
Chapter 8
Dynamic Altitude Synchronization Using
Graph Theory

8.1 Introduction

The Q-structure proposed in Chap. 7 provides a promising avenue for formation
control of helicopters under a flexible and scalable framework. We presented a
kinematic control scheme that does not consider the dynamics of the helicopters,
and is useful for formation motion planning to determine the desired motion of the
helicopters. Dynamic formation control using Q-structures in which the helicopter
dynamics are directly taken into account in the formation control design can yield
better flight performance, but it is an open and challenging problem. In this chapter,
we take a different approach to solving the dynamic formation control problem, by
combining graph theory with adaptive neural networks.

We focus on the synchronized tracking problem of helicopters in vertical flight,
in which multiple helicopters track the same desired trajectory while the desired
trajectory is not accessible to all the helicopters in the team. The vertical fight mode
starts when the helicopter is at rest on the ground IGE (in ground effect). Then take-
off is started and the helicopter climbs. Vertical descent precedes landing. Since
the coupling between longitudinal and lateral-directional equations in this flight
regime is weak, it can be presented by single-input–single-output (SISO) models
with zero-dynamics to yield useful results [83, 102]. In the formation group, the
desired trajectory is not available to all the helicopters in the team, synchronized
tracking control is designed for each helicopter by using the information exchange
with its neighbors. The main contributions of the work are as follows:

1. The extended formation graph Laplacian, which contains a spanning tree which
the root helicopter can access for the desired trajectory, is proved to be positive
definite.

2. The neural approximation based control is designed for the purpose of syn-
chronized tracking of each helicopter by using the weighted average of its
neighbors’ states. All signals are proved to be bounded and the tracking errors
of all helicopters will converge to a neighborhood of the origin.
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196 8 Dynamic Altitude Synchronization Using Graph Theory

3. A high gain observer is employed for each helicopter to estimate the unaccessi-
ble derivation of the states of both itself and its neighbors. It is shown that in this
case, the boundness of all the closed-loop signals are guaranteed.

8.2 Problem Formulation

8.2.1 Helicopter Dynamics

Consider the class of SISO helicopter systems described by

Pxj D xjC1; j D 1; : : : ; � � 1
Px� D f .�; x/C g.x; �/.u C d/

P� D q.x; �/

y D x1 (8.1)

where x D Œx1; : : : ; x��
T 2 R

� and � 2 R
n�� are the states of the system, u; y 2 R

the input and output, respectively, f W R
n ! R an unknown smooth function,

and q W R
n ! R is a partially unknown vector field satisfying certain properties,

which will be described shortly, g W R
n ! R is an unknown function with certain

properties, and d is the external disturbance in the input channel.

Assumption 8.1. The zero dynamics of system (8.1), given by P� D q.x; �/, are
exponentially stable. In addition, q.�; �/ is Lipschitz in x, i.e., there exists positive
constants aq and ax such that

kq.x; �/ � q.0; �/k � axkxk C aq 8.x; �/ 2 R
n (8.2)

Under the assumption that the zero dynamics are stable, by the converse Lyapunov
theorem, there exists a Lyapunov function V0.�/ which satisfies the following
Lyapunov inequalities for .x; �/ 2 R

n:

�1k�k2 � V0.�/ � �2k�k (8.3)

@V0

@�
q.0; �/ � ��ak�k2 (8.4)

�
�
�
�

@V0

@�

�
�
�
�

� �bk�k (8.5)

where �1 , �2, �a, and �b are positive constants.
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Assumption 8.2. The external disturbance d is an uncertain bounded function d 2
L1. That is, there exists unknown positive constants % such that jd.t/j � % < 1
where % can be arbitrarily large.

Assumption 8.3. There exist smooth functions Ng.x; �/ and a positive constant g >

0, such that Ng.x; �/ � g.x; �; u/ > g > 0, 8.x; �/ 2 NU . Without loss of generality,

it is further assumed that the sign of g.x; �; u/ is positive 8.x; �/ 2 NU .

Assumption 8.4. There exists a positive function g0.x; �/ satisfying j Pg.x; �/=2g
.x; �/j � g0.x; �/, 8.x; �/ 2 NU .

Remark 8.1. The SISO representation considered in this chapter is valid for simple
operations involving the regulation or tracking of a single degree of freedom, such
as altitude tracking and pitch regulation, among others. The general nonlinear SISO
helicopter model can be described in [48]

Px D f .x; u/

y D h.x/ (8.6)

with some assumptions such as it can be input–output linearizable with strong
relative degree � < n, which can be described as (8.1). In addition, we will show that
the helicopter given in Sect. 4.5.2, which will be used in the subsequent simulation
section, can be changed to (8.1) and satisfies the above assumptions.

8.2.2 Formation Control of Helicopters

We associate the helicopters with nodes in a graph and information exchange with
the graph edges. The Following definitions are useful for describing the formation.

Definition 8.2. [24] A directed graph G0 consists of a non-empty finite set V 0 of
elements called nodes and a finite set E 0 � V 02 of ordered pairs of nodes called arcs,
where e D .vi ; vj / 2 E 0 and vi ; vj 2 V 0. The neighbors set of vertical vi is defined
as N 0

i D fvj 2 V 0j .vj ; vi / 2 E 0g.

For the multiple agents tracking problem, we introduce a virtual agent v0, whose
motion follows the desired trajectory restrictively. And we define a non-empty set
V0 � V 0, in which the elements can access the desired trajectory, i.e., v0 2 Nj ,
iff vj 2 V0. Then the extended formation graph can be described as G D fV ; Eg,
where V D V 0 [ fv0g, and E D E 0 [ f.v0; vj /jv0 2 Nj g. For all agents vj 2 V0,
Nj D N 0

j [ fv0g.

Definition 8.3. The weighted adjacency matrix of the extended formation graph
G, denoted as A�.G/, is a square matrix of size jV j, with its elements A�

ij > 0 if
.vj ; vi / 2 G, and is zero otherwise. Define a diagonal matrix�.G/ with its elements
�jj D P

k A
�
jk , and the normalized Laplacian of the graph is defined as L D I �A

with A D ��1A�.
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Definition 8.4. A spanning tree of a directed graph G0 is a directed tree formed by
graph edges that connect all the nodes of the graph. We say that a graph has (or
contains) a spanning tree if a subset of the edges forms a spanning tree.

Definition 8.5. A substochastic matrix is a square matrix with nonnegative entries
such that every row adds up to at most 1.

Definition 8.6. A directed graph is called weakly connected if there exits a node
which is globally reachable.

Definition 8.7. [92] If matrix L D .`ij / 2 R
.nC1/�.nC1/ satisfies the following

three conditions:

1. j`i i j � P

j¤i j`i;j j; .i D 0; 1; : : : ; n/;
2. J D fk 2 N j j`kkj > Pn

jD1;j¤k j`kj jg ¤ ¿, where N D f0; 1; : : : ; ng, it also
means that there at least exists an i that satisfies j`i i j > P

j¤i j`ij j; and
3. For each i … J there exists a sequence of nonzero elements of L with the form
`i i1 , `i1i2 , : : :, `isk with k 2 J .

Then we say L is a diagonally dominant matrix with nonzero elements chain.

Property 8.8. [92] For a diagonally dominant matrix with nonzero elements chain
L D .`ij /, we have the following properties:

1. L is a nonsingular matrix;
2. If B D I � D�1L, where D D diagf`11; : : : ; `nng, `i i ¤ 0, then �.B/ < 1,

where �.B/ is the spectrum of B; and
3. If L is real and `ij � 0, `i i > 0, then L is an M -matrix.

Theorem 8.9. Consider the multiple agent synchronized tracking problem, if the
formation graph G0 contains a spanning tree with its root vj 2 V0. Then the
normalized adjacent matrix A of the extended formation graph G is sub-stochastic,
and L D I �A is positive definite, which inverse is given by L�1 D P1

lD0 Al .

Proof. By introducing the virtual agent v0, we know that N0 D ¿ in the extended
formation graph G, as it does not accept any other agents’ information and follows
the desired trajectory strictly, and we also know that all the elements of the first row
of A are zero. Since G0 has a spanning tree and vj 2 fV0g is the root, this means that
each agent has at least one neighbor, therefore the sum of any other row of A equals
to 1. According to Definition 8.5, we know that A is a sub-stochastic matrix.

It is clear that all the diagonal elements of L are 1, and all the row sums of A are
1 except the first row, this means L is a diagonal dominant matrix with the J D f0g
(Since the virtual agent is added, we start the row number from 0 corresponding to
the label of agents). Let us revisit that G0 has a spanning tree with vj 2 V0 as the
root, this also means that there is a path from v0 to any agent vi 2 V ; therefore,
in the matrix L, for every element i ¤ 0, there exists a sequence of nonzero
elements form `i i1 ; `i1i2 ; : : : ; `is0. Then L satisfies all the conditions of Definition
8.7. Since L is real and `ij < 0; i ¤ j; `i i D 1, According to Property 8.8, L is a
nonsingularM -matrix [92]. By using Gerschgorin disc theory, we also know that all
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Re1

r = 1

ImFig. 8.1 Eigenvalue
distribution of L D .I � A/

Fig. 8.2 Sample graph and its Laplacian

the eigenvalues of L lie in the right part of the complex plane as shown in Fig. 8.1;
therefore, we can conclude that L is positive definite. Furthermore, it follows from
�.A/ < 1 that liml!1Al D 0. Then,

.I �A/.ICACA2C� � � / D .ICACA2C� � � /�.ACA2CA3C� � � / D I (8.7)

We obtain L�1 D P1
lD0 Al . This completes the proof. ut

Example 8.10. To demonstrate Theorem 8.9 clearly, take the sample graph shown
in Fig. 8.2 for example. Both v1 and v3 can access the desired trajectory and G0
contains a spanning tree with 1 as its root. Take the node 5 for example, we can find
that in the Laplacian matrix L, there exists a sequence `54, `43, `32, `21, `10 ¤ 0.

In this chapter, we studied the synchronized tracking problem of multiple
unmanned helicopters as follows:

Considering a group of helicopters, the desired trajectory of the team yd .t/ and
its derivations up to �-th order are bounded, and are only available to the helicopters
vj 2 V0. For each helicopter, design a control, (1) using its own full states and its
neighbors’ full states and (2) using its outputs and its neighbors’ outputs, such that

lim
t!1 jyi .t/ � yd .t/j D N"; i D 1; : : : ; N (8.8)

where N" is a small positive constant.
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The desired trajectory yd .t/ is generated by the following reference model:

Pxdj D PxdiC1; i D 1; : : : ; � � 1

Pxd� D fd .xd ; t/

yd D xd1 (8.9)

where � � 2 is a constant index, xd D Œxd1; : : : ; xd��
T 2 R

� are the states of the
reference system, and yd 2 R is the system output.

Assumption 8.5. The reference trajectory yd .t/ and its �-th derivatives remain
bounded, i.e., xd 2 ˝d � R

�, 8t � 0.

Assumption 8.6. The formation graph G0 of the helicopter group has a spanning
tree which the root helicopter can access for the desired trajectory.

The following lemma is useful for analysis of the internal dynamics of the
helicopter.

Lemma 8.11. [35] Denote positive constants a1 D .�bax/=�a and a2 D .�baq/=�a.
If Assumptions 8.1 and 8.5 satisfied, there exists a positive constant T0 such that the
trajectories �.t/ of the internal dynamics satisfy

k�k � a1kx.t/k C a2 (8.10)

8.3 Control with Full Information

In this section, we design the tracking control for each helicopter using the
full information of itself and its neighbors. The adaptive NN control scheme is
constructed for the synchronized tracking control. Since not all the helicopters can
access the information of the desired trajectory, the tracking control is designed
based on the relative states with its neighbors. Define the following error variables
for the helicopters:

zi;1 D yi;1 � yir ; zi;2 WD Pzi;1 D xi;2 � Pyir ; : : : ; zi;� WD z.�/i;1 D xi;� � y
.�/
ir

(8.11)

with

yir .t/ D
X

j2Ni

aij yj .t/; y
.k/
ir .t/ D

X

j2Ni

aij y
.k/
j .t/; k D 1; : : : ; � � 1

(8.12)
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where aij is the element of the normalized adjacent matrix A of the extended
formation graph G.

Remark 8.12. In (8.12), we defined that the reference state of each helicopter is the
weighted average of its neighbors’ states. If the helicopter vi can access the desired
trajectory, the virtual agent v0 is viewed as one of its neighbors, and 1 � ai0 > 0.
While considering the pure tracking, we may choose ai0 D 1 for better tracking
performance. In the synchronized tracking problem, if vi has other neighbors vj 2
Ni , we prefer to choose ai0 < 1 for better synchronization with its neighbors.

For each helicopter, we define vectors Nzi , and Zi as

Nzi D Œzi;1; : : : ; zi;��
T 2 R

�

Zi D Œzi;1; : : : ; zi;��1�T 2 R
��1

and the filtered tracking error as

si D Œ	T 1�Nzi (8.13)

where 	 D Œ�1; �2; : : : ; ���1�T is an appropriately chosen coefficient vector so that
zi;� ! 0 as si ! 0, i.e., p��1 C ���1p��2 C � � � C �1 is Hurwitz. Then we have

PZi D ApZi C bsi (8.14)

where Ap D

2

6
6
6
4

0 1 � � � 0
:::

:::
: : :

:::

0 0 : : : 1

��1 ��2 � � � ����1

3

7
7
7
5

, and b D Œ0; : : : ; 0
„ ƒ‚ …

��2
; 1�T.

The dynamics of si are written as

Psi D fi .xi ; �i /C gi .ui C di/C Œ0 	T�Nzi � y.�/ir (8.15)

Consider the Lyapunov function candidate

Vi D 1

2gi
s2i C 1

2�2
Q
T
i

Q
i C 1

2�1
Q'2i (8.16)

where Q
i D O
i � 
�
i , and Q'i D O' � '�

i are the estimated errors of parameters and
the error bounded, respectively.
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Then,

PVi D � Pgi
2g2i

s2i C 1

gi
si Psi C 1

�2
Q
i PQ
i C 1

�1
Q'i PQ'i

D �
�

g0 C Pgi
2g2i

�

s2i C si .ui C di/C si
fi .xi ; �i /C Œ0 	T�Nzi � y.�/ir C gig0si

gi

C 1

�2
Q
i PQ
i C 1

�1
Q'i PQ'i (8.17)

We use the parameter linearized NN to approximate the unknown nonlinear function
Nfi .xi ; �i ; Nzi ; y.�/ir / D fi .xi ;�i /CŒ0 	T�Nzi�y.�/ir Cgig0si

gi
, which can be described as

Nfi .Zi / D 
�T
i 'i .Zi /C N"i (8.18)

where Zi D Œxi ; �i ; Nzi ; y.�/ir �T.

Remark 8.13. The NN is constructed to approximate Nfi .xi ; �i ; Nzi ; y.�/ir / D
fi .xi ;�i /CŒ0 	T�Nzi�y.�/ir Cgig0si

gi
on a whole, which avoids the possible singularity of

the direct approximation of gi .

Select the following control ui for each helicopter

ui D � O
T
i  i � ki si � 1

2
O'isi ; i D 1; : : : ; N (8.19)

where O'i and O
i denote the estimate of '�
i D .%i C N"i /2 and 
�

i , respectively.
The update law of parameters are designed as

PO'i D ��1
�

�1
2
.1 �$'/s

2
i C �1 O'i

�

PO
i D ��2
� �  i si C �2 O
i

�

(8.20)

By using the Using Young’s inequality, we have

� �2 Q
T
i

O
i � ��2
2

k Q
ik2 C �2

2
k
�
i k2

��1 Q'i O'i � ��1
2

Q'2i C �1

2
'�2
i

.%i C N"i /si � 1

2
C 1

2
s2i '

�
i
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Considering (8.19) and (8.20), the time derivation of Vi in the closed-loop trajectory
can be written as

PVi D �
�

g0 C Pgi
2g2i

�

s2i � ki s
2
i C si

�

N"i C di � 1

2
O'i

�

� �2 Q
T
i

O
iC1

2
.1�$'/si Q'i si

��1 Q'i O'i
� �ki s2i C 1

2
C 1

2
s2i '

�
i � 1

2
s2i O'i � �2

2
k Q
ik2 C �2

2
k
�
i k2 C 1

2
Q'i s2i � �1

2
Q'2i

C�1

2
'�2
i

D �ki s2i � �1

2
Q'2i � �2

2
k Q
ik2 C �2

2
k
�
i k2 C �1

2
'�2
i C 1

2
(8.21)

Then,

PVi � �c1iVi C c2i (8.22)

c1i D minfki ; �2�2; �1�1g (8.23)

c2i D �2

2
k
�
i k2 C �1

2
k'�

i k2 C 1

2
(8.24)

Now define

˝si D
(

si

ˇ
ˇ
ˇ
ˇ
ˇ
jsi j �

s

2c2i

c1i

)

(8.25)

˝
i D
(

. Q
i ; Q'i /
ˇ
ˇ
ˇ
ˇ
ˇ
k Q
ik �

s

2c2i

�2
; j Q'i j �

s

2c2i

�1

)

(8.26)

˝ei D
n

.si ; Q
i ; Q'i /
ˇ
ˇ
ˇki s

2
i C �2

2
Q
T
i

Q
i C �1

2
Q'2i � c2i

o

(8.27)

Since c1i , �1, �2, and ki are positive constants, we know that ˝si , ˝
i and ˝ei

are compact sets. Equation (8.22) shows that PVi � 0 once the errors are outside
the compact set ˝ei . According to the standard Lyapunov theorem, we conclude
that si , Q
i , and Q'i are bounded. From (8.22) and (8.25), it can be seen that Vi is
strictly negative as long as si is outside the compact set ˝si . Therefore, there exists
a constant T1 such that for t > T1, the filtered tracking error si converges to ˝si ,
that is to say, si � ˇsi .ki ; �1; �2; �1; �2; 


�
i ; '

�
i ; "

�
i / D p

2c2i=c1i .
Now we will show that all the helicopters will track the desired trajectory

although only some of them can access the desired trajectory. Define the error
between i -th helicopter and the desired trajectory as Qyi .t/ D yi .t/ � yd .t/ D
yi .t/ � y0.t/, and the auxiliary states of each helicopter �i .t/ D Œ	T 1�Yi with
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Yi D Œyi ; y
.1/
i ; : : : ; y

.��1/
i �T. The filtered error is denoted as Q�i .t/ D �i .t/� �d .t/ D

�i .t/ � �0.t/.
Using the fact that si .t/ D �i .t/ � P

j2Ni
aij �j .t/, we have

Q�i D �i � �0

D
X

j2Ni

aij �j C si � �0; i D 1; : : : ; N

and in the vector form

Q� D A� C s � �01 (8.28)

where 1 D Œ1; : : : ; 1�T, s D Œs0; s1; : : : ; sN �
T, and A is the normalized adjacency

matrix of the extended formation graph. Note that the elements in the first row of A
are all equal to 0, and the other row summations of the matrix A are 1, and we have
Œ0; 1; : : : ; 1�T D AŒ0; 1; : : : ; 1�T. Then,

Q� D A. Q� C �01/C s C Œ1; 0 : : : ; 0�T�0 � �01

D A Q� C Œ0; 1; : : : ; 1�T�0 C s C Œ1; 0 : : : ; 0�T�0 � �01

D A Q� C s (8.29)

Under the Assumption 8.6, we know that L D .I � A/ is an invertible matrix, and
we have

Q� D L�1s (8.30)

Define vectors

Y D ŒY T
0 ; Y

T
1 ; : : : ; Y

T
N �

T

QY D Œ QY T
0 ;

QY T
1 ; : : : ;

QY T
N �

T

X D ŒXT
0 ; X

T
1 ; : : : ; X

T
��1�T

QX D Œ QX0; QX1; : : : ; QX��1�T

whereXj D ŒX0;j ; X1;j ; : : : ; XN;j �
T, QXj D Xj�Xjd D Xj�y.j /0 1, QYi D Yi�Yd D

Yi � Y0. Then we have
PQY D NAp QY C Nb Q� (8.31)

where NAp D INC1 ˝ Ap and Nb D INC1 ˝ b.
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Considering (8.29), the error dynamics can be written as

PQY D NAp QY C Nb Q� D NAp QY C NbL�1s (8.32)

Lemma 8.14. Define si;max D sup0���t jsi .t/j, ˇsi D supt>T1jsi .t /j, and smax;i .t/ D
maxi sup0���t jsi .t/j, then the following equations hold:

k QY.t/k � k0e��0tk QY.0/k C k0

�0

	

N�max.L
�1/CN � 1




smax;i .t/

k QY.t/k � k0e��0t
�

k QY.0/k C e�0T1

�0
ˇs.T1/

�

C k0

�0
ˇsT

where ˇs.t/ D N�max.L
�1/smax;i .t/ and ˇsT D N�max.L

�1/ supT1�t smax;i .t/ with
constants �0 > 0 and k0 > 0.

Proof. From (8.32) and the fact that Ap is Hurwitz, we have

QY.t/ D QY.0/e NApt C
Z t

0

e NAp.t��/ NbL�1s d�

ke NAptk � k0e��0t

Then,

k QY.t/k � k0e��0tk QY.0/k C
Z t

0

e��0.t��/ �
� NbL�1s

�
� d�

� k0e��0tk QY.0/k C k0e��0t 	

N�max.L
�1/smax;i .t/



Z t

0

e�0� d�

� k0e��0tk QY.0/k C k0e��0t 	

N�max.L
�1/




smax;i .t/
e�0t � 1

�0

� k0e
��0tk QY.0/k C k0

�0

	

N�max.L
�1/




smax;i .t/ (8.33)

where �max.�/ is the maximum eigenvalue of the matrix.
Noting the above equation and that

Z t

0

e��0.t��/ �� Nb.L�1s/
�
� d� D

Z T1

0

e��0.t��/ �� Nb.L�1s/
�
� d�

C
Z t

T1

e��0.t��/ �� Nb.L�1s/
�
� d�
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We have (8.33) as follows:

k QY.t/k � k0e
��0tk QY.0/k C k0e

��0t e�0T1 � 1

�0
ˇs.T1/C k0e

��0t e�0t0 � e�0T1

�0
ˇsT

� k0e��0t
�

k QY.0/k C e�0T1

�0
ˇs.T1/

�

C k0

�0
ˇsT (8.34)

This completes the proof. ut
Now we will show that for a proper choice of the control parameters, the trajectories
of each vehicle do remain in the compact set. From the fact that L�1s D .Œ	T 1�˝
INC1/ QNX , where QNX D Œ QXT QxT

� �
T, we can see that Qx� D L�1s � .	T ˝ IN / QX .

Therefore,

k QNXk � k QXk C k Qx�k
� .1C k	k/k QXk C kL�1kksk
� �

1C k	k/k QYk C �max.L
�1/ksk

It follows from (8.34) and the fact that si will converge to˝si , we know that k QNXk �
kak QY.0/k C kbˇsT C kc , 8t � T1, with ka D .1C k	k/k0, kb D .ka=�0/C 1 and
kc D ka.e�0T1=�0/ˇs.T1/. Hence,

k NX.t/k � k QNX.t/k C k NXd.t/1k
� kak QY.0/k C kbˇsT C kc C c; 8t � T1 (8.35)

We now provide the conditions which guarantee NX 2 ˝ NX , 8t � 0. Define the
compact set

˝0 WD ˚ NX.0/ ˇ
ˇf NX jk NX.t/k < kak QY.0/kg � ˝ NX ; �max.L

�1/ks.0/k < ˇsT
�

and the positive constant

c� WD sup
c2RC

˚

c
ˇ
ˇ
˚ NX jk NXk < kak QY.0/k C kc C c; NX.0/ 2 ˝0

� � ˝ NX
�

(8.36)

We summarize our results for the full-state feedback case in the following theorem.

Theorem 8.15. Consider a group of helicopters dynamics (8.1) and the communi-
cation graph containing a spanning tree which the root helicopter can access for
the desired trajectory, with Assumptions 8.1–8.5, under the action of the control
(8.19) and parameters update law (8.20) for each helicopter. For initial conditions
NX.0/; �.0/, Q
i .0/ and Q'i.0/ starting in any compact set, and the desired trajectory
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with its derivations up to �-th bounded, all closed signals of the system are Semi-
Globally Uniformly Ultimately Bounded (SGUUB), and the total tracking error of

the helicopters QNX converges to a neighborhood of the origin.

Proof. From (8.35), we know that the overall system state NX.t/ will stay in ˝ NX for
all time. Furthermore, because the NN weights have been proven bounded for any
bounded O
i .0/ and O'i.0/, and due to Lemma 8.11, it can be seen that �i is bound if
xi is bounded. As a result, the states of the internal dynamics of the helicopter will
converge to the compact set ˝�i D f�i 2 R

pj k�ik � a1.
p

2c2=c1 C kXdk/C a2g,
where a1 D �bax=�a and a2 D �baq=�a are positive constants. Because the control
signal ui .t/ is a function of the weights O
i and O'i , the states �i , xi , and the filtered
tracking error si , we know that it is also bounded. Therefore, we know that all the
closed-loop signals are SGUUB. This completes the proof. ut

8.4 Control with Partial Information

From the definition (8.11) of reference states of each helicopter, we know that not
all of the helicopters can access the desired altitude and its derivation. For each
helicopter in the team, its reference output at time t is the weighted average of its
neighbors’ outputs at the same time, and in the control design, each helicopter needs
to use its neighbors’ states y.k/ir .t/, k D 1; : : : ; �, which are not easy for them to
access. In this section, we assume that each helicopter can only access its neighbors’
output information yir , and use high observer to estimate y.k/ir .t/, k D 1; : : : ; �.

In the following lemma, high gain observer used in [7] is presented, which will
be used to estimate the neighbors’ states.

Lemma 8.16. [35][102] Consider the following linear system:


 P�i D �iC1 i D 1; 2; : : : ; � � 1

 P�� D � N�1�� � N�2���1 � � � � � N���1�2 � �1 C �.t/ (8.37)

where 
 is a small positive constant and the parameters N�1 to N���1 are chosen such
that the polynomial s�C N�1s��1C: : :C N���1sC1 is Hurwitz. Suppose the states �.t/
and its first n derivatives are bounded, so that �.k/ < $k with positive constants
$k . Then the following property holds:

Q�.k/ WD �k


k�1 � �.k/ D �
�.k/; k D 1; 2; : : : ; � (8.38)

where � WD �p C N�1���1 C � � � C N���1�1 and �.k/ denotes the kth derivative of �.
Furthermore, there exist positive constants hk and t� such that for all t > t� we
have j�.k/j � hk , k D 2; 3; : : : ; �.
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Note that �kC1=
k asymptotically converges to �.k/, with a small time constant
provided that � and its k derivatives are bounded. Hence, �kC1=
k for k D 1; : : : ; �

is a suitable observer to estimate the output derivatives up to the �-th order.
To prevent peaking [52], saturation functions are employed on the observer

signals whenever they are outside the domain of interest ˝ as follows:

�si;j D N�i;j �
�
�i;j

N�i;j
�

; N�i;j � max
. Qyi ;si ; Q
i ; Q'i /2˝

.�i;j /

�.a/ D

8

ˆ̂
<

ˆ̂
:

�1; for a < �1
a; for jaj < 1
1; for a > 1

(8.39)

Now, we revisit the control law (8.19) and adaption laws (8.20) for the full-state
feedback case. Via the certainty equivalence approach, we modify them by replacing
the partially available quantities with their estimates, which can be written as

ui D � O
T
i  i .

OZi/� ki Osi � 1

2
O'i Osi ; i D 1; : : : ; N (8.40)

And the update law of parameters is designed as

PO'i D ��1
�

�1
2
.1 �$'/Os2i C �1 O'i

�

PO
i D ��2
� �  i Osi C �2 O
i

�

(8.41)

where �1, �2, �1 and �2 are positive constants, and

$'i D
(

0; if j O'i j � M'i

1; otherwise
(8.42)

whereM'i is a designed positive constant.
Select Lyapunov function candidate

Vie D 1

2
s2i C 1

2�2
Q
T
i

Q
i C 1

2�1
Q'2i (8.43)

And the following lemma is useful for handling the terms containing the estimation
errors.
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Lemma 8.17. There exist positive constants Fik which are independent of 
i , such
that for t > t�, the estimate Oy.k/ir , i D 1; : : : ; N , k D 1; : : : ; �, satisfy the following
inequalities:

j Qy.k/ir j D j Oy.k/ir � y
.k/
ir j � 
iFik (8.44)

Since si is the linear combination of Yi and Yj ; j 2 Ni , we know that there exist
positive constants Gis which are independent of 
i such that jQsi j � 
iGis .

Taking the time derivative of Vi along the closed-loop trajectory and using the
property i. OZi/� i .Zi / D 
i ti , where ti is a bounded vector function [30], we
have

PVie D �
� Pgi
2g2i

C g0

�

s2i � ki s
2
i � ki si Qsi � si O
T

i  i .
OZi/ � 1

2
O'isi Osi C si .di C N"i /

Csi 
�T i.Zi /C 1

�2
Q
i PQ
i C 1

�1
Q'i PQ'i

� �ki
2
s2i C ki

2
Qs2i � 1

2
O'i si Osi C 1

2
'is

2
i C 1

2
Q'i Os2i � si O
T

i  i .
OZi/C si 


�T i.Zi /

COsi Q
T
i  i .

OZi/ � �2 Q
T
i

O
i � �1 Q'i O'i C 1

2

For the term �s2i Q'i � si Qsi O'i C Os2i Q'i , we have

� s2i Q'i � si Qsi O'i C Os2i Q'i D Qsi .si Q'i C Qsi Q'i � si'i /

� 
Gisjsi Q'i j C 
2G2
isj Q'i j C 
Gisjsi'i j

� 1

2
.s2i C 
2G2

isj Q'i j2/C 1

2

2G2

is Q'2i C 1

2

2G2

is C 1

2
s2i

C1

2

2G2

is'
2
i

D s2i C 
2i G
2
is Q'2i C 1

2

2i G

2
is'

2
i

� s2i C 
2i G
2
is

�

O'2i C 3

2
'2i

�

(8.45)

For the term �si O
T
i  i .

OZi/C si 

�T i.Zi /C Osi Q
T

i  i .
OZi/, we have

�si O
T
i  i .

OZi/C si 

�T i .Zi /C Osi Q
T

i  i .
OZi /

D �si Q
T
i  i .

OZi/� si 

�T
i  i . OZi /C si 


�T i.Zi /C Osi Q
T
i  i .

OZi/
D Qsi Q
T

i  i .
OZi/� 
i si 


�T
i  ti

� 1

2
Q
T
i

Q
i C 1

2

iG

2
isk tik2 C 1

2
s2 C 1

2

2i k tik2k
�

i k2 (8.46)
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Then,

PVie � �1
2
.ki � 2/s2i � �2 � 1

2
Q
T
i

Q
i � �1

2
Q'2i C 1

2

2i G

2
is O'2i C 1

2

iG

2
isk tik2

C
2i k tik2 C �2

2
k
�
i k2 C

�
3

4

2i G

2
is C �1

2

�

'�2
i C ki

2

2i C 1

2
(8.47)

Then,

PVie � �c1ieVie C c2ie (8.48)

c1ie D min

�
1

2
.ki � 2/; .�2 � 1/�2; �1�1




(8.49)

c2ie D 1

2

2i G

2
is O'2i C 1

2

iG

2
isk tik2 C 
2i k tik2 C �2

2
k
�
i k2 (8.50)

C
�
3

4

2i G

2
is C �1

2

�

'�2
i C ki

2

2i C 1

2

Now define

˝sie D
(

si

ˇ
ˇ
ˇ
ˇ
ˇ
jsi j �

s

2c2ie

c1ie

)

(8.51)

˝
ie D
(

. Q
i ; Q'i /
ˇ
ˇ
ˇ
ˇ
ˇ
k Q
ik �

s

2c2ie

�2
; j Q'i j �

s

2c2ie

�1

)

(8.52)

˝eie D
n

.si ; Q
i ; Q'i /
ˇ
ˇ
ˇki s

2
i C �2

2
Q
T
i

Q
i C �1

2
Q'2i � c2ie

o

(8.53)

Since c1ie , �1, �2, and ki are positive constants, we know that ˝sie, ˝
i e and ˝eie

are compact sets. Equation (8.48) shows that PVie � 0 once the errors are outside
the compact set ˝ei . According to the standard Lyapunov theorem, we conclude
that si , Q
i , and Q'i are bounded. From (8.48) and (8.51), it can be seen that Vie is
strictly negative as long as si is outside the compact set˝sie. Therefore, there exists
a constant T1 such that for t > T1, the filtered tracking error si converges to ˝sie,
that is to say, si � ˇsie , with ˇsie.ki ; �1; �2; �1; �2; 
�

i ; '
�
i ; 
i / D p

2c2ie=c1ie.
We can conclude the following theorem.

Theorem 8.18. Consider a group of helicopters dynamics (8.1) and the com-
munication graph containing a spanning tree with the leader as the root, with
Assumptions 8.1–8.5, under the action of the control law (8.40), parameters update
law (8.41), and the high gain observer (8.37), which is turned on at time t�
in advance. For initial conditions NX.0/, �.0/, Q
i .0/ and Q'i.0/ starting from any
compact set, and the desired trajectory with its derivations up to �-th bounded,
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all closed signals of the system are SGUUB, and the total tracking error of the

helicopters QNX converges to a neighborhood of origin.

Proof. We have concluded that si will converge to a compact set ˝sie, then follow-

ing Lemma 8.17, it can be concluded that k QYk � k0e��0t
�

k QY.0/k C e�0T1
�0
ˇs.T1/

�

C
k0
�0
ˇsT , and from (8.35), we can find that k NXk is also bounded. Following the same

procedure in the full-state feedback control, we can complete the proof. ut
Remark 8.19. It is shown in (8.50) that the smaller c2ie might be obtained by
choosing a smaller �1 and �2, which may lead to a smaller tracking error.
Nevertheless, from (8.52) it can be seen that the smaller �1 and �2 may cause large
NN weight and disturbance compensation errors. If �1 and �2 are chosen to be very
large, it will lead to a large tracking error. Hence, the parameters �1 and �2 should
be adjusted carefully in practical implementations.

8.5 Simulation Study

In this section, we consider the synchronized altitude tracking of 6 X-cell 50
helicopters whose communication graph is shown in Fig. 8.2. The dynamics of the
helicopter can be written as follows as in Sect. 4.5.2

P�1 D �2

P�2 D a0 C a1�2 C a2�
2
2 C

�

a3 C a4�4 �
p

a5 C a6�4

�

�23

P�3 D a7 C a8�3 C .a9 sin �4 C a10/�
2
3 C ath

P�4 D �5

P�5 D a11 C a12�4 C a13�
2
3 sin �4 C a14�5 �K1u (8.54)

where �1 denotes altitude (m), �2 the height rate of the altitude rate (m/s), �3 the
rotational speed of the rotor blades (rad/s), �4 the collective pitch angle (rad), �5 the
collective pitch rate (rad=s), ath D 111:69 s�2 the constant input to the throttle, and
u the input to the collective servomechanisms.

Let y be the altitude �1. By restricting the throttle input to be constant, we obtain
a SISO in which u is the only input variable forcing the output y to track a desired
trajectory yd , which is generated by

yd D 150:056

s4 C 12:6s3 C 64:19s2 C 154:35s C 150:056
href (8.55)

where
href.t/ D 5:5� 0:5 sin t (8.56)
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Fig. 8.3 Altitude of all helicopters with output feedback control

The nominal values for constants K1 and ai are given to be: K1 D 0:25397s�2,
a0 D �17:67m=s2, a1 D a2 D �0:1 s�2, a3 D 5:31 � 10�4, a4 D 1:5364 � 10�2,
a5 D 2:82�10�7, a6 D 1:632�10�5, a7 D �13:92s�2, a8 D �0:7 s�2, a9 D a10 D
�0:0028, a11 D 434:88 s�2, a12 D �800 s�2, a13 D �0:1 and a14 D �65 s�2.

It can be shown that the system has strong relative degree 4 as in Sect. 4.5.2.
The control parameters are chosen as 	 D Œ64; 48; 12�T, ki D 3; i D
1; : : : ; 6, while the NN parameters for each helicopter are chosen as �1 D 0:05,
�1 D 1, �2 D 0:01, �2 D 100. For high gain observer, we choose 
i D
0:08, N�1 D 4, N�2 D 6, N�3 D 4, N�2 D 0:1, N�3 D 0:15, N�4 D 0:025.
The saturation limits of the control are ˙400mrad. The initial conditions are
�1.0/ D Œ4:3; 0:0; 95:3567; 0:222; 0:0�T, �2.0/ D Œ4:8; 0:0; 95:3567; 0:3; 0:0�T,
�3.0/ D Œ5:9; 0:0; 95:4; 0:22; 0:0�T, �4.0/ D Œ6:2; 0:0; 95:3567; 0:3; 0:0�T, �5.0/ D
Œ6:8; 0:0; 95:3567; 0:22; 0:0�T, �6.0/ D Œ7:4; 0:0; 95:4; 0:21; 0:0�T, O
i .0/ D 0, and
O'i.0/ D 0 for each helicopter.

Simulation results are shown in Figs. 8.3–8.6. From Fig. 8.3, we can find that
good tracking performance is achieved for each helicopter by the proposed control.
The tracking performance for full-state and output feedback cases are similar for the
choice of 
i made. The initial errors of all helicopters are sufficiently reduced and
the altitude trajectories all lie in close proximity of the desired sinusoidal trajectory.
Meanwhile, the internal dynamics and the NN weights are all bounded, as shown in
Figs. 8.5 and 8.6. From Fig. 8.4, we can find that the control input of the helicopters
are bounded, both in the full-state feedback and the output feedback cases.
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Fig. 8.4 Control input of helicopters under full-state (solid) and output (dash-dot) feedback
control
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Fig. 8.5 Norm of neural weights under full-state (solid) and output (dash-dot) feedback control.
Norm of neural weights (a) k O
1k, (b) k O
2k, (c) k O
3k, (d) k O
4k, (e) k O
5k, (f) k O
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Fig. 8.6 Internal state response under full-state (solid) and output (dash-dot) feedback control.
(a) Internal state of helicopter 1, (b) Internal state of helicopter 2, (c) Internal state of helicopter 3,
(d) Internal state of helicopter 4, (e) Internal state of helicopter 5, (f) Internal state of helicopter 6
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8.6 Conclusion

In this chapter, we studied the synchronized tracking problem of multiple heli-
copters in vertical flight mode. Under the condition that the Laplacian matrix of the
extended formation graph, which contains a spanning tree which the root helicopter
can access for the desired trajectory, by using the weighted average of its neighbors’
states as its reference signal, through neural network based approximation, the
adaptive tracking control law has been designed for each helicopter. By using high
gain observer to reconstruct the unavailable states, an extension has been made to
the output feedback case where both the helicopter’s states and its neighbors’ states
are not available for control design. It has been shown that the tracking errors of
each helicopter converge to adjustable neighborhoods of the origin for both cases,
although some of them do not access the desired tracking trajectory. Simulation
results have shown the effectiveness of the approach presented.
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