
Chapter 2
Building a Nonlinear Rotary-Wing Aircraft
Model

2.1 Introduction

This chapter focuses on nonlinear flight dynamic modeling of rotary-wing aircraft.
The intention is to establish a general modeling framework, that applies to not
only traditional single main-rotor helicopters, but also unconventional rotary-wing
aircraft. Apart from general equations of motion, the modeling framework relies
heavily on and is extended from the results in [97]. Differing from a traditional
modeling description, the inflow dynamics of a rotor module include latest result
from [13] to handle a rotor in descent motion. In addition, a propeller thrust
and torque calculation procedure is illustrated using the typical nomenclature in
helicopter theory books. For the purposes of easy implementation and simple
writing format, vector description of equations is utilized whenever possible.

2.2 General Equations of Motion

Assumptions associated with the classical six degree-of-freedom (DOF) equations
of motion include rigid body dynamics and insignificant effects from Earth’s
curvature and rotation. These two assumptions are usually satisfied for applications
in performance study, stability analysis, dynamic simulation, control system design,
and handling qualities assessment.

Typically, the general equations of motion include four sets of equations: force
equation, moment equation, kinematic equation, and navigation equation.

2.2.1 Force Equation

Figure 2.1 shows typical coordinate systems for both aircraft body and the main
rotor hub. Let uB, vB, and wB be three velocity components and pB, qB, and rB
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8 2 Building a Nonlinear Rotary-Wing Aircraft Model

Fig. 2.1 Definitions of body axes and hub axes system (Image with courtesy of http://
cheaprchelicopters.net)

be three angular rate components along the x-, y-, z-axis in the body axes system,
respectively. Furthermore, define the Euler angle representation as roll (�), pitch
(�), and yaw ( ). The force equation is listed as follows:
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The cross-product term is the Coriolis acceleration due to body rotation. There are
two contributions to the force term of the equation: one is the gravitational force
resolved in the body axes system, and another is all other forces in the body axes
system, represented as Fx , Fy , and Fz.

2.2.2 Moment Equation

Define L, M , and N as the resultant rolling, pitching, and yawing moments along
the x-, y-, z-axis in the body axes system, respectively. The moment equation is:
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The inertial matrix, I , can be represented as
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where � D IxxIzz � I 2xz. In the moment equation, the first term on the right-
hand side includes both inertial coupling and gyroscopic effect. Notice that in the
I matrix, there are no coupling terms Iyz and Ixy . This is due to the fact that for
most flying vehicles, the x � z plane is a plane of symmetry. Although, strictly
speaking, a classical single main-rotor helicopter has no plane of symmetry due to
its tail rotor, it is often used to simplify the resultant equations. The inertial coupling
term associated with Ixz will be significant in the case of highly maneuverable
motions. In some special cases with three symmetric planes like quad-rotor system,
there is no inertial coupling presented in their motions. While gyroscopic effect is
evident for a single-engine fixed-wing aircraft in maneuvering flight, it is even more
significant in a rotary-wing vehicle due to its main rotor. In fact, the moment due to
gyroscopic effect is the main source of roll and pitch dampings from the rotor in an
unaugmented rotorcraft.

2.2.3 Kinematic Equation

It should be pointed out that the three Euler angle derivatives, P�, P� , and P , are not
orthogonal to each other. The relationship between Euler angle derivatives and body
angular rates is provided as follows:
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It is noted that the kinematic equation has a singularity at � D 900. For all-attitude
flight, a quaternion representation is recommended.

2.2.4 Navigation Equation

The navigation equation is represented in the local NED (North–East–Down) frame.
The transformation from the vehicle’s body frame to the local NED frame follows
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the predefined rotational sequence: roll, pitch, and yaw. Therefore, the navigation
equation is
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In practical applications, position information is often obtained in terms of GPS data
in the Geodetic form (longitude, latitude, and height). In such cases, transformations
can be carried out first from Geodetic frame to ECEF (Earth centered Earth fixed)
frame, and then to local NED frame.

In both force and moment equations, the resultant forces (Fx , Fy , and Fz) and
moments (L, M , and N ) are contributions from various modules of a rotary-
wing aircraft, including main rotor, tail rotor (for a classical helicopter), propeller
(if mounted, typically with a compound helicopter or an autogyro), fuselage,
horizontal and vertical tails, wing (if mounted), landing gear, and slung loads (for
underslung operation). In the case of aerodynamic forces and moments, they are
typically computed in the local wind axes system. This process requires that the
relevant motion variables be transformed to the wind axes system and resultant
forces and moments be transformed back to the body axes system.

A block diagram for a general rotorcraft model is provided in Fig. 2.2, show-
casing the relationship between each individual module and general equations
of motion. Typically, the general equations of motion take forces and moments
transformed from each module and update the motion variables at each time
step. The motion variables are fed back into each module through appropriate
transformations to generate the updated forces and moments.

In the next section, the main characteristics of each module in Fig. 2.2 will
be analyzed. It shall be emphasized that although the study uses a helicopter as
a baseline platform, it can be extended to unconventional rotorcraft platforms.
Readers are encouraged to explore the use of modeling and simulation to evaluate
advanced or novel rotorcraft concepts and applications.

2.3 Modular-Based Modeling

2.3.1 Main Rotor

General assumptions associated with flight dynamic modeling for the main rotor
are [97]

• Small angle approximation. This is applied to the blade flapping angle and inflow
angle used during the derivation.
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Fig. 2.2 Block diagram for a general rotorcraft model [97]

• Rigid blade. This assumption is valid for flight dynamic applications including
performance estimation, trim study, stability and control analysis, handling
quality assessment, and dynamic response simulation. Elastic blade modeling
or even finite element blade modeling are only justified when flexibility of the
blade is essential.

• Reverse flow region, stall, and compressibility effects are ignored. These effects
are only appreciable during high forward speed. A criteria for judging the
boundary speed is that the maximum tip speed for the advancing blade should
not exceed 60 � �70% of the speed of sound.

• First harmonic approximation to the blade flapping. In this case, the blade
flapping angle is determined by coning angle ˇ0, longitudinal first harmonic term
ˇ1c (positive backward), and lateral first harmonic term ˇ1s (positive toward the
advancing side). Mathematically, the blade flapping angle is represented by

ˇ D ˇ0 � ˇ1c cos � ˇ1s sin (2.6)

where  is the blade azimuthal angle.
• Quasi-steady flapping dynamics. The rotor would respond to continuously chang-

ing motions as if they were a sequence of steady conditions. Mathematically, it
assumes that the terms dp

d and dq
d are insignificant in determining the rotor first-

harmonic terms.
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• Uniform inflow and no inflow dynamics.
• No tip losses.

With the above assumptions, the rotor model introduced in this section is valid for
an advance ratio �, computed using rotor forward speed divided by blade tip speed
at hover, up to 0:3.

2.3.2 Transformation from Body to Hub

As a first step, motion variables including translational velocities and angular rates
are transformed into the hub axis system (as shown in Fig. 2.1). The velocity
transformations involve a rotation with respect to the body y-axis due to the forward
tilting of rotor shaft is, and the contribution from angular rates to the translational
velocities due to spatial separation between the body center of gravity (C.G.) and
the main rotor hub.
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where STA, BL, and WL are the stationline, buttline, and waterline for a sub-system
(e.g., the main rotor hub), respectively. The subscript H stands for the main rotor
hub. Similarly, the angular rate transformation involves the rotation with respect to
body y-axis due to forward tilting of the rotor shaft,
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2.3.3 Blade Flapping Dynamics

The blade flapping dynamics are described by a second-order differential
equation [97]
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with the parameters defined as

�0 D collective pitch angle
�1s D longitudinal cyclic pitch angle
�1c D lateral cyclic pitch angle
˝ D rotor rotational speed
� D blade lock number
�t D blade twist
	 D total inflow ratio
ˇw D rotor sideslip angle, asin. vHp

u2HCv2H
/, defined as 0 if uH D vH D 0.

In (2.11), P represents the ratio of flapping frequency to rotor speed

P2 D 1C eMˇ

gIˇ
C Kˇ

Iˇ˝2
C �K1

8

�
1 � 4

3
�

�
(2.13)

where e, Kˇ, and K1 represent flapping hinge offset, flap spring, and pitch-flap
coupling, respectively. � D e

R
is the non-dimensionalized hinge offset ratio. The

term Mˇ in the above equation represents blade weight moment. For a blade with
uniform mass distribution, the simple relationship between Mˇ and blade moment
of inertia Iˇ can be established [44]:

Mˇ D 3g

2R
Iˇ (2.14)

Without hinge offset, flap spring, and pitch-flap coupling, the flap frequency is the
same as the rotor frequency. With either hinge offset (typically with articulated rotor,
or hingeless rotor), or flap spring (normally coupled with a teetering rotor), or the
pitch-flap coupling (normally with a tail rotor), the flap frequency is raised above
the rotor frequency, with typical value P D 1:0 � 1:2 [44].

While (2.9) is derived based on a general rotor configuration, simplifications can
be made on a number of cases, which in turn provides important physical insights
on the rotor flapping motion. In the first simplification, it is assumed that the rotor
has zero hinge offset, no flap spring, and no pitch-flap coupling. Equation (2.9) can
thus be re-written:
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A notable observation can be made from the above equation on the flapping
response due to body angular rates. When the rotor is at hover and under zero roll
and pitch controls, the steady state response of ˇ1s and ˇ1c are
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This demonstrates that rotor first harmonic variation of flapping angles is propor-
tional to angular rates of the body during steady pull-up or steady roll flight.

A second simplification involves steady state response of (2.9). In this case, let
both first and second derivatives of three blade flapping terms be zero, as follows:
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where matrices K and F are from (2.11) and (2.12). For studies that focus on low
frequency, (2.18) is more commonly used. Equation (2.18) may not be sufficient for
studies involving high fidelity dynamic response validation and aeroelastic analysis.

In a third simplification, steady state response of ˇ0, ˇ1c , and ˇ1s are derived
from (2.15) for the rotor having zero hinge offset, no flap spring and no pitch-flap
coupling, and under zero angular rates;
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At hover, the steady state responses of longitudinal and lateral flapping to the cyclic
control inputs can be reduced even further:

ˇ1s D �1c (2.22)

ˇ1c D ��1s (2.23)

This shows the one-to-one correspondence between the first harmonic flapping and
their corresponding cyclic controls.

In the last simplification, it should be noted that for many types of helicopters,
their rotor structure is teetering configuration. For teetering configuration, the angle
ˇ0 is treated as a constant pre-cone angle, ˇ0p . It thus follows that Ř

0 D P̌
0 D 0.

The two first harmonic terms ˇ1c and ˇ1s can be solved using two formulae in (2.9):
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2.3.4 Inflow Dynamics

Induced velocity at the rotor can be derived from Momentum Theory. The formula-
tion is represented as rotor inflow ratio 	:

	 D wH

˝R
� CT

2
p
�2 C 	2

(2.25)

When � D 0, 	 can be solved directly from the equation. When � 6D 0, 	 needs to
be solved implicitly through the Newton–Raphson iterative technique.

Equation (2.25) is valid when the rotor operates under hover, climb, steep
descent, and forward flight conditions. It is not valid under moderate descent rate
with slow forward speed when vortex ring state (VRS) occurs. In VRS, the rotor
encounters its own wake resulting in a doughnut-shaped ring around the rotor disk.
Typical phenomena associated with VRS include flow unsteadiness, excessive thrust
and torque fluctuations, uncommanded drop in descent rate, an increase in required
power, loss of control effectiveness, and a significant increase in vibration.

One drawback from Momentum Theory is its ignorance of flow interaction
between the rotor wake and surrounding airflow in descending condition [44].
Effects of the interaction may be less significant at hover or in climb. Nevertheless,
as a rotor increases its descent rate, the interaction becomes more and more intense
due to larger velocity gradients between the upflow outside the wake and the
downflow inside the wake. As such, a new inflow model was proposed to take
into account the flow interactions, known as ring vortex model [13, 15]. The ring
vortex model supposes that, due to the flow interaction, there exists a series of
vortex rings located at the rotor periphery. Vortex rings move downward along the
wake when descending at a low rate. As the rate of descent increases, vortex rings
tend to accumulate near the rotor tip. When the rate of descent further increases,
vortex rings move upward along the wake. A new vortex ring is formed at every
blade rotation, i.e., 2


˝Nb
second. The convection speed of the vortex rings, Vcon, is

approximated as follows:

Vcon D Vi � 5

3
wH (2.26)

where the induced velocity Vi D CT

2
p
.�2C	2/˝R. The locations of these discrete

vortex rings can thus be determined by the product of convection velocity of the
vortex rings and 2m

˝Nb
(m: an integer representing the numbering of vortex rings).

Each vortex ring induces additional normal velocity at the rotor disk. The vortex
strength of each ring, � , is approximated as follows:

� D k� ViR (2.27)

where Nringk� D 0:2167. The number of vortex rings, Nring, is typically set to two.
The flow field of a vortex ring can thus be computed based on elliptic integrals
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[12]. One advantage of utilizing vortex rings is that the effect of vortex rings is non-
uniform with respect to relative distance between the rings and the rotor disk. The
closer a vortex ring is to the rotor disk, the larger the magnitude of normal velocity
at the disk. The resulting non-uniform effect conforms to what has been observed in
test data.

In the ring vortex model, downward velocity due to vortex rings is integrated into
the induced velocity calculated by Momentum Theory. The concept works well in
the VRS and windmill phases. Nevertheless, in axial descent and inclined descent
at low forward speed ( �p

CT =2
up to 0.6204), Momentum Theory fails to predict a

transition phase between the helicopter and the windmill branches. To address this
problem, (2.25) is modified as
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2:72.1C �2
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/
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The additional term kRVM is analogous to the parachute drag term and it modifies
equilibrium curves for inflow dynamics, creating a steady state transition between
helicopter and windmill branches in axial and steep descents. Its effect diminishes
at other flight conditions.

To demonstate the effectiveness of the ring vortex model, comparison are made
between the numerical predictions and wind-tunnel test results from [108] in terms
of induced velocity variation (normalized by hover induced velocity, Vh). It is
shown from Fig. 2.3 that good agreement is reached with respect to various descent
angles ˛D.

2.3.5 Main Rotor Forces and Moments

Main rotor forces and moments are calculated in the hub-wind axes system. The
quantities include rotor thrust T , H-force Hw, Y-force Yw, rolling moment Lw,
pitching momentMw, and rotor torqueQ.

A closed-form thrust equation is thus provided in the hub-wind axes system [97]:
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Fig. 2.3 Induced velocity variations from Yaggy’s wind-tunnel test [108] and predictions from the
ring vortex model: axial and nonaxial flow

In many hobby helicopter models, their blades are teetering (� D 0), have untwisted
blades (�t D 0), and are without pitch flap coupling (K1 D 0). The thrust equation
can thus be further simplified as:

T D nb
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Horizontal force componentHw is provided [97] as

Hw D nb
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where the equivalent rotor blade profile drag coefficient, ı, is defined as

ı D 0:009C 0:3

�
6CT

�a

�2
(2.33)

Note that the term 6CT
�a

is also known as averaged blade angle of attack. Therefore,
(2.33) is the second order approximation for computing blade drag coefficient based
on averaged angle of attack.

Similarly, the side-force component Yw is given [97] as

Yw D nb
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The calculated rotor forces are transformed back from hub-wind axes system to
hub axes system:
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Rolling moment Lw is computed based on the following formula [97]:

Lw D nb
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Similarly, pitching momentMw is calculated [97] as

Mw D nb
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For helicopter rotors with teetering blades and no flapping spring constraint, it fol-
lows that Lw D 0 andMw D 0. It is also interesting to study rotor blades with hinge
offset and/or flapping spring constraint. In this case, let CLw DLw=.�AR.˝R/

2/

and CMw D Mw=.�AR.˝R/
2/ be coefficients of rolling moment and pitching

moment, respectively. From both (2.36) and (2.37), it results in:

CLw D �a

2

P 2 � 1
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ˇ1s (2.38)

CMw D �a

2

P 2 � 1

�
ˇ1c (2.39)

Recall that P is known as the non-dimensional flap frequency. This demonstrates
that for a rotor with hinge offset or flap spring, the direct hub rolling and pitching
moments are proportional to rotor first-harmonic tilting. As for the resultant rolling
and pitching moments acting on the vehicle’s C.G., they are the summation of
direct hub moment and the moments caused by the tilting of the rotor thrust about
the body’s C.G. For an articulated rotor, direct hub moments are about the same
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as the moments from the thrust tilting. For a hingeless or rigid rotor, the direct
hub moments may be two to four times larger than the moments from the thrust
tilting.

Main rotor torque can either be estimated from rotor power consumption (as will
be illustrated in Sect. 2.4), or from the closed-form expression given as follows [97]:
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The calculated rotor moments are transformed from the hub-wind axes system
back to the hub axes system:
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2.3.6 Transformation from Hub to Body

The forces at the rotor hub are further transformed into the body axes system
involving the forward tilting of the rotor shaft is:
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Similarly, the moments at the rotor hub are transformed back to the body axes
system, involving the forward tilting of the rotor shaft as well as additional moments
about the C.G. from the rotor forces due to spatial separation between the C.G. and
the rotor hub:
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2.3.7 Tail Rotor

A tail rotor usually serves two purposes for a conventional single main-rotor
helicopter: to provide anti-torque for the main rotor and to support directional
control.

The analysis of a tail rotor is very similar to that of a main rotor [97]. In fact, it is
often treated as a special case of the main rotor in terms of both flapping and force
calculations. However, there are some special features associated with the tail rotor
which may make the analysis easier. These features include:

• The tail rotor has only collective for the thrust, and hence there is no cyclic pitch
control (�1c D �1s D 0);

• The tail rotor rotates at a much faster speed, hence a steady state blade flapping
response in the non-rotating frame is sufficient.

The tail rotor may come in various configurations, including teetering, articu-
lated, hingeless, bearingless, Fenestrons (fan-in-fin), and even NOTAR (No Tail
Rotor). As the teetering is still the most commonly used configuration, the study
in this section will focus on the teetering tail rotor.

As a first step, the velocity components at the body C.G. frame is transformed to
the local velocity at the hub of the tail rotor:
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where wiHT is the velocity that accounts for the interference from the main rotor
to the tail rotor. The advance ratio and sideslip angle for the tail rotor can thus be
obtained as

�TR D
q

u2TR C w2TR

˝TRRTR
(2.45)

ˇTR D tan�1
�

wTR

uTR

�
(2.46)

Since a steady state solution is sufficient for the teetering tail rotor, it follows
that Ř

1c D Ř
1s D P̌

1c D P̌
1s D 0. The two first harmonic terms ˇ1c and ˇ1s can

be solved by using (2.24). Notice that �1c D �1s D 0 in the case of a tail rotor.
The inflow ratio for the tail rotor is very similar to that for the main rotor:

	TR D � vTR

˝TRRTR
� CTTR

2

q
�2TR C 	2TR

(2.47)
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For the tail rotor thrust, H-force, and Y-force, (2.30), (2.32), and (2.34) can be
applied by selecting corresponding tail rotor parameters and setting � D 0. As
mentioned earlier, the rolling and pitching moments of the tail rotor are zero due
to its teetering configuration. For the tail rotor torque, (2.40) can be applied.

All forces and moments for the tail rotor are transformed back from the hub wind
frame to body frame:
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2.3.8 Propeller

The analysis of a propeller is very similar to a helicopter rotor. In fact, the
basic analytical tools are the same: Momentum theory and Blade Element theory.
However, caution must be taken when applying closed-form equations in Sect. 2.3.1
to the propeller performance calculation. This is because a few assumptions in
reaching the closed-form equations are no longer valid. For example, it is common
that a propeller blade can have fairly large pitch, in which case we can not make a
small angle assumption. Moreover, the chordwise blade profile can be much more
complicated than that of an ordinary rotor blade.

A propeller thrust and torque calculation procedure (based on Vortex theory [68])
will be provided in the following sections. Historically, the terminology used in the
helicopter rotor and the propeller are quite different. For example, the advance ratio
for the helicopter rotor is defined as V

˝R
, while the same term for the propellers is

defined as V
nD

D 
V
˝R

(n is the rotational speed in revolutions per second and D
is the propeller diameter). The procedure will adopt the typical nomenclature from
helicopter theory books.

1. Break a single propeller blade into n elements. Let r and x be the collection of
dimensional and dimensionless radial stations along the blade.

2. Let wt and wa be tangential and axial components of the induced velocity.
Assume wt

VT
D 0, where VT D ˝R is the tip velocity of the propeller blade.

3. Calculate wa:

wa
VT

D 1

2

"
��C

s
�2 C 4

wt
VT

�
x � wt

VT

�#
(2.50)

where � D V
VT

is the advance ratio for the propeller.
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4. Obtain � D tan�1 �
x

.
5. Calculate induced angle of attack ˛i :

˛i D tan�1
�
V C wa
˝r � wt

�
� � (2.51)

6. Compute a correction term for finite thickness of the blade:


˛ D 4��

15.�2 C x2/

tmax

c
(2.52)

where tmax is the maximum thickness of the blade and c is the sectional blade
chord.

7. Obtain local angle of attack:

˛ D � � ˛i � � �
˛ (2.53)

8. Compute a second correction term for effective camber due to flow curvature:


Cl D a
�

4
(2.54)

where 
� D tan�1


VCwa
˝r�2wt

�
� tan�1 �

VCwa
˝r



.

9. Obtain sectional lift coefficient Cl :

Cl D a.˛ C ˛0l /�
Cl (2.55)

where ˛0l is the angle between the zero-lift line and the chord line for the
propeller airfoil.

10. Calculate sectional total velocity Ve:

Ve

VT
D

s�
�C wa

VT

�2
C

�
x � wt

VT

�2
(2.56)

11. Obtain bound circulation � :

� D 1

2
vClVe (2.57)

12. Update wt :

wt D nb�

4
rF
(2.58)
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where F is the Prandtl’s tip loss factor

F D 2



cos�1 exp

�
�nb.1 � x/

2 sin �T

�
(2.59)

13. Return to Step 3 until the absolute difference (vector norm) between the
calculated wt and that from the previous calculation reduces to a desired value.

14. Obtain differential lift dL and differential drag dD:

dL D 1

2
�V 2

e cCldr (2.60)

dD D 1

2
�V 2

e cCddr (2.61)

where sectional drag coefficientCd can be represented as a function of Cl .
15. Compute sectional thrust dT and torque dQ:

dT D dL cos.� C ˛i /� dD sin.� C ˛i / (2.62)

dQ D rŒdL sin.� C ˛i /C dD cos.� C ˛i /� (2.63)

16. Numerically integrate the above two equations in order to obtain the total thrust
T and torqueQ.

17. Finally, compute the propeller efficiency:

� D T V

Q˝
(2.64)

The procedure listed above is used to compute thrust and power for a three-bladed
propeller with Clark-Y section from a wind-tunnel test [37]. The predicted non-
dimensional thrust and torque coefficients from Vortex Theory are compared with
the experimental results in Fig. 2.4 for two different blade pitch angles at 0.75R:
15ı and 35ı. The prediction clearly matches with the test very well. In addition,
another set of predictions using combined Momentum-Blade Element Theory is also
provided (for computational procedure with this method, refer to [68]). Prediction
with Vortex Theory is considerably precise as it takes into account flow rotation,
tip loss, finite thickness of a blade, and effective camber of the blade section due to
flow curvature.

2.3.9 Horizontal Tail

In steady forward flight, the horizontal tail can generate a trim load to compensate
main rotor longitudinal flapping [97]. More importantly, the horizontal tail is able
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to provide a stabilizing pitch moment due to angle of attack variation to enhance the
pitch stability. Primary forces from the horizontal tail are lift and drag.

The velocity components acting on the horizontal tail in its local body axes
system are as follows:

2
4

uHT

vHT

wHT

3
5 D

2
4

uB

vB

wB

3
5 C

2
4

STAHT � STACG

BLHT � BLCG

WLHT � WLCG

3
5 �

2
4
pB

qB

rB

3
5 C

2
4

0

0

wiHT

3
5 (2.65)

where wiHT is the velocity that accounts for the interference angle from the main
rotor to the horizontal tail. The angle of attack and sideslip angle of the horizontal
tail are then obtained:

˛HT D tan�1
�

wHT

uHT

�
C iHT (2.66)

ˇHT D sin�1
�

vHT

VHT

�
(2.67)

where

VHT D
q

u2HT C v2HT C w2HT (2.68)
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and the angle iHT is the incidence of the horizontal tail. For a cambered airfoil, iHT

is adjusted to include the angle of attack for zero-lift. For a movable horizontal tail,
iHT can be used as a trim variable, like an elevator for a fixed-wing aircraft.

Lift and drag on the horizontal tail can then be calculated in the local wind axis
system using quadratic aerodynamic form for airfoils:

LHT D 1

2
�V 2

HTSHTCLHT (2.69)

DHT D 1

2
�V 2

HTSHTCDHT (2.70)

Full range lift coefficient CLHT and drag coefficient CDHT for certain airfoils are
available from the airfoil database from the Department of Aerospace Engineering,
University of Illinois at Urbana-Champaign. A simplified version is provided [44]:

CLHT D a˛HT (2.71)

CDHT D 0:0087� 0:0216˛HT C 0:4˛2HT (2.72)

where a is the lift curve slope, and CDHT is obtained for the NACA 23012 airfoil
and considered accurate up to its stall angle (12ı).

Subsequently, lift and drag can be transformed from local wind axes system to
local body axes system:
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Moments associated with the horizontal tail are computed based on the location of
the aerodynamic center on the tail with respect to the body C.G.:
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In general, lift on the horizontal tail is the dominant force while pitch moment
is the dominant moment. It, therefore, may be sufficient just to compute the lift and
pitch moment from the horizontal tail in certain applications.
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2.3.10 Wing

Wing is sometimes added to a rotor-wing aircraft to produce lift during forward
flight. The wing is treated in the same manner as the horizontal tail. All the formulae
listed in Sect. 2.3.9 are portable in the calculation of forces and moments for the
wing module.

2.3.11 Vertical Tail

The vertical tail can be treated in a similar fashion as the horizontal tail with minor
differences. In a standard single main rotor configuration, an additional interference
effect needs to be taken into account from the tail rotor to the vertical tail [97]. As
such, the velocity components acting on the vertical tail in its local body axes system
are as follows:

2
4

uVT

vVT

wVT

3
5 D

2
4

uB

vB

wB

3
5 C

2
4

STAVT � STACG

BLVT � BLCG

WLVT � WLCG

3
5 �

2
4
pB

qB

rB

3
5 C

2
4

0

kvtrwitr
wiVT

3
5 (2.75)

where wiVT is the interference velocity from the main rotor to the vertical tail. The
term witr accounts for the blockage effect due to the tail rotor. The angle of attack
and sideslip angle of the vertical tail are calculated in consideration of different
orientations between the horizontal tail and vertical tail:

˛HT D tan�1
�

vVT

uVT

�
C iVT (2.76)

ˇHT D sin�1
�

wVT

VVT

�
(2.77)

where

VVT D
q

u2VT C v2VT C w2VT (2.78)

and the angle iHT is the incidence angle of the vertical tail. The angle iHT is adjusted
to include the angle of attack for zero-lift for cambered airfoil and can be used as
a trim variable for movable vertical tail, like a rudder for a fixed-wing aircraft. The
remaining calculation of forces and moments for the vertical tail can be directly
referred to Sect. 2.3.9.
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2.3.12 Fuselage

Aerodynamic forces and moments acting on the fuselage can be computed in almost
the exact manner as the horizontal tail. However, one difficulty in the case of the
fuselage is the determination of the aerodynamic database. While such database
for the horizontal tail is still relatively easy to find due to its airfoil shape, it is
generally difficult for the fuselage due to its bluff body shape. Conducting a wind-
tunnel experiment or a comprehensive computational study are certainly beneficial,
although they may sometimes be costly and time-consuming.

An alternative is to estimate equivalent flat-plate areas for all body-x, body-y,
and body-z axes and calculate correspondingly forces along those axes. Similar to
the horizontal and vertical tails, the velocity components acting on the fuselage in
its local body axes system are [97]:
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where wiFU is the interference velocity from the main rotor to the fuselage. Note
that the effects from angular rates are ignored here due to close distance between
fuselage aerodynamic center and body C.G. Let S front

Ref , S side
Ref , and S

top
Ref be the

equivalent flat-plate areas along the body-x, body-y, body-z axes, the forces on the
fuselage are
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The above forces are assumed to act on the fuselage’s center of pressure. A
suggestion is provided to relate fuselage frontal drag area with the rest: S side

Ref D
2:2S front

Ref and S top
Ref D 1:5S front

Ref . Moments due to the aerodynamic forces with respect
to the body C.G. are
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2.3.13 Aerodynamic Interference

Aerodynamic interference among different modules are essential in rotorcraft
modeling. Sometimes the interference introduces power penalties or loss of effi-
ciency. For example, additional vertical loading on the fuselage due to main rotor
downwash in hover condition could count for as much as 5% of total weight. In
another example, for a tail rotor in pusher configuration, its aerodynamic efficiency
decreases due to blackage effect from the vertical tail. The interference can be
productive in other cases. For example, a horizontal tail immersed in the main rotor
downwash contributes a stabilizing pitch moment for longitudinal static stability.
A rudder immersed in a propwash for an autogyro could increase its control
effectiveness at low speed.

A typical assumption in dealing with interference is airflow superposition. An
additional velocity vector from the source of the interference is superimposed to the
resultant module’s local velocity vector, thus resulting in changes in local angle of
attack and sideslip angle. The superposition method shall be treated as a first-order
approximation of the actual interference.

From data presented in [42], an empirical expression for interference velocity wi
due to a rotor was provided in [97]:

wi D kf vi (2.82)

where vi is the averaged downwash at the rotor plane. The empirical factor kf is
given as follows:

kf D 1:299C 0:671�� 1:172�2 C 0:351�3 (2.83)

where the rotor wake angle � is defined as

� D tan�1

 �

�	
�

(2.84)

For convenience, the graphical relationship between the interference factor and the
rotor wake angle is provided in Fig. 2.5. The interference velocity in Sects. 2.3.7–
2.3.12 can be computed using (2.82).

2.3.14 Rotor Rotational Degree of Freedom

In most rotary-wing flight dynamics modeling, rotor speed is assumed to be con-
stant. This assumption is certainly valid in the presence of a governor module, which
is designed to maintain the rotor speed through a feedback system. Nevertheless, for
a helicopter operating in auto-rotation mode or an autogyro, the rotor speed is not
determined by an engine but rather by the balancing of driving torque and driven
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Fig. 2.5 Interference factor with respect to rotor wake angle

torque at the rotor. In such a case, it is necessary to set up rotor rotational degree of
freedom. This equation is described as follows:

J P̋ D �Q (2.85)

whereQ is the rotor torque. Rotor rotation inertia J can be approximated using the
blade flapping inertia Iˇ:

J D NbIˇ (2.86)

where Nb is the number of blades.

2.3.15 Flight Control System

In general, the flight control module consists of at least one of the following
systems:

• Feedforward mechanical system, including pilot’s controls, mechanical linkage,
actuation system, swashplate, and control rods. This system can normally be
represented by linear equations between the pilot’s controls and blade pitch
variations. It may also include first order transfer functions for actuators and
nonlinear saturation representing control limits.
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Fig. 2.6 Teetering rotor configuration with a fly bar for a model helicopter

• Automatic flight control system (AFCS), including stability augmentation system
(SAS) and control augmentation system (CAS). Details of AFCS design will be
illustrated in later chapters.

• Fly bar (also known as stabilizer bar) for teetering rotor configuration (see
Fig. 2.6).

The fly bar deserves an in-depth discussion as it is a common feature found
in the 2-bladed teetering rotor configuration. The reason is that this type of rotor
configuration tends to have excessively rapid response to cyclic controls. The
installation of fly bar provides lagged rate feedback to slow down the fast response.

The bar consists essentially of a rod with two small airfoils at two ends. Without
cyclic controls, the bar maintains its rotational plane parallel to the ground. With
cyclic controls, the bar responds in a manner similar to the main rotor blades. There
are historically two types of fly bars: Hiller bar and Bell–Hiller bar. For the Hiller
bar, cyclic controls are first transmitted from the rotating swashplate to the bar.
Subsequently, cyclic pitch variations of the rotor blades are controlled entirely by
the tilting of the bar. For the Bell–Hiller bar, there is a mechanical mixer between
the bar and the rotor blades. Cyclic controls go to the bar as in the case of the Hiller
bar. However, there is another portion of cyclic controls that go directly to the rotor
blades. The tilting of the bar due to the cyclic controls goes further to the rotor blades
via the mixer. One advantage of the Bell–Hiller bar is that it introduces flexibility in
adjusting the delay to the cyclic controls since the rotor blades are now controlled
by both fly bar tilting and a portion of cyclic controls.
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Let Ň
1c and Ň

1s be the longitudinal and lateral first harmonic terms for the fly
bar. The fly bar can be formulated using a first order dynamic system [8]:

�s
PŇ
1c D � Ň

1c � �sqB C Nd�s1s (2.87)

�s
PŇ
1s D � Ň

1s � �spB C Nd�s1c (2.88)

where �s and Nd are time constants of the fly bar and control derivative, respectively.
While Nd can be determined experimentally, the time constant �s is a function of the
fly bar’s lock number �s and rotor speed ˝:

�s D 16

�s˝
(2.89)

where lock number for the fly bar can be determined by the following equation:

�s D �abarcbar.r
2
2 � r21 /

I bar
b

(2.90)

where r2 and r1 are the outer and inner radii of the fly bar, respectively. �s1c and
�s1s represent longitudinal and lateral cyclic controls at the rotating swashplate. The
cyclic controls at the rotor blades are expressed as

�1c D �s1c C kbar
Ň
1c (2.91)

�1s D �s1s C kbar
Ň
1s (2.92)

where kbar is the fly bar bearing determined by the geometry of the mechanic mixer.
Experimentally, kbar is not difficult to measure. Setting both �1c and �1s to zero
followed by tilting the fly bar flapping angle, the value of kbar is the ratio of measured
changing pitch angle along the blade to the fly bar flapping angle.

2.4 Helicopter Performance Prediction

Endurance and range are two important performance indices in helicopter flight.
Both indices can be directly derived from helicopter power calculation. Total power
required for a helicopter comes from three difference sources:

• Main Rotor Power: This is the most dominant component in the total power
consumption. This rotor power includes induced power, profile power, and
parasite power. Induced power is associated with rotor thrust production, which is
considered as useful power. Profile power is required to turn the rotor in viscous
air. Parasite power is needed to overcome the helicopter drag including fuselage
and empennage.
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• Tail Rotor Power: As the tail rotor is used to counter the main rotor torque, its
power consumption can be derived based on the torque and its own rotational
speed. Typically, the tail rotor’s power is approximately 10% of main rotor’s
power at hover and low speed flight. As the helicopter transits to high speed, the
vertical fin may be effective enough to offset an essential portion of the main
rotor torque. Thus, the required power by the tail rotor typically drops as the
flight speed increases.

• Ancillary Power: This is to calculate the power used to drive ancillaries such as
hydraulics and generators. The ancillary power also takes into account various
power losses presented in the whole system. Typically, ancillary power counts
for 5 � �10% of the total power required.

A formula for computing main rotor power is shown as follows:

P D �T Vi C �A.˝R/3
�cd0

8
.1C 4:6�2/CDV (2.93)

The first component in the power equation is the induced power. An empirical
factor � is associated with this component to account for wake tip loss, nonuniform
inflow and other losses. A number of values for the factor � are suggested in the
literature with a typical value taken to be 1.15. Rotor thrust T can be approximated
as W at hover and low speed flight, or

p
W 2 CD2 for moderate and high speed

flight. A complete formula for the calculation of induced velocity Vi is provided in
Sect. 2.3. However, this formula is not easy to solve especially in forward flight and a
Newton–Raphson algorithm is required. Fortunately, this formula can be simplified
with respect to the speed regime:

Vi D
( q

W
2�A
; hover

T
2�AV

; V > 0:1˝R
(2.94)

The second component in (2.93) is the profile power. A typical value of drag
coefficient cd0 is taken as 0.0087. However, this value is obtained with ideal testing
conditions and for a blade in near perfect form. In reality, a 50% increase of
cd0 D 0:0087 is usually adopted for conservative purposes. The last component in
(2.93) is the parasite power, which is mainly contributed from fuselage, empennage,
and rotor hub. A detailed description of parasite drag in forward flight can be
referred to in [84]. Values for equivalent flat-plate area SRef range from 10f t2

for small helicopters to 50f t2 for large utility helicopters. In the case of UAVs,
the values can vary from 0:5f t2 to 2f t2 depending on the UAV size, exposure of
mechanical linkages, and landing systems.

Power consumption due to the tail rotor can be calculated using (2.93) with minor
modifications. The parasite power component is dropped off in the calculation,
while parameters for main rotor are exchanged with those for tail rotor. A simple
way of computing tail rotor power is to take 10% of the main rotor power for hover
and 5% high speed.
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Table 2.1 RMAX general
data for power prediction

Rotor diameter 3115 mm

Number of blades 2
Blade chord 138 mm
Rotor speed 830 RPM
Gross weight 88 kg
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Fig. 2.7 Power prediction for a Yamaha RMAX helicopter

An example is now provided to illustrate power prediction for a hobby helicopter,
i.e., the Yamaha RMAX helicopter. The RMAX is a popular radio-controlled rotary-
wing platform. It has been widely used in universities and research institutes as a
testbed for a range of activities including nonlinear modeling, flight control, and
system identification [91]. General data for the RMAX helicopter is provided in
Table 2.1. Other parameters required for power calculation include: � D 1:15, cd0 D
0:013 (50% more than the nominal value of 0.0087 for NACA 23012 airfoil), Sref D
1:5f t2, and �auxillary D 0:9.

The U-shaped total power curve in Fig. 2.7 illustrates power required for the
RMAX in a straight and level flight at sea level. Induced power is the dominant
component at hover, but reduces significantly as the speed increases. Profile
power gradually increases over the speed to reflect the growing effects from
compressibility at the advancing blade and stall and reverse flow at the retreating
blade. Parasite power will be dominant at high speed flight as it is proportional to
V 3. The values for tail rotor power are almost flat when the effect from the vertical
fin is not considered here. However, in the presence of a vertical fin, the tail rotor
power in general decreases with the increase of flight speed.
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Fig. 2.8 Determination of endurance and range

Maximum endurance can be achieved when a helicopter operates at a flight speed
with the least required power. As observed from Fig. 2.8, this speed can be found at
the bottom of the U-shaped power curve (37 knots in Fig. 2.3). Interestingly enough,
the endurance speed does not coincide with the minimum drag point, which can be
graphically found by drawing the tangent to the U-shaped power curve. A helicopter
can achieve the best range at this point as it corresponds to the minimum value of the
ratio P=V , which can be further interpreted as the best lift-to-drag ratio. In general,
endurance and range can not be achieved at one speed and the endurance speed is
always slower than the range speed.

2.5 Conclusion

As stated in Sect. 2.1, we provided a modeling platform for a general class
of rotor-wing vehicles. These rotary-wing vehicles include but are not limited
to the compound helicopter, the coaxial helicopter, the helicopter with vectored
thrust open propeller (VTOP), the helicopter with vectored thrust ducted propeller
(VTDP), autogyro (also known as gyrocopter, autogiro, and gyrodyne), the tilt-rotor
aircraft, and the tilt-wing aircraft.

The common feature of these vehicles that they have at least one main rotor.
Some have more than one main rotor, like the coaxial helicopter, the tilt-rotor,
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Table 2.2 Modular-based Modeling for rotor-wing vehicles

Unconventional rotor-wing vehicles Distinctive features compared with classical helicopters

Compound helicopter Two secondary rotors: one for a tail rotor and another for a
pusher propeller; tail rotor used to counter main rotor
torque at low speed; pusher propeller used to provide a
forward thrust; wing module required to share lift with
the main rotor; interference between main rotor and
wing needed.

Co-axial helicopter Two main rotors; interference between two main rotors
crucial: interference velocity at lower rotor hub due to
upper rotor superimposed to the induced velocity for
lower rotor and vice versus; no horizontal and vertical
tails required.

Vectored thrust open propeller A propeller as the secondary rotor: tail rotor at low speed
and a propeller at high speed; swivel angle of open
propeller treated as a trim variable; wing required; one
less secondary rotor compared to compound helicopter.

Vectored thrust ducted propeller Similar to VTOP except the swivel angle for open
propeller in VTOP changed to rotating angle for the
vane in VTDP; aerodynamic effect from duct
considered.

Tilt-rotor aircraft Two main-rotor modules required; interference between
the main rotor and the wing necessary when operating
in the helicopter mode.

Tilt-wing aircraft Two main-rotor modules required; FCS related to wing
tilting required.

Autogyro Main rotor operating in auto-rotation mode with induced
velocity in the steep descent regime; main rotor
rotational degree-of-freedom necessary; use secondary
rotor module for propeller; interference from propwash
to rudder essential for directional effectiveness at low
speed.

and the tilt-wing. Some have more than two rotors, like the compound helicopter.
Some instead have an extra propeller module, including the autogyro, the VTOP, and
the VTDP. Besides the differences in the rotor system, interference can be critical
in some cases. For example, whether there is interference between the rotor and
the wing is a distinct feature that separates the tilt-rotor aircraft from the tilt-wing
aircraft. For an autogyro, when its rudder is immersed in the propwash, it could have
added directional capability. Distinctive features of those rotary-wing vehicles are
listed in both Table 2.2.

The key concept in modeling the rotary-wing vehicles is to follow the diagram in
Fig. 2.2. For one type of vehicle, its associated modules may be different from those
of the classical single main-rotor configuration. However, they can be either special
cases of those modules illustrated in Sect. 2.3 (for example, a propeller module),
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or duplicated modules with minimum differences (for example, two identical
rotors on a tilt-rotor aircraft with opposite rotational directions). Once established,
those modules produce forces and moments to the general equations of motion.
The general equations of motion will update its motion variables based on the
forces and moments, and transmit those motion variables back to each individual
module.
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