Chapter 4
Altitude Control of Helicopters with Unknown
Dynamics

4.1 Introduction

The linearized models of Chap. 3 are useful not only for stability analysis, but also
for control design, by gain scheduling the models at different operating points.
This traditional technique has been successfully implemented in a wide variety of
applications. However, it requires extensive modeling, which is costly and time-
consuming, and the models are highly specific to a particular helicopter system.
There is a need for controllers that can operate with minimal model information,
handle nonlinearities over the entire flight regime, and are portable across different
helicopter systems. In this chapter, we address this need by presenting a robust
adaptive neural network (NN) control for helicopters.

Helicopter control design is challenging because helicopters are inherently
unstable without closed loop control, differing from many classes of mechanical
systems that are naturally passive or dissipative. Unrestrained helicopter motion is
governed by underactuated configuration, i.e., the number of control inputs is less
than the number of degrees of freedom to be stabilized, which makes it difficult to
apply the conventional robotics approach for controlling Euler-Lagrange systems.
In addition, helicopter dynamics are highly nonlinear and strongly coupled, such
that disturbances along a single degree of freedom can easily propagate to the other
degrees of freedom and lead to loss of performance or even destabilization.

Increasing effort has been made towards control design that guarantees stability
for helicopter systems. Apart from the above-mentioned traditional linear control,
many nonlinear techniques have been proposed, ranging from feedback linearization
to model reference adaptive control and dynamic inversion. Dynamic sliding mode
control was proposed for helicopter vertical regulation in [93]. Output tracking
with nonhyperbolic and near nonhyperbolic internal dynamics in helicopter hover
control was discussed in [19]. In [55], approximate input—output linearization was
employed to obtain a dynamically linearizable helicopter system without zero
dynamics, and output tracking was achieved. In [16], a high-bandwidth H oo
loop shaping control was designed and tested for a robotic helicopter. Internal

B. Ren et al., Modeling, Control and Coordination of Helicopter Systems, 59
DOI 10.1007/978-1-4614-1563-3_4, © Springer Science+Business Media, LLC 2012



60 4 Altitude Control of Helicopters with Unknown Dynamics

model-based control was applied to the nonlinear motion control of a helicopter
in [41]. In [104], model-based control was applied to the altitude and yaw angle
tracking of a Lagrangian helicopter model.

Since helicopter control applications are characterized by unknown aerodynam-
ical disturbances, they are generally difficult to model accurately. The presence of
modeling errors, in the form of parametric and functional uncertainties, unmodeled
dynamics, and disturbances from the environment, is a common problem. In this
context, model-based control, such as the aforementioned schemes, tend to be
susceptible to uncertainties and disturbances that cause performance degradation.
How to handle model uncertainties and disturbances is one of the important issues
in the control of helicopters.

Owing to the universal approximation capabilities, learning and adaptation, and
parallel distributed structures of NNs, the feasibility of applying NNs to model
unknown functions in dynamic systems has been demonstrated in several studies
[23,30,32,60,61,73]. As such, several flight control approaches using NNs have
been proposed. Among of them, approximate dynamic inversion with augmented
neural networks was proposed to handle unmodeled dynamics in [38, 53, 87],
while neural dynamic programming was shown to be effective for tracking and
trimming control of helicopters in [21]. During the adaptive trajectory control
of an autonomous helicopter in [43] and [51], the method of pseudocontrol
hedging (PCH) was used to protect the adaptation process from actuator limits and
dynamics.

In this chapter, we propose an adaptive NN control for helicopters in vertical
flight, which can be represented by single-input-single-output (SISO) models to
yield useful results, because the coupling between longitudinal and lateral- direc-
tional equations in this flight regime is weak [10]. While the proposed controller
handles vertical flight, other flight regimes can be handled by other control modules.
Motivated by results in the NN control of nonlinear systems [30], we utilize
Lyapunov-based techniques to design a robust adaptive NN control for helicopters
with guaranteed stability. Although a nonaffine system can be rendered affine by
adding an integrator to the control input, thus allowing many control methods
for affine nonlinear system to be used, the disadvantage of this approach is that
the dimension of the system is increased, and control efforts are not direct and
immediate either [30]. Subsequently, effective control for the system may not be
achieved. In this chapter, we focus on control design for the nonaffine system
directly, without adding any integrators to the input.

Differing from the approaches in [38, 54], which were based on approximate
dynamic inversion with augmented NNs, we utilize the Mean Value Theorem
and the Implicit Function Theorem as mathematical tools to handle the nonaffine
nonlinearities in the helicopter dynamics, based on the pioneering work of [31].
While the NN in [38, 54] compensate for inaccuracy of the inversion model, those
in our proposed scheme approximate the ideal feedback control law directly. In
cases where reasonably accurate knowledge of the dynamic inversion model is
available, the method of [38, 54] has been shown to provide an effective solution
to the problem. However, the construction of the dynamic inversion for a nonaffine
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system may not be an easy task in general. For such cases, our approach offers a
feasible means of tackling the problem, since a priori knowledge of the inversion is
not required.

4.2 Problem Formulation and Preliminaries

Consider the class of SISO helicopter systems described by the following differen-
tial equations nonaffine in the control:

X = f(x,u)
y = h(x) 4.1

where x € R”" are the states of the system; u, y € R denote the input and output
respectively; and f : R” X R — R" is an unknown function.

The control objective is output tracking of a desired reference trajectory such
that the tracking error converges to a neighborhood of zero, i.e., |y (t) — y4(t)| <6,
where § > 0. At the same time, all closed loop signals are to be kept bounded. The
reference trajectory y,(¢) is generated by the following reference model:

Eii = Egit1, 1<i<p-—1,

€ap = fa(&a),
ya = a1, 4.2)
where p > 2 is a constant index; & = [E41, 842, ... ,Edp]T € RP are the states of

the reference system; y; € R is the system output; and f; : R® — R is a known
function.

Assumption 4.1. The reference trajectory y,(¢) and its p derivatives remain
bounded, i.e., £; € £2; C RP, Vt > 0, where p is the relative degree of (4.1).

Remark 4.1. The SISO representation considered in this chapter is valid for simple
operations involving the regulation or tracking of single degree of freedom, such as
altitude tracking or pitch regulation, among others.

Remark 4.2. System (4.1) is a general description of the nonlinear helicopter
dynamics, for which the control input is not necessarily affine. This is a realistic
representation for helicopters, due to the fact that the inputs are not torques or forces,
which would yield an affine representation. Rather, the inputs are position variables
implicit in aerodynamical forces or torques, resulting in a nonaffine form. Due to the
lack of mathematical tools, the control design for such systems is very challenging.
Note that control-affine nonlinear systems as well as linear systems are special cases
of (4.1). As such, by designing a controller for (4.1), we cover the other systems as
well.
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Assumption 4.2. System (4.1) is input—output linearizable with strong relative
degree p < n.

Define ¢ (x) = L’ ' for J =1,..., p, where L s h denotes the Lie derivative of
the function 4 (x) w1th respect to the vector field f(x, u). Due to Assumption 4.2, it
was shown in [39] that there exist other n — p functions ¢, 1, ..., ¢, independent of
u, such that the mapping @(x) = [¢1(x), p2(x). .... ¢, (x)]" has a Jacobian matrix
which is nonsingular for all x € £2,. Therefore, @(x) is a diffeomorphism on £2,.

By setting E = [¢1 (X), ¢2(X), [ ¢p(x)]T and n= [¢p+l(-x)v ¢p+2(x)s [ ¢n (x)]T,

system (4.1) can be expressed in the normal form :

n=4q®.%)

E=E4. j=1l..p—1

£ = Db(En.u)

y==6& (4.3)

where b(sv m, M) = LJ}_lh; ‘]gfs 7)) = [Lfd)p-i-l(-x)v Lf¢p+2(-x)v ceey Lf¢n (x)]T;
x = @71 (E n), for (5, n,u) € U = {(§,n,w(€,n) € P(2:);u € 2.}

Assumption 4.3. The zero dynamics of system (4.3), given by n = ¢(0,n) are
exponentially stable. In addition, the function g (&, ) is Lipschitz in &, i.e.,

lg(€.m —qO.nl < acll§ll +aq. V(€. n) € P(82:) (4.4)

Under Assumption 4.3, by the converse Lyapunov theorem, there exists a
Lyapunov function V;(n) which satisfies the following inequalities:

yilnl? < Vo) < yalinl? (4.5)
aV
—°q(o m < —Adlnl? (4.6)
v
|52] <o @)
n

where y1, 2, A4, and A, are positive constants.
For ease of notation, define g(x, u) := W The following two assumptions
specify some conditions on the unknown function g(x, u).

Assumption 4.4. There exist smooth functions g(§,7) and a positive constant
g >0, such that g(§,7) = |g(§,n,u)| = g > 0 holds for all (§,7,u) € U. Without
loss of generality, it is further assumed that the sign of g(&, 1, u) is positive for all

(Enu)eU.

Assumption 4.5. There exist a positive function go(§, ) such that (&, n,u)| <
2g(‘§>:s n, u)go(gs 7)), V(Es n, Lt) evU.
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Remark 4.3. Assumption 4.4 implies that partial derivative g(&,n, u) has a fixed
sign. In addition, it means that the Taylor series linearization is controllable so one
could always linearize and design a linear controller, if possible. This assumption is
standard and necessary as otherwise, the system is not controllable.

Based on Assumption 4.4, the following lemma is given to assert the existence of
an implicit desired function, which will be used in the design of the NN controller.

Lemma 4.4 (Implicit Function Theorem). [33] For a continuously differentiable
function b(§,n,u) : R" x R — R satisfying Assumption 4.4, there exists a
continuous (smooth) function u* = u(&, n) such that b(&, n,u*) = 0.

Lemma 4.5 (Mean Value Theorem). [/] Assume that f(x,y): R" x R — R has
a derivative (finite or infinite) at each point of an open set R" x (a, b), and assume
also that it is continuous at both endpoints y = a and y = b. Then there is a point

£ € (a,b) such that f(x,b) — f(x.a) = f (x,&)(b —a).

Remark 4.6. It should be emphasized that the Mean Value Theorem gives an
equality condition and is different from Taylor series expansion, which only gives
an approximation when the higher order terms are truncated.

Remark 4.7. The combination of the Implicit Function Theorem, the Mean Value
Theorem, and NN is instrumental to solving the control problem for generalized
nonaffine helicopter systems described by (4.1). While the Implicit Function
Theorem asserts the existence of a desired control, it does not provide any means of
constructing it. NN are thus employed for this purpose. On the other hand, the Mean
Value Theorem expresses the nonaffine function into a form where the actual and
desired inputs are linearly matched, facilitating the design of adaptive NN control
via certainty equivalence and Lyapunov-based techniques. These will be elaborated
in detail in the subsequent developments.

Lastly, we present the following definition and Lemma, which are important for
stability and performance analysis.

Definition 4.8. The solution of (4.1) is Semi-Globally Uniformly Ultimately
Bounded (SGUUB) if, for any compact set 2y, there exists an S > 0 and
T(S, X(to)) such that | X(z)|| < S for all X(tp) € $2p andt >ty + T.

Lemma 4.9. [34] Suppose that there exists a C' continuous and positive definite
Lyapunov function V (x) satisfying

x| = V(x) < ya(llx|D, (4.8)
such that
V(x) < —c1V(x) + ¢, (4.9)

where y1,y> : R" — R are class K functions and cy, ¢, are positive constants,
then the solution x(t) is SGUUB.
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4.3 Function Approximation with Neural Networks

Due to the existence of model uncertainties in practice, we introduce a NN here
to approximate and compensate for them using the good function approximation
capability of NN. In particular, two types of NN will be discussed, i.e., the radial
basis function neural network (RBFNN), which is linearly parameterized; and the
multilayer neural network (MNN), which is nonlinearly parameterized.

4.3.1 Function Approximation with RBFNN

The RBFNN can be used to approximate the continuous function f(Z) : R — R
as follows:

f(Z2)=WTS(Z)+¢(Z) (4.10)

where the input vector Z € 2, C R™; weight vector W = [wy, ws,...,w;]T € R,
the NNs node number [ > 1; S(Z) = [s1(Z), ..., 5:1(Z)]T, with 5; (Z) being chosen
as the commonly used Gaussian functions, which have the form:

T
si(Z2) = exp[ z MI)Z(Z ,u,):|, i=1,2,..1
Uk

where u; = [fi1, iz, ..., him]T is the center of the receptive field and 7; is the width
of the Gaussian function; and &(Z) is the approximation error which is bounded
over the compact set 2z, i.e., |[e(Z)| < &, VZ € §2; where ¢ > 0 is an unknown
constant.

It has been proven that RBFNN (4.10) can approximate any continuous function
f(Z) over a compact set £2; C R, to arbitrarily any degree of accuracy as

£(Z)=W*TS(Z) +*(Z)., VZ €27 CR" 4.11)

where W* is ideal constant weights, and ¢*(Z) is the approximation error for the
special case where W = W*.

Assumption 4.6. On the compact set £2z, the ideal NN weights W* is bounded by

[W* < Wi (4.12)



4.3 Function Approximation with Neural Networks 65

The ideal weight vector W* is defined as the value of W that minimizes |&(Z)]
forall Z € 2, C R™:

W* = argmin{ sup |f(Z)—WTS(2)|}
w ZeRy

In general, the ideal weights W* are unknown and need to be estimated in control
design. Let W be the estimates of W*, and the weight estimation errors W =
W —Ww*.

4.3.2 Function Approximation with MNN

The other popular type of NN, nonlinearly parameterized MNN, is used to approxi-
mated the continuous function f(Z) : R™ — R as follows:

f(Z2)=WIS(VTZ) +¢(Z)

where the vector Z = [z1.22.....zm. 1]T € 27 C R™*! are the input variables to
the NNs; S(-) € R! is a vector of known continuous basis functions, with / denoting
the number of neural nodes; W € R! and V € R D>/ are adaptable weights; and
e(Z) is the approximation error which is bounded over the compact set £2z, i.e.,
le(Z)| < &,VYZ € 27 where £ > 0 is an unknown constant.

According to the universal approximation property [27], MNNs can smoothly
approximate any continuous function f(Z) over a compact set 27 C R"*! to
arbitrarily any degree of accuracy as that

f(2)=WTs(Wv*T2) +¢*(Z), VZ € 2, c R™'!
where W* and V'* are the ideal constant weights, and £*(Z) is the approximation
error for the special case where W = W* and V' = V*. The ideal weights W* and
V* are defined as the values of W and V' that minimize |¢(Z)| forall Z € 27 C
R je.,
(W*,V*):=arg min{ sup |f(Z)—-WT'S(V'2))}
W) zen,
Assumption 4.7. On the compact set §2z, the ideal NN weights W*, V* are

bounded by

W = wm, IVlE < vm
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In general, the ideal weights W* and V* are unknown and need to be estimated in
control design. Let W and V be the estimates of W* and V'*, respectively, and the
weight estimation errors W = W — W* and V = V — V*.

Lemma 4.10. [30] Using fnn = WTS(VTZ) to approximate the ideal function
f(2), its approximation error can be expressed as

WISWTZ)—w*Ts(v*Tz) = WS - S'V'Z) + W'S'V'Z + d,
where § = S(V7Z), §' = diag {§], 8}, ..., §} with

d[s(za)]

T
dz, =iz

§l=5'(01Z) =

and the residual term d,, is bounded by
) < IV*IFIZWES' | 4+ WIS VEZ| + W),

Throughout this chapter, we employ sigmoidal functions as basis functions for
the MNN, which are defined by

1 .
S,’(Zu) = m, 1 = 1,2,...,l (413)

where v > 0 is a design constant.

4.4 Adaptive NN Control Design

We employ backstepping for the £ subsystem, and then make use of the exponential
stability of the zero dynamics to show that the overall closed-loop system is stable
and that output tracking is achieved. The control design is performed first for the full
state case and subsequently for the output feedback case with high gain observers.

4.4.1 Full State Feedback Control

Step 1: Let z;(¢) = &1(¢t) — ya (¢) and 22(¢) = &(t) — a1 (¢), where o (¢) is a virtual
control function to be determined. Define quadratic function V; = %z% Choosing
the virtual control ¢t as

ar = —kizi + ya. (4.14)
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we can show that
I./1 = —k1Z% + 2122, (4.15)

where the term z;z, will be canceled in the subsequent step.

Stepi(i=2,...,p—1): Let z;(t) = &(t) — ai_1(¢), where & = [£,....&]"
and o; (¢) is a virtual control function to be determined. Define quadratic function
Vi=Vio1 + %zlz Choose the virtual control «; as

o = —kjzi —zi—1 + a1, (4.16)

where the derivative can be written as

305, oo
Gy = IE Z ” (k)‘ P (4.17)
It can be shown that
i
—Zkﬂ? + ZiZi+1, (4.18)
j=1

where the term z;z;+; will be canceled in the subsequent step.

Step p: This is the final step where the actual control law u will be designed.
From Assumption 2, we know that g(£,n,u) > d > 0 for all (§,n,u) € R""!.
Define v as

v =—a,1 + go(€, n)zp, (4.19)

where k, > 0 is a constant. It is clear that v is a function of &, 1, y4, y((il), . y((ip ),

Considering the fact that g—; = 0, the following inequality holds

A[b(&. n, u) + v]

>d > 0. (4.20)
du

According to Lemma 1, for every value of &, n and v, there exists a smooth ideal
control input # € R such that

b(& n,u*)+v =0, 4.21)

Using the Mean Value Theorem in Lemma 4.5, there exists (0 < A < 1) such
that
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where g := g(&, n, u;). Combining (4.19)—(4.22) yields
Zp = —go(§.mMzp + galu — u™). (4.23)
We employ a robust MNN controller of the form:
U= Up, + up, (4.24)
where
Unn = WIS(VT2Z), (4.25)

wy = —kpzp —2p-1 — ky (HZWTS” Hi n HS“?TZ Hz) Z.  (4.26)

The component u,, is an MNN that approximates u* (&, n), which can be ex-
pressed as
W =wTsSWwTz) + e, (4.27)

where Z = [£,7,2,,0,-1]T € 2 C R""2; W* denotes the vector of ideal constant

weights, and |¢| < & is the approximation error with constant £ > 0. As detailed in

[30], the component u;, ensures robustness to the approximation error of the MNN.
Consider the Lyapunov function candidate

(O B DT
Vo= Vi + 52y + 3 WITG'W + Su Vv, (4.28)

where W := W — W* and V := V — V*. The derivative of V, is

p—1 . 5.2
. 202 8AL T e11f ST =1
Vo= _Zkﬂ§ +2pm12p + 0 — S tWIW —Hr{VTFV IV}
e 8x 2g3
o—1 . .
= _Zkﬂ? + 2-12p — @Z/ZJ - g_Azzxza +zp(u—u” —e) + WITy'W
= gx ng

+tr {VTFV_II;/}

p—1 . 2
< ~ A A
== k2 + 21— (go + g—*) L4 W[ -8VT2),
j=1 281 ) 8
+FV;1W] +tr {?T[ZWTSMZ/J} + FV“V]} + 2 (dy + up)

— (4.29)
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Consider the following adaptation laws
W= Iy [(S — 8§V Z)z, + ow W] (4.30)
V=—_I, [ZWTS“zp +oy 17] 431)
where I'y = Iy, > 0, I'y = I') > 0,0y > 0and oy > 0 are constant design

parameters. Then, substituting (4.26), (4.30), and (4.31) into (4.29) yields

[ 2
Z ,z + Zp—12p — (go gx) Loy WTW — oytr{VTV}
=1 2¢1) &x

—2p8 + 2p(dy + up)

2
= - Zkﬂ§ - (gkk + 8o + %) g—p owWTW —oytr{VTI}}
—zpe + Lol (IW NS VTZI+ IV 11 ZWS e+ IW1)
oy (IS'VTZIP + 1ZWTSI3) 22
8x z
= —Zkﬂ (gx (ko —1) 4+ go + —) 2oy W'W —ope{ VTV

2¢:) &

1 1 V20N A Toa 1_
W 5170 = (=5 ) (15772 + 12075 1) 2 + 52

2
(4.32)
By completion of squares, the following inequalities hold
~m A o ~ "
—owWIW < S IW I+ W) (4.33)
~ A o ~
—ovur(VTV} < IV + VIR (4.34)
Substituting (4.33) and (4.34) into (4.32) yields the following
p—l & 2 1
v, <— k»zz.—( k,—1) + +—)—”—(k——)(”VTZH
14 ]Z=:l J%j g/l( P ) 80 Zg)L 2 b 2
amoar]|2 oW .~ 12 OV y~2 1_ Ow+2
ZWTS - — W -=V —& w*
o G MR L e A e U
oy + 1

+———IV*IIF (4.35)
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From Assumption 4.5, we know that (go + 2%) > 0. Hence, by choosing the
control parameters k, and k; as follows
1

ko>1, ky> 3 (4.36)

the second and third right-hand-side (RHS) terms of (4.35) are strictly negative, thus
leading to the following simplification

p—1
. ) 2 ow ~ 2 oy 1 ~12
Vo= = kg — ko= Dgg = — W] == |V]
i=1
1, ow+2 «n2 oy +1 %12
— w 1%
+58 o IV + == V"l
<Vt @37)
where
_ o o
¢y = min{ 2ky, 2ks, ..., 2k,—1, 2§(kp— 1), n (V;_,_l), 1 (‘}_1)
max (4 p max \{ py
(4.38)
1, ow+2, . oy +1 .,
&= 5B+ == W+ = V7l (4.39)

The following lemma is useful for stability analysis of the internal dynamics.
Lemma 4.11. Given that Assumptions 4.1 and 4.3 are satisfied, there exist positive
constants ay, a, and Ty such that the trajectories 1(t) of the internal dynamics
satisfy

IOl = ar(lzOI + 1§« (O]) + a2 V1 > To. (4.40)
Proof. The proof is very similar to that given in [35]. For completeness, it is

shown here. According to Assumption 4.3, there exists a Lyapunov function V(7).
Differentiating V(1) along (4.3) yields

. V.
Vo(n) = a—oq(é, n)
n

Ve Ve
= =24(0.1) + < 2(g(E.1) — (0. 7). (441)
n n
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Noting (4.4)—(4.7), (4.41) can be written as

Vo < =Aallnll® + Apae Il €N + Apaglin- (4.42)

From the fact that ||| < [lz| + [|&|, where & = [ya, o1, @2, ....ap—1]", we
obtain the following:

Vo) < Aallnll® + Aolinll(aellall + aq + agllzl)- (4.43)

Therefore, Vo(n) < 0 whenever

Ap
Il = 5~ (@ligall + ag + aglizl). (4.44)
By letting
Abag Abaq
= , =—2 4.45
ai y az y (4.45)
we conclude that there exist Ty such that (4.40) holds. O

We summarize our results for the full-state feedback case in the following theorem.

Theorem 4.12. Consider the SISO helicopter dynamics (4.1) satisfying Assump-
tions 4.1-4.5, with control law (4.24) and adaptation laws (4.30)—(4.31). For initial
conditions £(0), n(0), W (0), V (0) belonging to any compact set 2y, all closed loop
signals are SGUUB, and the tracking error z; = y—Yy4 converges to the compact set

2
Izl < ,/ﬁ } , (4.46)
C1

where ¢ and ¢, are constants defined in (4.38) and (4.39), respectively.

.QZI =47 € R

Proof. According to Lemma 1.1-1.2 in [34], we know from (4.37) that z, W and V
are bounded within the compact sets for all # > 0:

z€ R ||zl = /2 (VP(O) + i—?) : (4.47)

2 (V,,(O) + —)
Amin (")

Qw={WeR||W| < : (4.48)
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2(V,0 +2)
Amin (Iy7)

Qy = V e Rmthxl ”VHF <

(4.49)

Since W* and V* are bounded, it is obvious that W and V are also bounded.
From (4.14), (4.16), and the fact that z, y,, yfll), yflp) are bounded, we know
that the virtual controls o;,7 = 1, 2, ..., p are bounded. Hence, there exists a constant
az > 0 such that ||&; || < as.
From Lemma 4.11, it can be seen that 7 is bounded if both z and £, are bounded.
As a result, we can conclude that the states of the internal dynamics will converge

to the compact set
26’2
[l < a c—+a3 + a>
1

where a; and a, are defined in (4.45). Since the control signal u(t) is a function of
the weights W(t), V(Z) and the states £(¢), n(¢), we know that it is also bounded.
Therefore, we have shown that all the closed loop signals are SGUUB.

To show that the tracking error z; = y — y; converges to the compact set §2,,,
we multiply (4.37) by e~ and integrate over [0,t] to obtain that

Q= lne R , (4.50)

2(0)] < \/2 (Vp(O) + i—j) et +22, @51)
from which it is easy to see that |z; (¢)| < ,/% ast — oo. O

Remark 4.13. From Theorem 4.12, we know that the size of the steady state
compact set £2,;, to which the tracking error converges, is governed by the constants
c¢1 and c,, which in turn depend on the control and NN parameters. It follows that by
appropriate tuning of the parameters, the guaranteed upper bound for the steady state
tracking error can be reduced. For instance, increasing the control gains ki, ..., k,
increases ¢ accordingly, and leads to a reduction in the size of £2,.

Remark 4.14. Although the theoretical results in this chapter are obtained under
Assumption 4.4 that g, (-) > 0, there is no loss of generality. For the case of g, (-) <
0, the Lyapunov function candidate (4.28) can be changed to

| O R 1 ~ Tl
Vp:Vp_l_EZ’D_FEW FW W+§t1'{V FV V}, (4.52)
for which a correspondingly stable controller can be constructed as u = —uy,, — up,

where u,,,, and u;, are defined in (4.25) and (4.26) respectively.
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4.4.2 Qutput Feedback Control

In the previous section, we have considered the case where full state measurement
is possible, that is, n and & are all available. In this section, we tackle the output
feedback problem, where only 1 and &, are available, by utilizing high gain
observers.

Lemma 4.15. [7, 35] Consider the following linear system:

€ =mwi+y, i =1,2,...,0—1,

€Ty = —YITTp — YaTlp—| — = — Vo1 T2 — 1 + §1(2), (4.53)

where € is a small positive constant and the parameters Y1 to y,—1 are chosen such
that the polynomial s* + y1sP~' + - + y,_1s + 1 is Hurwitz. Suppose the states &
belong to a compact set, so that |&| < Yi, then the following property holds:

~ 7'[k
=t =-e® k=1,2,...,p, (4.54)

where § = mw, + Y7ot + -+ + Yp_1m1 and t%) denotes the k-th derivative of
. Furthermore, there exist positive constants hy and t* such that |&| < €hy is
satisfied fort > t*.

Proof. Differentiating the last equation of (4.53) with respect to time and substitut-
ing into %2 — y yields

. Uy . . . . .
— =X = ?_Gﬂn_)/lﬂn_)/277n—l_"'_yn—I”Z_”

Noting from (4.53) that 7; = e7;—; fori = 2,3,...,n leads to

T . . . . .
- 1= —€(7Ty + Vi7in—1 + V2itu—z + -+ + Yu—1711)

e

By repeatedly differentiating the above and utilizing (4.53), we arrive at (4.54).
To show that |y(¢)| < €hy fort > t*, we first note that the derivatives of the
vector [} 7 ... 7,)" can be computed as follows

. 1 A
7D () = —jAfeAT [7(0) + A7 by(0) + eA2by ™ (0)
€

R Ej_lA_jby(j_l)(O)]

Uow 1 e
+—e”‘?/ e ¢ by (1) dr (4.55)
€ 0
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forj =1,2,..., p, where

010 0 0
00 1--0 0
A=] i o |, b= (4.56)
000:-- 1
=1y y2 v 1

Since £ belongs to a compact set, and u is bounded, we know that [y)| < Y;.
Therefore, there exists a constant t* > 0 such that for r > t*, [zY)(t)| < D;,
where D is a positive constant independent of €. This leads to [¢)| < h; := BD,
where B is the normof [1 Y1 V2 o Yoe1]t O

Remark 4.16. Note that %7 converges to a neighborhood of §, provided that y and

k+‘ is a suitable observer

its derivatives up to the p-th order are bounded. Hence,
to estimate the kth order output derivative.

To prevent peaking [52], saturation functions are employed on the observer
signals whenever they are outside the domain of interest:

_ —1fora < —1
n;:ﬁisat(#), 7z max (m), sat(@)=ya forla| <1
i (zW,V)eR 1 fora>1

4.57)

fori =1,2,..., p, where é = [él, §p]T, and the compact set £2 := 2, xQ2y X2y,
where §2,, 2y, and §2y are defined in (4.47), (4.48), and (4.49) respectively, denotes
the domain of interest.

Now, we revisit the control law (4.24)—(4.26) and adaptation laws (4.30)-(4.31)
for the full-state feedback case. Via the certainty equivalence approach, we modify

them by replacmg the unavallable quantltles z; and Z with their estimates, z; :=
,,,

I — a;—1 and A =[£.2 o oo s zp,ap_l] respectively, fori = 2, ..., p.
Therefore, the control laws are given by

& = —kizi + Ya.

Gi = —kiZi — Zi—1 + G, (4.58)
Uy = WIS(VT2), (4.59)

2p)

(4.60)

A oamoar]l2 ~
uy = —kp2p — 201 — ki (HZWTSO [+ (|3
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Due to the fact that the actual NN is in terms of Z while the ideal NN is in terms of
Z, the following Lemma is needed.

Lemma 4.17. [35] The error between the actual and ideal NN output can be
written as

WTISWTZ)—w*Tsw*Tz2) = WIS, =SV Z) + WS V' Z +d,

(4.61)

where Sy := S(VTZ); .§; ::diag{§;l, s §;[} with
§o=5612) = dsd(;”) wmitze 1 =120, (4.62)

and the residual term d,, is bounded by

d, < W (]S,7 )+ vie|2its) o wes)

Accordingly, the adaptation laws are designed as
W=—rw (S, = S0 2)2, + 0wV ] (4.64)
V=1 [2WTS %, + v V] (4.65)

Using the backstepping procedure similar to Sect.4.4.1, and substituting (4.59),
(4.64), and (4.65) into the derivative of V), along the closed loop trajectories, it can
be shown that

p—1
fo—zkai—(gO'F—) ijZ]Z]+ZZ]((X] 1 — 05] D)
i=1

+ Zz,-z,»_l —ze—WT [(ﬁo —SVT2)z, + GWW]

=
;ﬁ
%)

o

—tr {VT [Z

Zp+ov V]| ol [0 (|89

)

Ve | 2078 ]+ 2 (4:66)
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From the inequalities in (4.33) and (4.34), we know that

p—1
j=2 J

j=1

p—1
+> 5z — e = WS, = S,V 2)z, - WS,V 2z,

j=3

G *
+7(—IIW||2+|IW I? )+ CIVIE VR + 5 IIW I?

1 * 12 1 2
3+ 53| ([572] + 3, ]+

(4.67)

Substituting the bounding control (4.60) into (4.66) yields

p—1 2
y 1 &x ow | 5 ov | 5
vpg_zka5_(k,,_§) (go+ )" S WP =1V 1%

= 2,/ g

p p
—W (S, = 8,V 2)z, - WIS VT 27, =Y kjziE 4+ Y 2@
j=2 j=2

1 1
GV + 52

)
. - ow +1
—Oéj—l)-l-ZZij—l + IW** + ——V*IF +
=

(- oo

The following lemma is useful for handling the terms containing the estimation
errors Z;, for j = 1,2, ..., p.

o

S;I?TZ)‘ + )S

:|(z +2zp2,) (4.68)

Lemma 4.18. There exist positive constants F; and G;, which are independent of ,
such that, fort > t*,i = 1,2, ..., p—1, the estimates &; and Z; satisfy the following
inequalities:

& — ;| <eFi, || =% —z| < €G,. (4.69)
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Proof. Starting fromi = 1, we know that
@1 —di =~k —2) =~k (4.70)
Subsequently, it is easy to obtain that

bo—dn = —ka(63 — (@1 — &) — & — ki
= —(1 + kik)& — (k1 + k)& = Al W 4.71)
where a; := [—(1 + kiks) — (k + k2)]T and ¥, := [£, &]T. Suppose that
Qims — iy = al Wi,
Qo — Gy = a_ Wi, (4.72)

where ¥; = [52 .. §;+1)" and a; is a vector of constants, for j =i —2,i — 1. Then,
by induction, it can be shown that

& — & = —k; (§i+l — (&1 — di—l)) - (gz — (@i — di—z)) & — i,

= —k; (§i+l - aiT_l‘I’i—l) - (é - aiT_z‘I’i—z) +al Wi =alw;

(4.73)
fori = 3,...,p — 1. From Lemma 4.15, we know that ;|| < eH;, where H; :=
H [h2, ..., hix1]T|, which leads to the fact that |&; — ¢;| < €l||a; | H; =: €F;, and thus
(4.69) is proven.

To prove (4.69), note that

Zi = §,- - (&i—l —Oéi—l)

E — (—kim1Zic) —Zimg + Qi) — @) (4.74)

By following a similar inductive procedure, starting from z; = §1 and 7, = éz -
(@1 —ay) = &, it can be shown thatZ; = aZTi Y;, where a; is a constant vector. Using
the property in (4.69), it is straightforward to see that |z;| < €||a; | H; =: €G;. The
proof is now complete. O

Using Lemma 4.18, it is clear that, for t > ¢*, the following inequalities hold:

~T oA AL ATA € ~ € A At AmoA 2
— WS, = SV 205 < SIWIP + 5 (ISl + IS, 77 21) G2 @.75)

WISz, < %Wn% n g HZWTS*; G2, (4.76)

2
F
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P o
SNIHEDD k—2’ (z§ + esz), A4.77)
j=2 Jj=2
p—1 P 1
Zz,(a, 10— 1)<Z§<z§+62Fj2), (4.78)
j=2 j=2
p P
YuEa =) 5 (3+€65). (4.79)
j=3 j=3

By substitution of the inequalities (4.75)—(4.79) into (4.68), it is straightforward to
obtain the following expression:

= 1 &\ % _(ow —¢€)
v S_Zkzz_(k __) 2 ( + ) S 9 e
P ~ J<j P 2 &0 ng P ) ” ”
2] €
~-G?
o F:|2 £

+Z j(z +62G)+Z (z +e€ F2)+Z (z +62G]2-_1)

j=2

(ov —€), ~ 4 A A N2 A A
=221+ (1o + 180T 21) + |2

ow +
W +

e ose

The RHS terms can be rearranged into a more convenient form for analysis:

Uv+ 12
V*
IV + 5

A A A

, VAEN

ZH +—‘§

) +

| @-ea)

(4.80)

1 Py 1 g 2
_k1Z%—§(k2—1)Z§—Z§(kj—2)z§—§(kp—3) (g0+_l)g_p

= 28
(ow

—Tuwnz ||V||F+Z & 2G2+Z—62F2
22 ov+ 1
— G V —
+Z € — IV + 58
1 1 Al AT A N AT 5
-5 (0-3) [(\ : ZH+\S~> w2 ]

2
_ (62 n 2kb€_ 1) Gg) . 4.81)
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Finally, by appropriately choosing the control parameters k, and k; as follows:
1
k2 > 1, k3, ...,kp_l > 2, kp > 3, kb > E, Oow,0y > €, (482)

it can be shown that

Vo —aVy+e—K (2 -ecs), (4.83)
where
. . (GW €)
C1 .= min Zkl, (kz— 1), (k3—2),..., (kp_l —2), g(kp—:;) (F 1)
(GV—_i)l} (4.84)
Amax (")
1_ ow + 1 oy +
Cp 1= 5824‘ W™ || + =V ||F
p—1
ZFZ—i—Z(k +1GI+G . (4.85)
j=2 j=2
3= e+ 2 G? (4.86)
T 2kp—1) " ‘
1 1 VNN SN (a2
K= (kb 2) [(‘SUV ZH + )S,, )+ HZW s F] (4.87)

It can be shown that

Vp(t) S _C(JIVp(t) +CUZa t 2 t*

Amin (K2 = 31)  mini—;53{% [6; ||2}}

kain(Kl ) s

Col := min

Amax(M) Amax ("1

(4.88)

3
O; * 1 - -
cai= 3 (145 ) 1671 + 5 lell? + 22 (Ko KT + Aercz (4.89)
i=l1

To ensure that p > 0, the control gains K; and K, are chosen to satisfy the
following conditions:

3
Amin(Kl) > 0, Amin (K2 — 51) > 0. (490)
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We are ready to summarize our results for the output feedback case under the
following theorem.

Theorem 4.19. Consider the helicopter dynamics (4.1) under Assumptions 4.1—
4.5, with output feedback control laws (4.59)—(4.60), adaptation laws (4.64)—(4.65),
and high gain observer (4.53) which is turned on at time t* in advance. For initial
conditions £(0), 1(0), W(0), V(0) starting in any compact set 2o, all closed
loop signals are SGUUB, and the tracking error 71 converges to the steady state
compact set:

2¢
2, = 21| < C—2§ : (4.91)
1

g Z]GR

where ¢y .= ¢y + C3k, and c is as defined in (4.84).

Proof. We consider the following two cases for the stability analysis:

Case 1: |z,| > /fec3
For this case, the last term of (4.83) is negative, thus yielding

V, < —ciV, + e, (4.92)

which straightforwardly implies that all closed loop signals are SGUUB, according
to Lemma 4.9. However, when |z,| < ./ec3, the last term of (4.83) may not be
negative, leading to a more complicated analysis, as shown in the subsequent case.
Case 2: |z,| < fec3

For this case, we want to show that, as a result of z, being bounded, the function
K in (4.87) is also bounded, for which (4.83) can be expressed in the form of (4.9),
convenient for establishing SGUUB property. To this end, note that the derivative of
Vy—1 is given by

IS—Zk,z —Zk,z,z, +Zzl(al | — G 1)+Zzlzl 1+ 2-12p

i=1

(4.93)

According to Lemma 4.18, we can show that

—1 p—1

Vo < —Zk,z + ) kilzleGi +Z|z,|eF +Z|z,|eG, |+ 201 ees
i=1 i=2 i=3
p=2 1
< ki — -(k2 —- 1 - Z —(ki —2)Z — 5 (ko = 32,



4.4 Adaptive NN Control Design 81

1 lp_ 22 2 22
+§663+§;6G 1+ = ZGF + = ZkGG
< —c4Vp—1 + s, (4.94)

where the positive constants ¢4 and ¢5 are defined by

Cyq 1= min{2k1, k2 — 1, k3 — 2, ceey kp_l — 2, kp — 3}, (495)
¢ p—1 p—2

es = [Q + € (Z F2+) (1+k)G + k,,_le,_l)] . (4.96)
i=2 i=2

This implies that z(¢) satisfies the inequality

lz@)|l < \/2 (Vp—l(o) + ?) +ec; =:7. (4.97)
4

According to Lemma 4.11, it follows from the boundedness of z(¢) that the internal
states 7(¢) are also bounded, i.e.,

@)l < a1+ ) + ax =: 7, (4.98)

where [|£4(1)]| < g, for constant £; > 0, based on Assumption 4.1. Thus, the vector
of NN inputs Z is also bounded as follows

- - T
~ T T, =
HZH =< |:gld +z, ?25- er—1 sn \/_+6Gpsap 1 +6Fp 1j| = Z (4‘99)
- : . (1 ®
where the constant &, > 0 is an upper bound for a, (z, &14, éld - )
Exploiting the properties of sigmoidal NNs [30], it can be shown that
( 'V S, F) < 1.22441. (4.100)

As a result, from the adaptation law (4.64), the dynamics of the neural weights
[Wl, s W .. W[]T can be shown to satisfy the inequality

W < —Auin(Tw)ow W + 1224V in(Tw ) (V€ + €G,),  (4.101)

which results in

W (@) < W (0)]| +

1.224V1(Jee + €G .
‘[(0“3+6 o) i (4.102)
w
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where I/f/ is a positive constant. Accordingly, from (4.87), and the fact that ||S ; lrF <
0.25un V1, we can show that K is bounded as follows:

I 1 X = 2 _
K<3 (k=3 L@&Hm@ﬂZmQ — K, (4.103)

where K is a positive constant. From (4.83) and (4.103), we obtain that
V, < —c1V, + é. (4.104)

where ¢, 1= ¢, + GC3I{' is a positive constant.

Having obtained (4.104) for Case 2, we can compare it with (4.92) of Case 1
to see that (4.104) describes a larger compact set in which the closed loop signals
remain, by virtue of the fact that ¢, > c¢,. Hence, the performance bounds can
be analyzed from (4.104), as a conservative approach. A nice property is that as €
diminishes to zero, we have ¢, — ¢, and the performance can be analyzed from
(4.92) instead, albeit conservatively.

Based on (4.104), we can directly invoke Lemma 4.9 to conclude SGUUB for
all closed loop signals. Since it is straightforward to prove that the tracking error
71 = & — &4 converges to the compact set £2;,, by following the steps outlined in
the proof of Theorem 4.12, we have omitted the proof. O

Remark 4.20. It follows from Theorem 4.19 that the size of the steady state compact
set £2,1, to which the tracking error converges, depends on the ratio 2—2 , which contain
tunable parameters. Thus, we can reduce the size of §2,, by appropriately choosing
the parameters. For instance, by choosing the control gains ki, ..., k, large and the
observer parameter € sufficiently small, the ratio % can be decreased, to the effect
that £2,, diminishes.

4.5 Simulation Study

In Sect. 4.2, we have considered a general representation of helicopters as nonaffine
nonlinear systems. Although it would be more realistic to perform simulations on
nonaffine helicopter models, an accurate model is difficult to obtain. Since the class
of nonaffine systems include linear systems as special cases, we shall apply our
proposed adaptive NN control for general nonlinear systems to linear and nonlinear
affine helicopter models, which are available in the literature.

In particular, we will first investigate the effectiveness of the NN controller on a
linear helicopter model for two tasks: altitude tracking and pitch tracking. For the
altitude tracking task, we will compare our results with that of [54], while for the
pitch tracking study, we will compare with [38]. This will be followed by a study
for the case of a nonlinear helicopter model for vertical flight.
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For all cases, we use a multi-layer NN as detailed in Sect.4.3.2, with identical
neuronal activation functions for the hidden layer described by

1

—, i =1,2,..1, (4.105)
1+ e Ha

5i(zq) =

so that S(a) = [si(a1),s2(a2), ..., s;(a;)]". The control law is given by (4.24) and
the adaptation laws by (4.30)—(4.31).

4.5.1 Linear Models

In this section, we consider two linearized helicopter models for altitude and pitch
tracking. Since data on linear models is quite rich in the literature, it is useful to
employ them in a study of the effectiveness of the proposed nonlinear NN controller.
As linear systems are a special subclass of nonlinear nonaffine systems, the NN
controller, which is designed for the latter, can be applied on linear systems without
any complications.

4.5.1.1 Altitude Tracking

To this end, consider the linearized altitude model of the Yamaha R50 helicopter as
detailed in [54] with the longitudinal cyclic input § set to zero:

(0] [ X, X, Xo Xp Xo O [u] [ 0]
g M, M, 0 Mg M, 0 ||gq 0
6 0100 00]]|86 0
| = 8o, 4.106
;i B.—10Bs 00|[p|T] o |0 @109
w ZquZQZﬁ ZwO w ZQ
Al [0 0 o0 0 -10][h]|] [0

The control parameters are set to be k; = 2.0, k, = 8.5, and k;, = 1.0, while the
NN parametersare u = 1, I'y = 51, I'y = 501, and oy = oy = 5. For the high
gain observer, we choose € = 0.01, y; = 2, and 7, = 0.08. The lower and upper
saturation limits of the control are 393 rpm and 1,348 rpm respectively. The initial
conditions are x(0) = [10, 0, 0, 0, 0, 0], W = 0,and V = 0.

To compare our controller with that of [54], we consider the tracking of the
altitude & according to a desired trajectory h,(¢) defined by

ha _ 0 1 hy 0
|:de| N [—2.25 —2.4] |:fzdj| * [2.25}}““’
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22

by [52] t‘3)/ the prdposed control

20

altitude [ft]
> ®

—-
H
T

-
N
T

desired

8 L L L L L L L

10

0 5 10 15 20 25 30 35 40
time [s]

Fig. 4.1 Comparison of altitude tracking performance between the proposed controller and that
of [54]

0if0<r<l1
10if 1 <t <16
0if 16 <t <31
10if ¢ > 31

hret(t) = (4.107)

Note that in our comparison, both controllers are simulated without engine
dynamics.

It can be seen in Fig. 4.1 that the tracking performance under the proposed control
is reasonably good, with the altitude signal tracking the desired trajectory closely.
The comparison shows that the performances under the two different controls
are similar. From Fig. 4.2, it is clear that the control signals and neural weights
are well-behaved. The control of [54] exhibits more fluctuations, and the neural
weights evolve to significantly larger amplitudes. Although this does not set out any
comparative advantages, it does demonstrate different mechanisms at work in the
two control schemes.

The effect of the parameter € on tracking errors and observer errors are shown in
Fig.4.3, where it is seen that as € diminishes, the tracking error under the full-state
feedback control is recovered, and faster convergence of the observer is achieved.
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1400 -| - T T T T T T . - T ]
1200 - : by the proposed :
= by [52] control
& 1000
S 800f
o
600 i
400 [ . . . . . . . i
0 5 10 15 20 25 30 35 40
P 2.5 T T T 25
S of {20
2 :
EISTH_byisa) 115
jC_J 1 by the proposed 110
o control
€ 05 15
g
0 L e — 0
0 5 10 25 40

time [s]

Fig. 4.2 Comparison of rotor RPM input and norm of neural weights, given by
\]:HWTHQ + V]2, between the proposed control and that of [54]. For the bottom graph,
the left scale corresponds to the proposed control while the right scale corresponds to that of [54]
4.5.1.2 Pitch Tracking

To this end, consider the linearized model of the Yamaha R50 helicopter with
actuator dynamics as detailed in [38].

The control parameters are set to be k; = 0.8, k, = 0.8, k3 = 1.5 and k, = 1.0,
while the NN parameters are u = 0.01, I'y = 51, I'y = 501, oy = 5, and
oy = 1. For the high gain observer, we choose € = 1 x 1074, y1 =3, =3,
7 = 4 x 1075, and 773 = 4 x 1078. The initial conditions are x(0) = 0, W = 0,
and V = 0.

Remark 4.21. Although it is stated in (4.82) that k, > 1 and k3 > 3, those
conditions obtained from theoretical analysis are somewhat conservative for this
example, although they guarantee a stable, working controller. We found that the
lower control gains chosen here are sufficiently good for obtaining satisfactory
tracking performance.

To compare our controller with that of [38], we consider the tracking of the pitch
angle 8 according to a desired trajectory 6, (¢) defined by
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tracking error [ft]

observer error [ft/s]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
time [s]

Fig. 4.3 Effect of € on tracking errors and observer errors

04 0 1 0 04 0
g, | = 0 0 1 O 1+ 0 | O
6, —2,000 —420 —36 | | 6, 2,000

0 if0<r<05
0.1 if 0.5<tr<2

et(t) =3 0 if2<t<3 . (4.108)
—0.1if 3<r <45
0 ifr>45

It can be seen in Fig.4.4 that the tracking performance of our controller is
comparable with that of [38] for the pitch tracking task. From Fig.4.5, we see
that the control input and neural weights are bounded. Similar to the results in
Sect.4.5.1.1, the control of [38] exhibits more fluctuations, and the neural weights
are larger, illustrating the different mechanisms at work in the two control schemes.

4.5.2 Nonlinear Model

The previous section considered linearized models which are relatively easy to
control, but tend to be more suited for local operation within a neighborhood
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Fig. 4.4 Comparison of pitch tracking performance between the proposed control and that of [38]

03 ' " by the proposed
0.2} by [52] " control -
01} yd \:

0
_01}
_02}
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0.015
0.01f

control
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by the proposed Y
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Fig. 4.5 Comparison of control input and norm of neural weights, given by /|| W72 + ||V| 2,
between the proposed control and that of [38]. For the bottom graph, the left scale corresponds to

the proposed control while the right scale corresponds to that of [38]

of the operating point, for which the linearized model is valid. Nevertheless,
it was demonstrated that the proposed adaptive NN control is effective for the
linear models considered, which constitute a subclass of general non-affine systems
considered in the control design. In this section, we extend the investigations further
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to the case of a nonlinear helicopter model. Both full-state and output feedback cases
are considered.

Consider the nonlinear model of the X-cell 50 model helicopter in vertical flight
[48,93]:

fCl = X2

%2 = ag + a1xa + axx3 + (a3 + asxs — J/as + agxa)x;
%3 = a7 + agxs + (agsinxs + aip)x3 + am

).64 = X5

X5 = a1 + apxs + a13x§ sin x4 + auxs — Kou

y =X, (4.109)

where x; denotes altitude; x, denotes altitude rate; x3 denotes rotor speed; x4
denotes the collective pitch angle; x5 denotes the collective pitch rate; ay =
111.69s72 is a constant input to the throttle; and u is the input to the collective
servomechanisms. The parameters are

K, =—-0.1088s72 K, =0.25397s2 gy = —17.67 ms >
a, = —0.1s72 ar = —0.1s72 as =531 x107*

as = 1.5364x 1072 a5 =2.82x 1077 a¢ = 1.632 x 107>
a; = —13.92572 ag = —0.7s72 ag = —0.0028

apo = —0.0028 ay; = 434.88 s2 ap, = 800 s2

a3 = —0.1 ap = —65 s72.

(4.110)

Let output y be the altitude x;. By restricting the throttle input to be constant, we
obtain a SISO system in which u is the only input variable forcing the output y to
track a desired trajectory y,(¢), which we define as

ya(t) = 5.5—0.5sin?. (4.111)

It can be shown that the system has strong relative degree 4, with the £ subsystem
given by

E=bHh=x

£) = & = ap + arxy + axx3 + (a3 + asxs — /as + agxs)x?

£y = & = (a1 + 2a26)6 + asx3 + (a4 — L) x3xs
2/as + aexa

+2(a3 + asxs — v/as + agxa)x3(asxs + (ag sin x4 + a10)x3)
£ = b(x) + g(X)ua, (4.112)
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where

ag
=Kl |ay— ————— ). 4.113
g(x) 2X3 (a4 NPT +a6x4) ( )

The derivation of h(x) in (4.112) is omitted, and we proceed to verify that the
system indeed satisfies the assumptions supposed in the control design. Assump-
tions 4.1 and 4.2 are obviously satisfied from (4.108) and (4.112) respectively.

To verify Assumption 4.4, we first note, from a practical standpoint, that the
collective pitch angle, x4, is restricted within a range, typically from O to 0.44 rad
[83]. It can be verified that the bracketed terms in (4.113) are virtually constant:
they take values in the range [1.4,1.5] x 1073, Thus, the control coefficient g(x)
in (4.113) is always negative. Together with the fact that rotor speed x3 is nonzero
during flight, it can be concluded that there does not exist any control singularities
or zero crossings of g(x). Therefore, the first part of Assumption 4.4 is satisfied.

Remark 4.22. Although the second part of the assumption, that g(x) > 0, does not
correspond to this example, there is no loss of applicability of the theoretical results,
as explained in Remark 4.14. The control is still valid under a simple change of sign,
1.e., U = —Uy, — Up.

Lastly, it is not difficult to verify the existence of a function

PR 17—
4(as+agxq)!?

go(x) = 2| |ag| + |agsin x4 + ayol|x3| + >0,

a
2 <6l4 o 2«/615‘?’&6,\'4)
Vx; € RT, x4 €[0,0.44],
(4.114)

which fulfils Assumption 4.5 for the case of g(x) < 0. Note that this function need
not be known; we only need to show its existence.

The control parameters are chosen as k; = 2.0, k, = 3.0, k, = 4.5, ky = 5.5,
ky = 0.6, while the NN parameters are © = 0.01, I'y = 501, I'y = 20.41,
oy = 0.055 and o = 0.05. For the high gain observer, we choose € = 5 X 1074,
yi =4, =6,y =4, 1 =5x 10_4, T3 = 5% 10_8, and T4y = 1 % 10711,
The saturation limits of the control are 22400 mrad. The initial conditions are x (0) =
[5.2, 0, 95.36, 0, 0]T, W = 0, and V = 0.

From Fig.4.6, it can be seen that good tracking performance is achieved by
the proposed adaptive NN control. The tracking performance for the full-state and
output feedback cases are similar for the choice of € made. The initial error is
efficiently reduced and the altitude trajectory lies in close proximity of the desired
sinusoidal trajectory. We compare the performance of the NN controller with a linear
PD controller

ups = Kp(y —ya) + Ka(y — ya), (4.115)
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Fig. 4.6 Comparison of tracking performance between adaptive NN and PD control for nonlinear
helicopter model

where K, = 5,000 rad and K; = 500 rad s are chosen so that the tracking errors
are reasonably small and the control magnitude is constrained to |u,q| < 400 mrad.
Although steady state errors are comparable between PD and NN control, the PD
control gives poorer transient performance as it attempts to compensate for the
initial error, due to the inability of the linear PD control to adequately compensate
for the effects of nonlinearity and coupling. Clearly, a dynamic model compensator
is essential to achieve better performance.

The boundedness of the control input and the neural weights, for full-state and
output feedback NN control, as well as the PD control, are shown in Fig.4.7.
The size of input signal under PD control is much larger than that under NN
control, as seen by the fact that the PD control signal initially fluctuates between the
saturation limits. This can be explained by the fact that a large PD control gain is
required to compensate for nonlinearities, thus amplifying the control effort greatly
when the initial error is large.

In Fig. 4.8, it is shown that the rotor speed and collective pitch angle, for both full-
state and output feedback NN control, are bounded. In particular, it is confirmed that
the collective pitch angle remains in the region [0, 0.44] rad as restricted in practical
operations.
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Fig. 4.7 Top: Control signals under adaptive NN and PD control. Botfom: Norm of neural weights,

given by /|| WT|2 + ||V| 2, under full-state and output feedback NN control
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Fig. 4.8 Top: Speed of rotor. Bottom: Collective pitch angle
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4.6 Conclusion

In this chapter, a robust adaptive NN control has been presented for helicopter
systems whose dynamics are represented by a general nonlinear nonaffine form.
Based on the use of the Implicit Function Theorem and the Mean Value Theorem,
we proposed a constructive approach for stable adaptive NN control design with
guaranteed performance bounds. We focused on SISO helicopter systems, which
are valid for certain single-channel modes of operation, such as vertical flight and
pitch regulation, and also for special conditions under which the multiple channels
become decoupled. Considering both full-state and output feedback cases, it has
been shown that, under the proposed NN control, the output tracking error converges
to a small neighborhood of the origin, while the remaining closed-loop signals
remain bounded. The extensive simulation study demonstrated the effectiveness of
the proposed control on dynamic models of helicopters.
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