ fails to make this payment within this time-frame.

112: <sla:Action>
113: <name>G3</name>
114: <obligated>Fred</obligated>
115: <policy>mandatory</policy>
116: <pre>
117: <core:Parametric op="&core;union">
118: <array>
119: <core:Parametric op="&sla;violation">
120: G1
121: </core:Parametric>
122: <core:Parametric op="&sla;violation">
123: G2
124: </core:Parametric>
125: </array>
126: </core:Parametric>
127: </pre>
128: <limit>2 weeks</limit>
129: <post>
130: <sla:Payment>
131: <recipient>TheCustomer</recipient>
132: <value>10 Euros</value>
133: </sla:Payment>
134: </post>
135: </sla:Action>

The remaining lines of XML (lines 136–139) close the agreement terms section,
and complete the SLAT.

136: </guarantees>
137: </sla:AgreementTerm>
138: </agreementTerms>
139: </sla:SLAT>

To convert this SLA Template into an SLA, we just need to add values for the
mandatory SLA attributes agreedAt, effectiveFrom and effectiveUntil.

8 Conclusion

The SLA model meets the project requirements and has been tested in practical ap-
plication. The model offers a language-independent specification of SLA(T) content
at a fine-grained level of detail, which is both highly expressive and inherently ex-
tensible. The model has been applied to the business use cases of the SLA@SOI

Keven T. Kearney, Francesco Torelli

The SLA Model 67

project (see also Chapter ‘Introduction to the SLA@SOI Industrial Use Cases’) and
is already used by a number of European projects, for example Contrail2.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J.
Pruyne, J. Rofrano, S. Tuecke, and M. Xu, Web services agreement specifica-
tion (ws-agreement). Grid Forum Document GFD.107, The Open Grid Forum,
Joliet, Illinois, United States, 2007

[2] A. Keller and H. Ludwig, The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services. Journal of Network and Systems
Management, 11(1):57–81, 2003.

[3] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web Services
Description Language (WSDL) 1.1 W3C Note, World Wide Web Consortium,
15 March 2001

2 Contrail – Open Computing Infrastructures for Elastic Services: http://contrail-project.eu

http://contrail-project.eu

	The SLA Model
	1 Introduction
	2 Basic Concepts
	3 SLAs and SLA Templates
	3.1 SLA(T) Parties
	3.2 SLA(T) Interface Declarations
	3.3 SLA(T) Agreement Terms

	4 Interface Specifications
	5 Value Types (the abstract constraint language)
	5.1 Constraint Expressions
	5.2 Constants and Datatypes
	5.3 Parametrics

	6 Domain-Specific Vocabularies
	7 An Example SLA
	8 Conclusion
	References

