

Service Level Agreements for Cloud Computing

Foreword by

Phili Wieder • Joe M. Butlerpp

Editors
Wolfgang Theilmann • Ramin Yahyapour

Service Level Agreements
for Cloud Computing

Jessica McCarthy

ISBN 978-1-4614-1 - e-ISBN 978-1-4614-1 -
DOI 10.1007/978-1-4614-1 -
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011939783

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

P
Editors

hilipp Wieder
IT & Media Center
Service Computing Group
TU Dortmund University

p @

Dortmund
Germany

hilipp.weider udo.edu

613 5 614 2
614 2

Joe M. Butler
Intel Ireland Limited
Leixlip, Kildare
Ireland

Wolfgang Theilmann
SAP Research
Karlsruhe
Germany

Ramin Yahyapour
IT & Media Center
Service Computing Group
TU Dortmund University
Dortmund
Germany

http://www.springer.com
mailto:philipp.weider@udo.edu

The SLA@SOI project is dedicated to provide
a business-ready service-oriented
infrastructure empowering the service
economy in a flexible and dependable way.

Foreword

SLA@SOI is one of the most significant projects funded under the European
Union’s Seventh Framework Programme. With a budget of over 15 million Eu-
ros and a consortium of twelve partners, SLA@SOI is a comprehensive integrated
project of broad scope, touching market segments in areas including management
of service level agreements (SLAs), service-oriented infrastructures (SOIs), cloud
computing, enterprise service buses and XaaS provisioning (including Platform as a
Service, Software as a Service, Infrastructure as a Service, etc). Relevant initiatives
include global-scale commercial offerings, well-supported open source projects, and
large, strategic publicly-funded research initiatives.

SLA@SOI operates within highly dynamic and fast-moving domains, and many
world-class players are very active in areas in which SLA@SOI can make most im-
pact, namely cloud computing and service-oriented architectures. We in SLA@SOI
believe that SLAs are a key technology for transforming service and cloud offerings
into tradeable goods. The project has invested three years of in-depth research and
analysis into the SLA domain, developing a comprehensive architecture and refer-
ence implementation for SLA management, then evaluating and incorporating these
results in four distinct and complementary industrial use cases.

Specifically, the SLA@SOI project aims to enable automatic negotiation of per-
sonalised SLAs across multiple providers, such that individual SLAs for thousands
of customers can be automatically managed and optimised. Most industrial service
providers have not yet come to terms with this notion of providing automated SLAs
with their service offerings, which is very promising from SLA@SOI’s perspective.
Currently, market leaders still rely on highly manual processes for making claims
on SLA violations.

Machine-readable SLAs, on the other hand, will allow consumers and providers
of online services to precisely specify the services and service levels they require,
confirm that SLAs are being met, and automatically deal with any SLA violations.
SLA@SOI provides a framework under which automatic SLA negotiation and SLA-
aware optimisation become feasible. Machine-readable SLAs allow service levels to
be personalised, automatically negotiated, aggregated, and continuously assured.

vii

viii Foreword

The book presents a unique insight into the SLA@SOI project, with a focus on
reference architectures, open reference case examples, SLA models, service con-
struction meta-models, and approaches to infrastructure monitoring and runtime
prediction. The book also recounts the results of four SLA@SOI use cases—in e-
government, Telco service aggregation, ERP hosting, and enterprise IT—analysing
outcomes from a business and technical research perspective.

As exploitation manager for SLA@SOI, I have observed firsthand the interest
this research project has generated from both industry and academia. The project
is differentiated from other commercial and research offerings in that it has an
SLA-driven approach that considers a range of stakeholders (e.g. service providers,
software providers, infrastructure providers and service customers) while explicitly
tackling challenges at the business, software and infrastructure levels. SLA@SOI
aims to provide an automated and holistic awareness of personalised SLAs along-
side a business-ready SOI that empowers the service economy and Future Internet
in a flexible and dependable way.

By defining a cohesive research agenda for Europe going forward, the Future
Internet initiative will provide important medium- and long-term opportunities for
exploitation of SLA@SOI.

Dublin, June 2011 Jessica McCarthy

Preface

IT-supported service provisioning is of major relevance for almost all industries and
IT domains. And with the evolution of ecosystems where everything can become
a service and the actual IT provisioning is virtualized, the importance of service-
related infrastructures will further increase. The so-called clouds already have the
buy in from industry, resulting in terms like everything-as-a-service, scale out, multi
tenancy, and pay-as-you-go become increasingly popular to describe this new ap-
proach, showing on the one hand the business model behind the cloud offerings and
on the other hand underlining its commercial character. From a research perspec-
tive, this somehow young discipline offers a large variety of topics and novel topics
will certainly emerge.

The research project SLA@SOI (funded under the Seventh Framework Pro-
gramme with grant number FP7- 216556) provides a major milestone for the further
evolution towards a service-oriented economy, where IT-based services can be flex-
ibly traded as economic good, i.e. under well-defined and dependable conditions
and with clearly associated costs. Eventually, this will allow for dynamic value net-
works that can be flexibly instantiated thus driving innovation and competitiveness.
SLA@SOI created a holistic view for the management of service level agreements
(SLAs) and provides an SLA management framework that can be easily integrated
into a service-oriented infrastructure.

Europe has set high goals in becoming the most active and productive service
economy in the world. Especially IT supported services evolved into a common
utility which is offered and consumed by many stakeholders. Cloud computing
gained significant attention and commercial uptake in many business scenarios. This
rapidly growing service oriented economy has highlighted key challenges and op-
portunities in IT-supported service provisioning. With more companies incorporat-
ing cloud-based IT services as part of their own value chain, reliability and de-
pendability become a crucial factor in managing business. Service level agreements
are the common means to provide the necessary transparency between service con-
sumers and providers.

SLA@SOI as a major European project addresses the issues surrounding the im-
plementation of automated SLA management solutions for service oriented infras-

ix

x Preface

tructures and evaluates their effectiveness. As of today, SLAs are in general either
not yet formally defined, or they are defined by a single party, mostly the provider,
without further interaction with the consumer. Or SLAs are negotiated in a lengthy
process with bilateral human interaction. For a vivid IT service economy, better
tools are necessary to support end-to-end SLA management on a holistic scale.

SLAs are particularly relevant to cloud computing, an increasingly important
and relevant deployment model for infrastructure, services, or platforms. SLA@SOI
allows such services to be described by service providers through formal template
SLAs. Once these template SLAs are machine readable, service composition can be
established using automatic negotiation of SLAs. Moreover, the management of the
service landscape can focus on the existence and state of all necessary SLAs.

A major innovation of SLA@SOI is the multi-layered aspect of the service stack.
Typically, a service is dependent on many other services. For example, the offering
of a software service requires infrastructure resources, software licenses or other
software services. The SLA framework developed by SLA@SOI supports the con-
figuration of complex service hierarchies with arbitrary layers. This allows end-to-
end management of resources and services for the business value chain.

This book covers a large number of topics related to Clouds and service oriented
infrastructures that are relevant for researchers and practitioners. It is divided into
eight parts, as there are ‘Introduction to Service Level Agreements in Service Ori-
ented Infrastructures’, ‘Foundations for Service Level Agreements’, ‘Scientific In-
novations’, ‘Core Components of the Service Level Agreements Framework’, ‘Man-
agement of the Business Layer’, ‘Management of the Software Layer’, ‘Manage-
ment of the Infrastructure Layer’, and ‘Selected Business Use Cases’. Comprising
21 chapters in total, this book addresses fundamental topics related to service provi-
sioning and SLAs, it tackles scientific challenges including the modelling of the re-
lationships between SLA properties, and it introduces a generic management frame-
work, as well as its layers and components, that can be applied to a large variety of
use cases. Last but not least, the book highlights four such use cases to demonstrate
the applicability of the framework and to give users and IT providers hints on how
to integrate and provide services governed by guarantees on service-quality.

We hope that readers benefit from the results of three years of research and de-
velopment conducted by SLA@SOI and, at the same time, enjoy the book.

Dortmund, Karlsruhe, Leixlip Philipp Wieder
July 2011 Joe M. Butler

Wolfgang Theilmann
Ramin Yahyapour

Acknowledgements

The outstanding research and development results produced by the SLA@SOI
project, and hence also the book at hand, would not have been possible without the
dedication of numerous people. Although it is not possible to mention everybody in-
volved in the project, especially since SLA@SOI collaborated with a large number
of other projects, standardisation bodies, and industrial fora, the editors would like
to express special gratitude to the following people. First and foremost the editors
would like to thank all the project partners for three years of great work. Although
this book cannot cover all outcomes of the project, it provides a brought yet detailed
overview of the various scientific and technical achievements, which comprise con-
tributions from everyone active in the project. The editors gratefully acknowledge
the guidance from the European Commission and the project reviewers. Their eval-
uation of the progress of the project and the assessment of direction and results
helped to make SLA@SOI a success. The quality of the book has been confirmed
and strengthened with the help of experts who carefully examined the various book
chapters and who provided feedback on scientific and technical content. The editors
would like to acknowledge the contribution of the following scientists:

• Simon Caton, Karlsruhe Institute of Technology
• Björn Hagemeier, Forschungszentrum Jülich
• Peter Hasselmeyer, NEC Laboratories Europe
• Sebastian Hudert, University of Bayreuth
• Bastian Koller, Universität Stuttgart
• Andreas Metzger, University of Duisburg-Essen
• Ariel Oleksiak, Poznan Supercomputing and Networking Center
• Alexander Papaspyrou, TU Dortmund University
• Alexander Willner, Universität Bonn
• Oliver Wäldrich, Fraunhofer-Institute for Algorithms and Scientific Computing
• Wolfgang Ziegler, Fraunhofer-Institute for Algorithms and Scientific Computing

Last but not least the editors would like to thank Cristy Burns for reviewing the
book and the people at Springer for their support and help during the process of
publication.

xi

Contents

Part I Introduction to Service Level Agreements in Service Oriented

Architectures

Motivation and Overview . 3
Joe M. Butler, Ramin Yahyapour, and Wolfgang Theilmann

1 Socio-economic Context and Motivation . 3
1.1 Towards a Service Economy . 3
1.2 Cloud Computing . 4
1.3 Future Internet . 4
1.4 Business Need for Systematic SLA Management 5

2 Vision . 5
3 Technical Perspective . 7
4 Related Concepts . 8

4.1 ITIL. 8
4.2 Autonomic Management . 9

5 Conclusion and Book Overview . 10
References . 10

A Reference Architecture for Multi-Level SLA Management 13
Jens Happe, Wolfgang Theilmann, Andrew Edmonds, and Keven T. Kearney

1 Introduction . 14
2 Scope and Goals . 14
3 Foundation Concepts . 15

3.1 Service Hierarchy . 15
3.2 Management of Services and SLAs. 17
3.3 Data Models . 19

4 Architecture . 20
4.1 Building Blocks . 20
4.2 Top-Level Architecture . 23
4.3 Main Components . 25

5 Conclusions . 26

xiii

References . 26

xiv Contents

The Open Reference Case . 27
Christoph Rathfelder, Benjamin Klatt, and Giovanni Falcone

1 Background . 27
2 Adapted ORC Use Case Scenario . 28

2.1 Stakeholders . 29
2.2 Supported Business Process . 30

3 ORC Architecture and Services . 30
3.1 ORC Services . 32

4 ORC Deployment Options . 35
5 Interactions with the SLA@SOI Framework 35

5.1 Discovery Interaction . 37
5.2 Provisioning Interaction . 38
5.3 Monitoring Interaction . 39

6 Conclusion . 40
References . 40

Part II Foundations for Service Level Agreements

The SLA Model . 43
Keven T. Kearney and Francesco Torelli

1 Introduction . 43
2 Basic Concepts . 45
3 SLAs and SLA Templates . 47

3.1 SLA(T) Parties . 48
3.2 SLA(T) Interface Declarations . 49
3.3 SLA(T) Agreement Terms . 50

4 Interface Specifications . 52
5 Value Types (the abstract constraint language) 54

5.1 Constraint Expressions . 54
5.2 Constants and Datatypes . 56
5.3 Parametrics . 57

6 Domain-Specific Vocabularies . 58
7 An Example SLA . 60
8 Conclusion . 66
References . 67

Service Construction Meta-Model . 69
Jens Happe, Wolfgang Theilmann, and Alexander Wert

1 Introduction . 69
2 Service Hierarchy . 70
3 Software Landscape . 71
4 Core elements of the SCM . 72

4.1 ServiceType . 72
4.2 Service Implementation . 73
4.3 ServiceBuilder . 75
4.4 Service Instance . 76

Contents xv

5 Example . 77
6 Conclusions . 78
References . 78

Translation of SLAs into Monitoring Specifications 79
Khaled Mahbub, George Spanoudakis, and Theocharis Tsigkritis

1 Introduction . 79
2 The Monitoring Infrastructure . 80
3 Overview of EC-Assertion . 83
4 Parsing SLA Guarantee Terms . 86
5 Generation of Operational EVEREST Monitoring Specifications . . 88

5.1 Templates for Basic QoS Terms . 89
5.2 Translation . 92

6 Limitations . 98
7 Related Works . 98
8 Conclusions . 99
References . 100

Part III Scientific Innovations

Penalty Management in the SLA@SOI Project . 105
Constantinos Kotsokalis, Juan Lambea Rueda, Sergio Garcı́a Gomez, and
Augustı́n Escámez Chimeno

1 Introduction . 106
2 Business Considerations for Penalty Calculation and Reporting . . . 107
3 Business Terms Associated with Penalties . 107
4 The SLA@SOI Penalty Management Architecture 109

4.1 Monitoring . 109
4.2 Reporting . 111
4.3 Violations and Penalties Management 113

5 A Formal, Novel Penalty Model . 116
6 Example Application . 118
7 Related Work . 120
8 Summary and Conclusions . 121
References . 121

Dynamic Creation of Monitoring Infrastructures . 123
Howard Foster and George Spanoudakis

1 Introduction . 123
2 Architecture . 124

2.1 Monitoring Features Specification . 126
3 Approach to Configuration . 127
4 SLA Term Decomposition . 129
5 Monitoring Configuration . 130

´

5.1 Monitor Selection . 130
5.2 System Configuration . 131
5.3 Configuration Deployment . 132

xvi Contents

6 Implementation and Validation . 133
6.1 The MonitoringManager Packages 133
6.2 Testing and Validation . 134

7 Related Work . 135
8 Conclusions and Future Work . 136
References . 137

Runtime Prediction . 139
Davide Lorenzoli and George Spanoudakis

1 Introduction . 139
2 Related Work . 141
3 Example Scenario . 141
4 Background: The EVEREST Monitoring Framework 143
5 Prediction Specifications . 146

5.1 Predictor Configuration . 146
5.2 QoS Specification . 147

6 Architecture Of EVEREST+ . 148
6.1 Prediction Manager . 149
6.2 Monitoring Specification Generator 150
6.3 Model Manager . 150
6.4 QoS Predictor . 151

7 Conclusion . 151
References . 151

Software Performance and Reliability Prediction . 153
Franz Brosch

1 Introduction . 153
2 Goals and Scope . 154
3 QoS Meta-Model . 155
4 Prediction Workflow . 157
5 Prediction Realisation . 159

5.1 Overview . 159
5.2 Prediction Engine Internals . 160
5.3 Prediction Process . 161

6 Use Cases . 163
References . 164

Part IV Core Components of the Service Level Agreements Framework

G-SLAM – The Anatomy of the Generic SLA Manager 167
Miguel Angel Rojas Gonzalez, Peter Chronz, Kuan Lu, Edwin Yaqub,
Beatriz Fuentes, Alfonso Castro, Howard Foster, Juan Lambea Rueda, and

1 Introduction . 167
Escámez ChimenoAugustı́n

2 Plug-in-based Approach to the G-SLAM Architecture 168
3 The G-SLAM Architecture . 168

Contents xvii

3.1 Technology Used by the Plug-in-based G-SLAM
Architecture . 169

4 Generic Components . 170
4.1 Core of the G-SLAM via Interfaces 170
4.2 Abstraction Layer for the Domain-Specific Components

PAC and POC . 172
4.3 Main Bundle for the G-SLAM . 172
4.4 Syntax Conversion for Interoperability 172
4.5 Protocol Engine . 173
4.6 SLATemplateRegistry . 174
4.7 SLARegistry . 174
4.8 MonitoringManager . 175
4.9 Authorisation . 176

5 Advertisements System . 176
6 Planning and Optimisation Component (POC) 178
7 Provisioning and Adjustment Component (PAC) 180
8 Skeleton SLAM . 181

8.1 Maven Integration . 184
9 Conclusions . 185
References . 186

A Generic Platform for Conducting SLA Negotiations 187
Edwin Yaqub, Philipp Wieder, Constantinos Kotsokalis, Valentina Mazza,
Liliana Pasquale, Juan Lambea Rueda, Sergio Garcı́a Gómez, and Augustı́n
Escámez Chimeno

1 Introduction . 187
2 State of the Art . 189
3 Protocol Engine . 191

3.1 Design . 192
4 Protocol Description . 194

4.1 Related Work . 194
4.2 Design . 195
4.3 Bilateral Negotiations . 198

5 Negotiation Rationality . 200
5.1 Profiles . 200
5.2 Protocol Customisation Mechanism 202
5.3 Business Take-Up of Negotiations 203

6 Conclusion . 204
References . 204

Part V Management of the Business Layer

Management of the Business SLAs for Services eContracting 209
Sergio Garcı́a Gómez, Juan Lambea Rueda, and Augustı́n Escámez Chimeno

1 Introduction . 209
2 Business SLA Management in Current e-Contracting Proposals . . 210

xviii Contents

2.1 Information . 210
2.2 Negotiation and Offer Building . 211
2.3 Contracting . 212
2.4 Runtime . 213

3 An SLA-Aware e-Contracting Proposal . 213
3.1 Comprehesive SLA-Aware e-Contracting Suite 213
3.2 Customisation of Business SLA Definitions 214
3.3 Business SLA Post-Sale Management 214

4 Business Layer Architecture . 215
4.1 Business Manager . 215
4.2 Business SLA Manager . 216

5 Modelling SLA Business Terms . 217
5.1 Business Terms Integration . 217

6 Future Work . 221
7 Conclusions . 221
References . 222

Part VI Management of the Software Layer

Model-Driven Framework for Business Continuity Management 227
Ulrich Winkler and Wasif Gilani

1 Introduction . 227
2 Business Continuity Management . 229
3 Related Work . 229
4 Model-Driven and Process-Centric BCM Framework 231

4.1 Requirements . 231
4.2 Architecture . 233
4.3 Stakeholders . 234
4.4 Environment . 234
4.5 Workflow and Methodology . 235
4.6 Business Process Requirements Annotation 236
4.7 IT BCM Model Derivation . 238
4.8 BEAM Derivation . 240
4.9 Alpha BEAM . 240
4.10 Beta BEAM . 242
4.11 Gamma BEAM . 243
4.12 Business Continuity Analysis . 244
4.13 Analysis Result Presentation . 244
4.14 Tracing . 245
4.15 Context-Sensitive Presentation Mode 246
4.16 Document-Oriented Presentation Mode 246

5 Conclusions and Outlook . 248
References . 249

Contents xix

Managing Composite Services . 251
Sam Guinea, Annapaola Marconi, Natalia Rasadka, and Paolo Zampognaro

1 Introduction . 251
1.1 The Health and Mobility Use Case 253

2 Management Approach . 254
3 A Dynamic Orchestration Engine . 256
4 Dynamic Binding . 257
5 Process Restructuring . 260
6 Related Work . 264
7 Conclusions and Future Work . 266
References . 267

Part VII Management of the Infrastructure Layer

SLA-Enabled Infrastructure Management . 271
John Kennedy, Andrew Edmonds, Victor Bayon, Pat Cheevers, Kuan Lu,
Miha Stopar, and Damjan Murn

1 Introduction . 271
2 SLA-Aware Infrastructure Architecture . 272
3 Infrastructure SLA Manager . 273
4 Infrastructure SLA Manager Implementation 274

4.1 Infrastructure Planning and Optimisation 275
4.2 Infrastructure Provisioning and Adjustment 276

5 Infrastructure Service Manager . 277
5.1 Open Cloud Computing Interface . 278

6 Infrastructure Service Manager Implementation 278
7 Provisioning System . 279

7.1 Scheduler . 280
7.2 Re-provisioning . 281

8 Infrastructure Monitoring . 282
9 Conclusions . 287
References . 287

Part VIII Selected Business Use Cases

Introduction to the SLA@SOI Industrial Use Cases 291
Joe M. Butler

1 Introduction . 291
2 Considerations for Use Case Selection . 291
3 Use Case Key Elements . 293

The ERP Hosting Use Case Scenario . 295
Wolfgang Theilmann, Jens Happe, and Ulrich Winkler

1 Introduction . 295
2 Business Context . 296

xx Contents

2.1 Roles . 297
2.2 Business Objectives . 297

3 Foundations . 299
3.1 Service Hierarchies for Business Applications 299
3.2 Related Work . 300

4 SLA Management Architecture . 300
5 SLA Hierarchies . 301

5.1 SLA Terms and Translation . 302
5.2 Integrated planning . 304

6 Business Evaluation . 306
6.1 Improvements to enable dynamic service provisioning . . . 306
6.2 Improvements to increase efficiency and reduce costs . . . 307
6.3 Improvements to enhance transparency 307

7 Conclusions . 308
References . 308

The Enterprise IT Use Case Scenario . 311
Michael Nolan and Joe M. Butler

1 Introduction . 311
2 Business Context . 312

2.1 Business Value . 313
2.2 Managing IT Like a Business . 313
2.3 The Provisioning Scenario . 315
2.4 The Runtime Scenario . 315
2.5 The Investment Governance Scenario 318
2.6 Business Objectives . 319
2.7 Business Process Changes . 320
2.8 Integrating BLOs into the Digital SLA 320

3 SLA Management Architecture . 322
4 Business Evaluation . 325

4.1 Improvements for IT Enabling the Enterprise 325
4.2 Improvements to IT Efficiency . 325
4.3 Improvements to IT Investment and Technology Adoption326

5 Conclusions . 326
References . 327

The Service Aggregator Use Case Scenario . 329
Juan Lambea Rueda, Sergio Garcı́a Gomez, Augustı́n Escamez Chimeno

1 Introduction . 329
2 Business Context . 330

2.1 Roles . 332
2.2 Business Objectives . 333

3 Foundations . 334
3.1 Service Aggregation . 334
3.2 Related Work . 335

4 SLA Management Architecture . 336

´´

Contents xxi

5 SLA Hierarchies . 338
5.1 SLA Terms . 338

6 Business Evaluation . 339
6.1 Improved Customer Satisfaction . 339
6.2 Improved Dependability . 340
6.3 Improved End-To-End Manageability 340
6.4 Improved Decision-Making . 340
6.5 Improved Agility . 340
6.6 Improved Operational and Energy Efficiency 341

7 Conclusions . 341
References . 341

The eGovernment Use Case Scenario . 343
Giampaolo Armellin, Annamaria Chiasera, Ganna Frankova, Liliana
Pasquale, Francesco Torelli, and Gabriele Zacco

1 Introduction . 344
2 Business Context . 344

2.1 Mobility and health care services . 344
2.2 Roles . 345
2.3 Business Objectives . 346

3 Use Case Scenarios . 347
4 SLA Management Architecture . 349
5 SLAs . 352
6 Evaluation: Practice and Experience . 354
7 Conclusions . 357
References . 357

List of Contributors

Giampaolo Armellin
GPI, Via Ragazzi del ’99, 13, Trento 38123, Italy e-mail: achiasera@gpi.it

Victor Bayon
Intel Labs Europe, Collinstown Industrial Estate, Leixlip, Co. Kildare, Ireland,
e-mail: victorx.m.molino@intel.com

Franz Brosch
FZI Research Center for Information Technology, Haid-und-Neu-Str. 10-14, 76131
Karlsruhe, Germany, e-mail: brosch@fzi.de

Joe M. Butler
Intel Labs Europe, Collinstown Industrial Estate, Leixlip, Co. Kildare, Ireland,
e-mail: joe.m.butler@intel.com

Alfonso Castro
Telefonica I+D, Distrito-C. Ronda de la Comunicacin s/n. Edificio Oeste 1, planta
5. 28050 Madrid, Spain, e-mail: acast@tid.es

Pat Cheevers
Intel Labs Europe, Collinstown Industrial Estate, Leixlip, Co. Kildare, Ireland,
e-mail: patx.cheevers@intel.com

Peter Chronz
TU Dortmund University, Service Computing Group/ITMC, August-Schmidt-
Strasse 12, 44227 Dortmund, Germany, e-mail: peter.chronz@udo.edu

Annamaria Chiasera
GPI, Via Ragazzi del ’99, 13, Trento 38123, Italy,
e-mail: achiasera@gpi.it

Augustı́n Escámez Chimeno
Telefonica I+D, c/Recogidas 24, Portal B, Escalera A, Planta 1, Puerta A, 18002
Granada, Spain, e-mail: escamez@tid.es

xxiii

mailto:achiasera@gpi.it
mailto:victorx.m.molino@intel.com
mailto:brosch@fzi.de
mailto:joe.m.butler@intel.com
mailto:acast@tid.es
mailto:patx.cheevers@intel.com
mailto:peter.chronz@udo.edu
mailto:achiasera@gpi.it
mailto:escamez@tid.es

xxiv List of Contributors

Beatriz Fuentes
Telefonica I+D, Distrito-C. Ronda de la Comunicacin s/n. Edificio Oeste 1, planta
5. 28050 Madrid, Spain, e-mail: fuentes@tid.es

Jens Happe
SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany, e-mail:
jens.happe@sap.com

Andrew Edmonds
Intel Labs Europe, Collinstown Industrial Estate, Leixlip, Co. Kildare, Ireland,
e-mail: andrewx.edmonds@intel.com

Giovanni Falcone
FZI Research Center for Information Technology, Haid-und-Neu-Str. 10-14, 76131
Karlsruhe, Germany, e-mail: falcone@fzi.de

Ganna Frankova
GPI, Via Ragazzi del ’99, 13, Trento 38123,
e-mail: gannafrankova@yahoo.com

Sergio Garc a Gomez
Telefonica I+D, c/Abraham Zacuto 10, Parque Tecnologico de Boecillo, 47151
Valladolid, Spain, e-mail: sergg@tid.es

Wasif Gilani
SAP Research, The Concourse, Queen’s Road, Titanic Quarter, Belfast, BT3 9DT,
United Kingdom, e-mail: wasif.gilani@sap.com

Sam Guinea
Politecnico di Milano, v. Golgi 42, Milano, Italy,
e-mail: guinea@elet.polimi

Howard Foster
Department of Computing, City University London, Northampton Square, EC1V
0HB, London, e-mail: howard.foster.1@city.ac.uk

Keven T. Kearney
Engineering Ingegneria Informatica spa, Via Riccardo Morandi, 32, 00148 Roma,
Italy, e-mail: keven.kearney@eng.it

John Kennedy
Intel Labs Europe, Collinstown Industrial Estate, Leixlip, Co. Kildare, Ireland,
e-mail: john.m.kennedy@intel.com

Benjamin Klatt
FZI Research Center for Information Technology, Haid-und-Neu-Str. 10-14, 76131
Karlsruhe, Germany, e-mail: klatt@fzi.de

Constantinos Kotsokalis
TU Dortmund University, August-Schmidt-Strasse 12, 44227 Dortmund, Germany,
e-mail: constantinos.kotsokalis@udo.edu

´ı́

mailto:fuentes@tid.es
mailto:jens.happe@sap.com
mailto:andrewx.edmonds@intel.com
mailto:falcone@fzi.de
mailto:gannafrankova@yahoo.com
mailto:sergg@tid.es
mailto:wasif.gilani@sap.com
mailto:guinea@elet.polimi
mailto:howard.foster.1@city.ac.uk
mailto:keven.kearney@eng.it
mailto:john.m.kennedy@intel.com
mailto:klatt@fzi.de
mailto:constantinos.kotsokalis@udo.edu

List of Contributors xxv

Davide Lorenzoli
School Of Informatics, Department Of Computing, City University, Northampton
square, London, NW1 0TY, UK,
e-mail: Davide.Lorenzoli.1@soi.city.ac.uk

Kuan Lu
TU Dortmund University, Service Computing Group/ITMC, August-Schmidt-
Strasse 12, 44227 Dortmund, Germany, e-mail: kuan.lu@tu-dortmund.de

Khaled Mahbub
Department of Computing, City University London, Northampton Square, London,
EC1V 0HB, UK, e-mail: K.Mahbub@soi.city.ac.uk

Annapaola Marconi
Fondazione Bruno Kessler, via alla Cascata 56C, 38121 Povo, Trento, Italy, e-mail:
marconi@fbk.eu

Valentina Mazza
Politecnico di Milano, piazza L. Da Vinci, 32 - 20133 Milano, Italy e-mail:
pasquale@elet.polimi.it

Jessica McCarthy
Intel Labs Europe, Collinstown Industrial Estate, Leixlip, Co. Kildare, Ireland,
e-mail: jessica.c.mccarthy@intel.com

Damjan Murn
XLAB d.o.o., Pot za Brdom 100, 1000 Ljubljana, Slovenia, e-mail: damjan.
murn@xlab.si@xlab.si

Michael Nolan
Intel Labs Europe, Collinstown Industrial Estate, Leixlip, Co. Kildare, Ireland,
e-mail: michael.nolan@intel.com

Liliana Pasquale
Politecnico di Milano, piazza L. Da Vinci, 32 - 20133 Milano, Italy e-mail:
pasquale@elet.polimi.it

Natalia Rasadka
Fondazione Bruno Kessler, via alla Cascata 56C, 38121 Povo, Trento, Italy, e-mail:
rasadka@fbk.eu

Christoph Rathfelder
FZI Research Center for Information Technology, Haid-und-Neu-Str. 10-14, 76131
Karlsruhe, Germany, e-mail: rathfelder@fzi.de

Miguel Angel Rojas Gonzalez
TU Dortmund University, Service Computing Group/ITMC, August-Schmidt-
Strasse 12, 44227 Dortmund, Germany, e-mail: miguel.rojas@udo.edu

Juan Lambea Rueda
Telefonica I+D, Distrito-C. Ronda de la Comunicacin s/n. Edificio Oeste 1, planta

mailto:Davide.Lorenzoli.1@soi.city.ac.uk
mailto:kuan.lu@tu-dortmund.de
mailto:K.Mahbub@soi.city.ac.uk
mailto:marconi@fbk.eu
mailto:pasquale@elet.polimi.it
mailto:jessica.c.mccarthy@intel.com
mailto:murn@xlab.si@xlab.si
mailto:michael.nolan@intel.com
mailto:pasquale@elet.polimi.it
mailto:rasadka@fbk.eu
mailto:rathfelder@fzi.de
mailto:miguel.rojas@udo.edu

xxvi List of Contributors

5, 28050 Madrid, Spain, e-mail: juanlr@tid.es

George Spanoudakis
Department of Computing, City University London, Northampton Square, London,
EC1V 0HB, UK, e-mail: g.spanoudakis@soi.city.ac.uk

Miha Stopar
XLAB d.o.o., Pot za Brdom 100, 1000 Ljubljana, Slovenia, e-mail: miha.
stopar@xlab.si

Wolfgang Theilmann
SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany, e-mail:
wolfgang.theilmann@sap.com

Theocharis Tsigkritis
Dept. of Computing, City University London, Northampton Square, London, EC1V
0HB, UK, e-mail: t7t@soi.city.ac.uk

Francesco Torelli
Engineering Ingegneria Informatica Spa, Via Riccardo Morandi, 32, 00148 Roma,
Italy, e-mail: francesco.torelli@eng.it

Alexander Wert
SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany, e-mail:
alexander.wert@sap.com

Philipp Wieder
TU Dortmund University, Service Computing Group/ITMC, August-Schmidt-
Strasse 12, 44227 Dortmund, Germany, e-mail: philipp.wieder@udo.edu

Ulrich Winkler
SAP Research, The Concourse, Queen’s Road, Titanic Quarter, Belfast, BT3 9DT,
United Kingdom, e-mail: ulrich.winkler@sap.com

Ramin Yahyapour
TU Dortmund University, Service Computing Group/ITMC, August-Schmidt-
Strasse 12, 44227 Dortmund, Germany,
e-mail: ramin.yahyapour@tu-dortmund.de

Edwin Yaqub
TU Dortmund University, Service Computing Group/ITMC, August-Schmidt-
Strasse 12, 44227 Dortmund, Germany, e-mail: edwin.yaqub@tu-dortmund.
de

Gabriele Zacco
Fondazione Bruno Kessler, Via Santa Croce 77, 38122 Trento, Italy, e-mail:
zacco@fbk.eu

Paolo Zampognaro
Engineering, Engineering Ingegneria Informatica Spa, Via Riccardo Morandi, 32,
00148 Roma, Italy, e-mail: paolo.zampognaro@eng.it

mailto:juanlr@tid.es
mailto:g.spanoudakis@soi.city.ac.uk
mailto:stopar@xlab.si
mailto:wolfgang.theilmann@sap.com
mailto:t7t@soi.city.ac.uk
mailto:francesco.torelli@eng.it
mailto:alexander.wert@sap.com
mailto:philipp.wieder@udo.edu
mailto:ulrich.winkler@sap.com
mailto:ramin.yahyapour@tu-dortmund.de
mailto:zacco@fbk.eu
mailto:paolo.zampognaro@eng.it

Part I

Introduction to Service Level Agreements
in Service Oriented Architectures

Motivation and Overview

Abstract Service-orientation is becoming the basic principle along which IT archi-
tectures and business structures are organised. It underlies all recent trends, includ-
ing the Internet of Services, cloud computing, and Future Internet. However, to turn
the promise of this principle into realised benefits, services must be accompanied by
exact definitions as to the conditions of their usage. These conditions can be speci-
fied by Service Level Agreements (SLAs). A holistic SLA management framework
allows SLAs to be consistently managed along a business/IT stack and also across
different parties. This chapter introduces the underlying motivation for SLA man-
agement, exhibits the vision of the SLA@SOI project, and relates this vision to other
key management approaches.

1 Socio-economic Context and Motivation

1.1 Towards a Service Economy

The ongoing transformation of a product-oriented economy into a service-oriented
economy has come to a critical point. IT-supported service-provisioning has become
of major relevance in all industries and domains. However, the nature of these ser-

Joe M. Butler
Intel Ireland Limited, Collinstown Industrial Park, Leixlip, Ireland,
e-mail: joe.m.butler@intel.com

Ramin Yahyapour
TU Dortmund University, August-Schmidt-Strasse 12, 44221 Dortmund, Germany,
e-mail: ramin.yahyapour@tu-dortmund.de

Wolfgang Theilmann
SAP Research, Vincenz-Priessnitz-Str.1, 76131 Karlsruhe, Germany,
e-mail: wolfgang.theilmann@sap.com

DOI 10.1007/978-1-4614-1614-2_1, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 3

Joe M. Butler, Ramin Yahyapour, and Wolfgang Theilmann

mailto:joe.m.butler@intel.com
mailto:ramin.yahyapour@tu-dortmund.de
mailto:wolfgang.theilmann@sap.com

4

vices is typically quite static: the services take place in a predefined setup and well
understood context.

However, since 2005, the future of the European knowledge economy has been
identified as requiring services that can be dynamically provisioned to exactly meet
the economic and technical characteristics required by the service customer (for
example, as anticipated in the renewed Lisbon agenda [1], the i2010 initiative [2],
the emerging field of Service Science [3] and the European technology platform
NESSI [4]).

By fulfilling this vision the service economy can leverage its full potential, lead-
ing to a dynamic knowledge economy. Services shall be provided on-demand, ac-
cording to conditions required by the consumers, and supported by a transparent and
automated business process back-end. Eventually, dynamic value networks could be
flexibly instantiated based on these services, thus driving innovation and competi-
tiveness.

1.2 Cloud Computing

A major current industrial trend in this area emerged around the paradigm of cloud
computing. Cloud computing is essentially a new business model for operating IT
resources by providing them as common utility services that are offered and con-
sumed by multiple stakeholders [5].

Cloud computing has gained significant attention and commercial uptake in many
business scenarios. However, it also highlighted key challenges in IT-supported ser-
vice provisioning. With more companies incorporating cloud-based IT services as
part of their own value chain, reliability and dependability become a crucial factor
in managing business.

1.3 Future Internet

A more recent related trend has emerged around the theme of the Future Internet.
The Future Internet aims to offer integrated access to people, media, services and
things, provided by one underlying platform. It seeks to enable new styles of societal
and economic interactions on an unprecedented scale, offering both flexibility and
quality. Besides being the constituting building block of the so-called Internet of
Services, the Future Internet, through the metaphor of the Internet of Things, will
provide location-independent, interoperable, scalable, secure and efficient access to
a coordinated set of services [6].

However, such a broad vision demands a sound and well-defined approach to
management and governance. This approach must harmonise with and bridge the
various views and layers of the Future Internet following the subsidiary principle

Joe M. Butler, Ramin Yahyapour, Wolfgang Theilmann

Motivation and Overview 5

that as many issues as possible should be dealt with locally, while as few issues as
possible will be managed in a more integrated way [7].

1.4 Business Need for Systematic SLA Management

The three perspectives introduced above all highlight key challenges and opportu-
nities in IT-supported service provisioning. However, they also reveal a common
characteristic: they will succeed if and only if the provisioning of services is done
under clearly specified conditions. These conditions must be understood by ser-
vice providers and service customers; they must be negotiable, so that services can
meet customer requirements; and they must be manageable from a service provider’s
point of view.

Looking at the situation today, there are major risks and challenges to be solved.
From a service consumer’s point of view, the consumption of services can impose
high risks; typically there are no formally agreed SLAs in place to specify the qual-
ity and delivery conditions for a service. Further, there are no standardised ways for
customers to express and negotiate such non-functional conditions. From a service
provider’s perspective, creating customised service offerings, negotiating with indi-
vidual customers, and translating from business requirements into specific internal
provisioning manifestations consumes valuable time and resources. Internally, the
economies of optimising deployment landscapes whilst maintaining all individual
SLAs are largely unachievable. The potential of modern infrastructure technologies
such as virtualisation is also untapped. Ultimately, the service marketplace is frus-
trating and cumbersome for both service providers and consumers.

A solution to these challenges can be found in addressing two needs: First, there
is a need to express the exact conditions under which services are to be delivered.
A common way to achieve this can be found in the notion of Service Level Agree-
ments (SLAs). Second, there is a strong need to support the systematic management
of SLAs, so that eventually customer and provider concerns are matched in a trans-
parent way. This leads to the need of a holistic SLA-management framework which
can be easily used in different scenarios and domains.

2 Vision

The vision of the SLA@SOI project [8] is an invigorated economy thriving in a
market of dependable services empowered by SLAs.

To achieve this vision, the project delivered and showcased an innovative open
SLA management framework that provides holistic support for service level objec-
tives, enabling an open, dynamic, SLA-aware market for service providers. Under
this framework, SLAs are managed autonomously throughout the complete service
lifecycle, spanning the entire services stack from the business layer through to in-

6

frastructure. Arbitrary domains are supported, as demonstrated by evaluations in
wide-ranging, grounded, use cases.

Specific benefits to expect from a holistic SLA management framework include
improved service offerings that are:

• more dynamic (reduced preparation and setup time)
• more dependable (explicitly specified SLAs and the confidence to meet them)
• more automated and thus cost-efficient (automated service management proce-

dures)
• more flexible (simplified adjustment or reprovisioning, possibly relying on third

party providers)
• more transparent (clearer understanding the cost drivers and non-functional prop-

erties of their offering).

A motivating business scenario highlighting the project idea is that of a service
provider who is able to offer services with differentiated, dependable and adjustable
SLAs, and who can negotiate concrete SLAs with customers (individuals or groups)
in an automated fashion. This business goal imposes additional requirements on
software providers (who must provide components with predictable non-functional
behaviour) and infrastructure providers (who must support an SLA-aware manage-
ment of resources).

This vision maps to the overarching challenge for a service-oriented infrastruc-
ture (SOI) that supports consistent SLA management across all layers of an IT stack
and across the various stakeholders’ perspectives. In this vision, SLA characteristics
may span multiple non-functional domains, including security, performance, avail-
ability and reliability.

Figure 5 gives an overview of how a systematic SLA management process might
appear. As today’s business systems typically consist of complex layered systems,
user-level SLAs cannot be directly mapped onto the physical infrastructure. Services
might be composed of other, more fundamental services that could be also provided
by external parties. Consequently, a stepwise mapping of higher-level SLA require-
ments onto lower levels, and the aggregation of lower-level capabilities to higher
levels, is crucial for grounding user-level SLAs to the infrastructure. This vertical
information flow must carefully reflect service interdependencies as well as the orig-
inal business context. In addition to SLAs, the vertical information flow also covers
monitoring, tracking and accounting data, and must support brokering and negotia-
tion processes at each layer. As shown in the figure, the overall SLA management
process may include different stakeholders (namely customers, service providers
and infrastructure providers), and various business steps (such as business assess-
ment, contracting and sales). The overview is intentionally simplified in the sense
that no service chains are visualised. Such chains would represent all cases where
service providers rely on external providers.

Joe M. Butler, Ramin Yahyapour, Wolfgang Theilmann

Motivation and Overview 7

Fig. 1 High-level interaction of the SLA@SOI framework.

3 Technical Perspective

SLAs are a common way to formally specify the exact conditions (both functional
and non-functional) under which services are or shall be delivered. However, the
SLAs currently in practice are only specified at the top-level interface between a ser-
vice provider and a service customer. Top-level SLAs can be used by customers and
providers to monitor whether an actual service delivery complies with the agreed
SLA terms. In case of SLA violations, penalties or compensations can be directly
derived.

8

However, top-level SLAs do not allow service providers to plan their IT land-
scapes according to possible, planned or agreed SLAs. Further, they do not provide
an understanding of why a certain SLA violation might have occurred. This is be-
cause SLA guarantee terms typically do not explicitly or directly relate to actual
performance metrics or configuration parameters. This makes it difficult for service
providers to derive proper configuration parameters from top-level SLAs and to as-
sess (lower-level) monitoring metrics against top-level SLAs.

The missing connection between top-level SLAs and (lower-level) metrics and
parameters is a major hurdle for managing IT stacks in terms of planning, predicting
or adjusting processes in accordance with possible, planned or actual SLAs.

The technical vision of the SLA paradigm is the management of a complete IT
stack in line with top-level SLAs that have been agreed at the business level. This
complies well with the technical trend towards applying the paradigm of service-
orientation across the complete IT stack (infrastructure, platform and software as a
service), and also with the trend in IT companies towards organising different de-
partments as service departments (providing infrastructure resources, middleware,
applications or composition tools as a service). SLAs will be associated with mul-
tiple elements of the stack at multiple layers. For example, there will be SLAs for
elements of physical infrastructure, virtualised infrastructure, middleware, applica-
tions and processes. Such internal SLAs describe the contract between a lower-level
entity and a higher-level entity which consumes the lower one. More precisely, the
SLAs specify the required or agreed performance metrics, and also the related con-
figuration parameters.

The fundamental challenge for realising this vision is the coordination of the
different SLAs such that they form a synchronised SLA hierarchy.

4 Related Concepts

A detailed analysis of SLA@SOI and related technical and scientific approaches
can be found in [9] and [10]. However, we want to explicitly discuss the relationship
between the SLA management framework and major management concepts.

4.1 ITIL

The Information Technology Infrastructure Library (ITIL) [11] is a set of concepts
and policies for managing IT infrastructure, development and operations. ITIL is the
most widely accepted approach to IT service management in the world. It provides
a comprehensive and consistent set of best practices for IT service management,
promoting a quality approach to achieving business effectiveness and efficiency in
the support and maintenance of information systems.

Joe M. Butler, Ramin Yahyapour, Wolfgang Theilmann

Motivation and Overview 9

SLA@SOI and the ITIL framework both aim to enable service providers to ef-
fectively manage service activities within their organisations. The two approaches
share similarities and possess some distinct capabilities: For example, although the
service lifecycles in each approach are conceptually equivalent, the phases are la-
belled differently. Further, some of the lifecycle phases in ITIL don’t have a coun-
terpart in the SLA@SOI lifecycle, but the activities carried out within these phases
are covered in other phases of the SLA@SOI lifecycle. There is a good conver-
gence between the two approaches in terms of service definition, broad applicabil-
ity, the non-proprietary approach, and the concept of a configuration management
database (CMDB). However, SLA@SOI and ITIL diverge at some important points:
for example, SLA@SOI provides a full architecture (not just best practices), sup-
ports SLA/service negotiation (not covered by ITIL), supports a multi-provider fo-
cus (in contrast to ITIL’s single provider view), has a notion of SLA translation (not
addressed by ITIL at all), and includes mechanisms for predictive management (not
addressed by ITIL).

A detailed comparison between SLA@SOI and ITIL can be found in [12].

4.2 Autonomic Management

SLA-driven system management is the primary approach discussed in this book.
This approach aims to derive all kinds of management decisions from the requested
or agreed SLAs. However, there are other management functions that are partially
related to SLA management. As a reference structure for these functions, we use the
four main categories of self-managing systems [13]: self-configuring, self-healing,
self-optimising and self-protecting.

Configuration management is closely related to SLA management. Possible con-
figuration options are captured in the service construction model and are considered
during the planning phase. Once an SLA has been agreed and is to be provided, the
configuration parameters derived during the planning phase are used to set up the
system. The same holds for re-planning and adaptation cycles.

Self-healing is in the first place independent from SLA management: the detec-
tion and recovery from low-level unhealthy situations can be achieved completely
independently from agreed SLAs. However, the detection of SLA violations and au-
tomated re-planning could be also be categorised as self-healing processes. Further,
low-level unhealthy situations might be used for predicting possible future SLA vi-
olations.

Self-optimising is very closely related to SLA management and simply cannot
be done without accounting for the respective constraints of the contracted SLAs.

Self-protecting is in the first place independent from SLA management; however,
certain self-protecting mechanisms can be made part of an SLA

10

5 Conclusion and Book Overview

We are convinced that Service Level Agreements are an essential foundation for
service oriented infrastructures and a society relying more and more on ICT ser-
vices. Especially with the still growing provisioning and demand for Cloud-like
services, frameworks like the one developed by SLA@SOI will become essential
to deliver what has been promised. This is the reason why we regard this book as
valuable for researchers as well as practitioners. It provides the results and lessons
learned within the SLA@SOI project and prepares them for the community-at-large.
Technical results — in particular the reference architecture and various models and
mechanisms of our SLA management framework — are described in detail. We also
show the results of a set of industrial use cases that were realised to test (a) the gen-
eral value proposition of holistic SLA management and (b) the specific validation
of our SLA@SOI framework.

References

[1] European Council (Austrian Presidency Conclusion), The re-
newed sustainable development strategy. 16th June 2006
http://ec.europa.eu/sustainable/sds2006/index en.htm

[2] European Commission, i2010 - A European Information Society for growth
and employment COM(2005) 229

[3] IfM and IBM, Succeeding through service innovation: A ser-
vice perspective for education, research, business and gov-
ernment White Paper, Univ. of Cambridge, 2008, URL:
http://www.ifm.eng.cam.ac.uk/ssme/documents/080428cambridge ssme
whitepaper.pdf

[4] NESSI (the European Technology Platform on Software and Services -
the Networked European Software and Services Initiative), Vision 2005
http://www.nessi-europe.com/

[5] M. Armbrust, et al., Above the Clouds: A Berkeley View of Cloud Comput-
ing. Report, UC Berkeley Reliable Adaptive Distributed Systems Laboratory,
February 10, 2009, URL: http://radlab.cs.berkeley.edu/

[6] Future Internet Assembly, Bled Declaration on Future Internet April 2008,
http://www.future-internet.eu/index.php?id=47

[7] Theilmann, W., Baresi, L., Multi-level SLAs for Harmonized Management in
the Future Internet

[8] SLA@SOI project: IST- 216556; Empowering the Service Economy with
SLA-aware Infrastructures, http://www.sla-at-soi.eu/

[9] SLA@SOI project:, State of the Art Analysis. Technical Report, September
2010, http://sla-at-soi.eu/publications/deliverables/

Joe M. Butler, Ramin Yahyapour, Wolfgang Theilmann

http://ec.europa.eu/sustainable/sds2006/index
http://www.ifm.eng.cam.ac.uk/ssme/documents/080428cambridge
http://www.nessi-europe.com/
http://radlab.cs.berkeley.edu/
http://www.future-internet.eu/index.php?id=47
http://www.sla-at-soi.eu/
http://sla-at-soi.eu/publications/deliverables/

Motivation and Overview 11

[10] Li, H., Theilmann, W., and Happe, J., SLA Translation in Multi-Layered Ser-
vice Oriented Architectures: Status and Challenges. Technical Report 2009-8,
Universität Karlsruhe (TH) (April 2009)

[11] Office of Government Commerce, The official introduction to the ITIL service
lifecycle. Stationery Office Books (TSO) (2007)

[12] SLA@SOI project:, State of the Art Analysis. Technical Report, July 2009,
http://sla-at-soi.eu/publications/deliverables/

[13] Miller, B., The autonomic computing edge: Can you CHOP up auto-
nomic computing? Whitepaper IBM developerworks, March 2008. URL:
http://www.ibm.com/developerworks/autonomic/library/ac-edge4/

http://sla-at-soi.eu/publications/deliverables/
http://www.ibm.com/developerworks/autonomic/Proof

A Reference Architecture

for Multi-Level SLA Management

Abstract Service-orientation is the core paradigm for organising business inter-
actions and modern IT architectures. At the business level, service industries are
becoming the dominating sector in which solutions are flexibly composed out of
networked services. At the IT level, the paradigms of Service-Oriented Architecture
and cloud computing realise service-orientation for both software and infrastructure
services. Service composition across different layers is a major advantage of this
paradigm. Service Level Agreements (SLAs) are a common approach to specifying
the exact conditions under which services are to be delivered, and thus are a pre-
requisite for supporting the flexible trading of services. However, typical SLAs are
only specified at a single layer and do not provide insight into metrics or parame-
ters at the various lower layers of the service stack. Thus they do not allow service
providers to manage their service stack optimally.
In this chapter, we present a reference architecture for a multi-level SLA manage-
ment framework. We discuss fundamental concepts of the framework and detail its
main architectural components and interactions.

Jens Happe
SAP Research, Vincenz-Priessnitz-Str.1, 76131 Karlsruhe, Germany,
e-mail: Jens.Happe@sap.com

Wolfgang Theilmann
AP Research, Vincenz-Priessnitz-Str.1, 76131 Karlsruhe, Germany,
e-mail: Wolfgang.Theilmann@sap.com

Andrew Edmonds
Intel Ireland Limited, Collinstown Industrial Park, Leixlip, Ireland,
e-mail: andrewx.edmonds@intel.com

Engineering Ingegneria Informatica spa, Via Riccardo Morandi, 32, 00148 Roma, Italy,
e-mail: keven.kearney@eng.it

DOI 10.1007/978-1-4614-1614-2_2, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 13

Keven T. Kearney

Jens Happe, Wolfgang Theilmann, Andrew Edmonds, and Keven T. Kearney

14

1 Introduction

Service Level Agreements (SLAs) are a common way to formally specify the exact
conditions (both functional and non-functional) under which services are or should
be delivered. However, in practice, SLAs are only specified at the top-level interface
between a service provider and a service customer. Customers and providers can use
top-level SLAs to monitor whether their actual service delivery complies with the
agreed SLA terms. In the case of SLA violations, top-level SLAs allow for penalties
or compensations to be directly derived.

In a service-oriented world, services offered are (usually) composed of or built
on a complete set of other services. These services may reside in the domain of the
provider itself, or be hosted by external providers. Such services include business
services, software services, and infrastructure services. The quality of an offered
service depends heavily on the quality of the services it uses. Service quality also
depends on the elements used and the structure of the underlying IT system real-
ising the service. Currently, service providers cannot plan their service landscapes
using the SLAs of dependent services. They have no means by which to determine
why a certain SLA violation might have occurred, or how to express an associ-
ated penalty. SLA guarantee terms are not explicitly related to measurable metrics,
nor is their relation to lower-level services clearly defined. As a consequence, ser-
vice providers cannot determine the necessary (lower-level) monitoring required
to ensure top-level SLAs. This missing relationship between top-level SLAs and
(lower-level) metrics is a major hurdle to efficient service planning and prediction
or adjustment processes in service stacks.

In this chapter, we present a reference architecture for a multi-level SLA manage-
ment framework. The framework was built based on previous discussion of a purely
conceptual architecture [1] and experimental analysis of a specialised showcase [2].
We also present underlying concepts of the architecture and its main building blocks
(components and interactions).

The remainder of this chapter is organised as follows: Section 3 describes foun-
dational concepts, Section 4 introduces the developed reference architecture, and
Section 7 concludes with a brief summary and outlook.

2 Scope and Goals

The overall SLA@SOI Framework is conceived as a possibly distributed, hierarchi-
cal management system providing consistent SLA management across the service
delivery stack. At the highest level, we assume operation of the SLA@SOI frame-
work serves ultimately to satisfy the goals of some business entity. Consequently,
all management activities supported by the framework should eventually relate to
the needs of that business entity.

The primary goal of the framework is to provide a generic solution for SLA
management that:

Jens Happe, Wolfgang Theilmann, Andrew Edmonds, Keven T. Kearney

A Reference Architecture for Multi-Level SLA Management 15

1. supports SLA management across multiple layers with SLA composition and
decomposition across functional and organisational domains;

2. supports arbitrary service types (business, software, infrastructure) and SLA
terms;

3. covers the complete SLA and service life cycle with consistent interlinking of
design time, planning and runtime management aspects; and

4. can be applied to a large variety of industrial domains and use cases.

To achieve these goals, the reference architecture is based on three main design
principles: First, we put a strong emphasis on clearly separating service management
from SLA management and supporting a well-layered and hierarchical management
structure.

Second, we included a solid foundation common to meta-models for SLAs, as
well as their relation to services and the construction of actual service instances;
such a foundation is essential to supporting clear semantics across the different
framework components. Third, since design for extensibility and adaptability is key
to addressing multiple domains, we clearly distinguished between generic solution
elements and places where domain-specific logic/models need to be provided. We
aim to achieve an architecture where even generic parts can be replaced by domain-
specific versions, perhaps dictated by preexisting (legacy) management functional-
ity.

3 Foundation Concepts

Before diving into the actual reference architecture, we will detail some of its fun-
damental concepts surrounding the notion of SLAs and the relationships between
them. This includes the definition of SLA management, service and SLA life cy-
cles, the SLA (template) model, and the service construction model (SCM).

3.1 Service Hierarchy

A first and fundamental concept for the architecture is the refinement of services
into three specialisations, with respect to their concreteness:

• Service Type: Specifies the service as a fully abstract entity via its external inter-
face.

• Service Implementation: Describes specific resources or artifacts (such as soft-
ware components, or appliances) which allow for instantiating the service. Ser-
vice implementations may still depend on other services. There can be different
implementations of a given service type.

• Service Instance: Describes a running and accessible service which is ready for
consumption by service users. It has one or more service endpoints (for service

16

consumption) and a management endpoint (for service monitoring and control).
Service instances might have multiple service/management endpoints if their ser-
vice type specifies a bundled service.

As an example of these concepts, we can take a database service: The abstract
type of such a service is specified in that it is exposed via an SQL interface. Dif-
ferent service implementations may exist for such a database service; for example,
a MySQL database or an IBM DB2 database. These implementations may rely on
other services, such as a storage service. For each implementation, multiple service
instances might be created and these may differ in their concrete configuration. For
example, one instance might be configured for optimised read access, another one
for fast write access.

Fig. 1 Service concepts and their relations to each other.

Figure 1 shows the main concepts coined for services and SLAs, as well as their
relationships. SLA templates specify the types of SLA offerings a service provider
is willing to accept. An SLA represents a potential agreement between a service
provider and a customer that describes the service, documents service-level targets,
and specifies the responsibilities of the service provider and the customer. An agreed
SLA also refers to the endpoints of exactly one service instance. For example, an
SLA for an instance of the address validation service contains the web-service end-
points for invoking the validation functionality.

Service dependencies relate to the service types that a given implementation re-
lies on. To instantiate higher-level services, these dependencies must be resolved
into concrete instances of the depending sub-service.

Jens Happe, Wolfgang Theilmann, Andrew Edmonds, Keven T. Kearney

A Reference Architecture for Multi-Level SLA Management 17

3.2 Management of Services and SLAs

Following the core concepts, we now briefly sketch our notion of management and
the related lifecycles of SLAs and services.

3.2.1 SLA Management

The term management is interpreted here as ”control” - in the classic control theory
sense; synonymous with ”applied constraint”. We assume that the management ac-
tions enacted by the manager upon a system are goal-based; that is, that they serve
to satisfy one or more management objectives, which are in some way dependent
on the state of the system. To this end, the management relation is necessarily bi-
directional: the application of management entails a continuous feedback loop in
which the manager observes the dynamic state of the system, and acts upon it to
constrain its state dynamics in some way. Both observation (sensing) and action are
necessarily mediated by information exchange. Finally, management systems can
be:

• hierarchically organised in that each level operates under the constraints imposed
by higher levels, and serves in turn to constrain lower levels.

• distributed to the extent permitted by the communication channels supporting
the management relation.

We interpret ”SLA management” as the management of service delivery systems
to meet the quality of service (QoS) objectives (goals) specified in SLAs. SLA man-
agement covers all stages in the SLA lifecycle:

• SLA template design ensures that offered QoS guarantees are realistic;
• SLA negotiation ensures that agreed QoS guarantees are realisable;
• SLA runtime ensures that QoS guarantees are satisfied; and
• SLA (template) archiving ensures that previous experience is available to future

cycles.

3.2.2 Service Life cycle

The management of SLAs happens in the context of the overall service life cycle
(Figure 2), which consists of the following stages:

• Design and development: development of artifacts needed for service implemen-
tation

• Service offering (including SLA template design): offering a service (type) to
customers; results include specification of SLA templates

• Service negotiation (including parts of SLA negotiation): actual negotiation be-
tween customer and provider; results in an agreed SLA

18

Fig. 2 Service life cycle.

• Service provisioning (including parts of SLA negotiation): all activities required
in system preparation and setup for allowing service operation, including book-
ing, deployment (if needed), and configuration. Note that provisioning does not
necessarily imply deployment, as, for example in a multi-tenant environment, the
provisioning of a new tenant might be a simple reconfiguration of the running
system.

• Service operations (including SLA runtime): an actual service instance is up and
running; it might be adjusted to enforce an SLA

• Service decommissioning: the service instance is stopped and can no more be
accessed by the service customer

3.2.3 Management Domains

Another important aspect of management is the notion of management domains. So
far we distinguish two main kinds of domains: the first driven by business consider-
ations, the second driven by technical considerations.

1. Administrative domains are areas of organisational coherence: for example, an
independent organisation or a department that operates largely as a profit centre.
Within an administrative domain, two main views can be considered:

• The business view basically representing a sales department: that is, the activ-
ity of selling services via SLAs.

Jens Happe, Wolfgang Theilmann, Andrew Edmonds, Keven T. Kearney

A Reference Architecture for Multi-Level SLA Management 19

• The management view oversees all the offered or active SLAs within a certain
domain and is responsible for the eventual SLA operation.

2. Technical domains are areas where certain kinds of resources or artifacts can be
coherently managed: for example, domains for infrastructure artifacts, software
artifacts, business artifacts or even subdivisions of these.

Technical domains can be understood as horizontal layers within a business/IT
stack, while administrative domains relate more to vertical, cross-cutting pillars
within an organisation (though they can form a hierarchy as well). Section 4 gives
insight into how the notion of domains impacts the architecture.

3.3 Data Models

To communicate, the components of the SLA@SOI architecture make heavy use of
two models that reflect the essential data structures in the system: The SLA(T) model
(Chapter ‘The SLA Model’) describes SLAs for communication within and among
SLA managers, as well with external providers. The Service Construction Model
(SCM) (Chapter ‘The Service Construction Meta-Model’) provides and collects in-
formation necessary to create a new instance of a service (for a particular SLA). In
the following, we provide a brief summary of both models.

3.3.1 SLA(T) model

The SLA and SLA template model (SLA(T) model) extends pure functional ser-
vice descriptions to allow for the expression of non-functional service properties
and QoS guarantees. The main body of the present specification defines the SLA(T)
model, which allows the expression of non-functional service properties and QoS
guarantees. The SLA(T) model leaves the specification of particular QoS terms
open, supporting extension through standard vocabularies. A set of default QoS
terms are provided as a standard vocabulary. An SLA is a set of agreements be-
tween two (or more) parties. These agreements are expressed using terms that each
denote guarantees made by, or obligations on, the various parties.

3.3.2 Service Construction Model (SCM)

The SCM is inspired by the management of services and the SLA concepts sketched
above. We introduced the SCM to ease communication between the different com-
ponents responsible for core SLA management, service management, and quality
evaluation of possible service offerings. Its core structure is the service hierarchy
introduced in Section 3.1.

20

Service managers can use the SCM to manage multiple implementations of the
same service. Further, the SCM allows different components to access and add in-
formation about a potential service instance.

In the following, we describe the architecture of the SLA management frame-
work and how it makes use of the concepts presented in this section.

4 Architecture

4.1 Building Blocks

In this section, we introduce the main building blocks that constitute our framework,
explain their responsibilities, show how they can be specialised for specific domains,
and explain how they can be combined to serve different scenarios and setups.

Overview

Fig. 3 Generic building blocks and their relations.

Figure 3 gives an overview of the framework’s main components and their re-
lations. The leading component is the business manager, which is responsible for
business-related information and business-driven decisions. It controls the SLA
manager, which is responsible for SLA templates and actual SLAs. It uses the ser-
vice manager for querying service implementations and orchestrating provisioning
activities. The service manager is responsible for managing actual service imple-

Jens Happe, Wolfgang Theilmann, Andrew Edmonds, Keven T. Kearney

A Reference Architecture for Multi-Level SLA Management 21

mentation. It uses manageability agents to trigger runtime management activities.
The SLA manager also relies on service evaluation for retrieving predictions of ser-
vice qualities. More detailed discussions of these components and their relations
follow below.

Taking the business-rooted ambition of an SLA management framework, the root
of the management hierarchy is the business manager component. It is responsible
for asserting overall business constraints on the system to meet business objectives
and maintain customer and provider relations. To that extent, it captures knowl-
edge about pricing schemes (including rewards, promotions and discounts), cus-
tomer profile information, third-party service provider profiles and business rules
for taking cost/profit-aware decisions. Business managers may contain sensitive data
that must not be shared among components. The actual functionality of a business
manager includes:

• searching and publishing of products
• management of customers and service providers
• negotiation and establishment of agreements/contracts with customers and ser-

vice providers
• notification of bills and penalties to customers and service providers

The SLA manager component is responsible for managing a set of SLA templates
and SLAs in its domain. It also captures knowledge about negotiation and planning
goals (such as utility functions or policies). Depending on the specific context/re-
quirements of a particular use case, a separate SLA manager may be set up for
a complete organisation, a department, or for each individual service. The actual
functionality of an SLA manager includes:

• searching and publishing of SLA templates
• negotiation of SLAs with customers and third parties, including conversion be-

tween different SLA formats
• SLA planning and optimisation
• SLA provisioning and adjustment

The service manager component is in charge of managing the elements neces-
sary to instantiate a service. In particular, it knows about the structure of service
implementations and keeps track of existing service instances. Service managers
can be created for any technical domain which needs consistent management. The
actual functionality of a service manager includes:

• publishing of service implementations
• maintenance of a service landscape, including elements required for instantiating

a service implementation
• reservation and booking of service instances
• mediation of management/adjustment operations to service instances and man-

ageability agents
• triggering of actual service provisioning

22

The manageability agent component acts as gateway to actual resources. It knows
about the available sensors and effectors that can be used for managing a certain
service instance and its resources. Manageability agents may exist per resource, per
service instance, or per collection of these. The actual functionality of a manage-
ability agent includes:

• sensing/monitoring the status of service instances and resources
• searching for and executing manageability actions

Finally, to support proactive management decisions at all levels, the framework
also provides a service evaluation component. It relies on background information
(from design-time, runtime or historical information) about the quality characteris-
tics of services. It provides functionality for a priori quality evaluations of services,
depending on influencing factors such as customer behavior or lower-level service
qualities. Service evaluation components may exist per SLA manager or even for
sets of these.

While all these components have clearly distinct responsibilities, they also need
to have some common understanding of the overall problem domain.

• Service types must be commonly understood by SLA managers, service man-
agers and service evaluation.

• The identity of service implementations must be commonly understood by ser-
vice managers and service evaluation, though both components may rely on com-
pletely different data models to deal with service implementations.

• SLA terms and their quality aspects must be commonly understood by SLA man-
agers and service evaluation.

• SLA terms and available monitoring handles must be commonly understood by
SLA managers and service managers.

• The SLA negotiation process with customers and third parties must be commonly
understood by business managers and SLA managers.

Component Setups

As stated in the design goals for the framework architecture (Section 2), a key goal
is support for flexible configurations and setups where different domain cuts can be
realised.

Our architecture supports cuts along the two main criteria mentioned in Sec-
tion 3.2: that is, via administrative domains and technical domains. Administrative
domains are characterised by having a dedicated SLA manager in charge of all the
SLAs within that domain. Technical domains are characterised by having a ded-
icated service manager in charge of all the artifacts needed for a (set of) service
implementation(s).

Figure 4 shows an example of how such a domain cut can be realised for a sin-
gle service provider organisation that interacts with customers and third parties.
Basically, the service provider organisation is split into two main administrative do-
mains: one might be for application services, the other for infrastructure services.

Jens Happe, Wolfgang Theilmann, Andrew Edmonds, Keven T. Kearney

A Reference Architecture for Multi-Level SLA Management 23

Fig. 4 A possible domain split and component setup.

Further, there is a split into three technical domains, each represented by a service
manager. For example, one might be for application artifacts, one for middleware
artifacts, and one for infrastructure artifacts.

4.2 Top-Level Architecture

In the following, we present more detail of the top-level view of the SLA@SOI
framework architecture. For its representation, we chose a simplified version of
UML component diagrams. Boxes represent components and connections represent
stereotyped dependencies that translate to specific sets of provided and required in-
terfaces.

Figure 2 illustrates the main components of the SLA@SOI framework and their
relationships. On the highest level, we distinguish between the core framework, ser-
vice managers (infrastructure and software), deployed service instances with their
manageability agents, and monitoring event channels. The core framework encap-
sulates all functionality related to SLA management. Infrastructure managers and
software service managers contain all service-specific functionality. The deployed
service instance is the actual service delivered to the customer, and is managed
by the framework via manageability agents. Monitoring event channels serve as a
flexible communication infrastructure that allows the framework to collect informa-
tion about the status of the service instance. To achieve a good generalisation of
the framework architecture, several components are realised as specialisations of

24

<<composite component>>
Framework Core

ServiceEvaluation

<<SLAManager>>
InfrastructureSLAManager

<<SLAManager>>
SoftwareSLAManager

<<SLAManager>>
BusinessSLAManager

BusinessManager

<<provider_relations>>

<<manage_software_service>>

<<query_product_catalog>>

<<subscribe_to_event>>

<<negotiate/query/coordinate>>

<<prepare_software_services>>

<<negotiate/coordinate>>

<<negotiate/query/coordinate>>

<<customer_relations>>

<<evaluate>>

<<control/track/query>>

<<actor>>
Provider (3rd party)

<<ServiceManager>>
SoftwareServiceManager

<<ServiceManager>>
InfrastructureServiceManager

<<manage_infrastructure_ser

<<prepare_infrastructure_services>>

<<native_service_management>>

<<instance>>
InfrastructureService

<<instance>>
ManageabilityAgent

<<adjust>>

<<pubsub>>
MonitoredEventChannel

<<instance>>
ManageabilityAgent

<<native_service_management>>

<<publish_event>>

<<adjust>>

<<instance>>
SoftwareService

ServiceInterfaceServiceInterface

<<actor>>
Customer

DEPLOYED INFRASTRUCTURE SERVICESDEPLOYED SOFTWARE SERVICES

Fig. 5 Top-level view of the SLA@SOI framework.

Fig. 6 Component specialisation hierarchies.

abstract components, namely SLA manager components and service manager com-
ponents. The component hierarchy assumed for the top-level view is depicted in
Figure 6.

Jens Happe, Wolfgang Theilmann, Andrew Edmonds, Keven T. Kearney

A Reference Architecture for Multi-Level SLA Management 25

4.3 Main Components

The top-level architecture comprises the building blocks introduced in Section 4.1.
In the following, we describe the specific setup as well as the interactions shown in
Figure 2.

The business manager is responsible for controlling all business information and
communication with customers (<<customer relations>>) and providers
(<<provider relations>>). For example, it realises the customer relation-
ship management (CRM) necessary to efficiently sell the offered services. Fur-
ther, the business manager governs the (business-, software-, and infrastructure-)
SLA managers (<<control/track/query>>). For this purpose, SLA man-
agers must adhere to business rules defined by the business manager (control) and
must inform the business manager about their current status and activities (track).

The (business-, software- and infrastructure-) SLA managers are responsible for
the management of all SLA-related concerns. The business SLA manager, software
SLA manager, and infrastructure SLA manager are specialisations of an abstract
generic SLA manager (Figure 6). SLA managers are responsible for the negotiation
of SLAs, and for the management of services that are subject to the SLAs. All SLA
managers can act as ”service customers”, negotiating SLAs with other SLA man-
agers inside the same framework, or with external (third party) service providers (in-
cluding other framework instances). As ”service providers”, all SLA managers can
negotiate SLAs with other SLA managers in the same framework. Only the business
SLA manager, however, can negotiate with customers who are external to the frame-
work. To avoid confusion, we refer to external customers as ”business customers”,
and use the term ”product” to denote the (SLA-governed) services offered by the
framework to business customers. Product descriptions are published in a ”prod-
uct catalogue” (accessible via <<query product catalog>>) maintained by
the business manager. Once an SLA has been agreed with a customer, it is the re-
sponsibility of the business manager to send reports on SLA status to the customer.
The <<negotiate/query/coordinate>> relation captures all framework-
internal negotiation and querying interactions. These negotiations are equally used
at business-level for customer interaction (<<negotiate/coordinate>>),
where business-level considerations (e.g. billing) are intercepted by the business
SLA manager into the negotiation protocol. Finally, all SLA managers can con-
sult service evaluation to a priori evaluate the potential quality of a service
(<<evaluate>>). This evaluation can be based on prediction, historical data, or
predefined quality definitions, and supports the SLA manager in finding service re-
alisations with an appropriate quality.

The monitoring and adjustment management system provides the underlying fab-
ric across the different layers (i.e. across software and infrastructure layers), sup-
porting the monitoring and management of actual service instances. The monitoring
event channel is the basic component via which arbitrary monitoring events (e.g.
SLO violations) can be propagated to relevant SLA managers. Access to this chan-
nel is realised via the <<publish event>> and <<subscribe to event>>
interaction stereotypes. Manageability agents support the actual configuration and

26

management of service instances. Access to manageability agents for SLA man-
agers is always mediated via a specific service manager. Due to their domain-
specific nature, the interactions between service managers and manageability agents
are represented by the <<native service management>> stereotype, which
is not further refined by this architecture. It should be noted that manageability
agents need not necessarily run within the same administrative domain as the service
instance, but importantly, the sensors and effectors that are part of the manageabil-
ity agent must reside in the same administrative domain of the service instance, and
have access to their related manageability agent via some communication mecha-
nism.

5 Conclusions

In this chapter, we presented a reference architecture for multi-level SLA manage-
ment that supports the comprehensive management of possibly complex service
stacks. SLAs are used for managing the nonfunctional aspects of the complete ser-
vice life cycle. Further, SLA translations across different layers allow for consistent
interlinking of complete service networks and hierarchies. The presented architec-
ture is based on experiences gained from an SLA framework built around a specific
reference application. The main achievement when compared to that work is the
generalisation of concepts such that the architecture can serve a large variety of
domains.

References

[1] W. Theilmann, R. Yahyapour, and J. Butler, Multi-level SLA Management for
Service-Oriented Infrastructures. Towards a Service-Based Internet (2008)
324–335

[2] M. Comuzzi, C. Kotsokalis, C. Rathfelder, W. Theilmann, U. Winkler, and
G. Zacco, A Framework for Multi-level SLA Management. Proc. of 3rd Work-
shop on Non-Functional Properties and SLA Management in Service-Oriented
Computing (NFPSLAM-SOC’09), November 23, Stockholm, Sweden

Jens Happe, Wolfgang Theilmann, Andrew Edmonds, Keven T. Kearney

The Open Reference Case

A Reference Use Case for the SLA@SOI Framework

Christoph Rathfelder, Benjamin Klatt, and Giovanni Falcone

Abstract The Open Reference Case (ORC) is a Software as a Service (SaaS) so-
lution supporting the sales process in supermarkets. Within the European research
project SLA@SOI, the ORC is used as an open source demonstrator to highlight fea-
tures offered by the SLA management framework. As per the vision of SLA@SOI,
the ORC runs on a virtualised infrastructure operated by an infrastructure provider.
The ORC also allows for the inclusion of services offered by external service
providers, such as banks. Such external providers are used in this scenario to high-
light the process of negotiating SLAs between the ORC and an external provider.
More generally, the interactions defined in the ORC scenario cover the SLA nego-
tiation phase as well as the automated provisioning of software and monitoring of
SLA violations.

1 Background

The Open Reference Case (ORC) is used as an open source demonstrator to high-
light the achievements of the European research project SLA@SOI, a key innova-
tion of which was the SLA management framework. The ORC highlights use of the
SLA management framework — including the process of SLA negotiation and rene-
gotiation — in the context of a service-oriented retail solution that supports the sales

Christoph Rathfelder
FZI Research Center for Information Technology, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Ger-
many, e-mail: rathfelder@fzi.de

Benjamin Klatt
FZI Research Center for Information Technology, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Ger-
many, e-mail: klatt@fzi.de

Giovanni Falcone
FZI Research Center for Information Technology, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Ger-
many, e-mail: falcone@fzi.de

DOI 10.1007/978-1-4614-1614-2_3, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 27

28 Christoph Rathfelder, Benjamin Klatt, Giovanni Falcone

process in supermarkets. The ORC includes IT support for retail chains in general,
covering enterprise headquarters (central management), stores (local management)
and cash desks. Several shop providers, each with a certain number of stores, are
connected to a single service provider, supporting the sales of goods with an IT
system. This provider offers various services, such as the management of invento-
ries, credit card payments, preferred customer club cards, and accounting. The ORC
software can be operated on a virtualised infrastructure using tailored deployment
options that cater to shops of varying size and with varying requirements regarding
system performance.

The ORC extends the Common Component Modeling Example (CoCoME) [1],
which was introduced to compare the facets of several well-known component mod-
els. CoCoME represents a trading system that deals with the various aspects of han-
dling sales in a supermarket, including the customer interaction at the cash desk
(including product scanning and payment), and registering the sale at the inventory.
The CoCoME trading system also deals with ordering goods from wholesalers and
generating reports.

In CoCoME, an enterprise is defined as consisting of several stores. Each enter-
prise has an enterprise server to which all stores are connected. An enterprise client
is defined as part of the overall scenario, enabling the enterprise manager to gener-
ate several kinds of reports. To support and realise the sales process, a retail store
operates a certain number of cash desks. Each store has its own central store server,
which is connected to each cash desk of the store as well as to the enterprise server.
The cash desk is the place where the cashier scans the goods that the customer
wants to buy and where payment is made (either by credit card or cash). A number
of hardware components are associated with a single cash desk (cash box, barcode
scanner . . .). The central unit of each cash desk is the cash desk PC, which links
all components to each other and calls the services provided by the retail solution
provider.

2 Adapted ORC Use Case Scenario

The ORC is an extension of the CoCoME implementation, realising a service-
oriented retail solution that can be used in a trading system of a supermarket to
handle the sales and stocking processes. It includes IT support for retail chains in
general, covering enterprise headquarters (central management), stores (local man-
agement) and cash desks. The use of the ORC as SaaS promises several benefits, in-
cluding reduced operational costs for the supermarket and reduced customer waiting
times at the cash desk. Thus the two most important quality characteristics to con-
sider in SLAs are cost and the completion time of service invocations. The ORC sup-
ports the payment process at the cash desk; thus the reliability of services plays an
important role and this should be reflected in the SLAs. From the service provider’s
point of view, the system load induced by a certain customer volume needs to be
specified and limited. Thus knowledge of expected customer volume is required

The Open Reference Case 29

to determine the required infrastructure services. For this reason, an additional im-
portant quality characteristic is system load, which is measured in invocations per
second. In using the ORC as SaaS, we use a slightly adapted scenario presented in
more detail below.

2.1 Stakeholders

To highlight the features of the SLA@SOI framework, the original CoCoME sce-
nario has been modified to create a SaaS scenario. An overview of the involved
stakeholders and their bindings during runtime are given in Figure 1.

Shop

<<Customer>>
Shop Provider

<<Service Provider>>
ORC Provider

<<Infrastructure Provider>>
ORC Infrastructure

<<Software Provider>>
ORC Developer

<<User>>
Shop Customer

<<External Provider>>
Bank, CRM, Manufacturer, ...

1

*

*
1

**

*
1

*

1 *

Fig. 1 Adapted CoCoME scenario.

A key element — the ORC provider — is added as a single service provider and
connected to several shop providers. The ORC provider (service provider) enables
the shop providers to access several additional services, such as management of in-
ventories, credit card payments, preferred customer club cards, accounting and so
on. To provide services connected to banks, wholesale centers, or customer relation-
ship management (CRM), the service provider can either use its own realisations or
make use of external services. The ORC service is running on top of a virtualised IT
infrastructure — the ORC infrastructure — that is offered by an additional provider.
To complete the scenario, we assume the ORC has been designed and implemented
by an independent software provider, namely, the ORC developer.

In Figure2, we present a view of the structure in a concrete scenario, where we
assume that the service provider only makes use of a bank service as an external
service. To provide other ‘additional services’ the service provider makes use of its
own realisations.

30 Christoph Rathfelder, Benjamin Klatt, Giovanni Falcone

Fig. 2 Open Reference Case overview.

2.2 Supported Business Process

In the overall scenario, the sales process is identified as the key business process.
To realise the sales process, additional services need to be accessed. For example,
the functions ValidateCard and DebitAmount are provided by the external bank ser-
vice and accessed via the ORC service. Figure3 shows the supermarket cash desk
sales process and its sub-processes. The process starts when the goods are scanned.
The barcode of each good is scanned and the GetProductDetails operation of the
InventoryService is called. If the detected product code is correct, the stock level
is updated. If not, the product code must be entered manually. After that, payment
by credit card is handled automatically. The card is first scanned and then validated
using the CardValidationService. If the card is valid, payment is completed using
the PaymentDebitService. If not, the card is rejected and the payment must be done
manually using cash.

3 ORC Architecture and Services

The ORC architecture is described in more detail below, using the UML 2.0 syn-
tax and giving a structural view. Figure 4 gives an overview of the implemented

The Open Reference Case 31

Sell Good

Scan Goods

<<ServiceSupported>>
Book Sale

Handout Receipt

Scan Good

Capture Good automatically

Scan Good

<<ServiceSupported>>
Get Product Details

isCorrect?

yes Capture
Good manually

no

HandlePayment

PaymentMethod?

Scan Card

<<ServiceSupported>>
Validate Card

Card

isValid?

<<ServiceSupported>>
DebitAmount

yes

Reject Card

no

Take Money

Cash

<<ServiceSupported>>
Handle Payment

Fig. 3 The sales process.

system, containing the legacy CoCoME components and the additional web-service
components.

Inventory
Service

<<Service>>
InventoryServiceIf

InventoryDB

JDBC

Store
Information

Service

<<Service>>
StoreInformationServiceIf

Order
Service

<<Service>>
OrderServiceIf

Payment
DebitService

<<Service>>
PaymentDebitServiceIf

Card
Validation

Service

<<Service>>
CardValidationServiceIf

Payment
Service

<<Service>>
PaymentServiceIF

Fig. 4 Architectural overview.

The five components InventoryService, StoreInformation-
Service, OrderService, PaymentDebitService and Card-
ValidationService implement web-service interfaces. Inventory-
Service, StoreInformationService, and OrderService require
the functionality provided by the legacy CoCoME component Inventory.

32 Christoph Rathfelder, Benjamin Klatt, Giovanni Falcone

The Inventory component provides three interfaces: The interface Cash-
DeskConnectorIf defines a method for getting product information (such as
description and price) based on the product’s barcode. The interfaces StoreIf
and ReportingIf deliver the results of database queries. The components
PaymentDebitService and CardValidationService provide function-
ality for handling credit card payments. These latter services are often provided
by a bank; however, they can also be implemented locally. These two services are
comprised within PaymentService, which is a BPEL-based service composition.

3.1 ORC Services

The web-services and their interfaces — which form the heart of the ORC imple-
mentation — are described in more detail below.

3.1.1 InventoryService

InventoryServiceInterface defines operations for getting product infor-
mation and changing prices. It is used to get the current price of a product, check
its availability in the inventory, and account for its removal from the inventory after
sale. The interface consists of five operations:

• getAllProductsWithOptionalStockItem determines all products
within the portfolio of a given store, the supplier for each of those products, and
the number of each product in stock. It returns a list of products, their suppliers,
and the number of each product in stock (if any).

• getProductsWithLowStock determines those products that are nearly out
of stock, meaning that the number in stock is lower than 10% of the maximal
stock. It returns a list of products and their stock levels in the given store.

• getAllProducts determines all products within the portfolio of a given store
and the supplier for each of them. It returns a list of all products and their suppli-
ers.

• changePrice updates the sales price of a stocked item. It needs the stocked
item and the new price as parameters, and returns an instance of Product-
WithStockItemTO, which holds product information and updated price in-
formation for the stocked item, identified by the parameter StockItemTO.

• getProductDetails uses a barcode to determine the products currently
in the stock of the store. It returns a ProductWithStockItemTO instance,
which contains the identified product linked to a stocked item in the store.

The Open Reference Case 33

3.1.2 StoreInformationService

StoreInformationServiceInterface provides an operation for getting
information about a store. The getStoreInformation operation returns a
transfer object, which includes information about the store and the enterprise it be-
longs to. This information is stored within the system during the initialisation and
setup phase.

3.1.3 OrderService

OrderService is used to control the ordering of products that run out
of stock. It is also used to log the receipt of ordered products. The
OrderServiceInterface consists of two operations:

• rollInReceivedOrder updates the store inventory after order delivery. It
adds the number of ordered items to the number of stocked items, setting the de-
livery date as the date of method execution. It requires an instance of Complex-
OrderTO, which contains the order that is rolled in as a parameter.

• orderProducts creates a list of orders from different suppliers for an initial
list of products to be ordered by a store. The product order is kept and the order-
ing date is set as the date of method execution. The method requires an instance
of ComplexOrderTO, which contains all products to be ordered and returns a
list of orders, one for each supplier involved.

3.1.4 CardValidationService

CardValidationService is one of two services that might be provided
by an external banking provider; its functionality is that of credit card valida-
tion. CardValidationServiceInterface comprises one operation, called
validateCard, and requires a personal identification number (PIN) and some
information about the card. The method returns a transaction ID that can be used to
debit the payment.

3.1.5 PaymentDebitService

PaymentDebitService is the second service that might be offered by an ex-
ternal banking provider. PaymentDebitServiceInterface provides an op-
eration debitCard for debiting payments. This operation is used to debit a bank
account. Possible return values are OK, NOT ENOUGH MONEY and TRANSAC-
TION ID NOT VALID. Requires a TransactionID that is issued with a valid
PIN.

34 Christoph Rathfelder, Benjamin Klatt, Giovanni Falcone

3.1.6 PaymentService

PaymentService is a service composition which consists of the two services: Card-
ValidationService and PaymentDebitService, implemented as a WS-
BPEL [2] process. PaymentService is deployed on a runtime web-service compo-
sition middleware. The sub-process PaymentService includes card validation and
debit payment and is required to support the entire sale process.

ReceivePaymentRequest

<<ServiceCall>>
InvokeCardValidationService

Card is validated?

<<ServiceCall>>
InvokeCardValidationService

Yes

GenerateCardInvalidInformation

No

Debit Requirements met?

GenerateDebitSuccessInformation

Yes

GenerateDebitFailedInformation

No

SendPaymentResponse

Fig. 5 The PaymentService BPEL process.

As depicted in Figure 5, as soon as the payment request is received, an attempt
is made to validate the provided card information. If card validation fails, Card-
InvalidInformation is generated. If the card is validated, the next step is
to determine whether the debit requirement on the card is fulfilled. If the require-
ment is fulfilled, PaymentIsSuccessful information is generated. Otherwise,
DebitFailed information is generated. All generated information is sent to the
cashier as the PaymentResponse. Thus credit card payment requests can be au-
tomatically processed in this way.

The Open Reference Case 35

4 ORC Deployment Options

The ORC software solution can be deployed on a single machine or distributed over
two or three machines. This allows selection of the most appropriate option, depend-
ing on extra-functional requirements such as completion time, cost and the expected
volume of customers. It is also possible to use the ORC as a multi-tenant system
that handles several different shops on a single ORC instance. Figure 6 illustrates
some of these deployment options. Although the services are quite independent,
there are some constraints on deployment options. For example, the three services
InventoryService, StoreInformationServcie, and OrderService
must be deployed on the same machine, as they are service wrappers for software
components running behind and share some functionality and configurations. The
CardValidationService and PaymentDebitService are also bundled
in one deployment unit, as card validation and debiting are always provided by
the same institution and their separation makes no sense. Please note that in the
SLA@SOI framework we use virtualised machines; this allows deployment of new
instances by simply copying existing images and starting them, which is much eas-
ier than manual installation on real machines. However, it is possible to install the
ORC manual without virtualisation.

• AllInOne: This deployment option comprises a single virtual machine image
that contains the database (DB), the basic services, and the composite services
(including the ORC application logic).

• SeparatedDB: This option comprises two virtual machine images: one provides
an application server with all deployed services and the other hosts the DB.

• SeparatedBPELEngine: Since the DB consumes only a small part of the avail-
able CPU resources and most CPU power is consumed in the web-service con-
tainer and BPEL engine, this deployment option separates the BPEL engine onto
an individual virtual machine. Basic services and the DB are deployed on a sec-
ond virtual machine.

• ThreeLayer: This deployment option combines the two previous ones, using
three virtual machines to separate the DB, BPEL engine and basic services.

• ExternalServices: The ORC can also be used to demonstrate the involvement of
an external service provider. The two services CardValidationService and Pay-
mentDebitService can be transferred to an external virtual machine. In this way,
they can be used as if they are being provided by an external service provider,
including the negotiation of SLAs with this external service provider.

5 Interactions with the SLA@SOI Framework

In the ORC scenario, several interactions are defined to demonstrate the features
of an SLA management framework. The interactions described below cover SLA

36 Christoph Rathfelder, Benjamin Klatt, Giovanni Falcone

Inventory
Service

InventoryDB

Store
Information

Service

Order
Service

Payment
DebitService

Card
Validation

Service

Payment
Service

Inventory
Service

InventoryDB

Store
Information

Service

Order
Service

Payment
DebitService

Card
Validation

Service

Payment
Service

Inventory
Service

InventoryDB

Store
Information

Service

Order
Service

Payment
DebitService

Card
Validation

Service

Payment
Service

AllInOne (default) SeparatedDB SeparatedBPELEngine

Inventory
Service

InventoryDB

Store
Information

Service

Order
Service

Payment
DebitService

Card
Validation

Service

Payment
Service

ThreeLayer

Inventory
Service

InventoryDB

Store
Information

Service

Order
Service Payment

DebitService

Card
Validation

Service

Payment
Service

ExternalServices

Fig. 6 ORC deployment options.

negotiation, the automated provisioning of software, and the monitoring of SLAs
and their violations.

The Open Reference Case 37

5.1 Discovery Interaction

In the discovery interaction (Figure 7), a shop provider queries the framework
to obtain products that satisfied his requirements. The shop provider must be
registered into the framework, then he can interact with it for the operation
queryCatalogue.

Fig. 7 Product discovery interaction.

The discovery interaction contains the following steps:

• customerRegister: The framework receives customer data and registers it on the
customer database of the framework.

• queryProductCatalog: The shop provider calls the framework with the request.
The framework will search in the product catalogue for products that fulfill the
requirements of the customer and will return them.

• queryCatalog: The framework searches within this catalogue for products that
support the given customer requirements and returns a list of product SLA tem-
plates (SLATs).

• customerStarts: The customer begins the provisioning interaction to purchase
products he is interested in.

38 Christoph Rathfelder, Benjamin Klatt, Giovanni Falcone

5.2 Provisioning Interaction

The provisioning interaction (Figure 8) focuses on the negotiation and provisioning
capabilities provided by the SLA@SOI framework.

Fig. 8 Provisioning interaction.

The provisioning interaction comprises the following steps:

• requestSLA: The shop provider sends a specific SLA request to the SLA@SOI
framework. This step can be extended, for example, by browsing SLATs.

• checkSLA: The framework checks if the requested SLA can be fulfilled. This
step can include different negotiation processes for other SLAs, planning or pre-
diction invocations, and selection of deployment options. If the checkSLA step
detects that the SLA cannot be fulfilled and should be rejected, the rejection mes-
sage is sent back as a response to the requestSLA request.

• StartProvisioning: If the result of the previous step is that the SLA can be ful-
filled, provisioning is started. This can include the confirmation of other software
or infrastructure SLAs, or the planning of schedules.

• StartVM: The virtual machine with the deployed ORC instance is started and
the endpoint address is returned to the shop provider.

The Open Reference Case 39

To demonstrate that the provisioning process was executed successfully, this sce-
nario includes two additional steps. If the SLA@SOI framework confirms the SLA,
then normal usage of the ORC can start.

• OpenCashDesk: After a successful SLA negotiation, the shop provider can open
the cash desks and customers can start buying products. The shop provider must
control customer volume to ensure it does not exceed the maximal load specified
in the SLA.

• BuyProducts: In an endless loop, customers wait in front of a cash desk and then
buy and pay for their products using credit cards or cash (as previously explained
in the overall ORC business process).

5.3 Monitoring Interaction

The monitoring interaction (Figure 5) focuses on the demonstration of capabilities
that are useful when SLAs are already negotiated and the services are running. Dif-
ferent capabilities can be shown in this interaction (e.g. detection and prediction of
different types of SLA violations, different adjustment actions, etc.).

Fig. 9 Monitoring interaction.

As per the provisioning interaction, this interaction includes customers buying
products in the shop to induce a system load. In contrast to the provisioning inter-
action, the customers arrive at different rates, thus inducing different load situations
on the ORC. This might be used to under- or overload the system.
The additional steps are:

40 Christoph Rathfelder, Benjamin Klatt, Giovanni Falcone

• MonitoringEvent: The manageability instrumentation sends service invocation
start and stop events to the monitoring infrastructure of the SLA@SOI frame-
work.

• CheckSLAViolation: Based on the received events, the SLA is monitored and
checked. If an SLA violation is detected, an adjustment within the SLA@SOI
framework is started.

• Adjust: Based on the type of SLA violation and eventually additional informa-
tion, a specific adjustment action is determined and performed.

• SLAViolationEvent: The shop provider is sent an event informing him of this
violation and can view the penalty thus generated.

6 Conclusion

In this chapter we introduced the Open Reference Case, which is the reference use
case of the SLA@SOI framework. The ORC is a Software as a Service (SaaS) so-
lution that supports the sales process in supermarkets. Within this book, the ORC is
used as a running example to explain different features of the SLA@SOI framework.
The ORC consists of several services that can be combined in different deployment
options. It is optimised for operation on virtualised on-demand images, which is the
vision of the SLA@SOI project. With a description of the interactions between the
ORC system, the SLA@SOI framework, and the customer, this chapter forms the
basis for following chapters that present the internals of the SLA@SOI framework.

References

[1] Herold, S., Klus, H., Welsch, Y., Deiters, C., Rausch, A., Reussner, R., Krog-
mann, K., Koziolek, H., Mirandola, R., Hummel, B., Meisinger, M., and Pfaller,
C.: The Common Component Modeling Example, Lecture Notes in Computer
Science, vol. 5153, chap. CoCoME – The Common Component Modeling Ex-
ample, pp. 16–53. Springer-Verlag Berlin Heidelberg (2008)

[2] OASIS: Web services business process execution language version 2.0. OASIS
Standard (2007). URL http://docs.oasis-open.org/wsbpel/2.
0/OS/wsbpel-v2.0-OS.html

Part II

Foundations for Service Level Agreements

The SLA Model

Abstract This chapter describes the SLA model that has been developed by the
SLA@SOI project. It defines a syntax for machine-readable Service Level Agree-
ments (SLAs) and SLA templates (SLA(T)). Historically, the SLA was developed
as a generalisation and refinement of the web service-specific XML standards: WS-
Agreement, WSLA, and WSDL. Instead of web services, however, the SLA model
deals with services in general, and instead of XML, it is language independent.
The SLA model provides a specification of SLA(T) content at a fine-grained level
of detail, which is both richly expressive and inherently extensible: supporting con-
trolled customisation to arbitrary domain-specific requirements. The model has been
applied to a range of industrial use-cases, including: ERP hosting, Enterprise IT,
live-media streaming, and health-care provision. At the time of writing, the abstract
syntax has been realised in concrete form as a Java API, XML-Schema, and BNF
Grammar.

1 Introduction

This chapter describes the SLA Model employed within SLA@SOI. An SLA is
an agreement between a service provider and service customer about the required
quality-of-service (QoS) characteristics of some service(s) delivered by the provider
to the customer. Properly speaking, the agreement as such is the intangible under-
standing, or accord, that exists between the provider and customer. The SLA Model
is not concerned with the intentional aspects of an agreement. It is only concerned

Engineering Ingegneria Informatica spa, Via Riccardo Morandi, 32, 00148 Roma, Italy,
e-mail: keven.kearney@eng.it

Francesco Torelli
Engineering Ingegneria Informatica spa, Via Riccardo Morandi, 32, 00148 Roma, Italy,
e-mail: francesco.torelli@eng.it

DOI 10.1007/978-1-4614-1614-2_4, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 43

Keven T. Kearney and Francesco Torelli

Keven T. Kearney

mailto:keven.kearney@eng.it
mailto:francesco.torelli@eng.it

44

with modelling the physical document that serves as the formal, concrete represen-
tation of an agreement. The SLA Model is therefore a document model. In particular,
it is an abstract syntax, specifying, in a language independent manner, the formal
serialised content of SLA and SLA Template (SLAT) documents. The SLA Model
assumes the basic domain concepts of ‘SLA’, ‘SLA Template’ and ‘service’ de-
scribed elsewhere in this book, but it is not a conceptual model of this domain. For
present purposes, an SLA is a document, the formal syntactic content of which is
specified in an abstract way by the SLA Model presented here.

The key objective in developing the SLA Model is to meet two ostensibly con-
flicting requirements of SLA@SOI: On one side, the model needs to support the
generic capabilities encapsulated by the ‘Generic SLA Manager’ (GSLAM; de-
scribed in Chapter ‘GSLAM – The Anatomy of the Generic SLA Manager’), requir-
ing that QoS guarantees and party obligations be specified in a domain-independent
manner at a fine-grained level of detail. On the other side, however, in order to meet
the diverse domain-specific requirements of the SLA@SOI test-bed scenarios and
real-world applications, the model must remain open to extension and customisa-
tion.

The domain-independent operations of the GSLAM span the entire SLA life-
cycle and include:

• quality-of-service (QoS) based service discovery,
• SLA negotiation, planning and optimisation of service delivery systems to

achieve the goals expressed in SLAs, and
• the subsequent monitoring and potential modification of these systems to

ensure these goals are indeed satisfied.

While complex and diverse, these capabilities can all, in essence, be characterised as
entailing some form of multiple constraint satisfaction, where the constraints to be
satisfied are the QoS guarantees expressed in SLAs. Accordingly, the SLA Model
must provide a common, domain-independent means for the detailed and precise
expression of these constraints. At the same time, however, it is impossible to fore-
see and enumerate all the possible requirements of domain-specific applications.
Thus the SLA Model also needs to support the definition and expression of custom
constraints.

To meet these conflicting requirements, the SLA Model is designed as a domain-
independent model of SLA(T)1 content grounded in an abstract constraint lan-
guage, the concrete elements of which are formally specified by ‘plug-in’ domain-
specific vocabularies. The constraint language provides a consistent, fine-grained
language supporting operations research, while the vocabularies provide for con-
trolled extensibility.

Historically, the SLA Model has been developed as a generalisation and refine-
ment of the web-service specific XML standards WS-Agreement [1], WSLA [2],
and WSDL [3] abstracting the notion of ‘web-service’ to the more generic ‘ser-
vice’, and eliminating the unnecessary restriction to XML as a representational for-
mat. The SLA Model thus supports the formulation of SLAs in any language for

1 We use the acronym SLA(T) to refer collectively to SLAs and SLATs

Keven T. Kearney, Francesco Torelli

The SLA Model 45

any service. To support as wide a range of domain-specific scenarios as possible,
the SLA Model only specifies the minimal content of SLA(T)s, encapsulating only
those aspects of SLA(T)s necessary for the generic functions of the GSLAM.

This chapter is organised as follows: Section 2 introduces the basic modelling
approach and provides foundational definitions. Sections 3 to 6 then describe, in or-
der, the content of SLA(T)s, service interface specifications, the abstract constraint
language, and domain-specific vocabularies. Section 7 closes the chapter with a de-
tailed walk-through of an example SLA Template represented in concrete XML
syntax.

2 Basic Concepts

The SLA Model is an abstract syntax specifying the formal content of serialised
SLA(T) documents. In purely formal terms, we define a document in generic terms
as an hierarchical organisation of symbols. This book, for example, is a document
comprised of a sequence of letters and punctuation marks (the symbols), hierarchi-
cally divided into chapters, sections, subsections, paragraphs, and so on. The SLA
Model is a syntax because it serves to specify the organisation of symbols in an SLA
document, but it is abstract in that it leaves unspecified the particular symbols used
to instantiate this organisation.

We will refer to any organisation of symbols as an expression (this sentence,
for example, is an expression), and to classes of expressions as expression-types.
The SLA Model is specified in terms of expression-types. Formally, we treat each
expression-type as a set whose members are the expressions which instantiate that
type. In the remainder of this chapter, we will use the terms type and expression-type
interchangeably. To avoid ambiguity, we will also use token (meaning an ’instance
of a type’) as synonymous with expression.

The SLA Model also draws a distinction between tokens per se and tokens that
are references to tokens. Specifically, if T is an expression-type, then:

• T : denotes the set of tokens of type T,
• ↑T : denotes the set of references to tokens of type T,
• ⇑T : denotes the set of references to (subtypes of) type T, while
• (↑)T : denotes either a token, or a reference to a token, of type T.

The universal type, which is the set of all possible expressions, is denoted by the
symbol L* (where ‘L’ may be read as ‘legal expressions’, or simply ‘language’).
The asterix is used here, and in subsequent type names, to indicate that the type is
abstract (meaning that it cannot be directly instantiated).

To capture the hierarchical organisation of documents, we introduce a first high-
level expression-type, E* ⊂ L*, denoting a class of entity expressions, each token
of which is just a collection of key/value attribute pairs. Attribute values can be
any kind of expression, including other entity expressions, which thus permits the
hierarchical nesting of entities. Formally:

46

E* ⊂ V* : each token is an unordered collection of ordered key/value attribute pairs <k,v>,
where: k ∈ NAME is the name (key) of the attribute, and v ∈ L* gives the attribute’s value.

The NAME type referred to in this definition is a datatype, in this case denoting
a class of simple names. All datatypes belong to a second high-level expression-
type, V* ⊂ L*, denoting a class of value expressions. In particular, a datatype is
a specialisation of a generic Constant* ⊂ V* type denoting constant values (e.g.
Boolean values (‘true’ or ‘false’) or metric quantities (‘4 s’, ‘10 bytes’, etc.), web
and e-mail addresses, and so on). We will describe V*, and explain datatypes in
more detail, in Section 5. Additional datatypes will be introduced in the text as the
need arises.

Every document is an entity expression, that is, a token of type E*. From the def-
inition above, this means that a document is just an ordered collection of key/value
attributes. In order to specify a document, therefore, we need to specify the partic-
ular entity-expression-types — i.e. subtypes of E*, henceforth just ‘entity-type’ —
from which the document is composed. As a first step, we introduce a generic doc-
ument-type, encapsulating the common attributes of all documents. We define this
document-type as follows (the notation is explained below):

Document* ⊂ E*
vocabularies ⊂ (↑)Vocabulary [0+]

The first line of this definition declares Document* as an expression-type that
specialises (i.e. is a subset of) the type E*. Each subsequent line defines a key/value
attribute pair, or attribute-type. In this case, there is only one attribute-type, whose
key is ‘vocabularies’ and whose value-type (denoted by the ⊂ relation) is an array
of 0+ (zero or more) (↑)Vocabulary expressions (i.e. either tokens or references
to tokens of the type Vocabulary). The type Vocabulary is the generic entity-type
for all vocabulary documents, and will be explained in detail in Section 6. For now,
it suffices to state that a vocabulary is a collection of expression-type definitions.
Semantically, the vocabularies attribute of a Document* token lists all the vocabu-
laries required to specify, and hence validate, the content of that Document* token.

To specify an SLA, we will also require two further entity-types — NamedEn-

tity* and Macro — which have the following definitions:

NamedEntity* ⊂ E*
name ⊂ NAME [1]

Macro ⊂ NamedEntity*
expression ⊂ V* [1]

A NamedEntity* token is simply an entity expression which carries a single
name attribute, the value of which can be used to refer to the token from other parts
of the document. Macro inherits the name attribute from NamedEntity*, and also
carries a second expression attribute, whose value can be any token of type V*. A
Macro token serves a similar purpose to a NamedEntity* token, but this time its

Keven T. Kearney, Francesco Torelli

The SLA Model 47

name value, when used as a reference, is always interpreted as referring to the value
of the token’s expression attribute, rather than the token itself. A Macro token with
the name ‘X’ and expression ‘abcdef’, for example, permits the expression ‘X’ to be
used in place of ‘abcdef’. Macros are essentially a convenience feature, providing a
means to decompose complex value expressions, and hence improve readability.

The next section builds on these basic definitions to specify the content of
SLA(T) documents.

3 SLAs and SLA Templates

Historically, the high-level structure of an SLA(T), as defined by the SLA Model,
has its roots in, and still maintains much in common with, WS-Agreement. Briefly,
an SLAT is a document which comprises three sections, describing:

• the parties to the agreement,
• the relevant services, specified in terms of their functional interfaces, and
• the agreement terms, including quality-of-service (QoS) guarantees and

other party obligations.

In formal terms, this document structure is captured by the following entity-type
definition:

SLAT ⊂ Document*
parties ⊂ Party [2+]

interfaceDeclrs ⊂ InterfaceDeclr [1+]

agreementTerms ⊂ AgreementTerm [1+]

macros ⊂ Macro [0+]

The types Party, InterfaceDeclr (interface declaration) and AgreementTerm

are all entity-types which we will define formally in the subsections below.
The SLAT entity-type also includes an optional macros attribute. Although

macros are essentially a convenience feature (as described earlier), their essentially
symbolic (referential) properties can be exploited to serve more significant purposes.
In SLA(T)s we exploit macros in order to encode customer options. This is done by
introducing a Macro subtype, Customisable, defined as follows:

Customisable ⊂ Macro
domain ⊂ Domain [1]

The Domain type is part of the abstract constraint language and will be defined
formally in Section 5.1. For now, it suffices to state that the domain attribute spec-
ifies a set of alternative values, with the value of the expression attribute then de-
noting a particular selection from these alternatives. In an SLAT this selection is
interpreted as the ‘default option’, while in SLAs it is interpreted as the ‘option

48

chosen by the customer’. The example SLAT in Section 7 illustrates this use of the
Customisable macro.

An SLA document has the same structure as an SLAT, but with additional at-
tributes giving the time at which the SLA was agreed, its effective lifespan, and a
reference to the template (if any) from which it was derived. To denote a specific
point-in-time, or time-stamp (e.g. ‘Wed Dec 15 18:38:0.0 CET’), we introduce a
DATETIME datatype. For the template reference we use a reference type (as ex-
plained in the previous section), in this case ↑SLAT. An SLA document can then be
modelled formally as:

SLA ⊂ SLAT
agreedAt ⊂ DATETIME [1]

effectiveFrom ⊂ DATETIME [1]

effectiveUntil ⊂ DATETIME [1]

template ⊂ ↑SLAT [0..1]

These two definitions completely capture the high-level structure of SLAs and
SLATs. In the following subsections we move stepwise through the document hier-
archy to specify SLA(T) content in more detail.

3.1 SLA(T) Parties

Information about a particular agreement party (e.g. the service provider, or the
service customer) is captured using a Party entity-type, which is a concrete special-
isation of a more generic Actor* entity-type. The relevant definitions are:

Actor* ⊂ NamedEntity*

Party ⊂ Actor*
role ⊂ ENUM [1]

operatives ⊂ Operative [0+]

The role attribute of Party serves to identify the role played by the party in
the agreement. Typically, this role will be either ‘service provider’ or ‘service cus-
tomer’, but there may be other roles peculiar to specific domains. Within any given
domain, however, there will only be a handful of valid roles. As such, we need a
mechanism by which we can state that the value of an attribute will be drawn from a
limited set of domain-specific alternatives. The ENUM datatype, denoting an enu-
merated list, serves this purpose (the enumerated items themselves are specified in
domain-specific vocabularies using DataValue tokens, described in Section 6).

Conceptually, each party to an SLA may be acting as an agent, or proxy, on behalf
of others. A company executive, for example, can sign a contract for a catering
service on behalf of the company’s employees, who are the end consumers proper

Keven T. Kearney, Francesco Torelli

The SLA Model 49

of the service. In the SLA Model, the individuals, if any, represented by a party
are referred to as ‘operatives’. A single SLA(T) may offer different QoS guarantees
to different categories of operative, with each category described by an Operative

entity-type expression:

Operative ⊂ Actor*

Note that both Party and Operative specialise the abstract Actor* type, and thus
describe SLA ‘actors’. As with all definitions in the SLA* model, the Party and Op-

erative definitions are intended to capture only the minimal information and/or dis-
tinctions required to specify the agreement terms. It is expected that domain-specific
vocabularies will extend these actor definitions to add more detailed information.

3.2 SLA(T) Interface Declarations

All information about the functional capabilities of a service is captured in the form
of an Interface entity-type, a detailed description of which will be given later in
Section 4. For the moment, it is sufficient to note that the Interface type essentially
encapsulates the information found in traditional ‘service descriptions’ (in partic-
ular, WSDL documents). What is important in an SLA(T) is that all the relevant
interfaces are declared, and this is achieved using an InterfaceDeclr entity-type,
which has the following definition (the parent Service* type will also be defined in
Section 4):

InterfaceDeclr ⊂ Service*
provider ⊂ ↑Actor* [1]

consumers ⊂ ↑Actor* [1+]

endpoints ⊂ Endpoint [1+]

interface ⊂ (↑)Interface [1]

Each InterfaceDeclr entry in an SLA(T) asserts an obligation on the part of
one of the SLA(T) actors, as given by the provider attribute, to provide specific
functional capabilities to one or more other actors, given by the consumers attribute.
Note that both provider and consumers attributes accept references to any actor —
i.e. to any Party or Operative — regardless of that actor’s role in the agreement.
It may be, for example, that we wish to oblige a service provider to send regular
status reports to the service customer, a prerequisite for which is that the customer
provides a suitable interface for receiving these reports.

In addition to specifying the relevant actors, each InterfaceDeclr also enumer-
ates one or more endpoints, each of which provides a location (address) and a com-
munications protocol by which interface operations may be invoked:

Endpoint ⊂ NamedEntity*

50

protocol ⊂ ENUM [1]

location ⊂ TEXT [0..1]

Just as with the Party role attribute (Section 3.1 above), the ENUM value-type
defined for the protocol attribute indicates that values will be drawn from some lim-
ited set of domain-specific alternatives, such as ‘SOAP’, ‘HTTP’, ‘e-mail’, ‘voice-
telephony’, ‘SMS’, and so on. The choice of protocol also determines the appro-
priate form for location values. For example, for ‘e-mail’, an e-mail address is re-
quired, while for ‘voice-telephony’, the location would be a telephone number. Ac-
cordingly, we define the value-type of the location attribute as TEXT, a datatype
denoting some opaque string constant. Note that the location attribute is optional,
since it is not necessarily the case that locations can be fixed in advance.

Finally, the interface that is the subject of the declaration is given by the interface
attribute, whose value may be an embedded Interface document, or more typically,
a reference to an Interface document accessible from some external source. Note
that several endpoints may be defined for a single interface, and that the same inter-
face may appear in multiple interface declarations.

3.3 SLA(T) Agreement Terms

The agreement terms section of an SLA(T) specifies the QoS guarantees and other
party obligations that form the substantive content of the agreement. An SLA(T)
may contain multiple agreement terms, each of which can define multiple guarantees
effective under varying conditions. The AgreementTerm entity-type is defined as
follows:

AgreementTerm ⊂ NamedEntity*
pre ⊂ Constraint* [0..1]

macros ⊂ Macro [0+]

guarantees ⊂ Guarantee* [1+]

The pre attribute specifies (optional) pre-conditions on the agreement term, defin-
ing the conditions under which the agreement term is effective. (If none are given the
agreement term is always effective.) These pre-conditions take the form of a Con-

straint* expression, which is part of the abstract constraint language and will be
explained in detail in Section 5.1. The macros attribute is provided for convenience
or for encoding agreement-term-specific options (cf. the use of the Customisable

macro described earlier).
The most significant part of an agreement term are its guarantees, which come

in two forms: guaranteed states and guaranteed actions. Formally, we first define
an abstract Guarantee* type to capture the common attributes of both states and
actions; namely, these are a reference to the actor obligated to ensure the guarantee is

Keven T. Kearney, Francesco Torelli

The SLA Model 51

satisfied, and an optional Constant* (described in Section 5.2) serving as a domain-
specific indication of the guarantee’s priority:

Guarantee* ⊂ NamedEntity*
priority ⊂ Constant* [0..1]

obligated ⊂ ↑Actor* [1]

A guaranteed state describes some state of affairs that the obligated actor is re-
sponsible for maintaining. Typically, this will be a QoS constraint, such as comple-
tion time of service X is less than 5 s or service X has greater than 90% availability.
We refer to this state of affairs as the guarantee’s post-condition (since it represents
the desired effect of the guarantee). To allow for multiple guaranteed states effec-
tive under different contingencies, an optional pre-condition is also permitted. Thus
a guaranteed state is a Guarantee* with additional pre and post constraints:

State ⊂ Guarantee*
pre ⊂ Constraint* [0..1]

post ⊂ Constraint* [1]

A guaranteed action, instead, describes an obligation on an actor to perform (or
refrain from performing) some specific action under specific conditions. Simple ex-
amples include obligations on the service provider to send periodic reports to the
customer, or to pay penalties in the case of SLA violations. The description of a
guaranteed action entails four elements:

• a ‘policy’ stating whether the action is mandatory, forbidden or optional,
• a specification of the (class of) events which trigger (or, depending on policy,

inhibit) the action, referred to as the guaranteed action’s pre-condition,
• a time limit within which the action must be performed (or during which the

action is prohibited),
• a description of the action itself, which leads to the guaranteed action’s post-

condition,

The entity-type definition encapsulating this information is as follows:

Action ⊂ Guarantee*
policy ⊂ ENUM [1]

pre ⊂ ↑EventClass* [1]

limit ⊂ DURATION [1]

post ⊂ ActionDef* [1]

Formally, the action’s pre-condition (trigger) is given as a reference to an Event-

Class*, identifying a class of events. The SLA Model defines several classes of
event, the simplest of which are DATETIME constants (i.e. time-stamps). Addi-
tional classes of event can be defined by domain-specific vocabularies (Section 6).

52

The action’s post-condition, instead, is given as an ActionDef*, which is essen-
tially an empty placeholder to be filled by domain-specific action descriptions:

ActionDef* ⊂ E*

By way of illustration, the SLA Model defines an ActionDef* subtype represent-
ing a ‘payment’, i.e. a transfer of economic value. Since the actor obliged to make
the payment is already given (see Guarantee*), the formal definition of a payment
need only identify the recipient and the value:

Payment ⊂ ActionDef*
recipient ⊂ ↑Actor* [1]

value ⊂ V* [1]

Other action ActionDef* subtypes defined by the SLA Model are:

• Invocation : denoting the invocation of a specific interface operation,
• Termination : denoting the termination of an SLA,
• Workflow : denoting a composition of actions.

The example SLA Template presented in Section 7 illustrates the use of both
guaranteed states and actions.

4 Interface Specifications

The functional capabilities of services are captured as functional interface specifica-
tions. The notion of ‘interface’ employed in the SLA Model is essentially a gener-
alisation of WSDL 2.0, abstracting from web-service to ‘service’, and from the use
of XML as concrete syntax. Accordingly, an interface is essentially a collection of
named operations. For modularity, each interface specification may be a document
in its own right, and interfaces may obtain specialisation hierarchies (i.e. extension,
with operation inheritance). The Interface entity-type is defined as follows:

Interface ⊂ Document*
extended ⊂ ↑Interface [0+]

operations ⊂ Operation [0+]

An interface operation is effected by a choreographed exchange of messages,
specified by assigning appropriate message types to particular roles, or slots, in a
standard exchange pattern. Potential faults (or exceptions) are specified in a similar
fashion (we refer readers to the WSDL 2.0 specification for a more detailed expla-
nation of these concepts). The Operation entity-type is defined as follows, with the
value of the message label attribute identifying the relevant pattern slot:

Keven T. Kearney, Francesco Torelli

The SLA Model 53

Operation ⊂ Service*
pattern ⊂ UUID [1]

messages ⊂ Message [0+]

faults ⊂ Message [0+]

Message ⊂ E*
message label ⊂ NAME [1]

valuetype ⊂ ⇑MessageType* [1]

MessageType* ⊂ E*

Service* ⊂ NamedEntity*

Note that the MessageType* entity-type is defined as an empty specialisation of
E*, which means that messages may have arbitrary content. MessageType* sub-
types are defined in vocabularies (Section 6) in just the same way that any domain-
specific entity-type is defined (an example is given in Section 7).

The parent type of Operation is the abstract entity-type Service*, which we first
encountered in the previous section as the parent of InterfaceDeclr. To recap, an
InterfaceDeclr comprises an Interface, which in turn comprises a set of Opera-

tions. The Service* type can therefore be understood as encapsulating (through its
subtypes) a collection of service Operations.

In formal terms, an Operation, as we have just defined it, is essentially a pre-
scription, or protocol, for exchanging messages. In contrast, when we speak of the
invocation of an Operation, we are instead referring to the execution of this proto-
col; that is, we refer to a particular exchange of particular messages. In other words,
an invocation is a specific physical event occurring at a specific point in space in
time. Distinct invocations of the same Operation will thus have idiosyncratic prop-
erties (e.g. time and place) which are not represented at the level of protocol de-
scription. To describe such event properties, the SLA Model provides a dedicated
EventClass* type (see also guaranteed actions in the previous section). For invoca-
tion events in particular, the model provides InvocationClass*, the formal definition
of which is as follows:

InvocationClass* ⊂ EventClass* ⇐⇒ Service*
invocation uuid ⊂ UUID [1]

request time ⊂ DATETIME [1]

reply time ⊂ DATETIME [1]

endpoint uuid ⊂ UUID [1]

consumer uuid ⊂ UUID [1]

The attributes of InvocationClass* denote properties of invocation events. The
value of request time, for example, gives the point in time at which an invocation re-
quest was received, while the value of endpoint uuid identifies the endpoint at which

54

the request was received. As such, it should be clear that tokens of the Invocation-

Class* type, or indeed of any EventClass* type, always constitute descriptions of
particular events.

This, however, constitutes a problem. Since the purpose of a SLA(T) is to con-
strain future events (those constituting the service to be delivered), it is unlikely that
EventClass* tokens will ever appear in SLA(T)s. Nevertheless, it is useful to refer
to event properties. We may wish, for example, to define different QoS guarantees
for a given service according to the request time, or endpoint uuid of invocations.
To permit this, the SLA Model requires that each EventClass* type is associated
with a corresponding entity-type. In the case of InvocationClass*, the associated
entity-type is Service* (indicated by the ⇐⇒ symbol in the formal definition). This
association permits InvocationClass* attributes to be referenced as if they were
attributes of a Service* token.

This completes the SLA Model specification of SLA, SLAT and Interface docu-
ment types. As stated in the introduction, all these definitions are minimal, encapsu-
lating only the common, domain-independent content of SLA(T) documents. As we
will see in Section 6, all the entity-types defined here may be arbitrarily extended
by domain-specific vocabularies.

5 Value Types (the abstract constraint language)

The entity-type definitions presented in preceding sections made use of two im-
portant — but as yet undefined — expression types, namely: Constraint* (used for
specifying QoS guarantees) and Constant* (the abstract supertype of all datatypes).
These types both specialise the high-level type V* ⊂ L*, which denotes a class of
‘value types’. A third value-type, thus far unmentioned, is Parametric ⊂ V*, denot-
ing an extensible set of expressions with a parametric, or functional, form. Examples
include arithmetic and set operators (+, ×, ⊂, ∈, etc), and QoS ‘metrics’ (e.g. com-
pletion time, arrival rate, availability, etc). Taken together, these types constitute
an abstract constraint language, which we describe in the following subsections.

5.1 Constraint Expressions

The starting point in the abstract constraint language, is the Constraint* expression
type. A constraint expression is some statement, or formula, which places bounds
on the permitted value of some variable. A constraint may be atomic or compound.
Examples of atomic constraints include the following:

• X < 4,
• X + Y >= Z,
• foo(Y) ! = goo(Z),
• Z ∈ { a, b, c },

Keven T. Kearney, Francesco Torelli

The SLA Model 55

• completion time(S) < 10 s,

In general, an atomic constraint could be defined as an ordered relation between
a variable and a value. The expression ‘X < 4’, for example, would comprise the
relation ‘<’ between values ‘X’ and ‘4’. In the SLA Model, however, we take a
slightly more convoluted approach, and define an atomic constraint as a variable
(e.g. ‘X’) bound to lie in some domain (e.g. ‘< 4’). This approach allows the domain
part of the expression to be employed independently of constraints.

A compound constraint is some logical combination of sub-constraints. For max-
imum flexibility we also allow both atomic and compound domains, where a com-
pound domain is some logical combination of sub-domains (e.g. the conjunction ‘>
4 and < 10’).

To model constraints, we first introduce the following abstract types:

Constraint* ⊂ V* : the abstract supertype of constraints,

Domain* ⊂ V* : the abstract supertype of domains,

Constant* ⊂ V* : the abstract supertype of constants,

The concrete atomic and compound versions of constraints and domains are then
given by the following expression type definitions:

AtomicConstraint ⊂ Constraint* : each token is an ordered pair <c,d>, where c is a non-
empty array (an ordered list) of Constant* values, each member of which is constrained to
lie in the domain d ∈ Domain*.

CompoundConstraint ⊂ Constraint* : each token is an ordered pair <o,C>, where o ∈
UUID uniquely identifies a compound operator (e.g. ‘and’, ‘or’, or ‘not’), and C ⊂ Con-

straint* is an unordered set of sub-constraints.

AtomicDomain ⊂ Domain* : each token is an ordered pair <o,c>, where o ∈ UUID

uniquely identifies a domain operator (e.g. <, >=, ! =, etc), and c ∈ Constant* specifies a
domain boundary (according to the semantics of the domain operator).

CompoundDomain ⊂ Domain* : each token is an ordered pair <o,D>, where o ∈ UUID

uniquely identifies a compound operator (e.g. ‘and’, ‘or’, or ‘not’), and D ⊂ Domain* is an
unordered set of sub-domains.

Note that the constrained variable in an AtomicConstraint is defined as an array.
So, for example, the constraint ‘X < 4’ would represent ‘[X] < 4’ (where ‘[..]’
denotes an array). Semantically, a constraint such as ‘[X,Y] < 4’ could equally
be expressed as a conjunction ‘(X < 4) and (Y < 4)’. Constraints are defined in
this way to ensure a consistent semantics for EventClass* types (Section 4), a full
discussion of which is beyond the scope of this chapter.

The SLA Model predefines several domain operators, namely: the standard com-
parison operators (<, >, <=, >=, = and ! =), a ‘matches’ operator for comparing
character strings against regular expressions, and a set membership operator (‘mem-
ber of’). Three compound (logical) operators are also defined: ‘and’ (conjunction),
‘or’ (disjunction) and ‘not’ (negation). If required, additional, domain-specific op-
erators can be specified using vocabularies, as described in Section 6.

56

5.2 Constants and Datatypes

Constant expressions, encapsulated by the abstract type Constant*, are the most
primitive expressions of the SLA Model, constituting the terminal nodes in docu-
ment content hierarchy. Constant expressions include such things as metric quan-
tities (e.g. ‘4 s’, ‘10 MB’, ‘90%’, etc.), e-mail and web addresses (e.g. ‘http://sla-
at-soi.eu/’), Boolean values (e.g. ‘true’ and ‘false’), time-stamps (e.g. ‘Wed Dec 15
18:38:0.0 CET’), and others. The term datatype is used informally to refer to any
subtype of Constant*.

We have already encountered some of the datatypes built-in to the SLA Model.
The complete list is as follows:

• TEXT : opaque (unparsed) character strings,
• REGEX : regular expressions (explained below),
• ENUM : enumerations (e.g. Section 3.1),
• PATH : typically takes the form of a navigable route through the document hierarchy,

identifying some target expression token,
• UUID : a universally unique identifier (e.g. a URI),
• NAME : used in particular as the name of a NamedEntity*,
• CARD : cardinality constraints (e.g. ‘0..1’, ‘1+’), etc.
• BOOL : Boolean values,
• STND : standard forms (explained below),
• NUMERIC* : abstract supertype of numeric quantities.

The NUMERIC* datatype is an abstract supertype encapsulating numeric con-
stants, and, in particular, metric quantities. The SLA Model provides the following
built-in specialisations:

• QUANTITY : non-metric real values, e.g. ‘1.435’, ‘pi’,
• COUNT : non-metric integer values,
• PERCENT : percentiles, e.g. ‘90%’,
• DURATION : periods of time, e.g. ‘4 s’, ‘2 days’,
• CURRENCY : e.g. ‘10 Euros’,
• DATASIZE : e.g. ‘5 bytes’, ‘100 GB’,
• DATARATE : e.g. ‘1 GB per s’ (gigabytes per second),
• TXRATE : transaction rates, e.g. ‘2 tx per day’ (transactions per day),
• LENGTH : e.g. ‘4 m’, ‘10 cm’,
• AREA : e.g. ‘10 m2’ (metres squared),
• FREQUENCY : e.g. ‘200 Hz’, ‘33 rpm’,
• WEIGHT : e.g. ‘25 kg’,
• POWER : e.g. ‘300 mW’,
• ENERGY : e.g. ‘37 KWh’,

To compare and validate constant expressions, we require a means to determine
the datatype of any given constant token. To determine that the phrase ‘4 kg < 10 J’
is invalid, for example, we need to know that ‘4 kg’ and ‘10 J’ denote measures with
different (and incomparable) datatypes (WEIGHT and ENERGY respectively). To
achieve this, datatypes can be associated with regular expressions, which constrains
the format of tokens, and allows for the determination of type by pattern matching.
The WEIGHT datatype, for example, has an associated regular expression ‘[x] kg’,
where ‘[x]’ is interpreted as a placeholder for a number, such that any character

Keven T. Kearney, Francesco Torelli

http://sla-at-soi.eu/%E2%80%99%00
http://sla-at-soi.eu/%E2%80%99%00
http://sla-at-soi.eu/%E2%80%99%00

The SLA Model 57

sequence matching ‘[x] kg’ will be interpreted as a WEIGHT token. The built-in
REGEX datatype denotes the class of such regular expressions.

The STND datatype extends this use of regular expressions to also allow def-
initions of data-conversion formula. The REGEX token ‘[x] hrs’, for example, is
mapped onto the STND token ‘[x*3600] s’ (which is referred to as its standard
form), and serves to encode the formula required to convert a duration expressed in
hours into the equivalent duration expressed in seconds.

All the datatypes listed above are defined as part of the SLA Model. In Section
6 we will see how vocabularies can be used to define additional datatypes to meet
domain-specific requirements.

5.3 Parametrics

The third, and final class of value tokens is the Parametric ⊂ V* type, denoting ex-
pressions which have a parametric, or functional, form. Common examples include:

• arithmetic operations, e.g. ‘X + 4’, ‘8 × 12’,
• aggregate operations, e.g. ‘sum([1,2,3])’, ‘mean([4,5,6])’
• set operators, e.g. ‘X ∈ [a,b,c] ∪ [d,e,f]’,
• QoS metrics, e.g. ‘completion time(S)’, where S denotes a set of service invocations.

The formal definition of Parametric type is as follows:

Parametric ⊂ V* : each token is an ordered pair <f,P>, where f uniquely identifies an
operator (i.e. a ‘function’ or ‘predicate’ name), and P ⊂ V* is an ordered set of parameters.

For validation purposes, we also need a means to specify, for each function name
(i.e. f in the preceding definition) the required arity and types of its parameters.
In addition, Parametric expressions have the special property that, as well as con-
forming to a syntactic type, they also obtain a semantic ‘role’, which is defined
as the syntactic type to which the expression evaluates when interpreted. The to-
ken ‘sum([2 mins, 3 s])’, for example, denotes the summation over the durations ‘2
mins’ and ‘3 s’ which evaluates to the single duration ‘123 s’. The semantic role
of the token ‘sum([2 mins, 3 s])’ is the type of this evaluated result, namely, the
datatype DURATION. The significance of the semantic role is that Parametric ex-
pressions may be used anywhere that tokens with their semantic role are permitted.
If a DURATION constant is required, for example, then any Parametric expression
which evaluates to a DURATION constant may be used instead.

The SLA Model allows all this information to be captured formally in vocabu-
laries (Section 6). The sum operator, for example, is formally defined as a single
non-empty array of some numeric type N ⊂ NUMERIC as parameter, and as eval-
uating to a single value of the same type. We can express this concisely with the
following notation:

• sum(N[1+]) → N[1] ⊂ NUMERIC.

58

The SLA Model defines many built-in Parametric* types covering, among oth-
ers, the common arithmetic, aggregation and set operators as well as QoS metrics.
A complete description of all the parametric types would require more space than
is available here. To give some flavour of the model, however, the following is a
complete list of formal definitions for the built-in QoS metrics:

• accessibility(↑InvocationClass*[1]) → QUANTITY[0+].
• arrival rate(↑InvocationClass*[1]) → TXRATE[0+].
• availability(↑InvocationClass*[1]) → QUANTITY[0+].
• completion time(↑InvocationClass*[1]) → DURATION[0+].
• isolation(↑InvocationClass*[1]) → BOOL[0+].
• mttf (↑InvocationClass*[1]) → DURATION[1].
• mttr(↑InvocationClass*[1]) → DURATION[1].
• non repudiation(↑InvocationClass*[1]) → TEXT[1].
• regulatory(↑InvocationClass*[1]) → TEXT[1+].
• supported standards(↑InvocationClass*[1]) → TEXT[1+].
• throughput(↑InvocationClass*[1]) → TXRATE[1].

To close this section, we should mention two additional Parametric types that
will be used in the example SLAT in Section 7:

• violation(↑Guarantee*[1]) → E[1] ⊂ ↑EventClass*.
• union(E[2+]) → E[1] ⊂ ↑EventClass*.

The first of these, violation, is used to specify a class of events whose mem-
bers are the individual occurrences of the violation of some guarantee. The second,
union, serves to combine diverse classes of event into a single event class. By com-
bining the two, we can specify a class of events whose members are the occurrences
of violations of any of a given set of guarantees.

Additional domain-specific Parametric types can be specified using vocabular-
ies, which we describe in the next section.

6 Domain-Specific Vocabularies

The previous sections outlined the basic content of the SLA Model, which, by way
of summary, comprises an abstract constraint language (Section 5), a document
model for Interface specifications (Section 4), and, building on these, document
models for SLAs and SLATs (Section 3). Many aspects of the SLA Model, however,
are open and extensible, supporting customisation to domain-specific requirements.
Extensions to the model are specified using vocabularies, which we describe in this
section.

A vocabulary is a document comprising a list of vocabulary terms, each of which
specifies a particular extension to the SLA Model. Formally, a vocabulary is encap-
sulated by the entity-type Vocabulary:

Vocabulary ⊂ Document*
terms ⊂ Term* [1+]

Keven T. Kearney, Francesco Torelli

The SLA Model 59

The type Term* is the abstract supertype of all vocabulary terms, of which there
are seven concrete specialisations, each serving a different purpose. For reasons of
space we can not present their complete formal definitions, but the following list
provides brief informal descriptions:

Term* ⊂ E* : abstract supertype of vocabulary terms.

EntityType ⊂ Term* : each token provides a formal definition of an entity-type (i.e. a sub-
type of E*). All the formal entity-type definitions provided in this chapter — for example,
the Vocabulary definition above — are perfectly valid examples of EntityType tokens.

DataType ⊂ Term* : each token provides a formal definition of a datatype (i.e. a subtype
of Constant*), which comprises a unique identifier (UUID) and supertype.

DataValue ⊂ Term* : each token associates a datatype with a regular expression (REGEX)
and optional standard form (STND), the purposes of which are explained in Section 5.2.

ParametricType ⊂ Term* : each token specifies a parametric operator (UUID), together
with its required arity and parameter types, and its semantic role. The ‘QoS metrics’ listed
in Section 5.3 are all valid examples of ParametricType tokens.

DomainOp ⊂ ParametricType : each token specifies a domain operator (cf the definition
of AtomicDomain in section 5.1).

CompoundOp ⊂ Term* : each token specifies a compound operator (cf. the definitions of
CompoundConstraint and CompoundDomain in Section 5.1).

EventClass* ⊂ Term* : each token specifies a class of events, defining a unique identifier
(UUID) for the class, the entity-type with which it is associated, and a list of monitorable
attributes. The InvocationClass* defined in Section 4 is a valid example of an EventClass*

token.

Vocabulary documents thus allow for a considerable degree of domain-specific
customisation, supporting the definition of new entity-types, datatypes and data-
formats, parametric, domain and compound operators, and classes of event.
Domain-specific applications may pick and choose from existing vocabularies, or
create entirely new ones, as per their needs, thus supporting a modular approach to
development. Individual vocabularies are identified by a URI, which also constitutes
a namespace (in the manner of XML) for the terms defined in that vocabulary.

Thus the SLA Model itself can in large part be specified using vocabularies. The
SLA Model is specified in four distinct parts: The first, referred to as the ‘core’,
comprises all the basic definitions given in Section 2, the abstract constraint lan-
guage (Section 5), and the definition of vocabulary documents (this section). In-
terface specifications (Section 4), SLAs and SLATs (Section 3), and QoS Metrics
(Section 5.3) are then each specified in distinct vocabularies. The namespace URIs
of these vocabularies are as follows:

• Core : http://www.slaatsoi.org/coremodel#
• Interfaces : http://www.slaatsoi.org/interfaces#
• SLA(T)s : http://www.slaatsoi.org/slamodel#
• QoS Metrics : http://www.slaatsoi.org/commonTerms#

http://www.slaatsoi.org/coremodel#
http://www.slaatsoi.org/interfaces#
http://www.slaatsoi.org/slamodel#
http://www.slaatsoi.org/commonTerms#

60

For simplicity, we have until now ignored these namespace URIs. It
should be borne in mind, however, that all the expression types defined
by the SLA Model are formally identified by URIs. The formal identifier
for the NamedEntity* entity-type, to take a random example, is the URI
http://www.slaatsoi.org/coremodel#NamedEntity.

In the final section, below, we provide an example SLAT which illustrates how
the SLA Model is applied, and how diverse vocabularies work together.

7 An Example SLA

We close this chapter on the SLA Model with a concrete example of an SLA Tem-
plate. Since the SLA Model is an abstract syntax, the first task is to choose an
appropriate concrete syntax for the example. For simplicity, we will use XML1,
assuming that it is familiar to most readers. Line numbers are added to facilitate
description. The content of the SLAT will be described as the example progresses.

We start by describing the service that is the subject of the SLAT. Since our fo-
cus is the SLAT itself, we will keep the service simple and intuitive: a product pur-
chasing service comprising a single operation, ‘BuyProduct’, offered by a provider
‘Fred’. The interface for the service is specified as an interface document, i.e., an
instance (token) of the entity-type Interface (described in Section 4). The complete
document is as follows:

1: <iface:Interface
2: xmlns:iface = "http://www.slaatsoi.org/interfaces#"
3: >
4: <vocabularies>
5: http://www.fred.com/freds_vocab
6: </vocabularies>
7: <operations>
8: <iface:Operation>
9: <name>BuyProduct</name>
10: <pattern>http://www.w3.org/ns/wsdl/in-out</pattern>
11: <messages>
12: <iface:Message>
13: <message_label>In</message_label>
14: <valuetype>
15: http://www.fred.com/freds_vocab#BuyProduct.In
16: </valuetype>
17: </iface:Message>
18: </messages>
19: </iface:Operation>
20: </operations>
21: </iface:Interface>

1 For reasons of space we do not provide an XML Schema. The mapping from the abstract syntax
to XML should be, however, self-evident.

Keven T. Kearney, Francesco Torelli

http://www.slaatsoi.org/coremodel#NamedEntity
http://www.slaatsoi.org/interfaces#
http://www.fred.com/freds_vocab
http://www.w3.org/ns/wsdl/in-out</pattern
http://www.fred.com/freds_vocab#BuyProduct.In

The SLA Model 61

The opening element (lines 1–3) announces the document to be an instance (to-
ken) of the entity-type iface:Interface, where ‘iface’ denotes the URI namespace
‘http://www.slaatsoi.org/interfaces#’, defined by the SLA Model for interface docu-
ment terms. The first child element (lines 4–6) lists the various vocabularies against
which the document content must be validated. In this case, just one vocabulary is
used (available at the URI ‘http://www.fred.com/freds vocab’), which we will de-
scribe shortly.

The remaining content (lines 7–20) defines an interface operation with the name
‘BuyProduct’ (line 9), and standard ‘in-out’ messaging pattern, as identified by
the URI ‘http://www.w3.org/ns/wsdl/in-out’ (line 10). Lines 12–17 then assign a
message-type, identified as ‘http://www.fred.com/freds vocab#BuyProduct.In’ (line
15), to the pattern role ‘In’ (line 13). For modularity, the message type is defined in
the imported domain-specific vocabulary (line 5). This vocabulary is a distinct doc-
ument, whose content is as follows:

1: <core:Vocabulary
2: xmlns:core = "http://www.slaatsoi.org/coremodel#"
3: xmlns:iface = "http://www.slaatsoi.org/interfaces#"
4: >
5: <vocabularies>
6: http://www.slaatsoi.org/interfaces
7: </vocabularies>
8: <terms>
9: <core:EntityType>

10: <uuid>
11: http://www.fred.com/freds_vocab#BuyProduct.In
12: </uuid>
13: <supertype>
14: http://www.slaatsoi.org/interfaces#MessageType
15: </supertype>
16: <concrete>yes</concrete>
17: <definition>
18: defines the ’In’ message of ’BuyProduct’
19: </definition>
20: <attributeTypes>
21: <core:AttributeType>
22: <name>product_id</name>
23: <valuetype>
24: http://www.slaatsoi.org/coremodel#TEXT
25: </valuetype>
26: <cardinality>1</cardinality>
27: <definition>
28: identifies the product to buy
29: </definition>
30: </core:AttributeType>
31: </attributeTypes>
32: </core:EntityType>
33: </terms>
34: </core:Vocabulary>

As before, the opening element announces the document entity-type, which is
now core:Vocabulary, with ‘core’ denoting ‘http://www.slaatsoi.org/coremodel#’,

http://www.slaatsoi.org/interfaces#%E2%80%99
http://www.fred.com/freds
http://www.w3.org/ns/wsdl/in-out%E2%80%99
http://www.fred.com/freds
http://www.slaatsoi.org/coremodel#
http://www.slaatsoi.org/interfaces#
http://www.slaatsoi.org/interfaces
http://www.fred.com/freds_vocab#BuyProduct.In
http://www.slaatsoi.org/interfaces#MessageType
http://www.slaatsoi.org/coremodel#TEXT
http://www.slaatsoi.org/coremodel#%E2%80%99

62

the URI namespace of the core SLA Model terms. Since the purpose of this vocabu-
lary is to define the message-type used by the ‘BuyProduct’ operation, we first need
to import (in lines 5–7) the ‘http://www.slaatsoi.org/interfaces’ vocabulary in which
‘iface:MessageType’ is defined (the core vocabulary is imported automatically and
does not need to be included). Vocabulary imports are transitive in the SLA Model,
which means that the interfaces vocabulary is also automatically available to the
interface specification document.

The message-type required for the interface is specified using an
core:EntityType vocabulary term (lines 9–32). This term defines
a new concrete (line 16) subtype of iface:MessageType (line 13),
‘http://www.fred.com/freds vocab#BuyProduct.In’ (line 11), whose purpose
is described in the scope-note (lines 17–19). It has a single attribute, defined in
lines 20–31, with the name ‘product id’ (line 22), whose value is a single (line
23) opaque character string (datatype core:TEXT; line 24). Using the notation
introduced in Section 2, we would write this entity-type definition as:

http://www.fred.com/freds vocab#BuyProduct.In ⊂ iface:MessageType*
product id ⊂ core:TEXT [1]

These two documents fully specify the service interface. The last step is to cre-
ate an SLAT to specify quality constraints and party obligations in respect of this
service.

In outline, the SLAT will provide customers the option of two ‘service levels’:
basic and premium. At the basic level, the customer is guaranteed a completion
time for service invocations of less than 2 hours, while at the premium level, this is
improved to less than 30 minutes. Each time a guarantee is violated, the provider,
‘Fred’, is given two weeks to pay a penalty of 10 Euros. The complete SLAT is
given by the remaining XML listings below, which for ease of description we will
explain section by section.

The opening XML elements are straightforward, announcing that the document
is an SLAT, and enumerating namespace abbreviations. In addition, for convenience
only, we have also added XML entity declarations (lines 1–6) denoting the core,
interface, SLA(T) and QoS Metric URIs. The SLAT also needs to explicitly import
the SLA(T) and QoS Metric vocabularies (lines 13–16).

1: <!DOCTYPE E [",
2: <!ENTITY core "http://www.slaatsoi.org/coremodel#">
3: <!ENTITY iface "http://www.slaatsoi.org/interfaces#">
4: <!ENTITY sla "http://www.slaatsoi.org/slamodel#">
5: <!ENTITY qos "http://www.slaatsoi.org/commonTerms#">
6:]>",
7: <sla:SLAT>
8: xmlns:core = "&core;"
9: xmlns:iface = "&iface;"
10: xmlns:sla = "&sla;"
11: xmlns:qos = "&qos;"
12: >
13: <vocabularies>

Keven T. Kearney, Francesco Torelli

http://www.slaatsoi.org/interfaces%E2%80%99
http://www.fred.com/freds
http://www.fred.com/freds
http://www.slaatsoi.org/coremodel#
http://www.slaatsoi.org/interfaces#
http://www.slaatsoi.org/slamodel#
http://www.slaatsoi.org/commonTerms#

The SLA Model 63

14: <item>http://www.slaatsoi.org/commonTerms</item>
15: <item>http://www.slaatsoi.org/slamodel</item>
16: </vocabularies>

The first content proper of the SLAT is a parties section (lines 17–26), which
in this case distinguishes just two SLA actors: the provider, ‘Fred’, and customer,
‘TheCustomer’. Note that the SLA Model requires merely that relevant parties are
distinguished and assigned SLA(T) roles. Additional party information can be in-
cluded, but is treated as domain-specific; that is, additional party information needs
to be specified by domain-specific extensions to the basic SLA(T) document defini-
tion.

17: <parties>
18: <sla:Party>
19: <name>Fred</name>
20: <role>provider</role>
21: </sla:Party>
22: <sla:Party>
23: <name>TheCustomer</name>
24: <role>customer</role>
25: </sla:Party>
26: </parties>

Having identified the key actors, we next declare (in lines 27–43) all the service
interface(s) which are the subject of the SLAT. In this case, there is only the prod-
uct purchase interface defined earlier, whose interface specification document we
will reference (line 40) using the URI ‘http://www.fred.com/freds service’. Note,
however, that the use of a URI here is not obligated by the SLA Model. Refer-
ences may take any form, and the mechanism(s) by which references are resolved
is application-specific. The SLA@SOI implementation assumes the use of URIs
mapped to URLs.

The sla:InterfaceDeclr entity token specifies that this interface is to be provided
by ‘Fred’ (line 30), that the intended consumer is ‘TheCustomer’ (line 31), and that
it is accessible only by ‘e-mail’ (line 36) at the address ‘fred@xyz.com’ (line 35).
We employ an e-mail protocol here for no other reason than to emphasise that the
SLA Model is not restricted to standard web-service protocols. For internal refer-
ence, both the sla:InterfaceDeclr and sla:Endpoint token are assigned identifiers:
‘IF1’ and ‘EPR1’ (resp.).

27: <interfaceDeclrs>
28: <sla:InterfaceDeclr>
29: <name>IF1</name>
30: <provider>Fred</provider>
31: <consumers>TheCustomer</consumers>
32: <endpoints>
33: <sla:Endpoint>
34: <name>EPR1</name>
35: <location>fred@xyz.com</location>
36: <protocol>e-mail</protocol>
37: </sla:Endpoint>
38: </endpoints>

http://www.slaatsoi.org/commonTerms</item
http://www.slaatsoi.org/slamodel</item
http://www.fred.com/freds
mailto:fred@xyz.com%E2%80%99

64

39: <interface>
40: http://www.fred.com/freds_service
41: </interface>
42: </sla:InterfaceDeclr>
43: </interfaceDeclrs>

In the next section, macros (lines 44–63), we introduce the ‘service level’ options
together with any other macros that may be useful. The ‘service level’ options are
encoded in lines 45–56 as a sla:Customisable macro ‘X’ (line 46), denoting an
expression whose value must be either ‘premium’ (line 51) or ‘basic’ (line 52),
with ‘premium’ as the default option (line 47). For convenience, we also define a
second macro ‘S’ (line 58), denoting the expression ‘IF1/interface[0]/BuyProduct’
(line 60). This expression is a core:PATH token which resolves to the ‘BuyProduct’
iface:Operation entity in the embedded interface document. (As with all references,
the particular format of the path is application-specific.) As such, the value ‘S’ can
from now on be used to refer to the ‘BuyProduct’ operation.

44: <macros>
45: <sla:Customisable>
46: <name>X</name>
47: <expression>premium</expression>
48: <domain>
49: <core:AtomicDomain op="&core;member_of">",
50: <array>
51: <item>premium</item>
52: <item>basic</item>
53: </array>
54: </core:AtomicDomain>
55: </domain>
56: <sla:Customisable>
57: <core:Macro>
58: <name>S</name>
59: <expression>
60: IF1/interface[0]/BuyProduct
61: </expression>
62: </core:Macro>
63: </macros>

The final section of the SLAT details the agreement terms. For the present exam-
ple, there is only one agreement term, given the name ‘AT1’. The opening elements
are as follows (lines 64–67):

64: <agreementTerms>
65: <sla:AgreementTerm>
66: <name>AT1</name>
67: <guarantees>

The required completion time and penalty guarantees (see above) will be encoded
as two guaranteed states and a guaranteed action, named ‘G1’, ‘G2’ and ‘G3’ (re-
spectively). The first guaranteed state (lines 68–89) encodes an obligation on ‘Fred’
(line 70) to ensure that, in the case that the ‘basic’ service level is selected, the com-
pletion time of any invocation of the ‘BuyProduct’ operation (line 82) is less than

Keven T. Kearney, Francesco Torelli

http://www.fred.com/freds_service

The SLA Model 65

2 hours (line 85). In a more concise form, we may express this guarantee as the
following rule: if X = ‘basic’, then completion time(S) < 2 hrs.

68: <sla:State>
69: <name>G1</name>
70: <obligated>Fred</obligated>
71: <pre>
72: <core:AtomicConstraint>
73: <item>X</item>
74: <core:AtomicDomain op="&core;equals">
75: basic
76: </core:AtomicDomain>
77: </core:AtomicConstraint>
78: </pre>
79: <post>
80: <core:AtomicConstraint>
81: <core:Parametric op="&qos;completion_time">
82: S
83: </core:Parametric>
84: <core:AtomicDomain op="&core;less_than">
85: 2 hrs
86: </core:AtomicDomain>
87: </core:AtomicConstraint>
88: </post>
89: </sla:State>

In the same manner, the second guaranteed state (lines 90–111) encodes the fol-
lowing rule: if X = ‘premium’, then completion time(S) < 30 mins.

90: <sla:State>
91: <name>G2</name>
92: <obligated>Fred</obligated>
93: <pre>
94: <core:AtomicConstraint>
95: <item>X</item>
96: <core:AtomicDomain op="&core;equals">
97: premium
98: </core:AtomicDomain>
99: </core:AtomicConstraint>

100: </pre>
101: <post>
102: <core:AtomicConstraint>
103: <core:Parametric op="&qos;completion_time">
104: S
105: </core:Parametric>
106: <core:AtomicDomain op="&core;less_than">
107: 30 mins
108: </core:AtomicDomain>
109: </core:AtomicConstraint>
110: </post>
111: </sla:State>

The third and final guarantee encodes the penalty action. The trigger (precon-
dition) for the action (lines 112–135) is the occurrence of a violation of either of

66

the guaranteed states ‘G1’ and ‘G2’ (Section 5.3 for an explanation of the union
and violation parametrics). The guarantee specifies that, in case of such a violation,
there is a ‘mandatory’ (line 115) obligation on ‘Fred’ (line 114) to make a payment
of ‘10 Euros’ (line 1132) to ‘TheCustomer’ (line 131), with a payment deadline of
‘2 weeks’ (line 128) from the violation trigger event. The guarantee is violated if
‘Fred’ fails to make this payment within this time-frame.

112: <sla:Action>
113: <name>G3</name>
114: <obligated>Fred</obligated>
115: <policy>mandatory</policy>
116: <pre>
117: <core:Parametric op="&core;union">
118: <array>
119: <core:Parametric op="&sla;violation">
120: G1
121: </core:Parametric>
122: <core:Parametric op="&sla;violation">
123: G2
124: </core:Parametric>
125: </array>
126: </core:Parametric>
127: </pre>
128: <limit>2 weeks</limit>
129: <post>
130: <sla:Payment>
131: <recipient>TheCustomer</recipient>
132: <value>10 Euros</value>
133: </sla:Payment>
134: </post>
135: </sla:Action>

The remaining lines of XML (lines 136–139) close the agreement terms section,
and complete the SLAT.

136: </guarantees>
137: </sla:AgreementTerm>
138: </agreementTerms>
139: </sla:SLAT>

To convert this SLA Template into an SLA, we just need to add values for the
mandatory SLA attributes agreedAt, effectiveFrom and effectiveUntil.

8 Conclusion

The SLA model meets the project requirements and has been tested in practical ap-
plication. The model offers a language-independent specification of SLA(T) content
at a fine-grained level of detail, which is both highly expressive and inherently ex-
tensible. The model has been applied to the business use cases of the SLA@SOI

Keven T. Kearney, Francesco Torelli

The SLA Model 67

project (see also Chapter ‘Introduction to the SLA@SOI Industrial Use Cases’) and
is already used by a number of European projects, for example Contrail2.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J.
Pruyne, J. Rofrano, S. Tuecke, and M. Xu, Web services agreement specifica-
tion (ws-agreement). Grid Forum Document GFD.107, The Open Grid Forum,
Joliet, Illinois, United States, 2007

[2] A. Keller and H. Ludwig, The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services. Journal of Network and Systems
Management, 11(1):57–81, 2003.

[3] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web Services
Description Language (WSDL) 1.1 W3C Note, World Wide Web Consortium,
15 March 2001

2 Contrail – Open Computing Infrastructures for Elastic Services: http://contrail-project.eu

http://contrail-project.eu

Service Construction Meta-Model

Jens Happe, Wolfgang Theilmann, and Alexander Wert

Abstract Dynamic negotiation, quality assessment, and provisioning of services
all require means for expressing information about the kind of service, its quality
characteristics and dependencies, and its configuration and deployment. The Service
Construction Meta-model (SCM) provides the necessary means for describing ser-
vices in their different stages. As such, it represents a core concept in SLA@SOI for
communication between SLA managers, service managers, and service evaluators.
In this chapter, we present the core elements of the SCM and their interdependen-
cies.

1 Introduction

The Service Construction Meta-model (SCM) is motivated by the need to store and
manage information about services inside the SLA@SOI framework. Service man-
agers must provide data about the types of services offered, about alternative reali-
sations of these service types, and about the service instances that have already been
provisioned. Further, SLA managers require information about the dependencies of
a service on other services, about features of the service itself, and about features
of its associated monitoring system. Based on this information, SLA managers can

Jens Happe
AP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany,
e-mail: Jens.Happe@sap.com

Wolfgang Theilmann
SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany,
e-mail: Wolfgang.Theilmann@sap.com

Alexander Wert
AP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany,
e-mail: Alexander.Wert@sap.com

DOI 10.1007/978-1-4614-1614-2_5, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 69

70 Jens Happe, Wolfgang Theilmann, Alexander Wert

plan and negotiate SLAs with their customers and acquire other (external) services
as required.

The SCM is driven by the information necessary to create, evaluate, and maintain
services and their associated SLAs. As such, it is essential to the communication
of SLA managers, service evaluators, and (software-)service managers. With the
SCM, (software-)service managers can maintain information about provided and
required service types, available service implementations, and running service in-
stances. SLA managers and service evaluators can retrieve information about ser-
vice dependencies, about features of the service, and about its monitoring system.
Further, they can resolve dependencies to external services and provide particular
configurations of the service and its monitoring system in a generic way. Service
managers instantiate services that have been negotiated by the SLA manager based
on their configuration.

In this chapter, we introduce the basic elements of the SCM and describe their
purpose. In Section 2, we introduce the hierarchical structure of service types, ser-
vice implementations, and service instances. Section 3 illustrates how the different
elements of the SCM are stored and maintained inside the service landscape. Sec-
tion 4 introduces all elements of the SCM in more detail. In Section 5, we illustrate
these concepts and their usage by means of an example. Section 6 concludes this
chapter.

2 Service Hierarchy

During its life cycle, a service exists in different aggregate states that must be re-
flected inside the SLA@SOI framework. The service hierarchy shown in Figure 1
reflects the different states a service can assume during its life cycle: service types,
service implementations, and service instances.

Fig. 1 Service hierarchy and the relations of the different layers

Service Construction Meta-Model 71

A service type describes the functionality that a service provides. For example,
it contains pointers to the WSDL definitions of the service’s interfaces. The same
service type can be realised by multiple service implementations.

A service implementation consists of a set of implementation artefacts (such as
software components, or appliances for virtual machines) that are required to in-
stantiate the service. Each implementation artefact has a set of dependencies to other
services. For example, a software service that is realised by an appliance depends on
an infrastructure service that can host that particular appliance. As in the relation-
ship between implementation and instance in object-oriented languages, an arbitrary
number of service instances can be created for each service implementation.

A service instance describes the properties of a service that is (about to be) pro-
visioned and accessible. For example, a service instance contains the endpoint of a
particular service. The endpoint either refers to a running service instance or points
to the location where the service will be available, according to the time constraints
defined in the corresponding SLA.

To instantiate a service for a customer, various degrees of freedom must be re-
solved. For example, all dependencies of an implementation on other services need
to be bound to offers of an external service provider or of another SLA manager. The
service builder provides a generic way to resolve service dependencies and provide
custom configurations for a service and its associated monitoring system. For each
dependency, the service builder holds a service binding that maps the dependency to
an SLA template (Chapter ‘The SLA Model’) or one of its specialisations (SLAs or
business products). The SLA template contains all information necessary to assess
and access a service outside the current SLA manager’s domain. It includes quality
constraints and, after the SLA has been agreed, endpoints of the service.

In the following section, we describe how the elements introduced above are
maintained inside a software landscape. Even though this can be considered an im-
plementation detail of service managers, it supports understanding of the overall
model.

3 Software Landscape

Inside the service manager, the landscape is the central element holding and man-
aging all elements introduced in the previous section (service types, service im-
plementations, service instances, and service builders). The landscape contains and
organises the various services being offered by a service provider. As such, the land-
scape is the SCM’s root element and can only exist once in each service manager.
Figure 2 shows the landscape and its relations.

A landscape contains a set of provided and required service types, a set of im-
plementations of these types, and all instances that are (about to be) provisioned.
We explicitly distinguish between service types that are offered to customers and
service types that are required to fulfill their functionality. Further, the landscape
holds all service builders that have been used to provision a service instance. These

72 Jens Happe, Wolfgang Theilmann, Alexander Wert

Fig. 2 Structure of the SCM’s elements inside a landscape

service builders allow retrieval of information about the service’s configuration at
runtime. In addition to the elements of the SCM, the landscape contains a service
topology which specifies how different software elements are connected.

4 Core elements of the SCM

Thus far we have examined the broader context of the SCM, and more specifically,
the service hierarchy (Figure 1) and software landscape 2. In the following, we
describe the SCM’s core elements in more detail.

4.1 ServiceType

Fig. 3 Attributes of a service type

Service Construction Meta-Model 73

A service type (Figure 3) specifies the externally accessible interfaces of a ser-
vice. It basically describes what functionality a service provides. For this purpose, a
service type contains a set of interfaces that specify its exact functionality using a set
of operations it makes available. A detailed specification of interfaces can be found
in Chapter ‘The SLA Model’. Service types establish a link to particular interfaces
by means of a unique identifier encoded in a string. The identifier can either contain
a full interface reference as specified in the SLA model (Chapter ‘The SLA Model’),
or be a unique name for an interface without a formal definition. An example of the
latter would be the user interface of an ERP system.

The remaining attributes serve the purpose of identification by machines (ID) and
humans (service type name and description).

4.2 Service Implementation

Fig. 4 Internals of the service implementation

Service implementations (Figure 4) realise a specific service type. They describe
i) specific artefacts and assets (such as software components or appliances) that are
required to instantiate a service, ii) the dependencies of assets and artefacts on other
services, and iii) the configurable features of the particular service implementation

74 Jens Happe, Wolfgang Theilmann, Alexander Wert

and its associated monitoring system. For example, an ”all-in-one” implementation
of the ORC’s services depends on one infrastructure service that hosts its appli-
ance. The threadpool size of its ActiveBEPL engine can be adjusted according to
the service’s usage and deployment. Further, the monitoring system allows for in-
strumenting each service operation and extracting response times and throughput.

To express such properties, service implementations contain a set of component
monitoring features, some provisioning information, and a set of implementation
artefacts. Component monitoring features specify the capabilities of the monitor-
ing system associated with a service. They contain information about the available
sensors, effectors and reasoners. Chapter ‘Dynamic Creation of Monitoring Infras-
tructures’ provides further details on the monitoring system’s meta-model.

Provisioning information and implementation artefacts hold the information nec-
essary to plan and execute the provisioning of a service. Provisioning information
contains the lead time needed to start a particular software system. Further, it spec-
ifies the boot order in which multiple implementation artefacts are to be started.
Each implementation artefact represents a single unit, such as appliances or software
archives, that must be deployed separately. The meta-model of an implementation
artefact contains information about its dependencies and the configurable service
features associated with this artefact. Figure 5 presents a detailed view of imple-
mentation artefacts and their elements.

Fig. 5 Detailed view of implementation artefacts

A dependency refers to service types that are necessary to instantiate a given ser-
vice implementation. Dependencies are part of implementation artefacts to allow a
direct association of a dependency to the artefact that requires it. This is necessary

Service Construction Meta-Model 75

if multiple artefacts require the same service type with different quality characteris-
tics. In this case, multiple SLAs need to be established for the same service type. A
typical example of such a scenario is that of multiple dependencies to infrastructure
services. If a service implementation comprises multiple appliances (e.g. one for
the application server and one for the database), the model needs to reflect which
appliance is to be hosted on which virtual machine.

Further, configurable service features describe those properties of a service that
can be adjusted for each instance. Again, configurable service features are directly
associated to implementation artefacts to avoid ambiguity. Configurable service fea-
tures comprise a unique identifier (ID), a configuration type (e.g. property file or
environment variable), a pointer to a file (ConfigFile), and an identifier of the pa-
rameter to be adjusted (ParameterIdentifier). Identifiers depend on the configuration
and file type considered. For example, the identifier of a parameter in an XML file
can be an XPath expression.

Implementation artefacts are abstract entities that must be specialised for differ-
ent domains. In Figure 5, we show subclasses for resource artefacts, deployment
artefacts, and data artefacts. Deployment artefacts are further refined to virtual ap-
pliances and software archives. These elements contain the detailed information
necessary to deploy the artefact.

Please note that implementation artefacts are only used inside a service manager.
Thus, information about the internal structure of a service implementation does not
have to be understood by SLA managers and service evaluators. For this purpose,
service implementations contain explicit operations that aggregate the dependencies
and configurable service features for external processing.

4.3 ServiceBuilder

Service builders serve as a communication data structure to be used by SLA man-
agers, (software-)service managers and service evaluators. Service builders are as-
sociated with a service implementation for which they construct a new service in-
stance. They are used throughout the entire negotiation and provisioning process and
are stepwise enriched with information. Basically, service builders serve as configu-
ration objects for new service instances. SLA managers, service evaluators, and ser-
vice managers exchange information on potential services using service builders.
The implementation of a service builder follows the builder pattern of Gamma et
al. [1]. Multiple service builders can exist and be associated with a single service
implementation.

A service builder (Figure 6) is responsible for i) resolving dependencies of a ser-
vice implementation by offers of an external service provider or another SLA man-
ager, ii) the configuration of specific service features, and iii) the configuration of
specific monitoring features. For each dependency of a service implementation, the
service builder can hold a service binding that maps the dependency to an SLA tem-
plate or one of its specialisations (SLAs or business products). The SLA template

76 Jens Happe, Wolfgang Theilmann, Alexander Wert

Fig. 6 Service builder and its associated elements

represents a contract for a service of the required type. It contains all information
necessary to assess and access a service outside of the current SLA manager’s do-
main. It includes quality constraints and, after the SLA has been agreed, endpoints
of the service.

For purposes of configuring a service, configuration directives assign new values
to configurable service features. The setup of the monitoring system is given in the
monitoring system configuration. Details of monitoring features and configurations
can be found in Chapter ‘Dynamic Creation of Monitoring Infrastructures’.

4.4 Service Instance

A service instance (Figure 7) refers to the instantiated version of a service imple-
mentation. As such, it contains information about runtime aspects of the deployed
services. For example, it contains the endpoints of a particular service. The end-
points either refer to a running and accessible service or point to locations where
the service will be available, according to the time constraints defined in the corre-
sponding SLA. Each service instance can contain multiple endpoints. Additionally,
a service instance contains information about the date and time of its creation (In-
stantiatedOn) and the usual means for identification by machines (ID) and humans
(service instance name, description).

Service Construction Meta-Model 77

Fig. 7 Attributes of a service instance

5 Example

In the following, we give a simple example of service implementations, dependen-
cies, service builders, service bindings and their usage in the overall system.

Fig. 8 Illustration of the different concepts

Figure 8 shows a service implementation called ”MyComponent” with an explicit
dependency on an external service type called ”IExternal”. The service implemen-
tation is depicted as a component that provides a service of type ”IMyService”. The
link between the implementation and the service type reflects the dependency of
the meta-model. This concept is analogue to (required) roles in common component
models. In Figure 8, the dependency is resolved by a service binding that links the
dependency to the SLA template of an external provider. The SLA template con-
tains the specification of interface ”IExternal”. The external service type can again
be realised by a service implementation.

In the following, we illustrate how the service builders can be used for communi-
cation between SLA managers, (software-)service managers, and service evaluators.

1. The SLA manager requests the service implementations of a particular service
type from the service manager

2. For each service implementation

78 Jens Happe, Wolfgang Theilmann, Alexander Wert

a. the SLA manager creates a service builder
b. the SLA manager resolves the dependencies of the service implementation

using available SLA templates, SLAs, and business products
c. when all dependencies have been resolved, the service builder is passed to

service evaluators which assess the expected quality of the setting given by
the service builder, and

d. the above steps may be repeated several times

3. When a particular service builder is to be instantiated, the SLA manager (tries
to) agree on the selected SLA templates (or SLAs) of the depending services and
adds the corresponding endpoints to the SLA templates. The resulting object is
passed to the service manager, which instantiates the requested service based on
the settings given in the service builder.

6 Conclusions

In this chapter, we presented the core elements of the Service Construction Meta-
model and their dependencies. The SCM structures the life cycle of a service into
a set of hierarchically organised aggregate states of services. Different stages of the
service’s life cycle are explicitly represented. This approach allows the components
of the SLA@SOI framework to exchange information about service types, service
implementations, and service instances. Further, services can be build stepwise us-
ing service builders. Service managers, SLA managers, and service evaluators can
obtain and add their information using service builders.

So far, the SCM has been a helpful concept for fostering communication be-
tween different components involved in the negotiation, planning, and provisioning
process. The SCM is a general model that makes no assumption about the type of
service (e.g., infrastructure, platform, or software) that is to be provisioned or ne-
gotiated. However, until now we have mainly applied the SCM in the context of
software services. In the future, we plan to extend application of the SCM to infras-
tructure and human services as well.

References

[1] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,
USA (1995)

Translation of SLAs into Monitoring

Specifications

Khaled Mahbub, George Spanoudakis, and Theocharis Tsigkritis

Abstract The general architecture of the SLA@SOI framework supports the inte-
gration of different types of generic or special-purpose monitoring engines. While
internally these engines may realise different monitoring approaches (or reasoning
mechanisms), externally they support the same common interface. This interface en-
ables the reasoning engines to receive the SLA guarantee terms that need to be moni-
tored and to report monitoring results to the SLA@SOI framework. However, due to
differences in the languages that the monitoring engines use to express operational
monitoring specifications, the monitoring of SLAs expressed in the SLA specifica-
tion language of SLA@SOI requires the translation of these SLAs into operational
monitoring specifications. This chapter describes the translation scheme developed
for the monitoring engine EVEREST, which has been used in the SLA@SOI frame-
work for monitoring SLAs at the software service layer.

1 Introduction

To monitor SLAs expressed in the SLA specification language of SLA@SOI, these
SLAs must be translated into operational monitoring specifications, i.e., specifica-
tions that can be checked by a low-level monitor plugged into the SLA@SOI frame-
work. The general architecture of this framework supports the integration of differ-

Khaled Mahbub
Dept. of Computing, City University London, Northampton Square, London, EC1V 0HB, UK
e-mail: K.Mahbub@soi.city.ac.uk

George Spanoudakis
Dept. of Computing, City University London, Northampton Square, London, EC1V 0HB, UK
e-mail: G.Spanoudakis@soi.city.ac.uk

Theocharis Tsigkritis
Dept. of Computing, City University London, Northampton Square, London, EC1V 0HB, UK
e-mail: t7t@soi.city.ac.uk

DOI 10.1007/978-1-4614-1614-2_6, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 79

mailto:K.Mahbub@soi.city.ac.uk
mailto:G.Spanoudakis@soi.city.ac.uk
mailto:t7t@soi.city.ac.uk

80 Khaled Mahbub, George Spanoudakis, Theocharis Tsigkritis

ent types of generic or special-purpose monitoring engines. Internally, these engines
may realise different monitoring approaches (or reasoning mechanisms), but exter-
nally they support the same common interface.

The established interface fixes the form in which the different monitoring engines
receive the guarantee terms of the SLAs that require monitoring and the monitoring
results that they report back to the SLA@SOI framework, thus enabling the basic in-
teroperability aimed for in the design of the monitoring infrastructure of SLA@SOI.
However, due to differences in the languages that the monitoring engines use to ex-
press operational monitoring specifications, it is not possible to devise a common
translation scheme for all of them. To address this problem, the architecture of the
monitoring infrastructure of SLA@SOI uses wrappers for the monitoring engines,
called Reasoning Component Gateways (RCGs), which are responsible for translat-
ing: (a) the SLAs expressed in the common language of the SLA@SOI framework
into the language of the particular engine that they support, and (b) the results pro-
duced by the particular engine into the common monitoring schema used by the
framework.

This chapter describes the RCG developed for the monitoring engine used in
the SLA@SOI framework for monitoring SLAs at the software service layer. This
engine is called EVEREST and is a general-purpose engine for monitoring the be-
havioural and quality properties of distributed systems based on events captured
from them during the operation of these systems at runtime [1]. The properties that
can be monitored by EVEREST are expressed in a language based on Event Cal-
culus [2], called EC-Assertion. EC-Assertion realises a form of Event Calculus in
which the properties to be monitored are expressed in terms of monitoring rules that
specify patterns of events that should (or should not) occur within specific periods
of time, and may be related to each other and/or the state of the system that is being
monitored with temporal or other data dependencies.

This chapter also describes the translation of SLAs expressed in the common
SLA specification language of SLA@SOI into EC-Assertion. The rest of the chap-
ter is structured as follows: In Section 2, we provide an overview of the SLA@SOI
architecture to establish the context within which the RCG for EVEREST and the
translation that it performs take place. Section 3 outlines EC-Assertion, the lan-
guage in which the operational monitoring specifications are expressed, and Sec-
tion 4 describes the translation scheme realised by EVEREST’s RCG. In Section 5,
we discuss the overall limitations of the current translation scheme. In Section 6, we
provide an overview of related work. Section 7 provides concluding remarks and
outlines directions for future work.

2 The Monitoring Infrastructure

The SLA@SOI monitoring infrastructure adopts an event-based architecture with
three main layers: the sensing and adjustment layer, the monitoring layer, and the
monitoring management layer. Sensing and adjustment form the bottom layer that

Translation of SLAs into Monitoring Specifications 81

includes sensors and effectors, which have responsibility for capturing runtime
events during the operation of the services that an SLA covers, and for adjusting
their operation if an SLA violation occurs (or is forecast to occur (see Chapter ‘Run-
time Prediction’). Runtime events from the lowest layer are communicated to the
monitoring layer, which includes the reasoning engines that perform the actual SLA
monitoring and store monitoring results.

Within the monitoring layer are the RCGs, which translate the SLAs to be
monitored into the operational monitoring specifications of the specific reasoning
engines, and translate the monitoring results generated by these engine into the
common representation schema used by the infrastructure for monitoring data.

Fig. 1 EVEREST RCG translator that uses EC-aware FTL templates

The top layer of the architecture is the monitoring management layer. This com-
ponent includes a Monitoring Manager. This component checks the monitorability
of an SLA given the available sensors and reasoning engines of the managed ser-
vices, and produces a monitoring system configuration that indicates the reasoning
engines and sensors that will be used to monitor the different guarantee terms of
an SLA. To check the monitorability of an SLA, the Monitoring Manager parses
an SLA and checks whether the available sensors and reasoning engines are suffi-
cient to monitor the managed services (Chapter ‘Dynamic Creation of Monitoring
Infrastructures’). The monitoring management layer also includes components for
planning and setting up the monitoring infrastructure (Planning and Optimisation),
and, as shown in Figure 1, for making decisions for service adjustment on the basis
of monitoring results (Provisioning and Adjustment).

Figure 2 shows the internal architecture of the monitoring layer of the EVEREST
system. Within this architecture, the RCG provides the interface for accessing the

82 Khaled Mahbub, George Spanoudakis, Theocharis Tsigkritis

EVEREST reasoning engine. More specifically, the RCG receives the monitoring
system configuration generated by the Monitoring Manager and produces opera-
tional monitoring specifications for the EVEREST reasoning engine. It also trans-
lates the monitoring results produced by EVEREST into the common event schema
that is used to encode such results within the EVEREST infrastructure.

The RCG contains a monitoring template repository, a parser, an ASTTranslator,
an instantiator and a results generator.

Fig. 2 Monitoring layer for EVEREST

The EVEREST RCG generates operational monitoring specifications for differ-
ent SLA guarantee terms in the monitoring language of EVEREST with the help
of a set of predefined parametric monitoring templates. These templates enable the
generation of the complex monitoring formulae required to check guarantee terms
requiring the computation of aggregate information from complex patterns of events
at runtime.

The RCG parser transforms SLA expressions — represented by abstract syntax
Java objects in the monitoring system configuration — to Abstract Syntax Trees
(ASTs), which are used by the ASTTranslator to select appropriate monitoring tem-
plates from the template repository. From the selected templates, the instantiator
generates operational EVEREST monitoring specifications by analysing the mon-
itorable SLA expressions assigned to EVEREST by the Monitoring Manager. The
operational monitoring specifications are subsequently sent to the EVEREST rea-
soning engine as illustrated in Figure 2. Finally, the EVEREST RCG includes a
results generator that transforms the results generated by EVEREST into the com-
mon schema used to represent monitoring results in the SLA@SOI infrastructure.

Translation of SLAs into Monitoring Specifications 83

3 Overview of EC-Assertion

To be monitored by the EVEREST monitoring engine, SLA guarantee terms need
to be expressed as monitoring rules and assumptions of EC-Assertion, which is
the operational monitoring specification language of EVEREST. EC-Assertion is
based on Event Calculus and is accompanied by an XML schema that enables the
representation of monitorable properties in a system-exchangeable format.

Event Calculus (referred to below as EC) is a first-order temporal logic language
that expresses properties of dynamic systems (i.e., systems that can consume and
generate events in ways that depend on and can alter their internal state) in terms
of two basic modelling constructs, namely events and fluents. An event in EC is
something that occurs at a specific instance in time, has instantaneous duration, and
may cause some change in the state of the reality (system) being modelled. This
state is represented by fluents.

The occurrence of an event in EC is represented by the predicate Happens(e,
t, ℜ(t1,t2)). This predicate represents the occurrence of an event e at some time
point t that is within the time range ℜ(t1, t2) and is of instantaneous duration. The
boundaries of ℜ(t1, t2) can be specified by using either time constants or arithmetic
expressions over time variables of other predicates in the EC formula that include
the Happens predicate. Events in EC can affect the overall state of a system by
either initiating or terminating a specific state within that system. To represent these
effects, EC uses two specific predicates: Initiates(e,f,t) and Terminates(e, f, t). The
predicate Initiates(e,f,t)signifies that a fluent f starts to hold after event e occurs at
time t. The predicate Terminates(e, f, t) signifies that a fluent f ceases to hold after
event e occurs at time t. EC also uses two additional predicates, namely Initially(f)
and HoldsAt(f, t). The first of these predicates signifies that a fluent f holds at the
start of operation of a system. The second predicate signifies that a fluent f holds at
time t.

(EC1) Clipped(t1,f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2)) ∧ Terminates(e,f,t)
(EC2) HoldsAt(f,t) ⇐ Initially(f) ∧¬ Clipped(0,f,t)
(EC3) HoldsAt(f,t) ⇐ (∃e,t1) Happens(e,t,ℜ(t1,t)) ∧ Initiates(e,f,t1)

∧¬Clipped(t1,f,t)
(EC4) Happens(e,t,ℜ(t1,t2)) ⇒ (t1 < t) ∧ (t ≤ t2)

Fig. 3 Axioms of Event Calculus

EC defines a set of axioms that can be used to determine when a fluent holds
based on initiation and termination events that regard it. These axioms are listed in
Figure 3. Axiom EC1 states that a fluent f is clipped (i.e., ceases to hold) within the
time range from t1 to t2, if an event e occurs at some time point t within this range
and e terminates f. Axiom EC2 states that a fluent f holds at time t, if it held at time 0
and has not been terminated between 0 and t. Axiom EC3 states that a fluent f holds

84 Khaled Mahbub, George Spanoudakis, Theocharis Tsigkritis

at time t, if an event e has occurred at some time point t1 before t, which initiated f
at t1 and f has not been clipped between t1 and t. Finally, axiom EC4 states that the
time range in a Happens predicate includes its boundaries.

EC-Assertion adopts the basic representation principles of Event Calculus and
its axiomatic foundation, but introduces special terms to represent the types of
events and conditions that are needed for runtime monitoring. More specifically,
given its focus on monitoring the operation of software systems at runtime, events
in EC-Assertion can be invocations of system operations, responses to such
operations, or exchanges of messages between different system components. To
represent these types of events, EC-Assertion defines a specific event structure that
is syntactically represented by the event term

event(id, sender, receiver, status(sig), source)

In this event term:

• id is a unique identifier of the event;
• sender is the identifier of the system component that sends the message/opera-

tion call/response;
• receiver is the identifier of the system component that receives the

message/operation call/response;
• status is the processing status of an event (i.e., Call if the event represents an

operation invocation and Response if the event represents an operation response);
• sig is the signature of the dispatched message or the operation invocation/re-

sponse that is represented by the event, comprising the operation name and its
arguments/result; and

• source is the identifier of the component where the event was captured.

Further, fluents in EC-Assertion are defined as relations between arguments rep-
resented as terms of the form relation(e1, , en). In a fluent term relation(a1, , an),
relation is the name of a relation that associates the fluent arguments a1, , an. These
arguments can be constants, variables, or mathematical functions and arithmetic ex-
pressions defined over other arguments. EC-Assertion extends standard Event Cal-
culus by supporting relational predicates over constants, defining object and time
variables in formulae, and using arithmetic and mathematical expressions in place
of variables (the latter expressions must be defined over other time variables in this
case).

EC-Assertion specifies the properties to be monitored at runtime in terms of mon-
itoring specifications that consist of monitoring rules and assumptions. Monitoring
rules and assumptions are expressed in terms of the predicates listed above and have
the general form body ⇒ head. The meaning of a monitoring rule is that if its body
evaluates to True, its head must also evaluate to True, whilst the meaning of the as-
sumption is that when its body evaluates to True, its head can be deduced from this.
Given this general interpretation, EC-Assertion uses a monitoring rule to express
a property that needs to be monitored at runtime, and uses assumptions to express
how event occurrences (and/or absences) affect the state of the monitored system.

Translation of SLAs into Monitoring Specifications 85

An example of an SLA property that can be expressed in EC-Assertion is that
the average response time of any operation of a service srvID should always be less
than N milliseconds. This SLA property can be expressed in EC-Assertion using
the following formulae:

Monitoring rule R11:

Happens(e(id1, snd, srvId, Res(O), sns),
t1, [t1, t1]) ∧ (∃ NoC: Int, MSRT: Real)
HoldsAt(MSRT(srvId, NoC,
MSRT), t1) ⇒ MSRT < N

Assumption R1.A1:

(∀ t1: Time) Happens(e(id1, snd, srvId, Response(O),
sns), t1,[t1, t1]) ∧ Happens(e(id2, snd, srvId,
Call(O), sns), t2,[t2, t1]) ∧ (∃ NoC: Int, MSRT:
Real) HoldsAt(MSRT(srvId, NoC, MSRT), t1) ⇒
Terminates(e(id1,), MSRT(srvId, NoC, MSRT), t1) ∧
Initiates (e(id1,), MSRT(srvId, NoC+1, (MSRT* NoC
+(t1- t2))/(NoC+1)), t1)

According to rule R1, when a response from the execution of an operation
O of the service servId occurs at some time point t1, the value of the variable
MRST must be less than N. The variable MSRT in R1 keeps the current value of

the mean response time of service servId as part of the fluent MSRT(srvId, NoC,
MSRT). This value is updated by the assumption R1.A1.

According to this assumption, the mean response time of the service is updated
every time an event representing the response from the execution of a service opera-
tion happens. More specifically, R1.A1 states that when an event e(id1, snd, srvId,
Response(O), sns)) representing the response from the execution of an operation
O of the service servId happens at a time point t1, and another event e(id2, snd,

srvId, Call(O), sns) representing the call of the same operation has also happened
at some time point t2 before t1, and a fluent MSRT(srvId, NoC, MSRT) keeping a
record of the current MSRT of the service and the number of its calls (NoC) holds at
t1, the value of MSRT will be updated by the response time of the latest call. This

update is expressed by terminating the fluent MSRT(srvId, NoC, MSRT) and initi-
ating the fluent MSRT(srvId, NoC+1,(MSRT* NoC +(t1- t2))/(NoC+1)), t1).

1 In the EC-Assertion syntax, variable names are preceded by ‘ ’ but constants are not (i.e., a is a
variable but a is a constant). Also, all variables in formulae are assumed to be universally quantified
unless their quantification is explicitly given in the formula.

86 Khaled Mahbub, George Spanoudakis, Theocharis Tsigkritis

4 Parsing SLA Guarantee Terms

The guarantee terms in an SLA are parsed to the EVEREST RCG as Java objects.
These objects need to be translated in an abstract intermediate representation nota-
tion before being translated into the actual EVEREST monitoring rules and assump-
tions that will constitute the corresponding EVEREST monitoring specification in
EC-Assertion. The intermediate notation used by the translator is an abstract syn-
tax tree (AST). The AST is created to provide an intermediate representation that
simplifies adaptation of the translation process if the SLA model or EC-Assertion
language are extended in the future.

The SLA parsing algorithm is shown in Figure 4. This algorithm takes as in-
put a Java object encoding an agreement term, state or constraint expression (i.e.,
AgreementTerm, State, or ConstraintExpr) in the SLA model (as described in Chap-
ter ‘The SLA Model’) and generates as output the AST used subsequently for the
selection and instantiation of the parametric EC-Assertion templates, and the gener-
ation of the EC-Assertion monitoring specifications.

The general form of an agreement term in the SLA model is:

AgreementTerm := (Precondition, GuaranteeStates)

In this form, the preconditions and guaranteed states of an agreement term are
defined by constrained expressions (ConstraintExpr). When an agreement term’s
precondition is satisfied, its guaranteed states should also hold.

For each inputted AgreementTerm, the parsing algorithm creates an AST node
labelled IMPLIES. An IMPLIES node is a binary node with two children: a left
child node and a right child node.

The left child of an IMPLIES node represents the precondition of the correspond-
ing term, if any. The right child is an AND-node representing the conjunction of the
guaranteed states of the parent agreement term. The algorithm takes into account
whether the ConstraintExpr that defines the guaranteed states of an agreement term
is a CompoundConstraintExpr or a TypeConstraintExpr. The former of these types
of constraint expressions is used for defining logical sub-expressions whilst the lat-
ter is used for defining relational comparison expressions. Based on this type, the
algorithm generates the corresponding sub-trees. The sub-trees of a ConstraintExpr
node end up in leaf nodes representing standard QoS terms for the SLA model or
constants (or else the provided SLA would not be valid).

Translation of SLAs into Monitoring Specifications 87

Parsing(inputObject)
/*inputObject can be an AgreementTerm,

State or ConstraintExpression */
1. node: ASTNode
2. node = null
3. node.Object = inputObject
4. IF node.Object is an AgreementTerm THEN
5. node.Label = IMPLIES
6. IF node.Object.Precondition is NOT empty THEN
7. bodyNode = parse(inputObject.Precondition)
8. node.addLeftChild(bodyNode)
9. ELSE
10. node.addLeftChild(null)
11. END IF
12. headNode.Object = LogicalOperator.AND
13. headNode.Label = AND
14. FOR each guaranteedState in

input.Object.Guaranteed.States[] DO
15. guaranteeStateNode = parse(guaranteedState)
16. headNode.addChild(guaranteeStateNode)
17. END FOR
18. node.addRightChild(headNode)
19. ELSE IF node.Object is a ConstraintExpr THEN
20. IF node.Object is a CompoundConstrainrExpr THEN
21. nodeLabel =

inputObject.LogicalOperator.STND.Value
22. FOR each subExpression in

inputObject.SubExpressions DO
23. subExpressionNode = parse(subExpression)
24. node.addChild(subExpressionNode)
25. END FOR
26. ELSE IF node.Object is a TypeConstraintExpr THEN
27. IF node.Object.DomainExpr is a

SimpleDomainExpr THEN
28. node.Label = node.Object.DomainExpr.

ComparisonOperator.STND.Value
29. LHSNode.Object = node.Object.ValueExpr
30. node.addLeftChild(LHSNode)
31. RHSNode.Object =

node.Object.DomainExpr.Value
32. node.addRightChild(RHSNode)
33. ELSE IF node.Object.DomainExpr is a

CompounDomainExpr THEN
34. node.Name = inputObject.DomainExpr.

LogicalOperator.STND.Value
35. FOR each subExpression in

node.Object.DomainExpr.SubExpressions DO
36. subExpressionNode = parse(subExpression)
37. node.addChild(subExpressionNode)
38. END FOR
39. END IF
40. END IF
41. END IF
42. return node
END Parse

Fig. 4 Parsing algorithm

88 Khaled Mahbub, George Spanoudakis, Theocharis Tsigkritis

To further illustrate the output of the parsing algorithm, assume the following
agreement term:
AT1:
AT1.Precondition: Throughput ≥ T
AT1.Guaranteed.States = MTTR < M

For this term, the algorithm will generate the tree illustrated in Figure 5.

Fig. 5 Abstract Syntax Tree for agreement term AT1

5 Generation of Operational EVEREST Monitoring

Specifications

Once the AST for an SLA guarantee term has been generated, the next step in the
translation process is to generate its operational EC-Assertion specification. This
translation is based on the use of parametric templates for the basic guarantee terms
defined in the SLA model.

Translation of SLAs into Monitoring Specifications 89

5.1 Templates for Basic QoS Terms

The generation of EC-Assertion monitoring specifications is based on predefined
monitoring templates. These templates are required since the SLA model does pro-
vide formal definitions of standard QoS terms in a form that enables the processing
and generation of corresponding EC-Assertion formulae from basic EC predicates
and fluents.

For example, the definition of the standard QoS term mean-time-to-repair
(MTTR) for a service in the SLA model is underpinned by three basic concepts
— failed service operation call, service availability period and service unavailabil-
ity period — that are not defined such that EC-Assertion formulae could be au-
tomatically generated from the primitive EC predicates to represent event patterns
for expressing these concepts and enabling their capture, which is needed for the
computation of MTTR.

To address this limitation, we have defined sets of parametric EC-Assertion mon-
itoring formulae, called monitoring templates. These templates are indexed by the
standard QoS term that they refer to in the SLA model, and are retrieved and in-
stantiated during the translation process when the relevant standard QoS term is
encountered in a node of the AST generated for an SLA guarantee term.

A monitoring template consists of one parametric monitoring rule and zero or
more assumptions.

To automate the process of template selection and instantiation, the monitoring
templates are described using Formal Template Language (FTL) [3, 4]. FTL is a
generic formal language for expressing templates of any target language. FTL is
generative: it describes sentences of a target language (in this case, EC-Assertion)
and can generate sentences when provided with an instantiation. A brief introduction
to FTL, as well as a detailed description of the process of generating EVEREST
monitoring specifications using EC-aware FTL templates, is provided in [3].

The main constructs used in the definition of FTL templates are placeholders,
lists, choice, template definitions and template references. The syntax and role of
these constructs in the definition of templates is summarised below:

Placeholders: Placeholders denote one variable occurrence and are substituted
by the value assigned to the variable when the template is instantiated. Placeholders
are represented by enclosing one variable within ”〈〉”. The FTL template 〈X〉=〈Y〉,
for instance, includes two placeholders (i.e., 〈X〉 and 〈Y〉) and two variables (i.e.,
X and Y) and can be instantiated with the substitution set {X�→ ”A”, Y �→ ”1”},
generating the formula A=1.

Lists: A list comprises a list term, a list separator (the separator of the instantiated
list terms), and a string representing the empty instantiation of the list. A list is
represented by enclosing the list term within []. The list term is a combination of
text, placeholders and possibly other lists.

A placeholder within a list denotes an indexed set of variable occurrences, i.e.,
[〈V〉] denotes the occurrence of the indexed set of variables V1,...,Vn.

The template [〈X〉=〈Y〉](ν ,λ) can be instantiated with the sequence of substitution
sets 〈{X�→ ”A”, Y �→ ”1”}, {X�→ ”B”, Y �→ ”2”} 〉 generating A=1 ∨ B=2.

90 Khaled Mahbub, George Spanoudakis, Theocharis Tsigkritis

Choice: The FTL choice construct enables choices to be made between alterna-
tive template expressions. A choice in FTL can be optional or multiple. The former
choice is represented by enclosing a template expression in ()? and signifies that
the expression might be present in the instantiation or not. Multiple choice is repre-
sented by enclosing the choice expressions within () and separated by [] (see below);
this means that one of the choice expressions must be present in the instantiation.
Choices are instantiated with a choice-selection; a natural number indicates the se-
lected choice and non-selection takes the value zero.

The template (〈X〉=〈Y〉)? can be instantiated with (1, {X�→ ”A”, Y �→ ”1”})
to yield A = 1. To avoid the presence of the expression in the instantiation, the
template can be instantiated with (0 {}), which simply yields the empty string. In the
multiple-choice template (〈X〉 = 〈Y〉[]〈X〉 = {〈Z〉}), the first choice is instantiated
with (1, {X�→ ”A”, Y �→ ”1”}) to yield A = 1; the second with (2, {X�→ ”A”, Z �→
”2”}) to yield A = 2.

Template Definitions:A template definition in FTL associates some template
name with the FTL expressions defining the template. For example, the tem-
plates named ”FluentInitiation” and ”FluentTermination” below are defined as
EC-Assertion formulae where an event X initiates and terminates a list of fluents,
respectively:

〈FluentInitiation〉 tde f == Happens(〈X〉, t1,[t1, t1])⇒ [Initiates(〈X〉,〈F〉, t1)]

〈FluentTermination〉 tde f ==Happens(〈X〉, t1,[t1, t1]) ⇒[Terminates(〈X〉,〈F〉, t1)]

Template Reference: In FTL it is possible to refer to a template using its
name as defined in a template definition and the template reference construct 〈〉tde f .
The following template definition, for instance, the template X, is defined as a
choice of fluent initiation or termination:

〈FluentInitiationOrTermination〉tde f ==
〈FluentInitiation〉tre f []〈FluentTermination〉tde f .

To illustrate the FTL, consider the template 〈FluentInitiation〉 above. This template
can be instantiated by the substitution set {E�→ ”e(eId1, snd, srv,Call(o), src)”, F
�→”called(O)”} and generates the EC-Assertion rule:

Happens(e(eId1, snd, srv,Call(o), src), t1,[t1, t1]) ⇒
Initiates(e(eId1, snd, srv,Call(o), src),called(O), t1)]

Figure 6 shows an example of the monitoring templates used to support the
translation of guarantee terms expressed in the SLA model into EC-Assertion. This
template corresponds to the standard QoS term throughput in the SLA model.

Throughput is the number of consecutive operation calls of a service that are
served before a service operation call is not served (or is dropped).

Translation of SLAs into Monitoring Specifications 91

〈Throughput〉tde f ==

A0.Throughput.〈CaseId〉: Initially(Served(0,〈 SrvId〉,0,0))

A1.Throughput.〈CaseId〉: Initially(〈CaseId〉.Throughput(0))

A2.Throughput.〈CaseId〉:
Happens(e(id1, Snd, 〈 SrvId〉, Call(O), 〈 SensorId〉), t1, [t1, t1]) ∧
Happens(e(id2,〈 SrvId〉, Snd, Response(O), 〈 SensorId〉), t2, [t1, t1+〈d〉]) ∧
(∃ t3: HoldsAt(Served(P, 〈 SrvId〉, N1, t3), t1) ∧(t3 t1)) ∧ (¬∃ t4, P2, N2:
(P1 �= P2) ∧ (t4 ≥ t3) ∧ (t4 < t1+ 〈D〉) ∧ HoldsAt(Served(P2 〈 SrvId〉,
N2, t4), t1+〈d〉)) ⇒

Terminates(e(id1, 〈 SrvId〉, Snd, Response(O), 〈 SensorId〉), Served(P1,
〈 SrvId〉, N1, t3), t1) ∧ Initiates(e(id1, 〈 SrvId〉, Snd, Response(O),
〈 SensorId〉), Served(P1, 〈 SrvId〉, N1+1, t3), t1)

A3.Throughput.〈CaseId〉:
Happens(e(id1, Snd, 〈 SrvId〉, Call(O), 〈 SensorId〉), t1, [t1, t1]) ∧
¬∃Happens(e(id2,〈 SrvId〉, Snd, Response(O), 〈 SensorId〉), t2,
[t1, t1+〈D〉]) ∧ (∃ t3: HoldsAt(Served(P, 〈 SrvId〉, N1, t3), t1) ∧(t3
t1)) ∧ (¬∃ t4, P1, N1: (P �= P1) ∧ (t4 ≥ t3) ∧ (t4 < t1+ 〈CaseId.d〉) ∧

HoldsAt(Served(P1 〈 SrvId〉, N1, t4), t1+〈D〉)) ⇒
Initiates(e(id1, 〈 SrvId〉, Snd, Response(O), 〈 SensorId〉), Served(P1+1,
〈 SrvId〉, 0, t1), t1)

A4.Throughput.〈CaseId〉:
Happens(e(id1, Snd, 〈 SrvId〉, Call(O), 〈 SensorId〉), t1, [t1, t1]) ∧
¬∃Happens(e(id2,〈 SrvId〉, Snd, Response(O), 〈 SensorId〉), t2,
[t1, t1+〈D〉]) ∧ (∃ t3: HoldsAt(Served(P, 〈 SrvId〉, N1, t3), t1) ∧(t3
t1)) ∧ (¬∃ t4, P1, N1: (P �= P1) ∧ (t4 ≥ t3) ∧ (t4 < t1+ 〈D〉) ∧ Hold-

sAt(Served(P1 〈 SrvId〉, N1, t4), t1+〈D〉)) ⇒
Initiates(e(id1, 〈 SrvId〉, Snd, Response(O), 〈 SensorId〉),
〈CaseId〉.Throughput(N), t1)

R.Throughput.〈CaseId〉:
Happens(e(id1, Snd, 〈 SrvId〉, Call(O), 〈 SensorId〉), t1, [t1, t1]) ∧
¬∃Happens(e(id2,〈 SrvId〉, Snd, Response(O), 〈 SensorId〉), t2,
[t1, t1+〈D〉]) ∧ (∃ t3: HoldsAt(Served(P, 〈 SrvId〉, N1, t3), t1)∧(t3
t1)) ⇒
N > 〈ThroughputThreshold〉

Fig. 6 Monitoring template for Throughput

To keep track of the served operation calls of a service, the fluent Served is spec-
ified as having several parameters: the identifier of the throughput period that refers

92 Khaled Mahbub, George Spanoudakis, Theocharis Tsigkritis

to the period between two consecutive dropped operation calls of the monitored
service (P), the unique ID of the monitored service (SrvId), the number of consec-
utive service operation calls that are served during the throughput period (N), and
the starting time point of the aforementioned period (t). By processing the formulae
in Figure 6, EVEREST manages — by initiating and terminating — instances of
the fluent Served whenever an operation call of the monitored service is served or
dropped.

To reason whether the operation calls of the monitored service are served or
dropped, EVEREST should receive primitive call and response events from the sen-
sor that has been selected by the Monitoring Manager to provide such events for
the particular service. Therefore, a call to the monitored service that occurred at t
is considered as served if a corresponding response occurs within a predefined time
range between t and t+d.

Finally, EVEREST generates and instantiates the fluent Throughput(
ThroughputValue) — specified as having the variable ThroughputValue as a param-
eter — whenever an operation call of the monitored service is dropped. It should
be noted that the value of the ThroughputValue variable equals the number of con-
secutive service operation calls that are served within the current throughput period
(N).

The assumption formulae used to monitor the Throughput of a monitored service
are presented in Figure 6.

The assumption formulae A0 and A1 initiate the Served and
〈CaseId〉.Throughput fluents for first time. The assumption A2 increases the
number of served calls for a given throughput period, after an operation call has
been served. The assumption formula A3 starts a new throughput period, after an
operation call has been dropped. Finally, A4 initiates the Throughput fluent, after
an operation call of the monitored service has been dropped.

In the above template form, 〈 SrvId〉 is the unique identifier of the service that
the throughput expression refers to, and 〈CaseId〉 refers to the unique IDs of the
SLA and SLA objects that were assigned to EVEREST.

Thus far, EVEREST supports the following QoS terms: Throughput, MTTR,
MTTF, Availability, Completion Time, Accessibility, Arrival Rate, and Reliability.
In the following, we present the parametric EVEREST monitoring template for
Throughput.

5.2 Translation

The algorithm Translate (Figure 7) is used to select the parametric FTL templates
that must be used for the monitoring of the assigned SLA expressions. This al-
gorithm takes as input the AST of the parsed SLA expression that is assigned to
EVEREST. By recursively traversing the given AST, the algorithm compiles a set
of parametric FTL templates (ECFormulasList). The compiled list contain templates
for each QoS term the assigned SLA expression includes, as well as a parametric

Translation of SLAs into Monitoring Specifications 93

EC-Assertion monitoring rule (monitoringRule) that is necessary for the runtime
check of the assigned SLA expression as a whole. It should be noted that the EC
monitoring rule that is built up on the fly, as well as all the formulae that EVEREST
checks, are specified as body→head, where body and head are conjunctions of EC-
Assertion predicates. Therefore, the monitoring rule is constructed by analysing the
visited nodes and then adding predicates in the conjunctions of the monitoring rule
body and head.

Translate(node, initialNode, ParametricECFormulasDB,
ParametricECPredicatesDB,QoSTermECConditionsDB,
ECFormulasList, monitoringRule)

1. IF node.Object is an AgreementTerm THEN
2. body = node.LeftChild
3. IF body is NOT null THEN
4. Translate(body, initialNode,

ParametricECFormulasDB,
ParametricECPredicatesDB,
QoSTermECConditionsDB,
ECFormulasList, monitoringRule)

5. END IF
6. head = node.RightChild
7. Translate(head,initialNode,ParametricECFormulasDB,

ParametricECPredicatesDB,
QoSTermECConditionsDB,
ECFormulasList, monitoringRule)

8. ELSE IF node is a LogicalOperator THEN
9. FOR each child in node.Children DO
10. Translate(child, initialNode,

ParametricECFormulasDB,
ParametricECPredicatesDB,
QoSTermECConditionsDB,
ECFormulasList, monitoringRule)

11. END FOR
12. ELSE IF node is a ComparisonOperator THEN
13. relationalPredicate =

ParametricECPredicatesDB.getPredicate(Relational,
node)

14. FOR each child in node.Children
15. IF child.Object is a ValueExpr THEN
16. IF child.Object.Value is QoSTerm THEN
17. childTemplates =

ParametricECFormulasDB.getTemplates
(child.Object.Value)

18. appendAll(ECFormulasList, childTemplates)
19. QoSTermHoldsAtPredicate =

ParametricECPredicatesDB.getPredicate
(HoldsAt, child.Object.Value)

20. IF child is node.LeftChild
21. relationalPredicate.LHSOperand =

QoSTermHoldsAtPredicate.QoSTermVariable
22. ELSE
23. relationalPredicate.RHSOperand =

QoSTermHoldsAtPredicate.QoSTermVariable

94 Khaled Mahbub, George Spanoudakis, Theocharis Tsigkritis

24. END IF
25. IF initialNode is an AgreementTerm THEN
26. IF child is at

initialNode.LeftSubtree THEN
27. QoSTermECConditions =

QoSTermECConditionsDB.getPredicates
(child.Object.Value)

28. FOR each predicate in
QoSTermECConditions DO

29. IF predicate is NOT contained
in monitoringRule.Body THEN

30. append(monitoringRule.Body, predicate)
31. END IF
32. END FOR
33. END IF
34. IF child is at

initialNode.LeftSubtree THEN
35. append(monitoringRule.Body,

QoSTermHoldsAtPredicate)
36. ELSE
37. append(monitoringRule.Head,

QoSTermHoldsAtPredicate)
38. END IF
39. ELSE
40. IF monitoringRule.Body does NOT contain

any predicate THEN
41. QoSTermECConditions =

QoSTermECConditionsDB.getPredicates
(child.Object.Value)

42. appendAll(monitoringRule.Body,
QoSTermECConditions)

43. END IF
44. append(monitoringRule.Head,

QoSTermHoldsAtPredicate)
45. END IF
46. END IF
47. ELSE IF child.Object.Value is a CONST THEN
48. IF child is node.LeftChild
49. relationalPredicate.LHSOperand =

child.Object.Value
50. ELSE
51. relationalPredicate.RHSOperand =

child.Object.Value
52. END IF
53. END IF
54. END FOR
55. IF initialNode is an AgreementTerm THEN
56. IF child is at initialNode.LeftSubtree THEN
57. append(monitoringRule.Body,

relationalPredicate)
58. ELSE
59. append(monitoringRule.Head,

relationalPredicate)
60. END IF

Translation of SLAs into Monitoring Specifications 95

61. ELSE
62. append(monitoringRule.Head,

relationalPredicate)
63. END IF
64. END IF
65. append(ECFormulasList, monitoringRule)
66. returnECFormulasList
67. END Translate

Fig. 7 The template selection algorithm

For each visited node Ni, the algorithm checks whether Ni represents an agree-
ment term, a logical operator or a comparison operator. If Ni represents an agree-
ment term, the algorithm processes its precondition (if any) recursively and its guar-
anteed states, by visiting the left and right child nodes of Ni respectively (lines 1–7
in Figure 7). Otherwise, if Ni represents a logical operator, the algorithm processes
recursively the children of Ni (lines 8–11 in Figure 7).

For each AST node Ni that represents a comparison operator (lines 12–13 in
Figure 7), the algorithm generates an EC-Assertion relational predicate (relation-
Predicate) of the same type as the comparison operator in Ni by retrieving a para-
metric EC-Assertion relational predicate from the corresponding repository (Para-
metricECPredicatesDB). The operands of the relational predicate are specified in
accordance to the left and right child nodes of Ni. The algorithm considers that both
the left and right child of Ni can be either a QoS term (lines 15–16 in Figure 7) or a
constant (line 47 in Figure 7).

When the algorithm visits a Ni child node that represents a QoS term (lines 16-64
in Figure 7), it retrieves the parametric EC FTL templates — which are necessary
for monitoring the QoS term — from the corresponding repository (ParametricEC-
FormulasDBs) and adds them to the ECFormulaList. Moreover, for each QoS term
node, the algorithm creates a HoldsAt predicate (QoSTermHoldsAtPredicate) that
should contain a fluent for the translated QoS term by retrieving a parametric EC
Assertion HoldsAt predicate from ParametricECPredicatesDB (line 19 in Figure 7).
It should be noted that the QoS term fluent is initiated by the formulae specified in
the corresponding parametric FTL templates for the translated QoS term. The al-
gorithm uses the QoS term fluent variable to set the corresponding operand of the
relationalPredicate, depending on the relative position of the QoS term node (lines
20–24 in Figure 7). More specifically, the algorithm decides whether to set the left
(LHS) or right (RHS) operand with respect to the relative position of the QoS term
node. If the QoS term node is the left child of Ni, then the LHS operand is set. The
RHS operand is set otherwise.

To further resume the monitoringRule buildup, the algorithm checks whether the
initialNode is an AgreementTerm (line 25 in Figure 7). If it is, and the QoS term
node is in the left sub-tree of the initialNode, the algorithm resumes by adding the
parametric EC-Assertion predicates QoSTermECConditions, which are compulsory

96 Khaled Mahbub, George Spanoudakis, Theocharis Tsigkritis

for triggering QoS term monitoring in the monitoringRule(lines 26–33 in Figure 7).
It should be noted that for each QoS term supported by EVEREST, there is a prede-
fined set of parametric EC-Assertion predicates that represent the necessary condi-
tions for the QoS term computation.

For instance, the predefined set for Throughput is as follows:

(∀case : 〈CaseId〉; srvId: 〈 SrvId〉; sensorId: 〈 SensorId〉;
d: 〈D〉; t1, t2, t3, t4 : Time)
ThroughputECConditions = {
Happens(e(id1, Snd, srvId, Call(O), sensorId),
t1, [t1,t1]), ¬Happens(e(id2, srvId, Snd,
Response(O),
sensorId), t2, [t1, t1+d]), (∃ t3: HoldsAt(Served(P,
srvId, N1, t3), t1) ∧ (t3 ≤ t1)), (¬ ∃ t4, P2, N2:
(P1 �= P2) ∧ (t4 ≥ t3) ∧ (t4 < t1+d) ∧ HoldsAt(Served(
P2, srvId, N2, t4), t1+d)) }

The predefined condition predicate sets are stored in the repository QoSTer-
mECConditionsDB. Thus, the algorithm retrieves the QoS term condition
predicates from QoSTermECConditionsDB. For each parametric condition predi-
cate p, the algorithm checks whether the body of monitoringRule contains p. If p
is not included, the algorithm adds p to the conjunctive list of the monitoringRule
body. Regarding the generated QoSTermHoldsAtPredicate, the algorithm adds the
predicate to the monitoringRule body when the initialNode is an AgreementTerm
and the current node ni is located in the left sub-tree of initialNode; if this is not the
case, the predicate is added to the monitoringRule head (lines 34–38 in Figure 7).

When a child of the comparison operator node ni represents a constant, the algo-
rithm uses the constant value to set the appropriate operand of the relationaPredi-
cate that is generated because of ni (lines 47–52 in Figure 7). Again, the algorithm
determines whether to set the LHS or RHS operand with respect to the relative po-
sition of the constant node. If the constant node is the left child of ni, then the LHS
operand is set. Otherwise, the algorithm sets the RHS operand.

Once both the LHS and RHS nodes of the comparison operator node are visited
and translated, the generated relationalPredicate is added to the monitoringRule
(lines 47–52 in Figure 7). In particular, when the initialNode is an AgreementTerm
and the current node ni is located in the left sub-tree of initialNode, the relational-
Predicate is added to the monitoringRule body. If this is not the case, the predicate
is added to the monitoringRule head. Finally, when all initialNode child nodes are
visited, monitoringRule is appended to the final output of the algorithm, i.e. to the
ECFormulaList (lines 45–46 in Figure 7).

To give an illustrated example of the monitoring rules that the Translate
algorithm generates, we use as an example the AST in Figure 5. The given AST is
translated into:

(∀case : 〈CaseId〉; srvId: 〈 SrvId〉; sensorId: 〈 SensorId〉;

Translation of SLAs into Monitoring Specifications 97

d: 〈D〉; t1, t2, t3, t4 : Time)
Rule.case:
Happens(e(id1, Snd, srvId, Call(O), sensorId),
t1, [t1,t1]) ∧ ¬Happens(e(id2, srvId, Snd,
Response(O),
sensorId), t2, [t1, t1+d]) ∧ (∃ t3: HoldsAt(Served(P,
srvId, N1, t3), t1) ∧ (t3 ≤ t1)) ∧ (¬ ∃ t4, P2, N2:
(P1 �= P2) ∧ (t4 ≥ t3) ∧ (t4 < t1+d) ∧ HoldsAt(Served(
P2, srvId, N2, t4), t1+d)) ∧ HoldsAt(case.Throughput(
ThroughputValue),t1) AND ThroughputValue ≥ T ⇒
HoldsAt(case.MTTR(MTTRValue),t1) ∧ MTTRValue < M

Once the ECFormulaList is compiled, the instantiator of the EVEREST RCG
Translation component processes the parametric ECFormulaList templates and
transforms them to operational EVEREST monitoring specifications. Besides the
compiled ECFormulaList, the instantiator component takes as input the Java SLA
object containing the SLA@SOI object assigned to EVEREST for monitoring by
the Monitoring Manager [5], as well as, the monitoring configuration generated by
the Monitoring Manager. The parametric templates contained in ECFormulaList
are instantiated to operational EVEREST monitoring specifications by making the
appropriate substitutions according to the following look up table.

Table 1 Instantiation look up table

FTL EC Template Placeholders SLA@SOI SLA and SLA Template Ab-
stract Syntax Equivalent Terms

CaseId SLA.UUID+AssignedSLAObject.Id

SrvId InterfaceRef.UUID �→ service URL

SensroId The ID of the sensor ID that provides the
primitive request and response events of
the monitored service

D Represents a time period

More specifically the following substitutions are made:

• Each appearance of CaseId in a selected parametric template is substituted
by a string that contains the unique ID of the monitored SLA plus the unique
ID of the Java SLA@SOI object assigned to EVEREST for monitoring by the
Monitoring Manager.

98 Khaled Mahbub, George Spanoudakis, Theocharis Tsigkritis

• Each appearance of SrvId is substituted by the unique ID of the interface
reference of the monitored service. Note that the substitution string should
be identical to the value of the receiver and sender parameters of the request
and response SLA@SOI primitive events that are generated by the monitored
service [6].

• Each appearance of SensorId is substituted by the unique ID of the sensor that
provides the request and response SLA@SOI primitive events that are generated
by the monitored service. Note that substitution string should be again identical
to the source parameter of the aforementioned primitive events.

• Each appearance of D is substituted by the constant that represents the time
period within which a request to the monitored service is considered served or
dropped, upon the occurrence or non-occurrence of a response from the service
respectively.

6 Limitations

The translation of the SLA model into EC-Assertion has some limitations. These
limitations are summarised below:

• Guaranteed actions in SLA agreement terms — that is, the actions that one of the
parties of the SLA is obligated to perform if the precondition of the agreement
term is satisfied — are not supported by the translation process. This is because
guaranteed actions do not constitute monitoring actions. Guaranteed actions are
control measures that the SLA@SOI monitoring infrastructure should take under
specific conditions, and they therefore fall under the remit of the Provisioning
and Adjustment and effector components in the architecture of Figure 1.

• Periodic events — used in the SLA model to denote the ”trigger” conditions in
time-series functions and guaranteed actions — are not currently supported.

7 Related Works

Service monitoring has been the focus of several strands of work that have devel-
oped standards and languages for specifying monitorable service and service-based

Translation of SLAs into Monitoring Specifications 99

system properties, and methods for monitoring these properties ([7] and [8]). Run-
time monitoring has also focused on monitoring SLAs ([9] and [10], for example).

The approach presented in [11] supports the monitoring of a BPEL process ac-
cording to certain QoS criteria; if an existing partner fails to satisfy QoS criteria, the
services of that partner may be replaced using various replacement strategies.

There have also been several approaches that verify the runtime behavioural cor-
rectness of service-centric systems using formal verification approaches; these ap-
proaches include, for example, [12] and [13]. In [12], safety and liveness properties
of service-centric systems are expressed using a subset of UML sequence diagrams.
These diagrams are transformed into automata applying some formal translation
patterns. During the execution of service-centric systems, the messages exchanged
between the participating services are captured and used to update the states of the
automata to verify the correctness of the execution.

In [13], a formal model of a web-service is constructed using a variant of a fi-
nite state machine and test cases are generated from this formal model. Generated
inputs are fed to the web-service to verify that its implementation conforms to the
formal model. The approaches described in [14] and [15] apply aspect-oriented pro-
gramming for runtime monitoring of service-centric systems. In [14], monitorable
properties of statefull services are expressed as algebraic specifications. Following a
mapping of the operations of such services onto the operations in the corresponding
algebraic specification, an evaluator with the algebraic specification is dynamically
attached to a service execution engine and it observes the execution of the web-
service at runtime, checking if the algebraic specification is preserved.

In [16], service choreography constraints are expressed in Linear Temporal Logic
(LTL) and translated into XQuery expressions applying some transformation pat-
terns. The generated XQuery expressions are then verified against the runtime XML
messages exchanged with the web-service using a standard XML streaming engine.

8 Conclusions

In this chapter, we described the integration of the EVEREST monitor into the
SLA@SOI monitoring framework. We also described the process of translating
SLAs expressed in the SLA model (as described in Chapter ‘The SLA Model’)
into EC-Assertion, where EC-Assertion is the formal first-order temporal logic
language that EVEREST uses to specify service monitoring conditions.

The translation of SLAs expressed in the SLA model into the formal EC-
Assertion language gives an unambiguous meaning to SLA guarantee terms
expressed in the former language, and this is important given the semi-formal
nature of the former. The current translation scheme has certain limitations — for
example the lack of support for periodic triggering conditions for monitoring SLA
guarantee terms — and these constitute the focus of ongoing work.

100 Khaled Mahbub, George Spanoudakis, Theocharis Tsigkritis

References

[1] Spanoudakis G, Kloukinas, and C. Mahbub K.: The SERENITY Runtime
Monitoring Framework, In Security and Dependability for Ambient Intelli-
gence, In Security and Dependability for Ambient Intelligence, Information
Security Series, Springer, pp. 213-238.

[2] M. Shanahan.: The event calculus explained, In M. J. Wooldridge and M.
Veloso, editors, Articial Intelligence Today, Vol. 1600 of LNCS, pages 409–
430. Springer, 1999

[3] Amalio N., Di Giacomo V., Kloukinas C., and Spanoudakis G. Mecha-
nisms for detecting potential S&D Threats. Deliverable A4.D4.1, SERENITY
Project, 2008.

[4] Amlio N., Stepney S., and Polack F. A formal template language enabling
meta-proof. In Proceedings of Formal Methods 2006, 2006.

[5] Ellahi T. et al., SLA-Aware Service Management, Deliverable D.A3b,
SLA@SOI Project, September 2010. URL: http://sla-at-soi.eu/wp-
content/uploads/2009/07/D.A3a-M26-SLAAwareServiceManagement.pdf

[6] H. Li et al., SLA-Aware Service Management, Deliverable D.A3a,
SLA@SOI Project, June 2009. URL: http://sla-at-soi.eu/wp-
content/uploads/2009/10/D.A3a-M12 SLA-aware Service Management.pdf

[7] Baresi, L. and Guinea, S.: Dynamo: Dynamic Monitoring of WS-BPEL Pro-
cesses, ICSOC 05, 3rd International Conference On Service Oriented Com-
puting, Amsterdam, The Netherlands, 2005.

[8] K. Mahbub and G. Spanoudakis, A framework for Requirements Monitoring
of Service Based Systems, 2nd International Conference on Service Oriented
Computing (ICSOC 2004), pp 84 – 93, November 2004.

[9] Ghezzi C. and Guinea S., Runtime Monitoring in Service Oriented Architec-
tures, In Test and Analysis of Web Services, (eds) Baresi L. & di Nitto E.,
Springer, 237-264, 2007.

[10] Mahbub K. and Spanoudakis G., Monitoring WS-Agreements: An Event Cal-
culus Based Approach, In Test and Analysis of Web Services, (eds) L.Baresi,
E. diNitto, Springer Verlag, 2007.

[11] O. Moser, F. Rosenberg, and S. Dustdar: Non-intrusive monitoring and service
adaptation for WS-BPEL, WWW 2008, pp. 815–824

[12] J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani, and J.
Waterhouse, Runtime Monitoring of Web Service Conversations, IEEE Trans-
actions on Services Computing, 29 Jun 2009. IEEE Computer Society Digital
Library. IEEE Computer Society.

[13] D. Dranidis, E. Ramollari, and D. Kourtesis, Run-time Verification of Be-
havioural Conformance for Conversational Web Services, European Confer-
ence on Web Services, Eindhoven, November 2009.

[14] D. Bianculli and C. Ghezzi. Monitoring Conversational Web Services. In IW-
SOSWE ’07, 2007.

http://sla-at-soi.eu/wp-content/Uncorrected
http://sla-at-soi.eu/wp-content/Uncorrected
http://sla-at-soi.eu/wp-content/uploads/2009/10/D.A3a-M12
http://sla-at-soi.eu/wp-content/uploads/2009/10/D.A3a-M12
http://sla-at-soi.eu/wp-content/uploads/2009/10/D.A3a-M12

Translation of SLAs into Monitoring Specifications 101

[15] S. Halle and R. Villemaire, Runtime Monitoring of Message-Based Work-
flows with Data, 12th International IEEE Enterprise Distributed Object Com-
puting Conference, 2008.

[16] S. Hall and R. Villemaire, Runtime monitoring of web service choreographies
using streaming XML, Proceedings of the 2009 ACM symposium on Applied
Computing (SAC ’09), 2009.

Part III

Scientific Innovations

Penalty Management in the SLA@SOI Project

Abstract One important differentiation of SLAs from best-effort service provision-
ing requests is the annotation with penalties: all those provisions that define what
will happen in the case that a provider fails to deliver the agreed service. The con-
sequences of such failures may be some kind of refund, additional (free) service
points, and so on. This chapter explores this topic, starting from a business perspec-
tive. It reviews the current implementation of the SLA@SOI project capabilities for
monitoring and reporting SLA violations, and eventually proposes a new formali-
sation for penalty definition. This formal model takes into account requirements for
fairness and business value. Following the model’s definition, an example is pro-
vided that links the model to SLA hierarchies.

Constantinos Kotsokalis
TU Dortmund University, August-Schmidt-Strasse 12, 44227 Dortmund, Germany,
e-mail: constantinos.kotsokalis@udo.edu

Juan Lambea
Telefónica Investigación y Desarrollo, Madrid, Spain, e-mail: juanlr@tid.es

Telefónica Investigación y Desarrollo, c/Abraham Zacuto 10, 47151 Valladolid, Spain,
e-mail: sergg@tid.es

Telefónica Investigación y Desarrollo, c/Recogidas 24, 18002 Granada, Spain,
e-mail: escamez@tid.es

DOI 10.1007/978-1-4614-1614-2_7, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 105

Constantinos Kotsokalis, Juan Lambea Rueda, Sergio Garcı́a Gomez, and Augustı́n
Escámez Chimeno

´

Augustı́n Escámez Chimeno

Sergio Garcı́a Gomez´

mailto:constantinos.kotsokalis@udo.edu
mailto:juanlr@tid.es
mailto:sergg@tid.es
mailto:escamez@tid.es

106

1 Introduction

Penalties are as essential to SLAs as guarantees, a notion essential to the very con-
cept of using SLAs as instruments for providing some level of determinism in busi-
ness relations. Thus SLAs also describe what must happen when something goes
wrong and the SLA cannot be honored and is violated. The section of an SLA that
describes these penalties is typically of concern to businesses and company legal
departments.

Penalties requested by customers during a negotiation process emphasise the im-
portance of SLA compliance to those customers. In a similar way, the penalties
acceptable to a service provider indicate their risk strategy: namely, how far they
are willing to go to make their customer feel safe while minimising the risk to their
business. In addition, penalties may be defined for cases in which customers do not
respect certain obligations agreed to in the SLA (for example, when exceeding the
invocation rate may lead to additional costs).

Penalty fairness is important to maintaining stable business relationships, and to
preserving SLAs as a useful and meaningful instrument for defining such business
relationships. Fairness refers to reasonable and proportional royalties returned when
the SLA is violated. This kind of proportionality is of interest to both the customer
and the provider.

The penalties ideally reflect business value of the SLA to the customer, yet the
provider does not usually wish to risk its complete business over a single contract.
Further, to achieve proportionality, penalties should reflect how far from the agreed
QoS level an SLA has drifted. By way of an example, one may consider an SLA
where 95% of invocations of some operation are guaranteed to complete within 5
seconds. If 94.9% did so during the accounting period, the SLA is violated, but
the penalty will typically be smaller than if only 80% of the invocations completed
within 5 seconds.

Usually, an offered service aggregates many ‘atomic’ services; thus, the individ-
ual SLAs for each atomic service must be taken into account in the offered service’s
SLA [1]. Composing SLAs and their respective terms — such as QoS and penalty
expressions — can be very challenging. A dynamically composed offer can include
not only the bundling of services, but also the current supply and demand, historical
data [2], and the parameters defined above. Thus, one of the most complex issues
that must be faced when defining service prices and penalties is their relationship
to QoS levels. That relationship can be expressed in various ways (absolute values,
percentages, etc) and is part of ongoing research [3].

C. Kotsokalis, J. Lambea Rueda, S. Garcı́a Gomez, A. Escámez Chimeno´

Penalty Management in the SLA@SOI Project 107

2 Business Considerations for Penalty Calculation and

Reporting

Calculating the penalties derived from SLA breaches is an important SLA manage-
ment process, as is the process of adjusting the resources involved to avoid those
violations and their consequences. Some methods that take into account financial
penalties resulting from SLA violations have been proposed, like the one in [4] by
Macias and Guitart, where the authors enforce the maximisation of a single Service
Level Objective (SLO): the provider’s revenue based on resource allocation moni-
toring.

The main innovation of SLA@SOI is the adoption of an architecture that sep-
arates SLA monitoring from SLA reporting and evidence representation. The ar-
chitecture makes it possible to monitor different guarantee terms that in turn have
different associated reporting requirements. This means that a customer may decide
to be informed periodically about a certain average QoS parameter (push model), or
could prefer to obtain a report on a specific moment (pull model).

The SLA@SOI Business Manager’s SLA reporting module (Figure 1), which
sits on top of the framework’s monitoring infrastructure, addresses all reporting re-
quirements.

This reporting module receives low-level information from the SLA@SOI mon-
itoring infrastructure, and (being aware of the relation between agreements and re-
porting requirements) creates the corresponding business (BSLAM) reports. It is
driven by policies specifying the SLA terms that should be included in a BSLAM
report, the types of monitoring results, and the required frequency of report genera-
tion. On a practical level, the former policies are described by an XML schema that
includes the terms and parameters that should be included in the report. A second
XML schema defines the formatting and appearance details of such reports.

3 Business Terms Associated with Penalties

The generic SLA model of SLA@SOI includes several extension mechanisms to
describe domain-specific information (Chapter ‘The SLA Model’). Here we present
the extension for penalty- and reporting-related terms.

An SLA is a set of agreements between two parties expressed using terms, each
of which denotes guarantees made by, or obligations on the parties, and may have
an expression specifying the conditions that must be met to consider the agreement
as valid (i.e. preconditions). If there is no precondition for a certain term, then it
applies for the entire lifecyle of the SLA. Each one of these agreements has a set
of guarantees of two types: states and actions. In short, an SLA is an agreement
between a service provider and a service customer, where the agreement describes
the service, documents the service-level targets, and specifies the responsibilities of
the service provider and customer.

108

Fig. 1 Business Manager components

Guaranteed states: These constitute acceptance by one of the parties that a certain
parameter value will hold, e.g. Service Level Objectives (SLOs) or targets for
Key Performance Indicators (KPIs).

Guaranteed actions: They are activities that, under certain circumstances, one of
the parties:

• may perform; or
• is required to perform; or
• is not allowed to perform.

On the business layer, the following guaranteed actions have been defined:

Monitoring: This specifies which SLA parameters must be continuously moni-
tored to control the information retrieved by the parties. Includes the units and
frequency of monitoring.

Reporting: This represents the desire of the customer to be informed, automati-
cally (push) or on demand (pull), about service usage and SLA status over time.
Since the information is sent as a report, this term includes information regarding
the report format, the frequency (only push) and the exact delivery method.

C. Kotsokalis, J. Lambea Rueda, S. Garcı́a Gomez, A. Escámez Chimeno´

Penalty Management in the SLA@SOI Project 109

Termination and TerminationClause: These represent the conditions under which
one of the parties may terminate an SLA. A clause may include a notification
method and a fee in case of unexpected cancellation.

Penalty: This is the amount of money to be paid in case of a breach of a specific
SLA term. A penalty may also be used to trigger an SLA termination clause.

Rewards are not addressed in the model; rather, it is assumed that in a realistic
scenario, better service is more expensive by default.

4 The SLA@SOI Penalty Management Architecture

4.1 Monitoring

Figure 2 illustrates the main components of the SLA@SOI architecture and their
relationships. On the highest level, we distinguish between the core framework, ser-
vice managers (infrastructure and software), deployed service instances with their
manageability agents, and monitoring event channels. The core framework encap-
sulates all functionality related to SLA management. Infrastructure and software
service managers contain all service-specific functionality. The deployed service in-
stance is the actual service delivered to the customer, and is managed by the frame-
work via manageability agents. Monitoring event channels serve as a flexible com-
munication infrastructure that allow the framework to collect information about the
status of the service instance.

In the SLA@SOI framework, business-level SLA reporting is separated from
SLA monitoring because SLA guarantee terms might need to be monitored for
different purposes and have different reporting requirements. The primary func-
tion of these components is to receive low-level monitoring information from the
SLA@SOI monitoring infrastructure, and to transform this into business SLA mon-
itoring reports, including descriptions of SLA breaches, if any, and the penalty.

For example, the average response time of services in an SOA might need to
be monitored continuously to enable automatic replacement of services that fail to
satisfy the thresholds set for this guarantee term, as well as to provide evidence of
the breaches. At the business layer, it might be necessary to report only the weekly
or monthly average response time of a service, as well as the response time in spe-
cific days within the relevant period where the average response time significantly
exceeded the threshold value. This is especially important in those cases where ag-
gregated services exist and the penalty must therefore be divided between different
third party providers.

The business component in charge of receiving violations from the lower level
components is the Provisioning and Adjustment Component (PAC). The PAC makes
decisions based on business criteria, including renegotiating agreements with end-
customers, terminating offered services, or even, in a multi-provider environment,
changing the third party provider providing a given service.

110

Fig. 2 SLA@SOI framework

Thanks to the << control/track >> interaction, business-level criteria can be
taken into account within the lower levels of the SLA@SOI architecture. For in-
stance, a service provider can decide that it is better to accept violations in some
SLAs to give priority to others, based on business impact. The service provider may
also decide to prevent breaches to some SLAs or specific QoS metrics while apply-
ing reaction upon violations to others. To this end, the << control >> interaction
allows the Business Manager component to retrieve the current adjustment policies
and to set a new list of policies. The << track >> interaction allows the commu-
nication of violations from the software and infrastructure levels to the Business
Manager. This informs the business layer of problems in the underlying levels, and
allows it to calculate and apply penalties derived from the malfunctioning of services

C. Kotsokalis, J. Lambea Rueda, S. Garcı́a Gomez, A. Escámez Chimeno´

Penalty Management in the SLA@SOI Project 111

under its control. The << query >> interaction is implemented in the software and
infrastructure PACs and allows an external entity, namely the Business Manager, to
query SLA violations and historical monitoring information.

4.2 Reporting

4.2.1 BSLAM Reporter Architecture

In the SLA@SOI platform, the BSLAM reporter is responsible for generating
BSLAM reports. Its main functionality is to get basic monitoring results from the
SLA@SOI monitoring subsystem, and use them to generate and provide BSLAM
reports to the business intelligence component of the Business Manager. These re-
ports will be assembled and structured according to BSLAM reporting policies,
which are also specified within the business intelligence component.

The BSLAM Reporting Manager is functionally divided in five components (Fig-
ure 3):

• The Manager coordinates reporting activities (e.g., reporting specification pars-
ing, reporting scheduling, building reports).

• The SchedulerManager creates jobs and executes them at specific time points
• The Communication component provides the means for retrieving data required

to create reports.
• The Storage component stores job results to be subsequently fetched for report

generation.
• The Parser converts XML artefacts to Java objects (since reporting requests come

as XML strings).

A number of interactions take place between the Reporting Manager and the
outer world, as well as between components of the Reporting Manager:

• reporting request: external components request the Reporting Manager to gen-
erate reports. Passing to Reporting Manager an XML string representation of a
business SLA performs the request.

• reporting response: a report result is delivered to a requester component. Busi-
ness SLA contains chosen delivery methods.

• parser: prior to any other tasks, the XML string representation of a business SLA
need to be converted into a suitable Java object representation. Parser component
performs the conversion.

• schedule job: a job is uniquely associated to a reporting specification. A sched-
uler, according to reporting policies contained in a business SLA, triggers respec-
tive jobs.

• fetch data: data needed to accomplish a job is fetched by querying Communica-
tion component which knows how to retrieve requested data.

• store job result: job results are stored to be later processed to build reports.

112

Fig. 3 BSLAM reporter architecture

• subscribe to result: Manager and Storage components implement the producer/-
consumer paradigm. Manager subscribes to Storage to be notified when a job
result is stored.

A monitoring policy refers to guarantee terms and business monitoring param-
eters in particular SLAs. Hence the related SLA guarantee terms and any required
events related to these terms can be extracted from the policy by the BSLAM
reporter and passed to the SoftwareLandscape component. This component is
aware of the exact monitors responsible for monitoring the particular SLA items
required for a BSLAM report, and is able to subscribe the BSLAM reporter as a
listener to monitor result events. These events carry monitoring information about
particular SLA items and are generated by reasoning components that have been
assigned the responsibility of checking the relevant items. The latter components
are indirectly accessible through the ServiceManager component. Note that the
SLA@SOI monitoring subsystem may deploy different reasoning components to
monitor different SLAs or even different items within the same SLA1.

1 The assignment of different SLAs or items of a single SLA to different reasoning components
might be dictated by the need to use the specialised capabilities of individual reasoning components
or other requirements (e.g. load balancing across these components).

C. Kotsokalis, J. Lambea Rueda, S. Garcı́a Gomez, A. Escámez Chimeno´

Penalty Management in the SLA@SOI Project 113

4.2.2 Push/Pull Penalties Reporting

The BSLAM reporter has been specifically implemented as a report generator for
customers and service providers. This component offers a web-service interface
through which on-demand reports can be requested. Reports can be retrieved by
product and client, by SLA ID, or by a GuaranteeTerm specific to a given SLA.
Aggregated reports for a specific product can also be requested. The output includes
information on the associated SLA and the performance of the service in terms of
violations and penalties.

While the methods described above can be considered as a pull interface, the
BSLAM reporter component also implements a push approach, providing an auto-
matic mechanism for sending reports to the customer. These reports indicate peri-
odicity in the SLA and when a violation occurred. To this end, an e-mail is sent to
the contact email address of the customer.

The content of the report is retrieved from the business database, where all
the business information is stored, including product descriptions, business SLAs,
prices, violations and penalties. If more detail is needed, the reporting compo-
nent can use the << control/track >> interaction to retrieve this information from
the registries in the underlying SLAMs and from the low-level monitoring system
database.

All this information is structured into reports in PDF format. On-demand reports
can be viewed using a web browser; otherwise, the file is attached to the e-mail.

4.3 Violations and Penalties Management

From a real business perspective scenario (Figure 4), the importance of violation
management is clear. Most guarantee terms set in an SLA are subject to direct fi-
nancial penalties or indirect financial repercussions if not met. Hence in business
interactions it is essential that all violations occurring in the service lifetime are de-
tected, analysed against the corresponding SLAs, and relevant penalties calculated.

Inside the SLA@SOI framework, the business layer takes care of the economic
impact derived from the performance of the service. The violation and penalty man-
agement component of the Business Manager must analyse and correlate informa-
tion from two sources: the signed business SLAs, and runtime information on ser-
vice performance.

Within signed business SLAs, the agreement terms may have a penalty attached
when a given guarantee term is breached. In the current SLA@SOI implementation,
this penalty requires a financial amount to be paid by the service provider (e.g. when
the bad performance is caused by a failure of software or infrastructure resources) or
by the customer(e.g. when the number of requests exceeds the maximum threshold
indicated in the SLA).

The violation and penalty management component must implement a mechanism
to receive runtime information about each SLA from the software and infrastructure

114

Fig. 4 SLASOI use case scenario

levels. The incoming data, namely SLA violations, must then be checked against the
conditions signed in the SLA. When a violation notification is received, the violation
and penalty management component must evaluate whether the corresponding SLA
foresees a penalty for the violation. If it does, then it must calculate the exact penalty
and apply it, through communication with the billing engine.

Further, a mechanism must be implemented to allow persistent storage of the
information generated: the violations of each SLA, the duration of the malfunction,
and the penalties attached. This information will be used by the reporting component
to generate the corresponding reports, making the data available both internally to
the service provider, and externally to the customer.

On the software and infrastructure levels, the low-level monitoring system con-
tinuously supervises parameters that characterise the service. The collected informa-
tion is then fed into the SLA-level monitoring system, which compares the instru-
mentation data with the conditions specified in the SLA as guarantee terms. When a
violation of one of those terms is detected, a specific SLAViolation event is triggered
and captured by the adjustment component of the corresponding layer. The infor-
mation flows to the business layer through the << control/track >> interaction,
where the economic impact of the underlying problem is evaluated by the violation
and penalty management system. The output of this analysis will be used at the
business layer in the post-sale subcomponent, and should be permanently stored in
the database.

The violations and penalties management system is embedded in the business
adjustment component in view of the close relationship between both functionali-
ties: the input data for both concerns violation events produced at the software and

C. Kotsokalis, J. Lambea Rueda, S. Garcı́a Gomez, A. Escámez Chimeno´

Penalty Management in the SLA@SOI Project 115

infrastructure layers, and both modules aim to analyse those events and take corre-
sponding action (a recovery action or penalty application).

Thus the manageability agent and monitoring system continuously observe the
quality of a service. If the observed quality is less than that agreed to in the SLA,
the resulting violation is published on an event channel. In the scenario depicted in
Figure 4, the SLA manager retrieves the notification and initiates countermeasures
(i.e. calls to the right service from infrastructure or software). If successful, the
countermeasures allow the framework to restore the quality of service agreed upon
in the SLA. The violation — and the countermeasures taken — are reported to the
business manager via the ¡¡tracking¿¿ interaction. The business manager records
the violation and decides — based on the severity of the violation and the success
or failure of the countermeasures taken — whether to report the violation to the
customer. Such a report would include the associated penalties.

In Section 3, guarantee states and actions were introduced. The penalty action
is another relevant SLA term. When the monitoring component receives an SLA
breach (e.g. failing a KPI target), the associated penalty is thrown and then captured
by the violations and management module, which in turn loads the associated SLA
that has the corresponding penalty description and fee.

The termination action is another guarantee action for cases where repeat viola-
tions occur. It is associated with a termination clause, which records when an SLA
should be deemed invalid and be cancelled. For example:

guaranteed_action{
id = PenaltyAction_SMS_ProviderConstraintAvailability
actor = http://www.slaatsoi.org/slamodel#provider
policy = mandatory
trigger = violated[SMSAvailabilityConstraint]
penalty{

price = "0.1" EUR
}

}

We can see that this block includes a policy associated with the penalty and eco-
nomic fee. The former penalty example has an associated termination action:

guaranteed_action{
id = TerminationAction_SMS_ProviderConstraintAvailability
actor = http://www.slaatsoi.org/slamodel#provider
policy = mandatory
trigger = violated[violation_count(\
PenaltyAction_SMS_ProviderConstraintAvailability) < "3"]

termination{
name = Termination Action
terminationClauseId = 2

}
}

This includes the ID of the termination clause: terminationClauseId = 2.
For aggregated services, the different SLAs are joined and the penalties are re-

defined. Thus the old penalties are not used and new penalties are calculated specific
to the composite service.

http://www.slaatsoi.org/slamodel#provider
http://www.slaatsoi.org/slamodel#provider

116

The implementation of the violations and penalty management module declares
specific rules that have been added to the rule engine. When a violation arrives, the
following actions are performed:

1. The corresponding SLA is retrieved from the SLARegistry.
2. The SLA is checked to establish whether there is a penalty charge for the guar-

antee term that has been violated.
3. If such a penalty exists, then information corresponding to the penalty is ex-

tracted and its value evaluated.
4. Information regarding application of the penalty is stored in the database for

inclusion in generated reports and billing procedures.
5. Regardless of whether the violation had a penalty attached, it is recorded in the

database for reporting purposes.

4.3.1 Current Penalty Model

The SLA model from Chapter ‘The SLA Model’ has been extended to include
business-related terms. This extension establishes two business terms associated
with penalties: penalty count and violation count. Penalty count is the number of
penalties applied to a service upon violation of the signed conditions of that service;
violation count is the number of notifications received of violations to an agreement
term, guaranteed state or guaranteed action of a service.

In the next section we present a proposal for a unique (albeit as yet unimple-
mented) model for defining penalties within an SLA, taking into account business
considerations and requirements as part of the contract negotiation. This new model
has been designed to be flexible, adaptable to different scenarios, and expressive
enough to accommodate complex expressions (e.g. penalties for when combinations
of different guarantees are violated). An example of this penalty model is given,
customised to a simple application such as the Open Reference Case (ORC) (Chap-
ter ‘The Open Reference Case’).

5 A Formal, Novel Penalty Model

Currently, there are various ways to express penalties, some simpler (e.g. a flat rate
for the entire SLA, or a linear proportionality per guarantee) and others more com-
plex (such as those in Section 7). These various approaches, however, do not satisfy
all of the following requirements for formulating complex penalty expressions in a
single unambiguous model:

• Able to describe associative penalties, where the penalty for failing one SLA
guarantee depends on the state (failed or satisfied) of other guarantee(s)

• Full flexibility regarding QoS levels agreed and/or achieved, without being con-
strained (e.g. by pre-specified classes of service)

C. Kotsokalis, J. Lambea Rueda, S. Garcı́a Gomez, A. Escámez Chimeno´

Penalty Management in the SLA@SOI Project 117

• Openness and applicability to different domains, without dependence on specific
languages, taxonomies or technologies.

Motivated by this identified gap, we propose a new, formal penalty model, out-
lined below:

Let us assume service S, and an SLA that governs consumption of this service
by a certain customer. Also, assume that the total cost for consumption of the ser-
vice under this SLA is C, and that the agreed QoS is given as a set of guarantees
(Q1,Q2, ...,Qn) for the various supported quality metrics and properties. Then, a set
of penalty functions is defined as:

Pm(Q1m , ...,QNm) =C ·PWm ·∑
k

QWk ·FRk (1)

where m > 0 and 1m ≤ k ≤ Nm.
Q1m , ...,QNm represents a combination of guarantees that depend on each other,

and the violation of one may affect, under specific circumstances, the others. This
is a way to express correlations of fine granularity. Thus, a customer can express
statements wherein the violation of one guarantee becomes more relevant if another
guarantee is also violated.

Pm is a penalty function that corresponds to the above combination Q1m , ...,QNm

of guarantees. The sum of all penalty functions during one reporting period repre-
sents the total penalties for this SLA during that period.

PWm is the weight of penalty function Pm. It indicates how important a function is
to the total calculated penalty, and may aid the service provider in making decisions
regarding the deployment and implementation of the SLA. The sum of all weights
is equal to 1.

QWk is the weight of one specific guarantee being violated, for this specific com-
bination of guarantees. This value may be arbitrarily high. It allows the negotiating
customer to express the importance of honoring certain guarantees in this penalty
function. Take, for example, a case where the guarantees concern the availability of
two load-balancing servers. If the availability guarantee for one server is violated, its
weight (and hence, the penalty) is kept small. If, however, the availability guarantee
of the other server is violated at the same time, there may be a very high weight to
suggest an equally high penalty as a result of the system becoming unavailable as a
whole.

Finally, FRk is the failure ratio: the relationship between achieved quality and
planned quality. It indicates how far the offered quality has drifted from the agreed
quality of a specific service parameter. For instance, if 100% service availability
was agreed to but only 90% is achieved, then the failure ratio is 0.1; if a 5 second
average response time was agreed but a 6 second average response time is achieved,
then the failure ratio is 0.2. By definition, FRk may also model possible rewards for
performing better than agreed.

Previous chapters have discussed the top-down construction of subcontracts from
a higher-level contract. In this process, proper values for service properties of the
SLAs must be decided and suitable penalties for non-compliance deduced. Thus

118

penalty calculation for subcontracts is part of the SLA negotiation/translation pro-
cess. Since service properties depend on each other in domain-specific ways, generic
analytical expressions of penalties for antecedent services/SLAs cannot be provided.
Instead, the next section illustrates how this process would work, by means of an ex-
ample.

6 Example Application

This section provides an example use of the penalty model, roughly based on the
Open Reference Case (Chapter ‘The Open Reference Case’) scenario. It illustrates
how the model is applied for a service PS, and how it is translated to calculate
penalties for antecedent services in this context. Let us assume that the negotiable
properties for the payment service are:

• Availability, defined as the ratio of service uptime to total monitoring time, over
a certain predefined time period (e.g. one month); and

• Response time, defined as the time duration from the moment a message is re-
ceived to the moment a response is generated and put on the wire, for a specific
percentage of all invocations.

The customer wants to express that availability must be over 99%, and the penalty
for availability dropping to 90% increases up to the full cost. For response time,
the customer desires that 98% of invocations return in less than five seconds. The
response time penalty increases linearly towards 85% of the calls; at that point, full
SLA cost is claimed back. Network delays are not considered in this example. The
customer expresses these penalty terms as follows:

P(A) = C ·1 ·
(

99
99−90

·FRA

)
(2)

P(R) = C ·1 ·
(

98
98−85

·FRR

)
(3)

P(A) and P(R) are the penalties for availability and response time respectively.
C is the total SLA price. For all penalty functions, a maximum penalty equal to the
SLA price is requested (PWA = PWR = 1). (Note that this may equate to more than
the SLA price if more than one parameter is ‘sufficiently violated’. The provider
may not accept this and may choose instead to set a maximum aggregate penalty.
This is something to be negotiated between the two parties and its expression is a
syntactical matter mostly related to Chapter ‘The SLA Model’.)

The weight for violation of each guarantee is set such that each unit of additional
failure from an agreed target contributes linearly to a total failure at the agreed
threshold. Thus, 99/(99− 90) is the necessary number to reach a value of 1 when
multiplied by the threshold failure ratio of (99−90)/99 for availability (where 99%

C. Kotsokalis, J. Lambea Rueda, S. Garcı́a Gomez, A. Escámez Chimeno´

Penalty Management in the SLA@SOI Project 119

is the planned availability and 90% is the actual availability). Similarly, 98/(98−
85) is required for the response time threshold of 85% (down from 98%).

The planning component of the ORC service provider knows that availability
of the payment service Ag depends on availability of the infrastructure on which the
service executes. Service response time R depends on use of the infrastructure being
sufficiently low. Equations 4 and 5 describe the availability and response time of the
payment service in relation to the availability and use of the supporting virtual ma-
chines (VMs). Coefficients k and l are specific to the software used, and are known
to the planning component via software modeling, monitoring, or other means. A
constant c denotes the response time for near-zero use of the VMs. Based on these
formulae, the payment service provider deduces the required guaranteed properties
and constructs an SLA offer for the infrastructure provider.

Ag = min(AV M1,AV M2) (4)
R = k ·UV M1 + l ·UV M2 + c (5)

AV M1,AV M2,UV M1,UV M2 ∈ [0,1] (6)

The policy of the payment service provider is to ensure that full infrastructure
SLA costs will be refunded if the infrastructure provider fails to such an extent that
profit from the payment service SLA is affected. Thus, although availability of the
payment service can be as low as 90% before a full refund is issued — and service
availability relates to VM availability as shown in Equation 4 — the payment service
provider will ask that it converges sooner to values that constitute ‘complete failure’
to deliver. As such, the failure multipliers must be larger, to reflect this financial dif-
ference. The same applies to response time, and the penalties for infrastructure use
levels. (For the purposes of this example, we have assumed that the payment service
provider has no implementation costs and that the difference between software SLA
price C and infrastructure SLA price C∗ is all profit.)

Eventually, this penalty can be formulated as in Equations 7 and 8.

P(AV M1,AV M2) =C∗ ·1 ·
(

C
C∗ ·α ·FRAV M1 +

C
C∗ ·α ·FRAV M2

)
(7)

P(UV M1,UV M2) =C∗ ·1 ·
(

C
C∗ ·β ·FRUV M1 +

C
C∗ ·β ·FRUV M2

)
(8)

where α = 99/(99−90) and β = 98/(98−85).
These equations can be simplified as follows:

P(AV M1,AV M2) =C ·α · (FRAV M1 +FRAV M2) (9)
P(UV M1,UV M2) =C ·β · (FRUV M1 +FRUV M2) (10)

Taking into account Equations 2 and 3, it holds that:

120

P(A)
P(AV M1,AV M2)

=
FRA

FRAV M1 +FRAV M2

(11)

P(R)
P(UV M1,UV M2)

=
FRR

FRUV M1 +FRUV M2

(12)

However, it must be underlined that this applies only because of the assumption that
the payment service provider has no implementation costs other than the infrastruc-
ture for service execution.

7 Related Work

In [5], Becker et al. propose a price function over achieved QoS. Subtracting from
the agreed price provides the penalty, so the price function can also be considered to
be the penalty function. Rewards are also possible using their approach. The main
difference between this and the approach presented in this chapter is that in [5], it is
not possible to express penalties that involve more than one QoS property or these
properties being correlated. That is, quality is seen as a unidirectional aggregated
measure for a service, while in fact there may be quality characteristics that cannot
be aggregated without preference information and also without property interdepen-
dence information.

In [6], Jurca and Faltings suggest a method for calculating penalties based on a
reputation mechanism, where all customers evaluate the quality of the service they
received. The authors take measures to avoid false voting for price reduction or other
fraud. This approach, however, can only be combined with classes of service.

In [7], Rana et al. discuss monitoring and reputation mechanisms for SLAs. The
authors look into EU contract law, taking relevant points into account, and then
define three broad penalty categories: all-or-nothing, partial and weighted partial.
However, a complete mathematical model is not present. The work they present is
then related to WS-Agreement, so the relevant negotiation concepts are also dis-
cussed.

Finally, Kosinski et al. present in [8] a mathematical formulation of penalty func-
tions that is fairly similar to that presented here (although applied specifically to
networking). The paper does capture the relationships between different properties,
and policies are defined depending on such relationships and their respective com-
binations. These policies are captured within ‘subcontracts’ (Kosinski et al. use this
term to refer to sections of a single SLA). Kosinki et al. calculate failures using
a pre-specified taxonomy (number of violations, amount of violations, etc), while
in this paper, failure ratios are considered domain-specific and calculations are left
open. In addition, the model from Section 5 assigns a weight not only to each vi-
olation, but also to each penalty function (or ‘subcontract’, using the terminology
of [8]).

C. Kotsokalis, J. Lambea Rueda, S. Garcı́a Gomez, A. Escámez Chimeno´

Penalty Management in the SLA@SOI Project 121

8 Summary and Conclusions

In this chapter, we introduced penalty-related business terms defined within
SLA@SOI, as well as capabilities for monitoring and reporting SLA violations.
A novel, complete mathematical penalty model was then discussed. Expressions
compliant to this model can be integrated within SLAs to define unambiguously the
penalties that accompany SLA failures. The model takes into account concepts of
fairness, business value and quality parameter interdependencies.

An example application of the model to SLA hierarchies was demonstrated,
showing that the model can be applied using domain-specific (and perhaps use-
case-specific) knowledge to build analytical penalty expressions at negotiation time,
dynamically and according to top-down or bottom-up hierarchy construction.

References

[1] Cheng S, Chang C, Zhang L, Kim T (2007) Towards competitive web service
market. In: 11th IEEE International Workshop on Future Trends of Distributed
Computing Systems, p 213219

[2] Hasselmeyer P, Koller B, Kotsiopoulos I, Kuo D, Parkin M (2007) Negotiating
slas with dynamic pricing policies. In: Proceedings of the SOC@ Inside07

[3] Marchione F, Fantinato M, de Toledo M, Gimenes I (2009) Price definition in
the establishment of electronic contracts for web services. In: Proceedings of
the 11th International Conference on Information Integration and Web-based
Applications & Services,, ACM, p 217224

[4] Macias M and Guitart J (2010) Maximising revenue in cloud computing mar-
kets by means of economically enhanced sla management. In: Tech. Rep. UPC-
DAC-RR-CAP-2010-22, Universitat Politecnica de Catalunya, Computer Ar-
chitecture Department

[5] Becker M, Borrisov N, Deora V, Rana O, Neumann D (2008) Using k-Pricing
for Penalty Calculation in Grid Market. In: Hawaii International Conference
on System Sciences, Proceedings of the 41st Annual, pp 97–97, DOI 10.1109/
HICSS.2008.485

[6] Jurca R, Faltings B (2005) Reputation-Based Service Level Agreements for
Web Services. Service-Oriented Computing - ICSOC 2005 pp 396–409, DOI
10.1007/11596141{\ }30

[7] Rana O, Warnier M, Quillinan T, Brazier F (2008) Monitoring and Reputa-
tion Mechanisms for Service Level Agreements. Grid Economics and Business
Models pp 125–139, DOI 10.1007/978-3-540-85485-2{\ }10

[8] Kosinski J, Radziszowski D, Zielinski K, Zielinski S, Przybylski G, Niedziela
P (2008) Definition and Evaluation of Penalty Functions in SLA Management
Framework. Networking and Services, International conference on pp 176–181,
DOI http://doi.ieeecomputersociety.org/10.1109/ICNS.2008.32

http://doi.ieeecomputersociety.org/10.1109/ICNS.2008.32

Dynamic Creation of Monitoring Infrastructures

Howard Foster and George Spanoudakis

1 Introduction

As a key part of monitoring and management, systems developed with a Service-
Oriented Architecture (SOA) design pattern should utilise negotiated agreements
between service providers and requesters. Typically, the results of these negotia-
tions are specified in Service Level Agreements (SLAs), which are then used to
monitor key levels of service provided, and to optionally specify preconditions and
actions in case these levels are violated. Responsibility for monitoring SLAs (and
often individual parts within them) must be dynamically allocated to different mon-
itoring components, since SLAs — and the components available for monitoring
them — may change during the operation of a service-based system [4]. The com-
plexity of SLA terms, however, often means that several monitoring components
may need to be selected for a single SLA-guaranteed term expression (e.g. avail-
ability > 90%), since each part of the expression may be reasoned by a physically
different provider. Existing work has shown examples of decomposition based upon
simple decomposition of expressions [4], but there is also a need to consider vari-
ations between different monitors (e.g. trustworthiness or access constraints) in a
dynamic monitoring configuration process.

In this chapter, we show how complex SLA terms specified in the SLA@SOI
SLA (Chapter ‘The SLA Model’) can be decomposed into manageable monitoring
configurations, and include a mechanism to support the selection of preferred mon-
itoring components. Advanced configuration is supported by a MonitoringManager
component which mechanically parses an SLA, generates a formal Abstract Syntax
Tree (AST) and decomposes the terms of the AST into expressions for monitoring.
Each expression is then used to select appropriate reasoning or service sensor mon-
itoring components. The main contribution of this work is that both the monitoring

Howard Foster, George Spanoudakis,
Department of Computing, City University London, Northampton Square, EC1V 0HB, London.
e-mail: {howard.foster.1,g.e.spanoudakis}@city.ac.uk

DOI 10.1007/978-1-4614-1614-2_8, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 123

124 Howard Foster, George Spanoudakis

configurator and the monitoring configuration specification are generic, reusable
artifacts able to be incorporated into other frameworks where configuration of mon-
itoring components is required. The monitoring configurator is already offered as
a reusable service that uses standard web-service protocols to enable the use of re-
placeable selection criteria for candidate monitors; selection criteria can be driven
from preferences for monitor provider and/or offered features.

The chapter is structured as follows: Section 2 illustrates the service monitoring
architecture and components, whilst Section 3 describes the overall approach to
monitoring configuration. In Section 4 we describe the parsing and decomposition of
SLAs, and in Section 5, the monitoring component selection algorithms. In Section
6 we discuss implementation and testing of the approach, and in Section 7 we briefly
discuss related work. Section 8 concludes the chapter with a discussion of present
and future work.

2 Architecture

Fig. 1 A Service Monitoring Architecture

An overview architecture for service monitoring in the SLA@SOA project is
illustrated in Figure 1. In this chapter, we focus on the GenericSLAManager (pro-
viding generic support for planning, optimisation, adjustment and configuration of
monitoring) and monitoring component features (such as reasoners, sensors and ef-
fectors). The Planning and Optimization Component (POC) is a local executive con-
troller for a service manager. It is responsible for assessing and customising SLA
offers, evaluating available service implementations, and planning optimal service
provisioning and monitoring strategies. The POC generates a suitable execution plan

Dynamic Creation of Monitoring Infrastructures 125

for monitoring (based upon a configuration obtained from the MonitoringManager
component) and passes this to the Provisioning and Adjustment Component (PAC).
The PAC collects information from the Low Level Monitoring System, analyses the
incoming events, decides if a problem has occurred or is about to occur, identifies
the root cause, and then (if possible) decides on and triggers the best corrective or
proactive action. If the problem cannot be solved at a local level, the PAC escalates
the issue to a higher level component, namely the POC. In the case of an SLA vio-
lation, such an adjustment can trigger re-planning and reconfiguration, and/or alert
higher-level SLA monitoring. These capabilities are considered important in order
to assure preservation of service provision and resource quality.

The MonitoringManager (MM) coordinates the generation of a monitoring con-
figuration for the system. The MM uses configurable selection criteria to determine
which is the most appropriate monitoring configuration for each SLA specification
instance it receives. Each monitoring configuration describes which components
to configure and how their configurations can be used to best monitor guaranteed
states. The Low Level Monitoring Manager is a central entity for storing and pro-
cessing monitoring data. It collects raw observations, processes them, computes de-
rived metrics, evaluates the rules, stores the history, and offers all this data to other
components (accessible via the service manager). It also implements the monitoring
part of a ProvisioningRequest, containing constraint-based rules (time- and data-
driven evaluations) and ServiceInstance-specific sensor-related configurations. It is
general by design, and thus capable of monitoring software services, infrastructure
services and other resources. Since POC and PAC functionality is very closely re-
lated to domain-specific requirements, they are provided as extendible components.
For SLA@SOI case studies, they are already extended for either software service
monitoring or infrastructure service monitoring. The MM aims to be generic for all
solutions and is provided as one solution.

There are three types of monitoring feature in the monitoring system: First, sen-
sors, which collect information from a service instance. Their designs and imple-
mentations are domain-specific. Sensors can be injected into the service instance
(e.g., service instrumentation), or can be outside the service instance (e.g. intercept-
ing service operation invocations). A sensor can send the collected information to a
communication infrastructure (e.g. an Event Bus), or other components can request
(query) information from it. There can be many types of sensors, depending on the
type of information they are designed to collect, but they all implement a common
sensor interface. The interface provides methods for starting, stopping, and config-
uring a sensor. The second type of monitoring feature is an effector. Effectors are
components for configuring service instance behaviour. Their designs and imple-
mentations are also domain-specific. Like sensors, effectors can be injected into a
service instance or can interface with a service configuration. There can be many
types of effectors, depending on the service instance to be controlled, but they all
implement a common effector interface. The interface provides methods for config-
uring a service. The third type of monitoring feature is a reasoner (also known as
a Reasoning Engine), which performs a computation based upon a series of inputs
provided by events or messages sent from sensors or effectors. An example rea-

126 Howard Foster, George Spanoudakis

soner may provide a function to compute the average completion time of a service
request. In this case, it accepts events from sensors detecting both requests for and
responses to a service operation, and computes an average over a period of time.
Reasoners also provide access to generic runtime monitoring frameworks, such as
EVEREST [15].

2.1 Monitoring Features Specification

In addition to an SLA specification (Chapter ‘The SLA Model’), the Monitoring-
Manager requires a set of feature specifications for monitoring feature types (intro-
duced at the beginning of this section). Component monitoring features are specified
for a type of monitoring component and offered for a type of service (Chapter ‘The
Service Construction Meta-Model’ for details of the Service Construction Meta-
Model). A feature specification has two instance variables: The type variable holds
the type of the component, and the permitted types are sensor, effector and reasoner.
A sensor provides information about a service, an effector changes the properties of
a service, and a reasoner processes information to produce a monitoring result (for
example, it consumes information provided by sensors and reports whether or not an
SLA is violated). The second instance variable is the UUID variable, which uniquely
identifies the component with the monitoring features. This variable has the same
value as the service UUID. Furthermore, each component feature contains a list
of monitoring features. The example in Figure 2 illustrates the component features
of an example service. In this example, the sensor component has two monitoring
features: one for events reporting cpu-load, and another for reporting the number
of logged-users. The example also illustrates a reasoner component with two mon-
itoring features: one providing a greater-than comparison of two input parameter
numbers, and the other providing an MTTR (Mean Time To Repair) computation
output based upon request and response input events.

Basic monitoring features are used to distinguish between ‘event’ and ‘primitive’
monitoring features. There is a single parameter type for the type of basic monitor-
ing feature. In the case of primitive monitoring features, allowed types correspond
to the Java primitive types (e.g., Long, Boolean, String, etc). In the case of an event
monitoring feature, allowed types are currently request, response and computation
(as a result of a function). A basic monitoring feature with a sub-type of primitive
is used to advertise an ability to report about primitive service information (e.g.,
cpu load, logged users, available memory, etc). Sensors are the typical components
with this kind of feature. A primitive feature has two instance variables: First, a type
holds the variable type. This can be, for instance, one of the Java standard primi-
tive types. It can also be any other type defined in an SLA vocabulary. The second
instance variable is a unit, which holds the monitoring feature unit of measurement
(e.g., mt, km, kg, etc.). Event monitoring features are used to advertise an ability
to report about service interactions or service states (e.g., service operation requests
and responses, service failures, etc.). Sensors and reasoners are the typical compo-

Dynamic Creation of Monitoring Infrastructures 127

Fig. 2 Component Monitoring Features as XML Elements

nents with this kind of feature. An event basic sub-type has one instance variable:
a type. This type holds the event type as either request, response or computation.
Domain-specific event types can also be defined and used here.

Function monitoring features are used to advertise an ability to perform a compu-
tation and report its result (e.g., availability, throughput, response time). Reasoners
are the typical components with this kind of feature. The class Function has two
instance variables: the first is input, which holds the list of function input parame-
ters. The second is output, which holds the output parameters. Reasoner features are
described by a type (the term or operator performed), one or more input parameters,
and one output parameter.

3 Approach to Configuration

Given an SLA specification and a set of component monitoring features, our ap-
proach to dynamic configuration of monitoring infrastructures is based on the pro-
cess illustrated in Figure 3.

128 Howard Foster, George Spanoudakis

Fig. 3 SLA Monitoring Configuration Activities

The process starts by extracting the guaranteed states from AgreementTerms of
the SLA specification. The terms are then parsed into a formal Abstract Syntax
Tree (AST) for the expression of the states. The AST is then used as input to se-
lect each expression of each state (by traversal of the AST), and to match each
left-hand-side (lhs), operator, and right-hand-side (rhs) of the expression with ap-
propriate component monitoring features. The matching algorithms are discussed in
Section 5. Following selection, the delegate components form a Selected Compo-
nents list, which is used to generate a complete Monitoring System Configuration
(MSC) for an SLA. If no suitable monitoring configuration can be formed (i.e. all
monitoring requirements could not be matched), then an empty configuration is re-
turned for a particular agreement term. This approach can be used in two types of
situation: firstly, to configure the monitoring system when a new SLA needs to be
monitored, and secondly, to perform adjustments to an existing configuration when
requirements change or violations are detected. The main focus in this chapter is the
first of these situations: we assume a new SLA is to monitored and therefore do not
consider how this would affect the current state of monitoring.

Dynamic Creation of Monitoring Infrastructures 129

4 SLA Term Decomposition

The MM abstracts the guaranteed states (guarantees made by any of the parties in-
volved in the agreement) that certain states of affairs will hold for the service. We
abstract these states from the agreement terms and parse the terms using a grammar
based upon the Backus Normal Form (BNF) specification of the SLA specifica-
tion [14]. The grammar for the parser is currently based only upon the agreement
terms and guaranteed state expressions. A sample part of the grammar is listed in
Figure 4.

1/**
2* SLA: The Specification of agreement terms
3**/
4void SLA() : {} {
5AgreementTerm()* }
6/**
7* Agreement: AgreementTerms in SLA Model
8**/
9void AgreementTerm() : {} {

10GuaranteeTerm()((TermOperator()) GuaranteeTerm())* }
11/**
12* GuaranteeTerm: A guaranteed state expression
13**/
14void GuaranteeTerm() : {} {
15<QUOTED_STRING> (Term())(Comparator())(Term())}
16/**
17* Term: One or more TermFunctions or Identifier
18**/
19void Term() : {} {
20LOOKAHEAD(TermFunction()) TermFunction() | <STRING> | <QUOTED_STRING> }
21/**
22* Comparator: Operators in Term expression
23**/
24void Comparator() : {} {
25(<EQUALS> | <NOTEQUAL> | <LTHAN> | <GTHAN> | <LEQUAL> | <GEQUAL> |
26 <ISEQUALTO>) }

Fig. 4 Partial JavaCC Grammar for SLA Term Decomposition

The grammar is used as input to the Java Compiler Compiler (JavaCC) [16],
which generates compiler source code to accept and parse source files specified in a
defined grammar language. The resulting AST is built to represent the SLA specifi-
cation terms and expressions. Beginning with the SLA declaration (lines 4–5), one
or more AgreementTerms are parsed. Each AgreementTerm (lines 9–10) is parsed
as one or more GuaranteeTerms, separated by a comparison operator. Each Guar-
anteeTerm (lines 14–15) is then parsed as an Identifier (which holds the ID label
of the GuaranteeTerm), and a basic Term followed by a comparison operator and
then followed by another basic Term. Each basic Term (lines 19–20) is represented
by either one or more TermFunctions (similar to a normal function call syntax), a
string Identifier (representing a variable of the SLA specification. The JavaCC func-
tion LOOKAHEAD informs the parser to check whether the next symbol to parse is

130 Howard Foster, George Spanoudakis

a function or string. Finally, the Comparator operators (lines 24–26) list the accept-
able types of operators that can be used between GuaranteeTerms.

Since Term decomposition is based upon a generated parser, other SLA specifi-
cation formats may generate their own parsers and transform their SLA specification
to the AST input required by the MonitoringManager. In this way, the implemen-
tation of the configurator is generic and reusable. In addition, the generated AST
compiler can be reused by monitorability agents (which accept the monitoring sys-
tem configuration as a result of matching monitoring components). These Agents
can translate the SLA terms into their own language specification. As an example,
we have performed such a translation for the EVEREST monitoring language [15],
which is based on Event Calculus and is used to analyse expressions in use cases of
the SLA@SOI project SLA (Chapter ‘Introduction to the SLA@SOI Industrial Use
Cases’).

5 Monitoring Configuration

5.1 Monitor Selection

A main configuration algorithm MonitorConfig (illustrated in Figure 5) is responsi-
ble for selecting all the term expressions from the prepared SLA term tree (Terms
AST), obtaining a match for the expression terms with available monitoring com-
ponent features, and then building a suitable monitoring system configuration. The
algorithm begins by selecting the root of each AgreementTerm expression, which in
turn holds one or more guaranteed state expressions (GuaranteeTerms). An Agree-
mentTerm expression is predefined as a set of Boolean expressions (where all must
result in true for the AgreementTerm to be upheld). Each GuaranteeTerm has a left-
hand-side term, a right-hand-side term, and an operator. From these terms, a set of
input types is determined. Two term monitors (M1 and M2) are set to analyse the
terms, and a reasoner monitor is set to analyse the entire expression. If the left-
hand-side of the expression is itself an expression, then the second monitor (M2) is
recursively configured using the same algorithm (MonitorConfig). If this is not the
case, then the value of the right-hand-side of the expression is used as the monitor.
Furthermore, a reasoner monitor is assigned to select a monitor appropriate to the
input types, operation, and required monitor features .

The MonitorConfig algorithm uses a SelectMonitor algorithm (Figure 5) to match
the required types and operations (or term names) to the monitoring component fea-
tures. The algorithm begins by iterating the monitoring component features avail-
able and building an appropriate feature list, (FeaturedMonitors), by selecting the
monitors that match the type of term or operator. Each FeaturedMonitor is then se-
lected and checked for appropriate input types. For example, the operator < (less
than) can be provided for numeric input types. If the feature and types match, the
FeaturedMonitor is added to a list of selected monitors (SelectedMonitors). In the

Dynamic Creation of Monitoring Infrastructures 131

Function: MonitorConfig. Given an agree-
ment, select the most appropriate
monitoring components.

Input(s): 1) Terms AST: an AST of the Guar-
anteed Agreement Terms. 2) Fea-
tures: a list of service monitoring
features.

Output(s): a set of monitoring components with
configurations.

Algorithm: Given the Terms AST and a set of
monitoring features
1) select root of AST and extract ex-
pressions
2) extract lhs, rhs, operation and se-

lect input-types
3) set M1 to MonitorConfig(lhs)

4) if node.lhs is expression then
(a) set M2 to MonitorConfig(rhs)

otherwise set M2 to rhs.value
5) set RM to SelectMonitor(input-
types,operation,Features)

6) store delegate for expression

SelectMonitor. Given a set of input
types and a monitor term, select the
first monitor that matches the term or
event types required.
1) Input Types: a set of types (e.g.
Number, Event, etc.). 2) Term: a term
or operation to be monitored (e.g.
completion-time or ¡ (operator)). 3)
Features: a list of service monitoring
features.
A monitoring component offering the
types and operation/term.

Given the input types, Monitor-
ingFeatures and Term:
1) for each MonitoringFeature in
Features do

(a) select FeaturedMonitors where
type equals the Term
2) for each Monitor in FeaturedMon-
itors do

(a) for each type in input types do

(i) if Monitor has Type, then
(ia) add Monitor to Selected-

Monitors
3) select the first Monitor in Selected-
Monitors (*replaceable selection cri-
teria)
4) return SelectedMonitor

Fig. 5 Algorithms for MonitorConfig (left) and SelectMonitor (right)

current implementation of the work, we simply select the first monitor matched. It
is envisaged that an enhanced implementation will use some optimisation algorithm
(at step 3. of the SelectMonitor algorithm), which will be based on criteria specified
by the user (or indeed, specified as part of the overall SLA). This could also include
assessing use of the same provider of features to group related monitors, reduce
financial cost and optimise messaging.

5.2 System Configuration

As briefly discussed in Section 2, the MSC defines an entire configuration for mon-
itoring an SLA within the monitoring system. An example MSC is illustrated in
Figure 6, showing a reasoner component (for monitoring a guaranteed state), and a
set monitoring feature components for each part of the guaranteed state expressions.

132 Howard Foster, George Spanoudakis

The MSC contains a list of components representing sensors, effectors or reasoners
selected to support the GuaranteeTerms of agreements in an SLA.

Fig. 6 A Monitoring System Configuration

Each component in an MSC contains one or more component configurations for
each of the different components. For example, an MSC can contain a reasoner com-
ponent that has component configurations for two sensor components and one ad-
ditional reasoner component. The sensor component configuration contains a Mon-
itoringFeature (that used to advertise features during selection of the sensor compo-
nent) and one or more OutputReceiver(s). An OutputReceiver is another component
which expects the result (as an event or value) to perform its own function. A rea-
soner component configuration also specifies one or more OutputReceivers, but a
specification component replaces the MonitoringFeature component. The specifica-
tion component lists the guaranteed states required by the component for reasoning.

5.3 Configuration Deployment

Here we briefly outline configuration deployment as an aid to the reader in under-
standing how the output is leveraged in the environment. As illustrated in Figure 1,
a generated MSC is passed to a service manager, which links a service instance with
a service manageability agent. The manageability agent exposes a method to accept
a configuration and then, on behalf of the service under agreement, starts depen-
dent components to monitor the service activities and to generate any notifications
as part of that agreement. For example, each AgreementTerm has a reasoner (the

Dynamic Creation of Monitoring Infrastructures 133

sum of evaluating all guaranteed states in the SLA). Each GuaranteeTerm also has
a reasoner (to evaluate the expression of each guaranteed state). Once the service
manageability agent is initialised, each reasoner is configured with the appropri-
ate part of the MSC (e.g. for a cpu load evaluation). The results generated by the
reasoners and sensors in this configuration will be monitored by the manageability
agent and appropriately routed from the Event Bus.

6 Implementation and Validation

6.1 The MonitoringManager Packages

The approach and algorithms discussed in this chapter are supported by a number
of implementation packages. In particular the MonitoringManager component is
available as an OSGI-enabled [10] JAVA package and can also be hosted as a web-
service. In this section, we describe each of these packages with classes and their
relationships (as depicted in Figure 7).

Fig. 7 Core Implementation Packages of the MonitoringManager

The MonitoringManager module is split into a number of packages: The core
package implementation supports the MonitorConfig algorithm (as described in Sec-
tion 5) provided by a checkMonitorability method, which accepts an SLA model
(Chapter ‘The SLA Model’), and a set of monitoring features (Chapter ‘The Service
Construction Meta-Model’). In turn, the implementation package depends initially
on a parser package to support parsing of each AgreementTerm in the SLA model.
The parser package provides an AgreementTerm class containing a parse method
which accepts an AgreementTerm of the SLA and produces an expression AST (as
described in Section 4). A sub-package of the parser package is the core parser itself,
built from the compilation of a JavaCC grammar for the SLA agreements.

134 Howard Foster, George Spanoudakis

The implementation package also references the methods of a SelectionManager
class contained within the selection package. This class provides methods and an
overall framework for matching and selecting the most appropriate monitoring fea-
ture components with that of the expressions parsed previously (i.e. the SelectMon-
itor algorithm). To enable future dynamic configuration of selection algorithms, the
SelectionManager refers to an extendable ComponentSelector module, offering a
flexible selectAppropriateComponent method which may be redefined for preferred
component selection strategies. Finally, the configuration package is used by the
checkMonitorability method to configure the component selections into a required
MonitoringSystemConfiguration format (Chapter ‘The Service Construction Meta-
Model’ for format specification).

6.2 Testing and Validation

To thoroughly test the implementation scope and suitability of configurations pro-
duced, we devised an SLA coverage test based upon each of the model elements
described in the SLA@SOI SLA Model and the features available using a monitor-
ing engine. Aligned with the work on translation and monitoring of SLAs (Chap-
ter ‘Translation of SLAs into Monitoring Specifications’), we listed: each element
along with its specifications in a test SLA (SLA-ID), the events that required moni-
toring (Events), whether the model element expression in the SLA could be parsed
by the MonitoringManager (Parsed), whether a suitable configuration was produced
(MSC), whether the configuraton was accepted by a client monitoring component
(Client), and whether any violation or service request and response events were
successfully captured (Monitored). (Table 1 lists a sample of the results.) As we dis-
cussed in Section 4, the grammar for the SLA parser is currently based only upon
the AgreementTerm and GuaranteeTerm expressions. Thus future work is required
to enable guaranteed actions to be parsed and monitored. In addition, we also tested
SLA model metrics (such as units of time) and primitive types (such as BOOL,
CONST, TIME, etc.), mixing them and providing permutations for exhaustive test-
ing.

The other main tests that have been carried out related to the use cases featured in
the SLA@SOI project; The SLA specifications for both B4 (Chapter ‘The Enterprise
IT Use Case Scenario’) and B6 (Chapter ‘The eGovernment Use Case Scenario’)
have been fully covered in testing. We also expect to continue testing with other
monitoring engines, for example, the ASTRO Project’s [11] SLA monitoring tools
can be tested with infrastructure monitoring components.1s

1 The MonitoringManager implementation, EVEREST monitoring framework, and SLA@SOI test
cases are an integrated part of the SLA@SOI project platform showcase and are available from:
http://sourceforge.net/projects/sla-at-soi/

Dynamic Creation of Monitoring Infrastructures 135

Table 1 Sample Test Cases for SLA Elements, Parsing, Configuration and Monitoring

Model SLA-ID Events Parsed MSC Client Monitored

InterfaceDeclrs ID1 None Yes Yes Yes No
AgreementTerms AT1 Violation Yes Yes Yes Yes
Guaranteed Actionsa GA1 Violation No No No No
Guaranteed States GS1 Violation Yes Yes Yes Yes
VariableDeclrs VD1 Computation Yes Yes Yes Yes

Terms SLA-ID Events Parsed MSC Client Monitored

core:and GS1 Computation Yes Yes Yes Yes
core:equals GS1 Computation Yes Yes Yes Yes
core:sum GS1 Computation Yes Yes Yes Yes
core:series GS2 Computation Yes Yes Yes Yes
core:availability GS1 Request-

Response
Yes Yes Yes Yes

a The element is not currently supported

7 Related Work

Background and related work in this chapter falls within two areas: First, we con-
sider the definition and translation of SLAs, and second, the runtime monitoring of
service-based systems based upon monitoring features.

Several projects have focused on SLA definitions and provisioning in the con-
text of both web and grid services. The Adaptive Services Grid (ASG) project, for
example, has designed an architecture for establishing and monitoring SLAs in grid
environments [8]. In this architecture, the monitoring rules and parameters as well as
the architecture for SLA monitoring are statically defined and cannot be updated at
runtime. The TrustCOM project has also produced a reference implementation for
SLA establishment and monitoring [17]. This implementation, however, does not
involve the dynamic setup of monitoring infrastructures. The SLA Monitoring and
Evaluation architecture presented within the IT-Tude project [7] has several sim-
ilarities with the approach presented in this chapter, such as the need to separate
SLAs from service management. This work focuses, however, on statically binding
services and monitors, whilst the SLA@SOI work focuses on dynamically allocat-
ing monitors to SLA parts, based upon matching the exact terms that need to be
monitored and the monitoring capabilities available for different services. Further,
in the IRMOS project architecture [19], service monitors are used to gather infor-
mation about QoS levels. The SLA@SOI approach splits these monitors into three
types, providing greater flexibility and catering for changing services (with effec-
tors) as the need arises. With regards to SLA translation, in [18, 12], the authors
describe decomposing an SLA of resource requirements (with the purpose of build-
ing a system that represents the SLA required). This approach is focused more on

136 Howard Foster, George Spanoudakis

building a system rather than monitoring existing services; however, it also employs
techniques to optimise and arrange efficient configurations based upon the SLA ex-
pressions stated. In [13], the authors consider evaluating expressions for conditions
of properties of services (e.g. response time), however, their SLA format appears to
offer only single assertions rather than complex expressions.

Work on runtime monitoring of service-based systems has resulted in the de-
velopment of different types of monitors. These monitors realise either intrusive
or event-based monitoring. Intrusive monitoring relies on weaving the execution
of monitoring activities at runtime using code that realises the service itself or the
orchestration process. In the case of composite services, this can be done directly
in a process engine, by interleaving monitoring code with the process executable
code as in [2, 3, 1, 9]. The assessment of monitoring service properties required by
SLAs cannot be easily achieved through this paradigm, since the properties to be
monitored and the actions required for monitoring must be interleaved with service
execution code, and therefore known a priori by the system designer.

The work described in this chapter extends existing approaches to dynamic gen-
eration of monitoring system configurations [4, 5, 6]. Specifically, we consider in-
dividual agreement terms within an SLA by decomposition of complex guarantee
expressions, utilise a wider spectrum of monitoring components (e.g. sensors and
effectors), and support complex monitoring configurations that can engage different
monitoring components for checking the same SLA term if necessary.

8 Conclusions and Future Work

In this chapter we have described an approach to advanced configuration of service
systems, in particular, systems in which an SLA agreement has been established
and concerns services that require monitoring. The work aims to provide a generic
module, applicable not only to the architecture illustrated, but also to other archi-
tectures (although still based upon SLAs and monitoring component features). This
work will be extended to cover further elements of the SLA specification (such as
guaranteed actions, which are not presently considered), and also to include prefer-
ential selection of monitoring components. Preferential selection of components is
useful where there are multiple monitoring components offered for the same term.
Preferences could be based upon monitoring cost (either in terms of computing re-
sources or financially) or non-functional requirements. The existing implementation
is already part of the wider SLA@SOI project monitoring platform, providing inte-
gration and validation testing, and we are keen to seek other environments in which
to test it.

Dynamic Creation of Monitoring Infrastructures 137

References

[1] Baresi, L., Bianculli, D., Ghezzi, C.: Validation of Web Service Compositions.
IET Software 1(6), 219–232 (2007)

[2] Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes.
In: International Conference on Service-Oriented Computing (ICSOC) (2005)

[3] Bianculli, D., Ghezzi, C.: Monitoring Conversational Web Services. In:
2nd International Workshop on Service Oriented Software Engineering (IW-
SOSWE) (2007)

[4] Comuzzi, M., Spanoudakis, G.: Dynamic Set-up of Monitoring Infrastructures
for Service-Based Systems. In: 25th Annual ACM Symposium on Applied
Computing, Track on Service Oriented Architectures and Programming (SAC
2010). ACM, Sierre, Switzerland (2010)

[5] Foster, H., Spanoudakis, G.: Model-Driven Service Configuration with For-
mal SLA Decomposition and Selection. In: The 4th International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA). Crete, Greece (2010)

[6] Foster, H., Spanoudakis, G.: Advanced Service Monitoring Configurations
with SLA Decomposition and Selection. In: 26th Annual ACM Symposium
on Applied Computing (SAC) Track on Service Oriented Architectures and
Programming (SOAP). ACM, TaiChung, Taiwan (2011)

[7] IT-Tude: SLA Monitoring and Evaluation Technology Solution. Available
from: http://www.it-tude.com/?id=gridipedia (2009)

[8] Jank, K.: Reference Architecture: Adaptive Services Grid Deliverable D6.V-1.
Available from: http://asg-platform.org/twiki/pub/Public/ProjectInformation
(2005)

[9] Lazovik, A., Aiello, M., Papazoglou, M.: Planning and Monitoring the Ex-
ecution of Web Service Requests. International Journal of Digital Libraries
(2006)

[10] OSGi Alliance: OSGi Service Platform Core Specification Version 4.2. Avail-
able from: http://www.osgi.org/Download/Release4V42 (2011)

[11] Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and
Monitoring Web Service Composition. In: AIMSA, pp. 106–115 (2004)

[12] Richter, J., Baruwal, C., Kowalczyk, R., Quoc Vo, B., Adeel Talib, M., Col-
man, A.: Utility Decomposition and Surplus Redistribution in Composite SLA
Negotiation. In: IEEE International Conference on Services Computing (2010)

[13] Sahai, A., Machiraju, V., Sayal, M., Jin, L.J., Casati, F.: Automated SLA Mon-
itoring for Web Services. In: IEEE/IFIP DSOM, pp. 28–41. Springer-Verlag
(2002)

[14] SLA@SOI: Deliverable D.A1a: Framework Architecture. Available from:
http://sla-at-soi.eu/publications/deliverables (2009)

[15] Spanoudakis, G., Kloukinas, C., Mahbub, K.: The SERENITY Runtime Mon-
itoring Framework. In: Security and Dependability for Ambient Intelli-
gence,Information Security Series. Springer (2009)

138 Howard Foster, George Spanoudakis

[16] Sun Microsystems: The Java Compiler Compiler (JavaCC). Available from:
https://javacc.dev.java.net/ (1999)

[17] TrustCOM: Deliverable 64: Final TrustCoM Reference Implementation
and Associated Tools and User Manual. Available from: http://www.eu-
trustcom.com/ (2007)

[18] Yuan, C., Iyer, S., Liu, X., Milojicic, D., Sahai, A.: SLA Decomposition:
Translating Service Level Objectives to System Level Thresholds. In: Fourth
International Conference on Autonomic Computing (ICAC) (2007)

[19] Menychtas, A., Gogouvitis, S., Katsaros, G., Konstanteli, K., Kousiouris,
G., Kyriazis, D., Oliveros, E., Umanesan, G., Malcolm, M., Oberle, K.,
Voith, T., Boniface, M., Bassem, M., Berger, S.: Deliverable D3.1.3:
Updated version of IRMOS Overall Architecture. Available from:
http://www.irmosproject.eu/Deliverables/ (2010)

Runtime Prediction

Davide Lorenzoli and George Spanoudakis

Abstract Monitoring the preservation of quality of service (QoS) properties during
the operation of service-based systems at runtime is an important verification mea-
sure for determining whether current service usage is compliant with agreed SLAs.
Monitoring, however, does not always provide sufficient scope for taking control
actions against violations, as it only detects violations after they occur.

This chapter describes a model-based prediction framework for detecting po-
tential violations of QoS properties before they occur to enable the undertaking
of control actions that could prevent the violations. EVEREST+ receives predic-
tion specifications expressed in Event Calculus and automatically identifies relevant
monitoring data that should be collected at runtime to infer QoS property prediction
models. It then analyses runtime monitoring data to infer statistical prediction mod-
els for the relevant properties, and uses the models to detect potential violations of
QoS properties and the probability of such violations.

1 Introduction

Monitoring the preservation of quality of service (QoS) properties during the oper-
ation of service-based systems at runtime is an important verification measure for
determining whether current usage and behaviour of the services deployed by the
system is compliant with Service Level Agreements (SLAs) set for these services.
Monitoring of SLA-specified QoS properties has received significant attention in
the literature, and several approaches and monitoring systems have been developed
to support it: for example, [10], [8], [1], and [5]. Most of these approaches and sys-
tems, however, can only support the detection of a QoS property violation once it
has occurred. Thus, they do not provide sufficient scope for taking control actions

Davide Lorenzoli, George Spanoudakis
Department of Computing, City University London, Northampton Square, EC1V 0HB, London.
e-mail: {davide.lorenzoli.1,gespan}@soi.city.ac.uk

DOI 10.1007/978-1-4614-1614-2_9, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 139

140 Davide Lorenzoli, George Spanoudakis

that could prevent violations, or that could warn relevant parties that violations are
likely to occur.

This chapter describes EVEREST+, a new prediction framework for predicting
potential violations of QoS properties in SLAs. EVEREST+ addresses three limita-
tions that cause existing techniques to fall short of providing adequate support for
runtime prediction of SLA violations: generality, integration, and focus.

Generality. Existing techniques tend to focus on the prediction of specific types
of properties, without providing a more generic framework for building predictors
that can cover a wide or even an entire spectrum of service properties that can be
part of an SLA. EVEREST+ has been designed to be an extensible prediction frame-
work. Users can implement their own prediction algorithms and plug them into the
framework to extend its prediction capabilities.

Integration. Existing techniques do not allow for integration with environments
for monitoring SLAs for service-based systems. EVEREST+, however, integrates
EVEREST into its design. EVEREST currently allows properties to be monitored
by simply writing a monitoring specification; no code needs to be written. How-
ever, EVEREST+ is not chained to EVEREST; it allows users to develop their own
modules to interface with their own monitoring frameworks.

Focus. Existing techniques tend to focus on system infrastructure properties (e.g.,
network and server properties) rather than service-level application-based properties
(e.g., service throughput, mean-time-to-failure). EVEREST+, however, can moni-
tor properties at different levels: for example, infrastructure and application levels.
Moreover, thanks to its specification-driven monitoring, it allows for a user-defined
monitoring specification to extend its default set of monitoring capabilities.

The EVEREST+ integrated monitoring-prediction framework addresses a lack
of integration between monitoring and prediction systems, and the tendency to
provide specific prediction algorithms instead of a generic framework for building
predictors. The EVEREST+ framework provides a coherent approach to data
collection and analysis, both for monitoring and prediction purposes. Moreover,
it supports the development of algorithms designed for use in monitoring and
prediction, which can be used to extend its framework abilities. Also, it defines a
single point of access for configuring the integrated framework.

Below we examine EVEREST+ in more detail: Section 2 compares EVEREST+
with existing work; Section 3 introduces an example scenario; Section ?? presents
EVEREST, the monitoring framework used by EVEREST+; Section 5 describes
the prediction specification, a document used to request predictions in EVEREST+;
Section 6 illustrates the EVEREST+ architecture and gives insights into its most
significant components; and Section 7 summarises the EVEREST+ peculiarities and
gives a roadmap for future developments.

Runtime Prediction 141

2 Related Work

Several different approaches to QoS monitoring have been proposed in the literature
(e.g. [10], [8], [1]) and recommendations about QoS metrics measurement for web
services have been described in [12].

Michlmayr et al. [8] present an event-based QoS monitoring and SLA viola-
tion detection framework. They developed client- and service-side monitoring and
integrated these into VRESCo [9], a runtime environment for service-oriented com-
puting. At the moment, VRESCo supports a limited list of QoS properties. Our ap-
proach, like that of [8], can monitor both client- and server-side, but it does not have
a fixed list of supported QoS properties. Indeed, users can specify new properties to
be monitored as EC-Assertions.

Sahai et al. [10] present an automated and distributed SLA monitoring engine.
They use both client- and service-side collected information. There is not a fixed set
of monitorable properties, but to add a new property, a new SLA evaluator compo-
nent must be developed and deployed into the framework. Our approach does not
require any new components to be developed or deployed in this case. All that is
required is to write a new AC-Assertion specification.

De Luc et al. [1] present a middleware component for monitoring services and
service delivery and providing coherent monitoring data to businesses using them
in runtime decision making settings. This work focuses on data collection and how
to efficiently deliver that data to other components. Our approach also detects when
monitored data violates QoS requirements.

Leitner et al. [5] present an approach for predicting SLA violations at runtime.
This prediction approach requires the definition at design-time of checkpoints for
each property being predicted. Moreover, it does not support the prediction of ag-
gregate properties. Our approach does not require the definition of any checkpoints;
in fact, a prediction can be requested at any time. Our approach also allows predic-
tion of aggregate properties.

All the approaches described above focus on monitoring or prediction only. How-
ever, our approach integrates monitoring and prediction within the same coherent
framework. Moreover, we provide a more generic framework for building predic-
tors that can cover a wide or even an entire spectrum of service properties able to be
included in an SLA.

3 Example Scenario

The scenario described in this section, and shown in Figure 1, has three actors: a
service provider Srv, a set of users contractually engaged to Srv by agreed SLAs,
and EVEREST+, which users utilise to predict SLA violations.

The service provider Srv makes available several services (e.g., Srv.s1 and
Srv.s2), and defines service unavailability as follows: a service is unavailable when
the time elapsed between a service call and its expected response is greater than a

142 Davide Lorenzoli, George Spanoudakis

Fig. 1 Scenario in which users request EVEREST+ to predict violations of SLAs they agreed to
with their service provider Srv

threshold d. The meaning of d should not be confused with the concept of service
response time (RT), which might be defined between the parties in agreed SLAs.
To guarantee correct service utilisation, between RT and d values should hold the
relation d � RT , where RT is the service’s average response time.

Users are interested in knowing whether their SLAs will be violated; both users
and Srv can violate SLAs. In this scenario, they are concerned about violations of
two QoS terms: arrival rate (AR) and mean time to repair (MTTR). In our example,
arrival rate measures the mean number of new calling units arriving at the service
provider Srv per unit time, whilst mean time to repair measures the average time a
service operation on Srv takes to repair after a failure. Predicting AR allows users
to tune their service usage such that it will not exceed agreed thresholds. Also,
predicting Srv MTTR allows users to plan their Srv service usage after considering
predicted Srv service availability. Users agreed with the service provider Srv on
the following constraints: AR ≤ 20r/s and MT T R ≤ 40s, where r is the requests
and s is the seconds. Prediction requests are made by providing EVEREST+ with
prediction specifications. A prediction specification is a document containing the
QoS term constraints being predicted, e.g., MT T R ≤ 40s, and settings to customise
the prediction task, e.g., when to perform the prediction, the time the prediction
refers to, QoS predictor settings, and monitoring settings. In the example, the users
provide EVEREST+ with prediction specifications for predicting AR and MTTR.

EVEREST+ is invoked by users wanting to receive predictions about SLA vio-
lations; more specifically, predictions about violations of guaranteed states. A guar-
anteed state is the SLA part in which QoS terms and their constraints are defined.
EVEREST+ exposes monitoring and prediction capabilities: that is, those states that
can be monitored and predicted. Its monitoring capabilities are given by its set of
monitoring specifications, whilst its prediction capabilities are given by its set of
QoS predictors. A monitoring specification is a document interpreted by the EVER-
EST monitoring framework, part of EVEREST+, containing directives about how
to monitor specific properties, i.e., how to set up EVEREST. In the example, EVER-

Runtime Prediction 143

EST+ already has monitoring specifications for monitoring arrival rate and time to
fail (TTF). A QoS predictor is an EVEREST+ software component implementing
a prediction algorithm. In the example, EVEREST+ already has the QoS predictor
for predicting MTTR violations.

At runtime, once all SLAs between users and services have been established
and EVEREST+ has been provided with prediction specifications, users begin to
receive violation predictions. EVEREST monitors services provided by Srv by col-
lecting events sent by Srv. EVEREST processes these events to compute the values
of the QoS specified in its monitoring specification. In the example, the monitoring
event calculates QoS values about MTTR and AR and stores these in its historical
database. EVEREST+ computes statistical models by analysing the QoS historical
database for the QoS terms specified in the prediction specification. In the example,
it computes models for AR and MTTR. On top of these activities, QoS predictors
execute their algorithms and compute predictions.

Generally, prediction algorithms rely on historical data and/or models represent-
ing properties about historical data, e.g., statistical models obtained by analysing
historical data. EVEREST+ provides QoS predictors with both raw historical data
and inferred statistical models. Data required by QoS predictors might change with
respect to the algorithms they implement. In the example, Figure 1 shows a lock on
MTTR QoS predictor; this means that it requires some data to operate. In fact, it
requires two statistical models: the probability distribution function of MTTR and
TTF historical QoS values. When a QoS predictor depends on some data to operate,
there can be two possibilities:

1. EVEREST has the monitoring specifications for collecting the needed data, and
therefore models can be derived, or

2. EVEREST does not have the needed monitoring configurations, and EVEREST+
cannot supply the QoS predictor with the needed data.

In the example, the MTTR QoS predictor requires MTTR and TTF models, but
EVEREST+ only has monitoring specifications for computing AR and TTF QoS
values. In this case, together with a prediction specification, EVEREST+ can be
provided with the monitoring specification for computing the required QoS terms,
e.g., the monitoring specification for computing MTTR values. This mechanism,
together with the possibility of extending the default set of QoS predictors with
user-developed ones, allows users to predict their own defined QoS terms.

4 Background: The EVEREST Monitoring Framework

EVEREST [11] is a generic monitoring engine for runtime checking of violations
of software system properties expressed in an Event Calculus (EC) [3]-based lan-
guage called EC-Assertion. EVEREST has been used to monitor different types
of properties of software systems, including functional security and dependability
properties [11]. It has also been applied to monitoring of SLA guarantee terms for

144 Davide Lorenzoli, George Spanoudakis

service-based systems [7]. Whilst a full description of EVEREST is beyond the
scope of this paper, in this section we provide an overview of the language it uses
to express monitorable SLA guarantee terms to enable the reader to understand how
the prediction specifications used by the prediction framework relate to specifica-
tions of these terms.

More specifically, the SLA terms that can be checked by EVEREST are ex-
pressed as EC-Assertion monitoring rules and/or assumptions of the form: body ⇒
head. The semantics of a monitoring rule of this form is that when the body of the
rule evaluates to True, its head must also evaluate to True. The semantics of as-
sumption of this form is that when the body of the rule evaluates to True, its head is
deduced by EVEREST. The body and head of EC-Assertion rules and assumptions
are defined in terms of standard EC predicates:

• Happens(e, t,ℜ(lb,ub)) - This predicate denotes that an instantaneous event e
occurs at some time t within the time range ℜ(lb,ub), where lb ≤ ub are ℜ
lower and upper bounds.

• HoldsAt(f , t) - This predicate denotes that a state (a.k.a. fluent) f holds at time
t.

• Initiates(e, f , t) and Terminates(e, f , t) - These predicates denote the initiation
and termination of a fluent f by an event e at time t respectively, and

• Initially(f) which denotes that a fluent f holds at the start of the operation of a
system.

An example of an SLA term specified in EC-Assertion is shown in Figure 2. The
formulas in the table check whether the mean time to repair (MTTR) of a service
Srv (i.e. the mean length of the periods of time over which the service does not

respond to operation calls and is therefore unavailable) is always below a given
threshold K; i.e., MT T R ≤ K.

More specifically, rule (1) in Figure 2 checks for MT T R violations when a call
of an operation of the service Srv is served after a period of unavailability. The first
two conditions in the rule check whether a served operation call has occurred. The
latter two conditions check whether this happened at a time when the service was
unavailable.

The first assumption (2) in Figure 2 initiates the fluent
Unavailable(PeriodNumber
+1, Srv, t1) to represent a period of service unavailability. This fluent is initi-
ated when a service call occurs (i.e., the call represented by the event id1),
and no response to this call is produced within d time units, and at the time
of the call, the service was not already unavailable (i.e., no fluent of the form
Unavailable(PeriodNum, Srv, STime) already holds). The number of the
new unavailability period is determined by increasing the variable PeriodNumber
whose current value is extracted from the fluent MT T R(Srv, PeriodNum, MT T R)
which keeps a record of the number of the past periods of unavailability of the
service (i.e., PeriodNumber) and the mean length of time during which the
service remained unavailable in each of these periods (i.e., the value of the
variable MT T R). As a new period of unavailability is initiated for the service,

Runtime Prediction 145

Rule R1:

HHHaaappppppeeennnsss(e(id1, Snd, Srv,Call(O), Srv), t1, [t1, t1]) ∧
HHHaaappppppeeennnsss(e(id2, Srv, Snd,Response(O), Srv), t2, [t1, t1 +d]) ∧

∃ PeriodNumber, STime,MT T R : HHHooollldddsssAAAttt(Unavailable(PeriodNumber, Srv, STime), t1) ∧
HHHooollldddsssAAAttt(MT T R(Srv, PeriodNumber, MT T R), t1) ⇒

MT T R < K

(1)

Assumption R1.A1:

HHHaaappppppeeennnsss(e(id1, Snd, Srv,Call(O), Srv), t1, [t1, t1]) ∧
¬HHHaaappppppeeennnsss(e(id2, Srv, Snd,Response(O), Srv), t2, [t1, t1 +d]) ∧

¬∃ PeriodNumber, STime,MT T R : HHHooollldddsssAAAttt(Unavailable(PeriodNumber, Srv, STime), t1) ∧
∃PeriodNumber, MT T R : HHHooollldddsssAAAttt(MT T R(Srv,P eriodNumber,MT T R), t1) ⇒

IIInnniiitttiiiaaattteeesss(e(id1, Snd, Srv,Call(O), Srv),Unavailable(PeriodNumber+1, Srv, STime), t1) ∧
TTT eeerrrmmmiiinnnaaattteeesss(e(id1, Snd, Srv,Call(O), Srv),MT T R(Srv, PeriodNumber, MT T R), t1) ∧

IIInnniiitttiiiaaattteeesss(e(id1, Snd, Srv,Call(O), Srv),MT T R(Srv, PeriodNumber+1, MT T R), t1)

(2)

Assumption R1:A2

HHHaaappppppeeennnsss(e(id1, Snd, Srv,Call(O), Srv), t1, [t1, t1]) ∧
HHHaaappppppeeennnsss(e(id2, Srv, Snd,Response(O), Srv), t2, [t1, t1 +d]) ∧

∃ PeriodNumber, STime : HHHooollldddsssAAAttt(Unavailable(PeriodNumber, Srv, STime), t1) ⇒
TTT eeerrrmmmiiinnnaaattteeesss(e(id1, Snd, Srv,Call(O), Srv),Unavailable(PeriodNumber, Srv, STime), t1)

(3)

Assumption R1:A3

HHHaaappppppeeennnsss(e(id1, Snd, Srv,Call(O), Srv), t1, [t1, t1]) ∧
HHHaaappppppeeennnsss(e(id2, Srv, Snd,Response(O), Srv), t2, [t1, t1 +d]) ∧

∃ PeriodNumber, STime : HHHooollldddsssAAAttt(Unavailable(PeriodNumber, Srv, STime), t1) ∧
∃ PeriodNumber, MT T R : HHHooollldddsssAAAttt(MT T R(Srv, PeriodNumber, MT T R), t2) ⇒

TTT eeerrrmmmiiinnnaaattteeesss(e(id1, Snd, Srv,Call(O), Srv),MT T R(Srv, PeriodNumber, MT T R), t2) ∧
IIInnniiitttiiiaaattteeesss(e(id1, Snd, Srv,Call(O), Srv),MT T R(Srv, PeriodNumber,MT T Rnew), t2)

where

MT T Rnew =
MT T R(PeriodNumber−1)+(t1 − STime)

PeriodNumber
(4)

Assumption R1:A4

HHHaaappppppeeennnsss(e(id1, Snd, Srv,Call(O), Srv), t1, [t1, t1]) ∧
¬HHHaaappppppeeennnsss(e(id1, Snd, Srv,Response(O), Srv), t1, [t1, t1]) ∧

¬∃ PeriodNumber1, STime : HHHooollldddsssAAAttt(Unavailable(PeriodNumber1, Srv, STime), t1) ∧
∃ PeriodNumber2, T T F lT F : HHHooollldddsssAAAttt(T T F(PeriodNumber2, Srv, T T F, lFT), t1) ⇒

TTT eeerrrmmmiiinnnaaattteeesss(e(id1, Snd, Srv,Call(O), Srv),T T F(PeriodNumber2, Srv, T T F, lT F), t1) ∧
IIInnniiitttiiiaaattteeesss(e(id1, Snd, Srv,Call(O), Srv),T T F(PeriodNumber2+1, Srv, t1 − lT F, t1), t1)

(5)

Fig. 2 EC formula for monitoring MTTR. Please note, MT T Rnew is just a placeholder created for
readability purposes. EC requires MT T Rnew formula to be written in-line in the fluent declaration.

146 Davide Lorenzoli, George Spanoudakis

the assumption also reinitiates the fluent MT T R(Srv, PeriodNumber, MT T R) to
increase the number of unavailable periods PeriodNumber.

The second assumption (3) in Figure 2 terminates the fluent that rep-
resents a currently active period of service unavailability (i.e., the fluent
Unavailable(PeriodNum, Srv, STime)) when a served service call occurs (i.e.,
the call represented by the event id1), and at the time of this call, the ser-
vice is not unavailable (i.e., a fluent of the form Unavailable(PeriodNum, Srv,
STime) holds).

The third assumption (4) in Figure 2 updates the fluent that represents the
mean length of consecutive periods of service unavailability (i.e., the value stored
in the variable MT T R of the fluent MT T R(Srv, PeriodNumber, MT T R)) when
a served service call occurs (i.e., the call represented by the event id1), and
at the time of this call the service is not unavailable (i.e., a fluent of the form
Unavailable(PeriodNum, Srv, STime) holds). The new mean value is computed
as the mean of the mean of the previous PeriodNumber − 1 observations that
is stored as the current value of MT T R and the new period of unavailability
(t1 − STime).

5 Prediction Specifications

A prediction specification is a user-defined document that tells the prediction frame-
work what to predict. To express the prediction specification we use the high-level
SLA specification language SLA* (read SLA star) [2], and we extended it to support
the specification of prediction requirements.

An example of a prediction specification is given in Listing 1. It specifies i) the
constraint that holds for the QoS specified in the guaranteed state whose violation
will be the subject of prediction and ii) the window of the prediction, i.e., the time
period in the future that the prediction should be concerned with. In the scenario,
the guaranteed state value is MT T R < 40 and the prediction window is set to ten
minutes. Thus, EVEREST+ will compute the probability of observing an MTTR
value of greater than 40 seconds in ten minutes time.

Besides the agreement term element, which is inherited from [2] and specifies
the QoS terms to be guaranteed by an SLA, a prediction specification also includes
the following elements: predictor con f iguration, and qos speci f ications.

5.1 Predictor Configuration

EVEREST+ provides mechanisms for extending its default set of QoS predictors
with used-developed predictors. For this reason, the framework does not know a pri-
ori which QoS predictions might be available or their configurations. A prediction
configuration provides a general way for configuring QoS predictor components.

Runtime Prediction 147

1 p r e d i c t i o n s p e c i f i c a t i o n {
2 s e r v i c e . i d = Srv
3 o p e r a t i o n . i d = Ping
4 p r e d i c t i o n . window . v a l u e = 10
5 p r e d i c t i o n . window . u n i t = minu te
6 agreement term {
7 g u a r a n t e e d s t a t e {
8 e x p r e s s i o n . qos = MTTR
9 e x p r e s s i o n . o p e r a t o r = l e s s t h a n

10 e x p r e s s i o n . v a l u e = 40
11 e x p r e s s i o n . u n i t = second
12 }
13 }
14 p r e d i c t o r c o n f i g u r a t i o n {
15 p r e d i c t o r . i d = MTTR CITY
16 p r e d i c t i o n p a r a m e t e r s {
17 property {
18 name = ”EVEREST+ . model . d i s t r i b u t i o n ”
19 v a l u e = ”MTTR”
20 }
21 property {
22 name = ”EVEREST+ . model . d i s t r i b u t i o n ”
23 v a l u e = ”TTF”
24 }
25 }
26 }
27 q o s s p e c i f i c a t i o n {
28 s p e c i f i c a t i o n . name = MTTR
29 s p e c i f i c a t i o n . v a l u e = <E C a s s e r t i o n f o r m u l a>
30 }
31 }

Listing 1 Prediction specification example

A predictor configuration has a mandatory field predictor.id, indicating which
QoS predictor to use when predicting violations about the guaranteed state in the
guaranteed state element. For example, the predictor configuration in Listing 1
specifies use of the MT T R CITY QoS predictor.

The MT T R CITY QoS predictor depends on MTTR and TF distribution models
to function. QoS predictor dependencies are declared in the prediction parameter
element as key/value properties.

5.2 QoS Specification

In this scenario, the MT T R CITY QoS predictor depends on MTTR and TTF distri-
bution models. Since EVEREST does not know how to monitor MTTR term values,
it does not have a monitoring specification for computing these same, and thus ad-
ditional monitoring specifications can be included in a prediction specification by
using the qos speci f ication element.

For instance, the prediction specification in Listing 1 includes a QoS specifi-
cation named MT T R whose value consists of an EC formula for monitoring the

148 Davide Lorenzoli, George Spanoudakis

MTTR QoS term. The actual EC formula, omitted from the specification, is shown
in Figure 2.

The qos speci f ication element not only contains dependency but is also used
to declare any configuration properties required by a QoS predictor. There is a set
of reserved key names that have special meaning. All key names beginning with
EV EREST+ are used by the framework for configuration purpose, e.g., the key-
pair EV EREST + .model.distribution, MT T R instructs the framework to provide a
QoS predictor with the best-fit distribution computed over past MTTR values.

6 Architecture Of EVEREST+

EVEREST+ has been designed with the general goal of providing a framework for
developing QoS predictors quickly and easily by focusing only on prediction algo-
rithm implementations without the need for concern about collection or retrieval of
historical data. The architecture of EVEREST+, shown in Figure 3, includes two
main components: (1) the EVEREST monitoring framework, and (2) the new pre-
diction framework.

Prediction specification

- Agreement term
- Prediction parameters
- Predictor configuration
- QoS specification

Prediction Framework EVEREST

read write communication

EVEREST+

Fig. 3 Everest+ main components and their interactions

As discussed earlier, the EVEREST monitoring framework checks services at
runtime to determine whether they behave according to SLA QoS terms set for them.
EVEREST checks QoS terms based on events intercepted from services by internal
or external event captors. Whilst monitoring QoS terms, EVEREST stores QoS-
related information, including computed QoS term values, instances of QoS term
violations and satisfactions, and the values of any other state variables (fluents) that
have been taken into account in checking QoS terms (Section 4). This information
is available through an API that allows its retrieval from the internal EVEREST
monitoring database (see QoS store in Figure 3).

Runtime Prediction 149

The prediction framework (PF) fits statistical distribution functions to different
types of historical QoS data generated by EVEREST, selects the distribution func-
tions that have the best fit with the data, and makes these functions and the raw
QoS data available to different QoS predictors deployed in EVEREST+ as plug-ins.
The prediction framework has three main components: the model manager, QoS
predictor, and prediction manager. These components are described below.

6.1 Prediction Manager

The prediction manager component coordinates and supervises prediction tasks by
managing prediction specifications, triggering components, and reporting prediction
results. The operations of the prediction manager are driven by prediction specifica-
tions.

The prediction manager analyses information contained in prediction specifica-
tions and dispatches it to the relevant components. Information on the relationships
between prediction specification parts and the components they are dispatched to is
summarised in Table 6.1.

QoS Predictor Model Manager Mon. Spec. Generator

agreement term X
prediction parameters X X

predictor configuration X
qos specifications X

Table 1 Prediction specification elements and the components they are dispatched to

In this scenario, the prediction manager parses the prediction specification
in Listing 1. It dispatches the MTTR monitoring specification contained in the
qos speci f ications to EVEREST via the monitoring specification generator. Also,
it instructs the monitoring specification generator to create two monitoring specifi-
cation instances for monitoring Srv MTTR and TTF. The prediction manager also
triggers the model manager by passing it the list of models requiring computation:
the MTTR and TTF statistical distribution functions. Finally, it creates an instance
of the chosen QoS predictor.

Once the above components are configured, QoS predictors begin producing pre-
diction results. The prediction manager stores prediction results into the prediction
database. It is the prediction manager’s responsibility to fetch and report these re-
sults as required.

150 Davide Lorenzoli, George Spanoudakis

6.2 Monitoring Specification Generator

The monitoring specification generator is the framework component responsible for
creating the monitoring specifications used to set up the monitoring framework.
EVEREST+’s default monitoring specification generator creates monitoring specifi-
cations expressed in EC-Assertion: the language used by the EVEREST monitoring
framework.

In the scenario, the monitoring specification generator receives an input—the el-
ement agreement term of the prediction specification in Listing 1—and creates an
instance of the monitoring specification in Figure 2. The MTTR monitoring speci-
fication variables, which are EC-Assertion formula parameters prefixed by the un-
derscore symbol, are replaced with actual values from the agreement term element.
For instance, the first predicate in rule (1) becomes:

HHHaaappppppeeennnsss(e(Id1,Srv,Srv,Call(Ping),Srv), t1, [t1, t1]) (6)

The predicate (6) instructs EVEREST to listen for events from Srv about the Ping
operation invocations. Since the event timestamp t1 has not been specified, as well
as the event time range [t1, t1], EVEREST will accept events occurring anytime.

6.3 Model Manager

The model manager is the framework component responsible for computing the data
models that EVEREST+ makes available to QoS predictors. By default, the model
manager fits statistical distribution functions to different types of historical QoS
data generated by EVEREST, selects the distribution functions that have the best
fit with the data, and makes these functions available to QoS predictors. For each
data set, the fit suitability of over 44 different distribution functions is measured
using the non-parametric Kolmogorov-Smirnov (K-S) goodness-of-fit test, and the
probability distribution with the smallest goodness-of-fit (GoF) value is selected.

In the scenario, the model manager fits statistical distribution functions for
MTTR and TTF historical values. These models are made available to QoS pre-
dictors as instances of classes implementing the Distribution interface. The model
manager uses SSJ [4], a framework for stochastic simulation in Java, to fit up to 44
continuous distributions at runtime. Each distribution function implementation pro-
vides methods for computing several statistical measurements: for example, density
function and cumulative distribution function.

Runtime Prediction 151

6.4 QoS Predictor

The QoS predictor is the framework component that implements a prediction al-
gorithm; it is triggered by the prediction manager once all other components have
been configured. EVEREST+ has its own default set of QoS predictors for predict-
ing MTTR, mean time to failure (MTTF), and other QoS terms. For information
about the implemented prediction algorithms, see [6].

EVEREST+ allows users to implement their own QoS predictors so as to extend
EVEREST+’s prediction capabilities. To implement a QoS predictor, it is necessary
to extend the QoSPredictor class; in this way, the new QoS predictor inherits func-
tionalities allowing it to access historical data as well as to automatically access
runtime computed models.

7 Conclusion

EVEREST+ is a framework for detecting potential violations of QoS properties.
The key properties of the proposed approach are generality and extensibility. EVER-
EST+ is general because it does not support only a limited set of QoS values, and it
is extensible because the definition of which data to collect and how to analyse this
data can be specified using models (QoS specifications) and pluggable components
(QoS predictors).

To proof the validity of our approach, we are designing prediction models for
predicting MTTR and MTTF QoS terms values, to be implemented in QoS predic-
tors.

We are also planning to extend the set of built-in QoS predictors to include
generic MT* predictors (i.e., predictors able to predict generic mean-time-related
properties); for example, the mean time to completion of an operation.

References

[1] Duc, B.L., Châtel, P., Rivierre, N., Malenfant, J., Collet, P., Truck, I.: Non-
functional data collection for adaptive business processes and decision making.
In: Proceedings of the 4th International Workshop on Middleware for Service
Oriented Computing, MWSOC ’09, pp. 7–12. ACM, New York, NY, USA
(2009)

[2] Kearney, K., Torelli, F., Kotsokalis, C.: SLA*: An abstract syntax for service
level agreements (2010). Developed by the the FP7 EU project SLA@SOI. To
be published

[3] Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput.
4(1), 67–95 (1986)

152 Davide Lorenzoli, George Spanoudakis

[4] L’Ecuyer, P., Meliani, L., Vaucher, J.: Ssj: a framework for stochastic simula-
tion in java. Winter Simulation Conference 1, 234–242 (2002)

[5] Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann,
F.: Runtime prediction of service level agreement violations for composite ser-
vices. In: A. Dan, F. Gittler, F. Toumani (eds.) Service-Oriented Computing
– Revised Selected Papers of ICSOC/ServiceWave 2009 Workshops, Stock-
holm, Sweden, November 23-27, 2009, Lecture Notes in Computer Science,
vol. 6275, pp. 176–186. Springer, Berlin / Heidelberg (2010)

[6] Lorenzoli, D., Spanoudakis, G.: EVEREST+: run-time sla violations predic-
tion. In: Proceedings of the 5th International Workshop on Middleware for
Service Oriented Computing, MW4SOC, pp. 13–18. ACM, New York, NY,
USA (2010)

[7] Mahbub, K., Spanoudakis, G.: Monitoring ws-agreements: An event calculus
based approach. In: In Test and Analysis of Web Services, (eds) Baresi L. &
di Nitto E, pp. 265–306. Springer Verlang (2007)

[8] Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive qos
monitoring of web services and event-based sla violation detection. In: Pro-
ceedings of the 4th International Workshop on Middleware for Service Ori-
ented Computing, MWSOC ’09, pp. 1–6. ACM, New York, NY, USA (2009)

[9] Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-end support for
qos-aware service selection, binding, and mediation in vresco. IEEE Transac-
tions on Services Computing 3, 193–205 (2010)

[10] Salfner, F., Schieschke, M., Malek, M.: Predicting failures of computer sys-
tems: a case study for a telecommunication system. In: Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006. 20th International, p. 8 (2006)

[11] Theocharis Tsigkritis George Spanoudakis, C.K., Lorenzoli, D.: Diagnosis and
Threat Detection Capabilities of the SERENITY Monitoring Framework, Ad-
vances in Information Security, vol. 45, chap. 14, pp. 239–271. Springer US
(2009)

[12] Thio, N., Karunasekera, S.: Automatic measurement of a qos metric for web
service recommendation. Software Engineering Conference, Australian 0,
202–211 (2005)

Software Performance and Reliability Prediction

Franz Brosch

1 Introduction

In the vision of SLA@SOI, providers of software services give guarantees as to
the specific quality of service (QoS) properties for the services they offer. These
properties may relate to performance, reliability, or to other quality characteristics
of the offered services. Service level agreements (SLAs) capture the QoS guarantees
and represent a contract between service providers and service customers. To this
end, the providers need to create general offers for services (called SLA templates
in SLA@SOI), and react to the individual SLA requests of potential customers.
General offers and individual requests must be based on sound data to ensure that
services will show the quality that has been negotiated.

This chapter describes an approach to predicting the performance and reliabil-
ity of software services: this approach helps software providers to create feasible
SLA templates, and to determine a proper reaction to SLA requests from potential
customers. More concretely, the approach predicts completion time distributions
and success probabilities for service execution. The prediction method is based on a
model of service implementation and evaluates this model to determine the expected
service quality. The use of a model in this way allows for early quality prediction,
without requiring the service to already be in place. The required input data for
the model is collected during service design and implementation. Model parame-
ters related to performance and reliability properties may be obtained by estimation,
historical data or measurement.

Once a service implementation model has been created, it can be used to evaluate
expected service quality. To this end, the SLA management framework (see Chap-
ter ‘Reference Architecture for Multi-Level SLA Management’) developed in the
context of SLA@SOI is enriched by a service evaluation (SE) component, which

Franz Brosch
FZI Research Center for Information Technology, Haid-und-Neu-Str. 10–14, 76131 Karlsruhe,
Germany, e-mail: brosch@fzi.de

DOI 10.1007/978-1-4614-1614-2_10, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 1 35

mailto:brosch@fzi.de

154 Franz Brosch

provides the prediction functionality and is used by the SLA manager components
throughout the service negotiation process. The SE component predicts the quality
of service for different service configurations and usage profiles, and integrates the
quality impact of required external services into its evaluation. Thus, it helps to au-
tomate negotiation activities across multiple provider boundaries, which is one of
the envisioned SLA@SOI goals.

The remainder of this chapter illustrates these concepts and the realisation of
this approach in greater detail. The following Sections 2, 3 and 4 discuss the gen-
eral scope of this approach, the nature of the created service models, and the envi-
sioned prediction workflow. Following this, Sections 5 and 6 discuss the technical
realisation, integration into the SLA management framework, and application to
SLA@SOI use cases.

2 Goals and Scope

The applicability of a software service to different usage scenarios is not only de-
termined by the functionality that the service provides, but also the provided quality
of service (QoS). For example, a ticket reservation service designed for up to 50
concurrent users will not fit the needs of a large international airline; equally, a
data retrieval service with weak protection against data loss or corruption is not ap-
propriate for supporting financial transactions. These examples show that successful
adoption of service-oriented architectures across multiple provider boundaries needs
stable agreements regarding QoS properties, which are established in terms of ser-
vice level agreements (SLAs). As a basis for such agreements, service providers
need to be aware of the QoS properties expected of their services before their actual
operation in the field. Predictive approaches can deliver such information based on
an existing or envisioned service design as well as estimations, historical data or
measurements.

The prediction approach presented in this chapter allows the expected perfor-
mance and reliability of a target software service to be evaluated before its oper-
ation. The obtained prediction results offer valuable support to service providers
in two ways: First, the providers need to create general SLA offers (SLA tem-
plates) at the service-offering stage. SLA templates constitute the envisioned way in
SLA@SOI of promoting services to potential customers. They relate service usage
parameters (such as a maximal number of invocations per minute) to QoS parame-
ters (such as a maximal service completion time). Thus the templates indicate what
QoS properties can be expected under which conditions. The second major need for
service quality prediction arises during the service negotiation stage. At this stage,
to arrive at a concrete SLA, parameter ranges and choices in an SLA template must
be narrowed down to single values and selections. The negotiation may be a com-
plex process, especially if it spans multiple provider boundaries. Each party may
take multiple roles, being a provider of certain target services, and a customer of
required services at the same time. Multiple prediction iterations may be necessary

Software Performance and Reliability Prediction 155

to determine the quality of target services when different assumptions are made
about the quality of required services, until finally, SLAs can be established across
the whole provider chain. In both situations (SLA template creation and SLA es-
tablishment), the approach presented herein allows service providers to investigate
what levels of quality can be expected from their provided services, and which QoS
customer requirements can be met.

To yield realistic and relevant predictions, this approach must account for a com-
plex interplay of factors that influence the quality of target services. The first major
influencing factor is service usage: the performance and reliability of a service de-
pends on the intensity of service usage (measured using parameters such as the
number of invocations per minute), the invoked service operations, and the input
data given to service calls. A further influencing factor is the internal structure of
the service, which may consist of multiple — and possibly hierarchically composed
— service components. The internal structure of the service is known only to the ser-
vice provider, who provides this as input information for the prediction approach.
Finally, the QoS properties of required external services are an influencing factor
for the quality of the target service. Such external services may be software services
or infrastructure services that provide a physical or virtualised software execution
environment.

The explicit consideration of all mentioned quality-influencing factors creates
a highly beneficial and innovative prediction approach, which has the potential to
substantially enhance SLA negotiation processes. Further benefits of the approach
when compared to related work (e.g. [3, 6]) lie in the separation of modelling re-
sponsibilities between software providers and service providers (supporting a dis-
tributed development process), the prediction of complete probability distributions
for service performance (instead of only mean-value analysis), and the adoption of
one common modelling language for performance and reliability prediction (provid-
ing a foundation for trade-off analyses). Within SLA@SOI, a concrete implementa-
tion of the approach has been created in terms of the service evaluation component
(Section 4), and the approach has been demonstrated in several industrial use cases
within the project (Section 6). The encouraging results from this practical experi-
ence underline the role of this approach as an important contribution to the overall
SLA@SOI goal of empowering the service economy in a flexible and dependable
way.

3 QoS Meta-Model

In order to enable the prediction of service performance and reliability, service
providers need to create a model of the service-based system under study. To this
end, the approach defines a QoS meta-model, which may be instantiated as a predic-
tion model to describe the performance- and reliability-relevant aspects of the sys-
tem. The QoS meta-model is based on the Palladio Component Model (PCM) [4],

156 Franz Brosch

Prediction Model (QoS Meta-Model Instance)

Service Component Model

Performance

R
el

ia
bi

lit
y

Infrastructure Model

Usage Model Allocation Model

Performance

R
el

ia
bi

lit
y

Performance

R
el

ia
bi

lit
y

Service deployment

Resource demands

Service components
Service interfaces
Service behaviour
Service composition

Software failures

Performance

R
el

ia
bi

lit
y

System workload

Service invocations
Service parameters

Resource performance
Network performance

Hardware resources
Network links
Network topology

Hardware availability
Network failures

Fig. 1 QoS Meta-Model for Performance and Reliability Prediction

which has been developed for performance modelling and prediction of component-
based software architectures.

Figure 1 gives an overview of the structure of a prediction model. The figure con-
sists of four parts, each describing different aspects of a service-based architecture.
Each part has an individual impact on the overall performance and reliability of the
service:

• The Service Component Model specifies the service components of the ar-
chitecture, their interfaces, and their hierarchical composition. A high-level be-
havioural specification captures the relevant aspects of control and data flow,
without unveiling details of the underlying implementation. Service Component
Model information is provided by software providers who implement service
components and offer them to software service providers.

• The Infrastructure Model specifies the execution environment of the architec-
ture in terms of computing nodes (containing hardware resources, e.g. CPUs)

Software Performance and Reliability Prediction 157

and network links. The relevant information comes from infrastructure service
providers, who offer their infrastructures to software service providers.

• The Usage Model specifies a usage profile for the provided services of the sys-
tem. It indicates: usage intensity (specified as a system workload); which services
are invoked; and what kind of input data can be expected. This information is ei-
ther specified directly by the software service provider (anticipating a certain
usage profile), or can be deduced from a concrete customer request at service
negotiation time.

• The Allocation Model provides a link between a given service component model
and an infrastructure model. It maps service components to computing nodes and
thus determines the actual topology of the distributed service-based system. The
allocation is generally decided and specified by the software service provider.

To predict the performance or reliability of services provided by the system, a com-
plete prediction model is required, containing all four parts described above. How-
ever, the individual parts may be created independently, and several variants for a
part may exist (for example, several deployment variants may be specified through
multiple allocation models). The software service provider is free to examine differ-
ent system configurations by exchanging individual parts, and can perform predic-
tions for each configuration. This way, the provider can identify the most beneficial
configuration without deploying and executing all configuration variants in a real
system.

4 Prediction Workflow

Performance and reliability prediction of software services follows a general work-
flow, performed by the software service provider. The workflow can be categorised
into three individual phases, depicted in Figure 2: (i) model creation, (ii) identifica-
tion of system configurations, and (iii) prediction of performance and reliability. The
three phases are basically sequential, but can interfere with each other. Providers are
able to step back and forth between the phases as required.

The first phase is model creation. In this phase, software service providers collect
information from other roles and create parts of the prediction model as described
in Section 3. Existing PCM tools — including graphical model editors — are used
to provide an integrated environment that allows software service providers to cre-
ate parts of their prediction model. The software service providers can map multiple
choices regarding service components, infrastructure services, and external software
services to multiple variants of the corresponding prediction model parts. They may
also anticipate information that it is not yet available, such as an assumed usage
profile. The model creation requires several parameters to be determined, includ-
ing resource demands, software failure probabilities, and the frequencies of service
invocations. The collection of these parameters is not actively supported by the ap-
proach itself, but can be based on estimations, historical data or measurements, as
proposed in the literature [7, 9, 10].

158 Franz Brosch

Activity

Change of Activity

Flow of Artifact

Infrastructure SLA
Templates

(Quality of Infrastr. VMs)

SLA Offers
(Service Usage)

Service Component
Specifications
(Interfaces, Behaviour,
Composition)

Software SLA
Templates

(Quality of ext.
Software Services)

Identify Possible System
Configurations

Predict Software
Performance and Reliability

Prediction Model
Parts

Complete Prediction
Models

Prediction Results

Collect / Create Models for
Prediction

Software Service Provider

Software SLA Templates /
Reaction to SLA Offers

Infrastructure
Service Provider(s)

Service
Customer(s)

External Software
Service Provider(s)

Software Provider(s)

Fig. 2 Performance and Reliability Prediction Workflow

The model creation phase is followed by identification of system configurations.
Here, the software service providers determine possible and feasible system con-
figurations. They decide how to compose the available service components, which
infrastructure and external software services to use, and how to allocate service
components to infrastructure (virtual) machines. Thus, possible solutions depend on
the offers available from infrastructure and external service providers, but also on
other factors that the software service providers might take into account (for exam-
ple, legal restrictions or best practice for component deployment). For each system
configuration, the software service providers can adjust and combine the existing
prediction model parts to create a complete prediction model, including a specifi-
cation of the intended system usage. This prediction model serves as an input for
prediction of actual performance and reliability. If these predictions are performed
automatically during service negotiation, they rely on the feasible system configu-
rations that have been predetermined by the software service providers. However,
the choice between these configurations is automated and performed by the SLA
manager components.

Following creation and assembly of all model parts, the prediction itself takes
place in the performance and reliability prediction phase. Prediction results are used
either to determine feasible parameters for initial SLA templates, or to determine
an appropriate reaction when concrete SLA offers are made by customers. In the

Software Performance and Reliability Prediction 159

former case, software service providers carry out the prediction manually using the
PCM tooling environment. In the latter case, prediction is invoked programmatically
and is carried out by the service evaluation components. In both cases, prediction
may be carried out repeatedly in order to evaluate several system configurations
and to enable selection of the best alternative. To this end, various search strategies
and heuristics for finding good alternatives have been proposed in the literature (for
example, see the solution and related work survey in [8]).

5 Prediction Realisation

To realise software performance and reliability prediction in the context of
SLA@SOI, a set of tools and components have been created, supporting service
providers with an integrated environment for modelling service-based systems, and
enabling manual or programmatic quality prediction. This section discusses the
technical realisation of such predictions, as well as their programmatic execution
within the SLA negotiation process.

5.1 Overview

Prediction Server / Integrated
Environment

OSGi / Eclipse Platform

SLA Management Framework
(excerpt)

OSGi / Spring Platform

Predictive Software Service Evaluation
(P-SSE)

Software SLA Manager

Software Planning and
Optimization Component

(S-POC)

<< evaluate >>

Prediction Engine
<< predict >>

Modelling
GUI

Results
Vizualisation

Fig. 3 Automated Service Evaluation in the SLA Management Framework

Figure 3 shows the architecture of the available prediction tools and their integra-
tion into the SLA management framework. This architecture has been chosen such
that (i) the solution can benefit from the existing PCM infrastructure, and (ii) pre-

160 Franz Brosch

dictions can be applied manually (during service offering) or automatically (during
service negotiation).

In the service offering scenario, a software service provider uses prediction to
determine feasible quality parameters for the software services to be offered. Predic-
tion results are used for the creation of corresponding software SLA templates. The
software service provider uses an integrated environment for the graphical creation
of prediction models, the prediction itself, and the graphical visualisation of predic-
tion results (Figure 3, right-hand-side). This prediction environment is realised as a
set of Eclipse plug-ins running on an OSGi platform, based on existing PCM tool-
ing. It is a self-contained tool that allows the software service provider to perform
the prediction.

In the service negotiation scenario, prediction is performed automatically as part
of the SLA negotiation workflow conducted by the SLA management framework.
To this end, the prediction engine has been extended with a web-service interface.
Thus, the environment becomes a prediction server application, and prediction can
be triggered programmatically, supporting an automated negotiation process. Within
the SLA management framework, prediction is offered as an implementation of the
service evaluation component for the special case of predictive software service
evaluation (P-SSE). It is invoked through the software planning and optimisation
sub component (S-POC) of the software SLA manager component, in order to deter-
mine a proper reaction to a concrete SLA request from a potential customer. P-SSE
invokes the prediction engine with a prediction model and retrieves the prediction
result as an output.

Both scenarios use the same prediction engine, ensuring consistent results inde-
pendent from the phase of application (service offering or service negotiation).

5.2 Prediction Engine Internals

The prediction engine takes a full QoS meta-model instance as input, including a
service component model, an infrastructure model, an allocation model and a us-
age model. Using the openArchitectureWare (OAW) [2] framework, an automated
transformation is applied to the prediction model, resulting in a queuing network
model realised as a Java implementation. This queuing network is then simulated,
using the discrete-event Java simulation framework SSJ [1].

From the system workload specification, the transformation generates a workload
driver, which spawns threads to simulate arriving users that invoke system services.
The high-level control and data flow throughout the service components is executed
as specified in the prediction model. Furthermore, network traffic and resource con-
sumption are considered by the simulation. Contention effects caused by concurrent
service execution and resulting waiting times can be observed. Whenever a proba-
bilistic decision has to be made (e.g. to determine the arrival time of the next user,
the size of a resource demand, or which branch in the control flow to take), a sample
is drawn from the specified probability distribution, and the decision is based on the

Software Performance and Reliability Prediction 161

sample. This way, it is ensured that the simulation follows the distributions that have
been specified in the prediction model.

Throughout the simulation, sensors are placed that record the simulated start and
end times of each service invocation, as well as the history of resource demands
and waiting times for resources. After the simulation, these data are available for
visualisation (e.g. time series diagrams or histograms) or further aggregation (e.g.
determining the 90% percentile of service completion time). The integrated predic-
tion environment provides capabilities for such visualisation of results, allowing the
software service provider to derive the relevant information about feasible quality
parameters, or to make a sophisticated choice between multiple system configura-
tions.

For reliability prediction, another procedure is applied, transforming the predic-
tion model into a discrete-time Markov Chain (DTMC) that represents the possi-
ble execution paths through the service-based architecture and their probabilities.
Based on existing results from Markov theory, a service success probability is cal-
culated, denoting the probability that a service call is completed without failure —
finishing successfully, delivering a correct result, and not triggering any unwanted
side effects. The approach takes into account failures due to implementation faults
(software level), unavailability of physical resources (hardware level), and commu-
nication errors (network level). It has been described in detail in [5].

5.3 Prediction Process

Figure 4 illustrates the prediction process that is executed when the predictive soft-
ware service evaluation (P-SSE) component is invoked via the evaluate interaction
during service negotiation. The invocation comes from the software planning and
optimisation (S-POC) component, which in turn has been triggered by a customer
SLA offer with the goal of establishing an SLA as per the offer, to reject the offer, or
to create a counter-offer. P-SSE helps S-POC in this decision-making by evaluating
performance and reliability for individual system configurations and usage profiles.
S-POC can compare the predicted quality of a given system configuration with the
customer request, decide if the configuration satisfies all given requirements, and
then determine if the SLA can be established based on this configuration.

The actors shown in Figure 4 are a running instance of the S-POC, as well as
several entities belonging to a P-SSE instance. The sequence diagram shows an
invocation of P-SSE by S-POC, with the following steps:

1. S-POC issues an evaluate() request to P-SSE, containing information
about the system configuration(s) to evaluate, as well as service usage
and external service quality parameters. The request is received by the
PredictiveSoftwareServiceEvaluator.

2. The PrectiveSoftwareServiceEvaluator checks whether the in-
put is valid (i.e. consistent and complete). If the input is invalid, an
IllegalArgumentException is thrown.

162 Franz Brosch

Fig. 4 Evaluation of Software Services

3. A given ServiceRealisation (i.e. system configuration) is for-
warded to the PredictionScenarioGenerator, which retrieves
the corresponding QoSModelInstance (the prediction model) from a
DesignTimeRepository, creates a PredictionScenario (i.e.
a complete and adjusted prediction model that considers service usage
and external service quality parameters), and returns this scenario to the
PredictiveSoftwareServiceEvaluator.

4. The generated PredictionScenario is given as an input via a
web-service interface to the SoftwareQualityPredictor, which is
part of the prediction server. The SoftwareQualityPredictor per-
forms a simulation and/or analysis to evaluate the expected performance
and/or reliability of the target service. The evaluated quality parameters
are returned to the PredictiveSoftwareServiceEvaluator. If the
PredictionScenario cannot successfully be evaluated because of an un-
expected error, an EvaluationException is generated and returned to the
S-POC (as the caller of the evaluate() operation).

5. The PredictiveSoftwareServiceEvaluator checks whether the eval-
uation result is valid. This includes adherence to the usage bounds of required
software services, as well as an indication that the system will not be overloaded
by the envisioned target service usage.

Software Performance and Reliability Prediction 163

6. If the result is valid, the PredictiveSoftwareServiceEvaluator cre-
ates an EvaluationResult instance and stores the results for the current
PredictionScenario there.

7. Steps 3–6 are repeated until all given ServiceRealisations have been
evaluated.

8. The list of evaluated results is returned to S-POC (as the caller of the
evaluate() operation).

6 Use Cases

This approach to software performance and reliability prediction has been applied
to multiple use cases in the SLA@SOI project, including the Open Reference Case
(ORC) (Chapter ‘The Open Reference Case’), a service-based ERP hosting solution
(Chapter ‘The ERP Hosting Use Case Scenario’), and an eGovernment use case
featuring health care and mobility services (Chapter ‘The eGovernment Use Case
Scenario’). Prediction models for these use cases have been created, and predic-
tions have been performed to determine the expected performance and reliability of
different system configurations.

In the ORC scenario, this approach has been used to predict the completion time,
throughput, and success probability of the sales process at individual cash desks in a
supermarket, as well as the utilisation of back-end servers involved in this process.
Prediction has been performed for the inventory service and the payment service,
where the latter is a composition of two basic services for card validation and pay-
ment debit. The prediction results show how an increasing system workload leads to
lower service quality and eventually to a point where the system is overloaded and
no longer available.

Prediction for the ERP hosting use case focuses on the sales and distribution
(SD) application, which covers a sell-from-stock business process. The process in-
cludes the creation of a customer order with five items and the corresponding deliv-
ery of those items, with subsequent good movements and invoicing. It consists of
six individual transactions, involving multiple service components and operations.
Prediction results may be used to indicate how varying infrastructure characteristics
(such as CPU speeds or network bandwidth) influence the throughput and comple-
tion time of the business process transactions.

The e-government use case constitutes a special application of this prediction
approach, extending its scope beyond pure software services towards human ser-
vices and resources. Instead of reflecting a software architecture as a composition
of software service components, the prediction model reflects a health care system,
where the ‘components’ are call centres that provide ‘services’ (in this case, book-
ing capabilities). Thus in this scenario, instead of predicting demand for computing
resources during software service execution, the approach predicts the number of
human operators required to serve the booking requests of calling customers. The
performance predictions show how long calls take for different types of customer

164 Franz Brosch

request and assuming different call centre capabilities. It is also possible to deduce
how many operators would be busy at a time, and how many would be required to
serve customer requests without waiting times. The results of this application are of
special interest as they point towards a new domain of application for this approach
to performance and reliability prediction.

References

[1] SSJ: Stochastic Simulation in Java. http://www.iro.umontreal.ca/
\˜simardr/ssj/indexe.html (2010). Last retrieved 2010-12-30

[2] Eclipse Modeling Project. http://www.eclipse.org/modeling/
(2011). Last retrieved 2011-01-03

[3] Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based perfor-
mance prediction in software development: A survey. IEEE Transactions on
Software Engineering 30, 295–310 (2004)

[4] Becker, S., Koziolek, H., Reussner, R.: The Palladio Component Model for
Model-Driven Performance Prediction. Journal of Systems and Software
82(1), 3–22 (2009)

[5] Brosch, F., Koziolek, H., Buhnova, B., Reussner, R.: Parameterized Reliabil-
ity Prediction for Component-based Software Architectures. In: G. Heineman,
F. Kofron, Jan; Plasil (eds.) International Conference on the Quality of Soft-
ware Architectures (QoSA), vol. 6093, pp. 36–51. Springer (2010)

[6] Immonen, A., Niemel, E.: Survey of reliability and availability prediction
methods from the viewpoint of software architecture. Journal on Software
and Systems Modeling 7(1), 49–65 (2008)

[7] Koziolek, H., Schlich, B., Bilich, C.: A Large-Scale Industrial Case Study
on Architecture-based Software Reliability Analysis. In: IEEE International
Symposium on Software Reliability Engineering (ISSRE), pp. 279–288. IEEE
(2010)

[8] Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve
software architecture models for performance, reliability, and cost using evolu-
tionary algorithms. In: International Conference on Performance Engineering
(WOSP/SIPEW), pp. 105–116. ACM (2010)

[9] Menasce, D.A., Almeida, V.A., Dowdy, L.W.: Performance by design : Com-
puter capacity planning by example. Prentice-Hall (2004)

[10] Musa, J.D.: Operational profiles in software-reliability engineering. IEEE
Softw. 10, 14–32 (1993). DOI http://dx.doi.org/10.1109/52.199724. URL
http://dx.doi.org/10.1109/52.199724

http://www.iro.umontreal.ca/
http://www.eclipse.org/modeling/
http://dx.doi.org/10.1109/52.199724
http://dx.doi.org/10.1109/52.199724

Part IV

Core Components of the Service Level
Agreements Framework

G-SLAM – The Anatomy of the Generic SLA

Manager

1 Introduction

The Generic SLA Manager, also known as the G-SLAM, provides a generic ar-
chitecture that can be used across different domains and use cases to manage the
entire SLA life cycle, including activities such as negotiating SLAs, provisioning
resources, monitoring and adjustment. A first approach to this architecture is de-
scribed in [7]. The key feature of this approach is the high degree of flexibility
provided for dynamic behavior (assisted by OSGi), customisable system deploy-
ment, and the ability to reconfigure individual pieces comprising the G-SLAM. Each
concrete SLAM implementation can customise or reuse components, integrate new
components or replace others with minimal effort, and even swap components at
runtime. The G-SLAM kernel orchestrates the general purpose components, which
are the SLATemplateRegistry, SLARegistry, SyntaxConverter, MonitorManager and
ProtocolEngine. This set of generic components is referred to as the G-Components.

Miguel Angel Rojas Gonzalez, Peter Chronz, Kuan Lu, Edwin Yaqub
TU Dortmund University, August-Schmidt-Strasse 12, 44227 Dortmund, Germany, e-mail:
{miguel.rojas,peter.chronz,kuan.lu,edwin.yaqub}@tu-dortmund.de

Telefónica Investigación y Desarrollo, Spain,
e-mail: {fuentes,acast,juan.lambea,escamez}@tid.es

Howard Foster
Department of Computing, City University London, Northampton Square, EC1V 0HB, London,
e-mail: Howard.Foster.1@city.ac.uk

DOI 10.1007/978-1-4614-1614-2_11, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 167

Miguel Angel Rojas Gonzalez, Peter Chronz, Kuan Lu, Edwin Yaqub, Beatriz
Fuentes, Alfonso Castro, Howard Foster, Juan Lambea Rueda, and
Escámez Chimeno

Augustı́n

Beatriz Fuentes, Alfonso Castro, Juan Lambea Rueda, Augustı́n Esćamez Chimeno

mailto:Howard.Foster.1@city.ac.uk

168

2 Plug-in-based Approach to the G-SLAM Architecture

The SLA@SOI framework is designed to be extensible by mechanisms called
plug-ins or bundles that can be dynamically added to and removed from any
SLA@SOI framework instance. In the SLA@SOI framework, every plug-in com-
ponent amends the functionality of other plug-ins. This is achieved using the under-
lying OSGi [1, 2] framework, which defines the dependencies between plug-ins, and
how and when additional plug-ins are activated. The target platform for G-SLAM
support is based on the OSGi R4 Reference Implementation. G-SLAM defines a set
of generic components, known as G-Components, which are collected into an entity
named SLAManagerContext. Any SLAM implementation requires the G-SLAM
service to initialise its own context. This context will then allow the interaction of
each of the generic components in a light manner, without having strong interdepen-
dencies. This way of building the SLA manager leads to an extensible architecture
with well-defined interfaces, and makes programming and testing of new SLAMs
much easier.

The use of OSGi brings with it the following advantages: long classpaths are
no longer required, the modules’ life cycles are fully handled by the platform, dy-
namic updates can be performed without rebooting the application, and the package
visibility of bundles enables the dynamic sharing of classes across components, re-
flecting a high decoupling of modules through interfaces and services. Public third
parties (normally published as JAR files) can be also used, but are included as bun-
dles in OSGi. The Spring Source website provides a repository of libraries ready
for use as bundles [10]). Note that maintenance and update of these libraries for
any OSGi application is quite transparent and does not require major changes at the
application-side.

OSGi declarative services — Service Binder, Spring Dynamic Modules (Spring
DM) and other existing component models — enable the handling of dynamic as-
pects, service location, dependency injection, and manage all the dynamic linking.
The hard manual work required by other platforms when bringing components to-
gether in a dynamic fashion is not required under OSGi. Nevertheless, a minimal
effort is required to create the plugins or bundles, a task that is assisted by Maven.

3 The G-SLAM Architecture

The G-SLAM is the orchestrator of the generic components and creates on-demand
new instances of these components for the DS-SLAMs in question. Figure 1 shows
the dynamic interaction between the DS-SLAM and the G-SLAM when obtaining
its own instances of the G-Components. On demand, any DS-SLAM is able to con-
tact the G-SLAM via the OSGi-services to request a new set of G-Components.
The G-SLAM creates each generic component, then creates a SLAMContextMan-
ager that includes these recently created objects, and gives this to the DS-SLAM.

t al.M.A.R. Gonzalez e

The Anatomy of the Generic SLA Manager 169

From there, the DS-SLAM is responsible for those instances, making each SLAM
independent of the G-SLAM service.

...

OSGi Platform

G-SLAM

G-Components

ProtocolEngine

SyntaxConverter

TemplateRegistry

SLARegistry

MonitoringManager

connector
to monitoring

system

connector
to publish/
subscribe

connector
to external

system

DOMAIN-SPECIFIC

SLAM

.

.

.

AdvertisementClient

PAC

POC

Authorization

Fig. 1 G-SLAM architecture

3.1 Technology Used by the Plug-in-based G-SLAM Architecture

As noted above, the SLA@SOI framework is targeted to the OSGi platform. This
allows a modular and pluggable way of implementing each of the G-Components.
The G-SLAM takes especial advantage of the OSGi Spring DM framework. Spring
DM simplifies the creation and management of bundles and makes use of an in-
jection mechanism to share OSGi service references. This injection mechanism is
supported using Java annotations, which makes the development simple and flexi-
ble; thus the integration and maintenance of existing components does not require
extra configuration.

170

4 Generic Components

G-SLAM encapsulates the generic components that are responsible for handling
SLAs within the SLA@SOI framework. Its most important generic components are
the SLATemplateRegistry, SLARegistry, SyntaxConverter, MonitorManager, Proto-
colEngine and a client for contacting the Advertisements Service. A detailed de-
scription of each generic component is presented below. To provide a common way
of accessing the generic components within the G-SLAM, a context manager han-
dles instances of those objects, starting from their creation, initialisation and man-
agement during their execution. This abstract manager is responsible for maintain-
ing the common space between G-Components and the domain-specific implemen-
tations of the Provisioning and Adjustment Component (PAC) and the Planning
and Optimisation Component (POC). To implement a specific SLAM within the
SLA@SOI framework, a service provider needs only to provide the customised
implementations of the domain-specific components. This way, the reusability of
G-Components simplifies the development of new SLAMs.

4.1 Core of the G-SLAM via Interfaces

The plug-in-based design of the G-SLAM requires the declaration of its services via
a Java interfaces. The G-SLAM exclusively collects all G-Component interfaces in a
common place, named the G-SLAM core. Thus any G-Component implementation
imports the bundled G-SLAM core, allowing it to reference services that will be
exposed by other G-Components in runtime. Table 2 enunciates some of interfaces
included in the G-SLAM core.

t al.M.A.R. Gonzalez e

The Anatomy of the Generic SLA Manager 171

Generic Component Interfaces

ProtocoEngine INegotiation
initiateNegotiation(SLATemplate slaTemplate)
SLATemplate[] negotiate(String negotiationID, SLATemplate slaTemplate)
SLA createAgreement(String negotiationID, SLATemplate slaTemplate)
cancelNegotiation(String negotiationID)
renegotiate(UUID slaID)
terminate(UUID slaID)
IControl
setPolicies(String policyClass, Policy[] policies)
Policy[] getPolicies(String policyClass)

SyntaxConverter Object parseSLA(String slaObject)
Object parseSLATemplate(String slaTemplateObject)
Specification[] parseWSDL(String wsdlString)

SLARegistry IRegister
UUID register(SLA agreement, …)
UUID update(UUID id, …)
IQuery
SLA[] getSLA(UUID[] ids)
UUID[] getDependencies(UUID id)
UUID[] getSLAsByState(SLAState[] states)
SLA[] getSLAsByTemplateId(UUID slatId)

SLATemplateRegistry addSLATemplate(SLATemplate)
removeSLATemplate(UUID templateId)
SLATemplate getSLATemplate(UUID templateId)
ResultSet query(SLATemplate query)

MonitoringManager MonitoringSystemConfiguration checkMonitorability(SLA slaModel,
ComponentMonitoringFeatures[] componentMonitoringFeatures)

POC SLATemplate[] negotiate(String negotiationID, SLATemplate slaTemplate)
SLA createAgreement(String negotiationID, SLATemplate slaTemplate)
terminate(UUID slaID)
SLA provision(UUID slaID)

PAC executePlan(Plan plan)
cancelExecution(String planId)

Authorization checkAccess(SLATemplate template)

Fig. 2 G-Component services

172

4.2 Abstraction Layer for the Domain-Specific Components PAC
and POC

The G-SLAM core also interfaces with the domain-specific components PAC and
POC. Their minimal behavior and interaction with the G-Components is declared
here. If customised services are needed, they can be defined within the domain-
specific core (Section 7).

4.3 Main Bundle for the G-SLAM

The G-SLAM implementation consists of a set of bundles and Java third-party li-
braries for OSGi. Those bundles represent each G-Component and are bound to the
main G-SLAM bundle. Based on Spring DM, the main bundle exposes a service
called createContext. This service allows any SLAManager to dynamically create
its G-Components. The main bundle internally invokes a builder service for each G-
Component. A builder service is exposed by each G-Component and is responsible
for the instantiation of its required objects such that it can be executed indepen-
dently within the DS-SLAM. Thanks to these builder services, the G-SLAM can
create a SLAManagerContext, where all G-Components are grouped and returned
to the DS-SLAM. Note that the domain-specific components PAC and POC can be
linked to this context before any SLA operation takes place.

4.4 Syntax Conversion for Interoperability

The syntax-converter is a component of the GSLAM that provides interoperability
and separates the SLAMS from specific representations of an SLA or SLA template.
Supported representations are the XML representation of SLA@SOI’s SLA model
(SLA*) (Section 2) and the WS-Agreement [3]. The GSLAM’s internal interface
with the syntax-converter provides its related components with means to execute
operations using the SLA*’s Java representation. The syntax-converter provides
external components with various interactions as web-services, including an
interface for negotiation. As such, the syntax-converter is a central communication
point for the GSLAM, acting as a facade that allows GSLAM’s internal components
to be independent from specific representations.

The syntax-converter’s purpose is to convert between various SLA represen-
tations. Internally, the GSLAM uses a Java-based representation of SLA*, while
external parties use either a direct XML representation of SLA* or the WS-
Agreement. When communicating with outside parties, the syntax-converter also
represents a central entry point for negotiations. SLA* is defined using an abstract

t al.M.A.R. Gonzalez e

The Anatomy of the Generic SLA Manager 173

syntax expressed with a Backus Normal Form (or Backus-Naur Form; BNF) [4] and
textual descriptions. To apply the model in a use case, a concrete implementation
is required. One such implementation is the Java-representation, which is used
by components within the GSLAM. For on-the-wire communication purposes,
two XML-representations exist. One — referred to as the XML-representation of
the SLA* — directly implements the abstract syntax in XML. The other embeds
SLA*’s expressions in the WS-Agreement. This extended WS-Agreement repre-
sentation directly uses the SLA*’s XML-representation within the WS-Agreement.
Those textual representations are mostly used whenever an SLA needs to be
serialised and reread by a machine at a later stage. Example uses are serialisation
for communication over-the-wire, such as using web-services, and serialisation
for storing SLA documents in the SLA registry and the SLA template registry. In
addition, a textual representation of the SLA-model exists (in a notation resembling
JSON [5]) that is conveniently readable by humans. This representation, however,
is for a human reader’s convenience and cannot be parsed by the syntax-converter.

The syntax-converter is also able to convert between SLA*’s interface spec-
ification and WSDL 2.0 [6], in both directions. This feature is needed when an
externally provided interface is described in WSDL. Conversely, this mechanism is
required to provide external parties who do not know SLA*’s interface specification
model with a commonly understood description of a web-service interface.

The syntax-converter’s external interface provides the means for the SLAM’s
internal components to communicate with external components. Those external
components may belong to the SLA@SOI framework or to components imple-
mented by third parties. Components within the framework that interact using the
syntax-converter’s external interfaces are the SLA-Managers, which are based on
the GSLAM. As such, a GSLAM will communicate with another GSLAM using
the syntax-converter as if it were any other external component.

4.5 Protocol Engine

Negotiations are of fundamental interest in service-oriented systems. Two or more
parties negotiate SLAs based on their individual goals. Service level guarantees are
bargained during the negotiation process. Negotiations may last several rounds until
an agreement is reached. In each round, several counter-offers can be generated by
the recipient of an offer. The customer and the provider both try to maximise their
individual utilities, and if the customer’s request matches the provider’s capabilities,
negotiation can converge on an agreement.

In SLA@SOI, the negotiation model is represented as a state machine. The state
machine captures 1) the states in the model, 2) the sequence of messages, and 3) re-

174

strictions on a state. This also introduces a taxonomy of events. Additionally, there
are trigger conditions that control transitioning logic and may be extrapolated to
make additional checks. In the SLA@SOI project, these elements are composed
into a Negotiation Protocol. Technically, a protocol is filed as a collection of rules
and different versions are available via a public repository/registry. Negotiating par-
ties run the same protocol. In the SLA@SOI project, the software machinery that
executes the protocol is called a Protocol Engine. The Protocol Engine is stateful
and maintains a session per negotiation. At any time, the state machines of negoti-
ating parties are synchronised until one transits, triggering the other to attempt the
same. The main interaction over which the Protocol Engine provides its functional-
ity is the negotiate/renegotiate interaction. A bilateral protocol has been developed
to allow two SLA managers to negotiate with each other; multiple bilateral negoti-
ations can also be conducted to allow for multiplicity. Future extensions will allow
multilateral protocols as well.

4.6 SLATemplateRegistry

The SLATemplateRegistry is a persistent queriable store for SLA templates
(SLATs). Architecturally, there is one registry for customer-facing (offered) SLATs,
and another for provider-facing SLATs. The customer-facing registry can be queried
by external actors and is maintained by an external registry (an actor responsible for
deciding which SLATs should be offered to customers). SLATs offered by external
providers are cached locally in the provider-facing registry.
The SLATemplateRegistry publishes and subscribes to the Advertisements Service
(Section 5) under the policy control of the external registrar. Mediating the inter-
action with the pss4slam bus are a number of syntax-converters that transparently
convert SLAT serialisations in various formats into the internal SLA Model (and
vice versa).

From the DS-SLAM perspective, the SLATemplateRegistry is a private and per-
sistent store of SLATs. If an entity external to this DS-SLAM needs to query the reg-
istry, it must send query sentences to the syntax-converter of the associated SLAM
(see Section 2 or the API documentation at [11]).

4.7 SLARegistry

The SLARegistry is a persistent store for SLAs and historical SLA-state infor-
mation. It is maintained directly by the Protocol Engine and can be queried by
all internal SLA manager components. It can also query web-services via the
syntax-converter.

t al.M.A.R. Gonzalez e

The Anatomy of the Generic SLA Manager 175

Architecturally, there is one registry for customer-facing SLAs, and another for
provider-facing SLAs. As well as the SLAs themselves, the registry also maintains
historical SLA status information (for auditing). The registries serve as an archive
for completed SLAs as well as those currently in effect.

The SLARegistry is defined by two interfaces that provide access to implemen-
tation of the query and register stereotype interactions. The register interaction
stores an SLA in the registry, with pointers to dependent/depending SLAs. The
second interaction, query, retrieves a SLA, its status, its status history, and the
dependent/depending SLAs.

As for the SLATemplateRegistry, the SLARegistry is a private and persistent
store of SLAs from the DS-SLAM’s perspective. If any entity external to the SLA
manager needs to query the registry, it must send query sentences through the
syntax-converter of the associated SLAM (Section 2 or the API documentation
at [12]).

4.8 MonitoringManager

The MonitoringManager (MM) coordinates generation of a monitoring configura-
tion for the Monitoring System (2). For each SLA specification instance it receives,
the MM decides which monitoring configuration would best fit configurable
selection criteria. A monitoring configuration describes which components to
configure and how their configurations can be used to obtain results of monitoring
guaranteed states. The Low Level Monitoring Manager is a central entity for storing
and processing monitoring data. It collects raw observations, processes them,
computes derived metrics, evaluates the rules, stores the history and offers all this
data to other components (accessible through the ServiceManager). It implements
the monitoring part of a ProvisioningRequest, containing constraint-based rules
(time- and data-driven evaluations) and ServiceInstance-specific sensor-related
configurations. It is generic by design, and thus capable of supporting the monitor-
ing of infrastructure, software, services and other use cases.

The Monitoring System has three types of monitoring feature: First, sensors col-
lect information from a service instance. Their design and implementation is very
much domain-specific. A sensor can be injected into the service instance (e.g., ser-
vice instrumentation), or it can be outside the service instance intercepting service
operation invocations. A sensor can send the collected information to the commu-
nication infrastructure or other components can request (query) information from
it. There can be many kinds of sensors, depending on the kind of information they
want to collect, but all of them should implement a common interface. The interface
provides methods for starting, stopping, and configuring a sensor. Second, Effectors
are components for configuring service instance behaviour. Their design and imple-

176

mentation are very much domain-specific. An effector can be injected into a service
instance, e.g., service instrumentation, or can interface a service configuration in-
terface. There can be many kinds of effectors, depending on the service instance to
be controlled, but all of them should implement a common interface. The interface
should provide methods for configuring a service. The third type of monitoring fea-
ture is a Reasoning Component Gateway (RCG). An RCG provides the interface for
accessing a Reasoning Engine. A Reasoning Engine (or short name as Reasoner)
performs a computation based upon a series of inputs provided by events or mes-
sages sent from a sensor or an effector. An example RCG may provide a function
to compute the average completion time of service requests. In this case the RCG
accepts events from sensors detecting both request and responses to a service oper-
ation. RCGs also provide access to generic runtime monitoring frameworks such as
EVEREST. For more details see the monitoring features specification (Section 2.1).

4.9 Authorisation

During the negotiation interaction, parties involved in the negotiation need to be
identified. The outcome of a negotiation is the contracting of a product and included
services; thus, prior to any order, existing customer relationships (if any) should be
checked along with the validity of the customer’s economic status. More customer-
related checks may be required depending on the environment, domain, or business
support systems in which the SLA@SOI framework will be integrated. It must also
be possible to determine whether the customer can make an order; thus the frame-
work must be able to check the customer’s validity for each customer-initiated ne-
gotiation interaction. If the validation and negotiation has finished successfully, the
customer signs the product’s SLA (or orders a product). There should be another
economic check of the order before the SLA is signed and returned, but this check
will appear at the final step of the negotiation, and will take into account the final
agreement. Whenever a new negotiation starts, the authorisation operation must be
able to be invoked; thus the beginning of the negotiation must be able to be in-
tercepted such that different questions about the customer can be answered. In the
SLA@SOI framework, this validation was implemented by default in the Business
SLA Manager, since this component is in charge of customer relationships; how-
ever, it could be added to any SLAM as required.

5 Advertisements System

To address the service discovery and remote services issues, G-SLAM architecture
includes a universal publish/subscribe system. The Advertisements System is a
Java message system (based on the Apache Message Broker [8]) for the exchange
of SLATs among several SLA managers in a distributed environment. It allows the

t al.M.A.R. Gonzalez e

The Anatomy of the Generic SLA Manager 177

sharing of new SLATs in a reliable and asynchronous manner. Apache ActiveMQ
is an open source message broker which fully implements Java Message Service
1.1 (JMS). The publish and subscribe model provided by ActiveMQ enables
the publishing of SLA templates to multiple subscribers (in this case SLAMs).
Subscribers may register interest in receiving SLATs on a particular topic. In this
model, neither the publisher nor the subscriber know about each other. In the
SLA@SOI framework, the publisher (a SLAM) is able to publish templates in any
time. The subscriber must remain continuously active to receive templates, unless
it has established a durable subscription. In this case, templates published while
the subscriber is not connected will be redistributed whenever it reconnects. The
durability feature of a subscription is configured at the initialisation of client.

The Advertisements System includes inherited features; for example, the system
supports very fast persistence using JDBC along with a high performance journal,
pluggable transport protocols such as in-VM, TCP, SSL, NIO, UDP, multicast,
JGroups and JXTA transports, and a collection of JMS brokers, to which clients
will connect. It also provides load balancing of templates across consumers,
supports master/slave configuration to provide high availability, and fault tolerance
of brokers for delivering SLATs.

A broker component in the Advertisements System allows the exchange of tem-
plates between two or more SLA managers. A broker can be aligned with others
into a cluster or hierarchy, allowing the configuration of complex structures for in-
creasing reliability and redundancy of the Advertisements System in the SLA@SOI
framework. A set of brokers can be specified in design time via a configuration file,
or discovered dynamically, as depicted in Figure 3. Broker 1 is pre-configured in the
SLA@SOI framework while the other brokers (2, n and m) join together dynami-
cally. The SLATs published by Publisher-X will be propagated across any known
broker. Each subscriber (A, B and C) will get a copy of the published templates.

178

...

OSGi Platform

G-SLAM

G-Components

DOMAIN-SPECIFIC

SLAM

Advertisement
Client

PAC

POC

Advertisements
Broker (1)

Advertisements
Broker (2)

Advertisements
Broker (3)

Advertisements
Broker (n)

SLA Manager
OSGi-platform

SLA Manager
OSGi-platform

Internet

SLA Manager
OSGi-platform

Advertisement
Client

Subscriber-C

P
ub

lis
he

r-
X Subscriber-A

Subscriber-B

Fig. 3 Advertisements System

The Advertisements System actually supports two channels for the protocols
WSAgreement and SLAModel. Those channels enable interoperability between the
SLA@SOI framework and legacy systems, allowing publishers and subscribers to
share templates in two different formats (Section 4.4).

The SLA@SOI framework provides a plug-in-based client for interacting with
any available broker. The client offers the basic functionality for subscribing to a
specific channel, as well as facilities for publishing SLATs. The client is configured
by default to connect to a predefined broker in the SLA@SOI framework. The
publish/subscribe client is integrated by the G-SLAM, enabling access to each
component from any DS-SLAM.

The Advertisements System is modeled on the following interfaces: IPublish-
able,which sends SLATs via an internal broker to current subscribers, and ISub-
scribable, which notifies the internal broker of new subscribers or agents and links
it to the specified channel.

6 Planning and Optimisation Component (POC)

In general terms, the POC is responsible for assessing and customising a customer’s
SLA. It is an intelligent component that evaluates the feasibility of provisioning
the requested service by considering the availability of the service as well as other
Quality of Service (QoS) terms, and it plans optimal service provisioning and
monitoring strategies.

t al.M.A.R. Gonzalez e

The Anatomy of the Generic SLA Manager 179

The POC is an abstract component and its service is domain-specific with a unique
service type and QoS terms. Therefore, software POCs and infrastructure POCs
share a common interface design but domain-specific implementation. For instance,
they can have different policies and strategies for processing a domain-specific
SLA. Mechanisms such as a binary decision diagram can be used within a POC to
facilitate the process of negotiating SLAs, subcontracting their parts, optimising
their utility, and managing them during runtime for monitoring and enforce-
ment [9]. Figure 5 indicates the general architecture diagram of G-SLAM, in which
the interactions between POC and other components are illustrated.

<<abstract>>
PlanningAndOptimization

G-SLAM

<<assess/customise>>

<<abstract>>
ProvisioningAndAdjustment

<<trigger_(re)negotiation>>

<<plan>><<replan>>

<<check_monitorability>>

Business SLA Manager
<<query/control/track>>

Service Evaluation<<evaluate>>

<<prepare_service>>>>

Service Manager

Fig. 4 POC interactions inside G-SLAM

The POC interfaces include the following:

Interface Description

<<IAssessmentAndCustomize>>

negotiate: starts the negotiation between customer and service
provider.
createAgreement: establishes a final agreement (SLA) between
customer and service provider.
terminate: cancels an agreement after the SLA is established.

<<INotification>>

activate: starts to prepare a plan for provisioning the service.

<<IPlanStatus>> planStatus: gets the current status of a specific plan.

<<IReplan>>

rePlan: starts to generate an alternative plan, when a violation is
detected by the other component.

Fig. 5 POC interactions inside G-SLAM

180

7 Provisioning and Adjustment Component (PAC)

The Provisioning and Adjustment Component (PAC) has, as its name suggests, a
two-pronged mission. First, it plays a crucial role at provisioning time, effectively
executing the optimised provisioning plans — provided by the POC — on the ser-
vice manager. Second, SLA enforcement ensures continual identification, monitor-
ing and reviewing of the optimally agreed service levels required by the business,
and ensures that given SLAs are fulfilled such that previous performance estimates
equal final performance of the running services. The PAC will dynamically readjusts
the service if given quality levels cannot be met.

A planned interaction subsumes the functionality needed for service provision-
ing, providing interfaces for the POC to submit an optimised plan to the PAC, and
to inform it of the execution status. A plan is represented as a Directed Acyclic
Graph (DAG) with a unique entry point. Each node of the graph represents a spe-
cific task to be executed, and the hierarchy represents dependencies; for example, a
child node cannot be executed unless all its parent nodes have successfully executed,
and children of the same parent can be executed in parallel. The PAC manages the
synchronisation and parallelisation of different tasks in the provisioning plan, and
an appropriate rollback if an execution fails.

The runtime role of the PAC is primarily adjustment. For this role, the component
subscribes to the MonitoringEventChannel, an event bus through which data gener-
ated by the monitoring infrastructure can be received. Prediction information gives
the probability of an SLA breach, and can also be received through a dedicated chan-
nel. Low-level domain-specific PACs (namely, software and infrastructure) react on
the available information; for example, they may force reallocation of dynamic re-
sources on the infrastructure, substitute a service, or increase a service level. The
manage T service interaction allows the execution of these actions to be triggered
by the corresponding service manager (Figure 6).

t al.M.A.R. Gonzalez e

The Anatomy of the Generic SLA Manager 181

Business
Service

Manager

Software
Service

Manager

Infrastructure
Service

Manager

 Business Adjustment
bzPAC

Software Adjustment
swPAC

Infrastructure Adjustment
iPAC

Business Resources

Software Resources

Infrastructure Resources

Business
Policy

Software
Policy

Infrastruc
Policy

Analize/Decision
+

Plan

Analize/Decision
+

Plan

Analize/Decision
+

Plan

Business
SLA

Infrastr
SLA

Software
SLA

Fig. 6 Three-level adjustment

However, not all exceptions can be solved locally. In this case, decisions may
need to be escalated to the highest SLA management level, that is, the business
manager. These notifications, together with economic information that resides on
the business level, allow the business adjustment to analyse the situation and de-
cide, plan and execute the necessary actions, aiming to minimise the penalties paid
to the customer and therefore maximising benefits and revenue. Actions at this level
include renegotiation of the agreement or, in the case of multi-provider environ-
ments, modification of the conditions of a third party service (for example, selecting
a new third party to deliver the service).

8 Skeleton SLAM

One of the most important features of G-SLAM is that is can be reused by new
SLA managers with minimal effort during implementation. The Skeleton SLAM
(SK-SLAM) aims to define basic structure and components, so the development
of new SLAMs is faster and simpler. The SK-SLAM not only contains classes and
resources, but also includes the skeleton (ready to be filled) of domain-specific
components (PAC and POC), so the programmer can take care of implementation
details of the concrete SLAM. Configuration files and building maven files are also
included for the generation of bundles for the new SLAM.

Figure 7 shows the basic structure of the Skeleton-SLAM directories.

182

SKELETON - SLAM

+ skslam-main
+ src

java
resources

+ tests
pom.xml
readme.txt

+ skslam-core
+ src

java
resources

+ tests
pom.xml
readme.txt

+ skslam-pac
+ src

java
resources

+ tests
pom.xml
readme.txt

+ skslam-poc
+ src

java
resources

+ tests
pom.xml
readme.txt

Fig. 7 Skeleton directories structure

The SK-SLAM consists of four sub-projects. The main project, called skslam-
main, initialises the SLAManagerContext via the G-SLAM service, and links the
domain-specific implementation of PAC and POC with the generic components.
Sub-projects skslam-pac and skslam-poc define the PAC and POC respectively.
The fourth sub-project, called skslam-core, defines new interfaces and services to
be shared within the SK-SLAM. Note that this design allows independence across
components within the SLAM and enables new entities to be plugged in and out.

The DS-SLAM obtains generic components from the G-SLAM using OSGi ser-
vices, thus creating a new SLAManagerContext. This SLAManagerContext ini-
tialises references to the new generic components that will be part of the concrete
SLAM. Figure 8 depicts how the SLA manager uses the G-SLAM service to obtain
its own generic components.

t al.M.A.R. Gonzalez e

The Anatomy of the Generic SLA Manager 183

...

OSGi Platform

G-SLAM

DOMAIN-SPECIFIC

SLAM

PAC

POC

G-Components

1. createContext

3. Injection of new
instances of
G-Components 2. Invocation of

Builder on each
G-Component

ProtocolEngine

SyntaxConverter

TemplateRegistry

SLARegistry

MonitoringManager

AdvertisementClient

Authorization

Fig. 8 SLA Manager Context

The following Java snippet shows how to easily obtain a new set of G-
Components using G-SLAM services exposed via OSGi. Spring DM provides Ser-
viceReference annotation, which enables the signed method to get the G-SLAM
service ’gslamServ’ by injection.

@ServiceReference
public void setGslamServices(GenericSLAManagerServices gslamServ)
{

SLAMAnagerContext context = gslamServ.createContext();
}

Fig. 9 Getting a context from G-SLAM

The object context contains references to G-Components attached to the DS-
SLAM. For instance, if the recently created SLAM needs to access its SLARegistry
or ProtocolEngine, the required code is as below.

184

{
…

 context.getProtocolEngine().initiateNegotiation(…);
 …

context.getSLARegistry().getSLAs(…);
}

Fig. 10 Injection of G-Components

8.1 Maven Integration

The skeleton component provides a maven plug-in implementation called maven-
slam-plugin. This plug-in enables the generation of a basic DS-SLAM based on the
SK-SLAM (Figure 7) via simple maven commands.

@echo off

SET PARAM0=generate
SET PARAM1=-Dskeleton.directory.generate=/repository

mvn %PLUGIN%:%PARAM0% %PARAM1% %PARAM2% %PARAM3%

 script

SET PARAM3=-Dskeleton.dsslam.namespace=org.slasoi.usecases.b3
SET PARAM2=-Dskeleton.dsslam.name=b3slam

SET PLUGIN=org.slasoi.slam.factory:maven-slam-plugin:0.1-SNAPSHOT

Fig. 11 Maven integration of Skeleton-SLAM

Figure 11 shows the steps required to generate a new DS-SLAM. Note that the
plug-in parameters allow specification of the directory where the SLAM will be
generated, the name of the SLAM and the namespace for all classes and references
that will be part of the generated SLAM.

After running this script, the DS-SLAM will contain following directories.

t al.M.A.R. Gonzalez e

The Anatomy of the Generic SLA Manager 185

/repository/B3 - SLAM

+ b3slam-main
+ src

java
resources

+ tests
pom.xml
readme.txt

+ b3slam-core
+ src

java
resources

+ tests
pom.xml
readme.txt

+ b3slam-pac
+ src

java
resources

+ tests
pom.xml
readme.txt

+ b3slam-poc
+ src

java
resources

+ tests
pom.xml
readme.txt

Fig. 12 B3-SLAM example

9 Conclusions

In this chapter, we have described the plug-in-based architecture of the Generic
SLA Manager, also known as G-SLAM. This SLA manager offers a set of generic
components for managing the entire SLA life cycle and these can be easily reused
by a domain-specific SLA manager. The dynamic features of G-SLAM are assisted
by the OSGi platform with SpringDM, and enable the customisation or reuse of
components, the integration of new components with minimal effort, and even
swapping of components at runtime. Components such as the SLA Registry and
Template Registry offer a consistent mechanism for storing SLAs and maintaining
their historical information.

The Skeleton SLA manager provides a tool that assists with the initial phase
of the implementation of a new domain-specific SLAM. Because this tool is
integrated as a maven plug-in, its invocation is highly flexible with few parameters.

186

References

[1] OSGi Service Platform Release 4 http://www.osgi.org/
Specifications/Reference

[2] OSGi Alliance, JSR232 Reference Implementation http://www.osgi.
org/JSR232/RI

[3] Andrieux, Alain and Czajkowski, Karl and Dan, Asit and Keahey, Kate
and Ludwig, Heiko and Nakata, Toshiyuki and Pruyne, Jim and Rofrano,
John and Tuecke, Steve and Xu, Ming: Web Services Agreement Speci-
fication (WS-Agreement), http://www.ogf.org/documents/GFD.
107.pdfPublishedMay252007

[4] Jinks P.: BNF, Syntax Diagrams, EBNF. 2004, http://www.cs.man.
ac.uk/˜pjj/bnf/bnf.html.

[5] Shin, Sang: Introduction to JSON (JavaScript Object Notation), http://
www.javapassion.com/ajax/JSON.pdf

[6] Chinnici, Roberto and Weerawarana, Sanjiva and Ryman, Arthur and Weer-
awarana, Sanjiva: Web Services Description Language (WSDL) Version
2.0 - W3C Recommendation 26 June 2007, http://www.w3.org/TR/
wsdl20/wsdl20.pdf

[7] Kotsokalis, C. and Yahyapour, R. and Rojas-Gonzalez, M.A.: SAMI: The
SLA Management Instance. Fifth International Conference on Internet and
Web Applications and Services (ICIW), Barcelona, Spain

[8] Snyder, Bruce and Davies, Rob and Bosanac, Dejan: ActiveMQ in Action
http://www.manning.com/snyder/snyder_meapch1.pdf

[9] Kotsokalis, C and Yahyapour, R. and Rojas-Gonzalez, M.A.: Modeling Ser-
vice Level Agreements with Binary Decision Diagrams. ICSOC-ServiceWave
’09 7th International Joint Conference on Service-Oriented Computing.

[10] SpringSource Enterprise Bundle Repository http://ebr.
springsource.com/repository/app/

[11] SLA@SOI Framework: SLATemplate Registry, http://sourceforge.
net/apps/trac/sla-at-soi/wiki/SlaTemplate

[12] SLA@SOI Framework: SLA Registry, http://sourceforge.
net/apps/trac/sla-at-soi/wiki/GenericSlaManager/
SLARegistry

t al.M.A.R. Gonzalez e

http://www.osgi.org/
http://www.osgi
http://www.ogf.107.pdfPublishedMay252007
http://www.ogf.107.pdfPublishedMay252007
http://www.cs.man
http://www.javapassion.com/ajax/JSON.pdf
http://www.javapassion.com/ajax/JSON.pdf
http://www.w3.org/TR/
http://www.manning.com/snyder/snyder_meapch1.pdf
http://ebr
http://sourceforge
http://sourceforge

A Generic Platform for Conducting SLA

Negotiations

Abstract In service-oriented systems, negotiating service level agreements (SLAs)
occupies a central role in the service usage cycle. It is during negotiations that par-
ties are brought together in an interactive mechanism determined by the negotiation
protocols. The choice and description of negotiation protocol determines the scope
of information flow which in turn influences convergence upon an agreement. In this
chapter, we observe the state of the art on negotiations and introduce the generic ne-
gotiation platform developed for the SLA@SOI framework. We strive for a generic
approach for protocol description and execution that also caters for domain-based
rationality and ease of adoption.

1 Introduction

Procuring software as a negotiated service is gaining popularity for various busi-
ness and technological reasons [7, 9]. Various offshoots of this paradigm include
Software as a Service (SaaS), Infrastructure as a Service (IaaS) and Platform as a
Service (PaaS). These emerging business models have an inherent potential to re-
duce the Total Cost of Ownership (TCO) and improve Return on Investment (ROI).
Traditionally, software is purchased under a license and used accordingly. Under the

Edwin Yaqub, Philipp Wieder, Constantinos Kotsokalis
TU Dortmund University, August-Schmidt-Strasse 12, 44227 Dortmund, Germany,
e-mail: {edwin.yaqub,philipp.wieder,constantinos.kotsokalis}@
tu-dortmund.de

Valentina Mazza, Liliana Pasquale
Politecnico di Milano, piazza L. Da Vinci, 32, 20133 Milano, Italy,
e-mail: {vmazza,pasquale}@elet.polimi.it

DOI 10.1007/978-1-4614-1614-2_12, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 187

Edwin Yaqub, Philipp Wieder, Constantinos Kotsokalis, Valentina Mazza, Liliana
Pasquale, Juan Lambea Rueda, Sergio Garcı́a Gómez, and Augustı́n Escámez
Chimeno

Juan Lambea Rueda, Sergio Garcı́a Gómez, Augustı́n Escámez Chimeno
Telefónica Investigación y Desarrollo, Madrid, Spain,
e-mail: {juanlr,sergg,escamez}@tid.es

188 E. Yaqub et al.

new ”aaS” models, the user subscribes to a software [17]. This is determined by a
process of negotiation expected to converge on an agreement between the service
customer and the service provider. During negotiation, the software is tailored to a
consumer’s needs and provider’s capabilities.

Hence, the ”as a service” paradigm injects flexibility to the notion of software
usage. In an open market, as envisaged by service-oriented computing, this flexi-
bility becomes a necessity, as usage aspects like cost and quality cannot be fixed
beforehand; rather, they depend on the current situation of supply and demand in
the market [12]. Analogies to the stock exchange market are often made to explain
this paradigm.

Negotiating parties are brought together through negotiation protocols, which
determine the rules of engagement. Various styles have been observed, varying
from simple take-it-or-leave-it to multi-round negotiations and even more complex
auction-like interactions. These have been studied extensively in the literature under
the context of automated negotiations, as we present in Section 2.

A negotiation protocol determines the cardinality of parties involved, their roles,
the visibility of the offers exchanged, session management, bounds for negotiation
rounds, and so on. Usually, a dedicated software machinery is required to exe-
cute negotiation protocols, so that the negotiating agent may perform its domain-
specific functionality either as a client or provider of the service under negotiation.
In SLA@SOI, this software machinery is developed as a generic negotiation plat-
form. The platform is designed to abstract from the lower-level functionality, which
tends to get domain-specific, by allowing a loose coupling with the planning and op-
timisation component (see Chapter ‘GSLAM – The Anatomy of the Generic SLA
Manager’), such that a strategy is used to evaluate each proposal to maximise a
utility function.

To enter the market, providers often advertise their services using publishing
templates. Templates express the functional and non-functional properties of a ser-
vice, along with the necessary constraints to tailor it as a concrete offer. A single
service may be advertised through multiple templates. Customers shortlist providers
based on templates of interest and use template(s) to initiate a particular negotiation.
Template-based negotiations have been implemented by the Web Service Agree-
ment (WSAG) framework (lately as Web Service Agreement Negotiations) [1, 20]
and IBM’s WSLA framework [10]. The SLA@SOI framework has also adopted
template-based negotiations. Using these templates, offers and counter-offers are
exchanged between the negotiating parties in a sequence determined by the negoti-
ation protocol. In the best case, an agreement is reached and documented as a Ser-
vice Level Agreement (SLA). The provider provisions the agreed upon resources
and the customer starts to use the service from the time SLA comes into effect. The
customer abides by the agreed usage levels and the provider maintains the agreed
quality of service levels. In case of violations, penalties are enforced. An SLA may
be need to be renegotiated if customers experience a change in service’s demand, or
the provider needs to readjust its resources.

A Generic Platform for Conducting SLA Negotiations 189

2 State of the Art

Negotiation has gained a lot of interest in research. Various concepts from eco-
nomics, artificial intelligence and game theory have been combined to address
negotiation-related concerns through interdisciplinary approaches.

On theoretic lines, one of the first formal analyses of the negotiation process was
carried out by John Nash [11] in his work on one-to-one bargaining and later on
non-cooperative games. This popularised game theory, and later led to its inception
in computer science, especially among distributed intelligent agents [26]. Several
phenomena have been analysed when agents negotiate pursuing individual strate-
gies. Some of these are summarised here:

• Pareto efficiency: If no agreement improving the utility of one of the negotiating
parties can be found, the negotiation is considered to be Pareto efficient.

• Stability (Nash equilibrium): Two strategies are said to be in Nash equilibrium if
they are the best for each of the parties involved in the negotiation. There might
be multiple equilibria or none at all.

• Cooperative/non-cooperative: If the aim of a certain negotiation is to maximise
the utility functions of each of the partners involved in the negotiation, the nego-
tiation is said to be cooperative. On the other hand, when parties only take care
of their own interests, the negotiation is non-cooperative.

Several frameworks and Negotiation Support Systems (NSS) have been proposed
in the literature. OPELIX [16] is a European project that permits a customer and a
provider to have fully automated bilateral negotiations. The OPELIX architecture
implements all the fundamental phases of a business transaction: product offers and
discovery, a negotiation process, payment activities, and the delivery of the product
to the customer. However it does not support sophisticated negotiation protocols,
rather it is restricted to bilateral negotiations.

Inspire [15], Aspire [14] and e-Agora [6] are related projects developed by Con-
cordia University (Montreal) in conjunction with Carleton University (Ottawa). In-
spire [15] supports human operators in managing bilateral negotiations, managing
offers and counter-offers made by the participants. Functions guiding the decision
of each participant are kept confidential.

Aspire [14] improves upon Inspire by providing negotiation support through in-
telligent agents that make suggestions to users regarding what operations to per-
form. Note that agents do not completely automate the negotiation process, but only
provide support in taking decisions; they are completely aware of the status of the
negotiation sessions, and implement a specific negotiation strategy defined in terms
of weights on negotiation variables and objective functions.

The e-Agora [6] project provides a complex marketplace in which users interact
through autonomous intelligent agents. The system provides a process model and a
set of supported protocols. The process is defined as a series of activities and phases;
protocols are defined by means of rules and restrictions on negotiation activities.

Kasbah [2] allows potential buyers and sellers to create their own agents, assign
them some strategic directions, and send them to a centralised marketplace for ne-

190 E. Yaqub et al.

gotiations. Support is limited to bilateral negotiations. The only valid action in the
distributive negotiation protocol is for buying agents to offer a bid to sellers. Selling
agents respond with a binding ”yes” or ”no”. Given this protocol, Kasbah provides
buyers with several negotiation strategies that determine the function for increasing
bids for a product over time.

AuctionBot [21] offers a versatile online auction server. Software agents are pro-
vided that conduct auctions on the basis of particular parameters: participation (i.e.,
number of participants), discrete goods (bids are allowed only for integer quanti-
ties) and bidding rules that determine acceptability and improvement of offers and
closing conditions.

ASAPM [18] is multi-agent system that allows automated negotiations using the
FIPA Iterated Contract Net Protocol (ICNP). Agents negotiate over quality of ser-
vice (QoS) terms and the ICNP accommodates this by allowing multiple rounds of
negotiation.

BREin [13] provides a broker-based framework for conducting SLA negotia-
tions. A multi-tier negotiation protocol is used that is based on the FIPA Contract
Net Protocol. The protocol scope is extended to allow for negotiation interactions
among different service chains.

CAAT [19] is another framework that can be used to design multi-agent systems
for automatic bilateral and trilateral negotiations. The negotiation protocol allows
valid sequences of interactions using messages built upon the FIPA Agent Com-
munication Language (ACL). An ontology defining communication semantics is
developed and used in messages to convey a certain action.

The approaches presented above make interesting advances towards automated
negotiation, yet they are not flexible enough to design custom interaction behaviours
or to easily customise negotiations for individual application domains.

To this end, SECSE [8] provides a flexible infrastructure that can be tailored in
terms of multiplicity, workflow, protocol and decision model to fit a specific ap-
plication domain. The architecture of the negotiation framework is composed of a
marketplace that harbours multiple agents. Each agent is associated with a specific
negotiating participant and a negotiator component. Negotiators interface human
participants with the negotiation framework through GUIs that allow them to place
offers and counter-offers. Additionally, a built-in decision model or user-defined
decision model can be encapsulated to execute automatic negotiations. SECSE sup-
ports hybrid negotiations, where some participants are automated agents while oth-
ers are human beings. A participant may exploit a negotiation coordinator, which is
responsible for coordinating the actions taken by its various negotiators. The market-
place acts as an intermediary in all interactions between the participants, providing
validity checks for the offers exchanged. These checks are based on the structure and
current state of the negotiation workflow. To make the search for agreements more
efficient, the marketplace provides a mediator component, which guides the gener-
ation of offers towards a convergence of the individual objectives. This, however,
requires that participants share their objectives with the mediator. The negotiation
framework allows designers to define their negotiation workflow as a state chart

A Generic Platform for Conducting SLA Negotiations 191

using ArgoUML, and their negotiation protocol as a set of rules in the JBoss rule
syntax.

WSAG [1] is a standardising effort from the Open Grid Forum (OGF) delivers
a specification for web-service-based agreements. A language is developed that can
be used to specify an agreement template and standard operations for managing the
life cycle of the service. In addition, it provides a negotiation protocol that allows
for take-it-or-leave-it styled bilateral negotiations. More recently, work on Web Ser-
vice Agreement Negotiation (WSAG-N) [20] has addressed broadening its scope to
specify custom interaction behaviours and thus support a host of negotiation proto-
cols written as per given specifications.

Analysing the architecture and design approaches proposed for the NSS, dif-
ferent patterns are observed: 1) broker-based architectures, where a broker compo-
nent manages one-to-one negotiations on behalf of involved parties; 2) marketplace-
based architectures, where the parties involved in M-to-N negotiations are managed
by an intermediate marketplace (approaches 1) and 2) require negotiation partici-
pants to expose their preferences to the negotiation framework); and 3) independent
agents negotiate with each other without mediation. These patterns freely compete
or cooperate based on individual rationality. From the protocol description perspec-
tive, we observe rule-based approaches where business rules regulate the negotiation
process, use of ontologies and schemas represent message content and semantics,
and negotiation protocols have parameter-based configurations.

3 Protocol Engine

In SLA@SOI, agents modelled as SLA managers (see also Chapter ‘GSLAM –
The Anatomy of the Generic SLA Manager’) conduct automated negotiations using
a generic platform called the Protocol Engine. The Protocol Engine is an integral
component of the Generic SLA Manager and is therefore available to all concrete
implementations of GSLAM. The Protocol Engine establishes communication be-
tween negotiating parties by using a negotiation protocol. The negotiation protocol
in this text does not refer to a low-level communication protocol like TCP or routing
protocols like IP. In fact, it refers to a higher-level interaction mechanism that is em-
ployed by the negotiating parties under a unique context. This context is called the
negotiation session and is managed by the Protocol Engine at each negotiating end.
In SLA@SOI, a flexible approach to encoding negotiation protocols has been de-
veloped. The basic idea circulates around modelling interaction behaviour as a state
machine. This approach is further discussed in Section 4. In addition to interaction
behaviours, the negotiation protocols may consider domain-sensitive content that
may affect negotiations, keeping in sight past negotiation experience and current
business policy. The Protocol Engine, however, is designed to operate at a higher
level of abstraction than the negotiation protocols, and is therefore able to execute
them without tight coupling to the domain or universe of discourse served by its
SLA manager. Domain agnosticity of the Protocol Engine, combined with domain

192 E. Yaqub et al.

sensitivity of the negotiation protocols, allow SLA@SOI to achieve a generic mech-
anism for conducting automatic negotiations among various SLA managers.

3.1 Design

The functionality provided by the Protocol Engine is broken up into three tiers, as
shown in Figure 1.

State Management

Negotiation Management

Message Management

Fig. 1 Tiers of the Protocol Engine

• Message management: This tier acts as the Protocol Engine’s faćade to the out-
side world. All negotiation requests and responses are handled here by a singleton
message handler component. The message handler implements an INegotiation
interface, as seen in Figure 2, which provides all operations needed to conduct
negotiations. This interface is exposed as a web-service for remote access. A
client program offered by the SyntaxConvertor component (as described in Chap-
ter ‘GSLAM – The Anatomy of the Generic SLA Manager’) of the GSLAM is
used to invoke operations of the web-service. The message handler passes incom-
ing requests to the negotiation management tier. Additionally, it posts requests
from the negotiation management tier to the negotiating parties, as in the case of
the initiateNegotiation and negotiate operations.

• Negotiation management: This tier allocates a negotiation manager for each ne-
gotiation. The negotiation manager maintains the negotiation session identifiable
by a unique identifier. This identifier is used by the negotiating parties in subse-
quent operations. The session is initialised using two artifacts: a) the negotiation
protocol and b) the template(s) of the service under negotiation. The session also
stores information such as the involved parties, offers received, counter-offers
sent, reasons for cancellation or termination of SLAs (when applicable) and pro-
tocol parameters. This tier further collaborates with the state management tier
to ensure that the protocol rules are abided by before control is handed over to
the planning and optimisation (POC) component (see Chapter ‘GSLAM – The
Anatomy of the Generic SLA Manager’).

• State management: This tier implements a state engine that maintains the states
of the negotiation based on the execution of the state machine as defined in the
negotiation protocol. In SLA@SOI, the protocol is encoded using rules. The state

A Generic Platform for Conducting SLA Negotiations 193

management tier therefore acts as a wrapper over a rule engine. It implements a
feedback control loop by passing events to the rule engine corresponding to the
invoked operations, and receiving the processed results. Inside the state engine,
protocol-specific events are converted to rule-engine-specific commands and vice
versa.

Figure 2 shows an architectural view of the Protocol Engine.

S L A M

P r o t o c o l E n g i n e

State Engine
Negotiation

Manager

Message Handler

Rule Engine

Planning And
Optimization

Feedback

Events

INegotiation

initiateNegotiation(SLATemplate slaTemplate)

SLATemplate[] negotiate(String negotiationID, SLATemplate slaTemplate)

Customization customize(String negotiationID, Customization customization)

SLA createAgreement(String negotiationID, SLATemplate slaTemplate)

cancelNegotiation(String negotiationID)

renegotiate(UUID slaID)

terminate(UUID slaID)

IControl

setPolicies(String policyClass, Policy[] policies)

Policy[] getPolicies(String policyClass)

E
xposed

Interfaces

commands

Fig. 2 Architecture of the Protocol Engine

194 E. Yaqub et al.

4 Protocol Description

Negotiation protocols have been widely studied in the literature. Before we present
the objectives set for our work, and the resulting approach we developed, it is worth-
while to have a walk through the closely related work.

4.1 Related Work

Negotiations are best described as a process with multiple aspects. Negotiation pro-
tocol determines how negotiating parties are brought together and the interaction
behaviour that follows (e.g., which sequence of messaging is allowed and how the
negotiation is concluded or terminated). As seen in Section 2, most NSS support
restricted interaction behaviour for conducting negotiations. Further on, although
not directly controlled by the protocol, the messaging mechanism (synchronous or
asynchronous) upon which an interaction mechanism is based is also an important
factor for agents. In attempts to support a host of protocols as required, research ef-
forts have been made to generalise these mechanisms and related characteristics to
abstract from any single protocol. It is in this context that we observe a trend towards
employing rule-based approaches to capture protocol semantics that are understood
unambiguously by the negotiating agents. Despite this commonality, each solution
differs in its scope, objectives and design approach.

In [22], negotiation rules are studied under the context of auctions. Three activ-
ities are extracted as applicable to all auction protocols: handling of requests, com-
puting exchanges, and sharing of intermediate information helpful to reach a con-
clusion. The activities are complemented with a set of standard parameterised rules
that impose restrictions: rules related to bids, computing exchange (counter-offers),
and the visibility of bids among participants, for example. Although acknowledged,
the structuring of these activities and rules to model a custom interaction behaviour
is left to the protocol designer. On somewhat similar lines, Jennings et al. [3] have
developed a negotiation framework that can be used to model a variety of negoti-
ations. They provide a taxonomy of predefined rules and a simple interaction pro-
tocol that uses these rules to realise a certain negotiation mechanism based on an
asynchronous mode of communication as specified by FIPA ACL messaging. In
addition, an OWL-Lite-based ontology language has been developed to represent
service templates and offers. Both [22] and [3] target price-centric negotiations that
try to build upon well-engineered rule sets. Although befitting controlled traditional
auction settings, these approaches become restrictive when it comes to SLA negoti-
ations taking place in open world service-oriented markets.

SLA negotiations are usually based on service templates that the service
providers make publicly available for negotiation. The templates contain a set of
properties, with price being just one of them. Most of these properties concern the
quality of service (QoS) that the customer and the provider negotiate to agree upon.
Each QoS property contains a set or range of values that the customer may choose

A Generic Platform for Conducting SLA Negotiations 195

from. This is a fundamental shift from a single attribute price-centric model to-
wards a multi-attribute model. Needless to say, a single template may also be used
to conduct multi-unit negotiations, which usually require special considerations as
in multi-commodity auctions. The problem is further complicated by the fact that
in service-oriented markets, most agents are self-interested and would not like to
share information related to their business objectives or utility-maximising func-
tions. This introduces challenges for the above-mentioned approaches, which for
instance try to deliver a standard rule for judging improvement in offers received in
subsequent negotiation rounds. Among self-interested agents conducting SLA nego-
tiations, complicated correlations among the negotiable properties are kept private.

A generic approach for conducting SLA negotiations therefore requires more
flexibility and loose coupling between the domain-specific and generic aspects. An
attempt to draw this fine line has been made in [25], where a set of generally ap-
plicable negotiation parameters have been identified and implemented as an XML
language. A meta-negotiation phase allows the negotiating agents to fix the values
of the negotiating parameters that serve as a concrete negotiation protocol. Some pa-
rameters include party roles, permissions, cardinality, admission credentials, starting
and termination criteria. Rule-based restrictions can be appended to parameters in
external rule languages without limiting choice. In addition to multilateral negotia-
tions, bilateral negotiations are also given due consideration. The language inherits
its service description and guarantee term constructs from WS-Agreement.

4.2 Design

In the SLA@SOI project, a broadly scoped meta-model called SLA* has been
developed to describe a service template that includes negotiable QoS properties,
provider information and more1 . Negotiations take the service template into ac-
count. This serves to clearly differentiate the subject of negotiation (i.e., the QoS
terms of the service) from the aspects that govern the negotiation process. In this
section, we present our methodology in representing the negotiation process. We
abstract this process as a set of phases that can be structured together as a general
purpose state machine (GPSM). This representation is highly generic and is termed a
generic protocol that basically serves to develop an interaction behaviour. We further
employ a customisable parameter-oriented approach to transform the generic proto-
col into a concrete negotiation protocol that would govern negotiation behaviour. In
the following section, we first describe the GPSM and how the approach is modeled,
making it easy to plug protocols into our execution platform: the Protocol Engine.
Although not related to the field of negotiation, we do draw some design principles
from past experience in encoding and executing medical protocols intended for the
personal health records domain [28].

1 The model is described in full detail in Chapter ‘The SLA Model’

196 E. Yaqub et al.

We adopted event-driven design in liaison with modestly engineered rules to
reach our technical objective: specialisation of generic negotiation protocols still
able to be executed in a standard manner. The generic negotiation protocol is struc-
tured as a GPSM that abstracts upon different phases of negotiation, as shown in
Figure 3. The generic protocol provides a reference interaction behaviour; however,
the approach does not restrict the protocol designer to a given state set, or to any
particular structure, thereby allowing the design of custom interactions. The GPSM
comprises five states: initialise, customise, negotiate, decide and end. At any point
in time, the negotiation process resides in a single state. Each state determines what
operations are allowed or disallowed by entertaining the trigger events in a certain
manner. This also determines the next state to which the machine will transit. The
protocol is encoded using rules that are divided into two categories: The first cat-
egory comprises generic rules that encode the state machine; a reference rule set
is provided for GPSM. The second category comprises domain-sensitive rules that
take into account an agent’s local considerations when conducting the negotiation.
Before addressing the encoding details for the rules, we briefly describe the seman-
tics of the five GPSM states.

initialize customize negotiate decide

end

Fig. 3 A General Purpose State Machine

• initialise: This state represents establishment of a negotiation session between
negotiating parties. A unique identifier is assigned and used by involved par-
ticipants for conducting subsequent operations. This state is mandatory and is
influenced by the arrival of an initialisation event.

• customise: This optional—but important—state follows the initialise state and
constitutes a customisation mechanism where negotiating parties attempt to cus-
tomise generic protocol parameters. An output is a concrete protocol for govern-
ing subsequent behaviour. This state is influenced by the arrival of a customise
event. More details on the customisation mechanism are provided in Section 5.

• negotiate: In this state, parties negotiate with each other by submitting offers and
counter-offers to reach an agreement (SLA). Usually multiple rounds would be
required to conclude this state. This state is influenced by proposal-related events.

A Generic Platform for Conducting SLA Negotiations 197

• decide: This state determines if negotiation can be gracefully concluded. It is
reached if an agreement creation is requested, negotiation rounds are consumed,
or a timeout occurs. Several events may trigger this state.

• end: This state marks the end of negotiation, which could possibly result in the
creation of an SLA.

A lightweight data model has been developed that provides classes for concepts
like events, protocol parameters, negotiation sessions, and states. Generic categories
of rules employ states to encode the state design pattern. A rule represents precon-
ditions specified in the IF part, that when met execute the post-conditions specified
in the THEN part. Rule qualification is driven by arrival or departure of events;
therefore rules are coupled with events to regulate success or failure scenarios. In
the case of the latter, appropriate exceptions are generated with a specialised mes-
sage as provided in the rule. A taxonomy of events has been realised as a result.
Following this simple rule-encoding scheme allows a loose coupling with the Pro-
tocol Engine component that is responsible for generating, passing and receiving
processed events from the rule engine that executes the negotiation protocol. Keep-
ing behavioural logic in rules inherits additive benefits of the rule-based approach:
for instance, the protocol remains maintainable over time, as it is humanly readable
and machine executable. Further, rules can be externally configured without requir-
ing code recompilation or deployment. Two reference rules representing a success
and failure scenario are shown in Figure 4.

Negotiation protocols are divided into two basic categories: bilateral and multi-
lateral negotiations. For proper demarcation, these are kept under distinct negotia-
tion interfaces and are to be provided over different ports. The interfaces provide
actual operations that the client programs may use to conduct negotiations. Our pro-
tocol description approach proves beneficial when negotiation interfaces are con-
joined with behaviour-regulating rules while maintaining a plethora of information
in the session associated to the ongoing negotiation.

Session management is important for the seamless functioning of other compo-
nents involved in performing negotiation. In this regard, the planning and optimisa-
tion component (POC) plays a special role. It acts as the local executive controller
of the SLA manager. The POC implements domain- and use-case-specific strategies
that drive negotiation from the back seat. A strategy implements some decision-
making logic to process an incoming offer and generate counter-offer(s) by consid-
ering the current state of available resources as well as business objectives. Further
on, the POC resolves service dependencies (if any) and decides when to outsource
incoming requests to third parties by conducting nested negotiations. For reasons
of convergence, POCs benefit from information available in the negotiation ses-
sion by analysing the offers exchanged with the negotiating party and its profile
(Section 5.1). This analysis provides a possibility of cooperation even among self-
interested agents by understanding their partner’s sphere of interest. In Section 5.2,
we outline how an optional critique may be provided by the POC to encourage a
negotiating partner to move future offers in a particular direction of interest, or to
pull him to a middle ground.

198 E. Yaqub et al.

IF
{ currentState : State(name == NEGOTIATE && status == RUNNING
 && currentRound <= ProtocolParameters.negotiationRounds) }
AND
{ allowedEvent : Event(name == PROPOSAL_ARRIVED) }

THEN
{ currentState.incrementNegotiationRounds(1) }
AND
{ update(currentState) }
AND
{ allowedEvent.setProcessedSuccessfully(true) }

IF
{ currentState : State(name == NEGOTIATE && currentRound >

 ProtocolParameters.negotiationRounds) }
AND
{ disallowedEvent : Event(name == PROPOSAL_ARRIVED) }

THEN
{ retract(currentState) }
AND
{ insert (new State(StateName.DECIDE && status = RUNNING)) }
AND
{ disallowedEvent.setProcessedSuccessfully(false) }
AND
{ disallowedEvent.setProcessingAfterMath(MAX_ROUNDS_VIOLATED) }

A rule demonstrating a success scenario

A rule demonstrating a failure scenario

Fig. 4 Reference rules

The justification for separating strategic behaviour from the negotiation protocol
is made on two levels: Firstly, strategies tend to get domain-specific, and secondly,
they have high computational intensity (as in case of composite services that per-
form QoS-aware service composition, a known NP-Hard problem [4, 5]). These
are therefore best served as black box implementations clearly separated from the
generic aspects of conducting negotiations. For these reasons, the protocol rules are
intentionally spared from implementing strategic behaviour: a functionality dele-
gated to the POC during negotiations (Figure 2).

4.3 Bilateral Negotiations

One of the most widely occurring forms of negotiation among independent agents
is bilateral negotiation. As bilateral negotiation serves most of the use cases con-
sidered in the SLA@SOI project, we have early adoption results for the same. In a
bilateral negotiation, a customer negotiates directly with a provider. If the provider
has further dependencies, nested or sub-negotiations are possible in a similar fash-
ion. A somewhat advanced scenario would involve a customer negotiating over a
product offered by a certain enterprise: The on-line business unit of this enterprise

A Generic Platform for Conducting SLA Negotiations 199

is represented by an instance of SLAM called BSLAM. The BSLAM could depend
upon external software services, offered by an agent called the Software-SLAM or
SWSLAM. The SWSLAM in turn must deploy and instantiate its software services
over an infrastructure capable of delivering a guaranteed QoS as required by the
BSLAM. For this, the SWSLAM needs to negotiate with an infrastructure service
provider, represented by its agent, called INSLAM. This scenario helps expand the
negotiation scope over multiple providers and exposes a possible chain of depen-
dencies to be resolved through negotiations. This depiction realistically sketches
how SLA negotiations would be employed in service-oriented markets. Interest-
ingly, each stage in this potentially long hierarchy of negotiations can negotiate
successfully with the next agent in line in a bilateral manner, by customising the
negotiation protocol with parameter values considered realistic.

Request multiplicity is taken care of by conducting multiple bilateral negotia-
tions in parallel. The responsibility of having a unified view of currently available
resources at any time considering ongoing tentative reservations is kept internal to
POC. A simplified interaction is illustrated in Figure 5. Here, a customer initiates
negotiation with a provider and receives a negotiation identifier. This is used in
subsequent steps, first to customise the protocol, and later to negotiate offers and
counter-offers. Both of these may require certain iterations. At some point, the cus-
tomer requests an agreement by submitting a final offer. If accepted, the provider
sends back the SLA, which is then provisioned.

Fig. 5 Simplified interaction

As an extension of our work, multilateral negotiations are being considered under
the context of auctions.

200 E. Yaqub et al.

5 Negotiation Rationality

Negotiation technologies have garnered a lot of interest in recent years, and are seen
as a key coordination mechanism for the interaction of providers and consumers
in electronic markets. Such technologies provide means to reduce the costs of ef-
ficiently managing resources in fast-changing service-oriented markets. Their im-
portance surfaces especially in the case of multi-attribute SLA negotiations, where
agents engage in sophisticated protocols to intelligently negotiate over complex ser-
vices to achieve mutual gain.

Complex services are usually offered by composing or aggregating other ser-
vices. Considering time and other restrictions imposed by the negotiation protocols,
it becomes challenging to converge upon an agreement with the customer at one end
and possibly multiple providers at the other end. The dependencies among providers
require the establishment of a hierarchy of SLAs at negotiation time [27]. Therefore,
a sound rationale for conducting negotiations is of fundamental importance. Optimal
outcomes are obtained, as per cooperative game theory, by assuming maximum in-
formation on the objectives of the involved parties. In classical multi-attribute utility
theory [23, 24], the proposed solution is the use of an independent mediator that both
parties can trust to reveal their preferences. However, in the case of self-interested
agents doing business in e-commerce settings, it is not possible to determine what
mediators would be impartial or trustworthy for establishing the rationale.

Negotiation rationale determines the degree of feasibility of a negotiation. It also
serves to rule out infeasible negotiations. Infeasible negotiations are negotiations
that do not have a high chance of success. In the absence of a rationale, such blindly
instigated negotiations would consume precious system resources at both the cus-
tomer and provider end, where these resources could otherwise be utilised for pro-
ductive outcomes. In SLA@SOI, we cater for individual rationality by gathering
high-level information about the customer and the provider in the form of profiles.
Domain-sensitive rules may then be added to the negotiation protocol to compute
ranks for the negotiating partner, considering past experience and current business
policy. The domain-sensitive rules are an optional but useful part of the protocol that
may guide the negotiation process towards a faster convergence or conclusion. For
reasons of domain dependency, however, these rules cannot be provided out of the
box.

5.1 Profiles

Keeping business and negotiation requirements in view, we have modeled profiles to
contain information about these characteristics of the negotiating actors. For reasons
of brevity, only summarised features can be discussed here. The idea is to cross-
profile the negotiating party: that is, service customers profile the service providers
and vice versa. Additionally, the product or service being negotiated can also be
profiled by its provider. The profiles add value to the negotiation process by pro-

A Generic Platform for Conducting SLA Negotiations 201

viding negotiation- and business-related history that serves as an experience base.
This high-level information about the customer and provider is inspired from the
business perspective of negotiations. Domain-sensitive protocol rules raise the level
of abstraction of this information to determine ranks that allow judging of the ne-
gotiating party upon negotiation setup time. In the following section, we expand
this concept to shed light on how this high-level information forms the basis for
customising the generic negotiation protocol as hinted earlier in Section 4.2.

Providers may classify customers as companies or end users who are the direct
beneficiary of the negotiation. In case of former, the size of a company (charac-
terised as a small, medium or large enterprise) along with other factors can be con-
sidered by using a rule to determine, for instance, the number of negotiation rounds
one is willing to negotiate with this entity in the future. An abstract view of a cus-
tomer’s economic situation is also of importance for the provider. This is ascertained
by assessing punctuality in payment of dues against already established SLAs, and
the worth associated with the SLAs. Profiles also depict summarised penalty in-
formation that provides further insight into previously established SLAs. All these
factors can be processed by a rule that assigns a rank to the customer using current
business policy. Yet another rule may build upon this information to generate an
acceptable value for maximum counter-offers exchangeable during negotiations, for
example.

On the other side, customers are interested in conducting further negotiations
with providers that have delivered a good quality of service for previously estab-
lished SLAs, while avoiding providers who have not. Customers can also associate
a rank with a provider, based on the worth of the SLA under negotiation, past ser-
vices, and penalty satisfaction levels. Based on the ranks, strict business policies
may be encoded in yet other rules that blacklist or whitelist the negotiating partner.
If this criteria changes over time, only the related rules need modification, and this
does not jeopardise the overall negotiation behaviour. Other elements of interest for
doing business are aspects of location: These may restrict aspects of a business due
to laws in the country of the negotiating partner, or disallow trade of a certain prod-
uct in that country. This same information may allow higher prioritisation of another
negotiating partner if, for example, the business policy is to increase clientele in a
certain location for strategic reasons. Soft counter-offers may be generated by the
POC after considering the ranks and other profile information at negotiation time.
Hence, the profiles provide a degree of freedom for the POC to tune its algorithm
such that generated offers and counter-offers are personalised for the party, but also
in line with business objectives.

After considering the number of SLAs already made, providers may forecast
the selling frequency of a certain product and establish business derivatives such as
the minimum markup ratio/benefits (i.e., minimum sales required for the produc-
t/service to be profitable). These forecasts may also influence the degree of flexi-
bility shown while negotiating over the said product. Additionally, profile informa-
tion may serve to influence decisions regarding product retirement (i.e., terminating
agreements with a partner due to bad service, defaulting on payments, or penalty
situations). The latter may also be used to perform penalty-driven renegotiations.

202 E. Yaqub et al.

Customer and provider profiles can also log vital negotiation history, including
past attempts to negotiate, renegotiate, or terminate SLAs. The frequency of these
attempts, along with their outcomes, can be used by a rule to assign a rank for the
requested negotiation. As with the scenarios presented earlier, the negotiation rank
also may influence the customisation of future negotiations. For example, if the rank
is high, the customer can be considered faithful or promising, and the provider may
suggest a greater number of negotiation rounds or maximum counter-offers.

5.2 Protocol Customisation Mechanism

As mentioned in Section 4.2, the customise state allows negotiating parties to mu-
tually agree on values for any customisable protocol parameters that govern the ne-
gotiation. This is done by exchanging customisation suggestions. Domain-sensitive
rules come into action and set values to these parameters by coupling profile-based
ranks with business policy and customisable values suggested by negotiating part-
ners. This forms a pre-negotiation mechanism that may span several rounds until
consensus is reached. It is important that the parties share the same protocol param-
eters to avoid undesired anomalous behaviour in later stages, and this is achieved
through the protocol customisation mechanism. If consensus is not reached, negoti-
ation is aborted.

The customisation mechanism is an active part of ongoing work on the
SLA@SOI negotiation platform. We now summarise some of these customisable
protocol parameters.

• credentials allow parties to verify each other if such an understanding exists.
This could be an individual key under Primary Key Infrastructure (PKI)-based
certification environments.

• customizationRounds informs the negotiating partner that there will be an attempt
to reach consensus on customisable parameters in a particular number of rounds,
starting with two. This is a sliding value that may be extended during customisa-
tion. Nevertheless, at any point in time, each party may respect its own value and
end the customisation process as dictated by its side of the customisation rules.

• processTimeout determines the lifetime of the negotiation process. Negotiation
is considered invalid after this timeout has occurred.

• negotiationRounds determine the maximum allowed number of rounds for ex-
changing offers. If it is set to zero, negotiation will not take place.

• maxCounterOffers sets a cap on the number of counter-offers allowed in response
to a submitted offer.

• optionalCritiqueOnQoS serves as a tip to the POC to optionally annotate cri-
tiques on the QoS terms of generated counter-offers. Critiques may involve key-
words like INCREASE, DECREASE, CHANGE, and so on, thus helping to
convey a message to the negotiator to consider submitting values for which the
chances of reaching agreement is higher. In this way agents may guide or pull
each other in their direction of interest.

A Generic Platform for Conducting SLA Negotiations 203

• isSealed is of interest in multilateral negotiations such as auctions. For example,
it would be false for an English auction but true for First-Price-Sealed-Bid or
Vickrey auction.

In addition to above parameters, which are customised in a mutual manner, there
are parameters that remain non-customisable, to avoid sharing vital information.
These are especially applicable to auctions (e.g., minimum and maximum bidders,
auctioneer’s listening time to receive bids, and the start time of an auction).

5.3 Business Take-Up of Negotiations

Business requirements drive the negotiation process for each entity involved in the
negotiation. These requirements need to be met in addition to fulfilling customers’
QoS requirements. Profiling the negotiating parties can help in adapting negotia-
tions to a specific manner. From a business point of view, particular aspects of the
negotiation need to be controlled. As seen earlier, profiles can be used to customise
negotiations to better suit business goals, while assigning each negotiator a person-
alised negotiation field. Negotiation profiles can be applied and mapped to different
ranks, which are obtained by rules-mapping current business policy to past negoti-
ations and business information about the product, customer and provider involved.
Once ranks have been determined, negotiation commences in a personalised and ra-
tional manner. This lightweight approach helps manage and drive the negotiation,
while at the same time allowing it to benefit from volatile policy logic that can be
easily and rapidly updated in rules.

Business Negotiation Flow:

Aligned with business-level control of the negotiation, negotiations are materi-
alised in different adoption styles. Automatic, semi-automatic and manual negotia-
tion are the different proposed negotiation flows.

• Automatic negotiation: Agents negotiate directly with each other and exchange
offers and counter-offers that are automatically processed and generated. The
agents have preset decision-making capabilities and try to maximise or minimise
their own utility. Depending on the agents’ decision models, agents may or may
not attempt to cooperate with the other in converging upon an agreement.

• Semi-automatic negotiation: Automatic negotiation can be split in two halves:
the first half involves a special subset of cases in which business personnel could
be given manual control of the negotiation, while the second half includes those
other cases that can be managed automatically.

• Manual negotiation: In this scenario, business personnel receive customer offers
in real-time and make counter-offers or reject the offers by practicing full control
of the offers being exchanged.

Each of these behaviours is adopted by different use cases that use the SLA@SOI
framework. The framework provides necessary hooks and programmable interfaces

204 E. Yaqub et al.

to intercept the various interactions involved in negotiations to implement a cer-
tain negotiation flow. Early adoption results show that controlling the negotiation
flow becomes an important consideration for various businesses interested in the
SLA@SOI framework.

6 Conclusion

In this chapter, we reviewed the state of the art available on negotiations and pre-
sented our generic negotiation platform for conducting SLA negotiations. We illus-
trated the flexibility of our approach, which also takes into account domain-based
rationality. Early adoption results from use cases encourage us to extend our work,
while also considering contemporary efforts.

Diversity in research is expected to reveal new facts regarding the process of
automatic SLA creation, especially in areas such as nested dependencies, efficient
and fruitful optimisation algorithms, negotiation strategies that quickly converge
upon agreements, analysis of market trends, and party profiling. These areas have
been established as solid research fields but have not yet been fully exhausted. As
the field matures, scientific progress will be harnessed to produce tangible results
that will lead towards a successful service-oriented economy.

References

[1] Andrieux A., Czajkowski K., Dan A., Keahey K., Ludwig H., Nakata
T., Pruyne J., Rofrano J., Tuecke S., Xu M.: Web Services Agree-
ment Specification (WS-Agreement), https://forge.gridforum.
org/projects/graap-wg/.posted-at2006-09-05

[2] Chavez A., Dreilinger D., Guttman R., Maes P.: A Real-Life Experiment in
Creating an Agent Marketplace. In: Proceedings of the Second International
Conference on the Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM’97) (1997)

[3] Lomuscio A.R., Wooldridge M., Jennings N.R.: A Classification Scheme for
Negotiation in Electronic Commerce. Journal of Group Decision and Negoti-
ation (pp.31-56) 12(1) (2003)

[4] Ardagna D., Pernici B.: Global and Local QoS Guarantee in Web Service Se-
lection. In: Proceedings of the Third International Conference on Business
Process Management (2005)

[5] Bonatti P.A., Festa P.: On Optimal Service Selection. In: Proceedings of the
14th international conference on World Wide Web (2005)

[6] Chen E., Kersten G. E., Vahidov R.: An E-marketplace for Agent-supported
Commerce Negotiations. In: Proceedings of 5th World Congress on the Man-
agement of eBusiness (2004)

A Generic Platform for Conducting SLA Negotiations 205

[7] Dubey A., Wagle D.: Delivering Software as a Service. White paper, The
McKinsey Quarterly (2007)

[8] Di Nitto E., Di Penta M., Gambi A., Ripa G., Villani M.L.: Negotiation of Ser-
vice Level Agreements: An Architecture and a Search-Based Approach. In:
Proceedings of the 7th International Conference on Service Oriented Comput-
ing, ICSOC 2007 (2007)

[9] Elfatatry A., Layzell P.: Negotiating in Service-Oriented Environments. Com-
munications of the ACM 47(8), 103–108 (2004)

[10] Ludwig H., Keller A., Dan A., King R.P., Franck R.: Web Service Level Agree-
ment (WSLA) Language Specification 1.0 (wsla-2003/01/28) (2003)

[11] Nash Jr.J.F.: The Bargaining Problem. Journal of the Econometric Society
18(2) (1950)

[12] Bennett K., Layzell P., Budgen D., Brereton P., Macaulay L., Munro M.:
Service-based Software: The Future for Flexible Software. In: Proceedings
of the Seventh Asia-Pacific Software Engineering Conference (2000)

[13] Karaenke P., Kirn S.: Towards Model Checking and Simulation of a Multi-tier
Negotiation Protocol for Service Chains (extended abstract). In: Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2010) (2010)

[14] Kersten G.E., Lo G.: An Integrated Negotiation Support System and Software
Agents for E-Business Negotiation. International Journal of Internet and En-
terprise Management 1(3) (2003)

[15] Kersten G.E., Noronha S.J.: WWW-based Negotiation Support: Design, Im-
plementation and Use. Journal of Decision Support Systems 25(2) (1999)

[16] Hauswirth M., Jazayeri M., Miklos Z., Podnar I., Di Nitto E., Wombacher A.:
An Architecture for Information Commerce Systems. In: Proceedings of the
Sixth International Conference on Telecommunications (ConTEL) (2001)

[17] Turner M., Budgen D., Brereton P.: Turning Software into a Service. Proceed-
ings of the IEEE Computer Society 36(10), 38–44 (2003)

[18] Chhetri M.B., Mueller I., Goh S.K., Kowalczyk R.: ASAPM An Agent-based
Framework for Adaptive Management of Composite Service Lifecycle. In:
Proceedings of the IEEE/WIC/ACM International Conferences on Web Intel-
ligence and Intelligent Agent Technology - Workshops, 2007 (2007)

[19] Ncho A., Aimeur E.: Building a Multi-Agent System for Automatic Negotia-
tion in Web Service Applications. In: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems (2004)

[20] Waeldrich O., Battre D., Brazier F., Clark K., Oey M., Papaspyrou A., Wieder
P., Ziegler W.: WS-Agreement Version Negotiation 1.0 (2007). URL https:
//forge.gridforum.org/sf/go/doc15831?nav=1

[21] Wurman P.R., Wellman M.P., Walsh W.E.: The Michigan Internet AuctionBot:
A Configurable Auction Server for Human and Software Agents. In: Proceed-
ings of the Second International Conference on Autonomous agents (1998)

[22] P.R. Wurman, M.P. Wellman, and W.E. Walsh: Specifying Rules for Electronic
Auctions (2002)

206 E. Yaqub et al.

[23] Raiffa H.: The Art and Science of Negotiation. Harvard University Press
(1982)

[24] Raiffa H.: Lectures on Negotiation Analysis. PON Books, Harvard Law
School (1996)

[25] Hudert S., Eymann T., Ludwig H., Wirtz G.: A Negotiation Protocol Descrip-
tion Language for Automated Service Level Agreement Negotiations. In: Pro-
ceedings of the IEEE Conference on Commerce and Enterprise Computing
(2009)

[26] Weiss G.: Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. The MIT Press (2000)

[27] Theilmann W., Happe J., Kotsokalis C., Edmonds A., Kearney K., Lambea
J.: A Reference Architecture for Multi-Level SLA Management. Journal of
Internet Engineering 4(1) (2010)

[28] Yaqub E., Barosso A.: Distributed Guidelines (DiG): A Software Framework
for Extending Automated Health Decision Support to the General Population.
Journal of American Health Information Management Association (AHIMA)
(2010)

Part V

Management of the Business Layer

Management of the Business SLAs for Services

eContracting

Abstract The management of Service Level Agreements is a complex task that
requires to be specialized in the different domains it involves. Since SLA manage-
ment can eventually be an integral part of eContracting environments, several topics
have to be tackled in this layer: third parties management, Business Level Objec-
tives, penalties, etc. This chapter explains the foundations of such specialization in
relation to the business concerns. Specifically, it describes the business terms and
conditions that must be taken into account and the architecture of the business layer
of the project SLA@SOI. Moreover, the roots and more innovative aspects of the
business layer in the project are explained.

1 Introduction

Service-Oriented Architectures (SOAs) and the delivery of applications and re-
sources as services have consolidated into new methods for integrating and deliv-
ering functionality from vendors and providers. In recent years, an important effort
has been made to solve many of the technical and scientific challenges associated
with this approach. One of the challenges — and a main rationale of SOA— is
the creation of business environments in which providers and consumers can trade
services. The emergence of cloud computing technologies has fostered the need to
monetise the services provided, including software as a service (SaaS), platforms as
a service (PaaS), infrastructures as a service (IaaS), and so on.

Sergio Garcı́a Gómez
Telefonica I+D, Boecillo, Valladolid, Spain, e-mail: sergg@tid.es

Juan Lambea Rueda
Telefonica I+D, Madrid, Spain e-mail: juanlr@tid.es

DOI 10.1007/978-1-4614-1614-2_13, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 209

Sergio Garcı́a Gómez, Juan Lambea Rueda, and Augustı́n Escámez Chimeno

Augustı́n Escámez Chimeno
Telefonica I+D, Granada, Spain, e-mail: escamez@tid.es

210

Typical proposals for interaction and trading of services between providers and
consumers are e-marketplaces [3], e-contracting environments and service ecosys-
tems [1]. These frameworks usually convey different phases of the trading process.
This chapter considers four such phases: information, in which the technical and
commercial offer is published, shown and rated; negotiation, in which the busi-
ness and technical aspects are calculated and agreed upon; contracting, in which the
agreement is signed and the service provisioned; and runtime, in which the service
is delivered, managed, charged, reported and terminated, etc.

Once the relationship between a provider and a consumer is based on a monetary
transaction, the quality of the service provided, and the terms and conditions under
which it is offered, are of vital importance. SLAs become critical in this context,
and — given that elements of business are relevant to many common SLA manage-
ment tasks (negotiation, agreement, management of breaches, etc.), some business
guarantee terms must be natively considered in the management of services and
SLAs.

This chapter covers several aspects of services e-contracting, describing exist-
ing work, including SLA management in different phases of the process, as well
as explaining the functionality offered by the SLA@SOI e-contracting tools. It also
describes the business layer architecture and the business model for SLAs, and high-
lights future work and conclusions.

2 Business SLA Management in Current e-Contracting

Proposals

This section examines existing work in e-contracting. To the best of our knowledge,
there is no comprehensive proposal that covers the full e-contracting life cycle. For
that reason, this analysis is divided into the four above-mentioned phases (informa-
tion, negotiation, contracting and runtime).

2.1 Information

The information phase of e-contracting covers all activities related to defining,
publishing, browsing, searching and rating the commercial offer of a services e-
marketplace. In the context of SLA management, this means integrating the business
terms and conditions of an SLA model and the management of a products catalogue
into a business SLA templates registry.

As described in Chapter ‘The SLA Model’, several initiatives have attempted to
model automatically managed SLAs. However, these alternatives mostly focus on
modelling technical issues-related service definitions and guarantee term specifica-
tions. For instance, [25] proposes a semantic model for integrating business-oriented
service level management objectives with technical objectives that include pricing

Sergio Garcı́a Gómez, Juan Lambea Rueda, Augustı́n Escámez Chimeno

Management of the Business SLAs for Services eContracting 211

and payment terms, service installation, revisions and terminations, maintenance,
support, problem escalation procedures, and so on.

The Universal Service Description Language (USDL) enables modelling of busi-
ness terms in its business perspective [4], supporting availability, payment, pricing,
obligations, rights, penalties, bindings, security and quality. However, this specifica-
tion of services is decoupled from the specification of the SLA (WS-Agreement), an
approach that makes it difficult to integrate business-related elements into the SLA
management tasks.

Another important aspect of the information phase is the registration and discov-
ery of information about the service. Usual service registries are based on UDDI
(Universal Description Discovery and Integration) and more recently on LDAP
(Lightweight Directory Access Protocol) [7]. In the Telco environment, service de-
scriptions are usually registered and stored in service catalogues, which are an es-
sential component in new Operational Support Systems environments [1].

2.2 Negotiation and Offer Building

Negotiation is one of the most important and frequently tackled issues in SLA man-
agement, and is covered in Chapter ‘A Generic Platform for Conducting SLA Ne-
gotiations’. SLA negotiation in an e-contracting environment requires a broad ap-
proach that takes into account business terms relevant to both providers and cus-
tomers, providing a more efficient environment for partner management and ser-
vices trading [11].

There are several issues to be considered when negotiating and SLA from the
point of view of an e-contracting framework: better matching of providers’ and con-
sumers’ business goals [11], ranking of services based on price or quality, sensibil-
ity of offers and counter-offers on different issues (price, KPIs, etc.), past transac-
tions [3], and so on.

To increase flexibility, the negotiation process usually involves three topics [16]:
the negotiation protocol, or the rules that govern the interaction (participants, states,
valid actions); the negotiation objects, or the issue(s) the agreement is about; and
the decision-making model, or the strategy for assessing how to proceed during the
negotiation. This approach is also followed in [24] and [26], to implement state
machines for different negotiation protocols (fixed price, English auction, Dutch
auction, bilateral and multilateral bargaining and double auction, etc.). Depending
on the protocol, customers may require strategies and tactics for the negotiation of a
range of SLA terms for a given price range. Equally, providers may offer discounts
to a specific category of consumers based on their contextual information (customer
segment, location) or business potential (economic value, length of contracts, etc.).
In [27], a policy-based approach to automatically modelling these criteria in a bar-
gaining process is proposed.

Another important issue is offer building. Service environments are usually based
on the aggregation of services; thus, the individual SLAs of the atomic services

212

must be taken into account in the final offer [3]. When complex value chains are
created — in which a service consumer can be a provider of an aggregated service
— composing the QoS elements of a number of aggregated services is a challenging
task, since the nature of each parameter and the flow of aggregation [11] must be
considered. In [5], several SLA aggregation patterns useful to automation of the ag-
gregation process for cross-company hierarchical SLAs are explained. For example,
terms like price or penalties must also be aggregated from a business perspective.
Dynamic composition of an offer can include not only the bundling of services, but
also the current supply and demand or historical data [10], as well as the parameters
defined above. One added complexity when defining service prices is the pricing
schema (per transaction, per period) and the relationship between the different QoS
levels and price (absolute value, percentage value, etc) [19].

2.3 Contracting

Electronic contracts are used to specify the terms and conditions under which a ser-
vice is provided and consumed, and they represent the basis for a business-based
e-marketplace function. Even though the law-conformity of electronic SLAs is still
an open issue due to its complexity, and there are still many challenges to solve,
contracts are a important aspect of an e-contracting environment. A service con-
tract is a contract associated with a specific service that involves the parties to the
agreement, the service (including a description of the interfaces and expected in-
teractions), promises about the service provision and consumption, business issues
and legal procedures [13]. An important drawback of electronic contracts is infor-
mation structuring and reuse, and thus many proposals for establishing e-contracts
are based on contract templates: empty forms that must be filled [8].

SLAs can undoubtedly represent e-contracts, because they include, in the case of
SLA@SOI model, all the information related to the service being provided, includ-
ing business terms and guarantee terms. As mentioned above, there are a number of
languages defined to specify electronic contracts, such as Web Service Level Agree-
ment (WSLA) and WS-Agreement [14], and USDL [4] adds an SLA-decoupled
layer to specify business terms.

Another important aspect of the contracting phase is management of the contract
life cycle. Although there are already many commercial contract management tools
on the market, this topic presents a number of interesting challenges that improve the
efficiency when establishing a contract, help to reduce errors and risks, or improve
revenue forecasts. For instance, [6] presents a flexible framework for the automation
of service contracts based on standard SOA middleware and [17] shows a contract
management solution for multi-tenant SaaS applications whereby contractors may
customise and configure the contracted services. In [15], electronic contracting be-
tween agents is also tackled, providing interesting novelties as violation scale-up to
humans, SLA versioning, SLA hierarchies, contract dependencies and termination,
extension and renewal of contracts.

Sergio Garcı́a Gómez, Juan Lambea Rueda, Augustı́n Escámez Chimeno

Management of the Business SLAs for Services eContracting 213

2.4 Runtime

The most important business-specific SLA management processes during the run-
time phase are those related to calculating penalties derived from SLA breaches [22]
and, if possible, the self-adjustment processes that allow spare resources to be used
to prevent such violations and penalties before they happen. In [18], a method that
accounts for economic penalties caused by SLA violations is proposed such that
resources are monitored and allocated in the cloud with the aim of maximising a
single Business Level Objective (BLO): the revenue of the provider.

In [23], the effect of economic penalties caused by SLA breaches on providers
and customers is analysed. This study recommends giving priority to different SLOs
to minimise the effect of an undesired penalty or contract cancellation. In any case,
a third party — not the provider — must carry out the monitoring, SLA breach
detection, and eventual penalty allocation.

Following these arguments, [21] presents a method for defining policies that
modify the effects of SLA violations and penalties, depending on the cause of the
violation (i.e., if it is not the fault of one of the parties), with the aim of improving
long-term relationships.

3 An SLA-Aware e-Contracting Proposal

The business SLA management proposal of the SLA@SOI project focuses on inter-
actions between service providers and customers. This framework includes a num-
ber of innovative features that are presented below.

3.1 Comprehesive SLA-Aware e-Contracting Suite

The SLA@SOI e-contracting layer provides a tool for the back office management
of commercial offers made by service providers. This tool supports the definition
and characterisation of new products and the services on which they rely. The SLAs
of the atomic services that compose a customer-facing product are merged within
the tool’s holistic SLA framework, based on business rules that can be defined and
managed by an administrator. The business SLAs can be graphically defined by the
user to fit the commercial requirements of the product and the marketplace. This
characterisation includes:

• The management of a catalogue of atomic services and their business SLA tem-
plates (SLATs).

• The management of a commercial products catalogue and their SLATs.
• The definition of commercial offers: prices, discounts, promotions, etc.

214

• The specification of policies that must be taken into account when a customer
modifies some guarantee terms.

• The generation of business reports with data and graphs (SLA consumption, vi-
olations, etc.).

• The management of customer feedback.

The business SLA tool is completely integrated within the SLA@SOI architec-
ture and information model, and interacts with two main business components: the
business manager and the business SLA manager (Section 4). This framework is
intended to be part of a service providers’ infrastructure.

3.2 Customisation of Business SLA Definitions

An innovative aspect of this layer is the customisation of SLA definitions to con-
sider the requirements and preferences of both customers and providers. In this
sense, SLA@SOI aims to develop mechanisms for calculating the best business
SLAs for both parties during the negotiation and establishment phases. The infor-
mation required to carry out this business SLA assessment requires customer data
to be gathered and customer profiles to be retrieved from the provider’s Customer
Relationship Management systems.

The preferences and profiles of the customer and provider are currently defined
as promotions modelled with business rules associated with the offered products of
the marketplace. This approach enables the business tool to define special condi-
tions, depending on factors such as the socioeconomic situation of the customer, the
country of origin, etc. These rules can define additional discounts on price, special
SLAT options, and so on.

3.3 Business SLA Post-Sale Management

With respect to the representation and reporting of business SLA violations, the
main innovation of SLA@SOI is the adoption of an architecture that separates SLA
monitoring from SLA reporting and evidence representation. This separation is re-
quired since SLA guarantee terms might need to be monitored for different pur-
poses, each with different reporting requirements. To address the diversity of re-
porting requirements, SLA@SOI has developed a layered architecture wherein a
business SLA reporting module exists on top of the monitoring infrastructure of
the SLA@SOI framework, thus managing the reporting requirements. The primary
function of this component is to receive low-level monitoring information from the
SLA@SOI monitoring infrastructure, and to transform this information into busi-
ness SLA monitoring reports (BSLAM reports) by taking into account the require-
ments of the business-layer components of the SLA@SOI platform. The operation
of this module is driven by business reporting policies that determine the monitored

Sergio Garcı́a Gómez, Juan Lambea Rueda, Augustı́n Escámez Chimeno

Management of the Business SLAs for Services eContracting 215

Fig. 1 Business components and interactions.

SLA terms that should be included in a BSLAM report, the types of monitoring
results that should be included in the report, and the required frequency of report
generation. The specification of business reporting policies is enabled by the intro-
duction of an XML schema for specifying reporting policies and an XML schema
defining the general representation structure of business-level reports.

4 Business Layer Architecture

The SLA@SOI project has designed an architectural framework for SLA manage-
ment across the IT stacks. The proposed architecture is defined in ‘Reference Archi-
tecture for Multi-Level SLA Management’ and allocates business activities to two
main components: the business manager and business SLA manager. The diagram
in Figure 1 has been extracted from the general framework diagram and focuses
on high-level components that implement the business logic. These components ex-
pose interactions for relationships between customers and third parties, as well as
interactions for communication with other components of the framework and with
external parties.

4.1 Business Manager

The business manager (BM) is the module responsible for the overall contracting
and sales process. This component is necessary because business information is
needed to take proper business decisions. Part of this information is private (in some
countries there are specific laws for the protection of data) and therefore must not
be shared among components. The responsibilities of a business manager are:

• Make overall business decisions that affect all levels based on business informa-
tion.

216

• Make decisions at a single point based on all available information. No other
component in the architecture could link with the layers and act as a collection
point.

In order to achieve this, business information is needed to indicate how decisions
will be taken. This information includes:

• Global prices application, rewards, promotions and discounts.
• Service provider selection based on price and customer requirements.
• Business-addressed rules based on profits and costs.

The business manager implements <<query_product_catalog>> inter-
actions that allow the final customer to search products and services. It also im-
plements <<customer_relations>> interactions that permit the customer to
interact with the framework and lets them register and share information with the
business platform. The <<provider_relations>> interaction is an additional
interface in the business manager that allows providers to interact with the frame-
work. There is another interaction called <<control/track/query>>, which
connects the business layer with the SLA managers.

4.2 Business SLA Manager

The business SLA manager is the component in charge of managing the negotiation
process to obtain the different agreements. This component contains the registries
in which SLAs and SLATs are stored and it extends the Generic SLA Manager
(GSLAM). The business SLA manager is responsible for negotiating and operating
SLAs with customers and third parties, overseeing the complete set of SLAs in its
domain, and providing domain-wide SLA planning and optimisation. Depending
on the specific context/requirements of the use case, a separate business SLA man-
ager may be set up for complete organisations, individual departments or individual
services.

This component is connected with the BM using the POC (Planning and Optimi-
sation Component of the GSLAM) and PAC (Provisioning and Adjustment Compo-
nent of the GSLAM) components (see Chapter ‘Reference Architecture for Multi-
Level SLA Management’). The real functionality behind those components is inside
the BM.

The business SLA manager implements the <<negotiate/coordinate>>
interaction with the end customer. This interaction enables the customer to con-
tract a product and order the provision of SLA resources (in some cases). The
business SLA manager, software and infrastructure SLA managers implement
<<control/track/query>> interactions. These interactions allow the busi-
ness manager to communicate with the SLA managers of different layers. The aim
of the communication is to query the SLA and SLAT registries, to set and retrieve
policies, and to receive SLA violations and monitoring information.

Sergio Garcı́a Gómez, Juan Lambea Rueda, Augustı́n Escámez Chimeno

Management of the Business SLAs for Services eContracting 217

5 Modelling SLA Business Terms

SLA@SOI has defined a generic SLA model that offers several extension mech-
anisms that can be exploited to model domain-specific SLA information. While
Chapter ‘The SLA Model’ explains this model in depth, this section explains how
information specific to the business SLA is modelled using these extension mecha-
nisms.

Basically, an SLA is a set of agreements between two (or more) parties. These
agreements are expressed with terms, each of which denotes guarantees made by,
or obligations on, the various parties. Each agreement term comprises an optional
constraint expression specifying the conditions under which the agreement term
holds (i.e. a precondition on the term). If no preconditions are specified, then it is
assumed that the term holds for the entire effective duration of the SLA. Guarantees
defined in the agreement are either guaranteed states or guaranteed actions.

5.1 Business Terms Integration

At the top level, the business SLA(T) model builds on the SLA(T) model and com-
mon metrics to model business-specific information. The three main mechanisms
used to extend the generic model are the extension of classes of the model, annota-
tions, and the definition of new standard terms.

To represent all the information related to the SLA business layer, this section
describes how the different terms have been integrated into the model. The parame-
ters described in this section are those identified during the project, together with the
analysis of [12] and the requirements of SLA@SOI use cases (Chapter ‘Introduction
to the SLA@SOI Industrial Use Cases’).

5.1.1 Guarantee Terms

Guaranteed States

A guaranteed state is a guarantee made by one of the parties to the SLA that a
certain state of affairs will hold: for example, Service Level Objectives (SLOs) or
KPI targets. This state of affairs is defined by a constraint expression. The following
guaranteed states have been identified in the business layer:

Consumer Commitment: The commitments that the customer agrees to in the
contract in terms of service usage (for instance, maximum usage, peak times,
or capacity usage).

Compliance: The standards and recommendations that will be supported during
delivery of the services, including names, versions and dates.

218

Fig. 2 Business-level guaranteed states.

Support: The manner in which the service will be supported; this can include the
availability of contracted support, or a set of support procedures for different is-
sues (e.g. when the first feedback has to be offered, feedback frequency, expected
resolution time depending on severity).

Archiving: The agreements regarding archiving of data related to the service (ser-
vice and historical information); this specifies the maximum capacity or lifespan
of the data, and restrictions in the location of such data.

ArbitrationAndMediation: The places where legal disputes and judgments by ar-
bitration should be arranged.

Reliability: The maximum time of service unavailability and maximum time be-
tween consecutive failures, without causing a penalty.

Guaranteed Actions

A guaranteed action is an action that one of the parties to the SLA is obligated to
perform (or may perform, or is forbidden from performing) under certain, specified
circumstances. The following guaranteed actions have been defined for the business
layer (Figure 3):

UpdateProcess: When offering services, it is usual to bring down the service to
update or manage it for short periods of time. This parameter specifies whether

Sergio Garcı́a Gómez, Juan Lambea Rueda, Augustı́n Escámez Chimeno

Management of the Business SLAs for Services eContracting 219

Fig. 3 Business level guaranteed actions.

this process is periodic and its frequency, how to distribute software and install
software, if required, and scheduled downtimes.

BackupRecoveryMechanism: The mechanisms required to backup information
essential to the service and the policies for doing so, and the agreement on the
time it should take to recover from a backup in case of service outage.

Reporting: The commitment to send reports about service usage and SLA status
over time. It includes information about the report itself, the format and fre-
quency, and how to deliver it to the customer.

Monitoring: The SLA parameters that must be monitored on a continuous ba-
sis, including information on the parameters themselves, their units, and the fre-
quency of monitoring.

The business terms related to pricing, which have been also models as guaranteed
actions, are shown in Figure 4:

Termination and TerminationClause: The conditions under which any of the par-
ties may terminate the SLA; every clause can include a notification method and
a fee to be paid in case of cancellation.

Penalty: The amount of money to be paid in case of breach of another SLA term;
these penalties can also be used to trigger SLA termination clauses.

ProductOfferingPrice: The required commitment of a user to pay an amount of
money for the product being provided, including billing frequency and the time
during which the offer is valid; the product can be divided into several compo-

220

Fig. 4 Pricing business terms.

nents, each with a price type, price and amount of components that aggregate the
service. These components can specify price modifications (such as discounts).

Billing: The structure, content and frequency of billing sent to the customer, in-
cluding information about payment or delivery information; related to the prod-
ucts, penalties and termination fees.

5.1.2 Standard Terms

The SLA@SOI standard terms are the basic vocabulary used by the expressions in
the classes described above. Further to this, the following standard business terms
have been defined:

Standard Terms for Price Types and Billing Frequencies: Terms for specifying
different types of pricing (one time charge, flat rate, etc.) and billing frequency
(monthly, per request, etc.).

Standard Terms for Price Modification Types: Terms that allow modification of
prices (discounts, increments) in absolute or relative figures.

Standard Terms for Business Metrics: Terms that include a count of penalties and
violations.

Sergio Garcı́a Gómez, Juan Lambea Rueda, Augustı́n Escámez Chimeno

Management of the Business SLAs for Services eContracting 221

6 Future Work

The final phase of SLA@SOI addresses two main business-related challenges: SLA
negotiation and business terms aggregation.

While the SLA@SOI negotiation framework focuses on generic negotiation pro-
tocols (as described in Chapter ‘A Generic Platform for Conducting SLA Negoti-
ations’), it can be customised at the business level to tailor strategy and protocol
to specific negotiation processes. For example, process and historical information
(e.g. the number of negotiation rounds required in previous agreements) can be tai-
lored to include blacklists that ban particular parties. Customers and providers can
use profile information about their counterparts (such as ranks, segments, locations,
business evolution, and so on.). Business objectives can be defined for particular
products or providers to better align negotiation results to a particular strategy. Such
objectives can cover desired sales, available resources, or risks from violations, etc.
All these strategic parameters can be integrated to customise the generic negotiation
mechanisms provided by the SLA@SOI framework. A complementary part of the
negotiation phase will be the assessment and creation of offers and counter-offers,
and consideration and implementation of new constraints, limits, conditions and re-
lationships between guarantee terms.

Building an aggregated offer from atomic services — each of which has an inde-
pendent SLA(T) — involves an intelligent and automatic merge of guarantee terms
of the same type. This is a challenging problem, since different terms must be ag-
gregated in different ways; even the workflow of the aggregation process may affect
the final aggregated SLA(T). The focus of future work will therefore be on business
terms related to price, penalties and violations, since they are the most important
terms in the business layer. Some of the most-used KPIs might also be considered.

7 Conclusions

e-Contracting is a complex but well-known area that has been researched and de-
veloped since the start of e-commerce hype. Development in services science has
renewed interest on this field, first for web-services marketplaces, and currently with
cloud services and applications (app) stores. In this context, SLAs become a critical
issue that must be tackled and tightly integrated within e-contracting frameworks.

However, e-contracting is a large field with many challenging facets. The busi-
ness management layer of SLA@SOI covers SLA-aware management of a mar-
ketplace from a comprehensive perspective, with innovative contributions including
business terms modeling and post-sales management, including penalties and viola-
tions or dynamic pricing and KPI-based negotiation.

The business-layer architecture presented in this chapter has the double function
of managing business SLOs throughout SLA life cycle, and managing interactions
with third parties. Thus the business components are in charge of integrating the

222

marketplace environment with the SLA management of software/service and in-
frastructure layers.

The business SLA model is presented as an extension of the generic SLA@SOI
model and offers a first group of terms whose management can be (to some extent)
automated and performed from an e-contracting suite. The integration of some of
these terms (especially those related to pricing and penalties) into some of the SLA
processes (negotiation, monitoring, reporting, etc.) shows the importance of model-
ing this layer.

This comprehensive approach has highlighted the need to address several chal-
lenges: First, we must find a way to intelligently merge and integrate guarantee terms
from different atomic services into a final service. Second, we must find a way to
build offers and counter-offers in an SLA negotiation process, linking lower-level
KPIs with business terms (i.e. price vs. availability). The integration of penalties
management into real settlement processes is an ongoing issue.

References

[1] GB929: Application Framework. Tech. rep., TeleManagement Forum (2011)
[2] Barros, A., Dumas, M.: The rise of web service ecosystems. IT Professional

8(5), 31–37 (2006)
[3] Bui, T., Gachet, A., Sebastian, H.: Web services for negotiation and bargaining

in electronic markets: design requirements, proof-of-concepts, and potential
applications to e-procurement. Group Decision and Negotiation 15(5), 469–
490 (2006)

[4] Cardoso, J., Winkler, M., Voigt, K.: A service description language for the
internet of services. In: Proceedings of the First International Symposium on
Services Science (ISSS’09) (2009)

[5] Cheng, S., Chang, C., Zhang, L., Kim, T.: Towards Competitive Web Service
Market. In: 11th IEEE International Workshop on Future Trends of Distributed
Computing Systems, 2007. FTDCS’07, pp. 213–219 (2007)

[6] Chieu, T., Nguyen, T., Maradugu, S., Kwok, T.: An enterprise electronic con-
tract management system based on service-oriented architecture. In: SCC
2007. IEEE International Conference on Services Computing., pp. 613–620.
IEEE (2007)

[7] Davis, J.: Open source SOA. Manning (2009)
[8] Fantinato, M.: A Feature-based Approach to Web Services E-contract Estab-

lishment . Ph.D. thesis, Institute of Computing, University of Campinas, Brazil
(2007)

[9] Haq, I., Schikuta, E.: Aggregation Patterns of Service Level Agreements. In:
Frontiers of Information Technology (FIT2010) (2010)

[10] Hasselmeyer, P., Koller, B., Kotsiopoulos, I., Kuo, D., Parkin, M.: Negotiating
SLAs with Dynamic Pricing Policies. In: Proceedings of the SOC@ Inside07
(2007)

Sergio Garcı́a Gómez, Juan Lambea Rueda, Augustı́n Escámez Chimeno

Management of the Business SLAs for Services eContracting 223

[11] Hasselmeyer, P., Wieder, P., Koller, B., Schubert, L.: Added Value for Busi-
nesses through eContract Negotiation. In: Collaboration and the Knowledge
Economy: Issues, Applications, Case Studies (Proceedings of the eChallenges
Conference 2008), Cunningham, P. and Cunningham, M.(eds.), IOS Press,
Amsterdam, NL, pp. 978–1 (2008)

[12] Hiles, A.: The Complete Guide To IT Service Level Agreements. Rothstein
Associates Inc. (2002)

[13] Hoffner, Y., Field, S., Grefen, P., Ludwig, H.: Contract-driven creation and
operation of virtual enterprises. Computer Networks 37(2), 111–136 (2001)

[14] IST-CONTRACT: State of the Art. Tech. rep., FP6-034418 (2006)
[15] Jakob, M., Pěchouček, M., Miles, S., Luck, M.: Case studies for contract-

based systems. In: Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems: industrial track, pp. 55–62. Inter-
national Foundation for Autonomous Agents and Multiagent Systems (2008)

[16] Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldridge, M., Sierra, C.:
Automated negotiation: prospects, methods and challenges. Group Decision
and Negotiation 10(2), 199–215 (2001)

[17] Kwok, T., Nguyen, T., Lam, L.: A software as a service with multi-tenancy
support for an electronic contract management application. In: SCC’08. IEEE
International Conference on Services Computing, vol. 2, pp. 179–186. IEEE
(2008)

[18] Macias, M., Guitart, J.: Maximising Revenue in Cloud Computing Markets by
means of Economically Enhanced SLA Management. Tech. Rep. Tech. Rep.
UPC-DAC-RR-CAP-2010-22, Computer Architecture Department, Universi-
tat Politecnica de Catalunya (2010)

[19] Marchione, F., Fantinato, M., de Toledo, M., Gimenes, I.: Price definition in
the establishment of electronic contracts for web services. In: Proceedings of
the 11th International Conference on Information Integration and Web-based
Applications & Services, pp. 217–224. ACM (2009)

[20] Menasce, D.: Composing web services: A QoS view. IEEE Internet Comput-
ing 8(6), 88–90 (2004)

[21] Miles, S., Groth, P., Luck, M.: Handling Mitigating Circumstances for Elec-
tronic Contracts. In: AISB 2008 Symposium on Behaviour Regulation in
Multi-agent Systems (2008)

[22] Padget, J.J.: A Management System for Service LevelAgreements in Grid
based Systems. Ph.D. thesis, University of Leeds (2006)

[23] Rana, O., Warnier, M., Quillinan, T., Brazier, F., Cojocarasu, D.: Managing
violations in service level agreements. Grid Middleware and Services pp. 349–
358 (2008)

[24] Rinderle, S., Benyoucef, M.: Towards the automation of e-negotiation pro-
cesses based on web services-a modeling approach. Web Information Systems
Engineering–WISE 2005 pp. 443–453 (2005)

[25] Ward, C., Buco, M., Chang, R., Luan, L.: A Generic SLA Semantic Model for
the Execution Management of E-business Outsourcing Contracts. In: Proceed-

224

ings of the Third International Conference on E-Commerce and Web Tech-
nologies, pp. 363–376. Springer-Verlag (2002)

[26] Wurman, P., Wellman, M., Walsh, W.: A parametrization of the auction design
space. Games and economic behavior 35(1-2), 304–338 (2001)

[27] Zulkernine, F., Martin, P., Craddock, C., Wilson, K.: A policy-based middle-
ware for web services SLA negotiation. In: IEEE International Conference on
Web Services, ICWS 2009., pp. 1043–1050. IEEE (2009)

Sergio Garcı́a Gómez, Juan Lambea Rueda, Augustı́n Escámez Chimeno

Part VI

Management of the Software Layer

Model-Driven Framework for Business

Continuity Management

Ulrich Winkler and Wasif Gilani

1 Introduction

Nearly one in five businesses suffer a major disruption every year. These disrup-
tions often affect thousands of customers and consumers. A disruption could result
in financial and legal losses, as well as damage to reputation. For example, on 4 Jan-
uary 2010, SALES FORCE, a company offering online enterprise support services,
experienced an outage for over an hour, affecting 68,000 customers [6]. Another
example is PayPal, a service for processing online payments. PayPal was down for
4.5 hours worldwide on 4 August 2009; PayPal usually processes 2,000 USD per
second for its customers.

The key industrial sectors—such as energy, gas, oil, pharmacy or finance—must
demonstrate BC competence, as required by regulations and laws. A study to quan-
tify the BC risks caused by information and communication technologies (ICT) at
ESSENT NETWERK, a Dutch electricity and gas distributor, revealed that a four-
hour outage of an IT service might result in withdrawal of ESSENT NETWERK’s
license to operate, eventually taking the distributor out of business [11].

IT BCM aims to:

• identify potential threats to an IT system, services and operations,
• assess the business impact of a threat, estimate probabilities and compute risk

exposures,
• determine strategies and responses to these threats, and model an IT BC plan to

overcome or mitigate possible business disruptions.

Ulrich Winkler
SAP Research, The Concourse, Queen’s Road, Titanic Quarter, Belfast, BT3 9DT, United King-
dom, e-mail: ulrich.winkler@sap.com

Wasif Gilani
SAP Research, The Concourse, Queen’s Road, Titanic Quarter, Belfast, BT3 9DT, United King-
dom, e-mail: wasif.gilani.@sap.com

DOI 10.1007/978-1-4614-1614-2_14, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 227

228 Ulrich Winkler, Wasif Gilani

IT BC managers struggle to conduct comprehensive, thorough and valid analy-
ses. The reasons for this are manifold:

• IT landscapes are complex and it is hard to formulate a complete picture; to
conduct a thorough dependency analysis, a BC manager needs to comprehend
and incorporate a complete end-to-end picture of resource dependencies of the
entire IT stack.

• Different methodologies are used to model and document different aspects of
complex IT landscapes. For example, business processes are modelled in work-
flow charts, the behaviour of software artefacts is expressed in UML activity di-
agrams, and the IT infrastructure deployment layout is documented in topology
models. BC managers find themselves lost within this variety of heterogeneous—
but related—models, which results in limited vision.

• IT landscapes are adaptive systems and evolve over time; new technologies, such
as virtualisation and cloud computing, can alter a landscape deployment layout
within minutes.

• Current tool support and methodologies are insufficient to comprehend the im-
pacts and consequences of failed elements of the entire landscape and dependent
business processes.

• Visualisation and reporting of analysis results is not automated and does not meet
the expectations of involved stakeholders.

• Lastly, and most importantly, currently available data sources—such as process
knowledge, UML or topology models—are not utilised or reused for BCM.

Any of these issues may lead to inaccurate decisions being made to circumvent
disruptions.

In this chapter, we present a novel framework that addresses the needs of IT BCM
by:

• using model-driven engineering techniques to tap into business process knowl-
edge and IT landscape models,

• providing a BC model to simplify work for BC managers and
• providing a two-level model refinement process that increases the quality of the

resulting analysis model in terms of accuracy and precision, utilising automated
model transformation chains to connect to a variety of data sources, and analysis
tools utilising automated model transformation chains to feed analyses results
into various reporting tools to visualise analyses results.

The remainder of this chapter is organised as follows: Section 2 provides an
overview of BCM, Section 3 discusses related work, and Sections 4 and 5 introduce
our framework: first motivation and challenges are discussed, followed by an archi-
tectural description. Finally, Section 6 concludes the chapter with a summary and
outlook on future work.

Model-Driven Framework for Business Continuity Management 229

2 Business Continuity Management

Business continuity management (BCM) is standardised by the British Standards
Institution and is formally defined as:

A holistic management process that identifies potential threats to an organisation and the
impacts to business operations that those threats, if realised, might cause, and which pro-
vides a framework for building organisational resilience with the capability for an effective
response that safeguards the interests of its key stakeholders, reputation, brand and value-
creating activities [4].

BCM comprises four types of activities: understanding the organisation, deter-
mining business continuity strategies, developing and implementing a BCM re-
sponse, and exercising, maintaining and reviewing BCM arrangements. All four
activities are organised by a fifth activity—BCM program management—which ini-
tiates BC-related projects, assigns responsibilities, observes and manages activities,
conducts training, and provides documentation.

To understand an organisation, the BC manager must understand the effects of
an adverse incident on a business and the dependencies among business processes,
dependent resources, and possible root-causes of an adverse incident. A BC man-
ager uses two different but complementary analyses: dependency and risk analysis
(DA), and business impact analysis (BIA). BIA aims to distinguish between mis-
sion critical processes, and non-critical processes and functions. The BC manager
must consider that a disruption of processes may have a financial impact, legal con-
sequence or effect on other business values and indicators, such as reputation or
customer satisfaction. For each process and function, various different BC metrics
are assigned. Return time objective (RTO) and recovery point objective (RPO) are
examples of BCM metrics. RPO defines ”the maximum amount of data loss an or-
ganisation can sustain during an event”. RTO defines the ”target time for resumption
of product, service or activity delivery after an incident” [4].

A dependency analysis is conducted to identify dependent resources, involved
stakeholders, assets and internal/external services dependent on a critical business
process. Also identified are possible failure modes and disruption causes. A BC
manager must be enabled to analyse how failures propagate through the system and
layers. For example, the manager needs to understand how a broken air-conditioning
unit may affect a data centre as well as servers deployed in that data centre, and
eventually if and when a process will be disrupted.

Finally, a recovery plan details the steps that need to be taken to restore business
operations to defined operations levels within given time-frames.

3 Related Work

BCM is close to reliability engineering. Fault tree analysis (FTA) is a common tech-
nique used in reliability engineering to determine combinations of failures in a sys-

230 Ulrich Winkler, Wasif Gilani

tem that could lead to undesired events at the system level [5]. The modelling pro-
cess starts with the undesired event and is broken down into a fault tree. Each fault
is analysed in more detail and, if necessary, broken down again, until a reasonable
level of understanding is achieved. The logical relationship between faults is de-
fined by logic ”gates”, such as AND, OR, XOR or NOT. Probabilities are assigned
to basic events and the overall likelihood of an undesired event can be calculated.
Although a fault tree analysis can provide a better estimation of the probability of
adverse events occurring, such an analysis cannot model the dynamic behaviour of
systems, since Boolean gates are not able to capture the order in which events oc-
cur, nor is it possible to model time constraints, such as deadlines. This limits the
application of FTA in IT BCM to very simple analyses.

The Tropos Goal-Risk (GR) framework is used for requirement analysis and risk
assessment for critical socio-technical systems, such as air-traffic management [1].
First, it provides means to model combinations of failures in a manner similar to
FTA. Second, it provides semantics to model other aspects, such as time dependen-
cies, treatments and assets, which are useful for BCM. Asnar and Giorgini demon-
strated that the GR framework could be used to analyse and compare the efficacy
and cost-efficiency of different treatment strategies [2]. However, the analysis does
not provide means for determining business impact, nor does it provide means for
determining BCM metrics, such as RTO. Moreover, Tropos lacks strong process in-
tegration and does not provide means for generating Tropos graphs from existing
models, or integrating analysis techniques other than the ones provided by Tropos
itself.

From the model-driven engineering point of view, performance models have been
extracted from development models [3]. Most approaches focus on software devel-
opment models (e.g. UML models) as input models, whereas our approach aims to
take various kinds of models from different levels of the IT stack into account (e.g.
business process models and IT topology models). Moreover, we aim to provide a
cross-layer performance and dependency view. Below, we describe our approach of
consuming available models from different levels of a technology stack, thus pro-
viding a systematic and process-centric BCM solution.

ROPE provides a risk-aware business process modelling and simulation method-
ology [8, 9] that provides an approach to analysis of the business impact of threats
and the effect of countermeasures. ROPE uses a three-layered model approach: The
first layer is the business process layer, the second layer refines process layers with
resource requirements, and the third layer models threats, impacts and related re-
covery actions. ROPE utilises simulations to estimate the expected downtime of a
business process and to evaluate recovery actions. Like our work, ROPE analyses
business impact on the process activity level, provides a dependency model, and
considers threats and responses in a process-centric way. However, ROPE does not
provide any means for generating models for each ROPE layer from existing mod-
els, and hence is limited to manually created scenarios. Further, ROPE restricts itself
to three layers, as this simplifies modelling activities. However, due to this simpli-
fication, ROPE is not able to analyse various important scenarios. For example, all
recovery processes depend on resources themselves, but if a resource required by a

Model-Driven Framework for Business Continuity Management 231

recovery plan is not available, the recovery activity will fail. Due to the three-layered
approach in ROPE’s modelling methodologies, it is not possible to assign resources
to recovery activities. Hence ROPE is not capable of analysing the important feasi-
bility properties of recovery plans. Our framework is not restricted to three model
layers and therefore permits more comprehensive analyses, including, for example,
feasibility analysis of recovery actions. To minimise and simplify modelling activ-
ities, our approach utilises automated model transformations in combination with
predefined libraries.

4 Model-Driven and Process-Centric BCM Framework

Business processes are the main subject or starting point of a business impact analy-
sis and dependency analysis respectively. However, existing approaches are primar-
ily focused on IT layers only, and do not take detailed business process knowledge
into account. The processes are generally abstracted as single black boxes in the
top layers of dependency graphs. An increasing number of businesses are now em-
ploying business process management (BPM) tools to model and execute their pro-
cesses. Incorporating detailed process information—available via process models
such as BPMN [7] and YAWL [10]—can help to identify dependencies, threats, and
so on at the process step level, and this provides greater context for BCM. Further,
tools used to conduct BCM analyses are not tailored according to the needs of BC
managers; often BC managers use drawing tools like Visio, with no analysis sup-
port at all, to model a dependency graph. Without sufficient support from analysis
tools, BC managers struggle to cope with the vast number of processes and rapidly
changing IT landscapes.

Our approach relies on model-driven engineering techniques. Model-driven en-
gineering simplifies the development of tools for domain-specific languages (DSL).
This increases adoption of domain-specific models as software artefacts and permits
contribution of domain experts (such as business process analysts) to system design
and problem analysis. The use of models as software artefacts is not uncommon
in industrial applications. For instance, process knowledge is no longer hard-coded
into software, but rather exists as well-defined process model artefacts. These pro-
cess models can be accessed by auxiliary software, opening up new ways to improve
business management in related areas, such as BCM.

4.1 Requirements

We have identified two important requirements for a model-driven business-process-
centric framework for BCM:

Heterogeneous meta-models and tools: BCM covers the whole stack of an enter-
prise. This stack comprises various different domains and layers, such as the busi-

232 Ulrich Winkler, Wasif Gilani

ness process domain, service composition and execution domain, IT infrastructure
domain (software, hardware, network, etc.), and facility items and human resources.
Each domain is modelled by specific domain experts: for example, a business pro-
cess analyst or software architect, etc. Every domain expert potentially utilises dif-
ferent meta-models and tools to model and express their domain-specific needs. For
example, processes are documented with BPMN or YAWL, whereas software arte-
facts are depicted in UML. Of course, this separation of concerns is useful and de-
sirable, since every model covers specific aspects of its respective domain. In most
cases, there exists no need for domain crossover. However, BCM needs a cross-
domain viewpoint on all domains to conduct a comprehensive and thorough busi-
ness impact and dependency analysis. Designing and implementing a system that
can cope with heterogeneous but complementary meta-models in a multi-tool envi-
ronment is a major challenge.

Multi-paradigm model analyses, reasoning and model optimisation: In the con-
text of the business impact and dependency analysis, BC managers employ various
analyses to quantify risks, validate recovery plans, and so on. In essence, BC man-
agers must be able to answer the types of questions given in Table 1:

Table 1 BCM-related questions

Issues Example question

Temporal failure propa-
gation

What is the expected time delay until a broken air-
conditioner in a data centre causes business disruptions?

Performance analysis How many servers are needed to guarantee a sales order
processing time of six hours even if one server breaks
down for two hours?

Dead-lock detection Is a recovery plan comprising repair of a broken air-
conditioner, reboot of all servers and replay of database
transaction logs sufficient to guarantee a business process
RTO of less than four hours?

Worst-case / Residual
risk analysis

What is the likelihood that a recovery plan fails?

Sensitivity analysis Which is the single point of failure?
Estimated value analysis Is the organisation willing to spend 5,000 USD per month

for additional air-conditioning units to remove the 10%
risk of a broken air-conditioning unit, which would cost
the organisation 70,000 USD?

A BC manager should be able to run any kind of analysis across all layers of
the enterprise stack by ”pushing a button”. This is a challenging task, requiring the
integration of knowledge captured from different levels of the enterprise stack us-
ing different domain-specific models and data sources analysed with existing multi-

Model-Driven Framework for Business Continuity Management 233

paradigm analyses tools (i.e. simulation engines, optimisation tools, model check-
ers, etc).

Role-based analysis results’ presentations: BC analysis results have to be pre-
sented to various stakeholders, including (but not limited to) BC managers, business
process analysts, line-of-business managers, IT architects and external reviewers.
Every stakeholder has distinctive interests and hence has distinctive requirements in
terms of how BC analysis results should be evaluated and presented. For example a
business process analyst is interested in finding out how well certain business pro-
cess activities perform in case of disruption, whereas the line-of-business manager
is more interested in capacity for overall process resilience and the potential impact
of adverse events on strategic business values. The IT architect’s interests are fo-
cused on IT deployment requirements and the external reviewer needs to verify that
the conducted BC analysis is complete, coherent, current and covers all critical busi-
ness functions. Every stakeholder has a preferred environment in which he or she
wants to review analysis results. Business process analysts and IT architects may
prefer to work with analysis results in their respective modelling and editing en-
vironments, whereas line-of-business managers and external reviewers may prefer
Office documents, such as Microsoft Excel.

4.2 Architecture

Below, we give a more detailed description of our architecture. First, we identify in-
volved stakeholders and introduce the tooling environment our architecture targets.
Then, we discuss the overall workflow, followed by a detailed description of major
building blocks in our architecture.

Figure 1 gives a high-level overview of our architecture and servers as a refer-
ence.

Fig. 1 BCM framework architecture

234 Ulrich Winkler, Wasif Gilani

4.3 Stakeholders

A BC analysis project involves various stakeholders. Every stakeholder contributes
respected domain knowledge, domain business requirements, constraints, and objec-
tives to the overall BC analysis. Our solution supports multi-stakeholder analyses by
providing user interfaces and tooling, modelling, and analysis support that is suited
to every stakeholder.

We anticipate five types of stakeholders will be involved in an IT BC analysis
and will use our tool: the business process expert, IT architect, business continuity
analyst, line-of-business manager and external reviewer.

The business process expert designs and models business processes. He/she is
responsible for ensuring all process activities are executable and perform according
to stated requirements.

The line-of-business manager/process owner is interested in overall business pro-
cess performance. He/she defines process performance indicators, which are aligned
with the overall strategy of an organisation. He/she has to be assured that a business
can deliver products and services even in case of disruption.

The task of an external reviewer is to validate whether an organisation has suffi-
cient BC competency. The external reviewer must ensure that a BC analysis is co-
herent, complete, current and accurate. The analysis should contain all critical and
important business processes, functions, dependent resources and potential risks.
The external reviewer also has to ensure that planned responses are appropriate and
sufficient to circumvent or mitigate adverse effects.

The primary concern of the IT architect is the deployment layout of the IT land-
scape. An IT landscape is a set of hardware, software and network elements arranged
in a specific configuration, which serves as a fabric to support the business opera-
tions of an organisation. The IT architect must ensure that the IT deployment layout
is suitable for supporting an organisation’s business and capable of meeting other
requirements, such as BC requirements.

The BC analyst manages and drives the BC analysis work. He/she is responsi-
ble for determining critical processes, critical resources, risks to IT elements and
processes, and appropriate risk response strategies. The BC analyst must communi-
cate analysis results to all involved stakeholders, and convey change requests to the
business process expert and IT architect.

4.4 Environment

SAP’s solution to designing, modelling and documenting business processes is the
NetWeaver Business Process Modelling Environment (NW BPM). NetWeaver BPM
supports process modelling based on the Business Process Modelling Notation
(BPMN) standard from OMG. NW BPM provides two editor tools: the NW BPM
Process Composer (Process Composer) and the NW Business Process Scenario Ed-
itor (Scenario Editor). These tools are used by the business process expert to define

Model-Driven Framework for Business Continuity Management 235

process scenarios and model processes. The Process Composer tool provides graph-
ical modelling of activity flows using BPMN. Scenario models are used to organise
a collection of processes and provide an end-to-end view of these processes. Both
tools operate on a set of models (NW BPMN and NW Scenario Model), which are
grouped into the NW Common Process Layer model set. Figure ?? depicts the rela-
tionship between Process Composer, Scenario Editor, business process expert, and
the related model artefacts.

Besides the aforementioned modelling tools, NW BPM also provides tooling
support for creating other process-related artefacts, such as business rules tables.
However, as stated previously, NW BPM provides no means for adding business-
continuity-related information, nor does it offer any BCM-related analytics.

4.5 Workflow and Methodology

A BC analysis project is managed by the BC analyst and conducted in five phases:
the business process requirement analysis, IT BC model derivation, BEAM deriva-
tion, business continuity analysis, and analysis result presentation.

Business process requirement analysis: In this first phase, the business process
expert, in cooperation with the line-of-business manager, determines any process-
relevant requirements. The output of this phase is the Business Process Annotation
Model (BPAM).

IT BC model derivation: In the second phase, the BC manager determines what
resources and dependent resources are needed to support a process. This phase in-
volves the IT architect, who provides the needed domain knowledge and IT models.
As stated earlier, to conduct an appropriate dependency and risk analysis it is cru-
cial that a consolidated and coherent view of all involved business processes and
IT-related resources be generated. Our approach utilises model-to-model (M2M)
transformations to generate a BC model from existing models (i.e. process mod-
els and IT topology models). Thus existing models are utilised to provide the BC
manager with a profound modelling base. However, these models are incomplete
and often disconnected from the BCM point of view. Hence our framework pro-
vides graphical tools to refine these BC models and to connect model elements.
For instance, the user can add business-continuity-related information and connect
different resource dependency graphs. The result of this phase is an IT BC model.

BEAM derivation: In the third phase, the BC analyst connects IT BC models with
process models and adds behavioural information (either manually or in an auto-
mated fashion). M2M transformation is executed to transform the IT BC model into
a Behaviour and Analysis Model (BEAM). Here again the BC manager is provided
with an editor, the so-called BEAM editor. This editor permits the user to further re-
fine the BEAM model, alter the behavioural models, and add measurement models
and recovery plans if needed. The BEAM is transformed into an inputtable format
for the analysis tools with the help of model-to-text (M2T) transformations.

236 Ulrich Winkler, Wasif Gilani

BC analysis: Once the BEAM is complete, the BC manager can trigger an anal-
ysis run just by pushing a button. Our solution supports various multi-paradigm
analysis tools, such as analytical or simulation tools, to yield accurate and complete
results. The analysis results are stored in analysis results models.

Analysis result presentation: We provide two modes for presentation of analy-
sis results: document-oriented presentation and the context-sensitive presentation.
The document-oriented presentation mode generates various types of Office docu-
ments for the line-of-business manager or external reviewer. The context-sensitive
presentation mode is an essential additional tool that provides the IT architect or
business process expert with analysis results embedded in their respective work-
ing (modelling and tooling) environments. The analyses results help stakeholders to
understand how a broken resource affects depending resources, how a failure prop-
agates through the system, and when a failure will eventually impact the process.
These users are thus able to validate recovery plans as they can decide if the average
response time of a recovery plan is sufficient to meet business-level KPIs, or if the
residual risk is still too high and the recovery plan needs to be revised.

4.6 Business Process Requirements Annotation

Fig. 2 Business process requirements annotation

To capture business requirements, our solution provides a non-intrusive model-
driven mechanism for annotating existing process models with supplementary infor-

Model-Driven Framework for Business Continuity Management 237

mation. This enables business process analysts to capture the process requirements,
constraints and objectives needed to conduct a comprehensive, coherent and thor-
ough BIA. Figure 2 depicts the major building blocks needed for this activity, which
are business process annotation editor (View) and business process annotation mod-
els.

The business process annotation editor uses the NetWeaver Developer Studio
platform’s extension point mechanism to observe selection change events emitted
from the process composer. Selection change events are emitted when the business
process expert selects a process activity in the process composer. These events are
carried as payload information from the process model. This means, if the business
process expert selects a single process element, for example a process activity, the
business process requirement annotation editor becomes aware of the selected ele-
ment. The business process expert enters requirements related to this selected pro-
cess element using the business process requirement editor. Business requirements
and references to process elements are stored in the Business Process Annotation
Model (BPAM).

A screenshot of the process annotation editor is shown in Figure 3.

Fig. 3 Business process requirements annotation: this screenshot shows the process composer and
the process annotation view. In the process annotation view one can see various requirements (e.g.
various impact values and maximum tolerable outage times).

238 Ulrich Winkler, Wasif Gilani

4.7 IT BCM Model Derivation

IT BC models: These are a set of domain-specific ”front-end” models in our model
ecosystem. IT BC models lay the foundations for extending existing business pro-
cess management tools with BC management support. IT BC models cover the re-
source dependency and risk modelling aspects of BC.

A BC analyst can create IT BC models in two ways: the first way is to use the
IT BCM model editor to create models completely manually. This requires very
detailed knowledge of IT landscape elements, configuration semantics, and deploy-
ment options, and usually a BC manager lacks this detailed knowledge. The second
option is to generate IT BC models from existing IT deployment topology models.
This option has several advantages: first, such automated generation releases the BC
manager from manual effort, which is time consuming. Second, since human error
is eliminated, the resulting IT BCM models are of better quality and complete and
coherent.

To enable automated derivation of IT BC models, a mapping model is required.
A mapping model maps—on meta-model level—IT topology model classes to IT
BC model classes. The tool the BC manager uses for this definition is a mapping
model editor.

IT deployment topologies are modelled in different modelling languages. For
example, SAP uses the Common Information Model. IBM utilises a proprietary
modelling language to model deployment layouts of its WebSphere application
servers. Due to our meta-model-based mapping approach, our solution can process
all model-based IT deployment topology designs. All it takes is the creation of a
mapping model for the respective IT topology model language.

An automated M2M transformation agent transforms the IT topology model into
an IT BC model using the mappings defined in the mapping model. This process is
depicted in Figure 4.

Fig. 4 Generation of IT BC model

Model-Driven Framework for Business Continuity Management 239

Once the transformation agent creates an IT BC model instance, the business
continuity analyst can examine, refine and finalise this model instance by using the
IT BC model editor, as shown in Figure 5.

Fig. 5 IT BC model: this screenshot shows an example IT BC model dependency graph, including
facility elements.

Analysts can add supplementary information, which is not part of the IT land-
scape deployment topology, to the IT BC model. Threats, failure modes, and re-
sponses to risk are examples of such complementary information.

240 Ulrich Winkler, Wasif Gilani

4.8 BEAM Derivation

A Behaviour Analysis Model (BEAM) focuses only on behaviour, performance and
analysis modelling. This meta-model refines the BC model with behavioural infor-
mation on resources and dependencies. Behaviour modelling is also used to detail
recovery plans and measurement models. Measurement models are meant for defin-
ing BCM KPIs for resources and business processes alike, such as RTO.

BEAMs are derived by the merging of IT BCM models and business process
models into a single, unified analysis model. It takes three steps to derive a com-
plete BEAM: in the first step, the process model is transformed into an (inchoate)
BEAM. We call this Alpha BEAM. The second step transforms the IT BC model
into a BEAM named Beta BEAM. The last and final step merges the Alpha and
Beta BEAMs into the final BEAM, called Gamma BEAM. The whole process is
orchestrated by an agent (not depicted), which coordinates all transformations.

4.9 Alpha BEAM

As stated previously, IT BC models only define dependencies between various re-
sources. They do not define how these resources behave or influence each other in
the case of disruption. This behavioural information needs to be added.

The BC manager can manually add behavioural information to IT BC model
elements, and this option is supported in our solution. However, for large IT BC
models, this would require a lot of manual work, which is cumbersome and error-
prone. Moreover, if the IT architecture changes, the BC manager has no option but
to discard his previous work and restart the BEAM construction process. This is
not an acceptable solution in environments where IT deployments are subject to
frequent changes, such as cloud-based deployments.

To enrich IT BC models with behavioural information in an automated fashion,
our solution employs IT BC library models. The BC manager defines IT BC library
models using a dedicated IT BC library editor. These library models map IT BC
model elements types to predefined BEAM elements. For example, the IT BC model
element type ’Server’ would be mapped to a set of behaviour states—such as ’Off’,
’Booting’, ’Running’ or ’ShuttingDown’—and related state transitions.

Fig. 6 IT BC library models

Model-Driven Framework for Business Continuity Management 241

Our approach minimises the manual effort involved in modelling behaviourial
information in two ways: first, it requires that the BC manager models behavioural
information only once for every IT BC model element type (for example, for the
type Server). This behavioural information is then automatically applied by the Al-
pha BEAM M2M agent to all occurrences of the same model element type in the
IT BC model. Second, the BC manager need only define IT BC library model once.
Once such library models are available, the entire process can be repeated as many
times as needed, with no human interaction required. This enables automated cre-
ation of Alpha BEAMs, which is necessary in a dynamically changing IT landscape.

As we aim to analyse BC on a process activity level, it is very important to iden-
tify the resources required by process activities, and to establish a link between
resources and activities. This is done by the business process expert using the busi-
ness process requirement annotation editor (Figure 7). The business process expert
establishes references from process model elements to IT BC resources and these
mappings are stored in the BPAM.

Fig. 7 Business process requirement annotation editor

Once all required models are prepared, we can derive the Alpha BEAM. The
Alpha BEAM M2M transformation agent takes as input the IT BC model, IT BC
library model and BPAM, and transforms all models into an Alpha BEAM. Fur-
ther, the transformation agent produces a tracing model. The need for the tracing

242 Ulrich Winkler, Wasif Gilani

model is explained later. The automated Alpha BEAM creation process is depicted
in Figure 8.

Fig. 8 Alpha BEAM generation

This Alpha BEAM now contains information on all resources, dependencies be-
tween resources, default behaviour models, and references to business process ac-
tivities. However, other important process details—such as connections, gateways,
and so on—are still missing.

4.10 Beta BEAM

The purpose of a Beta BEAM is to consolidate different parts of a business pro-
cess model—spanning multiple process modelling and execution environments—
into one end-to-end process model. For instance, NetWeaver BPM models do not
cover the entire process, rather they generally represent only the extended or cus-
tomised part of the process (more specifically, the front-end extension of the back-
end ERP processes). To enable end-to-end BC analysis, our solution consolidates all
available process models belonging to an end-to-end business process scenario into
a single BEAM: the Beta BEAM. This model comprises the complete process, with
all process activities, gateways, path connections, and so on. Moreover, all business
requirements documented in the BPAM are merged into the Beta BEAM as well.

As depicted in Figure 9, a model-to-model transformation agent—the ’process to
Beta BEAM’ agent—takes the business scenario model, all related business process
models, and the BPAM, and produces a single Beta BEAM. This model contains all
elements of the complete end-to-end process and related business requirements.

Model-Driven Framework for Business Continuity Management 243

Fig. 9 Beta BEAM generation

4.11 Gamma BEAM

The Gamma BEAM M2M transformation agent merges Alpha and Beta BEAMs
into a combined BEAM: the Gamma BEAM. The agent also resolves missing ref-
erences and sets missing default values if appropriate.

The Gamma BEAM is the final BEAM and contains all necessary elements for
BC analysis, drawn from the business process modelling domain and IT landscape
modelling domain. This process is shown in Figure 10.

The BC manager may want to further refine the Gamma BEAM. For example,
the manager may want to detail recovery plans or modify resource behaviour. The
BEAM editor is provided for this purpose.

Fig. 10 Gamma BEAM

244 Ulrich Winkler, Wasif Gilani

4.12 Business Continuity Analysis

The Gamma BEAM serves as input for various analyses and evaluation tools. As
depicted in Figure 11, the BC manager uses the BC analysis controller to select tools
based on the type of analysis to be executed. This information is written in a tool-
specific configuration storage format, for example, a property file. The controller
also commands the tool to execute the analysis run. Every analysis tool involved in
an analysis run writes its result into an analysis result storage format.

Fig. 11 Business continuity analysis

4.13 Analysis Result Presentation

Analysis results are usually not in a presentable format and generally contain irrele-
vant information. We therefore provide the BC reasoner. BC reasoners act as filters
and pre-processors to transform analysis results into business continuity analysis
result models (BCAMs). Further, some results from heterogeneous analysis tools
are only meaningful if they are correlated and interpreted in one context. For ex-
ample, an analytic tool can compute the worst-case and best-case execution times
for a recovery plan. On the other hand, a simulation tool can predict the average
execution time of the same recovery plan. To decide if the recovery plan needs to be
improved, all of these execution time values are required. The task of a BC reasoner
is to bring together results from heterogeneous, multi-paradigm analysis tools and
compute sound and relevant BC results. These results are stored in BCAM storage
as well. This post-analysis filtering and reasoning process for a simulation tool is
shown in Figure 12.

Model-Driven Framework for Business Continuity Management 245

Fig. 12 Post-analysis filtering and reasoning

Our solution provides two ways of presenting analysis results to all stakehold-
ers: (1) an interactive and context-sensitive presentation mode, and (2) a document-
oriented presentation mode.

4.14 Tracing

To provide context-sensitive results and to relate analysis results to source model
elements (such as the business process activity model element), links are preserved
via trace models across the entire transformation chain.

Every transformation agent is tracing-enabled, thus producing a tracing model.
This tracing model preserves a mapping from source model elements (agent inputs)
to target model elements (agent outputs).

Fig. 13 Trace models in the architecture

246 Ulrich Winkler, Wasif Gilani

Trace models enable computation of the transformation path from analysis re-
sults to original source model elements (Figure 13). To simplify this computation,
we first consolidate all trace models, using a trace model consolidation agent to
merge Alpha, Beta and Gamma trace models into a consolidated BEAM trace model
(Figure 13).

4.15 Context-Sensitive Presentation Mode

One major objective of our solution is to enable presentation of analysis results
to stakeholders in their respective modelling environments. We call this context-
sensitive analysis result presentation (or ’interactive presentation’) for short). For
example, the expected recovery time objective of a process activity should be dis-
played to business process experts if they select a process activity in their respective
modelling environments. This view is provided by the context-sensitive analysis re-
sults view.

The context-sensitive analysis results view uses the same mechanism as the busi-
ness process requirement editor to detect model element selection changes in the
NW BPM process editor. On selection change events, the context-sensitive analysis
results view displays analysis results related to the selected model element. For ex-
ample, if a business process expert selects a specific business process activity, the
view will only display analysis results for this process activity.

For example, Figure 14 shows the resulting view for an IT model, while Figure 15
depicts the view for a process model.

The interactive presentation mode has various advantages. First, it allows stake-
holders to visualise analysis results in their modelling domain. They are able to
change the models (e.g., alter a process or an IT landscape model) and get immedi-
ate feedback about how changes affect the business continuity aspects of a process
or IT landscape.

Figure 16 shows architectural details of the context-sensitive analysis results
view for the business process expert. The context-sensitive analysis results view
for the IT architect works in a similar way.

4.16 Document-Oriented Presentation Mode

Not all stakeholders have a dedicated modelling domain with sufficient tooling sup-
port, such as NW BPM. Moreover, in some cases dissemination of analyses results
to external stakeholders is required despite lack of access to appropriate modelling
tools. This is particularly true for BCM auditors. Therefore, our solution provides an
additional presentation mode: document-oriented presentation. In this mode, report
generators transform analysis results into Office documents.

Model-Driven Framework for Business Continuity Management 247

Fig. 14 Context-sensitive presentation: the resulting view depicts two lengthy downtimes for a
selected IT resource.

The report generator uses BCAM and other information sources—such as busi-
ness process models—as inputs, and generates BC analysis documents in various
formats (e.g. Microsoft Excel).

Our solution also supports chaining of generators. For example, the xCelsius re-
port generator reuses reports generated by the Microsoft Excel document generator
and produces SAP xCelsius dashboards.

The BC manager controls the document generation process via the BIA analysis
controller. The BIA analysis controller orchestrates and configures report generators
and report generator chains by means of configuration files.

248 Ulrich Winkler, Wasif Gilani

Fig. 15 Context-sensitive presentation: the resulting view depicts the queue length for two disrup-
tions of a single process activity.

5 Conclusions and Outlook

In this chapter, we have introduced a novel business-process-centric framework for
BCM. We have further described how this framework consumes currently available
process models and IT landscape models to automatically uncover dependencies be-
tween resources in different layers of the enterprise stack. Within the transformation
chain, the business continuity manager is further provided with two editors to refine
the models: the BCM editor and the BEAM editor. The availability of these editors
enhances the quality of the resulting analysis model in terms of its completeness,
accuracy and precision. The BC editor allows the manager to assign resource de-
pendency graphs to process activities, and to use his/her expert knowledge to further
enhance knowledge captured about the resource dependencies within the automat-
ically generated resource dependency graphs. Once the BC model is transformed
into a BEAM, the user can use the BEAM editor to further refine the BEAM, al-
ter the behavioural models, and add measurement models and recovery plans. The
proposed architecture allows connection to various types of analysis tools.

Model-Driven Framework for Business Continuity Management 249

Fig. 16 Architecture of the context-sensitive analysis result

Fig. 17 Document-oriented result presentation

References

[1] Asnar, Y. (2009). Requirements Analysis and Risk Assessment for Critical
Information Systems. PhD Thesis

[2] Asnar, Y., & Giorgini, P. (2008). Analyzing Business Continuity through
a Multi-Layers Model. Proceedings of the 6th International Conference on
Business Process Management.

250 Ulrich Winkler, Wasif Gilani

[3] Bernardi, S., Merseguer, J., & Petriu, D. C. (2009). A dependability profile
within MARTE. Software & Systems Modeling. doi: 10.1007/s10270-009-
0128-1.

[4] Business Continuity Management : Code of Practice (BS ISO). British Stan-
dards Institution (2006).

[5] FTTA IEC 61025 ed2.0 - Fault tree analysis (FTA). Geneva: International
Electrotechnical Commission.

[6] Miller, R. (2010). Salesforce.com Hit by One Hour Out-
age. http://www.datacenterknowledge.com/. Retrieved from
http://www.datacenterknowledge.com/archives/2010/01/04/salesforce-
com-hit-by-one-hour-outage/.

[7] Object Management Group. (2006). Business Process Modeling Notation
Specification, Final Adopted Specification, Version 1.0.

[8] Tjoa, S., Jakoubi, S., Goluch, G., & Quirchmayr, G. (2008). Extension of a
Methodology for Risk-Aware Business Process Modeling and Simulation En-
abling Process-Oriented Incident Handling Support. 22nd International Con-
ference on Advanced Information Networking and Applications (aina 2008),
48-55. Ieee. doi: 10.1109/AINA.2008.81.

[9] Tjoa, S., Jakoubi, S., & Quirchmayr, G. (2008). Enhancing Business
Impact Analysis and Risk Assessment Applying a Risk-Aware Business
Process Modeling and Simulation Methodology. 2008 Third International
Conference on Availability, Reliability and Security, 179-186. Ieee. doi:
10.1109/ARES.2008.206.

[10] Vanderaalst, W., & Terhofstede, a. (2005). YAWL: yet another workflow lan-
guage. Information Systems, 30(4), 245-275. doi: 10.1016/j.is.2004.02.002.

[11] Wijnia, Y., & Nikolic, I. (2007). Assessing business continuity risks in IT.
2007 IEEE International Conference on Systems, Man and Cybernetics, 3547-
3553. Ieee. doi: 10.1109/ICSMC.2007.4413845.

Managing Composite Services

Sam Guinea, Annapaola Marconi, Natalia Rasadka, and Paolo Zampognaro

Abstract Highly dynamic systems, such as those built using the Service-Oriented
Architectures style, are built under an open-world assumption [3], meaning the sys-
tem’s functionality and quality of service are determined by the set of services with
which it interacts, and this set can evolve in many ways. Designers need to be sure
evolutions will not lead to qualitatively inadequate behavior, or to unforeseen fail-
ures. Such systems need to be able to reconstruct themselves when the services
they use change, and react to, and cope with, unforeseen runtime anomalies. Such
systems are said to be self-adaptive, and they are typically augmented with control
loops. In this chapter, we illustrate how the SLA@SOI project manages a complex
system, keeping it aligned with its service level agreement (SLA). Each service in
the system is considered a manageable entity and must provide the hooks to install
appropriate sensors, to understand how the system is behaving, and effectors, so
that it can be adjusted and kept on track. This chapter also details the sensors and
effectors developed within the project for composed services, built using the BPEL
standard.

1 Introduction

Highly dynamic systems, such as those built using the Service-Oriented Architec-
tures style [15], are presenting designers with novel requirements. These systems

Sam Guinea
Politecnico di Milano, Via Golgi 42, 20148 Milano Italy, e-mail: guinea@elet.polimi.it

Annapaola Marconi, Natalia Rasadka
Fondazione Bruno Kessler, via alla Cascata 56C, 38121 Povo, Trento, Italy,
e-mail: {marconi,rasadka}@fbk.eu

Paolo Zampognaro
Engineering, Engineering Ingegneria Informatica Spa, Via Riccardo Morandi, 32, 00148 Roma,
Italy, e-mail: paolo.zampognaro@eng.it

DOI 10.1007/978-1-4614-1614-2_15, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 251

252 Sam Guinea, Annapaola Marconi, Natalia Rasadka, Paolo Zampognaro

are built under an open-world assumption [3], meaning the system’s functionality
and quality of service are determined by the set of services with which it inter-
acts, and this set can evolve in many ways, for better or for worse. Designers need
to be confident that evolutions will not lead to qualitatively inadequate behaviour,
or to unforeseen failures. Such systems need to be able to reconstruct themselves
when the services they use change, and react to, and cope with, unforeseen runtime
anomalies.

A typical way of coping with uncertainties introduced by the open world is to in-
clude some sort of control loop in the system. Autonomic computing introduces the
MAPE loop, which consists of four steps: monitoring, analysis, planning, and exe-
cution [10]. The monitoring and analysis steps collect runtime data and determine
whether the system is providing the desired functionality and quality of service. The
planning and execution steps attempt to identify and enact a strategy that can allow
the system to continue to behave according to users’ needs.

In the SLA@SOI project, a system is required to provide functional and non-
functional qualities that have been established through a negotiated Service Level
Agreement (SLA) [13]. The project provides a reference architecture for an inte-
grated SLA management framework. Not only does the framework manage the SLA
over its entire life cycle, but it also continuously realigns the system with the SLA
itself.

In this chapter, we will focus on how the SL@SOI framework manages the
domain-specific services that compose a complex system. The framework requires
that each service become a manageable entity, and provide hooks for installing con-
trol loops. More specifically, a service must allow the installation of sensors, for
collecting runtime data regarding its behaviour, and effectors, for attempting to keep
the service’s behaviour on track. After presenting the overall SLA@SOI approach to
managing services, this chapter will present the domain-specific sensors and effec-
tors that have been developed for services composed using the BPEL [11] standard.
Sensors adopt aspect-oriented technology [12] to dynamically weave data collec-
tion code into a running process, while two different kinds of effectors are provided.
The first kind of effector enables dynamic binding; the second allows for the dy-
namic restructuring of a process’ internal logic. The overall approach, as well as the
domain-specific sensors and effectors, are exemplified using the project’s Health
and Mobility use case.

The rest of this chapter is organised as follows: This section concludes with a
brief presentation of the SLA@SOI project’s Health and Mobility use case. Sec-
tion 2 illustrates the SLA@SOI approach to managing domain-specific services.
Section 3 presents the Dynamic Orchestration Engine (DOE), a BPEL execution
environment that has been extended with sensing and adjustment capabilities, and
briefly explains how AOP is used to enable sensors. Sections 4 and 5 explain and
exemplify the dynamic binding and process restructuring adjustment capabilities
we have implemented within the project. Section 6 discusses the most prominent
existing work in the literature, and Section 7 concludes the chapter.

Managing Composite Services 253

Fig. 1 Activity diagram of the Health and Mobility booking use case.

1.1 The Health and Mobility Use Case

The Health and Mobility use case involves a patient, a health care service, a set of
mobility services, and a call centre. Patients are interested in booking, modifying
or cancelling an appointment, and in finding a mobility service that can help them
reach the health care centre.

The overall workflow is shown in Figure 1. The citizen makes a call to a con-
tact service access point. The call is assigned to a call operator that communi-
cates with the citizen. As soon as the citizen gets a response, she invokes ser-
vice bookTreatment to request a treatment booking. The requested treatment is
passed to the health care system, which invokes service getTreatmentOptions

254 Sam Guinea, Annapaola Marconi, Natalia Rasadka, Paolo Zampognaro

to find possible appointments and corresponding options (e.g., date, time and loca-
tion). The set of such appointment alternatives is proposed to the citizen via service
selectTreatmentOptions. The patient chooses an available appointment and
the corresponding options are sent back to the health care system. The latter books
the selected appointment and calls the citizen with the booking notification.

After that, the workflow passes to the second phase, in which a mobility service
is booked. This phase starts by asking the citizen if the mobility service is needed
at all (checkIfMobilityNeeded). If the mobility service is not needed, the
workflow terminates. Otherwise, the patient’s profile is used to find possible trip
options (e.g., public transport, an ambulance, a taxi, etc). The citizen’s profile may
include her address, or time and date preferences. Once the patient chooses one of
the alternatives the selectTripOption service is executed. As soon as a reply
from the citizen is received, a corresponding mobility service is contacted to book
that option. Finally, bookMobilityCallback notifies the citizen about the end
of the booking, and the workflow terminates.

2 Management Approach

To guarantee an SLA is satisfied at runtime, the SLA@SOI framework requires
that the services taking part in the system be manageable entities. The framework
governs a manageable entity throughout its entire life cycle, from its deployment to
its execution. A manageable entity provides the hooks required to install autonomic
control loops, so that erroneous behaviours, with respect to an SLA, can be captured
as they occur, and corrective actions can be taken. These hooks consist of sensors
for collecting behavioural data to analyse, and effectors for attempting to put the
service back on track.

Management details typically vary from one service to the next, either because
they pertain to different domains, or because they are built using different technolo-
gies. This is why we propose a general-purpose manageability interface that the
SLA@SOI framework can use to govern a service. Moreover, we do not require that
all services implement this interface, but provide an agent-based approach. Instead
of interacting with the end service itself, the SLA@SOI framework interacts with a
manageability agent that hides the technical and domain-specific details.

Figure 2 illustrates how the manageability agent bridges the SLA@SOI frame-
work and a domain-specific service. The framework interacts with a service through
a service manager. This manager is responsible for preparing, deploying, and
governing a service instance. It does not interact with the service itself, but with
the service’s manageability agent, using a well-specified interface. In particular, the
manageability agent allows the service manager to configure and use the sensors
and effectors within the service instance.

Once a sensor is configured, it autonomously collects runtime data and sends
them to the SLA@SOI publish and subscribe EventBus. SLA@SOI analysers
need to be configured to subscribe to these data. The manageability agent achieves

Managing Composite Services 255

Fig. 2 The manageability agent in the context of the SLA@SOI framework.

this configuration through the framework’s LowLevelMonitoringManager.
Not only does it tell the analysers what data they must subscribe to, but it also
explains how to extract the required data from the bus’ event and what analysis
properties needs to be checked. When an anomalous behaviour is detected, it is
communicated to the SLAManager through the event bus. This component contains
the knowledge needed to determine what corrective actions need to be taken. These
actions are achieved indirectly through the service manager, which in turn interacts
with the manageability agent.

Fig. 3 The manageability agent’s generic interface.

Figure 3 illustrates the generic interface that is provided by a manageability
agent. Through the IManageabilityAgent interface it is possible to obtain a list of
services for which the agent is responsible, to start and stop these services, and to
configure and activate their domain-specifc sensors and effectors.

Sensors and effectors are often domain-specific because they need to cope with
the technical intricacies of the services they are attached to. This is why we propose
the notion of a domain-specific manageability facade. A facade offers a generalised
interface for coping with sensors and effectors, and hides the technical details tied to

256 Sam Guinea, Annapaola Marconi, Natalia Rasadka, Paolo Zampognaro

the service implementations. Therefore our solution is to provide the service man-
ager with an appropriate facade for each service it needs to manage. This is achieved
through manageability agents.

The IManageabilityAgentFacade interface offers three monitoring-related meth-
ods: one for getting a list of the sensor configurations currently deployed in the
service, one for configuring (or reconfiguring) a sensor, and one for de-configuring
all the service’s sensors. It also offers a method for invoking an adjustment action on
the managed service. This method receives both the name of the action that needs to
be achieved, and the parameters that must be passed to the effector deployed within
the service instance.

3 A Dynamic Orchestration Engine

Through the SLA@SOI framework, it is possible to manage both simple and com-
posite services. In general, the management of composite services presents chal-
lenges, mainly due to limitations of the WS-BPEL standard [11]. Therefore, we
provide a Dynamic Orchestration Engine (DOE), built as an extension of the open
source ActiveBPEL engine, that allows us to install advanced sensors and different
kinds of effectors. Sensors can be used to intercept an executing process and extract
important runtime data for analysing the system’s behaviour. Effectors can be used
to change the binding between the system and its partner services, or to more deeply
modify the process by altering its control and data flows.

For the DOE, we have implemented a specific manageability facade according
to the IManageabilityFacade interface described in Section 2. We shall now discuss
how the facade can be used to install sensors in a running process. (Our two kinds
of effectors will be discussed in more detail in Sections 4 and 5.)

DOE sensors are used to extract information from a process instance at runtime.
A sensor is enabled using aspect-oriented programming (AOP) techniques. AOP
allows us to maintain a clear separation of concerns between the process’ business
logic and the sensors that we want to install. Indeed, different SLAs may require
different sensors, which means they cannot be defined once and for all in a business
process. Instead, we propose a rule-based approach. A sensor is defined using a
sensing rule that contains sensing directives that are weaved into the execution as
required. The directives instruct the engine on how to intercept the process instance,
and gather the content of a BPEL variable, taking into account BPEL’s visibility
rules.

A rule consists of a 〈 condition, sensing information 〉 couple. The condition con-
sists of 〈 position, status check 〉 . The position is an XPath that uniquely determines
a BPEL activity within the process with respect to its XML definition, and a special
keyword which can be either ‘before’ or ‘after’. The AOP sensing capabilities are
thus activated either before or after that specific BPEL activity. Once the sensing
capabilities are activated, the sensor performs a status check. The status check is a
list of 〈 variable, value 〉 couples. A variable is an XPath that specifies how to extract

Managing Composite Services 257

a string, number, or Boolean from a complex BPEL variable; the value tells us what
we expect to find therein. If the check is evaluated successfully, the sensor extracts
the data specified in the rule’s sensing information, which is the name of a specific
variable within the process. If the status check is empty, the sensing is considered to
be always active.

For example, in the Health and Mobility scenario seen in Section 1.1, we may
be interested in tracking appointment proposals that are made to the citizen. Sup-
pose we are experiencing troubles with the mobility services, and they can only be
provided in the afternoon. If the system is making appointment proposals for the
morning, we may need to take action to ensure this does not continue. In this case,
we want to sense the selectTreatmentOptions invoke activity, and in partic-
ular we want to sense the information contained within the message it sends. This
information is contained in the BPEL variable TreatmentOptionsOut. There-
fore, the sensing rule’s condition consists of the XPATH that uniquely identifies the
selectTreatmentOptions and the ‘before’ keyword. Its status check is left
empty to keep the sensing on at all times, and the sensing information is simply the
name of the BPEL variable we are interested in, i.e., TreatedOptionsOut.

4 Dynamic Binding

The first kind of adjustment we support involves the bindings a process has with
its partner services. The BPEL standard does not specify when binding information
should be provided. Most process execution engines interpret this in a simplistic
manner, by requiring that binding information be provided during the process’ de-
ployment. This can produce a number of negative effects: For example, if BPEL en-
gines adopt proprietary deployment descriptors and procedures, the process’ porta-
bility will be negatively impacted. Deployment-time binding also limits a process’
freedom to evolve. Indeed, a process that wants to change its bindings must be rede-
ployed, which can be a very costly operation. It also makes it impossible to define
specific bindings for specific categories of process instances or users. This is an im-
portant limitation if we consider the typical process development model. First, the
process is defined in a development phase. Second it is customised to satisfy spe-
cific conditions (e.g., the quality levels agreed with a given partner). Finally, it is
deployed to a BPEL engine.

This approach is far from optimal. A process that is conceptually identical could
want to bind to different services depending on the different quality requirements.
In our DOE we deploy an unbound process before the process’ actual provision-
ing phase, for example, during an offering phase as seen in Figure 4. Then, after
a negotiation phase in which we establish specific SLAs and corresponding bind-
ing information, we submit the binding information to the system. This way, if the
bindings need to change no redeployment will be necessary. The process’ portabil-
ity is maintained since there is a clear separation of concerns between the process’
business logic and its binding information.

258 Sam Guinea, Annapaola Marconi, Natalia Rasadka, Paolo Zampognaro

Fig. 4 The Dynamic Orchestration Engine allows a single deployed process to exploit dynamic
binding through appropriately designed binding rules.

The DOE allows us to associate binding rules with BPEL partner roles (Figure 5).
A binding rule is expressed by a couple 〈 condition, binding information 〉 , where
the condition represents the process status that triggers the adoption of a specific
binding. A condition is expressed as a partner role and a set of 〈 variable, value
〉 couples. Every time the process needs to perform an invocation with a specific
partner, it evaluates the binding rule and sets the binding information appropriately.

Fig. 5 The Dynamic Orchestration Engine’s binding rules management interface.

The DOE also supports the notion of an abstract process: that is, a process for
which at least one BPEL invoke activity is abstract and therefore associated with a
service description. During the operation phase, the service description is used to
discover, select, and negotiate a specific service for that invoke activity. A service
description consists of a SLA template document that, along with the SLA model,
represents the requirements that need to be met in terms of functionality and quality
of service. To support abstract processes, we introduced the notion of an abstract
binding rule. An abstract binding rule consists of a 〈 condition, SLAT 〉 couple.
Notice that the DOE also supports multiple bindings, meaning that given one SLAT,
multiple services can be selected for execution. The services are all invoked, one at
a time, and their return values are presented as an aggregate and single response.

We have exploited the above mechanisms in the management of the Health and
Mobility process, to enable both the automatic selection of service providers and
their substitutions. For instance, let us consider the fragment of business process

Managing Composite Services 259

reported in Figure 6. It consists of an abstract process that has been adequately
configured through the manageability facade.

Fig. 6 The Health and Mobility process exploits dynamic binding techniques to enable automatic
selection of service providers.

The process comprises the following main activities:

• a receive bookMobility through which it acquires the citizen’s preferences
regarding the mobility service, such as ‘low cost’ (ProfileLC) or ‘nearest loca-
tion’ (ProfileNL);

• an abstract invoke getTripOptions for obtaining the possible providers that
can be presented to the citizen;

• a invoke selectTripOption that presents such options to the citizen;
• the receive selectTripOption through which it acquires the citizen’s choice

of option;
• the invoke bookTripOption, which depends on the citizen’s choice and

books the chosen mobility service.

We have associated two abstract binding rules to the process’ abstract invoke.
The DOE only executes one, depending on the condition which matches the citizen’s
profile. The two rules are:

• 〈 (profileType=profileLC), SLATLC 〉
• 〈 (profileType=profileNL), SLATNL 〉

260 Sam Guinea, Annapaola Marconi, Natalia Rasadka, Paolo Zampognaro

When the appropriate rule is executed, a sensor in the DOE sends a (Binding
Missing Event) to an appropriate BindingListener, which in the context of
the SLA@SOI framework is the SLAManager. The SLAManager extracts, from
the project’s SLA registry, all the SLAs that match the template found in the rule
(either SLATLC or SLATNL). It then uses a service manager, and indirectly the
DOE’s manageability facade, to instruct the engine to bind to, and execute, all these
services through their exposed method getTripOptions().

The DOE is implemented as an extension to the open source ActiveBPEL exe-
cution environment. The extension modifies ActiveBPEL’s internal code to interact
with a new module called the Binder every time it needs to invoke an external
service (Figure 7). The Binder offers two main interfaces: the IBinder and the
IBinderInvocation. The former is for configuring binding rules, while the
latter is for requesting the actual execution of abstract and concrete services.

In the case of abstract invocations, the Binder extracts the SLAT from the abstract
binding rule and asks the BindingListener to select a web-service that matches
the requirements contained therein. Once the BindingListener has found the service,
it passes the specific binding information to the IBinder interface, so that the pro-
cess’ execution can continue. As seen in the above example, in the context of the
SLA@SOI framework, the BindingListener’s role is played by the SLAManager,
and the IBinderInvocation interface is accessed through a manageability agent and
the DOE’s specific facade.

Fig. 7 ActiveBPEL has been extended to support our dynamic binding rules.

5 Process Restructuring

Another kind of adjustment is related to structural modification of the process’
workflow. These adjustments may be required in a range of cases, for example, when
there is a need to manage time- or memory- performance with respect to the cur-

Managing Composite Services 261

rent needs of the application. Parallelisation of some workflow parts (sub-processes)
can lead to a reduction in execution time1. On the other hand, parallel execution of
sub-processes may require more memory and resources. Such trade-offs can be dy-
namically supported by means of continuous process restructuring.

For example, let us assume that initially the business process is structured as
in Section 1.1, i.e., a health care service search is called first, and then a mobility
service search is called. If we need to accelerate the queue of patients waiting to be
treated, we could call both services in parallel, if they do not have data dependencies.
On the other hand, if parallel services tend to exhaust a system’s resources (e.g.,
bandwidth, computational memory, network workload, etc.), we may restructure
the process so that some invocations are performed sequentially.

Of course, structural adjustment can be used to solve much more complex prob-
lems and can help optimise the process’ overall execution. For example, let us once
again suppose that the patient has mobility issues and that mobility services can only
be guaranteed in the afternoon. A workflow like the one depicted in Section 1.1 will
first search for a health care appointment, and then search for a mobility service.
However, if the first step returns a health care appointment in the morning (due to
a strategy that selects the earliest availability), then the second step will fail since
no mobility service is available. This can be monitored by analysing the sensed in-
formation as shown in Section 3. To recover from the failure, the process might
try to search for a new health care appointment. However, such redundant behavior
could be avoided by simply requesting the mobility service search first, or at least
in parallel with the appointment search.

Automatic detection and remediation of such structure-dependent situations is
very helpful when dealing with complex workflows. Such workflows are usually
difficult and error-prone to manually create, analyse and optimise since they need
to account for various actors and interactions. Our approach is based on workflow
composition, as in [4]. In our Health and Mobility example, we have at least three
workflows for each of the high-level actors: the patient, the health care service, and
the mobility service. These are composed into a single workflow for the call centre,
taking into account the following requirements:

• Control flow requirements are used to specify a successful/unsuccessful termina-
tion of the workflow. For example, in the health care scenario, if the patient is
unable to fix an appointment in any health care centre, the overall workflow ter-
minates unsuccessfully, even if the mobility service was booked successfully. On
the other hand, an unsuccessful booking for the mobility service will not impact
a booked health care appointment (we consider a mobility service as an optional
facility in the health care scenario).

• Data flow requirements are needed to specify how actors depend on each other in
terms of data inputs and outputs. For example, a patient may prefer to be treated
in a health care centre near his/her house, but the date of treatment may not be
for a month due to queues for treatment at that particular centre. A mobility

1 Unless parallel sub-processes share some common resource that can only be consumed by a
single process at a time.

262 Sam Guinea, Annapaola Marconi, Natalia Rasadka, Paolo Zampognaro

service booking will thus depend on this information, and will be invoked with
this information in mind (i.e., in a month).

All such requirements make up the input of a planning engine [4]. The planer’s
output is a composed business process which is usually parallelisation-free: that is,
it contains only sequential and branching components. Through process restructur-
ing, we reorganise these sequential fragments into parallel ones, and vice versa, if
possible. We developed a method for maximum parallelisation, where we parallelise
as much as possible, taking into account control flow and dataflow requirements. For
example, if in the original workflow, the output of the health care booking service
contains a treatment date and time that must be consumed by the mobility booking
service, we cannot parallelise these two bookings. However, we can parallelise the
search steps, since the health care search and the mobility search are independent.

Fig. 8 Overview of the process restructuring approach.

We restrict maximum parallelisation by means of structural requirements (Fig-
ure 8). These requirements keep some fragments of workflow sequential, even if
they can be parallelised. In general, structural requirements are stipulated by the
needs of the application, and can be introduced by workflow administrators or own-
ers, or they can be extracted from the preferences of the workflow actors.

As an example, the parallelisation algorithm can transform the workflow from
Section 6 to one depicted in Figure 9. Namely, the workflow starts in the same
way as in the example: the patient makes a call and starts a conversation with the
call operator. However, together with service getTreatmentOptions, a paral-
lel branch is launched to search for a mobility service. First, the patient is asked
whether she needs a mobility service (selectMobilityNeeded). If she does,
the booking of both the treatment and the mobility option proceed in parallel un-
til the former reaches activity updateAgenda. At this point, we prefer to restrict
parallelisation with a structural requirement2 and establish that the invocation of
updateAgenda must be followed by bookTripOption, due to the sensitivity

2 Restriction on parallelisation is implemented in BPEL via synchronisation links with source
and target parameters.

Managing Composite Services 263

Fig. 9 The Health and Mobility booking process after structural adjustment.

of the booking operation to failure situations. Specifically, if the health care treat-
ment booking fails for some reason, we can easily roll back an operation without
needing to roll back the mobility service booking. In Figure 9, we represent the
structural restriction between the treatment booking and the mobility booking as a
dotted line.

In the current example, we consider a structural adjustment of this global work-
flow. However, any underlying workflow of a single hospital (e.g., HSC booking
service) or mobility service (e.g., extra-urban bus schedule info) can be also restruc-
tured according to the same principles.

264 Sam Guinea, Annapaola Marconi, Natalia Rasadka, Paolo Zampognaro

To support process restructuring, the DOE has been extended with two
main components: a process runtime modifier, and a static BPEL
modifier, both of which are accessible through the DOE’s specific manageability
facade. The runtime modifier makes use of AOP techniques to intercept a running
process and modify it in one of three ways: by intervening on its BPEL activities,
on its set of partner links, or on its internal status. The runtime modifier takes three
parameters. The first is an XPath expression that uniquely identifies the point in
process execution by which restructuring must be activated. The second is an XPath
expression that uniquely identifies the point in the process by which restructuring
must be achieved (which can differ from the point at which restructuring is acti-
vated). The third parameter is a list of restructuring actions. Supported actions con-
sist of the addition, removal, or modification of BPEL activities, partnerlinks, and
data values. When dealing with BPEL activities, we must provide the BPEL snippet
that needs to be added to the process, or used to modify one of the process’ existing
activities. When dealing with partnerlinks, we must provide the new partnerlink that
needs to be added to the process, or used to modify an existing one. When dealing
with the process’ status, we must uniquely identify a BPEL variable within the pro-
cess that needs to be added or modified, and the XML snippet that will consist of its
new value.

When process restructuring needs to be more extensive, we can use a static BPEL
modifier. It supports the same kinds of modifications to process activities, partner-
links, and internal variables, except that the modifications are performed on the
process’ XML definition. This means the process needs to be redeployed. However,
this operation is completely transparent to process users. First, process instances that
are already running are not modified; the changes are only applied to new instances.
Second, using the same endpoint, all new process requests will be forwarded to the
newly deployed version of the process.

6 Related Work

In this chapter, we introduced SLA@SOI’s generic approach to service manage-
ment, and then focused on specific adjustment techniques for composed services.
Due to lack of space, below we shall focus on some adjustment techniques that we
deem of interest and comparable to our own.

Ardagna et al. [1, 2] propose the PAWS (Processes and Adaptive Web Services)
framework. Their proxy-based framework optimises a BPEL process’ QoS by se-
lecting the most appropriate partner services at runtime, and by providing a set of
simple recovery actions. First, designers define global and local QoS constraints.
Second, these requirements are analysed and used to produce a set of candidate ser-
vices, retrieved from an extended UDDI repository. Third, the system provides a
series of mediations that allows it to deal with retrieved services. If a QoS require-
ment cannot be met, the framework can choose among a set of recovery actions:
retry, substitute, and compensate. Like our approach, PAWS has paid attention to

Managing Composite Services 265

separation of concerns. Indeed, there is no notion of monitoring, discovery, or me-
diation to be found in its processes, but these issues are treated externally in proxies
that are placed between the process and the partner services. Unfortunately, the ex-
tensive use of proxies brings with it a high performance overhead. Moreover, their
recovery strategies are defined statically at design-time. The way they implement
separation of concerns does not allow them to add to or modify recovery strategies
at runtime, nor does it allow them to select strategies at runtime depending on the
actual context of execution. Instead, if, for example, our negotiated SLA changes,
we can use the notion of facade to enable modification of management activities at
runtime. This also allows us to fine-tune our sensors, which do have a small impact
on process performance, and tailor them to specific needs that exist at a certain point
in the process’ life cycle.

Colombo et al. [7] offer a composition language that allows designers to declare
policy (re)binding rules. Policies are defined using an extended version of the Drools
language [16] (a language for defining Event-Condition-Action rules), and can be
either global or local. This approach is proxy-based. Every time the process invokes
a service, the proxy interacts with the rule engine to see whether (re)binding is
necessary. The authors also added mediation capabilities through a special-purpose
mediation scripting language, and an interpreter that behaves as a proxy [6]. Once
again, there is a clear separation of concerns between business logic and manage-
ment that is enforced by the use of proxies. However, the definition of rebinding is
given statically.

Moser et al. [14], in their VIeDAME approach, also provide a dynamic adapta-
tion and message mediation service for partner links. Using the data collected during
the monitoring step, the system chooses the most appropriate service, while XSLT
or regular expressions are used to transform messages accordingly. An important
difference between our approach and all of the above solutions for dynamic binding
is that we make a clear distinction between concrete and abstract BPEL processes.
Moreover, our approach also supports multiple bindings, without placing new re-
strictions on the BPEL process’ internal structure.

The first steps towards BPEL process restructuring were taken by Finkelstein et
al. [8] in their work on aspect-oriented weaving applications. They propose use of
AOP both at the engine level, to enable capabilities such as monitoring and dynamic
binding, and at the process level, to enable hot-fixes such as the addition, removal,
and substitution of BPEL activities. Their contributions were more specifically in
the realm of software engineering, since they illustrated the advantages of having
different domain-specific languages for AOP, depending on the level at which the
AOP is to be applied. Indeed, their application of this logic to BPEL engines and
processes was merely an exercise, and has not lead to the distribution of an AOP-
enriched execution environment.

Geebelen et al. [9] propose a template-based approach to the dynamic composi-
tion of BPEL processes. They start from a generic master process that models the
workflow without the specific implementation details. The concrete modules (i.e.,
the BPEL activities) are modelled as templates and stored in a registry. An exe-
cutable process is obtained by choosing specific templates from the registry and

266 Sam Guinea, Annapaola Marconi, Natalia Rasadka, Paolo Zampognaro

integrating them into the master process. The templates are chosen depending on
the values of some domain-specific parameters defined within the master process;
these values can change, and therefore, the executable process can change as well.
The approach maintains a clear separation of concerns between the definition of the
overall business logic and the implementation details of the templates. In the current
implementation, modules simply consist of the concrete details needed to actually
perform a service invocation, while the actual process structure is defined once and
for all in the master process. This makes the approach more similar to a solution for
dynamic binding. It is possible, however, to extend the approach to include more
complex modules that impact the process’ structure.

Structural modifications to workflow systems were extensively investigated in
Adept Project [17]. The proposal is dedicated to ad hoc deviations from the defined
business processes on-demand (e.g., process activities may be dynamically added,
deleted or moved around the process). Corresponding patterns of structural adjust-
ment are provided and analysed with respect to the requirements of completeness,
correctness and efficiency of change operation.

In [5], process views reflecting user perspectives over business processes are ob-
tained via operation reduction and aggregation. These transformations often cause a
restructuring process graph similar to our structural adjustment, where some activi-
ties are placed in parallel while others are organised sequentially. However, such a
restructuring is usually done for reasons of security and confidentiality, rather than
to improve quality of service intentions.

7 Conclusions and Future Work

This chapter has presented the SLA@SOI approach for managing services, and for
keeping them aligned with the functionality and quality of service negotiated and
described in an SLA. Each service is considered a manageable entity, and must pro-
vide the hooks for installing sensors, to allow the framework to understand its run-
time behaviour, and effectors, to allow it to adjust the service and keep it on track.
The chapter also presented the project’s Dynamic Orchestration Engine, which al-
lows for the installation of AOP-based sensors, and for two different kinds of ad-
justments: dynamic binding in concrete and abstract processes, and AOP-enabled
process restructuring.

In future work, we will continue to evaluate the project’s manageability approach
in the context of different technical domains, both at the software and infrastructure
levels. In particular, we are interested in continuing to implement a manageability
facade for atomic services that use Axis technology, and a manageability facade for
virtualised infrastructure services. We will continue to evaluate this approach within
the SLA@SOI project’s industrial use cases and against their requirements, and will
also continue to perform academic lab tests.

Managing Composite Services 267

References

[1] Danilo Ardagna, Marco Comuzzi, Enrico Mussi, Barbara Pernici, and Pierluigi
Plebani. PAWS: A Framework for Executing Adaptive Web-Service Processes.
IEEE Software, 24(6):39–46, 2007.

[2] Danilo Ardagna and Barbara Pernici. Adaptive Service Composition in Flex-
ible Processes. IEEE Transactions on Software Engineering, 33(6):369–384,
2007.

[3] Luciano Baresi, Elisabetta Di Nitto, and Carlo Ghezzi. Toward Open-world
Software: Issues and Challenges. IEEE Computer, 39(10):36–43, 2006.

[4] Piergiorgio Bertoli, Marco Pistore, and Paolo Traverso. Automated Composi-
tion of Web Services via Planning in Asynchronous Domains. Artificial Intel-
ligence, 174(3-4):316–361, 2010.

[5] Ralph Bobrik, Manfred Reichert, and Thomas Bauer. View-based Process Vi-
sualization. In BPM ’07: Proceedings of the 2007 International Conference
on Business Process Management, pages 88–95, Berlin, Heidelberg, 2007.
Springer-Verlag.

[6] Luca Cavallaro and Elisabetta Di Nitto. An Approach to Adapt Service
Requests to Actual Service Interfaces. In SEAMS ’08: Proceedings of the
2008 International Workshop on Software Engineering for Adaptive and Self-
managing Systems, pages 129–136, New York, NY, USA, 2008. ACM.

[7] Massimiliano Colombo, Elisabetta Di Nitto, and Marco Mauri. SCENE: A
Service Composition Execution Environment Supporting Dynamic Changes
Disciplined Through Rules. In ICSOC ’06: Proceedings of the 2006 Interna-
tional Conference on Service Oriented Computing, volume 4294 of Lecture
Notes in Computer Science, pages 191–202. Springer, 2006.

[8] C. Courbis and A. Finkelstein. Towards Aspect Weaving Applications. In
ICSE ’05: Proceedings of the 2005 International Conference on Software En-
gineering, pages 69–77, 2005.

[9] Kristof Geebelen, Sam Michiels, and Wouter Joosen. Dynamic Reconfigura-
tion using Template based Web Service Composition. In MW4SOC ’08: Pro-
ceedings of the 3rd workshop on Middleware for Service Oriented Computing,
pages 49–54, New York, NY, USA, 2008. ACM.

[10] P. Horn. Autonomic Computing: IBM’s Perspective on the State of Informa-
tion Technology. IBM TJ Watson Labs., October 2001.

[11] Jordan, Evdemon, Alves, Arkin, Askary, Barreto, Bloch, Curbera, Ford,
Goland, Guizar, Kartha, Liu, Khalaf, Konig, Marin, Mehta, Thatte, van der
Rijn, and Yendluriand Yiu. Web Services Business Process Execution Lan-
guage Version 2.0. BPEL4WS specification, 2007.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. In ECOOP’97: Pro-
ceedings of the 1997 European Conference on Object-Oriented Programming,
volume 1241 of Lecture Notes in Computer Science, pages 220–242. Springer,
1997.

268 Sam Guinea, Annapaola Marconi, Natalia Rasadka, Paolo Zampognaro

[13] H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck. Web service Level
Agreement (WSLA) Language Specification. IBM Corporation, 2003.

[14] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. Non-intrusive Mon-
itoring and Service Adaptation for WS-BPEL. In Jinpeng Huai, Robin Chen,
Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xi-
aodong Zhang, editors, In WWW ’08: Proceedings of the 2008 Internationl
World Wide Web Conference, pages 815–824. ACM, 2008.

[15] M.P. Papazoglou. Service-oriented Computing: Concepts, Characteristics and
Directions. In ICSOC ’03: Proceedings of the 2003 International Conference
on Web Information Systems Engineering, volume 10. NW Washington: IEEE
Computer Society, 2003.

[16] M. Proctor, M. Neale, P. Lin, and M. Frandsen. Drools
Documentation. Available on: http://labs. jboss. com/file-
access/default/members/jbossrules/freezone/docs/3.0, 1, 2006.

[17] Manfred Reichert, Stefanie Rinderle, Ulrich Kreher, and Peter Dadam. Adap-
tive Process Management with Adept2. In ICDE ’05: Proceedings of the 2005
International Conference on Data Engineering, pages 1113–1114, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

Part VII

Management of the Infrastructure Layer

SLA-Enabled Infrastructure Management

John Kennedy, Andrew Edmonds, Victor Bayon, Pat Cheevers, Kuan Lu, Miha
Stopar, and Damjan Murn

Abstract This chapter documents a successful reference implementation of an
SLA-enabled compute infrastructure. Limitations of current Infrastructure as a Ser-
vice (IaaS) offerings are discussed, and an SLA-enabled implementation is intro-
duced. Infrastructure SLA and services managers have been developed, as have ex-
tensions to Apache Tashi [11] and a low-level monitoring system. Efforts to develop
a generic open interface to heterogenous infrastructure have helped to create the
recently published Open Cloud Computing Interface (OCCI) [2].

1 Introduction

Service Level Agreements (SLAs) for computing infrastructures are often verbose
documents, written in legalese, that even if read, are typically set aside once a con-
tact is entered into. As there is no standard for documenting SLAs, consumers must
manually explore the details of the SLA that each potential provider offers. Once
provisioned, sometimes it is up to the customer to detect and indeed prove any SLA
violations, and manually submit any claims for disposition.

On the service provider side, for manageability purposes, service offerings are
typically offered with a very limited range of fixed SLAs. The possibility of broker-

John Kennedy, Andrew Edmonds, Victor Bayon, Pat Cheevers
Intel Labs Europe, Leixlip, Co. Kildare, Ireland,
e-mail: {john.m.kennedy,andrewx.edmonds,victorx.molino,patx.
cheevers}@intel.com

Kuan Lu
TU Dortmund University, Service Computing Group/ITMC, August-Schmidt-Strasse 12, 44227
Dortmund, Germany, e-mail: kuan.lu@tu-dortmund.de

Miha Stopar, Damjan Murn
XLAB d.o.o., Pot za Brdom 100, 1000 Ljubljana, Slovenia,
e-mail: {miha.stopar,damjan.murn}@xlab.si

DOI 10.1007/978-1-4614-1614-2_16, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 2 17

272

ing third-party services is frustrated by the absence of standard (and automatable)
ways to interrogate, evaluate and negotiate third-party SLAs.

Thus consumers are forced to accept SLAs that are perhaps more extensive (and
expensive) than they truly require. Similarly, providers cannot offer their consumers
individualised SLAs, and may miss out on opportunities to consolidate their infras-
tructure (and reduce expenses) whilst still confident that they are satisfying their
customers’ SLAs. There is no standard automatable way to adopt or broker third-
party services.

Providers able to offer personally customisable SLAs, which the providers can
automatically negotiate, provision, monitor and optimise, gain a significant compet-
itive advantage. They can also participate in automatically brokered and composed
services exposing new business models.

Enabling compute infrastructure with machine-readable SLAs delivers signifi-
cant advantages to both consumers and providers of infrastructural resources.

2 SLA-Aware Infrastructure Architecture

The infrastructure layer has been SLA-enabled by adopting and implementing the
overall SLA@SOI architecture as described in Chapter ‘Reference Architecture for
Multi-Level SLA Management’.

Accordingly, the SLA@SOI model has been used to define an infrastructure SLA
template. It exposes all service-level parameters and valid values that the customer
may select when requesting a service. Services can contain bundles of virtual ma-
chines, each of which have parameters such as number of CPU cores, speed of CPU,
memory size, image location and persistence defined. A wide range of Quality of
Service (QoS) terms can be supported.

A reference infrastructure SLA manager has been implemented by developing
infrastructure-specific Planning and Optimisation (IPOC) and Provisioning and Ad-
justment (IPAC) components and instantiating them within the Generic SLA Man-
ager. This manager deals with all SLA-specific concerns: negotiation, planning, pro-
visioning, adjustment and optimisation as per the agreed SLA. The IPAC and IPOC
manipulate the infrastructure via the infrastructure service manager (ISM).

The ISM contains all the logic to manipulate the underlying infrastructure. In this
reference implementation, the ISM interfaces with the provisioning system through
the Open Cloud Computing Interface (OCCI). SLA@SOI helped to develop this
open standard to create a generic, extensible way in which arbitrary virtualised in-
frastructure could be manipulated and managed, independent of the provisioning
system.

Apache Tashi is the open-source provisioning system on which this reference
implementation was built. Several new Tashi modules were developed during the
course of this work, to introduce additional functionality and enhancements. The
source code for these new modules was contributed back to the Tashi community to
help share these improvements.

J. Kennedy et al.

SLA-Enabled Infrastructure Management 273

Whilst high-level SLA monitoring concerns are controlled by the monitoring
manager within the Generic SLA Manager, low-level infrastructure monitoring in
the implementation is managed by the low-level monitoring system. This system
has the ability to configure infrastructure monitors, gather infrastructure monitoring
data and escalate significant events to higher-level components via the Extensible
Messaging and Presence Protocol (XMPP) [3].

An XMPP bus is used to allow components up and down the stack to communi-
cate. In particular, monitoring alerts are passed from the LLMS to the ISLAM via
the XMPP bus.

These components are now described in some detail.

3 Infrastructure SLA Manager

The Infrastructure SLA Manager (ISLAM) is an instantiation of the Generic SLA
Manager (GSLAM) tailored to infrastructure services. The ISLAM does not try to
replicate all exotic features of every possible infrastructure service, rather it focuses
on the most important features typically provided by IaaS offerings.

In brief, the GSLAM includes all those features necessary for the full life cycle
management of SLAs. It supports:

• Negotiation mechanics via an extensible protocol engine and interoperable syn-
tax converters;

• Persistency for SLAs and SLA templates via the two respective registries;
• A publish/subscribe system for advertising SLA templates, thus enabling service

discovery based on both functional and non-functional properties; and
• The flexible definition of per-SLA monitoring frameworks, through a generic

monitoring manager.

The GSLAM also includes two components considered to be domain- or use-case-
specific; the Planning/Optimisation Component (POC) and the Provisioning/Adjust-
ment Component (PAC). These two components are expected to be implemented by
interested parties, and replace the default placeholders. The ISLAM is, ultimately,
a GSLAM with custom POC and PAC, targeting the least common denominator of
IaaS.

Figure 1 illustrates a high-level overview of the ISLAM architecture, as an ex-
tension of a GSLAM.

As can be seen from this figure, the ISLAM interacts externally with:

• The business (SLA) manager, from which it receives policies and business-
specific customisations related to negotiation, while it also provides runtime sta-
tus information used to make business decisions; and

• The infrastructure service manager (as described below), which provides re-
source information, and controls resources in general (reservations, initialisation,
runtime management).

274

Fig. 1 Infrastructure SLA Manager architecture

The POC is responsible for the planning and optimisation of infrastructure SLAs.
Concretely, it receives requests for infrastructure, queries the infrastructure service
manager for potential provisioning solutions, selects and reserves an optimal solu-
tion, and requests the PAC to provision the selected plan as appropriate. If local
resources cannot satisfy the request (due to lack of resources or specification dis-
crepancies, for example), the POC can attempt to satisfy the request by outsourcing
to third-party providers. This could therefore be regarded as a business strategy by
planning local resource configuration, outsourcing for infrastructure services that
are subject to SLAs, and intelligently offering flexible solutions, thereby gaining
customer satisfaction.

The PAC is responsible for the provisioning and adjustment of infrastructure
SLAs. It directs the infrastructure service manager to provision as per the plan sup-
plied by the POC. It also decides on any adjustments required, to avoid potential
SLA violations.

4 Infrastructure SLA Manager Implementation

The implementation of the ISLAM can be essentially decomposed into the imple-
mentation of a POC and a PAC customised for infrastructure.

J. Kennedy et al.

SLA-Enabled Infrastructure Management 275

4.1 Infrastructure Planning and Optimisation

Fig. 2 Infrastructure Planning and Optimisation Component internals

Figure 2 depicts the internal architecture of the IS-SLAM POC. The core com-
ponent is the runner, which executes the (usually complex) tasks of evaluating SLA
offers or creating new SLA offers, according to some utility measure. The Monitora-
bilityChecker communicates SLAs to the monitoring manager, so that the capability
to monitor a SLA can be confirmed. The PlanManager submits the plans that the
ResourceProcessManager creates to the PAC. Then, ProvisionStatus receives infor-
mation from the PAC, so that if some provisioning is violated, other options and
alternatives can be evaluated.

The algorithm implemented essentially solves the following problem:

• Minimise the cost of implementing an SLA for infrastructure resources of a spe-
cific type and quantity;

• Give a base cost that may be increased by the provider to achieve better quality
(without the customer having requested it) as a means of improving Quality of
Service (QoS) and therefore, in the long run, reputation;

• Take into account mass-purchase reductions, and the cost of implementing some
increased QoS requested by the user;

276

• Ensure that the standard profit, according to implementation costs, minus extra
costs (voluntarily taken up by the provider) exceeds some threshold value; and

• Keep failure probability (as predicted based on models, monitoring data and so
on) lower than some threshold value.

The problem definition can be illustrated as follows:

∑
i
(1+β i) ·Ni ·σ i ·Ci

B +Ci
E (1)

∑
i

[
gi(Ci

I ,C
i
E)−β i ·Ci

I
]≥ F∗ (2)

hi(β i,T i)≤ Pi∗
V (3)

0 ≤ β i,∀i (4)

The problem being solved is how to minimise cost (Expression 1) while profit and
the probability of failure remain within acceptable limits as dictated by high-level
business rules (Equations 2 and 3). F∗ represents a minimum acceptable profit, that
depends on the customer’s profile; and Pi∗

V represents a maximum acceptable failure
probability, which may also be associated with specific customers or other business
conditions at the time of negotiation.

The result of solving this problem is a selection of resources to be outsourced if
they are not available locally (represented by an external implementation cost), the
additional QoS measures for the provider, and eventually, a price quotation to be
handed to the customer: that is, the value to be minimised in the expression 1.

4.2 Infrastructure Provisioning and Adjustment

The Provisioning and Adjustment Component has a generic part (Figure 3), and a
non-generic part that must be customised before application to a specific use case.

In the case of the ISLAM, the ActionExecutionTask had to be re-implemented to
properly invoke the Infrastructure Service Manager (ISM). This task must be added
to an agent. On system start-up, this agent configures and instantiates itself, after
which it starts the specified tasks by communicating with the ISM.

Once the system is provisioned, the PAC starts listening to the event bus to re-
ceive messages informing it about the status of the service. These messages are usu-
ally domain-specific, so the format and a parser that will translate the xml message
to Java classes must be provided and added to the configuration file.

Monitoring events are fed into a drools rule engine managed by an AnalysisTask.
For the infrastructure layer, specific rules have been written which analyse the dif-
ferent received events and trigger different actions: re-provisioning, restarting of a
Virtual Machine (VM), or allocation of extra resources.

J. Kennedy et al.

SLA-Enabled Infrastructure Management 277

Fig. 3 Infrastructure Provisioning and Adjustment Component class diagram

5 Infrastructure Service Manager

Conceptually, the infrastructure service manager (ISM) is responsible for the cre-
ation, life cycle management, internal optimisation and manipulation of infrastruc-
ture resources. The scope of infrastructural resources includes:

• Compute resources - entities that perform computation
• Network resources - entities that link two or more resources
• Storage resources - entities that allow for state to be persisted

The ISM communicates with the actual provisioning system(s) that manage such
resources and is not aware of SLA concerns. The ISM exposes its functionality to
clients through a generic interface and an associated data model and both abstract
the low-level details of the provisioning system supported.

278

5.1 Open Cloud Computing Interface

To facilitate a consistent interface into arbitrary resource providers, the need for a
standard, extensible, open interface was identified, and this led to contribution to
and co-chairing of the Open Cloud Computing Interface (OCCI). Now published as
an Open Grid Forum (OGF) proposed-recommended standard, OCCI is designed
to ”deliver an API specification for remote management of cloud computing in-
frastructure, allowing for the development of interoperable tools for common tasks
including deployment, autonomic scaling and monitoring. The scope of the specifi-
cation will be all high level functionality required for the life-cycle management of
virtual machines (or workloads) running on virtualisation technologies (or contain-
ers) supporting service elasticity” [4]. The current specification is split into three
complimentary documents:

• Core - defining the OCCI model, common resource types and shared attributes.
• Infrastructure - defining the infrastructure domain resource types, their relevant

attributes and actions.
• HTTP header rendering - defining how the OCCI model can be communicated

and thus serialised using HTTP headers.

OCCI is a boundary protocol and API that acts as a service front-end to a
provider’s internal infrastructure management framework. It exposes a RESTful in-
terface [5] and a number of implementations1 and tools support it2.

6 Infrastructure Service Manager Implementation

The reference implementation of the ISM was designed for flexibility rather than for
speed. It illustrates and prototypes several different layers of abstraction, rather than
implement the most efficient way to manage an infrastructure service. The layers of
the ISM are illustrated in Figure 4.

The ISLAM communicates with the ISM through an ISM proxy. The ISM proxy
is an OSGi [6] bundle that implements the SLA@SOI ISM interface. It converts
infrastructure calls to their OCCI equivalents using a JClouds [7] OCCI API de-
veloped during the implementation. The ISM core implementation itself is built
on Grails [8] for flexibility, and exposes an OCCI API as defined and uses the
OCCI ANTLR [9] Grammar3. It essentially implements an OCCI interface, con-
trollers (computer, storage, network, query, reservation), model (the infrastructure
landscape), and services (infrastructure, reservation and messaging) and implements
all necessary logic to manipulate the underlying provisioning system.

1 http://occi-wg.org/community/implementations/
2 http://occi-wg.org/community/tools/
3 https://github.com/dizz/occi-grammar

J. Kennedy et al.

SLA-Enabled Infrastructure Management 279

Fig. 4 Layers of the infrastructure service manager

7 Provisioning System

Apache Tashi was selected as the primary provisioning system for the reference
SLA@SOI infrastructure layer implementation. Tashi can manage KVM and Xen
hypervisors that run on a clustered set of physical machines. Several enhancements
were developed and integrated into Tashi to better support an SLA-enabled infras-
tructure. In particular, two modules for VM management were designed, developed,
tested, contributed back into the Tashi open-source project and made available for
integration into other provisioning systems. These modules addressed scheduling
and VM re-provisioning.

The new scheduler controls allocation of virtual machines to physical machines.
The allocation takes into account infrastructure SLA specifications for virtual ma-
chines as well as data centre policies which might, for example, influence allo-
cation based on server efficiency, energy consumption, user priorities and over-
provisioning targets for the resources.

The new VM re-provisioning extension enables dynamic resource management
of CPU, memory, network bandwidth and disk bandwidth for the virtual machines.

These modules are now described in some detail:

280

7.1 Scheduler

The SLA@SOI Tashi Scheduler provides the following functionality:

• Finds the appropriate server for a new VM request and starts the VM with pa-
rameters as specified in the infrastructure SLA;

• Minimises the number of active physical servers;
• When some VMs are released, migrates VMs with the highest priority to more

efficient servers (servers are ranked by energy and utilisation efficiency); and
• Minimises the number of VM migrations. This is necessary as during the live

migration process two instances of a VM need to coexist, and this consumes
potentially valuable resources.

The scheduler is implemented as an endless loop. The following operations are
performed in a single iteration:

• Checks if distribution of VMs across servers complies with server policies and
user priorities. Triggers migrations if needed.

• Finds the most efficient available server for new provisioning requests (checking
for available CPU speed, CPU cores and memory resources); and

• If no available servers are found, identifies the most appropriate server for over-
provisioning based on the CPU over-provisioning policy, if any. CPU over-
provisioning policies define if virtual CPU speed and cores can exceed the actual
physical resources (and if so by how much) .

A search for the appropriate server for a new VM request can be essentially
viewed as a constraint satisfaction problem. Let hi

cores denote the number of CPU
cores on a physical server hi, let hi

cpu denote the CPU speed in MHz and let
hi

mem denote the amount of memory of hi in megabytes. The number of physi-
cal servers is denoted by k and the number of VMs that are running on hi is ni.
A request for a new VM can be described as v = {vcores,vcpu,vmem}, where CPU
cores, CPU and memory are specified for a VM request. Running VMs are de-
scribed as vi j = {vi j

cores,v
i j
cpu,v

i j
mem}, where vi j denotes a running VM on a server

hi and j < ni. Let oprcores denote the over-provisioning rate for CPU cores and
oprcpu the over-provisioning rate for CPU speed. These two variables are defined
by the over-provisioning policy and are part of the scheduler configuration. When
over-provisioning variables are set to 1, then over-provisioning is not allowed. An
example of the scheduler configuration parameters is as follows:

loadExpression = memUsage + coresUsage * 512 + cpuUsage
cpuCoresOverRate= 2
cpuSpeedOverRate = 1
rescheduleAfterStart = True

The problem of finding the most suitable server for over-provisioning can be
illustrated as follows:

J. Kennedy et al.

SLA-Enabled Infrastructure Management 281

minimize(f (0, ai
cores, ai

cpu)) where 1 ≤ i ≤ k and :
ni

∑
j=1

vi j
cores + vcores ≤ hi

cores ·oprcores

ni

∑
j=1

vi j
cpu + vcpu ≤ hi

cpu ·oprcpu

ni

∑
j=1

vi j
mem + vmem ≤ hi

mem

(5)

The variables ai
cores and ai

cpu denote the number of already over-provisioned CPU
cores and CPUs on a server hi. Function f is used to calculate how heavily a host is
loaded or (if for a VM) what is the weight or load of the VM. This is an arbitrary
formula involving three parameters and is defined in the scheduler configuration.
The default load function is memUsage+ coresUsage · 512+ cpuUsage. This way
the relative importance of the memory, CPU speed or CPU cores can be configured.
The first parameter in the load function in the last constraint is 0, because memory
over-provisioning is not allowed.

A scheduler uses a systematic search to find a solution. First the servers are sorted
by the function such that servers with the smallest over-provisioning load are at
the beginning of the phase of traversing the space of solutions. Memory and CPU
resources are then checked. When the first appropriate server is found, the scheduler
search phase is stopped and the VM is provisioned on the identified server.

7.2 Re-provisioning

A re-provisioning module for KVM and Xen hypervisors has been implemented
to provide options should SLA violations arise or adjustments be required. Re-
provisioning actions are executed when the higher-level components detect that the
negotiated and provisioned resources are not satisfying the business SLA demands.

The re-provisioning module includes the functionality for runtime adaptation of
VM resources, including CPU, memory, network and disk bandwidth. Virtual ma-
chines do not need to be restarted to apply changes to these assigned resources.
When an SLA violation is detected by infrastructure monitoring, the ISLAM pre-
pares the re-provisioning plan and sends it to the re-provisioning module via the
ISM. Based on the new virtual machine requirements (typically including an in-
creased amount of CPU or memory resources), the re-provisioning module executes
the adjustments and spawns a live migration if required.

The re-provisioning module is implemented using Cgroups, the resource man-
ager for Linux containers. Cgroups enables assignment of shares of CPU, memory,
I/O and disk bandwidth to processes that need to be controlled. Importantly, Cgroups
does not require VMs to be restarted to apply the changes in resources. Cgroups is

282

applied directly on the VM processes. The code snippet below shows how we pre-
pare CPU group for a new VM.

if not os.path.exists("/dev/cpu/tasks"):
print "mounting Cgroups CPU module"
subprocess.call("sudo mkdir -p /dev/cpu", shell=True)
subprocess.call(\

"mount -t cgroup -ocpu cpu /dev/cpu", shell=True)
if os.path.exists("/dev/cpu/tasks"):

create CPU Cgroup for this virtual machine:
subprocess.call(\

"sudo mkdir -p /dev/cpu/qemu%s" %\
vmId, shell=True)

print "CPU Cgroup qemu%s created" % vmId
specify a share for this group:
subprocess.call(\

"echo %s | sudo tee /dev/cpu/qemu%s/cpu.shares" %\
(cpu_share, vmId), shell=True)

subprocess.call(\
"echo %s | sudo tee /dev/cpu/qemu%s/tasks" %\
(pid, vmId), shell=True)

When re-provisioning is needed, adaptCpuShare is available to adjust the CPU
share for a specific VM. Similar functionality is provided for memory, disk and
network bandwidth.

def adaptCpuShare(self, vmId, share):
status = 0
if os.path.exists("/dev/cpu/tasks"):

subprocess.call(\
"echo %s | sudo tee /dev/cpu/qemu%s/cpu.shares" %\
(share, vmId), shell=True)

log.info("Cpu share %s given to the Cgroup qemu%s" %\
(share, vmId))

else:
status = 1
log.error("CPU Cgroup is not mounted")

return status

8 Infrastructure Monitoring

A key part of any SLA-aware system is performance monitoring. Without it, there
is no awareness of SLA violations and no knowledge of when adjustment actions
need to be taken. The low-level monitoring system (LLMS) is the component in the
SLA@SOI framework that is responsible for infrastructure monitoring and alerting

J. Kennedy et al.

SLA-Enabled Infrastructure Management 283

the higher-level components about any infrastructure SLA violations. The LLMS is
a key component enabling the infrastructure to cope with failure. An SLA specified
at the customer-level is translated during SLA negotiation into the infrastructure
SLA that defines the exact conditions under which the infrastructure services are to
be delivered to meet the customer’s needs. The infrastructure SLA includes a defi-
nition of the initial configuration of VMs and definition of the monitoring, logging
and alerting details. The LLMS monitors the low-level infrastructure metrics, in-
cluding server uptime as well as CPU, memory, storage and network utilisation, and
performance, based on the settings in the infrastructure SLA.

The components of the LLMS are automatically provisioned according to the
needs of the consumers of the monitoring information. Distributed monitoring com-
ponents are managed intelligently, with management commands distributed from a
node on one layer to all associated nodes on the layer below. This decentralised man-
agement helps ensure the solution is scalable up to very large scale infrastructure
deployments. The structure of the infrastructure monitoring components is shown
in Figure 5.

Infrastructure Monitoring spans all layers but focuses on the infrastructure re-
sources. The Infrastructure SLA Manager (ISLAM) is responsible for assessing
SLA offers and planning the monitoring strategies. Optimal monitoring execution is
defined and sent to the LLMS via the ISM. The ISLAM also retrieves information
from the LLMS historical database, analysing the repeating patterns, predicting if a
problem is about to occur, and forcing adjustments to deployments totry to prevent
the issue. When an Infrastructure SLA violation is detected by the LLMS, the no-
tifying message is reported back to the ISLAM to trigger corrective actions. More
details about the overall SLA@SOI monitoring architecture can be found in Chap-
ter ‘Dynamic Creation of Monitoring Infrastructures’.

Ganglia [10] is used as the LLMS base monitoring engine because of its scalabil-
ity and design for high-performance computing systems. Other monitoring engines
can be plugged into the LLMS or custom, arbitrary sensors can be written. Some of
the monitoring interactions can be seen in Figure 6.

The LLMS exposes its monitoring features to the ISM, which sends monitoring
requests back to the LLMS after synchronisation with the ISLAM. An example of a
monitoring request is shown in Figure 7.

The LLMS is automatically configured on the basis of the monitoring request
from the ISM, and starts monitoring the required QoS characteristics for VMs and
physical servers on specified clusters. The crucial part of the monitoring request is
information about SLA violation thresholds, enabling the LLMS to send notifying
messages about SLA warnings and violations to higher-level components. Monitor-
ing data is periodically stored into the historical database and can be accessed by
the ISLAM to analyse the root causes of any violations.

284

Fig. 5 Components of the monitoring system

J. Kennedy et al.

SLA-Enabled Infrastructure Management 285

Fig. 6 Monitoring interactions

286

1{
2"serviceURL":
3 "slasoi://myManagedObject.company.com/Service/TravelService",
4"serviceName": "TravelService",
5"vmList": [
6 {
7 "id": "16",
8 "name": "vm1",
9 "hostName": "iricbl011.openlab.com",

10 "dnsName": "vm1.openlab.com",
11 "clusterName": "Tashi"
12 },
13 {
14 "id": "17",
15 "name": "vm2",
16 "hostName": "iricbl012.openlab.com",
17 "dnsName": "vm2.openlab.com",
18 "clusterName": "Tashi"
19 }
20],
21"guaranteedQoSTerms": [
22 {
23 "qosTermUri": "http://www.slaatsoi.org/commonTerms#availability",
24 "constraintExpression": ">99.0",
25 "constraintExpressionUnit":
26 "http://www.slaatsoi.org/coremodel/units#percentage"
27 },
28 {
29 "qosTermUri": "http://www.slaatsoi.org/resources#memory",
30 "constraintExpression": ">=150",
31 "constraintExpressionUnit":
32 "http://www.slaatsoi.org/coremodel/units#MB"
33 },
34 {
35 "qosTermUri": "http://www.slaatsoi.org/resources#vm_cores",
36 "constraintExpression": ">=1",
37 "constraintExpressionUnit": ""
38 }
39]
40}

Fig. 7 Monitoring request

J. Kennedy et al.

SLA-Enabled Infrastructure Management 287

9 Conclusions

This chapter introduces the significance of SLA-enabled infrastructure management
and describes the architecture and reference implementation of such a set of compo-
nents. The infrastructure SLA manager, infrastructure service manager, provisioning
system and low-level monitoring system are all documented. External contributions
to open research initiatives including OGF’s Open Cloud Computing Interface and
Apache’s Tashi provisioning system are also summarised, representing considerable
ongoing exploitation opportunities for this work.

References

[1] The Apache Software Foundation: Apache Tashi. URL http://
incubator.apache.org/tashi/. Last retrieved 2011-06-15

[2] Open Grid Forum: Open Cloud Computing Interface. URL http://
occi-wg.org/. Last retrieved 2011-06-15

[3] The XMPP Standards Foundation: The Extensible Messaging and Presence
Protocol (XMPP). URL http://xmpp.org/. Last retrieved 2011-06-15

[4] OCCI Working Group: Charter of OCCI-WG. URL http:
//www.ogf.org/gf/group_info/charter.php?review\
&group=occi-wg. Last retrieved 2011-06-15

[5] Fielding, R: Architectural Styles and the Design of Network-based Software
Architectures. URL http://www.ics.uci.edu/˜fielding/pubs/
dissertation/top.htm. Last retrieved 2011-06-15

[6] OSGi Alliance: Open Services Gateway initiative (OSGi). URL http://
www.osgi.org. Last retrieved 2011-06-15

[7] JClouds: Multi-Cloud Library. URL http://www.jclouds.org/. Last
retrieved 2011-06-15

[8] SpringSource: Grails. URL http://www.grails.org/. Last retrieved
2011-06-15

[9] ANTLR: ANother Tool for Language Recognition (ANTLR). URL http:
//www.antlr.org/. Last retrieved 2011-06-15

[10] Ganglia: Ganglia Monitoring System. URL http://ganglia.
sourceforge.net/. Last retrieved 2011-06-15

Part VIII

Selected Business Use Cases

Introduction to the SLA@SOI Industrial Use

Cases

Ensuring a Realistic Context for Evaluation and for

Determining Readiness for Adoption

Joe M. Butler

1 Introduction

The holistic nature of SLA@SOI’s SLA management framework, comprehending
both the full service stack and the service life cycle, presents challenges in scope,
requirements, and evaluation of technical performance and business impact. To pro-
vide practical boundaries of scope, while realistically responding to the practical
and substantial real-world challenges of advancements in automatic service man-
agement, four industrial use cases have been selected to underpin SLA@SOI’s tech-
nical work. The industrial use cases are complementary in nature. Individually, they
focus on particular aspects of the SLA framework as they relate to the technology
stack and service life cycle. Additionally, each use case is grounded in a particular
usage area or application domain. Each use case is driven by an industrial partner
with expertise and substantial commercial activity in their particular domain. As
such, the use cases have been designed for authentic reflection of the domains they
represent. Collectively, the use cases exercise the full technical scope of the SLA
management framework components. They take a common approach to evaluation,
ensuring the business evaluation in particular is consistent, and that evaluations from
each domain can be interpreted for consideration elsewhere.

2 Considerations for Use Case Selection

A clear consideration when selecting the use cases was the domain representation
offered by industrial partners in the project. However, the specific nature of the use
cases is a result of more detailed consideration of the SLA framework and ways

Intel Ireland Limited, Collinstown Industrial Park, Leixlip, Ireland,
e-mail: joe.m.butler@intel.com

DOI 10.1007/978-1-4614-1614-2_17, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 2 19

292 Joe M. Butler

in which requirements and industrial assessments could be validated consistently.
Examples of such considerations are detailed below.

Primary differentiation between the industrial use cases:

• Focus on software provisioning and management: SLAs will be critical for adop-
tion of cloud/SaaS services by enterprise. Issues such as performance modelling,
resource consumption, constraint management, monitoring and metering need
to be comprehended in an SLA format (Chapter ‘The ERP Hosting Use Case
Scenario’).

• Focus on infrastructure provisioning and management: It is assumed that virtu-
alised infrastructure is consumed as a fully elastic PaaS/IaaS type service with
standardised interfaces for negotiation and SLA management. It is also assumed
that IaaS/PaaS service providers will require manageability stacks to compre-
hend internal objectives and constraints, as well as SLA-defined KPIs for new
and running services (Chapter ‘The Enterprise IT Use Case Scenario’).

• Focus on service aggregation: Automatic negotiation and management of SLAs
paves the way for a highly scalable service environment. The natural progression
is the scenario of aggregation, wherein services can be dynamically composed
in a multi-party environment with an SLA hierarchy managing QoS and other
details (Chapter ‘The Service Aggregator Use Case Scenario’).

• Focus on integration of human-based services: In many domains, business
processes comprise a blend of ICT-based and human-based services. This is
generally driven by practicalities of the service/consumer interface or by a
requirement for judgment-type decisions which cannot be automated (Chap-
ter ‘The eGovernment Use Case Scenario’).

Further considerations:
• Service variation: No specific assumption is made regarding the lifetime of ser-

vices. Long-lived processes and services can coexist with more dynamic, short-
lived services in any of the use cases.

• Heterogeneous infrastructure landscapes: Real-world data centres are assumed,
including variations in the infrastructure fleet that create specific challenges for
efficient management. Also, it is assumed that different VM and VM manage-
ment options will be appropriate for different services.

• Efficiency and sustainability: Efficiency is an emerging concern across industry
sectors. In the context of the SLA management framework, this is most relevant
to infrastructure management and is considered as an internal objective within
the enterprise IT use case.

• Interoperability: It is assumed that the service marketplace for platform and in-
frastructure services is dynamic and that a range of offerings should be easily in-
tegrated and consumed. Open standards and interface specifications are adopted
across use cases.

Introduction to the SLA@SOI Industrial Use Cases 293

3 Use Case Key Elements

A minimal basic structure was established to enable necessary consistency across
the use cases, while allowing the flexibility necessary for each to meaningfully re-
flect their core domain. The following elements comprise this basic structure:

• Scenario-based: To take full advantage of the domains represented, the use cases
are subdivided into scenarios. Each scenario examines the contribution of the
SLA framework in different ways. The scenarios, for example, can represent
distinct phases of a service life cycle, or differentiate between the operation and
strategic perspectives of a key stakeholder.

• Alignment to business objectives: To ensure consistency in validation and evalua-
tion, each use case is positioned in support of objectives that are specific to its do-
main. These objectives are high-level and representative of typical organisations
within the use case domain. Each use case has created its own mapping that al-
lows measurable and judgment-assessed contributions from the SLA framework
to be translated into positive impact in support of relevant business objectives.

The following chapters deal with the four industrial use cases individually, and
describe in detail their use and evaluation of the SLA Management Framework, and
its relevance to the industrial domain in question.

The ERP Hosting Use Case Scenario

Managing On-Demand Business Applications with

Hierarchical Service Level Agreements

Wolfgang Theilmann, Jens Happe, and Ulrich Winkler

Abstract Business applications are increasing delivered as on-demand services and
Service Level Agreements (SLAs) are a common way to specify the exact conditions
under which these services should be delivered, both for business- and IT-based
services. This paradigm of service-orientation is expanding into different domains,
including business and IT-based services. Services are composed of other services
across domains, and as such SLAs must be managed across service hierarchies.
Here, we present the lessons learned from applying a generic, multi-layer SLA man-
agement framework to the context of on-demand business applications. We explain
the architecture implemented and show how a hierarchy of services can be managed
using SLAs. We also explain how SLAs can be established for different layers and
how SLA terms are translated across the service hierarchy.

1 Introduction

Traditional business applications have largely been delivered as on-premise de-
ployed solutions. However, the need for increased business agility and decreased
cost of ownership has resulted in an increasing demand for business applications
delivered as on-demand services (following the paradigms of cloud computing ([2])
and software as a service (SaaS)). Service customers expect increased agility and
reduced effort since they can access and use business applications without having to

Wolfgang Theilmann
SAP Research Karlsruhe, Vincenz-Priessnitz-Str. 1,
e-mail: Wolfgang.Theilmann@sap.com

Jens Happe
SAP Research Karlsruhe, Vincenz-Priessnitz-Str. 1, e-mail: Jens.Happe@sap.com

Ulrich Winkler
SAP Research Belfast, The Concourse, Queen’s Road, Belfast BT3 9DT, United Kingdom,
e-mail: ulrich.winkler@sap.com

DOI 10.1007/978-1-4614-1614-2_18, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 295

296 Wolfgang Theilmann, Jens Happe, Ulrich Winkler

manage them. Service providers consider this a model for exploiting economies of
scale, but also face challenges in terms of expected quality and price sensitivity.

This chapter reports on the lessons learned from the enterprise resource planning
(ERP) hosting use case, in which we applied the SLA@SOI framework to manage
on-demand business applications such as ERP applications with hierarchical SLAs.
We explain the architecture used for SLA management and show how SLAs can
be specified at different layers of the service hierarchy. We also explain how SLA
terms can be translated along the service hierarchy. The analysis demonstrates both
technical feasibility and achieved business value.

The remainder of this chapter is organised as follows: Section 2 discusses the
general business context and business objectives that we follow. Section 3 briefly
introduces technical and organisational foundations and related work. In Section 4,
we explain our use-case-specific adoption and extensions to the framework archi-
tecture. Section 5 explains the actual SLA hierarchies and SLA translations for our
use case, and Section 6 summarises the business evaluation. Section 7 provides a
summary and outlook.

2 Business Context

Within the traditional enterprise software market, enterprise customers host their
own solutions, using money and resources to set up and maintain the complete envi-
ronment, taking all risks upon themselves. Usually, customers buy software instal-
lations from the provider and then, with an additional contract, the provider sends
regular legal updates to the customer and guarantees support.

In the past, a complementary delivery model was application service provision-
ing, in which service providers offered completely hosted applications or applica-
tion suites. The idea was to move the burden of hosting and managing IT solutions
away from customers. However, the success of these approaches — in particular for
mission-critical enterprise software — was limited for two main reasons: first, appli-
cation service hosting did not provide sufficient flexibility (requiring a long time to
set up or change procedures) and second, it lacked transparency and dependability
of actual service-level qualities.

A key trend in software markets is the shift to on-demand business based on the
SaaS delivery model. Customers increasingly buy software services that suit their
business needs. They demand software that can be consumed in a fast and flexible
manner without concern regarding ownership of the required IT resources. In doing
this, they rely on the availability and quality of these services to operate their own
business. Hence, they require strong guarantees as to the quality of service provided.
Dependable service levels will thus become a major differentiator in the market of
on-demand software solutions and the Internet of Services.

SLAs are crucial elements for

• specifying and agreeing to the conditions under which services are delivered to
customers, and

The ERP Hosting Use Case Scenario 297

• managing a service landscape such that resources are efficiently used according
to customer needs.

Looking at the current trend from service-enabled applications to SaaS and Inter-
net of Service scenarios, we foresee an enormous competitive pressure for service
providers to professionalise and automate their service offerings and management
by introducing the notion of SLAs.

2.1 Roles

Within the environment of on-demand software services, there is a relationship be-
tween customers and providers, as well as more fine-grained roles that come into
play. These are related to the different activities required in a service provider or-
ganisation, and also to the idea of applying the paradigm of service-orientation at
different layers of a provider. For the ERP hosting use case, we distinguish the fol-
lowing main roles:

• Customer: The customer of a SaaS solution
• Sales officer: The business expert from the sales department who decides on the

portfolio of offered SAP SaaS solutions.
• IT SaaS architect: The SaaS IT architect who supports portfolio planning from a

technical perspective
• SaaS administrator: The administrator of software and services (SaaS)
• IT administrator: The administrator of an infrastructure SaaS provider

Figure 1 shows use cases involving these roles.

2.2 Business Objectives

We distinguish three main business objectives: dynamic service provisioning, effi-
ciency, and transparent service management.

Dynamic service provisioning is about delivering trusted value to customers. This
value should be evident in the ease of service consumption (simplification of the pro-
cesses involved in consuming a desired service), service dependability (the trustwor-
thiness of non-functional aspects that complement the functional scope of a service),
and flexibility (the ability for customers to change previous service agreements and
to react quickly to a changed business context). The most relevant ways to realise
this objective are to focus on automation of service provisioning activities, context-
driven SLA specification, and renegotiation means for customers.

Efficiency relates to service providers and is about providing business value in
terms of reduced total cost of ownership (TCO). This boils down to environmen-
tal efficiency (the energy efficiency of a hosted solution), technical efficiency (the

298 Wolfgang Theilmann, Jens Happe, Ulrich Winkler

Fig. 1 Roles and use cases.

amount of hardware and its use), and process efficiency (the ability to run day-to-
day processes effectively and to complete certain management tasks and procedures
on time and within budget). The most relevant ways to realise this objective are to
focus on tailoring of planning and prediction capabilities, run-time adjustment pos-
sibilities, a clear governance structure that streamlines processes and fosters reuse,
integrated quality management, and standardised operations.

Transparent service management constitutes a more qualitative value for ser-
vice providers and addresses their ability to oversee the complex dependencies of
advanced business solutions on various software, middleware and infrastructure
artefacts. Increased transparency is a major business benefit for service providers
and will eventually contribute to increased efficiency, dependability, and an ability
to flexibly react to changed market conditions. The area includes indicators such
as End2End manageability (the consistent and integrated management of services,
SLAs and resources, including the overarching control of multiple co-running ser-
vices and service offers), the ability to choose from different options (flexible use
and selection from all available resources to best satisfy current needs), and the
agility to change operations (the provider’s ability to react quickly and adopt a run-
ning system to reflect ongoing changes in various business conditions). The most
relevant way to realise this objective is to develop a predefined and clear framework
with strong monitoring capabilities that allow for cross-relating events. Further, a
model-driven management approach significantly contributes to agility and rapid
adjustments.

The ERP Hosting Use Case Scenario 299

3 Foundations

3.1 Service Hierarchies for Business Applications

As a founding concept for the remainder of this chapter, we introduce a basic ref-
erence structure for business applications that sets the basis for structuring business
systems in a service-oriented way. We also provide a brief sketch of aspects relevant
to SLA management. Actual applications may of course differ from this structure.
Our setting comes with four levels: business solution, application, middleware and
infrastructure. These latter three directly match the well-known cloud hierarchy of
software, platform and infrastructure as a service (SaaS, PaaS, IaaS).

Business Solution. At the top-most level, customers do not simply expect run-
ning software applications, but a complete solution to their business needs. These
business solutions go beyond the pure provisioning of software and may include
aspects such as human support (for setup and maintenance), compliance (security
and archiving), or legal constraints. Any SLA at this level must be expressed in
business terms: that is, it must be easily understood by business people in the cus-
tomer’s organisation. Lower-level technical details such as CPU specifications and
such should be omitted.

Application (SaaS). At this level comes the actual business application: the soft-
ware solution offered to the customer. SLAs covering business applications must
be expressed in the language of a business analyst: that is, they must be easily un-
derstood by the person who eventually uses the software. Such SLAs cover aspects
such as the number of orders that can be processed per minute.

Middleware (PaaS). Business applications rely on common middleware compo-
nents such as application servers, messaging systems and databases. Middleware
components may be shared across different applications and customers; such mid-
dleware platforms can be also considered as service offerings, where the middleware
eventually hosts or is used by different client applications. Typical examples for this
approach include the Google App Engine ([4]) or Amazon storage services ([1]).
SLAs concerning middleware components must be expressed in the language of
application (platform) developers and be independent from the actual application.
They cover aspects such as application server transaction response time or through-
put.

Infrastructure (IaaS). This lowest layer comprises infrastructure resources (both
physical and virtual) that are offered as services following the infrastructure cloud
([2]) paradigm (IaaS). SLAs covering infrastructure are expressed in basic technical
parameters such as the number of CPU cores, memory size, and so on.

300 Wolfgang Theilmann, Jens Happe, Ulrich Winkler

3.2 Related Work

SLA management for on-demand business applications has been partially addressed
from different angles. Here we consider some of the most similar known works
in the areas of IT management and SLA translation. SLAs have been added as a
concept to multiple IT management tools and frameworks (Governance Interoper-
ability Framework ([5]) and CentraSite ([10]). However, these tools support SLA
management at a single service layer and do not address multiple layers and their
interrelations. SLA translation has been heavily researched under different contexts
in multiple areas. A thorough overview of SLA translation techniques can be found
in [9]. Most prominent of these techniques are Layered Queuing Network (LQN)
models, which support the explicit modelling of a system of layers and subsequent
performance analysis. Another prominent approach from [3] uses coloured Petri
nets to capture dependencies within a chain of services.

Our work differs from these approaches in that it (1) manages SLAs across multi-
ple layers, (2) integrates aspects of planning/prediction with actual IT management,
(3) considers a larger set of SLA parameters, and (4) is applied to an existing com-
mercial business application.

4 SLA Management Architecture

In the following, we describe an SLA management architecture that can be used
for business applications. It relies on the general reference architecture described
in Chapter ‘Reference Architecture for Multi-Level SLA Management’. Following
the reference structure sketched in Section 3, our SLA management solution for
business applications needs to support SLAs at four layers: business, application,
middleware and infrastructure.

The SLA management framework offers a range of possibilities for managing
the service stack of our on-demand business applications. At one extreme, we might
have a separate SLA manager and a separate service manager for each of these
layers; at the other extreme, all knowledge could be brought into one SLA manager
and one service manager respectively.

The solution we adopted is shown in Figure 2 and comprises three SLA managers
(SLAMs) and four service managers (SMs). Arrows show general dependency rela-
tionships.

With this design, we reflect an organisation divided into three main units: the
business/sales unit, the software unit and the infrastructure unit. Each unit can over-
see all the SLAs it is currently operating. Further, we have four types of artefacts
that contribute to the realised services. Each domain requires different administra-
tion knowledge and we have therefore encapsulated these types into four separate
SMs: an SM for support services (including human resources that must be planned
and managed), for application services, for middleware services, and for infrastruc-
ture services.

The ERP Hosting Use Case Scenario 301

Fig. 2 SLA management architecture for business applications.

The design also considers the two types of third party service providers: cloud
providers and software service providers. Cloud providers offer infrastructure ser-
vices, which can be considered at any time (to handle burst-load scenarios); software
providers can be considered if the actual business application should be comple-
mented with additional functionality.

5 SLA Hierarchies

This section analyses SLAs needed for dealing with the four abovementioned layers
of services. In particular, we highlight the translation of SLA terms across these
layers.

Figure 3 provides an overview of the SLA hierarchy and lists some main SLA
terms for each layer. While in principal, cardinalities from higher- to lower-level
SLAs can be one to many, our actual evaluation is based on simple one to one
analysis. Business and infrastructure SLAs are managed by their respective SLA
manager; application and middleware SLAs are both managed by the software SLA
manager.

In the following, we discuss the management and translation of the respective
terms.

302 Wolfgang Theilmann, Jens Happe, Ulrich Winkler

Fig. 3 Simplified sketch of the four-layer SLA hierarchy.

5.1 SLA Terms and Translation

In [9], we distinguished four types of SLA translation between metric and config-
urables: metric-to-metric (e.g. service response time to resource utilisation), metric-
to-configurable (e.g. response time to number of servers), configurable-to-metric
(server specification to response time) and configurable-to-configurable (e.g. service
composition to deployment options). All of these are relevant for business applica-
tions. We highlight the most important ones below:

Solution terms Solution terms cover conditions not directly related to the business
application but describing aspects of the overall business solution. For example, the
supportLevel term details how support around the software artefact is given (e.g.
in terms of person days contributed to the setup or response time obligations for
reacting to customer complaints). Solution terms can be managed by a business
SLA manager in cooperation with business-level service managers. In our example,
we have a support service manager, which can decide and manage the capacities
of the support organisation. Other solution terms may also impact lower-level SLA
managers (e.g. agreed backup schedules) and require appropriate translation.

Workload To plan the amount of resources needed to run a service, it is important
to understand and specify the way in which customers want to use the service (e.g.
does the customer only need a service occasionally or is there a complete department
relying on the service in their daily work). However, it is difficult for customers to
exactly predict the workload they will put on a service, and also rather unlikely that
they can express this workload in technical terms. A typical approach is therefore
to specify the usage profile in terms of user classes; this involves specifying the
expected number of power users (working more or less constantly with a service),
medium users and low users ([6]).

The ERP Hosting Use Case Scenario 303

This specification for a business SLA now requires translation to the lower-level
SLAs:

(1) The first step is to translate the user number and types into expected trans-
action rates, specified in the application SLA. This can be done using user type
definitions for the respective application.

(2) At the next layer, transaction rates must be translated into a load charac-
terisation of the middleware. There are many different ways to achieve this, such as
benchmarking or model-based prediction. For our needs, we adopted an application-
based benchmark that allows for translation of an application transaction mix into an
application-independent and infrastructure-independent middleware capacity value,
the so-called SAPS measure ([6]).

(3) Last, middleware workloads could be theoretically translated into infrastruc-
ture specifications (e.g. relying on micro-benchmarks). However, so far there is
no generally applicable solution to this challenge. Instead, common practice is to
benchmark different infrastructure setups against the respective middleware. The
benchmark approach used above (step 2) can be used here to specify the capacity of
a specific system setup ([6]). This allows for direct translation of the specified work-
load to the offered system capacity where both are expressed via the same metric
(SAPS).

Performance The performance of a service or system is typically expressed in
terms of throughput and response time. In our setup, the workload specification
directly specifies the maximum throughput. If the provider guarantees a certain re-
sponse time (under the condition that customer workload stays within agreed bound-
aries), he has also indirectly guaranteed the maximum throughput (which is exactly
the maximum workload).

The specification of response time now can be done in the following way:
At the business level, the specification of responsiveness may be relatively ab-

stract (compared to the more precise and detailed definitions for application and
middleware SLAs. For example, it might simply state the general goal (that the
service shall react within a certain time frame) without specifying the specific
application-level operations or interactions.

At the application level, this is further refined by stating that specific classes of
interactions (here dialog steps and update steps) shall be executed within a certain
time-frame. The actual translation to middleware can be done using model-based
or measurement-based approaches or a mixture of these. For example, in [8], we
applied a specific queuing model that is calibrated by a set of benchmarking exper-
iments.

At the middleware level, response time relates to generic elements of the middle-
ware elements, such as application server response time on http requests or database
response time on SQL operations. Response time also relates to middleware config-
urations such as thread pool or cache size.

At the infrastructure level, response time characteristics could be specified for as-
pects such as cache access time, disk seek operation, or floating point operations. In
our case, such characteristics are too fine-grained and not practical for actual SLAs.

304 Wolfgang Theilmann, Jens Happe, Ulrich Winkler

Instead, we translated response time into a configuration including parameters such
as CPU speed, memory architecture, and network characteristics.

Availability The availability of business solutions must distinguish between
planned downtimes (due, for example, to maintenance activities) and unplanned
downtimes (due to actual failures at the software or hardware level). Both can and
should be treated separately. Planned downtimes are typically specified via explicit
time intervals within the calendar week (e.g. a maintenance window of two hours ev-
ery Saturday night between 2 and 4 am). Planned downtimes can be systematically
translated in a bottom-up fashion as the combination of infrastructure downtimes,
middleware downtimes and application downtimes. Unplanned downtimes are spec-
ified as a percentage value via a ratio of mean time between failure and mean time
to repair. Unplanned downtimes can be systematically translated in a bottom-up
fashion using statistical methods ([7]).

Energy Energy consumption plays an increasing role in SLA specifications as
customers are keen to report on their environmental compliance. Therefore, energy
consumption is not just maintained as resource consumption factor at the infrastruc-
ture level, but must also be aggregated over the different SLA layers; this can be
done via simple summarisaton. For simplicity reasons, energy is not in our SLAs as
depicted in Figure 3.

Cost Costs for services at different layers can be easily aggregated as the sum of
costs for lower-level services plus actual costs occurring at the actual level. At the
business level, costs are typically re-labelled to a price, as here margins are added
to assure the profitability of a service offer. For simplicity reasons, cost is not in our
SLAs as depicted in Figure 3

5.2 Integrated planning

Having understood how the individual SLA terms can be translated, the next chal-
lenge is to provide support for their integrated planning. This comes with two main
challenges: top-down vs. bottom-up translation, and trade-off decisions between dif-
ferent parameters.

Top-down vs. bottom-up translation. Some parameters can be translated in a top-
down manner: there is a direct way to derive lower-level SLA terms from higher-
level ones. For example, a workload definition for a business process can be trans-
lated to a workload of its single steps if the structure of the process is known. Other
parameters must be translated in a bottom-up fashion: a higher-level term can be
predicted if the values of lower-level terms are known. For example, response time
and availability can be only translated bottom-up as there is a complete design space
in which they must be explored (knowing the response time of a process does not
determine exactly one possible response time for its individual steps).

We implemented an integrated planning algorithm that includes top-down and
bottom-up translations. The algorithm works as follows: An incoming SLA re-
quest is analysed and the service manager responsible for the given service type is

The ERP Hosting Use Case Scenario 305

asked for possible service implementations, including their dependencies on lower-
level services. Top-down translation is applied for selected SLA terms to narrow
the search space for SLA templates for lower-level services. Once the recursive
planning at the next lower level has finished, retrieved SLA templates are included
in a bottom-up translation phase to predict the exact SLA guarantees that can be
achieved. This algorithm is recursively executed for each SLA layer (in our case for
four layers).

Figure 4 shows the flow of the integrated planing algorithm.

Fig. 4 Recursive planning algorithm.

Trade-off decisions Conceptually, SLA planning is a multi-criteria optimisation
problem where different parameters should be optimised but where optimisation
of a single parameter might spoil the quality of another parameter. We addressed
this issue via an evolutionary multi-objective optimisation (MOO) algorithm. This
algorithm is based on a cost model (including infrastructure and energy costs) and
a performance model (based on queuing networks with finite capacity regions). It
computes the Pareto front of optimal trade-off solutions. Predefined business rules
or humans can eventually use this Pareto front to select a solution for a specific
setup. Figure 5 provides an example for such a Pareto front. It shows the trade-off

306 Wolfgang Theilmann, Jens Happe, Ulrich Winkler

between costs and performance (response time) for the TCP benchmark. Further
details on this approach can be found in [8].

Fig. 5 Pareto front for a cost/performance trade-off analysis.

6 Business Evaluation

This section evaluates the improvements achieved by applying the SLA@SOI
framework. The actual improvements are described on the basis of the broader SaaS
scenario, which we support by applying the framework against a comparative base-
line scenario. As baseline scenario we take the traditional hosting process that re-
alises a largely paper-based application service provisioning scenario. For confiden-
tiality reasons, we cannot provide actual numbers in this chapter. However, we seek
to provide the used metrics so that other parties can easily do comparative studies.

6.1 Improvements to enable dynamic service provisioning

This objective is related to two main indicators and four metrics. We assessed the
indicator Service consumption possibilities are enhanced and easy-to-use using two
metrics:

1. time to quotation, i.e. the timespan between a customer submitting a request and
receiving a quote, and

2. time to provision, i.e. the timespan between a customer accepting a quote and
being able to access the provisioned system.

The ERP Hosting Use Case Scenario 307

The second indicator, Services get dependable through SLAs, is also assessed using
two metrics:

1. number of SLA terms, i.e. the number of actual SLA terms that have been for-
mally specified, and

2. number of SLA terms monitored, i.e. the number of actual SLA terms that are
monitored and reported.

For all metrics, the evaluation resulted in an improvement by roughly a factor of ten.

6.2 Improvements to increase efficiency and reduce costs

This objective is related to the three indicators of environmental/energy efficiency,
technical efficiency, and process efficiency, which are each assessed by one main
metric, respectively:

• energy consumption per SAPS, i.e. the amount of energy required to provide a
certain processing capacity

• CPU capacity per requested SAPS, i.e. the amount of CPU capacity allocated to
satisfy a requested processing capacity

• the number of working hours per service request, i.e. the number of hours hu-
mans had to work to process a single customer request (including quotation and
provisioning)

The evaluation resulted in improvements of between 20% and 50%.

6.3 Improvements to enhance transparency

This objective is related to three main indicators. The indicator End2End manage-
ability of a complete service hierarchy is assessed using one metric: the number
of tools/management consoles, i.e. the number of separate and not fully integrated
management tools or consoles that are, or can be, used during the hosting process.

The indicator Ability to choose from different options is assessed using two met-
rics:

1. availability of an explicit product catalogue
2. customisable entries per product offer, i.e. the number of customisable SLA

terms in the offered SLA templates.

The third indicator, Agility to change, is assessed using two metrics:

1. number of policy parameters supported
2. number of change procedures supported

The evaluation showed clear improvements in all these areas; for reasons of con-
fidentiality we cannot provide exact details.

308 Wolfgang Theilmann, Jens Happe, Ulrich Winkler

7 Conclusions

In this chapter, we have presented the lessons learned from applying a generic,
multi-layer SLA management framework to the context of on-demand business ap-
plications. We described how a hierarchy of four service domains (business, ap-
plication, middleware, and infrastructure) can be established. We also specified the
representation of selected SLA terms at various layers and their translation across
layers. Last, we sketched a method for integrated planning that combines top-down
and bottom-up translation and also allows for determination of trade-offs. The busi-
ness evaluation shows significant improvements in dynamic service provisioning,
efficiency, and transparent service management.

Future work will focus on adjustment activities that analyse monitored SLA vi-
olations and decide on corrective actions to safeguard SLAs. Again, this is a multi-
layer challenge, since both SLA violations and adjustment actions can occur at dif-
ferent layers and require proper synchronisation. We plan to explore complex event-
processing technologies that feed monitored metrics into a reasoning engine that
supports temporal logic expressions. A further long-running activity is to research
advanced PaaS environments that provide both design-time and run-time environ-
ments, and to look into supporting PaaS application developers in creating SLAs in
simple but dependable ways.

References

[1] Amazon: Amazon simple storage service (2008). URL http://aws.
amazon.com/de/s3/. Last retrieved 2010-09-01

[2] Armbrust, M., et al.: Above the clouds: A berkeley view of cloud comput-
ing. Report, UC Berkeley Reliable Adaptive Distributed Systems Laboratory
(2009). URL http://radlab.cs.berkeley.edu/

[3] Bodenstaff, L., Wombacher, A., Reichertand, M., Jaeger, M.: Monitoring de-
pendencies for slas: The mode4sla approach. In: Proceedings of the IEEE
International Conference on Services Computing, 2008. SCC 08, pp. 21–29
(2008)

[4] Google: Google app engine (2008). URL http://code.google.com/
intl/de/appengine/. Last retrieved 2010-09-01

[5] HP: Soa governance interoperability framework (gif) (2009). URL
https://h10078.www1.hp.com/cda/hpms/display/main/
hpms_content.jsp?zn=bto\&cp=1-11-130-27\%5E2804\
_4000_100__. Last retrieved 2010-09-01

[6] Janssen, S., Marquard, U.: Sizing SAP Systems. SAP Press (2003)
[7] Kuo, W., Prasad, V.R., Tillman, F.A., Hwang, C.L.: Optimal reliability design:

fundamentals and applications. Cambridge University Press (2001)

The ERP Hosting Use Case Scenario 309

[8] Li, H., Casale, G., Ellahi, T.: Sla-driven planning and optimization of enter-
prise applications. In: Proceedings of the Joint WOSP/SIPEW International
Conference on Performance Engineering, January 2010 (2010)

[9] Li, H., Theilmann, W., Happe, J.: Sla translation in multi-layered service ori-
ented architectures: Status and challenges. Technical Report 2009-8, Univer-
sität Karlsruhe (TH) (2009)

[10] Software-AG: Centrasite (2008). URL http://www.centrasite.
org/. Last retrieved 2010-09-01

The Enterprise IT Use Case Scenario

Agile and Efficient IT Systems Provisioning to Support

Evolving Business Demands

1 Introduction

In the following we assume a virtualisation-enabled data centre style configuration
of server capacity, and a broad range of services in terms of relative priority, resource
requirement and longevity.

As a support service in most enterprises, IT is expected to deliver application and
data service support to other enterprise services and lines of business. This brings
varied expectations in terms of availability, mean time to recovery (MTTR), quality
of service (QoS), transaction throughput capacity, and so on. In response to this, a
challenge for IT organisations is the delivery of a range of service levels at optimal
cost levels. This challenge includes quick turnaround planning decisions, such as
provisioning and placement, runtime adjustment decisions on workload migration
for efficiency, and longer-term strategic issues, such as infrastructure refresh (in the
case of internally managed clouds) and the selection of a hosting service provider
(in the case of external clouds).

This use case is therefore based around three distinct scenarios: The first sce-
nario, titled Provisioning, responds to the issue of efficient allocation of new ser-
vices in an IT infrastructure, SLA negotiation, and provisioning of new services
in the environment. The second scenario, Runtime, deals with day-to-day, point-
in-time operational efficiency decisions within the environment. These decisions
maximise value that can be achieved from an infrastructure investment. The final
scenario, Investment Governance builds on the first two scenarios to demonstrate
how they feed back into future business decisions. Taking a holistic cost view, it

Michael Nolan
Intel Labs Europe, Collinstown Industrial Estate, Leixlip, Ireland,
e-mail: michael.nolan@intel.com

Intel Labs Europe, Collinstown Industrial Estate, Leixlip, Ireland,
e-mail: joe.m.butler@intel.com

DOI 10.1007/978-1-4614-1614-2_19, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 311

Michael Nolan and Joe M. Butler

Joe M. Butler

312

provides fine-grained SLA-based data for influencing future investment decisions
based on capital, security, compute power and energy efficiency.

To enable realistic and effective reasoning at provisioning and runtime, a ref-
erence is included which differentiates each of the supported enterprise services in
terms of their priority and criticality. This is the Enterprise Capability Framework or
ECF. From an implementation perspective, user interaction occurs via a web-based
user interface, used by both IT customers and administrators.

The enterprise IT SLA template (SLAT) defines use-case-specific agreement
terms that the business SLA manager has loaded to provide inputs in response to
provisioning requests in the form of PaaS services. (Software services could poten-
tially be selected by choosing a virtual machine (VM) template containing preloaded
applications, but software layer implications are not considered core to this use case
and are more comprehensively dealt with in the ERP hosting use case (Chapter ‘The
ERP Hosting Use Case Scenario’).) The business SLA manager passes service pro-
visioning requests to the infrastructure SLA manager, whose role it is to create new
VMs that constitute the service along with monitoring and reporting for that ser-
vice. Evaluation of the framework is carried out with reference to parameters that
align with IT and business priorities. The three scenarios on which this use case is
based are complementary and allow the framework to be assessed based on realistic
objectives of an enterprise IT function.

2 Business Context

Cloud computing is changing the way the traditional IT department manages its
infrastructure fleet. As a result, the adoption of multi-year enterprise cloud com-
puting strategies has become more common: organisations are seeking to build pri-
vate cloud architectures that support their business objectives by optimising the ef-
ficiency of service delivery while eliminating security concerns and waste.

SLAs support the essential attributes of clouds as defined by the US National
Institute of Standards and Technology [7] by:

• specifying and agreeing on the conditions under which cloud services are deliv-
ered to internal business units,

• managing the service landscape such that capabilities are available over the net-
work and accessed through standard mechanisms (a web-based user interface, in
the enterprise IT use case) that promote use by heterogeneous client platforms,

• supporting resource pooling where the compute resources of the provider are
pooled to serve multiple consumers within the enterprise, using a multi-tenant
model with different physical and virtual resources dynamically assigned and re-
assigned according to consumer demand and ECF priorities. The customer gen-
erally has no control over the exact location of the provided resources, but can
specify location at a higher level of abstraction (e.g., country, site, or data centre),

• allowing capabilities to be automatically provisioned rapidly and elastically, en-
abling scale-out or back as required. To the service consumer, the capabilities

The Enterprise IT Use Case Scenario 313

available for provisioning may appear to be unlimited and can be requested in
any quantity at any time.

• providing a measured service where the SLA@SOI framework enables automatic
control and optimisation of resource use by leveraging a metering capability.
Resource usage is monitored, controlled, and reported, providing transparency
for the service provider and consumer.

2.1 Business Value

Service-Orientated Architectures, including cloud computing, can only realise their
potential if the business model behind their implementation is well-developed and
understood. To fully leverage emerging technologies, it is not sufficient for an or-
ganisation to simply implement them with little thought as to their operation or how
they will produce a return on investment. The operation, performance, utilisation
and ultimately the success of any computer-based system is only as valuable and
useful as the business process it is based upon. A flawed business process, when
migrated, will translate into a flawed computer system. The direct business value to
be realised by IT as a business enabler is in the areas of agility, dependability and
automated response. The derived benefits range from efficiency (via reduced cost of
ownership) to governance of future investment decisions. The importance of each,
in this context, is outlined below.

2.2 Managing IT Like a Business

The IT Capability Maturity Framework (IT-CMF) [5] is a systematic framework
developed by the IVI (Innovation Value Institute TM) consortium [6]. IVI is an
open innovation consortium that spans academic, industry, public sector, consulting,
analyst, and professional bodies, with more than thirty member organisations around
the world. The IT-CMF assists CIOs in better managing the integral complexities
and trade-offs required to continuously evolve an organisation’s capacity to deliver
more value from its IT infrastructure. More than 200 companies around the world
currently use IT-CMF. The framework consists of four interrelated strategies for
improving IT capability, identifying and prioritising opportunities, reducing costs,
and optimising the business value of IT investments.

The enterprise IT use case incorporates the IT-CMF philosophy into its three
scenarios, as shown in Figure 1. At the lowest tier of the framework, the ”IT abyss”
represents those organisations whose IT departments support an unwieldy array of
inflexible, complex and siloed services. In such situations, IT spend is higher than
it needs to be and the services it provides are incapable of responding to business
needs in an agile way. The business may well recognise the importance of IT as an

314

enabler, but climbing out of its IT abyss requires the adoption of a strategy to drive
simplicity and flexibility throughout the IT organisation.

The IT-CMF defines some basic constructs to make this process achievable: At its
most fundamental level, the IT-CMF is used to assess the business based on maturity
levels ranging from 1 to 5, with 5 being the most advanced. Figure 1 provides a
summary of the typical advances in IT service provision for the various levels. It
is important to understand what these levels represent before discussing how the
enterprise IT use case scenarios align to the principles of the IT-CMF.

Fig. 1 IT-CMF maturity levels

Michael Nolan, Joe M. Butler

The Enterprise IT Use Case Scenario 315

2.3 The Provisioning Scenario

The provisioning scenario in the enterprise IT use case is presented as a first step in a
strategy that enables flexibility and agility in the hosting of internal IT services. With
the introduction of virtualisation, service provisioning can be greatly simplified.
Services are now cloud-based and share common underlying infrastructures. With a
reduction in the physical footprint, data centre consolidation also becomes possible.
Previously manual business processes can be restructured and implemented more
efficiently as web-based service-provisioning request systems.

The enterprise IT use case implements a web-based user interface to provision
SLA-aware services within the cloud, where a service is defined as a logical group-
ing of VMs. These VMs are created from predefined templates that can include
pre-installed software. A digital SLA containing dozens of measurable QoS terms
is instantiated and linked to the service at the time of provisioning.

Fig. 2 Moving from the IT abyss to IT as a value and investment centre

2.4 The Runtime Scenario

The runtime scenario supports an organisation’s transition to the service centre tier
of the IT-CMF. Optimisations are applied to runtime operations within the cloud,
thus achieving systematic cost reductions. More advanced policy-based manage-

316

ment of IT services is introduced. The ECF, shown in Figure 3, is an example of
a tool that can not only help manage and guide investment decisions, but can also
feed into policies that support these optimisations within the cloud. Business units
are defined in the ECF and are classified as providing services that are deemed to
be Base (B), Competitors (C) or Differentiators (D) of our operations in the market.
The health of each unit is color-coded, helping to identify areas where investment
will provide the greatest return.

Fig. 3 Enterprise Capability Framework (ECF)

This principle is applied to the problem of integrating business-level objectives
(BLOs) in a machine-readable format for a private SLA-enabled cloud. This en-
terprise IT use case has implemented a simple, but achievable, approach towards
demonstrating this capability, where the ECF is used to assign relative default prior-
ities to services that belong to the various business units. The specific source of the
policy—in this case, the ECF—is not important. Rather, this is a sample mechanism
where default service priorities could be assigned at provisioning time. Assuming a
heterogeneous infrastructure fleet, runtime decisions can be made within the cloud
by the SLA@SOI framework, allowing migration of the most important services to
the most efficient hardware, as defined in Figure 4. Efficiency is calculated as a ratio
of compute power versus total cost of ownership (TCO), where TCO is comprised
of the server purchase price, depreciation, vendor support and energy consumption
costs.

Michael Nolan, Joe M. Butler

The Enterprise IT Use Case Scenario 317

Fig. 4 Efficiency rating of servers based on TCO [8]

The EU Code of Conduct for Data Centres [2] is an emerging standard of excel-
lence with guidance on best practices in data centrer efficiency. Many corporate IT
organisations work within those guidelines and participate in programs such as the
ENERGY STAR [1] program and the Green Grid consortium [3] to understand our
industry’s impact on climate change.

Figure 5 shows that up to 70 percent of IT’s carbon footprint is directly at-
tributable to data centre systems, and as such, this is by far the largest contributor to
the IT footprint. Expanding on the concept of varying server efficiencies within this
use case, it also becomes feasible to start to address the carbon footprint challenge
by dynamically powering on and off physical hardware in response to demand, thus
achieving greater power consumption efficiencies.

Figure 6 is a conceptual graph which illustrates the transition of a typical
800KW data centre through the stages of pre-virtualisation (the IT abyss), to post-
virtualisation (provisioning), to demand-based infrastructure allocation (runtime).
Power usage effectiveness (PuE) is a commonly referenced ratio used as indicator
of IT energy efficiency in a data centre. It is a ratio of IT load versus total data centre
load. The ideal PuE rating is 1, which would mean that all the energy used in the
data centre is directly consumed by IT systems. However, many data centres today
have PuE ratings higher than 2, meaning that less than half the energy in the data
centre is being consumed by IT systems. Figure 6 illustrates this concept, relating
how virtualisation and a dynamic approach to service management can help to re-
duce energy wastage in data centres (assuming the facilities load can also scale back
as IT consumption drops).

318

Fig. 5 IT CO2 footprint. Source: Intel IT Performance Report 2009 [4]

Fig. 6 Profile of energy consumption in an 800KW data centre

2.5 The Investment Governance Scenario

The final use case scenario, investment governance, represents the transition of IT to
a true value centre. At this level in the IT-CMF, IT has become a strategic partner to
the business. IT departments can remove the guesswork and define infrastructure-
refresh policies based on data streaming from optimised services running in the
cloud. Utilisation figures based on growing or shrinking demand can predict the

Michael Nolan, Joe M. Butler

The Enterprise IT Use Case Scenario 319

point at which investment will be required to enable growth. With such a sustainable
economic model in place, IT offers optimised value, where costs are predictable and
IT capability is managed to meet the changing demands of the business.

2.6 Business Objectives

Defining business-level objectives (BLOs) provides a tool for the leadership of an
organisation to break medium- to long-term ambitions and goals into tasks that its
constituent parts can use to form day-to-day operational and medium-term project
strategies. These objectives feed into decision-making processes, where the man-
agement at every level have guidance on how to do business, and where to spend
their limited budgets and resource allocations to ensure overall prosperity and via-
bility of the corporation. Value dials are derived from higher-level BLOs and relate
characteristics that must be incorporated into service delivery if the BLO objectives
are to be achieved. Figure 7 references the BLOs and corresponding value dials used
in the enterprise IT use case.

Fig. 7 Business objectives

320

2.7 Business Process Changes

Existing business processes for service provisioning are laborious and require a
plethora of manual steps. This leads to a system that is inefficient, confusing, and
even daunting to the customer: the actual provisioning of the service is often the step
of shortest duration. However, such processes are easiest to automate, and in many
cases, this step has already been optimised by the adoption of virtualisation. Manual
intervention is needed in every other step to dispatch the request, engineer the so-
lution, decide on a physical location and evaluate the eventual solution. These steps
must take place in today’s enterprise IT organisations because automated SLAs do
not exist. This obvious inefficiency makes future migration to an automated SLA-
driven system inevitable.

In terms of business process changes, next-generation hosting services will
bring significant benefits for both customers and providers. Customers will enjoy
a streamlined and clearer process, which automatically guarantees levels of service
not previously possible. The provider will provide a more efficient service, which is
a real enabler to the business, supplying the agility to respond to rapidly changing
objectives or market-driven trends.

2.8 Integrating BLOs into the Digital SLA

From the initial translation of BLOs to value dials (Figure 7), it becomes possible
to derive the features required to meet the business needs of the organisation. The
basic process is shown in Figure 8 and a selection of the resultant use case features
for our example is shown in Figure 9.

Fig. 8 Translation of BLOs to features

Michael Nolan, Joe M. Butler

The Enterprise IT Use Case Scenario 321

Fig. 9 Summary of the salient use case features

The SLA@SOI project defines a core model that operates by defining standard
SLA agreement and QoS terms: for example, qos:availability defines availability
for a service. Figure 10 illustrates the definitions of the controlled country region
(CCR) and service data classification agreement terms.

Fig. 10 Two of the enterprise IT agreement terms

The translation of each term into a digital SLA is carried out as follows:

1. Each QoS term is given a unique name. A scope is defined, determining whether
the term relates to a service or to individual VMs, along with the variable type,

322

such as Boolean, text or integer. A textual description is also included (as in
Figure 10).

2. The QoS terms are translated into the SLA template (SLAT). The SLAT is a
machine-readable XML representation of the QoS terms. An example is shown
in Figure 11. CCR is one of the defined QoS terms and controls the physical
location of the service. Physical location is one of the use case features required
to support efficiency.

3. The low-level monitoring system (LLMS) component of the SLA@SOI frame-
work can monitor adherence to this term by tracking the physical server upon
which the service runs. A service that has an SLA tied to it will be restricted
from running in a CCR country and will generate a violation if at any point a
constituent VM is detected to be running on a physical server which resides in a
CCR region.

4. Once the QoS term has been defined in the SLAT and an LLMS mechanism is
in place, it is possible for an end user to create a service which has this new QoS
term attached to its digital SLA.

Fig. 11 CCR agreement term implemented in XML

3 SLA Management Architecture

The following section presents the use-case-specific architecture, as illustrated in
Figure 2. User interaction with the system is achieved through a web-based user
interface, where both customers and administrators interface with the framework
components. The enterprise IT SLAT defines QoS agreement terms that are loaded
by the business SLA manager as inputs for the provisioning requests.

Michael Nolan, Joe M. Butler

The Enterprise IT Use Case Scenario 323

The business SLA manager passes service provisioning requests to the infrastruc-
ture SLA manager, whose role it is to create new VMs that constitute the service,
along with monitoring and reporting for that service. This architecture runs on top
of the Apache Tashi cluster manager [11], but is also extensible and capable of sup-
porting additional heterogeneous hypervisors, such as VMWare, Xen or KVM.

Fig. 12 Adopted SLA management architecture for the enterprise IT use case

Creation of an SLA-Guaranteed Service Figure 13 outlines the steps involved in
the creation of an SLA-guaranteed service. Steps 1 to 5 are controlled via customer-
initiated user interface interactions with framework components. These replace the
manual negotiation steps of existing engagement processes.

Steps 6 and 7 are carried out by the internal components of the SLA@SOI frame-
work, as illustrated in Figure 14; the remaining steps are the automated process
governed by the user interface. Putting these together, it is possible to create and
provision a monitored, SLA-guaranteed service. Figure 14 shows the key interac-
tions between the user interface, the SLA@SOI framework (illustrated by the dotted
green lines), and Tashi, all of which occur via the XMPP messaging bus. A demon-
stration of the enterprise IT use case in action can be viewed on the SLA@SOI
YouTube channel [10].

324

Fig. 13 Workflow for the enterprise IT provisioning scenario

Fig. 14 Framework component interaction

Michael Nolan, Joe M. Butler

The Enterprise IT Use Case Scenario 325

4 Business Evaluation

This section presents a business evaluation for the three main BLOs of the use case,
as previously described in Figure 7. For baseline results, typical values from es-
tablished current operations are presented. Any sources and assumptions made on
either the baseline or B4 measurements are given in Appendix I of the Enterprise IT
Lab Demonstrator deliverable [9]. The magnitude of some of these improvements
is difficult to quantify and will require more work.

4.1 Improvements for IT Enabling the Enterprise

The supporting value dials for this business objective were agility, dependability and
automated response. In these areas, the use case has seen the biggest improvements
in provisioning time, scalability, automatically monitored SLA terms, and reporting.

Fig. 15 Summary evaluation for IT enabling the enterprise

4.2 Improvements to IT Efficiency

The supporting value dials for IT efficiency were energy efficiency, control of re-
sources and cost effectiveness. The use case shows improvements in two of these
categories: energy efficiency and cost effectiveness. A use case simulation has shown
that this approach could achieve a 10% to 30% increase in energy efficiency [9].

Vendor support contract costs are more difficult to quantify at this point. The use
case expects these to be reduced, but has not established by how much.

326

4.3 Improvements to IT Investment and Technology Adoption

The value dials for the IT investment and technology adoption objective were con-
trol of resources, fine-grained investment granularity and optimal payback on in-
vestment. The SLA@SOI framework makes it possible to implement policy-based
management of resources using server efficiency and ECF principles. Manageability
is simplified through the use of the user interface as the sole interface tool. Service
location can be automatically specified through SLAT agreement terms. Service-
based resource utilisation is possible in addition to infrastructure level metrics. Total
cost of ownership is reduced and variable.

Fig. 16 Summary evaluation for IT investment and technology adoption

5 Conclusions

In this chapter, we presented the lessons learned from applying the SLA@SOI man-
agement framework to IT service provisioning in an enterprise context. We de-
scribed the business value that SLA-guaranteed services can bring to an organisation
through the modernisation of business processes and the translation of BLOs to run-
time operations. We described the representation of several selected QoS terms in
a digital SLA, and outlined how the digital SLA is implemented in architectural
terms. The business evaluation shows significant improvements in the areas of ser-
vice provisioning, efficiency, and control of resources.

Future work is focused on further quantifying these improvements, growing the
capabilities of the SLA@SOI framework, additional QoS terms, and the implemen-
tation of runtime adjustments which minimise or prevent SLA violations.

Michael Nolan, Joe M. Butler

The Enterprise IT Use Case Scenario 327

References

[1] EnergyStar: (2011). URL http://www.energystar.gov. Last re-
trieved 2011-01-26

[2] EU: Code of conduct for data centres (2011). URL http://re.
jrc.ec.europa.eu/energyefficiency/html/standby\
_initiative_data_centers.htm. Last retrieved 2011-01-26

[3] GGC: Green grid consortium (2011). URL http://www.
thegreengrid.org. Last retrieved 2011-01-26

[4] Intel: Intel it performance report; creating business value (2009). URL
http://download.intel.com/it/pdf/IntelIT_2009APR\
_English.pdf

[5] IT-CMF: It capability maturity framework (2011). URL http://ivi.
nuim.ie/ITCMF. Last retrieved 2011-06-16

[6] IVI: Research and develop unifying frameworks and road-maps (2011). URL
http://ivi.nuim.ie. Last retrieved 2011-01-26

[7] Mell, P., Grance, T.: The nist definition of cloud computing (2009). URL
http://www.nist.gov/itl/cloud/upload/cloud-def-v15.
pdf

[8] Nolan, M.: Enterprise it use case specification (2009). URL
http://sla-at-soi.eu/wp-content/uploads/2009/11/
D.B4a-Use-Case-Specification-Enterprise-IT-M17.pdf.
Last retrieved 2011-01-27

[9] Nolan, M.: Enterprise it lab demonstrator (2010). URL http:
//sla-at-soi.eu/wp-content/uploads/2008/12/SLA@
SOI_EntIT_LabDemonstrator.pdf. Last retrieved 2011-01-31

[10] SLA@SOI: Fp7 project (ist-216556). YouTube (2010). URL http://www.
youtube.com/user/slaatsoi. Last retrieved 2011-01-27

[11] Tashi: Apache tashi project (2011). URL http://incubator.apache.
org/tashi/. Last retrieved 2011-06-16

The Service Aggregator Use Case Scenario

Service Level Agreements in Service Aggregation

Abstract Increasingly, modern Telco operators are applying their network resources
to the delivery of services based on Telco capabilities, third-party services and
SLAs. Thus, Telcos must rapidly develop and adapt to new business environments
based on service aggregation. In this way, they facilitate creation of marketplaces
in which customers can discover products, negotiate offers, modify contracts, mon-
itor service conditions, and be guaranteed a particular service quality. This use case
shows how the SLA@SOI framework can foster this business of aggregating ser-
vices, supporting an environment in which network capabilities are supported, busi-
ness implications are considered, and economic consequences and negotiation re-
sponsibilities are distributed across involved partners.

1 Introduction

The aggregation of services into bundled offerings is an important part of emerging
business opportunities for telecommunications companies, which currently face in-
creasing competition and commoditisation alongside a decline in the profitability of
their traditional markets (such as voice services).

Traditionally, the ability to model, predict, provision, monitor, and dynamically
adjust resources to match the levels required for an aggregated service has been
achieved in an ad-hoc manner: this is because the atomic services were provided
by heterogeneous technology domains and managed in service silos. Consequently,

Juan Lambea
Telefónica Investigación y Desarrollo, Ronda de la Comunicación 1, 28050 Madrid, Spain,
e-mail: juanlr@tid.es

Telefónica Investigación y Desarrollo, Boecillo, Valladolid, e-mail: sergg@tid.es

DOI 10.1007/978-1-4614-1614-2_20, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 329

Juan Lambea Rueda, Sergio Garcı́a Gomez, Augustı́n Escamez Chimeno´´

Augustı́n Escámez Chimeno
Telefónica Investigación y Desarrollo, Granada, e-mail: escamez@tid.es

Sergio Garcı́a Gomez´

330

agreements covering these services have their origin in legal agreements whose
terms were laboriously translated into business and technical domains. Today, most
service offerings are at least partially realised as electronic services that run on
generalised computing platforms and, in many cases, have standardised interfaces.
These standardised interfaces ensure SLA@SOI’s framework, model and software
can work across different domains, including the aggregation of telecommunication
services.

This chapter describes the challenges of electronic service aggregation in a Telco
offering Internet services. The application hinges on use of a common model and
framework for all SLA requirements in a Telco organisation, thus enabling elec-
tronic service aggregation from a business perspective.

The use case also seeks to demonstrate the ample technical support available for
business parameters in SLA negotiation, provisioning, monitoring, violation detec-
tion, and—where possible—adjustment.

Central to this use case is modification of a service delivery platform (SDP), such
that existing telecommunications capabilities are encapsulated and normalised into
an electronically mediated web-services paradigm.

Although this environment is still a green field for many Telco companies,
this approach could improve important business objectives, such as increased
satisfaction of end users, improved agility, and increased operational efficiency.

This chapter is structured as follows:

Section 2 describes the general business context of a Telco operator. Section
3 briefly introduces technical and organisational foundations and related work. It
explains how the SLA@SOI framework is adopted in this Telco-specific use case,
and the components used at an architectural level (Section 4). Section 5 explains the
different sorts of SLAs and the hierarchies used to construct the use case. Finally,
Section 6 summarises the business evaluation and Section 7 describes the next steps
and new expected outlook.

2 Business Context

Telefónica is one of the largest Telco operators in the world1. New products and
services are traditionally provided based on vertical developments, in which all
layers (business, software and hardware) are developed ad-hoc. Since SLAs for
the resulting services are managed in the same ad-hoc manner, the quality of
experience perceived by final users may increase or decrease without consequence.
This approach also slows the pace at which new services can be deployed, since all
vertical layers are involved in a new deployment.

1 http://en.wikipedia.org/wiki/List of mobile network operators

Juan Lambea Rueda, Sergio Garcı́a Gomez, Augustı́n Escamez Chimeno´´

The Service Aggregator Use Case Scenario 331

Like many other Telco companies, Telefónica is aiming to create a new business
environment in which their services can be aggregated with those of other providers
based on open interfaces that expose Telefónica’s Telco capabilities through a
consistent and powerful Service Delivery Platform (SDP [10]). This concept is ex-
plained in detail in another great initiative called Service Delivery Framework [12].
By adopting this kind of business environment, Telefónica aim to increase their
presence in new markets and thus capture the long tail of economic opportunities.

Key factors in the success of initiatives to date have been agility, efficiency and
flexibility in business processes. Thus, one objective of this new business scenario
is the control and monitoring of aggregated services to guarantee QoS. The reuse of
network capabilities is finally supported and will provide increased revenue for the
Telco operator. To this end, Telefónica supports the open source software commu-
nity Morpheo2 and has developed open APIs for accessing its own capabilities, such
as messaging (SMS, MMS), localisation, identity and user profiling, Voice over IP,
and billing, and will offer a number of Telco services through the aforementioned
SDP. These initiatives aim to encourage programmers to develop innovative mobile
services using Telefónica’s offerings.

Since the end-user can also be the application developer, the catalogue of mobile
services offered by Telefónica will grow quickly and can be fully adapted to users’
needs. There are several initiatives within Telefónica that aim to provide developers
with open APIs:

• BlueVia3

• OpenMovilForum4

• O2 UK, Litmus5

• MovilForum Spain6, and
• mstore Spain7.

As a result of the need to compete in a global market—not only with other Tel-
cos, but also with mobile device manufacturers and platform developers such as
Apple and Google—Telefónica participated in the creation of the global consortium
Wholesale Applications Community (WAC), and BlueVia was launched as a global
initiative for developers in all of those markets where the corporation is present.
WAC aims to develop standard technologies and open tools that will drive the de-
velopment of applications through multiple operators using open and unified service
APIs. WAC also aims to provide the commercial enablers required to sell, pay for
and share revenues from the use of these applications. In this context, the applica-
tions offered by stores can offer different SLAs and thus require translation of SLAs

2 http://www.morfeo-project.org/lng/en/
3 https://bluevia.com/en/
4 http://open.movilforum.com/
5 http://www.o2litmus.co.uk/
6 http://www.movilforum.com/web/global/home
7 https://emocion.movistar.es/mstore/

332

to the used services. Moreover, pricing, billing and revenue-sharing may be affected
by compliance to these SLAs.

Nowadays, there is another trend among telecommunications players towards
providing infrastructure for mid-sized enterprise customers. The key idea behind
this is that traditional Telco services will be sold together with communications, a
concept that is applicable to this use case. The same kind of service can be delivered
into different available bundles of services, and all these services will have to be
SLA-driven and monitored if QoS is to be guaranteed.

Interest in offering Platform as a Service (PaaS) is strengthened by Telefónica’s
active participation in defining new standards like TCloud8 in the DMTF (Dis-
tributed Management Task Force9), and is heavily involved in other FP7 cloud re-
search initiatives, including Reservoir and 4CaaST. Thus, Telefónica has a strong
interest in cloud computing technologies and ways in which they can be sold to
customers, be they SMEs, big enterprises, or end users.

Last but not least, there is a growing trend towards providing global telecommu-
nications and IT services to multinational companies. To this end, Telefónica envi-
sions a broad range of configurations where it makes sense for telecommunications
companies to use service aggregation for wholesale SLAs.

The scenarios in the service aggregator [6] use case consider this challenging
environment and aim to help the company build a business layer [8] on top of their
application platform, as well as helping to guarantee QoS through automatic SLA
management.

In this environment, the service aggregator aids in addressing several challenges.
Specifically, it supports Telefónica’s development of sales strategies for:

• third-party services through a SDP,
• software services,
• network services,
• infrastructure and cloud resources

with integrated and automatic SLA management and service monitoring, thus en-
abling guarantee of signed SLAs.

2.1 Roles

This use case focuses on the ’bundling’ of services to be sold to enterprises and
SMEs. For example, an SMS service from a Telco provider like Telefónica might
be bundled with an Infrastructure as a Service from another provider.

We have chosen a basic example to show how SLAs could be applied in a sce-
nario where Telco capabilities are subcontracted. The scenario aims to demonstrate
the use of SLA@SOI technologies in a global operator like Telefónica, and the ap-
plicability of SLAs at different levels.

8 http://www.tid.es/files/doc/apis/TCloud API Spec v0.9.pdf
9 http://www.dmtf.org/about

Juan Lambea Rueda, Sergio Garcı́a Gomez, Augustı́n Escamez Chimeno´´

The Service Aggregator Use Case Scenario 333

This use case does not set out to define possible new services, but rather to define
SLA-aware Telco services that can use automatic SLAs with third-party services. As
has been stated previously, a real trend in Telco operators is to sell service bundles
to big companies, where the bundled services include not only traditional telecom-
munication services but also novel services, such as cloud services. This use case
demonstrates how the adoption of formal SLAs can improve ordinary business ac-
tivities, and in particular, how the SLA@SOI framework can be successfully applied
to telecommunication companies.

For the service aggregator use case, we distinguish the following players:

• Bank or SME (customer): The service aggregator’s customer
• IT manager (end user): The bank IT administrator who finally uses the aggregated

service
• Telco provider: The telecommunication company (for example, Telefónica) sup-

plying telecommunications capabilities (such as SMS, e-mail and VOIP) through
a web-service interface (e.g. the SDP platform),

• IaaS provider: The third-party company providing the required infrastructure.

2.2 Business Objectives

This section outlines business objectives in different areas:

Customer Relationship Management and Support

• Customer satisfaction: The aggregation environments are two-sided services
markets in which Telco operators must not only guarantee QoS for the services
they provide, but also ensure that third-party applications provided on top of their
infrastructure are of sufficient quality. This objective can be evaluated using the
number of claims that customers raise, and degree of quality control provided.

• Provisioning: Use of automatic contracting improves the efficiency of this pro-
cess.

Availability

• Dependability: Some applications will address the mass market, while others
will target companies of different sizes. In the latter case, there must be some
guarantee that services—and the infrastructure they use—will be available most
of the time, and that in the case of failure, they can be rapidly recovered.

• End-to-end manageability: Since the services offered through an aggregation
platform may be composed of multiple services provided by different partners, it
is desirable that as many of these services as possible be monitored and managed.

Operability

• Fast decision making: In an environment with many interdependencies be-
tween services and stakeholders, it is important that operators can address issues

334

promptly and reduce the overall penalties potentially associated with an offered
service.

• Agility: Many Telco operators lack agility in managing the life cycle of new
services. In the aggregation scenario, the speed with which services can be de-
ployed, provisioned and changed is a major metric.

• Operational efficiency: A major source of economic inefficiency for Telco opera-
tors is the cost of operating their networks and services. There is a trend towards
reducing operational expenditures by using innovative tools that support automa-
tion of operational processes.

• Energy efficiency: Although not a traditional business factor for Telco operators,
in recent years, there has been emerging interest in minimising the energy con-
sumption of network resources and data centres especially.

3 Foundations

3.1 Service Aggregation

This section describes how SLA management has been adopted in this use case, and
how it can be applied to a Telco’s network and infrastructure; however, this work
is not the focus of this use case. In the context of this use case, service aggregation
refers to a way of joining services from Telco providers and third-party providers,
with the aim of providing a bundled product that can be delivered to customers in a
service-oriented way.

In the service aggregator use case, SLA management is divided into three levels:
business, software and infrastructure (Figure 1). The software layer is connected
with Telco resources, like Telefónica’s SDP. Telco services are based on software
components that run in the software layer—on top of the infrastructure layer—and
are connected with the SDP for execution and delivery.

Business layer At this top-most level, customers expect products that offer com-
plete solutions. Such products comprise bundles of services that include business
terms for managing business-related aspects, thus helping to ensure customer sat-
isfaction. Business terms include: availability and hours of helpline operation, a
prioritised list of maintenance requirements, backup and restore mechanisms, ter-
mination and penalty clauses, and other legal constraints. Any business SLA at this
level must be expressed in business terms.

Software layer Telco services rely on software components, such as web or
REST10 services, which run in an application server that communicates with a mes-
saging system; these applications probably also require database systems and the
like. The software wrappers are connected with Telco infrastructure via the SDP.
The SLAs in this layer are related to the availability of software wrappers, applica-
tion servers, or commercial software used for software wrappers, etc.

10 http://en.wikipedia.org/wiki/Representational State Transfer

Juan Lambea Rueda, Sergio Garcı́a Gomez, Augustı́n Escamez Chimeno´´

The Service Aggregator Use Case Scenario 335

Fig. 1 Service aggregator use case

Infrastructure This lowest layer contains the necessary infrastructure (both phys-
ical and virtual) available for use by the software layer. SLA terms related to infras-
tructure are expressed using technical parameters (e.g. number of CPUs, number of
cores, size of memory, hard disk, network, etc.).

3.2 Related Work

Service aggregators represent a common approach to enriching the services ecosys-
tem. In recent years, increased attention has been paid to composition and orches-
tration of services in marketplaces [1], and service aggregation is being applied
in different areas—including cloud computing (Software as a Service) and Telco
environments—as a way of adding value to existing networks, IT infrastructures
and services.

The development of new technologies and communications channels, along with
market deregulation, has fostered a rise in service aggregation environments [7],
which has allowed new companies to conduct business globally, and to reach market
segments and needs previously unattainable. In the service aggregation model, there
is usually an intermediary company that adds value between the service provider and
customer.

In cloud computing, beyond supplying platforms and infrastructures, there is a
tendency to integrate all types of service into aggregation environments in which

336

value-added services can be provided through a marketplace (e.g. 4CaaSt FP7
project11).

Thus, Telco operators have been facing the challenge of the commoditisation of
their network infrastructures [2]. In terms of addressing this challenge, promising
directions include Next Generation Networks and SDPs that enable third parties
to create new services over existing networks. There are many examples of Tel-
cos exposing network capabilities to enable a third-party development environment:
Telefonica’s BlueVia, Vodafone Betavine, Orange Partner, Telenor Playground, and
so on.

In both SaaS and Telco cases, the business model is a two-sided market where the
platform mediates between supply and demand [4]. The platform owner facilitates
an environment in which the application can operate, allowing provision of a service
to end customers and subsequent extraction of revenues from them; the platform
itself creates value for developers and customers, extracting revenues from both
sides.

A challenge when dealing with SLA management in service aggregations is the
merger of guarantee terms from atomic services to aggregated services [3]. How-
ever, determining QoS elements for a number of aggregated services is a challeng-
ing task: it must take into account both the nature of each parameter and the flow
of aggregation [11]. One interesting approach, shown in [5], defines several SLA
aggregation patterns useful for automating the aggregation of cross-company hier-
archical SLAs.

This use case focuses on creating business SLA templates (SLATs) based on
fusion of third-party SLATs and Telco SLATs. SLAs are also negotiated between
banks, service aggregators and third parties. The use case integrates aspects of busi-
ness, telecommunications and infrastructure, and aligns them with business man-
agement requirements.

4 SLA Management Architecture

The SLA management architecture used for the service aggregator relies on the gen-
eral reference architecture described in Chapter ‘Reference Architecture for Multi-
Level SLA Management’ and SLA@SOI deliverable [9].

Two framework instances were used in building this use case: the first is the
core of the use case and refers to the service aggregator component. As described
in Section 3, our SLA management solution for Telco service aggregation supports
SLAs at three layers: business, software and infrastructure.

The service aggregator implements three layers of architecture, with the business
manager at the top level, and SLA managers at the business, software and infras-
tructure levels.

11 http://4caast.morfeo-project.org/

Juan Lambea Rueda, Sergio Garcı́a Gomez, Augustı́n Escamez Chimeno´´

The Service Aggregator Use Case Scenario 337

Inside the framework, the business manager manages relationships with third
parties and customers, and—together with the business SLA manager—is responsi-
ble for the aggregated offering. The software SLA manager deals with SLAs for
the complete software application. It uses the software service manager for de-
ployment and management of software services (namely web-services for accessing
Telefónica Telco capabilities (through the SDP), such as sending SMS and MMS,
and requests for location information).

The infrastructure SLA manager is responsible for resources, and makes use of an
infrastructure service manager for deployment of virtual machines in the Telefónica
infrastructure environment.

The second framework instance is the core of the infrastructure service for the use
case. Following the reference structure sketched in Section 3, our SLA management
solution for IaaS service aggregation must support SLAs at two layers: business and
infrastructure. In this implementation, it reuses the business manager at the top level
and the SLA managers at the business and infrastructure levels. This component of
the use case is oriented to be another service included in the bundle.

From the service aggregator point of view, the solution we adopted is shown in
Figure 2 and comprises three SLA managers (SLAMs) and two service managers
(SMs). The arrows describe general dependency relationships.

Fig. 2 Service aggregator SLA management architecture

We encapsulated Telco service functionality between software components in the
software layer and connected the software service manager to the SDP.

This scenario can also deliver a Telco’s SMS service in situations where the in-
frastructure is a service provided by a third party. This kind of interaction is based
on business needs, as can be seen in Figure 2.

338

5 SLA Hierarchies

This section outlines the SLAs adopted and implemented in the use case. It is nec-
essary to highlight the way the final business SLA is built. In service aggregation,
we create a bundle of services and include in it SLAT terms from different services
and SLATs. The logic of merging different terms must take into account business
requirements for the owner of the marketplace (service aggregator). These require-
ments are defined using business rules that allow the process of joining terms from
different SLATs. For instance, a business rule can require that the availability term
across all SLATs should be a minimum value.

Figure 3 provides an overview of the SLA hierarchy and includes some main
SLA terms for each layer.

Fig. 3 SLA hierarchy diagram

5.1 SLA Terms

Below we outline some terms used in SLAs involved in the service aggregator use
case:

Juan Lambea Rueda, Sergio Garcı́a Gomez, Augustı́n Escamez Chimeno´´

The Service Aggregator Use Case Scenario 339

Availability Service availability for a Telco operator is traditionally 99.99%; how-
ever, when bundled with Internet services, this availability must decrease to ensure
that the overall guaranteed terms are aligned. This metric is used in SLAs through-
out the use case and thus has different values.

Business terms These terms relate to the business and legal conditions of the
product, and include offers, prices, support, termination clauses, penalties, and so
on. These terms describe the limits of the commercial offer, the kind of prices
and periodic fees that will be charged, detailed conditions about delivery of ser-
vice support (helpline phone number and hours, conditions under which service can
be ceased), service violations that could have consequences, and so on. Business
terms can be managed by a business SLA manager in coordination with third-party
business SLA managers and with SLA managers from other layers. The example
uses a support service manager, who decides and manages the capacities of the sup-
port organisation. Some business terms may affect SLA managers located at other
levels.

Throughput This term expresses the number of requests per second that can be
supported by the software service. To offer all capabilities of a particular Telco
service, the software service wrapper and the SDP behind it must be able to support
a particular throughput. In this case, the term is used in the SMS service.

Completion time When the service is used, some time elapses between executing
the request sent by the customer and returning an answer. In this case, the term is
used in the SMS service and refers to the estimated delivery time for an SMS.

Resources These terms relate to resources at the infrastructure level that can be
reserved and used. For instance, in a computing infrastructure, resources include
VMs (with specifications including number of CPUs, size of memory or hard disk,
etc) and connectivity resources, such as network requirements (including band-
width, etc.).

6 Business Evaluation

This section describes the benefits of adopting the SLA@SOI framework in envi-
ronments such as marketplaces and service aggregators. Below, we provide a short
summary of metrics that can be used to evaluate this use case:

6.1 Improved Customer Satisfaction

Use of the SLA@SOI platform results in a better quality of experience for end users
and for third-party developers who make use of the platform. Indicators include:

• fewer unsolved or undetected SLA violations, and thus,
• fewer complaints from customers.

340

6.2 Improved Dependability

Another important indicator is improved service dependability. Service providers
are better able to offer prices in accordance with actual QoS provided, since SLA
breaches will eventually result in penalties. Indicators include:

• improved availability (since SLAs can be automatically adjusted, the system is
more available and accessible for users), and

• reduced mean time to recover from an SLA breach (many services problems will
be automatically handled by the SLA@SOI framework).

6.3 Improved End-To-End Manageability

The SLA@SOI platform monitors the actual QoS provided by each service or third
party, as well as SLA breaches. Since each of the aggregated services are under
SLA@SOI management, it is possible to identify and monitor which atomic service
is responsible for an SLA breach. The SLA@SOI framework enables an increase in
the number of services being monitored, indicated by:

• increased number of monitored atomic services per total number of atomic ser-
vices.

6.4 Improved Decision-Making

Since SLA@SOI’s monitoring and reporting capabilities provide information about
penalties, platform managers can make more rapid decisions on commercial offers,
service configurations, resource reallocations and so on. SLA@SOI’s automatic ad-
justment and negotiation mechanisms also mean that any reconfigurations are car-
ried out in an agile way. One indicator is:

• increased percentage of automatic penalties adjusted.

6.5 Improved Agility

SLA@SOI’s negotiation features reduce the time required to provision new ser-
vices, and to exchange one service for another service with similar SLAs. Indicators
include:

• reduced average time to provision a service, and
• reduced average time to modify a service.

Juan Lambea Rueda, Sergio Garcı́a Gomez, Augustı́n Escamez Chimeno´´

The Service Aggregator Use Case Scenario 341

6.6 Improved Operational and Energy Efficiency

The efficiency of a Telco operator can be improved through increased automation
and more efficient use of computing resources. Indicators include:

• reduced operational expenditure associated with platform management,
• reduced energy consumption (kWhr) per service, and
• increased energy savings (derived from improvements in this previous indicator).

This evaluation shows a clear improvement in all of the above areas.

7 Conclusions

This chapter outlined a use case in which SLA@SOI’s multi-layer SLA manage-
ment framework was adopted by a service aggregator, describing architectural lay-
ers and SLA hierarchy. It also detailed the way in which this scenario depends upon
Telefónica’s business and telecommunications domains, an approach influenced by
the open APIs developed from existing initiatives within the corporation.

It must be noted that service aggregators, marketplaces and similar environments
are new, green fields in which different research directions can be pursued.
Unfortunately, this means that a detailed business evaluation cannot be undertaken,
since we have insufficient feedback regarding the impact of this environment on
Telefónica’s various initiatives.

Future work will focus first on service aggregator enrichment, with the adoption
of new features like semi-automatic negotiation and post-sale and reporting charac-
teristics. A second focus will be on the development of a specific negotiation front-
end for automatic e-contracting, which will be implemented as an extension of the
service aggregator. This front-end will consider the customer’s ability to negotiate
the final conditions under which Telefónica’s products and services will be provided,
which in turn depend on QoS terms for mobile and fixed data networks. Finally, it
must be noted that this new scenario will reproduce the network requirements and
SLA terms of the current service aggregator use case, and will take advantage of
opportunities presented by existing network resources and infrastructures.

References

[1] Barros, A. and Dumas, M.: The rise of web service ecosystems. IT Profes-
sional 8(5), 31–37 (2006)

[2] Chappell, C., Finnie, G.: The Agile Service Provider: A new Model For Ser-
vice Delivery. Tech. rep., Cisco Systems, Inc. (2009)

342

[3] Cheng, S., Chang, C., Zhang, L., Kim, T.: Towards Competitive Web Service
Market. In: 11th IEEE International Workshop on Future Trends of Distributed
Computing Systems, 2007. FTDCS’07, pp. 213–219 (2007)

[4] Gonçalves, V., Ballon, P.: Adding Value to the Network: Mobile Operators’
Experiments with Software-as-a-Service and Platform-as-a-Service Models.
Telematics and Informatics (2010)

[5] Haq, I., Schikuta, E.: Aggregation Patterns of Service Level Agreements. In:
Frontiers of Information Technology (FIT2010) (2010)

[6] J. Lambea, M. Evenson, et al.: Deliverable D.B5a-M17 – Service Aggregator
Use Case Specification. Tech. rep., D.B5a-M17, SLA@SOI Project (2009).
URL http://sla-at-soi.eu/results/deliverables/

[7] Kohlborn, T., Korthaus, A., Riedl, C., Krcmar, H.: Service aggregators in busi-
ness networks. In: 13th Enterprise Distributed Object Computing Conference
Workshops (EDOCW), pp. 195–202 (2009)

[8] S. Garca ,B. Fuentes, E. Yaqub, G. Spanoudakis, and J. Lambea: D.A2a – Busi-
ness SLA Management (full lifecycle). Tech. rep., D.A2a, SLA@SOI project
(2010). URL http://sla-at-soi.eu/results/deliverables/

[9] W. Theilmann, T. Ellahi, J. Happe, M. Vuk, B. Fuentes, and J. Lam-
bea: D.A1a – Framework Architecture (full lifecycle). Tech. rep., D.A1a,
SLA@SOI project (2010). URL http://sla-at-soi.eu/results/
deliverables/

[10] Lewis, A.: Service delivery platforms and ims. two faces of the same problem.
Tech. rep., TeleManagement Forum (2007)

[11] Menasce, D.: Composing web services: A QoS view. IEEE Internet Comput-
ing 8(6), 88–90 (2004)

[12] TMF: Service delivery framework overview v2.0. technical report, TeleMan-
agement Forum (2009)

Juan Lambea Rueda, Sergio Garcı́a Gomez, Augustı́n Escamez Chimeno´´

The eGovernment Use Case Scenario

SLA Management Automation of Public Services

Giampaolo Armellin, Annamaria Chiasera, Ganna Frankova, Liliana Pasquale,
Francesco Torelli, and Gabriele Zacco

Abstract The SLA@SOI framework—a solution for the automated management
of services on the basis of Service Level Agreements (SLAs)—is usually applied to
automated software or hardware services. The eGovernment use case aims to assess
the applicability of the framework to the management of hybrid services, which in-
volve both automated and human-based activities, as is typical in the government
domain. Due the continued growth of service demand, many public organisations
outsource their services to private third parties or to other public institutions. SLAs
are typically adopted as a way to control the quality of provided services; however,
these SLAs are typically managed manually, limiting the possible benefits. Instead,
by formalising SLAs it is possible to automate a set of activities such as monitoring,
negotiation, planning and adjustment. Below we describe how this can be imple-
mented and evaluated for a specific eGovernment service.

Giampaolo Armellin
GPI, Via Ragazzi del ’99, 13, Trento 38123, Italy, e-mail: achiasera@gpi.it

Annamaria Chiasera
GPI, Via Ragazzi del ’99, 13, Trento 38123, Italy, e-mail: achiasera@gpi.it

Ganna Frankova
GPI, Via Ragazzi del ’99, 13, Trento 38123, Italy, e-mail: gannafrankova@yahoo.com

Liliana Pasquale
Politecnico di Milano, piazza L. Da Vinci, 32, 20133 Milano, Italy,
e-mail: pasquale@elet.polimi.it

Francesco Torelli
Engineering Ingegneria Informatica Spa, Via Riccardo Morandi, 32, 00148 Roma, Italy,
e-mail: francesco.torelli@eng.it

Gabriele Zacco
Fondazione Bruno Kessler, via Santa Croce, 77, 38122 Trento, Italy, e-mail: zacco@fbk.eu

DOI 10.1007/978-1-4614-1614-2_21, © Springer Science+Business Media, LLC 2011
P. ,Wieder et al. (eds.), Service Level Agreements for Cloud Computing 343

344 G. Armellin, A. Chiasera, G. Frankova, L. Pasquale, F. Torelli, G. Zacco

1 Introduction

In this chapter we present a case study for applying the SLA@SOI framework to the
eGovernment domain. The case study is intended to demonstrate SLA-based man-
agement as a general concept, not limited to computational services, but applicable
to any kind of service, and in particular to human-based services, which are typical
in the government domain.

While most government services can not be automated, several management
activities—such as negotiation, monitoring, resource planning and adjustment—can
be at least partially automated thanks to the adoption of formal SLAs. To demon-
strate these opportunities, we have integrated two social services currently provided
to citizens by the Italian region of Trentino: medical treatment services and mo-
bility services. We identified five related usage scenarios, each exploiting different
features of the SLA@SOI framework. This chapter reports on the technical lessons
learned from this exercise, including how to customise the SLA@SOI framework to
cover these scenarios, and the benefits of such automation from a business perspec-
tive.

The remainder of this chapter is organised as follows: Section 2 introduces the
use case, describing its general business context and business objectives. Section 3
explains the identified scenarios, Section 4 describes the architecture used for the
implementation of such scenarios, and Section 5 describes the actual SLAs used for
the experimentation. Section 6 summarises the business evaluation approach and
finally, Section 7 provides a summary of the actual state of the work and future
plans.

2 Business Context

From an organisational point of view, there has been a recent trend towards con-
sidering health care and social care agencies as part of the same organisation, since
both provide services to citizens. For this reason, this experiment focuses on the
composition of services usually offered separately from the aforementioned organi-
sations: health and mobility services. In the following, we describe these component
services, the involved actors, and the business objectives of these actors in more de-
tail.

2.1 Mobility and health care services

The mobility and health care services comprise three sub-services, as shown in Fig-
ure 1.

The medical treatment service is provided by the local health care agency (in
Trentino, the Azienda Provinciale per i Servizi Sanitari, APSS) and covers the book-

The eGovernment Use Case Scenario 345

Fig. 1 Mobility and health care service, component services, and related SLAs.

ing and provisioning of medical treatments provided by different health care struc-
tures of the health care agency according to regulations and objectives defined by
the governance (Provincia Autonoma di Trento, PAT).

The reservation (booking) of patient treatments is provided by the local health
care agency via a unique contact point, which is handled by a contact centre service
(called CUP). The contact centre service may be outsourced to an external quali-
fied call centre chosen with a request-for-tender process. The winning call centre
provider adheres to the constraints and conditions imposed by the governance in a
contract. In particular, the governance defines indicators to evaluate the process of
the health care services and establish compliance with governance regulations.

The mobility service is owned by the local social care and welfare agency and
provides on-demand transport services to needful people according to regulations
and objectives defined by the governance. The mobility service is provided by a set
of public and private companies or associations, certified by the welfare agency.

2.2 Roles

The set of actors involved in the mobility and health care services are:

• the citizen is the mobility and health care service consumer (i.e. the patient);

346 G. Armellin, A. Chiasera, G. Frankova, L. Pasquale, F. Torelli, G. Zacco

• the governance (PAT) is the customer of the mobility and health care services,
defining regulations and business goals for provisioning of the mobility and
health care services;

• the Citizen Service Centre is responsible for aggregating and monitoring the mo-
bility and health care services, and providing the contact service (booking, infor-
mation, cancellation, evaluation);

• the call centre providers provide the contact service;
• the health care structures provide bookings for medical treatments and medical

treatments;
• the mobility providers provide bookings for the mobility service and the mobility

service.

2.3 Business Objectives

The relationships between the aforementioned actors are ruled by formal contracts
and SLAs that constrain the provisioning/consumption of different services and es-
tablish pricing and billing conditions. The management of an SLA is ruled by a life
cycle that consists mainly of three steps: negotiation, provisioning, and monitoring
and adjustment.

Currently, the negotiation, monitoring and enforcement of SLAs is not com-
pletely integrated and still partially paper-based. Governments and service providers
must manually negotiate new SLAs and SLA evolution based on process execution
is also manual. The objective of the SLA@SOI eGovernment use case is to au-
tomate such processes. Below, we summarise a way in which negotiations can be
performed independently from the SLA@SOI framework:

• the SLA between governance and the call centre provider is defined in a canonical
paper contract by the governance.

• governance submits the contract terms to different providers and waits for an
offer.

• governance signs the contract with the provider that proposes the most conve-
nient offer that fulfills the contract terms.

Usually the contract duration is four years. Some terms of the contract are renego-
tiable every six months.

In the provisioning phase, which is triggered after the contract has been signed,
the contracted contact service provider (in accordance with the governance) out-
sources parts of the phone traffic to one or more external call centres. Management
of the business relationship between the contact service provider and the external
call centres is transparent to the governance and is ruled only by the resource op-
timisation strategy of the contact service provider. Typically the contract is rene-
gotiated annually. More precisely, resource dimensioning deals with allocation of
human operators internal to the contact service provider, and with the possibility

The eGovernment Use Case Scenario 347

of outsourcing some phone traffic to an external call centre provider. Currently, re-
source optimisation is handled manually with the assistance of some utility tools.

Between the governance and the health care structure, and between the gover-
nance and the mobility provider, there is a limited negotiation. Each provider must
accept the terms specified in a governance-defined contract, which specifies the
quality of business service required, while the governance must accept the price
asked by the provider. The governance should monitor the SLA with the providers
to identify violations, apply penalties or modify contractual terms. Currently, each
service provider periodically monitors the execution of its services (with a frequency
defined in the contract) and reports the results to the governance that identifies and
deals with SLA violations. The contact service provider is a deputy from the gover-
nance and monitors some KPIs belonging to the health care structure (e.g. maximum
waiting time to secure an appointment).

Of course, each service provider is interested in monitoring its service execu-
tion to improve allocation of internal resources. For instance, the contact service
monitors its operators’ work to identify any trends that may require a change in
phone traffic management. This can result in optimisation (adjustment) of the use of
internal operators and in resizing of phone call traffic handled by the external con-
tact centre through a renegotiation of the contract between the contact centre and
the external contact centre. Without the SLA@SOI framework, the identification of
negative trends and any adjustment actions must be completed manually. Adoption
of the SLA@SOI framework is intended to automate all these operations.

3 Use Case Scenarios

Five scenarios have been identified to describe the ways in which the enhanced SLA
management features offered by the SLA@SOI framework can produce benefits for
stakeholders in a typical eGovernment context. The scenarios described assume a
common main storyboard in which a citizen calls the Citizen Service Centre to book
a health care treatment, and possibly a related mobility service, which is offered
with an attempt to match the user profile and preferences. The citizen accesses the
treatment and is then asked to provide feedback about the services.

Scenario 1: SLA-Driven Monitoring. This scenario demonstrates how the
SLA@SOI framework’s SLA-based monitoring (Chapter ‘Translation of SLAs
into Monitoring Specifications’) and reporting (Chapter ‘Penalty Management in
the SLA@SOI Project’) can be useful for monitoring hierarchically aggregated
SLAs, and for automatically producing reports and billings related to established
SLAs and levels of user satisfaction. To detect sources of user dissatisfaction and
SLA violations, it is not sufficient to monitor specific services in isolation, since
this gives a partial and unrealistic view of the aggregate service quality. On the
contrary, dependencies between services and resources in the SLA hierarchies
must be taken into account; software/non-software monitoring events (e.g.
web-service invocation time, percentage of busy phone calls, user feedback)

348 G. Armellin, A. Chiasera, G. Frankova, L. Pasquale, F. Torelli, G. Zacco

must be properly recorded; and this information must be suitably aggregated
to check for SLA violations. The SLA@SOI framework allows automation of
these steps. Monitored properties include those related to events produced by
citizens, call centre services (internal and outsourced), health care structures,
and mobility providers. The collected monitoring information is then used by the
framework to automatically provide periodic reports and billing information to
the governance. The governance can use such reports to make decisions, review
strategies and renegotiate SLAs.

Scenario 2: SLA-Driven Service Selection. This scenario demonstrates how the
SLA-based dynamic binding feature of the SLA@SOI framework (Chap-
ter ‘Managing Composite Services’) can be exploited within an eGovernment
setting to automatically select mobility providers on the basis of their SLAs. In
accordance with the mobility and health care business process offered by the
Citizen Service Centre, citizens can book a mobility service to provide trans-
port to their chosen health care structure. Thus the goal of this scenario is to
automatically select a set of suitable mobility providers (e.g. shuttle, taxi, or hu-
man operator) based on the specific requirements of the service request and the
user characteristics and preferences (available in their citizen profile). These se-
lection criteria are expressed using SLA templates and are mainly based on the
cost and characteristics of the provided service. Once selection is complete, the
system contacts the selected providers to obtain possible appointments and then
proposes different solutions so that the citizen can choose a preferred one.

Scenario 3: Runtime SLA Negotiation and Adjustment. In this scenario, the
SLA@SOI framework’s SLA-based automatic negotiation (Chapter ‘A Generic
Platform for Conducting SLA Negotiations’ and Chapter ‘Management of the
Business SLAs for Services eContracting’) and static prediction (Chapter ‘Soft-
ware Performance and Reliability Prediction’) features are used to dynamically
adapt to exceptional situations that lead to an overload of the Citizen Service
Centre. Consider, for instance, the occurrence of a pandemic flu. Such an
event can directly affect the contract terms between the governance and the
Citizen Service Centre, since the governance manually triggers a request for
SLA renegotiation with the Citizen Service Centre. Such a renegotiation aims
to guarantee citizens more health care bookings during the pandemic flu. The
negotiation—thanks to the SLA@SOI framework’s capacity to model system
resources, services and SLAs—is performed automatically from the side of
the Citizen Service Centre. Using the static prediction feature, the framework
(installed within the Citizen Service Centre) automatically checks whether its
internal resources are sufficient to satisfy the proposed SLA, and if not, it can au-
tomatically (re-)negotiate related SLAs with third party providers (for instance,
call centre providers). Eventually, negotiations between the governance and the
Citizen Service Centre lead to an agreement, the Citizen Service Centre exploits
the automatic adjustment feature of the SLA@SOI framework to redeploy its
internal call centre infrastructure, the negotiation results are confirmed to the
third parties. It is important to note that negotiations between the Citizen Service
Centre and third party providers are dynamic and automatic, while negotiations

The eGovernment Use Case Scenario 349

between the governance and the service centre are dynamic and (a) automatic
on the service centre side, but (b) manual on the governance side. The static
or design-time prediction component of the framework is used by the Citizen
Service Centre to select a provisioning plan that is compatible with the currently
established SLA, the status of its agreement terms, and the status of the internal
resources involved in the services.

Scenario 4: Runtime Predictions and Resource Adjustment. This scenario
demonstrates how automatic adjustment of available resources can be triggered
by the runtime prediction (Chapter ‘Run-time Prediction’) feature of the frame-
work. In this case, a suggestion is made to the manager of the Citizen Service
Centre that internal resources be adjusted, but unlike Scenario 3, this suggestion
is made after negotiating and signing an agreement with governance and after
service provisioning. The prediction model, used by the relevant framework
component, is used alongside SLA-based service monitoring data to prevent a
possible non-fulfillment of agreement terms by the service provider.

Scenario 5: Runtime Predictions and Process Adjustment. This scenario demon-
strates how runtime predictions can also trigger a different kind of service adjust-
ment that, in this case, involves software services. In fact, SLA-based monitoring
of the evolution of the provisioned service—along with a model predicting the
behaviour of the service itself—can determine an automatic adjustment of the
BPEL process (Chapter ‘Managing Composite Services’) that embodies the ser-
vice offered by the Citizen Service Centre. Modifying the structure of the BPEL
process aims to improve service performance, for instance by allowing activities
originally executed in sequence to run in parallel.

4 SLA Management Architecture

The system architecture implemented for the eGovernment use case is shown in
Figure 2. We adopted a customised version of the SLA@SOI framework (Chap-
ter ‘Reference Architecture for Multi-Level SLA Management’) deployed at the
Citizen Service Centre (CSC). The component services of the mobility and health
care service are aggregated by means of a BPEL process deployed in a modified ver-
sion of the ActiveBPEL engine, called the Dynamic Orchestration Engine (DOE).
The DOE offers probes to collect process variables, and adaptors to apply dynamic
binding on the adopted partner services. These processes interact with call centre
facilities offered by the CSC’s internal call centre (ICC), and with a set of external
partner services: the call centres, which allow citizens to book health care treat-
ments and mobility services, the health care structure, which provide health care
treatments, and the mobility providers, which move users to health care structures.

In general, even if the CSC has an internal call centre, it can outsource part of
that service to external call centre providers if the number of virtual operators is
insufficient to satisfy the contract negotiated with the governance. The adoption of
an external call centre also implies that a contract must be negotiated between the

350 G. Armellin, A. Chiasera, G. Frankova, L. Pasquale, F. Torelli, G. Zacco

CSC and the external call centre provider. External call centre providers are not
required to adopt the SLA@SOI framework, but just to expose standard interfaces
for monitoring and negotiation.

Fig. 2 The architecture of the eGovernment use case

Each component of the SLA@SOI framework is used as-is, is configured, or is
customised. Below we explain these categories:

The eGovernment Use Case Scenario 351

• As-is Framework components are adopted without modification (see green com-
ponents in Figure 2). These components include: the monitoring event channel,
which receives monitoring data/events (e.g., information about the medical treat-
ment, the conditions of transfer to the health care structure, or the status of a
service booking). These data come from the mobility and health care process
and from third party providers. The SLA registry and SLA template registry store
and update negotiated contracts and templates respectively. The RCG controls
whether warnings have been issued or violations have occurred. If violations or
warnings are discovered, the RCG notifies dependent components by publish-
ing a message on the monitoring event channel. It also uses monitoring data to
dynamically predict the call centre’s performance. The service manager coordi-
nates the provisioning and management of resources at the software level: that is,
it manages the binding and structure of the mobility and health care process. The
DOE’s manageability agent configures sensors at the DOE and in its services. It
also configures a set of actuators available at the DOE to perform rebinding of
partner services.

• Configured Some components of the SLA@SOI framework are properly con-
figured to support the requirements of eGovernment (see purple components in
Figure 2). For example, the protocol engine is instrumented with suitable proto-
cols to discipline negotiations between the governance and the CSC, and between
the CSC and the external call centre. Configuration does not require recompila-
tion of the component.

• Customised Some components require modification or extension of the source
code and recompilation. For example, the Planning and Adjustment Component
(PAC) is customised to support the adjustment of human virtual operators at
the internal call centre. Similarly, the Provisioning and Optimisation Component
(CSC POC) is customised to generate—during the negotiation phase—suitable
plans for the provisioning and monitoring of managed resources. It also plays a
particular role in the negotiation phase, since it can decide to trigger negotiations
between the internal call centre and an external call centre if the ICC does not
have sufficient resources to complete a negotiated contract.

The architecture is also composed of domain-specific components (see pink com-
ponents in Figure 2). First, a negotiation GUI is provided to allow the CSC and the
governance access to information regarding their negotiated SLAs and fulfillment
of their guarantee terms. The GUI also allows the governance to renegotiate exist-
ing SLAs. Finally, the architecture provides a human service manager to coordinate
provisioning of the virtual operators at the ICC.

To avoid penalties, the CSC must continuously comply with SLAs it has signed
with the governance. To this end, the RCG regularly performs specific prediction
warning analyses to evaluate operator response time and decide whether the CSC
must adjust its internal resources to allow it to fulfill the SLA. For instance, if there
is a higher than acceptable probability that the daily operator response time will
exceed the threshold fixed by the SLA, then an adaptation of the internal booking
service will be triggered. This will result in an increase in the number of virtual
operators for the next work shift. The adjustment is required to fully satisfy the

352 G. Armellin, A. Chiasera, G. Frankova, L. Pasquale, F. Torelli, G. Zacco

contract with the governance, and also acts to minimise penalties while maximising
total turnover.

Our case study also supports context-dependent binding. This is supported by
the PAC, which uses established SLAs to automatically select a set of providers
that suit the user’s needs, then asks the DOE manageability agent to bind selected
providers. When requesting a possible appointment, the process will only invoke
bound providers. If the PAC cannot perform an adjustment action, it will ask the
POC for an alternative plan.

Finally, the governance can renegotiate existing contracts. The renegotiation re-
quest is issued by the governance through the negotiation GUI, and is forwarded to
the protocol engine. The request includes the ID of the SLA to be renegotiated and
the parameters to renegotiate.

After the protocol engine receives the negotiation request, it assesses the quality
of the proposal by invoking the POC. To evaluate feasibility of the request, the
POC must be aware of the number of virtual operators that can be provisioned by
the internal call centre. This allows the POC, using the static prediction feature,
to assess whether it is possible to provide enough operators to satisfy the SLA, or
whether it is necessary to outsource part of the services to an external call centre
provider.

In the latter case, another negotiation must be initiated between the CSC and the
external call centre provider, using a similar mechanism. The external call centre
may reply with a counterproposal. The acceptance of this counterproposal is deter-
mined by the CSC, which aims to maximise the total turnover generated by handled
calls (where total turnover is the difference between the generated turnover of han-
dled calls and the cost of the external provider).

After a certain number of negotiation rounds, the external call centre will accept
the SLA and this decision will be forwarded via the POC to the protocol engine,
which will accept the governance SLA and notify the governance of this decision.
The governance will then ask the protocol engine to sign the negotiated contract
and thus create the new SLA with the CSC. The protocol engine will then trigger
creation of the CSC’s SLA with the third party call centre, and following reception
of an acknowledgement from the call centre, the new SLAs will be stored in the
SLA registry. The POC then triggers re-provisioning of the new service.

5 SLAs

The SLAs involved in the scenarios described in Section 3 are shown in Figure 3.
SLAs between governance and the Citizen Service Centre involve aspects such

as support for citizens throughout the life cycle of service consumption (i.e. service
information gathering, service booking, cancellation, and evaluation); coordinating
the different infrastructures and service providers involved; and periodically report-
ing QoS and billing information to the governance.

The eGovernment Use Case Scenario 353

Governance

CSC

verna

CSC

Mobility

Health
ExtCCMobility

Health

CSCCSC

ExtCC

AVG_SATISFACTION_LEVEL > 3
MAX_WAIT_TIME < 4 hours

…
AVG_SATISFACTION_LEVEL > 3
LATE_ARRIVALS < 5%
…

…
AVG_SATISFACTION_LEVEL > 3
LOST_CALLS < 15%
BUSY_LINES < 3%
AVG_MOBILITY_BOOKING < 160 seconds
AVG_HEALTH_BOOKING < 200 seconds
…

…
AVG_SATISFACTION_LEVEL > 3
LOST_CALLS < 20%
BUSY_LINES < 5%
…

Fig. 3 SLAs and their relationships

SLAs between mobility providers and governance deal with the booking and ex-
ecution of on-demand transportation services. The SLAs rule aspects such as man-
agement of the mobility service agenda and its provisioning as a web-service to the
citizen contact centre; provisioning of the mobility service to citizens; and manage-
ment of accounting and payment for the mobility service.

SLAs between health care structures and governance concern management of the
booking system and its provisioning as a web-service to the Citizen Service Centre;
the provisioning of medical treatment to citizens, and management of accounting
and payment for medical treatments.

SLAs between the Citizen Service Centre and external call centres concern out-
sourcing the contact service portion of the mobility and health care service to third
party call centre providers, to properly address reservation and booking needs. The
aspects agreed in the SLAs relate to the provisioning of a set of human operators
and answering machines that can provide information on the mobility and health
care service and handle related bookings, cancellations and modifications.

Figure 3 shows the relationships between the aforementioned SLAs plus details
about the guaranteed states that are negotiated. The black arrows indicate that the
SLAs agreed between the Citizen Service Centre and service providers (mobility
providers, health care structures and external call centres) are derivatives of the
SLA agreed between the governance and the Citizen Service Centre. For example,
constraints on the average satisfaction level of citizens—which have been agreed
between the Citizen Service Centre and the governance—are preserved within con-
tracts that the Citizen Service Centre negotiates with the mobility and health care
providers. However, other agreement terms—for instance, the maximum level for

354 G. Armellin, A. Chiasera, G. Frankova, L. Pasquale, F. Torelli, G. Zacco

delays of the mobility services or the maximum time that patients should wait within
a health care structure—are relevant only to SLAs that the Citizen Service Centre
negotiates with its providers.

More peculiar relationships exist between SLAs that the Citizen Service Cen-
tre negotiates with external call centre providers, and SLAs that the Citizen Ser-
vice Centre negotiates with the governance. These two SLA types are strongly con-
nected, since the former is the result of externalisation of a service that the Citizen
Service Centre can provide by itself in the form of an internal call centre. For this
reason, terms that appear in these SLA types will partially overlap. For example,
when negotiating with an external call centre provider, the Citizen Service Cen-
tre will aim to preserve some of the constraints to which it has committed in its
previously negotiated contracts with the governance. However, the Citizen Service
Centre also has some freedom in its negotiations with external call centre providers:
depending on its own internal strategies, it can relax particular constraints in re-
turn for a minor price to be paid to the provider, for example. Hence, constraints
that appear in SLAs with governance are maintained, though they may be relaxed.
Scenario 3 (Runtime SLA Negotiation and Adjustment), within Section 3, demon-
strates such a chain of SLAs and relevant negotiations. The renegotiation of an SLA
between governance and the Citizen Service Centre, triggered by the former, results
in a (re-)negotiation with external call centre providers by the latter. In this case, the
SLA@SOI framework plays the role of provider for the upward negotiation, and the
role of customer for the downward negotiation; it also guarantees that negotiations
on the Citizen Service Centre side are automatic, while on the other side, they are
manual.

6 Evaluation: Practice and Experience

In this section we present the evaluation process applied to the SLA@SOI features
with respect to the use case scenarios of Section 3 and the SLAs of Section 5.

Evaluation is a part of a continuing management process consisting of design,
implementation, and evaluation. We consider it useful to maintain this continuous
cycle until the final version of the monitoring system is implemented and is shown
to satisfy specified requirements and end user evaluation.

There are several stages in the evaluation process we intend to use:

• Laboratory evaluation: We evaluate the implemented system, taking into ac-
count the specified requirements.

• Area evaluation: We evaluate whether the implemented system is useful and
how best to use it, trying to provide auditing notes.

• End-user evaluation: We work with a subset of final users to evaluate the sys-
tem.

Laboratory evaluation or technical evaluation is the first of the three stages in
the SLA@SOI evaluation process and is still in progress. This phase is devoted to

The eGovernment Use Case Scenario 355

preliminary evaluation of the system and assesses the question: ”Does the system
satisfy its requirements?”. We answer this question by analysing the specified re-
quirements against a first implementation of the system. By requirements, we refer
to the non-functional properties that express the main benefits of the SLA@SOI
framework in the eGovernment domain. A list of expected benefits can be found
in [3] and includes properties such as efficient resource usage, SLA compliance,
agility, and so on. Each of these properties is assigned a metric with measurable
KPIs that we take into account. We have conducted the laboratory evaluation
using real data—suitably anonymised—provided by the GPI call centre service
provider. Indeed, the SLAs presented in Section 5 derive from real contractual
terms currently used by service providers and governance. The threshold values
and expected results are therefore real and derived from historical data.

In Table 1, we summarise some of the business outcomes we expect from adop-
tion of the SLA@SOI framework. These outcomes reflect the requirements expected
of the framework in terms of resource usage, SLA compliance and agility, and will
be measured on the basis of the SLAs defined.

The monitoring system as a whole has been evaluated, simulating different ver-
sions of the same service (e.g. mobility providers with special prices or cancellation
policies). We plan to evaluate the complete implementation of the monitoring and
runtime prediction functionalities in the next stage of the evaluation process.
As summarised in Table 1, depending on the stakeholder (citizens, governance or
CSC), we considered different kinds of business outcomes.
For the citizens, it is important to minimise the effort required to use health care
services; thus we measure the number of phone calls required to reserve a medical
treatment and mobility service, and the time required to complete that operation. In
this regard, a key success factor is the ability of the framework to identify the type
of service that better matches the citizen’s preferences (e.g. low cost, timely, etc).
The governance value early (or advance) notice of SLA violations, enabling prompt
reaction (e.g. by changing the terms of the contract). Here, we exploit the frame-
work’s ability to identify potential and real SLAs violations to enable it to raise
violation warnings or notifications.
Finally, the CSC is interested in improving management of resources (e.g., opera-
tors and lines) and maintaining a timely view of their use and the state of related
SLAs. In this case, the framework should help service providers by managing the
busy and idle status of their resources.

Area evaluation is the second phase of the evaluation process and is devoted
to the usability of the system. It answers the question: ”Is the system useful and
how can we best use it?”. We plan to answer this question by gathering an entire
statistical picture and accurately testing each system functionality. We also plan to
provide auditing at this stage, and to suggest system improvements. During area
evaluation, our heuristics, metrics and prediction capabilities will be refined using
historical data produced by the service provider during operations with and with-
out the framework. The idea is to run the framework with different configurations of
the prediction feature, and to simulate various types of citizen behaviour. During this

356 G. Armellin, A. Chiasera, G. Frankova, L. Pasquale, F. Torelli, G. Zacco

intensive sequence of simulations, we will verify the SLAs mentioned above and re-
compute the business outcomes of Table 1. The results obtained will be compared to
those produced by the laboratory evaluation and improvements to the framework’s
implementation and configuration will be suggested.

Table 1 Business indicators and baselines.

Business

Value
Benefit Metric

Citizen
User Preference
Matching

Ecall(T) := (∑c ∈C, p ∈ PNcall(T,c, p))b/
(∑c ∈C, p ∈ PNservice(T,c, p))

Integrated offer of
services

AV G(Dbhm(e),T) ≤ AV G(Dbh(e),T)+
AV G(Dbm(e),T)

Governance
SLA compliance and
performance aware-
ness

�SLAKO(T) := SLA violations per time interval
T

Citizen
Service
Center

SLA compliance and
performance aware-
ness

�SLAKO(T) := SLA violations per time interval
T �SLAWARN(T) := predicted SLA violations per
time interval T

Resource efficiency BR(T) := RB(T)/N(T) % Busy resources dur-
ing interval T

/ Optimisation IR(T) := RI(T)/N(T) % Idle operators during
interval T

End-user evaluation is the final stage in the SLA@SOI monitoring system evalu-
ation process. We plan to conduct an evaluation using feedback from a subset of final
users. As the services involved are critical and errors in their execution could impact
the citizens, we plan to involve only a selected set of citizens who have agreed to use
an experimental system. This agreement is also necessary because data used in the
experiments could affect patient privacy. We expect that this phase of the evaluation
will produce unexpected results, as evaluating levels of citizen satisfaction is a qual-
itative and subjective process that depends on the personal judgment of users. We
have thus based the system’s evaluation not only on the quality perceived by citi-
zens, but also on metrics agreed upon with service providers and governance, where
these metrics are based on objective measurements of the health care and mobility
services and on the behaviour of the service providers.

As described above, evaluation is part of a continuing and cyclic management
process. Based on results of the evaluation process, we intend to propose revisions
of system features, and of the system’s monitoring and prediction capabilities in
particular.

The eGovernment Use Case Scenario 357

7 Conclusions

The introduction of the Citizen Service Centre and of the SLA@SOI framework
allows a better matching of user preferences and the provisioning of integrated ser-
vices with considerable advantages for citizens. Thus far, it has been up to human
users to run the different services (e.g. booking health care treatments and mobility
providers). The Citizen Service Centre provides a unique contact point, mediat-
ing between customers and service providers to manage service consumption, com-
plaints about QoS, and other feedback.

Our experiments thus far demonstrate the applicability of several key features
(monitoring, reporting, design time/static prediction) of the SLA@SOI framework,
and we are beginning to experiment with other important features (automatic nego-
tiation, automatic binding, runtime prediction, SLA enforcement through resource
adjustment and automatic negotiation). While the current implementation does not
allow a complete evaluation of its business value, expert estimates show that the
adoption of the SLA@SOI framework may indeed improve the value of services
to the citizen, governance and the provider of the aggregated service (the Citizen
Service Centre).

References

[1] J. Bart. SLA Savvy: Five Secrets for Making Sure you Get the Most from Your
Service-Level Agreements. Network World, 1999.

[2] C. Molina-Jimenez, J. Pruyne, and A. van Moorsel. The Role of Agreements
in IT Management Software. In Architecting Dependable Systems III, LNCS
3549. Springer Verlag, 2005.

[3] SLA@SOI project. Deliverable D.B1c Industrial Asessment Report. Septem-
ber 2011.
http://sla-at-soi.eu/wp-content/uploads/2009/07/D.
B1b-M26-Industrial_Assessment_Report.pdf

[4] SLA@SOI project. Deliverable D.B6a Lab Demonstrator eGovernment.
September 2010.
http://sla-at-soi.eu/results/deliverables/
d-b6a-m12-use-case-specification-egovernment-m17/

	Service Level Agreementsfor Cloud Computing
	Foreword
	Preface
	Acknowledgements
	Contents
	List of Contributors
	Part I Introduction to Service Level Agreementsin Service Oriented Architectures
	Part II Foundations for Service Level Agreements
	Part III Scientific Innovations
	Part IV Core Components of the Service Level Agreements Framework
	Part V Management of the Business Layer
	Part VI Management of the Software Layer
	Part VII Management of the Infrastructure Layer
	Part VIII Selected Business Use Cases

