Chapter 5
Altitude and Yaw Control of Helicopters
with Uncertain Dynamics

5.1 Introduction

In Chap.4, a robust adaptive neural network (NN) control is presented for
helicopters in vertical flight, with dynamics in single-input single-output (SISO)
nonlinear nonaffine form. By limiting the scope to the vertical flight regime, SISO
models can be used to yield useful results, since the coupling between longitudinal
and lateral-directional equations in this flight regime is weak [84]. While the
proposed controller handles vertical flight, other flight regimes can be handled by
other control modules. Evidently, SISO control designs have limited practical use,
and many more investigations are needed in the control of multi-input multi-output
(MIMO) helicopter dynamics for generality in applications.

Practical helicopter motion governed by a MIMO model has an underactuated
configuration, i.e., the number of control inputs is less than the number of degrees of
freedom to be stabilized, which makes it difficult to apply the conventional robotics
approach for controlling Euler-Lagrange systems. Thus, some flight control tech-
niques need to be further developed for the nonlinear MIMO helicopter dynamics.
In [104], model-based control was applied to an autonomous scale MIMO model
helicopter mounted in a 2-degree-of-freedom (2DOF) platform. Since helicopter
control applications are characterized by unknown aerodynamical disturbances,
they are generally difficult to model accurately. The presence of modeling errors,
in the form of parametric and functional uncertainties, and unmodeled dynamics
and disturbances from the environment, is a common problem. In this context,
model-based control, such as the aforementioned schemes, tends to be susceptible
to uncertainties and disturbances that cause performance degradation.

In this chapter, altitude and yaw angle tracking are considered for a scale MIMO
model helicopter [104] in the presence of model uncertainties, which may be caused
by unmodeled dynamics, sensor errors or aerodynamical disturbances from the
environment. To deal with the presence of model uncertainties, approximation-
based techniques using a NN have been proposed. In particular, two commonly
used NNs, namely the multilayer neural network (MNN) and the radial basis
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function neural network (RBFNN) are adopted in control design and stability
analysis. Based on Lyapunov synthesis, the proposed adaptive NN control ensures
that both the altitude and the yaw angle track the given bounded reference signals
to a small neighborhood of zero, and guarantees the Semi-Globally Uniformly
Ultimate Boundedness (SGUUB) of all the closed-loop signals at the same time. The
effectiveness of the proposed control is illustrated through extensive simulations.
Compared with the model-based control used in [104], approximation-based control
using NN, proposed in this chapter, can accommodate the presence of model
uncertainties, reduce the dependence on accurate model building, and thus lead to
the tracking performance improvement.

5.2 Problem Formulation and Preliminaries

We consider the VARIO scale model helicopter [104], however, the functions and
parameters involved in the model are unknown. For clarity, we restate the helicopter
dynamics here, which are described by Lagrangian formulation in the following:

D(9)g + C(q.9)q + F(§) + G(q) + Alg.4) = B(g)t (CRY)

where ¢, ¢, and § are referred as the vectors of generalized coordinates, gener-
alized velocities, and generalized accelerations, respectively. In particular, ¢ =
[91.92.93]" = [z.¢.y]" with z as the attitude (z > 0 downwards), ¢ as the yaw
angle, and y as the main rotor azimuth angle; ¢ = [§1,¢2,¢3]" = [z, ¢, p]T with z
as the vertical velocity, ¢ as the yaw rate, and y as the main rotor angular velocity;
G = [41.42. 431" = [z, ¢,7]" with 7 as the vertical acceleration, ¢ as the yaw
acceleration, and § as the main rotor angular acceleration; D(q) € R**3 is the
inertia matrix; C(q,§)§ € R® is the vector of Coriolis and centrifugal forces;
F(§) € R? is the vector of friction forces; G(g) € R? is the vector of gravitational
forces; A(g,q) € R? is the vector of the model uncertainties, which may be caused
by unmodeled dynamics, sensor errors or aerodynamical disturbances from the
environment; B(¢) € R3**? is the matrix of control coefficients; and the control
inputs = [r;,2]" € R? are the main and tail rotor collectives (swash plate
displacements), respectively. By exploiting the physical properties of the helicopter,
e.g., how the control inputs are distributed to the helicopter dynamics, or the
coupling relationship between the states, better performance can be achieved. To this
end, we assume partial knowledge of the structure of the dynamics [104], although
the functions and parameters involved are unknown:

dyp 0 0 0 0 0
D(q) = | 0 dxn(g3) dos C(q.9) = | 0 cn(g3,q3) c23(g3.42)
0 dyn di 0 ¢32(g3.¢2) 0
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[ f1(43) 81 A1(q.9)
F(g) = 0 G@=1|0 Aq.q) = | A2(q.9)
L f3(g3) g3 A3(q.9)
[ b1i(g3) O
B(g) = 0 bxn(g3) (5.2)
| b31(g3) O

where d,;, das, ds3, g1, g3 are unknown constants, dx(q3), ¢22(93,43), ¢23(q3, 42),
c2(93,92),  f1(q3), f3(43), b11(q3), b2n(q3), b31(q3), Ai(q.q), Aa(g,q) and
As(q, ¢) are unknown functions.

To facilitate control design in Sect. 5.3, the following assumptions are in order:

. d dy3—d? ..
Assumption 5.1. The terms d;; and %ﬁ are positive.

Assumption 5.2. The following equation ds(¢3) — 2¢22(¢3. 3) = 0 holds.

Remark 5.1. Itis easy to know that the helicopter model in (5.1) with the parameters
given in [104], which will be used in the subsequent simulation section, satisfies
both Assumptions 5.1 and 5.2.

Assumption 5.3. The signs of b;1(¢3) and by(g¢3) are known. Without losing
generality, assume that by1(g§3) is positive and by (¢3) is negative. There exist
positive constants b,; and b,,, such that 0 < b,; < |b11(¢3)] and 0 < b,, <
1522(g3)|-

Remark 5.2. In this section, the vertical flight mode after take-off is considered.
From physical analysis, to lift the helicopter up for flight operation, |§3| has to
be larger than some certain positive value (e.g., ¢p) to overcome the gravity. It is
noted that in the specific helicopter model given in (5.1), b11(¢3) = 3.411¢3 >
3.411¢} > 0. Therefore, there always exist some positive constants b, such that
0 < b, < |b11(g3)| during the vertical flight mode. Similar analysis can be applied
to b (g3) as in Assumption 5.3.

Assumption 5.4. There exist positive constants d,, and d>», such that d. n =
|d2(q3)| < daa.

Remark 5.3. Assumption 5.4 is reasonable due to dx(gq3) = 0.4305 + 0.0003
cos?(—4.143¢3) in the specific helicopter model given in (5.1), which will be used
in the subsequent simulation section.

The control objective is to ensure that the tracking errors for the altitude g;(¢)
and yaw angle ¢, (¢) from their respective desired trajectories g14(¢) and g4 (¢), are
driven to a small neighborhood of zero, i.e., |¢; () — qia(¢)| < €;, where ¢; > 0,
i = 1,2; at the same time, the main rotor angular velocity ¢3(¢) is stable.

Assumption 5.5. The desired trajectories q14(¢) and ¢»4(¢) and their time deriva-
tives up to the 3rd order are continuously differentiable and bounded for all # > 0.
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The following technical lemma is required in the subsequent control design and
stability analysis.

Lemma 5.4. Fora,b € RY, the following inequality holds

ab
a+b

=a (5.3)

5.3 Control Design

In this section, we will design an adaptive neural control to accommodate the
presence of uncertainties in the dynamics (5.1), appearing in the functions D(gq),
C(q,9), F(q), G(g), A(g, ¢) and B(q). After some simple manipulations on (5.1)
and (5.2), we can obtain three subsystems: g;-subsystem (5.4), g>-subsystem (5.5)
and g3-subsystem (5.6) as follows:

digr + fi(¢3) + g1+ Ai(g,q) = bu(gs)n (5.4
d dy; —d .. . L . d .
%qz + ¢22(93,43)42 + ¢23(q3, 42)43 + A2(q.q) + d—B(bzl(%)n
33 33
—c32(93,42)42 — f3(q) — g3 — A3(q.q)) = b (§3)12 (5.5)
d dy —d% .. . . )
M% + ¢32(q3.42)42 + f3(43) + 83 + A3(q.q)
d»(q3)
o (b(§3)T2 — 02(g3, 43)dn — €23(q3, 42)43 — Aa(q.9)) = b31(d3)T
d»(q3)

(5.6)

In the following, we will analyze and design a control for each subsystem. For
clarity, define the tracking errors and the filtered tracking errors as

ei =qi —qia, i =¢é +Aje (5.7)
where A; is a positive number, i = 1, 2. Then, the boundedness of r; guarantees the
boundedness of e; and é; [10,71-94]. To study the stability of e¢; and ¢é;, we only

need to study the properties of r;. In addition, the following computable signals are
defined:

Gir = Gia — Aieis Gir = Gia — Aié
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5.3.1 RBFNN-Based Control

In this section, we will investigate the RBFNN based control design by Lyapunov
synthesis to achieve the control objective. Regarding to the obtained three subsys-
tems (5.4)—(5.6), our control design consists of three steps: First, we will design
control t; based on the g;-subsystem (5.4); Second, design 7, based on the ¢;-
subsystem (5.5) and ty; finally, analyze the stability of the internal dynamics of
g3-subsystem (5.6).

O gy -subsystem

Since ¢1 = ¢q1, + 11, 41 = §1r + 71, (5.4) becomes

dinry = bi(g3)t — fsia (5.8)
where
Ssir=dugir + f1(g3) + &1 + A1(q.9) (5.9

is an unknown continuous function, which is approximated by RBFNN to arbitrarily
any accuracy as

fsir = WiTSI(Zy) + e1(Zy) (5.10)
where the input vector Z; = [q1, 1. ¢2. ¢2. 43, 3. Gia. Gial" € 221 C R®;
€1(Z,) is the approximation error satisfying |¢;(Z;)| < &, where &, is a positive

constant; W,* are ideal constant weights satisfying | W,*|| < wi,,, where wy,, is a

positive constant; and S;(Z;) are the basis functions. By using W) to approximate
Wl*, the error between the actual and the ideal RBFNN s can be expressed as

~ T " ~
Wi S1(Zy) — WTS1(Z)) = Wi Si(Zy) (5.11)

where W, = W, — Wi
Consider the following Lyapunov function candidate

1 1.~ -
Vi=gdurl + EWITIT‘WI (5.12)
The time derivative of (5.12) along (5.8) and (5.10) is given by

Vi =dyrii + WlTﬂ_lWl

=1 [bi(@)m — WTSI(Z) — e (Z0)] + Wi T, (5.13)
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As W}* is a constant vector, we know that Wl = Wl. Therefore, (5.13) becomes

. . ~ T 1.~
Vi =ri [bu(ga)t — WTSI(Z)) — e (Z)] + W IT'W, (5.14)

Consider the following RBFNN-based control law and RBFNN weight adaptation
law:

AT 2
rl(Wl 51(21))
T = —kiry — — (5.15)
Qn(|r1W1 S1(Z)| + 51)
Wi =-I [Sl(Zl)rl + 01W1] (5.16)

where ky > 0,8, >0, I = " > 0,and 07 > 0.

Remark 5.5. The above o-modification adaptation law (5.16) can be replaced by
e-modification adaptation law like Wl = -1 [Sl(Z Dr1 + oy |r1|Wl] easily. The

control design based on o-modification adaptation law in this chapter can be
extended to the case based on e-modification adaptation law without any difficulty.

Substituting (5.15) and (5.16) into (5.14), we have

~ T 2
bty (M 5120
by |"1WITSI(ZI)|+51

Vi = —kibyi(Ga)r? — —nWSI(Z1) = riel(Zy)

~ T ~ T A
Wi S1(Z1) —o Wi Wy (5.17)

According to Assumption 5.3 and (5.11), we can rewrite (5.17) as

2(vir T 2
. ) r (Wl Sl(Zl)) AT
Vi = —kibyyri — —— 5 — W Si(Z1) — riel(Zy)
[r Wi S1(Z1)] + 6
—01W1TW1
~ T 2
o r(i'sia) .
< —kibyri — ——= + Wi Siu(Z)] + |nllei(Z)]
[r Wi S1(Z1)] + 6
—0] WlTW1 (518)
Noting that
2( 15T 2 T
" (Wl Sl(zl)) [riW1 S1(Z1)]8:

AT
+ W Si(Zy)| =

-— ] (5.19)
[riW S1(Z1)| + 6 [riWr S1(Z1)| + 6
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According to Lemma 5.4, we can obtain from (5.19) that

rlz(WlTSl(Zl))z

AT
- + W Si(Z)] =6 (5.20)
[riWr Si(Z)] + &

By completion of squares and using Young’s inequality, the following inequali-
ties hold:

N o1, .~ o
—o W < ==L 1WA P + S|P (5.21)
r2 cie7(Z r2 182
llen(Zn)] < 2L 4 SEED) o af) (5.22)
26’1 2 C1 2

where c| is a positive constant. Substituting the above inequalities (5.20)—(5.22) into
(5.18) leads to

1 o1 Cl_, O
- (klgn - 2—61) 7= IR + 80+ S8 + i,

—A10V1 + pio (5.23)

Vi

IA

IA

where A9 = min {(21(11_711 —1/c1)/dn, Ul/kmax(['l_l)}’ po = 81+ $&T+ Gwi,.
O g,-subsystem
Similar to Sect. 5.3.1, since g2 = g2, + 2, G2 = §or + 2, (5.5) becomes

dx(q3)dss — d3

& B s+ e20(q3,§3)r2 = bn(§3)ta — fsa1 (5.24)
where
d dys —d3; .. L L. )
fso1 = qur + ¢22(q3. 43)q2r + €23(q3.42)q3 + A2(q.4)

ds3
d ) L ) )
—i—d—zz(bm(%)fl —c32(q93.42)42 — f3(q3) — g3 — A3(q. )

is an unknown function, which is approximated by RBFNN to arbitrarily any
accuracy as

fs21 = Wy'TS2(Z,) + e2(Z2) (5.25)

where the input vector Z, = [t1, q1. 41, 2. 42, 43, 43. G2d. G2 G2al" €
27, CR 10 ¢,(Z,) is the approximation error satisfying |e,(Z,)| < &, where &,
is an unknown positive constant; W," are unknown ideal constant weights satisfying
W < wam, where ws,, is an unknown positive constant; and S»(Z5) are the
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basis functions. By using W to approximate W,*, the error between the actual and
the ideal RBFNNs can be expressed as

W' S2(Z2) — Wy TS2(Z2) = Wy S5(Z5) (5.26)

where Wy = W, — Wy
To analyze the closed loop stability for the g,-subsystem, let

_ 1 dy(g3)dss — dz

1.~ 3
1% —Wr W 5.27
2 ) d33 ) + B R 2 ( )

Lemma 5.6. The function V, (5.27) is positive definite and decrescent, in the
sense that there exist two time-invariant positive definite functions V ,(r,, W») and
Vo(ra, Wa), such that

V, (12, Wa) < Va < Va(ry, Wa)
Proof. Noting that the particular choice of V2~in (5.27), a function of r,, Wz and

dy(g3), is to establish the stability for r, and W, only, therefore, we regard d»,(q3)
as a function of time. From Assumptions 5.1 and 5.4, we know that

0<

2 -
i22|d33| - d23} < ‘dzz(q3)d33 — d223 - d22|d33| + d223 (5 28)

|d33| ds3 - |d33]
Therefore, there also exist time-invariant positive definite functions V, (7, Wz)

and Va(ry, Wh), such that V,(ry, Wa) < V5 < Vy(ry, Wa), which implies that V; is
also positive definite and decrescent, according to [94]. This completes the proof. O

The time derivative of (5.27) is given as

d»(q3)dss — d3

. 1. . - L
V, = Edzz(‘h)rzz + 7 B iy + WS Wy (5.29)

According to Assumption 5.2, (5.29) becomes

. d dy3 — d? - L
Va=n [%h + 022(43,é3)r2} + W, W, (5.30)

As Wz* is a constant vector, it is easy to obtain that

Wy = Ws (5.31)
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Substituting (5.24), (5.25) and (5.31) into (5.30), we have
Vs = 12 [b22(43) T2 — Wy S2(25) — e2(2)| + Wy Iy W (5.32)

Consider the following RBFNN-based control law and RBFNN weight adaption
law:

AT 2
rz(Wz Sz(Zz))
T = kory + T (5.33)
boo(IraW2' Sa(Z2)] + )
Wy = —Fz[Sz(Zz)rz + ozvffz] (5.34)

where ky > 0,8, >0, > = FZT > 0 and 0, > 0. Substituting (5.33) and (5.34) into
(5.32), we have

AT 2
by (q3) r22<W2 SZ(ZZ))
by |r2W2T52(Zz)| + 6

Vo = kabx(¢3)ri + — Wy 82(25) — r262(Z)

—ra Wy $x(Z2) — oa W' Wi (5.35)

According to Assumption 5.3 and (5.26), we can rewrite (5.35) as

rZ(WTS z ))2
. S\ W2 52(22 T
Vo < —kabyyr; — —— T —1oWa 82(Z2) — 1ea(Zs)
[raWa 82(Z5)| + 8>
N
rzz(Wszz(Zz))z T
< —ksbyri — — = + [ Wa $5(Z2)| + [rallex(2)]
[raWa §2(Z5)| + 6>
— oW W (5.36)

Similar to (5.20), we have

~ T 2
722<W2 Sz(Zz)>
- ~ T
[ Wa S2(Z2)| + 62

AT
+ Wy 82(Z3)] < 62 (5.37)
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By completion of squares and using Young’s inequality, the following inequali-
ties hold:

~ S 0Oy~ (o)) %
—o W, Ws < _7||W2||2 + ?HWZ |12 (5.38)
r2 cei(Z r2
Irallea(Z2)| < =2 + cy(Z) 12 | 028 (5.39)
26’2 2 26’2 2

where c¢; is a positive constant. Substituting the above inequalities (5.37)—(5.39) into
(5.36) leads to

. 1 0y~ Cy_ o}
Vy=— (kzézz - 2—62) ;- 72||W2||2 +8 + 328% + ?zwgm
< —A20Va + oo (5.40)

whete 220 = min {(2Kkaby, — 1/c2)lds/(daalds| + d3), 02/ A (15D} 120 =
&+ %5% + %Zw%m.

O g3-subsystem

Finally, using the designed control laws (5.15) and (5.33), the g3-subsystem (5.6)
can be rewritten as

n=yvEnu (5.41)

where 1 = [g3,43]", £ = [q1, 92,41, ¢2]", u = [11, ] ".
Then, the zero dynamics can be addressed as [35]

7= ¥(0,n,u*(0,1n)) (5.42)

where u* = [1], 77]".

Assumption 5.6. [35] System (5.4)—(5.6) is hyperbolically minimum-phase, i.e.,
zero dynamics (5.42) is exponentially stable. In addition, assume that the control
input u is designed as a function of the states (£, 1) and the reference signal
satisfying Assumption 5.5, and the function f(&, n, u) is Lipschitz in &, i.e., there
exist constants Lg and L  for f(&, n, u) such that

If €. u) = fQO. 0, up)ll < Le||§ll + Ly (5.43)

where u, = u*(0, n).

Under Assumption 5.6, by the Converse Theorem of Lyapunov [52], there exists
a Lyapunov function V{(n) which satisfies

vallnll* < Vo(n) < vslinll? (5.44)
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Vi
Sy /e = —Aallnl (5.45)

Vv
||a—°|| < sl (5.46)
n

where y,, V5, Aq and A, are positive constants.

Lemma 5.7. [35] For the internal dynamics 1 = f(&,n,u) of the system, if
Assumption 5.6 is satisfied, and the states & are bounded by a positive constant
1€ lmax> i-e., [IE]] < ||§|Imax, then there exist positive constants L, and Ty, such that

[n@®I < Ly, Yt>Tp (5.47)

Proof. According to Assumption 5.6, there exists a Lyapunov function V(7).
Differentiating Vy(n) along (5.4)—(5.6) yields

: v,
Von) = 5 f (€m0
n
W PYY
_ 3—,7°f (0,7, uy) + 3—,70 [£E nu) = £(0,n,uy)] (5.48)

Noting (5.43)—(5.46), (5.48) can be written as

~AalInl® + Apllnl (LelIEN + L)
< =Aallnll* + Ap Inll(Lell§ llmax + L 5)

Vo(ﬂ)

IA

A

Therefore, Vo(n) < 0, whenever

A
19l = 37 (Ll llma + L)

By letting L, = i—Z(LgHéHmax + L), we conclude that there exists a positive
constant Tp, such that (5.47) holds. |

The following Theorem shows the stability and control performance of the closed
loop system.

Theorem 5.8. Consider the closed-loop system consisting of the subsystems
(5.4)—(5.6), the control laws (5.15), (5.33) and adaptation laws (5.16), (5.34).
Under Assumptions 5.1-5.6, the overall closed-loop neural control system is Semi-
Globally Uniformly Ultimately Bounded (SGUUB) in the sense that all of the
signals in the closed-loop system are bounded, and the tracking errors and neural
weights converge to the following regions,
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1 /2
el < a1 + 5/ 5
11
s 210
1WAl < i
Amin(Fl l) "

1 2|d
lea] < |e2(0)] + — |d33| 12

A2 ‘422|d33| —ds,
~ [ 212
W < | ————= +wom 5.49
” 2” = Amin(['z_l) w2 ( )
with
_ HMio 1 w2 .
i = — + V(0 0o =20 + = ,1=1,2
w A + ( ) Hio = + 281 + 2 Wim»> 1

ho = min {kiby, = 1/e1)/dir. 01/ Ama( 1)}
hao = min {(2k; = 1/c)ldnl/(daalda| + d3). 02/ (T3

where ¢;(0) and V; (0) are initial values of e; (t) and V;(t), respectively.

Proof. Based on the previous analysis, the proof proceeds by studying each subsys-
tem in order. First, the closed loop stability analysis of the ¢;-subsystem (5.4) with
control t; (5.15) and adaptation law (5.16) is made by use of Lyapunov synthesis.
Second, the similar closed loop stability will be achieved on the g,-subsystem (5.5)
with 1, (5.33) and adaptation law (5.34). Finally, the stability analysis of internal
dynamics of the g3-subsystem (5.6) is made based on the stability of the previous
two subsystems.

q1- subsystem:

Solving the inequality (5.23), we have 0 < V;(¢) < p; with u; = ’“0 + 11(0).
Then, from the definition of V;(¢) (5.12), we can obtain

Il < / m < (F PR (5.50)

Since é; = —Aje; + rq, solving this equation results in

t
e = e—*1’e1(0)+/ e M0 dr (5.51)
0
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According to (5.50) and (5.51), we have

L2
< 0 — = 5.52
ler] < |er(0)] + o\ dn (5.52)

Noting g1 = e1 + qia, Wi = Wi + W%, ||W;*|| < wi,, and Assumption 5.5, we
obtain

1 2
a1l < lerl + lgia] < lerO)] + — | =2 + gra] € Loo
A\ dn
1Al < I+ 17 < —2 4w € Lo
B N /xmin([‘l_l)

Since the control 7; is a function of r; and Wl, its boundedness is also assured.
q»- subsystem:
Similar to the analysis of g;- subsystem, we have

2ld ~ 2
pls |y < [ (5.53)
)422|d33|_dz23 min(I51)
Furthermore, we obtain

1 2ld

e
2| [dolds] - a3,

1 2|d
g2l < leal + Igaal < lex@)] + = | 22 e Lo

R | |dnldss] - a3,

A ~ 2/1,2
Wl < [Wall + W55l < ﬂm"‘wzm € Lo (5.54)

and thus the boundedness of control ;.

q3- subsystem:

From the previous stability analysis about the g;-subsystem and the ¢;-
subsystem, we know that g1, g2, ¢1, ¢ are bounded. Accordingly, £ are bounded.
According to Lemma 5, we know that the internal dynamics are stable, i.e., 1 (¢3
and ¢3) are bounded. All the signals in the closed-loop system are bounded. This
completes the proof. O
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5.3.2 MNN-Based Control

Nonlinearly parameterized approximators, such as the MNN, can be linearized by
Taylor series expansions, with the higher order terms being taken as part of the
modeling error. Due to the nonlinear parameterizations, the control design and
stability analysis involving the MNN is more complex than the previous one based
on the linearly parameterized network, i.e., the RBFNN, but still can follow the
similar procedures as the afore-mentioned RBFNN-based one.

O gy -subsystem

Similar to the RBFNN case in Sect. 5.3.1, (5.4) is written as

dinry = bi(g3)t — fsia (5.55)

where the unknown continuous function

fsrr=dugy + f1(g3) + g1 + Ai(g.9) (5.56)
is approximated by MNN to arbitrarily any accuracy as
fsia = WSV Z1) + e1(Z)) (5.57)

where the input vector Z1 = [¢1. 1. 42. 2. 43, 3. Gia. Gra. 1]" € 22, C R?;
€1(Z,) is the approximation error satisfying |¢;(Z;)| < &, where &, is a positive
constant; W* and V|* are unknown ideal constant weights satisfying ||W*|| <
Wim, |V*IlF < vim, which are positive constants. By using WITSI(I%TZI) to
approximate W*TS;(V*TZ,), the error between the actual and the ideal MNN can
be expressed as

WIS(WTZ) —wrTs(vTzy) = WIS, — S\VIZ) + WESIVIZ, +da

(5.58)
where S, = S(VITZI), S{ = diag {5}, §3, ..., §/} with
~ N d[s(za)]
T
$i=5'0,2) = i@ Izu=0iTZ
the residual term d,,; is bounded by
| < IV IENZOWTS e + WISV Z + W (5.59)

and the weight estimation errors Wl = Wl — Wl* s 171 = 171 — Vl*.
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Consider the following Lyapunov function candidate
Vi(ri, Wi, Vi) = —dnrl ¥o m "ol + —tr{V1 Al 660
The time derivative of (5.60) along (5.55) and (5.57) is given by
. . P
Vi = ri[bu@)n = W1V Zy) = ei(Z0)] + W Ty W
tir {171T1"V—11 f/l} (5.61)
As W*, V|* are constant vectors, it is easy to obtain that
Wi=W,. V=W (5.62)
Substituting (5.62) into (5.61), we have
. X « N ~ T A
Vi = ri [bu(g)n — W SI(VTZy) —el(Z)] + Wi Tyl Wa
el T (5.63)

Consider the following MNN-based control law and MNN weight adaption laws:

A 2
I r1<I:V1TS(I/1T21)) klrl (||ZlWT51||F
bu(InWT STzl +5) B
+HISTA 211 (5.64)
ﬁ/l = —Twi[(S1 = S{VTZ )y + owi W) (5.65)
I1/1 = —I[ZWS]r + o V] (5.66)

wherekl >0,81 >0»FW1 = Fl:lr/l >0»FV1 = Fl;rl >0,0'Wl >0,0'Vl > 0.
Substituting (5.64)—(5.66) in (5.63), we have

A A 2
by (IS Z))

bu (IS Z0) + 1)

Vi = —kib11(¢3)r? —

~bu(g3)
by

—rlel(Zl) — I WIT(Sl — S’{VITZl) — 0wl WITW1

L (1200 ST + 1SV Z0P) = W T s1 (v 20)

—tr{VlTZIWlTS’{rl}—Uyltr{VlTVl} (5.67)



108 5 Altitude and Yaw Control of Helicopters with Uncertain Dynamics

Noting Assumption 5.3 and the fact that tr{VlTZﬂ/f/ITS{rl} =r WITS‘I’VITZb
(5.67) becomes

2( /T 7T 2
, o r(Wrsorzy)
Vi < —klénrl -

(WS Zol +8)
—ar? (12 S11% + 1577 Z11P)
Hrillen(Z)] = TSIV Z0) = n W (S0 = STV Z))
—r WISV Z) — oy WIWi — oyte{ Vi) (5.68)
From (5.58) and (5.59), we know
WIS (VT Zy) = WSy — SIVTZ) — n WISV Z,
= WISWZ) - rda
< WIS Zo| + Inl IV NI ZoWES e + In WIS VT 24 |
+rlIWh (5.69)

Substituting (5.69) in (5.68) leads to

rf(WlTS(Vszl))z

Vi < —kibyri - + WSV Zy)

(In TSz + 61)
kit (IZFT 8113 + 1877 Z112) + Inlle (Z0)]
Hrl VI F N ZOVES e + W STV Z4 |
oA ~T A
+Hr [|[WE — owi WEW) — opite{ Vi Vi) (5.70)
According to Lemma 5.4,
R 2
(WS zy)
WISV Z)| + 8

InWIS(VEZ))|6 1
|F1W1TS(I71T21)| +68
(5.71)

+ WISV Z)| =
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By completion of squares and using Young’s inequality, the following inequalities
hold:

2 =2
C11€
nllen(Zy)] < —— + 2L

5.72
= e > (5.72)

AT A AT A 1
IV IE N ZOWE ST e < kPl Zowy S + 4—kl||V1*||2F (5.73)

N IS 1
W IISTV Zall < kP ISTVEZ )P + 4_k1”W‘*”2 (5.74)

2 2
r Cl2|W1*|1

Wr < 5.75
Wl = 5 5 (5.75)
T3 W15 ow
—ow W Wy < =2 WP + —‘||W1*||2 (5.76)
~ T A~ o o
—ontr{Vy i} < =Vl + VI (5.77)
Substituting (5.71)—(5.77) into (5.70), we have
o<~ (kb - — ) 2= T = R+
- - 2c11 2¢12 2 2
owl oy cin o cn|WER
S L e L R
< —Aw0V1 + o (5.78)

where A9 = min {(Zklbll_l/cll_l/cl2)/dllvO-Wl//\max(rv;ll)vO-Vl//\max(rl/_ll)},

= o |WE
i = 81+ 8+ g WP+ 5+ g VI + 8 + 25
O g,-subsystem
Similar to Sect. 5.3.1, (5.5) becomes

dx(gq3)ds3 —

@ rz + 22(q3,G3)r2 = b (§3)T2 — fs2.1 (5.79)

where the unknown function

dx(q3)ds3 —

fSZ,l d33

qu + 293, §3)42r + c23(93, G2)43 + Ax(q.q)
da3 ) .. ) .
+d—33(b31(613)fl —c32(q93.42)42 — f3(q3) — g3 — A3(q. )

is approximated by MNN to arbitrarily any accuracy as

fs21 = Wy T SH(V5 1 Z5) + e2(25)
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where the input vector Z> = [t1, q1. 41, 2. G2, 3, G3, God, Gad» Goa, 1T €
2z, C R, £5(Z,) is the approximation error satisfying |€,(Z,)| < &, where &,
is a positive constant; W,* and V,* are ideal constant weights satisfying [|[W,"| <
o, IV5lF < vam, which are positive constants. By using WZTS2(172TZZ) to
approximate W,*TS,(V,*TZ,), the error between the actual and the ideal MNN can
be expressed as

WSV Zy) — W TS(V; T 2,) = Wi (S, — SUVT Z,) + W SIVT 2y + dy

(5.80)
where §, = S(V,fZ,), S} = diag {5/, 8. ... 57} with
. . d[s(z4)]
Si/ = s/(v;rzz) = T|Za=f’,~Tzz
and the residual term d,,; is bounded by
\dial < VS 1N Z2W5 S5l 7 + W 1S5 V5 Za) + W5 (5.81)

and the weight estimation errors Wz = Wz - Wy, 172 = 172 -Vt
To analyze the closed loop stability for the ¢,-subsystem, consider the following
Lyapunov function candidate

1 dn(g3)dss — d3,

Va(ry, Wa, V) = 5 7
33

1.~ ~ 1 -~ -
3+ EWzTFv?%Wz + Etr{VZTFV_Zl Va}
(5.82)

Lemma 5.9. The function V, (5.82) is positive definite and decrescent, in the sense
that there exist two time-invariant positive definite functions V,(r2, Wa, V2) and
Va(ry, Wa, V3), such that

Vo (ry, Wa, Vo) <V < Va(ry, Wa, Va)

Proof. The proof follows the same approach as Lemma 5.6 and is omitted here for
conciseness. O

The time derivative of (5.82) is given as

.1, don(q3)ds; — d3 I B
V2= Sdn(ga)r} + —22(‘]3)61;3 2 pofy + Wol Iy Wa + w75 13 Vi)

(5.83)
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According to Assumption 5.2, (5.83) becomes

Vy=r [%j_déh + 022(43543)72} + WZTF[IWZ +u{ VI ) f/z}
(5.84)
As Wz*, Vz* are constant vectors, it is easy to obtain that
Wy =W, Vh=T (5.85)
Substituting (5.79),(5.80), and (5.85) into (5.89), we have
Vo =12 [bn(@3)1s — Wy T S2(V5 T Z5) — e2(Z5) ]
FWIT AW, + w7 T ) (5.86)

Consider the following MNN-based control law and MNN weight adaption laws:

TTQ(T 2
rz(Wz S Zz))
T = kory + - —
b (IR WS 2:)] +6,)
kor PN PSRN
I ZWISIG + 1875 Za0P) (5.87)
=22
Wz = _FWZ[(SZ — SZI%TZZ)"Z + UWZWZ] (5.88)
Vo = —Tya[ZoWy Sy + 02 Va) (5-89)

Wherekz >O,82>0,FW2 = FI}/2>O,FV2 = F{/rz >O,GW2 >0,UV2 > 0.
Substituting (5.87)—(5.89) into (5.86), we have
2(1WT QT 2
B r2<W2 S5 22))

Va = kaby(g3)r; + b A
b (1 TS (7 22)] +62)

b22(43)
by

—r282(Z2) — W (S5 — S5V Zs) — o Wy Wi

+

kar3 (1 Z2W7 S35 + IS5V7 ZaI1?) = ra Wy 82057 22)

—tr{VZTZZWZTSAérz} — UVQU'{VZTI}Q} (5.90)
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Noting Assumption 5.3 and the fact that tr{ VZTZZ WzTﬁérz} =7 WZTSA‘Q VZTZZ,
(5.90) becomes

r22(vi/2TS(I72Tzz))2

Va < —kabyrt — — ko3 (122W5" S35 + 18375 221

(I WSV 2] + 5 )
+rallea(Zo)] = Wy T S2(Vs T Z) — Wyl (S — S5V, Z,)
—rW,' S} Vo' Zy — ows W Wy — opatr{ A (5.91)
From (5.80) and (5.81), we know that
WISy (VT Zs) — W (Sy — S4VE Z5) — W SLVS' Zs
= WSSV, Z) — radyn
< [nWSW Zo)| + [l VS e 1 Z2 W5 S5 e + [l | W5E 1S5V Za |
+ral W5 (5.92)
Substituting (5.92) into (5.91) leads to

rg(WZTS(I?ZTzz))2

I‘/2 =< _kzézzrzz - + |I’2W2TS(I}2TZQ)|

(lI’QWZTS(VZTZzN + 82)
—kar3 (1 Z2W3 S35 + 18575 2 ) + Irallex(Zo)
Hrl IV N Z2 WS Ssll e + [ W N ISS VS Za | + [ral W5ty
~ ~ ~ T~
—O'WQWZTWZ — Uvztr{ Vs Vz} (5.93)
According to Lemma 5.4,

A N 2
S UARIUAFAY WS (VT 2,16,

= ~ = 02
|r2W2TS(V2TZ2)| + 6

- + Wy S (V) Z2)] =
(ISP 2] + 5 )

(5.94)

By completion of squares and using Young’s inequality, the following inequalities
hold:

2 =2
Irallea(Z)] < —2- 4 252 (5.95)
2621 2

) e e 1
V5 | | Z2 W3 Shll e < kar2 || Za W5 ShII% + 4—kz||V2*||% (5.96)
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AN N 1
Il IW 183V Zal < kar3 S5V Za 1% + 4—]{2IIW2"II2 (597

en|Ws 3
W —_— 4 == 5.98
I [Wy 1 =< 2 + 7 (5.98)
24 ow2 * (12
—ow 2 Wy W < ——||Wz|| ||Wl [ (5.99)
o
o7V} = =22Vl + £||V2 I3 (5.100)
Substituting (5.94)—(5.100) into (5.93), we have
. 1 1 OW2 = oy2 =
V< —(kobyy— — — — ) 2= 22101 = Z2 152 + 6
2 = (2_22 200, 2622)72 2 [ Wal| 3 V2l + 82
ow2 2 (o2 G 022|W2*|%
W) w — v
+(2 +%)uzn (2 +%)n2u gy 2nh
< —AxnVa + pao (5.101)

where A9 = min {(2k2b22—1/021—1/sz)|d33|/(d22|d33|+d ), w2/ Amax (D),
0v2/ Amax (I3 )} M20 = 82 + (F5* + 4k I 12+ (%2 + 4;621)||V*||2 + 48+

¢22|Wz |2

D q3-subsystem

Finally, for the system (5.4)—(5.6) under control laws (5.64) and (5.87), we can
obtain similar internal dynamics to Sect. 5.3.1.

The main result in this section can be summarized as the following theorem:

Theorem 5.10. Consider the closed-loop system consisting of the subsystems

(5.4)—(5.6), the control laws (5.64), (5.87), and adaptation laws (5.65)—(5.66),

(5.88)—(5.89). Under Assumptions 5.1-5.6, the overall closed-loop neural control

system is SGUUB in the sense that all of the signals in the closed-loop system are

bounded, and the tracking errors and weights converge to the following regions,
2|d33| 2

1 /2 1
ler] < e O] + =/ T leal = le2(O)] + 5
Ly en 2 ‘izz|d33| —d3;

1} < + ms V + m

Vil < mm(F N Vi, |Vallr < ,l mm(F 5 v

NARS Wi, |2 < + Wam,
mm(r P mm(r Aan(53 D "
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with

Mio
i ZA—-FVi(O)

0

owi 1 wy . [OVi 1 wiy  Cil o Col W3
i0 = 0; _— — ) || W —_ — ||V —&; -
i =8+ (T ) U (S I+ e 2
i=1,2

Ao = min{(Zklén —1/cn — 1/612)/61’11,UW1/Amax(Fu71l),UVl/lmax(FV]l)}
Ay = min {(2/{2@22 —1/ca — 1/C22)|d33|/(d_22|d33| + d223)a0W2/AmaX(Fw72)v
O—VZ/Amax(FV_z1 }

where ¢;(0) and V; (0) are initial values of e; (t) and V;(t), respectively.

Proof. The proof of Theorem 5.10 follows the same approach as Theorem 5.8, and
will be omitted here for conciseness. O

5.4 Simulation Study

To illustrate the proposed adaptive neural control, we consider the VARIO he-
licopter mounted on a platform [104], with the dynamic model as (5.1) and
the following parameters dj; = 7.5, dx(g3) = 0.4305 + 0.0003 cos?(—4.143¢3),
d23 = 0.108, d33 = 04993, 6’22((]3, q3) =0.0006214 Sil’l(—8.286(]3)é3, 023((]3, qz) =
032((]3, qz) =0.0006214 sin(—8.286q3)c}2, g1 = —77.259, g3 = —2.642, fl((]3) =—
0.6004g3, f3(¢3) = — 0.0001206432, b11(¢3) =3.41143, bn(43) = — 0.152543,
b31(g3) = 12.01¢3 + 10°, and all quantities are expressed in S.I. units. The control
objective is to track the uniformly bounded desired trajectories given in [104] as
follows:

—0.2 0<7<50s
] 03[ @030 _ 1102 50 <1 <130s
1 0.1 cos[(r — 130)/10] — 0.6 130 < ¢ < 207 + 130
0.5 > 207 + 130
0 1 <50s
1 — e (=507/3%0 50 <4 < 1205
PEZN 1202350 130 <4 < 180
14+ e—(1—180)?/350 t > 180
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5.4.1 Internal Dynamics Stability Analysis

In this section, we analyze the stability of the internal dynamics according to the
related discussion in [104]. For conciseness, we consider the RBFNN-based control
case only, which can be easily extended to the MNN-based control case without
any difficulties. For the RBFNN-based control case, we substitute (5.10), (5.15),
(5.25) and (5.33) into the g3-subsystem (5.6). According to the definition of the
zero dynamics [35], we set ry, rp, W1 , W2 , €1(Z1) and &,(Z;) to zero, and the
desired trajectories and initial data can be chosen in such a way that terms including
q;, 414, G2a4 can be neglected [104], so we have

1 [b(q . .

— o | B + o0 - f-m] G102
dy3 [bui(g3)

Substituting the term values given in the beginning of Sect.5.4 into (5.102) and

analyzing the values of the main rotor angular velocity from which the main rotor

angular acceleration is zero, we have

4.1137 x 1074G% 4 1.801142 — 609683 — 7725900 = 0

Its solutions are 5 = —124.63, —219.5 & 468.16i and 563.64 rad/s. Only the first
value ¢ = —124.63 has a physical meaning for the system. If we linearize (5.102)
around the equilibrium point ¢§ = —124.63, we can obtain an eigenvalue —2.44.
Therefore, according to [52], all initials of ¢3 sufficiently near ¢ = —124.63 can
converge to —124.63. It then follows that the internal dynamics of the helicopter
system in (5.1) have a stable behavior.

The simulation result in Fig.5.1 also shows that the internal dynamics using
RBFNN-based control are indeed stable. From Fig. 5.1, we can observe that the
main rotor angular velocity g3 converges to the nominal value —124.63 rad/s for
different initial conditions ranging from —40 rad/s to —150 rad/s, which includes the
typical operating values more than sufficiently. These results are expected from the
previous stability analysis, and also consistent with the results in [104]. In particular,
we also notice that the further the initial condition starts from the nominal value
—124.63 rad/s, the longer the settling time takes, and the more serious the transient
oscillations become. This is reasonable in practice. If some preliminary knowledge
about the nominal value is known in advance, the initial condition can be set closer
to achieve better performance.
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Fig. 5.1 Main rotor angular velocity behavior for different initial conditions using RBFNN-based
control

5.4.2 Performance Comparison Results Between
Approximation-Based Control and Model-Based Control

In this subsection, we will compare the altitude and yaw angle tracking performance
using RBFNN-based control, MNN-based control and the model-based control
adopted in [104]. If all the parameters and functions in (5.1) are known exactly,
and the unmodeled uncertainties A(-) = 0, the perfect tracking performance can be
achieved using model-based control, which has been shown in the work [104]. How-
ever, in practice, there always exist some model uncertainties, which may be caused
by unmodeled dynamics or aerodynamical disturbances from the environment. To
this end, we assume A(-) # 0, in particular, A(-) = [2.0, 0, 0.000120643 +
0.142].

The control parameters for the RBFNN control laws (5.15) (5.33) and adapta-
tion laws (5.16) (5.34) are chosen as follows: k; = 0.000085, Ay = 0.2, k, =
0.0002, A, = 1.0, IT = 0.0017, I, = 0.00017, 0y = 0.001, 0o = 0.001. NNs
WITSI(ZI) contains 3% nodes (i.e., /; = 2187), with centers u; (I = 1, ...,1;) evenly
spaced in [—1.0, 1.0] x[—0.1, 0.1] x[—10.0, —10.0] x [-40000.0, 0.0] x [-1.0, 1.0] x
[—150.0, —40.0] x [-0.1,0.1] x [-0.01,0.01], and widths n; = 1.0(/ = 1,....[;).
NNs WZTSZ(ZZ) contains 3'° nodes (i.e., [, = 59049), with centers ; (I = 1, ...,15)
evenly spaced in [—0.005, 0.005] x [—1.0,1.0] x [-0.1,0.1] x [-10.0,—10.0] x
[—40000.0,0.0] x [—1.0,1.0] x [—-150.0,—40.0] x [-10.0,10.0] x [-1.0,1.0] x
[-0.01,0.01], and widths n; = 1.0/ = 1,...,l3). The initial conditions are:
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Fig. 5.2 Altitude tracking performance in the presence of model uncertainties

¢1(0) = 0.1 m, ¢,(0) = 0.0 m/s, g2(0) = —x rad, ¢»(0) = 0.0 rad/s, ¢3(0) = —
rad, ¢3(0) = —120.0rad/s, 7, =0.0m, 1, = 0.0m, W;(0) = 0.0, W,(0) = 0.0.

For the MNN control laws (5.64) and (5.87) and adaptation laws (5.65), (5.66),
(5.88) and (5.89), the design parameters are chosen as: k; = 0.00016, A; = 1.2,
ko = 0.0002, A, = 1.0, I'y;, = 0.00021, I'yy = 0.037, Sy = 0.0, oy =
0.0, Iya = 0.00011, I'yy = 0.011, s = 0.0, oyy = 0.0. NNs WS, (V] z))
contains five nodes and NNs WZTSZ(VZTZZ) contains 15 nodes. The initial conditions
are: ¢;(0) = 0.1 m, §;(0) = 0m/s, g2(0) = —m rad, §2(0) = 0.0 rad/s, g3(0) = —
rad, 43(0) = —120.0 rad/s, 7 = 0.0m, ©» = 0.0m, Wi(0) = 0.0, V;(0) =
0.0, W4(0) = 0.0, VZ(O) = 0.0.

From Figs.5.2 and 5.3, we can observe that due to the existence of model
uncertainties, both the altitude tracking and yaw angle tracking using model-based
control have some offsets to the desired trajectories for the whole period. This means
that model-based control depends on the accuracy of the model heavily and cannot
deal with the uncertainties well. For the tracking performance using the RBFNN-
based control and MNN-based control, though there are also some oscillations at
the initial period, the tracking errors can converge to a very small neighborhood
of desired trajectories in a short time of about 20s. This is because the model
uncertainties can be learnt by RBFNN and MNN during the beginning 25 s. After
that period, the uncertainties can be compensated for, and thus, the robustness of
uncertainties is improved and good tracking performance is achieved. In addition,
Figs. 5.4 and 5.5 indicates norms of neural weights for approximation-based control
and control actions for three control methods.
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Fig. 5.3 Yaw angle tracking performance in the presence of model uncertainties
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Fig. 5.5 Control inputs for altitude and yaw angle tracking in the presence of model uncertainties

5.5 Conclusion

In this chapter, NN approximation-based control was investigated for the MIMO
helicopter altitude and yaw angle tracking in the presence of model uncertainties.
Compared with the model-based control, which is sensitive to the accuracy of
the model representation, NN approximation-based control is tolerant of model
uncertainties, and can be viewed as a key advantage over model-based control of
helicopters, for which accurate modeling of helicopter dynamics is difficult, time-
consuming and costly. Simulation results demonstrated that the helicopter is able to
track altitude and yaw angle reference signals satisfactorily, with all other closed-
loop signals bounded.
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