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Expansion of Positivity

1 Time and Space Propagation of Positivity

The Expansion of Positivity is a property of nonnegative supersolutions to
elliptic and parabolic partial differential equations, that is at the heart of any
form of Harnack estimate. Roughly speaking, it asserts that information on
the measure of the “positivity set” of u at the time level s, over the cube
Kρ(y), translates into an expansion of the positivity set both in space (from
a cube Kρ(y) to K2ρ(y)), and in time (from s to s+ θρ2, for some suitable θ).

Such an expansion involves some unavoidable technical arguments. To con-
vey the main ideas we will present it first in § 2 in the context of nondegenerate
(p = 2 or m = 1), homogeneous equations. Then we will present it separately
for degenerate (p > 2 or m > 1) and singular (1 < p < 2 or 0 < m < 1)
equations with full quasilinear structure. In all cases one first “propagates” a
positivity information at some time level s on a cube Kρ(y) to further times,
within the same cube. Then one expands the positivity set in the space vari-
ables from Kρ(y) to K2ρ(y).

The first step of time propagation of positivity is technically common to
all cases and we present it here in a unified fashion.

Henceforth in this section assume that u is a nonnegative, local, weak
supersolution in ET to (1.1)–(1.2) of Chapter 3, for some p > 1.

Most of our arguments and proofs are based on the energy estimates and
DeGiorgi-type lemmas of § 2–4 of Chapter 3. According to the discussion in
§ 1.3 and Remarks 2.2, 3.1, and 4.3 of Chapter 3, a constant γ depends only
on the data if it can be quantitatively determined a priori only in terms of
{p,N,Co, C1}. The constant C appearing in the structure conditions (1.2) of
Chapter 3, enters in the various statements only via some alternatives.

For (y, s) ∈ ET and n,m ∈ N, introduce the “forward” and “backward”
cylinders

(y, s) +Q+
nρ(mθ) = Knρ(y)× (s, s+mθρp]

(y, s) +Q−nρ(mθ) = Knρ(y)× (s−mθρp, s].
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58 4 Expansion of Positivity

These differ from the cylinders Q±ρ (θ) introduced in (2.1)–(2.2) of Chapter 3,
in that their cross section Knρ(y) and their height θmρp are permitted to vary
independently. In what follows it will be assumed that (y, s) ∈ ET and ρ > 0
are such that (y, s) +Q±nρ(mθ) ⊂ ET .

Lemma 1.1 Assume that for some (y, s) ∈ ET and some ρ > 0∣∣[u(·, s) ≥M ] ∩Kρ(y)
∣∣ ≥ α

∣∣Kρ(y)
∣∣

for some M > 0 and some α ∈ (0, 1). There exist δ and ε in (0, 1), depending
only on the data {p,N,Co, C1}, and α, and independent of M , such that either

Cρ > min{1 , M}
or

|[u(·, t) > εM ] ∩Kρ(y)| ≥ 1
2α|Kρ| for all t ∈

(
s, s+

δρp

Mp−2

]
. (1.1)

Proof Assume (y, s) = (0, 0) and for k > 0 and t > 0 set

Ak,ρ(t) = [u(·, t) < k] ∩Kρ.

The assumption implies

|AM,ρ(0)| ≤ (1− α)|Kρ|. (1.2)

Write down the energy inequalities (2.3) of Chapter 3, for the truncated func-
tions (u−M)−, over the cylinder Kρ × (0, θρp], where θ > 0 is to be chosen.
The cutoff function ζ is taken independent of t, nonnegative, and such that

ζ = 1 on K(1−σ)ρ, and |Dζ| ≤ 1

σρ

where σ ∈ (0, 1) is to be chosen. Discarding the nonnegative term containing
D(u−M)− on the left-hand side, these inequalities yield∫

K(1−σ)ρ

(u−M)2−(x, t)dx ≤
∫
Kρ

(u−M)2−(x, 0)dx

+
γ

(σρ)p

∫ θρp

0

∫
Kρ

(u−M)p−dx dτ

+ γCp

∫ θρp

0

∫
Kρ

[
χ[u<M ] + (u−M)p−

]
dx dτ

≤M2
[
(1− α) + γ

θMp−2

σp
+ γ

( Cρ

min{1 , M}
)p

θMp−2
]
|Kρ|

≤M2
[
(1− α) + 2γ

θMp−2

σp

]
|Kρ|
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for all t ∈ (0, θρp], where we have enforced (1.2), and provided that Cρ < M ,
C < ρ−1. The left-hand side is estimated below by∫

K(1−σ)ρ

(u −M)2−(x, t)dx ≥
∫
K(1−σ)ρ∩[u<εM ]

(u −M)2−(x, t)dx

≥M2(1− ε)2|AεM,(1−σ)ρ(t)|
where ε ∈ (0, 1) is to be chosen. Next estimate

|AεM,ρ(t)| = |AεM,(1−σ)ρ(t) ∪ (AεM,ρ(t)−AεM,(1−σ)ρ(t))|
≤ |AεM,(1−σ)ρ(t)|+ |Kρ −K(1−σ)ρ|
≤ |AεM,(1−σ)ρ(t)|+Nσ|Kρ|.

Combining these estimates gives

|AεM,ρ(t)| ≤ 1

M2(1− ε)2

∫
K(1−σ)ρ

(u −M)2−(x, t)dx +Nσ|Kρ|

≤ 1

(1 − ε)2

[
(1− α) +

2γ

σp
θMp−2 +Nσ

]
|Kρ|.

Choose θ = δM2−p and then choose

σ =
α

8N
, ε ≤ 1−

√
1− 3

4α√
1− 1

2α
≈ 1

8
α, δ =

αp+1

23p+4γNp
. (1.3)

This proves the lemma.

Remark 1.1 The proof is based on the energy inequalities (2.3) of Chapter 3,
whose constant dependence is indicated in Remark 2.1. Therefore the constant
δ = δ(p) deteriorates either as p → 1 or as p → ∞, but it is stable as p → 2,
with seamless transition from the singular range p < 2 to the degenerate range
p > 2.

Remark 1.2 If p = 2, one takes θ = δ and the interval in (1.1) becomes
independent of M .

2 The Expansion of Positivity for Nondegenerate,
Homogeneous, Quasilinear Parabolic Equations

Let u be a nonnegative, local, weak supersolution in ET to (1.1)–(1.2) of
Chapter 3, with p = 2 and C = 0.

Proposition 2.1 Assume that for some (y, s) ∈ ET and some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α
∣∣Kρ(y)

∣∣ (2.1)
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for some M > 0 and some α ∈ (0, 1). There exist constants η and δ ∈ (0, 1)
depending only on the data {N,Co, C1}, and α, such that

u ≥ ηM a.e. in K2ρ(y)×
(
s+ 1

2δρ
2 , s+ δρ2

]
. (2.2)

Proof Assume (y, s) = (0, 0). The number α > 0 being fixed, let δ and ε be
the numbers claimed by Lemma 1.1 for p = 2. The conclusion of the lemma
implies that

|[u(·, t) > εM ] ∩K4ρ| > 1
2α4

−N |K4ρ|, for all t ∈ (0, δρ2). (2.3)

Lemma 2.1 For every ν ∈ (0, 1) there exists εν depending only on the data
{N,Co, C1}, δ (and hence α), and ν, such that∣∣[u < ενM ] ∩ Q+

4ρ(δ)
∣∣ < ν

∣∣Q+
4ρ(δ)

∣∣. (2.4)

Thus the set [u < ενM ] in the cylinder Q+
4ρ(δ) can be made arbitrarily small,

provided εν is chosen accordingly. The main tools of the proof are the estimate
(2.3) of the measure of the sets AεM,4ρ(t) for all t ∈ (0, δρ2), and the discrete
isoperimetric inequality of Lemma 2.2 of the Preliminaries.

Proof Write down the energy estimates (2.3) of Chapter 3 over the cylinder

Q+
8ρ(δ) ∪ Q−8ρ(δ) = K8ρ × (−δρ2, δρ2)

for the truncated functions

(u − kj)− for the levels kj =
1

2j
εM, for j = 0, 1, . . . .

The nonnegative, piecewise smooth, test function ζ is chosen so that it van-
ishes outside K8ρ and for t ≤ −δρ2, and

ζ = 1 on Q+
4ρ(δ), |Dζ| ≤ 1

4ρ
, and 0 ≤ ζt ≤ 1

δρ2
.

The first term on the left-hand side is discarded since it is nonnegative, and
the second vanishes because of our choice of test function. The term involv-
ing |D(u − kj)−| is minorized by extending the integration over the cylinder
Q+

4ρ(δ), which is the set where ζ = 1. The terms containing C on the right-
hand side are eliminated since C = 0. These remarks give the inequalities∫∫

Q+
4ρ(δ)

|D(u − kj)−|2ζ2dx dτ

≤ γ

∫ δρ2

−δρ2

∫
K8ρ

(u − kj)
2
−
(|Dζ|2 + ζτ

)
dx dτ

≤ γδρ2k2j

( 1

ρ2
+

2

δρ2

)
|K8ρ|

≤ γk2j |K4ρ|

(2.5)
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for a new constant γ depending only on the data {N,Co, C1}.
Apply the discrete isoperimetric inequality of Lemma 2.2 of the Prelimi-

naries to the levels

� = kj =
εh

2j
and k = kj+1 =

εh

2j+1
for j = 0, 1, . . .

and take into account (2.3) to obtain

kj+1

∣∣Akj+1,4ρ(t)
∣∣ ≤ 8Nγ

α
ρ

∫
K4ρ∩[kj+1<u<kj ]

|Du(·, t)|dx.

Integrate this in dt over (0, δρ2) and set

|Aj | = |[u < kj ] ∩ Q+
4ρ(δ)| =

∫ δρ2

0

∣∣Akj (τ)
∣∣dτ.

Then the previous inequality yields

kj+1

∣∣Aj+1

∣∣ ≤ γρ

∫∫
Q+

4ρ(δ)∩[kj+1<u<kj ]

|Du|dx dτ

≤ γρ

(∫∫
Q+

4ρ(δ)

|D(u − kj)−|2dx dτ
) 1

2 ∣∣Aj −Aj+1

∣∣ 12
≤ γkj

√
Q+

4ρ(δ)
(|Aj | − |Aj+1|

) 1
2

where we have used the energy estimates (2.5). Next divide by kj+1 = 1
2kj ,

and square both sides to obtain the recursive inequalities

|Aj+1|2 ≤ (2γ)2|Q+
4ρ(δ)|

(|Aj | − |Aj+1|
)

for j = 0, 1 . . . .

Add these inequalities for j = 0, 1, . . . , j∗−1 where j∗ is a positive integer to be
chosen. Minorize the terms on the left-hand side by their smallest value |Aj∗ |2
and majorize the right-hand side with the corresponding telescopic series. The
indicated estimations yield

j∗|Aj∗ |2 ≤
j∗−1∑
j =0

|Aj+1|2 ≤ (2γ)2|Q+
4ρ(δ)|

∞∑
j=0

(|Aj | − |Aj+1|
)

≤ (2γ)2|Q+
4ρ(δ)|2.

From this

|Aj∗ | ≤
2γ√
j∗
|Q+

4ρ(δ)|. (2.6)

Thus having fixed ν ∈ (0, 1), one can choose j∗ so large that∣∣[u < ενM ] ∩Q+
4ρ(δ)

∣∣
|Q+

4ρ(δ)|
< ν, for

2γ√
j∗
≤ ν, and εν =

ε

2j∗
.
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Proof (of Proposition 2.1, Concluded) Apply Lemma 3.1 of Chapter 3 over
the cylinder Q+

4ρ(δ) in the version of (3.1)–(3.3), with μ− = 0 and ξω = ενM

and a = 1
2 . Choose ν from (3.12) of Chapter 3 and observe that since p =

2 (nondegenerate equations), the number ν is independent of ενM . It only
depends on the data {N,Co, C1} and δ, which itself has been determined and
fixed in terms of the data {N,Co, C1} and α. Such a ν being fixed a priori
only in terms of the data, choose j∗ ∈ N by the indicated procedure, so that
the assumptions of Lemma 2.1 are verified. Then Lemma 3.1 of Chapter 3
implies that

u(x, t) > 1
2ενM a.e. in K2ρ × (12δρ

2, δρ2).

Thus the conclusion holds with η = 1
2εν .

Remark 2.1 If in (2.1) one has α = 1, the condition reads

u(·, s) ≥M a.e. in Kρ(s) (2.7)

which is of the same form as the “initial datum” of (4.1) of Chapter 3.
Lemma 4.1 of Chapter 3 then translates that bound below to later times
over smaller cubes. Proposition 2.1, however, is stronger, as it translates such
“initial conditions” into a positivity information at later times and over a
larger cube.

3 Some Counterexamples for Degenerate and Singular
Equations

Let now u be a nonnegative, local, weak supersolution to the prototype equa-
tion (1.3) of Chapter 3 in some cylindrical domain ET , for some p 	= 2. If u
is bounded below on some cube Kρ(y), say for example as in (2.7), then the
analog of Proposition 2.1 would be that

u(·, s+ δρp) ≥ ηM a.e. in K2ρ(y) (3.1)

for constants δ > 0 and η ∈ (0, 1) depending only on the data {p,N,Co, C1},
and independent of u. It turns out that if p 	= 2, no constants δ and η can
be determined a priori only in terms of N and p for which (2.7) would imply
(3.1).

3.1 A First Counterexample for p > 2

Consider the one-parameter family of nonnegative functions defined in the
whole R× R

u(x, t; c) = A(1− x+ ct)
p−1
p−2

+ where A = c
1

p−2

(p− 2

p− 1

) p−1
p−2

. (3.2)
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One verifies that such a u(·, ·; c) is a weak solution to the homogeneous proto-
type p-Laplacian equation in the whole R×R, for all c > 0, and is constructed
by seeking solutions in the form of traveling waves. Fix

(y, s) =
(
1
2 (1 − ε), 0

)
, ρ = 1

2 (1− ε)

and let
Kρ(y) =

{|x− 1
2 (1− ε)| < 1

2 (1− ε)
}
.

At time δρp the bound below (3.1) is possible for some η > 0, however small,
only if

δ >
2p

c

1− 3ε

(1− ε)p
.

Thus for (3.1) to hold for some η, the constant δ must depend on the parameter
c, and hence on the solution u(·, ·; c).

x

t

y = 1−ε
2

s = 0

s+ δρp = δ( 1−ε
2

)p

t = x−1
c

Kρ(y), ρ = 1−ε
2

K2ρ(y) u > 0

u = 0

Fig. 3.1. The Traveling Wave Solution

3.2 A Second Counterexample for p > 2

Consider the Barenblatt solution to the parabolic p-Laplacian equation for
p > 2 in R

N × R
+ ([13]):

Γp(x; t) =
1

tN/λ

[
1− γp

( |x|
t1/λ

) p
p−1

] p−1
p−2

+
t > 0 (3.3)



64 4 Expansion of Positivity

where

γp =
( 1
λ

) 1
p−1 p− 2

p
, λ = N(p− 2) + p. (3.4)

The moving boundary is the sphere centered at the origin and radius Rm(t)
given by

Rm(t) = γ
1−p
p

p t
1
λ .

For fixed ε > 0 and s > 0 let

ρ1 =
(1− 3ε

γp

) p−1
p

s
1
λ , ρ2 =

(1− ε

γp

) p−1
p

s
1
λ

and set

ρ =
ρ2 − ρ1

2
=

(1− ε)
p−1
p − (1− 3ε)

p−1
p

2γ
p−1
p

p

s
1
λ ,

|y| = ρ2 + ρ1
2

=
(1− ε)

p−1
p + (1− 3ε)

p−1
p

2γ
p−1
p

p

s
1
λ .

One verifies that

u(·, s) ≥ 1

s
N
λ

ε
p−1
p−2 in Bρ(y).

If the expansion of positivity (3.1) were to hold for some δ > 0 depending
only on N and p, then points on the ball B2ρ(y), at time s + δρp should be
within the support of u(·, s+ δρp). That is,

|y|+ 2ρ < Rm(s+ δρp).

From this and the expression of Rm(·) one computes

δ >
1

2N(p−2)γp−1
p

3(1− ε)
p−1
p − (1− 3ε)

p−1
p

(1− ε)
p−1
p − (1 − 3ε)

p−1
p

s
N(p−2)

λ .

If ε is sufficiently small, the right-hand side is a positive factor of sN(p−2)/λ,
and hence δ grows with s.

3.3 A Family of Counterexamples for 1 < p < 2

When 1 < p < 2, nonnegative solutions to the prototype equation (1.3) of
Chapter 3 in some cylindrical domain ET , might vanish identically in finite
time. That is, there might exist a finite T > 0 such that

u(·, t) = 0 in E for all t ≥ T.
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x

t

y

s

s+ δρp

t = γ
λ p−1

p
p |x|λ

Bρ(y)

B2ρ(y)

u > 0 u = 0

Fig. 3.2. The Barenblatt Solution

If E is a bounded domain with smooth boundary ∂E and u is the solution
to the initial-boundary value problem, with bounded initial data and ho-
mogeneous Dirichlet data on ∂E, this extinction phenomenon occurs for all
1 < p < 2 and the extinction time T can be estimated in terms of the initial
datum ([41], Chapter VII § 2, and also [60]).

If E = R
N and u is the solution to the Cauchy problem with smooth and

compactly supported initial datum, this phenomenon occurs for 1 < p < 2N
N+1

([41], Chapter VII § 3, and also [60]).
It is apparent that for a cylinder Kρ(y)× (s, s+ δρp) such that u(·, s) > 0

on Kρ(y), the expansion of (3.1) does not hold true if s + δρp exceeds the
extinction time T .

If N = 1, a family of such solutions can be constructed semi-explicitly, by
separation of variables. Consider the boundary value problem

ut − (|ux|p−2ux)x = 0 in [|x| < 1]× [t > 0]

u(−1, t) = u(1, t) = 0

u(·, 0) = T
1

2−pX(·;μ)
(3.5)

where X(·) is a nonnegative solution to

− (|X ′|p−2X ′)′ = μX in (0, 1) (3.6)

X(−1) = X(1) = 0,

for some μ > 0. Whence such an X(·) is constructed, a solution to (3.5) is

u(x, t) =
[
T − (2− p)μt

] 1
2−pX(x;μ).

A construction procedure for nonnegative solutions to (3.6) is in § 8.1.
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3.4 The Expansion of Positivity in Some Intrinsic Geometry

These examples raise the natural question, whether a version of the expansion
of positivity still holds, in some form, for supersolutions to equations (1.1)–
(1.2), and (5.1)–(5.2) of Chapter 3 for p 	= 2, or for m 	= 1. Such a result
would pave the way to a Harnack inequality when p 	= 2, or m 	= 1.

It turns out that the expansion of positivity continues to hold for these
degenerate and singular equations, but in a time-intrinsic geometry.

In the next sections we make precise the notion of intrinsic geometry and
state and prove the expansion of positivity in such a geometry, respectively
for degenerate equations (p > 2 or m > 1) and singular equations (1 < p < 2
or 0 < m < 1).

4 The Expansion of Positivity for Degenerate
Quasilinear Parabolic Equations (p > 2)

Throughout this section let u be a nonnegative, local, weak supersolution to
(1.1)–(1.2) of Chapter 3 in ET , for p > 2. For (y, s) ∈ ET , and some given
positive number M , consider the cylinder

K8ρ(y)× (s, s+
bp−2

(ηM)p−2
δρp], (4.1)

where b, η, δ are the constants given by Proposition 4.1, and ρ > 0 is so small
that it is included in ET .

Proposition 4.1 Assume that for some (y, s) ∈ ET and some ρ > 0∣∣[u(·, s) ≥M ] ∩Kρ(y)
∣∣ ≥ α

∣∣Kρ(y)
∣∣ (4.2)

for some M > 0 and some α ∈ (0, 1). There exist constants η and δ in (0, 1)
and γ, b > 1 depending only on the data {p,N,Co, C1}, and α, such that either
γCρ > min{1 , M}, or

u(·, t) ≥ ηM a.e. in K2ρ(y) (4.3)

for all times

s+
bp−2

(ηM)p−2
1
2δρ

p ≤ t ≤ s+
bp−2

(ηM)p−2
δρp. (4.4)

Remark 4.1 The cylinder in (4.1) is “intrinsic” to the supersolution itself,
since its height depends on the lower bound M in (4.2). The conclusion (4.3)–
(4.4) is analogous to the conclusion (2.2) of Proposition 2.1, except that the
time is rescaled by a factor (ηM)2−p. In this sense Proposition 4.1 is an
“intrinsic” expansion of positivity.
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Remark 4.2 The constants η, δ, γ, and b are stable as p→ 2 and therefore
the statement of Proposition 2.1, valid for the nondegenerate case p = 2, can
be recovered from Proposition 4.1 by letting p→ 2. This stability of γ, η, and
b will be established in § 6.
Remark 4.3 The proposition transforms the measure-theoretical informa-
tion (4.2) into the pointwise expansion of positivity (4.3). The proof below
shows that the functional dependence of η on the measure-theoretical param-
eter α is of the form

η = ηoαB
− 1

αd (4.5)

for parameters ηo, B, d depending only on the data {p,N,Co, C1}. Such a
dependence will be improved in Proposition 7.1 of Chapter 5.

4.1 Structure of the Proof

Assume (y, s) = (0, 0) and let ε and δ be the numbers claimed by Lemma 1.1.
Following the proof for the nondegenerate case p = 2, one seeks to con-

vert the information (1.1) originating from Lemma 1.1, into an estimate of
the type of (2.4) of Lemma 2.1. The proof could then be concluded, as in
the nondegenerate case, by an application of Lemma 3.1 of Chapter 3. The
conclusion of this lemma holds, provided the number ν can be chosen so small
as in (3.12) of Chapter 3 with ω replaced by ενM . If p = 2, such a choice can
be made independent of (ενM). If p > 2, the number ν can be determined
in terms only of the data if θ is chosen to satisfy θ(ενM)p−2 = 1. Thus the
smaller is εν the longer is the cylinder Q+

4ρ(θ). Therefore an information of
the form of (1.1) would need to be derived over a large cylinder.

This is precisely the main difficulty of the proof. It is overcome by intro-
ducing a suitable change of the time variable, and the function u for which a
version of (1.1) continues to hold over “large times.”

4.2 Changing the Time Variable

We may assume (y, s) = (0, 0). The assumption (4.2) implies

|[u(·, 0) ≥ σM ] ∩Kρ| ≥ α|Kρ| for all σ ≤ 1. (4.2)′

The conclusion of Lemma 1.1 continues to hold, with the same parameters ε
and δ, if one replaces M by σM , and yields∣∣∣[u(·, δρp

(σM)p−2

)
≥ εσM

]⋂
Kρ

∣∣∣ ≥ 1
2α|Kρ| for all σ ≤ 1.

For τ ≥ 0 set
στ = e−

τ
p−2 (4.6)

and
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w(x, τ)
def
=

e
τ

p−2

M
(δρp)

1
p−2 u

(
x,

eτ

Mp−2
δρp

)
. (4.7)

Then for all τ ≥ 0∣∣∣[u(·, eτ

Mp−2
δρp

)
≥ ε

M

e
τ

p−2

]⋂
Kρ

∣∣∣ ≥ 1
2α|Kρ|

which, in terms of w(·, τ), means

|[w(·, τ) ≥ ko] ∩Kρ| ≥ 1
2α|Kρ| for all τ > 0,

where

ko
def
= ε(δρp)

1
p−2 . (4.8)

From this

|K4ρ − [w(·, τ) < ko]| ≥ 1
2α4

−N |K4ρ| for all τ > 0. (4.9)

4.2.1 Relating w to the Evolution Equation

Since u ≥ 0, by formal calculations

wτ =
(e τ

p−2

M
(δρp)

1
p−2

)p−1

ut +
1

p− 2

e
τ

p−2

M
(δρp)

1
p−2 u

≥
(e τ

p−2

M
(δρp)

1
p−2

)p−1[
divA(x, t, u,Du) +B(x, t, u,Du)

]
= div Ã(x, τ, w,Dw) + B̃(x, τ, w,Dw)

(4.10)

where

Ã : (E × R
+)× R

N+1 → R
N

B̃ : (E × R
+)× R

N+1 → R

satisfy the structure conditions⎧⎨
⎩

Ã(x, τ, w,Dw) ·Dw ≥ Co|Dw|p − C̃p

|Ã(x, τ, w,Dw)| ≤ C1|Dw|p−1 + C̃p−1

|B̃(x, τ, w,Dw)| ≤ C|Dw|p−1 + CC̃p−1

a.e. in E × R
+,

where Co, C1, and C are the constants appearing in the structure conditions
(1.2) of Chapter 3, and

C̃(τ) = C
e

τ
p−2

M
(δρp)

1
p−2 . (4.11)

The formal differential inequality (4.10) can be made rigorous by starting from
the weak formulation (1.4)–(1.7) of Chapter 3, by operating the corresponding



4 The Expansion of Positivity for Degenerate Quasilinear Equations (p > 2) 69

change of variables from t into τ , and by taking testing functions ϕ ≥ 0. We
will use (4.10) in space-time domains contained in K8ρ × R

+.
Write the energy estimates for (w− k)−, of the type of (2.3) of Chapter 3,

over cylinders Q+
8ρ(θ) ⊂ E × R

+, as defined in (2.1)–(2.2) of Chapter 3, with
bottom center at (0, 0), and in the new variables (x, τ). Precisely

ess sup
0<τ<θ(8ρ)p

∫
K8ρ

(w − k)2−ζ
p(x, τ)dx +

∫∫
Q+

8ρ(θ)

|D(w − k)−ζ|pdx dτ

≤ γ

∫∫
Q+

8ρ(θ)

[
(w − k)p−|Dζ|p + (w − k)2−|ζτ |

]
dx dτ

+γ
{
C̃[θ(8ρ)p]

}p ∫∫
Q+

8ρ(θ)

χ[(w−k)−>0]ζ
pdx dτ + γCp

∫∫
Q+

8ρ(θ)

(w − k)p−ζ
pdx dτ

for a nonnegative, piecewise smooth cutoff function that vanishes on the para-
bolic boundary of Q+

8ρ(θ). Choose ζ to be one on the cylinder

Q4ρ(θ) = K4ρ ×
(
(4ρ)pθ, (8ρ)pθ

]
and such that

|Dζ| ≤ 1

4ρ
and |ζτ | ≤ 1

θ(4ρ)p
.

With these choices, the previous energy inequalities yield∫∫
Q4ρ(θ)

|D(w − k)−|pdx dτ

≤ γkp

(4ρ)p
|Q4ρ(θ)|

(
1 +

1

θkp−2
+ (Cρ)p +

{
C̃
[
θ(8ρ)p

]}p
(4ρ)p

kp

)
.

(4.12)

4.3 The Set Where w Is Small Can Be Made Small Within Q4ρ(θ)
for Large θ

Lemma 4.1 Let (4.2) hold and let ko be defined by (4.8). For every ν > 0,
there exist εν ∈ (0, 1) depending only on the data {p,N,Co, C1} and α, and
θ = θ(ko, εν) depending only on ko, εν and the data, and γ = γ(θ) depending
only on θ and the data, such that either

γ(θ)Cρ > min{1 , M}
or

|[w < ενko] ∩ Q4ρ(θ)]| ≤ ν |Q4ρ(θ)|.
Proof Write down the energy inequalities (4.12) for the level kj and the pa-
rameter θ given by

kj =
1

2j
ko for j = 0, 1, . . . , j∗ and θ = k2−p

j∗ =
(2j∗
ko

)p−2

,
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where j∗ ∈ N is to be chosen depending only on the data {p,N,Co, C1}.
The term involving C̃ is estimated by the definition (4.11) of C̃(τ) and the
definition (4.8) of ko. Thus{

C̃
[
θ(8ρ)p

]}p
(4ρ)p

kpj
≤ γ̄(j∗, data)p

(ρC
M

)p
.

Therefore, if
M > γ̄(j∗, data)Cρ,

the last term is majorized by an absolute constant depending only on the data
{p,N,Co, C1} and the previous inequality yields∫∫

Q4ρ(θ)

|D(w − kj)−|pdx dτ ≤
γkpj
(4ρ)p

|Q4ρ(θ)| (4.13)

for a constant γ depending only on the data {p,N,Co, C1}, and independent
of j∗. Set

Aj(τ) = [w(·, τ) < kj ] ∩K4ρ, Aj = [w < kj ] ∩ Q4ρ(θ)

so that

|Aj | =
∫ θ(8ρ)p

θ(4ρ)p
|Aj(τ)|dτ.

By Lemma 2.2 of the Preliminaries

(kj − kj+1)|Aj+1(τ)| ≤ γρN+1

|K4ρ − Aj(τ)|
∫
K4ρ∩[kj+1<w(·,τ)<kj]

|Dw|dx

for all τ ∈ (θ(4ρ)p, θ(8ρ)p]. For all such τ , applying (4.9)

1
2kj |Aj+1(τ)| ≤ 2γ4N ρ

α

∫
K4ρ∩[kj+1<w(·,τ)<kj]

|Dw|dx.

Integrate this in dτ over
(
θ(4ρ)p, θ(8ρ)p

)
and majorize the resulting integral

on the right-hand side by Hölder’s inequality, and by means of (4.13), to obtain

1
2kj |Aj+1| ≤ γρ

(∫∫
Aj−Aj+1

|Dw|pdx dτ
) 1

p |Aj −Aj+1|
p−1
p

≤ γρ
(∫∫

Q4ρ(θ)

|D(w − kj)−|pdx dτ
) 1

p |Aj −Aj+1|
p−1
p

≤ γkj |Q4ρ(θ)| 1p |Aj −Aj+1|
p−1
p .

From this, by taking the p
p−1 power of both sides, we arrive at the recursive

inequalities
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|Aj+1|
p

p−1 ≤ γ|Q4ρ(θ)| 1
p−1 |Aj −Aj+1|

for a quantitative constant γ depending only on the data {p,N,Co, C1} and
α, and independent of j∗. Now add these for j = 0, 1, . . . , j∗− 1, and majorize
the sum on the right-hand side by the corresponding telescopic series. This
gives

(j∗ − 1)|Aj∗ |
p

p−1 ≤ γ|Q4ρ(θ)|
p

p−1 .

Rewriting this as

|Aj∗ | ≤
( γ

j∗

) p−1
p |Q4ρ(θ)|,

proves the proposition for the choices

εν =
1

2j∗
and ν =

( γ

j∗

) p−1
p

. (4.14)

4.4 Expanding the Positivity of w

The measure-theoretical information in (4.9), valid for all τ > 0, will be
expanded in the space variables over the cube K2ρ for “times” τ sufficiently
large.

Lemma 4.2 Let (4.2) hold. There exist ν ∈ (0, 1) and γ(ν) > 1, that can be
determined a priori only in terms of the data {p,N,Co, C1} and α, such that
either

γ(ν)Cρ > min{1 , M}
or

w(·, τ) ≥ 1
2ενko a.e. in K2ρ ×

( (6ρ)p

(ενko)p−2
,

(8ρ)p

(ενko)p−2

]
(4.15)

where εν is the number claimed by Lemma 4.1 corresponding to ν.

Proof Apply (3.1)–(3.3) of Lemma 3.1 of Chapter 3 to w over the cylinder

Q4ρ(θ) = (0, τ∗) +Q−4ρ(θ) for τ∗ = θ(8ρ)p.

The parameter ξω is replaced by ενko and μ− ≥ 0 is neglected. Taking into
account (3.12) of Chapter 3, and choosing a = 1

2 gives

w(x, τ) ≥ 1
2ενko for a.e. (x, τ) ∈ [(0, τ∗) +Q−2ρ(θ)]

provided M > γ(εν)Cρ and∣∣[w < ενko] ∩Q4ρ(θ)
∣∣∣∣Q4ρ(θ)

∣∣ ≤ γ−1

(
1

2

)N+2
[θ(ενko)

p−2]
N
p

[1 + θ(ενko)p−2]
p+N

p

= ν.

Choosing now ν from (4.14) determines εν and therefore θ quantitatively.



72 4 Expansion of Positivity

4.5 Expanding the Positivity of u

Return to the definitions (4.6)–(4.8) of τ , w, and ko. As τ ranges over the
interval in (4.15), e

τ
p−2 ranges over

b1
def
= exp

{
6p

(p− 2)[ενεδ
1

p−2 ]p−2

}
≤ f(τ) ≤ exp

{
8p

(p− 2)[ενεδ
1

p−2 ]p−2

}
def
= b2

where b1 and b2 are constants that can be determined a priori only in terms
of the data {p,N,Co, C1}, and are independent of ρ, M , and u. Translating
Lemma 4.2 in terms of u and t gives

u(x, t) ≥ ενεM

2b2

def
= ηM for a.e. x ∈ K2ρ

for all times
bp−2

(ηM)p−2
1
2δρ

p ≤ t ≤ bp−2

(ηM)p−2
δρp

for a suitable b depending only on the data {p,N,Co, C1}.

5 The Expansion of Positivity for Singular Quasilinear
Parabolic Equations (1 < p < 2)

Throughout this section we let u be a nonnegative, local, weak supersolution
to (1.1)–(1.2) of Chapter 3 with 1 < p < 2, and let the cylinder

(y, s) +Q16ρ(δM
2−p) = K16ρ(y)× (s, s+ δM2−pρp]

be contained in ET .

Proposition 5.1 Assume that for some (y, s) ∈ ET and some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)| (5.1)

for some M > 0 and some α ∈ (0, 1). There exist constants η, δ, and ε in
(0, 1) and γ > 1 depending only on the data {p,N,Co, C1}, and α, such that
either

γCρ > min{1 , M}
or

u(·, t) ≥ ηM a.e. in K2ρ(y) (5.2)

for all times
s+ (1− ε)δM2−pρp ≤ t ≤ s+ δM2−pρp. (5.3)
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Remark 5.1 The proposition transforms the measure-theoretical informa-
tion (5.1) into the pointwise expansion of positivity (5.2). The proof below
shows that the functional dependence of η on the measure-theoretical param-
eter α is of the form

η = ηoα 2−γ1/α
p+2

exp(−γ2αp2γ1/α
p+2

), (5.4)

for parameters ηo, γ1, γ2 depending only on the data {p,N,Co, C1}. It is not
known whether the dependence can be improved to be power-like, as in the
degenerate case p > 2, for the general singular equations (1.1)–(1.2) of Chap-
ter 3.

Proof Assume (y, s) = (0, 0), and let δ and ε in (0, 1) be the numbers claimed
by Lemma 1.1 depending only on the data {p,N,Co, C1} and α. The conclu-
sion of the lemma is that either γCρ > min{1 , M}, or

|[u(·, t) > εM ] ∩Kρ| ≥ 1
2α|Kρ| for all t ∈ (0, δM2−pρp

]
. (5.5)

5.1 Transforming the Variables and the Equation

Let ρ > 0 be so that

Q16ρ(δM
2−p) = K16ρ × (0, δM2−pρp] ⊂ ET . (5.6)

Introduce the change of variables and the new unknown function

z =
x

ρ
, −e−τ =

t− δM2−pρp

δM2−pρp
, v(z, τ) =

1

M
u(x, t)e

τ
2−p . (5.7)

This maps the cylinder in (5.6) into K16×(0,∞) and transforms the equations
(1.1)–(1.2) of Chapter 3 into

vτ − divz Ā(z, τ, v,Dzv) = B̄(z, τ, v,Dzv) +
1

2− p
v (5.8)

weakly in K16 × (0,∞), where Ā, and B̄ are measurable functions of their
arguments, satisfying the structure conditions⎧⎨

⎩
Ā(z, τ, v,Dzv) ·Dzv ≥ δCo|Dzv|p − δC̄p

|Ā(z, τ, v,Dzv)| ≤ δC1|Dzv|p−1 + δC̄p−1

|B̄(z, τ, v,Dzv)| ≤ δρC|Dzv|p−1 + δρCC̄p−1
(5.9)

a.e. in K16 × (0,∞), where Co and C1 are the constants in the structure
conditions (1.2) of Chapter 3, δ is the number claimed by Lemma 1.1, and

C̄ = C̄(τ) = ρ
C

M
e

τ
2−p .

In this setting, the information (5.5) becomes
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τ

2−p ] ∩K1

∣∣ ≥ 1
2α|K1| for all τ ∈ (0,+∞). (5.10)

Let τo > 0 to be chosen and set

ko = ε e
τo

2−p , and kj =
1

2j
ko for j = 0, 1, . . . , j∗,

where j∗ is to be chosen. With this symbolism (5.10) implies

|[v(·, τ) ≥ kj ] ∩K8| ≥ 1
2α8

−N |K8| for all τ ∈ (τo,+∞) (5.11)

and for all j ∈ N. Introduce the cylinders

Qτo = K8 ×
(
τo + k2−p

o , τo + 2k2−p
o

)
Q′τo = K16 ×

(
τo, τo + 2k2−p

o

)
and a nonnegative, piecewise smooth, cutoff function in Q′τo of the form
ζ(z, τ) = ζ1(z)ζ2(τ), where

ζ1 =

{
1 in K8

0 in R
N −K16

|Dζ1| ≤ 1

8
,

ζ2 =

{
0 for τ < τo
1 for τ ≥ τo + k2−p

o
0 ≤ ζ2,τ ≤ 1

k2−p
o

.

Write down the energy estimates (2.3) of Chapter 3, for (v−kj)− overQ′τo , and
for the indicated choice of cutoff function ζ. These are derived by taking −(v−
kj)−ζp as a testing function in the weak formulation of (5.8). Discarding the
nonpositive contribution of the right-hand side, coming from the nonnegative
term 1

2−pv, standard calculations give∫∫
Q′

τo

|D(v − kj)−ζ|pdz dτ

≤ γ

∫∫
Q′

τo

[
(v − kj)

p
−|Dζ|p + (v − kj)

2
−ζt

]
dz dτ

+ γC̄p(τo + 2k2−p
o )

∫∫
Q′

τo

χ[(v−kj)−>0]dz dτ

+ γCpρp
∫∫

Q′
τo

(v − kj)
p
−dz dτ,

where γ = γ̃/δ, the constant γ̃ depends only on {p,N,Co, C1}, and δ is the
parameter claimed by Lemma 1.1, and appearing in the transformed structure
conditions (5.9). From this∫∫

Qτo

|D(v − kj)−|pdz dτ ≤ γkpj |Qτo |
[
2 +

C̄p(τo + 2k2−p
o )

kpj
+ Cpρp

]
.
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Taking into account the expressions of C̄ and ko, estimate

C̄p(τo + 2k2−p
o )

kpj
≤ 2j∗p

Cp

Mp
ρpe

2p
2−pk

2−p
o .

Suppose for the moment that j∗ and ko have been chosen, and set

γ(j∗, τo) = 2j∗e
2

2−pk
2−p
o . (5.12)

Therefore either M < γ(j∗, τo)Cρ, or the previous inequality yields∫∫
Qτo

|D(v − kj)−|pdz dτ ≤ 4γkpj |Qτo | (5.13)

for a constant γ depending only on the data {p,N,Co, C1}, and δ.

5.2 Estimating the Measure of the Set [v < kj] Within Qτo

Set
Aj(τ) = [v(·, τ) < kj ] ∩K8, Aj = [v < kj ] ∩Qτo .

By Lemma 2.2 of the Preliminaries, and (5.11)

(kj − kj+1)|Aj+1(τ)| ≤ γ(N)

|K8 −Aj(τ)|
∫
K8∩[kj+1<v(·,τ)<kj]

|Dv|dz

≤ γ(N)

α

∫
K8∩[kj+1<v(·,τ)<kj]

|Dv|dz

for all τ ≥ τo. Integrate this in dτ over (τo + k2−p
o , τo + 2k2−p

o ), majorize the
resulting integral on the right-hand side by the Hölder inequality, and use
(5.13) to get

kj
2
|Aj+1| ≤ γ(data, α)

∫∫
Aj−Aj+1

|Dv|dz dτ

≤ γ(data, α)

(∫∫
Aj−Aj+1

|Dv|pdz dτ
) 1

p

|Aj −Aj+1|
p−1
p

≤ γ(data, α)

(∫∫
Qτo

|D(v − kj)−|pdz dτ
) 1

p

|Aj −Aj+1|
p−1
p

≤ γ(data, α, δ)kj |Qτo |
1
p |Aj −Aj+1|

p−1
p .

Taking the p
p−1 power yields the recursive inequalities

|Aj+1|
p

p−1 ≤ γ(data, α, δ)|Qτo |
1

p−1 |Aj −Aj+1|.
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Add these inequalities for j = 0, 1, . . . , j∗ − 1, where j∗ is an integer to be
chosen, and majorize the sum on the right-hand side by the corresponding
telescopic series. This gives

(j∗ − 1)|Aj∗ |
p

p−1 ≤ γ(data, α, δ)|Qτo |
p

p−1 .

Equivalently

|[v < kj∗ ] ∩Qτo | ≤ ν|Qτo | where ν =
(γ(data, α, δ)

j∗

) p−1
p

. (5.14)

Taking into account (1.3), the constant γ in (5.14) can be traced to be of the

form γ =
γ̃(data)

αp+2
.

5.3 Segmenting Qτo

Assume momentarily that j∗ and hence ν have been determined. By possibly
increasing j∗ to be not necessarily integer, without loss of generality we may
assume that (2j∗)2−p is an integer. Then subdivide Qτo into (2

j∗)2−p cylinders,
each of length k2−p

j∗ , by setting

Qn = K8 ×
(
τo + k2−p

o + nk2−p
j∗ , τo + k2−p

o + (n+ 1)k2−p
j∗

)
for n = 0, 1, . . . , (2j∗)2−p − 1.

For at least one of these, say Qn, there must hold

|[v < kj∗ ] ∩Qn| ≤ ν|Qn|.
Apply Lemma 3.1 of Chapter 3 to v over Qn with

μ− = 0, ξω = kj∗ , a = 1
2 , θ = k2−p

j∗ .

It gives
v
(
z, τo + k2−p

o + (n+ 1)k2−p
j∗

) ≥ 1
2kj∗ a.e. in K4

provided
|[v < kj∗ ] ∩Qn|

|Qn| ≤ 2−
N+p

p γ̄o(data) = ν.

Choose now j∗, and hence ν, from this and (5.14). Summarizing, for such a
choice of j∗, and hence ν, there exists a time level τ1 in the range

τo + k2−p
o < τ1 < τo + 2k2−p

o (5.15)

such that
v(z, τ1) ≥ σoe

τo
2−p where σo = ε 2−(j∗+1).

Remark 5.2 Notice that j∗ and hence ν are determined only in terms of the
data and are independent of the parameter τo, which is still to be chosen.
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5.4 Returning to the Original Coordinates

In terms of the original coordinates and the original function u(x, t) this im-
plies

u(·, t1) ≥ σoMe−
τ1−τo
2−p

def
= Mo in K4ρ,

where the time t1 corresponding to τ1 is computed from (5.7) and (5.15).
Apply now Lemma 4.1 of Chapter 3 with M replaced by Mo and ξ = 1 over
the cylinder

(t1, 0) +Q+
4ρ(θ) = K4ρ ×

(
t1, t1 + θ(4ρ)p

]
.

By choosing
θ = νoM

2−p
o where νo = νo(data)

the assumption (4.2) of Chapter 3 is satisfied, and the lemma yields

u(·, t) ≥ 1
2Mo = 1

2σoMe−
τ1−τo
2−p

≥ 1
2σoe

− 2
2−p e

τo

M
in K2ρ (5.16)

for all times
t1 ≤ t ≤ t1 + νoM

2−p
o (4ρ)p. (5.17)

If the right-hand side equals δM2−pρp, then (5.16) and the conclusion (5.2)
will hold for the time t = δM2−pρp. The transformed τo level is still unde-
termined, and it will be so chosen as to verify such a requirement. Precisely,
taking into account the change of variables (5.7)

δM2−pρpe−τ1 = δM2−pρp − t1 = νoσ
2−p
o M2−p(4ρ)pe−(τ1−τo)

which implies

eτo =
δ

4pνoσ
2−p
o

.

This determines quantitatively τo = τo(data). The proof of Proposition 5.1 is
now completed by inserting such a τo on the right-hand side of (5.16) and in
(5.17). In particular (5.16) holds for all times

t1 = δM2−pρp − νoM
2−p
o (4ρ)p ≤ t ≤ δM2−pρp.

From the previous definitions and transformations one estimates

t1 ≤ (1 − ε)δM2−pρp, where ε = e−τo−2eτo .

Notice that once j∗ and τo are fixed, then the constant γ in (5.12) is also
defined, only in terms of the data {p,N,Co, C1} and α.

Remark 5.3 As it will be apparent in the next chapters, the Harnack in-
equality has different formulations, respectively when 2N

N+1 < p < 2 and

1 < p ≤ 2N
N+1 . It is remarkable, however, that the expansion of positivity

holds with the same statement in the full singular range 1 < p < 2.
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Remark 5.4 It might seem that two approaches for the degenerate case p >
2 and the singular case 1 < p < 2 are similar, based as they are on an
exponential-type change of variable, respectively (4.6)–(4.7) and (5.7). The
two phenomena, however, are markedly different.

In the degenerate case, starting at time level s, the transformation itself
chooses the final time level, as indicated in (4.4), in terms of the lower bound
M . In the singular case, the final time level δM2−pρp is fixed in terms ofM , as
indicated in (5.3). The structural constants only determine how the original
time interval shrinks, about the upper limit, which remains fixed.

6 Stability of the Expansion of Positivity for p→ 2

The proof of Proposition 4.1 for the degenerate case p > 2 shows that the
constants b and η in (4.3)–(4.4) depend on p as (see § 4.5)

b ≈ exp
(
γb

hp−2

p− 2

)
, η ≈ exp

(
− γη

kp−2

p− 2

)
for constants γb, γη, h, k all larger than 1, depending only on the data
{N,Co, C1}, and independent of p. Thus the ratio (b/η)p−2 that determines
the “waiting time” needed to preserve and expand the positivity, deteriorates
as p→∞. However, it is stable as p→ 2 and (4.4) remains meaningful for p
near 2. On the other hand, η(p)→ 0 as p→ 2 and (4.3) becomes vacuous.

Likewise, in the proof of Proposition 5.1, for the singular case 1 < p < 2,
the change of variables (5.7) and the subsequent arguments, yield constants
that deteriorate as p→ 2.

Nevertheless the conclusions of both Proposition 4.1, for p > 2, and Propo-
sition 5.1 for 1 < p < 2, continue to hold with constants that are stable as
p → 2, in the sense of (1.9) of Chapter 3. This is the content of the next
proposition.

Proposition 6.1 Let u be a nonnegative, local, weak solution to (1.1)–(1.2)
of Chapter 3 for p > 1 in ET . Let

K8ρ(y)× (s, s+
δρp

Mp−2
] ⊂ ET

and assume that for some (y, s) ∈ ET and some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)|

for some M > 0 and some α ∈ (0, 1). There exist constants γ∗ > 1, δ, σ∗, η∗
in (0, 1), depending only on the data {N,Co, C1} and α, and independent of
(y, s), ρ, M , and p, such that if |p− 2| < σ∗, then either

γ∗Cρ > min{1 , M}
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or
u(x, t) ≥ η∗M for all x ∈ K2ρ(y)

for all

s+
1
2δρ

p

Mp−2
≤ t ≤ s+

δρp

Mp−2
.

Remark 6.1 The constants γ∗, δ, σ∗, and η∗ are stable as p→ 2, in the sense
of (1.9) of Chapter 3.

6.1 Proof of Proposition 6.1

Assume that (y, s) = (0, 0) and let ε(p) and δ(p) be the constants correspond-
ing to α, claimed by Lemma 1.1. The lemma does not distinguish between
p > 2 and 1 < p < 2 and it implies

|[u(·, t) < εM ] ∩K4ρ| > 1
2α4

−N |K4ρ|, for all t ∈ (0, δM2−pρp). (6.1)

By Remark 1.1 the constants ε(p) and δ(p) are stable as p → 2. The proof
now proceeds for p near 2 irrespective of the degeneracy (p > 2) or singularity
(1 < p < 2) of the partial differential equation. For this reason we denote by
|p− 2| the proximity of p to 2 from either side.

Lemma 6.1 For every ν∗ ∈ (0, 1) there exist constants σ∗, εν∗ ∈ (0, 1) and
γ∗ > 1, depending only on the data {N,Co, C1} and α and independent of u,
M , p, and ρ, such that for all |p− 2| ≤ σ∗, either

γ∗Cρ > min{1 , M}
or

|[u < εν∗M ] ∩ Q+
4ρ(δM

2−p)| ≤ ν∗|Q+
4ρ(δM

2−p)|.
Proof Write down the energy inequalities in (2.3) of Chapter 3, for (u− kj)−,
over the cylinder

Q+
8ρ(δM

2−p)

for a nonnegative, piecewise smooth, cutoff function ζ that equals one on
Q+

4ρ(δM
2−p), and such that

|Dζ| ≤ 1

4ρ
and |ζt| ≤ 1

δM2−pρp
.

The levels kj are taken as

kj =
εM

2j
for j = 0, 1, . . . , j∗ where j∗ ∈ N is to be chosen.

The first term on the left-hand side is discarded and the integral involving
D(u − kj)− is minorized by extending it over Q+

4ρ(δM
2−p), which is the set

where ζ = 1. The right-hand side is majorized in a standard fashion and gives
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Q+

4ρ(δM
2−p)

|D(u− kj)−|pdx dt ≤ γ
kpj
δρp

2j∗|p−2||Q+
4ρ|
[
1 +

Cpρp

kpj
+ Cpρp

]
.

Assume momentarily that j∗ has been chosen in terms only of the data and
α. Then either M < C2j∗ρ, or the previous inequality yields∫∫

Q+
4ρ(δM

2−p)

|D(u− kj)−|pdx dt ≤ γ
kpj
δρp

2j∗|p−2||Q+
4ρ|.

The number j∗ will be chosen shortly depending only on the data {N,Co, C1}
and α, and independent of u, M , ρ, and p. Assuming momentarily that such
a choice has been made, choose σ∗ ∈ (0, 1) so that j∗|p − 2| ≤ 1 for all
|p− 2| < σ∗. This yields the energy estimates∫∫

Q+
4ρ(δM

2−p)

|D(u− kj)−|pdx dt ≤
γkpj
ρp
|Q+

4ρ(δM
2−p)| (6.2)

for a constant γ depending only on the data {N,Co, C1} and independent of
u, M , ρ, and p, provided M > Cγ∗ρ for γ∗ = 2j∗ .

Starting from these energy estimates, the proof can now be concluded as
in the proof of Lemma 2.1 valid for nondegenerate equations. Precisely, set

Aj = [u < kj ] ∩ Q+
4ρ(δM

2−p)

and proceed as in that context by making use of (6.1) and (6.2), to arrive at
the analog of (2.6)

|Aj∗ | ≤
( γ

j∗

) p−1
p |Q+

4ρ(δM
2−p)| (6.3)

for a constant γ depending only on the data {N,Co, C1} and independent of
u, M , ρ, and p. Choosing

εν∗ =
ε

2j∗
and ν∗ =

( γ

j∗

) p−1
p

(6.4)

proves the lemma.

To conclude the proof of Proposition 6.1, apply Lemma 3.1 of Chapter 3, with
μ− = 0, ξ = εν∗ , a = 1

2 , ω = M , θ = δM2−p and ρ replaced by 2ρ. The lemma
yields

u > 1
2εν∗M in K2ρ × (12δρ

p, δρp),

provided

Yo =
|[u < εν∗ ] ∩Q+

4ρ(δM
2−p)|

|Q+
4ρ(δM

2−p)| =
|Aj∗ |

|Q+
4ρ(δM

2−p)| = ν∗.

Here the number ν∗ is chosen from (3.12) of Chapter 3 for p > 1. For p > 2
compute
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Yo ≤ 1

γ̄(data)

[δM2−p(εν∗M)p−2]
N
p

[1 + δM2−p(εν∗M)p−2]
N+p

p

=
1

γ̄(data)

[δεp−22j∗(2−p)]
N
p

[1 + δεp−22j∗(2−p)]
N+p

p

= ν∗.

Stipulate to choose |p − 2| ≤ σ∗ and then σ∗ so small that 2j∗|p−2| ∈ (1, 2).
Then, from (6.3)–(6.4) choose j∗ so large as to satisfy this requirement. The
calculations for 1 < p < 2 are identical starting once more from (3.12) of
Chapter 3.

The argument is a hybrid between the nondegenerate case of § 2 and the
degenerate case of § 4 and the singular case of § 5. It mimics the degenerate
or singular case in that the length of the cylinders is of the order of M2−p

thereby abiding to the notion of intrinsic geometry. If a lower bound of the type
εν∗M = ε2−j∗M is sought, then the intrinsic geometry required by Lemma 3.1
of Chapter 3 would require a cylinder of length (εν∗M)2−p, relative to ρp.
However, because of the indicated choices εp−2

ν∗ ≈ 1 if p ≈ 2. Roughly speaking
the partial differential equation, while degenerate or singular, for p ≈ 2 is
“mildly degenerate or singular,” and it transitions from its nondegenerate
regime p = 2 to its degenerate regime p > 2 or singular regime 1 < p < 2, in
a stable manner.

7 The Expansion of Positivity for Porous Medium Type
Equations

Throughout this section let u be a nonnegative, local, weak supersolution to
(5.1)–(5.2) of Chapter 3 in ET , for m > 0. For (y, s) ∈ ET , and some given
positive number M , consider the cylinders

K8ρ(y)× (s, s+
bm−1

(ηM)m−1
δρ2] for m > 1

K16ρ(y)× (s, s+ δM1−mρ2] for 0 < m < 1

where b, δ, η are the constants given by Propositions 7.1 and 7.2, and ρ > 0
is so small that they are both included in ET . The results of the previous
sections are based solely on the following technical tools: (i) Lemmas 3.1 and
4.1 of Chapter 3, (ii) the discrete isoperimetric inequality of Lemma 2.2 and
the embedding Proposition 4.1 of the Preliminaries, and (iii) the change of
variables introduced respectively in (4.6)–(4.7) for the degenerate case p > 2
and in (5.7) for the singular case 1 < p < 2.

For porous medium type equations Lemmas 3.1 and 4.1 of Chapter 3 have
their exact counterpart respectively in Lemmas 7.1 and 8.1 for m > 1, and in
Lemmas 10.1 and 11.1 for 0 < m < 1 of Chapter 3.
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The discrete isoperimetric inequality and the embeddings of the Prelimi-
naries are facts of Classical Analysis, independent of partial differential equa-
tions. Therefore the expansion of positivity effect continues to hold for these
equations, by essentially the same proof, whence one introduces changes of
variables analogous to (4.6)–(4.7) for the degenerate case m > 1 and to (5.7)
for the singular case 0 < m < 1. Below we outline the main differences in the
proofs by distinguishing the degenerate case m > 1 from the singular case
0 < m < 1.

7.1 Expansion of Positivity When m > 1

The starting point is a time propagation of positivity similar to Lemma 1.1.

Lemma 7.1 Assume that for some (y, s) ∈ ET and some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)|
for some M > 0 and some α ∈ (0, 1). There exist δ and ε in (0, 1), depending
only on the data {m,N,Co, C1} and α, and independent of M , such that either
Cρ > 1, or

|[u(·, t) > εM ] ∩Kρ(y)| ≥ 1
2α|Kρ(y)| for all t ∈

(
s, s+

δρ2

Mm−1

]
.

Proof Same as in Lemma 1.1 by minor changes. We may assume

δ =
α3

γ210N2
,

with ε as in Lemma 1.1.

Proposition 7.1 Assume that for some (y, s) ∈ ET and some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)|
for some M > 0 and some α ∈ (0, 1). There exist constants b > 1, δ, η ∈ (0, 1),
depending only on the data {m,N,Co, C1} and α, and independent of (y, s),
ρ, M , such that either Cρ > 1, or

u(·, t) ≥ ηM in K2ρ(y)

for all times

s+
bm−1

(ηM)m−1
1
2δρ

2 ≤ t ≤ s+
bm−1

(ηM)m−1
δρ2.

The constants b, δ, η deteriorate as m→∞, but they are stable as m→ 1.

Proof Assume (y, s) = (0, 0) and let ε and δ be determined as in Lemma 7.1.
The proof is almost identical to that of § 4 by means of the change of variables

w(x, τ)
def
=

e
τ

m−1

M
(δρ2)

1
m−1u

(
x, s+

eτ

Mm−1
δρ2

)
,

modulo the obvious changes in symbolism. The stability analysis of the con-
stants for m ≈ 1 is carried out as in § 6.
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7.2 Expansion of Positivity When 0 < m < 1

The starting point is a time propagation of positivity similar to Lemma 1.1.

Lemma 7.2 Let 0 < m < 1 and assume that for some (y, s) ∈ ET and some
ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)|
for some M > 0 and some α ∈ (0, 1). There exist δ and ε in (0, 1), depending
only on the data {m,N,Co, C1} and α, and independent of M , such that either
Cρ > 1, or

|[u(·, t) > εM ] ∩Kρ(y)| ≥ 1
2α|Kρ(y)| for all t ∈

(
s, s+

δρ2

Mm−1

]
.

Proof Assume (y, s) = (0, 0), and consider the cylinder

Q+
ρ (δM

1−m) = Kρ × (0, δM1−mρ2]

where δ ∈ (0, 1) is to be chosen. In the weak formulation (5.5) of Chapter 3,
take the test function

ϕ = −(um −Mm)−ζ2

where x → ζ(x) is a nonnegative, piecewise smooth cutoff function in Kρ

which equals one on K(1−σ)ρ and such that |Dζ| ≤ (σρ)−1. Proceeding as in
§ 9 of Chapter 3 and enforcing the condition Cρ ≤ 1 gives∫

Kρ

∫ M

u(x,t)

(Mm − sm)+dsζ
2dx ≤

∫
Kρ

∫ M

u(x,0)

(Mm − sm)+dsζ
2dx

+ γ|Kρ|δM
m+1

σ2

for all times 0 < t < δM1−mρ2. Enforcing the assumptions of the lemma,
estimate∫

Kρ

∫ M

u(x,0)

(Mm − sm)+dsζ
2dx ≤ m

m+ 1
Mm+1(1 − α)|Kρ|∫

Kρ

∫ M

u(x,t)

(Mm − sm)+dsζ
2dx ≥

∫
K(1−σ)ρ∩[u<εM ]

∫ M

u(x,t)

(Mm − sm)+ds dx

≥ m

m+ 1
(1− m+ 1

m
ε)Mm+1|AεM,(1−σ)ρ(t)|.

Therefore proceeding as in the proof of Lemma 1.1

|AεM,ρ(t)| ≤ 1

1− εm+1
m

[
(1− α) + γ

m+ 1

m

δ

σ2
+Nσ

]
|Kρ|.

From here on, conclude as in the proof of Lemma 1.1.
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Proposition 7.2 Let 0 < m < 1 and assume that for some (y, s) ∈ ET and
some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)| (7.1)

for some M > 0 and some α ∈ (0, 1). There exist constants ε, δ, η ∈ (0, 1),
depending only on the data {m,N,Co, C1} and α, and independent of (y, s),
ρ, M , such that either Cρ > 1, or

u(·, t) ≥ ηM in K2ρ(y) (7.2)

for all times
s+ (1− ε)δM1−mρ2 ≤ t ≤ s+ δM1−mρ2.

The constants ε, δ, η deteriorate as m→ 0, but they are stable as m→ 1.

Proof The proof is similar to that of § 5. Nevertheless, since the particular
structure of the energy estimates of § 9 of Chapter 3 brings about some dif-
ferences, here we present the full proof. The arguments below show that the
functional dependence of η on the measure-theoretical parameter α is of the
form

η = ηoα 2−γ1/α
4

exp(−γ2α22γ1/α
4

), (7.3)

for parameters ηo, γ1, γ2 depending only on the data {m,N,Co, C1}. It is not
known whether the dependence can be improved to be power-like, for the
general singular equations (5.1)–(5.2) of Chapter 3.

7.2.1 Transforming the Variables and the Equation

Assume (y, s) = (0, 0), let δ and ε be as determined in Lemma 7.2, and let
ρ > 0 be so that

Q16ρ(δM
1−m) = K16ρ × (0, δM1−mρ2] ⊂ ET .

Introduce the change of variables and the new unknown function

z =
x

ρ
, −e−τ =

t− δM1−mρ2

δM1−mρ2
, v(z, τ) =

1

M
u(x, t)e

τ
1−m . (7.4)

This maps the cylinder Q16ρ(δM
1−m) into K16 × (0,∞) and transforms the

equations (5.1)–(5.2) of Chapter 3 into

vτ − divz Ā(z, τ, v,Dzv) = B̄(z, τ, v,Dzv) +
1

1−m
v (7.5)

weakly in K16 × (0,∞), where Ā, and B̄ are measurable functions of their
arguments, satisfying the structure conditions⎧⎨

⎩
Ā(z, τ, v,Dzv) ·Dzv ≥ mδCov

m−1|Dzv|2 − δC̄2vm+1

|Ā(z, τ, v,Dzv)| ≤ mδC1v
m−1|Dzv|+ δC̄vm

|B̄(z, τ, v,Dzv)| ≤ mδC̄vm−1|Dzv|+ δC̄2vm
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a.e. in K16× (0,∞). Here Co and C1 are the constants in the structure condi-
tions (5.2) of Chapter 3, δ is the number claimed by Lemma 7.2, and C̄ = ρC.
In this setting, the information of Lemma 7.2 reads∣∣[v(·, τ) ≥ ε e

τ
1−m ] ∩K1

∣∣ ≥ 1
2α|K1| for all τ ∈ (0,+∞).

Let τo > 0 to be chosen and set

ko = ε e
τo

1−m , and kj =
1

2j
ko for j = 0, 1, . . . , j∗,

where j∗ is to be chosen. With this symbolism

|[v(·, τ) ≥ kj ] ∩K8| ≥ 1
2α8

−N |K8| for all τ ∈ (τo,+∞) (7.6)

and for all j ∈ N. Introduce the cylinders

Qτo = K8 ×
(
τo + k1−m

o , τo + 2k1−m
o

)
Q′τo = K16 ×

(
τo, τo + 2k1−m

o

)
and a nonnegative, piecewise smooth, cutoff function in Q′τo of the form
ζ(z, τ) = ζ1(z)ζ2(τ), where

ζ1 =

{
1 in K8

0 in R
N −K16

|Dζ1| ≤ 1
8 ,

ζ2 =

{
0 for τ < τo
1 for τ ≥ τo + k1−m

o
0 ≤ ζ2,τ ≤ 1

k1−m
o

.

In the weak formulation of (7.5), analogous to (5.5) of Chapter 3, take as test
function

−(vm − kmj )−ζ2 over Q′τo ,

for the indicated choice of cutoff function ζ. Performing calculations in all
analogous to the ones of § 9 and 10 of Chapter 3, yields∫∫

Qτo

|D(v − kj)−|2dz dτ ≤ 2γk2j |Qτo | (7.7)

for a constant γ depending only on the data {m,N,Co, C1}, and δ.

7.2.2 Estimating the Measure of the Set [v < kj ] Within Qτo

Set
Aj(τ) = [v(·, τ) < kj ] ∩K8 and Aj = [v < kj ] ∩Qτo.

By Lemma 2.2 of the Preliminaries, and (7.6)
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(kj − kj+1)|Aj+1(τ)| ≤ γ(N)

|K8 −Aj(τ)|
∫
K8∩[kj+1<v(·,τ)<kj]

|Dv|dz

≤ γ(N)

α

∫
K8∩[kj+1<v(·,τ)<kj]

|Dv|dz

for all τ ≥ τo. Integrate this in dτ over (τo + k1−m
o , τo + 2k1−m

o ), majorize
the resulting integral on the right-hand side by the Hölder inequality, and use
(7.7) to get

kj
2
|Aj+1| ≤ γ(data, α)

∫∫
Aj−Aj+1

|Dv|dz dτ

≤ γ(data, α)

(∫∫
Aj−Aj+1

|Dv|2dz dτ
) 1

2

|Aj −Aj+1| 12

≤ γ(data, α)

(∫∫
Qτo

|D(v − kj)−|2dz dτ
) 1

2

|Aj −Aj+1| 12

≤ γ(data, α, δ)kj |Qτo |
1
2 |Aj −Aj+1| 12 .

Taking the square yields the recursive inequalities

|Aj+1|2 ≤ γ(data, α, δ)|Qτo ||Aj −Aj+1|.
Add these inequalities for j = 0, 1, . . . , j∗ − 1, where j∗ is an integer to be
chosen, and majorize the sum on the right-hand side by the corresponding
telescopic series. This gives

(j∗ − 1)|Aj∗ |2 ≤ γ(data, α, δ)|Qτo |2.
Equivalently

|[v < kj∗ ] ∩Qτo | ≤ ν|Qτo | where ν =
(γ(data, α, δ)

j∗

) 1
2

. (7.8)

7.2.3 Segmenting Qτo

Assume momentarily that j∗ and hence ν have been determined. By possi-
bly increasing j∗ to be not necessarily integer, without loss of generality we
may assume that (2j∗)1−m is an integer. Then subdivide Qτo into (2j∗)1−m

cylinders, each of length k1−m
j∗ , by setting

Qn = K8 ×
(
τo + k1−m

o + nk1−m
j∗ , τo + k1−m

o + (n+ 1)k1−m
j∗

)
for n = 0, 1, . . . , (2j∗)1−m − 1.

For at least one of these, say Qn, there must hold

|[v < kj∗ ] ∩Qn| ≤ ν|Qn|.
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Apply Lemma 10.1 of Chapter 3 to v over Qn with ξω = kj∗ , a = 1
2 , and

θ = k1−m
j∗ . This gives

v
(
z, τo + k1−m

o + (n+ 1)k1−m
j∗

) ≥ 1
2kj∗ a.e. in K4,

provided Cρ < 1 and

|[v < kj∗ ] ∩Qn|
|Qn| ≤ 2−(N+2)2 γ̄o(data) = ν.

Choose now j∗, and hence ν, from this and (7.8). Summarizing, for such a
choice of j∗, and hence ν, there exists a time level τ1 in the range

τo + k1−m
o < τ1 < τo + 2k1−m

o (7.9)

such that
v(z, τ1) ≥ σoe

τo
1−m where σo = ε 2−(j∗+1).

Remark 7.1 Notice that j∗ and hence ν are determined only in terms of the
data and are independent of the parameter τo, which is still to be chosen.

7.2.4 Returning to the Original Coordinates

In terms of the original coordinates and the original function u(x, t) this im-
plies

u(·, t1) ≥ σoMe−
τ1−τo
1−m

def
= Mo in K4ρ

where the time t1 corresponding to τ1 is computed from (7.4) and (7.9). Apply
now Lemma 11.1 of Chapter 3 with M replaced by Mo and ξ = 1 over the
cylinder

(0, t1) +Q+
4ρ(θ) = K4ρ ×

(
t1, t1 + θ(4ρ)2

]
.

By choosing
θ = νoM

1−m
o where νo = νo(data),

the assumption (11.1) of Chapter 3 is satisfied, and the lemma yields

u(·, t) ≥ 1
2Mo = 1

2σoMe−
τ1−τo
1−m

≥ 1
2σoe

− 2
1−m eτoM

in K2ρ (7.10)

for all times
t1 ≤ t ≤ t1 + νoM

1−m
o (4ρ)2. (7.11)

If the right-hand side equals δM1−mρ2, then (7.10) and the conclusion of
Proposition 7.2 hold for the time t = δM1−mρ2. The transformed τo level is
still undetermined, and it will be so chosen as to verify such a requirement.
Precisely, taking into account the change of variables (7.4)
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δM1−mρ2e−τ1 = δM1−mρ2 − t1 = νoσ
1−m
o M1−m(4ρ)2e−(τ1−τo)

which implies

eτo =
δ

16νoσ
1−m
o

.

This determines quantitatively τo = τo(data). The proof of Proposition 7.2
with 0 < m < 1 is now completed by inserting such a τo on the right-hand
side of (7.10) and in (7.11). In particular (7.10) holds for all times

t1 = δM1−mρ2 − νoM
1−m
o (4ρ)2 ≤ t ≤ δM1−mρ2.

From the previous definitions and transformations one estimates

t1 ≤ (1− ε)δM1−mρ2, where ε = e−τo−2eτo .

8 Remarks and Bibliographical Notes

Proposition 2.1 was first established in [40]. The main idea is in realizing that
the classical theorems of [36, 101] can be read in an “expanding fashion,”
instead of a “shrinking one,” as originally conceived by DeGiorgi.

The notion of expansion of positivity is related to the so-called growth
lemmas, introduced by Landis ([104]). Based on these lemmas, Landis gave
alternative proofs of the results by DeGiorgi ([36]) and Moser ([120]), on
the Hölder regularity and Harnack inequalities for solutions to second-order
elliptic equations in divergence form. This approach is flexible enough as to
adapt to equations in nondivergence form ([93, 94, 135], see also [3]).

For the homogeneous prototype degenerate equations (1.3) and (5.3) of
Chapter 3, the expansion of positivity was realized in [39, 59] by means of
comparison with suitable subsolutions.

In the full generality of Proposition 4.1, this expansion effect was estab-
lished in [49], including the analysis of stability of the various parameters,
either as p → 2 or as m → 1. The proof we present here is a simpler,
more streamlined version of that in [49]. Some measure-theoretical lemmas are
avoided, and the statements are shown to hold in the more general assump-
tions (2.1), (4.2), (5.2), with any α ∈ (0, 1] instead of α = 1 as established in
[49, 51, 54].

In the context of singular equations (1 < p < 2 or 0 < m < 1) the proof of
Proposition 5.1 was first given in [31] and reported in [41], Chapter IV, § 5. The
proof is rather involved and not intuitive. The proof we present here follows an
idea of [51] and [54]; it is more direct, being based on geometrical ideas. Both
proofs require p > 1 and m > 0. The restriction is not only technical in view
of the geometrical significance of the homogeneous, prototype equation (1.3)
of Chapter 3 for p = 1 even in the elliptic case ([117]), and the homogeneous
equation (5.3) of Chapter 3 for m→ 0 ([35, 44, 45]).
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8.1 Solving (3.6)

Seek convex, symmetric about x = 0, smooth solutions. For these (3.6) is
transformed into

X ′ = −
( p

p− 1

) 1
p (
C − 1

2μX
2
) 1

p , in (0, 1) (8.1)

X ′(0) = 0, X(1) = 0

for positive parameters C and μ. In general this problem cannot be solved
explicitly. However, one can show that solutions actually exist, by studying
their qualitative behavior. By setting

K =
2C

μ

y = αx, α =

(
K2−pμp

2(p− 1)

) 1
p

=

(
C2−pμp−1p

2p−1(p− 1)

) 1
p

Y (y) =
X(x)

K
,

problem (8.1) can be rewritten as

Y ′ = −(1− Y 2
) 1

p , in (0, α)

Y ′(0) = 0, Y (α) = 0.

The parameter dependence is now transferred into α. Because of the two-
point condition for a first-order differential equation, the problem may appear
overdetermined. By standard ODE’s theory, the family of solutions to the
Cauchy problem

Y ′ = −(1− Y 2
) 1

p , Y ′(0) = 0 (8.2)

behave as in Figure 8.3 below. Such a Cauchy problem does not have a unique
solution, and Ymin, Ymax represent the minimal and the maximal solutions,
respectively. Now Ymin intersects the Y = 0 axis at yint. By properly choosing
the pair (C, μ), one may realize α = yint. There exist ∞1 possible choices
for (C, μ), that realize such a condition, and hence there exists an infinite
number of functions X that solve the original boundary value problem. This
is expected, as (3.6) is the 1–D case of the nonlinear eigenvalue problem

− div(|Dw|p−2Dw) = μw, in E

w|∂E = 0.

By the results of [73], such a problem admits infinitely many solutions.
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Fig. 8.3. Qualitative Behavior of the Solution to (8.2)
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