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Introduction

1 The Classical Harnack Inequality

In [82], paragraph 19, page 62 the German mathematician C.-G. Axel von
Harnack formulates and proves the following theorem in the case N = 2.

Theorem 1.1 (Harnack Inequality) Let u be a nonnegative harmonic
function in an open set E ⊂ R

N . Then for all x ∈ Br(xo) ⊂ BR(xo) ⊂ E(
R

R+ r

)N−2
R− r

R+ r
u(xo) ≤ u(x) ≤

(
R

R − r

)N−2
R+ r

R− r
u(xo), (1.1)

where BR(xo) = {x ∈ R
N : |x− xo| < R}.

The estimate above is scale invariant in the sense that it does not change for
various choices of R, when r = cR, c ∈ (0, 1) are fixed. Moreover it depends
neither on the position of the ball BR(xo), nor on u.

The proof is so simple that it is worth reporting it here. Set ρ = |x −
xo|, and choose R′ ∈ (r, R). Since u is continuous in BR′(xo), the Poisson
representation formula for harmonic functions can be applied, yielding

u(x) =
R′2 − ρ2

ωNR′

∫
∂BR′(xo)

u(y)|x− y|−Ndσ(y), (1.2)

where ωN is the area of the unit sphere in R
N , and dσ denotes the surface

measure on ∂BR′(xo). Since

R′2 − ρ2

(R′ + ρ)N
≤ R′2 − ρ2

|x− y|N ≤ R′2 − ρ2

(R′ − ρ)N
, (1.3)

combining (1.2)–(1.3), and using the mean value characterization of harmonic
functions, we have(

R′

R′ + ρ

)N−2
R′ − ρ

R′ + ρ
u(xo) ≤ u(x) ≤

(
R′

R′ − ρ

)N−2
R′ + ρ

R′ − ρ
u(xo). (1.4)
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2 1 Introduction

Letting R′ → R and realizing that the bounds are monotone in ρ, proves (1.1).
In its modern version, currently used in the theory of partial differential

equations, the Harnack inequality for harmonic functions is given the following
“mean value form.”

Theorem 1.2 Let N ≥ 2 and let E ⊂ R
N be an open set. Then there exists

a constant γ > 1, dependent only on the dimension N , such that

γ−1 sup
Br(xo)

u ≤ u(xo) ≤ γ inf
Br(xo)

u, (1.5)

for every nonnegative harmonic function u : E → R, and for every ball Br(xo),
such that B2r(xo) is contained in E.

Although the proof seems to indicate that the Harnack inequality is an almost
trivial consequence of the Poisson representation formula, such an estimate,
in either of its two forms (1.1) and (1.5), has a whole host of important
consequences, and we list the main ones here.

• A nonnegative harmonic function in R
N is constant (Liouville Theorem).

• If u : BR(0)\{0} → R is harmonic, and satisfies u(x) = o(|x|2−N ) for
x → 0, then u(0) can be defined in such a way that u : BR(0) → R is
harmonic (Removable Singularity Theorem).

• If a sequence of functions which are harmonic in a bounded domain E ⊂
R

N and continuous on E converges uniformly on the boundary ∂E, then
it also converges uniformly in E to a harmonic function (Harnack’s First
Convergence Theorem).

• Let {un} be a sequence of harmonic functions in a connected open set
E ⊂ R

N . If {un} is monotone increasing and there exists a point xo ∈ E
such that the sequence {un(xo)} is convergent, then {un} is uniformly con-
vergent on every compact subset of E to a harmonic function u (Harnack’s
Second Convergence Theorem).

• The Harnack inequality plays a fundamental role in the construction of
solutions to the Dirichlet Problem for the Laplace equation using Perron’s
method (for more details see, for example, [43], Chapter 2, § 6).
Things become more involved when we move from the elliptic to the

parabolic setting. In the following by a caloric function, we mean a non-
negative solution u to the heat equation

ut −Δu = 0

in some open set Ω ⊂ R
N+1.

It is not obvious what the analog of (1.1)–(1.5) for caloric functions could
be. If we consider the function

Γ (x, t) =

⎧⎨
⎩

1√
4πt

exp
(
− x2

4t

)
for t > 0

0 for x 	= 0 and t ≤ 0,
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it is nonnegative and caloric in R
2−{(0, 0)}, but there is no positive constant

γ satisfying
γ−1 sup

B
Γ ≤ Γ (1, 0) ≤ γ inf

B
Γ

where
B = {(x, t) ∈ R

2 : (x− 1)2 + t2 < 1
4}.

Indeed Γ (1, 0) = 0, whereas supB Γ > 0.
The first parabolic Harnack-type estimate was established independently

by Hadamard ([80]) and Pini ([127]).

Theorem 1.3 Let E be an open set in R
N and for T > 0 let ET denote

the cylindrical domain E × (0, T ]. Let u be a caloric function in ET and for
(xo, to) ∈ ET consider a cylinder

B2ρ(xo)× {to − 4ρ2, to + ρ2} ⊂ ET .

Then there exists a constant γ depending only upon N , such that

γ−1 sup
Bρ(xo)

u(·, to − ρ2) ≤ u(xo, to). (1.6)

Both Hadamard’s and Pini’s proofs are based on local representations of so-
lutions in terms of heat potentials, thereby paralleling the initial approach of
Harnack.

As for nonnegative harmonic functions, the original statement of Hadamard’s
and Pini’s inequality can be given the equivalent “mean value form” ([52])

γ−1 sup
Bρ(xo)

u(·, to − ρ2) ≤ u(xo, to) ≤ γ inf
Bρ(xo)

u(·, to + ρ2). (1.7)

A counterexample of Moser ([121]) shows that the “waiting time” from to−ρ2

to to and from to to to+ρ2 is needed for (1.7) to hold. Indeed such an inequality
“at the same time level to” would be false for caloric functions.

It is immediate to see that, as a consequence of the Harnack inequality, a
caloric function which is strictly positive in a point cannot vanish.

Also a bounded caloric function in t < 0 is constant ([152], p. 236). However,
unlike nonnegative harmonic functions in R

N , caloric functions in t < 0 as such
(i.e., nonnegative) need not be constant. As a counterexample, the function

u(x, t) = exp(x+ t)

is caloric in R
2 and nonconstant. This shows that a single bound (either from

above or from below) is not sufficient for a Liouville-type theorem to hold.
For a more thorough discussion of the Harnack inequality for caloric func-

tions, and in particular its relevance in the context of Parabolic Potential
Theory, we refer the reader to the recent paper [103], whence the previous
example with Γ is taken.
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2 Quasilinear Coercive Elliptic and Parabolic Equations

The results of the previous sections are not limited to the prototype examples,
respectively of the Laplace and the heat equation.

In a series of seminal papers, Moser ([121, 122]) considers nonnegative
solutions to linear, parabolic equations in divergence form, with measurable
and bounded coefficients, namely,

ut − div(aij(x, t)Dju) = 0, (2.1)

where
λ|ξ|2 ≤ aij(x, t)ξiξj ≤ Λ|ξ|2 (2.2)

for almost all (x, t) ∈ ET and all ξ ∈ R
N for two constants

0 < λ ≤ Λ.

In ([121, 122]) it is shown that nonnegative, weak solutions to these equations
satisfy the Harnack estimate (1.7).

The positive parameter λ is defined as the modulus of ellipticity of (2.1).
Moser’s methods are only measure-theoretical, and based on the notion

of “ellipticity” and “parabolicity,” more than possible local representations.
The analysis of his proofs reveals that the linearity is immaterial, and that
essentially the same arguments apply as well to nonnegative weak solutions
to quasilinear equations of the form

ut − divA(x, t, u,Du) = 0 weakly in ET (2.3)

where the function A : ET × R
N+1 → R

N is only assumed to be measurable
and subject to the structure conditions{

A(x, t, u,Du) ·Du ≥ λ|Du|2
|A(x, t, u,Du)| ≤ Λ,

(2.4)

where λ and Λ are given positive constants ([10, 148]).
In the context of parabolic equations (2.3), with a full quasilinear structure

not necessarily given by (2.4) (see for example (3.3) below), the function A is
called the principal part of the partial differential equation.

The constants λ and Λ in (2.4) could be replaced by nonlinear functions
of (x, t, u,Du). The partial differential equation in (2.3) is coercive and non-
singular, if there exist two positive constants λo ≤ Λ1 such that

λo ≤ λ(x, t, u,Du) and Λ(x, t, u,Du) ≤ Λ1.

In such a case, the nonlinear function λ(x, t, u,Du) is still referred to as the
modulus of ellipticity of the partial differential equation in (2.3).

Harnack estimates have been at the core of understanding the local be-
havior of solutions to coercive, nonsingular elliptic and parabolic equations
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of second order. In particular they imply the local Hölder continuity of solu-
tions and constrain their asymptotic behavior through Liouville-type theorems
([78, 79, 91]). In addition they play a central role in investigating the local
structure of free boundaries ([69, 25]), and the boundary behavior of solutions
in terms of Wiener-type criteria ([72, 110, 83, 89, 65, 114, 115]). For further
details on the subject, we refer to the survey paper [88] and its long list of
references.

3 Degenerate and Singular Parabolic Equations

A parabolic partial differential equation of the type (2.3) is termed degenerate
if the modulus of ellipticity λ(x, t, u,Du) tends to zero at points of its domain
of definition; whereas it is termed singular if Λ(x, t, u, η) tends to infinity at
points of ET × R

N+1. Such a behavior is either prescribed or intrinsic.
It is prescribed if the coefficients of the equation exhibit such a degenerate

or singular behavior. In such a case the set of degeneracy or singularity is
known a priori and the issue is that of investigating the behavior of possible
solutions, near those given points, in terms of the behavior of the coefficients.
Examples are in [95, 96, 97]. This is a very interesting, active research field,
but we will not deal with it here.

It is intrinsic if the vanishing or blowing up of the modulus of elliptic-
ity occurs through the solution or its gradient. In this case the degener-
acy/singularity set on one side, and the behavior of the solutions on the other,
are mutually intertwined. This monograph investigates this class of equations
by focusing on local solutions to equations of p-Laplacian type and of porous
medium type.

3.1 Quasilinear Equations of p-Laplacian Type

Let E be an open set in R
N and for T > 0 let ET denote the cylindrical

domain E × (0, T ].
The quasilinear equation (2.3) is of p-Laplacian type if it is subject to the

structure conditions{
A(x, t, u,Du) ·Du ≥ Co|Du|p
|A(x, t, u,Du)| ≤ C1|Du|p−1 p > 1, (3.1)

where Co and C1 are given positive constants.
No regularity is assumed on the function A : ET ×R

N+1 → R
N other than

being measurable and subject to the structure conditions (3.1). A solution is
meant weakly in the sense

u ∈ Cloc

(
0, T ;L2

loc(E)
) ∩ Lp

loc

(
0, T ;W 1,p

loc (E)
)
.
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A precise definition of the functional spaces in (3.1) is in § 4 of the Prelim-
inaries, and the notion of weak solution is in § 1 of Chapter 3. The prototype
parabolic p-Laplace equation is

ut − div |Du|p−2Du = 0 weakly in ET , p > 1. (3.2)

The modulus of ellipticity of this class of equations is λ = |Du|p−2. For p > 2
such a modulus vanishes if the gradient Du vanishes, and the equation is
degenerate on the set [|Du| = 0]. For p ∈ (1, 2), the modulus of ellipticity
λ = Λ = |Du|p−2 → ∞ when |Du| → 0, and the equation is singular on the
set [|Du| = 0].

We are interested only in local solutions, with no reference to possible
boundary or initial data.

3.2 Quasilinear Equations of Porous Medium Type

The quasilinear equation (2.3) is of porous medium type if it is subject to the
structure conditions{

A(x, t, u,Du) ·Du ≥ Com|u|m−1|Du|2
|A(x, t, u,Du)| ≤ C1m|u|m−1|Du| m > 0, (3.3)

where Co and C1 are given positive constants.
No regularity is assumed on the function A : ET ×R

N+1 → R
N other than

being measurable and subject to the structure conditions (3.3). A solution is
meant weakly in the sense

u ∈ Cloc

(
0, T ;L2

loc(E)
)

and |u|m ∈ L2
loc

(
0, T ;W 1,2

loc (E)
)
.

The prototype of this class of equations is the porous medium equation

ut −m div |u|m−1Du = 0 weakly in ET , m > 0. (3.4)

The modulus of ellipticity of this class of equations is λ = |u|m−1. For m > 1
such a modulus vanishes if u vanishes, and the equation is degenerate on the
set [|u| = 0]. For 0 < m < 1, the modulus of ellipticity λ = Λ = |u|m−1 → ∞
when |u| → 0, and the equation is singular on the set [|u| = 0].

We are interested only in local solutions in the indicated functional spaces,
and irrespective of possible boundary or initial data.

3.3 Aim of the Monograph

The importance of these classes of degenerate and/or singular partial differen-
tial equations stems both from their intrinsic mathematical interest, and their
central role in the modeling of a host of nonlinear phenomena, such as thin film
dynamics ([35, 44, 46]), non-Newtonian fluid mechanics and flow in porous me-
dia ([8, 13, 18, 19, 100, 20, 112, 113, 125, 105, 15, 16, 34, 118, 140]), elasticity
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and science of “smart materials”([81, 33, 87, 23, 118, 134, 85]), and emerging
issues in biomathematics and biophysics related to degenerate and/or singular
diffusion of molecules on cell surfaces ([1, 4, 12, 14, 24, 111, 132, 139, 138]).

Notwithstanding the modeling, this monograph is solely mathematical in
nature. Its aim is to introduce a novel set of tools and techniques in Analysis,
for a better understanding of the notion of degeneracy and/or singularity in
partial differential equations.

Perhaps the most crucial property is the “expansion of positivity” of non-
negative solutions to these degenerate or singular parabolic equations (Chap-
ter 4). If one such solution is positive at some time level, in a measure-
theoretical sense, then the positivity expands in space at some further time,
driven by the intrinsic geometry of these equations.

The monograph builds on some recent advances of the theory ([48, 49, 50,
51, 55]), that are suggesting novel ways of interpreting the notion of degener-
acy and singularity.

The degeneracy and/or singularity limits the degree of regularity of so-
lutions to such equations. For example, local solutions to (3.2) are no more
regular than C1,α

loc , whereas local solutions to (3.4) are no more than Cα
loc.

Similar results hold for solutions to the quasilinear equation (2.3) with either
the structure conditions (3.1) or (3.3). The theory in this respect is mature
and we refer to [41, 62, 149] for an account.

However, a more refined insight is afforded by a possible Harnack inequal-
ity satisfied by nonnegative solutions to such equations. While a Harnack
inequality for linear equations implies Hölder continuity, the converse is in
general false.

For degenerate and singular parabolic equations the theory is at its incep-
tion, due to the inherent measure-theoretical difficulties generated by their
lack of coercivity: as we said above, λ can either tend to zero or to infinity.
However, while only a handful of such estimates are known ([39, 59, 60, 49]),
whenever available they bear the same wealth of consequences as for nonde-
generate equations. For example, for parabolic equations of p-Laplacian type,
with full quasilinear structure, they imply the local and boundary Hölder con-
tinuity of solutions and permit one to precisely describe their behavior in the
vicinity of their zero set (moving boundary).

4 Parabolic Harnack Estimates. The Role of the
Structure

The Harnack inequality of Moser for nonnegative solutions to elliptic equations
(2.1) for ut = 0 was extended almost verbatim to nonnegative solutions to
elliptic equations (2.3) for ut = 0, even for a principal part A satisfying the
structure conditions (3.1) for all p > 1 ([141, 147]). However, an extension to
nonnegative solutions to parabolic equations (2.3) with the structure (3.1) was
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possible only for p = 2 ([10, 148]). The full structure (3.1) revealed serious
difficulties and it remained open.

At almost the same time as Moser proved the Harnack inequality for solu-
tions to (2.1)–(2.2), Ladyzhenskaya, Solonnikov and Ural’tzeva established, by
means of DeGiorgi-type measure-theoretical arguments, that weak solutions
to the elliptic versions of (2.3)–(2.4) with ut = 0, are Hölder continuous for
all p > 1, whereas the analogous result for parabolic equations was possible
only for p = 2 ([101, 102]).

Neither Moser’s nor DeGiorgi’s ideas, nor Nash’s approach [123] seemed
to apply when p 	= 2.

Thus, vis-à-vis the Harnack inequality, there was a disconnect between the
elliptic and parabolic theory.

It turns out that the parabolic theory is markedly different. Indeed the
Harnack inequality (1.7) is false even for nonnegative solutions to the proto-
type equation (3.2). A series of counterexamples is in § 3 of Chapter 4, and
§ 1.3 of Chapter 5.

Notwithstanding some partial results ([39, 59, 40]), the issue of the Harnack
inequality for nonnegative solutions to equations of the type (2.3), with the full
quasilinear structure (3.1), and for all p > 1, while raised by several authors
([10, 148, 101, 41]), remained open.

Recently considerable progress has been made on this issue ([49, 51, 52, 98])
to the point that for all p > 2N

N+1 the theory is reasonably complete.
This monograph is a systematic and self-contained account of this new

theory, whose main points we outline below.

4.1 Degenerate Equations of the p-Laplacian Type for p > 2

Nonnegative, local weak solutions to (2.3)–(3.1) for p > 2, satisfy the parabolic
Harnack inequality in some intrinsic form. Precisely, there exist positive con-
stants γ and c depending only on N and p > 2, and the structure conditions
in (3.1), such that (Chapter 5)

γ−1 sup
Bρ(xo)

u(x, to − θρp) ≤ u(xo, to) ≤ γ inf
Bρ(xo)

u(x, to + θρp), (4.1)

for all intrinsic parabolic cylinders

B4ρ(xo)×
(
to − θ(4ρ)p, to + θ(4ρ)p

)
θ =

(
c

u(xo, to)

)p−2

(4.2)

contained within the domain of definition of the solution. Notice that the
“waiting time” θρp is “intrinsic” to the solution itself. The constants γ and c
tend to infinity as p → ∞ and they are “stable” as p → 2. Thus by formally
letting p → 2 one recovers the classical Harnack inequality (1.7) for caloric
functions. The proof is based only on measure-theoretical arguments, bypass-
ing any notion of maximum principle and parabolic potentials as in [39, 59].
Its significance is in paralleling Moser’s measure-theoretical approach, in dis-
pensing with Hadamard’s and Pini’s potential representations.
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The approach of [49, 52] differs substantially from the classical ideas of
Moser ([121, 122]) in that no properties of BMO spaces are used, nor cover-
ing arguments, nor cross-over estimates. Moreover the Harnack inequality is
shown to imply the Hölder continuity of the solution.

The techniques are flexible enough to apply by minor changes to local,
weak solutions to equations of the porous medium type (2.3) with the structure
condition (3.3) for m > 1. Moreover the arguments, being only measure-
theoretical, hold the promise of a wider applicability.

Of special notice is the measure-theoretical Lemma 3.1 of the Preliminar-
ies. While disconnected from partial differential equations, it affords power-like
dependences on the measure of the positivity set of a solution to degenerate
parabolic equations (Proposition 7.1 of Chapter 5). This is a vast improvement
with respect to the DeGiorgi method where the dependence is exponential.

4.2 Singular Equations of the p-Laplacian Type for 2N
N+1

< p < 2

Let u be a nonnegative, weak solution to (2.3)–(3.1) for 2N
N+1 < p < 2. The

value p∗ = 2N
N+1 is called critical and we refer to p∗ < p < 2 as the supercritical

range of the parameter p.
Any such nonnegative solution satisfies an intrinsic Harnack estimate in

the “mean value form” (4.1)–(4.2) (Chapter 6).
The positive constant γ depends only on p, N and the structural constants

appearing in (3.1), whereas c can be taken to be 1. The constant γ can be pre-
cisely traced as a function of p, and it is “stable” as p→ 2. As a consequence,
letting p∗ < p → 2 in (4.1), one recovers the classical Harnack estimate for
caloric functions in the “mean value” form (1.7).

Thus (4.1) holds seamlessly as the parameter p goes from p < 2 (singular
equations) to p = 2 (heat equation) to p > 2 (degenerate equations).

The constant, however, deteriorates as p→ p∗; specifically γ(p)→∞, and
(4.1)–(4.2) lose meaning for p = 2N

N+1 .
A more intriguing fact, however, is that any such solution satisfies, in

addition, a family of Harnack inequalities that are simultaneously forward in
time, backward in time, and elliptic. Precisely, there exist positive constants
γ and δ, depending only on p, N and the structural constants in (3.1), such
that

γ−1 sup
Bρ(xo)

u(·, τ) ≤ u(xo, to) ≤ γ inf
Bρ(xo)

u(·, σ) (4.3)

for all
to − δ[u(xo, to)]

2−pρp ≤ τ, σ ≤ to + δ[u(xo, to)]
2−pρp (4.4)

and for all parabolic cylinders of the form (4.2) contained in the space-time
domain of definition of the solution.

When τ = σ = to the inequality takes the “elliptic” form (1.5) of non-
negative harmonic functions. Thus such an estimate defies the role of time,
in parabolic Harnack estimates, as identified by Moser [121]. In particular, it
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is false for caloric functions (p = 2), and accordingly the constants γ(p) and
δ(p) deteriorate as p∗ < p→ 2.

It turns out that these constants also deteriorate as p → p∗ = 2N
N+1 .

Therefore (4.3)–(4.4) cease to hold for p = p∗ and it raises the question of
what is causing such a behavior.

From a technical point of view, the value p∗ = 2N
N+1 enters as the limiting

Sobolev exponent associated with the prototype equation (3.2). Nevertheless
the range 2N

N+1 < p < 2 is optimal for a Harnack estimate to hold. A series of

counterexamples are in § 1.3 of Chapter 6, showing that if 1 < p ≤ 2N
N+1 , no

Harnack estimate is possible in any of the forms (4.1)–(4.2), nor (4.3) for any
value of τ, σ in the range (4.4).

The proofs are measure-theoretical, and potentials do not play any role.
As such they are flexible enough to apply to a large class of singular equations
including porous medium type equations (2.3) with the structure conditions

(3.3) for (N−2)+
N < m < 1.

While building on the results of [41], this monograph explores the issue
of Harnack inequality for nonnegative solutions to these degenerate or sin-
gular parabolic PDEs, which in [41] was established only for the prototype
equations, satisfying some sort of a comparison principle.

An effort has been made to make it self-contained and, at the same time,
not to duplicate known facts. Whenever possible, the results of [41] are recalled
without proof or new proofs have been given. In the interest of completeness
we have also reproduced proofs of known facts, for which a clear trace to the
literature could not be made. Examples include the local Hölder continuity
of nonnegative, weak solutions to singular porous medium type equations,
the forward-backward L1

loc estimates, and the Lr
loc-L

∞
loc estimates for these

solutions (Appendices A and B). These facts, widely used, do not have a
precise trace in the literature.

4.3 Outstanding Issues

The main issues emerging from these investigations regard the singular case
1 < p < 2 and more specifically the critical and subcritical range 1 < p ≤ 2N

N+1
of the parameter p. While some possible forms of Harnack-type inequalities
are in Chapter 6, the picture is not entirely understood.

First one might ask what is the “structural” reason for a diminished role of
the time when p < 2, as evidenced by the forward-backward-elliptic Harnack
inequality (4.3)–(4.4).

It might appear as though the PDE is exhibiting a more “elliptic” nature,
since the modulus of ellipticity |Du|p−2 →∞ as |Du| → 0. On the other hand,
the principal part of the equation is coercive in its own topology of W 1,p

loc , that
is,

A(x, t, u, η) · η ≥ Co|η|p,
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for a.e. (x, t) ∈ ET , and for all (u, η) ∈ R
N+1, with Co a positive parameter:

this suggests a diffusion phenomenon occurring within a topological setting
intrinsic to the PDE.

This is the main guiding idea of this monograph; that is, these degener-
ate/singular diffusion processes, in terms of a Harnack estimate, behave like
the heat equation, provided one reads them in their own time-intrinsic geom-
etry, which in turn generates a “pointwise metric.” A recent account of the
various directions and applications of this idea is in [149].

This point of view, however, might not be sufficient to understand the
local behavior of solutions to these PDEs, especially as p transitions from the
supercritical range p∗ < p < 2 to its critical and subcritical values 1 < p ≤ p∗.

For critical and subcritical 1 < p ≤ p∗, the behavior of solutions is rather
intriguing. First, unlike the case p > p∗, weak solutions need not be bounded
([41], Chapter V). However, locally bounded solutions are locally Hölder con-
tinuous, irrespective of 1 < p < 2 ([41], Chapter IV), whereas nonnegative
solutions, even if bounded, do not satisfy a Harnack inequality in any of the
forms indicated above.

The issue is deeper than a Harnack estimate per se. As an example observe
that the Barenblatt similarity solution of the prototype equation (3.2) is well
defined for all 2N

N+1 < p and ceases to exist for p = 2N
N+1 ((21.1)–(21.2) of

Chapter 6). The Barenblatt solution can be regarded a p-parabolic potential.
Thus the critical value p∗ which enters in the proofs in a more or less

technical fashion, seems to be the dividing line between existence and nonex-
istence of the p-potentials. On the other hand, a second value p∗∗ = 2N

N+2 ,
naturally linked with the critical Sobolev exponent, discriminates between
locally bounded and unbounded solutions.

Understanding the structural reasons for this behavior remains a major
challenge, and it might shed light on unexplored mathematical structures and
physical behavior of systems modeled by these equations.



2

Preliminaries

1 Poincaré and Sobolev Inequalities

Let E be a bounded domain in R
N with boundary ∂E. If f ∈ Lq(E) for some

1 ≤ q ≤ ∞, denote by ‖f‖q,E the Lq(E)-norm of f over E. We also write ‖f‖q
whenever the specification of the domain E is unambiguous from the context.
The function f ∈ Lq

loc(E) if ‖f‖q,K <∞, for all compact subsets K ⊂ E. For
f ∈ C1(E) denote by Df = (fx1 , . . . , fxN ) its gradient and set

‖f‖1,p;E = ‖f‖p,E + ‖Df‖p,E.

The spaces W 1,p(E) and W 1,p
o (E) for p ≥ 1 are defined as

W 1,p(E) the completion of C∞(E) under ‖ · ‖1,p;E
W 1,p

o (E) the completion of C∞o (E) under ‖ · ‖1,p;E .

Equivalently W 1,p(E) is the Banach space of functions f ∈ Lp(E) whose
generalized derivatives fxi belong to Lp(E) for all i = 1, . . . , N .

A function f ∈ W 1,p
loc (E) if ‖f‖1,p;K <∞ for every compact subset K ⊂ E.

Let W 1,∞(E) denote the Banach space of functions f ∈ L∞(E) whose
distributional derivatives fxi ∈ L∞(E), for i = 1, . . . , N .

The space W 1,∞
loc (E) is defined analogously.

Theorem 1.1 (Gagliardo–Nirenberg [71, 124]) Let v ∈ W 1,p
o (E) for

some p ≥ 1. For every s ≥ 1 there exists a constant C depending only on
N , p, q, and s, and independent of E, such that

‖v‖q,E ≤ C‖Dv‖αp,E‖v‖1−α
s,E (1.1)

where α ∈ [0, 1] and p, q ≥ 1, are linked by

α =

(
1

s
− 1

q

)(
1

N
− 1

p
+

1

s

)−1

E. DiBenedetto et al., Harnack’s Inequality for Degenerate and Singular Parabolic Equations, 13  
Springer Monographs in Mathematics, DOI 10.1007/978-1-4614-1584-8_2,  
© Springer Science+Business Media, LLC 2012 
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and their admissible range is

if N = 1, α ∈ [0, p
p+s(p−1) ], q ∈ [s,∞];

if 1 ≤ p < N, α ∈ [0, 1],

⎧⎪⎨
⎪⎩

q ∈ [s, Np
N−p

]
if s ≤ Np

N−p ,

q ∈ [ Np
N−p , s

]
if s ≥ Np

N−p ;

if 1 < N ≤ p, α ∈ [0, Np
Np+s(p−N)

)
, q ∈ [s,∞).

Corollary 1.1 Let v ∈ W 1,p
o (E), and assume p ∈ [1, N). There exists a

constant γ = γ(N, p) such that

‖v‖q,E ≤ γ‖Dv‖p,E, where q =
Np

N − p
. (1.1)′

The boundary ∂E is piecewise smooth if it is the union of finitely many por-
tions of (N − 1)-dimensional hypersurfaces of class C1,λ, for some λ ∈ (0, 1).

If ∂E is piecewise smooth, functions v in W 1,p(E) are defined up to ∂E
via their traces denoted by v

∣∣
∂E

.

Theorem 1.2 Let ∂E be piecewise smooth. There exists a constant C depend-
ing only on N, p and the structure of ∂E such that

‖v‖q,∂E ≤ C‖v‖W 1,p(E),

where
q ∈ [1, (N−1)p

N−p

]
, if 1 < p < N

q ∈ [1,∞), if p = N.

If ∂E is piecewise smooth, the space W 1,p
o (E) can be defined equivalently as

the set of functions v ∈ W 1,p(E) whose trace on ∂E is zero.

Remark 1.1 The embedding inequalities of Theorem 1.1 and Corollary 1.1
continue to hold for functions v in W 1,p(E), not necessarily vanishing on ∂E
in the sense of the traces, provided ∂E is piecewise smooth and∫

E

v(x)dx = 0.

In such a case the constant C depends on s, p, q,N and the structure of ∂E.
However, it does not depend on the size of E, and in particular it does not
change by dilations of E.
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2 Cuts and Truncations of Functions in W 1,p(E) and
Their Embeddings

Let k be any real number and for a function v ∈ W 1,p(E) consider the trun-
cations of v given by

(v − k)+ = max{(v − k); 0}
(v − k)− = max{−(v − k); 0}.

Lemma 2.1 (Stampacchia [144]) Let v ∈ W 1,p(E). Then (v − k)± ∈
W 1,p(E) for all k ∈ R. If in addition the trace of v on ∂E is essentially
bounded and

‖v‖∞,∂E ≤M for some M > 0,

then (v − k)± ∈W 1,p
o (E) for all k ≥M .

Corollary 2.1 Let vi ∈W 1,p(E) for i = 1, . . . , n ∈ N. Then

w = min{v1, . . . , vn} ∈ W 1,p(E).

For a function v defined in E and real numbers k < �, set

[v > �] = {x ∈ E
∣∣v(x) > �}

[v < k] = {x ∈ E
∣∣v(x) < k}

[k < v < �] = {x ∈ E
∣∣k < v(x) < �}.

For ρ > 0 and y ∈ R
N , denote by Bρ(y) the ball of radius ρ centered at y,

and by Kρ(y) the cube of edge ρ, centered at y and with faces parallel to the
coordinate planes. If y is the origin, let Bρ(0) = Bρ, and Kρ(0) = Kρ.

For a Lebesgue measurable set A ⊂ R
N denote by |A| its measure.

Lemma 2.2 (DeGiorgi [36]) Let v ∈ W 1,1(Kρ(y)), and let k < � be real
numbers. There exists a constant γ depending only on N, p and independent
of k, �, v, y, ρ, such that

(� − k)|[v > �]| ≤ γ
ρN+1

|[v < k]|
∫
[k<v<�]

|Dv|dx. (2.1)

Remark 2.1 The conclusion of the lemma continues to hold for functions
v ∈ W 1,1(E) provided E is convex. It can be used for balls Bρ(y).

The embedding (1.1)′ of Corollary 1.1 gives a majorization of the Lq(E)-norm
of u solely in terms of the Lp(E)-norm of its gradient. This is possible because
u vanishes on ∂E in the sense of the traces.

A Poincaré-type inequality bounds some integral norm of a function u ∈
W 1,p(E) in terms only of some integral norm of its gradient, provided some
information is available on the set where u vanishes.
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Proposition 2.1 Let E ⊂ R
N be bounded and convex and let ϕ ∈ C(Ē)

satisfy

0 ≤ ϕ ≤ 1, and the sets [ϕ > k] are convex for all k ∈ R+.

Let v ∈W 1,p(E) and assume that the set

E = [v = 0] ∩ [ϕ = 1]

has positive measure. There exists a constant C depending only on N and p
and independent of v and ϕ, such that(∫

E

ϕ|v|pdx
) 1

p

≤ C
(diamE)N

|E|N−1
N

(∫
E

ϕ|Dv|pdx
) 1

p

. (2.2)

Remark 2.2 Inequality (2.1) follows from this by applying (2.2) with ϕ = 1
and p = 1 to the function

w =

{
min{v , �} − k if v > k
0 if v ≤ k.

By Lemma 2.1 such a function is in W 1,1(E).

3 A Measure-Theoretical Lemma ([48])

If u ∈ C(E) and u(y) = 1 for some y ∈ E, for every σ ∈ (0, 1) there exists a ball
Bρ(y) ⊂ E, such that u ≥ 1−σ in Bρ(y), with ρ being determined by σ and the
modulus of continuity of u. A similar statement valid for measurable functions
follows from the Severini–Egorov theorem ([142], [64]), where, however, one
cannot, in general, quantify the size and shape of the neighborhood of y where,
roughly speaking, u is near 1. The following measure-theoretical lemma can
be regarded as a quantitative version of the Severini–Egorov theorem, for
functions u ∈W 1,1

loc (E).

Lemma 3.1 Let u ∈W 1,1(Kρ) satisfy

‖u‖W 1,1(Kρ) ≤ γρN−1 and |[u > 1]| ≥ α|Kρ|
for some γ > 0 and α ∈ (0, 1). Then, for every δ ∈ (0, 1) and 0 < λ < 1 there
exist y ∈ Kρ and ε = ε(α, δ, γ, λ,N) ∈ (0, 1), such that

|[u > λ] ∩Kερ(y)| > (1 − δ)|Kερ(y)|.
Roughly speaking the lemma asserts that if the set where u is bounded away
from zero occupies a sizable portion of Kρ, then there exist at least one point
y and a neighborhood Kερ(y) where u remains large in a large portion of
Kερ(y). Thus the set where u is positive clusters about at least one point
y ∈ Kρ.
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Proof It suffices to establish the lemma for u smooth and ρ = 1. For n ∈ N

partition K1 into nN cubes, with pairwise disjoint interior and each of edge
1/n. Divide these cubes into two finite subcollections Q+ and Q− by

Qj ∈ Q+ ⇐⇒ |[u > 1] ∩Qj | > 1
2α|Qj |

Qi ∈ Q− ⇐⇒ |[u > 1] ∩Qi| ≤ 1
2α|Qi|

and denote by #(Q+) the number of cubes in Q+. By the assumption∑
Qj∈Q+

|[u > 1] ∩Qj |+
∑

Qi∈Q−
|[u > 1] ∩Qi| > α|K1| = αnN |Q|

where |Q| is the common measure of the Q�. From the definition of Q±

αnN <
∑

Qj∈Q+

|[u > 1] ∩Qj|
|Qj| +

∑
Qi∈Q−

|[u > 1] ∩Qi|
|Qi|

< #(Q+) +
α

2
(nN −#(Q+)).

Therefore
#(Q+) >

α

2− α
nN . (3.1)

Fix δ, λ ∈ (0, 1). The integer n can be chosen depending on α, δ, λ, γ, and N ,
such that

|[u > λ] ∩Qj | ≥ (1− δ)|Qj | for some Qj ∈ Q+. (3.2)

This would establish the lemma for ε = 1/n. Let Q ∈ Q+ satisfy

|[u > λ] ∩Q| < (1 − δ)|Q|. (3.3)

We will show that for such a cube, there exists a constant c = c(δ, λ,N) such
that

‖u‖W 1,1(Q) ≥ αc(δ, λ,N)
1

nN−1
. (3.4)

From the assumptions

|[u ≤ λ] ∩Q| ≥ δ|Q| and
∣∣∣[u >

1 + λ

2

]
∩Q

∣∣∣ > α

2
|Q|.

For fixed x ∈ [u ≤ λ] ∩Q and y ∈ [u > (1 + λ)/2] ∩Q,

1− λ

2
≤ u(y)− u(x) =

∫ |y−x|

0

Du(x+ tn) · n dt

where

n =
y − x

|x− y| , for x 	= y.
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Let R(x, ω) be the polar representation of ∂Q with pole at x, for the solid
angle ω. Integrate the previous relation in dy over [u > (1+λ)/2]∩Q. Minorize
the resulting left-hand side, by using the lower bound on the measure of such
a set, and majorize the resulting integral on the right-hand side by extending
the integration over Q. Expressing such integration in polar coordinates with
pole at x ∈ [u ≤ λ] ∩Q gives

α(1− λ)

4
|Q| ≤

∫
|n|=1

∫ R(x,n)

0

rN−1

∫ |y−x|

0

|Du(x+ tn)|dt dr dn

≤ NN/2|Q|
∫
|n|=1

∫ R(x,n)

0

|Du(x+ tn)|dt dn

= NN/2|Q|
∫
Q

|Du(z)|
|z − x|N−1

dz.

Integrate now in dx over [u ≤ λ]∩Q. Minorize the resulting left-hand side by
using the lower bound on the measure of such a set, and majorize the resulting
right-hand side, by extending the integration to Q. This gives

αδ(1 − λ)

4NN/2
|Q| ≤ ‖u‖W 1,1(Q) sup

z∈Q

∫
Q

1

|z − x|N−1
dx

≤ C(N)|Q|1/N‖u‖W 1,1(Q)

for a constant C(N) depending only on N , thereby establishing (3.4).
If (3.2) does not hold for any cube Qj ∈ Q+, then (3.3) and hence (3.4) is

verified for all such Qj. Adding over such cubes and taking into account (3.1),

α2

2− α
c(δ, λ,N)n ≤ ‖u‖W 1,1(K1) ≤ γ.

Remark 3.1 Following the various steps of the proof, the dependence of the
reducing parameter ε on the measure-theoretical parameter α, and on the
constant γ appearing in the assumptions of the lemma, can be traced to be
of the form

ε = B−1α
2

γ
(3.5)

for a constant B > 1 depending on δ, N , and λ and independent of α.

4 Parabolic Spaces and Embeddings

For 0 < T < ∞ let ET denote the cylindrical domain E × (0, T ]. The space
Lr,q(ET ) for q, r ≥ 1 is the collection of functions f defined and measurable
in ET such that

‖f‖q,r;ET =
( ∫ T

0

(∫
E

|f |qdx
) r

q

dτ
) 1

r

<∞.
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Also f ∈ Lq,r
loc(ET ), if for every compact subset K ⊂ E and every subinterval

[t1, t2] ⊂ (0, T ] ∫ t2

t1

(∫
K

|f |qdx
) r

q

dτ <∞.

Whenever q = r we set Lq,q(ET ) = Lq(ET ). These definitions are extended in
the obvious way when either q or r is infinity.

We introduce spaces of functions, depending on (x, t) ∈ ET , that exhibit
different behavior in the space and time variables. These are spaces where
typically solutions to parabolic equations in divergence form are found.

Let m, p ≥ 1 and consider the Banach spaces

V m,p(ET ) = L∞
(
0, T ;Lm(E)

) ∩ Lp
(
0, T ;W 1,p(E)

)
V m,p
o (ET ) = L∞

(
0, T ;Lm(E)

) ∩ Lp
(
0, T ;W 1,p

o (E)
)

both equipped with the norm

‖v‖V m,p(ET ) = ess sup
0<t<T

‖v(·, t)‖m,E + ‖Dv‖p,ET .

When m = p, set V p,p
o (ET ) = V p

o (ET ) and V p,p(ET ) = V p(ET ). Both spaces
are embedded in Lq(ET ) for some q > p. In a precise way we have

Proposition 4.1 There exists a constant γ depending only on N , p, m such
that for every v ∈ V m,p

o (ET )∫∫
ET

|v(x, t)|qdx dt ≤ γq
( ∫∫

ET

|Dv(x, t)|pdx dt
)

×
(
ess sup
0<t<T

∫
E

|v(x, t)|mdx
) p

N

(4.1)

where

q = p
N +m

N
.

Moreover
‖v‖q,ET ≤ γ‖v‖V m,p(ET ). (4.2)

Remark 4.1 The multiplicative inequality (4.1) and the embedding (4.2)
continue to hold for functions v ∈ V m,p(ET ) such that∫

E

v(x, t)dx = 0 for a.e. t ∈ (0, T )

provided ∂E is piecewise smooth. In such a case the constant γ depends also
on the structure of ∂E, but not on its size.

The next corollary follows from Proposition 4.1 by taking m = p and by
applying Hölder’s inequality.
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Corollary 4.1 Let p > 1. There exists a constant γ depending only on N
and p, such that for every v ∈ V p

o (ET ),

‖v‖pp,ET
≤ γ

∣∣[|v| > 0]
∣∣ p
N+p ‖v‖pV p(ET ).

When m = p, Proposition 4.1 takes the form

Proposition 4.2 There exists a constant γ depending only on N and p such
that for every v ∈ V p

o (ET ),

‖v‖q,r;ET ≤ γ‖v‖V p(ET ),

where the numbers q, r ≥ 1 are linked by

1

r
+

N

pq
=

N

p2
,

and their admissible range is

if N = 1, q ∈ (p,∞], r ∈ [p2,∞);

if 1 ≤ p < N, q ∈ [p, Np
N−p

]
, r ∈ [p,∞];

if 1 < N ≤ p, q ∈ [p,∞), r ∈ (p2

N ,∞].
We conclude this section by stating a parabolic version of Lemma 2.1 and
Corollary 2.1 concerning the truncated functions (v − k)±.

Lemma 4.1 Let v ∈ Vm,p(ET ). Then (v − k)± ∈ V m,p(ET ) for all k ∈ R.
Assume in addition that ∂E is piecewise smooth and that the trace of v(·, t)
on ∂E is essentially bounded and

ess sup
0<t<T

‖v(·, t)‖∞,∂E ≤M for some M > 0.

Then (v − k)± ∈ V m,p
o (ET ) for all k ≥M .

5 Some Technical Facts

5.1 A Lemma on Fast Geometric Convergence

Lemma 5.1 Let {Yn} for n = 0, 1, . . . , be a sequence of positive numbers,
satisfying the recursive inequalities

Yn+1 ≤ CbnY 1+α
n ,

where C, b > 1 and α > 0 are given numbers. If

Yo ≤ C−1/αb−1/α2

,

then {Yn} → 0 as n→∞.
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5.2 An Interpolation Lemma

Lemma 5.2 Let {Yn} for n = 0, 1, . . . , be a sequence of equi-bounded positive
numbers satisfying the recursive inequalities

Yn ≤ CbnY 1−α
n+1 ,

where C, b > 1 and α ∈ (0, 1) are given constants. Then

Yo ≤
(

2C

b1−
1
α

) 1
α

.

Remark 5.1 The lemma turns the qualitative information of equi-bounded-
ness of the sequence {Yn} into a quantitative a priori estimate for Yo.

5.3 Steklov Averages

Let v ∈ L1(ET ) and let 0 < h < T . The Steklov averages vh(·, t) and vh̄(·, t)
are defined by

vh =

⎧⎪⎪⎨
⎪⎪⎩

1

h

∫ t+h

t

v(·, τ)dτ for t ∈ (0, T − h],

0, for t > T − h.

vh̄ =

⎧⎪⎪⎨
⎪⎪⎩

1

h

∫ t

t−h

v(·, τ)dτ for t ∈ (h, T ],

0, for t < h.

Lemma 5.3 Let v ∈ Lq,r(ET ). Then, as h → 0, vh → v in Lq,r(ET−ε) for
every ε ∈ (0, T ). If v ∈ C(0, T ;Lq(E)), then vh(·, t) → v(·, t) in Lq(E) for
every t ∈ (0, T − ε) for all ε ∈ (0, T ).

A similar statement holds for vh̄. The proof of the lemma is straightforward
from the theory of Lp spaces.

6 Remarks and Bibliographical Notes

The proofs of the multiplicative embedding of Theorem 1.1 and the embed-
dings of Theorem 1.2, are in a number of monographs ([102, 114, 5, 42]).

The best constants in (1.1) are traced by Talenti [146].
Theorem 1.2 is due to Sobolev and Nikol’ski [143]. The dependence of the

constant C of the structure of ∂E is traced in [42].
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Poincaré first stated and proved the inequality that was later named after
him in [128]; he then gave a second and more refined proof in [129].

A thorough treatment of Sobolev inequalities and their connection with
Harnack-type estimates is in [136].

In the context of partial differential equations, the truncations (v − k)±
were introduced by Bernstein ([17]) and effectively used by Stampacchia
([144]) and DeGiorgi ([36]).

The proof of Lemma 2.1, on the truncations (v−k)±, is in [144]. A simpler
proof is reported in [76].

Inequality (2.1) is due to DeGiorgi [36] and it is referred to as a “discrete”
isoperimetric inequality. A continuous version is in [67].

The proof of Proposition 2.1 is in [101] and it follows essentially DeGiorgi’s
proof of Lemma 2.2.

A version of the measure-theoretical Lemma 3.1 was first established in
[63] for u ∈ W 1,p(Kρ) and p > 1. Such a limitation on p was essential to the
proof. The proof presented here, taken from [48], removes such a restriction
and is simpler.

The parabolic spaces V m,p(ET ) and V m,p
o (ET ) are generalizations of the

spaces V 2(ET ) introduced in [101]. The generalizations are introduced to track
down the notion of degenerate and singular parabolic equations. The embed-
dings of § 4 of these spaces are established in [41].

The proof of Lemma 5.1 on fast geometric convergence is in [36] and re-
ported in [102, 101]. A simpler proof is in [41].

The interpolation Lemma 5.2 is taken from [26, 27].
In a series of papers published at the beginning of the 20th century, Steklov

studied completeness problems, making a large use of integral averaging of
functions. This later prompted the use of the term Steklov averages.
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Degenerate and Singular Parabolic Equations

1 Quasilinear Equations of p-Laplacian Type

Let E be an open set in R
N and for T > 0 let ET denote the cylindrical do-

main E× (0, T ]. Consider quasilinear, degenerate or singular parabolic partial
differential equations of the form

ut − divA(x, t, u,Du) = B(x, t, u,Du) weakly in ET (1.1)

where the functions A : ET ×R
N+1 → R

N and B : ET ×R
N+1 → R are only

assumed to be measurable and subject to the structure conditions⎧⎨
⎩

A(x, t, u,Du) ·Du ≥ Co|Du|p − Cp

|A(x, t, u,Du)| ≤ C1|Du|p−1 + Cp−1

|B(x, t, u,Du)| ≤ C|Du|p−1 + Cp
a.e. in ET (1.2)

where p > 1, Co and C1 are given positive constants, and C is a given non-
negative constant. When C = 0 the equation is homogeneous.

The homogeneous prototype of such a class of parabolic equations is

ut − div(|Du|p−2Du) = 0, p > 1, weakly in ET . (1.3)

A function
u ∈ Cloc

(
0, T ;L2

loc(E)
) ∩ Lp

loc

(
0, T ;W 1,p

loc (E)
)

(1.4)

is a local, weak sub(super)-solution to (1.1) if for every compact set K ⊂ E
and every subinterval [t1, t2] ⊂ (0, T ]∫

K

uϕdx

∣∣∣∣t2
t1

+

∫ t2

t1

∫
K

[− uϕt +A(x, t, u,Du) ·Dϕ
]
dx dt

≤ (≥)
∫ t2

t1

∫
K

B(x, t, u,Du)ϕdxdt

(1.5)

for all nonnegative testing functions

23E. DiBenedetto et al., Harnack’s Inequality for Degenerate and Singular Parabolic Equations,
Springer Monographs in Mathematics, DOI 10.1007/978-1-4614-1584-8_3,  
© Springer Science+Business Media, LLC 2012 
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ϕ ∈W 1,2
loc

(
0, T ;L2(K)

) ∩ Lp
loc

(
0, T ;W 1,p

o (K)
)
. (1.6)

This guarantees that all the integrals in (1.5) are convergent.
Our focus will be on Harnack estimates satisfied by nonnegative weak

solutions in the interior of ET . For this reason we will only be interested in
local solutions irrespective of any boundary or initial data.

The partial differential equation (1.1) is degenerate when p > 2 and sin-
gular when 1 < p < 2, since the modulus of ellipticity |Du|p−2 respectively
tends to 0 or to +∞ as |Du| → 0.

When p = 2, the equation is nondegenerate, and its theory is reasonably
complete ([101]). In the following particular care will be devoted to the sta-
bility of the various statements and estimates for p ≈ 2.

1.1 An Alternate Formulation in Terms of Steklov Averages

It would be technically convenient to have a formulation of weak solutions that
involves ut. Unfortunately weak solutions to (1.1)–(1.2), whenever they exist,
possess a modest degree of regularity in the time variable and, in general, ut

has a meaning only in the sense of distributions.
The following notion of local weak sub(super)-solution involves the discrete

time derivative of u and is equivalent to (1.5)–(1.6).
Fix t ∈ (0, T ) and let h be a positive number such that 0 < t < t+ h < T .

In (1.5) take t1 = t, t2 = t+h and choose a testing function ϕ independent of
the variable τ ∈ (t, t+h). Dividing by h and recalling the definition of Steklov
averages we obtain∫

K×{t}

(
uh,tϕ+ [A(x, τ, u,Du)]h ·Dϕ

)
dx

≤ (≥)
∫
K×{t}

[B(x, τ, u,Du)]hϕdx

(1.7)

for all 0 < t < T − h and all nonnegative ϕ ∈ W 1,p
o (K). To recover (1.5), fix

a subinterval 0 < t1 < t2 < T , choose h so small that t2 + h ≤ T , and in
(1.7) take a testing function as in (1.6). Such a choice is admissible, since the
testing functions in (1.7) are independent of the variable τ ∈ (t, t + h) but
may be dependent on t. Integrating over [t1, t2] and letting h → 0 with the
aid of Lemma 5.3 of the Preliminaries gives (1.5).

1.2 On the Notion of Parabolicity

The structure conditions (1.2) are not sufficient to characterize parabolic par-
tial differential equations. For example, the principal part

A(x, t, u,Du) = |Du|p−2
(
Du− Du

|Du|
)
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satisfies the first of (1.2) for all p > 1. However, its modulus of ellipticity
changes signum at |Du| = 1, and the equation transitions from “forward”
parabolic to “backward” in time.

Definition:

The partial differential equation in (1.1) is parabolic if it satisfies the structure
conditions (1.2) and in addition, for every weak, local sub(super)-solution
u, the truncations +(u − k)+, −(u − k)−, for all k ∈ R, are weak, local
sub(super)-solutions to (1.1), in the sense of (1.5)–(1.6), with A(x, t, u,Du)
and B(x, t, u,Du) replaced respectively by

A(x, t, k ± (u− k)±,±D(u− k)±),
B(x, t, k ± (u− k)±,±D(u− k)±).

To clarify the connection between sub(super)-solutions and parabolic struc-
tures, we derive some sufficient conditions on A(x, t, u,Du) for such a notion
of parabolicity to be enforced.

Lemma 1.1 Assume that for all (x, t, u) ∈ ET × R

A(x, t, u, η) · η ≥ 0 for all η ∈ R
N . (1.8)

Then (1.1)–(1.2) is parabolic.

Proof Let u be a local weak subsolution to (1.1), and in (1.7) take the testing
function

(uh − k)+
(uh − k)+ + ε

ϕ, where ε > 0, and ϕ ≥ 0 satisfies (1.6).

Integrate in dt over [t1, t2] ⊂ (0, T ) and let first h → 0 and then ε → 0 to
obtain∫

K

(u− k)+ϕ(·, t)dx
∣∣∣t2
t1

+

∫ t2

t1

∫
K

[−(u− k)+ϕt +A(x, t, k + (u− k)+, D(u − k)+) ·Dϕ]dx dt

≤
∫ t2

t1

∫
K

B(x, t, k + (u− k)+, D(u − k)+)ϕdxdt

− lim inf
ε→0

ε

∫ t2

t1

∫
K

A(x, t, k + (u− k)+, D(u− k)+) ·D(u − k)+
((u− k)+ + ε)2

ϕdxdt.

Thus (u− k)+ is a weak, local subsolution. If u is a weak, local supersolution,
the same argument shows that −(u− k)− is a weak, local supersolution.
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Henceforth we will assume that the principal part A(x, t, u,Du) satisfies
(1.8) so that (1.1)–(1.2) is parabolic.

One checks that the assumptions of the lemma are verified for example by
equations with principal part

divA(x, t, u,Du) =
[
|Du|p−2

(
aij(x, t)uxi + f(x, t)

uxj

|Du|
)]

xj

where f is bounded and nonnegative, and the matrix (aij) is only measurable
and locally positive definite in ET .

1.3 Dependence on the Parameters {p,N,Co, C1} and Stability

The set of parameters {p,N,Co, C1} are the data, and we say that a generic
positive constant γ = γ(p,N,Co, C1) depends only on the data, if it can be
quantitatively determined a priori, only in terms of these parameters.

The constant C ≥ 0 is also a datum of the equations. However, all our
estimates will only involve {p,N,Co, C1}, while C will appear as an alterna-
tive. This is further illustrated in the energy estimates of Proposition 2.1 and
Remark 2.2 following it, and in Lemmas 3.1 and 4.1, and Remarks 3.1 and
4.3 following them.

A positive constant γ depending only on the data is “stable” as p → 2 if
there exists a positive constant γ(2, N, Co, C1) such that

lim
p→2

γ(p,N,Co, C1) = γ(2, N, Co, C1). (1.9)

We will show that all our estimates are stable as p → 2. As a consequence,
the classical theory for nondegenerate equations can be recovered from these
degenerate and singular equations, by letting p→ 2.

2 Energy Estimates for (u− k)± on Cylinders
(y, s) + Q±

ρ (θ) ⊂ ET

In the following Q±ρ (θ) denote the “forward” and “backward” parabolic cylin-
ders of the form

Q−ρ (θ) = Kρ × (−θρp, 0], Q+
ρ (θ) = Kρ × (0, θρp], p > 1 (2.1)

where θ is a positive parameter that determines their length relative to ρp.
The origin (0, 0) of RN+1 is the “upper vertex” of Q−ρ and the “lower vertex”

of Q+
ρ (θ). If θ = 1, write Q±ρ (1) = Q±ρ . For a fixed (y, s) ∈ R

N+1 denote by

(y, s) +Q−ρ (θ) = Kρ(y)× (s− θρp, s]

(y, s) +Q+
ρ (θ) = Kρ(y)× (s, s+ θρp]

(2.2)

cylinders congruent to Q±ρ (θ) and with “upper vertex” and “lower vertex”
respectively at (y, s).
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Proposition 2.1 Let u be a local, weak sub(super)-solution to (1.1)–(1.2) in
ET , in the sense of (1.5)–(1.6).

There exists a positive constant γ = γ(p,N,Co, C1), such that for every
cylinder (y, s)+Q−ρ (θ) ⊂ ET , every k ∈ R and every piecewise smooth, cutoff
function ζ vanishing on ∂Kρ(y), and such that 0 ≤ ζ ≤ 1

ess sup
s−θρp<t<s

∫
Kρ(y)

(u − k)2±ζ
p(x, t)dx −

∫
Kρ(y)

(u− k)2±ζ
p(x, s− θρp)dx

+ Co

∫∫
(y,s)+Q−

ρ (θ)

|D(u− k)±ζ|pdx dτ

≤ γ

∫∫
(y,s)+Q−

ρ (θ)

[
(u− k)p±|Dζ|p + (u− k)2±|ζτ |

]
dx dτ

+ γCp

∫∫
(y,s)+Q−

ρ (θ)

[
χ[(u−k)±>0] + (u − k)p±

]
ζpdx dτ

(2.3)

where Co and C are the constants appearing in the structure conditions (1.2).
Analogous energy estimates hold for “forward” cylinders (y, s) +Q+

ρ (θ) ⊂
ET .

Proof After a translation we may assume (y, s) = (0, 0). In (1.5) take the
testing function ϕ = ±(u − k)±ζp and integrate over Kρ × (−θρp, t], with
t ∈ (−θρp, 0]. The use of such a test function is justified, modulus a standard
Steklov averaging process, by making use of the alternate weak formulation
(1.7):

±
∫∫

Kρ×(−θρp,t]

uτ (u − k)±ζpdx dτ

±
∫∫

Kρ×(−θρp,t]

A(x, τ, u,Du)D[(u − k)±ζp]dx dτ

≤ ±
∫∫

Kρ×(−θρp,t]

B(x, τ, u,Du)(u− k)±ζp dx dτ.

As for the first term

±
∫∫

Kρ×(−θρp,t]

uτ (u− k)±ζpdx dτ =
1

2

∫∫
Kρ×(−θρp,t]

[(u− k)2±]τ ζ
pdx dτ

=
1

2

∫ t

−θρp

d

dτ

∫
Kρ

(u− k)2−ζ
pdx dτ − p

2

∫∫
Kρ×(−θρp,t]

(u− k)2±ζ
p−1ζτdx dτ

≥ 1

2

∫
Kρ

(u− k)2±ζ
p(x, t)dx − 1

2

∫
Kρ

(u− k)2±ζ
p(x,−θρp)dx

− p

2

∫∫
Q−

ρ (θ)

(u− k)2±ζ
p−1|ζτ |dx dτ.

The second integral is transformed and estimated as



28 3 Degenerate and Singular Parabolic Equations

±
∫∫

Kρ×(−θρp,t]

A(x, τ, u,Du) ·D[(u − k)±ζp]dx dτ

=

∫∫
Kρ×(−θρp,t]

±A(x, τ, u,Du) ·D(u− k)±ζpdx dτ

± p

∫∫
Kρ×(−θρp,t]

(u− k)±ζp−1A(x, τ, u,Du) ·Dζ dxdτ

≥ Co

∫∫
Kρ×(−θρp,t]

|D(u − k)±|pζpdx dτ

− Cp

∫∫
Q−

ρ (θ)

χ[(u−k)±>0]ζ
pdx dτ

− pC1

∫∫
Kρ×(−θρp,t]

|D(u− k)±|p−1(u− k)±ζp−1|Dζ|dx dτ

− pCp−1

∫∫
Q−

ρ (θ)

(u− k)±ζp−1|Dζ|dx dτ.

By Young’s inequality

pC1

∫∫
Kρ×(−θρp,t]

|D(u− k)±|p−1(u− k)±ζp−1|Dζ|dx dτ

≤ Co

4

∫∫
Kρ×(−θρp,t]

|D(u − k)±|pζpdx dτ

+ γ(Co)

∫∫
Q−

ρ (θ)

(u − k)p±|Dζ|pdx dτ

and

pCp−1

∫∫
Q−

ρ (θ)

(u− k)±ζp−1|Dζ|dx dτ

≤ γ

∫∫
Q−

ρ (θ)

(u− k)p±|Dζ|pdx dτ + Cp

∫∫
Q−

ρ (θ)

χ[(u−k)±>0]ζ
pdx dτ.

Combining these terms

±
∫∫

Kρ×(−θρp,t]

A(x, τ, u,Du) ·D[(u− k)±ζp]dx dτ

≥ 3

4
Co

∫∫
Kρ×(−θρp,t]

|D(u− k)±|pζpdx dτ

− γ

∫∫
Q−

ρ (θ)

(u − k)p±|Dζ|pdx dτ − γCp

∫∫
Q−

ρ (θ)

χ[(u−k)±>0]ζ
pdx dτ.

Finally



3 A DeGiorgi-Type Lemma 29

±
∫∫

Kρ×(−θρp,t]

B(x, τ, u,Du)(u− k)±ζpdx dτ

≤ C

∫∫
Kρ×(−θρp,t]

|D(u− k)±|p−1(u − k)±ζpdx dτ

+ Cp

∫∫
Kρ×(−θρp,t]

(u− k)±ζpdx dτ

≤ Co

4

∫∫
Kρ×(−θρp,t]

|D(u − k)±|pζpdx dτ

+ γCp

∫∫
Q−

ρ (θ)

(u− k)p±ζ
pdx dτ + Cp

∫∫
Q−

ρ (θ)

χ[(u−k)±>0]ζ
pdx dτ.

Combining the previous estimates and recalling that t ∈ (−θρp, 0] is arbitrary
establishes the proposition.

Remark 2.1 Because of the application of Young’s inequality, the constant
γ = γ(p)→∞, either as p→∞ or as p→ 1. However, γ is stable as p→ 2.

Remark 2.2 The proof traces the dependence of the constant γ on the pa-
rameters {p,N,Co, C1} and leaves explicit the dependence on C.

3 A DeGiorgi-Type Lemma

Local, weak sub(super)-solutions to (1.1)–(1.2) in ET are locally bounded
above(below) in ET ([41], Chapter V). For a fixed cylinder (y, s) +Q−2ρ(θ) ⊂
ET , denote by μ± and ω, nonnegative numbers such that

μ+ ≥ ess sup
(y,s)+Q−

2ρ(θ)

u, μ− ≤ ess inf
(y,s)+Q−

2ρ(θ)
u, ω ≥ μ+ − μ−.

Denote by ξ ∈ (0, 1] and a ∈ (0, 1) fixed numbers.

Lemma 3.1 Let u be a locally bounded, local, weak supersolution to (1.1)–
(1.2) in ET . There exists a number ν− depending on the data {p,N,Co, C1}
and the parameters θ, ξ, ω, a, such that if∣∣[u ≤ μ− + ξω] ∩ [(y, s) +Q−2ρ(θ)]

∣∣ ≤ ν−|Q−2ρ(θ)|, (3.1)

then either
Cρ > min{1 , ξω} (3.2)

or
u ≥ μ− + aξω a.e. in

[
(y, s) +Q−ρ (θ)

]
. (3.3)

Likewise, if u is a locally bounded, local, weak subsolution to (1.1)–(1.2) in
ET , there exists a number ν+ depending on the data {p,N,Co, C1} and the
parameters θ, ξ, ω, a, such that if
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∣∣ ≤ ν+|Q−2ρ(θ)|, (3.4)

then either (3.2) holds true, or

u ≤ μ+ − aξω a.e. in
[
(y, s) +Q−ρ (θ)

]
. (3.5)

Remark 3.1 The constants ν± are independent of C, and the latter enters
into the statement only via the alternative (3.2).

Proof We prove first (3.1)–(3.3). We may assume (y, s) = (0, 0) and for n =
0, 1, . . . , set

ρn = ρ+
ρ

2n
, Kn = Kρn , Qn = Kn × (−θρpn, 0]. (3.6)

Apply (2.3) over Kn and Qn to (u− kn)−, for the levels

kn = μ− + ξnω where ξn = aξ +
1− a

2n
ξ. (3.7)

The cutoff function ζ is taken of the form ζ(x, t) = ζ1(x)ζ2(t), where

ζ1 =

⎧⎨
⎩

1 in Kn+1

0 in R
N −Kn

|Dζ1| ≤ 1

ρn − ρn+1
=

2n+1

ρ

ζ2 =

⎧⎨
⎩

0 for t < −θρpn
1 for t ≥ −θρpn+1

0 ≤ ζ2,t ≤ 1

θ(ρpn − ρpn+1)
≤ 2p(n+1)

θρp
.

(3.8)

The energy inequality (2.3) with these stipulations yields

ess sup
−θρp

n<t<0

∫
Kn

(u− kn)
2
−ζ

p(x, t)dx +

∫∫
Qn

|D(u − kn)−ζ|pdx dτ

≤ γ
2np

ρp

(∫∫
Qn

(u− kn)
p
−dx dτ +

1

θ

∫∫
Qn

(u− kn)
2
−dx dτ

)

+ γCp

∫∫
Qn

(
χ[u<kn] + (u− kn)

p
−
)
dx dτ

≤ γ
2np(ξω)p

ρp

(
1 +

1

θ(ξω)p−2
+

(
Cρ

ξω

)p

+ (Cρ)p
)
|[u < kn] ∩Qn|

≤ γ
2np(ξω)p

ρp

(
1 +

1

θ(ξω)p−2

)
|[u < kn] ∩Qn|,

(3.9)

provided ξω ≥ Cρ, and ρ < C−1, which we assume. By the embedding Propo-
sition 4.1 of the Preliminaries
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Qn

[(u − kn)−ζ]p
N+2
N dx dτ ≤

∫∫
Qn

|D[(u− kn)−ζ]|pdx dτ

×
(

ess sup
−θρp

n<t<0

∫
Kn

[(u− kn)−ζ(x, t)]2dx

) p
N

≤ γ

[
2np

ρp

(
(ξω)p +

(ξω)2

θ

)]N+p
N

|[u < kn] ∩Qn|
N+p
N .

Estimate below∫∫
Qn

[(u − kn)−ζ]p
N+2
N dx dτ ≥

(
(1 − a)ξω

2n+1

)pN+2
N

|[u < kn+1] ∩Qn+1|

and set

Yn =
|[u < kn] ∩Qn|

|Qn| .

Then

Yn+1 ≤ γbn

(1− a)(N+2) p
N

(
θ

(ξω)2−p

) p
N
(
1 +

(ξω)2−p

θ

)N+p
N

Y
1+ p

N
n

where
b = 2

p
N [2(N+1)+p]. (3.10)

By Lemma 5.1 of the Preliminaries, {Yn} → 0 as n→∞, provided

Yo ≤ γ−
N
p b−(

N
p )

2

(1 − a)N+2

(ξω)2−p

θ(
1 +

(ξω)2−p

θ

)N+p
p

def
= ν−. (3.11)

The proof of (3.4)–(3.5) is almost identical. One starts from the energy
inequalities (2.3) written for the truncated functions

(u− kn)+ with kn = μ+ − ξnω

for the same choice of ξn as in (3.7). By the definition of μ+ one estimates

(u− kn)+ ≤ ξω.

This validates estimates in all analogous to (3.9) with the same functional de-
pendence on ξω. The same arguments, with the proper changes in the meaning
of the symbols, lead to (3.11) written for ν+, and conclude the proof. Thus
ν+ depends on the parameters ξ, ω, and a the same way as ν− does.
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For later use we rewrite the expression of ν± to serve for all p > 1, in a
form that traces the functional dependence on the indicated parameters

ν± = ν = γ−1(1 − a)N+2 [θ(ξω)p−2]
N
p

[1 + θ(ξω)p−2]
N+p

p

(3.12)

for a quantitative constant γ = γ(p,N,Co, C1) > 1, independent of a and ξ.

Remark 3.2 In Lemma 3.1 the statement relative to (3.1)–(3.3) is given in
terms of μ− and ξω. As a matter of fact, as the proof clearly shows, when
dealing with the lower truncations (u − k)− for nonnegative functions, all
the estimates depend only on k ≥ 0, without any further assumption on it.
Correspondingly in (3.12) the quantity ν− will depend on θkp−2.

4 A Variant of DeGiorgi-Type Lemma Involving “Initial
Data”

Assume now that u is a nonnegative, local, weak supersolution to (1.1)–(1.2)
in ET . Assume in addition that some information is available on the “initial
data” relative to the cylinder (y, s) +Q+

2ρ(θ), say for example

u(x, s) ≥ ξM for a.e. x ∈ K2ρ(y) (4.1)

for some M > 0 and ξ ∈ (0, 1]. Then, writing the energy inequalities (2.3) for
(u−k)−, for k ≤ ξM , over the cylinder [(y, s)+Q+

2ρ(θ)], the integral extended
over K2ρ at the time level t = s, vanishes in view of (4.1). Moreover, by taking
cutoff functions ζ(x, t) = ζ1(x) independent of t, also the integral involving
ζt, on the right-hand side of (2.3), vanishes. We may now repeat the same
arguments as in the previous proof for (u − ξnM)−, over the cylinders Q+

n ,
where

ξn = aξ +
1− a

2n
ξ, Q+

n = Kn × (0, θ(2ρ)p].

We are led to an analog of (3.9) without the term in (· · · ) on the right-hand
side, with Qn replaced by Q+

n , and with Yn replaced by

Ỹn =
|[u < ξnM ] ∩Q+

n |
|Q+

n |
provided ξM > Cρ and ρ < C−1. Proceeding as before

Ỹn+1 ≤ γbn

(1− a)
p(N+2)

N

(
θ

(ξM)2−p

) p
N

Ỹ
1+ p

N
n

for the same value of the parameter b as in (3.10). This in turn implies that
{Ỹn} → 0 as n→∞, provided
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Ỹo ≤ νo
(ξM)2−p

θ
(4.2)

for a constant νo ∈ (0, 1) depending only on the data and a, and independent
of ξ, M , ρ, and θ. We summarize.

Lemma 4.1 Let u be a nonnegative, local, weak supersolution to (1.1)–(1.2)
in ET . Let M and ξ be positive numbers such that both (4.1) and (4.2) hold.
Then either

Cρ > min{1 , ξM} (4.3)

or
u ≥ aξM a.e. in Kρ(y)× (s, s+ θ(2ρ)p].

Remark 4.1 Both Lemmas 3.1 and 4.1 continue to hold for cylinders whose
cross sections are balls.

Remark 4.2 Both Lemmas 3.1 and 4.1 are based on the embedding Propo-
sition 4.1 of the Preliminaries, and the energy estimates (2.3), whose constant
dependence is indicated in Remark 2.1. Therefore these lemmas hold for all
p > 1, including a seamless transition from the singular range p < 2 to the
degenerate range p > 2, but with constants that deteriorate as either p→∞
or p→ 1.

Remark 4.3 The constant νo in (4.2) is independent of C, and the latter
enters into the statement only via the alternative (4.3).

5 Quasilinear Equations of the Porous Medium Type

Let E be an open set in R
N and for T > 0 let ET denote the cylindrical do-

main E× (0, T ]. Consider quasilinear, degenerate or singular parabolic partial
differential equations of the form

ut − divA(x, t, u,Du) = B(x, t, u,Du) weakly in ET (5.1)

where the functions A : ET ×R
N+1 → R

N and B : ET ×R
N+1 → R are only

assumed to be measurable and subject to the structure conditions⎧⎨
⎩

A(x, t, u,Du) ·Du ≥ Com|u|m−1|Du|2 − C2|u|m+1

|A(x, t, u,Du)| ≤ C1m|u|m−1|Du|+ C|u|m
|B(x, t, u,Du)| ≤ Cm|u|m−1|Du|+ C2|u|m

a.e. in ET (5.2)

where m > 0, Co and C1 are given positive constants, and C is a given
nonnegative constant. When C = 0 the equation is homogeneous.

The homogeneous prototype of this class of parabolic equations is

ut − divm|u|m−1Du = 0, m > 0, weakly in ET . (5.3)
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A function

u ∈ Cloc

(
0, T ;L2

loc(E)
)
, |u|m+1

2 ∈ L2
loc

(
0, T ;W 1,2

loc (E)
)

if m > 1

u ∈ Cloc

(
0, T ;Lm+1

loc (E)
)
, |u|m ∈ L2

loc

(
0, T ;W 1,2

loc (E)
)

if 0 < m < 1

(5.4)

is a local, weak sub(super)-solution to (5.1) if for every compact set K ⊂ E
and every subinterval [t1, t2] ⊂ (0, T ]∫

K

uϕdx

∣∣∣∣t2
t1

+

∫ t2

t1

∫
K

[− uϕt +A(x, t, u,Du) ·Dϕ
]
dx dt

≤ (≥)
∫ t2

t1

∫
K

B(x, t, u,Du)ϕdxdt

(5.5)

for all nonnegative testing functions

ϕ ∈ W 1,2
loc

(
0, T ;L2(K)

) ∩ L2
loc

(
0, T ;W 1,2

o (K)
)
. (5.6)

This guarantees that all the integrals in (5.5) are convergent.
Our focus will be on Harnack estimates satisfied by nonnegative weak

solutions in the interior of ET . For this reason we will only be interested in
local solutions irrespective of any boundary or initial data.

The partial differential equation (5.1) is degenerate when m > 1 and sin-
gular when m < 1, since the modulus of ellipticity |u|m−1 respectively tends
to 0 or to +∞ as |u| → 0.

When m = 1, the equation is nondegenerate, and its theory is reason-
ably complete ([101]). In the following particular care will be devoted to the
stability of the various statements and estimates for m ≈ 1.

Remark 5.1 Further discriminants on the structure conditions between the
degenerate case m > 1 and the singular case 0 < m < 1 are in § C.5 and C.9
of Appendix C. Here we have preferred to present a unified treatment.

5.1 An Alternate Formulation in Terms of Steklov Averages

It would be technically convenient to have a formulation of weak solutions that
involves ut. Unfortunately weak solutions to (5.1)–(5.2), whenever they exist,
possess a modest degree of regularity in the time variable and, in general, ut

has a meaning only in the sense of distributions.
The following notion of local weak sub(super)-solution involves the discrete

time derivative of u and is equivalent to (5.5)–(5.6).
Fix t ∈ (0, T ) and let h be a positive number such that 0 < t < t+ h < T .

In (5.5) take t1 = t, t2 = t + h and choose a nonnegative testing function
ϕ independent of the variable τ ∈ (t, t + h). Dividing by h and recalling the
definition of Steklov averages we obtain
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K×{t}

(
uh,tϕ+ [A(x, τ, u,Du)]h ·Dϕ

)
dx

≤ (≥)
∫
K×{t}

[B(x, τ, u,Du)]hϕdx

(5.7)

for all 0 < t < T − h and all nonnegative ϕ ∈ W 1,2
o (K). To recover (5.5),

fix a subinterval 0 < t1 < t2 < T , choose h so small that t2 + h ≤ T and in
(5.7) take a testing function as in (5.6). Such a choice is admissible, since the
testing functions in (5.7) are independent of the variable τ ∈ (t, t + h) but
may be dependent on t. Integrating over [t1, t2] and letting h → 0 with the
aid of Lemma 5.3 of the Preliminaries gives (5.5).

5.2 On the Notion of Parabolicity

The structure conditions (5.2) are not sufficient to characterize parabolic par-
tial differential equations. For example, the principal part

A(x, t, u,Du) = m|u|m−1Du− |u|m Du

|Du|
satisfies the first of (5.2) for all m > 0. However, its modulus of ellipticity
changes signum at |Du| = 1

m |u|, and the equation transitions from “forward”
parabolic to “backward” in time.

Definition:

The partial differential equation in (5.1) is parabolic if it satisfies the structure
conditions (5.2) and in addition, for every weak, local sub(super)-solution
u, the truncations +(u − k)+, −(u − k)−, for all k ∈ R, are weak, local
sub(super)-solutions to (5.1), in the sense of (5.5)–(5.6), with A(x, t, u,Du)
and B(x, t, u,Du) replaced respectively by

A(x, t, k ± (u− k)±,±D(u− k)±),
B(x, t, k ± (u− k)±,±D(u− k)±).

Lemma 5.1 Assume that for all (x, t, u) ∈ ET × R

A(x, t, u, η) · η ≥ 0 for all η ∈ R
N . (5.8)

Then (5.1)–(5.2) is parabolic.

Proof Same as in Lemma 1.1.

Henceforth we will assume that the principal part A(x, t, u,Du) satisfies
(5.8) so that (5.1)–(5.2) is parabolic.

One verifies that the assumptions of the lemma are verified for example
by equations with principal part
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divA(x, t, u,Du) =
(
|u|m−1aij(x, t)uxi + f(x, t)|u|m uxj

|Du|
)
xj

,

where f is bounded and nonnegative, and the matrix (aij) is only measurable
and locally positive definite in ET .

5.3 Dependence on the Parameters {m,N,Co, C1} and Stability

The set of parameters {m,N,Co, C1} are the data, and we say that a generic
positive constant γ = γ(m,N,Co, C1) depends only on the data, if it can be
quantitatively determined a priori, only in terms of these parameters.

The constant C ≥ 0 is also a datum of the equations. However, all our
estimates will only involve {m,N,Co, C1}, while C will appear as an alterna-
tive. This is further illustrated in the energy estimates of Propositions 6.1, 9.1
and Remarks 6.2, 9.2 following them and in Lemmas 7.1, 8.1, 10.1, 11.1 and
Remarks 7.1, 8.3, 10.1, 11.3 following them.

A positive constant γ depending only on the data is stable as m → 1 if
there exists a positive constant γ(1, N, Co, C1) such that

lim
m→1

γ(m,N,Co, C1) = γ(1, N, Co, C1). (5.9)

We will show that all our estimates are stable as m → 1. As a consequence,
the classical theory for nondegenerate equations can be recovered from these
degenerate and singular equations, by letting m→ 1.

6 Energy Estimates for (u− k)± on Cylinders
(y, s) + Q±

ρ (θ) ⊂ ET for Degenerate Equations (m > 1)

Introduce cylinders Q±ρ (θ) and their translated (y, s) +Q±ρ (θ) as in (2.1) and
(2.2) with p = 2.

Proposition 6.1 Let u be a local, weak solution to (5.1)–(5.2) for m > 1,
in ET , in the sense of (5.5)–(5.6). There exists a positive constant γ =
γ(m,N,Co, C1), such that for every cylinder (y, s) + Q−ρ (θ) ⊂ ET , every
k ∈ R, and every piecewise smooth cutoff function ζ vanishing on ∂Kρ(y),
and such that 0 ≤ ζ ≤ 1
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ess sup
s−θρ2<t≤s

∫
Kρ(y)

(u− k)2±ζ
2(x, t)dx

−
∫
Kρ(y)

(
u− k

)2
±ζ

2(x, s− θρ2)dx

+ Co

∫∫
(y,s)+Q−

ρ (θ)

|u|m−1|D(u− k)±|2ζ2dx dt

≤ γ

∫∫
(y,s)+Q−

ρ (θ)

(
u− k

)2
±ζ|ζt|dx dt

+ γ

∫∫
(y,s)+Q−

ρ (θ)

|u|m−1(u− k)2±|Dζ|2dx dt

+ γC2

∫∫
(y,s)+Q−

ρ (θ)

|u|m+1χ[(u−k)±>0]ζ
2dx dt.

(6.1)

Analogous estimates hold in the “forward” cylinder (y, s) +Q+
ρ (θ) ⊂ ET .

Proof After a translation we may assume (y, s) = (0, 0). In (5.5) take the
testing function

ϕ± = ±(u− k)± ζ2

over Kρ× (−θρ2, t], where −θρ2 < t ≤ 0. The use of ±(u− k)± in this testing
function is justified, modulus a standard Steklov averaging process, by making
use of the alternate weak formulation (5.7). This gives

±
∫∫

Kρ×(−θρ2,t]

uτ (u− k)±ζ2dx dτ

±
∫∫

Kρ×(−θρ2,t]

A(x, τ, u,Du) ·D(u− k)±ζ2dx dτ

± 2

∫∫
Kρ×(−θρ2,t]

(u− k)±A(x, τ, u,Du) ·Dζ ζ dx dτ

= ±
∫∫

Kρ×(−θρ2,t]

B(x, τ, u,Du)(u− k)± ζ2dx dτ.

Transform and estimate these integrals, to get

±
∫∫

Kρ×(−θρ2,t]

uτ (u− k)± ζ2dx dτ

=
1

2

∫
Kρ

(u− k)2±ζ
2(x, t)dx − 1

2

∫
Kρ

(
u− k)2±ζ

2(x,−θρ2)dx

−
∫∫

Q−
ρ (θ)

(
u− k

)2
±ζ|ζτ |dx dτ.

From the first structure condition (5.2) it follows that
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±
∫∫

Kρ×(−θρ2,t]

A(x, τ, u,Du) ·D(u − k)± ζ2dx dτ

≥ Com

∫∫
Kρ×(−θρ2,t]

|u|m−1|D(u− k)±|2ζ2dx dτ

− C2

∫∫
Q−

ρ (θ)

|u|m+1ζ2 χ[(u−k)±>0]dx dτ,

and from the second condition in (5.2) and Young’s inequality it follows that

2
∣∣∣ ∫∫

Kρ×(−θρ2,t]

(u− k)±A(x, τ, u,Du) ·Dζ ζ dx dτ
∣∣∣

≤ 2C1m

∫∫
Kρ×(−θρ2,t]

|u|m−1(u− k)±|D(u − k)±|ζ|Dζ|dx dτ

+ 2C

∫∫
Q−

ρ (θ)

|u|m(u − k)±ζ|Dζ|χ[(u−k)±>0]dx dτ

≤ Com

4

∫∫
Kρ×(−θρ2,t]

|u|m−1|D(u− k)±|2ζ2dx dτ

+ γ(Co)

∫∫
Q−

ρ (θ)

|u|m−1(u− k)2±|Dζ|2dx dτ

+ C2

∫∫
Q−

ρ (θ)

|u|m+1ζ2χ[(u−k)±>0]dx dτ.

Finally, the third condition of (5.2) implies∣∣∣ ∫∫
Kρ×(−θρ2,t]

B(x, τ, u,Du)(u− k)± ζ2dx dτ
∣∣∣

≤ Com

4

∫∫
Kρ×(−θρ2,t]

|u|m−1|D(u− k)±|2ζ2dx dτ

+ γ(Co)C
2

∫∫
Q−

ρ (θ)

|u|m−1(u − k)2±dx dτ

+ γ̄(Co)C
2

∫∫
Q−

ρ (θ)

|u|m+1χ[(u−k)±>0]ζ
2dx dτ.

Combining these estimates, and taking the supremum over t ∈ (−θρ2, 0]
proves the proposition.

Remark 6.1 The constant γ = γ(m,N,Co, C1) → ∞, as m → ∞, but it is
stable as m→ 1.

Remark 6.2 The proof traces the dependence of the constant γ on the pa-
rameters {m,N,Co, C1} and leaves explicit the dependence on C.

Remark 6.3 The inequalities (6.1) continue to hold for the truncations (u−
k)+ (resp. for (u−k)−), if u is a nonnegative, local, weak, sub(super)-solution
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to (5.1)–(5.2) in ET . It suffices to observe that, in such a case, the test function
+(−)ϕ± is nonnegative (nonpositive), and it can be used in the corresponding
formulation (5.5) of sub(super)-solutions.

7 A DeGiorgi-Type Lemma for Nonnegative
Sub(Super)-Solutions to Degenerate Equations (m > 1)

Local, weak sub(super)-solutions to (5.1)–(5.2) in ET are locally bounded
above(below) in ET ([7]). For a cylinder (y, s) +Q−2ρ(θ) ⊂ ET denote by μ±
and ω, numbers satisfying

μ+ ≥ ess sup
[(y,s)+Q−

2ρ(θ)]

u, μ− ≤ ess inf
[(y,s)+Q−

2ρ(θ)]
u, ω = μ+ − μ−.

Since the degeneracy occurs at u = 0, we will assume at the outset that

μ− = ess inf
(y,s)+Q−

2ρ(θ)
u = 0 so that ω = μ+.

Denote by ξ and a fixed numbers in (0, 1).

Lemma 7.1 Let u be a nonnegative, locally bounded, local, weak supersolution
to (5.1)–(5.2) for m > 1, in ET . There exists a positive number ν−, depending
on θ, ω, ξ, a and the data {m,N,Co, C1}, such that if

|[u ≤ ξω] ∩ [(y, s) +Q−2ρ(θ)]| ≤ ν−|Q−2ρ(θ)|, (7.1)

then either
Cρ > 1 (7.2)

or
u ≥ aξω a.e. in (y, s) +Q−ρ (θ). (7.3)

Likewise, if u is a nonnegative, locally bounded, local, weak subsolution to
(5.1)–(5.2) for m > 1 in ET , there exists a positive number ν+, depending on
ω, θ, ξ, a and the data {m,N,Co, C1}, such that if∣∣[u ≥ μ+ − ξω] ∩ [(y, s) +Q−2ρ(θ)]

∣∣ ≤ ν+|Q−2ρ(θ)|, (7.4)

then either (7.2) holds, or

u ≤ μ+ − aξω a.e. in (y, s) +Q−ρ (θ). (7.5)

Remark 7.1 The constants ν± are independent of C, and the latter enters
into the statement only via the alternative (7.2).

Proof Assume (y, s) = (0, 0) and introduce the sequence of cubes {Kn} and
cylinders {Qn} as in (3.6) with p = 2 and a cutoff function on Qn of the form
ζ(x, t) = ζ1(x)ζ2(t) defined as in (3.8) with p = 2.
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7.1 Proof of (7.1)–(7.3)

Introduce the sequence of truncating levels {kn} defined as in (3.7) with μ− =
0. The energy estimates (6.1) on Qn, for (u− kn)−, give

sup
−θρ2

n<t≤0

∫
Kn

(u− kn)
2
−ζ

2(x, t)dx

+ Co

∫∫
Qn

um−1|D[(u− kn)−ζ]|2dx dτ

≤ γ
22n

ρ2

∫∫
Qn

(
km+1
n +

1

θ
k2n

)
χ[u<kn]dx dτ

+ γC2

∫∫
Qn

um+1χ[u<kn]dx dτ

≤ γ
22n

ρ2
(ξω)m+1

(
1 +

1

θ(ξω)m−1

)∣∣[u < kn] ∩Qn|

+ γ
22n

ρ2
(ξω)m+1(Cρ)2

∣∣[u < kn] ∩Qn|.

Therefore, if (7.2) is violated,

sup
−θρ2

n<t≤0

∫
Kn

(u− kn)
2
−ζ

2(x, t)dx

+ Co

∫∫
Qn

um−1|D[(u − kn)−ζ]|2dx dτ

≤ γ
22n

ρ2
(ξω)m+1

(
1 +

1

θ(ξω)m−1

)∣∣[u < kn] ∩Qn|.

To estimate the left-hand side from below we keep u away from zero by intro-
ducing the function

v = max
{
u ; 1

2aξω
}
. (7.6)

Then estimate below∫
Kn

(u− kn)
2
−ζ

2(x, t)dx ≥
∫
Kn

(v − kn)
2
−ζ

2(x, t)dx.

Also we estimate below
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(12a)
m−1(ξω)m−1

∫∫
Qn

|D[(v − kn)−ζ]|2dx dτ

≤
∫∫

Qn

vm−1|D[(v − kn)−ζ]|2dx dτ

=

∫∫
Qn∩[u=v]

um−1|D[(u− kn)−ζ]|2dx dτ

+ (ξω)m−1

∫∫
Qn∩[u<v]

(v − kn)
2
−|Dζ|2dx dτ

≤
∫∫

Qn

um−1|D[(u− kn)−ζ]|2dx dτ

+ γ
22n

ρ2
(ξω)m+1

∣∣[u < kn] ∩Qn

∣∣.
Observe that, by the definition (7.6) of the truncated function v, the two sets
[v < kn] and [u < kn] coincide. Then setting

An = [v < kn] ∩Qn and Yn =
|An|
|Qn|

and combining these estimates gives

sup
−θρ2

n<t≤0

∫
Kn

(v − kn)
2
−ζ

2(x, t)dx

+ (ξω)m−1

∫∫
Qn

|D[(v − kn)−ζ]|2dx dτ

≤ γΛ(a)
22n

ρ2
(ξω)m+1

(
1 +

1

θ(ξω)m−1

)
|An|

(7.7)

where

Λ(a) =
1

(12a)
m−1

. (7.8)

Apply Hölder’s inequality and the embedding Proposition 4.1 of the Prelimi-
naries, and recall that ζ = 1 on Qn+1, to get(1− a

2n+1

)2
(ξω)2|An+1| ≤

∫∫
Qn+1

(v − kn)
2
−dx dτ

≤
(∫∫

Qn

[(v − kn)−ζ]2
N+2
N dx dτ

) N
N+2

|An| 2
N+2

≤ γ
(∫∫

Qn

|D[(v − kn)−ζ]|2dx dτ
) N

N+2

×
(

sup
−θρ2

n<t≤0

∫
Kn

[(v − kn)−ζ]2(x, t)dx
) 2

N+2 |An| 2
N+2
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for a constant γ depending only on N . Combining this with (7.7) gives

|An+1| ≤ γ
24nΛ(a)

(1− a)2ρ2
(ξω)

2(m−1)
N+2

(
1 +

1

θ(ξω)m−1

)
|An|1+ 2

N+2 .

In terms of Yn = |An|
|Qn| this can be rewritten as

Yn+1 ≤ γ
24nΛ(a)

(1− a)2

(
1 + θ(ξω)m−1

)
(
θ(ξω)m−1

) N
N+2

Y
1+ 2

N+2
n .

By Lemma 5.1 of the Preliminaries, {Yn} → 0 as n→∞, provided

Yo =
|Ao|
|Qo| ≤

[
(1− a)2

γΛ(a)

]N+2
2

2−(N+2)2
(
θ(ξω)m−1

)N
2(

1 + θ(ξω)m−1
)N+2

2

def
= ν−.

For later use we rewrite the expression of ν− to serve for all m > 1, in a form
that traces the functional dependence of ν−, on the indicated parameters

ν− = γ−1a(m−1)N+2
2 (1− a)N+2 [θ(ξω)m−1]

N
2

[1 + θ(ξω)m−1]
N+2

2

(7.9)

for a quantitative constant γ = γ(m,N,Co, C1) > 1, independent of a and ξ.

Remark 7.2 In Lemma 7.1 the statement relative to (7.1)–(7.3) is given in
terms of ξω, assuming μ− = 0. As a matter of fact, as the proof clearly shows,
when dealing with the lower truncations (u − k)− for nonnegative functions,
all the estimates depend only on k ≥ 0, without any further assumption on
it. Correspondingly in (7.9) the quantity ν− will depend on θkm−1.

7.2 Proof of (7.4)–(7.5)

Introduce the sequence of truncating levels

kn = μ+ − ξnω with ξn as in (3.7),

and write down the energy estimates (6.1) on Qn, for (u− kn)+, to get
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sup
−θρ2

n<t≤0

∫
Kn

(u − kn)
2
+ζ

2(x, t)dx

+ Co

∫∫
Qn

um−1|D[(u − kn)+ζ]|2dx dτ

≤ γ
22n

ρ2

∫∫
Qn

(
μm+1
+ +

1

θ
(ξω)2

)
χ[u>kn]dx dτ

+ γC2

∫∫
Qn

um+1χ[u>kn]dx dτ

≤ γ
22n

ρ2
μm+1
+

(
1 +

1

θ(ξω)m−1

)∣∣[u > kn] ∩Qn|

+ γ
22n

ρ2
μm+1
+ (Cρ)2

∣∣[u < kn] ∩Qn|.

Therefore, if (7.2) is violated,

sup
−θρ2

n<t≤0

∫
Kn

(u− kn)
2
+ζ

2(x, t)dx

+ Co

∫∫
Qn

um−1|D[(u− kn)+ζ]|2dx dτ

≤ γ
22n

ρ2
μm+1
+

(
1 +

1

θ(ξω)m−1

)∣∣[u < kn] ∩Qn|.

To estimate below the second integral on the left-hand side, take into account
the domain of integration [u > kn] ∩Qn. This gives∫∫

Qn

um−1|D[(u − kn)+ζ]|2dx dτ

≥ (1 − ξ)m−1 μm−1
+

∫∫
Qn

|D[(u − kn)+ζ]|2dx dτ.

Setting

An = [u > kn] ∩Qn and Yn =
|An|
|Qn| ,

and combining these estimates gives

sup
−θρ2

n<t≤0

∫
Kn

(u − kn)
2
+ζ

2(x, t)dx

+ μm−1
+

∫∫
Qn

|D[(u − kn)+ζ]|2dx dτ

≤ γΛ(ξ)
22n

ρ2
μm+1
+

(
1 +

1

θ(ξω)m−1

)
|An|

(7.10)

where
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Λ(ξ) =
1

(1− ξ)m−1
.

Apply Hölder’s inequality and the embedding Proposition 4.1 of the Prelimi-
naries, and recall that ζ = 1 on Qn+1, to get(1− a

2n+1

)2
(ξω)2|An+1| ≤

∫∫
Qn+1

(u− kn)
2
+dx dτ

≤
(∫∫

Qn

[(u− kn)+ζ]
2N+2

N dx dτ

) N
N+2

|An| 2
N+2

≤ γ
(∫∫

Qn

|D[(u − kn)+ζ]|2dx dτ
) N

N+2

×
(

sup
−θρ2

n<t≤0

∫
Kn

[(u− kn)+ζ]
2(x, t)dx

) 2
N+2 |An| 2

N+2

for a constant γ depending only on N . Combine this with (7.10) to get

|An+1| ≤γ 24nΛ(ξ)

(1 − a)2ρ2

(μ+

ξω

) 2(N+m+1)
N+2

× (ξω)
2(m−1)
N+2

(
1 +

1

θ(ξω)m−1

)
|An|1+ 2

N+2 .

In terms of Yn = |An|
|Qn| this can be rewritten as

Yn+1 ≤ γ
24nΛ(ξ)

(1− a)2

(μ+

ξω

) 2(N+m+1)
N+2

(
1 + θ(ξω)m−1

)
(
θ(ξω)m−1

) N
N+2

Y
1+ 2

N+2
n .

By Lemma 5.1 of the Preliminaries, {Yn} → 0 as n→∞, provided

Yo =
|Ao|
|Qo| ≤

[
(1− a)2

γΛ(ξ)

]N+2
2

2−(N+2)2

( ξω
μ+

)N+m+1
(
θ(ξω)m−1

)N
2(

1 + θ(ξω)m−1
)N+2

2

def
= ν+.

For later use we rewrite the expression of ν+ in the special case when

θ = (ξω)1−m,

that is, the relative length of the cylinders (y, s) + Q±ρ (θ) is of the order of
(ξω)1−m.

Then for all m > 1, the functional dependence of ν+, on ξ and a is

ν+ = γ−1

[
(1− a)2

Λ(ξ)

]N+2
2

ξN+m+1

for a quantitative constant γ = γ(m,N,Co, C1) > 1, independent of a and
ξ.



8 A Variant of DeGiorgi-Type Lemma Involving “Initial Data” 45

8 A Variant of DeGiorgi-Type Lemma, for Nonnegative
Supersolutions to Degenerate Equations (m > 1),
Involving “Initial Data”

Continue to denote by (y, s)+Q+
ρ (θ) “forward” cylinders with bottom center

at (y, s) as defined in (2.1)–(2.2) with p = 2.
Assume now that some information is available on the “initial data” rela-

tive to the cylinder (y, s) +Q+
2ρ(θ) ⊂ ET , say for example

u(x, s) ≥ ξM for a.e. x ∈ K2ρ(y) (8.1)

for some M > 0 and ξ ∈ (0, 1]. Then

Lemma 8.1 Let u be a nonnegative, locally bounded, local, weak supersolution
to (5.1)–(5.2) for m > 1, in ET . Let a ∈ (0, 1) and suppose that (8.1) holds
true. Then there exists νo ∈ (0, 1), depending only on a and the data, such
that, if

|[u ≤ ξM ] ∩Q+
2ρ(θ)| ≤

νo
θ(ξM)m−1

|Q+
2ρ(θ)|, (8.2)

then either
Cρ > 1 (8.3)

or
u ≥ aξM in Kρ(y)× (s, s+ θ(2ρ)p].

Proof Assume (y, s) = (0, 0) and for n = 0, 1, . . . , construct sequences of
cubes {Kn} as in (3.6), and “forward” cylinders {Q+

n }, and levels {ξn} by

Q+
n = Kn × (0, θ(2ρ)2], ξn = aξ +

1− a

2n
ξ.

Let also ζ(x, t) = ζ(x) be a cutoff function independent of t, vanishing outside
Kn and satisfying the first of (3.8). Finally let

v = max
{
u ; 1

2aξM
}
.

Thus v is defined as in (7.6) with M replacing ω. Apply the energy estimates
(6.1) for (u− kn)− with kn = ξnM , over the “forward” cylinders Q+

n and the
indicated choice of ζ. Observe that the second integral on the left-hand side
of (6.1), extended over the “bottom” of Q+

n , vanishes in view of (8.1). Also,
the integral involving ζt vanishes, because of our choice of cutoff function ζ.
The various terms can now be transformed and estimated exactly as in the
proof of Lemma 7.1 with the obvious changes in the symbolism. The most
noticeable change is that, due to the vanishing of ζt, all the terms containing
the factor θ−1 are not present. This leads exactly to (7.7) over the cylinder
Q+

n , with ω replaced by M , with the same value of Λ(a) as given in (7.8), and
with the term in (· · · ) containing the factor θ−1, replaced by one. Setting
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A+
n = [v < ξnM ] ∩Q+

n and Yn =
|A+

n |
|Q+

n | ,

the estimate (7.7) with the indicated changes and in the current context, takes
the form

sup
0<t<θ(2ρ)2

∫
Kn

(v − ξnM)2−(x, t)ζ
2(x)dx

+ (ξM)m−1

∫∫
Q+

n

|D[(v − kn)−ζ]|2dx dτ

≤ γΛ(a)
22n

ρ2
(ξM)m+1 |A+

n |.
Starting from this inequality, proceed now exactly as in the proof of Lemma 7.1
following (7.7), to arrive at

|A+
n+1| ≤ γ

24nΛ(a)

(1− a)2ρ2
(ξM)

2(m−1)
N+2 |A+

n |1+
2

N+2 .

In terms of Yn = |A+
n |/|Q+

n | this can be rewritten as

Yn+1 ≤ γ
24nΛ(a)

(1− a)2
[
θ(ξM)m−1

] 2
N+2 Y

1+ 2
N+2

n .

By Lemma 5.1 of the Preliminaries, {Yn} → 0 as n→∞, provided

Yo =
|A+

o |
|Q+

o | =
|[u < ξM ] ∩Q+

2ρ(θ)|
|Q+

2ρ(θ)|

≤
[
(1− a)2

γΛ(a)

]N+2
2

2−(N+2)2 1

θ(ξM)m−1

def
=

νo
θ(ξM)m−1

.

Remark 8.1 Both Lemmas 7.1 and 8.1 continue to hold for cylinders whose
cross sections are balls.

Remark 8.2 Both Lemmas 7.1 and 8.1 are based on the energy estimates
(6.1) and the embedding Proposition 4.1 of the Preliminaries, which continue
to hold in a stable manner for m→ 1. Therefore these results are valid for all
m > 1, including a seamless transition to m = 1.

Remark 8.3 The constant νo in (8.2) is independent of C, and the latter
enters into the statement only via the alternative (8.3).

9 Energy Estimates for (u− k)− on Cylinders
(y, s) + Q±

ρ (θ) ⊂ ET for Singular Equations (0 < m < 1)

Introduce cylinders Q±ρ (θ) and their translated (y, s) +Q±ρ (θ) as in (2.1) and
(2.2) with p = 2.
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Proposition 9.1 Let u be a nonnegative, local, weak supersolution to (5.1)–
(5.2) for 0 < m < 1, in ET , in the sense of (5.5)–(5.6). There exists a positive
constant γ = γ(m,N,Co, C1), such that for every cylinder (y, s) + Q−ρ (θ) ⊂
ET , every k > 0, and every nonnegative, piecewise smooth cutoff function ζ
vanishing on ∂Kρ(y),

ess sup
s−θρ2≤t≤s

∫
Kρ(y)

(u− k)2−ζ
2(x, t)dx

+ Cok
m−1

∫∫
(y,s)+Q−

ρ (θ)

|D[(u− k)−ζ]|2dx dt

≤ γk

∫
Kρ(y)

(u− k)−ζ2(x, s− θρ2)dx

+ γk2
∫∫

(y,s)+Q−
ρ (θ)

χ[u<k]ζ|ζt|dx dt

+ γkm+1

∫∫
(y,s)+Q−

ρ (θ)

χ[u<k]Φ(Co, C1, C, ζ,Dζ)dx dt

(9.1)

where

Φ(Co, C1, C, ζ,Dζ) = (C2ζ2 + C2
1 |Dζ|2)C−1

o + Co|Dζ|2 +mC2ζ2 + Cζ|Dζ|.
The constant γ(m,N,Co, C1) → ∞ as m → 0, but is stable as m → 1.
Analogous estimates hold in the “forward” cylinder (y, s) +Q+

ρ (θ) ⊂ ET .

Proof After a translation we may assume (y, s) = (0, 0). Having fixed k > 0,
in the weak formulation (5.5) take the test function

ϕ = −(um − km)− ζ2

over the cylinder

Qt = Kρ × (−θρ2, t] for − θρ2 < t ≤ 0.

The use of such a ϕ as testing function is justified, modulus a standard Steklov
averaging process, and in view of the notion (5.4) of weak supersolution. Es-
timating the various terms separately we have∫∫

Qt

− (um − km)−uτζ
2dx dτ

=

∫
Kρ

∫ k

u

(km − sm)+dsζ
2(x, t)dx

−
∫
Kρ

∫ k

u

(km − sm)+dsζ
2(x,−θρ2)dx

− 2

∫∫
Qt

∫ k

u

(km − sm)+dsζζτdx dτ.
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Since m ∈ (0, 1) estimate∫ k

u

(km − sm)+ds ≥ 1
2mkm−1(u− k)2−.

Also ∫ k

u

(km − sm)+ds ≤ km(u − k)−.

Therefore ∫∫
Qt

− (um − km)−uτζ
2dx dτ

≥ 1
2mkm−1

∫
Kρ

(u− k)2−(x, t)dx

− km
∫
Kρ

(u− k)−ζ2(x,−θρ2)dx

− 2km
∫∫

Qt

(u− k)−ζ|ζτ |dx dτ.

Next ∫∫
Qt

A(x, τ, u,Du) ·D[−(um − km)−ζ2]dx dτ

≥ Co

∫∫ ∣∣D(um − km)−
∣∣2ζ2dx dτ

−mC2

∫∫
Qt

u2mχ[u<k]ζ
2dx dτ

− 2C1

∫∫
Qt

|Dum|(um − km)−ζ|Dζ|dx dτ

− 2C

∫∫
Qt

um(um − km)−ζ|Dζ|dx dτ

≥ Co

2

∫∫
Qt

|D(um − km)−|2ζ2dx dτ

− k2m
∫∫

Qt

χ[u<k]Φa(Co, C1, C, ζ,Dζ)dx dτ

where
Φa(Co, C1, C, ζ,Dζ) = C2

1 |Dζ|2C−1
o + Cζ|Dζ| +mC2ζ2.

Finally
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Qt

|B(x, τ, u,Du)|(um − km)−ζ2dx dτ

≤ C

∫∫
Qt

|Dum|(um − km)−ζ2dx dτ

+ C2

∫∫
Qt

um(um − km)−ζ2dx dτ

≤ Co

4

∫∫
Qt

|D(um − km)−|2ζ2dx dτ

+ k2m
∫∫

Qt

χ[u<k]Φb(Co, C, ζ)dx dτ

where
Φb(Co, C, ζ) = C2(C−1

o + 1)ζ2.

Combining these estimates and taking into account that t ∈ (−θρ2, 0] is arbi-
trary, gives

1
2mkm−1 ess sup

−θρ2≤t≤0

∫
Kρ

(u− k)2−ζ
2(x, t)dx

+
Co

4

∫∫
Q−

ρ (θ)

|D(um − km)−|2ζ2dx dt

≤ km
∫
Kρ

(u − k)−ζ2(x,−θρ2)dx

+ k2m
∫∫

Q−
ρ (θ)

χ[u<k](Φa + Φb)dx dt

+ 2km+1

∫∫
Q−

ρ (θ)

χ[u<k]ζ|ζt|dx dt.

Since m ∈ (0, 1)∫∫
Q−

ρ (θ)

|D(um − km)−|2ζ2dx dt

≥ m2k2(m−1)

∫∫
Q−

ρ (θ)

|D(u− k)−|2ζ2dx dt.

Combining these estimates and dividing by mkm−1 yields
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ess sup
−θρ2≤t≤0

∫
Kρ

(u− k)2−ζ
2(x, t)dx

+
Com

4
km−1

∫∫
Q−

ρ (θ)

|D(u− k)−|2ζ2dx dt

≤ 1

m
k

∫
Kρ

(u− k)−ζ2(x,−θρ2)dx

+
1

m
km+1

∫∫
Q−

ρ (θ)

χ[u<k](Φa + Φb)dx dt

+
2

m
k2
∫∫

Q−
ρ (θ)

χ[u<k]ζ|ζt|dx dt.

Recalling the definition of Φa and Φb proves the proposition.

Remark 9.1 The constant γ = γ(m,N,Co, C1) is stable as m → 1, but
deteriorates as m→ 0.

Remark 9.2 The proof traces the dependence of the constant γ on the pa-
rameters {m,N,Co, C1} and leaves explicit the dependence on C through the
explicit expression of Φ.

10 A DeGiorgi-Type Lemma for Nonnegative
Supersolutions to Singular Equations (0 < m < 1)

Local, weak sub(super)-solutions to the singular equations (5.1)–(5.2) for 0 <
m < 1, in ET , are locally bounded above(below) in ET (Proposition B.4.1
of Appendix B). For a cylinder (y, s) + Q−2ρ(θ) ⊂ ET denote by μ± and ω,
numbers satisfying

μ+ ≥ ess sup
[(y,s)+Q−

2ρ(θ)]

u, μ− ≤ ess inf
[(y,s)+Q−

2ρ(θ)]
u, ω = μ+ − μ−.

Since the singularity occurs at u = 0, we will assume at the outset that

μ− = ess inf
(y,s)+Q−

2ρ(θ)
u = 0 so that ω = μ+.

Denote by ξ and a fixed numbers in (0, 1).

Lemma 10.1 Let u be a nonnegative, locally bounded, local, weak supersolu-
tion to the singular equation (5.1)–(5.2) for 0 < m < 1, in ET . There exists
a positive number ν−, depending on θ, ω, ξ, a and the data {m,N,Co, C1},
such that if

|[u ≤ ξω] ∩ [(y, s) +Q−2ρ(θ)]| ≤ ν−|Q−2ρ(θ)|, (10.1)

then either
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Cρ > 1 (10.2)

or
u ≥ aξω a.e. in (y, s) +Q−ρ (θ). (10.3)

Remark 10.1 The constant ν− is independent of C, and the latter enters
into the statement only via the alternative (10.2).

Proof Assume (y, s) = (0, 0). Introduce the sequence of cubes {Kn} and cylin-
ders {Qn} as in (3.6) with p = 2 and a cutoff function on Qn of the form
ζ(x, t) = ζ1(x)ζ2(t) defined as in (3.8) for p = 2, and the sequence of trun-
cating levels {kn} defined as in (3.7) with μ− = 0. Write down the energy
estimates (9.1) on Qn, for (u − kn)−. The first term on the right-hand side
vanishes because of the choice of cutoff function ζ. Set

An = [u < kn] ∩Qn and Yn =
|An|
|Qn| .

With this notation, and by virtue of the structure of the cutoff function ζ as
defined in (3.8), the second term on the right-hand side of (9.1) is majorized
by

γ
2n

θρ2
k2n|An|.

If (10.2) is violated, then

Φ(Co, C1, C, ζ, |Dζ|) ≤ γ
22n

ρ2
.

Combining these remarks in (9.1), and taking into account that kn ≤ ξω,
gives

sup
−θρ2

n<t≤0

∫
Kn

(u− kn)
2
−ζ

2(x, t)dx

+ Co(ξω)
m−1

∫∫
Qn

|D[(u− kn)−ζ]|2dx dτ

≤ γ
22n

ρ2
(ξω)m+1

(
1 +

1

θ(ξω)m−1

)∣∣An|.

(10.4)

Apply Hölder’s inequality and the embedding Proposition 4.1 of the Prelimi-
naries, and recall that ζ = 1 on Qn+1, to get(1− a

2n+1

)2
(ξω)2|An+1| ≤

∫∫
Qn+1

(u− kn)
2
−dx dτ

≤
( ∫∫

Qn

[(u − kn)−ζ]2
N+2
N dx dτ

) N
N+2 |An| 2

N+2

≤ γ
(∫∫

Qn

|D[(u− kn)−ζ]|2dx dτ
) N

N+2

×
(

sup
−θρ2

n<t≤0

∫
Kn

[(u− kn)−ζ]2(x, t)dx
) 2

N+2 |An| 2
N+2
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for a constant γ depending only on N . Combine this with (10.4) to get

|An+1| ≤ γ
24n

(1− a)2ρ2
(ξω)

2(m−1)
N+2

(
1 +

1

θ(ξω)m−1

)
|An|1+ 2

N+2 .

In terms of Yn this can be rewritten as

Yn+1 ≤ γ
24n

(1− a)2

(
1 + θ(ξω)m−1

)
(
θ(ξω)m−1

) N
N+2

Y
1+ 2

N+2
n .

By Lemma 5.1 of the Preliminaries, {Yn} → 0 as n→∞, provided

Yo =
|Ao|
|Qo| ≤

[
(1− a)2

γ

]N+2
2

2−(N+2)2
(
θ(ξω)m−1

)N
2(

1 + θ(ξω)m−1
)N+2

2

def
= ν−.

For later use we rewrite the expression of ν− for 0 < m < 1, in a form that
traces the functional dependence on the indicated parameters

ν− = γ−1(1− a)N+2 [θ(ξω)m−1]
N
2

[1 + θ(ξω)m−1]
N+2

2

(10.5)

for a quantitative constant γ = γ(m,N,Co, C1) > 1, independent of a and ξ.

Remark 10.2 In Lemma 10.1 the statement relative to (10.1)–(10.3) is given
in terms of ξω, assuming μ− = 0. As a matter of fact, as the proof clearly
shows, when dealing with the lower truncations (u−k)− for nonnegative func-
tions, all the estimates depend only on k ≥ 0, without any further assumption
on it. Correspondingly in (10.5) the quantity ν− will depend on θkm−1.

11 A Variant of DeGiorgi-Type Lemma, for Nonnegative
Supersolutions to Singular Equations (0 < m < 1),
Involving “Initial Data”

Continue to denote by (y, s)+Q+
ρ (θ) “forward” cylinders with bottom center

at (y, s) as defined in (2.1)–(2.2) with p = 2.
Assume now that some information is available on the “initial data” rela-

tive to the cylinder (y, s) +Q+
2ρ(θ) ⊂ ET , say for example

u(x, s) ≥ ξM for a.e. x ∈ K2ρ(y) (11.1)

for some M > 0 and ξ ∈ (0, 1]. Then

Lemma 11.1 Let u be a nonnegative, locally bounded, local, weak supersolu-
tion to the singular equations (5.1)–(5.2) for 0 < m < 1, in ET . Let a ∈ (0, 1)
and suppose that (11.1) holds true. Then there exists νo ∈ (0, 1), depending
only on a and the data, such that, if
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|[u ≤ ξM ] ∩Q+
2ρ(θ)| ≤

νo
θ(ξM)m−1

|Q+
2ρ(θ)|, (11.2)

then either
Cρ > 1 (11.3)

or
u ≥ aξM in Kρ(y)× (s, s+ θ(2ρ)2].

Proof Assume (y, s) = (0, 0) and for n = 0, 1, . . . , construct sequences of
cubes {Kn} as in (3.6), and “forward” cylinders {Q+

n }, and levels {ξn} by

Q+
n = Kn × (0, θ(2ρ)2], ξn = aξ +

1− a

2n
ξ.

Let also ζ(x, t) = ζ(x) be a nonnegative, piecewise smooth, cutoff function
independent of t, vanishing outside Kn and satisfying the first of (3.8). Apply
the energy estimates (9.1) for

(u− kn)− with kn = ξnM,

over the “forward” cylinders Q+
n and the indicated choice of ζ. Observe that

the first integral on the right-hand side of (9.1) is extended over the “bottom”
ofQ+

n , and it vanishes in view of (11.1). Also, the integral involving ζt vanishes,
because of our choice of cutoff function ζ. The various terms can now be
transformed and estimated exactly as in the proof of Lemma 10.1 with the
obvious changes in the symbolism. The most noticeable change is that, due
to the vanishing of ζt, all the terms containing the factor θ−1 are not present.
This leads exactly to (10.4) over the cylinder Q+

n , with ω replaced by M , and
without the term in (· · · ) containing the factor θ−1. Setting

A+
n = [u < ξnM ] ∩Q+

n and Yn =
|A+

n |
|Q+

n | ,

the estimate (10.4) with the indicated changes and in the current context,
takes the form

sup
0<t<θ(2ρ)2

∫
Kn

(u − kn)
2
−(x, t)ζ

2(x)dx

+ Co(ξM)m−1

∫∫
Q+

n

|D[(u − kn)−ζ]|2dx dτ

≤ γ
22n

ρ2
(ξM)m+1 |A+

n |.

Starting from this inequality, proceed now exactly as in the proof of Lemma 10.1
following (10.4), to arrive at

|A+
n+1| ≤ γ

24n

(1− a)2ρ2
(ξM)

2(m−1)
N+2 |A+

n |1+
2

N+2 .
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In terms of Yn = |A+
n |/|Q+

n | this can be rewritten as

Yn+1 ≤ γ
24n

(1− a)2
[
θ(ξM)m−1

] 2
N+2 Y

1+ 2
N+2

n .

By Lemma 5.1 of the Preliminaries, {Yn} → 0 as n→∞, provided

Yo =
|A+

o |
|Q+

o | =
|[u < ξM ] ∩Q+

2ρ(θ)|
|Q+

2ρ(θ)|

≤
[
(1− a)2

γ

]N+2
2

2−(N+2)2 1

θ(ξM)m−1

def
=

νo
θ(ξM)m−1

.

Remark 11.1 Both Lemmas 10.1 and 11.1 continue to hold for cylinders
whose cross sections are balls.

Remark 11.2 Both Lemmas 10.1 and 11.1 are based on the energy estimates
(9.1) and the embedding Proposition 4.1 of the Preliminaries, which continue
to hold in a stable manner for m→ 1. Therefore these results are valid for all
0 < m < 1, including a seamless transition from the singular range m < 1 to
the nonsingular range m = 1. The various constants deteriorate as m→ 0.

Remark 11.3 The constant νo in (11.2) is independent of C, and the latter
enters into the statement only via the alternative (11.3).

Remark 11.4 A result analogous to (7.4)–(7.5) holds for nonnegative sub-
solutions to these singular equations. The statement with the full proof will
be given in § B.6 of Appendix B.

12 Remarks and Bibliographical Notes

Weak formulations such as (1.7) and (5.8) in terms of Steklov averages are
in [101] for nondegenerate versions of (1.1)–(1.2) for p = 2, or (5.1)–(5.2)
for m = 1. In the generality afforded by these equations, it is not expected
that ut ∈ L1

loc(ET ). This, however, might occur for the homogeneous proto-
type equations (1.3) or (5.3). For local weak solutions to the homogeneous

p-Laplacian equation (1.3) for p > 2, it is shown in [107] that ut ∈ L
p

p−1

loc (ET ).
In [28] it is shown that ut ∈ L2

loc(ET ) for all max{ 32 ; 2N
N+2} < p ≤ 2, extended

in [2] for all p > 2N
N+2 and in [22] for all 1 < p < 2.

For the homogeneous, prototype porous medium equation (5.3), for m >
1, it is shown in [9] that for nonnegative solutions to the Cauchy problem

ut ∈ L1
loc(R

N ×R
+). For (N−2)+

N+2 < m < 1 it is shown in [60] that nonnegative
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solutions to boundary value problems are locally analytic in the space variables
and as a consequence ut ∈ L∞loc(ET ).

A more general notion of parabolicity can be given in terms of the mono-
tonicity of the principal part with respect to the gradient Du. The function
R

N � η → A(x, t, u, η) is monotone at (x, t, u) ∈ ET × R, if〈
A(x, t, u, η1)−A(x, t, u, η2), η1 − η2

〉 ≥ 0 for all η1, η2 ∈ R
N . (12.1)

Then (1.1)–(1.2) is parabolic if A(x, t, u, 0) = 0 and η → A(x, t, u, η) is mono-
tone at all (x, t, u) ∈ ET ×R. The condition (1.8) requires only the monotonic-
ity at η = 0. The monotonicity requirement (12.1) is natural in the existence
theory. It permits one to apply Minty’s lemma [116] to identify the weak limit
of the principal part when (1.1) is approximated by a sequence of regular-
ized problems ([101]). We will consider singular homogeneous equations with
monotone principal part in Chapter 7.

The energy inequalities of § 2 and § 6 for the truncations (u − k)± are
modeled after analogous ones for nondegenerate equations appearing in [101].
These in turn are parabolic version of analogous “elliptic” energy estimates
for such truncations introduced by DeGiorgi [36], following Bernstein [17].
The main difference is in a careful tracking of the space-time geometry to be
accounted for in the method of intrinsic geometry introduced in [41] and [149].

Analogous considerations hold for Lemmas 3.1–4.1, 7.1–8.1, and 10.1–11.1.
In these a careful analysis is effected to trace the connection between degen-
eracy or singularity and the geometry of the cylinders Q±ρ (θ). The parameter
θ will track the degeneracy and/or singularity of these equations. Versions of
these lemmas appear in [41, 37, 47].



4

Expansion of Positivity

1 Time and Space Propagation of Positivity

The Expansion of Positivity is a property of nonnegative supersolutions to
elliptic and parabolic partial differential equations, that is at the heart of any
form of Harnack estimate. Roughly speaking, it asserts that information on
the measure of the “positivity set” of u at the time level s, over the cube
Kρ(y), translates into an expansion of the positivity set both in space (from
a cube Kρ(y) to K2ρ(y)), and in time (from s to s+ θρ2, for some suitable θ).

Such an expansion involves some unavoidable technical arguments. To con-
vey the main ideas we will present it first in § 2 in the context of nondegenerate
(p = 2 or m = 1), homogeneous equations. Then we will present it separately
for degenerate (p > 2 or m > 1) and singular (1 < p < 2 or 0 < m < 1)
equations with full quasilinear structure. In all cases one first “propagates” a
positivity information at some time level s on a cube Kρ(y) to further times,
within the same cube. Then one expands the positivity set in the space vari-
ables from Kρ(y) to K2ρ(y).

The first step of time propagation of positivity is technically common to
all cases and we present it here in a unified fashion.

Henceforth in this section assume that u is a nonnegative, local, weak
supersolution in ET to (1.1)–(1.2) of Chapter 3, for some p > 1.

Most of our arguments and proofs are based on the energy estimates and
DeGiorgi-type lemmas of § 2–4 of Chapter 3. According to the discussion in
§ 1.3 and Remarks 2.2, 3.1, and 4.3 of Chapter 3, a constant γ depends only
on the data if it can be quantitatively determined a priori only in terms of
{p,N,Co, C1}. The constant C appearing in the structure conditions (1.2) of
Chapter 3, enters in the various statements only via some alternatives.

For (y, s) ∈ ET and n,m ∈ N, introduce the “forward” and “backward”
cylinders

(y, s) +Q+
nρ(mθ) = Knρ(y)× (s, s+mθρp]

(y, s) +Q−nρ(mθ) = Knρ(y)× (s−mθρp, s].

57E. DiBenedetto et al., Harnack’s Inequality for Degenerate and Singular Parabolic Equations,
Springer Monographs in Mathematics, DOI 10.1007/978-1-4614-1584-8_4,  
© Springer Science+Business Media, LLC 2012 
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These differ from the cylinders Q±ρ (θ) introduced in (2.1)–(2.2) of Chapter 3,
in that their cross section Knρ(y) and their height θmρp are permitted to vary
independently. In what follows it will be assumed that (y, s) ∈ ET and ρ > 0
are such that (y, s) +Q±nρ(mθ) ⊂ ET .

Lemma 1.1 Assume that for some (y, s) ∈ ET and some ρ > 0∣∣[u(·, s) ≥M ] ∩Kρ(y)
∣∣ ≥ α

∣∣Kρ(y)
∣∣

for some M > 0 and some α ∈ (0, 1). There exist δ and ε in (0, 1), depending
only on the data {p,N,Co, C1}, and α, and independent of M , such that either

Cρ > min{1 , M}
or

|[u(·, t) > εM ] ∩Kρ(y)| ≥ 1
2α|Kρ| for all t ∈

(
s, s+

δρp

Mp−2

]
. (1.1)

Proof Assume (y, s) = (0, 0) and for k > 0 and t > 0 set

Ak,ρ(t) = [u(·, t) < k] ∩Kρ.

The assumption implies

|AM,ρ(0)| ≤ (1− α)|Kρ|. (1.2)

Write down the energy inequalities (2.3) of Chapter 3, for the truncated func-
tions (u−M)−, over the cylinder Kρ × (0, θρp], where θ > 0 is to be chosen.
The cutoff function ζ is taken independent of t, nonnegative, and such that

ζ = 1 on K(1−σ)ρ, and |Dζ| ≤ 1

σρ

where σ ∈ (0, 1) is to be chosen. Discarding the nonnegative term containing
D(u−M)− on the left-hand side, these inequalities yield∫

K(1−σ)ρ

(u−M)2−(x, t)dx ≤
∫
Kρ

(u−M)2−(x, 0)dx

+
γ

(σρ)p

∫ θρp

0

∫
Kρ

(u−M)p−dx dτ

+ γCp

∫ θρp

0

∫
Kρ

[
χ[u<M ] + (u−M)p−

]
dx dτ

≤M2
[
(1− α) + γ

θMp−2

σp
+ γ

( Cρ

min{1 , M}
)p

θMp−2
]
|Kρ|

≤M2
[
(1− α) + 2γ

θMp−2

σp

]
|Kρ|
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for all t ∈ (0, θρp], where we have enforced (1.2), and provided that Cρ < M ,
C < ρ−1. The left-hand side is estimated below by∫

K(1−σ)ρ

(u −M)2−(x, t)dx ≥
∫
K(1−σ)ρ∩[u<εM ]

(u −M)2−(x, t)dx

≥M2(1− ε)2|AεM,(1−σ)ρ(t)|
where ε ∈ (0, 1) is to be chosen. Next estimate

|AεM,ρ(t)| = |AεM,(1−σ)ρ(t) ∪ (AεM,ρ(t)−AεM,(1−σ)ρ(t))|
≤ |AεM,(1−σ)ρ(t)|+ |Kρ −K(1−σ)ρ|
≤ |AεM,(1−σ)ρ(t)|+Nσ|Kρ|.

Combining these estimates gives

|AεM,ρ(t)| ≤ 1

M2(1− ε)2

∫
K(1−σ)ρ

(u −M)2−(x, t)dx +Nσ|Kρ|

≤ 1

(1 − ε)2

[
(1− α) +

2γ

σp
θMp−2 +Nσ

]
|Kρ|.

Choose θ = δM2−p and then choose

σ =
α

8N
, ε ≤ 1−

√
1− 3

4α√
1− 1

2α
≈ 1

8
α, δ =

αp+1

23p+4γNp
. (1.3)

This proves the lemma.

Remark 1.1 The proof is based on the energy inequalities (2.3) of Chapter 3,
whose constant dependence is indicated in Remark 2.1. Therefore the constant
δ = δ(p) deteriorates either as p → 1 or as p → ∞, but it is stable as p → 2,
with seamless transition from the singular range p < 2 to the degenerate range
p > 2.

Remark 1.2 If p = 2, one takes θ = δ and the interval in (1.1) becomes
independent of M .

2 The Expansion of Positivity for Nondegenerate,
Homogeneous, Quasilinear Parabolic Equations

Let u be a nonnegative, local, weak supersolution in ET to (1.1)–(1.2) of
Chapter 3, with p = 2 and C = 0.

Proposition 2.1 Assume that for some (y, s) ∈ ET and some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α
∣∣Kρ(y)

∣∣ (2.1)
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for some M > 0 and some α ∈ (0, 1). There exist constants η and δ ∈ (0, 1)
depending only on the data {N,Co, C1}, and α, such that

u ≥ ηM a.e. in K2ρ(y)×
(
s+ 1

2δρ
2 , s+ δρ2

]
. (2.2)

Proof Assume (y, s) = (0, 0). The number α > 0 being fixed, let δ and ε be
the numbers claimed by Lemma 1.1 for p = 2. The conclusion of the lemma
implies that

|[u(·, t) > εM ] ∩K4ρ| > 1
2α4

−N |K4ρ|, for all t ∈ (0, δρ2). (2.3)

Lemma 2.1 For every ν ∈ (0, 1) there exists εν depending only on the data
{N,Co, C1}, δ (and hence α), and ν, such that∣∣[u < ενM ] ∩ Q+

4ρ(δ)
∣∣ < ν

∣∣Q+
4ρ(δ)

∣∣. (2.4)

Thus the set [u < ενM ] in the cylinder Q+
4ρ(δ) can be made arbitrarily small,

provided εν is chosen accordingly. The main tools of the proof are the estimate
(2.3) of the measure of the sets AεM,4ρ(t) for all t ∈ (0, δρ2), and the discrete
isoperimetric inequality of Lemma 2.2 of the Preliminaries.

Proof Write down the energy estimates (2.3) of Chapter 3 over the cylinder

Q+
8ρ(δ) ∪ Q−8ρ(δ) = K8ρ × (−δρ2, δρ2)

for the truncated functions

(u − kj)− for the levels kj =
1

2j
εM, for j = 0, 1, . . . .

The nonnegative, piecewise smooth, test function ζ is chosen so that it van-
ishes outside K8ρ and for t ≤ −δρ2, and

ζ = 1 on Q+
4ρ(δ), |Dζ| ≤ 1

4ρ
, and 0 ≤ ζt ≤ 1

δρ2
.

The first term on the left-hand side is discarded since it is nonnegative, and
the second vanishes because of our choice of test function. The term involv-
ing |D(u − kj)−| is minorized by extending the integration over the cylinder
Q+

4ρ(δ), which is the set where ζ = 1. The terms containing C on the right-
hand side are eliminated since C = 0. These remarks give the inequalities∫∫

Q+
4ρ(δ)

|D(u − kj)−|2ζ2dx dτ

≤ γ

∫ δρ2

−δρ2

∫
K8ρ

(u − kj)
2
−
(|Dζ|2 + ζτ

)
dx dτ

≤ γδρ2k2j

( 1

ρ2
+

2

δρ2

)
|K8ρ|

≤ γk2j |K4ρ|

(2.5)
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for a new constant γ depending only on the data {N,Co, C1}.
Apply the discrete isoperimetric inequality of Lemma 2.2 of the Prelimi-

naries to the levels

� = kj =
εh

2j
and k = kj+1 =

εh

2j+1
for j = 0, 1, . . .

and take into account (2.3) to obtain

kj+1

∣∣Akj+1,4ρ(t)
∣∣ ≤ 8Nγ

α
ρ

∫
K4ρ∩[kj+1<u<kj ]

|Du(·, t)|dx.

Integrate this in dt over (0, δρ2) and set

|Aj | = |[u < kj ] ∩ Q+
4ρ(δ)| =

∫ δρ2

0

∣∣Akj (τ)
∣∣dτ.

Then the previous inequality yields

kj+1

∣∣Aj+1

∣∣ ≤ γρ

∫∫
Q+

4ρ(δ)∩[kj+1<u<kj ]

|Du|dx dτ

≤ γρ

(∫∫
Q+

4ρ(δ)

|D(u − kj)−|2dx dτ
) 1

2 ∣∣Aj −Aj+1

∣∣ 12
≤ γkj

√
Q+

4ρ(δ)
(|Aj | − |Aj+1|

) 1
2

where we have used the energy estimates (2.5). Next divide by kj+1 = 1
2kj ,

and square both sides to obtain the recursive inequalities

|Aj+1|2 ≤ (2γ)2|Q+
4ρ(δ)|

(|Aj | − |Aj+1|
)

for j = 0, 1 . . . .

Add these inequalities for j = 0, 1, . . . , j∗−1 where j∗ is a positive integer to be
chosen. Minorize the terms on the left-hand side by their smallest value |Aj∗ |2
and majorize the right-hand side with the corresponding telescopic series. The
indicated estimations yield

j∗|Aj∗ |2 ≤
j∗−1∑
j =0

|Aj+1|2 ≤ (2γ)2|Q+
4ρ(δ)|

∞∑
j=0

(|Aj | − |Aj+1|
)

≤ (2γ)2|Q+
4ρ(δ)|2.

From this

|Aj∗ | ≤
2γ√
j∗
|Q+

4ρ(δ)|. (2.6)

Thus having fixed ν ∈ (0, 1), one can choose j∗ so large that∣∣[u < ενM ] ∩Q+
4ρ(δ)

∣∣
|Q+

4ρ(δ)|
< ν, for

2γ√
j∗
≤ ν, and εν =

ε

2j∗
.
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Proof (of Proposition 2.1, Concluded) Apply Lemma 3.1 of Chapter 3 over
the cylinder Q+

4ρ(δ) in the version of (3.1)–(3.3), with μ− = 0 and ξω = ενM

and a = 1
2 . Choose ν from (3.12) of Chapter 3 and observe that since p =

2 (nondegenerate equations), the number ν is independent of ενM . It only
depends on the data {N,Co, C1} and δ, which itself has been determined and
fixed in terms of the data {N,Co, C1} and α. Such a ν being fixed a priori
only in terms of the data, choose j∗ ∈ N by the indicated procedure, so that
the assumptions of Lemma 2.1 are verified. Then Lemma 3.1 of Chapter 3
implies that

u(x, t) > 1
2ενM a.e. in K2ρ × (12δρ

2, δρ2).

Thus the conclusion holds with η = 1
2εν .

Remark 2.1 If in (2.1) one has α = 1, the condition reads

u(·, s) ≥M a.e. in Kρ(s) (2.7)

which is of the same form as the “initial datum” of (4.1) of Chapter 3.
Lemma 4.1 of Chapter 3 then translates that bound below to later times
over smaller cubes. Proposition 2.1, however, is stronger, as it translates such
“initial conditions” into a positivity information at later times and over a
larger cube.

3 Some Counterexamples for Degenerate and Singular
Equations

Let now u be a nonnegative, local, weak supersolution to the prototype equa-
tion (1.3) of Chapter 3 in some cylindrical domain ET , for some p 	= 2. If u
is bounded below on some cube Kρ(y), say for example as in (2.7), then the
analog of Proposition 2.1 would be that

u(·, s+ δρp) ≥ ηM a.e. in K2ρ(y) (3.1)

for constants δ > 0 and η ∈ (0, 1) depending only on the data {p,N,Co, C1},
and independent of u. It turns out that if p 	= 2, no constants δ and η can
be determined a priori only in terms of N and p for which (2.7) would imply
(3.1).

3.1 A First Counterexample for p > 2

Consider the one-parameter family of nonnegative functions defined in the
whole R× R

u(x, t; c) = A(1− x+ ct)
p−1
p−2

+ where A = c
1

p−2

(p− 2

p− 1

) p−1
p−2

. (3.2)
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One verifies that such a u(·, ·; c) is a weak solution to the homogeneous proto-
type p-Laplacian equation in the whole R×R, for all c > 0, and is constructed
by seeking solutions in the form of traveling waves. Fix

(y, s) =
(
1
2 (1 − ε), 0

)
, ρ = 1

2 (1− ε)

and let
Kρ(y) =

{|x− 1
2 (1− ε)| < 1

2 (1− ε)
}
.

At time δρp the bound below (3.1) is possible for some η > 0, however small,
only if

δ >
2p

c

1− 3ε

(1− ε)p
.

Thus for (3.1) to hold for some η, the constant δ must depend on the parameter
c, and hence on the solution u(·, ·; c).

x

t

y = 1−ε
2

s = 0

s+ δρp = δ( 1−ε
2

)p

t = x−1
c

Kρ(y), ρ = 1−ε
2

K2ρ(y) u > 0

u = 0

Fig. 3.1. The Traveling Wave Solution

3.2 A Second Counterexample for p > 2

Consider the Barenblatt solution to the parabolic p-Laplacian equation for
p > 2 in R

N × R
+ ([13]):

Γp(x; t) =
1

tN/λ

[
1− γp

( |x|
t1/λ

) p
p−1

] p−1
p−2

+
t > 0 (3.3)
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where

γp =
( 1
λ

) 1
p−1 p− 2

p
, λ = N(p− 2) + p. (3.4)

The moving boundary is the sphere centered at the origin and radius Rm(t)
given by

Rm(t) = γ
1−p
p

p t
1
λ .

For fixed ε > 0 and s > 0 let

ρ1 =
(1− 3ε

γp

) p−1
p

s
1
λ , ρ2 =

(1− ε

γp

) p−1
p

s
1
λ

and set

ρ =
ρ2 − ρ1

2
=

(1− ε)
p−1
p − (1− 3ε)

p−1
p

2γ
p−1
p

p

s
1
λ ,

|y| = ρ2 + ρ1
2

=
(1− ε)

p−1
p + (1− 3ε)

p−1
p

2γ
p−1
p

p

s
1
λ .

One verifies that

u(·, s) ≥ 1

s
N
λ

ε
p−1
p−2 in Bρ(y).

If the expansion of positivity (3.1) were to hold for some δ > 0 depending
only on N and p, then points on the ball B2ρ(y), at time s + δρp should be
within the support of u(·, s+ δρp). That is,

|y|+ 2ρ < Rm(s+ δρp).

From this and the expression of Rm(·) one computes

δ >
1

2N(p−2)γp−1
p

3(1− ε)
p−1
p − (1− 3ε)

p−1
p

(1− ε)
p−1
p − (1 − 3ε)

p−1
p

s
N(p−2)

λ .

If ε is sufficiently small, the right-hand side is a positive factor of sN(p−2)/λ,
and hence δ grows with s.

3.3 A Family of Counterexamples for 1 < p < 2

When 1 < p < 2, nonnegative solutions to the prototype equation (1.3) of
Chapter 3 in some cylindrical domain ET , might vanish identically in finite
time. That is, there might exist a finite T > 0 such that

u(·, t) = 0 in E for all t ≥ T.
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x

t

y

s

s+ δρp

t = γ
λ p−1

p
p |x|λ

Bρ(y)

B2ρ(y)

u > 0 u = 0

Fig. 3.2. The Barenblatt Solution

If E is a bounded domain with smooth boundary ∂E and u is the solution
to the initial-boundary value problem, with bounded initial data and ho-
mogeneous Dirichlet data on ∂E, this extinction phenomenon occurs for all
1 < p < 2 and the extinction time T can be estimated in terms of the initial
datum ([41], Chapter VII § 2, and also [60]).

If E = R
N and u is the solution to the Cauchy problem with smooth and

compactly supported initial datum, this phenomenon occurs for 1 < p < 2N
N+1

([41], Chapter VII § 3, and also [60]).
It is apparent that for a cylinder Kρ(y)× (s, s+ δρp) such that u(·, s) > 0

on Kρ(y), the expansion of (3.1) does not hold true if s + δρp exceeds the
extinction time T .

If N = 1, a family of such solutions can be constructed semi-explicitly, by
separation of variables. Consider the boundary value problem

ut − (|ux|p−2ux)x = 0 in [|x| < 1]× [t > 0]

u(−1, t) = u(1, t) = 0

u(·, 0) = T
1

2−pX(·;μ)
(3.5)

where X(·) is a nonnegative solution to

− (|X ′|p−2X ′)′ = μX in (0, 1) (3.6)

X(−1) = X(1) = 0,

for some μ > 0. Whence such an X(·) is constructed, a solution to (3.5) is

u(x, t) =
[
T − (2− p)μt

] 1
2−pX(x;μ).

A construction procedure for nonnegative solutions to (3.6) is in § 8.1.
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3.4 The Expansion of Positivity in Some Intrinsic Geometry

These examples raise the natural question, whether a version of the expansion
of positivity still holds, in some form, for supersolutions to equations (1.1)–
(1.2), and (5.1)–(5.2) of Chapter 3 for p 	= 2, or for m 	= 1. Such a result
would pave the way to a Harnack inequality when p 	= 2, or m 	= 1.

It turns out that the expansion of positivity continues to hold for these
degenerate and singular equations, but in a time-intrinsic geometry.

In the next sections we make precise the notion of intrinsic geometry and
state and prove the expansion of positivity in such a geometry, respectively
for degenerate equations (p > 2 or m > 1) and singular equations (1 < p < 2
or 0 < m < 1).

4 The Expansion of Positivity for Degenerate
Quasilinear Parabolic Equations (p > 2)

Throughout this section let u be a nonnegative, local, weak supersolution to
(1.1)–(1.2) of Chapter 3 in ET , for p > 2. For (y, s) ∈ ET , and some given
positive number M , consider the cylinder

K8ρ(y)× (s, s+
bp−2

(ηM)p−2
δρp], (4.1)

where b, η, δ are the constants given by Proposition 4.1, and ρ > 0 is so small
that it is included in ET .

Proposition 4.1 Assume that for some (y, s) ∈ ET and some ρ > 0∣∣[u(·, s) ≥M ] ∩Kρ(y)
∣∣ ≥ α

∣∣Kρ(y)
∣∣ (4.2)

for some M > 0 and some α ∈ (0, 1). There exist constants η and δ in (0, 1)
and γ, b > 1 depending only on the data {p,N,Co, C1}, and α, such that either
γCρ > min{1 , M}, or

u(·, t) ≥ ηM a.e. in K2ρ(y) (4.3)

for all times

s+
bp−2

(ηM)p−2
1
2δρ

p ≤ t ≤ s+
bp−2

(ηM)p−2
δρp. (4.4)

Remark 4.1 The cylinder in (4.1) is “intrinsic” to the supersolution itself,
since its height depends on the lower bound M in (4.2). The conclusion (4.3)–
(4.4) is analogous to the conclusion (2.2) of Proposition 2.1, except that the
time is rescaled by a factor (ηM)2−p. In this sense Proposition 4.1 is an
“intrinsic” expansion of positivity.
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Remark 4.2 The constants η, δ, γ, and b are stable as p→ 2 and therefore
the statement of Proposition 2.1, valid for the nondegenerate case p = 2, can
be recovered from Proposition 4.1 by letting p→ 2. This stability of γ, η, and
b will be established in § 6.
Remark 4.3 The proposition transforms the measure-theoretical informa-
tion (4.2) into the pointwise expansion of positivity (4.3). The proof below
shows that the functional dependence of η on the measure-theoretical param-
eter α is of the form

η = ηoαB
− 1

αd (4.5)

for parameters ηo, B, d depending only on the data {p,N,Co, C1}. Such a
dependence will be improved in Proposition 7.1 of Chapter 5.

4.1 Structure of the Proof

Assume (y, s) = (0, 0) and let ε and δ be the numbers claimed by Lemma 1.1.
Following the proof for the nondegenerate case p = 2, one seeks to con-

vert the information (1.1) originating from Lemma 1.1, into an estimate of
the type of (2.4) of Lemma 2.1. The proof could then be concluded, as in
the nondegenerate case, by an application of Lemma 3.1 of Chapter 3. The
conclusion of this lemma holds, provided the number ν can be chosen so small
as in (3.12) of Chapter 3 with ω replaced by ενM . If p = 2, such a choice can
be made independent of (ενM). If p > 2, the number ν can be determined
in terms only of the data if θ is chosen to satisfy θ(ενM)p−2 = 1. Thus the
smaller is εν the longer is the cylinder Q+

4ρ(θ). Therefore an information of
the form of (1.1) would need to be derived over a large cylinder.

This is precisely the main difficulty of the proof. It is overcome by intro-
ducing a suitable change of the time variable, and the function u for which a
version of (1.1) continues to hold over “large times.”

4.2 Changing the Time Variable

We may assume (y, s) = (0, 0). The assumption (4.2) implies

|[u(·, 0) ≥ σM ] ∩Kρ| ≥ α|Kρ| for all σ ≤ 1. (4.2)′

The conclusion of Lemma 1.1 continues to hold, with the same parameters ε
and δ, if one replaces M by σM , and yields∣∣∣[u(·, δρp

(σM)p−2

)
≥ εσM

]⋂
Kρ

∣∣∣ ≥ 1
2α|Kρ| for all σ ≤ 1.

For τ ≥ 0 set
στ = e−

τ
p−2 (4.6)

and
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w(x, τ)
def
=

e
τ

p−2

M
(δρp)

1
p−2 u

(
x,

eτ

Mp−2
δρp

)
. (4.7)

Then for all τ ≥ 0∣∣∣[u(·, eτ

Mp−2
δρp

)
≥ ε

M

e
τ

p−2

]⋂
Kρ

∣∣∣ ≥ 1
2α|Kρ|

which, in terms of w(·, τ), means

|[w(·, τ) ≥ ko] ∩Kρ| ≥ 1
2α|Kρ| for all τ > 0,

where

ko
def
= ε(δρp)

1
p−2 . (4.8)

From this

|K4ρ − [w(·, τ) < ko]| ≥ 1
2α4

−N |K4ρ| for all τ > 0. (4.9)

4.2.1 Relating w to the Evolution Equation

Since u ≥ 0, by formal calculations

wτ =
(e τ

p−2

M
(δρp)

1
p−2

)p−1

ut +
1

p− 2

e
τ

p−2

M
(δρp)

1
p−2 u

≥
(e τ

p−2

M
(δρp)

1
p−2

)p−1[
divA(x, t, u,Du) +B(x, t, u,Du)

]
= div Ã(x, τ, w,Dw) + B̃(x, τ, w,Dw)

(4.10)

where

Ã : (E × R
+)× R

N+1 → R
N

B̃ : (E × R
+)× R

N+1 → R

satisfy the structure conditions⎧⎨
⎩

Ã(x, τ, w,Dw) ·Dw ≥ Co|Dw|p − C̃p

|Ã(x, τ, w,Dw)| ≤ C1|Dw|p−1 + C̃p−1

|B̃(x, τ, w,Dw)| ≤ C|Dw|p−1 + CC̃p−1

a.e. in E × R
+,

where Co, C1, and C are the constants appearing in the structure conditions
(1.2) of Chapter 3, and

C̃(τ) = C
e

τ
p−2

M
(δρp)

1
p−2 . (4.11)

The formal differential inequality (4.10) can be made rigorous by starting from
the weak formulation (1.4)–(1.7) of Chapter 3, by operating the corresponding
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change of variables from t into τ , and by taking testing functions ϕ ≥ 0. We
will use (4.10) in space-time domains contained in K8ρ × R

+.
Write the energy estimates for (w− k)−, of the type of (2.3) of Chapter 3,

over cylinders Q+
8ρ(θ) ⊂ E × R

+, as defined in (2.1)–(2.2) of Chapter 3, with
bottom center at (0, 0), and in the new variables (x, τ). Precisely

ess sup
0<τ<θ(8ρ)p

∫
K8ρ

(w − k)2−ζ
p(x, τ)dx +

∫∫
Q+

8ρ(θ)

|D(w − k)−ζ|pdx dτ

≤ γ

∫∫
Q+

8ρ(θ)

[
(w − k)p−|Dζ|p + (w − k)2−|ζτ |

]
dx dτ

+γ
{
C̃[θ(8ρ)p]

}p ∫∫
Q+

8ρ(θ)

χ[(w−k)−>0]ζ
pdx dτ + γCp

∫∫
Q+

8ρ(θ)

(w − k)p−ζ
pdx dτ

for a nonnegative, piecewise smooth cutoff function that vanishes on the para-
bolic boundary of Q+

8ρ(θ). Choose ζ to be one on the cylinder

Q4ρ(θ) = K4ρ ×
(
(4ρ)pθ, (8ρ)pθ

]
and such that

|Dζ| ≤ 1

4ρ
and |ζτ | ≤ 1

θ(4ρ)p
.

With these choices, the previous energy inequalities yield∫∫
Q4ρ(θ)

|D(w − k)−|pdx dτ

≤ γkp

(4ρ)p
|Q4ρ(θ)|

(
1 +

1

θkp−2
+ (Cρ)p +

{
C̃
[
θ(8ρ)p

]}p
(4ρ)p

kp

)
.

(4.12)

4.3 The Set Where w Is Small Can Be Made Small Within Q4ρ(θ)
for Large θ

Lemma 4.1 Let (4.2) hold and let ko be defined by (4.8). For every ν > 0,
there exist εν ∈ (0, 1) depending only on the data {p,N,Co, C1} and α, and
θ = θ(ko, εν) depending only on ko, εν and the data, and γ = γ(θ) depending
only on θ and the data, such that either

γ(θ)Cρ > min{1 , M}
or

|[w < ενko] ∩ Q4ρ(θ)]| ≤ ν |Q4ρ(θ)|.
Proof Write down the energy inequalities (4.12) for the level kj and the pa-
rameter θ given by

kj =
1

2j
ko for j = 0, 1, . . . , j∗ and θ = k2−p

j∗ =
(2j∗
ko

)p−2

,



70 4 Expansion of Positivity

where j∗ ∈ N is to be chosen depending only on the data {p,N,Co, C1}.
The term involving C̃ is estimated by the definition (4.11) of C̃(τ) and the
definition (4.8) of ko. Thus{

C̃
[
θ(8ρ)p

]}p
(4ρ)p

kpj
≤ γ̄(j∗, data)p

(ρC
M

)p
.

Therefore, if
M > γ̄(j∗, data)Cρ,

the last term is majorized by an absolute constant depending only on the data
{p,N,Co, C1} and the previous inequality yields∫∫

Q4ρ(θ)

|D(w − kj)−|pdx dτ ≤
γkpj
(4ρ)p

|Q4ρ(θ)| (4.13)

for a constant γ depending only on the data {p,N,Co, C1}, and independent
of j∗. Set

Aj(τ) = [w(·, τ) < kj ] ∩K4ρ, Aj = [w < kj ] ∩ Q4ρ(θ)

so that

|Aj | =
∫ θ(8ρ)p

θ(4ρ)p
|Aj(τ)|dτ.

By Lemma 2.2 of the Preliminaries

(kj − kj+1)|Aj+1(τ)| ≤ γρN+1

|K4ρ − Aj(τ)|
∫
K4ρ∩[kj+1<w(·,τ)<kj]

|Dw|dx

for all τ ∈ (θ(4ρ)p, θ(8ρ)p]. For all such τ , applying (4.9)

1
2kj |Aj+1(τ)| ≤ 2γ4N ρ

α

∫
K4ρ∩[kj+1<w(·,τ)<kj]

|Dw|dx.

Integrate this in dτ over
(
θ(4ρ)p, θ(8ρ)p

)
and majorize the resulting integral

on the right-hand side by Hölder’s inequality, and by means of (4.13), to obtain

1
2kj |Aj+1| ≤ γρ

(∫∫
Aj−Aj+1

|Dw|pdx dτ
) 1

p |Aj −Aj+1|
p−1
p

≤ γρ
(∫∫

Q4ρ(θ)

|D(w − kj)−|pdx dτ
) 1

p |Aj −Aj+1|
p−1
p

≤ γkj |Q4ρ(θ)| 1p |Aj −Aj+1|
p−1
p .

From this, by taking the p
p−1 power of both sides, we arrive at the recursive

inequalities
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|Aj+1|
p

p−1 ≤ γ|Q4ρ(θ)| 1
p−1 |Aj −Aj+1|

for a quantitative constant γ depending only on the data {p,N,Co, C1} and
α, and independent of j∗. Now add these for j = 0, 1, . . . , j∗− 1, and majorize
the sum on the right-hand side by the corresponding telescopic series. This
gives

(j∗ − 1)|Aj∗ |
p

p−1 ≤ γ|Q4ρ(θ)|
p

p−1 .

Rewriting this as

|Aj∗ | ≤
( γ

j∗

) p−1
p |Q4ρ(θ)|,

proves the proposition for the choices

εν =
1

2j∗
and ν =

( γ

j∗

) p−1
p

. (4.14)

4.4 Expanding the Positivity of w

The measure-theoretical information in (4.9), valid for all τ > 0, will be
expanded in the space variables over the cube K2ρ for “times” τ sufficiently
large.

Lemma 4.2 Let (4.2) hold. There exist ν ∈ (0, 1) and γ(ν) > 1, that can be
determined a priori only in terms of the data {p,N,Co, C1} and α, such that
either

γ(ν)Cρ > min{1 , M}
or

w(·, τ) ≥ 1
2ενko a.e. in K2ρ ×

( (6ρ)p

(ενko)p−2
,

(8ρ)p

(ενko)p−2

]
(4.15)

where εν is the number claimed by Lemma 4.1 corresponding to ν.

Proof Apply (3.1)–(3.3) of Lemma 3.1 of Chapter 3 to w over the cylinder

Q4ρ(θ) = (0, τ∗) +Q−4ρ(θ) for τ∗ = θ(8ρ)p.

The parameter ξω is replaced by ενko and μ− ≥ 0 is neglected. Taking into
account (3.12) of Chapter 3, and choosing a = 1

2 gives

w(x, τ) ≥ 1
2ενko for a.e. (x, τ) ∈ [(0, τ∗) +Q−2ρ(θ)]

provided M > γ(εν)Cρ and∣∣[w < ενko] ∩Q4ρ(θ)
∣∣∣∣Q4ρ(θ)

∣∣ ≤ γ−1

(
1

2

)N+2
[θ(ενko)

p−2]
N
p

[1 + θ(ενko)p−2]
p+N

p

= ν.

Choosing now ν from (4.14) determines εν and therefore θ quantitatively.
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4.5 Expanding the Positivity of u

Return to the definitions (4.6)–(4.8) of τ , w, and ko. As τ ranges over the
interval in (4.15), e

τ
p−2 ranges over

b1
def
= exp

{
6p

(p− 2)[ενεδ
1

p−2 ]p−2

}
≤ f(τ) ≤ exp

{
8p

(p− 2)[ενεδ
1

p−2 ]p−2

}
def
= b2

where b1 and b2 are constants that can be determined a priori only in terms
of the data {p,N,Co, C1}, and are independent of ρ, M , and u. Translating
Lemma 4.2 in terms of u and t gives

u(x, t) ≥ ενεM

2b2

def
= ηM for a.e. x ∈ K2ρ

for all times
bp−2

(ηM)p−2
1
2δρ

p ≤ t ≤ bp−2

(ηM)p−2
δρp

for a suitable b depending only on the data {p,N,Co, C1}.

5 The Expansion of Positivity for Singular Quasilinear
Parabolic Equations (1 < p < 2)

Throughout this section we let u be a nonnegative, local, weak supersolution
to (1.1)–(1.2) of Chapter 3 with 1 < p < 2, and let the cylinder

(y, s) +Q16ρ(δM
2−p) = K16ρ(y)× (s, s+ δM2−pρp]

be contained in ET .

Proposition 5.1 Assume that for some (y, s) ∈ ET and some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)| (5.1)

for some M > 0 and some α ∈ (0, 1). There exist constants η, δ, and ε in
(0, 1) and γ > 1 depending only on the data {p,N,Co, C1}, and α, such that
either

γCρ > min{1 , M}
or

u(·, t) ≥ ηM a.e. in K2ρ(y) (5.2)

for all times
s+ (1− ε)δM2−pρp ≤ t ≤ s+ δM2−pρp. (5.3)
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Remark 5.1 The proposition transforms the measure-theoretical informa-
tion (5.1) into the pointwise expansion of positivity (5.2). The proof below
shows that the functional dependence of η on the measure-theoretical param-
eter α is of the form

η = ηoα 2−γ1/α
p+2

exp(−γ2αp2γ1/α
p+2

), (5.4)

for parameters ηo, γ1, γ2 depending only on the data {p,N,Co, C1}. It is not
known whether the dependence can be improved to be power-like, as in the
degenerate case p > 2, for the general singular equations (1.1)–(1.2) of Chap-
ter 3.

Proof Assume (y, s) = (0, 0), and let δ and ε in (0, 1) be the numbers claimed
by Lemma 1.1 depending only on the data {p,N,Co, C1} and α. The conclu-
sion of the lemma is that either γCρ > min{1 , M}, or

|[u(·, t) > εM ] ∩Kρ| ≥ 1
2α|Kρ| for all t ∈ (0, δM2−pρp

]
. (5.5)

5.1 Transforming the Variables and the Equation

Let ρ > 0 be so that

Q16ρ(δM
2−p) = K16ρ × (0, δM2−pρp] ⊂ ET . (5.6)

Introduce the change of variables and the new unknown function

z =
x

ρ
, −e−τ =

t− δM2−pρp

δM2−pρp
, v(z, τ) =

1

M
u(x, t)e

τ
2−p . (5.7)

This maps the cylinder in (5.6) into K16×(0,∞) and transforms the equations
(1.1)–(1.2) of Chapter 3 into

vτ − divz Ā(z, τ, v,Dzv) = B̄(z, τ, v,Dzv) +
1

2− p
v (5.8)

weakly in K16 × (0,∞), where Ā, and B̄ are measurable functions of their
arguments, satisfying the structure conditions⎧⎨

⎩
Ā(z, τ, v,Dzv) ·Dzv ≥ δCo|Dzv|p − δC̄p

|Ā(z, τ, v,Dzv)| ≤ δC1|Dzv|p−1 + δC̄p−1

|B̄(z, τ, v,Dzv)| ≤ δρC|Dzv|p−1 + δρCC̄p−1
(5.9)

a.e. in K16 × (0,∞), where Co and C1 are the constants in the structure
conditions (1.2) of Chapter 3, δ is the number claimed by Lemma 1.1, and

C̄ = C̄(τ) = ρ
C

M
e

τ
2−p .

In this setting, the information (5.5) becomes
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τ

2−p ] ∩K1

∣∣ ≥ 1
2α|K1| for all τ ∈ (0,+∞). (5.10)

Let τo > 0 to be chosen and set

ko = ε e
τo

2−p , and kj =
1

2j
ko for j = 0, 1, . . . , j∗,

where j∗ is to be chosen. With this symbolism (5.10) implies

|[v(·, τ) ≥ kj ] ∩K8| ≥ 1
2α8

−N |K8| for all τ ∈ (τo,+∞) (5.11)

and for all j ∈ N. Introduce the cylinders

Qτo = K8 ×
(
τo + k2−p

o , τo + 2k2−p
o

)
Q′τo = K16 ×

(
τo, τo + 2k2−p

o

)
and a nonnegative, piecewise smooth, cutoff function in Q′τo of the form
ζ(z, τ) = ζ1(z)ζ2(τ), where

ζ1 =

{
1 in K8

0 in R
N −K16

|Dζ1| ≤ 1

8
,

ζ2 =

{
0 for τ < τo
1 for τ ≥ τo + k2−p

o
0 ≤ ζ2,τ ≤ 1

k2−p
o

.

Write down the energy estimates (2.3) of Chapter 3, for (v−kj)− overQ′τo , and
for the indicated choice of cutoff function ζ. These are derived by taking −(v−
kj)−ζp as a testing function in the weak formulation of (5.8). Discarding the
nonpositive contribution of the right-hand side, coming from the nonnegative
term 1

2−pv, standard calculations give∫∫
Q′

τo

|D(v − kj)−ζ|pdz dτ

≤ γ

∫∫
Q′

τo

[
(v − kj)

p
−|Dζ|p + (v − kj)

2
−ζt

]
dz dτ

+ γC̄p(τo + 2k2−p
o )

∫∫
Q′

τo

χ[(v−kj)−>0]dz dτ

+ γCpρp
∫∫

Q′
τo

(v − kj)
p
−dz dτ,

where γ = γ̃/δ, the constant γ̃ depends only on {p,N,Co, C1}, and δ is the
parameter claimed by Lemma 1.1, and appearing in the transformed structure
conditions (5.9). From this∫∫

Qτo

|D(v − kj)−|pdz dτ ≤ γkpj |Qτo |
[
2 +

C̄p(τo + 2k2−p
o )

kpj
+ Cpρp

]
.
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Taking into account the expressions of C̄ and ko, estimate

C̄p(τo + 2k2−p
o )

kpj
≤ 2j∗p

Cp

Mp
ρpe

2p
2−pk

2−p
o .

Suppose for the moment that j∗ and ko have been chosen, and set

γ(j∗, τo) = 2j∗e
2

2−pk
2−p
o . (5.12)

Therefore either M < γ(j∗, τo)Cρ, or the previous inequality yields∫∫
Qτo

|D(v − kj)−|pdz dτ ≤ 4γkpj |Qτo | (5.13)

for a constant γ depending only on the data {p,N,Co, C1}, and δ.

5.2 Estimating the Measure of the Set [v < kj] Within Qτo

Set
Aj(τ) = [v(·, τ) < kj ] ∩K8, Aj = [v < kj ] ∩Qτo .

By Lemma 2.2 of the Preliminaries, and (5.11)

(kj − kj+1)|Aj+1(τ)| ≤ γ(N)

|K8 −Aj(τ)|
∫
K8∩[kj+1<v(·,τ)<kj]

|Dv|dz

≤ γ(N)

α

∫
K8∩[kj+1<v(·,τ)<kj]

|Dv|dz

for all τ ≥ τo. Integrate this in dτ over (τo + k2−p
o , τo + 2k2−p

o ), majorize the
resulting integral on the right-hand side by the Hölder inequality, and use
(5.13) to get

kj
2
|Aj+1| ≤ γ(data, α)

∫∫
Aj−Aj+1

|Dv|dz dτ

≤ γ(data, α)

(∫∫
Aj−Aj+1

|Dv|pdz dτ
) 1

p

|Aj −Aj+1|
p−1
p

≤ γ(data, α)

(∫∫
Qτo

|D(v − kj)−|pdz dτ
) 1

p

|Aj −Aj+1|
p−1
p

≤ γ(data, α, δ)kj |Qτo |
1
p |Aj −Aj+1|

p−1
p .

Taking the p
p−1 power yields the recursive inequalities

|Aj+1|
p

p−1 ≤ γ(data, α, δ)|Qτo |
1

p−1 |Aj −Aj+1|.
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Add these inequalities for j = 0, 1, . . . , j∗ − 1, where j∗ is an integer to be
chosen, and majorize the sum on the right-hand side by the corresponding
telescopic series. This gives

(j∗ − 1)|Aj∗ |
p

p−1 ≤ γ(data, α, δ)|Qτo |
p

p−1 .

Equivalently

|[v < kj∗ ] ∩Qτo | ≤ ν|Qτo | where ν =
(γ(data, α, δ)

j∗

) p−1
p

. (5.14)

Taking into account (1.3), the constant γ in (5.14) can be traced to be of the

form γ =
γ̃(data)

αp+2
.

5.3 Segmenting Qτo

Assume momentarily that j∗ and hence ν have been determined. By possibly
increasing j∗ to be not necessarily integer, without loss of generality we may
assume that (2j∗)2−p is an integer. Then subdivide Qτo into (2

j∗)2−p cylinders,
each of length k2−p

j∗ , by setting

Qn = K8 ×
(
τo + k2−p

o + nk2−p
j∗ , τo + k2−p

o + (n+ 1)k2−p
j∗

)
for n = 0, 1, . . . , (2j∗)2−p − 1.

For at least one of these, say Qn, there must hold

|[v < kj∗ ] ∩Qn| ≤ ν|Qn|.
Apply Lemma 3.1 of Chapter 3 to v over Qn with

μ− = 0, ξω = kj∗ , a = 1
2 , θ = k2−p

j∗ .

It gives
v
(
z, τo + k2−p

o + (n+ 1)k2−p
j∗

) ≥ 1
2kj∗ a.e. in K4

provided
|[v < kj∗ ] ∩Qn|

|Qn| ≤ 2−
N+p

p γ̄o(data) = ν.

Choose now j∗, and hence ν, from this and (5.14). Summarizing, for such a
choice of j∗, and hence ν, there exists a time level τ1 in the range

τo + k2−p
o < τ1 < τo + 2k2−p

o (5.15)

such that
v(z, τ1) ≥ σoe

τo
2−p where σo = ε 2−(j∗+1).

Remark 5.2 Notice that j∗ and hence ν are determined only in terms of the
data and are independent of the parameter τo, which is still to be chosen.
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5.4 Returning to the Original Coordinates

In terms of the original coordinates and the original function u(x, t) this im-
plies

u(·, t1) ≥ σoMe−
τ1−τo
2−p

def
= Mo in K4ρ,

where the time t1 corresponding to τ1 is computed from (5.7) and (5.15).
Apply now Lemma 4.1 of Chapter 3 with M replaced by Mo and ξ = 1 over
the cylinder

(t1, 0) +Q+
4ρ(θ) = K4ρ ×

(
t1, t1 + θ(4ρ)p

]
.

By choosing
θ = νoM

2−p
o where νo = νo(data)

the assumption (4.2) of Chapter 3 is satisfied, and the lemma yields

u(·, t) ≥ 1
2Mo = 1

2σoMe−
τ1−τo
2−p

≥ 1
2σoe

− 2
2−p e

τo

M
in K2ρ (5.16)

for all times
t1 ≤ t ≤ t1 + νoM

2−p
o (4ρ)p. (5.17)

If the right-hand side equals δM2−pρp, then (5.16) and the conclusion (5.2)
will hold for the time t = δM2−pρp. The transformed τo level is still unde-
termined, and it will be so chosen as to verify such a requirement. Precisely,
taking into account the change of variables (5.7)

δM2−pρpe−τ1 = δM2−pρp − t1 = νoσ
2−p
o M2−p(4ρ)pe−(τ1−τo)

which implies

eτo =
δ

4pνoσ
2−p
o

.

This determines quantitatively τo = τo(data). The proof of Proposition 5.1 is
now completed by inserting such a τo on the right-hand side of (5.16) and in
(5.17). In particular (5.16) holds for all times

t1 = δM2−pρp − νoM
2−p
o (4ρ)p ≤ t ≤ δM2−pρp.

From the previous definitions and transformations one estimates

t1 ≤ (1 − ε)δM2−pρp, where ε = e−τo−2eτo .

Notice that once j∗ and τo are fixed, then the constant γ in (5.12) is also
defined, only in terms of the data {p,N,Co, C1} and α.

Remark 5.3 As it will be apparent in the next chapters, the Harnack in-
equality has different formulations, respectively when 2N

N+1 < p < 2 and

1 < p ≤ 2N
N+1 . It is remarkable, however, that the expansion of positivity

holds with the same statement in the full singular range 1 < p < 2.
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Remark 5.4 It might seem that two approaches for the degenerate case p >
2 and the singular case 1 < p < 2 are similar, based as they are on an
exponential-type change of variable, respectively (4.6)–(4.7) and (5.7). The
two phenomena, however, are markedly different.

In the degenerate case, starting at time level s, the transformation itself
chooses the final time level, as indicated in (4.4), in terms of the lower bound
M . In the singular case, the final time level δM2−pρp is fixed in terms ofM , as
indicated in (5.3). The structural constants only determine how the original
time interval shrinks, about the upper limit, which remains fixed.

6 Stability of the Expansion of Positivity for p→ 2

The proof of Proposition 4.1 for the degenerate case p > 2 shows that the
constants b and η in (4.3)–(4.4) depend on p as (see § 4.5)

b ≈ exp
(
γb

hp−2

p− 2

)
, η ≈ exp

(
− γη

kp−2

p− 2

)
for constants γb, γη, h, k all larger than 1, depending only on the data
{N,Co, C1}, and independent of p. Thus the ratio (b/η)p−2 that determines
the “waiting time” needed to preserve and expand the positivity, deteriorates
as p→∞. However, it is stable as p→ 2 and (4.4) remains meaningful for p
near 2. On the other hand, η(p)→ 0 as p→ 2 and (4.3) becomes vacuous.

Likewise, in the proof of Proposition 5.1, for the singular case 1 < p < 2,
the change of variables (5.7) and the subsequent arguments, yield constants
that deteriorate as p→ 2.

Nevertheless the conclusions of both Proposition 4.1, for p > 2, and Propo-
sition 5.1 for 1 < p < 2, continue to hold with constants that are stable as
p → 2, in the sense of (1.9) of Chapter 3. This is the content of the next
proposition.

Proposition 6.1 Let u be a nonnegative, local, weak solution to (1.1)–(1.2)
of Chapter 3 for p > 1 in ET . Let

K8ρ(y)× (s, s+
δρp

Mp−2
] ⊂ ET

and assume that for some (y, s) ∈ ET and some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)|

for some M > 0 and some α ∈ (0, 1). There exist constants γ∗ > 1, δ, σ∗, η∗
in (0, 1), depending only on the data {N,Co, C1} and α, and independent of
(y, s), ρ, M , and p, such that if |p− 2| < σ∗, then either

γ∗Cρ > min{1 , M}
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or
u(x, t) ≥ η∗M for all x ∈ K2ρ(y)

for all

s+
1
2δρ

p

Mp−2
≤ t ≤ s+

δρp

Mp−2
.

Remark 6.1 The constants γ∗, δ, σ∗, and η∗ are stable as p→ 2, in the sense
of (1.9) of Chapter 3.

6.1 Proof of Proposition 6.1

Assume that (y, s) = (0, 0) and let ε(p) and δ(p) be the constants correspond-
ing to α, claimed by Lemma 1.1. The lemma does not distinguish between
p > 2 and 1 < p < 2 and it implies

|[u(·, t) < εM ] ∩K4ρ| > 1
2α4

−N |K4ρ|, for all t ∈ (0, δM2−pρp). (6.1)

By Remark 1.1 the constants ε(p) and δ(p) are stable as p → 2. The proof
now proceeds for p near 2 irrespective of the degeneracy (p > 2) or singularity
(1 < p < 2) of the partial differential equation. For this reason we denote by
|p− 2| the proximity of p to 2 from either side.

Lemma 6.1 For every ν∗ ∈ (0, 1) there exist constants σ∗, εν∗ ∈ (0, 1) and
γ∗ > 1, depending only on the data {N,Co, C1} and α and independent of u,
M , p, and ρ, such that for all |p− 2| ≤ σ∗, either

γ∗Cρ > min{1 , M}
or

|[u < εν∗M ] ∩ Q+
4ρ(δM

2−p)| ≤ ν∗|Q+
4ρ(δM

2−p)|.
Proof Write down the energy inequalities in (2.3) of Chapter 3, for (u− kj)−,
over the cylinder

Q+
8ρ(δM

2−p)

for a nonnegative, piecewise smooth, cutoff function ζ that equals one on
Q+

4ρ(δM
2−p), and such that

|Dζ| ≤ 1

4ρ
and |ζt| ≤ 1

δM2−pρp
.

The levels kj are taken as

kj =
εM

2j
for j = 0, 1, . . . , j∗ where j∗ ∈ N is to be chosen.

The first term on the left-hand side is discarded and the integral involving
D(u − kj)− is minorized by extending it over Q+

4ρ(δM
2−p), which is the set

where ζ = 1. The right-hand side is majorized in a standard fashion and gives
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Q+

4ρ(δM
2−p)

|D(u− kj)−|pdx dt ≤ γ
kpj
δρp

2j∗|p−2||Q+
4ρ|
[
1 +

Cpρp

kpj
+ Cpρp

]
.

Assume momentarily that j∗ has been chosen in terms only of the data and
α. Then either M < C2j∗ρ, or the previous inequality yields∫∫

Q+
4ρ(δM

2−p)

|D(u− kj)−|pdx dt ≤ γ
kpj
δρp

2j∗|p−2||Q+
4ρ|.

The number j∗ will be chosen shortly depending only on the data {N,Co, C1}
and α, and independent of u, M , ρ, and p. Assuming momentarily that such
a choice has been made, choose σ∗ ∈ (0, 1) so that j∗|p − 2| ≤ 1 for all
|p− 2| < σ∗. This yields the energy estimates∫∫

Q+
4ρ(δM

2−p)

|D(u− kj)−|pdx dt ≤
γkpj
ρp
|Q+

4ρ(δM
2−p)| (6.2)

for a constant γ depending only on the data {N,Co, C1} and independent of
u, M , ρ, and p, provided M > Cγ∗ρ for γ∗ = 2j∗ .

Starting from these energy estimates, the proof can now be concluded as
in the proof of Lemma 2.1 valid for nondegenerate equations. Precisely, set

Aj = [u < kj ] ∩ Q+
4ρ(δM

2−p)

and proceed as in that context by making use of (6.1) and (6.2), to arrive at
the analog of (2.6)

|Aj∗ | ≤
( γ

j∗

) p−1
p |Q+

4ρ(δM
2−p)| (6.3)

for a constant γ depending only on the data {N,Co, C1} and independent of
u, M , ρ, and p. Choosing

εν∗ =
ε

2j∗
and ν∗ =

( γ

j∗

) p−1
p

(6.4)

proves the lemma.

To conclude the proof of Proposition 6.1, apply Lemma 3.1 of Chapter 3, with
μ− = 0, ξ = εν∗ , a = 1

2 , ω = M , θ = δM2−p and ρ replaced by 2ρ. The lemma
yields

u > 1
2εν∗M in K2ρ × (12δρ

p, δρp),

provided

Yo =
|[u < εν∗ ] ∩Q+

4ρ(δM
2−p)|

|Q+
4ρ(δM

2−p)| =
|Aj∗ |

|Q+
4ρ(δM

2−p)| = ν∗.

Here the number ν∗ is chosen from (3.12) of Chapter 3 for p > 1. For p > 2
compute
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Yo ≤ 1

γ̄(data)

[δM2−p(εν∗M)p−2]
N
p

[1 + δM2−p(εν∗M)p−2]
N+p

p

=
1

γ̄(data)

[δεp−22j∗(2−p)]
N
p

[1 + δεp−22j∗(2−p)]
N+p

p

= ν∗.

Stipulate to choose |p − 2| ≤ σ∗ and then σ∗ so small that 2j∗|p−2| ∈ (1, 2).
Then, from (6.3)–(6.4) choose j∗ so large as to satisfy this requirement. The
calculations for 1 < p < 2 are identical starting once more from (3.12) of
Chapter 3.

The argument is a hybrid between the nondegenerate case of § 2 and the
degenerate case of § 4 and the singular case of § 5. It mimics the degenerate
or singular case in that the length of the cylinders is of the order of M2−p

thereby abiding to the notion of intrinsic geometry. If a lower bound of the type
εν∗M = ε2−j∗M is sought, then the intrinsic geometry required by Lemma 3.1
of Chapter 3 would require a cylinder of length (εν∗M)2−p, relative to ρp.
However, because of the indicated choices εp−2

ν∗ ≈ 1 if p ≈ 2. Roughly speaking
the partial differential equation, while degenerate or singular, for p ≈ 2 is
“mildly degenerate or singular,” and it transitions from its nondegenerate
regime p = 2 to its degenerate regime p > 2 or singular regime 1 < p < 2, in
a stable manner.

7 The Expansion of Positivity for Porous Medium Type
Equations

Throughout this section let u be a nonnegative, local, weak supersolution to
(5.1)–(5.2) of Chapter 3 in ET , for m > 0. For (y, s) ∈ ET , and some given
positive number M , consider the cylinders

K8ρ(y)× (s, s+
bm−1

(ηM)m−1
δρ2] for m > 1

K16ρ(y)× (s, s+ δM1−mρ2] for 0 < m < 1

where b, δ, η are the constants given by Propositions 7.1 and 7.2, and ρ > 0
is so small that they are both included in ET . The results of the previous
sections are based solely on the following technical tools: (i) Lemmas 3.1 and
4.1 of Chapter 3, (ii) the discrete isoperimetric inequality of Lemma 2.2 and
the embedding Proposition 4.1 of the Preliminaries, and (iii) the change of
variables introduced respectively in (4.6)–(4.7) for the degenerate case p > 2
and in (5.7) for the singular case 1 < p < 2.

For porous medium type equations Lemmas 3.1 and 4.1 of Chapter 3 have
their exact counterpart respectively in Lemmas 7.1 and 8.1 for m > 1, and in
Lemmas 10.1 and 11.1 for 0 < m < 1 of Chapter 3.
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The discrete isoperimetric inequality and the embeddings of the Prelimi-
naries are facts of Classical Analysis, independent of partial differential equa-
tions. Therefore the expansion of positivity effect continues to hold for these
equations, by essentially the same proof, whence one introduces changes of
variables analogous to (4.6)–(4.7) for the degenerate case m > 1 and to (5.7)
for the singular case 0 < m < 1. Below we outline the main differences in the
proofs by distinguishing the degenerate case m > 1 from the singular case
0 < m < 1.

7.1 Expansion of Positivity When m > 1

The starting point is a time propagation of positivity similar to Lemma 1.1.

Lemma 7.1 Assume that for some (y, s) ∈ ET and some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)|
for some M > 0 and some α ∈ (0, 1). There exist δ and ε in (0, 1), depending
only on the data {m,N,Co, C1} and α, and independent of M , such that either
Cρ > 1, or

|[u(·, t) > εM ] ∩Kρ(y)| ≥ 1
2α|Kρ(y)| for all t ∈

(
s, s+

δρ2

Mm−1

]
.

Proof Same as in Lemma 1.1 by minor changes. We may assume

δ =
α3

γ210N2
,

with ε as in Lemma 1.1.

Proposition 7.1 Assume that for some (y, s) ∈ ET and some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)|
for some M > 0 and some α ∈ (0, 1). There exist constants b > 1, δ, η ∈ (0, 1),
depending only on the data {m,N,Co, C1} and α, and independent of (y, s),
ρ, M , such that either Cρ > 1, or

u(·, t) ≥ ηM in K2ρ(y)

for all times

s+
bm−1

(ηM)m−1
1
2δρ

2 ≤ t ≤ s+
bm−1

(ηM)m−1
δρ2.

The constants b, δ, η deteriorate as m→∞, but they are stable as m→ 1.

Proof Assume (y, s) = (0, 0) and let ε and δ be determined as in Lemma 7.1.
The proof is almost identical to that of § 4 by means of the change of variables

w(x, τ)
def
=

e
τ

m−1

M
(δρ2)

1
m−1u

(
x, s+

eτ

Mm−1
δρ2

)
,

modulo the obvious changes in symbolism. The stability analysis of the con-
stants for m ≈ 1 is carried out as in § 6.
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7.2 Expansion of Positivity When 0 < m < 1

The starting point is a time propagation of positivity similar to Lemma 1.1.

Lemma 7.2 Let 0 < m < 1 and assume that for some (y, s) ∈ ET and some
ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)|
for some M > 0 and some α ∈ (0, 1). There exist δ and ε in (0, 1), depending
only on the data {m,N,Co, C1} and α, and independent of M , such that either
Cρ > 1, or

|[u(·, t) > εM ] ∩Kρ(y)| ≥ 1
2α|Kρ(y)| for all t ∈

(
s, s+

δρ2

Mm−1

]
.

Proof Assume (y, s) = (0, 0), and consider the cylinder

Q+
ρ (δM

1−m) = Kρ × (0, δM1−mρ2]

where δ ∈ (0, 1) is to be chosen. In the weak formulation (5.5) of Chapter 3,
take the test function

ϕ = −(um −Mm)−ζ2

where x → ζ(x) is a nonnegative, piecewise smooth cutoff function in Kρ

which equals one on K(1−σ)ρ and such that |Dζ| ≤ (σρ)−1. Proceeding as in
§ 9 of Chapter 3 and enforcing the condition Cρ ≤ 1 gives∫

Kρ

∫ M

u(x,t)

(Mm − sm)+dsζ
2dx ≤

∫
Kρ

∫ M

u(x,0)

(Mm − sm)+dsζ
2dx

+ γ|Kρ|δM
m+1

σ2

for all times 0 < t < δM1−mρ2. Enforcing the assumptions of the lemma,
estimate∫

Kρ

∫ M

u(x,0)

(Mm − sm)+dsζ
2dx ≤ m

m+ 1
Mm+1(1 − α)|Kρ|∫

Kρ

∫ M

u(x,t)

(Mm − sm)+dsζ
2dx ≥

∫
K(1−σ)ρ∩[u<εM ]

∫ M

u(x,t)

(Mm − sm)+ds dx

≥ m

m+ 1
(1− m+ 1

m
ε)Mm+1|AεM,(1−σ)ρ(t)|.

Therefore proceeding as in the proof of Lemma 1.1

|AεM,ρ(t)| ≤ 1

1− εm+1
m

[
(1− α) + γ

m+ 1

m

δ

σ2
+Nσ

]
|Kρ|.

From here on, conclude as in the proof of Lemma 1.1.
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Proposition 7.2 Let 0 < m < 1 and assume that for some (y, s) ∈ ET and
some ρ > 0

|[u(·, s) ≥M ] ∩Kρ(y)| ≥ α|Kρ(y)| (7.1)

for some M > 0 and some α ∈ (0, 1). There exist constants ε, δ, η ∈ (0, 1),
depending only on the data {m,N,Co, C1} and α, and independent of (y, s),
ρ, M , such that either Cρ > 1, or

u(·, t) ≥ ηM in K2ρ(y) (7.2)

for all times
s+ (1− ε)δM1−mρ2 ≤ t ≤ s+ δM1−mρ2.

The constants ε, δ, η deteriorate as m→ 0, but they are stable as m→ 1.

Proof The proof is similar to that of § 5. Nevertheless, since the particular
structure of the energy estimates of § 9 of Chapter 3 brings about some dif-
ferences, here we present the full proof. The arguments below show that the
functional dependence of η on the measure-theoretical parameter α is of the
form

η = ηoα 2−γ1/α
4

exp(−γ2α22γ1/α
4

), (7.3)

for parameters ηo, γ1, γ2 depending only on the data {m,N,Co, C1}. It is not
known whether the dependence can be improved to be power-like, for the
general singular equations (5.1)–(5.2) of Chapter 3.

7.2.1 Transforming the Variables and the Equation

Assume (y, s) = (0, 0), let δ and ε be as determined in Lemma 7.2, and let
ρ > 0 be so that

Q16ρ(δM
1−m) = K16ρ × (0, δM1−mρ2] ⊂ ET .

Introduce the change of variables and the new unknown function

z =
x

ρ
, −e−τ =

t− δM1−mρ2

δM1−mρ2
, v(z, τ) =

1

M
u(x, t)e

τ
1−m . (7.4)

This maps the cylinder Q16ρ(δM
1−m) into K16 × (0,∞) and transforms the

equations (5.1)–(5.2) of Chapter 3 into

vτ − divz Ā(z, τ, v,Dzv) = B̄(z, τ, v,Dzv) +
1

1−m
v (7.5)

weakly in K16 × (0,∞), where Ā, and B̄ are measurable functions of their
arguments, satisfying the structure conditions⎧⎨

⎩
Ā(z, τ, v,Dzv) ·Dzv ≥ mδCov

m−1|Dzv|2 − δC̄2vm+1

|Ā(z, τ, v,Dzv)| ≤ mδC1v
m−1|Dzv|+ δC̄vm

|B̄(z, τ, v,Dzv)| ≤ mδC̄vm−1|Dzv|+ δC̄2vm
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a.e. in K16× (0,∞). Here Co and C1 are the constants in the structure condi-
tions (5.2) of Chapter 3, δ is the number claimed by Lemma 7.2, and C̄ = ρC.
In this setting, the information of Lemma 7.2 reads∣∣[v(·, τ) ≥ ε e

τ
1−m ] ∩K1

∣∣ ≥ 1
2α|K1| for all τ ∈ (0,+∞).

Let τo > 0 to be chosen and set

ko = ε e
τo

1−m , and kj =
1

2j
ko for j = 0, 1, . . . , j∗,

where j∗ is to be chosen. With this symbolism

|[v(·, τ) ≥ kj ] ∩K8| ≥ 1
2α8

−N |K8| for all τ ∈ (τo,+∞) (7.6)

and for all j ∈ N. Introduce the cylinders

Qτo = K8 ×
(
τo + k1−m

o , τo + 2k1−m
o

)
Q′τo = K16 ×

(
τo, τo + 2k1−m

o

)
and a nonnegative, piecewise smooth, cutoff function in Q′τo of the form
ζ(z, τ) = ζ1(z)ζ2(τ), where

ζ1 =

{
1 in K8

0 in R
N −K16

|Dζ1| ≤ 1
8 ,

ζ2 =

{
0 for τ < τo
1 for τ ≥ τo + k1−m

o
0 ≤ ζ2,τ ≤ 1

k1−m
o

.

In the weak formulation of (7.5), analogous to (5.5) of Chapter 3, take as test
function

−(vm − kmj )−ζ2 over Q′τo ,

for the indicated choice of cutoff function ζ. Performing calculations in all
analogous to the ones of § 9 and 10 of Chapter 3, yields∫∫

Qτo

|D(v − kj)−|2dz dτ ≤ 2γk2j |Qτo | (7.7)

for a constant γ depending only on the data {m,N,Co, C1}, and δ.

7.2.2 Estimating the Measure of the Set [v < kj ] Within Qτo

Set
Aj(τ) = [v(·, τ) < kj ] ∩K8 and Aj = [v < kj ] ∩Qτo.

By Lemma 2.2 of the Preliminaries, and (7.6)
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(kj − kj+1)|Aj+1(τ)| ≤ γ(N)

|K8 −Aj(τ)|
∫
K8∩[kj+1<v(·,τ)<kj]

|Dv|dz

≤ γ(N)

α

∫
K8∩[kj+1<v(·,τ)<kj]

|Dv|dz

for all τ ≥ τo. Integrate this in dτ over (τo + k1−m
o , τo + 2k1−m

o ), majorize
the resulting integral on the right-hand side by the Hölder inequality, and use
(7.7) to get

kj
2
|Aj+1| ≤ γ(data, α)

∫∫
Aj−Aj+1

|Dv|dz dτ

≤ γ(data, α)

(∫∫
Aj−Aj+1

|Dv|2dz dτ
) 1

2

|Aj −Aj+1| 12

≤ γ(data, α)

(∫∫
Qτo

|D(v − kj)−|2dz dτ
) 1

2

|Aj −Aj+1| 12

≤ γ(data, α, δ)kj |Qτo |
1
2 |Aj −Aj+1| 12 .

Taking the square yields the recursive inequalities

|Aj+1|2 ≤ γ(data, α, δ)|Qτo ||Aj −Aj+1|.
Add these inequalities for j = 0, 1, . . . , j∗ − 1, where j∗ is an integer to be
chosen, and majorize the sum on the right-hand side by the corresponding
telescopic series. This gives

(j∗ − 1)|Aj∗ |2 ≤ γ(data, α, δ)|Qτo |2.
Equivalently

|[v < kj∗ ] ∩Qτo | ≤ ν|Qτo | where ν =
(γ(data, α, δ)

j∗

) 1
2

. (7.8)

7.2.3 Segmenting Qτo

Assume momentarily that j∗ and hence ν have been determined. By possi-
bly increasing j∗ to be not necessarily integer, without loss of generality we
may assume that (2j∗)1−m is an integer. Then subdivide Qτo into (2j∗)1−m

cylinders, each of length k1−m
j∗ , by setting

Qn = K8 ×
(
τo + k1−m

o + nk1−m
j∗ , τo + k1−m

o + (n+ 1)k1−m
j∗

)
for n = 0, 1, . . . , (2j∗)1−m − 1.

For at least one of these, say Qn, there must hold

|[v < kj∗ ] ∩Qn| ≤ ν|Qn|.
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Apply Lemma 10.1 of Chapter 3 to v over Qn with ξω = kj∗ , a = 1
2 , and

θ = k1−m
j∗ . This gives

v
(
z, τo + k1−m

o + (n+ 1)k1−m
j∗

) ≥ 1
2kj∗ a.e. in K4,

provided Cρ < 1 and

|[v < kj∗ ] ∩Qn|
|Qn| ≤ 2−(N+2)2 γ̄o(data) = ν.

Choose now j∗, and hence ν, from this and (7.8). Summarizing, for such a
choice of j∗, and hence ν, there exists a time level τ1 in the range

τo + k1−m
o < τ1 < τo + 2k1−m

o (7.9)

such that
v(z, τ1) ≥ σoe

τo
1−m where σo = ε 2−(j∗+1).

Remark 7.1 Notice that j∗ and hence ν are determined only in terms of the
data and are independent of the parameter τo, which is still to be chosen.

7.2.4 Returning to the Original Coordinates

In terms of the original coordinates and the original function u(x, t) this im-
plies

u(·, t1) ≥ σoMe−
τ1−τo
1−m

def
= Mo in K4ρ

where the time t1 corresponding to τ1 is computed from (7.4) and (7.9). Apply
now Lemma 11.1 of Chapter 3 with M replaced by Mo and ξ = 1 over the
cylinder

(0, t1) +Q+
4ρ(θ) = K4ρ ×

(
t1, t1 + θ(4ρ)2

]
.

By choosing
θ = νoM

1−m
o where νo = νo(data),

the assumption (11.1) of Chapter 3 is satisfied, and the lemma yields

u(·, t) ≥ 1
2Mo = 1

2σoMe−
τ1−τo
1−m

≥ 1
2σoe

− 2
1−m eτoM

in K2ρ (7.10)

for all times
t1 ≤ t ≤ t1 + νoM

1−m
o (4ρ)2. (7.11)

If the right-hand side equals δM1−mρ2, then (7.10) and the conclusion of
Proposition 7.2 hold for the time t = δM1−mρ2. The transformed τo level is
still undetermined, and it will be so chosen as to verify such a requirement.
Precisely, taking into account the change of variables (7.4)



88 4 Expansion of Positivity

δM1−mρ2e−τ1 = δM1−mρ2 − t1 = νoσ
1−m
o M1−m(4ρ)2e−(τ1−τo)

which implies

eτo =
δ

16νoσ
1−m
o

.

This determines quantitatively τo = τo(data). The proof of Proposition 7.2
with 0 < m < 1 is now completed by inserting such a τo on the right-hand
side of (7.10) and in (7.11). In particular (7.10) holds for all times

t1 = δM1−mρ2 − νoM
1−m
o (4ρ)2 ≤ t ≤ δM1−mρ2.

From the previous definitions and transformations one estimates

t1 ≤ (1− ε)δM1−mρ2, where ε = e−τo−2eτo .

8 Remarks and Bibliographical Notes

Proposition 2.1 was first established in [40]. The main idea is in realizing that
the classical theorems of [36, 101] can be read in an “expanding fashion,”
instead of a “shrinking one,” as originally conceived by DeGiorgi.

The notion of expansion of positivity is related to the so-called growth
lemmas, introduced by Landis ([104]). Based on these lemmas, Landis gave
alternative proofs of the results by DeGiorgi ([36]) and Moser ([120]), on
the Hölder regularity and Harnack inequalities for solutions to second-order
elliptic equations in divergence form. This approach is flexible enough as to
adapt to equations in nondivergence form ([93, 94, 135], see also [3]).

For the homogeneous prototype degenerate equations (1.3) and (5.3) of
Chapter 3, the expansion of positivity was realized in [39, 59] by means of
comparison with suitable subsolutions.

In the full generality of Proposition 4.1, this expansion effect was estab-
lished in [49], including the analysis of stability of the various parameters,
either as p → 2 or as m → 1. The proof we present here is a simpler,
more streamlined version of that in [49]. Some measure-theoretical lemmas are
avoided, and the statements are shown to hold in the more general assump-
tions (2.1), (4.2), (5.2), with any α ∈ (0, 1] instead of α = 1 as established in
[49, 51, 54].

In the context of singular equations (1 < p < 2 or 0 < m < 1) the proof of
Proposition 5.1 was first given in [31] and reported in [41], Chapter IV, § 5. The
proof is rather involved and not intuitive. The proof we present here follows an
idea of [51] and [54]; it is more direct, being based on geometrical ideas. Both
proofs require p > 1 and m > 0. The restriction is not only technical in view
of the geometrical significance of the homogeneous, prototype equation (1.3)
of Chapter 3 for p = 1 even in the elliptic case ([117]), and the homogeneous
equation (5.3) of Chapter 3 for m→ 0 ([35, 44, 45]).
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8.1 Solving (3.6)

Seek convex, symmetric about x = 0, smooth solutions. For these (3.6) is
transformed into

X ′ = −
( p

p− 1

) 1
p (
C − 1

2μX
2
) 1

p , in (0, 1) (8.1)

X ′(0) = 0, X(1) = 0

for positive parameters C and μ. In general this problem cannot be solved
explicitly. However, one can show that solutions actually exist, by studying
their qualitative behavior. By setting

K =
2C

μ

y = αx, α =

(
K2−pμp

2(p− 1)

) 1
p

=

(
C2−pμp−1p

2p−1(p− 1)

) 1
p

Y (y) =
X(x)

K
,

problem (8.1) can be rewritten as

Y ′ = −(1− Y 2
) 1

p , in (0, α)

Y ′(0) = 0, Y (α) = 0.

The parameter dependence is now transferred into α. Because of the two-
point condition for a first-order differential equation, the problem may appear
overdetermined. By standard ODE’s theory, the family of solutions to the
Cauchy problem

Y ′ = −(1− Y 2
) 1

p , Y ′(0) = 0 (8.2)

behave as in Figure 8.3 below. Such a Cauchy problem does not have a unique
solution, and Ymin, Ymax represent the minimal and the maximal solutions,
respectively. Now Ymin intersects the Y = 0 axis at yint. By properly choosing
the pair (C, μ), one may realize α = yint. There exist ∞1 possible choices
for (C, μ), that realize such a condition, and hence there exists an infinite
number of functions X that solve the original boundary value problem. This
is expected, as (3.6) is the 1–D case of the nonlinear eigenvalue problem

− div(|Dw|p−2Dw) = μw, in E

w|∂E = 0.

By the results of [73], such a problem admits infinitely many solutions.
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Y

y

Y = 1

Y = −1

Ymax

Ymin

yint

Fig. 8.3. Qualitative Behavior of the Solution to (8.2)
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The Harnack Inequality for Degenerate
Equations

1 The Intrinsic Harnack Inequality

1.1 The Mean Value Form of Moser’s Harnack Inequality

Let u be a continuous, nonnegative, local, weak solution to the homogeneous,
nondegenerate version of (1.1)–(1.2) of Chapter 3 in some domain ET , where
p = 2 and C = 0. Such solutions satisfy the Harnack inequality of Moser
([121, 122]), which we present in various forms. Fix (xo, to) ∈ ET and ρ > 0
and construct the cylinders

Q+
ρ (xo, to) = Kρ(xo)× (to, to + ρ2]

Q−ρ (xo, to) = Kρ(xo)× (to − ρ2, to].

The first has bottom “vertex” at (xo, to) and the second has top “vertex” at
(xo, to). Assume that ρ is so small that Q±4ρ(xo, to) ⊂ ET . Fix σ ∈ (0, 1) and
inside Q±ρ (xo, to) construct the two subcylinders

Q+
σρ = Kσρ(xo)× (to + (σρ)2, to + ρ2]

Q−σρ = Kσρ(xo)× (to − ρ2, to − (σρ)2].

There exists a constant γ(σ) depending only on the data {N,Co, C1} and σ,
and independent of (xo, to) and ρ, such that

sup
Q−

σρ

u ≤ γ(σ) inf
Q+

σρ

u. (1.1)

The two cylinders Q±σρ are separated along the time axis by a distance of
2(σρ)2, and the constant γ(σ) → ∞ as σ → 0. However, γ(σ) is stable as
σ → 1. Other than the indicated separation between Q+

σρ and Q−σρ, there is
great freedom in choosing these cylinders. For example, one could take σ ≈ 1,
keep Q+

σρ fixed, and choose Q−σρ with its top “vertex” at (xo, to). This would

91E. DiBenedetto et al., Harnack’s Inequality for Degenerate and Singular Parabolic Equations,
Springer Monographs in Mathematics, DOI 10.1007/978-1-4614-1584-8_5,  
© Springer Science+Business Media, LLC 2012 



92 5 The Harnack Inequality for Degenerate Equations

keep it separated by a distance (σρ)2 from Q+
σρ. By possibly modifying the

form of the constant γ, this would imply

u(xo, to) ≤ γ inf
Kρ(xo)

u(·, to + ρ2). (1.1)+

Likewise one could take σ ≈ 1, keepQ−σρ fixed, and chooseQ+
σρ with its bottom

“vertex” at (xo, to). This would keep it separated by a distance (σρ)2 from
Q−σρ. By possibly modifying the form of the constant γ, this would imply

γ−1 sup
Kρ(xo)

u(·, to − ρ2) ≤ u(xo, to). (1.1)−

The inequalities (1.1)± are “forward” and “backward” in time. They could be
combined to yield

γ−1 sup
Kρ(xo)

u(·, to − ρ2) ≤ u(xo, to) ≤ γ inf
Kρ(xo)

u(·, to + ρ2) (1.2)

for a constant γ depending only on the data {N,Co, C1} and independent of
(xo, to) ∈ ET and ρ > 0, provided Q±4ρ(xo, to) ⊂ ET .

We call this the mean value form of the Harnack inequality for nonnegative
solutions to nondegenerate parabolic equations. The terminology is suggested
by the mean value property of harmonic functions. The latter implies that the
value u(xo) at one point xo of a nonnegative harmonic function u, controls
its maximum and minimum in a ball centered at xo ([43], Chapter II, § 5).
The point (xo, to) can be, roughly speaking, regarded as the “center” of the
cylindrical domain Q−ρ (xo, to) ∪Q+

ρ (xo, to).

1.2 The Intrinsic Mean Value Harnack Inequality for Degenerate
Equations

Let u be a continuous, nonnegative, local, weak solution to the degenerate
equations (1.1)–(1.2) of Chapter 3 in some domain ET , for p > 2. It is known
that these solutions are locally bounded in ET ([41], Chapter V), which hence-
forth we assume.

Fix (xo, to) ∈ ET such that u(xo, to) > 0 and construct the cylinders

(xo, to) +Q±4ρ(θ) where θ =
( c

u(xo, to)

)p−2

(1.3)

and c is a given positive constant. These cylinders are “intrinsic” to the solu-
tion since their length is determined by the value of u at (xo, to). Cylindrical
domains of the form Kρ × (0, ρp] reflect the natural, parabolic space-time di-
lations that leave the homogeneous, degenerate, prototype equation (1.3) of
Chapter 3 invariant. The latter, however, is not homogeneous with respect to
the solution u. The time dilation by a factor u(xo, to)

2−p is intended to re-
store the homogeneity, and the Harnack inequality holds in such an intrinsic
geometry, as precisely stated in the following theorem.
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Theorem 1.1 Let u be a continuous, nonnegative, local, weak solution to the
degenerate equations (1.1)–(1.2) of Chapter 3, in ET . There exist positive
constants c and γ depending only on the data {p,N,Co, C1}, such that for all
intrinsic cylinders (xo, to) +Q±4ρ(θ) as in (1.3), contained in ET , either

γCρ > min{1 , u(xo, to)}

or

γ−1 sup
Kρ(xo)

u(·, to − θρp) ≤ u(xo, to) ≤ γ inf
Kρ(xo)

u(·, to + θρp). (1.4)

Thus the form (1.2) continues to hold for nonnegative solutions to the de-
generate equations (1.1)–(1.2) of Chapter 3, although in their own intrinsic
geometry, made precise by (1.3). In analogy with (1.2) and (1.1)±, we call
intrinsic, “forward” and “backward” Harnack inequalities, the right and left
inequalities in (1.4).

x

t

to

xo

to + θρp

to − θρp

u(xo, to) > 0

inf
Kρ(xo)

u(·, to + θρp)

sup
Kρ(xo)

u(·, to − θρp)

Fig. 1.1. Mean Value Harnack Inequality

Remark 1.1 The constants γ and c deteriorate as p→ ∞ in the sense that
γ(p), c(p)→ ∞ as p → ∞. However, they are stable as p → 2 in the sense of
(1.9) of Chapter 3. Thus by formally letting p → 2 in (1.4), one recovers the
classical Moser’s Harnack inequality in the form (1.2).
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Remark 1.2 Most of our arguments are based on the energy estimates and
DeGiorgi-type lemmas of § 2–4 of Chapter 3 and the expansion of positivity of
Chapter 4. According to the discussion in § 1.3 and Remarks 2.2, 3.1, and 4.3
of Chapter 3, a constant γ depends only on the data if it can be quantitatively
determined a priori only in terms of {p,N,Co, C1}. The constant C appearing
in the structure conditions (1.2) of Chapter 3, enters in the statement of
Theorem 1.1 only through an alternative.

Remark 1.3 The constants γ in (1.4) and c in (1.3) are quantitatively con-
nected. The first quantifies the upper bound in (1.4) and the constant c
in (1.3) quantifies the “waiting time” for an intrinsic Harnack estimate to
hold. The proof will determine these constants quantitatively only in terms
of {p,N,Co, C1}. Whence they are determined, one may choose a smaller c,
and hence a shorter “waiting time” provided the constant γ is chosen to be
larger (§ 2.4).
Remark 1.4 The theorem has been stated for continuous solutions, to give
meaning to u(xo, to). While it is known that local, weak solutions to (1.1)–
(1.2) of Chapter 3, for p > 2, are locally Hölder continuous ([38, 41, 75]), the
theorem continues to hold for almost all (xo, to) ∈ ET and the corresponding
cylinders (xo, to) + Q±4ρ(θ) ⊂ ET . The intrinsic Harnack inequality, in turn,
can be used to prove that these local solutions, irrespective of their signum,
are indeed locally Hölder continuous within their domain of definition. This
will be shown in § 4.

1.3 Significance of Theorem 1.1

The inequality (1.4) is “intrinsic” in that the waiting time from to to to + θρp

depends on the solution at (xo, to). Such an intrinsic dependence is a conse-
quence of the intrinsic expansion of positivity of Chapter 4, and it cannot be
removed. Indeed (1.4) is false in a geometry where θ is a constant independent
of u(xo, to). This can be verified for the Barenblatt solution (§ 3.2 of Chap-
ter 4), by the same arguments as in § 3.2 of Chapter 4. This effect is not due
to the moving boundary of the Barenblatt solution, delimiting its support.
Rather, it is structural to these degenerate equations as shown by the family
of functions, parametrized by T ∈ R,

u(x, t) = C(N, p)
( |x|p
T − t

) 1
p−2

(1.5)

defined in R
N × (−∞, T ), where

C(N, p) =
[ 1
λ

(p− 2

p

)p−1] 1
p−2

and λ = N(p− 2) + p. (1.6)

One verifies that this solves the prototype equation (1.3) of Chapter 3 for any
p > 2, and it can be constructed by separating the variables. Fix ρ > 0 and
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to < T − (8ρ)p, so that the cylinders (xo, to) + Q±4ρ(1) are contained in the

domain of definition of u, for all xo ∈ R
N . Then letting xo → 0 by keeping to

and ρ fixed, shows that (1.4) fails if the geometry is not intrinsic, that is, if
θ = 1.

2 Proof of the Intrinsic, Forward Harnack Inequality in
Theorem 1.1

Fix (xo, to) ⊂ ET , assume that u(xo, to) > 0, and construct the cylinders
(xo, to) + Q±4ρ(θ) ⊂ ET as in (1.3), where the constant c ≥ 1 is to be deter-
mined. The change of variables

x→ x− xo

ρ
t→ u(xo, to)

p−2 t− to
ρp

maps these cylinders into Q±, where

Q+ = K4 × (0, 4pcp−2], Q− = K4 × (−4pcp−2, 0].

Denoting again by (x, t) the transformed variables, the rescaled function

v(x, t) =
1

u(xo, to)
u
(
xo + ρx, to +

tρp

u(xo, to)p−2

)
is a bounded, nonnegative, weak solution to

vt − div Ā(x, t, v,Dv) = B̄(x, t, v,Dv) (2.1)

weakly in Q = Q+ ∪Q−, where Ā and B̄ satisfy the structure conditions⎧⎨
⎩

Ā(x, t, v,Dv) ·Dv ≥ Co|Dv|p − C̄p

|Ā(x, t, v,Dv)| ≤ C1|Dv|p−1 + C̄p−1

|B̄(x, t, v,Dv)| ≤ Cρ|Dv|p−1 + CρC̄p−1
a.e. in Q (2.2)

where

C̄ =
Cρ

u(xo, to)
(2.3)

and Co, C1, and C are as in (1.2) of Chapter 3. Moreover v(0, 0) = 1.
The theorem is a consequence of the following

Proposition 2.1 There exist constants γo ∈ (0, 1), γ1, γ2 > 1, that can be
quantitatively determined a priori only in terms of the data {p,N,Co, C1},
and independent of u(xo, to), such that either

γ2Cρ > min{1 , u(xo, to)}
or

v(·, γ1) ≥ γo in K1.
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2.1 Proof of Proposition 2.1

For τ ∈ [0, 1), introduce the family of nested cylinders {Q−τ } with the same
“vertex” at (0, 0), and the families of nonnegative numbers {Mτ} and {Nτ},
defined by

Q−τ = Kτ × (−τp, 0], Mτ = sup
Q−

τ

v, Nτ = (1− τ)−β ,

where β > 1 is to be chosen. The two functions [0, 1) � τ → Mτ , Nτ are
increasing, and Mo = No = 1 since v(0, 0) = 1. Moreover Nτ → ∞ as τ → 1
whereas Mτ is bounded since v is locally bounded. Therefore the equation
Mτ = Nτ has roots and we let τ∗ denote the largest one. By the continuity of
v, there exists (y, s) ∈ Q̄τ∗ such that

v(y, s) = Mτ∗ = Nτ∗ = (1− τ∗)−β def
= M. (2.4)

Moreover

(y, s) +Q−r ⊂ Q−1+τ∗
2

⊂ Q1, where r
def
= 1

2 (1− τ∗). (2.5)

Therefore by the definition of Mτ and Nτ

sup
(y,s)+Q−

r

v ≤ sup
Q−

1+τ∗
2

v ≤ 2β(1− τ∗)−β def
= M∗.

The parameter τ∗, and hence the upper boundM∗, is only known qualitatively,
and β has to be chosen. The arguments below have the role of eliminating the
qualitative knowledge of τ∗ by a quantitative choice of β.

2.1.1 Local Largeness of v Near (y, s)

The largeness of v at (y, s) as expressed by (2.4), propagates to a full space-
time neighborhood nearby (y, s). To render this quantitative, set

ξ = 1− 1

2β+1
, a =

1− 3

2

1

2β+1

1− 1

2β+1

.

Lemma 2.1 Either C̄ ≥ 1, or

|[v > 1
2M ] ∩ [(y, s) +Q−r (M

2−p
∗ )]| > ν|Q−r (M2−p

∗ )| (2.6)

where

ν =
( 1− a

γ(data)

)N+p ξ
N(p−2)

p

(1 + ξp−2)
p+N

p

.
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Proof Assume that C̄ < 1. If (2.6) is violated, apply Lemma 3.1 of Chapter 3,
over the cylinder

(y, s) +Q−r (M
2−p
∗ ) = Kr(y)× (s−M2−p

∗ rp , s]

in the form (3.1)–(3.3), for the choices μ+ = ω = M∗ and θ = M2−p
∗ , to

conclude that
v(y, s) ≤M∗(1− aξ) = 3

4 (1− τ∗)−β ,

contradicting (2.4).

Remark 2.1 The indicated expressions of ξ, a, and ν imply that ν(β) de-
pends on the data and β, but is independent of τ∗, and is stable as p → 2.
Such a constant will be made quantitative whence β is chosen, dependent only
on the data. We continue to denote by ν such a constant, keeping in mind its
dependence on β.

Corollary 2.1 Either C̄ ≥ 1, or there exists a time level

s−M2−p
∗ rp ≤ s̄ ≤ s

such that
|[v(·, s̄) > 1

2M ] ∩Kr(y)| > ν|Kr|. (2.7)

2.2 Expanding the Positivity of v

Starting from (2.7) apply the expansion of positivity of Proposition 4.1 of
Chapter 4 to the weak solution v to (2.1)–(2.2), with 1

2M and r given by
(2.4)–(2.5) and α = ν. Then, taking into account the expression (2.3) of C̄,
either

u(xo, to) ≤ γ∗Cρ
r

M
(2.8)∗

or
v(·, t) ≥ η∗M in K2r(y) (2.9)∗

for all t in the range

s̄+
bp−2
∗

(η∗M)p−2
1
2δ∗r

p ≤ t ≤ s̄+
bp−2
∗

(η∗M)p−2
δ∗rp = s∗. (2.10)∗

Remark 2.2 The constants {γ∗, b∗, δ∗, η∗} in (2.8)∗–(2.10)∗ depend on the
data {N, p, Co, C1} and β, through the constant ν(β) in (2.7). However, they
are independent of the constant C̄ in (2.3), as discussed in Remark 1.2. These
constants are also independent of M and r. The parameter β is still to be
chosen.
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The expansion of positivity implies in particular

|[v(·, s∗) > η∗M ] ∩K2r(y)| = |K2r|. (2.11)

Therefore the expansion of positivity of Proposition 4.1 of Chapter 4 can be
applied again, starting at the time level s∗, with M replaced by (η∗M), ρ = 2r,
and α = 1. It gives that either

u(xo, to) ≤ γCρ
2r

η∗M
(2.8)1

or
v(·, t) ≥ η(η∗M) in K4r(y) (2.9)1

for all t in the range

s∗ +
bp−2

[η(η∗M)]p−2
1
2δ(2r)

p ≤ t ≤ s∗ +
bp−2

[η(η∗M)]p−2
δ(2r)p = s1. (2.10)1

Remark 2.3 The constants {γ, b, δ, η} in (2.8)1–(2.10)1 are different from
the set of constants {γ∗, b∗, δ∗, η∗} in (2.8)∗–(2.10)∗. They depend on the data
{N, p, Co, C1} but they are no longer dependent on β. By the expansion of
positivity of Proposition 4.1 of Chapter 4 these parameters depend only on
{N, p, Co, C1}, and the measure-theoretical lower bound α in (4.2) of Chap-
ter 4. Such a measure-theoretical lower bound in the current context is α = 1,
as provided by (2.11). The parameter β is still to be chosen.

Starting from (2.9)1 the expansion of positivity can now be applied again with
M replaced by η(η∗M), and ρ replaced by 4r, and α = 1 to yield that either

u(xo, to) ≤ γCρ
4r

η(η∗M)
(2.8)2

or
v(·, t) ≥ η2(η∗M) in K8r(y) (2.9)2

for all t in the range

s1 +
bp−2

[η2(η∗M)]p−2
1
2δ(4r)

p ≤ t ≤ s1 +
bp−2

[η2(η∗M)]p−2
δ(4r)p = s2 (2.10)2

for the same set of parameters {γ, b, δ, η} as in (2.8)1–(2.10)1. These parame-
ters depend on {p,N,Co, C1} but they are independent of β.

The process can be iterated to yield that either

u(xo, to) ≤ γCρ
2nr

ηn−1(η∗M)
(2.8)n

or
v(·, t) ≥ ηn(η∗M) in K2n+1r(y) (2.9)n
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for all t in the range

sn−1 +
bp−2

[ηn(η∗M)]p−2
1
2δ(2

nr)p ≤ t

≤ sn−1 +
bp−2

[ηn(η∗M)]p−2
δ(2nr)p = sn.

(2.10)n

2.3 Proof of Proposition 2.1 Concluded

Without loss of generality we may assume that (1− τ∗) is a negative, integral
power of 2. Then choosing n so that 2n+1r = 2, the cube K2(y) covers the
cube K1 centered at x = 0, and

v(·, t) ≥ ηn(η∗M) in K1,

for all t in the interval (2.10)n. For the indicated choice of n, and the values
of M and r given by (2.4)–(2.5)

ηn(η∗M) = ηn
η∗(β)

(1− τ∗)β
= ηn

2−βη∗(β)
rβ

= (2βη)n
η∗(β)

(2n+1r)β
= (2βη)nγo,

where
γo = 2−βη∗(β). (2.12)

To remove the qualitative knowledge of τ∗ and hence n, choose β from 2βη = 1.
Notice that such a choice is possible, since by Remark 2.3 the parameter η is
independent of β. This makes γo quantitative. The time level sn is computed
from

sn = s∗ +
bp−2

(η∗M)p−2
δrp

n∑
j=1

( 2p

ηp−2

)j
.

Therefore the range of t for which (2.9)n holds, can be estimated as

s∗ +
bp−2

[ηn(η∗M)]p−2
1
2δ(2

nr)p ≤ t ≤ s∗ +
bp−2

[ηn(η∗M)]p−2
2δ(2nr)p.

From the previous choices one estimates

s∗ + γ̄1 ≤ t ≤ s∗ + 4γ̄1 where γ̄1 =
( b

γo

)p−2 δ

2
.

By choosing η∗ even smaller if necessary, we may insure that γ̄1 ≥ 1 so that
s∗ + γ̄1 ≥ 0 and hence

γ1 = 3γ̄1 (2.13)
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is included in the times for which (2.9)n holds.
From Remark 2.3 it follows that b and η do not depend on η∗, and hence

the assumption of possibly taking η∗ smaller is justified.
Finally, from the indicated choices of n and β the alternatives (2.8)∗–(2.8)n

can be rewritten as u(xo, to) ≤ γ2Cρ for γ2 = γγ∗
γo

.

2.4 On the Connection Between γ and c

Examine now the connection between the constant γ that quantifies the bound
above in (1.4) and the constant c in (1.3) that quantifies the “waiting time”
for the forward, intrinsic Harnack estimate to hold.

The constant γ is generated by Proposition 2.1 and γ = γ−1
o with γo given

by (2.12) in terms of β and η∗(β). The “waiting time” is determined by (2.13).
Following Remark 2.2, the set of constants {γ, b, δ, η} are independent

of {γ∗, b∗, δ∗, η∗}. Whence the parameter β has been chosen the latter are
quantitatively determined.

Having determined β and hence η∗, one may repeat the proof with the
choice of a smaller η∗. In view of the indicated independence of {γ, b, δ, η}
from the parameters {γ∗, b∗, δ∗, η∗}, the process yields the same functional
dependence as in (2.12)–(2.13).

Thus the “waiting time” can be made larger by choosing a smaller η∗,
provided the constant γ is made larger as quantified by (2.12).

3 Proof of the Intrinsic, Backward Harnack Inequality in
Theorem 1.1

Fix (xo, to) ∈ ET , assume u(xo, to) > 0, and let (xo, to) +Q±4ρ(θ) as in (1.3).
Seek those values of t < to, if any, for which

u(xo, t) = 2γu(xo, to) (3.1)

where γ is the constant in the intrinsic, forward estimate (1.3)–(1.4), which
by the results of the previous section, holds for all such intrinsic cylinders. If
such a t does not exist

u(xo, t) < 2γu(xo, to) for all t ∈ (to − θ(4ρ)p, to). (3.2)

We establish by contradiction that this in turn implies

sup
Kρ(xo)

u(·, to − θρp) ≤ 2γ2u(xo, to). (3.3)

If not, by continuity there exists x∗ ∈ Kρ(xo) such that

u(x∗, to − θρp) = 2γ2u(xo, to).
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Apply the intrinsic, forward Harnack inequality in (1.3)–(1.4) with (xo, to)
replaced by (x∗, to − θρp), to get

u(x∗, to − θρp) ≤ γ inf
Kρ(x∗)

u(·, to − θρp + θ∗ρp) (3.4)

where

θ∗ =
( c

u(x∗, to − θρp)

)p−2

.

Now xo ∈ Kρ(x∗) and, since γ > 1 and p > 2,

to − θρp + θ∗ρp = to −
( c

u(xo, to)

)p−2

ρp +
( c

u(x∗, to − θρp)

)p−2

ρp

= to −
( c

u(xo, to)

)p−2

ρp +
1

(2γ2)p−2

( c

u(xo, to)

)p−2

ρp

= to −
[
1− (2γ2)2−p

]( c

u(xo, to)

)p−2

ρp < to.

Therefore from (3.2) and (3.4)

2γ2u(xo, to) = u(x∗, to − θρp) ≤ γu(xo, to − θρp + θ∗ρp) < 2γ2u(xo, to).

The contradiction establishes (3.3).

3.1 There Exists t < to Satisfying (3.1)

Let τ < to be the first time for which (3.1) holds. For such a time

to − τ >
( c

u(xo, τ)

)p−2

ρp =
1

(2γ)p−2

( c

u(xo, to)

)p−2

ρp. (3.5)

Indeed, if such inequality were violated, by applying the intrinsic, forward
Harnack inequality in (1.3)–(1.4) with (xo, to) replaced by (xo, τ) would give

2γu(xo, to) = u(xo, τ) ≤ γu(xo, to).

Set

s = to − 1

(2γ)p−2

( c

u(xo, to)

)p−2

ρp.

From the definitions, the continuity of u and (3.5)

τ < s < to and u(xo, s) ≤ 2γu(xo, to).

We claim that

u(y, s) < 2γu(xo, to) for all y ∈ Kρ(xo). (3.6)

Proceeding by contradiction, let y ∈ Kρ(xo) be such that
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u(y, s) = 2γu(xo, to).

Apply the intrinsic, forward Harnack inequality in (1.3)–(1.4) with (xo, to)
replaced by (y, s) to obtain

u(y, s) ≤ γ inf
Kρ(y)

u(·, s+ θsρ
p), where θs =

( c

u(y, s)

)p−2

.

Using the definition of s and θs one computes

s+ θsρ
p = to.

Therefore, since y ∈ Kρ(xo)

2γu(xo, to) = u(y, s) ≤ γ inf
Kρ(y)

u(·, to) ≤ γu(xo, to).

The contradiction implies that (3.6) holds true. Summarizing the results of
these alternatives, either (3.3) holds or (3.6) is in force. The proof is now
concluded by using the arbitrariness of ρ and by properly redefining γ.

4 The Intrinsic Harnack Inequality Implies the Hölder
Continuity

The intrinsic Harnack inequality of Theorem 1.1 can be used to establish
that local, weak solutions u to (1.1)–(1.2) of Chapter 3, in ET , are locally
Hölder continuous in ET , irrespective of their signum, and permits one to
exhibit a quantitative Hölder modulus of continuity. These solutions are lo-
cally bounded ([41]) in ET . To streamline the presentation and symbolism,
we assume that u ∈ L∞(ET ). Let

Γ = ∂ET − Ē × {T }
denote the parabolic boundary ofET , and for a compact setK ⊂ ET introduce
the intrinsic, parabolic p-distance from K to Γ by

p− dist(K;Γ )
def
= inf

(x,t)∈K
(y,s)∈Γ

(
|x− y|+ ‖u‖

p−2
p

∞,ET
|t− s| 1p

)
.

Theorem 4.1 Let u be a bounded, local, weak solution to (1.1)–(1.2) of Chap-
ter 3. Then u is locally Hölder continuous in ET , and there exist constants
γ > 1 and α ∈ (0, 1) that can be determined a priori only in terms of the data
{p,N,Co, C1}, such that for every compact set K ⊂ ET ,

|u(x1, t1)− u(x2, t2)| ≤ γ‖u‖∞,ET

( |x1 − x2|+ ‖u‖
p−2
p

∞,ET
|t1 − t2| 1p

p− dist(K;Γ )

)α
for every pair of points (x1, t1), and (x2, t2) ∈ K.
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Proof Fix a point in ET , which up to a translation we take to be the origin
of RN+1. For ρ > 0 consider the cylinder

Q∗ = Kρ × (−ρ2, 0]

with “vertex” at (0, 0) and set

μ+
o = sup

Q∗
u, μ−o = inf

Q∗
u, ωo = osc

Q∗
u = μ+

o − μ−o .

With ωo at hand, construct now the cylinder of intrinsic geometry

Qo = Kρ × (−θoρp, 0] where θo =

(
c

ωo

)p−2

and c is a constant to be determined in terms only of the data {p,N,Co, C1, C},
and independent of u and ρ. If ωo ≥ cρ, then Qo ⊂ Q∗. Theorem 4.1 is then
a consequence of the following.

Proposition 4.1 There exist constants c, γ > 1, and ε, δ ∈ (0, 1), that can
be quantitatively determined only in terms of the data {p,N,Co, C1}, and
independent of u and ρ, such that, if ωo ≥ cρ, setting ρo = ρ and

ωn = δωn−1, θn =

(
c

ωn

)p−2

, ρn = ερn−1, Qn = Q−ρn
(θn)

for n ∈ N, we have Qn+1 ⊂ Qn, and either

osc
Qn

u ≤ 4γ
C

ε
ρn or osc

Qn

u ≤ ωn.

Proof We exhibit constants c, δ, ε depending only on the data {p,N,Co, C1},
such that if the statement holds for n, it continues to hold for n + 1. Thus
assume Qn has been constructed and that the statement holds up to n. Set

μ+
n = sup

Qn

u, μ−n = inf
Qn

u, and Pn = (0,− 1
2θnρ

p
n).

The point Pn is roughly speaking the “mid-point” of Qn. The two functions
(Mn − u) and (u−mn) are nonnegative weak solutions to (1.1) of Chapter 3
in Qn. Either of these satisfies the intrinsic Harnack inequality with respect
to Po in Qn, if its “intrinsic waiting time”( c

μ+
n − u(Pn)

)p−2

ρpn, or
( c

u(Pn)− μ−n

)p−2

ρpn

is of the order of θnρ
p
n. At least one of the two inequalities

μ+
n − u(Pn) >

1
4ωn, u(Pn)− μ−n > 1

4ωn



104 5 The Harnack Inequality for Degenerate Equations

must hold. Assuming the first holds true, apply the intrinsic, forward Harnack
inequality of Theorem 1.1. By possibly modifying the constant c appearing in
(1.3) that determines the “waiting time,” either

γCρn ≥
(
μ+
n − u(Pn)

)
>

1

4
ωn (4.1)

or

inf
Q−

1
4
ρn

(θn)
(μ+

n − u) ≥ 1

γ

(
μ+
n − u(Pn)

)
>

1

4γ
ωn. (4.2)

Choosing

δ = (1− 1

4γ
) and ε =

1

4
δ

p−2
p

one verifies that Qn+1 ⊂ Q−1
4ρn

(θn) ⊂ Qn. Then if (4.1) occurs,

osc
Qn+1

u ≤ Cγ̃ρn+1, for γ̃ =
4γ

ε
.

If (4.2) occurs, then

μ+
n ≥ sup

Qn+1

u+
1

4γ
ωn.

From this, subtracting infQn+1 u from both sides

ωn ≥ osc
Qn+1

u+
1

4γ
ωn.

Thus
osc
Qn+1

u ≤ δωn = ωn+1.

Proof (of Theorem 4.1 Concluded) From the construction of Proposition 4.1
it follows that

osc
Qn

u ≤ C
4γ

ε
ρn + ωn.

By iteration
osc
Qn

u ≤ δnωo + 4γCεn−1ρo.

Let now 0 < r < ρ be fixed. There exists a nonnegative integer n such that

εn+1ρ ≤ r ≤ εnρ.

This implies

(n+ 1) ≥ ln
( r
ρ

) 1
ln ε

,

δn ≤ 1

δ

( r
ρ

)α1

, α1 =
| ln δ|
| ln ε| ,
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osc
Qn

u ≤ 1

δ
ωo

( r
ρ

)α1

+ 4γ
C

ε

( r
ρ

)
ρ,

that is,

osc
Qn

u ≤ C∗(ωo + ρ)
( r
ρ

)α
where

C∗ =
1

δ
+ 4γ

C

ε
and α = min{α1 , 1}.

To conclude the proof, we observe that since ωn ≤ ωo, the cylinder Qr(θo) is
included in Qn, and therefore

osc
Qr(θo)

u ≤ C∗(ωo + ρ)
( r
ρ

)α
.

Statements of Hölder continuity over a compact set now follow by a standard
covering argument.

5 Liouville-Type Results

The Harnack inequality, while local in nature, has global implications. For
example, harmonic functions defined in R

N and with one-sided bound are
constant. This, known as the Liouville theorem, is solely a consequence of the
Harnack inequality. As such it extends to solutions to homogeneous, elliptic
partial differential equations in R

N with one-sided bound.
This property does not extend to nonnegative solutions to the heat equa-

tion in R
N × R. A one-sided bound on these solutions does not imply that

they are constant. The function

R× R � (x, t)→ u(x, t) = ex+t

is nonnegative, satisfies the heat equation in R×R, and is not constant. The
Liouville theorem continues to be false for nonnegative solutions to degenerate
p-Laplacian type equations. The function constructed in (3.2) of Chapter 4
solves the homogeneous, prototype p-Laplacian equation (1.3) of Chapter 3
in R × R, is nonnegative, and nonconstant. It is then natural to ask what
kind of global properties are implied by the intrinsic Harnack inequality of
Theorem 1.1.

Henceforth we let u be a solution to the degenerate (p > 2), homogeneous
(C = 0) equations (1.1)–(1.2) of Chapter 3 in the semi-infinite strip

ST = R
N × (−∞, T ) for some fixed T ∈ R.

If u is bounded above (below) in ST , set

M = sup
ST

u, (m = inf
ST

u)
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and for points (y, s) ∈ ST for which M > u(y, s), (u(y, s) > m, respectively)
construct the intrinsic, backward p-paraboloid(s)

PM (y, s) =
{
(x, t) ∈ ST

∣∣ t− s ≤ −
( c

M − u(y, s)

)p−2

|x− y|p
}

(
Pm(y, s) =

{
(x, t) ∈ ST

∣∣ t− s ≤ −
( c

u(y, s)−m

)p−2

|x− y|p
})

where c is the constant in the intrinsic Harnack inequality (1.3)–(1.4).

5.1 Two-Sided Bounds and Liouville-Type Results

Proposition 5.1 If u is bounded above and below in ST , then u is constant.

The proof is an immediate consequence of the following lemma:

Lemma 5.1 Let u be bounded below (above) in ST . Then for all x ∈ R
N

lim
t→−∞u(x, t) = inf

ST

u,
(

lim
t→−∞u(x, t) = sup

ST

u
)
,

and the limit is uniform for x ranging over a compact set K ⊂ R
N such that

K × {τ} is included in a p-paraboloid Pm(y, s), (PM (y, s), respectively), for
some τ < s.

Proof Having fixed ε > 0, there exists (yε, sε) ∈ ST , such that

u(xε, tε)−m =
ε

γ

where γ is the constant in the intrinsic, backward Harnack inequality in (1.4).
Applying such inequality to (u−m) gives

m ≤ u(y, s) ≤ m+ ε, for all (y, s) ∈ Pm(yε, sε).

Now, for any x ∈ R
N , the half-line [t < T ] × {x} enters the p-paraboloid

Pm(yε, sε) for some t.

Proposition 5.2 Let u be bounded below in ST and assume that

sup
RN

u(·, s) = Ms < +∞ for some s < T.

Then u is constant in Ss.

Proof We may assume m = 0. The assumption implies

0 ≤ u(y, s) ≤Ms <∞ for all y ∈ R
N .

By the backward, intrinsic Harnack inequality in (1.3)–(1.4),

0 ≤ u ≤ γMs in Pm(y, s) for all y ∈ R
N .

Hence 0 ≤ u ≤ γMs in Ss, and by Proposition 5.1 u is constant in Ss.
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Remark 5.1 In the statement of Theorem 1.1 it is required that Q±4ρ(θ) is
contained in ET . As a matter of fact, the proof of such a theorem shows that,
once the constant c of (1.3) has been determined, there is no need to have
further room above, and it is enough to assume that to + θρp < T . On the
other hand, the need of extra room below to is not a merely technical fact,
and such an assumption cannot be removed.

5.2 Two-Sided Bound at One Point, as t→∞
It has been observed that a one-sided bound on u is not sufficient to infer
that u is constant in ST . Such a conclusion, however, holds if u has a two-
sided bound as indicated by Proposition 5.1. The explicit solution (1.5)–(1.6)
blows up as t → T , and suggests that if u is defined in the whole R

N × R,
a condition weaker than a two-sided bound might imply that u is constant.
The next proposition is in this direction; it asserts that it suffices to check
the two-sided boundedness of u at a single point y ∈ R

N , for large times, to
conclude that u is constant.

Proposition 5.3 Let u be defined and bounded below in R
N × R. If

lim
s→+∞ u(y, s) = α for some y ∈ R

N and some α ∈ R,

then u is constant.

Proof Assume m = 0, and α > 0. There exists a sequence {sn} → ∞, such
that for all arbitrary but fixed ε > 0, there exists nε ∈ N such that

α− ε < u(y, sn) < α+ ε for all n ≥ nε.

Fix s > snε , and define a sequence of radii {ρn}, such that

sn −
( c

α+ ε

)p−2

ρpn = s =⇒ ρn =
[
(sn − s)

(α+ ε

c

)p−2] 1
p

.

By the intrinsic, backward Harnack inequality in (1.3)–(1.4)

sup
Kρn

u
(
·, sn −

( c

u(y, sn)

)p−2

ρpn

)
≤ γu(y, sn) ≤ γ(α+ ε)

which we rewrite as
sup
Kρn

u(·, s) ≤ γ(α+ ε).

Now let n → ∞ by keeping s > snε fixed. Then ρn → ∞ and the previous
inequality implies

sup
RN

u(·, s) = Ms ≤ γ(α+ ε).

The conclusion now follows from Proposition 5.2, since s > snε is arbitrary.
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Remark 5.2 Assuming α > 0 for simplicity, the same argument continues
to hold, if there exists a sequence {(yn, sn)} ⊂ R

N × R and s ∈ R, such that
sn → +∞,

sn − s =
( c

α

)p−2

|yn|p,
and limn→+∞ u(yn, sn) = α.

6 Subpotential Lower Bounds

The homogeneous, prototype equation (1.3) of Chapter 3 admits the family
of Barenblatt-type subsolutions

Γν,p(x, t; y, s) =
kρν

S
ν
λ (t)

[
1− b(ν, p)

( |x− y|
S

1
λ (t)

) p
p−1 ] p−1

p−2

+

where ν ≥ N , k and ρ are positive parameters and

S(t) = kp−2ρν(p−2)(t− s) + ρλ t ≥ s

b(ν, p) =
1

λ
1

p−1

p− 2

p
, λ = ν(p− 2) + p.

One verifies that for ν = N , the functions ΓN,p are exact solutions to the pro-
totype, degenerate, homogeneous equation (1.3) of Chapter 3 for all k, ρ > 0
(see also § 3.2 of Chapter 4), whereas for ν > N they are subsolutions. In-
formation on the behavior of nonnegative solutions to the prototype equation
(1.3) of Chapter 3 can be derived by comparing them with Γν,p. For example,
if u(·, s) ≥ k in the ball Bρ(y), then the positivity of u expands over the balls

|x− y| < b(ν, p)−
p−1
p S

1
λ (t)

at later times t. Moreover u does not decay faster than t−ν/λ for t� 1 ([41],
Chapter VI). One verifies that as p→ 2

Γν,p(x, t; y, s)→ Γν(x, t; y, s) =
kρν

[(t− s) + ρ2]
ν
2
exp

[
− |x− y|2

4[(t− s) + ρ2]

]
pointwise in R

N × [t > s]. For ν = N the latter are exact solutions to the heat
equation and one verifies that for ν > N they are subsolutions. In this sense
the functions Γν,p for ν ≥ N are subpotentials.

Given the general quasilinear structure of (1.1)–(1.2) of Chapter 3, the
functions Γν,p are not subsolutions to these equations in any sense. Moreover
no comparison principle holds. Nevertheless the “fundamental subsolutions”
Γν,p drive, in a sense made precise by Proposition 6.1 below, the structural
behavior of nonnegative solutions to these degenerate, quasilinear equations.
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The content of Propositions 6.1–6.2 is that these weak solutions are, locally,
bounded below by one Γν,p for some ν > N , and thus they do not decay in
space, faster than these “subpotentials.”

Proposition 6.1 Let u be a continuous, nonnegative, local, weak solution to
the degenerate (p > 2), homogeneous (C = 0), quasilinear equations (1.1)–
(1.2) of Chapter 3, in ET . There exist positive constants γo < 1 and γ1 > 1,
depending only on the data {p,N,Co, C1} and the constants c and γ appear-
ing in the Harnack inequality (1.3)–(1.4) of Theorem 1.1, such that for all
(xo, to) ∈ ET such that u(xo, to) > 0, and all (x, t) ∈ ET with

K8|x−xo|(xo) ⊂ E, and 0 < t− to < 1
4p to, (6.1)

we have

u(x, t) ≥ γou(xo, to)
{
1− γ1

[ |x− xo|p
u(xo, to)p−2(t− to)

] 1
p−1

} p−1
p−2

+
. (6.2)

Proof Fix (x, t) as in (6.1) and consider the line segment �o through (xo, to)
and (x, t)

�o y − xo =
x− xo

t− to
(s− to), to < s ≤ t,

and the p-paraboloid with bottom vertex at (xo, to)

Po s− to = θ|y − xo|p, where θ =
( c

u(xo, to)

)p−2

.

By (6.1) �o ⊂ ET . If �o does not intersect Po at points other than (xo, to),
then (6.2) follows from the intrinsic, forward Harnack inequality (1.3)–(1.4).
Let then �o intersect Po at (x1, t1) with |x1 − xo| < |x− xo|, and

|x1 − xo|p−1 =
(u(xo, to)

c

)p−2 t− to
|x− xo|

t1 − to =
( c

u(xo, to)

)p−2

|x1 − xo|p.

Iterating this procedure gives a finite number of points (xj , tj), with j =
1, . . . , n, such that to < t1 < · · · < tn ≤ t and

|xj+1 − xj |p−1 =
(u(xj , tj)

c

)p−2 t− to
|x− xo|

tj+1 − tj =
( c

u(xj , tj)

)p−2

|xj+1 − xj |p,
(6.3)

and where (xn, tn) is the first point not overcoming (x, t). Using the intrinsic,
forward Harnack inequality of Theorem 1.1,

u(xj , tj) ≤ γ u(xj+1, tj+1), j = 0, . . . , n− 1,
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provided the cylinder

(xj , tj) +Q4ρj (θj) with θj =
( c

u(xj , tj)

)p−2

and ρj = |xj+1 − xj |

is contained in ET . This is the case if

tj − (4ρj)
pθj ≥ 0

which, in view of (6.3), is verified if

tj − 4p(tj+1 − tj) ≥ 0.

This last inequality holds true by the last of (6.1). A similar argument for the
space variables guarantees the inclusion of

(xj , tj) +Q4ρj (θj) ⊂ ET .

We infer that

u(xj , tj) ≥ γ−ju(xo, to) for j = 1, . . . , n− 1. (6.4)

From this and (6.3) it follows that

|x− xo| ≥
n−1∑
j=0

|xj+1 − xj |

=
( 1

cp−2

t− to
|x− xo|

) 1
p−1

n−1∑
j=0

u(xj , tj)
p−2
p−1

≥
( t− to
|x− xo|

) 1
p−1

(u(xo, to)

c

) p−2
p−1

n−1∑
j=0

(
γ−

p−2
p−1

)j
=
( t− to
|x− xo|

) 1
p−1

(u(xo, to)

c

) p−2
p−1 1− qn

1− q
,

(6.5)

where q = γ−
p−2
p−1 . Then, combining (6.4) written for j = n and (6.5), gives

(u(xn, tn)

u(xo, to)

) p−2
p−1 ≥ qn ≥ 1− γ1

( |x− xo|p
u(xo, to)p−2(t− to)

) 1
p−1

,

whenever the right-hand side is positive. Here

γ1 =
(
γ

p−2
p−1 − 1

)(
cγ−1

) p−2
p−1 . (6.6)

The previous inequality is rewritten as

u(xn, tn) ≥ u(xo, to)

[
1− γ1

( |x− xo|p
u(xo, to)p−2(t− to)

) 1
p−1

] p−1
p−2

+

.
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If (xn, tn) = (x, t), this is (6.2) with γo = 1. Otherwise, a further application
of the intrinsic, forward Harnack inequality (1.3)–(1.4) gives

u(x, t) ≥ γ−1u(xn, tn)

thereby establishing (6.2) with γo = min{1 , γ−1}.
The result of Proposition 6.1 can be improved to include an estimate of the
decay in time of these solutions, provided u is a local solution in the whole
half-space

S∞ = R
N × (0,∞)

which, for the remainder of this section, we assume.

Proposition 6.2 Let (xo, to) ∈ S∞ and assume that u(xo, to) > 0. Then for
all x ∈ R

N and all t > 4to > 0, we have

u(x, t)

u(xo, to)
≥ γo

( to
t

)a
[
1− γ2

( t

to

)a p−2
p−1

( |x− xo|p
u(xo, to)p−2(t− to)

) 1
p−1

] p−1
p−2

+

, (6.7)

where
a = ln γ, γ2 = γ12

1
p−1 ,

γo and γ1 are the constants claimed in Proposition 6.1, and γ is the constant
appearing in the Harnack inequality (1.3)–(1.4) of Theorem 1.1.

Proof Let k be that positive integer for which

(1 + σ)k+1to ≤ t ≤ (1 + σ)k+2to for some fixed 0 < σ ≤ 1
3

1
4p ,

and let τ = (1+σ)kto. Since the time τ satisfies (6.1), the estimate (6.2) holds
for it, which we rewrite explicitly as

u(x, t) ≥ γou(xo, τ)
[
1− γ1

( |x− xo|p
u(xo, τ)p−2(t− τ)

) 1
p−1

] p−1
p−2

+
. (6.8)

Next apply the intrinsic forward Harnack inequality (1.3)–(1.4) for the time
levels tj = (1 + σ)jto, for j = 0, . . . , k − 1, and by keeping xo fixed. The in-
equality is intrinsic and the “ending times” tj+1, starting from tj , are realized
by a proper choice of ρj. This implies

u(xo, to) ≤ γku(xo, τ),

that is,

u(xo, τ) ≥
( to
τ

)ln γ/ ln(1+σ)

u(xo, to) ≥
( to
t

)ln γ/ ln(1+σ)

u(xo, to).

On the other hand,

t− τ > (1 + σ)−2t ≥ (1 + σ)−2(t− to).

Combining these estimates in (6.8) proves the proposition.
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Remark 6.1 The constants c and γ of Theorem 1.1 are stable as p → 2.
Thus letting p→ 2 in (6.7), and taking into account the structure (6.6) of the
constant γ1 and the expression of γ2 gives

u(x, t) ≥ γ̃ou(xo, to)
( to
t

)a
exp

(
− γ̃1

|x− xo|2
t− to

)
for constants γ̃o and γ̃1 depending only on the data {N,Co, C1} in the struc-
ture conditions (1.2) of Chapter 3 for p = 2. Thus for p → 2 we recover the
classical result of Moser ([121]), for nonnegative solutions to nondegenerate
(p = 2), linear, parabolic equations with bounded and measurable coefficients.

7 A Weak Harnack Inequality for Positive
Supersolutions

Local, weak supersolutions to the degenerate (p > 2) equations (1.1)–(1.2) of
Chapter 3 in ET , need not be continuous, and if nonnegative, they do not,
in general, satisfy a Harnack estimate. Nevertheless they satisfy a weak, or
integral, form of the Harnack inequality as expressed in the following theorem.
To convey the main ideas, the theory is presented for homogeneous equations
for which C = 0. The extension to nonhomogeneous equations C 	= 0 is
achieved by the usual alternative that negating Cρ > 1, forces Cρ ≤ 1.

Throughout, for y ∈ E, let ρ > 0 be so small that K16ρ(y) ⊂ E.

Theorem 7.1 Let u be a nonnegative, local, weak supersolution to the de-
generate (p > 2), homogeneous (C = 0) equations (1.1)–(1.2) of Chapter 3
in ET . There exist positive constants c and γ, depending only on the data
{p,N,Co, C1}, such that for a.e. s ∈ (0, T )

−
∫
Kρ(y)

u(x, s)dx ≤ c
( ρp

T − s

) 1
p−2

+ γ inf
K4ρ(y)

u(·, t) (7.1)

for all times
s+ 1

2θρ
p ≤ t ≤ s+ θρp

where

θ = min
{
c2−2T − s

ρp
,
(
−
∫
Kρ(y)

u(x, s)dx
)2−p}

. (7.2)

The proof of Theorem 7.1 rests on the following improved version of the
expansion of positivity for p > 2.

Proposition 7.1 Let u be a nonnegative, local, weak supersolution to the
degenerate (p > 2), homogeneous (C = 0) equations (1.1)–(1.2) of Chapter 3
in ET . Assume that for some (y, s) ∈ ET and some ρ > 0∣∣[u(·, s) ≥M ] ∩Kρ(y)

∣∣ ≥ α
∣∣Kρ(y)

∣∣ (7.3)
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for some M > 0 and some α ∈ (0, 1). There exist constants ηo, δ in (0, 1) and
b, d > 1 depending only on the data {p,N,Co, C1}, and α, such that

u(·, t) ≥ η∗M a.e. in K2ρ(y), where η∗ = ηoα
d, (7.4)

for all times

s+
bp−2

(η∗M)p−2
1
2δρ

p ≤ t ≤ s+
bp−2

(η∗M)p−2
δρp (7.5)

provided

K8ρ(y)×
(
s , s+

bp−2

(η∗M)p−2
δρp

]
⊂ ET .

This improves Proposition 4.1 of Chapter 4 in that the functional depen-
dence of the shrinking parameter η on the measure-theoretical parameter α
is power-like as opposed to an exponential form, as indicated in (4.5) of Re-
mark 4.3 of Chapter 4. Such a power-like dependence is made possible by the
measure-theoretical Lemma 3.1 of the Preliminaries.

8 Proof of Proposition 7.1

Assume (y, s) = (0, 0). By Lemma 1.1 of Chapter 4 there exist δ and ε in
(0, 1), depending only on the data {p,N,Co, C1}, and α, and independent of
M , such that

|[u(·, t) > εM ] ∩Kρ| ≥ 1
2α|Kρ| for all t ∈

(
0,

δρp

Mp−2

]
. (8.1)

The dependence of δ and ε on α is traced in (1.3) of Chapter 4. Next, write
down the energy estimates (2.3) of Chapter 3 for (u −M)−, over the pair of
cylinders

Q = Kρ ×
( 1

2δ

Mp−2
ρp,

δ

Mp−2
ρp
]
, Q′ = K2ρ ×

(
0,

δ

Mp−2
ρp
]
.

The nonnegative, piecewise smooth, cutoff function ζ is taken to be equal to
one on Q, vanishing on the parabolic boundary of Q′, and such that

0 ≤ ζt ≤ 4p

δM2−pρp
, |Dζ| ≤ 4

ρ
.

The resulting energy estimates are

Co

∫∫
Q∩[u≤M ]

|Du|pdx dt ≤ γ
4p+1

δρp
Mp|Q|.

The change of variable
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y =
x

ρ
, τ =

t

δM2−pρp
, w =

(M − u)+
M

maps Q into Q = K1 × (12 , 1], and the previous estimate yields∫∫
Q

|Dw|pdy dτ ≤ γ

αp+1
|Q|, (8.2)

where γ is a constant that depends only on {p,N,Co, C1}, and we have taken
into account the dependence of δ on α given by (1.3) of Chapter 4. In terms
of z = (1− w)/ε, (8.1) reads

|[z(·, τ) > 1] ∩K1| > 1
2α for all τ ∈ (12 , 1]. (8.3)

From (8.2)–(8.3) it follows there exists τ1 ∈ (12 , 1], such that∫
K1

|Dz(·, τ1)|dy ≤ γ

ε α
p+1
p

, and |[z(·, τ1) > 1] ∩K1| > 1
2α. (8.4)

By Lemma 3.1 of the Preliminaries, applied with δ = λ = 1
2 , there exist

yo ∈ K1, and ε, that depend only on {p,N,Co, C1} and α, such that∣∣[w(·, τ1) < 1− 1
2ε
] ∩Kε(yo)

∣∣ > 1
2 |Kε(yo)|.

The functional dependence of ε on the measure-theoretical parameter α, and
on the constant appearing on the right-hand side of (8.4), is traced in (3.5) of
the Preliminaries. Also the functional dependence of ε on the parameter α is
traced in (1.3) of Chapter 4. Hence

ε = B−1
o α

4p+1
p , ε = 1

8α (8.5)

for an absolute constant Bo > 1 depending only on the data {p,N,Co, C1}
and independent of α. Returning to the original variables gives a time t1 in
the range

M2−p 1
2δρ

p < t1 ≤M2−pδρp

where ∣∣[u(·, t1) > 1
2εM

] ∩Kερ(xo)
∣∣ > 1

2 |Kερ(xo)|.
This measure-theoretical information plays the same role as (4.2) in Proposi-
tion 4.1 of Chapter 4, with α being replaced by an absolute constant, and ρ
being replaced by ερ. By the same proposition

u(x, t) ≥ 1
2εη̄M for a.e. x ∈ K2ερ(xo) (8.6)

for all times

t1 +
bp−2

(12εη̄M)p−2
1
2 δ̄(ερ)

p ≤ t ≤ t1 +
bp−2

(12εη̄M)p−2
δ̄(ερ)p
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where η̄ and δ̄ are the constants η and δ claimed by Proposition 4.1 of Chap-
ter 4, corresponding to the value 1

2 of the parameter α. As such, these pa-
rameters are absolute numbers depending only on the data {p,N,Co, C1} and
independent of the value α as appearing in (7.3).

The expansion of positivity is now repeated starting from (8.6) with M
replaced by 1

2εη̄M and α = 1, and continued, at each step with α = 1. This
implies that the constants η̄ and δ̄ can be taken to be the same at each
repetition of the expansion process, and yields

u(·, t) > 1
2εη̄

nM for a.e. x ∈ K2nερ(xo)

for all times

tn−1 +
bp−2

(12εη̄
nM)p−2

1
2 δ̄(ερ)

p ≤ t ≤ tn−1 +
bp−2

(12εη̄
nM)p−2

δ̄(ερ)p.

To realize the expansion of positivity to the cube K2ρ take

2nε = 2 =⇒ n = 1 + ln ε−
1

ln 2 =⇒ n = 1 + log 1
η̄
ε

ln η̄
ln 2 .

Hence recalling the functional dependence of ε and ε on the parameter α as
given in (8.5), yields the existence of ηo ∈ (0, 1) and d > 1 depending only on
the data and independent of α, such that (7.4)–(7.5) hold.

9 Proof of Theorem 7.1 by Alternatives

By a translation and dilation of the space and time variables, we may assume
y = 0 and ρ = 1. Consider the cylinder K8 × (0, T1] where T1 > 1 is to be
chosen, and assume without loss of generality that it is contained in ET .

The proof of Theorem 7.1 unfolds along two alternatives. Either in the
cylinder K1 × (0, 1] there exist a time level to and a k > 1, such that

∣∣[u(·, to) > k1+
1
d

] ∩K1

∣∣ > 1

k
1
d

|K1| (9.1)

or such inequality is violated for all k > 1 and all to ∈ (0, 1). Here d > 1 is
the constant claimed in (7.4) of Proposition 7.1.

If some k > 1 and to ∈ (0, 1) exist, satisfying (9.1), by Proposition 7.1

u(·, t) ≥ ηok
1
d a.e. in K2

for all times

to +
bp−2

(ηok
1
d )p−2

1
2δ ≤ t ≤ to +

bp−2

(ηok
1
d )p−2

δ.

By possibly reducing ηo, if needed, we may assume, without loss of generality,
that
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1 +
bp−2

ηp−2
o

1
2δ ≤

bp−2

ηp−2
o

δ.

Hence we conclude that if (9.1) holds true for some k > 1 and some to ∈ (0, 1),
then

u(·, t) ≥ ηo a.e. in K2 ×
(
1 + 1

2T1 , T1

]
(9.2)

where we have set

T1 = δ
( b

ηo

)p−2

. (9.3)

If no k > 1 and to ∈ (0, 1) exist satisfying (9.1), then

∣∣[u(·, t) > k1+
1
d

] ∩K1

∣∣ ≤ 1

k
1
d

|K1| (9.4)

for almost every time t ∈ (0, 1] and all levels k ≥ 1. Set

σ =
1

2

1

d+ 1
(9.5)

and compute∫
K1

uσ(x, t)dx = σ

∫ ∞

0

sσ−1|[u > s] ∩K1|ds

= σ

∫ 1

0

sσ−1|[u > s] ∩K1|ds

+ σ

∫ ∞

1

sσ−1|[u > s] ∩K1|ds

≤
[
σ

∫ 1

0

sσ−1ds+ σ

∫ ∞

1

sσ−1s−
1

d+1ds
]
|K1|

=
[
1 + σ

∫ ∞

1

s−σ−1
]
|K1| = 2|K1|.

(9.6)

The next step in the proof is in transforming this absolute bound of the
Lσ(K1) integral of u(·, t), uniform in t ∈ (0, 1), into an absolute bound of the
Lq-norm of u over the cylinder K1 × (0, 1), for some q > 1.

10 A Reverse Hölder Inequality for Supersolutions

Raising the integrability of u is achieved by Moser’s method ([120]). A stan-
dard application of this method proves the following lemma.

Lemma 10.1 Let u be a nonnegative, local, weak supersolution to the degen-
erate (p > 2), homogeneous (C = 0) equations (1.1)–(1.2) of Chapter 3 in the
cylindrical domain

K × (t1, t2)
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where K is a cube in R
N . Then for all ε < 0 with ε 	= −1,

p

Co|ε(1 + ε)| sup
t1<t<t2

∫
K

u1+εϕpdx+

∫ t2

t1

∫
K

|Du|pu−1+εϕpdx dt

≤
( C1p

Co min{1 , |ε|}
)p ∫ t2

t1

∫
K

up−1+ε|Dϕ|pdx dt (10.1)

+
p

Co

∫ t2

t1

∫
K

u1+ε
( 1

min{1 , |ε|}(1 + ε)

∂ϕp

∂t

)
+
dx dt,

for every test-function

ϕ ∈W 1,2
(
t1, t2;L

2(K)
) ∩ Lp

(
t1, t2;W

1,p
o (K)

)
provided u ≥ ν in K × (t1, t2) for some ν > 0.

This, in turn, permits one to establish the following reverse Hölder inequality.

Lemma 10.2 Let u be a nonnegative, local, weak supersolution to the de-
generate (p > 2), homogeneous (C = 0) equations (1.1)–(1.2) of Chapter 3
in

Q1 = K1 × (0, 1)

and assume that u ≥ 1 in Q1. For all q in the range

p− 2 < q < p− 1 +
p

N

and all s given by

s = p− 2 +
(
1 +

p

N

)−(n+1)

(q − (p− 2)), n = 1, 2, . . .

there is a positive constant γ, depending only on the data {p,N,Co, C1}, and
q and s, such that

( ∫ ap

0

∫
Ka

uqdx dt
) 1

q−p+2 ≤
( γ

(1− a)N+p

∫ 1

0

∫
K1

usdx dt
) 1

s−p+2

(10.2)

for all a ∈ (12 , 1).

Proof For n ∈ N set

ρo = 1, ρj = 1− (1 − a)
1− 2−j

1− 2−(n+1)

Kj = Kρj , Qj = Kρj × (0, ρpj ] = Qρj (1).

j = 0, 1, . . . , n+ 1,

For the pair of cylinders Qj and Qj+1, choose nonnegative, piecewise smooth,
test functions ϕj , that equal 1 on Qj+1, vanish on the conjugate parabolic
boundary of Qj
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∂∗Qj = ∂Qj −Kj × {0},
and such that

|Dϕj | ≤ γ
2j+1

(1− a)
, 0 ≤

∣∣∣∂ϕj

∂t

∣∣∣ ≤ 2p(j+1)

(1− a)p
, j = 0, 1, . . . , n.

By the embedding Proposition 4.1 of the Preliminaries∫∫
Qj+1

uκαdx dt ≤ γ

∫∫
Qj

(u
α
p ϕ

β
p

j )κpdx dt

≤ γ

∫∫
Qj

|D(u
α
p ϕ

β
p

j )|pdx dt
(

sup
0<t<ρp

j

∫
Kj

(u
α
p ϕ

β
p

j )
(κ−1)Ndx

) p
N

,
(10.3)

for α ∈ R, β ≥ p, and κ > 1. Choose

α = p− 1 + ε, κ = 1 +
p(1 + ε)

N(p− 1 + ε)
, β =

p(p− 1 + ε)

1 + ε
,

where ε ∈ (−1, 0). By (10.1)

sup
0<t<ρp

j

∫
Kj

(u
α
p ϕ

β
p

j )(κ−1)Ndx = sup
0<t<ρp

j

∫
Kj

u1+εϕp
jdx

≤ γ

|ε|p(1 + ε)

(∫∫
Qj

up−1+ε|Dϕj |pdx dt+
∫∫

Qj

u1+ε
∣∣∣∂ϕj

∂t

∣∣∣dx dt)
and∫∫

Qj

|D(u
α
p ϕ

β
p

j )|pdx dt

=

∫∫
Qj

(α
p

)p
u(α

p−1)p|Du|pϕβ
j dx dt+

∫∫
Qj

(β
p

)p
uαϕ

( β
p−1)p

j |Dϕj |pdx dt

≤ γ
(∫∫

Qj

uε−1ϕp
j |Du|pdx dt+ 1

1 + ε

∫∫
Qj

up−1+ε|Dϕj |pdx dt
)

≤ γ

|ε|p(1 + ε)

( ∫∫
Qj

up−1+ε|Dϕj |pdx dt+
∫∫

Qj

u1+ε
∣∣∣∂ϕj

∂t

∣∣∣dx dt).
Combining these estimates gives∫∫

Qj+1

up−1+ p
N +ε(1+ p

N )dx dt

≤
[ γ

|ε|p(1 + ε)

(∫∫
Qj

up−1+ε|Dϕj |pdx dt+
∫∫

Qj

u1+ε
∣∣∣∂ϕj

∂t

∣∣∣dx dt)]1+ p
N

.

Since u ≥ 1, thanks to the assumptions on ϕj ,
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Qj+1

up−1+ p
N +ε(1+ p

N )dx dt ≤
( γ2jp

|ε|p(1 + ε)(1− a)p

∫∫
Qj

up−1+εdx dt
)1+ p

N

.

Now set

h = 1 +
p

N
, εj = hj(εo + 1)− 1, αj = p− 1 + εj ,

where
−1 < εo < −1 + γ−n and j = 0, . . . , n.

Since
p− 1 +

p

N
+ hεj = p− 1 + εj+1

these choices yield∫∫
Qj+1

uαj+1dx dt ≤
( γ2jp

|εj |p(1 + εj)(1 − a)p

∫∫
Qj

uαjdx dt
)h

for j = 0, 1, . . . , n. Choose

εo = −1 + h−1−n(q − (p− 2)), ⇒ αo = s, αn+1 = q.

This choice implies the estimate

1

|εj |p(1 + εj)
≤ 1

|εn|p(1 + εo)
=

hp

(p− 1 + p
N − q)p(s− (p− 2))

.

Then setting

γ̃ =
1

(p− 1 + p
N − q)(s− (p− 2))

1
p

,

the previous inequality yields∫∫
Qj+1

uαj+1dx dt ≤
[ γγ̃p2jp

(1− a)p

∫∫
Qj

uαjdx dt
]h
.

From this, by iteration∫∫
Qn+1

uqdx dt ≤
[ γγ̃p

(1− a)p

]∑n+1
j=1 hj n−1∏

j=0

2p(n−j)hj+1
( ∫∫

Qo

usdx dt
)hn+1

.

Now

p
n+1∑
j=1

hj =
ph

h− 1
(hn+1 − 1) = (N + p)(hn+1 − 1)

n−1∏
j=0

2p(n−j)hj+1

=
( n∏

j=1

2pjh
−j
)hn+1

≤
(
2

ph

(h−1)2

)hn+1

.

Thus( ∫∫
Qn+1

uqdx dt
) 1

q−(p−2) ≤
( γγ̃N+p

(1− a)N+p

∫∫
Qo

usdx dt
) 1

s−(p−2)

.
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11 A Uniform Bound Above on the Lq
loc-Integral of

Supersolutions

Lemma 11.1 Let u be a nonnegative, local, weak supersolution to the degen-
erate (p > 2), homogeneous (C = 0) equations (1.1)–(1.2) of Chapter 3 in
Q1 = K1 × (0, 1), satisfying (9.6). Then, for all q in the range

p− 2 < q < p− 1 + p
N (11.1)

there exists a constant γ, depending only on the data {p,N,Co, C1}, and q,
such that ∫ ( 3

4 )
p

0

∫
K 3

4

uqdx dt ≤ γ.

Proof The supersolution v = u + 1 satisfies the assumptions of Lemma 10.2.
Moreover by (9.6) ∫

K1

vσ(·, t)dx ≤ γ for all t ∈ (0, 1) (11.2)

for an absolute constant γ depending only on the data {p,N,Co, C1}, and
with σ given by (9.5). Pick numbers

7
8 < s < r < 1 and set Qs = Ks × (0, 1].

Let ϕ be a nonnegative, piecewise smooth, cutoff function on Kr such that

0 ≤ ϕ ≤ 1, ϕ = 1 in Ks |Dϕ| ≤ 1

r − s
.

By (11.2), and the embedding Proposition 4.1 of the Preliminaries, applied as
in (10.3) with

α = p− 2 + σ, β =
p(p− 2 + σ)

σ
, κ = 1 +

pσ

N(p− 2 + σ)
,

∫∫
Qs

vp−2+σ(1+ p
N )dx dt

≤ γ

∫∫
Qr

|D(v
p−2+σ

p ϕ)|pdx dt
(

sup
0<t<1

∫
K1

vσ(x, t)dx

) p
N

≤ γ

∫∫
Qr

|D(v
p−2+σ̄

p ϕ)|pdx dt.

By Lemma 10.1 with ε = −1 + σ, and (11.2)
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Qr

|D(v
p−2+σ

p ϕ)|dx dt

≤ γ
(

sup
0<t<1

∫
Kr

vσ(x, t)dx +

∫∫
Qr

vp−2+σ|Dϕ|pdx dt
)

≤ γ
(
1 +

∫∫
Qr

vp−2+σ|Dϕ|pdx dt
)
.

By Young’s inequality∫∫
Qr

vp−2+σ|Dϕ|pdx dt ≤ 1

2γ

∫∫
Qr

vp−2+σ(1+ p
N )dx dt

+ γ
( 1

r − s

)p+N(p−2+σ)
σ

.

Combining the previous estimates yields∫∫
Qs

vp−2+σ(1+ p
N )dx dt

≤ 1

2

∫∫
Qr

vp−2+σ(1+ p
N )dx dt+ γ

( 1

r − s

)p+N(p−2+σ)
σ

.

By the interpolation Lemma 5.2 of the Preliminaries∫ 1

0

∫
K 7

8

vp−2+σ(1+ p
N )dx dt ≤ γ.

An application of (10.2) concludes the proof.

12 An Integral Bound Below for Supersolutions

The previous argument provides a uniform bound above on the Lq-norm of
supersolutions. Here we establish a lower bound on the L1-norm of u.

Lemma 12.1 Let u be a nonnegative, local, weak supersolution to the degen-
erate (p > 2), homogeneous (C = 0) equations (1.1)–(1.2) of Chapter 3 in
Q1 = K1 × (0, 1) satisfying (9.6). There exists a constant γ, depending only
on the data {p,N,Co, C1}, such that, for all 0 < τ < (58 )

p,∫ τ

0

∫
K 5

8

|Du|p−1dx dt ≤ γτ
1
p

ε
1+2ε

where
ε =

p

4N(p− 1)
< 1.
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Proof The supersolution v = u + 1 satisfies the assumptions of Lemma 10.2,
and hence the conclusion of Lemma 11.1 holds for it. By Hölder’s inequality∫ τ

0

∫
K 5

8

|Du|p−1dx dt =

∫ τ

0

∫
K 5

8

|Dv|p−1v−(1+ε) p−1
p v(1+ε) p−1

p dx dt

≤
( ∫ ( 5

8 )
p

0

∫
K 5

8

|Dv|pv−1−εdx dt
) p−1

p
( ∫ τ

0

∫
K 5

8

v(p−1)(1+ε)dx dt
) 1

p

.

The second integral is estimated by Hölder’s inequality and Lemma 11.1, as(∫ τ

0

∫
K 7

8

v(p−1)(1+ε)dx dt
) 1

p

≤ τ
1
p

ε
1+2ε

(∫ ( 7
8 )

p

0

∫
K 7

8

v(p−1)(1+2ε)dx dt
) 1

p
1+ε
1+2ε ≤ γτ

1
p

ε
1+2ε

for an absolute constant γ depending only on the data {p,N,Co, C1}. The first
integral is estimated by means of Lemma 10.1, with a proper test function ϕ,
and gives ∫ ( 5

8 )
p

0

|Dv|pv−1−εdx dt ≤ γ

∫ ( 7
8 )

p

0

∫
K 7

8

vp−1−ε|Dϕ|pdx dt

+ γ

∫ ( 7
8 )

p

0

∫
K 7

8

v1−ε
∣∣∣∂ϕ
∂t

∣∣∣dx dt.
The proof is concluded by a further application of Lemma 11.1 and of Hölder’s
inequality.

Lemma 12.2 Let u be a nonnegative, local, weak supersolution to the degen-
erate (p > 2), homogeneous (C = 0) equations (1.1)–(1.2) of Chapter 3 in
Q1 = K1 × (0, 1), satisfying (9.6). Assume that∫

K 1
2

u(x, 0)dx ≥ 2co

for some positive constant co depending only on the data {p,N,Co, C1}. There
exists a time τ ∈ (0, (58 )

p] depending only on the data {p,N,Co, C1} and co,
such that

inf
0<t<τ

∫
K 5

8

u(x, t)dx ≥ co.

Proof Take a piecewise smooth, cutoff function ϕ in K 5
8
, such that

0 ≤ ϕ ≤ 1, ϕ = 1 in K 1
2
, |Dϕ| ≤ 8.
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Since u is a supersolution, using ϕ as test function in the weak formulation of
(1.1)–(1.2) of Chapter 3, for any t ∈ (0, (58 )

p]∫
K 5

8

u(x, t)ϕ(x)dx ≥
∫
K 5

8

u(x, 0)ϕ(x)dx

− C1

∫ ( 5
8 )

p

0

∫
K 5

8

|Du|p−1|Dϕ|dx dt.

The proof is concluded by means of Lemma 12.1.

13 Proof of Theorem 7.1

Having fixed (y, s) ∈ ET , set

M = −
∫
Kρ(y)

u(x, s)dx,

and assume that M > 0. Introduce the change of variables

x→ x− y

2ρ
, t→Mp−2 t− s

ρp
, v → u

M
.

Then v is a supersolution in the cylinder

K8 ×
[
0,Mp−2T − s

ρp

]
and

−
∫
K 1

2

v(x, 0)dx = 1. (13.1)

Let T1 be the number defined in (9.3). By taking ηo even smaller if necessary,
we may assume that T1 > 1. Let now T2 > 0 to be chosen and assume that

Mp−2T − s

ρp
> max{T1;T2} > 1 (13.2)

so that

K1 × (0, 1) ⊂ K8 ×
(
0,Mp−2T − s

ρp

]
.

If there exist k > 1 and to ∈ (0, 1) satisfying (9.1), then (9.2) for v and the
indicated rescaling proves the theorem. If (9.1) is violated for all k > 1 and
all t ∈ (0, 1), then by Lemma 11.1∫ t

0

∫
K 5

8

v(x, t)qdx dt ≤ γ for all 0 ≤ t ≤ (
5
8

)p
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for some q > 1 in the range (11.1). Moreover, by (13.1) and Lemma 12.2,
there exists co = 2−(N+1), and

0 < τ <
(
5
8

)p
depending only on the data {p,N,Co, C1}, such that∫

K 5
8

v(x, t)dx > co for all t ∈ (0, τ).
These two inequalities imply that there exists a time level t1 ∈ (0, τ) at which
simultaneously∫

K 5
8

v(x, t1)dx > co and

∫
K 5

8

v(x, t1)
qdx dt ≤ γ.

From this

co ≤ 1
2co

∣∣[v(·, t1) < 1
2co

] ∩K 5
8

∣∣
+

∫
K 5

8

χ[v(·,t1)> 1
2 co]

v(x, t1)dx

≤ 1
2co +

∣∣[v(·, t1) ≥ 1
2 co

] ∩K 5
8

∣∣ q−1
q

(∫
K 5

8

v(x, t1)
qdx dt

) 1
q

≤ 1
2co + γ

1
q

∣∣[v(·, t1) ≥ 1
2co

] ∩K 5
8

∣∣ q−1
q .

Hence,∣∣[v(·, t1) ≥ 1
2co

] ∩K 5
8

∣∣ ≥ α|K 5
8
| for α =

(
8
5

)N( 1
2co

) q
q−1 γ−

1
q−1

and one verifies that α depends only on the data {p,N,Co, C1}. These are
precisely the assumptions of the expansion of positivity Proposition 7.1 and
yield the existence of constants η∗, δ∗ ∈ (0, 1) and b∗ > 1 depending only on
the data and α, such that

v(·, t) ≥ η∗co a.e. in K2ρ(y), where η∗ = ηoα
d, (13.3)

for all times

t1 +
bp−2
∗

(η∗co)p−2
1
2δ∗ ≤ t ≤ t1 +

bp−2
∗

(η∗co)p−2
δ∗.

Set

T2 =
bp−2
∗

(η∗co)p−2
δ∗. (13.4)

By taking co or η∗ smaller if needed, one may insure that t1 +
1
2T2 ≥ 1, and

(13.3) holds for all times
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1 +
1

2
T2 < t < T2.

If T2 < T1, then a further application of the expansion of positivity Proposi-
tion 7.1 implies the bound below (13.3), with new constants, still depending
only on the data, for all times t as in (9.2). If T1 < T2, a similar argument
holds. Thus we conclude that either the bound below (9.2) or the bound be-
low (13.3), can be made to hold, by a suitable modification of the bounding
constants, within a common interval of time

1 + 1
2T∗ < t < T∗, where T∗ = max{T1;T2}.

Returning to the original coordinates, proves Theorem 7.1 if (13.2) is in force.
On the other hand, such a condition being violated, coincides precisely with
the conclusion of Theorem 7.1.

Remark 13.1 Combining the result of Theorem 7.1 with L∞-bounds for
nonnegative subsolutions (see [41], Chapter V), provides a different proof of
Theorem 1.1. The proof of Theorem 1.1 as presented here, does not require
distinct sup and inf estimates.

14 A Consequence of Theorem 7.1

If u is defined in the strip

ST = R
N × (0, T ],

then Theorem 7.1 can be sharpened to the following.

Proposition 14.1 Let u be a nonnegative, weak supersolution to the degen-
erate (p > 2), homogeneous (C = 0) equations (1.1)–(1.2) of Chapter 3 in
ST . There exists a constant γ depending only on the data {p,N,Co, C1}, such
that for all (y, s) ∈ ST , and ρ > 0, and θ > 0 such that s+ θ < T ,

−
∫
Kρ(y)

u(x, s)dx ≤ γ
{(ρp

θ

) 1
p−2

+
( θ

ρp

)N
p (

inf
Q

u
)λ

p

}
, (14.1)

where λ is as in (1.6), and

Q = K4ρ(y)×
(
s+ 1

2θ , s+ θ
)
.

Proof Assume (y, s) = (0, 0), and introduce the change of variables

v(x, t) = u(hρx, (hρ)pt),

where h > 1 is to be determined. By this rescaling

−
∫
Kρ

u(x, 0)dx = −
∫
K1/h

v(x, 0)dx ≤ hN−
∫
K1

v(x, 0)dx. (14.2)



126 5 The Harnack Inequality for Degenerate Equations

We may assume that

−
∫
K1

v(x, 0)dx > 2c
[(hρ)p

T

] 1
p−2

, (14.3)

where c is the constant given by Theorem 7.1, otherwise there is nothing to
prove. From (7.1)–(7.2)

−
∫
K1

v(x, 0)dx ≤ c
( (hρ)p

T

) 1
p−2

+ γ inf
Q∗

u, (14.4)

where
Q∗ = K4 × (1 + 1

2T∗, T∗)

and

T∗ = cp−2
(1
2
−
∫
K1

v(x, 0)dx
)2−p

<
T

(hρ)p
,

in view of (14.5). From this, (14.4) yields

−
∫
K1

v(x, 0)dx ≤ 2γ inf
Q∗

u. (14.5)

The time θ in (14.1), being fixed, choose h from

θ = T∗(hρ)p, that is, hp = c2−p θ

ρp

(1
2
−
∫
K1

v(x, 0)dx
)p−2

.

By (14.2), this choice of h yields

hλ ≥ c2−p θ

ρp

(1
2
−
∫
Kρ

u(x, 0)dx
)p−2

.

We may assume

−
∫
Kρ

u(x, 0)dx > 2c
(ρp
θ

) 1
p−2

,

otherwise there is nothing to prove, and this guarantees h > 1. In terms of u,
from (14.2) and (14.5)

h−N−
∫
Kρ

u(x, 0)dx ≤ 2γ inf
Qh,θ

u, (14.6)

where
Qh,θ = K4hρ ×

(
1
2θ, θ

)
.

Observe also that
inf
Q∗

v = inf
Qh,θ

u.

From this, the definition of h, and (14.5)
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hN =
(
1
2c
)N(p−2)

p

( θ

ρp

)N
p
(
−
∫
K1

v(x, 0)dx
)N(p−2)

p

≤ (
cγ
)N(p−2)

p

( θ

ρp

)N
p
(
inf
Q2

u
)N(p−2)

p

.

(14.7)

Combining (14.6) and (14.7), and recalling that Q ⊂ Qh,θ since h > 1 proves
the proposition.

15 Equations of the Porous Medium Type

The intrinsic Harnack inequality (1.3)–(1.4) and its consequences, including
the Hölder continuity of solutions, Liouville-type results, and subpotential-
type estimates, have counterparts for nonnegative, local, weak solutions to a
large class of quasilinear degenerate parabolic equations that include equations
of the porous medium type. We use the latter class to draw similarities in the
statements and outline differences in the proofs.

Henceforth in this section we let u be a continuous, nonnegative, local,
weak solution to the degenerate (m > 1) equations (5.1)–(5.2) of Chapter 3,
in ET . It is known that these solutions are locally bounded in ET , which from
now on we assume ([7]).

Continue to denote by Q±ρ (θ) and (y, s) +Q±ρ (θ) the cylinders introduced
in (2.1)–(2.2) of Chapter 3, with p = 2.

15.1 The Intrinsic Harnack Inequality

Fix (xo, to) ∈ ET such that u(xo, to) > 0 and construct the cylinders

(xo, to) +Q±ρ (θ) where θ =
( c

u(xo, to)

)m−1

(15.1)

and c is a given positive constant. These cylinders are “intrinsic” to the solu-
tion since their length is determined by the value of u at (xo, to).

Theorem 15.1 Let u be a continuous, nonnegative, local, weak solution to the
degenerate equations (5.1)–(5.2) of Chapter 3. There exist positive constants
c and γ depending only on the data {m,N,Co, C1}, such that for all intrinsic
cylinders (xo, to) +Q±4ρ(θ) as in (15.1), contained in ET , either

γCρ > 1

or

γ−1 sup
Kρ(xo)

u(·, to − θρ2) ≤ u(xo, to) ≤ γ inf
Kρ(xo)

u(·, to + θρ2). (15.2)
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Thus the form (1.2) continues to hold for nonnegative solutions to the de-
generate equations (5.1)–(5.2) of Chapter 3, although in their own intrinsic
geometry, made precise by (15.1). In analogy with (1.2) and (1.1)±, we call
intrinsic, “forward” and “backward” Harnack inequalities, the right and left
inequalities in (15.2).

Remark 15.1 The constants γ and c deteriorate as m→∞ in the sense that
γ(m), c(m)→∞ as m→ ∞. However they are stable as m→ 1 in the sense
of (5.9) of Chapter 3. Thus by formally letting m → 1 in (15.2) one recovers
the classical Moser’s Harnack inequality in the form (1.2).

Remark 15.2 The proofs are based on the energy estimates and DeGiorgi-
type lemmas of § 6–8 of Chapter 3 and the expansion of positivity of § 7 of
Chapter 4. According to the discussion in § 5.3 and Remarks 6.2, 7.1, and 8.3
of Chapter 3, a constant γ depends only on the data if it can be quantitatively
determined a priori only in terms of {m,N,Co, C1}. The constant C appearing
in the structure conditions (5.2) of Chapter 3, enters in the statement of
Theorem 15.1 only through an alternative.

Remark 15.3 The theorem has been stated for continuous solutions, to give
meaning to u(xo, to). While it is known that local, weak solutions to (5.1)–
(5.2) of Chapter 3, for m > 1, are locally Hölder continuous ([37, 47]), the
theorem continues to hold for almost all (xo, to) ∈ ET and the corresponding
cylinders (xo, to) +Q±4ρ(θ) ⊂ ET .

15.1.1 Significance of Theorem 15.1

The Harnack inequality (15.1)–(15.2) is “intrinsic” in that the waiting time
from to to to + θρ2 depends on the solution at (xo, to). Such an intrinsic de-
pendence is a consequence of the intrinsic expansion of positivity of § 7 of
Chapter 4, and it cannot be removed. Indeed (15.2) is false in a geometry
where θ is a constant independent of u(xo, to). This can be verified for the
Barenblatt solution, of the degenerate (m > 1) homogeneous, prototype equa-
tion (5.3) of Chapter 3 in R

N × R
+

Γm(x, t) =
1

t
N
λ

[
1− b(N,m)

( |x|
t

1
λ

)2] 1
m−1

+
, t > 0

b(N,m) =
N(m− 1)

2Nmλ
, λ = N(m− 1) + 2.

(15.3)

Arguing as in § 3.2 of Chapter 4, one verifies that Γ fails to satisfy the expan-
sion of positivity of § 7 of Chapter 4, unless the geometry is “intrinsic.” By the
same calculations one also verifies that it fails to satisfy the Harnack inequal-
ity of Theorem 15.1, unless θ reflects the intrinsic geometry of the equation
as indicated in (15.1). Further counterexamples include the one-parameter
family
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u(x, t) =
(m− 1

2mλ

) 1
m−1

( |x|2
T − t

) 1
m−1

in R
N × (−∞, T )

where λ is as in (15.3). This satisfies the homogeneous, prototype equation
(5.3) of Chapter 3, and is the counterpart of (1.5)–(1.6). By similar arguments
one verifies that it fails to satisfy the Harnack inequality of Theorem 15.1 if
θ is independent of u. Finally the family of traveling wave solution,

u(x, t) = A(xo + bt− x)
1

m−1

+ , where A = b
1

m−1 ,

is the counterpart of (3.2) of Chapter 4 and by similar arguments, is a coun-
terexample to a Harnack inequality and expansion of positivity in geometries
that are independent of the solution itself.

15.1.2 On the Proof of Theorem 15.1

The proof of Theorem 1.1 is based on the energy inequalities (2.3) of Chap-
ter 3, the DeGiorgi-type Lemmas 3.1–4.1 of Chapter 3, and the expansion
of positivity of Chapter 4. Now all these technical tools are available for the
porous medium type equations and are provided in § 5–8 of Chapter 3 and
§ 7 of Chapter 4. With these at hand the proof parallels that of Theorem 1.1
almost verbatim.

Fix (xo, to) ⊂ ET , assume that u(xo, to) > 0, and construct the cylin-
ders (xo, to) + Q±4ρ(θ) ⊂ ET as in (15.1), where the constant c ≥ 1 is to be
determined. The change of variables

x→ x− xo

ρ
t→ u(xo, to)

m−1 t− to
ρ2

maps these cylinders into Q±, where

Q+ = K4 × (0, 42cm−1], Q− = K4 × (−42cm−1, 0].

Denoting again by (x, t) the transformed variables, the rescaled function

v(x, t) =
1

u(xo, to)
u
(
xo + ρx, to +

tρ2

u(xo, to)m−1

)
is a bounded, nonnegative, weak solution to

vt − div Ā(x, t, v,Dv) = B̄(x, t, v,Dv)

weakly in Q = Q+ ∪Q−, where Ā and B̄ satisfy the structure conditions⎧⎨
⎩

Ā(x, t, v,Dv) ·Dv ≥ mCov
m−1|Dv|2 − C̄2vm+1

|Ā(x, t, v,Dv)| ≤ mC1v
m−1|Dv|+ C̄vm

|B̄(x, t, v,Dv)| ≤ mC̄vm−1|Dv|+ C̄2vm
a.e. in Q
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where
C̄ = Cρ,

and Co, C1, and C are as in (5.2) of Chapter 3. Moreover v(0, 0) = 1.
The theorem is then a consequence of a fact similar to Proposition 2.1,

whose proof relies solely on the indicated technical tools. The proof can now
be followed and completed with the obvious changes in language and symbol-
ism.

16 Some Consequences of the Harnack Inequality

16.1 Hölder Continuity

The methods leading to the intrinsic Harnack inequality of Theorem 15.1 can
be used to establish that local, weak solutions u to the degenerate (m > 1)
porous medium type equations (5.1)–(5.2) of Chapter 3, in ET , are locally
Hölder continuous in ET , irrespective of their signum, and permit one to ex-
hibit a quantitative Hölder modulus of continuity. These solutions are locally
bounded ([7]) in ET . To streamline the presentation and symbolism, we as-
sume that u ∈ L∞(ET ).

Let
Γ = ∂ET − Ē × {T }

denote the parabolic boundary ofET , and for a compact setK ⊂ ET introduce
the intrinsic, parabolic m-distance from K to Γ by

m− dist(K;Γ )
def
= inf

(x,t)∈K
(y,s)∈Γ

(
|x− y|+ ‖u‖

m−1
2

∞,ET
|t− s| 12

)
.

Theorem 16.1 Let u be a bounded, local, weak solution to the degenerate
(m > 1) porous medium type equations (5.1)–(5.2) of Chapter 3. Then u is
locally Hölder continuous in ET , and there exist constants γ > 1 and α ∈ (0, 1)
that can be determined a priori only in terms of the data {m,N,Co, C1, C},
such that for every compact set K ⊂ ET ,

|u(x1, t1)− u(x2, t2)| ≤ γ‖u‖∞,ET

( |x1 − x2|+ ‖u‖
m−1

2

∞,ET
|t1 − t2| 12

m− dist(K;Γ )

)α
for every pair of points (x1, t1), and (x2, t2) ∈ K.

Proof Fix a point in ET , which up to a translation we take to be the origin
of RN+1. For ρ > 0 consider the cylinder

Qε = Kρ × (−ρ2−(m−1)ε, 0]

where ε ∈ (0, 1) is to be determined, and set
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μ+
o = sup

Qε

u, μ−o = inf
Qε

u, ωo = osc
Qε

u = μ+
o − μ−o .

With ωo at hand, construct now the cylinder of intrinsic geometry

Qo = Kρ × (−ω1−m
o ρ2, 0].

If ωo ≥ ρε, then Qo ⊂ Qε. Theorem 16.1 is then a consequence of the following:

Proposition 16.1 There exist constants γ > 1, and ε, ε, δ ∈ (0, 1), that can
be quantitatively determined only in terms of the data {m,N,Co, C1} and
independent of u and ρ, such that, if ωo ≥ ρε, setting ρo = ρ and

ωn = δωn−1, ρn = ερn−1, Qn = Q−ρn
(ω1−m

n ), for n = 0, 1, . . .

we have Qn+1 ⊂ Qn, and either

osc
Qn

u ≤ 4γ
C

ε
ρn or osc

Qn

u ≤ ωn.

The proposition is established by induction. Thus assume Qn has been con-
structed and that the statement holds up to n. Set

μ+
n = sup

Qn

u, μ−n = inf
Qn

u, Pn = (0,−sn), sn = 1
2ω

1−m
n ρ2n.

The main difference with the proof of Proposition 4.1 is that the two functions
(μ+

n − u) and (u− μ−n ), while nonnegative, need not be weak solutions to the
porous medium type equations (5.1)–(5.2) of Chapter 3 in Qn, and hence
one cannot claim that they both satisfy the intrinsic Harnack inequality in
subdomains of Qn. However, it can be shown that at least one of them does
satisfy the intrinsic Harnack inequality with respect to Pn, and this will suffice
to establish the proposition. This is done by the same techniques of proving the
Harnack inequality. We refrain from further elaborating on the modifications
needed, since Theorem 16.1 is known from the literature ([47]).

16.2 Liouville-Type Results

The Liouville-type results of § 5 are possible since if u is a local weak solution
to the homogeneous (C = 0), degenerate (p > 2), p-Laplacian type equations
(1.1)–(1.2) of Chapter 3 with C = 0, then u+ const is a solution to a similar
equation, with the same modulus of ellipticity. This is no longer the case
for solutions to the porous medium type equations, and as a consequence
Liouville-type statements hold in a rather restricted form.

Proposition 16.2 Let u be a nonnegative, local, weak solution to the degen-
erate (m > 1), homogeneous (C = 0) equations (5.1)–(5.2) of Chapter 3 in

ST = R
N × (−∞, T ) for some fixed T ∈ R,
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and let infST u = 0. Then for all x ∈ R
N

lim
t→−∞ u(x, t) = 0,

and the limit is uniform for x ranging over a compact set K ⊂ R
N such that

K × {τ} is included in a (y, s)-paraboloid

P (y, s) =
{
(x, t) ∈ ST

∣∣ t− s ≤ −
( c

u(y, s)

)m−1

|x− y|2
}

for (y, s) ∈ ST such that u(y, s) > 0, for some τ < s.

Proof Analogous to the first part of Lemma 5.1.

Proposition 5.1 still holds true for solutions to porous medium type equations.

Proposition 16.3 If u is bounded above and below in ST , then u is constant.

Proof Set
m = inf

ST

u, M = sup
ST

u, ωo = M −m.

Fix to < T and assume after a translation that to = 0. The proof uses the form
of the Hölder continuity as expressed in Proposition 16.1, over a sequence of
nested cylinders Qn with “vertex” at (0, 0). Notice that, by the definition of
ωo, the requirement

osc
Qo

u ≤ ωo

is always satisfied, and hence the condition ωo > ρε does not have to be
enforced. Applying Proposition 16.1 recursively, starting from ρ = ε−nR for
R > 0 fixed, gives

osc
KR×(−ω1−m

n R2,0]
u ≤ δnωo

for all n ∈ N. Let R→∞ for n fixed and then let n→∞.

16.3 Subpotential Lower Bounds

The prototype equation (5.3) of Chapter 3 admits the family of subsolutions

Γν,m(x, t; y, s) =
kρν

S
ν
λ (t)

[
1− b(ν,m)

( |x− x̄|
S

1
λ (t)

)2] 1
m−1

+

where ν ≥ N , k and ρ are positive parameters and

S(t) = km−1ρν(m−1)(t− s) + ρλ t ≥ s

b(ν,m) =
ν(m− 1)

2Nmλ
, λ = ν(m− 1) + 2.
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One verifies that for ν = N , as in (15.3), the functions Γν,m are exact solutions
to the homogeneous prototype porous medium equation, for all k, ρ > 0,
whereas for ν > N they are subsolutions. Decay estimates of the type of § 6
can be established, with no major change and we summarize them in the
following proposition.

Proposition 16.4 Let u be a nonnegative, local, weak solution to the degen-
erate (m > 1), homogeneous (C = 0) equations (5.1)–(5.2) of Chapter 3 in
ET . There exist positive constants γo < 1 and γ1 > 1, depending only on
the data {m,N,Co, C1} and the constant c and γ appearing in the Harnack
inequality (15.1)–(15.2) of Theorem 15.1, such that for all (xo, to) ∈ ET , such
that u(xo, to) > 0, and all (x, t) ∈ ET with

K8|x−xo|(xo) ⊂ E, and 0 < t− to < 1
42 to,

we have

u(x, t) ≥ γou(xo, to)
{
1− γ1

[ |x− xo|2
u(xo, to)m−1(t− to)

]} 1
m−1

+
.

A decay estimate similar to that of Proposition 6.2 can be stated and proved
analogously.

17 A Weak Harnack Inequality for Positive
Supersolutions

Local, weak supersolutions to the degenerate (m > 1) equations (5.1)–(5.2)
of Chapter 3 in ET , need not be continuous, and if nonnegative they do not,
in general, satisfy a Harnack estimate. Nevertheless they satisfy a weak, or
integral, form of the Harnack inequality as expressed in the following the-
orem. The theorem is stated for homogeneous equations for which C = 0.
The extension to nonhomogeneous equations C 	= 0 is achieved by the usual
alternative that negating Cρ > 1, forces Cρ ≤ 1.

Throughout, for y ∈ E, let ρ > 0 be so small that K16ρ(y) ⊂ E.

Theorem 17.1 Let u be a nonnegative, local, weak supersolution to the de-
generate (m > 1), homogeneous (C = 0) equations (5.1)–(5.2) of Chapter 3
in ET . There exist positive constants c and γ, depending only on the data
{m,N,Co, C1}, such that for a.e. s ∈ (0, T )

−
∫
Kρ(y)

u(x, s)dx ≤ c
( ρ2

T − s

) 1
m−1

+ γ inf
K4ρ(y)

u(·, t)

for all times
s+ 1

2θρ
2 ≤ t ≤ s+ θρ2

where

θ = min
{
c1−mT − s

ρ2
,
(
−
∫
Kρ(y)

u(x, s)dx
)1−m}

.
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The proof closely follows the one for Theorem 7.1. Perhaps the most significant
difference is in Lemmas 11.1–12.1, where u+1 remains a supersolution to the p-
Laplacian, and not for the porous medium equation. This can be overcome, by
assuming that supersolutions at hand can be approximated by supersolutions
locally bounded away from zero.

If u is defined in the strip ST = R
N × (0, T ], then Theorem 17.1 can be

sharpened to the following.

Proposition 17.1 Let u be a nonnegative, local, weak supersolution to the
degenerate (m > 1), homogeneous (C = 0) equations (5.1)–(5.2) of Chapter 3
in ST . There exists a constant γ depending only on the data {m,N,Co, C1},
such that for all (y, s) ∈ ST , all ρ > 0, and θ > 0 such that s+ θ < T ,

−
∫
Kρ(y)

u(x, s)dx ≤ γ
{(ρ2

θ

) 1
m−1

+
( θ

ρ2

)N
2
[

inf
Kρ(xo)

u(·, s+ θ)
]λ

2
}
,

where λ is as in (15.3).

18 Remarks and Bibliographical Notes

Moser’s inequality is given in the form (1.1). The same form was given earlier
by Hadamard [80] and Pini [127]. The form (1.1) for nonnegative solutions
to elliptic equations appears in Landis [104] and for nonnegative solutions to
parabolic equations in Krylov and Safonov [94]. The mean value form (1.2),
while elementary, does not seem to be present in the literature.

The intrinsic, forward Harnack inequality of Theorem 1.1 was first estab-
lished in [39] for the prototype equations (1.3) and (5.3) of Chapter 3, and
later extended to equations of the form

ut −
(|Du|p−2aij(x)uxi

)
xj

= 0

in [30]. Another proof is in [32]. The proof of the intrinsic, forward Harnack
inequality for nonnegative solutions to (1.1)–(1.2) of Chapter 3 with their
full quasilinear structure has been established in [49], both for p-Laplacian
and porous medium type equations. A different proof of the same result for
homogeneous equations (1.1)–(1.2) is in [98], using a parabolic degenerate
version of the Krylov–Safonov covering Lemma [94]. The proof in [49] makes
no use of covering arguments. Recently there have been extensions to parabolic
equations with coefficients in the Kato classes [109], or when the degeneracy
depends also on Muckenhoupt-type weights [145]. The proof we present here
is an unpublished simpler version of [49], where some measure-theoretical
facts have been eliminated and the simpler, more streamlined version of the
expansion of positivity of Chapter 4 has been used.

The intrinsic, backward Harnack inequality of Theorem 1.1 and its proof
are taken from [52]. The lower bound in terms of the supremum of the solution
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at a previous time can be useful in studying the boundary Harnack inequal-
ity for the homogeneous equations (1.1)–(1.2) of Chapter 3. Results in this
direction, for linear parabolic equations with bounded and measurable coeffi-
cients, are due to Salsa ([137]). See also [25], Chapter XIII, and the references
therein.

The Hölder continuity of locally bounded solutions to (1.1)–(1.2) of Chap-
ter 3, with p > 2, was first established in [38] and reported in [41]. Local
solutions are locally bounded ([41]). The Hölder continuity of solutions to ho-
mogeneous systems of the form (1.3) was established in [47]. This contribution
contains also a proof of the Hölder continuity of solutions to homogeneous,
porous medium type equations. A new approach to Hölder continuity based
on the expansion of positivity of Chapter 4 is in [75].

These continuity estimates were used in the proof of the intrinsic Harnack
inequality in [39]. Here the approach is reversed: the Harnack inequality is es-
tablished without any assumption on the modulus of continuity of solutions,
and the Hölder regularity is then deduced from it. It should be pointed out,
however, that this is an “interior” statement. A boundary modulus of conti-
nuity, under proper assumptions on ∂E and the boundary data, is in [41]. We
do not know of a proof by which an interior Harnack estimate would yield a
boundary modulus of continuity of solutions to these degenerate equations.

The use of the Harnack inequality to prove Liouville-type results for so-
lutions to linear, nondegenerate, parabolic equations with principal part, in
nondivergence form, is due to [78, 79]. Extensions have been given to a wide
class of equations; see [91] for the case of hypoelliptic operators, still remaining
within linear and nondegenerate classes.

Liouville-type results for solutions to degenerate equations as those in
(1.1)–(1.2) of Chapter 3 appear to be new, and are taken from [56]. In par-
ticular, Propositions 5.2–5.3 seem to be new even in the context of the heat
equation. The following is a further strengthening of Proposition 5.2.

Proposition 18.1 Let u be bounded below in ST and assume that

sup
RN

u(·, s) = Ms < +∞ for some s < T.

Then u is constant in ST .

Proof By Proposition 5.2 u is constant in Ss, and we may take such a constant
to be zero. Now consider the Cauchy problem for the homogeneous, degenerate
equations (1.1)–(1.2) of Chapter 3 in the strip R

N×(s, T ) with “initial datum”
u(·, s) = 0. Since the principal part η → A(x, t, u,Dη) is monotone at the
origin (Lemma 1.1 of Chapter 3), such a problem admits only one nonnegative
solution. Thus u = 0 in the whole ST .

Remark 18.1 It is not claimed here that, in the generality placed on the
principal part A(x, t, u, η), the solution to the indicated Cauchy problem is
unique. For this to occur, one would need a rather precise control on the
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growth of x→ u(x, t) as |x| → ∞, and the monotonicity of the map (u, η)→
A(x, t, u, η). This is stronger than the monotonicity of η → A(x, t, u, η) stated
in (12.1) of the Remarks and Bibliographical Notes of Chapter 3. The issue
has been addressed in several contributions ([57, 32, 99, 6]).

The uniqueness statement used in the proof of Proposition 18.1 holds only
because the initial datum is zero and η → A(x, t, u, η) is monotone at the
origin. The method relies on the techniques developed in [41], Chapter XI.

Corollary 18.1 Let u be bounded below (above) in ST . Then either u is con-
stant, or for all t < T ,

lim
|x|→∞

u(x, t) = +∞ (−∞).

Remark 18.2 The explicit solutions in (1.5)–(1.6) and in (3.2) of Chapter 4
exhibit the behavior indicated by Corollary 18.1.

The subpotential lower bounds of Propositions 6.1 and 6.2 were proved in
[50] with a slightly different approach. They represent an extension of the
analogous result proved by Moser for linear parabolic equations [121].

The results of Proposition 6.1 were proved in [74], using a Control Theory
approach. Starting from a Hamilton–Jacobi differential inequality, and relying
on Control Theory arguments, in [11] similar lower bounds are proved for a
class of homogeneous degenerate and singular equations, satisfying the com-
parison principle, and which include the porous medium and the p-Laplacian
equations. The proof depends in a fundamental way on the Aronson-Bénilan
estimate [9], and hence on the comparison principle. No such principle holds
for equations with the full quasilinear structure.

18.1 Weak Harnack Estimates

The idea of proving the weak Harnack inequality by first showing that the
expansion of positivity holds with a power-like dependence on the quantity α
introduced in (4.2), was originally used in [61] in the context of Q-minima,
and functions in elliptic DeGiorgi classes. It has then been adapted to the
parabolic p-Laplacian when p > 2 in [98]. In both cases the main technical
tool is a proper version of the Krylov–Safonov covering lemma ([94, 93]). In the
parabolic case, there is the extra difficulty that the covering lemma must have
an intrinsic feature. Here we made no use of covering arguments, and used
a different approach, namely, relying on the measure-theoretical Lemma 3.1
of the Preliminaries. The approach to the second alternative in the proof of
Theorem 7.1 is analogous to a similar argument in [61], adapted by [98] to the
parabolic case. Proposition 14.1 was first proved for solutions to the prototype
equation (1.3) of Chapter 3 in [41], later extended to solutions to homogeneous
equations (1.1)–(1.2) of Chapter 3 in [98].

Similar results for nonnegative supersolutions to the degenerate (m > 1),
porous medium type equations (5.1)–(5.2) of Chapter 3, namely, Theorem 17.1
and Proposition 17.1, in the indicated generality, seem to be new.
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The Harnack Inequality for Singular Equations

1 Supercritical, Singular Equations

Let u be a continuous, nonnegative, local, weak solution to the singular equa-
tions (1.1)–(1.2) of Chapter 3 in ET , for p in the supercritical range

p∗ = 2N
N+1 < p < 2. (1.1)

Fix (xo, to) ∈ ET such that u(xo, to) > 0 and construct the cylinders

(xo, to) +Q±ρ (θ) where θ = [u(xo, to)]
2−p. (1.2)

These cylinders are “intrinsic” to the solution since their length is determined
by the value of u at (xo, to). Cylindrical domains of the formKρ×(0, ρp] reflect
the natural, parabolic space-time dilations that leave the homogeneous, sin-
gular, prototype equation (1.3) of Chapter 3 invariant. The latter, however, is
not homogeneous with respect to the solution u. The time dilation by a factor
[u(xo, to)]

2−p is intended to restore the homogeneity, and the Harnack inequal-
ity holds in such an intrinsic geometry, as made precise in Theorems 1.1–1.2
below. The first theorem establishes an intrinsic, mean value Harnack inequal-
ity in a form similar to Theorem 1.1 of Chapter 5, for degenerate equations
(p > 2). This Harnack estimate is stable as p→ 2. The second theorem estab-
lishes a “time insensitive” mean value Harnack inequality, valid for all times
t ranging in a neighborhood of to. This inequality is unstable as p → 2. By
counterexamples, it will be shown that for 1 < p ≤ 2N

N+1 , neither of these
theorems holds.

1.1 The Intrinsic, Mean Value, Harnack Inequality

Local weak solutions to (1.1)–(1.2) of Chapter 3, for p in the supercritical
range (1.1), are locally bounded and locally Hölder continuous within their
domain of definition ([41], Chapters IV–V). Having fixed (xo, to) ∈ ET , and
cylinders (xo, to) +Q±ρ (θ) as in (1.2), set

137  E. DiBenedetto et al., Harnack’s Inequality for Degenerate and Singular Parabolic Equations,
Springer Monographs in Mathematics, DOI 10.1007/978-1-4614-1584-8_ ,  
© Springer Science+Business Media, LLC 2012 
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sup
Kρ(xo)

u(x, to) =M (1.3)

and require that
(xo, to) +Q±8ρ(M2−p) ⊂ ET . (1.4)

Specifically it is required that

QM(xo, to) = [(xo, to) +Q−8ρ(M2−p)] ∪ [(xo, to) +Q+
8ρ(M2−p)]

= K8ρ(xo)× (to −M2−p(8ρ)p, to +M2−p(8ρ)p] ⊂ ET .
(1.5)

The upper bound M is only known qualitatively, and accordingly it does not
play any role in the proof, other than to insure that (xo, to)+Q±8ρ(M2−p) are
contained within the domain of definition of u.

Theorem 1.1 Let u be a continuous, nonnegative, local, weak solution to the
singular equations (1.1)–(1.2) of Chapter 3 in ET , for p in the supercritical
range (1.1). There exist constants ε ∈ (0, 1) and γ > 1 depending only on the
data {p,N,Co, C1}, such that for all intrinsic cylinders (xo, to) + Q±8ρ(θ) as
in (1.2), for which (1.4) holds, either

Cρ > min{1 , u(xo, to)}
or

γ−1 sup
Kρ(xo)

u
(·, to − ε u(xo, to)

2−pρp
) ≤ u(xo, to)

≤ γ inf
Kρ(xo)

u
(·, to + ε u(xo, to)

2−pρp
)
.

(1.6)

Thus the form (1.2) of Chapter 5, valid for nonnegative solutions to nonde-
generate equations (p = 2), continues to hold for nonnegative solutions to
supercritically singular equations, although in their own intrinsic geometry.

Remark 1.1 The intrinsic geometry enters here in two stages. First, it de-
termines the cylinders (xo, to) + Q±8ρ(θ), then the constant ε determines the

relative “waiting time,” within the cylinders (xo, to)+Q±8ρ(θ) for the intrinsic
Harnack estimate to hold. The proof will determine the constants γ and ε
quantitatively, only in terms of the data {p,N,Co, C1}. Whence these con-
stants are determined, the intrinsic Harnack inequality (1.2)–(1.6) continues
to hold for a smaller ε provided we take a larger γ, and γ(ε)→∞ as ε→ 0. In
all cases it is required that (1.4)–(1.5) be in force. The various constants, how-
ever, are dependent only on the data {p,N,Co, C1} and are all independent
of M.

Remark 1.2 The constants γ and ε deteriorate as p→ p∗ in the sense that

γ(p), ε(p)−1 →∞ as p→ 2N
N+1 .

However, they are stable as p → 2 in the sense of (1.9) of Chapter 3. Thus
by formally letting p → 2 in (1.6) one recovers the classical Moser’s Harnack
inequality in the form (1.2) of Chapter 5.
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Remark 1.3 The proofs are based on the energy estimates and DeGiorgi-
type lemmas of § 2–4 of Chapter 3 and the expansion of positivity of § 5–6 of
Chapter 4. According to the discussion in § 1.3 and Remarks 2.2, 3.1, and 4.3
of Chapter 3, a constant γ depends only on the data if it can be quantitatively
determined a priori only in terms of {p,N,Co, C1}. The constant C appearing
in the structure conditions (1.2) of Chapter 3, enters in the statement of
Theorem 1.1 only through an alternative.

Remark 1.4 The theorem has been stated for continuous solutions, to give
meaning to u(xo, to). The intrinsic Harnack inequality, in turn, can be used to
prove that these local solutions, irrespective of their signum, are indeed locally
Hölder continuous within their domain of definition. This will be shown in § 10.
Remark 1.5 The intrinsic form of (1.6) is false in a time geometry inde-
pendent of u(xo, to), as it can be verified for the family of counterexamples
collected in § 3.3 of Chapter 4.

x

t

to

xo

to + ε̄u(xo, to)
2−pρp

to − ε̄u(xo, to)
2−pρp

u(xo, to) > 0

γ̄−1 sup
Kρ(xo)

u(·, σ) ≤ u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, τ )

Fig. 1.1. Time-Insensitive Mean Value Harnack Inequality

1.2 Time-Insensitive, Intrinsic, Mean Value, Harnack Inequalities

Theorem 1.2 Let u be a continuous, nonnegative, local, weak solution to the
singular equations (1.1)–(1.2) of Chapter 3 in ET , for p in the supercritical
range (1.1). There exist constants ε̄ ∈ (0, 1) and γ̄ > 1, depending only on the
data {p,N,Co, C1}, such that for all intrinsic cylinders (xo, to) + Q±8ρ(θ) as
in (1.2), for which (1.4) holds, either

Cρ > min{1 , u(xo, to)}
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or
γ̄−1 sup

Kρ(xo)

u(·, σ) ≤ u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, τ) (1.7)

for any pair of time levels σ, τ in the range

to − ε̄ u(xo, to)
2−pρp ≤ σ, τ ≤ to + ε̄ u(xo, to)

2−pρp. (1.8)

The constants ε̄ and γ̄−1 tend to zero either as p→ 2 or as p→ 2N
N+1 .

Both right and left inequalities in (1.7) are insensitive to the times σ, τ , pro-
vided they range within the time-intrinsic geometry (1.8). For σ = τ = to the
theorem yields

Corollary 1.1 (The Elliptic Harnack Inequality) Let u be a continu-
ous, nonnegative, local, weak solution to the singular equations (1.1)–(1.2)
of Chapter 3 in ET , for p in the supercritical range (1.1). For all intrinsic
cylinders (xo, to) +Q±8ρ(θ) as in (1.2) for which (1.4) holds, either

Cρ > min{1 , u(xo, to)}
or

γ̄−1 sup
Kρ(xo)

u(·, to) ≤ u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, to) (1.9)

for the same constant γ̄ as in Theorem 1.2.

Thus, the right and left inequalities in (1.7) are simultaneously forward, back-
ward, and elliptic Harnack estimates. Inequalities of this type, and in par-
ticular (1.9), are false for nonnegative solutions to the heat equation ([121]).
This is reflected in (1.7)–(1.9), in that the constants ε̄ and γ̄−1 tend to zero
as p→ 2. It turns out that these inequalities lose meaning also as p tends to
the critical value 2N

N+1 as discussed below.

1.3 On the Range (1.1) of p

The range of p in (1.1) is optimal for the intrinsic, forward in time Harnack
estimate (1.2)–(1.6) to hold. Consider the Cauchy problem

ut − div |Du|p−2Du = 0 in R
N × R

+

u(·, 0) = uo ∈ Ls(RN ), s =
N(2− p)

p

for 1 < p < p∗ and uo ≥ 0. Solutions exist and become extinct, abruptly, after
a finite time T . Specifically, there exists a time T that can be determined a
priori in terms of p,N , and ‖uo‖s,RN , such that ([41], Chapter VII, § 3)

u(·, t) > 0 for t < T and u(·, t) = 0 for t > T.

Pick (xo, to) ∈ R
N × (0, T ) where to is so close to T as to satisfy
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T − to < 8−pto

and choose ρ > 0 so large that

u(xo, to)
2−p(8ρ)p = T − to.

For such a choice

(xo, to) +Q±8ρ(θ) ⊂ R
N × R

+ for θ as in (1.2).

However, the intrinsic, forward Harnack estimate (1.2)–(1.6) fails.
When 1 < p ≤ 2N

N+1 also the elliptic version (1.9) fails, as shown by the
following counterexample:

u(x, t) =
[
|λ|
( p

2− p

)p−1] 1
2−p (T − t)

1
2−p

+

|x| p
2−p

1 < p <
2N

N + 2
, λ = N(p− 2) + p.

(1.10)

This is a nonnegative, local, weak solution to the prototype p-Laplacian equa-
tion in R

N × R. Such a solution is unbounded near x = 0 for all t < T and
finite otherwise. Therefore (1.9) fails to hold for cubes centered at the origin.

For 1 < p ≤ p∗ the mere notion of weak solution is not sufficient to insure
its local boundedness ([41], Chapter V, § 5). The weak solution (1.10) is indeed
unbounded near x = 0. However, the lack of a Harnack estimate is not due
to the possible unboundedness of the solutions. Consider the two-parameter
family of functions

u(x, t) = (T − t)
N+2

4
+

(
a+ b|x| 2N

N−2
)−N

2

N > 2, p = 2N
N+2 < p∗

(1.11)

where a > 0 and T are parameters, and

b = b(N, a) = N−2
N2

(
N+2
4Na

)N+2
N−2

.

They are nonnegative, locally bounded, weak solutions to the prototype p-
Laplacian equation in R

N ×R and they do not satisfy the Harnack estimates
of Theorems 1.1–1.2. The same occurs for the critical value p = p∗ as shown
by the following counterexample. The function

u(x, t) =
(
|x| 2N

N−1 + ebt
)−N−1

2

b = 2N
2N

N+1

N−1 , N ≥ 2, p = 2N
N+1 = p∗

(1.12)
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is a nonnegative solution to the prototype p-Laplacian equation in R
N × R,

and one verifies that it fails to satisfy the Harnack estimate in any one of the
forward, backward, or elliptic form.

These remarks raise the question of what form the Harnack estimate might
take for p in the subcritical range 1 < p ≤ p∗. This issue will be addressed in
§ 11–15.

2 Main Components in the Proof of Theorems 1.1 and
1.2

The proofs of Theorems 1.1 and 1.2 are intertwined. In either case the key
inequalities to establish are the right-hand side estimates in (1.6) and (1.7).
The left estimates will follow from these by geometrical arguments (§ 5). In
all all cases the proofs involve in an essential way the number

λ = N(p− 2) + p.

The requirement that p be in the supercritical range (1.1) is equivalent to
requiring that λ > 0. The main components of the proof are the expansion
of positivity for quasilinear, singular equations of § 5–6 of Chapter 4, and an
L1
loc–L

∞
loc Harnack-type estimate valid for λ > 0, which we present next.

Theorem 2.1 Let u be a nonnegative, local, weak solution to the singular
equations (1.1)–(1.2) of Chapter 3 in ET , for p in the supercritical range
(1.1), so that λ > 0. There exists a positive constant γ depending only on the
data {p,N,Co, C1}, such that for all cylinders

K2ρ(y)× [s− (t− s), s+ (t− s)] ⊂ ET

either

Cρ > min
{
1 ,
( t− s

ρp

) 1
2−p

}
(2.1)

or

sup
Kρ(y)×[s,t]

u ≤ γ

(t− s)
N
λ

(
inf

2s−t<τ<t

∫
K2ρ(y)

u(x, τ)dx
) p

λ

+ γ
( t− s

ρp

) 1
2−p

.

(2.2)

The constant γ = γ(p)→∞ as either p→ 2 or p→ 2N
N+1 .

Remark 2.1 Starting from Kρ, the solution u is required to exist in a larger
neighborhood K2ρ(y) and for times comparably larger and smaller than s.

The proof of Theorem 2.1 will be given in Appendix A. Assuming it for the
moment, we proceed to prove the right-hand side Harnack estimate of The-
orem 1.2. The analogous statement for Theorem 1.1 will be established in
§ 7.
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3 The Right-Hand-Side Harnack Estimate of
Theorem 1.2

Fix (xo, to) ∈ ET , determine the intrinsic cylinders (xo, to) + Q±8ρ(θ) as in
(1.2), and assume that (1.4)–(1.5) hold. Assume in addition that

Cρ ≤ min{1 , u(xo, to)} (3.1)

where C is the constant in the structure conditions (1.2) of Chapter 3.

Proposition 3.1 Let u be a continuous, nonnegative, local, weak solution
to (1.1)–(1.2) of Chapter 3 for p in the supercritical range (1.1). There exist
positive constants ε̄ and γ̄, that can be determined quantitatively, a priori only
in terms of the data {p,N,Co, C1}, such that

u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, t) (3.2)

for all times

to − ε̄u(xo, to)
2−pρp ≤ t ≤ to + ε̄u(xo, to)

2−pρp. (3.3)

The constants ε̄ and γ̄−1 tend to zero either as p→ 2 or as p→ 2N
N+1 .

Introduce the change of variables and unknown function

x→ x− xo

ρ
, t→ t− to

u(xo, to)2−pρp
, v =

u

u(xo, to)
. (3.4)

This maps the cylinder QM(xo, to) in (1.5) into

QM = K8 ×
(
−
( M
u(xo, to)

)2−p

8p,
( M
u(xo, to)

)2−p

8p
]
. (3.5)

Relabeling by x, t the new coordinates, v is a weak solution to

vt − div Ā(x, t, v,Dv) = B̄(x, t, v,Dv) in QM. (3.6)

Taking into account (3.1), the transformed functions Ā and B̄ satisfy the
structure conditions⎧⎨

⎩
Ā(x, t, v,Dv) ·Dv ≥ Co|Dv|p − 1
|Ā(x, t, v,Dv)| ≤ C1|Dv|p−1 + 1
|B̄(x, t, v,Dv)| ≤ |Dv|p−1 + 1

, (3.7)

where Co and C1 are the constants appearing in (1.2) of Chapter 3. Establish-
ing Proposition 3.1 consists in finding positive constants ε̄ and γ̄, depending
only on the data, such that

v(·, t) ≥ γ̄−1 in K1 for all t ∈ [−ε̄, ε̄]. (3.8)
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4 Locating the Supremum of v in K1

For τ ∈ (0, 1) introduce the family of nested expanding cubes {Kτ} centered
at the origin, and the increasing families of positive numbers

Mτ = sup
Kτ

v, Nτ = (1− τ)−β , (4.1)

where β is a positive parameter to be fixed later. By the definition, Mo = No

and as τ → 1, Nτ → ∞, whereas Mτ remains finite. Therefore the equation
Mτ = Nτ has roots. Denoting by τ∗ the largest root

Mτ∗ = (1− τ∗)−β and Mτ ≤ Nτ for all τ ≥ τ∗.

Since v is continuous, the supremum Mτ∗ is achieved at some x̄ ∈ Kτ∗ . Choose
τ̄ ∈ (0, 1) from

(1− τ̄ )−β = 4(1− τ∗)−β i.e., τ̄ = 1− 4−
1
β (1− τ∗).

Set also

2r
def
= τ̄ − τ∗ = (1 − 4−

1
β )(1 − τ∗). (4.2)

For these choices, K2r(x̄) ⊂ Kτ̄ , Mτ̄ ≤ Nτ̄ , and

sup
Kτ∗

v(·, 0) = (1− τ∗)−β = v(x̄, 0) ≤ sup
K2r(x̄)

v(·, 0)

≤ sup
Kτ̄

v(·, 0) ≤ 4(1− τ∗)−β .

The information on τ∗ is only qualitative. By using the parameter β we will
eliminate such a qualitative dependence from our arguments. The qualitative
information onM plays no role in this process. It only insures that the cylinder
QM(xo, to) is within the domain of definition of u. Because of this interplay
between qualitative and quantitative information, our quantitative arguments
below are devised not to depend on β, M, and ρ.

5 Estimating the Sup of v in Some Intrinsic
Neighborhood About (x̄, 0)

Consider the cylinder centered at (x̄, 0)

Q2r = [(x̄, 0) +Q−2r(θ∗)] ∪ [(x̄, 0) +Q+
2r(θ∗)]

= K2r(x̄)× (−θ∗(2r)p, θ∗(2r)p]
where

θ∗ = (1 − τ∗)−β(2−p). (5.1)
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Such a cylinder is included in the box QM introduced in (3.5) since

θ∗(2r)p = (1− τ∗)−β(2−p)(1− 4−
1
β )p(1− τ∗)p

≤ (1− τ∗)−β(2−p) =
( u(x̄, 0)

u(xo, to)

)2−p

≤
( M
u(xo, to)

)2−p

.

Lemma 5.1 There exists a positive constant γ1, depending only on the data
{p,N,Co, C1}, and independent of β, M, and ρ, such that

sup
Qr

v ≤ γ1(1 − τ∗)−β .

The constant γ1 →∞ as p→ 2 and as p→ p∗.

Proof Apply (2.2) of Theorem 2.1 to the function v, solution to (3.6)–(3.7),
over the pair of cylinders Qr ⊂ Q2r. Apply it first for the choice

s = 0 and t = θ∗(2r)p

and apply it again, for the choice

s = −θ∗(2r)p and t = 0.

Taking into account the structure conditions (3.7), and the definition (5.1) of
θ∗, the condition (2.1) is always violated. Therefore Theorem 2.1 with these
stipulations gives

sup
Qr

v ≤ γ(1− τ∗)−β N(p−2)
λ

(
−
∫
K2r(x̄)

v(x, 0)dx
) p

λ

+ γ2
p

2−p θ
1

2−p∗

≤ γ
(
4

p
λ + 2

p
2−p

)
(1− τ∗)−β = γ1(1− τ∗)−β .

Introduce next the cylinder

Qr(δ̄θ∗) = Kr(x̄)× (−δ̄θ∗rp, δ̄θ∗rp] ⊂ Q2r

where δ̄ ∈ (0, 1) is to be chosen.

Lemma 5.2 There exist numbers δ̄, c̄, and α in (0, 1), depending only on the
data {p,N,Co, C1}, and independent of β, M, and ρ, such that

|[v(·, t) ≥ c̄(1 − τ∗)−β ]| > α|Kr| for all t ∈ [−δ̄θ∗rp , δ̄θ∗rp] (5.2)

where θ∗ is defined in (5.1). The constants δ̄, c̄, and α tend to zero either as
p→ 2 or as λ→ 0, that is, as p tends to the critical value 2N

N+1 .

Proof Apply (2.2) of Theorem 2.1 to the function v, solution to (3.6)–(3.7),
over the pair of cylinders Q 1

2 r
(δ̄θ∗) ⊂ Qr(δ̄θ∗), for the choices s = 0 and
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t = δ̄θ∗rp. Taking into account the structure conditions (3.7), and the def-
inition (5.1) of θ∗, the condition (2.1) is always violated. Therefore for all
t ∈ [−δ̄θ∗rp, δ̄θ∗rp]

(1 − τ∗)−β = v(x̄, 0) ≤ sup
K 1

2
r
(x̄)

v(·, 0)

≤ γ(1− τ∗)−β
N(p−2)

λ

δ̄
Np
λ

(
−
∫
Kr

v(x, t)dx
) p

λ

+ γ(2δ̄)
1

2−p (1− τ∗)−β .

Choose δ̄ from

γ(2δ̄)
1

2−p ≤ 1

2
and set γ2 = 2γ, γ3 =

2
N(2−p)

λ γ2

δ̄
Np
λ

.

For such choices, the constants δ̄, γ2, and γ3 depend only on the data
{p,N,Co, C1}, and are independent of β. Then for all t ∈ [−δ̄θ∗rp, δ̄θ∗rp]

1

γ2
(1 − τ∗)−β ≤ (1− τ∗)−βN(p−2)

λ

δ̄
Np
λ

(
−
∫
Kr

v(x, t)dx

) p
λ

.

From this for c̄ ∈ (0, 1)

1

γ3
(1− τ∗)−β ≤ (1− τ∗)−β N(p−2)

λ

2
N(2−p)

λ

(
−
∫
Kr

v(x, t)dx
) p

λ

≤ (1− τ∗)−β
N(p−2)

λ

(
−
∫
Kr

v(x, t)χ[v(·,t)<c̄(1−τ∗)−β ]dx
) p

λ

+ (1− τ∗)−β N(p−2)
λ

(
−
∫
Kr

v(x, t)χ[v(·,t)≥c̄(1−τ∗)−β ]dx
) p

λ

≤ c̄
p
λ (1− τ∗)−β

+ γ
p
λ
1 (1− τ∗)−β

(
−
∫
Kr

χ[v(·,t)≥c̄(1−τ∗)−β ]dx
) p

λ

.

To prove (5.2) choose

c̄
p
λ =

1

2γ3
and set α =

1

γ1

(
1

2γ3

)λ
p

.

6 Expanding the Positivity of v

The information provided by Lemma 5.2 is the assumption required by the
expansion of positivity Proposition 5.1 of Chapter 4 for all
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−δ̄θ∗rp ≤ s ≤ δ̄θ∗rp.

Apply then this expansion of positivity to v with

ρ = r, M = c̄(1 − τ∗)−β

and for s ranging in the indicated interval. It gives

v(·, t) > ηc̄(1− τ∗)−β in K2r(x̄) (6.1)1

and for all times

−δ̄θ∗rp + (1 − ε)δM2−prp < t < δ̄θ∗rp (6.2)1

for constants δ, ε ∈ (0, 1) depending only on the data {p,N,Co, C1} and the
constant α in (5.2), which itself is determined only in terms of the data
{p,N,Co, C1}.

Apply again Proposition 5.1 of Chapter 4 with ρ = 2r, and M replaced by
ηM , and for all s ranging in the interval (6.2)1. It gives

v(·, t) > η2c̄(1− τ∗)−β in K4r(x̄) (6.1)2

for all times

−δ̄θ∗rp + (1− ε)δM2−prp + (1− ε)δ(ηM)2−p(2r)p < t < δ̄θ∗rp. (6.2)2

Notice that the constants ε, δ, η claimed by Proposition 5.1 of Chapter 4
depend only on the data {p,N,Co, C1} and the number α in (5.1) of Chapter 4.
In view of (6.1)1, such a constant α is one. Therefore the numbers ε, δ, η
determined by this second application of Proposition 5.1 of Chapter 4, starting
from (6.1)1 and leading to (6.1)2 and (6.2)2, can be taken as equal to those
in (6.1)1–(6.2)1, originating from (5.2). After n iterations, this process gives

v(·, t) > ηnc̄(1− τ∗)−β in K2n+1r (6.1)n

for all times

−δ̄θ∗rp + (1− ε)δ
n−1∑
j=0

(ηjM)2−p(2jr)p < t < δ̄θ∗rp. (6.2)n

Recall the definition (4.2) of r and choose n so large that

1 ≤ 2nr ≤ 2 which implies (1 − τ∗)−1 > 2n−2(1− 4−
1
β ).

Since τ∗ is only known qualitatively also n is qualitative. We remove such
a qualitative dependence for a suitable choice of β as follows. Taking into
account the lower bound in (6.1)n and the previous choice of n

ηnc̄(1− τ∗)−β > c̄2−2β(1− 4−
1
β )β(η2β)n.
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Choose β so large that

η2β = 1 and set γ̄−1 = c̄2−2β(1− 4−
1
β )β .

Finally, by choosing c̄ even smaller if necessary, we may insure that

∞∑
j=0

(1− ε)δ(ηjM)2−p(2jr)p ≤ 1
2 δ̄θ∗r

p.

Thus
v(·, t) ≥ γ̄−1 in K1 (6.3)

for all times
− 1

2 δ̄θ∗r
p < t < δ̄θ∗rp. (6.4)

As indicated earlier the information on τ∗ is only qualitative and as such, the
range of times in (6.4) is qualitative. However, from the definition (4.2) of r
and (5.1) of θ∗

1
2 δ̄θ∗r

p = 1
2p+1 δ̄(1 − 4−

1
β )p(1− τ∗)−β(2−p)(1− τ∗)p

≥ 1
2p+1 δ̄(1 − 4−

1
β )p = ε̄

provided β ≥ p/(2− p), which we may assume by possibly taking η smaller if
necessary. Thus (6.3) holds for all times t ∈ (−ε̄, ε̄) and establishes (3.8), and
hence the right-hand-side estimate (3.2)–(3.3) of Proposition 3.1.

7 Proof of the Right-Hand-Side Harnack Inequality of
Theorem 1.1

The estimates in the proof of Theorem 1.2 deteriorate as p → 2 and as p →
2N
N+1 . Stable estimates for p → 2 required in the proof of the right-hand-side
inequality of Theorem 1.1 can be derived as in § 6 of Chapter 4 by almost
identical arguments. As remarked in that context, there exists σ∗ ∈ (0, 1), that
can be determined a priori only in terms of {N,Co, C1}, and independent of p,
such that for |p−2| < σ∗, the expansion of positivity for nonnegative solutions
to the class of equations (1.1)–(1.2) of Chapter 3, behaves as if these equations
were neither degenerate nor singular.

Henceforth we let σ∗ be the number claimed by Proposition 6.1 of Chap-
ter 4 and let |p − 2| < σ∗. With such a restriction at hand, a “forward,”
intrinsic Harnack inequality can be derived for nonnegative, local, solutions
to these equations, by the same arguments as in § 2 of Chapter 5, both for
the degenerate case p > 2 and for the singular case p < 2.

Having fixed (xo, to) ∈ ET such that u(xo, to) > 0 construct the cylinder

(xo, to) +Q±8ρ(θ) ⊂ ET



7 Proof of the Right-Hand-Side Harnack Inequality of Theorem 1.1 149

as in (1.2). Introduce the change of variables (3.4) which maps (xo, to)+Q±8ρ(θ)
into Q±8 , and define a function v which solves (3.6)–(3.7) in Q−8 ∪Q+

8 . Notice
that no assumption of the type (1.3)–(1.5) is made in this context.

For τ ∈ [0, 1), introduce the family of nested cylinders {Q−τ } with the same
“vertex” at (0, 0), and the families of nonnegative numbers {Mτ} and {Nτ},
defined by

Q−τ = Kτ × (−τ, 0], Mτ = sup
Q−

τ

v, Nτ = (1− τ)−β

where β > 1 is to be chosen. Notice that unlike in (4.1), where Mτ was defined
as the supremum of v in the cube Kτ at time level t = 0, here Mτ is defined
as the supremum of v in the full cylinder Q−τ . Thus the proof departs from the
arguments of § 3–6 and follows instead the proof for the degenerate case p > 2
in § 2 of Chapter 5. In particular no use is made of the L1

loc−L∞loc estimates of
Theorem 2.1, with the goal of generating constants that are stable as p→ 2.

Let τ∗ be the largest root of the equation Mτ = Nτ , and let (x̄, t̄) ∈ Q̄τ∗
be a point where v achieves its maximum Mτ∗ . Consider the cylinder

Qo =
[|x− x̄| < 1

2 (1 − τ∗)
]× (t̄− 1

2 (1− τ∗), t̄
] ⊂ Q−1

2 (1+τ∗)
.

From the definitions

v(x̄, t̄) = Mτ∗ = (1 − τ∗)−β ≤ sup
Qo

v

≤ sup
Q−

1
2
(1+τ∗)

v ≤ N 1
2 (1+τ∗) = 2β(1− τ∗)−β .

Set
r = 1

2 (1− τ∗), and Mβ = 2β(1 − τ∗)−β

and consider the cylinder with “vertex” at (x̄, t̄)

(x̄, t̄) +Q−r (M
2−p
β ) = Kr(x̄)×

(
t̄−M2−p

β rp, t̄]. (7.1)

This can be taken as the starting cylinder in the proof of the “forward,”
intrinsic Harnack inequality (1.3)–(1.4) of Theorem 1.1 of Chapter 5, provided
its geometry is “intrinsic,” that is, if

sup
(x̄,t̄)+Q−

r (M2−p
β )

v ≤Mβ.

This occurs if (x̄, t̄) +Q−r (M
2−p
β ) ⊂ Qo, or equivalently if

2β(2−p)(1− τ∗)−β(2−p)(1 − τ∗)p−1 = 2p−1. (7.2)

Assuming this inclusion for the moment, proceed as in the proof of the “for-
ward,” intrinsic Harnack inequality (1.3)–(1.4) of Theorem 1.1 of Chapter 5.
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The proof will determine quantitatively the constants ε ∈ (0, 1) and γ > 1 by
a quantitative determination of the parameter β depending only on the data
{p,N,Co, C1} and stable as p→ 2.

Condition (7.2) does not enter in the determination of β. It is needed only
to insure that (x̄, t̄) + Q−r (M

2−p
β ) possesses the correct intrinsic geometry,

and is contained within the domain of definition of v. Having determined β,
the condition (7.2) is satisfied by choosing p so close to 2 as to insure that
β(2 − p) = p − 1. The right-hand-side Harnack inequality (1.2)–(1.6) then
holds with constants ε and γ stable for

|p− 2| < σ∗∗ = min
{
σ∗ , (1− σ∗)β−1

}
. (7.3)

To establish the right-hand-side inequality of Theorem 1.1 assume first that

2N

N + 1
< p ≤ 2− σ∗∗ (7.4)

and proceed as in the proof of Theorem 1.2. This will produce constants γ̄(p)
and ε̄(p) that deteriorate as p→ 2. For p in the range

2− σ∗∗ < p < 2 (7.5)

proceed as above, to establish the inequality with constants that are stable as
p→ 2.

Remark 7.1 We stress that for p in the range (7.5) no use has been made of
Theorem 2.1, whose constant γ(p)→∞ as p→ 2. Also the qualitative infor-
mation of (1.3)–(1.5) is not needed. Indeed, whence β has been determined,
the number σ∗∗ can be quantitatively chosen so small to insure (7.2) and hence
that the cylinder in (7.1) is contained within the domain of definition of v.

7.1 On the Functional Relation γ = γ(ε)

For p in the range (7.4) the proof of the right-hand-side, intrinsic Harnack
inequality (1.2)–(1.6) is a particular case of the right-hand-side inequality
(1.7)–(1.8) of Theorem 1.2. Having fixed p in such a range and having deter-
mined ε̄(p) and γ̄(p), the inequality continues to hold for any smaller ε̄ for the
same constant γ̄.

For p in the range (7.5), the proof of the Harnack inequality departs from
the arguments of § 3–6 and follows instead the proof for the degenerate case
p > 2 in § 2 of Chapter 5. As pointed out in Remark 1.3 and § 2.4 of that
chapter, the constants ε and γ have a functional dependence, made quanti-
tative by (2.12)–(2.13) of Chapter 5. Following the same arguments of § 2.4
of Chapter 5, and taking into account that p < 2, we conclude that, having
determined ε and γ, the parameter ε can be taken to be smaller, provided γ
is taken larger, following their functional dependence.
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8 Proof of the Left-Hand-Side Harnack Inequality in
Theorem 1.2

Having fixed (xo, to) ∈ ET construct the intrinsic cylinders (xo, to) + Q±2ρ(θ)
as in (1.2), and assume that (1.3)–(1.5) are in force, with ρ replaced by 2ρ.
Let now x∗ ∈ Kρ be a point where u(·, to) attains its maximum, and construct
cylinders

(x∗, to) +Q±ρ (θ∗) where θ∗ = [u(x∗, to)]2−p.

These cylinders are intrinsic and the analogues of (1.3)–(1.5) are satisfied.
Hence by the right-hand-side Harnack inequality (3.2) of Proposition 3.1, and
assuming that (1.3) holds, one has

sup
Kρ(xo)

u(·, to) ≤ γ̄ u(xo, to). (8.1)

Apply Theorem 2.1 over the cubes K 1
2ρ
(xo) ⊂ Kρ(xo) for the time levels

to − ε̄ u(xo, to)
2−pρp < s < to − 1

2 ε̄ u(xo, to)
2−pρp

< to < t < to + ε̄ u(xo, to)
2−pρp

so that
1
2 ε̄ u(xo, to)

2−pρp ≤ t− s ≤ 2ε̄ u(xo, to)
2−pρp.

With these choices, either

Cρ > min{1 , ε̄ 1
2−p u(xo, to)}

or

sup
K 1

2
ρ
(xo)

u(·, σ) ≤ γ

ε̄
N
λ u(xo, to)

N(2−p)
λ

(
−
∫
Kρ(xo)

u(x, to)dx
) p

λ

+ γ(2ε̄)
1

2−p u(xo, to)

≤ (
γγ̄

p
λ ε̄−

N
λ + γ(2ε̄)

1
2−p

)
u(xo, to)

= ¯̄γu(xo, to)

for all σ in the range (1.8). The proof is concluded by suitably redefining the
various constants and the the radius ρ.

9 Proof of the Left-Hand-Side Harnack Inequality in
Theorem 1.1

Assume u(xo, to) ≥ Cρ, and let ε and γ be the constants appearing on the
right-hand-side Harnack inequality (1.2)–(1.6) of Theorem 1.1. By the argu-
ments of § 7 these constants are stable as p → 2. For p in the range (7.3)
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the left-hand-side inequality (1.6) of Theorem 1.1 follows from the left-hand-
side inequality (1.7) of Theorem 1.2 as established in the previous section.
The proof, however, uses Theorem 2.1 whose constant γ(p) → ∞ as p → 2.
Below we will give a proof for p in the range (7.5) which is independent of
Theorem 2.1, and with constants that are stable as p→ 2. The proof is based
on applying the right-hand-side Harnack inequality of (1.6) at points in a
neighborhood of (xo, to). For each such point one would have to verify the
analogues of the qualitative requirements (1.3)–(1.5). However, as discussed
in Remark 7.1, for p in the range (7.5) such requirements are not needed. Set

t̄ = to − ε u(xo, to)
2−pρp.

Let α ∈ (0, 1) to be chosen, consider the cube Kαρ(xo), and introduce the set

Uα = Kαρ(xo) ∩ [u(·, t̄) ≤ γu(xo, to)].

Since u is continuous, Uα is closed. The parameter α will be chosen, depending
only on γ, such that Uα is also open. Then if Uα is not empty, it coincides with
Kαρ, thereby establishing the left-hand-side Harnack inequality in (1.2)–(1.6),
modulo a suitable redefinition of ρ and ε.

Assume momentarily that Uα is not empty, and fix z ∈ Uα. Since u is
continuous, there exists a cube Kε(z) ⊂ Kαρ(xo) such that

u(y, t̄) ≤ 2γu(xo, to) for all y ∈ Kε(z). (9.1)

For each y ∈ Kε(z) construct the intrinsic p-paraboloid

P(y, t̄) = [|t− t̄| ≥ ε u(y, t̄)2−p|x− y|p].

If (xo, to) ∈ P(y, t̄), by the right-hand-side Harnack inequality in (1.2)–(1.6)

u(y, t̄) ≤ γu(xo, to)

and hence y ∈ Uα. This occurs if

ε u(y, t̄)2−p|y − xo|p ≤ ε (2γ)2−pu(xo, to)
2−p|y − xo|p ≤ ε u(xo, to)

2−pρp,

that is, if

|y − xo| < αρ, where α = (2γ)
p−2
p .

The right-hand-side Harnack inequality can be applied since, in view of (9.1),
the cylinder

(y, t̄) +Q±8ρ(θ̄) with θ̄ = u(y, t̄)
2−p

can be assumed to be contained in ET .
It remains to show that Uα 	= ∅. Having determined α, consider the cylinder

Kαρ(xo)× (t̄, t̄+ νo(γu(xo, to))
2−p(αρ)p],
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where νo ∈ (0, 1) is to be chosen, depending only on the data {p,N,Co, C1}.
Such a cylinder crosses the time level to if

to − ε u(xo, to)
2−pρp + νo(γu(xo, to))

2−p(αρ)p > to.

Recalling the value of α, this occurs if

νoγ
2−pαp > ε =⇒ ε < νo2

p−2

which, by reducing ε if necessary, we assume. Note that such a reduction of ε
is possible by increasing γ accordingly, as discussed in § 7.1. If Uα = ∅, then

u(·, t̄) > γu(xo, to) in Kαρ(xo).

Apply Lemma 4.1 of Chapter 3, with 2ρ replaced by αρ, and with

a = 1
2 , ξ = 1, M = γu(xo, to), θ = νo(γu(xo, to))

2−p

where νo is the number in (4.2) of Chapter 3. For such a choice of θ, (4.2) is
satisfied and the lemma yields

u(x, to) >
1
2γu(xo, to) for all x ∈ K 1

2αρ
(xo).

Computing this for x = xo gives a contradiction if γ > 2, which without loss
of generality we may assume. The proof is concluded by suitably redefining
the various constants and the radius ρ.

10 Some Consequences of the Harnack Inequality

10.1 Local Hölder Continuity

The forward, intrinsic Harnack inequality (1.2)–(1.6) of Theorem 1.1 can be
used to establish the local Hölder continuity of local, weak solutions to (1.1)–
(1.2) of Chapter 3, irrespective of their signum, provided p is in the singular,
supercritical range (1.1). In particular a theorem in all similar to Theorem 4.1
of Chapter 5 holds true, with essentially the same proof.

However, it is known that locally bounded solutions to these equations are
locally Hölder continuous in ET for all p > 1 ([41]). A more precise connection
between Harnack estimates and Hölder continuity will be discussed in § 14,
where the Hölder continuity will be derived from a weaker form of a Harnack
inequality, valid for all 1 < p < 2.

10.2 A Liouville-Type Result

Let u be a continuous, local, weak solution to the homogeneous (C = 0)
singular equations (1.1)–(1.2) of Chapter 3, in R

N × R, for p in the singular,
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supercritical range (1.1). Assume further that u has a one-sided bound, say
for example either u ≤ k or u ≥ h for constants k or h.

It was observed in § 5 of Chapter 5 that in the degenerate (p > 2) and
nondegenerate (p = 2) case, such solutions do not, in general, satisfy a Liou-
ville property analogous to that for harmonic functions with one-sided bound.
It was also proved that a two-sided bound was needed for a Liouville property
to hold. In the singular, supercritical range (1.1), the situation is different,
due to the elliptic form (1.9) of the Harnack inequality.

Proposition 10.1 Let u be a continuous, local, weak solution to the homo-
geneous (C = 0) equations (1.1)–(1.2) of Chapter 3, in R

N × R, for p in
the singular, supercritical range (1.1). If u has a one-sided bound, then it is
constant.

Proof Let u be bounded below and let m denote its infimum in R
N × R.

Then v −m is a nonnegative solution to the homogeneous (C = 0) equations
(1.1)–(1.2) of Chapter 3, whose infimum in R

N × R is zero. By the Harnack
inequality (1.9), for any ρ > 0

v(xo, to) ≤ γ̄ inf
Kρ(xo)

v(·, to).

Now let ρ → +∞ and deduce that v(x, to) = 0 for all x ∈ R
N . The left-

hand-side, intrinsic Harnack inequality (1.2)–(1.6) now implies that v ≡ 0.

Remark 10.1 The proposition is false for 1 < p ≤ 2N
N+1 , as evidenced by

the counterexamples in § 1.3. The functions in (1.11) for p subcritical, and
in (1.12) for p critical, are nonnegative, not identically zero, weak solutions
to the prototype p-Laplacian equation, in R

N × R. However, these explicit
solutions are all unbounded in every half-space

ST = R
N × (−∞, T ) for all fixed T ∈ R.

This raises the issue as to whether solutions to the singular (1 < p < 2),
homogeneous (C = 0) equations (1.1)–(1.2) of Chapter 3, with two-sided
bound in some half-space ST , are constant in ST , for p in the whole singular
range 1 < p < 2.

Proposition 10.2 Let u be a solution to the singular (1 < p < 2) homoge-
neous (C = 0) equations (1.1)–(1.2) of Chapter 3. If u is bounded above and
below in some half-space ST , then u is constant in ST .

Proof The proof is almost identical to that of Proposition 16.3 of Chapter 5.
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11 Critical and Subcritical Singular Equations

Let u be a nonnegative, local, weak solution to the singular equations (1.1)–
(1.2) of Chapter 3 in ET , for p in the critical and subcritical range

1 < p ≤ p∗ = 2N
N+1 . (11.1)

By the examples and counterexamples of § 1.3 a Harnack estimate in any of
the forms (1.6)–(1.9), fails to hold when p is in the range (11.1). Nevertheless,
for p in such a range, a different form of a Harnack estimate holds with
constants depending on the ratio of some integral norms of the solution u. Fix
(xo, to) ∈ ET and ρ such that K4ρ(xo) ⊂ E, and introduce the quantity

θ =
[
ε
(
−
∫
Kρ(xo)

uq(·, to)dx
) 1

q
]2−p

(11.2)

where ε ∈ (0, 1) is to be chosen, and q ≥ 1 is arbitrary. If θ > 0, assume that

(xo, to) +Q−8ρ(θ) = K8ρ(xo)× (to − θ(8ρ)p, to] ⊂ ET

and set

σ =

⎡
⎢⎣

(
−
∫
Kρ(xo)

uq(·, to)dx
) 1

q

(
−
∫
K4ρ(xo)

ur(·, to − θρp)dx
) 1

r

⎤
⎥⎦

rp
λr

,

Mq =
(

sup
to−θρp<s≤to

∫
K2ρ

uq(·, s)dx
) 1

q

,

(11.3)

where r ≥ 1 is any number such that

λr = N(p− 2) + rp > 0. (11.4)

Theorem 11.1 Let u be a nonnegative, locally bounded, local, weak solution to
the singular equations (1.1)–(1.2) of Chapter 3, for 1 < p < 2 in ET . Introduce
θ as in (11.2) and assume that θ > 0. There exist constants ε ∈ (0, 1), and
γ, β > 1, depending only on the data {p,N,Co, C1} and the parameters q, r,
such that either

Cρ > min{1 , Mq , Mr} (11.5)

or
inf

(xo,to)+Q−
ρ ( 1

2 θ)
u ≥ γ−1σβ sup

(xo,to)+Q−
ρ (θ)

u (11.6)

where σ is defined in (11.3), q ≥ 1 and r ≥ 1 satisfies (11.4). The constants
ε→ 0, and γ, β →∞ as either λr → 0 or λr →∞.

Remark 11.1 The estimate is vacuous if θ = 0. This does occur for certain
solutions to (1.1) of Chapter 3 for to larger than the extinction time ([60]).
An explicit example is in (1.11).
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Remark 11.2 Inequality (11.6) is not a Harnack inequality per se, since σ
depends on the solution itself. It would reduce to a Harnack inequality if
σ ≥ σo > 0 for some absolute constant σo depending only on the data. This,
however, in general is not the case, in view of the counterexamples of § 1.3.
Further comments in this direction are in Remark 14.1.

Remark 11.3 Inequality (11.6) actually holds for nonnegative solutions to
(1.1)–(1.2) of Chapter 3 for all 1 < p < 2, provided r ≥ 1 satisfies (11.4).
For supercritical p one has λ = λ1 > 0, and (11.4) can be realized for r = 1.
However, for λ > 0 the strong form of a Harnack estimate holds (Theorems 1.1
and 1.2). Therefore (11.6), while true for all 1 < p < 2, is of significance only
for the critical and subcritical values in (11.1). In this sense (11.6) can be
regarded as a “weak” form of a Harnack estimate valid for all 1 < p < 2.
Nevertheless, (11.6) is sufficient to establish the local Hölder continuity of
locally bounded, weak solutions to (1.1)–(1.2) of Chapter 3, irrespective of
their signum, as we show in § 14.

12 Components of the Proof of Theorem 11.1

The first is the expansion of positivity presented in Proposition 5.1 of Chap-
ter 4, which holds for nonnegative, local solutions to the singular, quasilinear
parabolic equations (1.1)–(1.2) of Chapter 3, for all 1 < p < 2.

12.1 Lr
loc–L

∞
loc Harnack-Type Estimates for r ≥ 1 Such That

λr > 0

Theorem 12.1 Let u be a nonnegative, locally bounded, local, weak solution
to the singular equations (1.1)–(1.2) of Chapter 3, in ET , for 1 < p < 2, and
let r ≥ 1 satisfy (11.4). There exists a positive constant γr depending only on
the data {p,N,Co, C1}, and r, such that either

Cρ > min
{
1 , Mr ,

( t− s

ρp

) 1
2−p

}
(12.1)

or

sup
Kρ(y)×[s,t]

u ≤ γr

(t− s)
N
λr

( ∫
K2ρ(y)

ur(x, 2s− t)dx
) p

λr

+ γr

( t− s

ρp

) 1
2−p

,

(12.2)

for all cylinders

K2ρ(y)× [s− (t− s), s+ (t− s)] ⊂ ET . (12.3)

The constant γr →∞ if either λr → 0 or λr →∞.
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Remark 12.1 The values of u in the upper part of the cylinder (12.3) are
estimated by the integral of u on the lower base of the cylinder.

Remark 12.2 Theorem 12.1 assumes that u is locally bounded, and turns
such a qualitative information into the quantitative estimate (12.2) in terms
of the Lr

loc integrability of u(·, t). A discussion on the local boundedness of
solution to these singular equations is in § 21.3.

12.2 Lr
loc Estimates Backward in Time

Proposition 12.1 Let u be a nonnegative, local, weak solution to the singular
equations (1.1)–(1.2) of Chapter 3, in ET , for 1 < p < 2, and assume that
u ∈ Lr

loc(ET ) for some r > 1. There exists a positive constant γ depending
only on the data {p,N,Co, C1} and r, such that either

Cρ > min{1 , Mr},
where

Mr =
(

sup
τ≤s≤t

∫
K2ρ

ur(x, s)dx
) 1

r

,

or

sup
τ≤s≤t

∫
Kρ(y)

ur(x, s)dx ≤ γ

∫
K2ρ(y)

ur(x, τ)dx + γ
[(t− τ)r

ρλr

] 1
2−p

, (12.4)

for all cylinders
K2ρ(y)× [τ, t] ⊂ ET .

The proof of Theorem 12.1 and Proposition 12.1 will be given in Appendix A.
Here we assume them and proceed to establish Theorem 11.1.

13 Estimating the Positivity Set of the Solutions

Having fixed (xo, to) ∈ ET , assume it coincides with the origin, write Kρ(0) =
Kρ, and introduce the quantity θ as in (11.2), which is assumed to be positive.
Assume moreover that (11.5) is always violated, that is,

Cρ ≤ min{1 , Mq , Mr}.
Apply (12.4) for r = q, y = 0, and s ∈ (−θρp, 0]. Using the definition (11.2)
of θ gives ∫

Kρ

uq(·, 0)dx ≤ γ̄q

∫
K2ρ

uq(·, τ)dx + γ̄qε
q

∫
Kρ

uq(·, 0)dx,

for all q ≥ 1 and all τ ∈ (−θρp, 0], for a constant γ̄q depending only on the
data {p,N,Co, C1} and q. Choosing ε from
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γ̄qε
q ≤ 1

2

yields ∫
K2ρ

uq(·, τ)dx ≥ 1

2γ̄q

∫
Kρ

uq(·, 0)dx (13.1)

for all τ ∈ (−θρp, 0]. Next apply the sup-estimate (12.2) over the cylinder

K2ρ ×
(− 1

2θρ
p, 0

]
with r ≥ 1 such that λr > 0, to get

sup
K2ρ×(− 1

2 θρ
p,0]

u ≤ γr[ωN (4ρ)N ]
p
λr

(θρp)
N
λr

(
−
∫
K4ρ

ur(·,−θρp)dx
) 1

r
rp
λr

+ γrθ
1

2−p

≤ γ′r
ε

N(2−p)
λr

1

σ

(
−
∫
Kρ

uq(·, 0)dx
) 1

q

+ γ′rε
(
−
∫
Kρ

uq(·, 0)dx
) 1

q

= γ′rε
(
1 +

1

σ ε
rp
λr

)(
−
∫
Kρ

uq(·, 0)dx
) 1

q

for a constant γ′r depending only on the data {p,N,Co, C1} and r. One verifies
that γ′r →∞, as either λr → 0 or λr →∞.

Assume momentarily that 0 < σ < 1 so that in the round brackets con-
taining σ, the second term dominates the first. In such a case

sup
K2ρ×(− 1

2 θρ
p,0]

u ≤ 1

ε′σ

(
−
∫
Kρ

uq(·, 0)dx
) 1

q def
= M, (13.2)

where

ε′ =
ε

N(2−p)
λr

2γ′r
.

From this

ε′σM =
(
−
∫
Kρ

uq(·, 0)dx
) 1

q

. (13.3)

Let ν ∈ (0, 1) to be chosen. Using (13.3) and (13.1) estimate

(ε′σM)q ≤ 2N+1γ̄q−
∫
K2ρ

uq(·, τ)dx

≤ 2N+1γ̄q

(
−
∫
K2ρ∩[u<νσM]

uq(·, τ)dx +−
∫
K2ρ∩[u≥νσM]

uq(·, τ)dx
)

≤ 2N+1γ̄qν
q(σM)q + 2N+1γ̄qM

q |[u(·, τ) > νσM ] ∩K2ρ|
|K2ρ|

for all τ ∈ (− 1
2θρ

p, 0]. From this
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|[u(·, τ) > νσM ] ∩K2ρ| ≥ ασq|K2ρ|, (13.4)

where

α =
ε′q − νq 2N+1γ̄q

2N+1γ̄q

for all τ ∈ (− 1
2θρ

p, 0]. By choosing ν ∈ (0, 1) sufficiently small, only dependent
on the data {p,N,Co, C1} and γ̄q, we can insure that α ∈ (0, 1) depends only
on the data {p,N,Co, C1} and q, and is independent of σ. We summarize:

Proposition 13.1 Let u be a nonnegative, locally bounded, local, weak solu-
tion to the singular equations (1.1)–(1.2) of Chapter 3, for 1 < p < 2. Fix
(xo, to) ∈ ET , let K4ρ(xo) ⊂ E, and let θ and σ be defined by (11.2)–(11.3)
for some ε ∈ (0, 1). For every r ≥ 1 satisfying (11.4) and every q ≥ 1, there
exist constants ε, ν, α ∈ (0, 1), depending only on the data {p,N,Co, C1} and
q and r, such that

|[u(·, t) > νσM ] ∩K2ρ(xo)| ≥ ασq |K2ρ|
for all t ∈ (to − 1

2θρ
p, to].

13.1 A First Form of the Harnack Inequality

The definitions (11.2) of θ and the parameters ε′ and α imply that

1
2θ = ε(νσM)2−p where ε = 1

2

(εε′
ν

)2−p

.

By Proposition 5.1 of Chapter 4 with M replaced by νσM and α replaced
by ασq, there exist constants η and δ in (0, 1), depending on the data
{p,N,Co, C1}, and α, σ, and ε, such that

u(·, t) > η(ασq , ε)νσM in K4ρ(xo),

for all times
t ∈ (to − 1

2θρ
p + δ(νσM)2−p(2ρ)p , to]

where δ includes the quantity 1− ε of Proposition 5.1 of Chapter 4. Without
loss of generality, we can assume that this time interval contains (to− 1

4θρ
p, to].

Proposition 13.2 Let u be a nonnegative, locally bounded, local, weak solu-
tion to the singular equations (1.1)–(1.2) of Chapter 3, for 1 < p < 2. Fix
(xo, to) ∈ ET , let K4ρ(xo) ⊂ E, and let θ and σ be defined by (11.2)–(11.3)
for some ε ∈ (0, 1). For every r ≥ 1 satisfying (11.4) and every q ≥ 1, there
exist constants ε, δ ∈ (0, 1), and a continuous, increasing function σ → f(σ)
defined in R

+ and vanishing at σ = 0, that can be quantitatively determined
a priori only in terms of the data {p,N,Co, C1} and q and r, such that

inf
K4ρ(xo)

u(·, t) ≥ f(σ) sup
(xo,to)+Q2ρ(

1
4 θ)

u, (13.5)
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for all
t ∈ (to − 1

4θρ
p , to]

provided (xo, to) +Q8ρ(θ) ⊂ ET .

Remark 13.1 The form of the function f(·) is given in (5.4) of Chapter 4,
for constants depending only on the data, q and r.

Remark 13.2 The function f(·) depends on θ only through the parameter ε
in the definition (11.2) of θ.

Remark 13.3 The inequality (13.5) is a Harnack-type estimate of the same
form as that stated in § 1, where, however, the constant f(σ) depends on the
solution itself, through σ defined in (11.3), as a proper quotient of the Lq

loc

and Lr
loc averages of u, respectively, at time t = to on the cube Kρ(xo), and

at time t = to − θρp on the cube K4ρ(xo).

Remark 13.4 The inequality (13.5) has been derived by assuming that 0 <
σ < 1. If σ ≥ 1, the same proof gives (13.5) where f(σ) ≥ f(1), thereby
establishing a strong form of the Harnack estimate for these solutions. As
shown in § 1.3, such a strong form is false for p in the critical, and subcritical
range 1 < p ≤ 2N

N+1 .

It turns out that (13.5) is actually sufficient to establish that any locally
bounded, possibly of variable sign, local, weak solution to the singular equa-
tions (1.1)–(1.2) of Chapter 3 for 1 < p < 2, is locally Hölder continuous
in ET . In turn, such a Hölder continuity permits one to improve the lower
bound in (13.5) by estimating f(·) to a power of its argument, as indicated in
(11.6).

14 The First Form of the Harnack Inequality Implies the
Hölder Continuity of u

Let u be a locally bounded, local, weak solution to the singular equations
(1.1)–(1.2) of Chapter 3, for 1 < p < 2, in ET , possibly of variable sign. Let

δ ∈ (0, 1), C,A > 1, R, ω > 0

and for a fixed (xo, to) ∈ ET construct the sequences

Ro = R, Rn =
R

Cn
; ωo = ω, ωn+1 = δωn for n = 0, 1, 2, . . .

and the cylinders

Qn = KRn(xo)×
(
to −

(ωn

A

)2−p

Rp
n, to

]
for n = 1, 2, . . . .



Following Theorem 4.1 and Proposition 4.1 of Chapter 5, the solution u is
Hölder continuous at (xo, to) ∈ ET if the constants δ ∈ (0, 1) and A,C > 1
can be determined a priori depending only on the data {p,N,Co, C1}, and
independent of u and (xo, to), such that

Qn+1 ⊂ Qn ⊂ Qo ⊂ ET and ess osc
Qn

u ≤ ωn

for all n = 0, 1, . . . . We will show that (13.5) permits one to construct such
sequences for an arbitrary (xo, to) ∈ ET .

Having fixed (xo, to) ∈ ET , assume it coincides with the origin of RN+1

and for ρ > 0 set

Ro = 4ρ and Q = K4ρ × (−(4ρ)p, 0], (14.1)

where ρ is so small that Q ⊂ ET . Set also

μ+
o = ess sup

Q
u, μ−o = ess inf

Q
u, ωo = μ+

o − μ−o = ess osc
Q

u.

Since u is locally bounded in ET , without loss of generality we may assume
that ωo ≤ 1 so that

Qo
def
= K4ρ ×

(
−
(ωo

A

)2−p

(4ρ)p, 0
]
⊂ Q ⊂ ET and ess osc

Qo

u ≤ ωo

for a number A ≥ 1 to be chosen. Now set

μ+ = ess sup
Qo

u, μ− = ess inf
Qo

u, ω̄ = ess osc
Qo

u,

and introduce the two functions defined in Qo

v+ = μ+ − u, v− = u− μ−.

Without loss of generality we may assume that

μ+ − 1
4ωo ≥ μ− + 1

4ωo. (14.2)

Indeed otherwise ω̄ ≤ 1
2ωo and thus passing from Q to any smaller cylinder

the essential oscillation of u is reduced by a factor 1
2 , and there is nothing to

prove. Then either

|[v−(·, 0) ≥ 1
4ωo] ∩Kρ| ≥ 1

2 |Kρ| or

|[v+(·, 0) ≥ 1
4ωo] ∩Kρ| > 1

2 |Kρ|.
(14.3)

Indeed by virtue of (14.2)

[u ≤ μ+ − 1
4ωo] ∩Kρ ⊃ [u ≤ μ− + 1

4ωo] ∩Kρ.

14 The First Form of the Harnack Inequality Implies the Hölder Continuity of u 161
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Therefore, if the first of (14.3) is violated, then

|[u ≤ μ+ − 1
4ωo] ∩Kρ| > 1

2 |Kρ|.
Compute and estimate the values θ±, as defined by (11.2), relative to the
functions v±, over Kρ at the time level t = 0. Assuming the first of (14.3)
holds,

ωq
o ≥

1

|Kρ|
∫
Kρ

(
u(·, 0)− μ−

)q
dx

≥ 1

|Kρ|
∫
Kρ∩[v−> 1

4ωo]

[u(·, 0)− μ−]qdx ≥ 1

2

(ωo

4

)q
.

Therefore, if the first of (14.3) holds,

1

2
2−p
q

( ωo

4Ao

)2−p

ρp ≤ θ−ρp ≤
(ωo

Ao

)2−p

ρp for A−1
o = ε, (14.4)

and we have the inclusion

K4ρ × (−θ−ρp, 0] ⊂ K4ρ ×
(
−
(ωo

Ao

)2−p

ρp, 0
]
.

Similar estimates hold for θ+ if the second of (14.3) is in force. By the structure
conditions (1.2) of Chapter 3 both v± are solutions to (1.1)–(1.2) of Chapter 3
for the same constants Co and C1 and hence the Harnack-type inequality
(13.5) holds for either v− or v+, i.e.,

inf
Q4ρ(

1
4 θ±)

v± ≥ f(σ±) sup
Q2ρ(

1
4 θ±)

v±, (14.5)

where σ± are defined as in (11.3) for v±. By virtue of (14.4), which holds for
either θ− or θ+, and Remark 13.1, the function f(·) can be taken to be the
same. Assume now that the first of (14.3) holds true. Then as shown before,

−
∫
Kρ

vq−(·, 0)dx ≥
1

|Kρ|
∫
Kρ∩[v≥ 1

4ωo]

vq−(x, 0)dx ≥
1

2

(ωo

4

)q
.

On the other hand,

−
∫
K4ρ

vr−(x,−θ−ρp)dx ≤ ωr
o,

and therefore recalling the definition (11.3) of σ−

f(σ−) ≥ f
[( 1

4 · 21/q
) pr

λr
]

def
= 1− δ

for δ ∈ (0, 1) depending only on the data {p,N,Co, C1}, q and r. This and
(14.5) imply
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inf
K4ρ×(− 1

4 θρ
p,0]

v− ≥ (1 − δ) sup
K2ρ×(− 1

2 θρ
p,0]

v−

from which
ess osc

Q1

u ≤ ω1 = δωo,

where

Q1 = Kρ ×
(
−
(ωo

A

)2−p

ρp, 0
]

and A = 21/q 41+
1

2−pAo. (14.6)

This and (14.4) determine A depending only on the data {p,N,Co, C1}, q and
r. Taking into account (14.1), the cylinder Q1 is determined from Qo by the
indicated choice of A and for C = 4. A similar argument holds if the second
of (14.3) is in force. This process can now be iterated and continued to yield:

Proposition 14.1 Let u be a locally bounded, local, weak solution to the sin-
gular equations (1.1)–(1.2) of Chapter 3 for 1 < p < 2, in ET . There exist
constants γ̄ > 1 and εo ∈ (0, 1), depending only on the data {p,N,Co, C1}, q
and r, such that for all (xo, to) ∈ ET , setting

M = ess sup
(xo,to)+Q−

R(1)

u for (xo, to) +Q−R(1) ⊂ ET ,

we have

ess osc
(xo,to)+Q−

ρ (θM )
u ≤ γ̄M

( ρ

R

)εo
, where θM =

(M
A

)2−p

for all 0 < ρ ≤ R, and all cylinders

(xo, to) +Q−ρ (θM ) ⊂ (xo, to) +Q−R(1) ⊂ ET .

Remark 14.1 Returning to Remark 11.2, the previous arguments show that
either σ+ or σ− are bounded below by an absolute, positive constant σo. Thus
(14.5) implies that either μ+−u or u−μ− satisfy a strong form of the Harnack
inequality. By the remarks of § 1.3, a strong form of the Harnack estimate
does not hold simultaneously for μ+ − u and u− μ−.

15 Proof of Theorem 11.1 Concluded

Assume (xo, to) coincides with the origin of RN+1 and determine ν and α as
in § 13. We may assume that

|[u(·, 0) ≤ νσM ] ∩Kρ| > 0.

Indeed, otherwise (13.4) would hold with ασq = 1 and the proof could be
repeated leading to (13.5) with f depending only on the data {p,N,Co, C1}
and independent of σ. Moreover by (13.2)
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sup
K2ρ×(− 1

2 θρ
p,0]

u ≤M

with θ given by (11.2). Since u is locally Hölder continuous, there exists x1 ∈
Kρ such that

u(x1, 0) = νσM.

Using the parameter A claimed by Proposition 14.1, construct the cylinder
with “vertex” at (x1, 0)

(x1, 0) +Q−2r
[(νσM

A

)2−p

rp
]
⊂ K2ρ ×

(− 1
4θρ

p, 0
]
.

In the definition (11.2) of θ and the choice (14.4) and (14.6) of the parame-
ter A, such an inclusion can be realized by possibly increasing A by a fixed
quantitative factor depending only on the data, and by choosing r sufficiently
small. Assuming the choice of r has been made, by Proposition 14.1

|u(x, t)− u(x1, 0)| ≤ γ̄M
( r
ρ

)εo
for all

(x, t) ∈ Q̃1
def
= (x1, 0) +Q−r

[(νσM
A

)2−p

rp
]
.

From this
u(x, t) ≥ 1

2νσM for all (x, t) ∈ Q̃1,

provided r is chosen to be so small that

γ̄

νσ

( r
ρ

)εo
=

1

2
, that is, r = ε1σ

1
εo ρ, where ε1 =

( ν

2γ̄

) 1
εo
.

Therefore by Proposition 5.1 of Chapter 4

u ≥ η(νσM) in (x1, 0) +Q−2r
[(η(νσM)

A

)2−p

(2r)p
]

for an absolute constant η ∈ (0, 1). This process can now be iterated to give

u ≥ ηn(νσM) in (x1, 0) +Q−2nr
[(ηn(νσM)

A

)2−p

(2nr)p
]

for all n ∈ N. Choose n as the smallest integer for which

2nr ≥ 4ρ, that is, n ≥ log2

( 4

ε1σ
1
εo

)
.

For such a choice

u ≥ γσβM in Q−2ρ
[(γσβM

A

)2−p

ρp
]

for some β = β(data).
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16 Supercritical, Singular Equations of the Porous
Medium Type

Let u be a continuous, nonnegative, local, weak solution to the singular equa-
tions (5.1)–(5.2) of Chapter 3 in ET , for m in the supercritical range

m∗ =
(N−2)+

N < m < 1. (16.1)

Fix (xo, to) ∈ ET such that u(xo, to) > 0 and construct the cylinders

(xo, to) +Q±ρ (θ), where θ = [u(xo, to)]
1−m. (16.2)

These cylinders are “intrinsic” to the solution since their length is determined
by the value of u at (xo, to). Cylindrical domains of the form Kρ × (0, ρ2] re-
flect the natural, parabolic space-time dilations that leave the homogeneous,
singular, prototype equation (5.3) of Chapter 3 invariant. The latter, however,
is not homogeneous with respect to the solution u. The time dilation by a fac-
tor [u(xo, to)]

1−m is intended to restore the homogeneity, and the Harnack in-
equality holds in such an intrinsic geometry, as made precise in Theorems 16.1
and 16.2 below. The first theorem establishes an intrinsic, mean value Har-
nack inequality in a form similar to Theorem 15.1 of Chapter 5, for degenerate
equations (m > 1). This Harnack estimate is stable as m → 1. The second
theorem establishes a “time-insensitive” mean value Harnack inequality, valid
for all times t ranging in a neighborhood of to. This inequality is unstable

as m → 1. By counterexamples, it will be shown that for 0 < m ≤ (N−2)+
N ,

neither of these theorems holds.

16.1 The Intrinsic, Mean Value, Harnack Inequality

Local weak solutions to (5.1)–(5.2) of Chapter 3, for m in the supercritical
range (16.1), are locally bounded and locally Hölder continuous within their
domain of definition (Appendix B, § B.5 and § B.8). Having fixed (xo, to) ∈
ET , and cylinders (xo, to) +Q±ρ (θ) as in (16.2), set

sup
Kρ(xo)

u(x, to) =M (16.3)

and require that
(xo, to) +Q±8ρ(M1−m) ⊂ ET . (16.4)

Specifically it is required that

QM(xo, to) = [(xo, to) +Q−8ρ(M1−m)] ∪ [(xo, to) +Q+
8ρ(M1−m)]

= K8ρ(xo)× (to −M1−m(8ρ)2, to +M1−m(8ρ)2] ⊂ ET .
(16.5)

The upper bound M is only known qualitatively, and accordingly it does not
play any role in the proof other than to insure that (xo, to)+Q±8ρ(M1−m) are
contained within the domain of definition of u.
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Theorem 16.1 Let u be a continuous, nonnegative, local, weak solution to the
singular equations (5.1)–(5.2) of Chapter 3 in ET , for m in the supercritical
range (16.1). There exist constants ε ∈ (0, 1) and γ > 1 depending only on
the data {m,N,Co, C1}, such that for all intrinsic cylinders (xo, to)+Q±8ρ(θ),
for which (16.4) holds, either

Cρ > 1

or

γ−1 sup
Kρ(xo)

u
(·, to − ε u(xo, to)

1−mρ2
) ≤ u(xo, to)

≤ γ inf
Kρ(xo)

u
(·, to + ε u(xo, to)

1−mρ2
)
.

(16.6)

Thus the form (1.2) of Chapter 5, valid for nonnegative solutions to nonde-
generate equations (m = 1), continues to hold for nonnegative solutions to
supercritically singular equations, although in their own intrinsic geometry.

Remark 16.1 The intrinsic geometry enters here in two stages. First, it de-
termines the cylinders (xo, to) + Q±8ρ(θ), then the constant ε determines the

relative “waiting time,” within the cylinders (xo, to)+Q±8ρ(θ) for the intrinsic
Harnack estimate to hold. The proof will determine the constants γ and ε
quantitatively, only in terms of the data {m,N,Co, C1}. Whence these con-
stants are determined, the intrinsic Harnack inequality (16.2)–(16.6) continues
to hold for a smaller ε, provided we take a larger γ, and γ(ε)→∞ as ε→ 0.
In all cases it is required that (16.3)–(16.5) be in force. The various constants,
however, are dependent only on the data {m,N,Co, C1} and are all indepen-
dent of M.

Remark 16.2 The constants γ and ε deteriorate as m → m∗ in the sense
that

γ(m), ε(m)−1 →∞ as m→ (N−2)+
N .

However, they are stable as m→ 1 in the sense of (5.9) of Chapter 3. Thus by
formally letting m → 1 in (16.6) one recovers the classical Moser’s Harnack
inequality in the form (1.2) of Chapter 5.

Remark 16.3 The proofs are based on the energy estimates and DeGiorgi-
type lemmas of § 9–11 of Chapter 3 and the expansion of positivity of § 7 of
Chapter 4. According to the discussion in § 5.3 and Remarks 9.2, 10.1, and 11.3
of Chapter 3, a constant γ depends only on the data if it can be quantitatively
determined a priori only in terms of {m,N,Co, C1}. The constant C appearing
in the structure conditions (5.2) of Chapter 3, enters in the statement of
Theorems 16.1 and 16.2, only through an alternative.

Remark 16.4 The theorem has been stated for continuous solutions, to give
meaning to u(xo, to). The Hölder continuity of nonnegative solutions will be
proved in § B.6–B.13 of Appendix B.
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Remark 16.5 The intrinsic form (16.6) depends on the intrinsic expansion
of positivity of Chapter 4, and it cannot be removed. Indeed (16.6) is false in
a time geometry independent of u(xo, to). This can be verified for the family
of examples and counterexamples collected in § 3.3 of Chapter 4, properly
adapted for porous medium type equations. Explicit examples of solutions
to porous medium type equations are collected in [150], and are discussed in
§ 16.3.

x

t

to

xo

to + ε̄u(xo, to)
1−mρ2

to − ε̄u(xo, to)
1−mρ2

u(xo, to) > 0

γ̄−1 sup
Kρ(xo)

u(·, σ) ≤ u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, τ )

Fig. 16.2. Time-Insensitive Mean Value Harnack Inequality

16.2 Time-Insensitive, Intrinsic, Mean Value, Harnack Inequalities

Theorem 16.2 Let u be a continuous, nonnegative, local, weak solution to the
singular equations (5.1)–(5.2) of Chapter 3 in ET , for m in the supercritical
range (16.1). There exist constants ε̄ ∈ (0, 1) and γ̄ > 1, depending only on
the data {m,N,Co, C1}, such that for all intrinsic cylinders (xo, to) +Q±8ρ(θ)
as in (16.2), for which (16.4) holds, either

Cρ > 1

or
γ̄−1 sup

Kρ(xo)

u(·, σ) ≤ u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, τ) (16.7)

for any pair of time levels σ, τ in the range

to − ε̄ u(xo, to)
1−mρ2 ≤ σ, τ ≤ to + ε̄ u(xo, to)

1−mρ2. (16.8)

The constants ε̄ and γ̄−1 tend to zero as either m→ 1 or m→ (N−2)+
N .
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Both right and left inequalities in (16.7) are insensitive to the times σ, τ ,
provided they range within the time-intrinsic geometry (16.8). For σ = τ = to
the theorem yields

Corollary 16.1 (The Elliptic Harnack Inequality) Let u be a continu-
ous, nonnegative, local, weak solution to the singular equations (5.1)–(5.2) of
Chapter 3 in ET , for m in the supercritical range (16.1). For all intrinsic
cylinders (xo, to) +Q±8ρ(θ) as in (16.2), for which (16.4) holds, either

Cρ > 1

or
γ̄−1 sup

Kρ(xo)

u(·, to) ≤ u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, to) (16.9)

for the same constant γ̄ as in Theorem 16.2.

Thus, the right and left inequalities in (16.7) are simultaneously forward, back-
ward, and elliptic Harnack estimates. Inequalities of this type, and in partic-
ular (16.9), are false for nonnegative solutions to the heat equation ([121]).
This is reflected in (16.7)–(16.9), in that the constants ε̄ and γ̄−1 tend to zero
as m → 1. It turns out that these inequalities lose meaning also as m tends

to the critical value (N−2)+
N as discussed below.

16.3 On the Range (16.1) of m

The range of m in (16.1) is optimal for the intrinsic, forward in time Harnack
estimate (16.2)–(16.6) to hold. Consider nonnegative weak solutions to the
Cauchy problem

ut −Δum = 0 in R
N × R

+

u(·, 0) = uo ∈ Ls(RN ), s =
N(1−m)

2

for 0 < m < m∗ and uo ≥ 0. Solutions exist and become extinct, abruptly,
after a finite time T . Specifically, there exists a time T , that can be determined
a priori in terms of m, N , and ‖uo‖s,RN , such that ([41], Chapter VII, § 11,
and [59])

u(·, t) > 0 for t < T and u(·, t) = 0 for t > T.

Pick (xo, to) ∈ R
N × (0, T ) where to is so close to T as to satisfy

T − to < 8−2to

and choose ρ > 0 so large that

u(xo, to)
1−m(8ρ)2 = T − to.
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For such a choice

(xo, to) +Q±8ρ(θ) ⊂ R
N × R

+ for θ as in (16.2).

However, the intrinsic, forward Harnack estimate (16.2)–(16.6) fails.

When 0 < m ≤ (N−2)+
N also the elliptic version (16.9) fails, as shown by

the following counterexample.

u(x, t) =
( 2|λ|m
1−m

) 1
1−m (T − t)

1
1−m

+

|x| 2
1−m

0 < m <
(N − 2)+
N + 2

, λ = N(m− 1) + 2.

(16.10)

This is a nonnegative, local, weak solution to the prototype porous medium
equation in R

N × R. Such a solution is unbounded near x = 0 for all t < T
and finite otherwise. Therefore (16.9) fails to hold for cubes centered at the
origin.

For 0 < m ≤ m∗ the mere notion of weak solution is not sufficient to insure
its local boundedness ([41], Chapter V, § 11 and [59]). The weak solution
(16.10) is indeed unbounded near x = 0. However, the lack of a Harnack
estimate is not due to the possible unboundedness of the solutions. Consider
the two-parameter family of functions

u(x, t) = (T − t)
N+2

4
+

(
a+

|x|2
4aN

)−N+2
2

N > 2, m = (N−2)+
N+2 < m∗,

(16.11)

where a > 0 and T are parameters. These functions are nonnegative, locally
bounded, weak solutions to the prototype porous medium equation in R

N ×R

and they do not satisfy the Harnack estimates of Theorems 16.1 and 16.2.
The same occurs for the critical value m = m∗ as shown by the following
two-parameter family of counterexamples. The functions

u(x, t) =
(
a|x|2 + ke2Nat

)−N+1
2

N ≥ 3, m =
(N − 2)+

N
(16.12)

for positive parameters a and k, are nonnegative solutions to the prototype
porous medium equation in R

N × R, and one verifies that they fail to satisfy
the Harnack estimate in any one of the forward, backward, or elliptic form.

These remarks raise the question of what form the Harnack estimate might
take for m in the critical and subcritical range 0 < m ≤ m∗. This issue will
be addressed in § 19–20.
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17 On the Proof of Theorems 16.1 and 16.2

The proof of these theorems follows the arguments of § 3–9. These arguments
in turn depend on the number

λ = N(m− 1) + 2. (17.1)

The requirements that m be in the supercritical range (16.1) is equivalent to
requiring that λ > 0. The main components of the proof are the expansion of
positivity for quasilinear, singular equations of the porous medium type, as
presented in § 7 of Chapter 4, and an L1

loc–L
∞
loc Harnack-type estimate, valid

for λ > 0, analogous to Theorem 2.1, which we state next.

17.1 An L1
loc–L

∞
loc Harnack-Type Estimate

Theorem 17.1 Let u be a nonnegative, local, weak solution to (5.1)–(5.2) of
Chapter 3 for m in the supercritical range (16.1). There exists a positive con-
stant γ depending only on the data {m,N,Co, C1}, such that for all cylinders

K2ρ(y)× [s− (t− s), s+ (t− s)] ⊂ ET

either
Cρ > 1

or

sup
Kρ(y)×[s,t]

u ≤ γ

(t− s)
N
λ

(
inf

2s−t<τ<t

∫
K2ρ(y)

u(x, τ)dx
) 2

λ

+ γ
( t− s

ρ2

) 1
1−m

where λ is defined in (17.1).

Theorem 17.1 will be established in Appendix B. Assuming it for the moment,
we proceed to indicate the minor changes in the proof, along § 3–9.

17.2 The Right-Hand-Side Harnack Estimate of Theorem 16.2

Fix (xo, to) ∈ ET , determine the intrinsic cylinders (xo, to) + Q±8ρ(θ) as in
(16.2), and assume that (16.3)–(16.5) hold. Assume in addition that

Cρ ≤ 1 (17.2)

where C is the constant in the structure conditions (5.2) of Chapter 3.

Proposition 17.1 Let u be a continuous, nonnegative, local, weak solution
to (5.1)–(5.2) of Chapter 3 in QM, for m in the supercritical range (16.1).
There exist positive constants ε̄ and γ̄, that can be determined quantitatively,
a priori only in terms of the data {m,N,Co, C1}, such that
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u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, t)

for all times

to − ε̄u(xo, to)
1−mρ2 ≤ t ≤ to + ε̄u(xo, to)

1−mρ2.

The constants ε̄ and γ̄−1 tend to zero, as either m→ 1 or m→ (N−2)+
N .

Introduce the change of variables and unknown function

x→ x− xo

ρ
, t→ t− to

u(xo, to)1−mρ2
, v =

u

u(xo, to)
.

This maps the cylinder QM(xo, to) in (16.4) into

QM = K8 ×
(
−
( M
u(xo, to)

)1−m

82,
( M
u(xo, to)

)1−m

82
]
.

Relabeling by x, t the new coordinates, v is a weak solution to

vt − div Ā(x, t, v,Dv) = B̄(x, t, v,Dv) in QM. (17.3)

Taking into account (17.2), the transformed functions Ā and B̄ satisfy the
structure conditions⎧⎨

⎩
Ā(x, t, v,Dv) ·Dv ≥ mCov

m−1|Dv|2 − vm+1

|Ā(x, t, v,Dv)| ≤ mC1v
m−1|Dv|+ vm

|B̄(x, t, v,Dv)| ≤ mvm−1|Dv|+ vm
(17.4)

where Co and C1 are the constants appearing in (5.2) of Chapter 3. Establish-
ing Proposition 17.1 consists in finding positive constants ε̄ and γ̄, depending
only on the data, such that

v(·, t) ≥ γ̄−1 in K1 for all t ∈ [−ε̄, ε̄].
The proof of this inequality involves the partial differential equations (17.3)–
(17.4) only through Theorem 17.1 applied to the local solution v, and the
expansion of positivity of § 7 of Chapter 4, applied to the same local solution
v. The remaining arguments are based on measure-theoretical considerations,
and harmonic analysis, independent of the particular partial differential equa-
tion at hand. They can be repeated almost verbatim as in § 3–9.

18 Some Consequences of the Harnack Inequality

18.1 Analyticity of Nonnegative Solutions

If the equation is homogeneous (C = 0), and A is locally analytic in all its
arguments, within its domain of definition, then nonnegative weak solutions
are locally analytic in the space variables and at least Lipschitz continuous in
time, as made precise by the following proposition.
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Proposition 18.1 Let u be a nonnegative, local, weak solution to the singu-
lar, homogeneous (C = 0) equations (5.1)–(5.2) of Chapter 3 for m in the
supercritical range (16.1). Assume moreover that A, whenever well defined,
is a locally analytic function of its arguments. Fix (xo, to) ∈ ET , such that
u(xo, to) > 0, and construct cylinders (xo, to) +Q±8ρ(θ) as in (16.2), which in
addition satisfy (16.3)–(16.5).

Then there exists a positive constant γ, depending only on the data
{m,N,Co, C1} and independent of u, such that for every multi-index α,

|Dαu(xo, to)| ≤ γ|α|+1|α|!
ρ|α|

u(xo, to).

Moreover for every nonnegative integer k,∣∣∣ ∂k

∂tk
u(xo, to)

∣∣∣ ≤ γ2k+1(k!)2

ρ2k
[u(xo, to)]

1−(1−m)k.

Proof By Theorem 16.2

0 < γ̄−1u(xo, to) ≤ u(x, t) ≤ γ̄u(xo, to)

for all (x, t) in

Kρ(xo)× (to − ε̄u(xo, to)
1−mρ2 , to + ε̄u(xo, to)

1−mρ2).

Therefore in such a cylinder the equation is no longer singular or degener-
ate. The proposition now follows from the classical results of Friedman [70]
(see also [90]). The structural assumptions (5.2) of Chapter 3 insure that the
matrix (Ai,pj ) is positive definite.

The conclusion of Proposition 18.1, for all multi-indices α and for k = 1,
continues to hold for points (xo, to) ∈ ET such that u(xo, to) = 0. For this
it suffices to apply Proposition 18.1 to a sequence of local approximations
{un}n∈N of u, each satisfying the equation, and bounded below in a neighbor-
hood of (xo, to).

18.2 Hölder Continuity

As already noticed in Remark 16.4, locally bounded, weak solutions to the
porous medium type equations (5.1)–(5.2) of Chapter 3, in ET , irrespective
of their signum, and for all m > 0, are locally Hölder continuous in ET .

However, such a regularity cannot be directly derived from the intrinsic
Harnack inequality of either Theorem 16.1 or Theorem 16.2. Known proofs of
Hölder continuity of a solution u from the Harnack inequality, are based, one
way or another, on applying the Harnack estimate to the functions u±k for a
suitable constant k ([49, 51, 119, 120, 121], and also § 4 of Chapter 5). On the
other hand, if u is a solution to the prototype porous medium equation (5.3)
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of Chapter 3, then u − k, for a nonzero constant k, is not a solution to the
same equation. Therefore there is no guarantee that either u−k or k−u would
satisfy the Harnack estimate. Even if this approach were viable, it would be
limited to singular equations for m in the supercritical range (16.1), since,
as discussed in § 16.3, the Harnack inequality is no longer valid for m in the

critical and subcritical range 0 < m ≤ (N−2)+
N .

These remarks suggest that for the singular porous medium type equations
(5.1)–(5.2) of Chapter 3 the issues of the local Hölder continuity of its local,
weak solutions, and that of the Harnack inequality for its local, nonnegative,
weak solutions are separate and neither implies the other.

However, the same methods leading to the Harnack estimates of Theo-
rems 16.1 and 16.2 can be used to establish the local Hölder continuity of
locally bounded, weak solutions to these singular equations, irrespective of
their signum, and for all m > 0. They also permit one to exhibit a quanti-
tative Hölder modulus of continuity. The results being local, assume without
loss of generality that u ∈ L∞(ET ). Let

Γ = ∂ET − Ē × {T }
denote the parabolic boundary ofET , and for a compact setK ⊂ ET introduce
the intrinsic, parabolic m-distance from K to Γ by

m− dist(K;Γ )
def
= inf

(x,t)∈K
(y,s)∈Γ

(
|x− y|+ ‖u‖

m−1
2

∞,ET
|t− s| 12

)
.

Theorem 18.1 Let u be a bounded, local, weak solution to the singular porous
medium type equations (5.1)–(5.2) of Chapter 3, for 0 < m < 1. Then u is
locally Hölder continuous in ET , and there exist constants γ > 1 and α ∈ (0, 1)
that can be determined a priori only in terms of the data {m,N,Co, C1} and
C, such that for every compact set K ⊂ ET ,

|u(x1, t1)− u(x2, t2)| ≤ γ‖u‖∞,ET

( |x1 − x2|+ ‖u‖
m−1

2

∞,ET
|t1 − t2| 12

m− dist(K;Γ )

)α
for every pair of points (x1, t1), and (x2, t2) ∈ K.

For a fixed (xo, to) ∈ ET and fixed numbers

δ ∈ (0, 1), b > 1, R, ω > 0

construct the numbers

Ro = R, Rn =
R

bn
; ωo = ω, ωn+1 = δωn for n = 0, 1, 2, . . .

and the cylinders

Qn = KRn(xo)×
(
to − ωn

1−mR2
n, to

]
for n = 1, 2, . . . .
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The function u is Hölder continuous at (xo, to) ∈ ET if there exist constants
δ ∈ (0, 1) and b > 1, independent of u and (xo, to), such that

Qn+1 ⊂ Qn ⊂ Qo ⊂ ET and ess osc
Qn

u ≤ ωn (18.1)

for all n = 0, 1, . . . . Having fixed (xo, to) ∈ ET , assume it coincides with the
origin of RN+1 and for ρ > 0 set

Ro = ρ and Q = Kρ × (−ρ2, 0],

where ρ is so small that Q ⊂ ET . Set also

μ+
o = ess sup

Q
u, μ−o = ess inf

Q
u, ωo = μ+

o − μ−o = ess osc
Q

u.

Since u is locally bounded in ET , without loss of generality we may assume
that ωo ≤ 1 so that

Qo = Kρ ×
(
− ωo

1−mρ2, 0
]
⊂ Q ⊂ ET , and ess osc

Qo

u ≤ ωo.

Thus (18.1) holds for n = 0. Methods analogous to those leading to the
Harnack inequality, and indeed more general as to include the whole singular
range 0 < m < 1, permit one to determine numbers b > 1 and δ ∈ (0, 1)
depending only on the set of data {m,N,Co, C1} and C, and independent of
u and (xo, to) for which (18.1) holds for all n. A complete proof of the Hölder
continuity of nonnegative solutions to (5.1)–(5.2) of Chapter 3 in the whole
range 0 < m < 1 will be given in § B.6–B.13 of Appendix B. A consequence
of the previous arguments is:

Proposition 18.2 Let u be a locally bounded, local, weak solution to the sin-
gular equations (5.1)–(5.2) of Chapter 3 for 0 < m < 1, in ET . There exist
constants γ̄ > 1 and εo ∈ (0, 1), depending only on the data {m,N,Co, C1}
and C, such that for all (xo, to) ∈ ET , setting

M = ess sup
(xo,to)+Q−

R(1)

|u| for (xo, to) +Q−R(1) ⊂ ET ,

we have

ess osc
(xo,to)+Q−

ρ (θM )
u ≤ γ̄M

( ρ

R

)εo
where θM = M1−m

for all 0 < ρ ≤ R and all cylinders

(xo, to) +Q−ρ (θM ) ⊂ (xo, to) +Q−R(1) ⊂ ET .
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18.3 A Liouville-Type Result

Proposition 18.3 Let u be a nonnegative, continuous, local, weak solution
to the homogeneous (C = 0), singular equations (5.1)–(5.2) of Chapter 3, in
R

N ×R, for m in the singular, supercritical range (16.1). Then u is constant.

Proof For T ∈ R denote by ST the half-space

ST = R
N × (−∞, T ] for some T ∈ R

By (16.6)
0 ≤ inf

ST

u ≤ u ≤ sup
ST

u <∞.

Therefore u is quantitatively bounded above and below in ST . The proof is
now concluded as in Proposition 16.3 of Chapter 5 by making use of the form
of the Hölder continuity as expressed by Proposition 18.2.

Remark 18.1 The proposition is false for m = 1 as discussed in § 5 of
Chapter 5.

Remark 18.2 If u is a solution to the prototype porous medium equation
(5.3) of Chapter 3, then u−k, for a nonzero constant k is not a solution to the
same equation. For this reason the proof of Proposition 18.3 does not permit
to replace the assumption of u being nonnegative, with u having a one-sided
bound.

Remark 18.3 The proposition is false for 0 < m ≤ (N−2)+
N , as evidenced by

the counterexamples in § 16.3. The functions in (16.11) for m subcritical, and
in (16.12) for m critical, are nonnegative, not identically zero, weak solutions
to the prototype porous medium equation, in R

N×R. However, these solutions
are all unbounded in every ST . This raises the issue as to whether solutions
to the singular (0 < m < 1), homogeneous (C = 0) equations (5.1)–(5.2) of
Chapter 3, with two-sided bound in some half-space ST are constant in ST ,
for m in the whole singular range 0 < m < 1.

Proposition 18.4 Let u be a solution to the singular (0 < m < 1) homoge-
neous (C = 0) equations (5.1)–(5.2) of Chapter 3. If u is bounded above and
below in some half-space ST , then u is constant in ST .

Proof The proof is almost identical to that of Proposition 16.3 of Chapter 5.

19 Critical and Subcritical Singular Equations of the
Porous Medium Type

Let u be a nonnegative, locally bounded, local, weak solution to (5.1)–(5.2)
of Chapter 3 for m in the critical and subcritical range
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0 < m ≤ m∗ =
(N−2)+

N < 1. (19.1)

By the examples and counterexamples of § 16.3 a Harnack estimate in any of
the forms (16.6)–(16.9) fails to hold when m is in the critical and subcritical
range (19.1). Nevertheless a different form of a Harnack estimate holds for
m in such a range, with constants depending on the ratio of some integral
averages of the solution u. Fix (xo, to) ∈ ET and ρ such that K4ρ(xo) ⊂ E,
and introduce the quantity

θ =
[
ε
(
−
∫
Kρ(xo)

uq(·, to)dx
) 1

q
]1−m

(19.2)

where ε ∈ (0, 1) is to be chosen, and q ≥ 1 is arbitrary. If θ > 0, assume that

(xo, to) +Q−8ρ(θ) = K8ρ(xo)× (to − θ(8ρ)2, to] ⊂ ET

and set

σ =

⎡
⎢⎣

(
−
∫
Kρ(xo)

uq(·, to)dx
) 1

q

(
−
∫
K4ρ(xo)

ur(·, to − θρ2)dx
) 1

r

⎤
⎥⎦

2r
λr

(19.3)

where r ≥ 1 is any number such that

λr = N(m− 1) + 2r > 0. (19.4)

Theorem 19.1 Let u be a nonnegative, locally bounded, local, weak solution
to the singular equations (5.1)–(5.2) of Chapter 3, for 0 < m < 1 in ET . In-
troduce θ as in (19.2) and assume that θ > 0. There exist constants ε ∈ (0, 1),
and γ, β > 1, depending only on the data {m,N,Co, C1} and the parameters
q, r, such that either

Cρ > 1

or
inf

(xo,to)+Q−
ρ ( 1

2 θ)
u ≥ γ−1σβ sup

(xo,to)+Q−
ρ (θ)

u, (19.5)

where σ is defined in (19.3), q ≥ 1 and r ≥ 1 satisfies (19.4). The constants
ε→ 0, and γ, β →∞ as either λr → 0 or λr →∞.

Remark 19.1 The estimate is vacuous if θ = 0. This does occur for certain
solutions to (5.1) of Chapter 3 for to larger than the extinction time ([59, 60]).
An explicit example is in (16.11).

Remark 19.2 Inequality (19.5) is not a Harnack inequality per se, since σ
depends on the solution itself. It would reduce to a Harnack inequality if
σ ≥ σo > 0 for some absolute constant σo depending only on the data. This,
however, cannot occur since a Harnack inequality for solutions to (5.1)–(5.2)
of Chapter 3 does not hold, as shown by the counterexamples of § 16.3.
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Remark 19.3 Inequality (19.5) actually holds for nonnegative solutions to
(5.1)–(5.2) of Chapter 3 for all m > 0, provided r ≥ 1 satisfies (19.4). For
supercritical m one has λ = λ1 > 0, and (19.4) can be realized for r = 1. How-
ever, for λ > 0 the strong form of a Harnack estimate holds (Theorems 16.1
and 16.2). Therefore (19.5), while true for all 0 < m < 1, is of significance
only for the critical and subcritical values in (19.1). In this sense (19.5) can
be regarded as a “weak” form of a Harnack estimate valid for all 0 < m < 1.

20 On the Proof of Theorem 19.1

The first component of the proof is the expansion of positivity presented in
Proposition 7.2 of Chapter 4, and valid for all 0 < m < 1.

20.1 Lr
loc–L

∞
loc Harnack-Type Estimates for r ≥ 1 Such That

λr > 0

Theorem 20.1 Let u be a nonnegative, locally bounded, local, weak solution
to the singular, porous medium type equations (5.1)–(5.2) of Chapter 3, in ET ,
for 0 < m < 1, and let r ≥ 1 satisfy (19.4). There exists a positive constant
γr depending only on the data {m,N,Co, C1}, and r, such that either

Cρ > 1

or

sup
Kρ(y)×[s,t]

u ≤ γr

(t− s)
N
λr

( ∫
K2ρ(y)

ur(x, 2s− t)dx
) 2

λr

+ γr

( t− s

ρ2

) 1
1−m

(20.1)

for all cylinders

K2ρ(y)× [s− (t− s), s+ (t− s)] ⊂ ET .

The constant γr →∞ if either λr → 0 or λr →∞.

The theorem, which will be established in Appendix B, assumes that u is
locally bounded, and turns such a qualitative information, into the quantitative
estimate (20.1) in terms of the Lr

loc integrability of u(·, t). A discussion on the
local boundedness of solutions to these singular equations is in § 21.5.

20.2 Lr
loc Estimates Backward in Time

Proposition 20.1 Let u be a nonnegative, local, weak solution to the singular
equations of the porous medium type (5.1)–(5.2) of Chapter 3, in ET , for
0 < m < 1, and assume that u ∈ Lr

loc(ET ) for some r > 1. There exists
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a positive constant γ depending only on the data {m,N,Co, C1} and r, such
that either

Cρ > 1

or

sup
τ≤s≤t

∫
Kρ(y)

ur(x, s)dx ≤ γ

∫
K2ρ(y)

ur(x, τ)dx + γ
[ (t− τ)r

ρλr

] 1
1−m

for all cylinders
K2ρ(y)× [τ, t] ⊂ ET .

The proof of Theorem 20.1 and Proposition 20.1 will be given in Appendix B.
Here we assume them and indicate how to establish Theorem 19.1.

20.3 Main Points of the Proof

With these two facts at hand, the proof now follows the same steps as the
proof of Theorem 11.1. The first is in establishing a weaker form of (19.5).

Proposition 20.2 Let u be a nonnegative, locally bounded, local, weak solu-
tion to the singular porous medium type equations (5.1)–(5.2) of Chapter 3,
for 0 < m < 1. Fix (xo, to) ∈ ET , let K4ρ(xo) ⊂ E, and let θ and σ be defined
by (19.2)–(19.3) for some ε ∈ (0, 1). For every r ≥ 1 satisfying (19.4) and
every q ≥ 1, there exist constants ε, δ ∈ (0, 1), and a continuous, increasing
function σ → f(σ) defined in R

+ and vanishing at σ = 0, that can be quan-
titatively determined a priori only in terms of the data {m,N,Co, C1}, q and
r, such that

inf
K4ρ(xo)

u(·, t) ≥ f(σ) sup
(xo,to)+Q2ρ(

1
4 θ)

u,

for all
t ∈ (to − 1

4θρ
2 , to],

provided (xo, to) +Q8ρ(θ) ⊂ ET .

The proof of this proposition follows the same arguments as those in § 13, mak-
ing use of Theorem 20.1 and Proposition 20.1. The arguments are measure-
theoretical and not linked to a specific partial differential equation. The equa-
tion only enters in establishing Theorem 20.1 and Proposition 20.1, and in
the expansion of positivity of Proposition 7.2 of Chapter 4.

Application of such an expansion of positivity shows that the function f(·)
can be taken of the same form as given in (7.3) of Chapter 4, for constants
depending only on the data, q and r.

The next step in the proof is in improving the dependence on σ so that
f(σ) can be replaced by σβ for some β > 0 depending only on the data
{m,N,Co, C1}. This is realized by making use of the Hölder continuity of u
in the form stated in Proposition 18.2 (see also the proof in Appendix B).
The technical arguments to this end are in § 15, which, being independent
of any partial differential equation, apply to any function with the indicated
properties.
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21 Remarks and Bibliographical Notes

For nonnegative solutions to the prototype, homogeneous equation (1.3) of
Chapter 3, intrinsic Harnack inequalities in the forward form (1.2)–(1.6), and
the elliptic form (1.9), were established in a series of contributions ([39, 59,
60]), collected and reorganized in [41]. The parameter p was in the supercritical
range (1.1) and only the right-hand sides of (1.6) and (1.7) were established.
These proofs, one way or another, are based on the comparison principle, by
comparing locally the solutions to the homogeneous prototype p-Laplacian
equation with either the explicit Barenblatt solutions with pole at (xo, to)

Γp(x, t;xo, to) =
1

(t− to)
N
λ

[
1 + Cp

( |x− xo|
(t− to)

1
λ

) p
p−1

] p−1
p−2

(21.1)

with

Cp =
( 1
λ

) 1
p−1 2− p

p
, λ = N(p− 2) + p. (21.2)

as in [41], or with some suitably constructed subsolution as in [59].
The right-hand-side estimates of Theorems 1.1 and 1.2, for the full quasi-

linear structure of the singular equations (1.1)–(1.2) of Chapter 3, and p in the
supercritical range (1.1), were established in [51]. The left-hand-side estimates
and thus the complete mean value form of these intrinsic Harnack inequalities
were proved in [52].

The functions in § 1.3 to serve as counterexample to a Harnack estimate
for critical and subcritical p were constructed by adapting similar procedures
of [126, 77], for the porous medium equation.

The first proof of Theorem 2.1 for the homogeneous, singular, prototype p-
Laplacian equation (1.3) of Chapter 3 is in [41]. The proof adapts to singular
(1 < p < 2) equations with the full quasilinear structure of (1.1)–(1.2) of
Chapter 3, and as such is established in [51]. Here it is reported in Appendix A
for completeness and in view of its importance. The proof actually holds for all
1 < p < 2, provided the local weak solutions u at hand are locally bounded.
This is the case for p in the supercritical range (1.1) as established in [41]
Chapter V. If p is subcritical, weak solutions might become unbounded and
the boundedness of u must be postulated. Further remarks on boundedness
and unboundedness of weak solutions are in § 21.1.

The technique in § 4 of locating the supremum of v through the numbers
Mτ and Nτ follows an idea of Landis ([104]). Our approach, however, departs
from [104], in that the sup is located at a single time level, as opposed to within
an entire parabolic cylinder. This permits one to generate, in conjunction with
Theorem 2.1, a Harnack estimate insensitive to time. The remainder of the
proof in § 5–7 is taken from [51]. The techniques of § 8–9 leading to a mean
value form of the Harnack inequality are taken from [52].

The Liouville-type Propositions 10.1 and 10.2 seem to be new in the lit-
erature, and are taken from [56].
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21.1 About Theorem 11.1

For the prototype p-Laplacian equation (1.3) of Chapter 3, a result similar to
Theorem 11.1 is in [22]. The arguments make extensive use of the comparison
principle, by comparing the solution with either the solution to a suitable
Cauchy problem or with the solutions to a boundary value problem in bounded
cylindrical domains, with homogeneous data on its lateral boundary. For the
latter a fine analysis of the solutions is in [60], and applied in [22].

Harnack estimates are unrelated to maximum and comparison principles
and are more linked to the structural properties of elliptic and parabolic equa-
tions, as made precise by the pioneering work of Moser [119, 120, 121, 122]
and Nash [123], and refined in [10, 141, 147, 148, 66].

However, independently of the maximum principle, the significance of the
Harnack-type estimates (11.6) and (13.5) is not entirely understood. While
valid for all 1 < p < 2, it does not transition seamlessly from the subcritical
range 1 < p < 2N

N+1 , across the critical value p = 2N
N+1 , to the supercritical

range 2N
N+1 < p < 2, where a strong form of the Harnack inequality holds

(Theorem 1.1). Perhaps the most significant consequence is the Hölder conti-
nuity of the solutions established in § 14 and taken from [53]. Harnack-type
estimates with coefficients depending on the solution itself do not, in gen-
eral, imply the Hölder continuity of the solutions. It is the specific form of
σ as introduced in (11.2)–(11.3), and its measure-theoretical interpretation,
that permits one to establish that local solutions are indeed locally Hölder
continuous (§ 14 and [53]).

The form of σ is not uniquely defined. For example, one could take r > 1
and q ≥ 1 arbitrarily large, provided λr > 0. Also by taking q = 1 and using
the Harnack-type inequality (2.2) in the L1

loc topology (see also (A.1.2) of
Appendix A), one could estimate

−
∫
Kρ(xo)

u(·, to)dx ≥ γo−
∫
K 1

2
ρ
(xo)

u(·, to − θρp)dx

for a constant γo depending only on the data {p,N,Co, C1}, for the same
quantity θ introduced in (11.2). Then σ could be given the form

σ =

⎡
⎢⎢⎢⎢⎣

−
∫
K 1

2
ρ
(xo)

u(·, to − θρp)dx

(
−
∫
K4ρ(xo)

ur(·, to − θρp)dx
) 1

r

⎤
⎥⎥⎥⎥⎦

rp
λr

.

Thus the ratio of the two integral averages making up σ is effected at the
same time level to − θρp. Recently Fornaro and Vespri [68] have found that
for the singular equations (1.1)–(1.2) of Chapter 3, which in addition satisfy
the comparison principle, the two integral averages making up σ can be taken
over cubes of equal radius. This class of equations includes for example
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ut −
(
aij(x, t)|Du|p−2uxi

)
xj

= 0 weakly in ET ,

where the coefficients aij are only locally bounded and measurable, and the
matrix (aij) is locally elliptic in ET . For this class of equations σ could be
taken of the form

σ =

⎡
⎢⎢⎢⎣

−
∫
Kρ(xo)

u(·, to − θρp)dx

(
−
∫
Kρ(xo)

ur(·, to − θρp)dx
) 1

r

⎤
⎥⎥⎥⎦

rp
λr

. (21.3)

The interest in this form is that if p > 2N
N+1 , then r can be taken to be r = 1

and hence σ = 1. This in (11.6) of Theorem 11.1 would recover the strong
form of the Harnack estimate of Theorem 1.1 for supercritical p > 2N

N+1 . The
transition, however, is not seamless, since for r = 1 and λr = 0 the quantity
σ in (21.3) is not defined, and in addition the constants in Theorem 11.1
deteriorate as λr → 0.

21.2 On the Weak Harnack Inequality

The weak Harnack inequalities of Chapter 5, § 7–14 and 17 are not known to
hold for singular equations, neither in the supercritical, nor in the critical and
subcritical range of the parameters p and m.

It is not even clear what form such inequalities should have, and whether
they transition seamlessly from the subcritical to the supercritical range, or
not. For the prototype equations (1.3) and (5.3) of Chapter 3 partial results
are in [22] and [21], respectively.

21.3 On the Boundedness of Weak Solutions

Theorem 12.1 has been stated in a unified way for all p ∈ (1, 2]. The theorem
merely turns the qualitative information that u is locally bounded, into the
quantitative estimate (12.2). Its proof, however, reveals two critical values of
p:

1 ≤ p∗∗ = 2N
N+2 < p ≤ p∗ = 2N

N+1 < 2.

When p is larger than its least critical value p∗∗, that is, when

p > max
{
1 , 2N

N+2

}
, (21.4)

the integrability condition u ∈ Lr
loc with λr > 0 is a consequence of the notion

of weak solution. Indeed by the parabolic embedding of Proposition 4.1 of the
Preliminaries,

u ∈ Lm
loc(ET ) with m =

N + 2

N
p and λm > 0. (21.5)
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For p in the range (21.4), the proof of Theorem 12.1 only uses the energy
estimates of Proposition 2.1 of Chapter 3, and the indicated local integrability
condition (see Appendix A). Thus for p > p∗∗, local, weak solutions to (1.1)–
(1.2) of Chapter 3, in ET , with no further requirement, are locally bounded
in ET , with a quantitative estimate provided by (12.1)–(12.2). In particular
no local boundedness is required. This is the content of Theorem 3.1 of [41],
Chapter V, § 3. When p is in the sub-sub-critical range

1 < p ≤ p∗∗ = 2N
N+2 , for N ≥ 3, (21.6)

the local boundedness of a local, weak solution to these singular equations is
not guaranteed by the mere notion of weak solution. The function in (1.10)
is an explicit example of a weak, unbounded solution to the homogeneous,
prototype p-Laplacian equation (1.3) of Chapter 3. This raises the issue of
formulating sufficient conditions on solutions to these singular equations to
be locally bounded.

The proof of Theorem 12.1 uses the energy estimates of Proposition 2.1
of Chapter 3, and the local integrability u ∈ Lr

loc(ET ), with λr > 0. When
p is in the range (21.6) the latter is not a consequence of the notion of weak
solution as in (21.5) and it must be postulated.

For p in such a sub-sub-critical range, the proof of the theorem also in-
volves an interpolation procedure that requires that u be at least qualitatively
locally bounded (see Appendix A). Therefore Theorem 12.1 could be regarded
as a sufficient condition to boundedness, provided u can be locally approx-
imated by locally bounded, weak solutions to equations similar to (1.1) of
Chapter 3, with possibly smooth principal part A and lower order terms B,
satisfying uniformly the structure conditions (1.2). If these approximating so-
lutions are uniformly in Lr

loc, by Theorem 12.1 they are uniformly locally
bounded. Then, by the results of [41] Chapter IV, they are uniformly Hölder
continuous, and hence (12.2) is preserved in the limit. Thus, modulo the indi-
cated local approximation, the local boundedness of u is insured by the inte-
grability u ∈ Lr

loc(ET ) for some r ≥ 1 satisfying (11.4). This is the content of
Theorem 5.1 of [41], Chapter V, § 5-(i). The possibility of approximating these
weak solutions by locally bounded ones, depends, in general, on the form of
A and B, and is related to their local uniqueness or “uniqueness in the small”
([102], Chapter 1).

21.4 On the Two Critical Values p∗∗ = 2N
N+2

< 2N
N+1

= p∗

The interplay between the numbers λr and p∗∗ and p∗ is not completely
understood. The largest of them (p∗) discriminates between Harnack estimates
and lack of them and existence and nonexistence of the Barenblatt p-potentials
(21.1). The smallest of them (p∗∗) discriminates between boundedness and
unboundedness of solutions.
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no Harnack︷ ︸︸ ︷
1 < p ≤ p∗∗ =︸ ︷︷ ︸

unbounded

no Harnack︷ ︸︸ ︷
2N
N+2 < p ≤ 2N

N+1 =

Harnack︷ ︸︸ ︷
p∗ < p ≤ 2︸ ︷︷ ︸

boundedness

A better understanding of these connections might come from a more refined
notion of weak solution. Attempts in this direction are in [58].

21.5 Singular Equations of the Porous Medium Type

For nonnegative solutions to the prototype singular, porous medium equation
(5.3), and m supercritical, the right-hand-side, intrinsic, Harnack inequality
(16.6) was first proved in [59] by means of comparison principles. For general
quasilinear singular equation Theorems 16.1 and 16.2 were established in [51].

The L1
loc–L

∞
loc estimates of Theorem 17.1, while paralleling similar facts for

the p-Laplacian type equations, in the full generality of quasilinear, singular
parabolic equations, do not seem to appear in the literature. We have collected
them in Appendix B.

The analyticity of solutions for supercritical m, and in the context of the
prototype porous medium type equation was observed in [60], and in the
context of fully quasilinear equations in [51].

The Liouville-type Propositions 18.3, while restricted to nonnegative so-
lutions, and 18.4 seem to be new in the literature.

21.5.1 On the Hölder Continuity

Locally bounded, weak solutions to the porous medium type equations (5.1)–
(5.2) of Chapter 3, in ET , irrespective of their signum, and for all m > 0, are
locally Hölder continuous in ET . For m > 1 a formal proof is in [47]. For the
singular case 0 < m < 1 this fact follows from analogous proofs for singular
p-Laplacian type equations ([41], Chapter IV, § 15, and [31, 59]). However,
the literature does not have a formal, independent proof of this fact, dedicated
to local weak solutions to singular, porous medium type equations, with full
quasilinear structure. For completeness, in § B.6–B.13 of Appendix B, we
have included a self-contained formal proof for nonnegative solutions to such
singular equations.

21.5.2 On Theorem 19.1

An estimate similar to (19.5) is in [21] for nonnegative solutions to the pro-
totype equation (5.3) of Chapter 3, by means of maximum and comparison
principles. The arguments in [21] and [22] for the prototype p-Laplacian and
porous medium equations are conceptually and technically similar. In § 21.1
we have already observed that maximum and comparison principles are un-
related to Harnack-type estimates.
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The Lr
loc–L

∞
loc estimate of Theorem 20.1, in the context of the porous

medium type equation, and with full quasilinear structure, appears to be
new. Local weak solutions to these equations for m in the range (19.1) need
not be locally bounded. An explicit counterexample is in (16.10). A sufficient
condition for a local solution u to be locally bounded is that u ∈ Lr

loc(ET ),
where r ≥ 1 satisfies λr > 0. The number λr, defined in (19.4) is analogous to
the number λ in (17.1). If λ > 0, that is, if m > m∗, then local solutions are
locally bounded. If λ ≤ 0, that is, if m ≤ m∗, the mere notion of local weak
solution u does not guarantee its local boundedness. The latter is restored
if, in addition to the notion of solution, one requires that u be sufficiently
integrable, as to guarantee λr > 0.

21.5.3 Remarks on the Local Analyticity of These Solutions

Let u be a nonnegative, locally bounded, local, weak solution to the homo-
geneous (C = 0), porous medium type equations (5.1)–(5.2) of Chapter 3,
for m in the critical and/or subcritical range (19.1). Fix (xo, to) ∈ ET and
assume that u(xo, to) > 0. If A is analytic in all its arguments, within its
domain of definition, then u is analytic at (xo, to) in the space variables, and
at least Lipschitz continuous in time. The radius of convergence rxo(σ) of the
space-expansion of u(·, to) at xo depends on σ and rxo(σ)→ 0 as σ → 0. This
can be made quantitative, exactly as in Proposition 18.1 with the constant γ
depending on σ and such that γ(σ) → ∞ as σ → 0. Proposition 18.1 holds
also for solutions to the following boundary value problem:⎧⎨

⎩
ut −Δum = 0 in ET ,
u|∂E = 0,
u(·, 0) = uo ∈ L1+m(E),

where E is a bounded domain in R
N with boundary of class C2, and

(N−2)+
N+2 < m < 1. Thus there seem to be at least two critical values of m,

that discriminate between different behaviors of solutions,

0 ≤ m∗∗ =
(N−2)+
N+2 ≤ m∗ =

(N−2)+
N < 1.

21.6 On the Two Critical Values 0 ≤ m∗∗ ≤ m∗ < 1

The interplay between the numbers λr and m∗∗ and m∗ is not completely
understood. The largest of them (m∗) discriminates between Harnack esti-
mates and lack of them and existence and nonexistence of the Barenblatt
m-potentials with pole at (xo, to)

Γm(x, t;xo, to) =
1

(t− to)
N
λ

(
1 + b(N,m)

|x− xo|2
(t− to)

1
λ

) 1
m−1

(21.7)

with
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b(N,m) =
N(1−m)

2Nmλ
, λ = N(m− 1) + 2. (21.8)

Considerations analogous to those of § 21.3 imply that if m > (N−2)+
N+2 , then

weak solutions are locally bounded, even though, if nonnegative, they might
not satisfy the Harnack inequality. Indeed, due to the definition of solution we
assumed in § 5 of Chapter 3, when m∗∗ < m < m∗ the integrability condition
u ∈ Lr with λr > 0 is automatically satisfied by the parabolic embedding
of Proposition 4.1 of the Preliminaries. For porous medium type equations,
as for p-Laplacian equations, one can directly say that the smallest of them
(m∗∗) discriminates between boundedness and unboundedness of solutions.

no Harnack︷ ︸︸ ︷
0 < m ≤ m∗∗ =︸ ︷︷ ︸

unbounded

no Harnack︷ ︸︸ ︷
(N−2)+
N+2 < m ≤ (N−2)+

N =

Harnack︷ ︸︸ ︷
m∗ < m ≤ 1︸ ︷︷ ︸

boundedness



7

Homogeneous Monotone Singular Equations

1 Monotone Structure Conditions

We restrict our attention to parabolic equations of the type of (1.1)–(1.5) of
Chapter 3 which are singular (1 < p < 2), homogeneous (C = 0), and with
structure conditions that insure existence and uniqueness of basic Dirichlet
boundary value problems in cylindrical domains ET for a bounded open set
E ⊂ R

N with smooth boundary ∂E. Specifically, let E be a domain in R
N

and consider quasilinear, singular parabolic partial differential equations of
the form

ut − divA(x, t, u,Du) = 0 weakly in ET (1.1)

where the function

ET × R× R
N � (x, t, z, η)→ A(x, t, z, η)

is only assumed to be measurable and subject to the structure conditions{
A(x, t, z, η) · η ≥ Co|η|p
|A(x, t, z, η)| ≤ C1|η|p−1 a.e. in ET × R× R

N , (1.2)

where 1 < p < 2, and Co and C1 are given positive constants. The principal
part A is required to be monotone in the variable η in the sense

(A(x, t, z, η1)−A(x, t, z, η2)) · (η1 − η2) ≥ 0 (1.3)

for all variables in the indicated domains and Lipschitz continuous in the
variable z, that is,

|A(x, t, z1, η)−A(x, t, z2, η)| ≤ Λ|z1 − z2|(1 + |η|p−1) (1.4)

for some given Λ > 0, and for the variables in the indicated domains. A
prototype example is

ut −
(
aij(x, t)|Du|p−2uxi

)
xj

= 0 weakly in ET (1.5)

187  E. DiBenedetto et al., Harnack’s Inequality for Degenerate and Singular Parabolic Equations,
Springer Monographs in Mathematics, DOI 10.1007/978-1-4614-1584-8_7,  
© Springer Science+Business Media, LLC 2012 
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where the matrix (aij) is only measurable and positive-definite in ET .
The notion of local solution to (1.1)–(1.4) is the same as that to (1.1)–(1.5)

of Chapter 3.
Let now E be a bounded open set in R

N with smooth boundary ∂E, fix
T > 0, and consider the boundary value problem

u ∈ C(0, T ;L2(E)) ∩ Lp(0, T ;W 1,p(E))

ut − divA(x, t, u,Du) = 0 weakly in ET

u(·, t) ∣∣
∂E

= g(·, t) ∈ Lp
(
0, T ;W 1− 1

p (∂E)
)

u(·, 0) = uo ∈ L2(E).

(1.6)

With these specifications, the Dirichlet data g(·, t) on ∂E for a.e. t ∈ (0, T )
are taken in the sense of the traces of functions in W 1,p(E) and the initial
datum uo is taken in the sense of continuous functions in t with values in
L2(E).

The existence of solutions to (1.6) has been discussed under a number
of different assumptions (see, for example, [108, 86]). For continuous bound-
ary value problems, under suitable approximation conditions, the existence of
solutions can be deduced from their regularity properties as in [131].

Proposition 1.1 Let A satisfy the structure conditions (1.2)–(1.4). Then the
boundary value problem (1.6) has at most one solution.

Proof For ε > 0 let Hε(·) be the approximation to the Heaviside function

Hε(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for s ≥ ε;

s

ε
for 0 ≤ s < ε;

0 for s < 0.

(1.7)

If u and v are two weak solutions to (1.6), in their respective weak formulation
take the test function Hε(u − v) and subtract the expressions so obtained to
get∫

E

( ∫ (u−v)+(x,t)

0

Hε(s)ds
)
dx

+

∫ t

0

∫
E

H ′
ε(u− v)

[
A(x, τ, u,Du)−A(x, τ, u,Dv)

] · (Du−Dv)dx dτ

=

∫ t

0

∫
E

H ′
ε(u− v)

(
A(x, τ, v,Dv) −A(x, τ, u,Dv)

) · (Du −Dv)dx dτ

for all t ∈ (0, T ). The second term on the left-hand side is discarded by the
monotonicity (1.3) of A. As ε→ 0, the first term tends to
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E

(∫ (u−v)+(x,t)

0

Hε(s)ds
)
dx→

∫
E

(u − v)+(x, t)dx,

for all t ∈ (0, T ). The term on the right-hand side is estimated by making use
of the Lipschitz continuity (1.4), to yield

∣∣∣ ∫ t

0

∫
E

H ′
ε(u − v)

(
A(x, t, v,Dv) −A(x, t, u,Dv)

) · (Du−Dv)dx dτ
∣∣∣

≤ Λ

ε

∫ t

0

∫
E∩[0<u−v<ε]

(u − v)(1 + |Dv|p−1)|Du −Dv|dx dτ

≤ Λ

∫ t

0

∫
E∩[0<u−v<ε]

(1 + |Dv|p−1)|Du−Dv|dx dτ → 0 as ε→ 0.

Corollary 1.1 (Weak Comparison Principle) Let A satisfy the struc-
ture conditions (1.2)–(1.4). Let ui for i = 1, 2 be weak solutions to (1.6)
corresponding to initial and boundary data uo,i and gi in the indicated func-
tional classes. If

uo,1 ≤ uo,2 a.e. in E and g1 ≤ g2 a.e. in ∂E × (0, T ),

then u1 ≤ u2 a.e. in ET .

In what follows we take p in the supercritical range

2N

N + 1
< p < 2. (1.8)

The more stringent structure conditions (1.2)–(1.4) on A afford a wider spec-
trum of techniques, including the comparison principle, yielding some im-
provements to the theory. Below we discuss one such improvement.

1.1 A Less Constrained Harnack Inequality

The intrinsic Harnack inequalities of Theorems 1.1 and 1.2 of Chapter 6 re-
quire that the intrinsic cylinders (xo, to)+Q±ρ (θ) defined in (1.2) of Chapter 6
are well within the domain of definition of the solution. This is quantified by
the requirements (1.3)–(1.5) of the same chapter. As indicated in that con-
text, the various constants of the Harnack inequalities and the structure of
the proof are independent of M and the indicated requirements have only
the role of stipulating that the arguments are carried within the domain of
definition of u. Now in some applications, the Harnack estimate might need
to be applied repeatedly at a point (xo, to), and in a sequence of neighboring
points. Applications of this kind include subpotential lower bounds similar to
those of § 6 of Chapter 5. For this kind of results to hold, the “interior” re-
quirements (1.3)–(1.5) of Chapter 6 would have to be verified at a given point
(xo, to) and at a sequence of points (xj , tj) other than (xo, to). This makes the
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procedure cumbersome and unclear to implement. For this reason it would be
desirable to have a Harnack estimate for intrinsic cylinders

u(xo, to) > 0, (xo, to) +Q±8ρ(θ) ⊂ ET , θ = [u(xo, to)]
2−p (1.9)

with no further reference, albeit qualitative, to the quantity M in (1.3) of
Chapter 6. The homogeneous structures of (1.1)–(1.4) permit one to establish
such a form of a Harnack estimate.

2 The Intrinsic Harnack Inequality

In all statements below let u be a continuous, nonnegative, local, weak solution
to the singular equations (1.1)–(1.4) in ET , for p in the supercritical range
(1.8). Moreover for a fixed (xo, to) ∈ ET and ρ > 0 construct intrinsic cylinders
of the form of (1.9).

Theorem 2.1 (The Intrinsic, Mean Value, Harnack Inequality) There
exist constants ε ∈ (0, 1) and γ > 1 depending only on the data {p,N,Co, C1},
such that

γ−1 sup
Kρ(xo)

u(·, to − ε u(xo, to)
2−pρp) ≤ u(xo, to)

≤ γ inf
Kρ(xo)

u(·, to + ε u(xo, to)
2−pρp).

(2.1)

The constants ε, γ−1 → 0 as p→ 2N
N+1 , but they are stable as p→ 2.

Theorem 2.2 (Time-Insensitive, Intrinsic, Mean Value, Harnack In-
equalities) There exist constants ε̄ ∈ (0, 1) and γ̄ > 1, depending only on the
data {p,N,Co, C1}, such that

γ̄−1 sup
Kρ(xo)

u(·, σ) ≤ u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, τ) (2.2)

for any pair of time levels σ, τ in the range

to − ε̄ u(xo, to)
2−pρp ≤ σ, τ ≤ to + ε̄ u(xo, to)

2−pρp. (2.3)

The constants ε̄, γ̄−1 → 0 either as p→ 2N
N+1 or as p→ 2.

Comments on these theorems can be formulated as in § 1.1–1.3 of Chapter 6.
In all cases the key inequality to establish is the right-hand-side estimate
in (2.3), as the remaining ones follow from this by stability estimates and
geometrical arguments. We state and prove independently such a right-hand-
side estimate, to stress its independence of the requirements (1.3)–(1.5) of
Chapter 6.
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2.1 The Right-Hand-Side Harnack Estimate of Theorem 2.2

Proposition 2.1 There exist constants ε̄ ∈ (0, 1) and γ̄ > 1, depending only
on the data {p,N,Co, C1}, such that

u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, t) (2.4)

for all times t in the range (2.3). The constants ε̄, γ̄−1 → 0 either as p→ 2N
N+1

or as p→ 2.

The new element of the proof is a novel form of the expansion of positivity
based on the comparison principle, afforded by the new structures (1.2)–(1.4).
The proof continues to use the L1

loc–L
∞
loc Harnack-type estimate given in The-

orem 2.1 of Chapter 6, valid for

λ = N(p− 2) + p > 0, i.e., for 2N
N+1 < p < 2. (2.5)

3 Proof of Proposition 2.1

Introduce the change of variables and unknown function

z → x− xo

ρ
, τ → t− to

u(xo, to)2−pρp
, v =

u

u(xo, to)
(3.1)

which maps

[(xo, to) +Q+
8ρ(θ)] ∪ [(xo, to) +Q−8ρ(θ)] into Q8 = K8 × (−8p, 8p].

Relabeling by x, t the new coordinates, v is a weak solution to

vt − div Ā(x, t, v,Dv) = 0 in Q8, (3.2)

where the transformed function Ā(x, t, v,Dv) satisfies the same structure con-
ditions (1.2)–(1.4) with the same constants Co and C1. Establishing the propo-
sition consists in finding positive constants ε̄ and γ̄, depending only on the
data {p,N,Co, C1}, such that

v(·, t) ≥ γ̄−1 in K1 for all t ∈ [−ε̄, ε̄]. (3.3)

The change of variables (3.1) is identical to the one in (3.4) of Chapter 6.
The latter, however, was effected within the cylinder QM(xo, to) introduced
in (1.3)–(1.5) of the same chapter.
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3.1 Largeness of v in Q1

For τ ∈ (0, 1) introduce the family of nested expanding cubes {Kτ} centered
at the origin, and the increasing family of positive numbers

Mτ = sup
Kτ

v and Nτ = (1 − τ)−β

exactly as in (4.1) of Chapter 6, where β > 0 is a parameter to be chosen.
Proceeding exactly as in § 4 of that chapter, and using the same notation,
locate a point x̄ ∈ Kτ∗ such that

v(x̄, 0) = (1− τ∗)−β , sup
K2r(x̄)

v(·, 0) ≤ 4(1− τ∗)−β

2r =
(
1− 4−

1
β
)
(1− τ∗), θ∗ = (1− τ∗)−β .

(3.4)

We stress that τ∗ is only known qualitatively, and the parameter β is to be
chosen. Proceeding as in § 5 of Chapter 6, the next step in the proof is to
identify an intrinsic cylinder Q2r centered at (x̄, 0) where the supremum of v
is of the same order as (1− τ∗)−β . The height of such an intrinsic cylinder is
θ∗(2r)p, with r and θ∗ given by (3.4). Hence Q2r would be included within
the domain of definition of v if

θ∗(2r)p = (1 − τ∗)−β(2−p)
(
1− 4−

1
β
)
(1− τ∗)p ≤ 1.

This is realized by choosing

β =
p

2− p
. (3.5)

In the context of the proof in § 4–6 of Chapter 6, for singular equations with
general quasilinear structure, the parameter β was left free. Moreover, by
construction

θ∗(2r)p = (1 − τ∗)−β(2−p)
(
1− 4−

1
β
)
(1− τ∗)p ≤

( M
u(xo, to)

)2−p

where M was introduced in (1.3) of Chapter 6. Hence, by virtue of the re-
quirements (1.3)–(1.5) of that chapter, the inclusion of Q2r within the domain
of definition of v was guaranteed irrespective of the choice of β.

In what follows the parameter β is fixed as in (3.5). However, we will
continue to denote it by β to trace its role, as opposed to the role of β in the
context of the proof in § 4–6 of Chapter 6.

Lemma 3.1 There exists a positive constant γ1, depending only on the data
{p,N,Co, C1}, and independent of β and ρ, such that

sup
Qr

v ≤ γ1(1 − τ∗)−β .

The constant γ1 →∞ as p→ 2 and as p→ 2N
N+1 .



3 Proof of Proposition 2.1 193

Proof Identical to Lemma 5.1 of Chapter 6.

Lemma 3.2 There exist numbers δ̄, c̄, and α in (0, 1), depending only on the
data {p,N,Co, C1}, and independent of β and ρ, such that

|[v(·, t) ≥ c̄(1− τ∗)−β ]| > α|Kr| (3.6)

for all times

t ∈ [−δ̄θ∗rp , δ̄θ∗rp] where θ∗ = (1− τ∗)−β(2−p) (3.7)

with β fixed by (3.5) and r defined by (3.4). The constants δ̄, c̄, and α tend
to zero either as p→ 2 or as p→ 2N

N+1 .

Proof Identical to Lemma 5.2 of Chapter 6.

3.2 Expanding the Positivity of v

The information provided by Lemma 3.2 is precisely the assumption required
by the expansion of positivity of Proposition 5.1 of Chapter 4 for all times in
(3.7). Apply then this expansion of positivity to v with

ρ = r and M = c̄(1− τ∗)−β , with β =
p

2− p

and for s ranging in the indicated interval. It gives

v(·, t) > ηc̄(1 − τ∗)−
p

2−p in K2r(x̄) (3.8)

and for all times

−δ̄θ∗rp + (1 − ε)δM2−prp < t < δ̄θ∗rp (3.9)

for constants δ, δ̄, and ε in (0, 1) depending only on the data {p,N,Co, C1},
and the constant α, which itself is determined only in terms of the data.

The parameter δ̄ being fixed by Lemma 3.2, the number δ can be chosen
even smaller, if needed to insure that the range of t in (3.9) includes negative
values of time. For example, by choosing δ = δ̄ and taking into account the
definitions of M , θ∗, and r in (3.4), one computes

−δ̄θ∗rp + (1 − ε)δM2−prp = − 1
2p

(
1− 1

4
2−p
p

)p
δ̄
[
1− (1− ε)c̄p

] def
= −δ∗.

A smaller δ in (3.9) would generate a smaller η in (3.8), whose choice we
assume has been made. By these choices, and due to the definitions of θ∗, r,
M and the value (3.5) of β, the size of the time interval in (3.9) does not
depend on τ∗, and can be taken to be

−δ∗ ≤ t ≤ δ∗ (3.10)
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for a positive constant δ∗ depending only on the data {p,N,Co, C1}. Notice
that having determined δ∗ as indicated, the lower bound (3.8) continues to
hold with the same constants, for t in the range (3.10) for a further reduced
δ∗.

In § 6 of Chapter 6, with β kept as a free parameter to be chosen, the lower
bound (3.8) was iterated n times by repeated application of the expansion of
positivity of Proposition 5.1 of Chapter 4. This would give

v ≥ c̄ηn(1− τ∗)−β over intrinsic cylinders of radius 2n(1− τ∗).

Then n and β were chosen so that

2n(1− τ∗) = 4 and η2β = 1

to yield the lower bound in (6.3)–(6.4) of Chapter 6.
Since the parameter β has already been chosen in (3.5) this procedure

cannot be applied here. We will use instead a novel form of the expansion of
positivity based on the comparison principle, which expands the positivity of
u over an intrinsic cylinder of radius of the order of 1, at once in a single step.

3.2.1 Expanding the Positivity of v to Full Cube K1 by the
Comparison Principle

Consider the boundary value problem

w ∈ L∞(−δ∗, 1;L2(K4(x̄))) ∩ Lp(−δ∗, 1;W 1,p
o (K4(x̄))),

wt − div Ā(x, t, w,Dw) = 0, in K4(x̄)× (−δ∗, 1],
w
∣∣
∂K4(x̄)

= 0,

w(x,−δ∗) =
{
ηc̄(1− τ∗)−N , x ∈ K2r(x̄),
0, x ∈ K4(x̄)−K2r(x̄).

(3.11)

Conditions (1.2)–(1.4) allow us to apply Theorems 1.1 and 1.2 of [108], Chap-
ter 2: this insures that a solution to (3.11) indeed exists. Such a solution w is
unique by Proposition 1.1.

The function v is larger than w on the parabolic boundary of K4×(−δ∗, 1].
Indeed

w(·, t) ≤ v(·, t) on ∂K4(x̄) for all t ∈ (−δ∗, 1]
and for t = −δ∗ on K4(x̄),

v(·,−δ∗)− w(·,−δ∗) ≥ ηc̄(1− τ∗)−
p

2−p − ηc̄(1− τ∗)−N

≥ ηc̄(1− τ∗)−N [(1 − τ∗)−
λ

2−p − 1] > 0

since λ > 0. Therefore, by the comparison principle

v ≥ w in K4(x̄)× [−δ∗, 1].
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To prove Proposition 2.1, it suffices to determine constants γ̄ and ε̄, depending
only on the data, such that

w(x, t) ≥ γ̄−1 in K4 for all t ∈ [−ε̄, ε̄].
Up to a translation assume x̄ = 0. By Proposition A.1.1 of Appendix A, for
all t ∈ [−δ∗, δ∗] ∫

K1

w(x,−δ∗)dx ≤ γ

∫
K2

w(x, t)dx + γδ
1

2−p∗

and by the definition of w(·,−δ∗)∫
K1

w(x,−δ∗)dx = ηc̄νo where νo =
(
1− 1

4
2−p
p

)N
.

The choice of δ∗ can be made as to satisfy

δ
1

2−p∗ = 1
2γ
−1ηc̄νo. (3.12)

This is obvious if the constant δ∗ in (3.10) exceeds the right-hand side of
(3.12), by taking a smaller δ∗. If the constant δ∗ in (3.10) is less than the
right-hand side of (3.12), one can take a smaller η as to satisfy (3.12), and for
such an η (3.8) would continue to be in force. For such a choice of δ∗,

1
2N+1

ηc̄νo
γ
|K2| ≤

∫
K2

w(x, t)dx for all t ∈ (− 1
2δ∗,

1
2δ∗).

Next, from Theorem 2.1 of Chapter 6, applied with y = 0, s = 0, t = 1
2δ∗,

and ρ = 2, we estimate

sup
K2×[− 1

2 δ∗,
1
2 δ∗]

w ≤ γδ
−N

λ∗ (ηc̄νo)
p
λ + γδ

1
2−p∗ = γ∗ηc̄νo

where we have taken into account the choice (3.12) of δ∗, for γ∗ depending
only on the data. For all t ∈ (− 1

2δ∗,
1
2δ∗) estimate∫

K2

w(x, t)dx ≤
∫
K2∩[w(·,t)< 1

2N+2
ηc̄νo

γ ]

w(x, t)dx

+

∫
K2∩[w(·,t)≥ 1

2N+2
ηc̄νo

γ ]

w(x, t)dx

≤ 1
2N+2

ηc̄νo
γ
|K2|+ γ∗ηc̄νo|[w(·, t) ≥ 1

2N+2

ηc̄νo
γ

] ∩K2|.

Combining these inequalities yields

|[w(·, t) ≥ 1
2N+2

ηc̄νo
γ

] ∩K2| ≥ α|K2|, where α =
1

4γγ∗|K2|
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for all t ∈ [− 1
2δ∗,

1
2δ∗]. By the expansion of positivity of Proposition 5.1 of

Chapter 4

w(x, t) ≥ 1
2N+2

η2c̄νo
γ

in K4(x̄) for all t ∈ [−ε̄, ε̄]

for a sufficiently small ε̄ depending only on the data {p,N,Co, C1}.
The proof of the left-hand-side inequalities in Theorems 2.1 and 2.2, as well

as the stability of these estimates as p→ 2, is identical to that of Theorems 1.1
and 1.2 of Chapter 6, as presented in § 8–9 of that chapter.

4 Subpotential Lower Bounds

Return to the Barenblatt solutions to the prototype p-Laplacian equation,
introduced in (3.3)–(3.4) of Chapter 4. While introduced in the context of
degenerate equations (p > 2), they are well defined also for p < 2 provided

λ > 0 ⇐⇒ 2N
N+1 < p < 2, (4.1)

that is, if p is in the singular supercritical range (4.1). For p in such a range
we rewrite the Barenblatt solution with “pole” at (xo, to) as

Γp(x, t;xo, to) =
1

(t− to)
N
λ

[
1 + Cp

( |x− xo|
(t− to)

1
λ

) p
p−1

] p−1
p−2

(4.2)

with

Cp =
( 1
λ

) 1
p−1 2− p

p
, λ = N(p− 2) + p. (4.3)

As p→ 2 this converges pointwise to the heat potential with pole at (xo, to):

Γ (x, t;xo, to) =
1

(t− to)N/2
e−

|x−xo|2
4(t−to) .

In this sense the Barenblatt solutions (4.2)–(4.3) are the p-potentials of the
prototype p-Laplacian equation (1.3) of Chapter 3. In view of (4.1), these p-
potentials cease to exist for p in the critical and subcritical range 1 < p ≤ 2N

N+1 .
Thus the intrinsic Harnack inequalities of Theorems 2.1 and 2.2 cease to hold
precisely when these p-potentials cease to exist.

These p-potentials drive, in the sense made precise by Proposition 4.1
below, the structural behavior of nonnegative solutions to the singular, ho-
mogeneous, quasilinear equations (1.1)–(1.4).

Proposition 4.1 Let u be a nonnegative, local, weak solution to the singular
equations (1.1)–(1.4) in ET , with p in the supercritical range (4.1), and let
ε and γ be the constants in the intrinsic Harnack inequality (2.1) of Theo-
rem 2.1. For every (xo, to) ∈ ET such that u(xo, to) > 0, and all (x, t) in ET

with
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K16|x−xo|(xo) ⊂ E and 0 < t− to < ε8−pto, (4.4)

we have

u(x, t)

u(xo, to)
≥ γo

[
1 + γ1u(xo, to)

2−p
p−1

( |x− xo|
(t− to)

1
p

) p
p−1

] p−1
p−2

, (4.5)

where
γo = min{1 , γ−1} and γ1 = (γ

2−p
p−1 − 1)ε

1
p−1 .

Proof Fix (x, t) as in (4.4) and consider the line segment �o through (xo, to)
and (x, t)

�o y − xo =
x− xo

t− to
(s− to), to < s ≤ t

and the p-paraboloid with bottom vertex at (xo, to)

Po s− to = ε u(xo, to)
2−p|y − xo|p.

By (4.4) �o ⊂ ET . If �o does not intersect Po at points other than (xo, to),
then (4.5) follows from the intrinsic, forward Harnack inequality (2.1). Let
then �o intersect Po at (x1, t1) with |x1 − xo| < |x− xo|, and

|x1 − xo|p−1 =
1

ε u(xo, to)2−p

t− to
|x− xo|

t1 − to =ε u(xo, to)
p−2|x1 − xo|p.

Iteration of this process gives a finite sequence of points (xj , tj), with j =
1, . . . , n, such that to < t1 < · · · < tn ≤ t, and

|xj+1 − xj |p−1 =
1

ε u(xj , tj)2−p

t− to
|x− xo|

tj+1 − tj = ε u(xj , tj)
2−p|xj+1 − xj |p.

(4.6)

and where (xn, tn) is the first point not overcoming (x, t). Using the intrinsic,
forward Harnack inequality of Theorem 2.1,

u(xj , tj) ≤ γu(xj+1, tj+1), j = 0, . . . , n− 1,

provided the cylinder

(xj , tj) +Q8ρj (θj) with θj = u(xj , tj)
2−p and ρj = |xj+1 − xj |

is contained in ET . This is the case if

tj − (8ρj)
pθj ≥ 0

which, in view of (4.6), is verified if
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tj − 8p

ε
(tj+1 − tj) ≥ 0.

This in turn holds true by virtue of the last of (4.4). A similar argument for
the space variables guarantees the inclusion of

(xj , tj) +Q8ρj (θj) ⊂ ET .

We infer that
u(xj , tj) ≥ γ−j u(xo, to). (4.7)

This and (4.6) imply

|x− xo| ≥
n−1∑
j=0

|xj+1 − xj |

=
1

ε
1

p−1

( t− to
|x− xo|

) 1
p−1

n−1∑
j=0

( 1

u(xj , tj)

) 2−p
p−1

≥
( t− to
|x− xo|

) 1
p−1

( 1

ε u(xn, tn)2−p

) 1
p−1

n−1∑
j=0

(
γ

p−2
p−1

)n−j

=
( t− to
|x− xo|

) 1
p−1

( 1

ε u(xn, tn)2−p

) 1
p−1 q(1− qn)

1− q

where q = γ
p−2
p−1 . From this

qn +
1− q

q

(
ε u(xn, tn)

2−p
) 1

p−1

( |x− xo|
(t− to)

1
p

) p
p−1 ≥ 1.

On the other hand, (4.7) written for j = n gives(u(xn, tn)

u(xo, to)

) 2−p
p−1 ≥ qn.

Combining these estimates proves the proposition if (xn, tn) = (x, t). This,
however, can be assumed without loss of generality, by a possible further
application of the Harnack inequality, and by possibly slightly modifying the
constant γ if needed.

Remark 4.1 Notice that (4.5) gives the same decay in the space variables as
the Barenblatt “fundamental solution” of (4.2).

Remark 4.2 An estimate of the decay of u in time can be derived by con-
sidering the sequence

to = s > 0, t1 = (1 + σ)s, . . . , tk = (1 + σ)ks = τ,

with 0 < σ ≤ 1
3

ε
8p . A repeated application of the forward Harnack inequality

(2.1) for sufficiently large s yields

u(0, τ) ≥
( s
τ

)ln γ/ ln(1+σ)

u(0, s).
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Remark 4.3 The proof of (4.5) hinges on applying the Harnack inequality
(2.1) of Theorem 2.1 in intrinsic cylinders (xj , ti)+Q8ρj (θj). The only require-
ment for the Harnack estimate to hold is that these cylinders be contained
within the domain of definition of the solution u. Part of the proof is to verify
such inclusion at each jth step.

The Harnack inequality (1.6) of Theorem 1.1 of Chapter 6 holds for non-
negative solutions to singular equations ( 2N

N+1 < p < 2) with full quasilinear
structure such as (1.1)–(1.2) of Chapter 3. However, for such general struc-
tures, Theorem 1.1 of Chapter 6 requires the further inclusion (1.3)–(1.5).
As remarked in that context, this requirement is only qualitative as all con-
stants and all arguments are independent of the numberM. If such qualitative
assumptions could be removed from Theorem 1.1 of Chapter 6, then the sub-
potential lower bounds of Proposition 4.1 could be extended to nonnegative
weak solutions to supercritical singular equations with full quasilinear struc-
ture. Such an extension would be of significance as these general quasilinear
equations do not satisfy any form of the comparison principle and thus their
solutions are not comparable to the Barenblatt potentials (4.2)–(4.3). This is
the case for the degenerate case p > 2 as presented in § 6 of Chapter 5.

5 Monotone Structures for Singular Porous Medium
Type Equations

Consider parabolic equations of the type of (5.1)–(5.6) of Chapter 3 which are
singular (0 < m < 1), homogeneous (C = 0), and with structure conditions
that insure existence and uniqueness of basic Dirichlet boundary value prob-
lems in cylindrical domains ET for a bounded open set E ⊂ R

N with smooth
boundary ∂E. Specifically, let E be a domain in R

N and consider quasilinear,
singular parabolic partial differential equations of the form

ut − divA(x, t, u,D|u|m−1u) = 0 weakly in ET (5.1)

where the vector-valued function

ET × R× R
N � (x, t, z, η)→ A(x, t, z, η)

is only assumed to be measurable and subject to the structure conditions{
A(x, t, z, η) · η ≥ Co|η|2
|A(x, t, z, η)| ≤ C1|η| a.e. in ET × R× R

N , (5.2)

where Co and C1 are given positive constants. The principal partA is required
to be monotone in the variable η in the sense

(A(x, t, z, η1)−A(x, t, z, η2)) · (η1 − η2) ≥ 0 (5.3)

for all variables in the indicated domains and Lipschitz continuous in the
variable |z|m−1z, that is,
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|A(x, t, z1, η)−A(x, t, z2, η)| ≤ Λ
∣∣∣|z1|m−1z1 − |z2|m−1z2

∣∣∣(1 + |η|) (5.4)

for some given Λ > 0, and for the variables in the indicated domains. A
prototype example is

ut −
(
maij(x, t)|u|m−1uxi

)
xj

= 0 weakly in ET (5.5)

where the matrix (aij) is only measurable and positive-definite in ET . The
notion of local solution to (5.1)–(5.4) is the same as that to (5.1)–(5.6) of
Chapter 3.

Here we require a stronger notion of solution; precisely, weak sub(super)-
solutions are also required to be in the class

u ∈ W 1,1
loc

(
0, T ;L1

loc(E)
)
. (5.6)

Let now E be a bounded open set in R
N with smooth boundary ∂E, fix T > 0,

and consider the boundary value problem

u ∈ C(0, T ;Lm+1(E)) ∩W 1,1(0, T ;L1(E))

|u|m ∈ L2(0, T ;W 1,2(E))

ut − divA(x, t, u,D|u|m−1u) = 0 weakly in ET

|u|m−1u(·, t) ∣∣
∂E

= g(·, t) ∈ L2
(
0, T ;W

1
2 (∂E)

)
u(·, 0) = uo ∈ Lm+1(E).

(5.7)

With these specifications, the Dirichlet data g(·, t) on ∂E for a.e. t ∈ (0, T ),
are taken in the sense of the traces of functions in W 1,2(E) and the initial
datum uo is taken in the sense of continuous functions in t with values in
Lm+1(E).

The existence of solutions to (5.6)–(5.7) has been discussed under a num-
ber of different assumptions (see, for example, [108, 86, 133]). For continuous
boundary value problems, under suitable approximation conditions, the exis-
tence of solutions can be deduced from their regularity properties as in [131].

Proposition 5.1 Let A satisfy the structure conditions (5.2)–(5.4). Then the
boundary value problem (5.7) has at most one solution.

Proof If u and v are two weak solutions to (5.7), in their respective weak
formulation take the test function

Hε(ξ) with ξ = |u|m−1u− |v|m−1v

where Hε(·) is the approximation to the Heaviside function introduced in
(1.7), and subtract the expressions so obtained to get
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0

∫
E

(u− v)τHε(ξ)dx dτ

+

∫ t

0

∫
E

H ′
ε(ξ)

[
A(x, τ, u,D|u|m−1u)−A(x, τ, u,D|v|m−1v)

] ·Dξ dxdτ

=

∫ t

0

∫
E

H ′
ε(ξ)

(
A(x, τ, v,D|v|m−1v)−A(x, τ, u,D|v|m−1v)

) ·Dξ dxdτ

for all t ∈ (0, T ). The second term on the left-hand side is discarded by the
monotonicity (5.3) of A. As ε→ 0, the first term tends to∫ t

0

∫
E

(u− v)+,τdx dτ =

∫
E

(u − v)+(x, t)dx,

for all t ∈ (0, T ). The term on the right-hand side is estimated by making use
of the Lipschitz continuity (5.4), and is majorized by

Λ

ε

∫ t

0

∫
E∩[0<ξ<ε]

ξ(1 + |D|v|m−1v|)|Dξ|dx dτ

≤ Λ

∫ t

0

∫
E∩[0<ξ<ε]

(1 + |D|v|m−1v|)|Dξ|dx dτ → 0 as ε→ 0.

Corollary 5.1 (Weak Comparison Principle) Let A satisfy the struc-
ture conditions (5.2)–(5.4). Let ui for i = 1, 2 be weak solutions to (5.6)–
(5.7) corresponding to initial and boundary data uo,i and gi in the indicated
functional classes. If

uo,1 ≤ uo,2 a.e. in E and g1 ≤ g2 a.e. in ∂E × (0, T ),

then u1 ≤ u2 a.e. in ET .

In what follows we take m in the supercritical range

(N − 2)+
N

< m < 1. (5.8)

The more stringent structure conditions (5.2)–(5.4) on A afford a wider spec-
trum of techniques, and permit one to improve the theory in several directions.
Here we mention one such improvement.

5.1 A Less Constrained Harnack Inequality

The intrinsic Harnack inequalities of Theorems 16.1 and 16.2 require that
the intrinsic cylinders (xo, to) + Q±ρ (θ) defined in (16.2) of Chapter 6 are
well within the domain of definition of the solution. This is quantified by the
requirements (16.3)–(16.5) of the same chapter. As indicated in that context,
the various constants of the Harnack inequalities and the structure of the proof
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are independent of M. However, this would make cumbersome applying the
Harnack inequality to a sequence of points (xj , tj) and radii ρj , for each of
which the requirements (16.3)–(16.5) of Chapter 6 would have to be verified.
Applications of this kind include subpotential lower bounds similar to those
of § 16.3 of Chapter 5. The structure conditions (5.2)–(5.4) permit one to
establish a Harnack estimate for intrinsic cylinders

u(xo, to) > 0, (xo, to) +Q±8ρ(θ) ⊂ ET , θ = [u(xo, to)]
1−m (5.9)

with no further reference, albeit qualitative, to the quantity M in (16.3) of
Chapter 6.

6 The Intrinsic Harnack Inequality

In all statements below let u be a continuous, nonnegative, local, weak solution
to the singular equations (5.1)–(5.4) in ET , for m in the supercritical range
(5.8). Moreover for a fixed (xo, to) ∈ ET and ρ > 0 construct intrinsic cylinders
of the form of (5.9).

Theorem 6.1 (The Intrinsic, Mean Value, Harnack Inequality) There
exist constants ε ∈ (0, 1) and γ > 1 depending only on the data {m,N,Co, C1},
such that

γ−1 sup
Kρ(xo)

u
(·, to − ε u(xo, to)

1−mρ2
) ≤ u(xo, to)

≤ γ inf
Kρ(xo)

u
(·, to + ε u(xo, to)

1−mρ2
)
.

(6.1)

The constants ε, γ−1 → 0 as m→ (N−2)+
N , but they are stable as m→ 1.

Theorem 6.2 (Time-Insensitive, Intrinsic, Mean Value, Harnack In-
equalities) There exist constants ε̄ ∈ (0, 1) and γ̄ > 1, depending only on the
data {m,N,Co, C1}, such that

γ̄−1 sup
Kρ(xo)

u(·, σ) ≤ u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, τ) (6.2)

for any pair of time levels σ, τ in the range

to − ε̄ u(xo, to)
1−mρ2 ≤ σ, τ ≤ to + ε̄ u(xo, to)

1−mρ2. (6.3)

The constants ε̄ and γ̄−1 tend to zero as either m→ 1 or m→ (N−2)+
N .

Comments on these theorems can be formulated as in § 16.1–16.3 of Chapter 6.
In all cases the key inequality to establish is the right-hand-side estimate in
(6.3), as the remaining ones follow from this by stability estimates and geo-
metrical arguments. We state independently such a right-hand-side estimate,
to stress its independence of the requirements (16.3)–(16.5) of Chapter 6.
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6.1 The Right-Hand-Side Harnack Estimate of Theorem 2.2

Proposition 6.1 There exist constants ε̄ ∈ (0, 1) and γ̄ > 1, depending only
on the data {m,N,Co, C1}, such that

u(xo, to) ≤ γ̄ inf
Kρ(xo)

u(·, t) (6.4)

for all times t in the range (6.3). The constants ε̄, γ̄−1 → 0 either as m →
(N−2)+

N or as m→ 1.

The new element of the proof is a novel form of the expansion of positivity
based on the comparison principle, afforded by the new structure (5.2)–(5.4).
The proof continues to use the L1

loc–L
∞
loc Harnack-type estimate given in The-

orem 17.1 of Chapter 6, valid for

λ = N(m− 1) + 2 > 0, i.e., for (N−2)+
N < m < 1. (6.5)

The remaining arguments are essentially identical to those of § 3 with the
obvious modifications. In particular, conditions (5.2)–(5.4) insure that the
analog of (3.11) in this context has indeed a solution (see, for example, [133,
86]). Such a solution w is unique by Proposition 5.1.

6.2 Subpotential Lower Bounds

Return to the Barenblatt solution to the prototype porous medium equation,
introduced in (15.3) of Chapter 5. While introduced in the context of degener-
ate equations (m > 1), such a solution is well defined also for m < 1, provided
(6.5) holds. For m in such a range we rewrite the Barenblatt solution with
“pole” at (xo, to) as

Γm(x, t;xo, to) =
1

(t− to)
N
λ

(
1 + b(N,m)

|x− xo|2
(t− to)

2
λ

) 1
m−1

(6.6)

with

b(N,m) =
N(1−m)

2Nmλ
, λ = N(m− 1) + 2. (6.7)

As m→ 1 this converges pointwise to the heat potential with pole at (xo, to):

Γ (x, t;xo, to) =
1

(t− to)N/2
e−

|x−xo|2
4(t−to) .

In this sense the Barenblatt solutions (6.6)–(6.7) are the m-potentials of
the prototype porous medium equation (5.3) of Chapter 3. In view of (6.5),
these m-potentials cease to exist for m in the critical and subcritical range

0 < m ≤ (N−2)+
N . Thus the intrinsic Harnack inequalities of Theorems 6.1

and 6.2 cease to hold precisely when these m-potentials cease to exist. These
m-potentials drive, in the sense made precise by Proposition 6.2 below, the
structural behavior of nonnegative solutions to the singular, homogeneous,
quasilinear equations (5.1)–(5.4).
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Proposition 6.2 Let u be a nonnegative, local, weak solution to (5.1)–(5.4)
with m in the supercritical range (6.5), and let ε and γ be the constants in the
intrinsic Harnack inequality (6.1) of Theorem 6.1. For every (xo, to) ∈ ET

such that u(xo, to) > 0 and all (x, t) in ET with

K16|x−xo|(xo) ⊂ E and 0 < t− to <
ε

82
to

we have
u(x, t)

u(xo, to)
≥ γo

(
1 + γ1

u(xo, to)
1−m|x− xo|2
t− to

) 1
m−1

,

where
γo = min{1 , γ−1} and γ1 = (γ1−m − 1)ε.

The proof is almost identical to that of Proposition 4.1. Remarks analogous
to Remarks 4.1–4.3 apply to these porous medium type equations.

7 Remarks and Bibliographical Notes

The idea of using the comparison principle to establish Harnack estimates for
solutions to degenerate and/or singular equations appears first in [30] in the
context of equations of the porous medium type. The proofs of Propositions 1.1
and 2.1 are adapted from [30]. The subpotential lower estimates of § 4 are
taken from [51]. Further discussion on sub(super)-solutions to homogeneous,
monotone, parabolic p-Laplacian equations is in [92].
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Appendix A

A.1 An L1
loc-Form of the Harnack Inequality for All

p ∈ (1, 2)

Proposition A.1.1 Let u be a nonnegative, local, weak solution to the sin-
gular equations (1.1)–(1.2) of Chapter 3, for 1 < p < 2, in ET . There exists
a positive constant γ depending only on the data {p,N,Co, C1}, such that for
all cylinders K2ρ(y)× [s, t] ⊂ ET , either

Cρ > min{1 , ε} where ε =
( t− s

ρp

) 1
2−p

(A.1.1)

or

sup
s<τ<t

∫
Kρ(y)

u(x, τ)dx ≤ γ inf
s<τ<t

∫
K2ρ(y)

u(x, τ)dx + γ
( t− s

ρλ

) 1
2−p

(A.1.2)

where
λ = N(p− 2) + p.

The constant γ = γ(p)→∞ either as p→ 2 or as p→ 1.

For λ > 0, the parameter p is in the singular, supercritical range (1.1) of
Chapter 6, and if λ ≤ 0, p is in the singular, critical and subcritical range (11.1)
of Chapter 6. However, the Harnack-type estimate (A.1.2), in the topology of
L1
loc, holds true for all 1 < p < 2 and accordingly, λ could be of either sign.

A.1.1 Auxiliary Lemmas

Lemma A.1.1 Let u be a nonnegative, local, weak supersolution to the sin-
gular equations (1.1)–(1.2) of Chapter 3, for 1 < p < 2, in ET . There exists
a positive constant γ depending only on the data {p,N,Co, C1}, such that for
all cylinders Kρ(y)× [s, t] ⊂ ET , and all σ ∈ (0, 1), either (A.1.1) holds, or

205E. DiBenedetto et al., Harnack’s Inequality for Degenerate and Singular Parabolic Equations,
Springer Monographs in Mathematics, DOI 10.1007/978-1-4614-1584-8_8,  
© Springer Science+Business Media, LLC 2012 
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s

∫
Kσρ(y)

τ
1
p (u+ ε)−

2
p |Du|pζpdx dτ

≤ γρ

(1− σ)p

(
t− s

ρλ

) 1
p (S + ερN

)2 p−1
p ,

where ε is defined by (A.1.1), and

S = sup
s<τ<t

∫
Kρ(y)

u(x, τ)dx.

The constant γ(p)→∞ as either p→ 1, 2.

Proof Assume (y, s) = (0, 0), fix σ ∈ (0, 1), and let x→ ζ(x) be a nonnegative,
piecewise smooth cutoff function in Kρ that vanishes outside Kρ, equals one
on Kσρ, and such that

|Dζ| ≤ 1

(1− σ)ρ
.

In the weak formulation (1.5) of Chapter 3 take the test function

ϕ = −t 1
p (u+ ε)1−

2
p ζp for some ε > 0,

modulo a Steklov averaging process. This gives

2− p

p
Co

∫ t

0

∫
Kρ

τ
1
p (u + ε)−

2
p |Du|pζpdx dτ

≤ p

2(p− 1)
t
1
p

∫
Kρ

(u+ ε)2
p−1
p (x, t)ζpdx

+ pC1

∫ t

0

∫
Kρ

τ
1
p (u+ ε)1−

2
p |Du|p−1ζp−1|Dζ|dx dτ

+
2− p

p
Cp

∫ t

0

∫
Kρ

τ
1
p (u+ ε)−

2
p ζpdx dτ

+ Cp

∫ t

0

∫
Kρ

τ
1
p (u+ ε)1−

2
p ζpdx dτ

+ pCp−1

∫ t

0

∫
Kρ

τ
1
p (u+ ε)1−

2
p ζp−1|Dζ|dx dτ

+ C

∫ t

0

∫
Kρ

τ
1
p (u+ ε)1−

2
p |Du|p−1ζpdx dτ.

From this, by repeated application of Young’s inequality
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0

∫
Kρ

τ
1
p (u + ε)−

2
p |Du|pζpdx dτ ≤ γt

1
p

∫
Kρ

(u+ ε)2
p−1
p (x, t)ζpdx

+ γ

∫ t

0

∫
Kρ

τ
1
p (u+ ε)p−

2
p (|Dζ|p + Cpζp) dx dτ

+ γCp

∫ t

0

∫
Kρ

τ
1
p (u+ ε)−

2
p ζpdx dτ

where γ = γ(data) tends to ∞ either as p → 2 or as p → 1. By Hölder’s
inequality

γt
1
p

∫
Kρ

(u+ ε)2
p−1
p (x, t)ζpdx

≤ γt
1
p ρ

N(2−p)
p

(
sup

0≤τ≤t

∫
Kρ

u(x, τ)dx + ε(2ρ)N
)2 p−1

p

≤ γρ

(
t

ρλ

) 1
p (S + ερN

)2 p−1
p .

Next,

γ

∫ t

0

∫
Kρ

τ
1
p (u + ε)p−

2
p (|Dζ|p + Cpζp)dx dτ

≤ γ
1 + Cpρp

(1− σ)pρp

∫ t

0

∫
Kρ

τ
1
p (u+ ε)p−2(u+ ε)2

p−1
p dx dτ

≤ γ
1 + Cpρp

(1− σ)p

( t

ρp

)
εp−2t

1
p sup

0≤τ≤t

∫
Kρ

(u+ ε)2
p−1
p dx

≤ γρ
1 + Cpρp

(1− σ)p

( t

ρp

)
εp−2

( t

ρλ

) 1
p (S + ερN

)2 p−1
p .

Finally,

γCp

∫ t

0

∫
Kρ

τ
1
p (u+ ε)−

2
p ζpdx dτ

≤ γρ

(
Cρ

ε

)p ( t

ρp

)
εp−2

( t

ρλ

) 1
p (S + ερN

)2 p−1
p .

Combining these estimates,∫ t

0

∫
Kρ

τ
1
p (u+ ε)−

2
p |Du|pζpdx dτ

≤ γρ

(1− σ)p

{
1 +

[
1 + (Cρ)p +

(Cρ)p

εp

]( t

ρp

)
εp−2

}( t

ρλ

) 1
p (S + ερN

)2 p−1
p .

To prove Lemma A.1.1, choose ε as in (A.1.1) and stipulate that C violates
the first of (A.1.1).
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Lemma A.1.2 Let u be a nonnegative, local, weak supersolution to the sin-
gular equations (1.1)–(1.2) of Chapter 3, for 1 < p < 2, in ET . There exists
a positive constant γ depending only on the data, such that for all cylinders
Kρ(y)× [s, t] ⊂ ET , and all σ ∈ (0, 1), either (A.1.1) holds, or

1

ρ

∫ t

s

∫
Kσρ(y)

|Du|p−1dx dτ ≤ δS +
γ(p)

[δ2(1− σ)p]
p−1
2−p

( t− s

ρλ

) 1
2−p

for all δ ∈ (0, 1). The constant γ(p)→∞ as either p→ 1, 2.

Proof Continue to assume that (y, s) = (0, 0) and that C violates (A.1.1). By
Hölder’s and Young’s inequalities,∫ t

0

∫
Kσρ

|Du|p−1dx dτ =

∫ t

0

∫
Kσρ

[
τ

1
p

p−1
p (u+ ε)−

2
p

p−1
p |Du|p−1

]
×
[
τ−

1
p

p−1
p (u+ ε)

2
p

p−1
p

]
dx dτ

≤
(∫ t

0

∫
Kσρ

τ
1
p (u + ε)−

2
p |Du|pdx dτ

) p−1
p

×
(∫ t

0

∫
Kσρ

τ
1
p−1(u + ε)2

p−1
p dx dτ

) 1
p

≤ γρ

(1− σ)p−1

( t

ρλ

) 1
p (S + ερN

)2 p−1
p

≤ δρS +
γρ

δ
2(p−1)
2−p (1− σ)

p(p−1)
2−p

( t

ρλ

) 1
2−p

.

A.1.2 Proof of Proposition A.1.1

Assume (y, s) = (0, 0) and for n = 0, 1, 2 . . . set

ρn =
n∑

j=1

1

2j
ρ, Kn = Kρn ; ρ̃n =

ρn + ρn+1

2
, K̃n = Kρ̃n

and let x → ζn(x) be a nonnegative, piecewise smooth cutoff function in K̃n

that equals one onKn, and such that |Dζn| ≤ 2n+2/ρ. In the weak formulation
of (1.1)–(1.2) of Chapter 3 take ζn as a test function, to obtain∫

K̃n

u(x, τ1)ζndx ≤
∫
K̃n

u(x, τ2)ζndx

+
2n+2

ρ

[
C1 + (Cρ)

]∣∣∣ ∫ τ2

τ1

∫
K̃n

|Du|p−1dx dτ
∣∣∣

+ 2n+2+N

(
Cρ

ε

)p−1 [
1 + (Cρ)

] ( t

ρλ

) 1
2−p
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for any two time levels τ1 and τ2 in [0, t], where ε is defined in (A.1.1). There-
fore, if C violates the first of (A.1.1),∫

Kn

u(x, τ1)dx ≤
∫
K2ρ

u(x, τ2)dx

+
γ2n

ρ

∫ t

0

∫
K̃n

|Du|p−1dx dτ + 2n+2

(
t

ρλ

) 1
2−p

.

As time level τ2 take one for which∫
K2ρ

u(x, τ2)dx = inf
0≤τ≤t

∫
K2ρ

u(x, τ)dx
def
= I.

Also set

Sn = sup
0≤τ≤t

∫
Kn

u(x, τ)dx.

Since τ1 ∈ [0, t] is arbitrary, the previous inequality yields

Sn ≤ I +
γ2n

ρ

∫ t

0

∫
K̃n

|Du|p−1dx dτ + γ2n
(

t

ρλ

) 1
2−p

.

The term involving |Du| is estimated above by applying Lemma A.1.2 over
the pair of cubes

K̃n ⊂ Kn+1 for which (1− σ) = 2−(n+2),

and for
δ = γ−12−n−2εo,

where εo ∈ (0, 1) is to be chosen. For these choices

2n+2

ρ

∫ t

0

∫
K̃n

|Du|p−1dx dτ ≤ εoSn+1 + γ(p, εo)b
n
( t

ρλ

) 1
2−p

,

where b = 2p
2

. Combining these remarks gives the recursive inequalities

Sn ≤ εoSn+1 + γ(data, εo)b
n
[
I +

( t

ρλ

) 1
2−p

]
.

From this, by iteration

So ≤ εnoSn + γ(data, εo)
[
I +

( t

ρλ

) 1
2−p

] n−1∑
i=1

(εob)
i.

Choose εo so that the last term is majorized by a convergent series, and let
n→∞.
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A.1.3 An Estimate for Supersolutions

Both the supporting Lemmas A.1.1 and A.1.2 are valid for supersolutions,
as stated. However, the proof of Proposition A.1.1 requires the full notion of
solution, since the pair (τ1, τ2) is arbitrary, and in particular nonordered.

A parallel but weaker statement holds for supersolutions.

Proposition A.1.2 Let u be a nonnegative, local, weak supersolution to the
singular equations (1.1)–(1.2) of Chapter 3, for 1 < p < 2, in ET . There
exists a positive constant γ depending only on the data {p,N,Co, C1}, such
that for all cylinders K2ρ(y)× [s, t] ⊂ ET , either (A.1.1) holds, or

sup
s<τ<t

∫
Kρ(y)

u(x, τ)dx ≤ γ

∫
K2ρ(y)

u(x, t)dx + γ
( t− s

ρλ

) 1
2−p

(A.1.3)

where
λ = N(p− 2) + p.

The constant γ = γ(p)→∞ either as p→ 2 or as p→ 1.

Proof A standard adaptation of the previous argument.

A.2 Lr
loc–L

∞
loc Estimates

Proposition A.2.1 Let u be a locally bounded, local, weak sub(super)-solution
to the singular equations (1.1)–(1.2) of Chapter 3 for 1 < p < 2, in ET , and
let r ≥ 1 such that

λr = N(p− 2) + rp > 0.

There exists a positive constant γ depending only on the data {p,N,Co, C1},
such that for all cylinders Kρ(y)× [2s− t, t] ⊂ ET , either (A.1.1) holds, or

sup
K 1

2
ρ
(y)×[s,t]

u± ≤ γ
( ρp

t− s

) N
λr
( 1

ρN(t− s)

∫ t

2s−t

∫
Kρ(y)

ur
±dx dτ

) p
λr

+
( t− s

ρp

) 1
2−p

.

Proof The proof will be given for nonnegative weak subsolutions, the proof
for the remaining case being identical. Assume (y, s) = (0, 0) and for fixed
σ ∈ (0, 1) and n = 0, 1, 2, . . . set

ρn = σρ+
1− σ

2n
ρ, tn = −σt− 1− σ

2n
t,

Kn = Kρn , Qn = Kn × (tn, t).

This is a family of nested and shrinking cylinders with common “vertex” at
(0, t), and by construction
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Qo = Kρ × (−t, t) and Q∞ = Kσρ × (−σt, t).
Having assumed that u is locally bounded in ET , set

M = ess sup
Qo

max{u, 0}, Mσ = ess sup
Q∞

max{u, 0}.

We first find a relationship between M and Mσ. Denote by ζ a nonnegative,
piecewise smooth cutoff function in Qn that equals one on Qn+1, and has the
form ζ(x, t) = ζ1(x)ζ2(t), where

ζ1 =

{
1 in Kn+1

0 in R
N −Kn

|Dζ1| ≤ 2n+1

(1 − σ)ρ

ζ2 =

{
0 for t ≤ tn
1 for t ≥ tn+1

0 ≤ ζ2,t ≤ 2n+1

(1 − σ)t
;

introduce the increasing sequence of levels kn = k − 2−nk, where k > 0 is
to be chosen, and in the weak formulation (5.1) of Chapter 3, take the test
functions (u− kn+1)+ζ

p. The energy estimates (2.3) of Chapter 3 yield

sup
tn≤τ≤t

∫
Kn

[(u− kn+1)+ζ]
2(x, τ)dx +

∫∫
Qn

|D[(u − kn+1)+ζ]|pdx dτ

≤ γ2np

(1− σ)pρp
[
1 + (Cρ)p

] ∫∫
Qn

(u− kn+1)
p
+dx dτ (A.2.1)

+
γ2n

(1− σ)t

∫∫
Qn

(u − kn+1)
2
+dx dτ + γCp

∫∫
Qn

χ[(u−kn+1)+>0]dx dτ.

A.2.1 Proof of Proposition A.2.1 for p in the Range
max{1, 2N

N+2
} < p < 2

This amounts to taking λr > 0 with r ∈ [1, 2]. Estimate∫∫
Qn

(u− kn+1)
p
+ dx dτ ≤ γ

2(2−p)n

k2−p

∫∫
Qn

(u − kn)
2
+ dx dτ∫∫

Qn

χ[u>kn+1]dx dτ ≤ γ
22n

k2

∫∫
Qn

(u − kn)
2
+ dx dτ.

Then the energy estimates (A.2.1) yield

sup
tn<τ≤t

∫
Kn

[(u − kn+1)+ζ]
2(x, τ)dx +

∫∫
Qn

|D[(u− kn+1)+ζ]|pdx dτ

≤ γ22n

(1− σ)p

(1 + (Cρ)p

ρpk2−p
+

1

t
+

Cp

k2

)∫∫
Qn

(u− kn)
2
+dx dτ.

If condition (A.1.1) is violated, this implies further
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sup
tn<τ≤t

∫
Kn

[(u− kn+1)+ζ]
2(x, τ)dx +

∫∫
Qn

|D[(u− kn+1)+ζ]|pdx dτ

≤ γ22n

(1− σ)pt

[( t

ρp

)
kp−2 + 1 +

( t

ρp

) 2
2−p 1

k2

] ∫∫
Qn

(u − kn)
2
+dx dτ.

The last term in [. . . ] is estimated by stipulating to take

k ≥
(

t

ρp

) 1
2−p

. (A.2.2)

This gives the inequalities

sup
tn<τ≤t

∫
Kn

[(u− kn+1)+ζ]
2(x, τ)dx +

∫∫
Qn

|D[(u− kn+1)+ζ]|pdx dτ

≤ γ22n

(1 − σ)pt

∫∫
Qn

(u− kn)
2
+dx dτ.

By Hölder’s inequality and the embedding Proposition 4.1 of the Preliminaries∫∫
Qn+1

(u− kn+1)
2
+dx dτ ≤

(∫∫
Qn

[(u− kn+1)+ζ]
pN+2

N dx dτ
) 2N

p(N+2)

×
(∫∫

Qn

χ[(u−kn+1)+>0]dx dτ
)1− 2N

p(N+2)

≤ γ
(∫∫

Qn

|D[(u− kn+1)+ζ]|pdx dτ
) 2N

p(N+2)

×
(

sup
tn≤τ≤t

∫
Kn

[(u− kn+1)+ζ]
2(x, τ)dx

) 2
N+2

×
(∫∫

Qn

χ[(u−kn+1)+>0]dx dτ
)1− 2N

p(N+2)

≤ γ
( 22n

(1 − σ)pt

) 2
p

N+p
N+2

( ∫∫
Qn

(u− kn)
2
+dx dτ

) 2N
p(N+2)

+ 2
N+2

×
(∫∫

Qn

χ[(u−kn+1)+>0]dx dτ
)1− 2N

p(N+2)

.

Estimate ∫∫
Qn

χ[(u−kn+1)+>0]dx dτ ≤ 22n+1

k2

∫∫
Qn

(u− kn)
2
+dx dτ

and set

Yn =
1

|Qn|
∫∫

Qn

(u− kn)
2
+dx dτ =

∫∫
Qn

(u− kn)
2
+dx dτ.
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Then the previous recursive inequalities can be written more concisely as

Yn+1 ≤ γbn

(1− σ)p
2
q

N+p
N k

2
q (q−2)

(ρp
t

) 2
q

Y
1+ 2p

qN
n

where
q = pN+2

N > 2 and b = 22(1+
2p
qN ).

By Lemma 5.1 of the Preliminaries, Yn → 0 as n→ +∞, provided k is chosen
from

Yo =

∫∫
Qo

u2 dx dτ = γ k
N
p (q−2)(1 − σ)N+p

( t

ρp

)N
p

.

For this choice

Mσ ≤ γ(data)

(1 − σ)
p(N+p)
N(q−2)

(ρp
t

) 1
q−2

( ∫∫
Qo

u2 dx dτ
) p

N(q−2)

,

Mσ ≤ γ(data)

(1− σ)
p(N+p)
N(q−2)

(ρp
t

) 1
q−2

M
p(2−r)
N(q−2)

( ∫∫
Qo

ur dx dτ
) p

N(q−2)

.

From this, by Lemma 5.2 of the Preliminaries, and taking into account (A.2.2),
we conclude that

sup
K 1

2
ρ
×[0,t]

u ≤ γ
(ρp

t

) N
λr
( ∫∫

Qo

ur dx dτ
) p

λr
+ γ

( t

ρp

) 1
2−p

.

A.2.2 Proof of Proposition A.2.1 for p in the Range
1 < p ≤ max{1, 2N

N+2
}

The requirement λr > 0 implies

r > 2 ≥ q = pN+2
N .

Estimate ∫∫
Qn

(u− kn+1)
p
+dx dτ ≤ γ

2n(r−p)

kr−p

∫∫
Qn

(u− kn)
r
+dx dτ∫∫

Qn

(u− kn+1)
2
+dx dτ ≤ γ

2n(r−2)

kr−2

∫∫
Qn

(u− kn)
r
+dx dτ∫∫

Qn

χ[u>kn+1]dx dτ ≤ γ
2rn

kr

∫∫
Qn

(u− kn)
r
+dx dτ.

Taking these estimates into account and assuming that condition (A.1.1) is
violated, the energy estimates (A.2.1) yield
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sup
tn<τ≤t

∫
Kn

[(u− kn+1)+ζ]
2(x, τ)dx +

∫∫
Qn

|D[(u− kn+1)+ζ]|pdx dτ

≤ γ
2nr

(1− σ)pt

[( t

ρp

)
kp−r +

1

kr−2
+
( t

ρp

) 2
2−p 1

kr

] ∫∫
Qn

(u − kn)
r
+dx dτ.

Assuming (A.2.2) holds, this implies

sup
tn<τ≤t

∫
Kn

[(u− kn+1)+ζ]
2(x, τ)dx +

∫∫
Qn

|D[(u− kn+1)+ζ]|pdx dτ

≤ γ2nr

(1 − σ)pt

1

kr−2

∫∫
Qn

(u− kn)
r
+dx dτ.

Set

Yn =
1

|Qn|
∫∫

Qn

(u − kn)
r
+dx dτ

and estimate

Yn+1 ≤ ‖u‖r−q
∞,Qo

( 1

|Qn|
∫∫

Qn

(u− kn+1)
q
+dx dτ

)
.

Applying the embedding Proposition 4.1 of the Preliminaries, the previous
inequality can be rewritten as

Yn+1 ≤ γ‖u‖r−q
∞,Qo

(ρp
t

) bn

(1− σ)
p
N (N+p)

1

k(r−2)N+p
N

Y
1+ p

N
n ,

where b = 2r
N+p
N . Apply Lemma 5.1 of the Preliminaries, and conclude that

Yn → 0 as n→ +∞, provided k is chosen to satisfy

Yo =

∫∫
Qo

urdx dτ = γ(1− σ)N+p‖u‖−(r−q)N
p

∞,Qo

( t

ρp

)N
p

k(r−2)N+p
p ,

which yields

Mσ ≤ γ
M

N(r−q)
(N+p)(r−2)

(1 − σ)
p

r−2

(ρp
t

) N
(N+p)(r−2)

( ∫∫
Qo

ur dx dτ
) p

(r−2)(N+p)

.

The proof is concluded by the interpolation Lemma 5.2 of the Preliminaries.

Remark A.2.1 The proof shows that the boundedness of u plays a role only
when 1 < p ≤ 2N

N+2 , and one does not need to assume it a priori, when

p > 2N
N+2 .
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A.3 Lr
loc Estimates Backward in Time

Proposition A.3.1 Let u be a locally bounded, local, weak sub(super)-solution
to the singular equations (1.1)–(1.2) of Chapter 3, in ET , for 1 < p < 2, and
assume that u ∈ Lr

loc(ET ) for some r > 1. There exists a positive constant γ,
depending only on the data {p,N,Co, C1} and r, such that either

Cρ > min{1 , M±
r } (A.3.1)

where

M±
r =

(
sup

τ≤s≤t

∫
Kρ(y)

ur
±(x, s)dx

) 1
r

, (A.3.2)

or

sup
τ≤s≤t

∫
Kρ(y)

ur
±(x, s)dx ≤ γ

{∫
K2ρ(y)

ur
±(x, τ)dx +

[ (t− τ)r

ρλr

] 1
2−p

}
for all cylinders

K2ρ(y)× [τ, t] ⊂ ET .

A.3.1 Proof of Proposition A.3.1

The proof will be given for nonnegative subsolutions, the proof for the re-
maining cases being similar. Assume (y, τ) = (0, 0), fix σ ∈ (0, 1], and choose
ζ ∈ C∞o (K(1+σ)ρ) satisfying

0 ≤ ζ ≤ 1 in K(1+σ)ρ, ζ = 1 in Kρ, |Dζ| ≤ γ(σρ)−1 in K(1+σ)ρ

for a constant γ depending only on N . Let M be a positive constant to be
chosen, and let q be a parameter in the range

max{r − 1 , 1} < q < r.

In the weak formulation (1.5) of Chapter 3 take

f(u)ζp with f(u) = ur−1
( (u−M)+

u

)q
(A.3.3)

as testing function, modulo a standard Steklov averaging process. One verifies
that

(r − 1)ur−2
( (u−M)+

u

)q
≤ f ′(u) ≤ qur−2

((u −M)+
u

)q−1

.

Set

F (u) =

∫ u

M

f(v)dv

and integrate over
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Qs = K(1+σ)ρ × (0, s] with s ∈ (0, t]

to get

0 =

∫∫
Qs

F (u)τζ
pdx dτ +

∫∫
Qs

A(x, τ, u,Du) ·Duf ′(u)ζpdx dτ

+ p

∫∫
Qs

ζp−1f(u)A(x, τ, u,Du) ·Dζ dxdτ

−
∫∫

Qs

B(x, τ, u,Du)f(u)ζpdx dτ

= T1 + T2 + T3 + T4.

Since ζ is independent of τ ,

T1 =

∫
K(1+σ)ρ

F (u)(x, s)ζp(x)dx −
∫
K(1+σ)ρ

F (u)(x, 0)ζp(x)dx.

Moreover,

T2 =

∫∫
Qs

f ′(u)ζpA(x, τ, u,Du) ·Dudxdτ

≥ Co(r − 1)

∫∫
Qs

f(u)

u
|Du|pζpdx dτ

− qCp

∫∫
Qs

ur−2
( (u−M)+

u

)q−1

ζpdx dτ.

Next,

|T3| ≤ p

∫∫
Qs

f(u)
[
C1|Du|p−1|Dζ|+ Cp−1|Dζ|]ζp−1dx dτ,

|T4| ≤ C

∫∫
Qs

|Du|p−1f(u)ζpdx dτ + Cp

∫∫
Qs

f(u)ζpdx dτ.

Combining these remarks,∫
K(1+σ)ρ

F (u)(x, s)ζpdx+(r − 1)Co

∫∫
Qs

f(u)

u
|Du|pζpdx dτ

≤ pC1

σρ
(1 + Cρ)

∫∫
Qs

f(u)|Du|p−1ζp−1dx dτ

+
(Cρ)p−1

σpρp
(1 + Cρ)

∫∫
Qs

f(u)ζp−1dx dτ

+ qCp

∫∫
Qs

ur−2
( (u−M)+

u

)q−1

ζpdx dτ

+

∫
K(1+σ)ρ

F (u)(·, 0)ζpdx.
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If condition (A.3.1) is violated, estimate

pC1

σρ
(1 + Cρ)

∫∫
Qs

f(u)|Du|p−1ζp−1dx dτ

≤ r − 1

2
Co

∫∫
Qs

f(u)

u
|Du|pζpdx dτ

+
γ

σpρp

∫∫
Qs

ur+p−2dx dτ

for a constant γ = γ(r, p, Co, C1). These remarks imply∫
Kρ

F (u)(·, s)dx ≤
∫
K(1+σ)ρ

F (u)(·, 0)ζpdx

+
γ

σpρp

∫∫
Qs

ur+p−2dx dτ

+
γ

σpρp

(
(Cρ)p−1 +

(Cρ)p

M

)∫∫
Qs

ur−1dx dτ.

By elementary calculations and the Young inequality,∫
Kρ∩[u>M ]

ur(·, s)dx ≤ 2r sup
0≤s≤t

∫
Kρ

F (u)(·, s)dx + γ̄M r|Kρ|

for a constant γ̄ = γ̄(r, p, q, Co, C1). From this

sup
0≤s≤t

∫
Kρ

ur(·, s)dx ≤ 2r
(

sup
0≤s≤t

∫
Kρ

F (u)(·, s)dx + (1 + γ̄)M r
)
.

Choosing

M =
1

[4r(1 + γ̄)]
1
r

(
sup

0≤s≤t

∫
Kρ

ur(·, s)ds
) 1

r

=
1[

4r(1 + γ̄)
] 1

r

Mr,

with Mr given by (A.3.2), these inequalities yield

sup
0≤s≤t

∫
Kρ

ur(·, s)dx ≤ 4

∫
K(1+σ)ρ

ur(·, 0)dx

+
γ

σpρp

∫∫
Qs

ur+p−2dx dτ

+
γ

σpρp

(
(Cρ)p−1 +

(Cρ)p

Mr

) ∫∫
Qs

ur−1dx dτ.

(A.3.4)

Estimate

γ

σpρp

∫∫
Qs

ur+p−2dx dτ ≤ γ

σp

(
sup

0≤s≤t

∫
K(1+σ)ρ

ur(·, s)dx
) r+p−2

r
( tr

ρλr

) 1
r

.
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To estimate the last term on the right-hand side of (A.3.4) assume that (A.3.1)
is violated, so that Cρ ≤Mr. With this stipulation

γ

σpρp

(
(Cρ)p−1 +

(Cρ)p

Mr

)∫∫
Qs

ur−1dx dτ

≤ 2γ

σpρp
Mp−1

r

∫∫
Qs

ur−1dx dτ

≤ 2γ

σp

(
sup

0≤s≤t

∫
K(1+σ)ρ

ur(·, s)dx
) r+p−2

r
( tr

ρλr

) 1
r

.

From this

sup
0≤s≤t

∫
Kρ

ur(·, s)dx ≤ γ

∫
K(1+σ)ρ

ur(·, 0)dx

+
γ

σp

(
sup

0≤s≤t

∫
K(1+σ)ρ

ur(·, s)dx
) r+p−2

r
( tr

ρλr

) 1
r

.

Fix R > 0 and consider the sequence of radii

ρn = R
n∑

i=1

2−i,

so that

ρn+1 = (1 + σn)ρn for σn =
ρn+1 − ρn

ρn
≥ 2−n−2.

Setting

Yn = sup
0≤s≤t

∫
Kρn

ur(·, s)dx

the previous inequalities yield

Yn ≤ γ

∫
K2R

ur(·, 0)dx+ γ2n
( tr

ρλr

) 1
r

Y
r+p−2

r
n+1 .

The proposition now follows from the interpolation Lemma 5.2 of the Prelim-
inaries.

Remark A.3.1 The proof shows that the constant γ depends on (r− 1) and
γ(r)→∞ as r → 1.

Remark A.3.2 Theorems 2.1 and 12.1 of Chapter 6 follow combining Propo-
sition A.2.1 respectively with Propositions A.1.1 and A.3.1.
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A.4 Remarks and Bibliographical Notes

The idea of a Harnack-type estimate in the topology of L1
loc appears first in

[31]. It is reported in [41] for solutions to the singular (1 < p < 2) proto-
type equation (1.3) of Chapter 3. A proof for singular equations with the full
quasilinear structure (1.2) of Chapter 3 is in [51].

For the prototype singular p-Laplacian equation, the local sup estimates
of § A.2 are essentially in [41], taken from [130]. The proof presented here
covers equations with the full quasilinear structure (1.2) of Chapter 3.

For homogeneous (C = 0) singular equations, the backward in time esti-
mate of Proposition A.3.1 follows from standard energy estimates obtained
by taking the test function ur−1ζp in the weak formulation (1.5) of Chap-
ter 3. For nonhomogeneous structures (C 	= 0), this method fails. The proof
we report here essentially follows an idea of Lieberman [106], based on intro-
ducing the test function in (A.3.3). The only difference with respect to the
approach of [106] lies in the conclusion, where the interpolation Lemma 5.2
was used, instead of the Gronwall Inequality as in [106]. The motivation is in
establishing estimates with constants independent of time.
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Appendix B

B.1 An L1
loc-Form of the Harnack Inequality for All

m ∈ (0, 1)

Proposition B.1.1 Let u be a nonnegative, local, weak solution to the singu-
lar porous medium type equations (5.1)–(5.2) of Chapter 3, for 0 < m <
1, in ET . There exists a positive constant γ depending only on the data
{m,N,Co, C1}, such that for all cylinders K2ρ(y)× [s, t] ⊂ ET , either Cρ > 1,
or

sup
s<τ<t

∫
Kρ(y)

u(x, τ)dx ≤γ inf
s<τ<t

∫
K2ρ(y)

u(x, τ)dx

+ γ
( t− s

ρλ

) 1
1−m

(B.1.1)

where
λ = N(m− 1) + 2.

The constant γ = γ(m)→∞ either as m→ 1 or as m→ 0.

For λ > 0, the parameter m is in the singular, supercritical range (16.1) of
Chapter 6, and if λ ≤ 0, m is in the subcritical range (19.1) of Chapter 6.
However, the Harnack-type estimate (B.1.1) in the topology of L1

loc, holds
true for all 0 < m < 1 and accordingly, λ could be of either sign.

B.1.1 An Auxiliary Lemma

The number 0 < m < 1 being fixed, choose

α =

⎧⎨
⎩
− 1

2m if 0 < m < 2
3

− 1
2 (1−m) if 1

3 < m < 1.

One verifies that for such α, the numbers (m+ α), (1 + α), and (m− α) are
all in (0, 1).

221E. DiBenedetto et al., Harnack’s Inequality for Degenerate and Singular Parabolic Equations,
Springer Monographs in Mathematics, DOI 10.1007/978-1-4614-1584-8_9,  
© Springer Science+Business Media, LLC 2012 
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Lemma B.1.1 Let u be a nonnegative, local, weak supersolution to the sin-
gular equations (5.1)–(5.2) of Chapter 3, for 0 < m < 1, in ET . There exists
a positive constant γ depending only on the data {m,N,Co, C1}, such that for
all cylinders Kρ(y) × [τ, t] ⊂ ET , all σ ∈ (0, 1) such that K(1+σ)ρ(y) ⊂ E,
either Cρ > 1, or∫ t

τ

∫
Kρ(y)

um−1uα−1|Du|2ζ2dx dτ

≤ γ(α)

σ2ρ2
Sm+α
σ (t− τ) ρN(1−m−α) + γ(α)S1+α

σ ρ−αN

where

Sσ = sup
τ<s<t

∫
K(1+σ)ρ(y)

u(·, s)dx.

The constant γ(m)→∞ either as m→ 1 or as m→ 0.

Proof Assume (y, τ) = (0, 0), fix σ ∈ (0, 1), and let x→ ζ(x) be a nonnegative
piecewise smooth cutoff function in K(1+σ)ρ that vanishes outside K(1+σ)ρ,
equals one on Kρ, and such that

|Dζ| ≤ 1

σρ
.

In the weak formulation (5.5) of Chapter 3 take the test function ϕ = uαζ2,
and integrate over Q = K(1+σ)ρ × (0, t], to obtain formally

0 ≤ 1

1 + α

∫∫
Q

∂

∂τ
u1+αζ2dx dτ +

∫∫
Q

A(x, τ, u,Du) ·D(uαζ2)dx dτ

−
∫∫

Qs

B(x, τ, u,Du)uαζ2dx dτ = I1 + I2 + I3.

Assume momentarily that uαζ2 is an admissible test function, and proceed to
estimating the various terms formally. Since 0 < 1 + α < 1, estimate

|I1| ≤ 2

1 + α
ρ−αNS1+α

σ .

Next,

I2 ≤ −|α|
2
Co

∫∫
Q

um−1uα−1|Du|2ζ2dx dτ

+
γ(α)

[
1 + (Cρ) + (Cρ)2

]
σ2ρ2

∫∫
Q

um+αdx dτ

≤ −|α|
2
Co

∫∫
Q

um−1uα−1|Du|2ζ2dx dτ +
γ(α)

σ2ρ2
Sm+α
σ (tρN )1−m−α
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where the conditions Cρ ≤ 1 and 0 < m+ α < 1 have been enforced. Finally,

|I3| ≤ |α|
4
Co

∫∫
Q

um−1uα−1|Du|2ζ2dx dτ +
γ1(α)

σ2ρ2
Sm+α
σ tρN(1−m−α).

The lemma follows by combining the estimates. The use of uαζ2 as test func-
tion can be justified using (u+ ε)αζ2, and then letting ε→ 0.

Corollary B.1.1 Let u be a nonnegative, local, weak supersolution to the
singular equations (5.1)–(5.2) of Chapter 3, for 0 < m < 1, in ET . There
exists a positive constant γ depending only on the data {m,N,Co, C1}, such
that for all cylinders Kρ(y)× [s, t] ⊂ ET , all σ ∈ (0, 1) such that K(1+σ)ρ(y) ⊂
E, either Cρ > 1, or

1

ρ

∫ t

s

∫
Kρ(y)

(|A(x, τ, u,Du)|+ |B(x, τ, u,Du)| ρ)dx dτ
≤ γ

σ
Sm
σ

( t− s

ρλ

)
+ γS

1+m
2

σ

( t− s

ρλ

) 1
2

.

Proof Assume (y, s) = (0, 0), and let Q = Kρ× (0, t]. By the structure condi-
tions of A and B, and enforcing the requirement Cρ ≤ 1

1

ρ

∫ t

0

∫
Kρ

(|A(x, τ, u,Du)|+ |B(x, τ, u,Du)| ρ)dx dτ
≤ γ

ρ

∫∫
Q

um−1|Du|dx dτ +
γ

ρ2

∫∫
Q

umdx dτ

for a constant γ depending only on the data {m,N,Co, C1}. Estimate

γ

ρ2

∫∫
Q

umdx dτ ≤ γSm
σ

( t

ρλ

)
.

Next, by the previous lemma

γ

ρ

∫∫
Q

um−1|Du|dx dτ ≤ γ

ρ

(∫∫
Q

um−1uα−1|Du|2dx dτ
) 1

2
(∫∫

Q

um−αdx dτ
) 1

2

≤
(
γ(α)

σρ2
S

m+α
2

σ

√
t ρN

1−m−α
2 +

γ(α)

ρ
S

1+α
2

σ ρ−N α
2

)
×
(√

tρN
1−m+α

2 S
m−α

2
σ

)
.

B.1.2 Proof of Proposition B.1.1

Assume (y, s) = (0, 0) and Cρ ≤ 1. For n = 0, 1, 2 . . . set

ρn =
n∑

j=1

1

2j
ρ, Kn = Kρn ; ρ̃n =

ρn + ρn+1

2
, K̃n = Kρ̃n
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and let x → ζn(x) be a nonnegative, piecewise smooth cutoff function in K̃n

that equals one onKn, and such that |Dζn| ≤ 2n+2/ρ. In the weak formulation
of (5.1)–(5.2) of Chapter 3 take ζn as a test function, to obtain∫
K̃n

u(x, τ1)ζndx ≤
∫
K̃n

u(x, τ2)ζndx

+
2n+2

ρ

∣∣∣ ∫ τ2

τ1

∫
K̃n

(|A(x, τ, u,Du)|+ |B(x, τ, u,Du)|ρ)dx dτ ∣∣∣
≤
∫
K̃n

u(x, τ2)ζndx+ 4nγSm
n+1

( t

ρλ

)
+ 2nγS

1+m
2

n+1

( t

ρλ

) 1
2

,

where

Sn = sup
0≤τ≤t

∫
Kn

u(·, τ)dx.

Since the time levels τ1 and τ2 are arbitrary, choose τ2 one for which∫
K2ρ

u(·, τ2)dx = inf
0≤τ≤t

∫
K2ρ

u(·, τ)dx def
= I.

With these notation, the previous inequality takes the form

Sn ≤ I + γ4nSm
n+1

( t

ρλ

)
+ γ2nS

1+m
2

n+1

( t

ρλ

) 1
2

.

By Young’s inequality, for all εo ∈ (0, 1)

Sn ≤ εoSn+1 + γ
(
data, εo

)
bn
[
I +

( t

ρλ

) 1
1−m

]
,

where b = 4
1

1−m . From this, by iteration

So ≤ εnoSn + γ(data, εo)
[
I +

( t

ρλ

) 1
1−m

] n−1∑
i=1

(εob)
i.

Choose εo so that the last term is majorized by a convergent series, and let
n→∞.

B.1.3 An Estimate for Supersolutions

Both the supporting Lemma B.1.1 and Corollary B.1.1 are valid for super-
solutions, as stated. However, the proof of Proposition B.1.1 requires the
full notion of solution, since the pair (τ1, τ2) is arbitrary, and in particular
nonordered.

A parallel but weaker statement holds for supersolutions.
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Proposition B.1.2 Let u be a nonnegative, local, weak supersolution to the
singular equations (5.1)–(5.2) of Chapter 3, for 0 < m < 1, in ET . There
exists a positive constant γ depending only upon the data {m,N,Co, C1}, such
that for all cylinders K2ρ(y)× [s, t] ⊂ ET , either Cρ > 1, or

sup
s<τ<t

∫
Kρ(y)

u(x, τ)dx ≤ γ

∫
K2ρ(y)

u(x, t)dx+ γ
( t− s

ρλ

) 1
1−m

(B.1.2)

where
λ = N(m− 1) + 2.

The constant γ = γ(m)→∞ either as m→ 1 or as m→ 0.

Proof A standard adaptation of the previous argument.

B.2 Energy Estimates for Sub(Super)-Solutions When
0 < m < 1

Proposition B.2.1 Let u be a local, weak sub(super)-solution to the singular
equations (5.1)–(5.2) of Chapter 3, for 0 < m < 1, in ET and consider the
truncations

(u − k)+ for k > 0, and − (u− k)− for k < 0. (B.2.1)

There exists a positive constant γ = γ(m,N,Co, C1), such that for every cylin-
der (y, s)+Q−ρ (θ) ⊂ ET , every k as in (B.2.1), and every nonnegative, piece-
wise smooth cutoff function ζ vanishing on ∂Kρ(y),

ess sup
s−θρ2<t≤s

∫
Kρ(y)

(u− k)2±ζ
2(x, t)dx

−
∫
Kρ(y)

(u− k)2±ζ
2(x, s− θρ2)dx

+ Com

∫∫
(y,s)+Q−

ρ (θ)

|u|m−1|D(u− k)±|2ζ2dx dt

≤ γ

∫∫
(y,s)+Q−

ρ (θ)

(u − k)2±ζ|ζt|dx dt

+ γ

∫∫
(y,s)+Q−

ρ (θ)

|u|m−1(u− k)2±|Dζ|2dx dt

+ γC2

∫∫
(y,s)+Q−

ρ (θ)

|u|m+1χ[(u−k)±>0]ζ
2dx dt.

(B.2.2)

Analogous estimates hold in the “forward” cylinder (y, s) +Q+
ρ (θ) ⊂ ET .
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Proof We assume (y, s) = (0, 0) and establish the proposition for (u− k)+ for
k > 0. In (5.1) of Chapter 3 take the testing function

ϕ = (u− k)+ ζ2

over
Qt = Kρ × (−θρ2, t] where − θρ2 < t ≤ 0. (B.2.3)

The use of (u − k)+ in this testing function is justified, modulus a standard
Steklov averaging process. This gives∫∫

Qt

uτ (u− k)+ζ
2dx dτ

+

∫∫
Qt

A(x, τ, u,Du) ·D(u− k)+ζ
2dx dτ

+ 2

∫∫
Qt

A(x, τ, u,Du) ·Dζ(u− k)+ζ dx dτ

=

∫∫
Qt

B(x, τ, u,Du)(u − k)+ζ
2dx dτ.

Transform and estimate these integrals separately, to get∫∫
Qt

uτ (u− k)+ζ
2dx dτ

=
1

2

∫
Kρ

(u − k)2+ζ
2(x, t)dx − 1

2

∫
Kρ

(u− k)2+ζ
2(x,−θρ2)dx

−
∫∫

Qt

(u− k)2+ζ|ζτ |dx dτ.

From the first structure condition (5.2) of Chapter 3 it follows that∫∫
Qt

A(x, τ, u,Du) ·D(u − k)+ζ
2dx dτ

≥ Com

∫∫
Qt

um−1|D(u− k)+|2ζ2dx dτ

− C2

∫∫
Qt

um+1ζ2χ[(u−k)+>0]dx dτ.

From the second condition in (5.2) of Chapter 3 and Young’s inequality it
follows that



2
∣∣∣ ∫∫

Qt

(u− k)+A(x, τ, u,Du) ·Dζ ζ dx dτ
∣∣∣

≤ 2C1m

∫∫
Qt

um−1(u− k)+|D(u − k)+|ζ|Dζ|dx dτ

+ 2C

∫∫
Qt

um(u − k)+ζ|Dζ|χ[(u−k)+>0]dx dτ

≤ Com

4

∫∫
Qt

um−1|D(u− k)+|2ζ2dx dτ

+ γ(Co)

∫∫
Qt

um−1(u− k)2+|Dζ|2dx dτ

+ C2

∫∫
Qt

um+1ζ2χ[(u−k)+>0]dx dτ.

Finally, the third condition of (5.2) of Chapter 3 implies∣∣∣ ∫∫
Qt

B(x, τ, u,Du)(u − k)+ζ
2dx dτ

∣∣∣
≤ Com

4

∫∫
Qt

um−1|D(u− k)+|2ζ2dx dτ

+ γ(Co)C
2

∫∫
Qt

um−1(u − k)2+dx dτ

+ γ̄(Co)C
2

∫∫
Qt

um+1χ[(u−k)+>0]ζ
2dx dτ.

Combining these estimates, and taking the supremum over t ∈ (−θρ2, 0]
proves the proposition.

Remark B.2.1 The constant γ = γ(m,N,Co, C1) is stable as m→ 1, but it
tends to infinity, as m→ 0.

B.3 A Different Type of Energy Estimates for
Sub(Super)-Solutions When 0 < m < 1

Proposition B.3.1 Let u be a local, weak subsolution to the singular equa-
tions (5.1)–(5.2) of Chapter 3, for 0 < m < 1, in ET and consider the trun-
cations

(um − km)+ for k > 0.

There exists a positive constant γ = γ(m,N,Co, C1), such that for every cylin-
der

(y, s) +Q−ρ (θ) ⊂ ET ,

every k > 0, and every nonnegative, piecewise smooth cutoff function ζ van-
ishing on ∂Kρ(y),
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ess sup
s−θρ2<t≤s

1

m+ 1

∫
Kρ(y)

(um − km)
m+1
m

+ ζ2(x, t)dx

−
∫
Kρ(y)

∫ u

k

(sm − km)dsζ2(x, s− θρ2)dx

+
Co

4

∫∫
(y,s)+Q−

ρ (θ)

|D(um − km)+|2ζ2dx dt

≤ γ

∫∫
(y,s)+Q−

ρ (θ)

um+1χ[(u−k)+>0]ζ|ζt|dx dt

+ γ

∫∫
(y,s)+Q−

ρ (θ)

(um − km)2+|Dζ|2dx dt

+ γC2

∫∫
(y,s)+Q−

ρ (θ)

u2mχ[(u−k)+>0]ζ
2dx dt.

(B.3.1)

Analogous estimates hold in “forward” cylinders (y, s) +Q+
ρ (θ) ⊂ ET .

Proof Assume (y, s) = (0, 0) and in the weak formulation (5.1) of Chapter 3
take the testing function

ϕ = (um − km)+ ζ2

over Qt, defined as in (B.2.3). The use of (um − km)+ in this testing function
is justified, modulus a standard Steklov averaging process. This gives∫∫

Qt

uτ (u
m − km)+ζ

2dx dτ

+

∫∫
Qt

A(x, τ, u,Du) ·D(um − km)+ζ
2dx dτ

+ 2

∫∫
Qt

A(x, τ, u,Du) ·Dζ (um − km)+ζ dx dτ

=

∫∫
Qt

B(x, τ, u,Du)(um − km)+ζ
2dx dτ.

Transform and estimate these integrals separately, to get



∫∫
Qt

uτ (u
m − km)+ζ

2dx dτ

≥
∫
Kρ

∫ (um−km)
1
m
+

0

smdsζ2(x, t)dx

−
∫
Kρ

∫ u

k

(sm − km)dsζ2(x,−θρ2)dx

− 2

m

∫∫
Qt

(um − km)+uζ|ζτ |dx dτ

=
1

m+ 1

∫
Kρ

(um − km)
m+1
m

+ ζ2(x, t)dx

−
∫
Kρ

∫ u

k

(sm − km)dsζ2(x,−θρ2)dx

− 2

m

∫∫
Qt

(um − km)+uζ|ζτ |dx dτ.

From the first structure condition (5.2) of Chapter 3∫∫
Qt

A(x, τ, u,Du) ·D(um − km)+ζ
2dx dτ

≥ Co

∫∫
Qt

|D(um − km)+|2ζ2dx dτ

−mC2

∫∫
Qt

u2mζ2χ[(u−k)+>0]dx dτ.

From the second condition in (5.2) of Chapter 3 and Young’s inequality it
follows that

2
∣∣∣ ∫∫

Qt

A(x, τ, u,Du) ·Dζ (um − km)+ζ dx dτ
∣∣∣

≤ 2C1

∫∫
Qt

|D(um − km)+|ζ(um − km)+|Dζ|dx dτ

+ 2C

∫∫
Qt

um(um − km)+ζ|Dζ|dx dτ

≤ Co

4

∫∫
Qt

|D(um − km)+|2ζ2dx dτ

+ γ(Co)

∫∫
Qt

(um − km)2+|Dζ|2dx dτ

+ γC2

∫∫
Qt

u2mζ2χ[(u−k)+>0]dx dτ.

Finally, the third condition of (5.2) of Chapter 3 implies
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Qt

B(x, τ, u,Du)(um − km)+ζ
2dx dτ

∣∣∣
≤ Co

4

∫∫
Qt

|D(um − km)+|2ζ2dx dτ

+ γ(Co)C
2

∫∫
Qt

(um − km)2+ζ
2dx dτ

+ γ̄(Co)C
2

∫∫
Qt

u2mχ[(u−k)+>0]ζ
2dx dτ.

Combining these estimates proves the proposition.

Remark B.3.1 The constant γ = γ(m,N,Co, C1) is stable as m→ 1, but it
tends to infinity as m→ 0.

B.4 Lr
loc–L

∞
loc Estimates

Proposition B.4.1 Let u be a locally bounded, local, weak sub(super)-solution
to (5.1)–(5.2) of Chapter 3 for 0 < m < 1, and let r ≥ 1 be such that

λr = N(m− 1) + 2r > 0. (B.4.1)

There exists a positive constant γ depending only on the data {m,N,Co, C1},
such that for all cylinders

Kρ(y)× [2s− t, t] ⊂ ET

either Cρ > 1, or

sup
K 1

2
ρ
(y)×[s,t]

u± ≤ γ
( ρ2

t− s

) N
λr
( 1

ρN (t− s)

∫ t

2s−t

∫
Kρ(y)

ur
±dx dτ

) 2
λr

+

(
t− s

ρ2

) 1
1−m

.

Proof The proof will be given for nonnegative weak subsolutions, the proof
for the remaining cases being identical. Assume (y, s) = (0, 0) and for fixed
σ ∈ (0, 1) and n = 0, 1, 2, . . . set

ρn = σρ+
1− σ

2n
ρ, tn = −σt− 1− σ

2n
t,

Kn = Kρn , Qn = Kn × (tn, t).

This is a family of nested and shrinking cylinders with common “vertex” at
(0, t), and by construction
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Qo = Kρ × (−t, t) and Q∞ = Kσρ × (−σt, t).
Having assumed that u is locally bounded in ET , set

M = ess sup
Qo

max{u, 0}, Mσ = ess sup
Q∞

max{u, 0}.

We first find a relationship between M and Mσ. Denote by ζ a nonnegative,
piecewise smooth cutoff function in Qn that equals one on Qn+1, and has the
form ζ(x, t) = ζ1(x)ζ2(t), where

ζ1 =

{
1 in Kn+1

0 in R
N −Kn

|Dζ1| ≤ 2n+1

(1− σ)ρ
,

ζ2 =

{
0 for t ≤ tn
1 for t ≥ tn+1

0 ≤ ζ2,t ≤ 2n+1

(1 − σ)t
;

introduce the increasing sequence of levels

kn = k − 1
2n k

where k > 0 is to be chosen. Estimates (B.3.1) with (um − kmn+1)+ yield

sup
tn≤τ≤t

∫
Kn

[(um − kmn+1)+ζ]
m+1
m (x, τ)dx

+
Co

4

∫∫
Qn

|D[(um − kmn+1)+ζ]|2dx dτ

≤ γ

∫∫
Qn

um+1χ[(um−km
n+1)+>0]ζζτdx dτ

+ γ

∫∫
Qn

(um − kmn+1)
2
+|Dζ|2dx dτ

+ γC2

∫∫
Qn

(um − kmn+1)
2
+ζ

2dx dτ

+ γC2

∫∫
Qn

u2mχ[(um−km
n+1)+>0]ζ

2dx dτ.

(B.4.2)

B.4.1 Proof of Proposition B.4.1 for
(N−2)+
N+2

< m < 1

This amounts to taking λr > 0 with r ∈ [1, 2N
N+2 ]. In the estimations below

repeated use is made of the inequality

|[u > kn+1] ∩Qn| ≤ γ
2(n+1)s

ks

∫∫
Qn

(u− kn)
s
+dx dτ

valid for all s > 0. Then estimate
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∫∫
Qn

(um − km
n+1)

m+1
m

+ ζζτdx dτ ≤ γ
22n

(1− σ)t

∫∫
Qn

(um − km
n )

m+1
m

+ dx dτ

∫∫
Qn

um+1χ[(um−km
n+1)+>0]ζζτdx dτ ≤ γ

2(2+
m+1
m

)n

(1− σ)t

∫∫
Qn

(um − km
n )

m+1
m

+ dx dτ

∫∫
Qn

(um − km
n+1)

2
+|Dζ|2dx dτ ≤ γ

2(2+
m+1
m

)n

(1− σ)2ρ2
1

k1−m

∫∫
Qn

(um − km
n )

m+1
m

+ dx dτ

C2

∫∫
Qn

u2mχ[(um−km
n+1)+>0]dx dτ ≤ γ

2
m+1
m

nC2

k1−m

∫∫
Qn

(um − km
n )

m+1
m

+ dx dτ.

Combining these estimates, and stipulating that Cρ < 1, (B.4.2) yields

sup
tn≤τ≤t

∫
Kn

[(um − kmn+1)+ζ]
m+1
m (x, τ)dx

+

∫∫
Qn

|D[(um − kmn+1)+ζ]|2dx dτ

≤ γ2
2(m+1)

m n

(1 − σ)2t

[
1 +

( t

ρ2

)
km−1

] ∫∫
Qn

(um − kmn )
m+1
m

+ dx dτ.

The last term in [· · · ] is estimated by stipulating to take

k ≥
(

t

ρ2

) 1
1−m

. (B.4.3)

With these stipulations, the previous inequality implies

sup
tn≤τ≤t

∫
Kn

[(um − kmn+1)+ζ]
m+1
m (x, τ)dx

+

∫∫
Qn

|D[(um − kmn+1)+ζ]|2dx dτ

≤ γ2
2(m+1)

m n

(1− σ)2t

∫∫
Qn

(um − kmn )
m+1
m

+ dx dτ.

(B.4.4)

By the Hölder inequality and the embedding Proposition 4.1 of the Prelimi-
naries
∫∫

Qn+1

(um − km
n+1)

m+1
m

+ dx dτ ≤
[

sup
tn≤τ≤t

∫
Kn

[(um − km
n+1)+ζ]

m+1
m (x, τ )dx

] 2
N

m+1
qm

×
(∫∫

Qn

|D(um − km
n+1)+|2ζ2ndx dτ +

∫∫
Qn

(um − km
n+1)+2|Dζn|2 dx dτ

)m+1
qm

× |Qn|1−
m+1
qm

(
γ
2

m+1
m

n

km+1

1

|Qn|
∫∫

Qn

(um − km
n )

m+1
m

+ dx dτ
)1−m+1

qm

where
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q =
2(Nm+m+ 1)

Nm
.

Now set

Yn =
1

|Qn|
∫∫

Qn

(um − kmn )
m+1
m

+ dx dτ.

Taking into account (B.4.4), in terms of Yn the previous inequality becomes

Yn+1 ≤ γ
bn

(1− σ)
2(m+1)(N+2)

Nqm k
(m+1)(mq−m−1)

qm

(ρ2
t

)m+1
qm

Y
1+ 2(m+1)

Nqm
n ,

where
b = 2

2(m+1)
m (1+ 2(m+1)

Nqm ).

Now Yn → 0 as n→ +∞, provided k is chosen such that

Yo = −
∫
−
∫
Qo

um+1dx dτ = γ(1− σ)N+2
( t

ρ2

)N
2

k
N(m−1)+2m+2

2 .

With this choice

Mσ ≤γ 1

(1− σ)
2(N+2)

N(m−1)+2m+2

(ρ2
t

) N
N(m−1)+2m+2

×
(
−
∫
−
∫
Qo

um+1dx dτ
) 2

N(m−1)+2m+2

.

(B.4.5)

Set

ρn = σρ+ (1− σ)ρ
n∑

i=1

2−i, tn = −σt− (1− σ)t
n∑

i=1

2−i,

Qn = Kρn × (tn, t], ⇒ Q∞ = Kρ × (−t, t], Qo = Kσρ × (−σt, t].
Writing (B.4.5) over the pair of cubes Qn and Qn+1 gives

Mn ≤ γ2
2(N+2)n

N(m−1)+2m+2

(1− σ)
2(N+2)

N(m−1)+2m+2

M
2(m+1−r)

N(m−1)+2m+2

n+1

(ρ2
t

) N
N(m−1)+2m+2

×
(
−
∫
−
∫
Qo

urdx dτ
) 2

N(m−1)+2m+2

.

By Lemma 5.2 of the Preliminaries, we conclude that

sup
Kσρ×(−σt,t]

u ≤ γ

(1− σ)
2(N+2)

λr

(ρ2
t

) N
λr
(
−
∫
−
∫
Kρ×(−t,t]

urdx dτ
) 2

λr
+
( t

ρ2

) 1
1−m

.



234 9 Appendix B

B.4.2 Proof of Proposition B.4.1 for 0 < m ≤ (N−2)+
N+2

The requirement λr > 0 implies

r >
2N

N + 2
≥ qm = 2

Nm+m+ 1

N
.

Estimate∫∫
Qn

(um − kmn+1)
m+1
m

+ dx dτ ≤ γ
2n

r−(m+1)
m

kr−(m+1)

∫∫
Qn

(um − kmn )
r
m
+ dx dτ

∫∫
Qn

(um − kmn+1)
2
+dx dτ ≤ γ

2n
r−2m

m

kr−2m

∫∫
Qn

(um − kmn )
r
m
+ dx dτ

∫∫
Qn

um+1χ[(um−km
n+1)+>0]dx dτ ≤ γ

2n
r−(m+1)

m

kr−(m+1)

∫∫
Qn

(um − kmn )
r
m
+ dx dτ

∫∫
Qn

u2mχ[(um−km
n+1)+>0]dx dτ ≤ γ

2n
r−2m

m

kr−2m

∫∫
Qn

(um − kmn )
r
m
+ dx dτ.

Taking these estimates into account and assuming that Cρ < 1, the energy
estimates (B.4.2) yield

sup
tn<τ≤t

∫
Kn

[(um − kmn+1)+ζ]
m+1
m (x, τ)dx

+

∫∫
Qn

|D[(um − kmn+1)+ζ]|2dx dτ

≤ γ
2n

r
m

(1 − σ)2t

[( t

ρ2

) 1

kr−2m
+

1

kr−(m+1)

] ∫∫
Qn

(um − kmn )
r
m
+ dx dτ.

Assuming (B.4.3) holds, this implies

sup
tn<τ≤t

∫
Kn

[(um − kmn+1)+ζ]
m+1
m (x, τ)dx

+

∫∫
Qn

|D[(um − kmn+1)+ζ]|2dx dτ

≤ γ2n
r
m

(1 − σ)2t

1

kr−(m+1)

∫∫
Qn

(um − kmn )
r
m
+ dx dτ.

Set

Yn =
1

|Qn|
∫∫

Qn

(um − kmn )
r
m
+ dx dτ

and estimate

Yn+1 ≤ ‖u‖r−mq
∞,Qo

( 1

|Qn|
∫∫

Qn

(um − kmn+1)
q
+dx dτ

)
.
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Applying the embedding Proposition 4.1 of the Preliminaries, the previous
inequality can be rewritten as

Yn+1 ≤ γ‖u‖r−qm
∞,Qo

(ρ2
t

) bn

(1− σ)
2
N (N+2)

1

k(r−(m+1))N+2
N

Y
1+ 2

N
n ,

where b = 2
r(N+2)

Nm . Apply Lemma 5.1 of the Preliminaries, and conclude that
Yn → 0 as n→ +∞, provided k is chosen to satisfy

Yo = −
∫
−
∫
Qo

urdx dτ = γ(1− σ)N+2‖u‖−(r−qm)N
2

∞,Qo

( t

ρ2

)N
2

k(r−(m+1))N+2
2 ,

which yields

Mσ ≤ γ
M

N(r−qm)
(N+2)(r−(m+1))

(1− σ)
2

r−(m+1)

(ρ2
t

) N
(N+2)(r−(m+1))

×
(
−
∫
−
∫
Qo

urdx dτ
) 2

(r−(m+1))(N+2)

.

The proof is concluded by a further application of the interpolation Lemma 5.2
of the Preliminaries.

Remark B.4.1 The proof shows that the boundedness of u plays a role only

when 0 < m ≤ (N−2)+
N+2 , and one does not need to assume it a priori, when

m > (N−2)+
N+2 .

B.5 Lr
loc Estimates Backward in Time

Proposition B.5.1 Let u be a nonnegative, local, weak solution to the singu-
lar equations (5.1)–(5.2) of Chapter 3, for 0 < m < 1 in ET , and assume that
u ∈ Lr

loc(ET ) for some r > 1. There exists a positive constant γ depending
only on the data {m,N,Co, C1} and r, such that either Cρ > 1, or

sup
τ≤s≤t

∫
Kρ(y)

ur(x, s)dx ≤ γ

∫
K2ρ(y)

ur(x, τ)dx + γ
[ (t− τ)r

ρλr

] 1
1−m

for all cylinders
K2ρ(y)× [τ, t] ⊂ ET .

The constant γ →∞ as r → 1.

Proof Assume (y, τ) = (0, 0), fix σ ∈ (0, 1], and choose ζ ∈ C∞o (K(1+σ)ρ)
satisfying

0 ≤ ζ ≤ 1 in K(1+σ)ρ, ζ = 1 in Kρ, |Dζ| ≤ γ(σρ)−1 in K(1+σ)ρ.
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In the weak formulation of (5.1) of Chapter 3, take ur−1ζ2 as a test function,
modulo a standard Steklov averaging process. Integrating overQs = K(1+σ)ρ×
(0, s] with s ∈ (0, t], gives

0 =
1

r

∫∫
Qs

ζ2
d

dτ
urdx dτ

+ (r − 1)

∫∫
Qs

A(x, τ, u,Du) ·Duur−2ζ2dx dτ

+ 2

∫∫
Qs

A(x, τ, u,Du) ·Dζ ζ ur−1dx dτ

−
∫∫

Qs

B(x, τ, u,Du)ur−1ζ2dx dτ

=
1

r
T1 + (r − 1)T2 + T3 + T4.

Since ζ is independent of t,

T1 =

∫
K(1+σ)ρ

ur(x, s)ζ2(x)dx −
∫
K(1+σ)ρ

ur(x, 0)ζ2(x)dx.

Next,

T2 ≥ Com

∫∫
Qs

ur+m−3|Du|2ζ2dx dτ − C2

∫∫
Qs

ur+m−1ζ2dx dτ

|T3| ≤ 2

∫∫
Qs

ur−1[C1mum−1|Du||Dζ|+ Cum|Dζ|]ζ dx dτ

|T4| ≤ Cm

∫∫
Qs

|Du|ur+m−2ζ2dx dτ + C2

∫∫
Qs

ur+m−1ζ2dx dτ.

Combining these estimates,∫
K(1+σ)ρ

ur(x, s)ζ2dx+ (r − 1)Com

∫∫
Qs

ur+m−3|Du|2ζ2dx dτ

≤ m

∫∫
Qs

ur+m−2|Du|ζ(2C1|Dζ|+ Cζ)dx dτ

+

∫∫
Qs

ur+m−1ζ(2C|Dζ| + rC2ζ)dx dτ

+

∫
K(1+σ)ρ

ur(x, 0)ζ2dx.

By Young’s inequality, and assuming that Cρ ≤ 1,
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m

∫∫
Qs

ur+m−2|Du|ζ(2C1|Dζ|+ Cζ)dx dτ

≤ (r − 1)Com

∫∫
Qs

ur+m−3|Du|2ζ2dx dτ

+
γ(r,m,Co, C1)

σ2ρ2

∫∫
Qs

ur+m−1dx dτ.

Therefore

sup
0≤s≤t

∫
Kρ

ur(x, s)dx ≤
∫
K(1+σ)ρ

ur(x, 0)dx+
γ

σ2ρ2

∫∫
Qs

ur+m−1dx dτ,

where γ = γ(N, r,m,Co, C1). Estimate∫∫
Qs

ur+m−1dx dτ ≤ γt
(

sup
0≤s≤t

∫
K(1+σ)ρ

ur(x, s)dx
) r+m−1

r

ρ
N(1−m)

r .

Hence

sup
0≤s≤t

∫
Kρ

ur(x, s)dx ≤
∫
K(1+σ)ρ

ur(x, 0)dx

+
γ

σ2

( tr

ρλr

) 1
r
(

sup
0≤s≤t

∫
K(1+σ)ρ

urdx
) r+m−1

r

.

Now fix R > 0 and consider the sequence of radii

ρn = R
n∑

i=1

2−i so that σn =
ρn+1 − ρn

ρn
≥ 2−n−2.

Setting

Yn = sup
0≤s≤t

∫
Kρn

ur(x, s)dx,

the previous estimates yield the recursive inequalities

Yn ≤
∫
K2R

ur(x, 0)dx+ γ2n
( tr

ρλr

) 1
r

Y
r+m−1

r
n+1 .

The proof is concluded by Lemma 5.2 of the Preliminaries.

Remark B.5.1 The proof shows that γ(r) → ∞ as r → 1 and that the
condition r > 1 cannot be relaxed to r ≥ 1.

Remark B.5.2 Theorems 17.1 and 20.1 of Chapter 6 follow combining
Proposition B.4.1 respectively with Propositions B.1.1 and B.5.1.
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B.6 A DeGiorgi-Type Lemma for Nonnegative
Subsolutions to Singular Porous Medium Type
Equations

For a cylinder (y, s) +Q−2ρ(θ) ⊂ ET denote by μ± and ω numbers satisfying

μ+ ≥ ess sup
[(y,s)+Q−

2ρ(θ)]

u, μ− ≤ ess inf
[(y,s)+Q−

2ρ(θ)]
u, ω = μ+ − μ−.

Denote by ξ and a fixed numbers in (0, 1).

Lemma B.6.1 Let u be a nonnegative, locally bounded, local, weak subsolu-
tion to the singular equations (5.1)–(5.2) of Chapter 3, for 0 < m < 1, in ET .
Assume that

ω ≥ 12
13μ+. (B.6.1)

There exists a positive number ν∗, depending on ω, θ, ξ, a, and the data
{m,N,Co, C1}, such that if∣∣[u ≥ μ+ − ξω] ∩ [(y, s) +Q−2ρ(θ)]

∣∣ ≤ ν∗|Q−2ρ(θ)|,
then either Cρ > ξ or

u ≤ μ+ − aξω a.e. in (y, s) +Q−ρ (θ).

Proof Assume (y, s) = (0, 0) and introduce the sequence of cubes {Kn} and
cylinders {Qn} as in (3.6) of Chapter 3 with p = 2, and a nonnegative, piece-
wise smooth cutoff function on Qn of the form ζ(x, t) = ζ1(x)ζ2(t) defined as
in (3.8) of Chapter 3 with p = 2. Introduce the sequence of truncating levels

kn = μ+ − ξnω with ξn = aξ +
1− a

2n
ξ,

and write down the energy estimates (B.2.2) over the cylinder Qn, for the
truncated function (u− kn)+. Taking also into account (B.6.1), this gives

sup
−θρ2

n<t≤0

∫
Kn

(u − kn)
2
+ζ

2(x, t)dx

+ Com

∫∫
Qn

um−1|D[(u − kn)+ζ]|2dx dτ

≤ γ
22n

ρ2
(ξω)2

∫∫
Qn

( ωm−1

(1− ξ)1−m
+

1

θ

)
χ[u>kn]dx dτ

+ γ
(C
ξ

)2
(ξω)2ωm−1

∫∫
Qn

χ[u>kn]dx dτ

≤ γ
22n

ρ2
(ξω)2

ωm−1

(1 − ξ)1−m

(
1 +

1

θωm−1

)
|[u > kn] ∩Qn|

+ γ
1

ρ2

(Cρ

ξ

)2
(ξω)2ωm−1

∣∣[u > kn] ∩Qn|.
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Therefore, if Cρ ≤ ξ,

sup
−θρ2

n<t≤0

∫
Kn

(u− kn)
2
+ζ

2(x, t)dx

+ Com

∫∫
Qn

um−1|D[(u − kn)+ζ]|2dx dτ

≤ γ
22n

ρ2
(ξω)2

ωm−1

(1− ξ)1−m

(
1 +

1

θωm−1

)∣∣[u > kn] ∩Qn|.

To estimate below the second integral on the left-hand side, take into account
that u ≤ μ+ and (B.6.1). This gives∫∫

Qn

um−1|D[(u− kn)+ζ]|2dx dτ

≥ (
13
12ω

)m−1
∫∫

Qn

|D[(u− kn)+ζ]|2dx dτ.

Setting

An = [u > kn] ∩Qn and Yn =
|An|
|Qn| ,

and combining these estimates gives

sup
−θρ2

n<t≤0

∫
Kn

(u− kn)
2
+ζ

2(x, t)dx

+ ωm−1

∫∫
Qn

|D[(u− kn)+ζ]|2dx dτ

≤ γ
22n

ρ2
(ξω)2

ωm−1

(1− ξ)1−m

(
1 +

1

θωm−1

)
|An|.

(B.6.2)

Apply Hölder’s inequality and the embedding Proposition 4.1 of the Prelimi-
naries, and recall that ζ = 1 on Qn+1, to get(1− a

2n+1

)2
(ξω)2|An+1| ≤

∫∫
Qn+1

(u− kn)
2
+dx dτ

≤
(∫∫

Qn

[(u− kn)+ζ]
2N+2

N dx dτ

) N
N+2

|An| 2
N+2

≤ γ
(∫∫

Qn

|D[(u − kn)+ζ]|2dx dτ
) N

N+2

×
(

sup
−θρ2

n<t≤0

∫
Kn

[(u− kn)+ζ]
2(x, t)dx

) 2
N+2 |An| 2

N+2

for a constant γ depending only on N . Combine this with (B.6.2) to get



240 9 Appendix B

|An+1| ≤ γ 24n

(1− a)2ρ2
ω

2(m−1)
N+2

(1− ξ)1−m

(
1 +

1

θωm−1

)
|An|1+ 2

N+2 .

In terms of Yn = |An|
|Qn| this can be rewritten as

Yn+1 ≤ γ24n

(1− a)2(1− ξ)1−m

(
1 + θωm−1

)
(
θωm−1

) N
N+2

Y
1+ 2

N+2
n .

By Lemma 5.1 of the Preliminaries, {Yn} → 0 as n→∞, provided

Yo =
|Ao|
|Qo| ≤

[
(1− a)2(1 − ξ)1−m

γ4N+2

]N+2
2

(
θωm−1

)N
2(

1 + θωm−1
)N+2

2

def
= ν∗.

When
θ = ν ω1−m, (B.6.3)

for some ν ∈ (0, 1), that is, when the relative length of the cylinders (y, s) +
Q±ρ (θ) is of the order of νω1−m, then the functional dependence of ν∗, on ν,
ξ, and a is

ν∗ = γ−1(1 − a)N+2(1− ξ)(1−m)N+2
2 ν

N
2 (B.6.4)

for a quantitative constant γ = γ(m,N,Co, C1) > 1, independent of ν, ξ, and
a.

B.7 A Logarithmic Estimate for Nonnegative
Subsolutions to Singular Porous Medium Type
Equations

Introduce the logarithmic function

ψ(u) = ln+
[ H

H − (u − k)+ + c

]
(B.7.1)

where
H = ess sup

(y,s)+Q−
ρ (θ)

(u− k)+, and 0 < c < min{1 , H}

and for s > 0
ln+ s = max{ln s, 0}.

In the cylinder (y, s) + Q−ρ (θ) take a nonnegative, piecewise smooth cutoff
function ζ independent of t.
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Proposition B.7.1 Let u be a nonnegative, locally bounded, local, weak sub-
solution to singular porous medium type equations (5.1)–(5.2) of Chapter 3,
for 0 < m < 1 in ET . There exists a constant γ, depending only on the data
{m,N,Co, C1}, such that for every cylinder

(y, s) +Q−ρ (θ) ⊂ ET

and for every level k ≥ 0,

sup
s−θρ2<t<s

∫
Kρ(y)

ψ2(u)(x, t)ζ2(x)dx

≤
∫
Kρ(y)

ψ2(u)(x, s− θρ2)ζ2(x)dx

+ γ

∫∫
(y,s)+Q−

ρ (θ)

um−1ψ(u)|Dζ
∣∣2dx dt (B.7.2)

+ γC2

∫∫
(y,s)+Q−

ρ (θ)

um−1ψ(u)ζ2dx dt

+
γC2

c2

(
1 + ln

H

c

) ∫∫
(y,s)+Q−

ρ (θ)

um+1χ[(u−k)+>0]ζ
2dx dt.

Analogous estimates hold for “forward” cylinders (y, s) +Q+
ρ (θ).

Proof Take (y, s) = (0, 0) and work within the cylinder Qt introduced in
(B.2.3). In the weak formulation of (5.1) of Chapter 3 take the testing function

ϕ =
∂

∂u

[
ψ2(u)

]
ζ2 = 2ψψ′ζ2.

By direct calculation[
ψ2(u)

]′′
= 2(1 + ψ)ψ′2 ∈ L∞loc(ET )

which implies that such a ϕ is an admissible testing function, modulo a Steklov
averaging process. Since ψ(u) vanishes on the set where (u− k)+ = 0,∫∫

Qt

uτ [ψ
2]′ζ2dx dτ =

∫
Kρ

ψ2(x, t)ζ2dx−
∫
Kρ

ψ2(x,−θρ2)ζ2dx.

The remaining terms are estimated by using the structure conditions (5.2) of
Chapter 3.



242 9 Appendix B∫∫
Qt

A(x, τ, u,Du)·Dϕdxdτ

≥ 2mCo

∫∫
Qt

(1 + ψ)ψ′2um−1|Du|2ζ2dx dτ

− 2C2

∫∫
Qt

(1 + ψ)ψ′2um+1ζ2dx dτ

− 4mC1

∫∫
Qt

um−1|Du|ψψ′ζ|Dζ|dx dτ

− 4C

∫∫
Qt

ψψ′umζ|Dζ|dx dτ.

From this, by repeated application of Young’s inequality∫∫
Qt

A(x, τ, u,Du)·Dϕdxdτ

≥ mCo

∫∫
Qt

(1 + ψ)ψ′2um−1|Du|2ζ2dx dτ

− γC2

∫∫
Qt

(1 + ψ)ψ′2um+1ζ2dx dτ

− γ

∫∫
Qt

ψum−1|Dζ|2dx dτ.

The forcing terms are estimated as

2

∫∫
Qt

|B(x, τ, u,Du)ψψ′ζ2|dx dτ

≤ 2mC

∫∫
Qt

um−1|Du|(1 + ψ)ψ′ζ2dx dτ

+ 2C2

∫∫
Qt

umψψ′ζ2dx dτ

≤ mCo

∫∫
Qt

(1 + ψ)ψ′2um−1|Du|2ζ2dx dτ

+ γC2

∫∫
Qt

um−1ψζ2dx dτ

+ γC2

∫∫
Qt

(1 + ψ)ψ′2um+1ζ2dx dτ.

By the definition of ψ(u), estimate

ψ ≤ ln
(H
c

)
, ψ′ ≤ 1

c
.

Collecting these estimates establishes the proposition.
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B.8 Hölder Continuity

Let u ∈ L∞(ET ), and denote by Γ the parabolic boundary of ET ,

Γ = ∂ET − Ē × {T }.

For compact set K ⊂ ET introduce the parabolic m-distance from K to Γ ,
intrinsic to u, by

m− dist(K;Γ )
def
= inf

(x,t)∈K
(y,s)∈Γ

(
|x− y|+ ‖u‖

m−1
2

∞,ET
|t− s| 12

)
.

Theorem B.8.1 Let u be a nonnegative, bounded, local, weak solution to the
singular porous medium type equations (5.1)–(5.2) of Chapter 3, for 0 < m <
1 in ET . Then u is locally Hölder continuous in ET , and there exist constants
γ > 1 and α ∈ (0, 1) that can be determined a priori only in terms of the data
{m,N,Co, C1} and C, such that for every compact set K ⊂ ET ,

|u(x1, t1)− u(x2, t2)| ≤ γ‖u‖∞,ET

( |x1 − x2|+ ‖u‖
m−1

2

∞,ET
|t1 − t2| 12

m− dist(K;Γ )

)α
for every pair of points (x1, t1), and (x2, t2) ∈ K.

B.8.1 Proof of Theorem B.8.1. Preliminaries

For a fixed (xo, to) ∈ ET and fixed numbers

δ ∈ (0, 1), b > 1, R, ω > 0,

construct the sequences

Ro = R, Rn =
R

bn
; ωo = ω, ωn+1 = δωn for n = 0, 1, 2, . . .

and the cylinders

Qn = KRn(xo)×
(
to − ω1−m

n R2
n, to

]
for n = 1, 2, . . . .

The function u is Hölder continuous at (xo, to) ∈ ET if the constants δ ∈ (0, 1)
and b > 1 can be determined, independent of u and (xo, to), such that

Qn+1 ⊂ Qn ⊂ Qo ⊂ ET and ess osc
Qn

u ≤ ωn (B.8.1)

for all n = 0, 1, . . . . Having fixed (xo, to) ∈ ET assume it coincides with the
origin of RN+1 and for R > 0 set

QRo = KRo × (−R2
o, 0], (B.8.2)
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where Ro is so small that QRo ⊂ ET . Set also

μ+
o = ess sup

QRo

u, μ−o = ess inf
QRo

u, ωo = μ+
o − μ−o = ess osc

QRo

u. (B.8.3)

Since u is locally bounded in ET , without loss of generality we may assume
that ωo ≤ 1 so that

Qo = KRo × (−ω1−m
o R2

o, 0] ⊂ QRo ⊂ ET (B.8.4)

and
ess osc

Qo

u ≤ ωo.

Thus (B.8.1) holds for n = 0. We will determine numbers b > 1 and δ ∈ (0, 1)
depending only on the set of data {m,N,Co, C1} and C, and independent of
u and (xo, to) for which (B.8.1) holds inductively for all n.

B.9 The Induction Argument. Two Alternatives

Assuming (B.8.1) holds for n, remove the index n by setting ωn = ω, and

2r = Rn, Qn = Q2r(θ) = K2r × (−θ4r2, 0], θ = ω1−m,

and
μ+
n = μ+ = ess sup

Q2r(θ)

u, μ−n = μ− = ess inf
Q2r(θ)

u.

Lemma B.9.1 There exists a number ν depending on the data {m,N,Co, C1},
such that if

|[u ≤ 1
2ω] ∩Qr(θ)| ≤ ν|Qr(θ)|, (B.9.1)

then either Cr > 1, or

u ≥ 1
4ω a.e. in Q 1

2 r
(θ). (B.9.2)

Proof This is the content of Lemma 10.1 of Chapter 3 applied for ξ = a = 1
2 .

The number ν is determined in (10.5) of Chapter 3, and because of the choice
of θ, it is determined a priori only in terms of the data {m,N,Co, C1}.

The proof unfolds along two alternatives. The first is that (B.9.1) holds,
thereby providing the lower bound (B.9.2) for u, away from the singularity.
The second is that (B.9.1) fails, whose consequences are examined in § B.10–
§ B.12.

Taking into account the definition of μ+ and ω, from here on we assume
that

1
2ω < μ+ − 1

4ω < 5
6ω. (B.9.3)

The left-hand inequality can be taken as holding in all cases. Indeed if it
did not, in any smaller cylinder contained in Q2r(θ) the oscillation would be
reduced by a factor 3

4 and there would be nothing to prove. The right-hand
inequality coincides with (B.6.1), which we assume. The case when it fails will
be examined later.
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Lemma B.9.2 Let the assumption (B.9.1) of Lemma B.9.1 be violated. There
exists a time level s, in the interval

−θr2 ≤ s ≤ − 1
2νθr

2 (B.9.4)

such that
|[u(·, s) < 1

2ω] ∩Kr| > 1
2ν|Kr|. (B.9.5)

This in turn implies

|[u(·, s) > μ+ − 1
4ω] ∩Kr| ≤ (1 − 1

2ν)|Kr|. (B.9.6)

Proof If (B.9.5) does not hold for any s in the range (B.9.4), then

|[u < 1
2ω] ∩Qr(θ)| =

∫ − 1
2νθr

2

−θr2
|[u·, s) < 1

2ω] ∩Kr|ds

+

∫ 0

− 1
2νθr

2

|[u·, s) < 1
2ω] ∩Kr|ds

≤ ν|Qr(θ)|.
This proves (B.9.5), and also (B.9.6), due to (B.9.3).

B.10 A Uniform Time Control on the Measure of the
Level Sets

The next lemma asserts that a property similar to (B.9.6) continues to hold
for all time levels from s up to 0.

Lemma B.10.1 There exists a positive integer n∗ depending only on the data
{m,N,Co, C1} and the number ν claimed by Lemma B.9.1, such that either

2n∗Cr > 1

or ∣∣[u(·, t) > μ+ − ω

2n∗
] ∩Kr

∣∣ < (
1− 1

4ν
2
)|Kr| (B.10.1)

for all times s < t < 0.

Proof Consider the logarithmic estimates (B.7.2), written over the cylinder
Kr × (s, 0), for the function (u− k)+ and for the level

k = μ+ − 1
4ω.

The number c in the definition (B.7.1) is taken as

c =
ω

2n+2
,
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where n is a positive number to be chosen. Thus we take

ψ(u) = ln+
{ H

H − [u− (μ+ − 1
4ω)

]
+
+ 1

2n+2ω

}
where

H = ess sup
Kr×(s,0)

[
u− (μ+ − 1

4ω)
]
+
.

The cutoff function x→ ζ(x) is taken so that

ζ = 1 on K(1−σ)r, for σ ∈ (0, 1), and |Dζ| ≤ (σr)−1.

With these choices, the inequalities (B.7.2) of Proposition B.7.1 yield∫
K(1−σ)r

ψ2(u)(x, t)dx ≤
∫
Kr

ψ2(u)(x, s)dx

+
γ

(σr)2

∫ 0

s

∫
Kr

um−1ψ(u)dx dτ

+ γ
(Cr)2

(σr)2

∫ 0

s

∫
Kr

um−1ψ(u)dx dτ

+ γC2
( ω

2n+2

)−2 [
1 + lnH

( ω

2n+2

)−1 ]
×
∫ 0

s

∫
Kr

um+1χ[(u−k)+>0]dx dτ

(B.10.2)

for all s < t < 0. Estimate

ψ ≤ n ln 2,
[
1 + lnH

( ω

2n+2

)−1 ]
≤ γn ln 2.

To estimate the first integral on the right-hand side of (B.10.2), observe that
ψ vanishes on the set [u < μ+− 1

4ω]. Therefore using (B.9.6) of Lemma B.9.2,∫
Kr

ψ2(u)(x, s)dx ≤ n2 ln2 2
(
1− 1

2ν
)|Kr|.

The remaining integrals are estimated as

γ

(σr)2

∫ 0

s

∫
Kr

um−1ψ dxdτ ≤ γn

(σr)2
ω1−mr2ωm−1|Kr| ≤ γn

σ2
|Kr|;

γC2

∫ 0

s

∫
Kr

um−1ψ dxdτ ≤ (Cr)2
γn

σ2
|Kr|;

γC2

(
2n+2

ω

)2 [
1 + lnH

(
2n+2

ω

)]∫ 0

s

∫
Kr

um+1χ[(u−k)+>0]dx dτ

≤ (2nCr)2
γn

σ2
|Kr|.
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Assume momentarily that n has been chosen, and stipulate that

2nC r < 1.

Then combining these estimates gives∫
K(1−σ)r

ψ2(u)(x, t)dx ≤ n2 ln2 2
(
1− 1

2ν
)|Kr|+ γn

σ2
|Kr| (B.10.3)

for all s < t < 0. The left-hand side of (B.10.3) is estimated below by inte-
grating over the smaller set[

u(·, t) > μ+ − 1
2n+2ω

] ∩K(1−σ)r.

On such a set, since ψ is a decreasing function of H , estimate below

ψ2 ≥ ln2
( ω

4
ω

2n+1

)
= (n− 1)2 ln2 2.

Carry this in (B.10.3) and divide through by (n− 1)2 ln2 2, to obtain∣∣[u(·, t) > μ+ − ω

2n+2
] ∩K(1−σ)r

∣∣ ≤ ( n

n− 1

)2(
1− 1

2ν
)|Kr|+ γ

nσ2
|Kr|

for all s < t < 0. On the other hand,∣∣[u(·, t) > μ+ − ω

2n+2

] ∩Kr

∣∣
≤ ∣∣[u(·, t) > μ+ − ω

2n+2

] ∩K(1−σ)r

∣∣+ |Kr −K(1−σ)r|

≤ ∣∣[u(·, t) > μ+ − ω

2n+2

] ∩K(1−σ)r

∣∣+Nσ|Kr|.

Therefore for all s < t < 0,∣∣[u(·, t) > μ+ − ω

2n+2

] ∩Kr

∣∣ ≤ [( n

n− 1

)2(
1− 1

2ν
)
+

γ

nσ2
+Nσ

]
|Kr|.

To prove the lemma choose σ so small, and then n so large, as to satisfy
(B.10.1) with n∗ = n+ 2.

Remark B.10.1 Since the number ν is independent of ω, r, and s, also n∗
is independent of all these parameters.

Corollary B.10.1 Let ν and n∗ be the numbers determined by Lemmas B.9.1
and B.10.1, respectively, depending only on the data {m,N,Co, C1}. Then
either 2n∗Cr > 1, or∣∣[u(·, t) > μ+ − ω

2j
] ∩Kr

∣∣ < (
1− 1

4ν
2
)|Kr| (B.10.4)

for all j ≥ n∗, and for all times

− 1
2νω

1−mr2 < t < 0. (B.10.5)
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B.11 The Second Alternative Continued

Motivated by the time range (B.10.5), introduce the cylinder

Qr(θ∗) = Kr × (−θ∗r2, 0], θ∗ = 1
2νω

1−m. (B.11.1)

Lemma B.11.1 For every ν∗ ∈ (0, 1) there exists a positive integer q∗, de-
pending only on the data {m,N,Co, C1} and ν∗, such that either

2n∗+q∗Cr > 1

or ∣∣[u > μ+ − ω

2n∗+q∗

] ∩Qr(θ∗)
∣∣ < ν∗|Qr(θ∗)|. (B.11.2)

Proof Set Qr(θ∗) = Q, and write down the energy estimates (B.2.2) for the
truncated functions

(u− kj)+ where kj = μ+ − ω

2j
for j = n∗, . . . , n∗ + q∗,

over the pair of cylinders

Q and Q′ = K2r × (−νω1−mr2, 0].

The cutoff function ζ is taken to be one on Q, vanishing on the parabolic
boundary of Q′, and such that

|Dζ| ≤ 1

r
and 0 ≤ ζt ≤ 2

νθr2
, θ = ω1−m.

With these stipulations, and taking also into account (B.9.3), the energy es-
timates (B.2.2) take the form

ωm−1

∫∫
Q

|D(u − kj)+|2dx dt ≤ γ

ν

ωm−1

r2
[
1 + (2n∗+q∗Cr)2

]( ω

2j

)2
|Q|

for a constant γ depending only on the data {m,N,Co, C1}. Therefore if
2n∗+q∗Cr < 1, then∫∫

Q

|D(u − kj)+|2dx dt ≤ γ

νr2

( ω

2j

)2
|Q|. (B.11.3)

Next, apply the discrete isoperimetric inequality (2.1) of Lemma 2.2 of Chap-
ter 3 to the function u(·, t), for t in the range (B.10.5), over the cube Kr, for
the levels

k = kj < � = kj+1 so that (�− k) =
ω

2j+1
.

Taking also into account (B.10.4) this gives
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ω

2j+1
|[u(·, t) > kj+1] ∩Kr|

≤ γrN+1

|[u(·, t) < kj ] ∩Kr|
∫
[kj<u(·,t)<kj+1]∩Kr

|Du|dx

≤ γ

ν2
r
( ∫

[kj<u(·,t)<kj+1]∩Kr

|Du(·, t)|2dx
) 1

2

× ∣∣([u(·, t) > kj ]− [u(·, t) > kj+1]
) ∩Kr

∣∣ 12 .
Set

Aj = [u > kj ] ∩Q =

∫ 0

− 1
2 νθr

2

∣∣[u(·, t) > kj
] ∩Kr

∣∣dt
and integrate in dt over the time interval (B.10.5). This gives

ω

2j
|Aj+1| ≤ γ

ν2
r
( ∫∫

Q

|D(u− kj)+|2dx dt
) 1

2 (|Aj | − |Aj+1|
) 1

2 .

Square both sides of this inequality and estimate above, the term containing
D(u− kj)+ by the energy inequality (B.11.3), to obtain

|Aj+1|2 ≤ γ

ν5
|Q|(|Aj | − |Aj+1|

)
.

Add these recursive inequalities for

j = n∗ + 1, n∗ + 2, . . . , n∗ + q∗ − 1

where q∗ is to be chosen. Majorizing the right-hand side with the correspond-
ing telescopic series gives

(q∗ − 2)|An∗+q∗ |2 ≤
n∗+q∗−1∑
j=n∗+1

|Aj+1|2 ≤ γ

ν5
|Q|2.

From this

|An∗+q∗ | ≤
1√

q∗ − 2

√
γ

ν5
|Q|.

The number ν∗ being fixed choose q∗ from

1√
q∗ − 2

√
γ

ν5
= ν∗, (B.11.4)

in order to satisfy the thesis.

To proceed, apply Lemma B.6.1 to the cylinder Qr(θ∗), with θ∗ given in
(B.11.1) and for the choices

r = 2ρ, ξ =
1

2n∗+q∗
, a =

1

2
.
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The conclusion is that either

2n∗+q∗Cr > 1

or
u ≤ μ+ − ω

2n∗+q∗+1
in Q 1

2 r
(θ∗) (B.11.5)

provided ν∗ is chosen from (B.6.3)–(B.6.4) and then, in turn, q∗ is chosen from
(B.11.4).

B.12 The Induction Argument Concluded-(i)

The numbers ν, ν∗, n∗, and q∗ being determined by the previous procedure,
we assume that the radius Ro in (B.8.2) that starts the sequence of the Rn is
so small that

2n∗+q∗CRo < 1

so that this inequality continues to hold for all R ≤ Ro. If the assumption
(B.9.1) is violated, then by the arguments of the second alternative, (B.11.5)
holds true, which implies

ess sup
Q 1

2
r
(θ∗)

u ≤ μ+ − ω

2n∗+q∗+1

provided (B.9.3) is in force. Since the left-hand inequality in (B.9.3) can be
always assumed, the right-hand inequality holds true if

μ− < 1
12ω. (B.12.1)

This in turn coincides with (B.6.1) and guarantees that the arguments of the
second alternative are in force. Assuming (B.12.1) for the moment, subtracting

ess inf
Q 1

2
r
(θ∗)

u

from the left-hand side, and μ− from the right-hand side, of the previous
oscillation inequality, gives

ess osc
Q 1

2
r
(θ∗)

u ≤
(
1− 1

2n∗+q∗+1

)
ω.

Recalling the definition of θ∗ in (B.11.1), that 2r = Rn, and that ω = ωn, this
implies

ωn+1 = ess osc
Qn+1

u ≤ δωn where δ = 1− 1

2n∗+q∗+1
(B.12.2)

and



B.13 The Induction Argument Concluded-(ii) 251

Qn+1 = KRn+1 × (−ω1−m
n+1 R

2
n+1, 0]

for Rn+1 =
1

b
Rn with b =

√
8

ν
.

(B.12.3)

Assume next that the assumptions (B.9.1) of Lemma B.9.1 are verified, and
that (B.12.1) continues to hold. Then (B.9.2) implies

− ess inf
Q 1

2
r
(θ)

u < − 1
4ω.

Adding
ess sup
Q 1

2
r
(θ)

u

on the left-hand side and μ+ on the right-hand side gives

ess osc
Q 1

2
r
(θ)

u ≤ μ+ − 1
4ω ≤ 5

6ω.

Thus recalling the definition (B.12.3) of Qn+1, one finds that (B.12.2) con-
tinues to hold also in this case. Thus the induction argument is completed
provided μ− satisfies the restriction (B.12.1).

B.13 The Induction Argument Concluded-(ii)

If (B.12.1) is violated for some index n, then

μ−n ≥ 1
12ωn, and μ+

n > 13
12ωn. (B.13.1)

The first of these implies that u is bounded below in Qn and therefore the sin-
gular porous medium type equations (5.1)–(5.2) of Chapter 3 are nonsingular
in Qn. Thus u is Hölder continuous in Qn by classical theory ([101]).

To make this quantitative, assume first that (B.13.1) occurs for n = 0.
Then with μ±o and ωo defined by (B.8.3), modify the construction of Qo in
(B.8.4) into

QRo(θ) = KRo × (−θR2
o, 0] where θ = μ+(1−m)

o

since without loss of generality we may assume μ+
o ≤ 1. Introduce the change

of time variable and unknown function

τ = μ+(m−1)
o t and v(·, τ) = u(·, t)

μ+
o

. (B.13.2)

This transforms QRo(θ) into

QRo = KRo × (−R2
o, 0]
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and transforms the equations into

vτ − div Ã(x, τ, v,Dv) = B̃(x, τ, v,Dv) weakly in QRo

where the functions Ã and B̃ satisfy the structure conditions⎧⎨
⎩

Ã(x, τ, v,Dv) ·Dv ≥ Com|Dv|2 − C2

|Ã(x, τ, v,Dv)| ≤ 131−mC1m|Dv|+ C

|B̃(x, τ, v,Dv)| ≤ 131−mCm|Dv|+ C2

a.e. in ET

for the same constants m > 0, Co, C1, and C as in the structure conditions
(5.2) of Chapter 3. Therefore the equation is nonsingular in QRo and by
classical theory, there exist δo ∈ (0, 1) that can be determined a priori only
in terms of the data {m,N,Co, C1} and independent of Ro and μ+

o , and a
sequence of radii Rn = 4−nRo such that either

Cμ+
o Rn > 1

or
ess osc
QRn+1

v ≤ δo ess osc
QRn

v.

Returning to the function u and the cylinder QRo , this establishes the induc-
tion argument for the sequence of cylinders as in (B.8.1) for such a sequence
{Rn}, since ωn ≤ μo.

If (B.13.1) holds for some n > 0, then it is violated for the index n − 1,
and hence

ωn = δωn−1 > 12
13δμ

+
n−1 ≥ 12

13δμ
+
n .

Introduce then the cylinder

Qn ⊃ Q̃n = Kn × (−θnR2
n, 0] where θn = 12

13δμ
+(1−m)
n .

Redefining μ±n for such a cylinder either (B.13.1) fails or it does hold true.
If it fails, the induction argument is carried as in the previous sections. If
it continues to hold true, then introduce the change of variables similar to
(B.13.2) to transform the equation into a nonsingular one, to which classical
methods can be applied.

B.14 Remarks and Bibliographical Notes

The Harnack-type inequality (B.1.1) in the topology of L1
loc, was first estab-

lished in [84], in the context of nonnegative solutions to the Cauchy problem
for the prototype porous medium equation (5.3) of Chapter 3. The proof pre-
sented in § B.1, in the generality of the quasilinear equations (5.1)–(5.2) for
0 < m < 1, is new. The approach is significantly different from the one in
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[84], and that for the analogous result of § A.1 for the singular p-Laplacian
equations.

The Lr
loc–L

∞
loc estimates of § B.4, while essentially known as analogues

of the singular p-Laplacian equation ([41], Chapter IV), were not explicitly
present in the literature (see [151] for the case of homogeneous doubly nonlin-
ear singular equations). The one we present in § B.4 is the first complete formal
proof, in the context of the singular equations (5.1) with the full quasilinear
structure (5.2) of Chapter 3.

Analogous comments apply to the Lr
loc estimates backward in time of § B.5.

While essentially known they have not appeared formally in the literature, and
the one we present is the first formal proof in the quasilinear context.

The proof of the Hölder continuity of nonnegative, locally bounded, local,
weak solutions to the singular porous medium type equations (5.1)–(5.2) of
Chapter 3, follows a modified version of the arguments of [31] reported in [41]
Chapter IV. While used in several contexts ([59, 60]) a formal, independent
proof does not appear in the literature. The proof of § B.6–§ B.13 fills this
gap.
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Appendix C

C.1 More General Structures

The theory developed in the previous chapters extends to equations (1.1) of
Chapter 3, with structure conditions more general than (1.2). For example,
these could be replaced by⎧⎨

⎩
A(x, t, u,Du) ·Du ≥ Co|Du|p − Cpup − C̃p

|A(x, t, u,Du)| ≤ C1|Du|p−1 + Cp−1up−1 + C̃p−1

|B(x, t, u,Du)| ≤ C|Du|p−1 + Cpup−1 + CC̃p−1

a.e. in ET

where p > 1, Co and C1 are given positive constants, and C and C̃ are given
nonnegative constants. With these conditions, all results continue to hold
except that the alternatives in the statements of the main theorems take a
new aspect, namely,

. . . either Cρ > 1 and C̃ρ > u(xo, to)

or the main result holds true.

The proof is almost identical except for the indicated alternative changes.
More significant are generalizations to equations where the constant C in

the structure conditions (1.2) of Chapter 3 is replaced by suitable integrable
functions. Specifically consider parabolic equations in divergence form of the
type

ut − divA(x, t, u,Du) = B(x, t, u,Du) weakly in ET (C.1.1)

where the functions A and B are measurable and satisfy⎧⎨
⎩

A(x, t, u,Du) ·Du ≥ Co|Du|p − Cpϕo(x, t)
|A(x, t, u,Du)| ≤ C1|Du|p−1 + Cp−1ϕ1(x, t)
|B(x, t, u,Du)| ≤ C|Du|p−1 + Cpϕ2(x, t)

a.e. in ET (C.1.2)

255E. DiBenedetto et al., Harnack’s Inequality for Degenerate and Singular Parabolic Equations,
Springer Monographs in Mathematics, DOI 10.1007/978-1-4614-1584-8_10,  
© Springer Science+Business Media, LLC 2012 
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where p > 1, and Co and C1 are positive constants, and C is a nonnegative
constant. The nonnegative functions ϕi for i = 0, 1, 2 are defined in ET and
satisfy

ϕo, ϕ
p

p−1

1 , ϕ
p

p−1

2 ∈ Lq(ET ), (C.1.3)

where
1

q
= (1− κo)

p

N + p
, κo ∈ (0, 1]. (C.1.4)

Notice that κo can be equal to one. In such a case the functions ϕi all belong to
L∞(ET ) and we are back to the framework studied in the previous chapters.

The notion of weak solution is the same as in § 1 of Chapter 3. The
statement that a constant γ = γ(data) depends only on the data, means that
it can be determined a priori only in terms of{

N, p, κo, Co, C1, ‖ϕo, ϕ
p

p−1

1 , ϕ
p

p−1

2 ‖q,ET

}
. (C.1.5)

The constant C appears only in the alternatives, but plays no role in deter-
mining the value of the various constants γ.

C.2 Energy Estimates for (u− k)± on Cylinders
(y, s) + Q±

ρ (θ) ⊂ ET

The notation is the same as in § 2 of Chapter 3.

Proposition C.2.1 Let u be a local, weak sub(super)-solution to (C.1.1)–
(C.1.4) in ET . There exists a positive constant γ = γ(data), such that for
every cylinder

(y, s) +Q−ρ (θ) ⊂ ET ,

every k ∈ R, and every nonnegative, piecewise smooth function ζ vanishing
on ∂Kρ(y)

ess sup
s−θρp<t<s

∫
Kρ(y)

(u − k)2±ζ
p(x, t)dx

−
∫
Kρ(y)

(u− k)2±ζ
p(x, s− θρp)dx

+ Co

∫∫
(y,s)+Q−

ρ (θ)

|D(u− k)±ζ|pdx dτ

≤ γ

∫∫
(y,s)+Q−

ρ (θ)

[
(u− k)p±|Dζ|p + (u− k)2±|ζτ |

]
dx dτ

+ γCp

∫∫
(y,s)+Q−

ρ (θ)

(u− k)p±ζ
pdx dτ

+ γCp
( ∫ s

s−θρp

|A±k,ρ(τ)|dτ
)N(1+κ)

N+p

(C.2.1)
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where Co and C are the constants appearing in the structure conditions
(C.1.2),

κ =
p

N
κo,

and
A±k,ρ(t) = [(u(·, t)− k)± > 0] ∩Kρ.

Analogous energy estimates hold for “forward” cylinders (y, s)+Q+
ρ (θ) ⊂ ET .

The proof is a straightforward generalization of the one given for Proposi-
tion 2.1 of Chapter 3.

C.3 DeGiorgi-Type Lemmas

Local, weak sub(super)-solutions to (C.1.1)–(C.1.3) in ET are locally bounded
above(below) in ET ([41], Chapter V). For a fixed cylinder

(y, s) +Q−2ρ(θ) ⊂ ET

denote by μ± and ω, nonnegative numbers such that

μ+ ≥ ess sup
(y,s)+Q−

2ρ(θ)

u, μ− ≤ ess inf
(y,s)+Q−

2ρ(θ)
u, ω ≥ μ+ − μ−.

Denote by ξ ∈ (0, 1] and a ∈ (0, 1) fixed numbers.

Lemma C.3.1 Let u be a locally bounded, local, weak subsolution to (C.1.1)–
(C.1.4) in ET . There exists a number ν+ depending on the data in (C.1.5),
and on the parameters θ, ξ, ω, a, such that if∣∣[u ≥ μ+ − ξω] ∩ (y, s) +Q−2ρ(θ)

∣∣ ≤ ν+|Q−2ρ(θ)|,

then either

C > min

{
1

ρ
,
(ξω)

N+p−(p−2)(1−κo)
N+p

ρκo

}
(C.3.1)

or
u ≤ μ+ − aξω a.e. in (y, s) +Q−ρ (θ).

Likewise, if u is a locally bounded, local, weak supersolution to (C.1.1)–(C.1.4)
in ET , there exists a constant ν− ∈ (0, 1) dependent on the same data and
parameters such that if∣∣[u ≤ μ− + ξω] ∩ (y, s) +Q−2ρ(θ)

∣∣ ≤ ν−|Q−2ρ(θ)|,

then either (C.3.1) holds true, or

u ≥ μ− + aξω a.e. in (y, s) +Q−ρ (θ).
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The constants ν± are independent of C, and the latter enters into the state-
ment only via the alternative (C.3.1). Their functional dependence on the
indicated parameters can be explicitly calculated as

ν± =
γ−

N
pκo b−(

N
pκo

)2(1 − a)
N+2
κo

(ξω)2−p

θ[
1 +

( θ

(ξω)2−p

) p(1−κo)
N ·

(
1 +

(ξω)2−p

θ

)N+p
N
] N

pκo

.

When κo = 1, this coincides with the same form as (3.12) of Chapter 3.

C.3.1 A Variant of DeGiorgi-Type Lemma, Involving “Initial
Data”

Assume now that some information is available on the “initial data” relative
to the cylinder (y, s) +Q+

2ρ(θ), say for example

u(x, s) ≥ ξM for a.e. x ∈ K2ρ(y) (C.3.2)

for some M > 0 and ξ ∈ (0, 1]. Then

Lemma C.3.2 Let u be a nonnegative, local, weak supersolution to (C.1.1)–
(C.1.4) in ET . Let M and ξ be positive numbers such that (C.3.2) holds.
There exists a constant νo depending only on the data in (C.1.5) and a, and
independent of ξ and M , such that if∣∣[u ≤ μ− + ξω] ∩ (y, s) +Q+

2ρ(θ)
∣∣

|Q+
2ρ(θ)|

≤ νo

(ξM)p−2θ
[
1 + [(ξM)p−2θ]

p(1−κo)
N

] N
pκo

,

then either

C > min

{
1

ρ
,
(ξM)

N+p−(p−2)(1−κo)
N+p

ρκo

}
or

u ≥ aξM a.e. in Kρ(y)× (s, s+ θ(2ρ)p].

The proof of these two lemmas is analogous to Lemmas 3.1 and 4.1 of Chap-
ter 3. In those proofs use is made of the iteration Lemma 5.1 of the Prelimi-
naries. In the present context, because of the last term in the energy estimates
(C.2.1), this lemma has to be generalized into the following.

C.3.2 A Technical Lemma

Lemma C.3.3 Let {Yn} and {Zn} be sequences of positive numbers, satisfy-
ing the recursive inequalities
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Yn+1 ≤ Cbn(Y 1+α
n + Z1+κ

n Y α
n )

Zn+1 ≤ Cbn(Yn + Z1+κ
n )

(C.3.3)

where C, b > 1 and κ, α > 0 are given numbers. If

Yo + Z1+κ
o ≤ (2C)−

1+κ
σ b−

1+κ

σ2 where σ = min{κ , α},

then {Yn} and {Zn} tend to zero as n→∞.

Proof Set Mn = Yn + Z1+κ
n and rewrite the second of (C.3.3) as

Z1+κ
n+1 ≤ C1+κb(1+κ)nM1+κ

n . (C.3.4)

Consider the term in braces in the first of (C.3.3). If Z1+κ
n ≤ Yn, such a term

is majorized by 2M1+α
n . If Z1+κ

n ≥ Yn, then the same term can be majorized
by

Y 1+α
n + (Z1+κ

n )1+α ≤M1+α
n .

Combining this with (C.3.4), we deduce that in either case

Mn+1 ≤ 2C1+κb(1+κ)nM1+min{κ , α}
n .

The proof is concluded by induction.

C.4 Expansion of Positivity for Nonnegative Solutions to
(C.1.1)–(C.1.4)

In this more general context, Lemma 1.1 of Chapter 4 becomes:

Lemma C.4.1 Assume that for some (y, s) ∈ ET and some ρ > 0∣∣[u(·, s) ≥M ] ∩Kρ(y)
∣∣ ≥ α

∣∣Kρ(y)
∣∣ (C.4.1)

for some M > 0 and some α ∈ (0, 1). There exist δ and ε in (0, 1), depending
only on the data in (C.1.5), and α, and independent of M , such that either

C > min

{
1

ρ
,
M1− (p−2)(1−κo )

N+p

ρκo

}
or

|[u(·, t) > εM ] ∩Kρ(y)| ≥ 1
2α|Kρ(y)| for all t ∈

(
s, s+

δρp

Mp−2

]
.

This is the starting point for the proof of the expansion of positivity. Working
as in Chapter 4, with the obvious modifications, we have the corresponding
statements, both for p > 2 and for 1 < p < 2.
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Assume first that u is a nonnegative, local, weak supersolution to (C.1.1)–
(C.1.4) in ET , for p > 2. For (y, s) ∈ ET , and some given positive number M ,
consider the cylinder

K8ρ(y)×
(
s, s+

bp−2

(ηM)p−2
δρp

]
,

where δ, η, b are the constants given by Proposition C.4.1, and ρ > 0 is so
small that such a cylinder is included in ET .

Proposition C.4.1 Assume that (C.4.1) holds for some M > 0 and some
α ∈ (0, 1). There exist constants η and δ in (0, 1) and γ, b > 1 depending only
on the data in (C.1.5) and α, such that either

γC > min

{
1

ρ
,

M

ρκo+
(1−κo)p

(N+p)(p−2)

,
M1− (p−2)(1−κo )

N+p

ρκo

}
,

or
u(·, t) ≥ ηM a.e. in K2ρ(y)

for all times

s+
bp−2

(ηM)p−2
1
2δρ

p ≤ t ≤ s+
bp−2

(ηM)p−2
δρp.

Now let u be a nonnegative, local, weak supersolution to (C.1.1)–(C.1.4)
with 1 < p < 2, and let cylinder

K16ρ(y)× (s, s+ δM2−pρp]

be contained in ET .

Proposition C.4.2 Assume that (C.4.1) holds for some M > 0 and some
α ∈ (0, 1). There exist constants η, δ, and ε in (0, 1), and γ > 1 depending
only on the data in (C.1.5) and α, such that either

γC > min

{
1

ρ
,
M

ρ
,
M1− (p−2)(1−κo)

N+p

ρκo

}
,

or
u(·, t) ≥ ηM a.e. in K2ρ(y)

for all times
s+ (1− ε)δM2−pρp ≤ t ≤ s+ δM2−pρp.

When κo = 1 these statements coincide with the analogous ones in Chapter 4.
Relying on these propositions, the Harnack estimates of Chapters 5 and 6 can
be extended to nonnegative solutions to (C.1.1)–(C.1.4), both in the degener-
ate p > 2, and in the singular 1 < p < 2, range. The only significant difference
is in the alternatives, where one needs to take into account the presence of
the parameter κo ∈ (0, 1].
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C.5 Equations of Porous Medium Type

Consider quasilinear evolution equations of the type

ut − divA(x, t, u,Du) = B(x, t, u,Du) weakly in ET . (C.5.1)

The functions A : ET ×R
N+1 → R

N and B : ET ×R
N+1 → R are measurable

and satisfy⎧⎨
⎩

A(x, t, u,Du) ·Du ≥ mCo|u|m−1|Du|2 − C2|u|m+1ϕo(x, t)
|A(x, t, u,Du)| ≤ mC1|u|m−1|Du|+ C|u|mϕ1(x, t)
|B(x, t, u,Du)| ≤ mC|u|m−1|Du|+ C2|u|mϕ2(x, t)

(C.5.2)

for m > 0 and a.e. (x, t) ∈ ET . Here Co and C1 are positive constants, and
C is a nonnegative constant. The nonnegative functions ϕi, i = 0, 1, 2, are
defined in ET and satisfy

ϕo, ϕ2
1, ϕ2

2 ∈ Lq(ET )

where
1

q
= (1− κo)

2

N + 2
, κo ∈ (0, 1]. (C.5.3)

Notice that κo can be equal to one. In such a case the functions ϕi all belong to
L∞(ET ) and we are back to the framework studied in the previous chapters.

The notion of weak solution is the same one, as discussed in § 5 of Chap-
ter 3. In the following the statement that a constant γ = γ(data) depends
only on the data, means that it can be determined a priori only in terms of{

N,m, κo, Co, C1, ‖ϕo, ϕ
2
1, ϕ

2
2‖q,ET .

}
(C.5.4)

The constant C appears only in the alternatives, but plays no role in deter-
mining the value of the various constants γ.

C.6 Energy Estimates for (u− k)± on Cylinders
(y, s) + Q±

ρ (θ) ⊂ ET

The notation is the same as in § 2 of Chapter 3. The next two propositions
discriminate between m > 1 and 0 < m < 1.

Proposition C.6.1 Let u be a local, weak sub(super)-solution to (C.5.1)–
(C.5.3) in ET with m > 1. There exists a positive constant γ = γ(data), such
that for every cylinder

(y, s) +Q−ρ (θ) ⊂ ET ,

every k ∈ R, and every nonnegative, piecewise smooth function ζ vanishing
on ∂Kρ(y)
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ess sup
s−θρ2<t<s

∫
Kρ(y)

(u− k)2±ζ
2(x, t)dx

−
∫
Kρ(y)

(u− k)2±ζ
2(x, s− θρ2)dx

+mCo

∫∫
(y,s)+Q−

ρ (θ)

|u|m−1|D(u− k)±ζ|2dx dτ

≤ γ

∫∫
(y,s)+Q−

ρ (θ)

[|u|m−1(u − k)2±|Dζ|2 + (u− k)2±|ζτ |
]
dx dτ

+ γC2

∫∫
(y,s)+Q−

ρ (θ)

|u|m−1(u− k)2±ζ
2dx dτ

+ γC2

∫∫
(y,s)+Q−

ρ (θ)

|u|m+1[ϕo + ϕ2
1 + ϕ2

2]χ[(u−k)±>0]ζ
2dx dτ

where Co and C are the constants appearing in the structure conditions
(C.5.1). Analogous energy estimates hold for “forward” cylinders (y, s) +
Q+

ρ (θ) ⊂ ET .

Proposition C.6.2 Let u be a nonnegative, local, weak supersolution to
(C.5.1)–(C.5.3) in ET with 0 < m < 1. There exists a positive constant
γ = γ(data), such that for every cylinder

(y, s) +Q−ρ (θ) ⊂ ET ,

every k > 0, and every nonnegative, piecewise smooth function ζ vanishing
on ∂Kρ(y),

ess sup
s−θρ2<t<s

∫
Kρ(y)

(u − k)2−ζ
2(x, t)dx

− γk

∫
Kρ(y)

(u− k)−ζ2(x, s− θρ2)dx

+ Cok
m−1

∫∫
(y,s)+Q−

ρ (θ)

|D(u− k)−ζ|2dx dτ

≤ γk2
∫∫

(y,s)+Q−
ρ (θ)

χ[(u−k)−>0]ζ|ζτ |dx dτ

+ γkm+1

∫∫
(y,s)+Q−

ρ (θ)

[C2ζ2 + |Dζ|2]χ[(u−k)−>0]dx dτ

+ γC2km+1
[ ∫ s

s−θρ2

|A−k,ρ(τ)|dτ
]N(1+κ)

N+2

where Co and C are the constants appearing in the structure conditions
(C.5.2),

κ =
2

N
κo,
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and
A−k,ρ(t) = [(u(·, t)− k)− > 0] ∩Kρ.

Analogous energy estimates hold for “forward” cylinders (y, s)+Q+
ρ (θ) ⊂ ET .

The proofs are a straightforward adaptation of those given for Propositions 6.1
and 9.1 of Chapter 3.

C.7 DeGiorgi-Type Lemmas

Local, weak sub(super)-solutions to (C.5.1)–(C.5.3) in ET are locally bounded
above(below) in ET ([7]). For a fixed cylinder

(y, s) +Q−2ρ(θ) ⊂ ET

denote by μ± and ω, nonnegative numbers such that

μ+ ≥ ess sup
(y,s)+Q−

2ρ(θ)

u, μ− ≤ ess inf
(y,s)+Q−

2ρ(θ)
u, ω = μ+ − μ−.

Since the degeneracy or singularity occurs at u = 0, we will assume at the
outset that

μ− = ess inf
(y,s)+Q−

2ρ(θ)
u = 0 so that ω = μ+.

Denote by ξ ∈ (0, 1] and a ∈ (0, 1) fixed numbers.

Lemma C.7.1 Let u be a nonnegative, locally bounded, local, weak subsolu-
tion to (C.5.1)–(C.5.3) in ET for m > 1. There exists a number ν+ depending
on the data in (C.5.4), and the parameters θ, ξ, ω, a, such that if∣∣[u ≥ μ+ − ξω] ∩ [(y, s) +Q−2ρ(θ)]

∣∣ ≤ ν+|Q−2ρ(θ)|,
then either

C > min

{
1

ρ
,
(ξω)

(1−m)(1−κo )
N+2

ρκo

}
(C.7.1)

or
u ≤ μ+ − aξω a.e. in (y, s) +Q−ρ (θ).

Lemma C.7.2 Let u be a nonnegative, locally bounded, local, weak supersolu-
tion to (C.5.1)–(C.5.3) in ET , for m > 0. There exists a number ν− depending
on the data in (C.5.4), and the parameters θ, ξ, ω, a, such that if∣∣[u ≤ ξω] ∩ (y, s) +Q−2ρ(θ)

∣∣ ≤ ν−|Q−2ρ(θ)|,
then either (C.7.1) holds, or

u ≥ aξω a.e. in
[
(y, s) +Q−ρ (θ)

]
.
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The constants ν± are independent of C, and the latter enters into the state-
ment only via the alternative (C.7.1). The functional dependence of ν± on
these parameters can be explicitly calculated by setting

ν∗ =
2−(N+2

κo
)2
[ (1− a)2

γ2

]N+2
2κo

[ (ξω)1−m

θ

] 1
κo

[
1 +

1

θ(ξω)m−1
+
( 1

θ(ξω)m−1

) 2(1−κo)
N+2

]N+2
2κo

.

Then

ν+ =
[ ξ2(N+m+1)

(1− ξ)m−1

]N+2
2κo

ν∗, and ν− = Λ(a)
N+2
2κo ν∗,

where

Λ(a) =

{
1 if m ∈ (0, 1)(
1
2a
)1−m

if m > 1.

When κo = 1 these reduce to the functional dependences of § 7 of Chapter 3.

C.7.1 A Variant of DeGiorgi-Type Lemma, Involving “Initial
Data”

Assume now in addition that some information is available on the “initial
data” relative to the cylinder (y, s) +Q+

2ρ(θ), say for example

u(x, s) ≥ ξM for a.e. x ∈ K2ρ(y) (C.7.2)

for some M > 0 and ξ ∈ (0, 1].

Lemma C.7.3 Let u be a nonnegative, locally bounded, local, weak superso-
lution to (C.5.1)–(C.5.3) in ET , for m > 0. Let M and ξ be positive numbers
such that (C.7.2) holds. There exists a constant νo ∈ (0, 1) depending only on
the data in (C.5.4) and a, and independent of ξ and M , such that if∣∣[u ≤ μ− + ξω] ∩ (y, s) +Q+

2ρ(θ)
∣∣

|Q+
2ρ(θ)|

≤ νo

(θ(ξM)m−1)
1
κo

[
1 +

( 1

(ξM)m−1θ

) 2(1−κo)
N+2

]N+2
2κo

,

then either (C.7.1) holds, or

u ≥ aξM a.e. in Kρ(y)× (s, s+ θ(2ρ)p].
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C.8 Expansion of Positivity for Solutions to
(C.5.1)–(C.5.3)

In this more general context, Lemma 7.1 of Chapter 4 becomes:

Lemma C.8.1 Assume that for some (y, s) ∈ ET and some ρ > 0∣∣[u(·, s) ≥M ] ∩Kρ(y)
∣∣ ≥ α

∣∣Kρ(y)
∣∣ (C.8.1)

for some M > 0 and some α ∈ (0, 1). There exist δ and ε in (0, 1), depending
only on the data in (C.5.4) and α, and independent of M , such that either

C > min

{
1

ρ
,
M

(m−1)(κo−1)
N+2

ρκo

}
, (C.8.2)

or

|[u(·, t) > εM ] ∩Kρ(y)| ≥ 1
2α|Kρ(y)| for all t ∈

(
s, s+

δρ2

Mm−1

]
.

This is the starting point for the proof of the expansion of positivity. Working
as in Chapter 4, with the obvious modifications, we have the corresponding
statements, both for m > 1 and for 0 < m < 1.

Assume first that u is a nonnegative, local, weak supersolution to (C.5.1)–
(C.5.3) in ET , for m > 1. For (y, s) ∈ ET , and some given positive number
M , consider the cylinder

K8ρ(y)×
(
s, s+

bm−1

(ηM)m−1
δρ2

]
,

where δ, η, b are the constants given by Proposition C.8.1, and ρ > 0 is so
small that such a cylinder is included in ET .

Proposition C.8.1 Assume that for some (y, s) ∈ ET and some ρ > 0
(C.8.1) holds for some M > 0 and some α ∈ (0, 1). There exist constants
η and δ in (0, 1) and γ, b > 1 depending only on the data in (C.5.4) such that
either

γC > min

{
1

ρ
,

1

ρκo+
2(1−κo)

(N+2)(m−1)

,
M

(m−1)(κo−1)
N+2

ρκo

}
or

u(·, t) ≥ ηM a.e. in K2ρ(y)

for all times

s+
bm−1

(ηM)m−1
1
2δρ

2 ≤ t ≤ s+
bm−1

(ηM)m−1
δρ2.
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Let now u be a nonnegative, local, weak supersolution to (C.5.1)–(C.5.3)
with 0 < m < 1, and let the cylinder

K16ρ(y)× (s, s+ δM1−mρ2]

be contained in ET .

Proposition C.8.2 Assume that for some (y, s) ∈ ET and some ρ > 0
(C.8.1) holds for some M > 0 and some α ∈ (0, 1). There exist constants
η, δ, and ε in (0, 1), and γ > 1 depending only upon the data in (C.5.4) and
α, such that either (C.8.2) holds, or

u(·, t) ≥ ηM a.e. in K2ρ(y)

for all times
s+ (1− ε)δM1−mρ2 ≤ t ≤ s+ δM1−mρ2.

When κo = 1, we recover the statements of Chapter 4 for both Proposi-
tions C.8.1 and C.8.2.

Relying on these propositions, the Harnack estimates of Chapters 5 and 6
can be extended to nonnegative solutions to equations (C.5.1)–(C.5.3), both
in the degenerate m > 1, and in the singular 0 < m < 1 range. The only sig-
nificant difference is in the alternatives, where one needs to take into account
the presence of the parameter κo ∈ (0, 1].

C.9 Remarks and Bibliographical Notes

Parabolic equations with integrable lower order terms were extensively stud-
ied in [101], in the case of p = 2, m = 1. For degenerate (p > 2) and singular
(1 < p < 2) equations the theory of local regularity is in [41]. As discussed
in Chapter V of [41], the assumptions (C.1.3)–(C.1.4) are natural, to insure
both boundedness and local Hölder regularity of solutions. If one knew that
solutions are already bounded, and does not need a quantitative statement
about their boundedness, more general assumptions could be made. In partic-
ular, the functions ϕi could be taken in proper Lq,r(ET ) spaces, as discussed
in Chapters II–IV of [41]. The expansion of positivity of Chapter 4 and the
Harnack inequalities of Chapters 5 and 6, could be extended to this more
general setting, the difficulty being only technical. Analogous considerations
apply to porous medium type equations (C.5.1)–(C.5.3).

There is some dissymmetry between the structure conditions of p-
Laplacian type equations and porous medium type equations. The structure
conditions one gets by letting p → 2 in (C.1.2)–(C.1.4) coincide with those
given in [101], for nondegenerate equations. The latter, in the context of nonde-
generate equations, in [101] are shown to be optimal for the local boundedness
and the local Hölder continuity of solutions.
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This is not the case, however, if one lets m → 1 in (C.5.2)–(C.5.3), and
it raises the question of whether a refinement of conditions (1.2) and (5.2) of
Chapter 3 is possible, so that they coincide when p→ 2 and m→ 1.

Suitable structure conditions for degenerate (m > 1) porous medium type
equations are⎧⎨

⎩
A(x, t, u,Du) ·Du ≥ mCo|u|m−1|Du|2 − C2ϕo(x, t)

|A(x, t, u,Du)| ≤ mC1|u|m−1|Du|+ C|u|m−1
2 ϕ1(x, t)

|B(x, t, u,Du)| ≤ mC|u|m−1|Du|+ C2|u|m−1
2 ϕ2(x, t),

(C.9.1)

where the functions ϕi satisfy (C.1.3)–(C.1.4). It turns out that nonnega-
tive local, weak solutions to these degenerate (m > 1) porous medium type
equations satisfy the expansion of positivity of Chapter 4 and the Harnack
inequality of Chapter 5. The proof is almost identical with the minor modifi-
cations due to the structure (C.9.1).

For singular (0 < m < 1) porous medium type equations, it is not known
whether the structural conditions (5.2) of Chapter 3, or (C.5.2)–(C.5.3) are
optimal for a Harnack estimate to hold. For 0 < m < 1 the conditions on
the lower order terms (those terms involving the alternative constant C) are
crucial in the proof of Proposition B.1.1 of Appendix B, which seems to be
the key point.

Rather than discriminating between m > 1 and 0 < m < 1 we have chosen
to use a unified approach.
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a geometrical view, Comm. Partial Differential Equations, 26(7–8), (2001),
1145–1173.

4. P.F. Almeida, Lateral Diffusion in Membranes, Handbook of Biological Physics,
Vol. 1-Structure and Dynamics of Membranes, 1995; R. Lipowsky and E. Sack-
mann Eds., 305–307.

5. R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
6. D. Andreucci and E. DiBenedetto, A new approach to initial traces in nonlinear
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nack, Rend. Circ. Mat. Palermo (2), 3, (1954), 337–346.

81. T.C. Halsey, Electrorheological Fluids, Science, 258, (1992), 761–766.
82. C.-G. Axel Harnack, Die Grundlagen der Theorie des logaritmischen Poten-

tiales und der eindeutigen Potentialfunktion in der Ebene, Teubner, Leipzig,
1887.
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