
Chapter 3
Stability Analysis for Rotary-Wing Aircraft

3.1 Introduction

With the flight dynamic modeling from Chap. 2, the natural next step is to conduct
trim analysis. Trim is a state in which force and moment equilibrium are maintained.
Trim analysis is the basis of many rotary-wing aircraft studies, including perfor-
mance and stability analysis, control system design, handling qualities assessment,
and software-in-the-loop simulation.

During the linearization process, small perturbation can be applied to the
trimmed states to extract the linearized model. All elements in the linearized
model can be grouped into four categories: gravity terms, kinematic terms, stability
derivative terms, and control derivative terms. Focus is given on a sanity check
of these terms. At the end of the chapter, three examples will be provided on the
dynamic stability study of the rotary-wing aircraft.

3.2 Trim

Trim calculation can be conducted analytically or numerically. A good illustration
of an analytical trim calculation can be referred to in [84]. While analytical trim
calculation may provide insight on critical forces and moments acting on the rotary-
wing aircraft, its application is restricted to simplified analytical equations or special
flight conditions in which great simplifications are required.

It may be noticed by readers that the mathematical modeling detailed in Chap. 2
tends to be matrix-centric and can thus be easily implemented in MatlabTM. As a
result, numerical trim calculation can be conducted based on the Trim command
available in MatlabTM. A description of this command can be referred in the
SimulinkTM User Manual.
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42 3 Stability Analysis for Rotary-Wing Aircraft

In this section, the procedure for numerical trim calculation is outlined based
on the Newton method. The procedure can be implemented in the MatlabTM

environment, as well as other programming languages like C. Compared to the Trim
command in MatlabTM, this set of procedures can provide greater flexibilities in
fine-tuning parameters related to convergence and its speed.

Typical difficulties related to the Newton method include the existence of mul-
tiple equilibria, computation and singularity of the Jacobian matrix, and closeness
of the initial guess to the final converged solution. In the application of rotary-wing
aircraft, one possible case for multiple equilibria occurs when the blade sectional
angle of attack gets close to the stall region. Here, a single value of lift coefficient
may correspond to two angles of attack near to each other. A remedy is thus to
smooth out the lift coefficient curve. Generating the Jacobian matrix may not be a
big problem as the trim problem only involves a small number of trim variables
(typically six) and the matrix can be obtained through numerical perturbation.
In terms of the initial guess, one can always start with hover condition and increase
flight speed in a comfortably small step. Singularity of the Jacobian matrix may
occur at extreme flight conditions like flying at Vne (never exceed speed). For flight
conditions close to the boundaries of the flight envelope, professional judgement
needs to be made to determine whether the failure to converge is due to numerical
reasons or physical causes.

As a general formulation, suppose that the dynamic system can be represented as
follows:

PX D f .X; U / (3.1)

Here, X can be states from the general six degree-of-freedom equations of motion,
blade flapping equations, rotor rotational degree-of-freedom, or dynamics involving
flight control system. U are either control variables in general or trim variables in
the trim problem.

The procedures using Newton’s method are described as follows:

1. Set flight condition X .
2. Set trim targets Y which can be a subset of PX .
3. Set trim variables U and associated perturbation �h.
4. Set initial conditions for trim variables U0 and run system (3.1) to obtain Y0.
5. Vary one trim variable at a time as U.i/ C �h.i/ and run the full system to

obtain Y i .
6. Form the Jacobian matrix J :

J.W; i / D Y i � Y0

�h.i/
(3.2)

7. Obtain J �1.
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Table 3.1 Setting on trim variables and trim targets

Trim flight conditions Trim variables Trim targets

Steady level flight or hover �c , �1c , �1s , �ctr , �, � Pu, Pv, Pw, Pp, Pq, Pr
Climb or descent �1c , �1s , �ctr , �, � , �v Pu, Pv, Pw, Pp, Pq, Pr
Autorotation �c , �1c , �1s , �ctr , �, � Pu, Pv, Pw, Pp, Pq, Pr

�v P̋ rotor

Coordinated turn �c , �1c , �1s , �ctr , �, � Pu, Pv, Pw, Pp, Pq, Pr
Longitudinal static stability �1c , �1s , �ctr , �, � , �v Pu, Pv, Pw, Pp, Pq, Pr
Lateral static stability �1c , �1s , �ctr , �, � , �h Pu, Pv, Pw, Pp, Pq, Pr

8. Set the update of U :

Unew D Uold � J �1.Yold � Y / (3.3)

9. Run the full system to obtain Ynew.
10. Test whether jjYnew � Y jj < �. If not, go back to Step 8.

Astute readers may realize that the above procedures do not strictly follow the
classical Newton method. It is in fact a variant of the Newton method called the
Chord method. The advantage of the Chord method is that it only requires us to
compute the Jacobian matrix once, thus saving considerable computational cost.
However, while the Newton method can guarantee quadratic convergence, the Chord
method can only achieve linear convergence.

A collection of trim variables and trim targets at various trimmed flight condi-
tions is provided in Table 3.1 [14]:

In Table 3.1, �h and �v represent horizontal and vertical flight path angles,
respectively. In some trim conditions, collective pitch �0 is not one of the trim
variables as it is set by a predefined value.

3.3 Linearization

The process of linearization is based on small perturbation theory in which a variable
is the sum of its nominal value plus a perturbation. For example, pitch attitude, � , is
written as

� D �0 C �� (3.4)
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In another example, the total force acting along x-axis in body frame, X , can be
expressed as

X D X0 C �X (3.5)

The incremental force �X can be further extended with the following linear
approximation:

�X D Xu�u C Xw�w C Xq�q C X�c ��c C X�1s ��1s (3.6)

In the above expression, the terms (Xu, Xw, Xq) are called stability derivatives, while
the remaining terms (X�c , X�1s ) are referred to as control derivatives. Both stability
and control derivatives are first order partial derivatives. While these derivatives can
also be obtained through analytical investigation [84], they can be computed by
numerical perturbation. For example, drag damping Xu is

Xu D @X

@u
Š X.U0 C �u/ � X.U0/

�u
(3.7)

The product from the linearization process is a linearized system with respect to
a reference flight condition in the following form:

Px D Ax C Bu (3.8)

with states xT D Œu; w; q; �; v; p; r; �� and control inputs uT D Œ�c ; �1s; �1c; �ctr �.
Notice that, for simplicity, the symbol � is not explicitly included in the increments
of variables. Matrix A is made of four parts: longitudinal dynamic Along, lateral dy-
namics Alat, longitudinal/lateral coupling Along=lat, and lateral/longitudinal coupling
Alat=long:

A D
2
4

Along Along=lat

Alat=long Alat

3
5 (3.9)

General forms of these four sub-matrices are provided:

Along D

2
66666666664

Xu
m

Xw
m

Xq

m
� W0 �g cos �0

Zu
m

Zw
m

Zq

m
C U0 �g cos �0 sin �0

Mu
Iyy

Mw
Iyy

Mq

Iyy
0

0 0 cos �0 0

3
77777777775

(3.10)
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Along=lat D

2
66666666664

Xv
m

Xp

m
Xr

m
C V0 0

Zv
m

Zp

m
� V0

Zr

m
�g sin �0 cos �0

Mv
Iyy

Mp

Iyy

Mr

Iyy
0

0 0 � sin �0 0

3
77777777775

(3.11)

Alat=long D

2
6666666664

Yu
m

Yw
m

Yq

m
�g sin �0 sin �0

IzzLuCIxzNu
�

IzzLwCIxzNw
�

IzzLqCIxzNq

�
0

IxzLuCIxxNu
�

IxzLwCIxxNw
�

IxzLqCIxxNq

�
0

0 0 sin �0 tan �0 0

3
7777777775

(3.12)

Alat D

2
6666666664

Yv
m

Yp

m
C W0

Yr

m
� U0 g cos �0 cos �0

IzzLvCIxzNv
�

IzzLpCIxzNp

�

IzzLr CIxzNr

�
0

IxzLvCIxxNv
�

IxzLpCIxsNp

�

IxzLr CIxxNr

�
0

0 1 cos �0 tan �0 0

3
7777777775

(3.13)

All the elements in the above matrices can be obtained through numerical
perturbation. However, there are gravitational and inertial terms in the matrix that
can be accurately obtained through an analytical study of the equations of motion.
For this reason, these gravitational and inertial terms can serve as a good references
for the sanity check once A is obtained from the linearization process. For example,
the term �g cos �0 in the matrix Along can be computed with trim pitch attitude �0.

In another example, the term Zq

m
C U0 in the matrix Along is dominated by U0 in

forward flight.
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Finally, the control matrix B is provided:

B D

2
666666666666666666666666666666664

X�c

m

X�1s

m

X�1c

m

X�ctr
m

Z�c

m

Z�1s

m

Z�1c

m

Z�ctr
m

M�c

Iyy

M�1s

Iyy

M�1c

Iyy

M�ctr
Iyy

0 0 0 0

Y�c

m

Y�1s

m

Y�1c

m

Y�ctr
m

IzzL�c CIxzM�c

�

IzzL�1s
CIxzM�1s

�

IzzL�1c
CIxzM�1c

�

IzzL�ctr CIxzM�0tr
�

IxzL�c CIxxM�c

�

IxzL�1s
CIxxM�1s

�

IxzL�1c
CIxxM�1c

�

IxzL�ctr CIxxM�ctr
�

0 0 0 0

3
777777777777777777777777777777775

(3.14)

Besides the state (3.8), the measurement equation is also required:

y D Cx (3.15)

The measurement vector y is determined by the available sensors. In the later
section, controllability and observability of the resultant system ((3.8) and
(3.15)) need to be determined by calculating M D .B AB A2B ::: An�1B/ and
O D .C CA CA2 ::: CAn�1/ , where n is the number of states.

Case Study for Longitudinal Motion of Helicopter at Hover

In this section, the mathematical model of a single helicopter in hover is linearized.
The following Table 3.2 provides the symbols and subscripts to be used.

A helicopter model at hover, where only the longitudinal motion is considered,
can be modeled in state space form as

Px D f .x; u/ D A.x; u/x C B.x; u/u

y D Cx (3.16)



3.3 Linearization 47

Table 3.2 Symbols and
subscripts of helicopter
model in hover

Symbols Meanings

x1; x3 Forward, vertical displacement
x2; x4 Forward, vertical velocity
�; q Pitch angle and pitch rate
Bl Longitudinal cyclic angle
�o Collective pitch angle
wc Weight coefficient
x; z Aerodynamic force derivatives
m Aerodynamic pitch moment derivative

Subscripts Meanings
u Aerodynamic derivative due to forward velocity
w Aerodynamic derivative due to vertical velocity
q Aerodynamic derivative due to pitch rate
Bl Aerodynamic derivative due to longitudinal cyclic angle
�o Aerodynamic derivative due to pitch angle

where x D Œx1; x2; x3; x4; �; q�T, u D ŒBl; �o�T, y D Œ�; x4�T and the state matrices
A, B and C are

A D

2
66666664

0 1 0 0 0 0

0 xu 0 xw �wc xq

0 0 0 1 0 0

0 zu 0 zw 0 zq

0 0 0 0 0 1

0 mu 0 mw 0 mq

3
77777775

B D

2
66666664

0 0

xBl x�o

0 0

zBl z�o

0 0

mBl m�o

3
77777775

C D
�

0 0 0 0 1 0

0 0 0 1 0 0

�

In particular, the aerodynamic parameters are calculated according to [9] as

xu D �2:1268�2
o C 0:0353�o � 0:004

xw D �.� � Bl/.5:609�2
o � 2:797�o � 0:0621/

xq D 2:0074�o � 0:0141

x�o D �.� � Bl/.4:3428�2
o � 2:4937�o � 0:0354/

xBl D 0:08185�o � 0:0035
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zu D 0

zw D 5:609�2
o � 2:797�o � 0:0621

zq D 0

z�o D 4:3428�2
o � 2:4937�o � 0:0354

zBl D 0

mu D 233:3:64�2
o C 24:7213�o C 0:4129

mw D Bl.606:7919�2
o � 302:58�o � 6:7138/

mq D �4:5622�o � 0:06324

m�o D Bl.469:8083�2
o � 269:7760�o � 3:835/

mBl D �88:5473�o � 11:4745

wc D �0:0856

The linearization of the mathematical model in (3.16) may be done by expanding
the nonlinear function into a Taylor series about the operating point and neglecting
the higher order terms of the expansion [74]. Considering (3.16), the equilibrium
point of the system may be found by solving

f .x; u/ D 0 (3.17)

The equilibrium points are found to be at .x0; u0/ D .0; 0/. This is followed by doing
a Taylor series expansion of (3.16) about the equilibrium point, which results in

Px D f .x; u/

D f .x0; u0/ C
�

@f

@x1

.x1 � x01/ C @f

@x2

.x2 � x02/ C � � � C @f

@x6

.x6 � x06/

C @f

@u1

.u1 � u01/ C @f

@u2

.u2 � u02/

�

C 1

2Š

�
@2f

@x2
1

.x1 � x01/
2 C @2f

@x2
2

.x2 � x02/2 C � � � C @2f

@u2
2

.u2 � u02/
2

�
C � � �

(3.18)

The partial derivatives are evaluated at the operating point, and neglecting the higher
order derivatives yield
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Px � f .x0; u0/ D
�

@f

@x1

.x1 � x01/ C @f

@x2

.x2 � x02/ C � � � C @f

@x6

.x6 � x06/

C @f

@u1

.u1 � u01/ C @f

@u2

.u2 � u02/

�

It is noted that the matrix C in (3.16) is already constant and it therefore does
not need to be linearized. The resulting linearized state space representation of the
system is given by

Px D Ax C Bu

y D Cx (3.19)

where A and B are constant matrices defined as

A D

2
664

@f1

@x1
:::

@f1

@x6

:::
: : :

:::
@f6

@x1
:::

@f6

@x6

3
775 D

2
66666664

0 1 0 0 0 0

0 �0:004 0 0 �0:856 �0:0141

0 0 0 1 0 0

0 0 0 �0:0621 0 0

0 0 0 0 0 1

0 0:4129 0 0 0 �0:0632

3
77777775

B D

2
664

@f1

@u1

@f1

@u2

:::
:::

@f6

@u1

@f6

@u2

3
775 D

2
66666664

0 0

�0:0035 0

0 0

0 �0:0354

0 0

�11:4745 0

3
77777775

Following the linearization of the system, the controllability and observability
matrices of the resulting system are given by M D .B AB A2B ::: A5B/ and
O D .C CA CA2 ::: CA5/T are calculated using MATLAB. Both the matrices
are found to have full rank of 6. This implies that the linearized system is both
controllable and observable.

3.4 Description of Stability and Control Derivatives

In this section, a detailed illustration is provided on key stability and control deriva-
tives. This description focuses on contributing sources, physical interpretation, and
typical signs of these derivatives. Part of the description is a variation from [81].

• Xu: this term represents drag damping, contributed mainly from fuselage parasite
drag and main rotor H-force. By definition, the sign of Xu is negative and the
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magnitude grows larger as speed increases. As XFU Š � 1
2
	U 2

0 Sref, where Sref is
the equivalent flat plate drag area, it follows that:

Xu

m
Š 1

m

@XFU

@u
D �	U0Sref

m
(3.20)

• Zw: heave damping. At hover, the value of Zw determines the time constant of
vertical response.

• Mu: speed stability. At hover, the rotor flaps back in response to a head wind
disturbance. As the resultant nose-up moment is in the direction opposing the
disturbance, the rotary-wing vehicle is statically stable with Mu being positive.
However, an excessive value of Mu may lead to unstable phugoid response
and is sensitive to gust. In forward flight, the rotor has a similar contribution
while the horizontal stabilizer (if mounted) may have a significant effect to Mu

depending on the location of the stabilizer. If the horizontal stabilizer is mounted
directly under the main rotor and experiences download from rotor downwash,
it enhances Mu. If the horizontal stabilizer experiences upload during flight, the
effect is destabilizing.

• Mw: angle of attack stability. At hover, the value of Mw is close to zero. In
forward flight, a positive increase of angle of attack leads to backward tilting of
the rotor, creating a nose-up moment to further increase the angle of attack. Thus,
the contribution from the rotor to Mw is destabilizing with its corresponding value
taking positive sign. A horizontal stabilizer (whether it experiences download or
upload) contributes a stabilizing effect, which is the main reason to justify its
existence in a pure helicopter configuration. In addition, a forward C.G. location
(ahead of rotor shaft) will contribute a stabilizing moment.

• Mq: pitch damping. For a rotor with counter clockwise rotation, a positive change
in the pitch rate results in a negative roll due to gyroscopic moment. This in turn
causes a flap-down for the blade over the nose and a flap-up for the blade over the
tail. The resultant nose-down moment opposes the original pitch rate variation,
thus the damping effect. In fact, the above explanation can be referred to (2.16):

ˇ1c D � 16

�˝
qH (3.21)

Another interesting interpretation of the above equation is that when the fuselage
is tilting at a constant pitch rate qH, the time lag between the fuselage and the
rotor is 16

�˝
s.

• Lv: Dihedral effect. Lv is the lateral counterpart of Mu. For a right sideslip,
the rotor responds with a left roll. A positive dihedral effect thus takes a
negative value. The contributions from both tail rotor and vertical tail depend
on their relative location above or below C.G. When above C.G., the effect is
stabilizing and vice versa. Similar to Mu, an excessively large value of Lv may
not be preferable. In some helicopter configurations, the vertical tail is placed
underneath the tail boom in order to have a moderate value of Lv.
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• Lp : roll damping. Lp is the lateral counterpart of Mq . Again, from (2.16), it
follows that:

ˇ1s D � 16

�˝
pH (3.22)

• Nv: weathercock stability. The main contributions to Nv are from the tail rotor
and vertical tail. Both are stabilizing with Nv taking a positive value.

• Mp and Lq : cross-coupling due to roll/pitch rates. Once again, (2.16) can be
used:

ˇ1s D �qH

˝
(3.23)

ˇ1c D pH

˝
(3.24)

Thus, Mp takes a positive value while Lq is negative.
• Z�c , M�1s , L�1c , and N�ctr

: collective/pitch/roll/yaw control power.

In the subsequent sections, three examples will be provided on linearized
dynamics for the rotary-wing aircraft. The first two examples deal with two different
hobby helicopters (Yamaha R50 and Copterwork AF25B) at two different flight
conditions (hover and forward flight). The last example illustrates a combined
system consisting of a helicopter and an underslung load.

3.5 Yamaha R50 Helicopter at Hover

Consider the longitudinal linearized model of the Yamaha R50 helicopter [54] at
hover:

2
664

Pu
Pw
Pq
P�

3
775 D

2
664

�0:0553 0:0039 1:413 �32:1731

�0:0027 �0:5727 �0:0236 � 0:2358

0:2373 0:002 �6:9424 0

0 0 1 0

3
775

2
664

u
w
q

�

3
775

C

2
664

11:2579 0

0:0698 �0:199

�38:6267 0

0 0

3
775

�
ı

ı˝

�
(3.25)

where ı is longitudinal cyclic control and ı˝ denotes the main rotor RPM variation.
It is interesting to compare the state matrix in (3.25) and Along in (3.10). Although

trim roll and pitch attitudes are not provided in [54], their values can be assumed
to be small. Therefore, the two gravitational terms, �g cos �0 and �g cos �0 sin �0,
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Fig. 3.1 Eigenvalue plot for Yamaha R50 helicopter at hover

take estimated values of �32:2 f t=s2 and 0 f t=s2, respectively. By the same
token, the kinematic term cos �0 is close to 1. Moreover, some terms are weak
at hover, including Xu, Xw, Zu, Zq , and Mw. The term Xq is drag due to pitch
rate with the main contribution from main rotor. Following a positive change in
pitch rate, the main rotor with a counter-clockwise rotation has a tendency of left
roll due to gyroscopic moment, which results in a forward tilting of the rotor disk.
Thus, the sign of Xq should be positive. In fact, this process is how the opposing
pitch-down moment is generated for the pitch damping Mq . Due to hingeless rotor
configuration for the R50 helicopter, the value of Mq is fairly large if compared to
normal articulated or even teetering rotor configurations. The magnitude of Mq can
also take the contribution from the fly bar. The positive sign of Mu has already been
discussed in the last section. Thus, the state matrix in (3.25) appears to be reasonable
from the above sanity check.

From the given linearized dynamics in (3.25), a distribution of eigenvalues can
be obtained (see Fig. 3.1). An approximation can be made by further assuming
that the heave dynamics are independent from the remaining dynamics. From the
figure, it can be seen that the differences in eigenvalues from both approximated
dynamics and full dynamics are indiscernible. This is not surprising as the rotor is
aerodynamically symmetric at hover condition. It also shows that the heave mode
at hover can be characterized as a first-order dynamic system with time constant
at 1.75 s.
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Apart from heave mode, the remaining eigenvalues include one pair of complex
conjugates, often known as the phugoid mode, and one at real axis, known as the
pitch mode. While the pitch mode is stable and aperiodic, the phugoid mode here is
mildly unstable and oscillatory.

Going back to matrix Along, it reduces to the following form when taking out the
heave dynamics [81]:

Along;reduced D

2
666664

Xu
m

Xq

m
�g

Mu
Iyy

Mq

Iyy
0

0 1 0

3
777775

(3.26)

The corresponding characteristic equation is

s3 �
�

Xu

m
C Mq

Iyy

�
s2 C

�
Xu

m

Mq

Iyy

� Mu

Iyy

Xq

m

�
s C Mu

Iyy

g D 0 (3.27)

When Mu D 0, the resulting characteristic equation will have three roots on the
real axis: 0, Xu=m, and Mq=Iyy . When the value of Mu=Iyy is increased from 0 to
0:2373, it can be found that the root close to Mq=Iyy hardly moves, while the root
locus corresponding to 0 and Xu=m first merges together on the real axis before
becoming a complex pair and moving towards the right half of the plane. The result
is shown in Fig. 3.2.

Figure 3.2 indicates that the eigenvalue associated with the pitch mode is mainly
determined by Mq , and an increase in value of Mu may result in an unstable phugoid
mode.

It is also interesting to discuss the effect of Mq . The results from Mq variation can
be seen in Fig. 3.3. There are three values of Mq: original value, half of the original
value, and double of the original value. From the figure, it is clear that increasing
pitch damping is beneficial to the system stability.

As a side note, the lateral linearized dynamics is a mirror image of longitudinal
counterpart due to the main rotor’s aerodynamic symmetry at hover. Similar to
longitudinal dynamics, there are three modes in lateral dynamics: yaw mode, roll
mode, and dutch roll model. The correspondence between the two dynamics are:
heave mode vs. yaw mode, pitch mode vs. roll mode, and phugoid mode vs. dutch
roll mode.
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Fig. 3.2 Influence of speed stability Mu
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Fig. 3.3 Influence of pitch damping Mq
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3.6 Copterworks AF25B Helicopter in Forward Flight

Due to aerodynamic asymmetry on the main rotor in forward flight and dynamic
coupling from the flapping blades and constantly spinning rotor, longitudinal and
lateral dynamics may not always be sufficiently decoupled. This is added complexity
when compared to the analysis of fixed-wing aircraft.

In this section, a coupled linearized model for a Copterworks AF25B radio
control helicopter is analyzed (see Fig. 3.4). The condition is straight level flight
at 40 knots. The gross weight of the helicopter is 30 kg. Trimmed roll and pitch
attitudes are 1:43ı and �10:2ı, respectively. Velocities along the body x-axis and
z-axis are U0 D 66:4915 and W0 D �11:9628. The linearized model is shown
in (3.28):

A D

2
666666666664

�0:1634 0:0676 14:1039 �31:6911

�0:0792 �0:9827 73:9560 5:6832

0:0208 0:1940 �24:1599 �0:0014

0 0 0:9997 0

�0:0014 �0:0046 �1:6321 0:1414

0:3740 0:2245 �106:5635 0:0010

0:0272 0:0304 �0:2059 0

0 0 �0:0045 �0:0001

�0:0029 �1:8475 �1:4723 0:0003

0:0314 2:4586 �0:4810 �0:7882

0:1118 41:7746 �0:0236 �0:0127

0 0 �0:0249 0:0001

�0:0804 �14:0134 �66:2104 31:6828

�0:3005 �67:5186 �0:1599 0:0049

0:1869 0:6160 �0:8763 0

0 1:0000 �0:1793 �0:0001

3
777777777775

(3.28)

Once again, a sanity check of the state matrix is in order. In the follow-up
discussion, entry (n,m) stands for nth row and mth column.

1. Entry (1,1): drag damping Xu. In the nonlinear modeling, equivalent flat-plate
drag area is assumed to be 2f t2. Based on (3.20), Xu is estimated at �0:1577,
a value close to �0:1634 from the linearization.

2. Entry (1,3): Xq � W0. This term is dominated by vertical speed along the body
z-axis �W0.

3. Entries (1,4), (2,4), (2,8), (5,4), (5,8): gravitational terms. The calculated
values based on corresponding entries in (3.8) are �31:6843, 5:6999, �0:7908,
0:1423, and 31:6813, sufficiently close to corresponding entries in the state
matrix.
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Fig. 3.4 AF25B radio control helicopter from Copterworks(Courtesy of Copterworks Inc.)

4. Entry (2,2): heave damping Zw. At hover, Zw D �0:4 for AF25B. The
magnitude of Zw tends to increase with higher speed [78].

5. Entry (2,3): Zq C U0. This term is dominated by forward speed along the body
x-axis U0.

6. Entry (3,1): speed stability Mu. In reference to Mu for Lynx helicopter (see
Fig. 4.15 of [78]), the value of Mu is reduced with the increase of speed from
hover to moderate speed. The value of Mu is 0:0825 at hover for the AF25B,
decreasing to 0:0208 at 40 knots. This comparison is reasonable since both the
AF25B and the Lynx have hingeless rotor configurations.

7. Entry (3,2): angle of attack stability Mw. The positive value here indicates
the destabilizing effect of Mw. This is because the AF25B has no horizontal
stabilizer to produce opposing pitching moment from a variation of vertical
velocity.

8. Entries (3,3) and (6,6): pitch damping term Mq and roll damping term Lp . Both
values are negative. Compared to the value in entry (3,3), the one in entry (6,6)
is almost three times larger. This is due to roll moment of inertia Ix which is
three times less than the pitch moment of inertia Iy .

9. Entries (3,6) and (6,3): cross-coupling Mp and Lq . The signs are positive for
Mp and negative for Lq , which conform to the analysis in Sect. 3.4.

10. Entries (4,3), (4,7), (8,3), (8,7): kinematic terms. The calculated values based
on corresponding entries in (3.8) are 0:9997, �0:0250, �0:0045, and �0:1799,
which are in good agreement with corresponding entries in the state matrix.

11. Entry (6,5): dihedral effect Lv. Here, the negative value has a stabilizing effect,
which mainly comes from the main rotor. However, it should be noted that the
effect from the vertical fin is destabilizing as the fin is mounted below the C.G..

12. Entry (7,5): weathercock effect Nv. As expected, the value of Nv in the state
matrix is positive with main contributions from the tail rotor and vertical fin.
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Fig. 3.5 Eigenvalue distribution for the AF25B at 40 knots
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Fig. 3.6 Variation of Mw on the eigenvalue distribution

Following the sanity check on the state matrix, the corresponding eigenvalues
are plotted in Fig. 3.5. Far away to the imaginary axis in the left half of the
complex plane is the roll/pitch oscillation mode. Mainly due to the hingeless rotor
configuration and its associated large hub moment, the dynamics of this mode are
rapid. Other modes are all close to the imaginary axis and stable, including heave,
spiral, dutch roll, and phugoid modes. In particular, the phugoid mode is the closest
to the imaginary axis, indicating minimum stability margin. An improvement on Mw

is preferable (see Fig. 3.6), with the corresponding means ranging from the addition
of horizontal stabilizer to forward C.G. (ahead of rotor thrust vector).
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3.7 Conclusion

Stability analysis for the rotary-wing aircraft starts with trim to establish steady state
condition, progresses with linearization to obtain linearized model with respect to
the established trim condition, and centers on static and dynamic stability studies.
Static stability provides clues on the system’s initial response, while dynamic
stability looks at the system behavior in the long term.

The importance of stability analysis cannot be over-estimated as it provides
insights to the system characteristics and is itself the basis of flight control system
design. In the subsequent chapters, several advanced control schemes will be offered
for helicopter systems.
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