
Chapter 5
Altitude and Yaw Control of Helicopters
with Uncertain Dynamics

5.1 Introduction

In Chap. 4, a robust adaptive neural network (NN) control is presented for
helicopters in vertical flight, with dynamics in single-input single-output (SISO)
nonlinear nonaffine form. By limiting the scope to the vertical flight regime, SISO
models can be used to yield useful results, since the coupling between longitudinal
and lateral-directional equations in this flight regime is weak [84]. While the
proposed controller handles vertical flight, other flight regimes can be handled by
other control modules. Evidently, SISO control designs have limited practical use,
and many more investigations are needed in the control of multi-input multi-output
(MIMO) helicopter dynamics for generality in applications.

Practical helicopter motion governed by a MIMO model has an underactuated
configuration, i.e., the number of control inputs is less than the number of degrees of
freedom to be stabilized, which makes it difficult to apply the conventional robotics
approach for controlling Euler–Lagrange systems. Thus, some flight control tech-
niques need to be further developed for the nonlinear MIMO helicopter dynamics.
In [104], model-based control was applied to an autonomous scale MIMO model
helicopter mounted in a 2-degree-of-freedom (2DOF) platform. Since helicopter
control applications are characterized by unknown aerodynamical disturbances,
they are generally difficult to model accurately. The presence of modeling errors,
in the form of parametric and functional uncertainties, and unmodeled dynamics
and disturbances from the environment, is a common problem. In this context,
model-based control, such as the aforementioned schemes, tends to be susceptible
to uncertainties and disturbances that cause performance degradation.

In this chapter, altitude and yaw angle tracking are considered for a scale MIMO
model helicopter [104] in the presence of model uncertainties, which may be caused
by unmodeled dynamics, sensor errors or aerodynamical disturbances from the
environment. To deal with the presence of model uncertainties, approximation-
based techniques using a NN have been proposed. In particular, two commonly
used NNs, namely the multilayer neural network (MNN) and the radial basis
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94 5 Altitude and Yaw Control of Helicopters with Uncertain Dynamics

function neural network (RBFNN) are adopted in control design and stability
analysis. Based on Lyapunov synthesis, the proposed adaptive NN control ensures
that both the altitude and the yaw angle track the given bounded reference signals
to a small neighborhood of zero, and guarantees the Semi-Globally Uniformly
Ultimate Boundedness (SGUUB) of all the closed-loop signals at the same time. The
effectiveness of the proposed control is illustrated through extensive simulations.
Compared with the model-based control used in [104], approximation-based control
using NN, proposed in this chapter, can accommodate the presence of model
uncertainties, reduce the dependence on accurate model building, and thus lead to
the tracking performance improvement.

5.2 Problem Formulation and Preliminaries

We consider the VARIO scale model helicopter [104], however, the functions and
parameters involved in the model are unknown. For clarity, we restate the helicopter
dynamics here, which are described by Lagrangian formulation in the following:

D.q/ Rq C C.q; Pq/ Pq C F. Pq/CG.q/C�.q; Pq/ D B. Pq/� (5.1)

where q; Pq, and Rq are referred as the vectors of generalized coordinates, gener-
alized velocities, and generalized accelerations, respectively. In particular, q D
Œq1; q2; q3�

T D Œz; �; ��T with z as the attitude (z > 0 downwards), � as the yaw
angle, and � as the main rotor azimuth angle; Pq D Œ Pq1; Pq2; Pq3�T D ŒPz; P�; P��T with Pz
as the vertical velocity, P� as the yaw rate, and P� as the main rotor angular velocity;
Rq D Œ Rq1; Rq2; Rq3�T D ŒRz; R�; R��T with Rz as the vertical acceleration, R� as the yaw
acceleration, and R� as the main rotor angular acceleration; D.q/ 2 R3�3 is the
inertia matrix; C.q; Pq/ Pq 2 R3 is the vector of Coriolis and centrifugal forces;
F. Pq/ 2 R3 is the vector of friction forces; G.q/ 2 R3 is the vector of gravitational
forces; �.q; Pq/ 2 R3 is the vector of the model uncertainties, which may be caused
by unmodeled dynamics, sensor errors or aerodynamical disturbances from the
environment; B. Pq/ 2 R3�2 is the matrix of control coefficients; and the control
inputs � D Œ�1; �2�

T 2 R2 are the main and tail rotor collectives (swash plate
displacements), respectively. By exploiting the physical properties of the helicopter,
e.g., how the control inputs are distributed to the helicopter dynamics, or the
coupling relationship between the states, better performance can be achieved. To this
end, we assume partial knowledge of the structure of the dynamics [104], although
the functions and parameters involved are unknown:

D.q/ D
2
4
d11 0 0

0 d22.q3/ d23

0 d23 d33

3
5 C.q; Pq/ D

2
4
0 0 0

0 c22.q3; Pq3/ c23.q3; Pq2/
0 c32.q3; Pq2/ 0

3
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F. Pq/ D
2
4
f1. Pq3/
0

f3. Pq3/

3
5 G.q/ D

2
4
g1
0

g3

3
5 �.q; Pq/ D

2
4
�1.q; Pq/
�2.q; Pq/
�3.q; Pq/

3
5

B. Pq/ D
2
4
b11. Pq3/ 0

0 b22. Pq3/
b31. Pq3/ 0

3
5 (5.2)

where d11; d23; d33; g1; g3 are unknown constants, d22.q3/; c22.q3; Pq3/; c23.q3; Pq2/;
c32.q3; Pq2/; f1. Pq3/; f3. Pq3/; b11. Pq3/; b22. Pq3/; b31. Pq3/;�1.q; Pq/; �2.q; Pq/ and
�3.q; Pq/ are unknown functions.

To facilitate control design in Sect. 5.3, the following assumptions are in order:

Assumption 5.1. The terms d11 and d22.q3/d33�d223
2d33

are positive.

Assumption 5.2. The following equation Pd22.q3/� 2c22.q3; Pq3/ D 0 holds.

Remark 5.1. It is easy to know that the helicopter model in (5.1) with the parameters
given in [104], which will be used in the subsequent simulation section, satisfies
both Assumptions 5.1 and 5.2.

Assumption 5.3. The signs of b11. Pq3/ and b22. Pq3/ are known. Without losing
generality, assume that b11. Pq3/ is positive and b22. Pq3/ is negative. There exist
positive constants b11 and b22, such that 0 � b11 � jb11. Pq3/j and 0 � b22 �
jb22. Pq3/j.
Remark 5.2. In this section, the vertical flight mode after take-off is considered.
From physical analysis, to lift the helicopter up for flight operation, j Pq3j has to
be larger than some certain positive value (e.g., c0) to overcome the gravity. It is
noted that in the specific helicopter model given in (5.1), b11. Pq3/ D 3:411 Pq23 �
3:411c20 > 0. Therefore, there always exist some positive constants b11 such that
0 � b11 � jb11. Pq3/j during the vertical flight mode. Similar analysis can be applied
to b22. Pq3/ as in Assumption 5.3.

Assumption 5.4. There exist positive constants d22 and Nd22, such that d22 �
jd22.q3/j � Nd22.
Remark 5.3. Assumption 5.4 is reasonable due to d22.q3/ D 0:4305 C 0:0003

cos2.�4:143q3/ in the specific helicopter model given in (5.1), which will be used
in the subsequent simulation section.

The control objective is to ensure that the tracking errors for the altitude q1.t/
and yaw angle q2.t/ from their respective desired trajectories q1d .t/ and q2d .t/, are
driven to a small neighborhood of zero, i.e., jqi.t/ � qid .t/j � �i , where �i > 0,
i D 1; 2; at the same time, the main rotor angular velocity Pq3.t/ is stable.

Assumption 5.5. The desired trajectories q1d .t/ and q2d .t/ and their time deriva-
tives up to the 3rd order are continuously differentiable and bounded for all t � 0.
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The following technical lemma is required in the subsequent control design and
stability analysis.

Lemma 5.4. For a; b 2 RC, the following inequality holds

ab

a C b
� a (5.3)

5.3 Control Design

In this section, we will design an adaptive neural control to accommodate the
presence of uncertainties in the dynamics (5.1), appearing in the functions D.q/,
C.q; Pq/, F. Pq/, G.q/, �.q; Pq/ and B. Pq/. After some simple manipulations on (5.1)
and (5.2), we can obtain three subsystems: q1-subsystem (5.4), q2-subsystem (5.5)
and q3-subsystem (5.6) as follows:

d11 Rq1 C f1. Pq3/C g1 C�1.q; Pq/ D b11. Pq3/�1 (5.4)

d22.q3/d33 � d223
d33

Rq2 C c22.q3; Pq3/ Pq2 C c23.q3; Pq2/ Pq3 C�2.q; Pq/C d23

d33
.b31. Pq3/�1

�c32.q3; Pq2/ Pq2 � f3. Pq/� g3 ��3.q; Pq// D b22. Pq3/�2 (5.5)

d22.q3/d33 � d223
d22.q3/

Rq3 C c32.q3; Pq2/ Pq2 C f3. Pq3/C g3 C�3.q; Pq/

C d23

d22.q3/
.b22. Pq3/�2 � c22.q3; Pq3/ Pq2 � c23.q3; Pq2/ Pq3 ��2.q; Pq// D b31. Pq3/�1

(5.6)

In the following, we will analyze and design a control for each subsystem. For
clarity, define the tracking errors and the filtered tracking errors as

ei D qi � qid ; ri D Pei C �iei (5.7)

where �i is a positive number, i D 1; 2. Then, the boundedness of ri guarantees the
boundedness of ei and Pei [10, 71–94]. To study the stability of ei and Pei , we only
need to study the properties of ri . In addition, the following computable signals are
defined:

Pqir D Pqid � �iei ; Rqir D Rqid � �i Pei
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5.3.1 RBFNN-Based Control

In this section, we will investigate the RBFNN based control design by Lyapunov
synthesis to achieve the control objective. Regarding to the obtained three subsys-
tems (5.4)–(5.6), our control design consists of three steps: First, we will design
control �1 based on the q1-subsystem (5.4); Second, design �2 based on the q2-
subsystem (5.5) and �1; finally, analyze the stability of the internal dynamics of
q3-subsystem (5.6).

� q1-subsystem
Since Pq1 D Pq1r C r1, Rq1 D Rq1r C Pr1, (5.4) becomes

d11 Pr1 D b11. Pq3/�1 � fS1;1 (5.8)

where

fS1;1 D d11 Rq1r C f1. Pq3/C g1 C�1.q; Pq/ (5.9)

is an unknown continuous function, which is approximated by RBFNN to arbitrarily
any accuracy as

fS1;1 D W �T
1 S1.Z1/C "1.Z1/ (5.10)

where the input vector Z1 D Œq1; Pq1; q2; Pq2; q3; Pq3; Pq1d ; Rq1d �T 2 ˝Z1 � R8;
"1.Z1/ is the approximation error satisfying j"1.Z1/j � N"1, where N"1 is a positive
constant; W �

1 are ideal constant weights satisfying kW �
1 k � w1m, where w1m is a

positive constant; and S1.Z1/ are the basis functions. By using OW1 to approximate
W �
1 , the error between the actual and the ideal RBFNNs can be expressed as

OW1

T
S1.Z1/�W �T

1 S1.Z1/ D QW1
T
S1.Z1/ (5.11)

where QW1 D OW1 �W �
1 .

Consider the following Lyapunov function candidate

V1 D 1

2
d11r

2
1 C 1

2
QW1

T
	 �1
1

QW1 (5.12)

The time derivative of (5.12) along (5.8) and (5.10) is given by

PV1 D d11r1 Pr1 C QW1
T
	 �1
1

PQW1

D r1
�
b11. Pq3/�1 �W �T

1 S1.Z1/� "1.Z1/
� C QW1

T
	 �1
1

PQW1 (5.13)
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As W �
1 is a constant vector, we know that PQW1 D POW1. Therefore, (5.13) becomes

PV1 D r1
�
b11. Pq3/�1 �W �T

1 S1.Z1/� "1.Z1/
� C QW1

T
	 �1
1

POW1 (5.14)

Consider the following RBFNN-based control law and RBFNN weight adaptation
law:

�1 D �k1r1 �
r1

� OW1

T
S1.Z1/

�2

b11

�
jr1 OW1

T
S1.Z1/j C ı1

� (5.15)

POW1 D �	1
h
S1.Z1/r1 C 
1 OW1

i
(5.16)

where k1 > 0, ı1 > 0, 	1 D 	 T
1 > 0, and 
1 > 0.

Remark 5.5. The above 
-modification adaptation law (5.16) can be replaced by

e-modification adaptation law like POW1 D �	1
h
S1.Z1/r1 C 
1jr1j OW1

i
easily. The

control design based on 
-modification adaptation law in this chapter can be
extended to the case based on e-modification adaptation law without any difficulty.

Substituting (5.15) and (5.16) into (5.14), we have

PV1 D �k1b11. Pq3/r21 � b11. Pq3/
b11

r21

� OW1

T
S1.Z1/

�2

jr1 OW1

T
S1.Z1/j C ı1

� r1W �T
1 S1.Z1/ � r1"1.Z1/

�r1 QW1
T
S1.Z1/� 
1 QW1

T OW1 (5.17)

According to Assumption 5.3 and (5.11), we can rewrite (5.17) as

PV1 � �k1b11r21 �
r21

� OW1

T
S1.Z1/

�2

jr1 OW1

T
S1.Z1/j C ı1

� r1 OW1

T
S1.Z1/� r1"1.Z1/

�
1 QW1
T OW1

� �k1b11r21 �
r21

� OW1

T
S1.Z1/

�2

jr1 OW1

T
S1.Z1/j C ı1

C jr1 OW1

T
S1.Z1/j C jr1jj"1.Z1/j

�
1 QW1
T OW1 (5.18)

Noting that

�
r21

� OW1

T
S1.Z1/

�2

jr1 OW1

T
S1.Z1/j C ı1

C jr1 OW1

T
S1.Z1/j D jr1 OW1

T
S1.Z1/jı1

jr1 OW1

T
S1.Z1/j C ı1

(5.19)
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According to Lemma 5.4, we can obtain from (5.19) that

�
r21

� OW1

T
S1.Z1/

�2

jr1 OW1

T
S1.Z1/j C ı1

C jr1 OW1

T
S1.Z1/j � ı1 (5.20)

By completion of squares and using Young’s inequality, the following inequali-
ties hold:

�
1 QW T
1

OW1 � �
1
2

k QW1k2 C 
1

2
kW �

1 k2 (5.21)

jr1jj"1.Z1/j � r21
2c1

C c1"
2
1.Z1/

2
� r21
2c1

C c1 N"21
2

(5.22)

where c1 is a positive constant. Substituting the above inequalities (5.20)–(5.22) into
(5.18) leads to

PV1 � �
�
k1b11 � 1

2c1

�
r21 � 
1

2
k QW1k2 C ı1 C c1

2
N"21 C 
1

2
w21m

� ��10V1 C �10 (5.23)

where �10 D min
n
.2k1b11�1=c1/=d11; 
1=�max.	

�1
1 /

o
, �10 D ı1C c1

2
N"21C 
1

2
w21m.

� q2-subsystem
Similar to Sect. 5.3.1, since Pq2 D Pq2r C r2, Rq2 D Rq2r C Pr2, (5.5) becomes

d22.q3/d33 � d223
d33

Pr2 C c22.q3; Pq3/r2 D b22. Pq3/�2 � fS2;1 (5.24)

where

fS2;1 D d22.q3/d33 � d223
d33

Rq2r C c22.q3; Pq3/ Pq2r C c23.q3; Pq2/ Pq3 C�2.q; Pq/

Cd23

d33
.b31. Pq3/�1 � c32.q3; Pq2/ Pq2 � f3. Pq3/ � g3 ��3.q; Pq//

is an unknown function, which is approximated by RBFNN to arbitrarily any
accuracy as

fS2;1 D W �T
2 S2.Z2/C "2.Z2/ (5.25)

where the input vector Z2 D Œ�1; q1; Pq1; q2; Pq2; q3; Pq3; q2d ; Pq2d ; Rq2d �T 2
˝Z2 � R10, "2.Z2/ is the approximation error satisfying j"2.Z2/j � N"2, where N"2
is an unknown positive constant;W �

2 are unknown ideal constant weights satisfying
kW �

2 k � w2m, where w2m is an unknown positive constant; and S2.Z2/ are the
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basis functions. By using OW2 to approximate W �
2 , the error between the actual and

the ideal RBFNNs can be expressed as

OW T
2 S2.Z2/�W �T

2 S2.Z2/ D QW T
2 S2.Z2/ (5.26)

where QW2 D OW2 �W �
2 .

To analyze the closed loop stability for the q2-subsystem, let

V2 D 1

2

d22.q3/d33 � d223
d33

r22 C 1

2
QW T
2 	

�1
2

QW2 (5.27)

Lemma 5.6. The function V2 (5.27) is positive definite and decrescent, in the
sense that there exist two time-invariant positive definite functions V 2.r2;

QW2/ and
NV2.r2; QW2/, such that

V 2.r2;
QW2/ � V2 � NV2.r2; QW2/

Proof. Noting that the particular choice of V2 in (5.27), a function of r2; QW2 and
d22.q3/, is to establish the stability for r2 and QW2 only, therefore, we regard d22.q3/
as a function of time. From Assumptions 5.1 and 5.4, we know that

0 <

ˇ̌
ˇd22jd33j � d223

ˇ̌
ˇ

jd33j <
ˇ̌
ˇd22.q3/d33 � d223

d33

ˇ̌
ˇ �

Nd22jd33j C d223
jd33j (5.28)

Therefore, there also exist time-invariant positive definite functions V 2.r2;
QW2/

and NV2.r2; QW2/, such that V 2.r2;
QW2/ � V2 � NV2.r2; QW2/, which implies that V2 is

also positive definite and decrescent, according to [94]. This completes the proof.ut
The time derivative of (5.27) is given as

PV2 D 1

2
Pd22.q3/r22 C d22.q3/d33 � d223

d33
r2 Pr2 C QW T

2 	
�1
2

PQW2 (5.29)

According to Assumption 5.2, (5.29) becomes

PV2 D r2

�
d22.q3/d33 � d223

d33
Pr2 C c22.q3; Pq3/r2

	
C QW T

2 	
�1
2

PQW2 (5.30)

As W �
2 is a constant vector, it is easy to obtain that

PQW2 D POW2 (5.31)
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Substituting (5.24), (5.25) and (5.31) into (5.30), we have

PV2 D r2
�
b22. Pq3/�2 �W �T

2 S2.Z2/ � "2.Z2/
� C QW T

2 	
�1
2

POW2 (5.32)

Consider the following RBFNN-based control law and RBFNN weight adaption
law:

�2 D k2r2 C
r2

� OW2

T
S2.Z2/

�2

b22

�
jr2 OW2

T
S2.Z2/j C ı2

� (5.33)

POW2 D �	2
h
S2.Z2/r2 C 
2 OW2

i
(5.34)

where k2 > 0, ı2 > 0, 	2 D 	 T
2 > 0 and 
2 > 0. Substituting (5.33) and (5.34) into

(5.32), we have

PV2 D k2b22. Pq3/r21 C b22. Pq3/
b22

r22

� OW2

T
S2.Z2/

�2

jr2 OW2

T
S2.Z2/j C ı2

� r2W
�T
2 S2.Z2/� r2"2.Z2/

�r2 QW2
T
S2.Z2/� 
2 QW2

T OW2 (5.35)

According to Assumption 5.3 and (5.26), we can rewrite (5.35) as

PV2 � �k2b22r22 �
r22

� OW2

T
S2.Z2/

�2

jr2 OW2

T
S2.Z2/j C ı2

� r2 OW2

T
S2.Z2/� r2"2.Z2/

�
2 QW2
T OW2

� �k2b22r22 �
r22

� OW2

T
S2.Z2/

�2

jr2 OW2

T
S2.Z2/j C ı2

C jr2 OW2

T
S2.Z2/j C jr2jj"2.Z2/j

�
2 QW2
T OW2 (5.36)

Similar to (5.20), we have

�
r22

� OW2

T
S2.Z2/

�2

jr2 OW2

T
S2.Z2/j C ı2

C jr2 OW2

T
S2.Z2/j � ı2 (5.37)
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By completion of squares and using Young’s inequality, the following inequali-
ties hold:

�
2 QW T
2

OW2 � �
2
2

k QW2k2 C 
2

2
kW �

2 k2 (5.38)

jr2jj"2.Z2/j � r22
2c2

C c2"
2
2.Z2/

2
� r22
2c2

C c2 N"22
2

(5.39)

where c2 is a positive constant. Substituting the above inequalities (5.37)–(5.39) into
(5.36) leads to

PV2 � �
�
k2b22 � 1

2c2

�
r22 � 
2

2
k QW2k2 C ı2 C c2

2
N"22 C 
2

2
w22m

� ��20V2 C �20 (5.40)

where �20 D min
n
.2k2b22 � 1=c2/jd33j=. Nd22jd33j C d223/; 
2=�max.	

�1
2 /

o
, �20 D

ı2 C c2
2

N"22 C 
2
2

w22m.
� q3-subsystem
Finally, using the designed control laws (5.15) and (5.33), the q3-subsystem (5.6)

can be rewritten as

P� D  .
; �; u/ (5.41)

where � D Œq3; Pq3�T, 
 D Œq1; q2; Pq1; Pq2�T, u D Œ�1; �2�
T.

Then, the zero dynamics can be addressed as [35]

P� D  .0; �; u�.0; �// (5.42)

where u� D Œ��
1 ; �

�
2 �

T.

Assumption 5.6. [35] System (5.4)–(5.6) is hyperbolically minimum-phase, i.e.,
zero dynamics (5.42) is exponentially stable. In addition, assume that the control
input u is designed as a function of the states (
, �) and the reference signal
satisfying Assumption 5.5, and the function f .
; �; u/ is Lipschitz in 
, i.e., there
exist constants L
 and Lf for f .
; �; u/ such that

kf .
; �; u/ � f .0; �; u�/k � L
k
k C Lf (5.43)

where u� D u�.0; �/.

Under Assumption 5.6, by the Converse Theorem of Lyapunov [52], there exists
a Lyapunov function V0.�/ which satisfies

�ak�k2 � V0.�/ � �bk�k2 (5.44)
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@V0

@�
f .0; �; u�/ � ��ak�k2 (5.45)

k@V0
@�

k � �bk�k (5.46)

where �a, �b , �a and �b are positive constants.

Lemma 5.7. [35] For the internal dynamics P� D f .
; �; u/ of the system, if
Assumption 5.6 is satisfied, and the states 
 are bounded by a positive constant
k
kmax, i.e., k
k � k
kmax, then there exist positive constants L� and T0, such that

k�.t/k � L�; 8t > T0 (5.47)

Proof. According to Assumption 5.6, there exists a Lyapunov function V0.�/.
Differentiating V0.�/ along (5.4)–(5.6) yields

PV0.�/ D @V0

@�
f .
; �; u/

D @V0

@�
f .0; �; u�/C @V0

@�

�
f .
; �; u/ � f .0; �; u�/

�
(5.48)

Noting (5.43)–(5.46), (5.48) can be written as

PV0.�/ � ��ak�k2 C �bk�k.L
k
k C Lf /

� ��ak�k2 C �bk�k.L
k
kmax C Lf /

Therefore, PV0.�/ � 0, whenever

k�k � �b

�a
.L
k
kmax C Lf /

By letting L� D �b
�a
.L
k
kmax C Lf /, we conclude that there exists a positive

constant T0, such that (5.47) holds. ut
The following Theorem shows the stability and control performance of the closed
loop system.

Theorem 5.8. Consider the closed-loop system consisting of the subsystems
(5.4)–(5.6), the control laws (5.15), (5.33) and adaptation laws (5.16), (5.34).
Under Assumptions 5.1–5.6, the overall closed-loop neural control system is Semi-
Globally Uniformly Ultimately Bounded (SGUUB) in the sense that all of the
signals in the closed-loop system are bounded, and the tracking errors and neural
weights converge to the following regions,
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je1j � je1.0/j C 1

�1

s
2�1

d11

k OW1k �
s

2�1

�min.	
�1
1 /

C w1m

je2j � je2.0/j C 1

�2

vuut 2jd33j�2ˇ̌
ˇd22jd33j � d223

ˇ̌
ˇ

k OW2k �
s

2�2

�min.	
�1
2 /

C w2m (5.49)

with

�i D �i0

�i0
C Vi.0/; �i0 D ıi C 1

2
N"2i C 
i

2
w2im; i D 1; 2

�10 D min
n
.2k1b11 � 1=c1/=d11; 
1=�max.	

�1
1 /

o

�20 D min
n
.2k2 � 1=c2/jd33j=. Nd22jd33j C d223/; 
2=�max.	

�1
2 /

o

where ei .0/ and Vi .0/ are initial values of ei .t/ and Vi .t/, respectively.

Proof. Based on the previous analysis, the proof proceeds by studying each subsys-
tem in order. First, the closed loop stability analysis of the q1-subsystem (5.4) with
control �1 (5.15) and adaptation law (5.16) is made by use of Lyapunov synthesis.
Second, the similar closed loop stability will be achieved on the q2-subsystem (5.5)
with �2 (5.33) and adaptation law (5.34). Finally, the stability analysis of internal
dynamics of the q3-subsystem (5.6) is made based on the stability of the previous
two subsystems.
q1- subsystem:
Solving the inequality (5.23), we have 0 � V1.t/ � �1 with �1 D �10

�10
C V1.0/.

Then, from the definition of V1.t/ (5.12), we can obtain

jr1j �
s
2�1

d11
; k QW1k �

s
2�1

�min.	
�1
1 /

(5.50)

Since Pe1 D ��1e1 C r1, solving this equation results in

e1 D e��1t e1.0/C
Z t

0

e��1.t��/r1d� (5.51)
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According to (5.50) and (5.51), we have

je1j � je1.0/j C 1

�1

s
2�1

d11
(5.52)

Noting q1 D e1 C q1d , OW1 D QW1 CW �
1 , kW �

1 k � w1m and Assumption 5.5, we
obtain

jq1j � je1j C jq1d j � je1.0/j C 1

�1

s
2�1

d11
C jq1d j 2 L1

k OW1k � k QW1k C kW �
1 k �

s
2�1

�min.	
�1
1 /

C w1m 2 L1

Since the control �1 is a function of r1 and OW1, its boundedness is also assured.
q2- subsystem:
Similar to the analysis of q1- subsystem, we have

jr2j �
vuut 2jd33j�2ˇ̌

ˇd22jd33j � d223
ˇ̌
ˇ
; k QW2k �

s
2�2

�min.	
�1
2 /

(5.53)

Furthermore, we obtain

je2j � je2.0/j C 1

�2

vuut 2jd33j�2ˇ̌
ˇd22jd33j � d223

ˇ̌
ˇ

jq2j � je2j C jq2d j � je2.0/j C 1

�2

vuut 2jd33j�2ˇ̌
ˇd22jd33j � d223

ˇ̌
ˇ

C jq2d j 2 L1

k OW2k � k QW2k C kW �
2 k �

s
2�2

�min.	
�1
2 /

C w2m 2 L1 (5.54)

and thus the boundedness of control �2.
q3- subsystem:
From the previous stability analysis about the q1-subsystem and the q2-

subsystem, we know that q1; q2; Pq1; Pq2 are bounded. Accordingly, 
 are bounded.
According to Lemma 5, we know that the internal dynamics are stable, i.e., � (q3
and Pq3) are bounded. All the signals in the closed-loop system are bounded. This
completes the proof. ut
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5.3.2 MNN-Based Control

Nonlinearly parameterized approximators, such as the MNN, can be linearized by
Taylor series expansions, with the higher order terms being taken as part of the
modeling error. Due to the nonlinear parameterizations, the control design and
stability analysis involving the MNN is more complex than the previous one based
on the linearly parameterized network, i.e., the RBFNN, but still can follow the
similar procedures as the afore-mentioned RBFNN-based one.

� q1-subsystem
Similar to the RBFNN case in Sect. 5.3.1, (5.4) is written as

d11 Pr1 D b11. Pq3/�1 � fS1;1 (5.55)

where the unknown continuous function

fS1;1 D d11 Rq1r C f1. Pq3/C g1 C�1.q; Pq/ (5.56)

is approximated by MNN to arbitrarily any accuracy as

fS1;1 D W �T
1 S1.V

�T
1 Z1/C "1.Z1/ (5.57)

where the input vector Z1 D Œq1; Pq1; q2; Pq2; q3; Pq3; Pq1d ; Rq1d ; 1�T 2 ˝Z1 � R9;
"1.Z1/ is the approximation error satisfying j"1.Z1/j � N"1, where N"1 is a positive
constant; W �

1 and V �
1 are unknown ideal constant weights satisfying kW �

1 k �
w1m; kV �

1 kF � v1m, which are positive constants. By using OW T
1 S1.

OV T
1 Z1/ to

approximateW �T
1 S1.V

�T
1 Z1/, the error between the actual and the ideal MNN can

be expressed as

OW T
1 S.

OV T
1 Z1/�W �T

1 S.V �T
1 Z1/ D QW T

1 .
OS1 � OS 0

1
OV T
1 Z1/C OW T

1
OS 0
1

QV T
1 Z1 C du1

(5.58)

where OS1 D S. OV T
1 Z1/, OS 0

1 D diag fOs0
1; Os0

2; :::; Os0
l g with

Os0
i D s0.OvT

i Z/ D dŒs.za/�

dza
jzaDOvT

i Z

the residual term du1 is bounded by

jdu1j � kV �
1 kF kZ1 OW T

1
OS 0
1kF C kW �

1 kk OS 0
1

OV T
1 Z1k C jW �

1 j1 (5.59)

and the weight estimation errors QW1 D OW1 �W �
1 , QV1 D OV1 � V �

1 .
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Consider the following Lyapunov function candidate

V1.r1; QW1; QV1/ D 1

2
d11r

2
1 C 1

2
QW1

T
	 �1
W1

QW1 C 1

2
tr

n QV1T
	 �1
V1

QV1
o

(5.60)

The time derivative of (5.60) along (5.55) and (5.57) is given by

PV1 D r1
�
b11. Pq3/�1 �W �T

1 S1.V
�T
1 Z1/� "1.Z1/

� C QW1
T
	 �1
W1

PQW1

Ctr
n QV1T

	 �1
V1

PQV1
o

(5.61)

As W �
1 ; V

�
1 are constant vectors, it is easy to obtain that

PQW1 D POW1;
PQV1 D POV1 (5.62)

Substituting (5.62) into (5.61), we have

PV1 D r1
�
b11. Pq3/�1 �W �T

1 S1.V
�T
1 Z1/� "1.Z1/

� C QW1
T
	 �1
W1

POW1

Ctrf QV1T
	 �1
V1

POV1g (5.63)

Consider the following MNN-based control law and MNN weight adaption laws:

�1 D �k1r1 �
r1

� OW T
1 S.

OV T
1 Z1/

�2

b11

�
jr1 OW T

1 S.
OV T
1 Z1/j C ı1

� � k1r1

b11
.kZ1 OW T

1
OS 0
1k2F

Ck OS 0
1

OV T
1 Z1k2/ (5.64)

POW1 D �	W1Œ. OS1 � OS 0
1

OV T
1 Z1/r1 C 
W1 OW1� (5.65)

POV1 D �	V1ŒZ1 OW T
1

OS 0
1r1 C 
V1 OV1� (5.66)

where k1 > 0, ı1 > 0, 	W1 D 	 T
W1 > 0, 	V1 D 	 T

V1 > 0, 
W1 > 0, 
V1 > 0.
Substituting (5.64)–(5.66) in (5.63), we have

PV1 D �k1b11. Pq3/r21 � b11. Pq3/
b11

r21

� OW T
1 S.

OV T
1 Z1/

�2
�
jr1 OW T

1 S.
OV T
1 Z1/j C ı1

�

�b11. Pq3/
b11

k1r
2
1

�
kZ1 OW T

1
OS 0
1k2F C k OS 0

1
OV T
1 Z1k2

�
� r1W �T

1 S1.V
�T
1 Z1/

�r1"1.Z1/ � r1 QW T
1 .

OS1 � OS 0
1

OV T
1 Z1/ � 
W1 QW T

1
OW1

�trf QV1T
Z1 OW T

1
OS 0
1r1g � 
V1trf QV1T OV1g (5.67)
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Noting Assumption 5.3 and the fact that trf QV1T
Z1 OW T

1
OS 0
1r1g D r1 OW T

1
OS 0
1

QV1T
Z1,

(5.67) becomes

PV1 � �k1b11r21 �
r21

� OW T
1 S.

OV T
1 Z1/

�2
�
jr1 OW T

1 S.
OV T
1 Z1/j C ı1

�

�k1r21
�
kZ1 OW T

1
OS 0
1k2F C k OS 0

1
OV T
1 Z1k2

�

Cjr1jj"1.Z1/j � r1W
�T
1 S1.V

�T
1 Z1/ � r1 QW T

1 .
OS1 � OS 0

1
OV T
1 Z1/

�r1 OW T
1

OS 0
1

QV1T
Z1 � 
W1 QW T

1
OW1 � 
V1trf QV1T OV1g (5.68)

From (5.58) and (5.59), we know

�r1W �T
1 S1.V

�T
1 Z1/ � r1 QW T

1 .
OS1 � OS 0

1
OV T
1 Z1/� r1 OW T

1
OS 0
1

QV1T
Z1

D �r1 OW T
1 S.

OV T
1 Z1/ � r1du1

� jr1 OW T
1 S.

OV T
1 Z1/j C jr1jkV �

1 kF kZ1 OW T
1

OS 0
1kF C jr1jkW �

1 kk OS 0
1

OV T
1 Z1k

Cjr1jjW �
1 j1 (5.69)

Substituting (5.69) in (5.68) leads to

PV1 � �k1b11r21 �
r21

� OW T
1 S.

OV T
1 Z1/

�2
�
jr1 OW T

1 S.
OV T
1 Z1/j C ı1

� C jr1 OW T
1 S.

OV T
1 Z1/j

�k1r21
�
kZ1 OW T

1
OS 0
1k2F C k OS 0

1
OV T
1 Z1k2

�
C jr1jj"1.Z1/j

Cjr1jkV �
1 kF kZ1 OW T

1
OS 0
1kF C jr1jkW �

1 kk OS 0
1

OV T
1 Z1k

Cjr1jjW �
1 j1 � 
W1 QW T

1
OW1 � 
V1trf QV1T OV1g (5.70)

According to Lemma 5.4,

�
r21

� OW T
1 S.

OV T
1 Z1/

�2

jr1 OW T
1 S.

OV T
1 Z1/j C ı1

C jr1 OW T
1 S.

OV T
1 Z1/j D jr1 OW T

1 S.
OV T
1 Z1/jı1

jr1 OW T
1 S.

OV T
1 Z1/j C ı1

� ı1

(5.71)
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By completion of squares and using Young’s inequality, the following inequalities
hold:

jr1jj"1.Z1/j � r21
2c11

C c11 N"21
2

(5.72)

jr1jkV �
1 kF kZ1 OW T

1
OS 0
1kF � k1r

2
1kZ1 OW T

1
OS 0
1k2F C 1

4k1
kV �

1 k2F (5.73)

jr1jkW �
1 kk OS 0

1
OV T
1 Z1k � k1r

2
1k OS 0

1
OV T
1 Z1k2 C 1

4k1
kW �

1 k2 (5.74)

jr1jjW �
1 j1 � r21

2c12
C c12jW �

1 j21
2

(5.75)

�
W1 QW T
1

OW1 � �
W1
2

k QW1k2 C 
W1

2
kW �

1 k2 (5.76)

�
V1trf QV1T OV1g � �
V1
2

k QV1k2F C 
V1

2
kV �

1 k2F (5.77)

Substituting (5.71)–(5.77) into (5.70), we have

PV1 � �
�
k1b11 � 1

2c11
� 1

2c12

�
r21 � 
W1

2
k QW1k2 � 
V1

2
k QV1k2F C ı1

C
�

W1

2
C 1

4k1

�
kW �

1 k2 C
�

V1

2
C 1

4k1

�
kV �

1 k2F C c11

2
N"21 C c12jW �

1 j21
2

� ��10V1 C �10 (5.78)

where �10 D min
n
.2k1b11�1=c11�1=c12/=d11; 
W1=�max.	

�1
W1 /; 
V1=�max.	

�1
V1 /

o
,

�10 D ı1 C . 
W1
2

C 1
4k1
/kW �

1 k2 C . 
V1
2

C 1
4k1
/kV �

1 k2F C c11
2

N"21 C c12jW �

1 j21
2

.
� q2-subsystem
Similar to Sect. 5.3.1, (5.5) becomes

d22.q3/d33 � d223
d33

Pr2 C c22.q3; Pq3/r2 D b22. Pq3/�2 � fS2;1 (5.79)

where the unknown function

fS2;1 D d22.q3/d33 � d223
d33

Rq2r C c22.q3; Pq3/ Pq2r C c23.q3; Pq2/ Pq3 C�2.q; Pq/

Cd23

d33
.b31. Pq3/�1 � c32.q3; Pq2/ Pq2 � f3. Pq3/ � g3 ��3.q; Pq//

is approximated by MNN to arbitrarily any accuracy as

fS2;1 D W �T
2 S2.V

�T
2 Z2/C "2.Z2/
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where the input vector Z2 D Œ�1; q1; Pq1; q2; Pq2; q3; Pq3; q2d ; Pq2d ; Rq2d ; 1�T 2
˝Z2 � R11, "2.Z2/ is the approximation error satisfying j"2.Z2/j � N"2, where N"2
is a positive constant; W �

2 and V �
2 are ideal constant weights satisfying kW �

2 k �
w2m; kV �

2 kF � v2m, which are positive constants. By using OW T
2 S2.

OV T
2 Z2/ to

approximateW �T
2 S2.V

�T
2 Z2/, the error between the actual and the ideal MNN can

be expressed as

OW T
2 S.

OV T
2 Z2/�W �T

2 S.V �T
2 Z2/ D QW T

2 .
OS2 � OS 0

2
OV T
2 Z2/C OW T

2
OS 0
2

QV T
2 Z2 C du2

(5.80)

where OS2 D S. OV T
2 Z2/, OS 0

2 D diag fOs0
1; Os0

2; :::; Os0
l g with

Os0
i D s0.OvT

i Z2/ D dŒs.za/�

dza
jzaDOvT

i Z2

and the residual term du2 is bounded by

jdu2j � kV �
2 kF kZ2 OW T

2
OS 0
2kF C kW �

2 kk OS 0
2

OV T
2 Z2k C jW �

2 j1 (5.81)

and the weight estimation errors QW2 D OW2 �W �
2 ;

QV2 D OV2 � V �
2 .

To analyze the closed loop stability for the q2-subsystem, consider the following
Lyapunov function candidate

V2.r2; QW2; QV2/ D 1

2

d22.q3/d33 � d223
d33

r22 C 1

2
QW T
2 	

�1
W 2

QW2 C 1

2
trf QV T

2 	
�1
V 2

QV2g
(5.82)

Lemma 5.9. The function V2 (5.82) is positive definite and decrescent, in the sense
that there exist two time-invariant positive definite functions V 2.r2;

QW2; QV2/ and
NV2.r2; QW2; QV2/, such that

V 2.r2;
QW2; QV2/ � V2 � NV2.r2; QW2; QV2/

Proof. The proof follows the same approach as Lemma 5.6 and is omitted here for
conciseness. ut
The time derivative of (5.82) is given as

PV2 D 1

2
Pd22.q3/r22 C d22.q3/d33 � d223

d33
r2 Pr2 C QW T

2 	
�1
2

PQW2 C trf QV T
2 	

�1
V 2

PQV2g
(5.83)
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According to Assumption 5.2, (5.83) becomes

PV2 D r2

�
d22.q3/d33 � d223

d33
Pr2 C c22.q3; Pq3/r2

	
C QW T

2 	
�1
2

PQW2 C trf QV T
2 	

�1
V 2

PQV2g

(5.84)

As W �
2 ; V

�
2 are constant vectors, it is easy to obtain that

PQW2 D POW2;
PQV2 D POV2 (5.85)

Substituting (5.79),(5.80), and (5.85) into (5.89), we have

PV2 D r2
�
b22. Pq3/�2 �W �T

2 S2.V
�T
2 Z2/� "2.Z2/

�

C QW T
2 	

�1
W 2

POW2 C trf QV T
2 	

�1
V 2

POV2g (5.86)

Consider the following MNN-based control law and MNN weight adaption laws:

�2 D k2r2 C
r2

� OW T
2 S.

OV T
2 Z2/

�2

b22

�
jr2 OW T

2 S.
OV T
2 Z2/j C ı2

�

Ck2r2

b22
.kZ2 OW T

2
OS 0
2k2F C k OS 0

2
OV T
2 Z2k2/ (5.87)

POW2 D �	W 2Œ. OS2 � OS 0
2

OV T
2 Z2/r2 C 
W 2

OW2� (5.88)

POV2 D �	V 2ŒZ2 OW T
2

OS 0
2r2 C 
V 2 OV2� (5.89)

where k2 > 0, ı2 > 0, 	W 2 D 	 T
W 2 > 0, 	V 2 D 	 T

V 2 > 0, 
W 2 > 0, 
V 2 > 0.
Substituting (5.87)–(5.89) into (5.86), we have

PV2 D k2b22. Pq3/r22 C b22. Pq3/
b22

r22

� OW T
2 S.

OV T
2 Z2/

�2
�
jr2 OW T

2 S.
OV T
2 Z2/j C ı2

�

Cb22. Pq3/
b22

k2r
2
2

�
kZ2 OW T

2
OS 0
2k2F C k OS 0

2
OV T
2 Z2k2

�
� r2W

�T
2 S2.V

�T
2 Z2/

�r2"2.Z2/� r2 QW T
2 .

OS2 � OS 0
2

OV T
2 Z2/� 
W 2 QW T

2
OW2

�trf QV2T
Z2 OW T

2
OS 0
2r2g � 
V 2trf QV2T OV2g (5.90)
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Noting Assumption 5.3 and the fact that trf QV2T
Z2 OW T

2
OS 0
2r2g D r2 OW T

2
OS 0
2

QV2T
Z2,

(5.90) becomes

PV2 � �k2b22r21 �
r22

� OW T
2 S.

OV T
2 Z2/

�2
�
jr2 OW T

2 S.
OV T
2 Z2/j C ı2

� � k2r22
�
kZ2 OW T

2
OS 0
2k2F C k OS 0

2
OV T
2 Z2k2

�

Cjr2jj"2.Z2/j � r2W �T
2 S2.V

�T
2 Z2/ � r2 QW T

2 .
OS2 � OS 0

2
OV T
2 Z2/

�r2 OW T
2

OS 0
2

QV2T
Z2 � 
W 2

QW T
2

OW2 � 
V 2trf QV2T OV2g (5.91)

From (5.80) and (5.81), we know that

�r2W �T
2 S2.V

�T
2 Z2/ � r2 QW T

2 .
OS2 � OS 0

2
OV T
2 Z2/� r2 OW T

2
OS 0
2

QV2T
Z2

D �r2 OW T
2 S.

OV T
2 Z2/ � r2du2

� jr2 OW T
2 S.

OV T
2 Z2/j C jr2jkV �

2 kF kZ2 OW T
2

OS 0
2kF C jr2jkW �

2 kk OS 0
2

OV T
2 Z2k

Cjr2jjW �
2 j1 (5.92)

Substituting (5.92) into (5.91) leads to

PV2 � �k2b22r22 �
r22

� OW T
2 S.

OV T
2 Z2/

�2
�
jr2 OW T

2 S.
OV T
2 Z2/j C ı2

� C jr2 OW T
2 S.

OV T
2 Z2/j

�k2r22
�
kZ2 OW T

2
OS 0
2k2F C k OS 0

2
OV T
2 Z2k2

�
C jr2jj"2.Z2/j

Cjr2jkV �
2 kF kZ2 OW T

2
OS 0
2kF C jr2jkW �

2 kk OS 0
2

OV T
2 Z2k C jr2jjW �

2 j1
�
W 2 QW T

2
OW2 � 
V 2trf QV2T OV2g (5.93)

According to Lemma 5.4,

�
r22

� OW T
2 S.

OV T
2 Z2/

�2
�
jr2 OW T

2 S.
OV T
2 Z2/j C ı2

� C jr2 OW T
2 S.

OV T
2 Z2/j D jr2 OW T

2 S.
OV T
2 Z2/jı2

jr2 OW T
2 S.

OV T
2 Z2/j C ı2

� ı2

(5.94)

By completion of squares and using Young’s inequality, the following inequalities
hold:

jr2jj"2.Z2/j � r22
2c21

C c21 N"22
2

(5.95)

jr2jkV �
2 kF kZ2 OW T

2
OS 0
2kF � k2r

2
2kZ2 OW T

2
OS 0
2k2F C 1

4k2
kV �

2 k2F (5.96)
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jr2jkW �
2 kk OS 0

2
OV T
2 Z2k � k2r

2
2k OS 0

2
OV T
2 Z2k2 C 1

4k2
kW �

2 k2 (5.97)

jr2jjW �
2 j1 � r22

2c22
C c22jW �

2 j21
2

(5.98)

�
W 2
QW T
2

OW2 � �
W 2
2

k QW2k2 C 
W 2

2
kW �

1 k2 (5.99)

�
V 2trf QV2T OV2g � �
V 2
2

k QV2k2F C 
V 2

2
kV �

2 k2F (5.100)

Substituting (5.94)–(5.100) into (5.93), we have

PV2 � �
�
k2b22 � 1

2c21
� 1

2c22

�
r22 � 
W 2

2
k QW2k2 � 
V 2

2
k QV2k2F C ı2

C
�

W 2

2
C 1

4k2

�
kW �

2 k2 C
�

V 2

2
C 1

4k2

�
kV �

2 k2F C c21

2
N"22 C c22jW �

2 j21
2

� ��20V2 C �20 (5.101)

where �20 D min
n
.2k2b22�1=c21�1=c22/jd33j=. Nd22jd33jCd223/; 
W 2=�max.	

�1
W 2/;


V 2=�max.	
�1
V 2 /

o
, �20 D ı2 C . 
W 2

2
C 1

4k2
/kW �

2 k2 C . 
V 2
2

C 1
4k21

/kV �
2 k2F C c21

2
N"22 C

c22jW �

2 j21
2

.
� q3-subsystem
Finally, for the system (5.4)–(5.6) under control laws (5.64) and (5.87), we can

obtain similar internal dynamics to Sect. 5.3.1.
The main result in this section can be summarized as the following theorem:

Theorem 5.10. Consider the closed-loop system consisting of the subsystems
(5.4)–(5.6), the control laws (5.64), (5.87), and adaptation laws (5.65)–(5.66),
(5.88)–(5.89). Under Assumptions 5.1–5.6, the overall closed-loop neural control
system is SGUUB in the sense that all of the signals in the closed-loop system are
bounded, and the tracking errors and weights converge to the following regions,

je1j � je1.0/j C 1

�1

s
2�1

d11
; je2j � je2.0/j C 1

�2

vuut 2jd33j�2ˇ̌
ˇd22jd33j � d223

ˇ̌
ˇ
;

k OV1kF �
s

2�1

�min.	
�1
1 /

C v1m; k OV2kF �
s

2�2

�min.	
�1
2 /

C v2m

k OW1k �
s

2�1

�min.	
�1
1 /

C w1m; k OW2k �
s

2�2

�min.	
�1
2 /

C w2m;
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with

�i D �i0

�i0
C Vi.0/

�i0 D ıi C
�

W i

2
C 1

4ki

�
kW �

i k2 C
�

V i

2
C 1

4ki1

�
kV �

i k2F C ci1

2
N"2i C ci2jW �

i j21
2

;

i D 1; 2

�10 D min
n
.2k1b11 � 1=c11 � 1=c12/=d11; 
W1=�max.	

�1
W1 /; 
V1=�max.	

�1
V1 /

o

�20 D min
n
.2k2b22 � 1=c21 � 1=c22/jd33j=. Nd22jd33j C d223/; 
W 2=�max.	

�1
W 2/;


V 2=�max.	
�1
V 2 /

o

where ei .0/ and Vi .0/ are initial values of ei .t/ and Vi .t/, respectively.

Proof. The proof of Theorem 5.10 follows the same approach as Theorem 5.8, and
will be omitted here for conciseness. ut

5.4 Simulation Study

To illustrate the proposed adaptive neural control, we consider the VARIO he-
licopter mounted on a platform [104], with the dynamic model as (5.1) and
the following parameters d11 D 7:5, d22.q3/D 0:4305 C 0:0003 cos2.�4:143q3/,
d23 D 0:108, d33 D 0:4993, c22.q3; Pq3/D 0:0006214 sin.�8:286q3/ Pq3, c23.q3; Pq2/D
c32.q3; Pq2/D 0:0006214 sin.�8:286q3/ Pq2, g1 D �77:259, g3 D �2:642, f1. Pq3/D �
0:6004 Pq3, f3. Pq3/D � 0:0001206 Pq23, b11. Pq3/D 3:411 Pq23 , b22. Pq3/D � 0:1525 Pq23,
b31. Pq3/D 12:01 Pq3 C 105, and all quantities are expressed in S.I. units. The control
objective is to track the uniformly bounded desired trajectories given in [104] as
follows:

q1d D

8̂
<̂
ˆ̂:

�0:2 0 � t � 50 s
0:3Œe�.t�50/2=350 � 1�� 0:2 50 < t � 130 s
0:1 cosŒ.t � 130/=10�� 0:6 130 < t � 20� C 130

�0:5 t � 20� C 130

q2d D

8̂
ˆ̂<
ˆ̂̂:

0 t < 50 s
1 � e�.t�50/2=350 50 � t < 120 s

e�.t�120/2=350 120 � t < 180

�1C e�.t�180/2=350 t � 180
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5.4.1 Internal Dynamics Stability Analysis

In this section, we analyze the stability of the internal dynamics according to the
related discussion in [104]. For conciseness, we consider the RBFNN-based control
case only, which can be easily extended to the MNN-based control case without
any difficulties. For the RBFNN-based control case, we substitute (5.10), (5.15),
(5.25) and (5.33) into the q3-subsystem (5.6). According to the definition of the
zero dynamics [35], we set r1, r2, QW T

1 , QW T
2 , "1.Z1/ and "2.Z2/ to zero, and the

desired trajectories and initial data can be chosen in such a way that terms including
Pq22 , Rq1d , Rq2d can be neglected [104], so we have

Rq3 D 1

d33

�
b31. Pq3/
b11. Pq3/ .f1. Pq3/C g1/� f3. Pq3/� g3

	
(5.102)

Substituting the term values given in the beginning of Sect. 5.4 into (5.102) and
analyzing the values of the main rotor angular velocity from which the main rotor
angular acceleration is zero, we have

4:1137 � 10�4 Pq43 C 1:8011 Pq23 � 60968 Pq3 � 7725900D 0

Its solutions are Pq�
3 D �124:63;�219:5˙ 468:16i and 563:64 rad/s. Only the first

value Pq�
3 D �124:63 has a physical meaning for the system. If we linearize (5.102)

around the equilibrium point Pq�
3 D �124:63, we can obtain an eigenvalue �2:44.

Therefore, according to [52], all initials of Pq3 sufficiently near Pq�
3 D �124:63 can

converge to �124:63. It then follows that the internal dynamics of the helicopter
system in (5.1) have a stable behavior.

The simulation result in Fig. 5.1 also shows that the internal dynamics using
RBFNN-based control are indeed stable. From Fig. 5.1, we can observe that the
main rotor angular velocity Pq3 converges to the nominal value �124:63 rad/s for
different initial conditions ranging from �40 rad/s to �150 rad/s, which includes the
typical operating values more than sufficiently. These results are expected from the
previous stability analysis, and also consistent with the results in [104]. In particular,
we also notice that the further the initial condition starts from the nominal value
�124:63 rad/s, the longer the settling time takes, and the more serious the transient
oscillations become. This is reasonable in practice. If some preliminary knowledge
about the nominal value is known in advance, the initial condition can be set closer
to achieve better performance.



116 5 Altitude and Yaw Control of Helicopters with Uncertain Dynamics

0 5 10 15
−180

−160

−140

−120

−100

−80

−60

−40

time [s]

th
e 

m
ai

n 
ro

to
r 

an
gu

la
r 

ve
lo

ci
ty

  [
ra

d/
s]

Fig. 5.1 Main rotor angular velocity behavior for different initial conditions using RBFNN-based
control

5.4.2 Performance Comparison Results Between
Approximation-Based Control and Model-Based Control

In this subsection, we will compare the altitude and yaw angle tracking performance
using RBFNN-based control, MNN-based control and the model-based control
adopted in [104]. If all the parameters and functions in (5.1) are known exactly,
and the unmodeled uncertainties�.�/ D 0, the perfect tracking performance can be
achieved using model-based control, which has been shown in the work [104]. How-
ever, in practice, there always exist some model uncertainties, which may be caused
by unmodeled dynamics or aerodynamical disturbances from the environment. To
this end, we assume �.�/ ¤ 0, in particular, �.�/ D Œ2:0; 0; 0:0001206 Pq23 C
0:142�T.

The control parameters for the RBFNN control laws (5.15) (5.33) and adapta-
tion laws (5.16) (5.34) are chosen as follows: k1 D 0:000085, �1 D 0:2, k2 D
0:0002, �2 D 1:0, 	1 D 0:001I , 	2 D 0:0001I , 
1 D 0:001, 
2 D 0:001. NNs
OW T
1 S1.Z1/ contains 38 nodes (i.e., l1 D 2187), with centers �l.l D 1; :::; l1/ evenly

spaced in Œ�1:0; 1:0��Œ�0:1; 0:1��Œ�10:0;�10:0��Œ�40000:0; 0:0��Œ�1:0; 1:0��
Œ�150:0;�40:0� � Œ�0:1; 0:1� � Œ�0:01; 0:01�, and widths �l D 1:0.l D 1; :::; l1/.
NNs OW T

2 S2.Z2/ contains 310 nodes (i.e., l2 D 59049), with centers �l.l D 1; :::; l2/

evenly spaced in Œ�0:005; 0:005� � Œ�1:0; 1:0� � Œ�0:1; 0:1� � Œ�10:0;�10:0� �
Œ�40000:0; 0:0� � Œ�1:0; 1:0� � Œ�150:0;�40:0� � Œ�10:0; 10:0� � Œ�1:0; 1:0� �
Œ�0:01; 0:01�, and widths �l D 1:0.l D 1; :::; l2/. The initial conditions are:
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Fig. 5.2 Altitude tracking performance in the presence of model uncertainties

q1.0/ D 0:1 m, Pq1.0/ D 0:0 m/s, q2.0/ D �� rad, Pq2.0/ D 0:0 rad/s, q3.0/ D ��
rad, Pq3.0/ D �120:0 rad/s, �1 D 0:0 m, �2 D 0:0 m, OW1.0/ D 0:0, OW2.0/ D 0:0.

For the MNN control laws (5.64) and (5.87) and adaptation laws (5.65), (5.66),
(5.88) and (5.89), the design parameters are chosen as: k1 D 0:00016, �1 D 1:2,
k2 D 0:0002, �2 D 1:0, 	W1 D 0:0002I , 	V1 D 0:03I , ıW1 D 0:0, 
V1 D
0:0, 	W 2 D 0:0001I , 	V 2 D 0:01I , 
W 2 D 0:0, 
V 2 D 0:0. NNs OW T

1 S1.
OV T
1 Nz1/

contains five nodes and NNs OW T
2 S2.

OV T
2 Nz2/ contains 15 nodes. The initial conditions

are: q1.0/ D 0:1m, Pq1.0/ D 0m/s, q2.0/ D �� rad, Pq2.0/ D 0:0 rad/s, q3.0/ D ��
rad, Pq3.0/ D �120:0 rad/s, �1 D 0:0 m, �2 D 0:0 m, OW1.0/ D 0:0, OV1.0/ D
0:0, OW2.0/ D 0:0, OV2.0/ D 0:0.

From Figs. 5.2 and 5.3, we can observe that due to the existence of model
uncertainties, both the altitude tracking and yaw angle tracking using model-based
control have some offsets to the desired trajectories for the whole period. This means
that model-based control depends on the accuracy of the model heavily and cannot
deal with the uncertainties well. For the tracking performance using the RBFNN-
based control and MNN-based control, though there are also some oscillations at
the initial period, the tracking errors can converge to a very small neighborhood
of desired trajectories in a short time of about 20 s. This is because the model
uncertainties can be learnt by RBFNN and MNN during the beginning 25 s. After
that period, the uncertainties can be compensated for, and thus, the robustness of
uncertainties is improved and good tracking performance is achieved. In addition,
Figs. 5.4 and 5.5 indicates norms of neural weights for approximation-based control
and control actions for three control methods.
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Fig. 5.3 Yaw angle tracking performance in the presence of model uncertainties

0 5 10 15 20 25 30

0

2

4

6

8

10
× 10−4

× 10−4

time [s]

no
rm

 o
f n

eu
ra

l w
ei

gh
ts

RBFNN

0 5 10 15 20 25 30
−1

0

1

2

3

4

no
rm

 o
f n

eu
ra

l w
ei

gh
ts

MNN

‖W2‖

‖W1‖

‖W1‖

‖W2‖

‖V1‖F

‖V2‖F

Fig. 5.4 Norm of neural weights



5.5 Conclusion 119

0 5 10 15 20 25 30
−4

−2

0

2

× 10−3

× 10−3

time [s]

co
nt

ro
l i

np
ut

s
using RBFNN−based control

0 5 10 15 20 25 30
−1

0

1

time [s]

co
nt

ro
l i

np
ut

s

using MNN−based control

0 1 2 3 4 5 6 7 8 9 10
−0.02

0

0.02

0.04

time [s]

co
nt

ro
l i

np
ut

s

using model−based control

τ1

τ1

τ2

τ2

τ1

τ2

Fig. 5.5 Control inputs for altitude and yaw angle tracking in the presence of model uncertainties

5.5 Conclusion

In this chapter, NN approximation-based control was investigated for the MIMO
helicopter altitude and yaw angle tracking in the presence of model uncertainties.
Compared with the model-based control, which is sensitive to the accuracy of
the model representation, NN approximation-based control is tolerant of model
uncertainties, and can be viewed as a key advantage over model-based control of
helicopters, for which accurate modeling of helicopter dynamics is difficult, time-
consuming and costly. Simulation results demonstrated that the helicopter is able to
track altitude and yaw angle reference signals satisfactorily, with all other closed-
loop signals bounded.
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