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For the subject under study:

by modeling, we have a deeper and better understanding;

by control, we make our course of action steady and solid;

by coordination, we appreciate our friends for their supports in our mission.





Preface

Unmanned aerial vehicles (UAVs) are finding wider applications including surveil-
lance, rescue, navigation, formation, coordination, among others. Helicopter-type
UAVs offer the best option in many open and/or built-up areas for their maneuver-
ability through narrow alleys and sharp beds, and their ability to hover in place if,
for example, there is a need to have a close look at a place of interest.

As with any vehicular design, control design for helicopters is non-trivial.
For example, ensuring stability in helicopter flight is a challenging problem for
nonlinear control design and development. Unlike many classes of mechanical
systems that naturally possess desirable structural properties such as passivity or
dissipativity, helicopter systems are inherently unstable without closed-loop control,
especially when hovering. In addition, helicopter dynamics are highly nonlinear and
strongly coupled such that disturbances along a single degree of freedom can easily
propagate to the other degrees of freedom and lead to loss of performance, even
destabilization.

The fundamental requirement for control system design is to guarantee the
stability for helicopter systems. Many techniques have been proposed in the
literature for the motion control of helicopter systems, ranging from feedback
linearization to model reference adaptive control and dynamic inversion, and these
techniques typically require reasonably precise knowledge of the dynamic models
in order to achieve satisfactory performance. An important concern when designing
controllers for helicopters is the manner on how to deal with unknown perturbations
to the nominal model, in the form of parametric and functional uncertainties,
unmodelled dynamics, and disturbances from the environment. Helicopter control
applications are characterized by time-varying aerodynamical disturbances, which
are generally difficult to model accurately. The presence of uncertainties and
disturbances could disrupt the function of the feedback controller and lead to
degradation of performance.

While autonomous vehicles performing solo missions can yield significant
benefits, greater efficiency and operational capability can be realized from teams of
autonomous vehicles operating in a coordinated fashion. Potential applications for
multi-vehicle systems include space-based interferometers, future combat systems,
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surveillance and reconnaissance, hazardous material handling, and distributed
reconfigurable sensor networks. To realize the potential of a multi-helicopter team,
coordination techniques between helicopters are needed. One fundamental problem
in multi-helicopter cooperation is formation control, in which the helicopters are
required to keep a desired formation configuration to complete the assigned tasks.

The proposed book is meant to provide a comprehensive treatment of helicopter
systems, ranging from related nonlinear flight dynamic modeling and stability
analysis, to advanced control design for a single UAV, to the coordination and
formation control of multiple helicopters to achieve high performance tasks. This
book can be a good reference and introduction to the modeling, control and
coordination of helicopter systems.

The book starts with a brief introduction to the development of helicopter systems
modeling, control and coordination in Chap. 1.

Chapter 2 focuses on nonlinear fight dynamic modeling for a general class of
rotary-wing aircraft. Centred around the general rigid body equations of motion,
the modeling process is based on modules that follow closely with physical sub-
systems on the rotary-wing aircraft. These modules may include main and tail rotors,
propeller, horizontal and vertical tails, wings, fuselage, and the flight control system.
Aerodynamic interference among different modules can also be established. Besides
the general modeling, performance calculation is also illustrated as it is a critical
index in understanding the aircraft.

Following the flight dynamic modeling, trim study and stability analysis are
conducted in Chap. 3. Trim is a state of the aircraft in which forces and moments
reach equilibrium. Trim is the basis of many fundamental analysis, including stabil-
ity analysis, control system design, handling qualities assessment, and simulation.
A numerical procedure on how to obtain trim is described. With the trim condition
established, a linearization process can be carried out to obtain a linearized model
for the rotary-wing aircraft. Elements in the linearized model are called stability and
control derivatives. A detailed description on the derivatives is provided, with the
emphasis of their physical meanings. To illustrate, three examples are also presented
in the chapter, which include a simplified single helicopter system and two hobby
helicopters at hover.

Linearized models are not only useful for stability analysis, but also for control
design, by blending them over different operating points with gain scheduling.
However, this requires extensive modeling, which is expensive and time-consuming.
There is a need for control systems that can operate with minimal model information
and handle nonlinearities over the entire flight regime. Chapter 4 aims to address this
need, by presenting a robust adaptive neural network (NN) control for helicopters.
In particular, we focus on vertical flight, which can be represented in the single-
input–single-output (SISO) nonlinear nonaffine form, because the coupling between
longitudinal and lateral directional equations in this flight regime is weak. Although
a nonaffine system can be rendered affine by adding an integrator to the control
input, allowing many control methods for affine nonlinear system to be used, the
disadvantage of this approach is that the dimension of the system is increased, and
control efforts are not direct and immediate either. Subsequently, effective control
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for the system may not be achieved. In this chapter, we focus on control design for
the nonaffine system directly, without adding any integrators to the input. Differing
from the approaches in the literature, which were based on approximate dynamic
inversion with augmented NNs, we utilize the Mean Value Theorem and the Implicit
Function Theorem as mathematical tools to handle the nonaffine nonlinearities in the
helicopter dynamics. In cases where reasonably accurate knowledge of the dynamic
inversion model is available, the method using approximate dynamic inversion
has been shown to provide an effective solution to the problem. However, the
construction of the dynamic inversion for a nonaffine system may not be an easy
task in general. For such cases, our approach offers a feasible means of tackling the
problem, since a priori knowledge of the inversion is not required.

In Chap. 5, neural network control is redesigned to track both altitude and yaw
angle at the same time. We consider a scale model helicopter, mounted on an
experimental platform, in the presence of model uncertainties, which may be caused
by unmodelled dynamics, or aerodynamical disturbances from the environment.
Two different types of NN, namely a multilayer neural network (MNN) and a radial
basis function neural network (RBFNN) are adopted in control design and stability
analysis. Based on Lyapunov synthesis, the proposed adaptive NN control ensures
that both the altitude and the yaw angle track the given bounded reference signals
to a small neighborhood of zero, and guarantees the Semi-Globally Uniformly
Ultimate Boundedness (SGUUB) of all the closed-loop signals at the same time. The
effectiveness of the proposed control is illustrated through extensive simulations.
Compared with the model-based control, approximation-based control yields better
tracking performance in the presence of model uncertainties.

Unlike previous chapters, which consider actuators with instantaneous response,
Chap. 6 deals with a more realistic scenario where actuator dynamics are present.
Backstepping technique, combined with NNs, is employed to design the robust
attitude control for uncertain multi-input multi-output (MIMO) nonlinear helicopter
dynamics. To the best of our knowledge, there are few works in the literature
that take the actuator dynamics into account in the helicopter control, which
is practically relevant but more challenging as well. In this chapter, helicopter
models are considered as MIMO nonlinear dynamic systems, where the actuator
dynamics in the first-order low-pass filter form are considered. Secondly, the
possible singularity problem of the control coefficient matrix for the model-based
attitude control case is tackled effectively by introducing a design matrix. Thirdly,
approximation-based attitude control is developed to handle the model uncertainties
(e.g. unknown moment coefficients and mass) and external disturbances. Rigorous
stability analysis and extensive simulations results show the effectiveness and
robustness of the proposed attitude control.

Beyond single-helicopter control, this book also touches on formation control of
multiple helicopters. In Chap. 7, the concept of the Q-structure is introduced as a
novel and flexible methodology to define and support a large variety of formations.
The Q-structure allows automatic scaling of formations according to changes in the
overall size of the helicopter team. The chapter begins by exploring the use of the
Q-structure for formation control where perfect communication is present between
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all members of the team. The second part of the chapter focuses on how the Q-
structure can be adapted and used for teams where communication is imperfect.
In this chapter, we examine the properties of Q-structures in relation to other
formation representation schemes, and look at the ways Q-structures can be used
with artificial potential trenches to improve the scalability of the formations and
support a large number of different formations. In particular, the Q-structure does
not require explicit representation of every single node of the formation and is able
to ensure the formation maintenance of a large number of helicopters. The formation
is also robust against possible communication breakdown and/or limited wireless
communication ranges.

The Q-structure formation control is useful for motion planning at the kinematics
level. For formation control that takes into account the dynamics of helicopters, a
different approach is proposed. Chapter 8 presents synchronized altitude tracking
control of helicopters with unknown dynamics by graph theory, while the desired
trajectory is available to a portion of the team. Since only the neighbors’ information
is available to the helicopter, we use the weighted average of neighbors’ states as the
reference state of the helicopter in the control design. We prove that if the extended
communication graph contains a spanning tree with the virtual vehicle as its root,
then its Laplacian will be positive definite. This property is essential for the stability
proven and it also makes the proof of the stability for the results easy and direct.
The mathematical stability proof, which makes use of the positive definite property
of the graph Laplacian, is provided for both full-state and output feedback cases.

This book is primarily intended for academics, researchers and engineers who
are interested in modeling, control and coordination of helicopter systems, and
autonomous systems at large because many of the techniques and concepts could
be extended further and applied directly to many other systems of interest. It can
also serve as complementary reading for nonlinear systems, robotics, and adaptive
control at the postgraduate level.

The book summarizes the research works carried out by the authors and a
number of their close collaborators including Keng Peng Tee, Mou Chen and
Rongxin Cui. For the final completion of the book, we gratefully acknowledge the
unreserved support, constructive comments, and fruitful discussions from Miroslav
krstic, University of California, San Diego; Frank L. Lewis, University of Texas
at Arlington; Masayoshi Tomizuka, University of California at Berkeley; lan
Postlethwaite, University of Northumbria; J.V.R. Prasad, Daniel Schrage, Lakshmi
N. Sankar and George Vachtsevanos, Georgia Institute of Technology; Ben M. Chen,
National Univesity of Singapore; Xianbin Cao and Jun Zhang, Beijing University
of Aeronautics and Astronautics; Lei Guo and Yiguang Hong, Chinese Academy
of Sciences; Trung T. Han and Rui Li, University of Electronic Science and
Technology of China and Hailong Pei and Cong Wang, South China University
of Technology.

Last but not the least, we would like to thank Gang Wang, Qun Zhang, Zhen
Zhong, Zhenzhen Zhang, Peng Zhou and Jeffrey Sampson for their time and efforts
in proofreading, and providing numerous useful comments and suggestions to
improve the quality of this book.
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Chapter 1
Introduction

1.1 Background

Unmanned helicopters pose a challenge to nonlinear control design and develop-
ment. Unmanned helicopters are inherently unstable without closed loop control,
setting it apart from many other classes of mechanical systems that possess desirable
structural properties such as passivity or dissipativity. In addition, helicopter
dynamics are highly nonlinear and strongly coupled, and therefore disturbances
along a single degree of freedom can easily propagate to the other degrees of
freedom, leading to a loss of performance or even destabilization. Furthermore,
unrestrained helicopter motion is governed by underactuated configuration, that is,
the number of control inputs is less than the number of degrees of freedom to be
stabilized, which makes it difficult to apply the conventional approach (usually in
the field of robotics) for controlling Euler–Lagrange systems. Due to these reasons,
substantial research efforts have focused on control design that guarantee stability
and robustness for unmanned helicopters.

Most helicopters systems are intrinsically nonlinear and their dynamics are
described by nonlinear differential equations. However, for the purpose of analysis,
researchers commonly derive linearized models of helicopter systems. More specif-
ically, a linear model that approximates a particular nonlinear helicopter system
can be obtained if this system operates around an operating point and the signals
involved are small. Many techniques for the design of controllers and analysis
techniques for linear systems have been proposed in literature, for example, linear
H1 control theory has been applied to a linear helicopter model in [10,82,95,105].
However, control laws based on the linearized helicopter dynamics do not have
global applicability as they only exhibit desirable behavior around an operating
point. Because of this, many researchers have applied nonlinear control techniques
to dynamic models of helicopter systems. Based on a reduced order subsystem of a
Lagrangian helicopter model, feedback linearization control was applied for altitude
tracking [104]. Dynamic sliding mode control was proposed for altitude regulation
in [93]. By modifying the internal dynamics to remove the nonhyperbolicity
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2 1 Introduction

followed by stable inversion, the problem of near nonhyperbolic internal dynamics
in helicopter control was addressed in [19]. In [55], approximate input–output
linearization was employed to obtain a dynamically linearizable helicopter system
without zero dynamics, and which possessed the desirable property of differential
flatness. Internal model-based control was suitably applied to the problem of
helicopter landing on an oscillating ship deck in [40]. In [45, 47], a novel method is
presented for the design of a fuzzy flight controller for the unmanned APID-MK3
helicopter.

The control techniques proposed in the research work mentioned above require
reasonably precise knowledge of dynamic models involved in order to achieve
satisfactory performance. In the control of helicopters, an important concern
is how one can deal with unknown perturbations to the nominal model. Such
unknown perturbations include parametric and functional uncertainties, unmodelled
dynamics, and disturbances from the environment. The presence of uncertainties
and disturbances could disrupt the function of the feedback controller and lead
to degradation of performance. To deal with the presence of model uncertainties,
approximation-based techniques using neural networks (NNs) have been proposed.
Approximate dynamic inversion with augmented NNs was proposed to handle
unmodelled dynamics in [38, 54], while neural dynamic programming was shown
to be effective for the tracking and trimming control of helicopters in [21].

A significant portion of this book is dedicated to a comprehensive treatment of
the control of a single helicopter. However, multi-agent systems, consisting of huge
numbers of interacting agents and autonomous unmanned vehicles, linked together
in complex networks, are becoming increasingly prevalent. The advancement of
technology in robotics, vehicular control, computer science and communications,
has made possible the deployment of large teams of mobile UAVs in real life scenar-
ios. These systems have been applied to a wide variety of areas, from manufacturing
and warehouse automation, to construction and shipping industries, to autonomous
UAV humanitarian demining, and to surveillance and urban search-and-rescue with
UAVs/helicopters. A comprehensive overview of issues in multi-vehicle cooperation
may be found in [5].

Formation control of UAV teams in dynamic and uncertain environments has
been intensively studied in recent years. The amount of interest in this topic can
be attributed to at least two reasons: (1) it is a good platform (and task) for
studying multi-agent cooperation techniques and (2) there are practical applications
for formation control techniques (e.g., in autonomous demining where a team of
demining-vehicles need to systematically “sweep” through a plot of land). The
need to use UAVs in real applications means considering real-world constraints,
such as imperfect communications between agents, in the design of coordination
techniques.

A host of different techniques for formation control in multi-UAV teams is
available in the literature, for example, [3, 17, 18, 22, 59]. In particular, many of
these techniques deal, in some way or other, with the robust operation of UAVs.
For example, Balch and Hybinette [4] used the concept of social potentials that
allow UAVs to “snap” into the correct relative positions, based on a predetermined
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set of “attachment sites” around each UAV. This method however offers no
control over the geometry of the formation, and more dispersed formations, like
the wedge and diamond formations, cannot be achieved. Carpin and Parker [11]
described a distributed approach, based on explicit communication between UAVs,
for coordinated motion in a linear pattern. The framework is also able to handle
the emergence of unexpected obstacles within the formation. Kostelnik et al. [56]
solved the problem by using a communication network between the UAVs, so that
each UAV may be assigned social roles by a dynamically chosen leader. Kang
et al. [49, 50] proposed general methods for the controller design for the formation
maintenance of multiple vehicles tracking a desired path. It was assumed that the
desired trajectories are known, and each UAV is associated with a specific node in
the formation. The formation controllers can be easily altered by the designer when
vehicles are added or removed from the system.

Another pressing concern in formation control is that of ensuring convergence
and stability within the proposed schemes. Many researchers have focused on
this aspect, and have derived provably stable convergent algorithms for formation
control. In the work by Song and Kumar [96], specific artificial potential fields for
each UAV relative to the other UAVs are calculated to produce stable formations in
equilibrium. The concept of Leader-to-Formation Stability is introduced in [100],
and the paper examined how errors propagate from the leader and influence the
stability of formations (those based on leader following). Navigation functions, first
proposed in [86], have also been used for centralized control of formations [98]. The
problem of ensuring formation stability in a UAV team while it moves in formation
through an obstacle field between two points was investigated in [75].

The later chapters in this book dealing with the coordination within UAV
teams present control techniques that are specifically designed to take into account
heterogeneity within teams and the variability of the environments these teams are
likely to operate in. Specifically, they will focus on improving the scalability and
robustness of agent teams. These chapters will complement earlier chapters in the
book by providing an overarching coordination framework within which agents
(UAVs) will operate, where each agent is subject to control laws described in earlier
chapters of this book.

The main objectives of the book is to present and discuss various control
strategies for helicopters and algorithms for coordinating groups of helicopters.

1.2 Outline of the Book

The book starts with a brief introduction of development of helicopter systems
modeling, control and coordination in Chap. 1.

Chapter 2 focuses on nonlinear fight dynamic modeling for a general class of
rotary-wing aircraft. Centered around the general rigid body equations of motion,
the modeling process is based on modules that follow closely with physical sub-
systems on the rotary-wing aircraft. These modules may include main and tail rotors,
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propeller, horizontal and vertical tails, wings, fuselage, and the flight control system.
Aerodynamic interference among different modules can also be established. Besides
the general modeling, performance calculation is also illustrated as it is a critical
index in understanding the aircraft.

Following the flight dynamic modeling, trim study and stability analysis are
conducted in Chap. 3. Trim is a state of the aircraft in which forces and moments
reach equilibrium. Trim is the basis of many fundamental analyses, including stabil-
ity analysis, control system design, handling qualities assessment, and simulation.
A numerical procedure on how to obtain trim is described. With trim condition
established, linearization process can be carried out to obtain a linearized model for
the rotary-wing aircraft. Elements in the linearized model are called stability and
control derivatives. A detailed description on the derivatives is provided, with the
emphasis of their physical meanings. To illustrate, three examples are also presented
in the chapter, which include a simplified single helicopter system and two hobby
helicopters at hover.

Linearized models are not only useful for stability analysis, but also for control
design, by blending them over different operating points with gain scheduling.
However, this requires extensive modeling, which is expensive and time-consuming.
There is a need for controllers that can operate with minimal model information and
handle nonlinearities over the entire flight regime. Chapter 4 aims to address this
need, by presenting a robust adaptive NN control for helicopters. In particular, we
focus on vertical flight, which can be represented in the single-input–single-output
(SISO) nonlinear nonaffine form, because the coupling between longitudinal and
lateral directional equations in this flight regime is weak. Although a nonaffine
system can be rendered affine by adding an integrator to the control input,
thus allowing many control methods for affine nonlinear system to be used, the
disadvantage of this approach is that the dimension of the system is increased, and
control efforts are not direct and immediate either. Subsequently, effective control
for the system may not be achieved. In this chapter, we focus on control design for
the nonaffine system directly, without adding any integrators to the input. Differing
from the approaches in the literature, which were based on approximate dynamic
inversion with augmented NNs, we utilize the Mean Value Theorem and the Implicit
Function Theorem as mathematical tools to handle the nonaffine nonlinearities in the
helicopter dynamics. In cases where reasonably accurate knowledge of the dynamic
inversion model is available, the method using approximate dynamic inversion
has been shown to provide an effective solution to the problem. However, the
construction of the dynamic inversion for a nonaffine system may not be an easy
task in general. For such cases, our approach offers a feasible means of tackling the
problem, since a priori knowledge of the inversion is not required.

In Chap. 5, NN control is redesigned to track both altitude and yaw angle at
the same time. We consider a scale model helicopter, mounted on an experimental
platform, in the presence of model uncertainties, which may be caused by un-
modelled dynamics, or aerodynamical disturbances from the environment. Two
different types of NN, namely a multilayer neural network (MNN) and a radial
basis function neural network (RBFNN) are adopted in control design and stability
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analysis. Based on Lyapunov synthesis, the proposed adaptive NN control ensures
that both the altitude and the yaw angle track the given bounded reference signals
to a small neighborhood of zero, and guarantees the Semi-Globally Uniformly
Ultimate boundedness (SGUUB)of all the closed-loop signals at the same time. The
effectiveness of the proposed control is illustrated through extensive simulations.
Compared with the model-based control, approximation-based control yields better
tracking performance in the presence of model uncertainties.

Unlike previous chapters which consider actuators with instantaneous response,
Chap. 6 deals with a more realistic scenario where actuator dynamics are present.
Backstepping technique, combined with NNs, is employed to design the robust atti-
tude control for uncertain multi-input–multi-output (MIMO) nonlinear helicopter
dynamics. To the best of our knowledge, there are few works in the literature
that take the actuator dynamics into account in the helicopter control, which is
practically relevant but more challenging as well. In this chapter, helicopter models
are considered as MIMO nonlinear dynamic systems, where the actuator dynamics
in the first-order low-pass filter form are considered. Secondly, the possible
singularity problem of the control coefficient matrix for the model-based attitude
control case has been tackled effectively by introducing a design matrix. Thirdly,
approximation-based attitude control is developed to handle the model uncertainties
(e.g., unknown moment coefficients and mass) and external disturbances. Rigorous
stability analysis and extensive simulations results show the effectiveness and
robustness of the proposed attitude control.

Beyond single-helicopter control, this monograph also touches on formation
control of multiple helicopters. In Chap. 7, the concept of the Q-structure is
introduced as a novel and flexible methodology to define and support a large variety
of formations. The Q-structure allows automatic scaling of formations according to
changes in the overall size of the helicopter team. The chapter begins by exploring
the use of the Q-structure for formation control where perfect communication is
present between all members of the team. The second part of the chapter focuses
on how the Q-structure can be adapted and used for teams where communication is
imperfect. In this chapter, we examine the properties of Q-structures in relation to
other formation representation schemes, and look at the ways Q-structures can be
used with artificial potential trenches to improve the scalability of the formations
and support a large number of different formations. In particular, the Q-structure
does not require explicit representation of every single node of the formation and
is able to ensure the formation maintenance of a large number of helicopters. The
formation is also robust against possible communication breakdown and/or limited
wireless communication ranges.

The Q-structure formation control is useful for motion planning at the kinematics
level. For formation control that takes into account the dynamics of helicopters, a
different approach is proposed. Chapter 8 presents synchronized altitude tracking
control of helicopters with unknown dynamics by graph theory, while the desired
trajectory is available to a portion of the team. Since only the neighbors’ information
is available to the helicopter, we use the weighted average of neighbors’ states as the
reference state of the helicopter in the control design. We prove that if the extended
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communication graph contains a spanning tree with the virtual vehicle as its root,
then its Laplacian will be positive definite. This property is essential to prove the
stability and it also makes the proof of the stability for the results easy and direct.
The mathematical stability proof, which makes use of the positive definite property
of the graph Laplacian, is provided for both full-state and output feedback cases.



Chapter 2
Building a Nonlinear Rotary-Wing Aircraft
Model

2.1 Introduction

This chapter focuses on nonlinear flight dynamic modeling of rotary-wing aircraft.
The intention is to establish a general modeling framework, that applies to not
only traditional single main-rotor helicopters, but also unconventional rotary-wing
aircraft. Apart from general equations of motion, the modeling framework relies
heavily on and is extended from the results in [97]. Differing from a traditional
modeling description, the inflow dynamics of a rotor module include latest result
from [13] to handle a rotor in descent motion. In addition, a propeller thrust
and torque calculation procedure is illustrated using the typical nomenclature in
helicopter theory books. For the purposes of easy implementation and simple
writing format, vector description of equations is utilized whenever possible.

2.2 General Equations of Motion

Assumptions associated with the classical six degree-of-freedom (DOF) equations
of motion include rigid body dynamics and insignificant effects from Earth’s
curvature and rotation. These two assumptions are usually satisfied for applications
in performance study, stability analysis, dynamic simulation, control system design,
and handling qualities assessment.

Typically, the general equations of motion include four sets of equations: force
equation, moment equation, kinematic equation, and navigation equation.

2.2.1 Force Equation

Figure 2.1 shows typical coordinate systems for both aircraft body and the main
rotor hub. Let uB, vB, and wB be three velocity components and pB, qB, and rB

B. Ren et al., Modeling, Control and Coordination of Helicopter Systems,
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8 2 Building a Nonlinear Rotary-Wing Aircraft Model

Fig. 2.1 Definitions of body axes and hub axes system (Image with courtesy of http://
cheaprchelicopters.net)

be three angular rate components along the x-, y-, z-axis in the body axes system,
respectively. Furthermore, define the Euler angle representation as roll (�), pitch
(�), and yaw ( ). The force equation is listed as follows:
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The cross-product term is the Coriolis acceleration due to body rotation. There are
two contributions to the force term of the equation: one is the gravitational force
resolved in the body axes system, and another is all other forces in the body axes
system, represented as Fx , Fy , and Fz.

2.2.2 Moment Equation

Define L, M , and N as the resultant rolling, pitching, and yawing moments along
the x-, y-, z-axis in the body axes system, respectively. The moment equation is:
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The inertial matrix, I , can be represented as

I D
2
4
Ixx 0 �Ixz

0 Iyy 0

�Ixz 0 Izz

3
5 ; I�1 D 1
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where � D IxxIzz � I 2xz. In the moment equation, the first term on the right-
hand side includes both inertial coupling and gyroscopic effect. Notice that in the
I matrix, there are no coupling terms Iyz and Ixy . This is due to the fact that for
most flying vehicles, the x � z plane is a plane of symmetry. Although, strictly
speaking, a classical single main-rotor helicopter has no plane of symmetry due to
its tail rotor, it is often used to simplify the resultant equations. The inertial coupling
term associated with Ixz will be significant in the case of highly maneuverable
motions. In some special cases with three symmetric planes like quad-rotor system,
there is no inertial coupling presented in their motions. While gyroscopic effect is
evident for a single-engine fixed-wing aircraft in maneuvering flight, it is even more
significant in a rotary-wing vehicle due to its main rotor. In fact, the moment due to
gyroscopic effect is the main source of roll and pitch dampings from the rotor in an
unaugmented rotorcraft.

2.2.3 Kinematic Equation

It should be pointed out that the three Euler angle derivatives, P�, P� , and P , are not
orthogonal to each other. The relationship between Euler angle derivatives and body
angular rates is provided as follows:
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It is noted that the kinematic equation has a singularity at � D 900. For all-attitude
flight, a quaternion representation is recommended.

2.2.4 Navigation Equation

The navigation equation is represented in the local NED (North–East–Down) frame.
The transformation from the vehicle’s body frame to the local NED frame follows
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the predefined rotational sequence: roll, pitch, and yaw. Therefore, the navigation
equation is
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In practical applications, position information is often obtained in terms of GPS data
in the Geodetic form (longitude, latitude, and height). In such cases, transformations
can be carried out first from Geodetic frame to ECEF (Earth centered Earth fixed)
frame, and then to local NED frame.

In both force and moment equations, the resultant forces (Fx , Fy , and Fz) and
moments (L, M , and N ) are contributions from various modules of a rotary-
wing aircraft, including main rotor, tail rotor (for a classical helicopter), propeller
(if mounted, typically with a compound helicopter or an autogyro), fuselage,
horizontal and vertical tails, wing (if mounted), landing gear, and slung loads (for
underslung operation). In the case of aerodynamic forces and moments, they are
typically computed in the local wind axes system. This process requires that the
relevant motion variables be transformed to the wind axes system and resultant
forces and moments be transformed back to the body axes system.

A block diagram for a general rotorcraft model is provided in Fig. 2.2, show-
casing the relationship between each individual module and general equations
of motion. Typically, the general equations of motion take forces and moments
transformed from each module and update the motion variables at each time
step. The motion variables are fed back into each module through appropriate
transformations to generate the updated forces and moments.

In the next section, the main characteristics of each module in Fig. 2.2 will
be analyzed. It shall be emphasized that although the study uses a helicopter as
a baseline platform, it can be extended to unconventional rotorcraft platforms.
Readers are encouraged to explore the use of modeling and simulation to evaluate
advanced or novel rotorcraft concepts and applications.

2.3 Modular-Based Modeling

2.3.1 Main Rotor

General assumptions associated with flight dynamic modeling for the main rotor
are [97]

• Small angle approximation. This is applied to the blade flapping angle and inflow
angle used during the derivation.
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Fig. 2.2 Block diagram for a general rotorcraft model [97]

• Rigid blade. This assumption is valid for flight dynamic applications including
performance estimation, trim study, stability and control analysis, handling
quality assessment, and dynamic response simulation. Elastic blade modeling
or even finite element blade modeling are only justified when flexibility of the
blade is essential.

• Reverse flow region, stall, and compressibility effects are ignored. These effects
are only appreciable during high forward speed. A criteria for judging the
boundary speed is that the maximum tip speed for the advancing blade should
not exceed 60 � �70% of the speed of sound.

• First harmonic approximation to the blade flapping. In this case, the blade
flapping angle is determined by coning angle ˇ0, longitudinal first harmonic term
ˇ1c (positive backward), and lateral first harmonic term ˇ1s (positive toward the
advancing side). Mathematically, the blade flapping angle is represented by

ˇ D ˇ0 � ˇ1c cos � ˇ1s sin (2.6)

where  is the blade azimuthal angle.
• Quasi-steady flapping dynamics. The rotor would respond to continuously chang-

ing motions as if they were a sequence of steady conditions. Mathematically, it
assumes that the terms dp

d and dq
d are insignificant in determining the rotor first-

harmonic terms.
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• Uniform inflow and no inflow dynamics.
• No tip losses.

With the above assumptions, the rotor model introduced in this section is valid for
an advance ratio �, computed using rotor forward speed divided by blade tip speed
at hover, up to 0:3.

2.3.2 Transformation from Body to Hub

As a first step, motion variables including translational velocities and angular rates
are transformed into the hub axis system (as shown in Fig. 2.1). The velocity
transformations involve a rotation with respect to the body y-axis due to the forward
tilting of rotor shaft is, and the contribution from angular rates to the translational
velocities due to spatial separation between the body center of gravity (C.G.) and
the main rotor hub.
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where STA, BL, and WL are the stationline, buttline, and waterline for a sub-system
(e.g., the main rotor hub), respectively. The subscript H stands for the main rotor
hub. Similarly, the angular rate transformation involves the rotation with respect to
body y-axis due to forward tilting of the rotor shaft,
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2.3.3 Blade Flapping Dynamics

The blade flapping dynamics are described by a second-order differential
equation [97]
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with the parameters defined as

�0 D collective pitch angle
�1s D longitudinal cyclic pitch angle
�1c D lateral cyclic pitch angle
˝ D rotor rotational speed
� D blade lock number
�t D blade twist
	 D total inflow ratio
ˇw D rotor sideslip angle, asin. vHp

u2HCv2H
/, defined as 0 if uH D vH D 0.

In (2.11), P represents the ratio of flapping frequency to rotor speed

P2 D 1C eMˇ

gIˇ
C Kˇ

Iˇ˝2
C �K1

8

�
1 � 4

3
�

�
(2.13)

where e, Kˇ, and K1 represent flapping hinge offset, flap spring, and pitch-flap
coupling, respectively. � D e

R
is the non-dimensionalized hinge offset ratio. The

term Mˇ in the above equation represents blade weight moment. For a blade with
uniform mass distribution, the simple relationship between Mˇ and blade moment
of inertia Iˇ can be established [44]:

Mˇ D 3g

2R
Iˇ (2.14)

Without hinge offset, flap spring, and pitch-flap coupling, the flap frequency is the
same as the rotor frequency. With either hinge offset (typically with articulated rotor,
or hingeless rotor), or flap spring (normally coupled with a teetering rotor), or the
pitch-flap coupling (normally with a tail rotor), the flap frequency is raised above
the rotor frequency, with typical value P D 1:0 � 1:2 [44].

While (2.9) is derived based on a general rotor configuration, simplifications can
be made on a number of cases, which in turn provides important physical insights
on the rotor flapping motion. In the first simplification, it is assumed that the rotor
has zero hinge offset, no flap spring, and no pitch-flap coupling. Equation (2.9) can
thus be re-written:
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(2.15)

A notable observation can be made from the above equation on the flapping
response due to body angular rates. When the rotor is at hover and under zero roll
and pitch controls, the steady state response of ˇ1s and ˇ1c are

ˇ1s D �16
�

pH

˝
� qH

˝
(2.16)

ˇ1c D pH

˝
� 16

�

qH

˝
(2.17)

This demonstrates that rotor first harmonic variation of flapping angles is propor-
tional to angular rates of the body during steady pull-up or steady roll flight.

A second simplification involves steady state response of (2.9). In this case, let
both first and second derivatives of three blade flapping terms be zero, as follows:

K

2
4
ˇ0
ˇ1c
ˇ1s

3
5 D F (2.18)

where matrices K and F are from (2.11) and (2.12). For studies that focus on low
frequency, (2.18) is more commonly used. Equation (2.18) may not be sufficient for
studies involving high fidelity dynamic response validation and aeroelastic analysis.

In a third simplification, steady state response of ˇ0, ˇ1c , and ˇ1s are derived
from (2.15) for the rotor having zero hinge offset, no flap spring and no pitch-flap
coupling, and under zero angular rates;
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At hover, the steady state responses of longitudinal and lateral flapping to the cyclic
control inputs can be reduced even further:

ˇ1s D �1c (2.22)

ˇ1c D ��1s (2.23)

This shows the one-to-one correspondence between the first harmonic flapping and
their corresponding cyclic controls.

In the last simplification, it should be noted that for many types of helicopters,
their rotor structure is teetering configuration. For teetering configuration, the angle
ˇ0 is treated as a constant pre-cone angle, ˇ0p . It thus follows that Ř

0 D P̌
0 D 0.

The two first harmonic terms ˇ1c and ˇ1s can be solved using two formulae in (2.9):
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Ř
1s

3
5C˝

2
664

�

8
2

�2 �
8

3
775

2
4

P̌
1c

P̌
1s

3
5

C˝2

2
6664

P2 � 1C �K1�
2

16

�

8
.1C �2

2
/

��
8
.1 � �2

2
/ P 2 � 1C 3

16
�K1�

2

3
7775

2
4
ˇ1c

ˇ1s

3
5

D ˝2

2
664

��

6

�K1�

3

3
775ˇ0p C˝2

2
64

0 0

���
3

���
4

3
75
2
4
�0

�t

3
5

C˝2

2
64

0

���
4

3
75	C˝2

2
6664

�

8
.1C �2

2
/ 0

0
�

8
.1C 3

2
�2/

3
7775

2
4
�1c

�1s

3
5

C˝

2
664

�2 ��
8

��
8

2

3
775

2
4
pH cosˇw C qH sinˇw

pH sinˇw � qH cosˇw

3
5 (2.24)



2.3 Modular-Based Modeling 17

2.3.4 Inflow Dynamics

Induced velocity at the rotor can be derived from Momentum Theory. The formula-
tion is represented as rotor inflow ratio 	:

	 D wH

˝R
� CT

2
p
�2 C 	2

(2.25)

When � D 0, 	 can be solved directly from the equation. When � 6D 0, 	 needs to
be solved implicitly through the Newton–Raphson iterative technique.

Equation (2.25) is valid when the rotor operates under hover, climb, steep
descent, and forward flight conditions. It is not valid under moderate descent rate
with slow forward speed when vortex ring state (VRS) occurs. In VRS, the rotor
encounters its own wake resulting in a doughnut-shaped ring around the rotor disk.
Typical phenomena associated with VRS include flow unsteadiness, excessive thrust
and torque fluctuations, uncommanded drop in descent rate, an increase in required
power, loss of control effectiveness, and a significant increase in vibration.

One drawback from Momentum Theory is its ignorance of flow interaction
between the rotor wake and surrounding airflow in descending condition [44].
Effects of the interaction may be less significant at hover or in climb. Nevertheless,
as a rotor increases its descent rate, the interaction becomes more and more intense
due to larger velocity gradients between the upflow outside the wake and the
downflow inside the wake. As such, a new inflow model was proposed to take
into account the flow interactions, known as ring vortex model [13, 15]. The ring
vortex model supposes that, due to the flow interaction, there exists a series of
vortex rings located at the rotor periphery. Vortex rings move downward along the
wake when descending at a low rate. As the rate of descent increases, vortex rings
tend to accumulate near the rotor tip. When the rate of descent further increases,
vortex rings move upward along the wake. A new vortex ring is formed at every
blade rotation, i.e., 2


˝Nb
second. The convection speed of the vortex rings, Vcon, is

approximated as follows:

Vcon D Vi � 5

3
wH (2.26)

where the induced velocity Vi D CT

2
p
.�2C	2/˝R. The locations of these discrete

vortex rings can thus be determined by the product of convection velocity of the
vortex rings and 2m

˝Nb
(m: an integer representing the numbering of vortex rings).

Each vortex ring induces additional normal velocity at the rotor disk. The vortex
strength of each ring, � , is approximated as follows:

� D k� ViR (2.27)

where Nringk� D 0:2167. The number of vortex rings, Nring, is typically set to two.
The flow field of a vortex ring can thus be computed based on elliptic integrals
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[12]. One advantage of utilizing vortex rings is that the effect of vortex rings is non-
uniform with respect to relative distance between the rings and the rotor disk. The
closer a vortex ring is to the rotor disk, the larger the magnitude of normal velocity
at the disk. The resulting non-uniform effect conforms to what has been observed in
test data.

In the ring vortex model, downward velocity due to vortex rings is integrated into
the induced velocity calculated by Momentum Theory. The concept works well in
the VRS and windmill phases. Nevertheless, in axial descent and inclined descent
at low forward speed ( �p

CT =2
up to 0.6204), Momentum Theory fails to predict a

transition phase between the helicopter and the windmill branches. To address this
problem, (2.25) is modified as

	 D wH

˝R
� CT

2

q
k2RVM C �2 C 	2

(2.28)

where

kRVM D 	

2:72.1C �2

CT =2
/

(2.29)

The additional term kRVM is analogous to the parachute drag term and it modifies
equilibrium curves for inflow dynamics, creating a steady state transition between
helicopter and windmill branches in axial and steep descents. Its effect diminishes
at other flight conditions.

To demonstate the effectiveness of the ring vortex model, comparison are made
between the numerical predictions and wind-tunnel test results from [108] in terms
of induced velocity variation (normalized by hover induced velocity, Vh). It is
shown from Fig. 2.3 that good agreement is reached with respect to various descent
angles ˛D.

2.3.5 Main Rotor Forces and Moments

Main rotor forces and moments are calculated in the hub-wind axes system. The
quantities include rotor thrust T , H-force Hw, Y-force Yw, rolling moment Lw,
pitching momentMw, and rotor torqueQ.

A closed-form thrust equation is thus provided in the hub-wind axes system [97]:
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Fig. 2.3 Induced velocity variations from Yaggy’s wind-tunnel test [108] and predictions from the
ring vortex model: axial and nonaxial flow

In many hobby helicopter models, their blades are teetering (� D 0), have untwisted
blades (�t D 0), and are without pitch flap coupling (K1 D 0). The thrust equation
can thus be further simplified as:

T D nb
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Horizontal force componentHw is provided [97] as

Hw D nb
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where the equivalent rotor blade profile drag coefficient, ı, is defined as

ı D 0:009C 0:3

�
6CT

�a

�2
(2.33)

Note that the term 6CT
�a

is also known as averaged blade angle of attack. Therefore,
(2.33) is the second order approximation for computing blade drag coefficient based
on averaged angle of attack.

Similarly, the side-force component Yw is given [97] as

Yw D nb
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The calculated rotor forces are transformed back from hub-wind axes system to
hub axes system:
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Rolling moment Lw is computed based on the following formula [97]:

Lw D nb
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Similarly, pitching momentMw is calculated [97] as

Mw D nb
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For helicopter rotors with teetering blades and no flapping spring constraint, it fol-
lows that Lw D 0 andMw D 0. It is also interesting to study rotor blades with hinge
offset and/or flapping spring constraint. In this case, let CLw DLw=.�AR.˝R/

2/

and CMw D Mw=.�AR.˝R/
2/ be coefficients of rolling moment and pitching

moment, respectively. From both (2.36) and (2.37), it results in:

CLw D �a

2

P 2 � 1
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ˇ1s (2.38)

CMw D �a

2

P 2 � 1

�
ˇ1c (2.39)

Recall that P is known as the non-dimensional flap frequency. This demonstrates
that for a rotor with hinge offset or flap spring, the direct hub rolling and pitching
moments are proportional to rotor first-harmonic tilting. As for the resultant rolling
and pitching moments acting on the vehicle’s C.G., they are the summation of
direct hub moment and the moments caused by the tilting of the rotor thrust about
the body’s C.G. For an articulated rotor, direct hub moments are about the same
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as the moments from the thrust tilting. For a hingeless or rigid rotor, the direct
hub moments may be two to four times larger than the moments from the thrust
tilting.

Main rotor torque can either be estimated from rotor power consumption (as will
be illustrated in Sect. 2.4), or from the closed-form expression given as follows [97]:
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The calculated rotor moments are transformed from the hub-wind axes system
back to the hub axes system:
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2.3.6 Transformation from Hub to Body

The forces at the rotor hub are further transformed into the body axes system
involving the forward tilting of the rotor shaft is:
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Similarly, the moments at the rotor hub are transformed back to the body axes
system, involving the forward tilting of the rotor shaft as well as additional moments
about the C.G. from the rotor forces due to spatial separation between the C.G. and
the rotor hub:
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2.3.7 Tail Rotor

A tail rotor usually serves two purposes for a conventional single main-rotor
helicopter: to provide anti-torque for the main rotor and to support directional
control.

The analysis of a tail rotor is very similar to that of a main rotor [97]. In fact, it is
often treated as a special case of the main rotor in terms of both flapping and force
calculations. However, there are some special features associated with the tail rotor
which may make the analysis easier. These features include:

• The tail rotor has only collective for the thrust, and hence there is no cyclic pitch
control (�1c D �1s D 0);

• The tail rotor rotates at a much faster speed, hence a steady state blade flapping
response in the non-rotating frame is sufficient.

The tail rotor may come in various configurations, including teetering, articu-
lated, hingeless, bearingless, Fenestrons (fan-in-fin), and even NOTAR (No Tail
Rotor). As the teetering is still the most commonly used configuration, the study
in this section will focus on the teetering tail rotor.

As a first step, the velocity components at the body C.G. frame is transformed to
the local velocity at the hub of the tail rotor:
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where wiHT is the velocity that accounts for the interference from the main rotor
to the tail rotor. The advance ratio and sideslip angle for the tail rotor can thus be
obtained as

�TR D
q

u2TR C w2TR

˝TRRTR
(2.45)

ˇTR D tan�1
�

wTR

uTR

�
(2.46)

Since a steady state solution is sufficient for the teetering tail rotor, it follows
that Ř

1c D Ř
1s D P̌

1c D P̌
1s D 0. The two first harmonic terms ˇ1c and ˇ1s can

be solved by using (2.24). Notice that �1c D �1s D 0 in the case of a tail rotor.
The inflow ratio for the tail rotor is very similar to that for the main rotor:

	TR D � vTR

˝TRRTR
� CTTR

2

q
�2TR C 	2TR

(2.47)



24 2 Building a Nonlinear Rotary-Wing Aircraft Model

For the tail rotor thrust, H-force, and Y-force, (2.30), (2.32), and (2.34) can be
applied by selecting corresponding tail rotor parameters and setting � D 0. As
mentioned earlier, the rolling and pitching moments of the tail rotor are zero due
to its teetering configuration. For the tail rotor torque, (2.40) can be applied.

All forces and moments for the tail rotor are transformed back from the hub wind
frame to body frame:
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2.3.8 Propeller

The analysis of a propeller is very similar to a helicopter rotor. In fact, the
basic analytical tools are the same: Momentum theory and Blade Element theory.
However, caution must be taken when applying closed-form equations in Sect. 2.3.1
to the propeller performance calculation. This is because a few assumptions in
reaching the closed-form equations are no longer valid. For example, it is common
that a propeller blade can have fairly large pitch, in which case we can not make a
small angle assumption. Moreover, the chordwise blade profile can be much more
complicated than that of an ordinary rotor blade.

A propeller thrust and torque calculation procedure (based on Vortex theory [68])
will be provided in the following sections. Historically, the terminology used in the
helicopter rotor and the propeller are quite different. For example, the advance ratio
for the helicopter rotor is defined as V

˝R
, while the same term for the propellers is

defined as V
nD

D 
V
˝R

(n is the rotational speed in revolutions per second and D
is the propeller diameter). The procedure will adopt the typical nomenclature from
helicopter theory books.

1. Break a single propeller blade into n elements. Let r and x be the collection of
dimensional and dimensionless radial stations along the blade.

2. Let wt and wa be tangential and axial components of the induced velocity.
Assume wt

VT
D 0, where VT D ˝R is the tip velocity of the propeller blade.

3. Calculate wa:

wa
VT

D 1

2

"
��C

s
�2 C 4

wt
VT

�
x � wt

VT

�#
(2.50)

where � D V
VT

is the advance ratio for the propeller.
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4. Obtain � D tan�1 �
x

.
5. Calculate induced angle of attack ˛i :

˛i D tan�1
�
V C wa
˝r � wt

�
� � (2.51)

6. Compute a correction term for finite thickness of the blade:

˛ D 4��

15.�2 C x2/

tmax

c
(2.52)

where tmax is the maximum thickness of the blade and c is the sectional blade
chord.

7. Obtain local angle of attack:

˛ D � � ˛i � � �˛ (2.53)

8. Compute a second correction term for effective camber due to flow curvature:

Cl D a�

4
(2.54)

where � D tan�1


VCwa
˝r�2wt

�
� tan�1 � VCwa

˝r


.

9. Obtain sectional lift coefficient Cl :

Cl D a.˛ C ˛0l /�Cl (2.55)

where ˛0l is the angle between the zero-lift line and the chord line for the
propeller airfoil.

10. Calculate sectional total velocity Ve:

Ve

VT
D
s�

�C wa
VT

�2
C
�
x � wt

VT

�2
(2.56)

11. Obtain bound circulation � :

� D 1

2
vClVe (2.57)

12. Update wt :

wt D nb�

4
rF
(2.58)
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where F is the Prandtl’s tip loss factor

F D 2



cos�1 exp

�
�nb.1 � x/

2 sin �T

�
(2.59)

13. Return to Step 3 until the absolute difference (vector norm) between the
calculated wt and that from the previous calculation reduces to a desired value.

14. Obtain differential lift dL and differential drag dD:

dL D 1

2
�V 2

e cCldr (2.60)

dD D 1

2
�V 2

e cCddr (2.61)

where sectional drag coefficientCd can be represented as a function of Cl .
15. Compute sectional thrust dT and torque dQ:

dT D dL cos.� C ˛i /� dD sin.� C ˛i / (2.62)

dQ D rŒdL sin.� C ˛i /C dD cos.� C ˛i /� (2.63)

16. Numerically integrate the above two equations in order to obtain the total thrust
T and torqueQ.

17. Finally, compute the propeller efficiency:

� D T V

Q˝
(2.64)

The procedure listed above is used to compute thrust and power for a three-bladed
propeller with Clark-Y section from a wind-tunnel test [37]. The predicted non-
dimensional thrust and torque coefficients from Vortex Theory are compared with
the experimental results in Fig. 2.4 for two different blade pitch angles at 0.75R:
15ı and 35ı. The prediction clearly matches with the test very well. In addition,
another set of predictions using combined Momentum-Blade Element Theory is also
provided (for computational procedure with this method, refer to [68]). Prediction
with Vortex Theory is considerably precise as it takes into account flow rotation,
tip loss, finite thickness of a blade, and effective camber of the blade section due to
flow curvature.

2.3.9 Horizontal Tail

In steady forward flight, the horizontal tail can generate a trim load to compensate
main rotor longitudinal flapping [97]. More importantly, the horizontal tail is able
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to provide a stabilizing pitch moment due to angle of attack variation to enhance the
pitch stability. Primary forces from the horizontal tail are lift and drag.

The velocity components acting on the horizontal tail in its local body axes
system are as follows:
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where wiHT is the velocity that accounts for the interference angle from the main
rotor to the horizontal tail. The angle of attack and sideslip angle of the horizontal
tail are then obtained:

˛HT D tan�1
�

wHT

uHT

�
C iHT (2.66)

ˇHT D sin�1
�

vHT

VHT

�
(2.67)

where

VHT D
q

u2HT C v2HT C w2HT (2.68)
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and the angle iHT is the incidence of the horizontal tail. For a cambered airfoil, iHT

is adjusted to include the angle of attack for zero-lift. For a movable horizontal tail,
iHT can be used as a trim variable, like an elevator for a fixed-wing aircraft.

Lift and drag on the horizontal tail can then be calculated in the local wind axis
system using quadratic aerodynamic form for airfoils:

LHT D 1

2
�V 2

HTSHTCLHT (2.69)

DHT D 1

2
�V 2

HTSHTCDHT (2.70)

Full range lift coefficient CLHT and drag coefficient CDHT for certain airfoils are
available from the airfoil database from the Department of Aerospace Engineering,
University of Illinois at Urbana-Champaign. A simplified version is provided [44]:

CLHT D a˛HT (2.71)

CDHT D 0:0087� 0:0216˛HT C 0:4˛2HT (2.72)

where a is the lift curve slope, and CDHT is obtained for the NACA 23012 airfoil
and considered accurate up to its stall angle (12ı).

Subsequently, lift and drag can be transformed from local wind axes system to
local body axes system:
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Moments associated with the horizontal tail are computed based on the location of
the aerodynamic center on the tail with respect to the body C.G.:
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In general, lift on the horizontal tail is the dominant force while pitch moment
is the dominant moment. It, therefore, may be sufficient just to compute the lift and
pitch moment from the horizontal tail in certain applications.
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2.3.10 Wing

Wing is sometimes added to a rotor-wing aircraft to produce lift during forward
flight. The wing is treated in the same manner as the horizontal tail. All the formulae
listed in Sect. 2.3.9 are portable in the calculation of forces and moments for the
wing module.

2.3.11 Vertical Tail

The vertical tail can be treated in a similar fashion as the horizontal tail with minor
differences. In a standard single main rotor configuration, an additional interference
effect needs to be taken into account from the tail rotor to the vertical tail [97]. As
such, the velocity components acting on the vertical tail in its local body axes system
are as follows:
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where wiVT is the interference velocity from the main rotor to the vertical tail. The
term witr accounts for the blockage effect due to the tail rotor. The angle of attack
and sideslip angle of the vertical tail are calculated in consideration of different
orientations between the horizontal tail and vertical tail:

˛HT D tan�1
�

vVT

uVT

�
C iVT (2.76)

ˇHT D sin�1
�

wVT

VVT

�
(2.77)

where

VVT D
q

u2VT C v2VT C w2VT (2.78)

and the angle iHT is the incidence angle of the vertical tail. The angle iHT is adjusted
to include the angle of attack for zero-lift for cambered airfoil and can be used as
a trim variable for movable vertical tail, like a rudder for a fixed-wing aircraft. The
remaining calculation of forces and moments for the vertical tail can be directly
referred to Sect. 2.3.9.
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2.3.12 Fuselage

Aerodynamic forces and moments acting on the fuselage can be computed in almost
the exact manner as the horizontal tail. However, one difficulty in the case of the
fuselage is the determination of the aerodynamic database. While such database
for the horizontal tail is still relatively easy to find due to its airfoil shape, it is
generally difficult for the fuselage due to its bluff body shape. Conducting a wind-
tunnel experiment or a comprehensive computational study are certainly beneficial,
although they may sometimes be costly and time-consuming.

An alternative is to estimate equivalent flat-plate areas for all body-x, body-y,
and body-z axes and calculate correspondingly forces along those axes. Similar to
the horizontal and vertical tails, the velocity components acting on the fuselage in
its local body axes system are [97]:

2
4

uFU

vFU

wFU

3
5 D

2
4

uB

vB

wB

3
5C

2
4

0

0

wiFU

3
5 (2.79)

where wiFU is the interference velocity from the main rotor to the fuselage. Note
that the effects from angular rates are ignored here due to close distance between
fuselage aerodynamic center and body C.G. Let S front

Ref , S side
Ref , and S

top
Ref be the

equivalent flat-plate areas along the body-x, body-y, body-z axes, the forces on the
fuselage are
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The above forces are assumed to act on the fuselage’s center of pressure. A
suggestion is provided to relate fuselage frontal drag area with the rest: S side

Ref D
2:2S front

Ref and S top
Ref D 1:5S front

Ref . Moments due to the aerodynamic forces with respect
to the body C.G. are
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2.3.13 Aerodynamic Interference

Aerodynamic interference among different modules are essential in rotorcraft
modeling. Sometimes the interference introduces power penalties or loss of effi-
ciency. For example, additional vertical loading on the fuselage due to main rotor
downwash in hover condition could count for as much as 5% of total weight. In
another example, for a tail rotor in pusher configuration, its aerodynamic efficiency
decreases due to blackage effect from the vertical tail. The interference can be
productive in other cases. For example, a horizontal tail immersed in the main rotor
downwash contributes a stabilizing pitch moment for longitudinal static stability.
A rudder immersed in a propwash for an autogyro could increase its control
effectiveness at low speed.

A typical assumption in dealing with interference is airflow superposition. An
additional velocity vector from the source of the interference is superimposed to the
resultant module’s local velocity vector, thus resulting in changes in local angle of
attack and sideslip angle. The superposition method shall be treated as a first-order
approximation of the actual interference.

From data presented in [42], an empirical expression for interference velocity wi
due to a rotor was provided in [97]:

wi D kf vi (2.82)

where vi is the averaged downwash at the rotor plane. The empirical factor kf is
given as follows:

kf D 1:299C 0:671�� 1:172�2 C 0:351�3 (2.83)

where the rotor wake angle � is defined as

� D tan�1

 �

�	
�

(2.84)

For convenience, the graphical relationship between the interference factor and the
rotor wake angle is provided in Fig. 2.5. The interference velocity in Sects. 2.3.7–
2.3.12 can be computed using (2.82).

2.3.14 Rotor Rotational Degree of Freedom

In most rotary-wing flight dynamics modeling, rotor speed is assumed to be con-
stant. This assumption is certainly valid in the presence of a governor module, which
is designed to maintain the rotor speed through a feedback system. Nevertheless, for
a helicopter operating in auto-rotation mode or an autogyro, the rotor speed is not
determined by an engine but rather by the balancing of driving torque and driven
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Fig. 2.5 Interference factor with respect to rotor wake angle

torque at the rotor. In such a case, it is necessary to set up rotor rotational degree of
freedom. This equation is described as follows:

J P̋ D �Q (2.85)

whereQ is the rotor torque. Rotor rotation inertia J can be approximated using the
blade flapping inertia Iˇ:

J D NbIˇ (2.86)

where Nb is the number of blades.

2.3.15 Flight Control System

In general, the flight control module consists of at least one of the following
systems:

• Feedforward mechanical system, including pilot’s controls, mechanical linkage,
actuation system, swashplate, and control rods. This system can normally be
represented by linear equations between the pilot’s controls and blade pitch
variations. It may also include first order transfer functions for actuators and
nonlinear saturation representing control limits.
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Fig. 2.6 Teetering rotor configuration with a fly bar for a model helicopter

• Automatic flight control system (AFCS), including stability augmentation system
(SAS) and control augmentation system (CAS). Details of AFCS design will be
illustrated in later chapters.

• Fly bar (also known as stabilizer bar) for teetering rotor configuration (see
Fig. 2.6).

The fly bar deserves an in-depth discussion as it is a common feature found
in the 2-bladed teetering rotor configuration. The reason is that this type of rotor
configuration tends to have excessively rapid response to cyclic controls. The
installation of fly bar provides lagged rate feedback to slow down the fast response.

The bar consists essentially of a rod with two small airfoils at two ends. Without
cyclic controls, the bar maintains its rotational plane parallel to the ground. With
cyclic controls, the bar responds in a manner similar to the main rotor blades. There
are historically two types of fly bars: Hiller bar and Bell–Hiller bar. For the Hiller
bar, cyclic controls are first transmitted from the rotating swashplate to the bar.
Subsequently, cyclic pitch variations of the rotor blades are controlled entirely by
the tilting of the bar. For the Bell–Hiller bar, there is a mechanical mixer between
the bar and the rotor blades. Cyclic controls go to the bar as in the case of the Hiller
bar. However, there is another portion of cyclic controls that go directly to the rotor
blades. The tilting of the bar due to the cyclic controls goes further to the rotor blades
via the mixer. One advantage of the Bell–Hiller bar is that it introduces flexibility in
adjusting the delay to the cyclic controls since the rotor blades are now controlled
by both fly bar tilting and a portion of cyclic controls.
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Let Ň
1c and Ň

1s be the longitudinal and lateral first harmonic terms for the fly
bar. The fly bar can be formulated using a first order dynamic system [8]:

�s
PŇ
1c D � Ň

1c � �sqB C Nd�s1s (2.87)

�s
PŇ
1s D � Ň

1s � �spB C Nd�s1c (2.88)

where �s and Nd are time constants of the fly bar and control derivative, respectively.
While Nd can be determined experimentally, the time constant �s is a function of the
fly bar’s lock number �s and rotor speed ˝:

�s D 16

�s˝
(2.89)

where lock number for the fly bar can be determined by the following equation:

�s D �abarcbar.r
2
2 � r21 /

I bar
b

(2.90)

where r2 and r1 are the outer and inner radii of the fly bar, respectively. �s1c and
�s1s represent longitudinal and lateral cyclic controls at the rotating swashplate. The
cyclic controls at the rotor blades are expressed as

�1c D �s1c C kbar
Ň
1c (2.91)

�1s D �s1s C kbar
Ň
1s (2.92)

where kbar is the fly bar bearing determined by the geometry of the mechanic mixer.
Experimentally, kbar is not difficult to measure. Setting both �1c and �1s to zero
followed by tilting the fly bar flapping angle, the value of kbar is the ratio of measured
changing pitch angle along the blade to the fly bar flapping angle.

2.4 Helicopter Performance Prediction

Endurance and range are two important performance indices in helicopter flight.
Both indices can be directly derived from helicopter power calculation. Total power
required for a helicopter comes from three difference sources:

• Main Rotor Power: This is the most dominant component in the total power
consumption. This rotor power includes induced power, profile power, and
parasite power. Induced power is associated with rotor thrust production, which is
considered as useful power. Profile power is required to turn the rotor in viscous
air. Parasite power is needed to overcome the helicopter drag including fuselage
and empennage.
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• Tail Rotor Power: As the tail rotor is used to counter the main rotor torque, its
power consumption can be derived based on the torque and its own rotational
speed. Typically, the tail rotor’s power is approximately 10% of main rotor’s
power at hover and low speed flight. As the helicopter transits to high speed, the
vertical fin may be effective enough to offset an essential portion of the main
rotor torque. Thus, the required power by the tail rotor typically drops as the
flight speed increases.

• Ancillary Power: This is to calculate the power used to drive ancillaries such as
hydraulics and generators. The ancillary power also takes into account various
power losses presented in the whole system. Typically, ancillary power counts
for 5 � �10% of the total power required.

A formula for computing main rotor power is shown as follows:

P D �T Vi C �A.˝R/3
�cd0

8
.1C 4:6�2/CDV (2.93)

The first component in the power equation is the induced power. An empirical
factor � is associated with this component to account for wake tip loss, nonuniform
inflow and other losses. A number of values for the factor � are suggested in the
literature with a typical value taken to be 1.15. Rotor thrust T can be approximated
as W at hover and low speed flight, or

p
W 2 CD2 for moderate and high speed

flight. A complete formula for the calculation of induced velocity Vi is provided in
Sect. 2.3. However, this formula is not easy to solve especially in forward flight and a
Newton–Raphson algorithm is required. Fortunately, this formula can be simplified
with respect to the speed regime:

Vi D
( q

W
2�A
; hover

T
2�AV

; V > 0:1˝R
(2.94)

The second component in (2.93) is the profile power. A typical value of drag
coefficient cd0 is taken as 0.0087. However, this value is obtained with ideal testing
conditions and for a blade in near perfect form. In reality, a 50% increase of
cd0 D 0:0087 is usually adopted for conservative purposes. The last component in
(2.93) is the parasite power, which is mainly contributed from fuselage, empennage,
and rotor hub. A detailed description of parasite drag in forward flight can be
referred to in [84]. Values for equivalent flat-plate area SRef range from 10f t2

for small helicopters to 50f t2 for large utility helicopters. In the case of UAVs,
the values can vary from 0:5f t2 to 2f t2 depending on the UAV size, exposure of
mechanical linkages, and landing systems.

Power consumption due to the tail rotor can be calculated using (2.93) with minor
modifications. The parasite power component is dropped off in the calculation,
while parameters for main rotor are exchanged with those for tail rotor. A simple
way of computing tail rotor power is to take 10% of the main rotor power for hover
and 5% high speed.
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Table 2.1 RMAX general
data for power prediction

Rotor diameter 3115 mm

Number of blades 2
Blade chord 138 mm
Rotor speed 830 RPM
Gross weight 88 kg
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Fig. 2.7 Power prediction for a Yamaha RMAX helicopter

An example is now provided to illustrate power prediction for a hobby helicopter,
i.e., the Yamaha RMAX helicopter. The RMAX is a popular radio-controlled rotary-
wing platform. It has been widely used in universities and research institutes as a
testbed for a range of activities including nonlinear modeling, flight control, and
system identification [91]. General data for the RMAX helicopter is provided in
Table 2.1. Other parameters required for power calculation include: � D 1:15, cd0 D
0:013 (50% more than the nominal value of 0.0087 for NACA 23012 airfoil), Sref D
1:5f t2, and �auxillary D 0:9.

The U-shaped total power curve in Fig. 2.7 illustrates power required for the
RMAX in a straight and level flight at sea level. Induced power is the dominant
component at hover, but reduces significantly as the speed increases. Profile
power gradually increases over the speed to reflect the growing effects from
compressibility at the advancing blade and stall and reverse flow at the retreating
blade. Parasite power will be dominant at high speed flight as it is proportional to
V 3. The values for tail rotor power are almost flat when the effect from the vertical
fin is not considered here. However, in the presence of a vertical fin, the tail rotor
power in general decreases with the increase of flight speed.
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Fig. 2.8 Determination of endurance and range

Maximum endurance can be achieved when a helicopter operates at a flight speed
with the least required power. As observed from Fig. 2.8, this speed can be found at
the bottom of the U-shaped power curve (37 knots in Fig. 2.3). Interestingly enough,
the endurance speed does not coincide with the minimum drag point, which can be
graphically found by drawing the tangent to the U-shaped power curve. A helicopter
can achieve the best range at this point as it corresponds to the minimum value of the
ratio P=V , which can be further interpreted as the best lift-to-drag ratio. In general,
endurance and range can not be achieved at one speed and the endurance speed is
always slower than the range speed.

2.5 Conclusion

As stated in Sect. 2.1, we provided a modeling platform for a general class
of rotor-wing vehicles. These rotary-wing vehicles include but are not limited
to the compound helicopter, the coaxial helicopter, the helicopter with vectored
thrust open propeller (VTOP), the helicopter with vectored thrust ducted propeller
(VTDP), autogyro (also known as gyrocopter, autogiro, and gyrodyne), the tilt-rotor
aircraft, and the tilt-wing aircraft.

The common feature of these vehicles that they have at least one main rotor.
Some have more than one main rotor, like the coaxial helicopter, the tilt-rotor,
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Table 2.2 Modular-based Modeling for rotor-wing vehicles

Unconventional rotor-wing vehicles Distinctive features compared with classical helicopters

Compound helicopter Two secondary rotors: one for a tail rotor and another for a
pusher propeller; tail rotor used to counter main rotor
torque at low speed; pusher propeller used to provide a
forward thrust; wing module required to share lift with
the main rotor; interference between main rotor and
wing needed.

Co-axial helicopter Two main rotors; interference between two main rotors
crucial: interference velocity at lower rotor hub due to
upper rotor superimposed to the induced velocity for
lower rotor and vice versus; no horizontal and vertical
tails required.

Vectored thrust open propeller A propeller as the secondary rotor: tail rotor at low speed
and a propeller at high speed; swivel angle of open
propeller treated as a trim variable; wing required; one
less secondary rotor compared to compound helicopter.

Vectored thrust ducted propeller Similar to VTOP except the swivel angle for open
propeller in VTOP changed to rotating angle for the
vane in VTDP; aerodynamic effect from duct
considered.

Tilt-rotor aircraft Two main-rotor modules required; interference between
the main rotor and the wing necessary when operating
in the helicopter mode.

Tilt-wing aircraft Two main-rotor modules required; FCS related to wing
tilting required.

Autogyro Main rotor operating in auto-rotation mode with induced
velocity in the steep descent regime; main rotor
rotational degree-of-freedom necessary; use secondary
rotor module for propeller; interference from propwash
to rudder essential for directional effectiveness at low
speed.

and the tilt-wing. Some have more than two rotors, like the compound helicopter.
Some instead have an extra propeller module, including the autogyro, the VTOP, and
the VTDP. Besides the differences in the rotor system, interference can be critical
in some cases. For example, whether there is interference between the rotor and
the wing is a distinct feature that separates the tilt-rotor aircraft from the tilt-wing
aircraft. For an autogyro, when its rudder is immersed in the propwash, it could have
added directional capability. Distinctive features of those rotary-wing vehicles are
listed in both Table 2.2.

The key concept in modeling the rotary-wing vehicles is to follow the diagram in
Fig. 2.2. For one type of vehicle, its associated modules may be different from those
of the classical single main-rotor configuration. However, they can be either special
cases of those modules illustrated in Sect. 2.3 (for example, a propeller module),
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or duplicated modules with minimum differences (for example, two identical
rotors on a tilt-rotor aircraft with opposite rotational directions). Once established,
those modules produce forces and moments to the general equations of motion.
The general equations of motion will update its motion variables based on the
forces and moments, and transmit those motion variables back to each individual
module.



Chapter 3
Stability Analysis for Rotary-Wing Aircraft

3.1 Introduction

With the flight dynamic modeling from Chap. 2, the natural next step is to conduct
trim analysis. Trim is a state in which force and moment equilibrium are maintained.
Trim analysis is the basis of many rotary-wing aircraft studies, including perfor-
mance and stability analysis, control system design, handling qualities assessment,
and software-in-the-loop simulation.

During the linearization process, small perturbation can be applied to the
trimmed states to extract the linearized model. All elements in the linearized
model can be grouped into four categories: gravity terms, kinematic terms, stability
derivative terms, and control derivative terms. Focus is given on a sanity check
of these terms. At the end of the chapter, three examples will be provided on the
dynamic stability study of the rotary-wing aircraft.

3.2 Trim

Trim calculation can be conducted analytically or numerically. A good illustration
of an analytical trim calculation can be referred to in [84]. While analytical trim
calculation may provide insight on critical forces and moments acting on the rotary-
wing aircraft, its application is restricted to simplified analytical equations or special
flight conditions in which great simplifications are required.

It may be noticed by readers that the mathematical modeling detailed in Chap. 2
tends to be matrix-centric and can thus be easily implemented in MatlabTM. As a
result, numerical trim calculation can be conducted based on the Trim command
available in MatlabTM. A description of this command can be referred in the
SimulinkTM User Manual.

B. Ren et al., Modeling, Control and Coordination of Helicopter Systems,
DOI 10.1007/978-1-4614-1563-3 3, © Springer Science+Business Media, LLC 2012
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In this section, the procedure for numerical trim calculation is outlined based
on the Newton method. The procedure can be implemented in the MatlabTM

environment, as well as other programming languages like C. Compared to the Trim
command in MatlabTM, this set of procedures can provide greater flexibilities in
fine-tuning parameters related to convergence and its speed.

Typical difficulties related to the Newton method include the existence of mul-
tiple equilibria, computation and singularity of the Jacobian matrix, and closeness
of the initial guess to the final converged solution. In the application of rotary-wing
aircraft, one possible case for multiple equilibria occurs when the blade sectional
angle of attack gets close to the stall region. Here, a single value of lift coefficient
may correspond to two angles of attack near to each other. A remedy is thus to
smooth out the lift coefficient curve. Generating the Jacobian matrix may not be a
big problem as the trim problem only involves a small number of trim variables
(typically six) and the matrix can be obtained through numerical perturbation.
In terms of the initial guess, one can always start with hover condition and increase
flight speed in a comfortably small step. Singularity of the Jacobian matrix may
occur at extreme flight conditions like flying at Vne (never exceed speed). For flight
conditions close to the boundaries of the flight envelope, professional judgement
needs to be made to determine whether the failure to converge is due to numerical
reasons or physical causes.

As a general formulation, suppose that the dynamic system can be represented as
follows:

PX D f .X;U / (3.1)

Here, X can be states from the general six degree-of-freedom equations of motion,
blade flapping equations, rotor rotational degree-of-freedom, or dynamics involving
flight control system. U are either control variables in general or trim variables in
the trim problem.

The procedures using Newton’s method are described as follows:

1. Set flight condition X .
2. Set trim targets Y which can be a subset of PX .
3. Set trim variables U and associated perturbationh.
4. Set initial conditions for trim variables U0 and run system (3.1) to obtain Y0.
5. Vary one trim variable at a time as U.i/ C h.i/ and run the full system to

obtain Y i .
6. Form the Jacobian matrix J :

J.W; i / D Y i � Y0
h.i/

(3.2)

7. Obtain J�1.
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Table 3.1 Setting on trim variables and trim targets

Trim flight conditions Trim variables Trim targets

Steady level flight or hover �c , �1c , �1s , �ctr , �, � Pu, Pv, Pw, Pp, Pq, Pr
Climb or descent �1c , �1s , �ctr , �, � , �v Pu, Pv, Pw, Pp, Pq, Pr
Autorotation �c , �1c , �1s , �ctr , �, � Pu, Pv, Pw, Pp, Pq, Pr

�v P̋ rotor

Coordinated turn �c , �1c , �1s , �ctr , �, � Pu, Pv, Pw, Pp, Pq, Pr
Longitudinal static stability �1c , �1s , �ctr , �, � , �v Pu, Pv, Pw, Pp, Pq, Pr
Lateral static stability �1c , �1s , �ctr , �, � , �h Pu, Pv, Pw, Pp, Pq, Pr

8. Set the update of U :

Unew D Uold � J�1.Yold � Y / (3.3)

9. Run the full system to obtain Ynew.
10. Test whether jjYnew � Y jj < �. If not, go back to Step 8.

Astute readers may realize that the above procedures do not strictly follow the
classical Newton method. It is in fact a variant of the Newton method called the
Chord method. The advantage of the Chord method is that it only requires us to
compute the Jacobian matrix once, thus saving considerable computational cost.
However, while the Newton method can guarantee quadratic convergence, the Chord
method can only achieve linear convergence.

A collection of trim variables and trim targets at various trimmed flight condi-
tions is provided in Table 3.1 [14]:

In Table 3.1, �h and �v represent horizontal and vertical flight path angles,
respectively. In some trim conditions, collective pitch �0 is not one of the trim
variables as it is set by a predefined value.

3.3 Linearization

The process of linearization is based on small perturbation theory in which a variable
is the sum of its nominal value plus a perturbation. For example, pitch attitude, � , is
written as

� D �0 C� (3.4)



44 3 Stability Analysis for Rotary-Wing Aircraft

In another example, the total force acting along x-axis in body frame, X , can be
expressed as

X D X0 CX (3.5)

The incremental force X can be further extended with the following linear
approximation:

X D Xuu CXww CXqq CX�c�c CX�1s�1s (3.6)

In the above expression, the terms (Xu,Xw,Xq) are called stability derivatives, while
the remaining terms (X�c , X�1s ) are referred to as control derivatives. Both stability
and control derivatives are first order partial derivatives. While these derivatives can
also be obtained through analytical investigation [84], they can be computed by
numerical perturbation. For example, drag dampingXu is

Xu D @X

@u
Š X.U0 Cu/�X.U0/

u
(3.7)

The product from the linearization process is a linearized system with respect to
a reference flight condition in the following form:

Px D Ax C Bu (3.8)

with states xT D Œu; w; q; �; v; p; r; �� and control inputs uT D Œ�c ; �1s; �1c; �ctr �.
Notice that, for simplicity, the symbol is not explicitly included in the increments
of variables. Matrix A is made of four parts: longitudinal dynamic Along, lateral dy-
namics Alat, longitudinal/lateral coupling Along=lat, and lateral/longitudinal coupling
Alat=long:

A D
2
4

Along Along=lat

Alat=long Alat

3
5 (3.9)

General forms of these four sub-matrices are provided:

Along D

2
66666666664

Xu
m

Xw
m

Xq
m

�W0 �g cos �0

Zu
m

Zw
m

Zq
m

C U0 �g cos�0 sin �0

Mu
Iyy

Mw
Iyy

Mq

Iyy
0

0 0 cos�0 0

3
77777777775

(3.10)
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Along=lat D

2
66666666664

Xv
m

Xp
m

Xr
m

C V0 0

Zv
m

Zp
m

� V0 Zr
m

�g sin �0 cos �0

Mv
Iyy

Mp

Iyy

Mr

Iyy
0

0 0 � sin �0 0

3
77777777775

(3.11)

Alat=long D

2
6666666664

Yu
m

Yw
m

Yq
m

�g sin �0 sin �0

IzzLuCIxzNu
�

IzzLwCIxzNw
�

IzzLqCIxzNq
�

0

IxzLuCIxxNu
�

IxzLwCIxxNw
�

IxzLqCIxxNq
�

0

0 0 sin �0 tan �0 0

3
7777777775

(3.12)

Alat D

2
6666666664

Yv
m

Yp
m

CW0
Yr
m

� U0 g cos�0 cos �0

IzzLvCIxzNv
�

IzzLpCIxzNp
�

IzzLrCIxzNr
�

0

IxzLvCIxxNv
�

IxzLpCIxsNp
�

IxzLrCIxxNr
�

0

0 1 cos�0 tan �0 0

3
7777777775

(3.13)

All the elements in the above matrices can be obtained through numerical
perturbation. However, there are gravitational and inertial terms in the matrix that
can be accurately obtained through an analytical study of the equations of motion.
For this reason, these gravitational and inertial terms can serve as a good references
for the sanity check once A is obtained from the linearization process. For example,
the term �g cos �0 in the matrix Along can be computed with trim pitch attitude �0.

In another example, the term Zq
m

C U0 in the matrix Along is dominated by U0 in
forward flight.



46 3 Stability Analysis for Rotary-Wing Aircraft

Finally, the control matrix B is provided:

B D

2
666666666666666666666666666666664

X�c
m

X�1s
m

X�1c
m

X�ctr
m

Z�c
m

Z�1s
m

Z�1c
m

Z�ctr
m

M�c

Iyy

M�1s

Iyy

M�1c

Iyy

M�ctr
Iyy

0 0 0 0

Y�c
m

Y�1s
m

Y�1c
m

Y�ctr
m

IzzL�cCIxzM�c

�

IzzL�1sCIxzM�1s

�

IzzL�1cCIxzM�1c

�

IzzL�ctr CIxzM�0tr
�

IxzL�cCIxxM�c

�

IxzL�1sCIxxM�1s

�

IxzL�1cCIxxM�1c

�

IxzL�ctr CIxxM�ctr
�

0 0 0 0

3
777777777777777777777777777777775

(3.14)

Besides the state (3.8), the measurement equation is also required:

y D Cx (3.15)

The measurement vector y is determined by the available sensors. In the later
section, controllability and observability of the resultant system ((3.8) and
(3.15)) need to be determined by calculating M D .B AB A2B ::: An�1B/ and
OD .C CA CA2 ::: CAn�1/ , where n is the number of states.

Case Study for Longitudinal Motion of Helicopter at Hover

In this section, the mathematical model of a single helicopter in hover is linearized.
The following Table 3.2 provides the symbols and subscripts to be used.

A helicopter model at hover, where only the longitudinal motion is considered,
can be modeled in state space form as

Px D f .x; u/ D A.x; u/x C B.x; u/u

y D Cx (3.16)
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Table 3.2 Symbols and
subscripts of helicopter
model in hover

Symbols Meanings

x1; x3 Forward, vertical displacement
x2; x4 Forward, vertical velocity
�; q Pitch angle and pitch rate
Bl Longitudinal cyclic angle
�o Collective pitch angle
wc Weight coefficient
x; z Aerodynamic force derivatives
m Aerodynamic pitch moment derivative

Subscripts Meanings
u Aerodynamic derivative due to forward velocity
w Aerodynamic derivative due to vertical velocity
q Aerodynamic derivative due to pitch rate
Bl Aerodynamic derivative due to longitudinal cyclic angle
�o Aerodynamic derivative due to pitch angle

where x D Œx1; x2; x3; x4; �; q�
T, u D ŒBl; �o�

T, y D Œ�; x4�
T and the state matrices

A, B and C are

A D

2
66666664

0 1 0 0 0 0

0 xu 0 xw �wc xq
0 0 0 1 0 0

0 zu 0 zw 0 zq
0 0 0 0 0 1

0 mu 0 mw 0 mq

3
77777775

B D

2
66666664

0 0

xBl x�o
0 0

zBl z�o
0 0

mBl m�o

3
77777775

C D
�
0 0 0 0 1 0

0 0 0 1 0 0

�

In particular, the aerodynamic parameters are calculated according to [9] as

xu D �2:1268�2o C 0:0353�o � 0:004
xw D �.� � Bl/.5:609�

2
o � 2:797�o � 0:0621/

xq D 2:0074�o � 0:0141
x�o D �.� � Bl/.4:3428�

2
o � 2:4937�o � 0:0354/

xBl D 0:08185�o � 0:0035
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zu D 0

zw D 5:609�2o � 2:797�o � 0:0621

zq D 0

z�o D 4:3428�2o � 2:4937�o � 0:0354
zBl D 0

mu D 233:3:64�2o C 24:7213�o C 0:4129

mw D Bl.606:7919�
2
o � 302:58�o � 6:7138/

mq D �4:5622�o � 0:06324

m�o D Bl.469:8083�
2
o � 269:7760�o � 3:835/

mBl D �88:5473�o � 11:4745

wc D �0:0856

The linearization of the mathematical model in (3.16) may be done by expanding
the nonlinear function into a Taylor series about the operating point and neglecting
the higher order terms of the expansion [74]. Considering (3.16), the equilibrium
point of the system may be found by solving

f .x; u/ D 0 (3.17)

The equilibrium points are found to be at .x0; u0/ D .0; 0/. This is followed by doing
a Taylor series expansion of (3.16) about the equilibrium point, which results in

Px D f .x; u/

D f .x0; u0/C
�
@f

@x1
.x1 � x01/C @f

@x2
.x2 � x02/C � � � C @f

@x6
.x6 � x06/

C @f

@u1
.u1 � u01/C @f

@u2
.u2 � u02/

�

C 1

2Š

�
@2f

@x21
.x1 � x01/

2 C @2f

@x22
.x2 � x02/2 C � � � C @2f

@u22
.u2 � u02/

2

�
C � � �

(3.18)

The partial derivatives are evaluated at the operating point, and neglecting the higher
order derivatives yield
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Px � f .x0; u0/ D
�
@f

@x1
.x1 � x01/C @f

@x2
.x2 � x02/C � � � C @f

@x6
.x6 � x06/

C @f

@u1
.u1 � u01/C @f

@u2
.u2 � u02/

�

It is noted that the matrix C in (3.16) is already constant and it therefore does
not need to be linearized. The resulting linearized state space representation of the
system is given by

Px D Ax C Bu

y D Cx (3.19)

where A and B are constant matrices defined as

A D

2
664

@f1
@x1

:::
@f1
@x6

:::
: : :

:::
@f6
@x1

:::
@f6
@x6

3
775 D

2
66666664

0 1 0 0 0 0

0 �0:004 0 0 �0:856 �0:0141
0 0 0 1 0 0

0 0 0 �0:0621 0 0

0 0 0 0 0 1

0 0:4129 0 0 0 �0:0632

3
77777775

B D

2
664

@f1
@u1

@f1
@u2

:::
:::

@f6
@u1

@f6
@u2

3
775 D

2
66666664

0 0

�0:0035 0

0 0

0 �0:0354
0 0

�11:4745 0

3
77777775

Following the linearization of the system, the controllability and observability
matrices of the resulting system are given by M D .B AB A2B ::: A5B/ and
O D .C CA CA2 ::: CA5/T are calculated using MATLAB. Both the matrices
are found to have full rank of 6. This implies that the linearized system is both
controllable and observable.

3.4 Description of Stability and Control Derivatives

In this section, a detailed illustration is provided on key stability and control deriva-
tives. This description focuses on contributing sources, physical interpretation, and
typical signs of these derivatives. Part of the description is a variation from [81].

• Xu: this term represents drag damping, contributed mainly from fuselage parasite
drag and main rotor H-force. By definition, the sign of Xu is negative and the
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magnitude grows larger as speed increases. As XFU Š � 1
2
�U 2

0 Sref, where Sref is
the equivalent flat plate drag area, it follows that:

Xu

m
Š 1

m

@XFU

@u
D ��U0Sref

m
(3.20)

• Zw: heave damping. At hover, the value of Zw determines the time constant of
vertical response.

• Mu: speed stability. At hover, the rotor flaps back in response to a head wind
disturbance. As the resultant nose-up moment is in the direction opposing the
disturbance, the rotary-wing vehicle is statically stable with Mu being positive.
However, an excessive value of Mu may lead to unstable phugoid response
and is sensitive to gust. In forward flight, the rotor has a similar contribution
while the horizontal stabilizer (if mounted) may have a significant effect to Mu

depending on the location of the stabilizer. If the horizontal stabilizer is mounted
directly under the main rotor and experiences download from rotor downwash,
it enhances Mu. If the horizontal stabilizer experiences upload during flight, the
effect is destabilizing.

• Mw: angle of attack stability. At hover, the value of Mw is close to zero. In
forward flight, a positive increase of angle of attack leads to backward tilting of
the rotor, creating a nose-up moment to further increase the angle of attack. Thus,
the contribution from the rotor toMw is destabilizing with its corresponding value
taking positive sign. A horizontal stabilizer (whether it experiences download or
upload) contributes a stabilizing effect, which is the main reason to justify its
existence in a pure helicopter configuration. In addition, a forward C.G. location
(ahead of rotor shaft) will contribute a stabilizing moment.

• Mq: pitch damping. For a rotor with counter clockwise rotation, a positive change
in the pitch rate results in a negative roll due to gyroscopic moment. This in turn
causes a flap-down for the blade over the nose and a flap-up for the blade over the
tail. The resultant nose-down moment opposes the original pitch rate variation,
thus the damping effect. In fact, the above explanation can be referred to (2.16):

ˇ1c D � 16

�˝
qH (3.21)

Another interesting interpretation of the above equation is that when the fuselage
is tilting at a constant pitch rate qH, the time lag between the fuselage and the
rotor is 16

�˝
s.

• Lv: Dihedral effect. Lv is the lateral counterpart of Mu. For a right sideslip,
the rotor responds with a left roll. A positive dihedral effect thus takes a
negative value. The contributions from both tail rotor and vertical tail depend
on their relative location above or below C.G. When above C.G., the effect is
stabilizing and vice versa. Similar to Mu, an excessively large value of Lv may
not be preferable. In some helicopter configurations, the vertical tail is placed
underneath the tail boom in order to have a moderate value of Lv.
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• Lp : roll damping. Lp is the lateral counterpart of Mq . Again, from (2.16), it
follows that:

ˇ1s D � 16

�˝
pH (3.22)

• Nv: weathercock stability. The main contributions to Nv are from the tail rotor
and vertical tail. Both are stabilizing with Nv taking a positive value.

• Mp and Lq : cross-coupling due to roll/pitch rates. Once again, (2.16) can be
used:

ˇ1s D �qH

˝
(3.23)

ˇ1c D pH

˝
(3.24)

Thus, Mp takes a positive value while Lq is negative.
• Z�c , M�1s , L�1c , and N�ctr : collective/pitch/roll/yaw control power.

In the subsequent sections, three examples will be provided on linearized
dynamics for the rotary-wing aircraft. The first two examples deal with two different
hobby helicopters (Yamaha R50 and Copterwork AF25B) at two different flight
conditions (hover and forward flight). The last example illustrates a combined
system consisting of a helicopter and an underslung load.

3.5 Yamaha R50 Helicopter at Hover

Consider the longitudinal linearized model of the Yamaha R50 helicopter [54] at
hover:

2
664

Pu
Pw
Pq
P�

3
775 D

2
664

�0:0553 0:0039 1:413 �32:1731
�0:0027 �0:5727 �0:0236 � 0:2358

0:2373 0:002 �6:9424 0

0 0 1 0

3
775

2
664

u
w
q

�

3
775

C

2
664

11:2579 0

0:0698 �0:199
�38:6267 0

0 0

3
775
�
ı

ı˝

�
(3.25)

where ı is longitudinal cyclic control and ı˝ denotes the main rotor RPM variation.
It is interesting to compare the state matrix in (3.25) andAlong in (3.10). Although

trim roll and pitch attitudes are not provided in [54], their values can be assumed
to be small. Therefore, the two gravitational terms, �g cos �0 and �g cos�0 sin �0,
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Fig. 3.1 Eigenvalue plot for Yamaha R50 helicopter at hover

take estimated values of �32:2 f t=s2 and 0 f t=s2, respectively. By the same
token, the kinematic term cos�0 is close to 1. Moreover, some terms are weak
at hover, including Xu, Xw, Zu, Zq , and Mw. The term Xq is drag due to pitch
rate with the main contribution from main rotor. Following a positive change in
pitch rate, the main rotor with a counter-clockwise rotation has a tendency of left
roll due to gyroscopic moment, which results in a forward tilting of the rotor disk.
Thus, the sign of Xq should be positive. In fact, this process is how the opposing
pitch-down moment is generated for the pitch damping Mq . Due to hingeless rotor
configuration for the R50 helicopter, the value of Mq is fairly large if compared to
normal articulated or even teetering rotor configurations. The magnitude of Mq can
also take the contribution from the fly bar. The positive sign ofMu has already been
discussed in the last section. Thus, the state matrix in (3.25) appears to be reasonable
from the above sanity check.

From the given linearized dynamics in (3.25), a distribution of eigenvalues can
be obtained (see Fig. 3.1). An approximation can be made by further assuming
that the heave dynamics are independent from the remaining dynamics. From the
figure, it can be seen that the differences in eigenvalues from both approximated
dynamics and full dynamics are indiscernible. This is not surprising as the rotor is
aerodynamically symmetric at hover condition. It also shows that the heave mode
at hover can be characterized as a first-order dynamic system with time constant
at 1.75 s.



3.5 Yamaha R50 Helicopter at Hover 53

Apart from heave mode, the remaining eigenvalues include one pair of complex
conjugates, often known as the phugoid mode, and one at real axis, known as the
pitch mode. While the pitch mode is stable and aperiodic, the phugoid mode here is
mildly unstable and oscillatory.

Going back to matrix Along, it reduces to the following form when taking out the
heave dynamics [81]:

Along;reduced D

2
666664

Xu
m

Xq
m

�g
Mu
Iyy

Mq

Iyy
0

0 1 0

3
777775

(3.26)

The corresponding characteristic equation is

s3 �
�
Xu

m
C Mq

Iyy

�
s2 C

�
Xu

m

Mq

Iyy
� Mu

Iyy

Xq

m

�
s C Mu

Iyy
g D 0 (3.27)

When Mu D 0, the resulting characteristic equation will have three roots on the
real axis: 0, Xu=m, and Mq=Iyy . When the value of Mu=Iyy is increased from 0 to
0:2373, it can be found that the root close to Mq=Iyy hardly moves, while the root
locus corresponding to 0 and Xu=m first merges together on the real axis before
becoming a complex pair and moving towards the right half of the plane. The result
is shown in Fig. 3.2.

Figure 3.2 indicates that the eigenvalue associated with the pitch mode is mainly
determined byMq , and an increase in value ofMu may result in an unstable phugoid
mode.

It is also interesting to discuss the effect ofMq . The results fromMq variation can
be seen in Fig. 3.3. There are three values of Mq: original value, half of the original
value, and double of the original value. From the figure, it is clear that increasing
pitch damping is beneficial to the system stability.

As a side note, the lateral linearized dynamics is a mirror image of longitudinal
counterpart due to the main rotor’s aerodynamic symmetry at hover. Similar to
longitudinal dynamics, there are three modes in lateral dynamics: yaw mode, roll
mode, and dutch roll model. The correspondence between the two dynamics are:
heave mode vs. yaw mode, pitch mode vs. roll mode, and phugoid mode vs. dutch
roll mode.
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3.6 Copterworks AF25B Helicopter in Forward Flight

Due to aerodynamic asymmetry on the main rotor in forward flight and dynamic
coupling from the flapping blades and constantly spinning rotor, longitudinal and
lateral dynamics may not always be sufficiently decoupled. This is added complexity
when compared to the analysis of fixed-wing aircraft.

In this section, a coupled linearized model for a Copterworks AF25B radio
control helicopter is analyzed (see Fig. 3.4). The condition is straight level flight
at 40 knots. The gross weight of the helicopter is 30 kg. Trimmed roll and pitch
attitudes are 1:43ı and �10:2ı, respectively. Velocities along the body x-axis and
z-axis are U0 D 66:4915 and W0 D �11:9628. The linearized model is shown
in (3.28):

A D

2
666666666664

�0:1634 0:0676 14:1039 �31:6911
�0:0792 �0:9827 73:9560 5:6832

0:0208 0:1940 �24:1599 �0:0014
0 0 0:9997 0

�0:0014 �0:0046 �1:6321 0:1414

0:3740 0:2245 �106:5635 0:0010

0:0272 0:0304 �0:2059 0

0 0 �0:0045 �0:0001
�0:0029 �1:8475 �1:4723 0:0003

0:0314 2:4586 �0:4810 �0:7882
0:1118 41:7746 �0:0236 �0:0127
0 0 �0:0249 0:0001

�0:0804 �14:0134 �66:2104 31:6828
�0:3005 �67:5186 �0:1599 0:0049

0:1869 0:6160 �0:8763 0

0 1:0000 �0:1793 �0:0001

3
777777777775

(3.28)

Once again, a sanity check of the state matrix is in order. In the follow-up
discussion, entry (n,m) stands for nth row andmth column.

1. Entry (1,1): drag damping Xu. In the nonlinear modeling, equivalent flat-plate
drag area is assumed to be 2f t2. Based on (3.20), Xu is estimated at �0:1577,
a value close to �0:1634 from the linearization.

2. Entry (1,3): Xq �W0. This term is dominated by vertical speed along the body
z-axis �W0.

3. Entries (1,4), (2,4), (2,8), (5,4), (5,8): gravitational terms. The calculated
values based on corresponding entries in (3.8) are �31:6843, 5:6999, �0:7908,
0:1423, and 31:6813, sufficiently close to corresponding entries in the state
matrix.



56 3 Stability Analysis for Rotary-Wing Aircraft

Fig. 3.4 AF25B radio control helicopter from Copterworks(Courtesy of Copterworks Inc.)

4. Entry (2,2): heave damping Zw. At hover, Zw D �0:4 for AF25B. The
magnitude of Zw tends to increase with higher speed [78].

5. Entry (2,3):Zq CU0. This term is dominated by forward speed along the body
x-axis U0.

6. Entry (3,1): speed stability Mu. In reference to Mu for Lynx helicopter (see
Fig. 4.15 of [78]), the value of Mu is reduced with the increase of speed from
hover to moderate speed. The value of Mu is 0:0825 at hover for the AF25B,
decreasing to 0:0208 at 40 knots. This comparison is reasonable since both the
AF25B and the Lynx have hingeless rotor configurations.

7. Entry (3,2): angle of attack stability Mw. The positive value here indicates
the destabilizing effect of Mw. This is because the AF25B has no horizontal
stabilizer to produce opposing pitching moment from a variation of vertical
velocity.

8. Entries (3,3) and (6,6): pitch damping termMq and roll damping termLp . Both
values are negative. Compared to the value in entry (3,3), the one in entry (6,6)
is almost three times larger. This is due to roll moment of inertia Ix which is
three times less than the pitch moment of inertia Iy .

9. Entries (3,6) and (6,3): cross-coupling Mp and Lq . The signs are positive for
Mp and negative for Lq , which conform to the analysis in Sect. 3.4.

10. Entries (4,3), (4,7), (8,3), (8,7): kinematic terms. The calculated values based
on corresponding entries in (3.8) are 0:9997, �0:0250, �0:0045, and �0:1799,
which are in good agreement with corresponding entries in the state matrix.

11. Entry (6,5): dihedral effect Lv. Here, the negative value has a stabilizing effect,
which mainly comes from the main rotor. However, it should be noted that the
effect from the vertical fin is destabilizing as the fin is mounted below the C.G..

12. Entry (7,5): weathercock effect Nv. As expected, the value of Nv in the state
matrix is positive with main contributions from the tail rotor and vertical fin.
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Following the sanity check on the state matrix, the corresponding eigenvalues
are plotted in Fig. 3.5. Far away to the imaginary axis in the left half of the
complex plane is the roll/pitch oscillation mode. Mainly due to the hingeless rotor
configuration and its associated large hub moment, the dynamics of this mode are
rapid. Other modes are all close to the imaginary axis and stable, including heave,
spiral, dutch roll, and phugoid modes. In particular, the phugoid mode is the closest
to the imaginary axis, indicating minimum stability margin. An improvement onMw

is preferable (see Fig. 3.6), with the corresponding means ranging from the addition
of horizontal stabilizer to forward C.G. (ahead of rotor thrust vector).
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3.7 Conclusion

Stability analysis for the rotary-wing aircraft starts with trim to establish steady state
condition, progresses with linearization to obtain linearized model with respect to
the established trim condition, and centers on static and dynamic stability studies.
Static stability provides clues on the system’s initial response, while dynamic
stability looks at the system behavior in the long term.

The importance of stability analysis cannot be over-estimated as it provides
insights to the system characteristics and is itself the basis of flight control system
design. In the subsequent chapters, several advanced control schemes will be offered
for helicopter systems.



Chapter 4
Altitude Control of Helicopters with Unknown
Dynamics

4.1 Introduction

The linearized models of Chap. 3 are useful not only for stability analysis, but also
for control design, by gain scheduling the models at different operating points.
This traditional technique has been successfully implemented in a wide variety of
applications. However, it requires extensive modeling, which is costly and time-
consuming, and the models are highly specific to a particular helicopter system.
There is a need for controllers that can operate with minimal model information,
handle nonlinearities over the entire flight regime, and are portable across different
helicopter systems. In this chapter, we address this need by presenting a robust
adaptive neural network (NN) control for helicopters.

Helicopter control design is challenging because helicopters are inherently
unstable without closed loop control, differing from many classes of mechanical
systems that are naturally passive or dissipative. Unrestrained helicopter motion is
governed by underactuated configuration, i.e., the number of control inputs is less
than the number of degrees of freedom to be stabilized, which makes it difficult to
apply the conventional robotics approach for controlling Euler–Lagrange systems.
In addition, helicopter dynamics are highly nonlinear and strongly coupled, such
that disturbances along a single degree of freedom can easily propagate to the other
degrees of freedom and lead to loss of performance or even destabilization.

Increasing effort has been made towards control design that guarantees stability
for helicopter systems. Apart from the above-mentioned traditional linear control,
many nonlinear techniques have been proposed, ranging from feedback linearization
to model reference adaptive control and dynamic inversion. Dynamic sliding mode
control was proposed for helicopter vertical regulation in [93]. Output tracking
with nonhyperbolic and near nonhyperbolic internal dynamics in helicopter hover
control was discussed in [19]. In [55], approximate input–output linearization was
employed to obtain a dynamically linearizable helicopter system without zero
dynamics, and output tracking was achieved. In [16], a high-bandwidth H1
loop shaping control was designed and tested for a robotic helicopter. Internal

B. Ren et al., Modeling, Control and Coordination of Helicopter Systems,
DOI 10.1007/978-1-4614-1563-3 4, © Springer Science+Business Media, LLC 2012
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model-based control was applied to the nonlinear motion control of a helicopter
in [41]. In [104], model-based control was applied to the altitude and yaw angle
tracking of a Lagrangian helicopter model.

Since helicopter control applications are characterized by unknown aerodynam-
ical disturbances, they are generally difficult to model accurately. The presence of
modeling errors, in the form of parametric and functional uncertainties, unmodeled
dynamics, and disturbances from the environment, is a common problem. In this
context, model-based control, such as the aforementioned schemes, tend to be
susceptible to uncertainties and disturbances that cause performance degradation.
How to handle model uncertainties and disturbances is one of the important issues
in the control of helicopters.

Owing to the universal approximation capabilities, learning and adaptation, and
parallel distributed structures of NNs, the feasibility of applying NNs to model
unknown functions in dynamic systems has been demonstrated in several studies
[23, 30, 32, 60, 61, 73]. As such, several flight control approaches using NNs have
been proposed. Among of them, approximate dynamic inversion with augmented
neural networks was proposed to handle unmodeled dynamics in [38, 53, 87],
while neural dynamic programming was shown to be effective for tracking and
trimming control of helicopters in [21]. During the adaptive trajectory control
of an autonomous helicopter in [43] and [51], the method of pseudocontrol
hedging (PCH) was used to protect the adaptation process from actuator limits and
dynamics.

In this chapter, we propose an adaptive NN control for helicopters in vertical
flight, which can be represented by single-input-single-output (SISO) models to
yield useful results, because the coupling between longitudinal and lateral- direc-
tional equations in this flight regime is weak [10]. While the proposed controller
handles vertical flight, other flight regimes can be handled by other control modules.
Motivated by results in the NN control of nonlinear systems [30], we utilize
Lyapunov-based techniques to design a robust adaptive NN control for helicopters
with guaranteed stability. Although a nonaffine system can be rendered affine by
adding an integrator to the control input, thus allowing many control methods
for affine nonlinear system to be used, the disadvantage of this approach is that
the dimension of the system is increased, and control efforts are not direct and
immediate either [30]. Subsequently, effective control for the system may not be
achieved. In this chapter, we focus on control design for the nonaffine system
directly, without adding any integrators to the input.

Differing from the approaches in [38, 54], which were based on approximate
dynamic inversion with augmented NNs, we utilize the Mean Value Theorem
and the Implicit Function Theorem as mathematical tools to handle the nonaffine
nonlinearities in the helicopter dynamics, based on the pioneering work of [31].
While the NNs in [38, 54] compensate for inaccuracy of the inversion model, those
in our proposed scheme approximate the ideal feedback control law directly. In
cases where reasonably accurate knowledge of the dynamic inversion model is
available, the method of [38, 54] has been shown to provide an effective solution
to the problem. However, the construction of the dynamic inversion for a nonaffine
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system may not be an easy task in general. For such cases, our approach offers a
feasible means of tackling the problem, since a priori knowledge of the inversion is
not required.

4.2 Problem Formulation and Preliminaries

Consider the class of SISO helicopter systems described by the following differen-
tial equations nonaffine in the control:

Px D f .x; u/

y D h.x/ (4.1)

where x 2 Rn are the states of the system; u; y 2 R denote the input and output
respectively; and f W Rn �R ! Rn is an unknown function.

The control objective is output tracking of a desired reference trajectory such
that the tracking error converges to a neighborhood of zero, i.e., jy.t/� yd .t/j � ı,
where ı > 0. At the same time, all closed loop signals are to be kept bounded. The
reference trajectory yd .t/ is generated by the following reference model:

P�di D �diC1; 1 � i � � � 1;
P�d� D fd .�d /;

yd D �d1; (4.2)

where � � 2 is a constant index; �d D Œ�d1; �d2; : : : ; �d��
T 2 R� are the states of

the reference system; yd 2 R is the system output; and fd W R� ! R is a known
function.

Assumption 4.1. The reference trajectory yd .t/ and its � derivatives remain
bounded, i.e., �d 2 ˝d � R�, 8t � 0, where � is the relative degree of (4.1).

Remark 4.1. The SISO representation considered in this chapter is valid for simple
operations involving the regulation or tracking of single degree of freedom, such as
altitude tracking or pitch regulation, among others.

Remark 4.2. System (4.1) is a general description of the nonlinear helicopter
dynamics, for which the control input is not necessarily affine. This is a realistic
representation for helicopters, due to the fact that the inputs are not torques or forces,
which would yield an affine representation. Rather, the inputs are position variables
implicit in aerodynamical forces or torques, resulting in a nonaffine form. Due to the
lack of mathematical tools, the control design for such systems is very challenging.
Note that control-affine nonlinear systems as well as linear systems are special cases
of (4.1). As such, by designing a controller for (4.1), we cover the other systems as
well.
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Assumption 4.2. System (4.1) is input–output linearizable with strong relative
degree � < n.

Define �j .x/ D L
j�1
f h for j D 1; :::; �, whereLf h denotes the Lie derivative of

the function h.x/ with respect to the vector field f .x; u/. Due to Assumption 4.2, it
was shown in [39] that there exist other n� � functions ��C1; :::; �n independent of
u, such that the mapping ˚.x/ D Œ�1.x/; �2.x/; :::; �n.x/�

T has a Jacobian matrix
which is nonsingular for all x 2 ˝x. Therefore, ˚.x/ is a diffeomorphism on ˝x .
By setting � D Œ�1.x/; �2.x/; :::; ��.x/�

T and � D Œ��C1.x/; ��C2.x/; :::; �n.x/�T,
system (4.1) can be expressed in the normal form :

P� D q.�; �/

P�j D �jC1; j D 1; :::; � � 1

P�� D b.�; �; u/

y D �1 (4.3)

where b.�; �; u/ D L
j�1
f h; q.�; �/ D ŒLf ��C1.x/; Lf ��C2.x/; :::; Lf �n.x/�T;

x D ˚�1.�; n/, for .�; �; u/ 2 NU WD f.�; �; u/j.�; �/ 2 ˚.˝x/I u 2 ˝ug.

Assumption 4.3. The zero dynamics of system (4.3), given by P� D q.0; �/ are
exponentially stable. In addition, the function q.�; �/ is Lipschitz in �, i.e.,

kq.�; �/ � q.0; �/k � a�k�k C aq; 8.�; �/ 2 ˚.˝x/ (4.4)

Under Assumption 4.3, by the converse Lyapunov theorem, there exists a
Lyapunov function V0.�/ which satisfies the following inequalities:

�1k�k2 � V0.�/ � �2k�k2 (4.5)

@V0

@�
q.0; �/ � �	ak�k2 (4.6)

����
@V0

@�

���� � 	bk�k (4.7)

where �1, �2, 	a, and 	b are positive constants.
For ease of notation, define g.x; u/ WD @b.�;�;u/

@u . The following two assumptions
specify some conditions on the unknown function g.x; u/.

Assumption 4.4. There exist smooth functions Ng.�; �/ and a positive constant
g >0, such that Ng.�; �/ � jg.�; �; u/j � g > 0 holds for all .�; �; u/ 2 NU . Without
loss of generality, it is further assumed that the sign of g.�; �; u/ is positive for all
.�; �; u/ 2 NU .

Assumption 4.5. There exist a positive function g0.�; �/ such that j Pg.�; �; u/j �
2g.�; �; u/g0.�; �/, 8.�; �; u/ 2 NU .
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Remark 4.3. Assumption 4.4 implies that partial derivative g.�; �; u/ has a fixed
sign. In addition, it means that the Taylor series linearization is controllable so one
could always linearize and design a linear controller, if possible. This assumption is
standard and necessary as otherwise, the system is not controllable.

Based on Assumption 4.4, the following lemma is given to assert the existence of
an implicit desired function, which will be used in the design of the NN controller.

Lemma 4.4 (Implicit Function Theorem). [33] For a continuously differentiable
function b.�; �; u/ W Rn � R ! R satisfying Assumption 4.4, there exists a
continuous (smooth) function u� D u.�; �/ such that b.�; �; u�/ D 0.

Lemma 4.5 (Mean Value Theorem). [1] Assume that f .x; y/ W Rn �R ! R has
a derivative (finite or infinite) at each point of an open set Rn � .a; b/, and assume
also that it is continuous at both endpoints y D a and y D b. Then there is a point
� 2 .a; b/ such that f .x; b/ � f .x; a/ D f

0

.x; �/.b � a/.
Remark 4.6. It should be emphasized that the Mean Value Theorem gives an
equality condition and is different from Taylor series expansion, which only gives
an approximation when the higher order terms are truncated.

Remark 4.7. The combination of the Implicit Function Theorem, the Mean Value
Theorem, and NNs is instrumental to solving the control problem for generalized
nonaffine helicopter systems described by (4.1). While the Implicit Function
Theorem asserts the existence of a desired control, it does not provide any means of
constructing it. NNs are thus employed for this purpose. On the other hand, the Mean
Value Theorem expresses the nonaffine function into a form where the actual and
desired inputs are linearly matched, facilitating the design of adaptive NN control
via certainty equivalence and Lyapunov-based techniques. These will be elaborated
in detail in the subsequent developments.

Lastly, we present the following definition and Lemma, which are important for
stability and performance analysis.

Definition 4.8. The solution of (4.1) is Semi-Globally Uniformly Ultimately
Bounded (SGUUB) if, for any compact set ˝0, there exists an S > 0 and
T .S;X.t0// such that kX.t/k � S for all X.t0/ 2 ˝0 and t � t0 C T .

Lemma 4.9. [34] Suppose that there exists a C1 continuous and positive definite
Lyapunov function V.x/ satisfying

�1.kxk/ � V.x/ � �2.kxk/; (4.8)

such that

PV .x/ � �c1V .x/C c2; (4.9)

where �1; �2 W Rn ! R are class K1 functions and c1, c2 are positive constants,
then the solution x.t/ is SGUUB.
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4.3 Function Approximation with Neural Networks

Due to the existence of model uncertainties in practice, we introduce a NN here
to approximate and compensate for them using the good function approximation
capability of NN. In particular, two types of NN will be discussed, i.e., the radial
basis function neural network (RBFNN), which is linearly parameterized; and the
multilayer neural network (MNN), which is nonlinearly parameterized.

4.3.1 Function Approximation with RBFNN

The RBFNN can be used to approximate the continuous function f .Z/ W Rm ! R

as follows:

f .Z/ D W TS.Z/C ".Z/ (4.10)

where the input vector Z 2 ˝Z � Rm; weight vector W D Œw1;w2; :::;wl �T 2 Rl ,
the NNs node number l > 1; S.Z/ D Œs1.Z/; :::; sl .Z/�

T, with si .Z/ being chosen
as the commonly used Gaussian functions, which have the form:

si .Z/ D exp

��.Z � �i/
T.Z � �i /
�2i

�
; i D 1; 2; :::; l

where�i D Œ�i1; �i2; :::; �im�
T is the center of the receptive field and �i is the width

of the Gaussian function; and ".Z/ is the approximation error which is bounded
over the compact set ˝Z , i.e., j".Z/j � N", 8Z 2 ˝Z where N" > 0 is an unknown
constant.

It has been proven that RBFNN (4.10) can approximate any continuous function
f .Z/ over a compact set ˝Z � Rm to arbitrarily any degree of accuracy as

f .Z/ D W �TS.Z/C "�.Z/; 8Z 2 ˝Z � Rm (4.11)

where W � is ideal constant weights, and "�.Z/ is the approximation error for the
special case whereW D W �.

Assumption 4.6. On the compact set˝Z , the ideal NN weightsW � is bounded by

kW �k � wm (4.12)
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The ideal weight vector W � is defined as the value of W that minimizes j".Z/j
for all Z 2 ˝Z � Rm:

W � D arg min
W

f sup
Z2˝Z

jf .Z/ �W TS.Z/jg

In general, the ideal weights W � are unknown and need to be estimated in control
design. Let OW be the estimates of W �, and the weight estimation errors QW D
OW �W �.

4.3.2 Function Approximation with MNN

The other popular type of NN, nonlinearly parameterized MNN, is used to approxi-
mated the continuous function f .Z/ W Rm ! R as follows:

f .Z/ D W TS.V TZ/C ".Z/

where the vector Z D Œz1; z2; :::; zm; 1�T 2 ˝Z � RmC1 are the input variables to
the NNs; S.�/ 2 Rl is a vector of known continuous basis functions, with l denoting
the number of neural nodes;W 2 Rl and V 2 R.mC1/�l are adaptable weights; and
".Z/ is the approximation error which is bounded over the compact set ˝Z , i.e.,
j".Z/j � N", 8Z 2 ˝Z where N" > 0 is an unknown constant.

According to the universal approximation property [27], MNNs can smoothly
approximate any continuous function f .Z/ over a compact set ˝Z � RmC1 to
arbitrarily any degree of accuracy as that

f .Z/ D W �TS.V �TZ/C "�.Z/; 8Z 2 ˝Z � RmC1

where W � and V � are the ideal constant weights, and "�.Z/ is the approximation
error for the special case where W D W � and V D V �. The ideal weightsW � and
V � are defined as the values of W and V that minimize j".Z/j for all Z 2 ˝Z �
RmC1, i.e.,

.W �; V �/ WD arg min
.W;V /

f sup
Z2˝Z

jf .Z/ �W TS.V TZ/jg

Assumption 4.7. On the compact set ˝Z , the ideal NN weights W �, V � are
bounded by

kW �k � wm; kV �kF � vm
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In general, the ideal weights W � and V � are unknown and need to be estimated in
control design. Let OW and OV be the estimates of W � and V �, respectively, and the
weight estimation errors QW D OW �W � and QV D OV � V �.

Lemma 4.10. [30] Using fmnn D OW TS. OV TZ/ to approximate the ideal function
f .Z/, its approximation error can be expressed as

OW TS. OV TZ/�W �TS.V �TZ/ D QW T. OS � OS 0 OV TZ/C OW T OS 0 QV TZ C du

where OS D S. OV TZ/, OS 0 D diag fOs0
1; Os0

2; :::; Os0
l g with

Os0
i D s0.OvT

i Z/ D dŒs.za/�

dza
jzaDOvT

i Z

and the residual term du is bounded by

jduj � kV �kF kZ OW T OS 0kF C kW �kk OS 0 OV TZk C jW �j1
Throughout this chapter, we employ sigmoidal functions as basis functions for

the MNN, which are defined by

si .za/ D 1

1C e��za
; i D 1; 2; :::; l (4.13)

where � > 0 is a design constant.

4.4 Adaptive NN Control Design

We employ backstepping for the � subsystem, and then make use of the exponential
stability of the zero dynamics to show that the overall closed-loop system is stable
and that output tracking is achieved. The control design is performed first for the full
state case and subsequently for the output feedback case with high gain observers.

4.4.1 Full State Feedback Control

Step 1: Let z1.t/ D �1.t/�yd .t/ and z2.t/ D �2.t/�˛1.t/, where ˛1.t/ is a virtual
control function to be determined. Define quadratic function V1 D 1

2
z21. Choosing

the virtual control ˛1 as

˛1 D �k1z1 C Pyd ; (4.14)
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we can show that

PV1 D �k1z21 C z1z2; (4.15)

where the term z1z2 will be canceled in the subsequent step.

Step i .i D 2; :::; � � 1/: Let zi .t/ D �i .t/ � ˛i�1.t/, where N�i WD Œ�1; :::; �i �
T

and ˛i .t/ is a virtual control function to be determined. Define quadratic function
Vi D Vi�1 C 1

2
z2i . Choose the virtual control ˛i as

˛i D �ki zi � zi�1 C P̨ i�1; (4.16)

where the derivative can be written as

P̨ i�1 D @˛i�1
@ N�

PN� C
i�1X
kD0

@˛i�1
@y

.k/

d

y
.kC1/
d : (4.17)

It can be shown that

PVi D �
iX

jD1
kj z2j C zi ziC1; (4.18)

where the term zi ziC1 will be canceled in the subsequent step.

Step �: This is the final step where the actual control law u will be designed.
From Assumption 2, we know that g.�; �; u/ � d > 0 for all .�; �; u/ 2 RnC1.

Define � as

� D � P̨��1 C g0.�; �/z�; (4.19)

where kn > 0 is a constant. It is clear that � is a function of �, �, yd , y.1/d ,..., y.�/d .
Considering the fact that @�

@u D 0, the following inequality holds

@Œb.�; �; u/C ��

@u
� d > 0: (4.20)

According to Lemma 1, for every value of �, � and �, there exists a smooth ideal
control input u 2 R such that

b.�; �; u�/C � D 0; (4.21)

Using the Mean Value Theorem in Lemma 4.5, there exists .0 < 	 < 1/ such
that

b.�; �; u/ D b.�; �; u�/C g	.u � u�/; (4.22)
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where g	 WD g.�; �; u	/. Combining (4.19)–(4.22) yields

Pz� D �g0.�; �/z� C g	.u � u�/: (4.23)

We employ a robust MNN controller of the form:

u D unn C ub; (4.24)

where

unn D OW TS. OV TZ/; (4.25)

ub D �k�z� � z��1 � kb

����Z OW T OS 0

���
2

F
C
��� OS 0 OV TZ

���
2
�

z�: (4.26)

The component unn is an MNN that approximates u�.�; �/, which can be ex-
pressed as

u� D W �T
S.V �TZ/C "; (4.27)

where Z D Œ�; �; z�; P̨��1�T 2 ˝ � RnC2; W � denotes the vector of ideal constant
weights, and j"j � N" is the approximation error with constant N" > 0. As detailed in
[30], the component ub ensures robustness to the approximation error of the MNN.

Consider the Lyapunov function candidate

V� D V��1 C 1

2g	
z2� C 1

2
QW T� �1

W
QW C 1

2
tr
˚ QV T� �1

V
QV �; (4.28)

where QW WD OW �W � and QV WD OV � V �. The derivative of V� is

PV� D �
��1X
jD1

kj z2j C z��1z� C z�Pz�
g	

� Pg	z2�
2g2	

C QW T� �1
W

POW C tr
n QV T� �1

V
POV
o

D �
��1X
jD1

kj z2j C z��1z� � g0

g	
z2� � Pg	

2g2	
z2� C z�.u � u� � "/C QW T� �1

W
POW

Ctr
n QV T� �1

V
POV
o

D �
��1X
jD1

kj z2j C z��1z� �
�
g0 C Pg	

2g	

�
z2�
g	

C QW T
h
. OS � OS 0 OV TZ/z�

C� �1
W

POW
i

C tr
n QV TŒZ OW T OS 0

z�g C � �1
V

POV �
o

C z�.du C ub/

�z�" (4.29)
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Consider the following adaptation laws

POW D ��W
h
. OS � OS 0 OV TZ/z� C �W OW

i
(4.30)

POV D ��V
h
Z OW T OS 0

z� C �V OV
i

(4.31)

where �W D � T
W > 0, �V D � T

V > 0, �W > 0 and �V > 0 are constant design
parameters. Then, substituting (4.26), (4.30), and (4.31) into (4.29) yields

PV� D �
��1X
jD1

kj z2j C z��1z� �
�
g0 C Pg	

2g	

�
z2�
g	

� �W QW T OW � �V trf QV T OV g

�z�"C z�.du C ub/

� �
��1X
jD1

kj z2j �
�
g	k� C g0 C Pg	

2g	

�
z2�
g	

� �W QW T OW � �V trf QV T OV g

�z�"C jz�j


kW �kk OS 0 OV TZk C kV �kF kZ OW T OS 0kF C kW �k

�

�kb


kS 0 OV TZk2 C kZ OW TS

0k2F
�

z2�

� �
��1X
jD1

kj z2j �
�
g	
�
k� � 1

C g0 C Pg	
2g	

�
z2�
g	

� �W QW T OW � �V trf QV T OV g

CkW �k2 C 1

2
kV �k2F �

�
kb � 1

2

�

k OS 0 OV TZk2 C kZ OW T OS 0k2F

�
z2� C 1

2
N"2

(4.32)

By completion of squares, the following inequalities hold

� �W QW T OW � �W

2
.�k QW k2 C kW �k2/ (4.33)

��V trf QV T OV g � �V

2
.�k QV k2F C kV �k2F / (4.34)

Substituting (4.33) and (4.34) into (4.32) yields the following

PV� � �
��1X
jD1

kj z2j �
�
g	
�
k� � 1

C g0 C Pg	
2g	

�
z2�
g	

�
�
kb � 1

2

����� OS 0 OV TZ
���
2

C
���Z OW T OS 0

���
2

F

�
z2� � �W

2

�� QW ��2 � �V

2

�� QV ��2
F

C 1

2
N"2 C �W C 2

2
kW �k2

C�V C 1

2
kV �k2F (4.35)
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From Assumption 4.5, we know that


g0 C Pg	

2g	

�
� 0. Hence, by choosing the

control parameters k� and kb as follows

k� > 1; kb >
1

2
(4.36)

the second and third right-hand-side (RHS) terms of (4.35) are strictly negative, thus
leading to the following simplification

PV� � �
��1X
jD1

kj z2j � .k� � 1/z2� � �W

2

�� QW ��2 � �V

2

�� QV ��2
F

C1

2
N"2 C �W C 2

2
kW �k2 C �V C 1

2
kV �k2F

� �c1V� C c2 (4.37)

where

c1 D min

�
2k1; 2k2; :::; 2k��1; 2g.k� � 1/;

�W

	max.�
�1
W /

;
�V

	max.�
�1
W /

�

(4.38)

c2 D 1

2
N"2 C �W C 2

2
kW �k2 C �V C 1

2
kV �k2F (4.39)

The following lemma is useful for stability analysis of the internal dynamics.

Lemma 4.11. Given that Assumptions 4.1 and 4.3 are satisfied, there exist positive
constants a1, a2 and T0 such that the trajectories �.t/ of the internal dynamics
satisfy

k�.t/k � a1.kz.t/k C k�d .t/k/C a2 8 t > T0: (4.40)

Proof. The proof is very similar to that given in [35]. For completeness, it is
shown here. According to Assumption 4.3, there exists a Lyapunov function V0.�/.
Differentiating V0.�/ along (4.3) yields

PV0.�/ D @V0

@�
q.�; �/

D @V0

@�
q.0; �/C @V0

@�
.q.�; �/ � q.0; �//: (4.41)
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Noting (4.4)–(4.7), (4.41) can be written as

PV0 � �	ak�k2 C 	ba�k�kk�k C 	baqk�k: (4.42)

From the fact that k�k � kzk C k�dk, where �d WD Œyd ; ˛1; ˛2; :::; ˛��1�T, we
obtain the following:

PV0.�/ � 	ak�k2 C 	bk�k.a�k�dk C aq C a�kzk/: (4.43)

Therefore, PV0.�/ � 0 whenever

k�k � 	b

	a
.a�k�dk C aq C a�kzk/: (4.44)

By letting

a1 D 	ba�

	a
; a2 D 	baq

	a
; (4.45)

we conclude that there exist T0 such that (4.40) holds. ut
We summarize our results for the full-state feedback case in the following theorem.

Theorem 4.12. Consider the SISO helicopter dynamics (4.1) satisfying Assump-
tions 4.1–4.5, with control law (4.24) and adaptation laws (4.30)–(4.31). For initial
conditions �.0/, �.0/, QW .0/, QV .0/ belonging to any compact set˝0, all closed loop
signals are SGUUB, and the tracking error z1 D y�yd converges to the compact set

˝z1 WD
(

z1 2 R
ˇ̌
ˇ̌
ˇkz1k �

s
2c2

c1

)
; (4.46)

where c1 and c2 are constants defined in (4.38) and (4.39), respectively.

Proof. According to Lemma 1.1–1.2 in [34], we know from (4.37) that z, QW and QV
are bounded within the compact sets for all t > 0:

˝z D
(

z 2 R�
ˇ̌
ˇ̌
ˇkzk �

s
2

�
V�.0/C c2

c1

�)
; (4.47)

˝W D

8̂
<
:̂

QW 2 Rl
ˇ̌
ˇ̌
ˇ̌
ˇ
�� QW �� �

vuut2


V�.0/C c2

c1

�

	min
�
� �1
W



9>=
>;
; (4.48)
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˝V D

8̂
<
:̂

QV 2 R.mC1/�l

ˇ̌
ˇ̌
ˇ̌
ˇ
�� QV ��

F
�

vuut2


V�.0/C c2

c1

�

	min
�
� �1
V



9>=
>;
: (4.49)

Since W � and V � are bounded, it is obvious that OW and OV are also bounded.
From (4.14), (4.16), and the fact that z; yd ; y

.1/

d ; :::; y
.�/

d are bounded, we know
that the virtual controls˛i , i D 1; 2; :::; � are bounded. Hence, there exists a constant
a3 > 0 such that k�dk � a3.

From Lemma 4.11, it can be seen that � is bounded if both z and �d are bounded.
As a result, we can conclude that the states of the internal dynamics will converge
to the compact set

˝� WD
(
� 2 Rn��

ˇ̌
ˇ̌
ˇk�k � a1

 s
2c2

c1
C a3

!
C a2

)
; (4.50)

where a1 and a2 are defined in (4.45). Since the control signal u.t/ is a function of
the weights OW .t/, OV .t/ and the states �.t/, �.t/, we know that it is also bounded.
Therefore, we have shown that all the closed loop signals are SGUUB.

To show that the tracking error z1 D y � yd converges to the compact set ˝z1 ,
we multiply (4.37) by e�c1t and integrate over [0,t] to obtain that

jz.t/j �
s
2

�
V�.0/C c2

c1

�
e�c1t C 2

c2

c1
; (4.51)

from which it is easy to see that jz1.t/j �
q

2c2
c1

as t ! 1. ut
Remark 4.13. From Theorem 4.12, we know that the size of the steady state
compact set˝z1, to which the tracking error converges, is governed by the constants
c1 and c2, which in turn depend on the control and NN parameters. It follows that by
appropriate tuning of the parameters, the guaranteed upper bound for the steady state
tracking error can be reduced. For instance, increasing the control gains k1; :::; k�
increases c1 accordingly, and leads to a reduction in the size of ˝z1 .

Remark 4.14. Although the theoretical results in this chapter are obtained under
Assumption 4.4 that g	.�/ > 0, there is no loss of generality. For the case of g	.�/ <
0, the Lyapunov function candidate (4.28) can be changed to

V� D V��1 � 1

2g	
z2� C 1

2
QW T� �1

W
QW C 1

2
tr
˚ QV T� �1

V
QV �; (4.52)

for which a correspondingly stable controller can be constructed as u D �unn � ub ,
where unn and ub are defined in (4.25) and (4.26) respectively.
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4.4.2 Output Feedback Control

In the previous section, we have considered the case where full state measurement
is possible, that is, � and � are all available. In this section, we tackle the output
feedback problem, where only � and �1 are available, by utilizing high gain
observers.

Lemma 4.15. [7, 35] Consider the following linear system:

� P
i D 
iC1; i D 1; 2; : : : ; � � 1;
� P
� D ��1
� � �2
��1 � � � � � ���1
2 � 
1 C �1.t/; (4.53)

where � is a small positive constant and the parameters �1 to ���1 are chosen such
that the polynomial s� C �1s

��1 C � C ���1s C 1 is Hurwitz. Suppose the states �
belong to a compact set, so that j�k j < Yk , then the following property holds:

Q�k WD 
k

�k�1 � �k D ���.k/; k D 1; 2; : : : ; �; (4.54)

where � WD 
� C �1
��1 C � � � C ���1
1 and �.k/ denotes the k-th derivative of
�. Furthermore, there exist positive constants hk and t� such that j Q�kj � �hk is
satisfied for t > t�.

Proof. Differentiating the last equation of (4.53) with respect to time and substitut-
ing into 
2

�
� P� yields


2

�
� P� D 
2

�
� � R
n � �1 P
n � �2 P
n�1 � � � � � �n�1 P
2 � P


Noting from (4.53) that P
i D � R
i�1 for i D 2; 3; : : : ; n leads to


2

�
� P� D ��. R
n C �1 R
n�1 C �2 R
n�2 C � � � C �n�1 R
1/

D �� R�

By repeatedly differentiating the above and utilizing (4.53), we arrive at (4.54).
To show that j Qy.t/j � �hk for t > t�, we first note that the derivatives of the

vector Œ
1 
2 ::: 
��T can be computed as follows


.j /.t/ D 1

�j
Aj e

At
�
�

.0/C A�1by.0/C �A�2by.1/.0/

C � � � C �j�1A�j by.j�1/.0/
	

C1

�
e
At
�

Z t

0

e
�A�
� by.j /.�/ d� (4.55)
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for j D 1; 2; :::; �, where

A D

2
666664

0 1 0 � � � 0

0 0 1 � � � 0

� � � � � � � � � � � � � � �
0 0 0 � � � 1

�1 �1 �2 � � � ���1

3
777775
; b D

2
666664

0

0
:::

0

1

3
777775

(4.56)

Since � belongs to a compact set, and u is bounded, we know that jy.j /j � Yj .
Therefore, there exists a constant t� > 0 such that for t > t�, j
.j /.t/j � Dj ,
whereDj is a positive constant independent of �. This leads to j�.j /j � hj WD BDj ,
where B is the normof Œ1 �1 �2 ::: ���1�T. ut
Remark 4.16. Note that 
k

�k�1 converges to a neighborhood of �k , provided that y and
its derivatives up to the �-th order are bounded. Hence, 
kC1

�k
is a suitable observer

to estimate the kth order output derivative.

To prevent peaking [52], saturation functions are employed on the observer
signals whenever they are outside the domain of interest:


si D N
i sat

�

i

N
i
�
; N
i � max

.z; QW ; QV /2˝
.
i /; sat.a/ D

8<
:

�1 for a < �1
a for jaj � 1

1 for a > 1

(4.57)

for i D 1; 2; :::; �, where Q� D Œ Q�1; :::; Q���T, and the compact set˝ WD ˝z�˝W �˝V ,
where˝z,˝W , and˝V are defined in (4.47), (4.48), and (4.49) respectively, denotes
the domain of interest.

Now, we revisit the control law (4.24)–(4.26) and adaptation laws (4.30)–(4.31)
for the full-state feedback case. Via the certainty equivalence approach, we modify
them by replacing the unavailable quantities zi and Z with their estimates, Ozi WD

si
�i�1

� Ǫ i�1 and OZ WD Œ�1;

s2
�
; :::;


s�

���1 ; �; Oz�; PǪ��1�T respectively, for i D 2; :::; �.
Therefore, the control laws are given by

Ǫ1 D �k1z1 C Pyd ;
Ǫ i D �ki Ozi � Ozi�1 C PǪ i�1; (4.58)

unn D OW TS. OV T OZ/; (4.59)

ub D �k� Oz� � Oz��1 � kb
���� OZ OW T OS 0

o

���
2

F
C

��� OSo

���C
��� OS 0

o
OV T OZ

���
�2� Oz�

(4.60)
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Due to the fact that the actual NN is in terms of OZ while the ideal NN is in terms of
Z, the following Lemma is needed.

Lemma 4.17. [35] The error between the actual and ideal NN output can be
written as

OW TS. OV T OZ/�W �TS.V �TZ/ D QW T. OSo � OS 0

o
OV T OZ/C OW T OS 0

o
QV T OZ C du

(4.61)

where OSo WD S. OV T OZ/; OS 0

o WDdiagfOs0

o1; :::; Os0

ol g with

Os0

oi D s
0

.OvT
i

OZ/ D ds.za/

dza

ˇ̌
ˇzaDOvT

i
OZ; i D 1; 2; :::; l; (4.62)

and the residual term du is bounded by

du � kW �k

��� OS 0

o
OV T OZ

���C
��� OSo

���
�

C kV �kF
��� OZ OW T OS 0

o

���
F

(4.63)

Accordingly, the adaptation laws are designed as

POW D ��W
h
. OSo � OS 0

o
OV T OZ/Oz� C �W OW

i
(4.64)

POV D ��V
h OZ OW T OS 0

oOz� C �V OV
i

(4.65)

Using the backstepping procedure similar to Sect. 4.4.1, and substituting (4.59),
(4.64), and (4.65) into the derivative of V� along the closed loop trajectories, it can
be shown that

PV� � �
��1X
jD1

kj z2j �
�
g0 C Pg	

2g	

�
z2�
g	

�
��1X
jD2

kj zj Qzj C
��1X
jD2

zj . PǪj�1 � P̨j�1/

C
��1X
jD3

zj Qzj�1 � z�" � QW T
h
. OSo � OS 0

o
OV T OZ/Qz� C �W OW

i

�tr
n QV T

h OZ OW T OS 0

oQz� C �V OV
io

C jz�j
h
kW �k


��� OS 0

o
OV T OZ

���C
��� OSo

���
�

CkV �kF
��� OZ OW T OS 0

o

���
F

i
C z�ub (4.66)
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From the inequalities in (4.33) and (4.34), we know that

PV� � �
��1X
jD1

kj z2j �
�
g0 C Pg	

2g	

�
z2�
g	

�
��1X
jD2

kj zj Qzj C
��1X
jD2

zj . PǪj�1 � P̨j�1/

C
��1X
jD3

zj Qzj�1 � z�" � QW T. OSo � OS 0

o
OV T OZ/Qz� � OW T OS 0

o
QV T OZQz�

C�W

2
.�k QW k2 C kW �k2/C �V

2
.�k QV k2F C kV �k2F /C 1

2
kW �k2

C1

2
kV �k2F C 1

2
z2�

�
��� OS 0

o
OV T OZ

���C
��� OSo

���
�2 C

��� OZ OW T OS 0

o

���
2

F

�
C z�ub

(4.67)

Substituting the bounding control (4.60) into (4.66) yields

PV� � �
��1X
jD1

kj z2j �
�
k� � 1

2

�
z2� �

�
g0 C Pg	

2g	

�
z2�
g	

� �W

2
k QW k2 � �V

2
k QV k2F

� QW T. OSo � OS 0

o
OV T OZ/Qz� � OW T OS 0

o
QV T OZQz� �

�X
jD2

kj zj Qzj C
�X

jD2
zj . PǪj�1

� P̨j�1/C
�X

jD3
zj Qzj�1 C �W C 1

2
kW �k2 C �V C 1

2
kV �k2F C 1

2
N"2

�
�
kb � 1

2

��
��� OS 0

o
OV T OZ

���C
��� OSo

���
�2 C

��� OZ OW T OS 0

o

���
2

F

�
.z2� C z�Qz�/ (4.68)

The following lemma is useful for handling the terms containing the estimation
errors Qzj , for j D 1; 2; :::; �.

Lemma 4.18. There exist positive constantsFi andGi , which are independent of �,
such that, for t > t�, i D 1; 2; :::; ��1, the estimates PǪi and Ozi satisfy the following
inequalities:

j PǪ i � P̨ i j � �Fi ; jQzi j WD jOzi � zi j � �Gi : (4.69)
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Proof. Starting from i D 1, we know that

PǪ1 � P̨1 D �k1.POz1 � Pz1/ D �k1 Q�2: (4.70)

Subsequently, it is easy to obtain that

PǪ2 � P̨2 D �k2. Q�3 � . PǪ1 � P̨1//� Q�2 � k1 Q�3
D �.1C k1k2/ Q�2 � .k1 C k2/ Q�3 DW aT

2 �2 (4.71)

where a2 WD Œ�.1C k1k2/ � .k1 C k2/�
T and �2 WD Œ Q�2 Q�3�T. Suppose that

PǪ i�2 � P̨ i�2 D aT
i�2�i�2;

PǪ i�1 � P̨ i�1 D aT
i�1�i�1; (4.72)

where �j D Œ Q�2 ::: Q�jC1�T and aj is a vector of constants, for j D i �2; i�1. Then,
by induction, it can be shown that

PǪ i � P̨ i D �ki

 Q�iC1 � . PǪ i�1 � P̨ i�1/

�
�

 Q�i � . PǪ i�2 � P̨ i�2/

�
C RǪ i�1 � R̨i�1;

D �ki

 Q�iC1 � aT

i�1�i�1
�

�

 Q�i � aT

i�2�i�2
�

C aT
i�1 P�i�1 D aT

i �i

(4.73)

for i D 3; :::; � � 1. From Lemma 4.15, we know that k�ik � �Hi , where Hi WD��Œh2; :::; hiC1�T
��, which leads to the fact that j PǪ i � P̨ i j � �kaikHi DW �Fi , and thus

(4.69) is proven.
To prove (4.69), note that

Qzi D Q�i � . Ǫ i�1 � ˛i�1/
D Q�i � .�ki�1Qzi�1 � Qzi�2 C PǪ i�1 � P̨ i�1/ (4.74)

By following a similar inductive procedure, starting from Qz1 D Q�1 and Qz2 D Q�2 �
. Ǫ1�˛1/ D Q�2, it can be shown that Qzi D aT

zi�i , where azi is a constant vector. Using
the property in (4.69), it is straightforward to see that jQzi j � �kazikHi DW �Gi . The
proof is now complete. ut

Using Lemma 4.18, it is clear that, for t > t�, the following inequalities hold:

� QW T. OSo � OS 0

o
OV T OZ/Qz� � �

2
k QW k2 C �

2



k OSok C k OS 0

o
OV T OZk

�2
G2
�; (4.75)

� OW T OS 0

o
QV T OZQz� � �

2
k QV k2F C �

2

��� OZ OW T OS 0

o

���
2

F
G2
� ; (4.76)
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�
�X

jD2
kj zj Qzj �

�X
jD2

kj

2



z2j C �2G2

j

�
; (4.77)

��1X
jD2

zj . PǪj�1 � P̨j�1/ �
�X

jD2

1

2



z2j C �2F 2

j

�
; (4.78)

�X
jD3

zj Qzj�1 �
�X

jD3

1

2



z2j C �2G2

j�1
�
: (4.79)

By substitution of the inequalities (4.75)–(4.79) into (4.68), it is straightforward to
obtain the following expression:

PV� � �
��1X
jD1

kj z2j �
�
k� � 1

2

�
z2� �

�
g0 C Pg	

2g	

�
z2�
g	

� .�W � �/
2

k QW k2

� .�V � �/

2
k QV k2F C

�

k OSok C k OS 0

o
OV T OZk

�2 C
��� OZ OW T OS 0

o

���
2

F

�
�

2
G2
�

C
�X

jD2

kj

2
.z2j C �2G2

j /C
�X

jD2

1

2
.z2j C �2F 2

j /C
�X

jD3

1

2
.z2j C �2G2

j�1/

C�W C 1

2
kW �k2 C �V C 1

2
kV �k2F C 1

2
N"2

�1
2

�
kb � 1

2

��
��� OS 0

o
OV T OZ

���C
��� OSo

���
�2 C

��� OZ OW T OS 0

o

���
2

F

� 

z2� � �2G2

�

�

(4.80)

The RHS terms can be rearranged into a more convenient form for analysis:

PV� � �k1z21 � 1

2
.k2 � 1/z22 �

��1X
jD3

1

2
.kj � 2/z2j � 1

2
.k� � 3/z2� �

�
g0 C Pg	

2g	

�
z2�
g	

� .�W � �/

2
k QW k2 � .�V � �/

2
k QV k2F C

�X
jD2

kj

2
�2G2

j C
�X

jD2

1

2
�2F 2

j

C
�X

jD3

1

2
�2G2

j�1 C �W C 1

2
kW �k2 C �V C 1

2
kV �k2F C 1

2
N"2

�1
2

�
kb � 1

2

��
��� OS 0

o
OV T OZ

���C
��� OSo

���
�2 C

��� OZ OW T OS 0

o

���
2

F

� 

z2�

�
�
�2 C 2�

2kb � 1
�
G2
�

�
: (4.81)
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Finally, by appropriately choosing the control parameters k� and kb as follows:

k2 > 1; k3; :::; k��1 > 2; k� > 3; kb >
1

2
; �W ; �V > �; (4.82)

it can be shown that

PV� � �c1V� C c2 �K



z2� � �c3

�
; (4.83)

where

c1 WD min

�
2k1; .k2 � 1/; .k3 � 2/; :::; .k��1 � 2/; g.k� � 3/; .�W � �/

	max.�
�1
W /

;

.�V � �/
	max.�

�1
W /

�
; (4.84)

c2 WD 1

2
N"2 C �W C 1

2
kW �k2 C �V C 1

2
kV �k2F

C1

2
�2

0
@

�X
jD2

F 2
j C

��1X
jD2

.kj C 1/G2
j CG2

�

1
A ; (4.85)

c3 WD
�
� C 2

2kb � 1

�
G2
�; (4.86)

K WD 1

2

�
kb � 1

2

��
��� OS 0

o
OV T OZ

���C
��� OSo

���
�2 C

��� OZ OW T OS 0

o

���
2

F

�
: (4.87)

It can be shown that

PV�.t/ � �co1V�.t/C co2; t � t�

co1 WD min

(
2	min.K1/;

	min
�
K2 � 3

2
I


	max.M/
;

miniD1;2;3f �i4 k Q�ik2g
	max.� �1/

)

(4.88)

co2 WD
3X
iD1



1C �i

2

�
k��
i k2 C 1

2
k"k2 C 2	max. NK2

NKT
2 C�/��2 (4.89)

To ensure that � > 0, the control gains K1 and K2 are chosen to satisfy the
following conditions:

	min.K1/ > 0; 	min

�
K2 � 3

2
I

�
> 0: (4.90)
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We are ready to summarize our results for the output feedback case under the
following theorem.

Theorem 4.19. Consider the helicopter dynamics (4.1) under Assumptions 4.1–
4.5, with output feedback control laws (4.59)–(4.60), adaptation laws (4.64)–(4.65),
and high gain observer (4.53) which is turned on at time t� in advance. For initial
conditions �.0/, �.0/, QW .0/, QV .0/ starting in any compact set ˝0, all closed
loop signals are SGUUB, and the tracking error z1 converges to the steady state
compact set:

˝z1 WD
(

z1 2 R
ˇ̌
ˇ̌
ˇjz1j �

s
2 Nc2
c1

)
; (4.91)

where Nc2 WD c2 C c3 NK, and c1 is as defined in (4.84).

Proof. We consider the following two cases for the stability analysis:
Case 1: jz�j > p

�c3

For this case, the last term of (4.83) is negative, thus yielding

PV� � �c1V� C c2; (4.92)

which straightforwardly implies that all closed loop signals are SGUUB, according
to Lemma 4.9. However, when jz�j � p

�c3, the last term of (4.83) may not be
negative, leading to a more complicated analysis, as shown in the subsequent case.

Case 2: jz�j � p
�c3

For this case, we want to show that, as a result of z� being bounded, the function
K in (4.87) is also bounded, for which (4.83) can be expressed in the form of (4.9),
convenient for establishing SGUUB property. To this end, note that the derivative of
V��1 is given by

PV��1 � �
��1X
iD1

ki z
2
i �

��1X
iD2

ki zi Qzi C
��1X
iD2

zi . PǪ i�1 � Ǫ i�1/C
��1X
iD3

zi Qzi�1 C z��1z�

(4.93)

According to Lemma 4.18, we can show that

PV��1 � �
��1X
iD1

ki z
2
i C

��1X
iD2

ki jzi j�Gi C
��1X
iD2

jzi j�Fi C
��1X
iD3

jzi j�Gi�1 C jz��1jp�c3

� �k1z21 � 1

2
.k2 � 1/z22 �

��2X
iD3

1

2
.ki � 2/z23 � 1

2
.k� � 3/z2��1
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C1

2
�c3 C 1

2

��1X
iD3

�2G2
i�1 C 1

2

��1X
iD2

�2F 2
i C 1

2

��1X
iD2

ki �
2G2

i

� �c4V��1 C c5; (4.94)

where the positive constants c4 and c5 are defined by

c4 WD minf2k1; k2 � 1; k3 � 2; :::; k��1 � 2; k� � 3g; (4.95)

c5 WD �

2

"
c3 C �

 
��1X
iD2

F 2
i C

��2X
iD2
.1C ki /G

2
i C k��1G2

��1

!#
: (4.96)

This implies that z.t/ satisfies the inequality

kz.t/k �
s
2

�
V��1.0/C c5

c4

�
C �c3 DW Nz : (4.97)

According to Lemma 4.11, it follows from the boundedness of z.t/ that the internal
states �.t/ are also bounded, i.e.,

k�.t/k � a1.Nz C N�d /C a2 DW N�; (4.98)

where k�d .t/k � N�d for constant N�d > 0, based on Assumption 4.1. Thus, the vector
of NN inputs OZ is also bounded as follows

��� OZ
��� �

�����
�
�1d C Nz; N
2

�
; :::;

N
�
���1 ; N�;pc3 C �G�; NP̨��1 C �F��1

�T
����� DW NOZ (4.99)

where the constant NP̨��1 > 0 is an upper bound for P̨��1



z; �1d ; �
.1/

1d ; :::; �
.�/

1d

�
.

Exploiting the properties of sigmoidal NNs [30], it can be shown that


��� OS 0

o
OV T OZ

���C
��� OSo

���
F

�
� 1:224

p
l : (4.100)

As a result, from the adaptation law (4.64), the dynamics of the neural weights
OW D Œ OW1; :::; OWi ; :::; OWl �

T can be shown to satisfy the inequality

POW � �	min.�W /�W OW C 1:224
p
l	min.�W /.

p
�c3 C �G�/; (4.101)

which results in

k OW .t/k � k OW .0/k C 1:224
p
l.

p
�c3 C �G�/

�W
DW NOW; (4.102)
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where NOW is a positive constant. Accordingly, from (4.87), and the fact that kS 0

okF �
0:25�

p
l , we can show that K is bounded as follows:

K � l

2

�
kb � 1

2

��
1:498C 0:0625


 NOZ NOW�
�2� DW NK; (4.103)

where NK is a positive constant. From (4.83) and (4.103), we obtain that

PV� � �c1V� C Nc2; (4.104)

where Nc2 WD c2 C �c3 NK is a positive constant.
Having obtained (4.104) for Case 2, we can compare it with (4.92) of Case 1

to see that (4.104) describes a larger compact set in which the closed loop signals
remain, by virtue of the fact that Nc2 � c2. Hence, the performance bounds can
be analyzed from (4.104), as a conservative approach. A nice property is that as �
diminishes to zero, we have Nc2 ! c2, and the performance can be analyzed from
(4.92) instead, albeit conservatively.

Based on (4.104), we can directly invoke Lemma 4.9 to conclude SGUUB for
all closed loop signals. Since it is straightforward to prove that the tracking error
z1 D �1 � �1d converges to the compact set ˝z1 , by following the steps outlined in
the proof of Theorem 4.12, we have omitted the proof. ut
Remark 4.20. It follows from Theorem 4.19 that the size of the steady state compact
set˝z1, to which the tracking error converges, depends on the ratio Nc2

c1
, which contain

tunable parameters. Thus, we can reduce the size of ˝z1 by appropriately choosing
the parameters. For instance, by choosing the control gains k1; :::; k� large and the
observer parameter � sufficiently small, the ratio Nc2

c1
can be decreased, to the effect

that ˝z1 diminishes.

4.5 Simulation Study

In Sect. 4.2, we have considered a general representation of helicopters as nonaffine
nonlinear systems. Although it would be more realistic to perform simulations on
nonaffine helicopter models, an accurate model is difficult to obtain. Since the class
of nonaffine systems include linear systems as special cases, we shall apply our
proposed adaptive NN control for general nonlinear systems to linear and nonlinear
affine helicopter models, which are available in the literature.

In particular, we will first investigate the effectiveness of the NN controller on a
linear helicopter model for two tasks: altitude tracking and pitch tracking. For the
altitude tracking task, we will compare our results with that of [54], while for the
pitch tracking study, we will compare with [38]. This will be followed by a study
for the case of a nonlinear helicopter model for vertical flight.
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For all cases, we use a multi-layer NN as detailed in Sect. 4.3.2, with identical
neuronal activation functions for the hidden layer described by

si .za/ D 1

1C e��za
; i D 1; 2; :::; l; (4.105)

so that S.a/ D Œs1.a1/; s2.a2/; :::; sl .al /�
T. The control law is given by (4.24) and

the adaptation laws by (4.30)–(4.31).

4.5.1 Linear Models

In this section, we consider two linearized helicopter models for altitude and pitch
tracking. Since data on linear models is quite rich in the literature, it is useful to
employ them in a study of the effectiveness of the proposed nonlinear NN controller.
As linear systems are a special subclass of nonlinear nonaffine systems, the NN
controller, which is designed for the latter, can be applied on linear systems without
any complications.

4.5.1.1 Altitude Tracking

To this end, consider the linearized altitude model of the Yamaha R50 helicopter as
detailed in [54] with the longitudinal cyclic input ı set to zero:

2
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3
77777775
ı˝; (4.106)

The control parameters are set to be k1 D 2:0, k2 D 8:5, and kb D 1:0, while the
NN parameters are � D 1, �W D 5I , �V D 50I , and �W D �V D 5. For the high
gain observer, we choose � D 0:01, �1 D 2, and N
2 D 0:08. The lower and upper
saturation limits of the control are 393 rpm and 1,348 rpm respectively. The initial
conditions are x.0/ D Œ10; 0; 0; 0; 0; 0�T, OW D 0, and OV D 0.

To compare our controller with that of [54], we consider the tracking of the
altitude h according to a desired trajectory hd .t/ defined by

� PhdRhd
�

D
�

0 1

�2:25 �2:4
� �

hdPhd
�

C
�
0

2:25

�
href;
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Fig. 4.1 Comparison of altitude tracking performance between the proposed controller and that
of [54]

href.t/ D

8̂
<̂
ˆ̂:

0 if 0 � t < 1

10 if 1 � t < 16

0 if 16 � t < 31

10 if t � 31

: (4.107)

Note that in our comparison, both controllers are simulated without engine
dynamics.

It can be seen in Fig. 4.1 that the tracking performance under the proposed control
is reasonably good, with the altitude signal tracking the desired trajectory closely.
The comparison shows that the performances under the two different controls
are similar. From Fig. 4.2, it is clear that the control signals and neural weights
are well-behaved. The control of [54] exhibits more fluctuations, and the neural
weights evolve to significantly larger amplitudes. Although this does not set out any
comparative advantages, it does demonstrate different mechanisms at work in the
two control schemes.

The effect of the parameter � on tracking errors and observer errors are shown in
Fig. 4.3, where it is seen that as � diminishes, the tracking error under the full-state
feedback control is recovered, and faster convergence of the observer is achieved.
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k OW Tk2 C k OV k2F , between the proposed control and that of [54]. For the bottom graph,

the left scale corresponds to the proposed control while the right scale corresponds to that of [54]

4.5.1.2 Pitch Tracking

To this end, consider the linearized model of the Yamaha R50 helicopter with
actuator dynamics as detailed in [38].

The control parameters are set to be k1 D 0:8, k2 D 0:8, k3 D 1:5 and kb D 1:0,
while the NN parameters are � D 0:01, �W D 5I , �V D 50I , �W D 5, and
�V D 1. For the high gain observer, we choose � D 1 � 10�4, �1 D 3, �2 D 3,
N
2 D 4 � 10�5, and N
3 D 4 � 10�8. The initial conditions are x.0/ D 0, OW D 0,

and OV D 0.

Remark 4.21. Although it is stated in (4.82) that k2 > 1 and k3 > 3, those
conditions obtained from theoretical analysis are somewhat conservative for this
example, although they guarantee a stable, working controller. We found that the
lower control gains chosen here are sufficiently good for obtaining satisfactory
tracking performance.

To compare our controller with that of [38], we consider the tracking of the pitch
angle � according to a desired trajectory �d .t/ defined by
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It can be seen in Fig. 4.4 that the tracking performance of our controller is
comparable with that of [38] for the pitch tracking task. From Fig. 4.5, we see
that the control input and neural weights are bounded. Similar to the results in
Sect. 4.5.1.1, the control of [38] exhibits more fluctuations, and the neural weights
are larger, illustrating the different mechanisms at work in the two control schemes.

4.5.2 Nonlinear Model

The previous section considered linearized models which are relatively easy to
control, but tend to be more suited for local operation within a neighborhood
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of the operating point, for which the linearized model is valid. Nevertheless,
it was demonstrated that the proposed adaptive NN control is effective for the
linear models considered, which constitute a subclass of general non-affine systems
considered in the control design. In this section, we extend the investigations further
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to the case of a nonlinear helicopter model. Both full-state and output feedback cases
are considered.

Consider the nonlinear model of the X-cell 50 model helicopter in vertical flight
[48, 93]:

Px1 D x2

Px2 D a0 C a1x2 C a2x
2
2 C .a3 C a4x4 � p

a5 C a6x4/x
2
3

Px3 D a7 C a8x3 C .a9 sin x4 C a10/x
2
3 C ath

Px4 D x5

Px5 D a11 C a12x4 C a13x
2
3 sin x4 C a14x5 �K2u

y D x1; (4.109)

where x1 denotes altitude; x2 denotes altitude rate; x3 denotes rotor speed; x4
denotes the collective pitch angle; x5 denotes the collective pitch rate; ath D
111:69s�2 is a constant input to the throttle; and u is the input to the collective
servomechanisms. The parameters are

K1 D �0:1088 s�2 K2 D 0:25397s�2 a0 D �17:67ms�2
a1 D �0:1 s�2 a2 D �0:1 s�2 a3 D 5:31 � 10�4
a4 D 1:5364� 10�2 a5 D 2:82 � 10�7 a6 D 1:632 � 10�5
a7 D �13:92 s�2 a8 D �0:7 s�2 a9 D �0:0028
a10 D �0:0028 a11 D 434:88 s�2 a12 D 800 s�2
a13 D �0:1 a14 D �65 s�2:

(4.110)

Let output y be the altitude x1. By restricting the throttle input to be constant, we
obtain a SISO system in which u is the only input variable forcing the output y to
track a desired trajectory yd .t/, which we define as

yd .t/ D 5:5 � 0:5 sin t: (4.111)

It can be shown that the system has strong relative degree 4, with the � subsystem
given by

P�1 D �2 D x2

P�2 D �3 D a0 C a1x2 C a2x
2
2 C .a3 C a4x4 � p

a5 C a6x4/x
2
3

P�3 D �4 D .a1 C 2a2�2/�3 C a3x
2
3 C

�
a4 � a6

2
p
a5 C a6x4

�
x23x5

C2.a3 C a4x4 � p
a5 C a6x4/x3.a8x3 C .a9 sinx4 C a10/x

2
3/

P�4 D b.x/C g.x/u2; (4.112)
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where

g.x/ D �K2x
2
3

�
a4 � a6

2
p
a5 C a6x4

�
: (4.113)

The derivation of b.x/ in (4.112) is omitted, and we proceed to verify that the
system indeed satisfies the assumptions supposed in the control design. Assump-
tions 4.1 and 4.2 are obviously satisfied from (4.108) and (4.112) respectively.

To verify Assumption 4.4, we first note, from a practical standpoint, that the
collective pitch angle, x4, is restricted within a range, typically from 0 to 0.44 rad
[83]. It can be verified that the bracketed terms in (4.113) are virtually constant:
they take values in the range Œ1:4; 1:5� � 10�3. Thus, the control coefficient g.x/
in (4.113) is always negative. Together with the fact that rotor speed x3 is nonzero
during flight, it can be concluded that there does not exist any control singularities
or zero crossings of g.x/. Therefore, the first part of Assumption 4.4 is satisfied.

Remark 4.22. Although the second part of the assumption, that g.x/ > 0, does not
correspond to this example, there is no loss of applicability of the theoretical results,
as explained in Remark 4.14. The control is still valid under a simple change of sign,
i.e., u D �unn � ub .

Lastly, it is not difficult to verify the existence of a function

g0.x/ D 2

0
@ja8j C ja9 sin x4 C a10jjx3j C

a6
4.a5Ca6x4/1:5

2


a4 � a6

2
p
a5Ca6x4

�
1
A > 0;

8x3 2 RC; x4 2 Œ0; 0:44�;
(4.114)

which fulfils Assumption 4.5 for the case of g.x/ < 0. Note that this function need
not be known; we only need to show its existence.

The control parameters are chosen as k1 D 2:0, k2 D 3:0, k2 D 4:5, k4 D 5:5,
kb D 0:6, while the NN parameters are � D 0:01, �W D 50I , �V D 20:4I ,
�V D 0:055 and �W D 0:05. For the high gain observer, we choose � D 5 � 10�4,
�1 D 4, �2 D 6, �3 D 4, N
2 D 5 � 10�4, N
3 D 5 � 10�8, and N
4 D 1 � 10�11.
The saturation limits of the control are ˙400mrad. The initial conditions are x.0/ D
Œ5:2; 0; 95:36; 0; 0�T, OW D 0, and OV D 0.

From Fig. 4.6, it can be seen that good tracking performance is achieved by
the proposed adaptive NN control. The tracking performance for the full-state and
output feedback cases are similar for the choice of � made. The initial error is
efficiently reduced and the altitude trajectory lies in close proximity of the desired
sinusoidal trajectory. We compare the performance of the NN controller with a linear
PD controller

upd D Kp.y � yd /CKd. Py � Pyd /; (4.115)
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Fig. 4.6 Comparison of tracking performance between adaptive NN and PD control for nonlinear
helicopter model

where Kp D 5;000 rad and Kd D 500 rad s are chosen so that the tracking errors
are reasonably small and the control magnitude is constrained to jupd j � 400mrad.
Although steady state errors are comparable between PD and NN control, the PD
control gives poorer transient performance as it attempts to compensate for the
initial error, due to the inability of the linear PD control to adequately compensate
for the effects of nonlinearity and coupling. Clearly, a dynamic model compensator
is essential to achieve better performance.

The boundedness of the control input and the neural weights, for full-state and
output feedback NN control, as well as the PD control, are shown in Fig. 4.7.
The size of input signal under PD control is much larger than that under NN
control, as seen by the fact that the PD control signal initially fluctuates between the
saturation limits. This can be explained by the fact that a large PD control gain is
required to compensate for nonlinearities, thus amplifying the control effort greatly
when the initial error is large.

In Fig. 4.8, it is shown that the rotor speed and collective pitch angle, for both full-
state and output feedback NN control, are bounded. In particular, it is confirmed that
the collective pitch angle remains in the region Œ0; 0:44� rad as restricted in practical
operations.
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4.6 Conclusion

In this chapter, a robust adaptive NN control has been presented for helicopter
systems whose dynamics are represented by a general nonlinear nonaffine form.
Based on the use of the Implicit Function Theorem and the Mean Value Theorem,
we proposed a constructive approach for stable adaptive NN control design with
guaranteed performance bounds. We focused on SISO helicopter systems, which
are valid for certain single-channel modes of operation, such as vertical flight and
pitch regulation, and also for special conditions under which the multiple channels
become decoupled. Considering both full-state and output feedback cases, it has
been shown that, under the proposed NN control, the output tracking error converges
to a small neighborhood of the origin, while the remaining closed-loop signals
remain bounded. The extensive simulation study demonstrated the effectiveness of
the proposed control on dynamic models of helicopters.



Chapter 5
Altitude and Yaw Control of Helicopters
with Uncertain Dynamics

5.1 Introduction

In Chap. 4, a robust adaptive neural network (NN) control is presented for
helicopters in vertical flight, with dynamics in single-input single-output (SISO)
nonlinear nonaffine form. By limiting the scope to the vertical flight regime, SISO
models can be used to yield useful results, since the coupling between longitudinal
and lateral-directional equations in this flight regime is weak [84]. While the
proposed controller handles vertical flight, other flight regimes can be handled by
other control modules. Evidently, SISO control designs have limited practical use,
and many more investigations are needed in the control of multi-input multi-output
(MIMO) helicopter dynamics for generality in applications.

Practical helicopter motion governed by a MIMO model has an underactuated
configuration, i.e., the number of control inputs is less than the number of degrees of
freedom to be stabilized, which makes it difficult to apply the conventional robotics
approach for controlling Euler–Lagrange systems. Thus, some flight control tech-
niques need to be further developed for the nonlinear MIMO helicopter dynamics.
In [104], model-based control was applied to an autonomous scale MIMO model
helicopter mounted in a 2-degree-of-freedom (2DOF) platform. Since helicopter
control applications are characterized by unknown aerodynamical disturbances,
they are generally difficult to model accurately. The presence of modeling errors,
in the form of parametric and functional uncertainties, and unmodeled dynamics
and disturbances from the environment, is a common problem. In this context,
model-based control, such as the aforementioned schemes, tends to be susceptible
to uncertainties and disturbances that cause performance degradation.

In this chapter, altitude and yaw angle tracking are considered for a scale MIMO
model helicopter [104] in the presence of model uncertainties, which may be caused
by unmodeled dynamics, sensor errors or aerodynamical disturbances from the
environment. To deal with the presence of model uncertainties, approximation-
based techniques using a NN have been proposed. In particular, two commonly
used NNs, namely the multilayer neural network (MNN) and the radial basis

B. Ren et al., Modeling, Control and Coordination of Helicopter Systems,
DOI 10.1007/978-1-4614-1563-3 5, © Springer Science+Business Media, LLC 2012
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function neural network (RBFNN) are adopted in control design and stability
analysis. Based on Lyapunov synthesis, the proposed adaptive NN control ensures
that both the altitude and the yaw angle track the given bounded reference signals
to a small neighborhood of zero, and guarantees the Semi-Globally Uniformly
Ultimate Boundedness (SGUUB) of all the closed-loop signals at the same time. The
effectiveness of the proposed control is illustrated through extensive simulations.
Compared with the model-based control used in [104], approximation-based control
using NN, proposed in this chapter, can accommodate the presence of model
uncertainties, reduce the dependence on accurate model building, and thus lead to
the tracking performance improvement.

5.2 Problem Formulation and Preliminaries

We consider the VARIO scale model helicopter [104], however, the functions and
parameters involved in the model are unknown. For clarity, we restate the helicopter
dynamics here, which are described by Lagrangian formulation in the following:

D.q/ Rq C C.q; Pq/ Pq C F. Pq/CG.q/C.q; Pq/ D B. Pq/� (5.1)

where q; Pq, and Rq are referred as the vectors of generalized coordinates, gener-
alized velocities, and generalized accelerations, respectively. In particular, q D
Œq1; q2; q3�

T D Œz; �; ��T with z as the attitude (z > 0 downwards), � as the yaw
angle, and � as the main rotor azimuth angle; Pq D Œ Pq1; Pq2; Pq3�T D ŒPz; P�; P��T with Pz
as the vertical velocity, P� as the yaw rate, and P� as the main rotor angular velocity;
Rq D Œ Rq1; Rq2; Rq3�T D ŒRz; R�; R��T with Rz as the vertical acceleration, R� as the yaw
acceleration, and R� as the main rotor angular acceleration; D.q/ 2 R3�3 is the
inertia matrix; C.q; Pq/ Pq 2 R3 is the vector of Coriolis and centrifugal forces;
F. Pq/ 2 R3 is the vector of friction forces; G.q/ 2 R3 is the vector of gravitational
forces; .q; Pq/ 2 R3 is the vector of the model uncertainties, which may be caused
by unmodeled dynamics, sensor errors or aerodynamical disturbances from the
environment; B. Pq/ 2 R3�2 is the matrix of control coefficients; and the control
inputs � D Œ�1; �2�

T 2 R2 are the main and tail rotor collectives (swash plate
displacements), respectively. By exploiting the physical properties of the helicopter,
e.g., how the control inputs are distributed to the helicopter dynamics, or the
coupling relationship between the states, better performance can be achieved. To this
end, we assume partial knowledge of the structure of the dynamics [104], although
the functions and parameters involved are unknown:

D.q/ D
2
4
d11 0 0

0 d22.q3/ d23

0 d23 d33

3
5 C.q; Pq/ D

2
4
0 0 0

0 c22.q3; Pq3/ c23.q3; Pq2/
0 c32.q3; Pq2/ 0

3
5
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F. Pq/ D
2
4
f1. Pq3/
0

f3. Pq3/

3
5 G.q/ D

2
4
g1
0

g3

3
5 .q; Pq/ D

2
4
1.q; Pq/
2.q; Pq/
3.q; Pq/

3
5

B. Pq/ D
2
4
b11. Pq3/ 0

0 b22. Pq3/
b31. Pq3/ 0

3
5 (5.2)

where d11; d23; d33; g1; g3 are unknown constants, d22.q3/; c22.q3; Pq3/; c23.q3; Pq2/;
c32.q3; Pq2/; f1. Pq3/; f3. Pq3/; b11. Pq3/; b22. Pq3/; b31. Pq3/;1.q; Pq/; 2.q; Pq/ and
3.q; Pq/ are unknown functions.

To facilitate control design in Sect. 5.3, the following assumptions are in order:

Assumption 5.1. The terms d11 and d22.q3/d33�d223
2d33

are positive.

Assumption 5.2. The following equation Pd22.q3/� 2c22.q3; Pq3/ D 0 holds.

Remark 5.1. It is easy to know that the helicopter model in (5.1) with the parameters
given in [104], which will be used in the subsequent simulation section, satisfies
both Assumptions 5.1 and 5.2.

Assumption 5.3. The signs of b11. Pq3/ and b22. Pq3/ are known. Without losing
generality, assume that b11. Pq3/ is positive and b22. Pq3/ is negative. There exist
positive constants b11 and b22, such that 0 � b11 � jb11. Pq3/j and 0 � b22 �
jb22. Pq3/j.
Remark 5.2. In this section, the vertical flight mode after take-off is considered.
From physical analysis, to lift the helicopter up for flight operation, j Pq3j has to
be larger than some certain positive value (e.g., c0) to overcome the gravity. It is
noted that in the specific helicopter model given in (5.1), b11. Pq3/ D 3:411 Pq23 �
3:411c20 > 0. Therefore, there always exist some positive constants b11 such that
0 � b11 � jb11. Pq3/j during the vertical flight mode. Similar analysis can be applied
to b22. Pq3/ as in Assumption 5.3.

Assumption 5.4. There exist positive constants d22 and Nd22, such that d22 �
jd22.q3/j � Nd22.
Remark 5.3. Assumption 5.4 is reasonable due to d22.q3/ D 0:4305 C 0:0003

cos2.�4:143q3/ in the specific helicopter model given in (5.1), which will be used
in the subsequent simulation section.

The control objective is to ensure that the tracking errors for the altitude q1.t/
and yaw angle q2.t/ from their respective desired trajectories q1d .t/ and q2d .t/, are
driven to a small neighborhood of zero, i.e., jqi.t/ � qid .t/j � �i , where �i > 0,
i D 1; 2; at the same time, the main rotor angular velocity Pq3.t/ is stable.

Assumption 5.5. The desired trajectories q1d .t/ and q2d .t/ and their time deriva-
tives up to the 3rd order are continuously differentiable and bounded for all t � 0.
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The following technical lemma is required in the subsequent control design and
stability analysis.

Lemma 5.4. For a; b 2 RC, the following inequality holds

ab

a C b
� a (5.3)

5.3 Control Design

In this section, we will design an adaptive neural control to accommodate the
presence of uncertainties in the dynamics (5.1), appearing in the functions D.q/,
C.q; Pq/, F. Pq/, G.q/, .q; Pq/ and B. Pq/. After some simple manipulations on (5.1)
and (5.2), we can obtain three subsystems: q1-subsystem (5.4), q2-subsystem (5.5)
and q3-subsystem (5.6) as follows:

d11 Rq1 C f1. Pq3/C g1 C1.q; Pq/ D b11. Pq3/�1 (5.4)

d22.q3/d33 � d223
d33

Rq2 C c22.q3; Pq3/ Pq2 C c23.q3; Pq2/ Pq3 C2.q; Pq/C d23

d33
.b31. Pq3/�1

�c32.q3; Pq2/ Pq2 � f3. Pq/� g3 �3.q; Pq// D b22. Pq3/�2 (5.5)

d22.q3/d33 � d223
d22.q3/

Rq3 C c32.q3; Pq2/ Pq2 C f3. Pq3/C g3 C3.q; Pq/

C d23

d22.q3/
.b22. Pq3/�2 � c22.q3; Pq3/ Pq2 � c23.q3; Pq2/ Pq3 �2.q; Pq// D b31. Pq3/�1

(5.6)

In the following, we will analyze and design a control for each subsystem. For
clarity, define the tracking errors and the filtered tracking errors as

ei D qi � qid ; ri D Pei C 	iei (5.7)

where 	i is a positive number, i D 1; 2. Then, the boundedness of ri guarantees the
boundedness of ei and Pei [10, 71–94]. To study the stability of ei and Pei , we only
need to study the properties of ri . In addition, the following computable signals are
defined:

Pqir D Pqid � 	iei ; Rqir D Rqid � 	i Pei
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5.3.1 RBFNN-Based Control

In this section, we will investigate the RBFNN based control design by Lyapunov
synthesis to achieve the control objective. Regarding to the obtained three subsys-
tems (5.4)–(5.6), our control design consists of three steps: First, we will design
control �1 based on the q1-subsystem (5.4); Second, design �2 based on the q2-
subsystem (5.5) and �1; finally, analyze the stability of the internal dynamics of
q3-subsystem (5.6).

� q1-subsystem
Since Pq1 D Pq1r C r1, Rq1 D Rq1r C Pr1, (5.4) becomes

d11 Pr1 D b11. Pq3/�1 � fS1;1 (5.8)

where

fS1;1 D d11 Rq1r C f1. Pq3/C g1 C1.q; Pq/ (5.9)

is an unknown continuous function, which is approximated by RBFNN to arbitrarily
any accuracy as

fS1;1 D W �T
1 S1.Z1/C "1.Z1/ (5.10)

where the input vector Z1 D Œq1; Pq1; q2; Pq2; q3; Pq3; Pq1d ; Rq1d �T 2 ˝Z1 � R8;
"1.Z1/ is the approximation error satisfying j"1.Z1/j � N"1, where N"1 is a positive
constant; W �

1 are ideal constant weights satisfying kW �
1 k � w1m, where w1m is a

positive constant; and S1.Z1/ are the basis functions. By using OW1 to approximate
W �
1 , the error between the actual and the ideal RBFNNs can be expressed as

OW1

T
S1.Z1/�W �T

1 S1.Z1/ D QW1
T
S1.Z1/ (5.11)

where QW1 D OW1 �W �
1 .

Consider the following Lyapunov function candidate

V1 D 1

2
d11r

2
1 C 1

2
QW1

T
� �1
1

QW1 (5.12)

The time derivative of (5.12) along (5.8) and (5.10) is given by

PV1 D d11r1 Pr1 C QW1
T
� �1
1

PQW1

D r1
�
b11. Pq3/�1 �W �T

1 S1.Z1/� "1.Z1/
	C QW1

T
� �1
1

PQW1 (5.13)
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As W �
1 is a constant vector, we know that PQW1 D POW1. Therefore, (5.13) becomes

PV1 D r1
�
b11. Pq3/�1 �W �T

1 S1.Z1/� "1.Z1/
	C QW1

T
� �1
1

POW1 (5.14)

Consider the following RBFNN-based control law and RBFNN weight adaptation
law:

�1 D �k1r1 �
r1


 OW1

T
S1.Z1/

�2

b11



jr1 OW1

T
S1.Z1/j C ı1

� (5.15)

POW1 D ��1
h
S1.Z1/r1 C �1 OW1

i
(5.16)

where k1 > 0, ı1 > 0, �1 D � T
1 > 0, and �1 > 0.

Remark 5.5. The above �-modification adaptation law (5.16) can be replaced by

e-modification adaptation law like POW1 D ��1
h
S1.Z1/r1 C �1jr1j OW1

i
easily. The

control design based on �-modification adaptation law in this chapter can be
extended to the case based on e-modification adaptation law without any difficulty.

Substituting (5.15) and (5.16) into (5.14), we have

PV1 D �k1b11. Pq3/r21 � b11. Pq3/
b11

r21


 OW1

T
S1.Z1/

�2

jr1 OW1

T
S1.Z1/j C ı1

� r1W �T
1 S1.Z1/ � r1"1.Z1/

�r1 QW1
T
S1.Z1/� �1 QW1

T OW1 (5.17)

According to Assumption 5.3 and (5.11), we can rewrite (5.17) as

PV1 � �k1b11r21 �
r21


 OW1

T
S1.Z1/

�2

jr1 OW1

T
S1.Z1/j C ı1

� r1 OW1

T
S1.Z1/� r1"1.Z1/

��1 QW1
T OW1

� �k1b11r21 �
r21


 OW1

T
S1.Z1/

�2

jr1 OW1

T
S1.Z1/j C ı1

C jr1 OW1

T
S1.Z1/j C jr1jj"1.Z1/j

��1 QW1
T OW1 (5.18)

Noting that

�
r21


 OW1

T
S1.Z1/

�2

jr1 OW1

T
S1.Z1/j C ı1

C jr1 OW1

T
S1.Z1/j D jr1 OW1

T
S1.Z1/jı1

jr1 OW1

T
S1.Z1/j C ı1

(5.19)
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According to Lemma 5.4, we can obtain from (5.19) that

�
r21


 OW1

T
S1.Z1/

�2

jr1 OW1

T
S1.Z1/j C ı1

C jr1 OW1

T
S1.Z1/j � ı1 (5.20)

By completion of squares and using Young’s inequality, the following inequali-
ties hold:

��1 QW T
1

OW1 � ��1
2

k QW1k2 C �1

2
kW �

1 k2 (5.21)

jr1jj"1.Z1/j � r21
2c1

C c1"
2
1.Z1/

2
� r21
2c1

C c1 N"21
2

(5.22)

where c1 is a positive constant. Substituting the above inequalities (5.20)–(5.22) into
(5.18) leads to

PV1 � �
�
k1b11 � 1

2c1

�
r21 � �1

2
k QW1k2 C ı1 C c1

2
N"21 C �1

2
w21m

� �	10V1 C �10 (5.23)

where 	10 D min
n
.2k1b11�1=c1/=d11; �1=	max.�

�1
1 /

o
, �10 D ı1C c1

2
N"21C �1

2
w21m.

� q2-subsystem
Similar to Sect. 5.3.1, since Pq2 D Pq2r C r2, Rq2 D Rq2r C Pr2, (5.5) becomes

d22.q3/d33 � d223
d33

Pr2 C c22.q3; Pq3/r2 D b22. Pq3/�2 � fS2;1 (5.24)

where

fS2;1 D d22.q3/d33 � d223
d33

Rq2r C c22.q3; Pq3/ Pq2r C c23.q3; Pq2/ Pq3 C2.q; Pq/

Cd23

d33
.b31. Pq3/�1 � c32.q3; Pq2/ Pq2 � f3. Pq3/ � g3 �3.q; Pq//

is an unknown function, which is approximated by RBFNN to arbitrarily any
accuracy as

fS2;1 D W �T
2 S2.Z2/C "2.Z2/ (5.25)

where the input vector Z2 D Œ�1; q1; Pq1; q2; Pq2; q3; Pq3; q2d ; Pq2d ; Rq2d �T 2
˝Z2 � R10, "2.Z2/ is the approximation error satisfying j"2.Z2/j � N"2, where N"2
is an unknown positive constant;W �

2 are unknown ideal constant weights satisfying
kW �

2 k � w2m, where w2m is an unknown positive constant; and S2.Z2/ are the
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basis functions. By using OW2 to approximate W �
2 , the error between the actual and

the ideal RBFNNs can be expressed as

OW T
2 S2.Z2/�W �T

2 S2.Z2/ D QW T
2 S2.Z2/ (5.26)

where QW2 D OW2 �W �
2 .

To analyze the closed loop stability for the q2-subsystem, let

V2 D 1

2

d22.q3/d33 � d223
d33

r22 C 1

2
QW T
2 �

�1
2

QW2 (5.27)

Lemma 5.6. The function V2 (5.27) is positive definite and decrescent, in the
sense that there exist two time-invariant positive definite functions V 2.r2;

QW2/ and
NV2.r2; QW2/, such that

V 2.r2;
QW2/ � V2 � NV2.r2; QW2/

Proof. Noting that the particular choice of V2 in (5.27), a function of r2; QW2 and
d22.q3/, is to establish the stability for r2 and QW2 only, therefore, we regard d22.q3/
as a function of time. From Assumptions 5.1 and 5.4, we know that

0 <

ˇ̌
ˇd22jd33j � d223

ˇ̌
ˇ

jd33j <
ˇ̌
ˇd22.q3/d33 � d223

d33

ˇ̌
ˇ �

Nd22jd33j C d223
jd33j (5.28)

Therefore, there also exist time-invariant positive definite functions V 2.r2;
QW2/

and NV2.r2; QW2/, such that V 2.r2;
QW2/ � V2 � NV2.r2; QW2/, which implies that V2 is

also positive definite and decrescent, according to [94]. This completes the proof.ut
The time derivative of (5.27) is given as

PV2 D 1

2
Pd22.q3/r22 C d22.q3/d33 � d223

d33
r2 Pr2 C QW T

2 �
�1
2

PQW2 (5.29)

According to Assumption 5.2, (5.29) becomes

PV2 D r2

�
d22.q3/d33 � d223

d33
Pr2 C c22.q3; Pq3/r2

�
C QW T

2 �
�1
2

PQW2 (5.30)

As W �
2 is a constant vector, it is easy to obtain that

PQW2 D POW2 (5.31)
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Substituting (5.24), (5.25) and (5.31) into (5.30), we have

PV2 D r2
�
b22. Pq3/�2 �W �T

2 S2.Z2/ � "2.Z2/
	C QW T

2 �
�1
2

POW2 (5.32)

Consider the following RBFNN-based control law and RBFNN weight adaption
law:

�2 D k2r2 C
r2


 OW2

T
S2.Z2/

�2

b22



jr2 OW2

T
S2.Z2/j C ı2

� (5.33)

POW2 D ��2
h
S2.Z2/r2 C �2 OW2

i
(5.34)

where k2 > 0, ı2 > 0, �2 D � T
2 > 0 and �2 > 0. Substituting (5.33) and (5.34) into

(5.32), we have

PV2 D k2b22. Pq3/r21 C b22. Pq3/
b22

r22


 OW2

T
S2.Z2/

�2

jr2 OW2

T
S2.Z2/j C ı2

� r2W
�T
2 S2.Z2/� r2"2.Z2/

�r2 QW2
T
S2.Z2/� �2 QW2

T OW2 (5.35)

According to Assumption 5.3 and (5.26), we can rewrite (5.35) as

PV2 � �k2b22r22 �
r22


 OW2

T
S2.Z2/

�2

jr2 OW2

T
S2.Z2/j C ı2

� r2 OW2

T
S2.Z2/� r2"2.Z2/

��2 QW2
T OW2

� �k2b22r22 �
r22


 OW2

T
S2.Z2/

�2

jr2 OW2

T
S2.Z2/j C ı2

C jr2 OW2

T
S2.Z2/j C jr2jj"2.Z2/j

��2 QW2
T OW2 (5.36)

Similar to (5.20), we have

�
r22


 OW2

T
S2.Z2/

�2

jr2 OW2

T
S2.Z2/j C ı2

C jr2 OW2

T
S2.Z2/j � ı2 (5.37)
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By completion of squares and using Young’s inequality, the following inequali-
ties hold:

��2 QW T
2

OW2 � ��2
2

k QW2k2 C �2

2
kW �

2 k2 (5.38)

jr2jj"2.Z2/j � r22
2c2

C c2"
2
2.Z2/

2
� r22
2c2

C c2 N"22
2

(5.39)

where c2 is a positive constant. Substituting the above inequalities (5.37)–(5.39) into
(5.36) leads to

PV2 � �
�
k2b22 � 1

2c2

�
r22 � �2

2
k QW2k2 C ı2 C c2

2
N"22 C �2

2
w22m

� �	20V2 C �20 (5.40)

where 	20 D min
n
.2k2b22 � 1=c2/jd33j=. Nd22jd33j C d223/; �2=	max.�

�1
2 /

o
, �20 D

ı2 C c2
2

N"22 C �2
2

w22m.
� q3-subsystem
Finally, using the designed control laws (5.15) and (5.33), the q3-subsystem (5.6)

can be rewritten as

P� D  .�; �; u/ (5.41)

where � D Œq3; Pq3�T, � D Œq1; q2; Pq1; Pq2�T, u D Œ�1; �2�
T.

Then, the zero dynamics can be addressed as [35]

P� D  .0; �; u�.0; �// (5.42)

where u� D Œ��
1 ; �

�
2 �

T.

Assumption 5.6. [35] System (5.4)–(5.6) is hyperbolically minimum-phase, i.e.,
zero dynamics (5.42) is exponentially stable. In addition, assume that the control
input u is designed as a function of the states (�, �) and the reference signal
satisfying Assumption 5.5, and the function f .�; �; u/ is Lipschitz in �, i.e., there
exist constants L� and Lf for f .�; �; u/ such that

kf .�; �; u/ � f .0; �; u�/k � L�k�k C Lf (5.43)

where u� D u�.0; �/.

Under Assumption 5.6, by the Converse Theorem of Lyapunov [52], there exists
a Lyapunov function V0.�/ which satisfies

�ak�k2 � V0.�/ � �bk�k2 (5.44)
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@V0

@�
f .0; �; u�/ � �	ak�k2 (5.45)

k@V0
@�

k � 	bk�k (5.46)

where �a, �b , 	a and 	b are positive constants.

Lemma 5.7. [35] For the internal dynamics P� D f .�; �; u/ of the system, if
Assumption 5.6 is satisfied, and the states � are bounded by a positive constant
k�kmax, i.e., k�k � k�kmax, then there exist positive constants L� and T0, such that

k�.t/k � L�; 8t > T0 (5.47)

Proof. According to Assumption 5.6, there exists a Lyapunov function V0.�/.
Differentiating V0.�/ along (5.4)–(5.6) yields

PV0.�/ D @V0

@�
f .�; �; u/

D @V0

@�
f .0; �; u�/C @V0

@�

�
f .�; �; u/ � f .0; �; u�/

	
(5.48)

Noting (5.43)–(5.46), (5.48) can be written as

PV0.�/ � �	ak�k2 C 	bk�k.L�k�k C Lf /

� �	ak�k2 C 	bk�k.L�k�kmax C Lf /

Therefore, PV0.�/ � 0, whenever

k�k � 	b

	a
.L�k�kmax C Lf /

By letting L� D 	b
	a
.L�k�kmax C Lf /, we conclude that there exists a positive

constant T0, such that (5.47) holds. ut
The following Theorem shows the stability and control performance of the closed
loop system.

Theorem 5.8. Consider the closed-loop system consisting of the subsystems
(5.4)–(5.6), the control laws (5.15), (5.33) and adaptation laws (5.16), (5.34).
Under Assumptions 5.1–5.6, the overall closed-loop neural control system is Semi-
Globally Uniformly Ultimately Bounded (SGUUB) in the sense that all of the
signals in the closed-loop system are bounded, and the tracking errors and neural
weights converge to the following regions,
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je1j � je1.0/j C 1

	1

s
2�1

d11

k OW1k �
s

2�1

	min.�
�1
1 /

C w1m

je2j � je2.0/j C 1

	2

vuut 2jd33j�2ˇ̌
ˇd22jd33j � d223

ˇ̌
ˇ

k OW2k �
s

2�2

	min.�
�1
2 /

C w2m (5.49)

with

�i D �i0

	i0
C Vi.0/; �i0 D ıi C 1

2
N"2i C �i

2
w2im; i D 1; 2

	10 D min
n
.2k1b11 � 1=c1/=d11; �1=	max.�

�1
1 /

o

	20 D min
n
.2k2 � 1=c2/jd33j=. Nd22jd33j C d223/; �2=	max.�

�1
2 /

o

where ei .0/ and Vi .0/ are initial values of ei .t/ and Vi .t/, respectively.

Proof. Based on the previous analysis, the proof proceeds by studying each subsys-
tem in order. First, the closed loop stability analysis of the q1-subsystem (5.4) with
control �1 (5.15) and adaptation law (5.16) is made by use of Lyapunov synthesis.
Second, the similar closed loop stability will be achieved on the q2-subsystem (5.5)
with �2 (5.33) and adaptation law (5.34). Finally, the stability analysis of internal
dynamics of the q3-subsystem (5.6) is made based on the stability of the previous
two subsystems.
q1- subsystem:
Solving the inequality (5.23), we have 0 � V1.t/ � �1 with �1 D �10

	10
C V1.0/.

Then, from the definition of V1.t/ (5.12), we can obtain

jr1j �
s
2�1

d11
; k QW1k �

s
2�1

	min.�
�1
1 /

(5.50)

Since Pe1 D �	1e1 C r1, solving this equation results in

e1 D e�	1t e1.0/C
Z t

0

e�	1.t��/r1d� (5.51)
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According to (5.50) and (5.51), we have

je1j � je1.0/j C 1

	1

s
2�1

d11
(5.52)

Noting q1 D e1 C q1d , OW1 D QW1 CW �
1 , kW �

1 k � w1m and Assumption 5.5, we
obtain

jq1j � je1j C jq1d j � je1.0/j C 1

	1

s
2�1

d11
C jq1d j 2 L1

k OW1k � k QW1k C kW �
1 k �

s
2�1

	min.�
�1
1 /

C w1m 2 L1

Since the control �1 is a function of r1 and OW1, its boundedness is also assured.
q2- subsystem:
Similar to the analysis of q1- subsystem, we have

jr2j �
vuut 2jd33j�2ˇ̌
ˇd22jd33j � d223

ˇ̌
ˇ
; k QW2k �

s
2�2

	min.�
�1
2 /

(5.53)

Furthermore, we obtain

je2j � je2.0/j C 1

	2

vuut 2jd33j�2ˇ̌
ˇd22jd33j � d223

ˇ̌
ˇ

jq2j � je2j C jq2d j � je2.0/j C 1

	2

vuut 2jd33j�2ˇ̌
ˇd22jd33j � d223

ˇ̌
ˇ

C jq2d j 2 L1

k OW2k � k QW2k C kW �
2 k �

s
2�2

	min.�
�1
2 /

C w2m 2 L1 (5.54)

and thus the boundedness of control �2.
q3- subsystem:
From the previous stability analysis about the q1-subsystem and the q2-

subsystem, we know that q1; q2; Pq1; Pq2 are bounded. Accordingly, � are bounded.
According to Lemma 5, we know that the internal dynamics are stable, i.e., � (q3
and Pq3) are bounded. All the signals in the closed-loop system are bounded. This
completes the proof. ut
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5.3.2 MNN-Based Control

Nonlinearly parameterized approximators, such as the MNN, can be linearized by
Taylor series expansions, with the higher order terms being taken as part of the
modeling error. Due to the nonlinear parameterizations, the control design and
stability analysis involving the MNN is more complex than the previous one based
on the linearly parameterized network, i.e., the RBFNN, but still can follow the
similar procedures as the afore-mentioned RBFNN-based one.

� q1-subsystem
Similar to the RBFNN case in Sect. 5.3.1, (5.4) is written as

d11 Pr1 D b11. Pq3/�1 � fS1;1 (5.55)

where the unknown continuous function

fS1;1 D d11 Rq1r C f1. Pq3/C g1 C1.q; Pq/ (5.56)

is approximated by MNN to arbitrarily any accuracy as

fS1;1 D W �T
1 S1.V

�T
1 Z1/C "1.Z1/ (5.57)

where the input vector Z1 D Œq1; Pq1; q2; Pq2; q3; Pq3; Pq1d ; Rq1d ; 1�T 2 ˝Z1 � R9;
"1.Z1/ is the approximation error satisfying j"1.Z1/j � N"1, where N"1 is a positive
constant; W �

1 and V �
1 are unknown ideal constant weights satisfying kW �

1 k �
w1m; kV �

1 kF � v1m, which are positive constants. By using OW T
1 S1.

OV T
1 Z1/ to

approximateW �T
1 S1.V

�T
1 Z1/, the error between the actual and the ideal MNN can

be expressed as

OW T
1 S.

OV T
1 Z1/�W �T

1 S.V �T
1 Z1/ D QW T

1 .
OS1 � OS 0

1
OV T
1 Z1/C OW T

1
OS 0
1

QV T
1 Z1 C du1

(5.58)

where OS1 D S. OV T
1 Z1/, OS 0

1 D diag fOs0
1; Os0

2; :::; Os0
l g with

Os0
i D s0.OvT

i Z/ D dŒs.za/�

dza
jzaDOvT

i Z

the residual term du1 is bounded by

jdu1j � kV �
1 kF kZ1 OW T

1
OS 0
1kF C kW �

1 kk OS 0
1

OV T
1 Z1k C jW �

1 j1 (5.59)

and the weight estimation errors QW1 D OW1 �W �
1 , QV1 D OV1 � V �

1 .
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Consider the following Lyapunov function candidate

V1.r1; QW1; QV1/ D 1

2
d11r

2
1 C 1

2
QW1

T
� �1
W1

QW1 C 1

2
tr
n QV1T

� �1
V1

QV1
o

(5.60)

The time derivative of (5.60) along (5.55) and (5.57) is given by

PV1 D r1
�
b11. Pq3/�1 �W �T

1 S1.V
�T
1 Z1/� "1.Z1/

	C QW1
T
� �1
W1

PQW1

Ctr
n QV1T

� �1
V1

PQV1
o

(5.61)

As W �
1 ; V

�
1 are constant vectors, it is easy to obtain that

PQW1 D POW1;
PQV1 D POV1 (5.62)

Substituting (5.62) into (5.61), we have

PV1 D r1
�
b11. Pq3/�1 �W �T

1 S1.V
�T
1 Z1/� "1.Z1/

	C QW1
T
� �1
W1

POW1

Ctrf QV1T
� �1
V1

POV1g (5.63)

Consider the following MNN-based control law and MNN weight adaption laws:

�1 D �k1r1 �
r1


 OW T
1 S.

OV T
1 Z1/

�2

b11



jr1 OW T

1 S.
OV T
1 Z1/j C ı1

� � k1r1

b11
.kZ1 OW T

1
OS 0
1k2F

Ck OS 0
1

OV T
1 Z1k2/ (5.64)

POW1 D ��W1Œ. OS1 � OS 0
1

OV T
1 Z1/r1 C �W1 OW1� (5.65)

POV1 D ��V1ŒZ1 OW T
1

OS 0
1r1 C �V1 OV1� (5.66)

where k1 > 0, ı1 > 0, �W1 D � T
W1 > 0, �V1 D � T

V1 > 0, �W1 > 0, �V1 > 0.
Substituting (5.64)–(5.66) in (5.63), we have

PV1 D �k1b11. Pq3/r21 � b11. Pq3/
b11

r21


 OW T
1 S.

OV T
1 Z1/

�2


jr1 OW T

1 S.
OV T
1 Z1/j C ı1

�

�b11. Pq3/
b11

k1r
2
1



kZ1 OW T

1
OS 0
1k2F C k OS 0

1
OV T
1 Z1k2

�
� r1W �T

1 S1.V
�T
1 Z1/

�r1"1.Z1/ � r1 QW T
1 .

OS1 � OS 0
1

OV T
1 Z1/ � �W1 QW T

1
OW1

�trf QV1T
Z1 OW T

1
OS 0
1r1g � �V1trf QV1T OV1g (5.67)
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Noting Assumption 5.3 and the fact that trf QV1T
Z1 OW T

1
OS 0
1r1g D r1 OW T

1
OS 0
1

QV1T
Z1,

(5.67) becomes

PV1 � �k1b11r21 �
r21


 OW T
1 S.

OV T
1 Z1/

�2


jr1 OW T

1 S.
OV T
1 Z1/j C ı1

�

�k1r21


kZ1 OW T

1
OS 0
1k2F C k OS 0

1
OV T
1 Z1k2

�

Cjr1jj"1.Z1/j � r1W
�T
1 S1.V

�T
1 Z1/ � r1 QW T

1 .
OS1 � OS 0

1
OV T
1 Z1/

�r1 OW T
1

OS 0
1

QV1T
Z1 � �W1 QW T

1
OW1 � �V1trf QV1T OV1g (5.68)

From (5.58) and (5.59), we know

�r1W �T
1 S1.V

�T
1 Z1/ � r1 QW T

1 .
OS1 � OS 0

1
OV T
1 Z1/� r1 OW T

1
OS 0
1

QV1T
Z1

D �r1 OW T
1 S.

OV T
1 Z1/ � r1du1

� jr1 OW T
1 S.

OV T
1 Z1/j C jr1jkV �

1 kF kZ1 OW T
1

OS 0
1kF C jr1jkW �

1 kk OS 0
1

OV T
1 Z1k

Cjr1jjW �
1 j1 (5.69)

Substituting (5.69) in (5.68) leads to

PV1 � �k1b11r21 �
r21


 OW T
1 S.

OV T
1 Z1/

�2


jr1 OW T

1 S.
OV T
1 Z1/j C ı1

� C jr1 OW T
1 S.

OV T
1 Z1/j

�k1r21


kZ1 OW T

1
OS 0
1k2F C k OS 0

1
OV T
1 Z1k2

�
C jr1jj"1.Z1/j

Cjr1jkV �
1 kF kZ1 OW T

1
OS 0
1kF C jr1jkW �

1 kk OS 0
1

OV T
1 Z1k

Cjr1jjW �
1 j1 � �W1 QW T

1
OW1 � �V1trf QV1T OV1g (5.70)

According to Lemma 5.4,

�
r21


 OW T
1 S.

OV T
1 Z1/

�2

jr1 OW T
1 S.

OV T
1 Z1/j C ı1

C jr1 OW T
1 S.

OV T
1 Z1/j D jr1 OW T

1 S.
OV T
1 Z1/jı1

jr1 OW T
1 S.

OV T
1 Z1/j C ı1

� ı1

(5.71)
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By completion of squares and using Young’s inequality, the following inequalities
hold:

jr1jj"1.Z1/j � r21
2c11

C c11 N"21
2

(5.72)

jr1jkV �
1 kF kZ1 OW T

1
OS 0
1kF � k1r

2
1kZ1 OW T

1
OS 0
1k2F C 1

4k1
kV �

1 k2F (5.73)

jr1jkW �
1 kk OS 0

1
OV T
1 Z1k � k1r

2
1k OS 0

1
OV T
1 Z1k2 C 1

4k1
kW �

1 k2 (5.74)

jr1jjW �
1 j1 � r21

2c12
C c12jW �

1 j21
2

(5.75)

��W1 QW T
1

OW1 � ��W1
2

k QW1k2 C �W1

2
kW �

1 k2 (5.76)

��V1trf QV1T OV1g � ��V1
2

k QV1k2F C �V1

2
kV �

1 k2F (5.77)

Substituting (5.71)–(5.77) into (5.70), we have

PV1 � �
�
k1b11 � 1

2c11
� 1

2c12

�
r21 � �W1

2
k QW1k2 � �V1

2
k QV1k2F C ı1

C
�
�W1

2
C 1

4k1

�
kW �

1 k2 C
�
�V1

2
C 1

4k1

�
kV �

1 k2F C c11

2
N"21 C c12jW �

1 j21
2

� �	10V1 C �10 (5.78)

where 	10 D min
n
.2k1b11�1=c11�1=c12/=d11; �W1=	max.�

�1
W1 /; �V1=	max.�

�1
V1 /

o
,

�10 D ı1 C . �W1
2

C 1
4k1
/kW �

1 k2 C . �V1
2

C 1
4k1
/kV �

1 k2F C c11
2

N"21 C c12jW �

1 j21
2

.
� q2-subsystem
Similar to Sect. 5.3.1, (5.5) becomes

d22.q3/d33 � d223
d33

Pr2 C c22.q3; Pq3/r2 D b22. Pq3/�2 � fS2;1 (5.79)

where the unknown function

fS2;1 D d22.q3/d33 � d223
d33

Rq2r C c22.q3; Pq3/ Pq2r C c23.q3; Pq2/ Pq3 C2.q; Pq/

Cd23

d33
.b31. Pq3/�1 � c32.q3; Pq2/ Pq2 � f3. Pq3/ � g3 �3.q; Pq//

is approximated by MNN to arbitrarily any accuracy as

fS2;1 D W �T
2 S2.V

�T
2 Z2/C "2.Z2/
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where the input vector Z2 D Œ�1; q1; Pq1; q2; Pq2; q3; Pq3; q2d ; Pq2d ; Rq2d ; 1�T 2
˝Z2 � R11, "2.Z2/ is the approximation error satisfying j"2.Z2/j � N"2, where N"2
is a positive constant; W �

2 and V �
2 are ideal constant weights satisfying kW �

2 k �
w2m; kV �

2 kF � v2m, which are positive constants. By using OW T
2 S2.

OV T
2 Z2/ to

approximateW �T
2 S2.V

�T
2 Z2/, the error between the actual and the ideal MNN can

be expressed as

OW T
2 S.

OV T
2 Z2/�W �T

2 S.V �T
2 Z2/ D QW T

2 .
OS2 � OS 0

2
OV T
2 Z2/C OW T

2
OS 0
2

QV T
2 Z2 C du2

(5.80)

where OS2 D S. OV T
2 Z2/, OS 0

2 D diag fOs0
1; Os0

2; :::; Os0
l g with

Os0
i D s0.OvT

i Z2/ D dŒs.za/�

dza
jzaDOvT

i Z2

and the residual term du2 is bounded by

jdu2j � kV �
2 kF kZ2 OW T

2
OS 0
2kF C kW �

2 kk OS 0
2

OV T
2 Z2k C jW �

2 j1 (5.81)

and the weight estimation errors QW2 D OW2 �W �
2 ;

QV2 D OV2 � V �
2 .

To analyze the closed loop stability for the q2-subsystem, consider the following
Lyapunov function candidate

V2.r2; QW2; QV2/ D 1

2

d22.q3/d33 � d223
d33

r22 C 1

2
QW T
2 �

�1
W 2

QW2 C 1

2
trf QV T

2 �
�1
V 2

QV2g
(5.82)

Lemma 5.9. The function V2 (5.82) is positive definite and decrescent, in the sense
that there exist two time-invariant positive definite functions V 2.r2;

QW2; QV2/ and
NV2.r2; QW2; QV2/, such that

V 2.r2;
QW2; QV2/ � V2 � NV2.r2; QW2; QV2/

Proof. The proof follows the same approach as Lemma 5.6 and is omitted here for
conciseness. ut
The time derivative of (5.82) is given as

PV2 D 1

2
Pd22.q3/r22 C d22.q3/d33 � d223

d33
r2 Pr2 C QW T

2 �
�1
2

PQW2 C trf QV T
2 �

�1
V 2

PQV2g
(5.83)
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According to Assumption 5.2, (5.83) becomes

PV2 D r2

�
d22.q3/d33 � d223

d33
Pr2 C c22.q3; Pq3/r2

�
C QW T

2 �
�1
2

PQW2 C trf QV T
2 �

�1
V 2

PQV2g

(5.84)

As W �
2 ; V

�
2 are constant vectors, it is easy to obtain that

PQW2 D POW2;
PQV2 D POV2 (5.85)

Substituting (5.79),(5.80), and (5.85) into (5.89), we have

PV2 D r2
�
b22. Pq3/�2 �W �T

2 S2.V
�T
2 Z2/� "2.Z2/

	

C QW T
2 �

�1
W 2

POW2 C trf QV T
2 �

�1
V 2

POV2g (5.86)

Consider the following MNN-based control law and MNN weight adaption laws:

�2 D k2r2 C
r2


 OW T
2 S.

OV T
2 Z2/

�2

b22



jr2 OW T

2 S.
OV T
2 Z2/j C ı2

�

Ck2r2

b22
.kZ2 OW T

2
OS 0
2k2F C k OS 0

2
OV T
2 Z2k2/ (5.87)

POW2 D ��W 2Œ. OS2 � OS 0
2

OV T
2 Z2/r2 C �W 2

OW2� (5.88)

POV2 D ��V 2ŒZ2 OW T
2

OS 0
2r2 C �V 2 OV2� (5.89)

where k2 > 0, ı2 > 0, �W 2 D � T
W 2 > 0, �V 2 D � T

V 2 > 0, �W 2 > 0, �V 2 > 0.
Substituting (5.87)–(5.89) into (5.86), we have

PV2 D k2b22. Pq3/r22 C b22. Pq3/
b22

r22


 OW T
2 S.

OV T
2 Z2/

�2


jr2 OW T

2 S.
OV T
2 Z2/j C ı2

�

Cb22. Pq3/
b22

k2r
2
2



kZ2 OW T

2
OS 0
2k2F C k OS 0

2
OV T
2 Z2k2

�
� r2W

�T
2 S2.V

�T
2 Z2/

�r2"2.Z2/� r2 QW T
2 .

OS2 � OS 0
2

OV T
2 Z2/� �W 2 QW T

2
OW2

�trf QV2T
Z2 OW T

2
OS 0
2r2g � �V 2trf QV2T OV2g (5.90)
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Noting Assumption 5.3 and the fact that trf QV2T
Z2 OW T

2
OS 0
2r2g D r2 OW T

2
OS 0
2

QV2T
Z2,

(5.90) becomes

PV2 � �k2b22r21 �
r22


 OW T
2 S.

OV T
2 Z2/

�2


jr2 OW T

2 S.
OV T
2 Z2/j C ı2

� � k2r22


kZ2 OW T

2
OS 0
2k2F C k OS 0

2
OV T
2 Z2k2

�

Cjr2jj"2.Z2/j � r2W �T
2 S2.V

�T
2 Z2/ � r2 QW T

2 .
OS2 � OS 0

2
OV T
2 Z2/

�r2 OW T
2

OS 0
2

QV2T
Z2 � �W 2

QW T
2

OW2 � �V 2trf QV2T OV2g (5.91)

From (5.80) and (5.81), we know that

�r2W �T
2 S2.V

�T
2 Z2/ � r2 QW T

2 .
OS2 � OS 0

2
OV T
2 Z2/� r2 OW T

2
OS 0
2

QV2T
Z2

D �r2 OW T
2 S.

OV T
2 Z2/ � r2du2

� jr2 OW T
2 S.

OV T
2 Z2/j C jr2jkV �

2 kF kZ2 OW T
2

OS 0
2kF C jr2jkW �

2 kk OS 0
2

OV T
2 Z2k

Cjr2jjW �
2 j1 (5.92)

Substituting (5.92) into (5.91) leads to

PV2 � �k2b22r22 �
r22


 OW T
2 S.

OV T
2 Z2/

�2


jr2 OW T

2 S.
OV T
2 Z2/j C ı2

� C jr2 OW T
2 S.

OV T
2 Z2/j

�k2r22


kZ2 OW T

2
OS 0
2k2F C k OS 0

2
OV T
2 Z2k2

�
C jr2jj"2.Z2/j

Cjr2jkV �
2 kF kZ2 OW T

2
OS 0
2kF C jr2jkW �

2 kk OS 0
2

OV T
2 Z2k C jr2jjW �

2 j1
��W 2 QW T

2
OW2 � �V 2trf QV2T OV2g (5.93)

According to Lemma 5.4,

�
r22


 OW T
2 S.

OV T
2 Z2/

�2


jr2 OW T

2 S.
OV T
2 Z2/j C ı2

� C jr2 OW T
2 S.

OV T
2 Z2/j D jr2 OW T

2 S.
OV T
2 Z2/jı2

jr2 OW T
2 S.

OV T
2 Z2/j C ı2

� ı2

(5.94)

By completion of squares and using Young’s inequality, the following inequalities
hold:

jr2jj"2.Z2/j � r22
2c21

C c21 N"22
2

(5.95)

jr2jkV �
2 kF kZ2 OW T

2
OS 0
2kF � k2r

2
2kZ2 OW T

2
OS 0
2k2F C 1

4k2
kV �

2 k2F (5.96)
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jr2jkW �
2 kk OS 0

2
OV T
2 Z2k � k2r

2
2k OS 0

2
OV T
2 Z2k2 C 1

4k2
kW �

2 k2 (5.97)

jr2jjW �
2 j1 � r22

2c22
C c22jW �

2 j21
2

(5.98)

��W 2
QW T
2

OW2 � ��W 2
2

k QW2k2 C �W 2

2
kW �

1 k2 (5.99)

��V 2trf QV2T OV2g � ��V 2
2

k QV2k2F C �V 2

2
kV �

2 k2F (5.100)

Substituting (5.94)–(5.100) into (5.93), we have

PV2 � �
�
k2b22 � 1

2c21
� 1

2c22

�
r22 � �W 2

2
k QW2k2 � �V 2

2
k QV2k2F C ı2

C
�
�W 2

2
C 1

4k2

�
kW �

2 k2 C
�
�V 2

2
C 1

4k2

�
kV �

2 k2F C c21

2
N"22 C c22jW �

2 j21
2

� �	20V2 C �20 (5.101)

where 	20 D min
n
.2k2b22�1=c21�1=c22/jd33j=. Nd22jd33jCd223/; �W 2=	max.�

�1
W 2/;

�V 2=	max.�
�1
V 2 /

o
, �20 D ı2 C . �W 2

2
C 1

4k2
/kW �

2 k2 C . �V 2
2

C 1
4k21

/kV �
2 k2F C c21

2
N"22 C

c22jW �

2 j21
2

.
� q3-subsystem
Finally, for the system (5.4)–(5.6) under control laws (5.64) and (5.87), we can

obtain similar internal dynamics to Sect. 5.3.1.
The main result in this section can be summarized as the following theorem:

Theorem 5.10. Consider the closed-loop system consisting of the subsystems
(5.4)–(5.6), the control laws (5.64), (5.87), and adaptation laws (5.65)–(5.66),
(5.88)–(5.89). Under Assumptions 5.1–5.6, the overall closed-loop neural control
system is SGUUB in the sense that all of the signals in the closed-loop system are
bounded, and the tracking errors and weights converge to the following regions,

je1j � je1.0/j C 1

	1

s
2�1

d11
; je2j � je2.0/j C 1

	2

vuut 2jd33j�2ˇ̌
ˇd22jd33j � d223

ˇ̌
ˇ
;

k OV1kF �
s

2�1

	min.�
�1
1 /

C v1m; k OV2kF �
s

2�2

	min.�
�1
2 /

C v2m

k OW1k �
s

2�1

	min.�
�1
1 /

C w1m; k OW2k �
s

2�2

	min.�
�1
2 /

C w2m;
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with

�i D �i0

	i0
C Vi.0/

�i0 D ıi C
�
�W i

2
C 1

4ki

�
kW �

i k2 C
�
�V i

2
C 1

4ki1

�
kV �

i k2F C ci1

2
N"2i C ci2jW �

i j21
2

;

i D 1; 2

	10 D min
n
.2k1b11 � 1=c11 � 1=c12/=d11; �W1=	max.�

�1
W1 /; �V1=	max.�

�1
V1 /

o

	20 D min
n
.2k2b22 � 1=c21 � 1=c22/jd33j=. Nd22jd33j C d223/; �W 2=	max.�

�1
W 2/;

�V 2=	max.�
�1
V 2 /

o

where ei .0/ and Vi .0/ are initial values of ei .t/ and Vi .t/, respectively.

Proof. The proof of Theorem 5.10 follows the same approach as Theorem 5.8, and
will be omitted here for conciseness. ut

5.4 Simulation Study

To illustrate the proposed adaptive neural control, we consider the VARIO he-
licopter mounted on a platform [104], with the dynamic model as (5.1) and
the following parameters d11 D 7:5, d22.q3/D 0:4305 C 0:0003 cos2.�4:143q3/,
d23 D 0:108, d33 D 0:4993, c22.q3; Pq3/D 0:0006214 sin.�8:286q3/ Pq3, c23.q3; Pq2/D
c32.q3; Pq2/D 0:0006214 sin.�8:286q3/ Pq2, g1 D �77:259, g3 D �2:642, f1. Pq3/D �
0:6004 Pq3, f3. Pq3/D � 0:0001206 Pq23, b11. Pq3/D 3:411 Pq23 , b22. Pq3/D � 0:1525 Pq23,
b31. Pq3/D 12:01 Pq3 C 105, and all quantities are expressed in S.I. units. The control
objective is to track the uniformly bounded desired trajectories given in [104] as
follows:

q1d D

8̂
<̂
ˆ̂:

�0:2 0 � t � 50 s
0:3Œe�.t�50/2=350 � 1�� 0:2 50 < t � 130 s
0:1 cosŒ.t � 130/=10�� 0:6 130 < t � 20
 C 130

�0:5 t � 20
 C 130

q2d D

8̂
ˆ̂<
ˆ̂̂:

0 t < 50 s
1 � e�.t�50/2=350 50 � t < 120 s

e�.t�120/2=350 120 � t < 180

�1C e�.t�180/2=350 t � 180
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5.4.1 Internal Dynamics Stability Analysis

In this section, we analyze the stability of the internal dynamics according to the
related discussion in [104]. For conciseness, we consider the RBFNN-based control
case only, which can be easily extended to the MNN-based control case without
any difficulties. For the RBFNN-based control case, we substitute (5.10), (5.15),
(5.25) and (5.33) into the q3-subsystem (5.6). According to the definition of the
zero dynamics [35], we set r1, r2, QW T

1 , QW T
2 , "1.Z1/ and "2.Z2/ to zero, and the

desired trajectories and initial data can be chosen in such a way that terms including
Pq22 , Rq1d , Rq2d can be neglected [104], so we have

Rq3 D 1

d33

�
b31. Pq3/
b11. Pq3/ .f1. Pq3/C g1/� f3. Pq3/� g3

�
(5.102)

Substituting the term values given in the beginning of Sect. 5.4 into (5.102) and
analyzing the values of the main rotor angular velocity from which the main rotor
angular acceleration is zero, we have

4:1137 � 10�4 Pq43 C 1:8011 Pq23 � 60968 Pq3 � 7725900D 0

Its solutions are Pq�
3 D �124:63;�219:5˙ 468:16i and 563:64 rad/s. Only the first

value Pq�
3 D �124:63 has a physical meaning for the system. If we linearize (5.102)

around the equilibrium point Pq�
3 D �124:63, we can obtain an eigenvalue �2:44.

Therefore, according to [52], all initials of Pq3 sufficiently near Pq�
3 D �124:63 can

converge to �124:63. It then follows that the internal dynamics of the helicopter
system in (5.1) have a stable behavior.

The simulation result in Fig. 5.1 also shows that the internal dynamics using
RBFNN-based control are indeed stable. From Fig. 5.1, we can observe that the
main rotor angular velocity Pq3 converges to the nominal value �124:63 rad/s for
different initial conditions ranging from �40 rad/s to �150 rad/s, which includes the
typical operating values more than sufficiently. These results are expected from the
previous stability analysis, and also consistent with the results in [104]. In particular,
we also notice that the further the initial condition starts from the nominal value
�124:63 rad/s, the longer the settling time takes, and the more serious the transient
oscillations become. This is reasonable in practice. If some preliminary knowledge
about the nominal value is known in advance, the initial condition can be set closer
to achieve better performance.
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Fig. 5.1 Main rotor angular velocity behavior for different initial conditions using RBFNN-based
control

5.4.2 Performance Comparison Results Between
Approximation-Based Control and Model-Based Control

In this subsection, we will compare the altitude and yaw angle tracking performance
using RBFNN-based control, MNN-based control and the model-based control
adopted in [104]. If all the parameters and functions in (5.1) are known exactly,
and the unmodeled uncertainties.�/ D 0, the perfect tracking performance can be
achieved using model-based control, which has been shown in the work [104]. How-
ever, in practice, there always exist some model uncertainties, which may be caused
by unmodeled dynamics or aerodynamical disturbances from the environment. To
this end, we assume .�/ ¤ 0, in particular, .�/ D Œ2:0; 0; 0:0001206 Pq23 C
0:142�T.

The control parameters for the RBFNN control laws (5.15) (5.33) and adapta-
tion laws (5.16) (5.34) are chosen as follows: k1 D 0:000085, �1 D 0:2, k2 D
0:0002, �2 D 1:0, �1 D 0:001I , �2 D 0:0001I , �1 D 0:001, �2 D 0:001. NNs
OW T
1 S1.Z1/ contains 38 nodes (i.e., l1 D 2187), with centers �l.l D 1; :::; l1/ evenly

spaced in Œ�1:0; 1:0��Œ�0:1; 0:1��Œ�10:0;�10:0��Œ�40000:0; 0:0��Œ�1:0; 1:0��
Œ�150:0;�40:0� � Œ�0:1; 0:1� � Œ�0:01; 0:01�, and widths �l D 1:0.l D 1; :::; l1/.
NNs OW T

2 S2.Z2/ contains 310 nodes (i.e., l2 D 59049), with centers �l.l D 1; :::; l2/

evenly spaced in Œ�0:005; 0:005� � Œ�1:0; 1:0� � Œ�0:1; 0:1� � Œ�10:0;�10:0� �
Œ�40000:0; 0:0� � Œ�1:0; 1:0� � Œ�150:0;�40:0� � Œ�10:0; 10:0� � Œ�1:0; 1:0� �
Œ�0:01; 0:01�, and widths �l D 1:0.l D 1; :::; l2/. The initial conditions are:
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Fig. 5.2 Altitude tracking performance in the presence of model uncertainties

q1.0/ D 0:1 m, Pq1.0/ D 0:0 m/s, q2.0/ D �
 rad, Pq2.0/ D 0:0 rad/s, q3.0/ D �

rad, Pq3.0/ D �120:0 rad/s, �1 D 0:0 m, �2 D 0:0 m, OW1.0/ D 0:0, OW2.0/ D 0:0.

For the MNN control laws (5.64) and (5.87) and adaptation laws (5.65), (5.66),
(5.88) and (5.89), the design parameters are chosen as: k1 D 0:00016, �1 D 1:2,
k2 D 0:0002, �2 D 1:0, �W1 D 0:0002I , �V1 D 0:03I , ıW1 D 0:0, �V1 D
0:0, �W 2 D 0:0001I , �V 2 D 0:01I , �W 2 D 0:0, �V 2 D 0:0. NNs OW T

1 S1.
OV T
1 Nz1/

contains five nodes and NNs OW T
2 S2.

OV T
2 Nz2/ contains 15 nodes. The initial conditions

are: q1.0/ D 0:1m, Pq1.0/ D 0m/s, q2.0/ D �
 rad, Pq2.0/ D 0:0 rad/s, q3.0/ D �

rad, Pq3.0/ D �120:0 rad/s, �1 D 0:0 m, �2 D 0:0 m, OW1.0/ D 0:0, OV1.0/ D
0:0, OW2.0/ D 0:0, OV2.0/ D 0:0.

From Figs. 5.2 and 5.3, we can observe that due to the existence of model
uncertainties, both the altitude tracking and yaw angle tracking using model-based
control have some offsets to the desired trajectories for the whole period. This means
that model-based control depends on the accuracy of the model heavily and cannot
deal with the uncertainties well. For the tracking performance using the RBFNN-
based control and MNN-based control, though there are also some oscillations at
the initial period, the tracking errors can converge to a very small neighborhood
of desired trajectories in a short time of about 20 s. This is because the model
uncertainties can be learnt by RBFNN and MNN during the beginning 25 s. After
that period, the uncertainties can be compensated for, and thus, the robustness of
uncertainties is improved and good tracking performance is achieved. In addition,
Figs. 5.4 and 5.5 indicates norms of neural weights for approximation-based control
and control actions for three control methods.
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Fig. 5.3 Yaw angle tracking performance in the presence of model uncertainties
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Fig. 5.5 Control inputs for altitude and yaw angle tracking in the presence of model uncertainties

5.5 Conclusion

In this chapter, NN approximation-based control was investigated for the MIMO
helicopter altitude and yaw angle tracking in the presence of model uncertainties.
Compared with the model-based control, which is sensitive to the accuracy of
the model representation, NN approximation-based control is tolerant of model
uncertainties, and can be viewed as a key advantage over model-based control of
helicopters, for which accurate modeling of helicopter dynamics is difficult, time-
consuming and costly. Simulation results demonstrated that the helicopter is able to
track altitude and yaw angle reference signals satisfactorily, with all other closed-
loop signals bounded.



Chapter 6
Attitude Control of Uncertain Helicopters
with Actuator Dynamics

6.1 Introduction

In a helicopter flight control system, control signals are produced by the control
command via actuator servo dynamics. The flight control performance can be
improved if the actuator servo dynamics are explicitly considered in the control
design. To the best of our knowledge, there are few works in the literature that take
into account actuator dynamics in the control design, which is not only practically
relevant, but also more challenging. Notable examples are aggressive control of
helicopters in presence of parametric and dynamical uncertainties [67], and adaptive
output feedback control under known actuator characteristics including actuator
dynamics and saturation [57].

While previous chapters in this monograph have considered actuators with
instantaneous response, this chapter takes into account actuator dynamics in the
first-order low-pass filter form. We tackle the attitude control problem for heli-
copter systems with uncertain multi-input multi-output (MIMO) dynamics. Attitude
regulation is important for helicopter security monitoring and helicopter hovering
flight, where the main objective is to maintain the orientation and altitude for the
helicopter at specified values. Roll, pitch, and yaw angles are used to describe how
the helicopter is orientated in space.

Attitude control for helicopters is a challenging problem due to the nonlinearity
of the dynamics and strong interactions between variables, and calls for advanced
techniques to achieve good performance. Examples include a fuzzy gain-scheduler
[46], as well as the use of nonlinear feedback elements in the control system for the
Bell 412 Helicopter [106]. In this chapter, we contribute an approximation-based
attitude control method, based on neural networks, to handle the nonlinearities,
model uncertainties (e.g., unknown moment coefficients and mass) and external
disturbances. Rigorous stability analysis and extensive simulations results show the
effectiveness and robustness of the proposed attitude control.

B. Ren et al., Modeling, Control and Coordination of Helicopter Systems,
DOI 10.1007/978-1-4614-1563-3 6, © Springer Science+Business Media, LLC 2012
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6.2 Problem Formulation

Assuming the flight positions and velocities along x and y axes are very small, i,e.,
x D 0, y D 0, u D 0 and v D 0, the attitude/altitude dynamics of the helicopter can
be derived from the six degrees of freedom [64,77] and represented in the nonlinear
form of

Pz D w cos� cos � (6.1)

P� D p C q sin� tan � C r cos� tan � (6.2)

P� D q cos� � r sin � (6.3)

P D q sin � sec � C r cos� sec � (6.4)

Pw D g cos� cos � CZ=m (6.5)

Pp D .c1r C c2p/q C c3LC c4N (6.6)

Pq D c5pr � c6.p2 � r2/C c7M (6.7)

Pr D .c8p � c2r/q C c4LC c9N (6.8)

where z is the helicopter altitude and w is the linear velocity along the z axis; m is
the mass of helicopter; p; q; r are the fuselage coordination system angular velocity
components, respectively; �; �;  are Euler angles, i.e., fuselage attitude angles,
respectively; Z is the aerodynamic force, and L;M;N are aerodynamic moments
about center of gravity, respectively. The coefficients of moment equations are given
by [64]

c1 D .Iyy � Izz/Izz � I 2xz

�

c2 D .Ixx � Iyy C Izz/Ixz

�

c3 D Izz

�

c4 D Ixz

�

c5 D Izz � Ixx
Iyy

c6 D Ixz

Iyy

c7 D 1

Iyy
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c8 D Ixx.Ixx � Iyy/C I 2xz

�

c9 D Ixx

�

� D IxxIzz � I 2xz

where Ixx; Ixz; Iyy ; Izz are the inertia moments of the helicopter.
Moments L;M;N including the contributions from aerodynamics and propul-

sion can be written as [66, 67]

L D LR C YRhR CZRyR C YThT

M D MR � XRhR CZRlR

N D NR � YRlR � YTlT

Z D ZR (6.9)

where the subscripts denote the main rotor (R) and the tail rotor (T). .lR; yR; hR/

and .lT; yT; hT/ are the coordinates of the main rotor and tail rotor shafts relative
to center of helicopter mass, respectively. The forces XR; YR; ZR; YT and torques
LR;MR; NR can be expressed as [66, 67]

XR D �TR sin a1s

YR D �TR sin b1s

ZR D �TR cos a1s cos b1s

YT D �TT

LR D C R
b b1s �QR sin a1s

MR D C R
a a1s CQR sin b1s

NR D �QR cos a1s cos b1s (6.10)

where a1s and b1s are the longitudinal and lateral inclination of the tip path plane of
the main rotor; C R

a and C R
b are physical parameters modeling the flapping dynamic

of the main rotor; QR is the total main rotor torque; TR and TT are the thrusts
generated by the main and the tail rotors which can be computed as shown in [66,67]

TR D KTM�Mw2e

TT D KTT�Tw2e (6.11)

where �M and �T are the collective pitches of the main and tail rotors, respectively;
we denotes the angular velocity of the main rotor; and KTM and KTT are the
aerodynamics constants of the rotor’s blades, respectively.
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Based on (6.1)–(6.11), the attitude dynamics of a helicopter with model uncer-
tainty and external disturbance can be written as

Px1 D J.x1/x2

Px2 D F.x1; x2/CH.x3/CF1.x1; x2/CD.x1; x2; t/

y D x1 (6.12)

where

x1 D

2
664

z
�

�

 

3
775 ; x2 D

2
664

w
p

q

r

3
775 ; x3 D

2
664

b1s
a1s
�T

�M

3
775

J.x1/ D

2
664

cos� cos � 0 0 0

0 1 sin � tan � cos� tan �
0 0 cos� � sin �
0 0 sin � sec � cos� sec �

3
775

F.x1; x2/ D

2
664

g cos� cos �
.c1r C c2p/q

c5pr � c6.p
2 � r2/

.c8p � c2r/q

3
775

H.x3/ D ŒH1.x3/;H2.x3/;H3.x3/;H4.x3/�
T, F1.x1; x2/ D Œf11.x1; x2/;f12

.x1; x2/;f13.x1; x2/;f14.x1; x2/�
T, f1i.x/; i D 1; 2; 3; 4; are the system

modeling uncertainties, D.x1; x2; t/D ŒD1.x1; x2; t/;D2.x1; x2; t/, D3.x1; x2; t/;

D4.x1; x2; t/�
T;Di .x1; x2; t/; i D 1; 2; 3; 4; are the system external disturbances

such as wind disturbance, and y is the system output. H1.x3/, H2.x3/, H3.x3/ and
H4.x3/ are given by

H1.x3/ D �KTM�Mw2e cosa1s cos b1s=m

H2.x3/ D c3C
R
b b1s � c3QR sin a1s � c3KTM�Mw2e sin b1shR

�c3KTM�Mw2e cosa1s cos b1syR � c3KTT�Tw2ehT

�c7QR cos a1s cos b1s C c7KTM�Mw2e sin b1slR C c7KTT�Tw2elT

H3.x3/ D c7C
R
a a1s C c7QR sin b1s C c7KTM�Mw2ehR

�c7KTM�Mw2e cosa1s cos b1slR

H4.x3/ D c4C
R
b b1s � c4QR sin a1s � c4KTM�Mw2e sin b1shR

�c4KTM�Mw2e cosa1s cos b1syR � c4KTT�Tw2ehT

�c9QR cos a1s cos b1s C c9KTM�Mw2e sin b1slR C c9KTT�Tw2elT
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From (6.12), it is difficult to directly design the robust attitude control for
helicopters due to the input implicit function H.x3/. To expediently design model-
based attitude control, H.x3/ is separated into two parts including the linear part
Gx3 and the nonlinear part F2.x3/. On the other hand, to improve the closed-loop
system control performance, we include the influence of actuator dynamics in the
control design, where the actuator dynamics are assumed to be in the first-order low-
pass filter form. Considering (6.12), the attitude dynamics of a helicopter including
the actuator dynamics, the model uncertainties and the external disturbances can be
rewritten as

Px1 D J.x1/x2

Px2 D F.x1; x2/CGx3 CF1.x1; x2/C F2.x3/CD.x1; x2; t/

Px3 D �	.x3 � u/

y D x1 (6.13)

where

G D

2
664

�1
m

�2
m

0 �3
m

c3�4 c3�5 c3�6 C c4�8 c3�7 C c4�9

0 0 c7�8 c7�9
c4�4 c4�5 c4�6 C c9�8 c4�7 C c9�9

3
775 ; �j > 0

are control gain parameters and u is the system input. The 3rd sub-equation of (6.13)
is the actuator dynamics and 	 is the actuator gain. F2.x3/D Œf21.x3/; f22.x3/;

f23.x3/; f24.x3/�
T, f2i .x3/, i D 1; 2; 3; 4 are given by

F2.x3/ D

2
664

1 0 0 0

0 c3 0 c4

0 0 0 c7
0 c4 0 c9

3
775

2
664

f31.x3/

f32.x3/

f33.x3/

f34.x3/

3
775

f31.x3/ D ��1b1s � �2a1s � �3�M �KTM�Mw2e

f32.x3/ D .C R
b � �4/b1s � .QR C �5/a1s �KTM�Mw2eb1shR

�.KTM w2eyR C �7/�M � .KTT w2ehT C �6/�T

f33.x3/ D C R
a a1s CQRb1s �KTM�Mw2ea1shR �KTM�Mw2elR

f34.x3/ D �QR C .KTM w2eb1slR � �9/�M C .KTT w2elT � �8/�T (6.14)

It is easy to know that J.x1/ is invertible for all � 2 .�
=2; 
=2/ and
� 2 .�
=2; 
=2/. To facilitate control system design, we assume that all states
of the helicopter attitude dynamics (6.13) are measurable. Moreover, the following
assumptions are needed for the subsequent developments.
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Assumption 6.1. [101] For the continuous functionsDi.x1; x2; t/ W R4�R4�R !
R; i D 1; 2; 3; 4, there exist positive, smooth, nondecreasing functions hi .x1; x2/ W
R4 �R4 ! RC and time-dependent functions ni .t/ W RC ! RC; i D 1; 2; 3 such
that

jDi.x1; x2; t/j � hi .x1; x2/C ni .t/ (6.15)

where
ni .t/ � Nni

with unknown constants Nni 2 RC; 8t > t0.
Lemma 6.1. [34, 101] For bounded initial conditions, if there exists a C1 contin-
uous and positive definite Lyapunov function V.x/ satisfying �1.kxk/ � V.x/ �
�2.kxk/, such that PV .x/ � ��V.x/ C c, where �1; �2 W Rn ! R are class
K functions and c is a positive constant, then the solution x.t/ is uniformly
bounded.

The control objective is to keep the desired altitude/attitude of helicopter
in the presence of model uncertainty and environmental disturbance. Thus, the
proposed control must render the helicopter track a desired attitude x1d such
that the tracking errors converge to a very small neighborhood of the origin, i.e.,
limt!1 ky � x1dk < � with � > 0.

Assumption 6.2. [101] For all t > 0, there exist ı11 > 0, ı21 > 0 and ı31 > 0 such
that k Px1d .t/k � ı11, k Rx1d .t/k � ı21 and kx.3/1d .t/k � ı31.

In the following sections, we start from the model-based attitude control for a
nominal plant in Sect. 6.3 with the free of the uncertaintyF1.x1; x2/ and external
disturbance D.x1; x2; t/ of system (6.13). However, the model-based control is
sensitive to the disturbance and system uncertainty. When the disturbance and
system uncertainty exist in helicopter dynamics, the closed-loop system control
performance will be degraded, and will even lead to closed-loop system instability.
To improve the robustness of the attitude control, the robust attitude control of
helicopters using neural networks is designed in Sect. 6.4. Furthermore, in Sect. 6.5,
we consider the case where the nominal plant is unknown also which makes
the attitude control design more complicated, and approximation-based control in
combination with backstepping technique is employed to keep the desired attitude
of the helicopter system (6.13).

6.3 Model-Based Attitude Control for Nominal Plant

In this section, we assume that the moment coefficients and mass of the helicopter
are known and neglect the uncertainty F1.x1; x2/ and external disturbance
D.x1; x2; t/ of system (6.13). Then, model-based backstepping attitude control is
developed for the nominal dynamics of the helicopter. Rigorous analysis through
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Lyapunov analysis is given to show the stability of the closed-loop system.
To develop the model-based attitude control, we define error variables z1 D x1�x1d ,
z2 D x2 � ˛1 and z3 D x3 � ˛2, where ˛1 2 R4 and ˛2 2 R4 are virtual control
laws.

Step 1: Considering (6.13) and differentiating z1 with respect to time yields

Pz1 D Px1 � Px1d D J.x1/.z2 C ˛1/ � Px1d (6.16)

Due to the non-singularity of J.x1/, the virtual control law ˛1 is chosen as

˛1 D J�1.x1/.�K1z1 C Px1d / (6.17)

whereK1 D KT
1 > 0.

Substituting (6.17) into (6.16), we obtain

Pz1 D J.x1/z2 �K1z1 (6.18)

Consider the Lyapunov function candidate V1 D 1
2
zT
1 z1. The time derivative of V1 is

PV1 D �zT
1K1z1 C zT

1J.x1/z2 (6.19)

The first term on the right-hand side is negative, and the second term will be
canceled in the next step.

Step 2: Differentiating z2 with respect to time yields

Pz2 D Px2 � P̨1 D F.x1; x2/CGx3 C F2.x3/� P̨1 (6.20)

where P̨1 D PJ .x1/�1.�K1z1 C Px1d /C J.x1/
�1.�K1Pz1 C Rx1d /.

Consider the Lyapunov function candidate

V2 D V1 C 1

2
zT
2 z2 (6.21)

Invoking (6.20), the time derivative of V2 is

PV2 D �zT
1K1z1 C zT

1J.x1/z2 C zT
2F.x1; x2/C zT

2G.z3 C ˛2/C zT
2F2.x3/

�zT
2 P̨1 (6.22)

The virtual control law ˛2 is proposed as follows:

˛2 D QC.Z1/Œ P̨1 �K2z2 � F.x1; x2/ � J T.x1/z1� (6.23)

where
QC D QGT.GQGT/�1 (6.24)
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with Q being chosen such that GQGT is nonsingular. When the matrix G is
determined, we always can find an appropriate matrix Q that renders GQGT

nonsingular.
Substituting (6.23) and (6.24) into (6.22), we have

PV2 � �zT
1K1z1 � zT

2K2z2 C zT
2Gz3 C zT

2F2.x3/ (6.25)

Step 3: Differentiating z3 with respect to time yields

Pz3 D Px3 � P̨2 D �	.x3 � u/� P̨2 (6.26)

Consider the Lyapunov function candidate

V3 D V2 C 1

2
zT
3 z3 (6.27)

Considering (6.25) and (6.26), the time derivative of V3 is given by

PV3 � �zT
1K1z1 � zT

2K2z2 C zT
2Gz3 C zT

2F2.x3/� 	zT
3x3 C 	zT

3u � zT
3 P̨2

(6.28)

The input control u is proposed as follows:

u D
(
x3 � 	�1



K3z3 � P̨2 CGTz2 C z3z

T
2 F2.x3/

kz3k2
�
; kz3k � "3

0; kz3k < "3
(6.29)

whereK3 D KT
3 > 0 and "3 > 0 are the design parameters.

The above design procedure can be summarized in the following theorem.

Theorem 6.2. Considering the nominal attitude dynamics of the helicopter system
(6.13), the model-based control law is designed according to (6.29). Under the
proposed model-based control and for any bounded initial condition, the closed-
loop signals z1, z2 and z3 are bounded. Namely, there exist design parameters
K1 D KT

1 > 0, K2 D KT
2 > 0 and K3 D KT

3 > 0 such that the overall closed-loop
control system is semi-globally stable. Furthermore, the tracking error z1 converges
to a compact set and the control objective is obtained.

Proof. When kz3k � "3, substituting the first equation of (6.29) into (6.28), we
obtain

PV3 � �zT
1K1z1 � zT

2K2z2 � zT
3K3z3 � �	min.Ki/V3 (6.30)

where i D 1; 2; 3 and 	min.:/ denotes the smallest eigenvalues of a matrix.
Therefore, we know that the closed-loop system is stable when kz3k � "3 according
to (6.30). If kz3k < "3, z3 approximates to zero. This means that x3 D ˛2. From
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(6.14), we know that F2.x3/ is bounded due to the bounded available deflexion
angles of the main rotor and the tail rotor. Based on the boundary of F2.x3/, we can
conclude all signals of the closed-loop system are bounded according to Lemma 6.1
if only appropriate design parameters K1 and K2 are chosen. This concludes the
proof. ut
Remark 6.3. To handle the nonlinear termF2.x3/ in (6.13), the model-based control
is proposed as a discontinuous form which can excite the chattering phenomenon.
However, we can adjust design parameter "3 to decrease the chattering phenomenon
and improve the control performance. Furthermore, the P̨2 is used in the model-
based control law (6.29). From (6.23), we can see the ˛2 is continuous and
differentiable in which the design matrix Q is introduced to avoid the potential
singularity of G . Since G is known which is independent of system states and can
be designed according to the control demand, we can always choose an appropriate
design matrix Q and parameters �i to make GQGT nonsingular.

6.4 Robust Attitude Control of Helicopters with Uncertainties
and Disturbances

In this section, we present a robust attitude control in combination with a radial basis
function neural network (RBFNN) to keep the desired attitude of a helicopter system
(6.13) in the presence of model uncertainty and external disturbance. The RBFNN
can be considered as a two-layer network in which the hidden layer performs a
fixed nonlinear transformation with no adjustable parameters, i.e., the input space is
mapped into a new space. The output layer then combines the outputs in the latter
space linearly. Therefore, they belong to a class of linearly parameterized networks.

Define the error variables z1 D x1 � x1d , z2 D x2 � ˛1 and z3 D x3 � ˛2 which
are the same as the related definitions of variables in Sect. 6.3. Since there are no
model uncertainties and disturbances in the altitude and attitude angle equations,
the design of Step 1 is similar to the case of the model-based attitude control for
nominal helicopter dynamics in Sect. 3. Here, we only give the design processes of
Steps 2 and 3 for the robust attitude control.

Step 2: Considering (6.13) and differentiating z2 with respect to time yields

Pz2 D Px2 � P̨1
D F.x1; x2/CGx3 CF1.x1; x2/C F2.x3/CD.x1; x2; t/ � P̨1 (6.31)

where ˛1 is defined in (6.17).
Consider the Lyapunov function candidate

V �
2 D V1 C 1

2
zT
2 z2 (6.32)
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Due to (6.19), (6.31) and Assumption 6.1, the time derivative of V �
2 is given by

PV �
2 � �zT

1K1z1 C zT
1J.x1/z2 C zT

2F.x1; x2/C zT
2G.z3 C ˛2/C zT

2F2.x3/

�zT
2 �.Z/� zT

2 P̨1 (6.33)

where �.Z/ D �F1.x1; x2/ � Sgn.z2/.h.x1; x2/ C Nn/ , Z D ŒxT
1 ; x

T
2 ; ˛

T
1 �,

Sgn.z2/ WD diagfsgn.z2j /g, h.x1; x2/ WD Œh1.x1; x2/; h2.x1; x2/; h3.x1; x2/; h4.x1;

x2/�
T, and Nn D Œ Nn1; Nn2; Nn3; Nn4�T, j D 1; 2; 3; 4. Since F1.x1; x2/, h.x1; x2/ and Nn

are all unknown, the model-based control cannot be directly designed. To overcome
this problem, we utilize RBFNNs in [90] to approximate the unknown term �.Z/

which is expressed as

O�.Z/ D O�TS.Z/ (6.34)

where O� 2 Rl�4 is the approximation parameter,S.Z/ D Œs1.Z/; s2.Z/; :::; sl .Z/�
T

2 Rl�1 represents the vector of the smooth basis function, with the NN node
number l > 1 and si .Z/ being chosen as the commonly used Gaussian functions

si .Z/ D exp
h�.Z��i /T.Z��i /

�2i

i
, i D 1; 2; :::; l , where �i is the center of the

receptive field and �i is the width of the Gaussian function. O�TS.Z/ approximates
��TS.Z/ given by

��TS.Z/C " D �.Z/ (6.35)

where�� is the optimal weight value of RBFNN.
Substituting (6.35) into (6.33), we obtain

PV �
2 � �zT

1K1z1 C zT
1J.x1/z2 C zT

2F.x1; x2/C zT
2Gz3 � zT

2 P̨1
CzT

2G˛2 C zT
2F2.x3/C zT

2 .���TS.Z/� "/ (6.36)

The virtual control law ˛2 is proposed based on the RBFNNs as follows.

˛2 D QC.Z1/Œ P̨1 �K2z2 C O�1.Z1/ � F.x1; x2/� J T.x1/z1� (6.37)

whereQC is defined in (6.24).
Substituting (6.37) into (6.36), we have

PV �
2 � �zT

1K1z1 � zT
2K2z2 C zT

2Gz3 C zT
2F2.x3/C zT

2
Q�TS.Z/� zT

2 " (6.38)

where Q� D O� ���.
Considering the stability of error signals Q�, the augmented Lyapunov function

candidate can be written as

V2 D V �
2 C 1

2
tr. Q�T��1 Q�/ (6.39)

where� D �T > 0.
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The time derivative of V2 along (6.38) is

PV2 � �zT
1K1z1 � zT

2K2z2 C zT
2Gz3 C zT

2F2.x3/C zT
2

Q�TS.Z/� zT
2 "C tr. Q�T��1 PQ�/

(6.40)

Consider the adaptive laws for O� as

PO� D ��.S.Z1/zT
2 C � O�/ (6.41)

where � > 0.
Noting the following facts

� zT
2 " � 1

2
k"k2 C 1

2
kz2k2 (6.42)

2 Q�T O� D k Q�k2 C k O�k2 � k��k2 � k Q�k2 � k��k2 (6.43)

and considering (6.41), we have

PV2 � �zT
1K1z1 � zT

2K2z2 C zT
2Gz3 C zT

2F2.x3/C 1

2
k"k2 C 1

2
kz2k2 � �

2
k Q�k2

C�

2
k��k2 (6.44)

Step 3: Differentiating z3 with respect to time yields

Pz3 D Px3 � P̨2 D �	.x3 � u/� P̨2 (6.45)

Consider the Lyapunov function candidate

V3 D V2 C 1

2
zT
3 z3 (6.46)

Considering (6.45), the time derivative of V3 is given by

PV3 � �zT
1K1z1 � zT

2K2z2 C zT
2Gz3 C zT

2F2.x3/C 1

2
k"k2 C 1

2
kz2k2

��
2

k Q�k2 C �

2
k��k2 � 	zT

3x3 C 	zT
3u � zT

3 P̨2 (6.47)

The control law u is proposed as follows:

u D
(
x3 � 	�1



K3z3 � P̨2 CGTz2 C z3zT

2 F2.x3/

kz3k2
�
; kz3k � "3

0; kz3k < "3
(6.48)

whereK3 D KT
3 > 0 and "3 are the design parameters.
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The above design procedure can be summarized in the following theorem.

Theorem 6.4. Consider the helicopter attitude dynamics (6.13) that satisfy the
Assumptions 6.1–6.2. The robust attitude control is designed according to (6.48)
using neural networks and parameter updated law is chosen as (6.41). For bounded
initial conditions, there exist design parameters � > 0, � D �T > 0, K1 D KT

1 >

0, K2 D KT
2 > 0 and K3 D KT

3 > 0 such that the overall closed-loop control
system is semi-globally stable in the sense that all of the closed-loop signals z1, z2,
z3 and Q� are bounded. Furthermore, the tracking error z1 converges to the compact
set ˝z1 WD ˚

z1 2 R4j kz1k � p
D
�

where D D 2.V3.0/C C
�
/.

Proof. When kz3k � "3, substituting (6.48) into (6.47), we obtain

PV3 � �zT
1K1z1 � zT

2

�
K2 � 1

2
I3�3

�
z2 � zT

3K3z3 C 1

2
k"k2 � �

2
k Q�k2 C �

2
k��k2

� ��V3 C C (6.49)

where

� W D min

�
2	min.K1/; 2	min

�
K2 � 1

2
I3�3

�
; 2	min.K3/;

2�

	max.��1/

�

C W D 1

2
kN"k2 C �

2
k��k2 (6.50)

To ensure that � > 0, the design parameterK2 must makeK2 � 1
2
I3�3 > 0.

Multiplying (6.49) by e�t yields

d

dt

�
V3.t/e�t

 � e�tC (6.51)

Integrating (6.51) over Œ0; t �, we obtain

0 � V3.t/ � C

�
C
�
V3.0/� C

�

�
e��t (6.52)

According to (6.51) and (6.52), we can prove the bounded stability of the closed-
loop system when kz3k � "3. When kz3k < "3, we can also conclude all signals of
the closed-loop system are bounded based on Lemma 6.1 if only appropriate design
parameters K1 and K2 are chosen according to the bounded F2.x3/. Therefore, all
signals of the closed-loop system, i.e., z1, z2, z3 and Q� are uniformly ultimately
bounded. From (6.46), we know that for any given design parameters � , �, K1, K2

and K3 can be used to adjust the closed-loop system performance. This concludes
the proof. ut
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6.5 Approximation-Based Attitude Control of Helicopters

In this section, we consider the case where all moment coefficients and the
helicopter mass are unknown which make the attitude control design of (6.13)
more complicated. Approximation-based control in combination with backstepping
technique is employed to keep the desired attitude of helicopter system (6.13).
Define an auxiliary design variable � D J.x1/x2 and the error variables z1 D
x1 � x1d , z2 D � � ˛1 and z3 D x3 � ˛2, where ˛1 2 R4 and ˛2 2 R4 are
virtual control laws. It is apparent that x2 ! 0 if � ! 0 due to the non-singularity
of J.x1/.

Step 1: Differentiating z1 in (6.13) with respect to time yields

Pz1 D Px1 � Px1d D � � Px1d D z2 C ˛1 � Px1d (6.53)

The virtual control law ˛1 is chosen as

˛1 D �K1z1 C Px1d (6.54)

whereK1 D KT
1 > 0.

Substituting (6.54) into (6.53), we obtain

Pz1 D �K1z1 C z2 (6.55)

Consider the Lyapunov function candidate V1 D 1
2
zT
1 z1. The time derivative of V1 is

PV1 D �zT
1K1z1 C zT

1 z2 (6.56)

Step 2: Differentiating z2 with respect to time yields

Pz2 D P� � P̨1 D PJ .x1/x2 C J.x1/ Px2 � P̨1
D PJ .x1/x2 C J.x1/F.x1; x2/C J.x1/Gx3 C J.x1/F1.x1; x2/

CJ.x1/F2.x3/C J.x1/D.x1; x2; t/ � P̨1 (6.57)

where P̨1 D Rx1d �K1Pz1.
Consider the Lyapunov function candidate

V �
2 D V1 C 1

2
zT
2 z2 (6.58)

Due to (6.57) and Assumption 6.1, the time derivative of V �
2 is given by

PV �
2 � �zT

1K1z1 C zT
1 z2 C zT

2J.x1/F2.x3/� zT
2 �1.Z1/� zT

2 �2.Z2/˛2

�zT
2 �2.Z2/z3 � zT

2 P̨1 (6.59)
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where �1.Z1/ D � PJ .x1/x2 � J.x1/F.x1; x2/� J.x1/F1.x1; x2/� J.x1/Sgn.�2/
.h.x1; x2/ C Nn/, �2.Z2/ D �J.x1/G, Z1 D ŒxT

1 ; x
T
2 ; ˛

T
1 � , Z2 D x1, Sgn.�2/ WD

diagfsgn.�2j /g, �2 D zT
2J.x1/, h.x1; x2/ WD Œh1.x1; x2/; h2.x1; x2/; h3.x1; x2/; h4.x1,

x2/�
T, and Nn D Œ Nn1; Nn2; Nn3; Nn4�T, j D 1; 2; 3; 4. Since F.x1; x2/ and G are all

unknown, the previous proposed robust attitude control cannot be implemented. To
overcome this problem, we utilize the RBFNNs in [90] to approximate the unknown
terms �1.Z1/ and �2.Z2/ as

O�1.Z1/ D O�T
1 S1.Z1/ (6.60)

O�2.Z2/ D O�T
2 S2.Z2/ (6.61)

where O�i are the approximation parameters, and Si.Zi / represents the basis
functions, i D 1; 2. The optimal approximation��T

i Si .Zi / is given by

��T
1 S1.Z1/C "1 D �1.Z1/ (6.62)

��T
2 S2.Z2/C "2 D �2.Z2/ (6.63)

where ��
i are optimal weight values of RBFNNs and "i is the approximation error

satisfying j"i j � N"i with constant N"i > 0, i D 1; 2.
Substituting (6.62) and (6.63) into (6.59), we obtain

PV �
2 � �zT

1K1z1 C zT
1 z2 C zT

2J.x1/F2.x3/C zT
2

Q�T
1 S1.Z1/ � zT

2 "1

CzT
2

Q�T
2 S2.Z2/˛2 � zT

2 "2˛2 � zT
2

O�T
1 S1.Z1/� zT

2
O�T
2 S2.Z1/˛2

�zT
2 �2.Z1/z3 � zT

2 P̨1 (6.64)

where Q�1 D O�1 ���
1 and Q�2 D O�2 ���

2 .
The virtual control law ˛2 is proposed based on the NNs as follows.

˛2 D O�C
2 .Z2/ŒK2z2 � P̨1 � O�1.Z1/C z1� (6.65)

where

˛20 D K2z2 � P̨1 � O�1.Z1/C z1 (6.66)

O�C
2 .Z2/ D O�T

2 .Z2/ŒıI4�4 C O�2.Z2/ O�T
2 .Z2/�

�1 (6.67)

hereinK2 D KT
2 > 0 and ı > 0 are design parameters.

It is clear that we have

O�2.Z2/ O�T
2 .Z2/ŒıI3�3 C O�2.Z2/ O�T

2 .Z2/�
�1 D I � ıŒıI4�4 C O�2.Z2/ O�T

2 .Z2/�
�1
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Substituting (6.65) and (6.68) into (6.64), we have

PV �
2 � �zT

1K1z1 � zT
2K2z2 C zT

2
Q�T
1 S1.Z1/� zT

2"1 C zT
2

Q�T
2 S2.Z2/˛2

�zT
2 "2˛2 C ızT

2 ŒıI4�4 C O�2.Z2/ O�T
2 .Z2/�

�1˛20 � zT
2 �2.Z2/z3

CzT
2 J.x1/F2.x3/ (6.68)

Considering the stability of error signals Q�1 and Q�2, the augmented Lyapunov
function candidate can be written as

V2 D V �
2 C 1

2
tr. Q�T

1�
�1
1

Q�1/C 1

2
tr. Q�T

2 �
�1
2

Q�2/ (6.69)

where�1 D �T
1 > 0 and �2 D �T

2 > 0.
The time derivative of V2 along (6.68) is

PV2 � �zT
1K1z1 � zT

2K2z2 C zT
2J.x1/F2.x3/C zT

2
Q�T
1 S1.Z1/� zT

2 "1

CzT
2

Q�T
2 S2.Z2/˛2 � zT

2 "2˛2 C ızT
2 ŒıI4�4 C O�2.Z2/ O�T

2 .Z2/�
�1˛20

�zT
2 �2.Z2/z3 C tr. Q�T

1 �
�1
1

PQ�1/C tr. Q�T
2 �

�1
2

PQ�2/ (6.70)

Consider the adaptive laws for O�1 and O�2 as

PO�1 D ��1.S1.Z1/z
T
2 C �1 O�1/ (6.71)

PO�2 D ��2.S2.Z1/˛2z
T
2 C �2 O�2/ (6.72)

where �1 > 0 and �2 > 0.
Noting the following facts

�zT
2 "1 � 1

2
k"1k2 C 1

2
kz2k2 (6.73)

�zT
2 "2˛2 � 1

2
k"2k2 C 1

2
kz2k2k˛2k2 (6.74)

2 Q�T
1

O�1 D k Q�1k2 C k O�1k2 � k��
1 k2 � k Q�1k2 � k��

1 k2 (6.75)

2 Q�T
2

O�2 D k Q�2k2 C k O�2k2 � k��
2 k2 � k Q�2k2 � k��

2 k2 (6.76)

and considering (6.71) and (6.72), we have

PV2 � �zT
1K1z1 � zT

2K2z2 C zT
2J.x1/F2.x3/C 1

2
k"1k2 C 1

2
kz2k2 C 1

2
k"2k2

C1

2
kz2k2k˛2k2 C ızT

2 ŒıI4�4 C O�2.Z2/ O�T
2 .Z2/�

�1˛20 � zT
2 �2.Z2/z3

��1
2

k Q�1k2 C �1

2
k��

1 k2 � �2

2
k Q�2k2 C �2

2
k��

2 k2 (6.77)
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Step 3: Differentiating z3 with respect to time yields

Pz3 D Px3 � P̨2 D �	.x3 � u/� P̨2 (6.78)

Consider the Lyapunov function candidate

V �
3 D V2 C 1

2
zT
3 z3 (6.79)

Considering (6.78), the time derivative of V �
3 is

PV �
3 � �zT

1K1z1 � zT
2K2z2 C zT

2J.x1/F2.x3/C 1

2
k"1k2 C 1

2
kz2k2 C 1

2
k"2k2

C1

2
kz2k2k˛2k2 C ızT

2 ŒıI4�4 C O�2.Z1/ O�T
2 .Z1/�

�1˛20 � zT
2 �2.Z1/z3

��1
2

k Q�1k2 C �1

2
k��

1 k2 � �2

2
k Q�2k2 C �2

2
k��

2 k2 � 	zT
3x3 C 	zT

3u

�zT
3 P̨2 (6.80)

From (6.14), we know that F2.x3/ is unknown due to the unknown moment
coefficients. Thus, it cannot be used to design the attitude control. To conveniently
develop the approximation-based attitude control, the following variables are given:

N�2 D Œ�22; �23; �24�
T (6.81)

NF2.x3/ D Œf22.x3/; f23.x3/; f24.x3/�
T (6.82)

where �2i is the i th row of vector zT
2R.x1/.

Considering (6.81) and (6.82), (6.80) can be written as

PV �
3 � �zT

1K1z1 � zT
2K2z2 C �21f31.x3/C &T

2 ' C 1

2
k"1k2 C 1

2
kz2k2 C 1

2
k"2k2

C1

2
kz2k2k˛2k2 C ızT

2 ŒıI4�4 C O�2.Z1/ O�T
2 .Z1/�

�1˛20 � zT
2 �2.Z1/z3

��1
2

k Q�1k2 C �1

2
k��

1 k2 � �2

2
k Q�2k2 C �2

2
k��

2 k2 � 	zT
3x3 C 	zT

3u

�zT
3 P̨2 (6.83)

where & D Œ�22f32; �22f34 C �24f32; �23f34; �24f34�
T and ' D Œc3; c4; c7; c9�

T.
The approximation-based attitude control u is proposed as follows based on

the NNs.

u D
�

u0; kz3k � "3
0; kz3k < "3 (6.84)
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where u0 D x3 � 	�1.ızT
2 ŒıI4�4C O�2.Z1/ O�T

2 .Z1/�
�1˛20C�21f31.x3/C&T

2 O'Ckz2k2C 1
2 kz2k2k˛2k2/

kz3k2 z3 �
	�1.K3z3 C 2�kz2k2z3 C 1

2
kz2k2z3 C P̨2 C O�T

2 .Z1/z2/, K3 D KT
3 > 0, "3 > 0 and

� > 0 are design parameters.
Substituting (6.84) into (6.83), we obtain

PV �
3 � �zT

1K1z1 � zT
2K2z2 � zT

3K3z3 � &T
2 Q' C 1

2
k"1k2 C 1

2
k"2k2

�2�kz2k2kz3k2 � 1

2
kz2k2kz3k2 � zT

2
Q�T
2 S2.Z1/z3 � zT

2 "2z3 � 1

2
kz2k2

��1
2

k Q�1k2 C �1

2
k��

1 k2 � �2

2
k Q�2k2 C �2

2
k��

2 k2 (6.85)

where Q' D O' � '.
To achieve stability for error signals Q', the augmented Lyapunov function

candidate can be chosen as

V3 D V �
3 C 1

2
Q'T��1

3 Q' (6.86)

where�3 D �T
3 > 0.

Consider the adaptive law for O' as

PO' D �3.&2 � �3 O'/ (6.87)

where �3 > 0.
Considering (6.87), the time derivative of V3 along (6.85) is

PV �
3 � �zT

1K1z1 � zT
2K2z2 � zT

3K3z3 C 1

2
k"1k2 C 1

2
k"2k2

�2�kz2k2kz3k2 � 1

2
kz2k2kz3k2 � zT

2
Q�T
2 S2.Z1/z3 � zT

2 "2z3 � 1

2
kz2k2

��1
2

k Q�1k2 C �1

2
k��

1 k2 � �2

2
k Q�2k2 C �2

2
k��

2 k2 � �3

2
k Q'k2 C �3

2
k'k2

(6.88)

It is apparent that the following facts

� zT
2

Q�T
2 S2.Z1/z3 � �kz2kk Q�2kkz3k � 2�kz2k2kz3k2 C �k Q�2k2

2
(6.89)

�zT
2 "2z3 � kz2kk"2kkz3k � 1

2
k"2k2 C 1

2
kz2k2kz3k2 (6.90)
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hold, where � > 0.
Substituting (6.89) and (6.90) into (6.88) yields

PV3 � �zT
1K1z1 � zT

2K2z2 � zT
3K3z3 C 1

2
k"1k2 C k"2k2 � �1

2
k Q�1k2 C �1

2
k��

1 k2

��2 � �
2

k Q�2k2 C �2

2
k��

2 k2 � �3

2
k Q'k2 C �3

2
k'k2

� ��V3 C C (6.91)

where

� W D min

�
2	min.K1/; 2	min.K2/; 2	min.K3/;

2�1

	max.�
�1
1 /

;
�2 � �

	max.�
�1
2 /

;

2�3

	max.�
�1
3 /

�
(6.92)

C W D 1

2
kN"1k2 C kN"2k2 C �1

2
k��

1 k2 C �2

2
k��

2 k2 C �3

2
k'k2 (6.93)

To ensure that � > 0, the design parameter �2 and � must make �2 � � > 0. The
above design procedure can be summarized in the following theorem.

Theorem 6.5. Consider the helicopter attitude dynamics (6.2) with unknown mo-
ment coefficients and mass, model uncertainty and disturbance satisfy assumptions
6.1–6.2. The approximation-based flight control is proposed according to (6.84)
using neural networks and parameter updated laws as chosen in (6.71), (6.72)
and (6.87). For bounded initial conditions, there exist design parameters �i > 0,
i D 1; 2; 3, � , �1 D �T

1 > 0, �2 D �T
2 > 0, �3 D �T

3 > 0, K1 D KT
1 > 0,

K2 D KT
2 > 0 and K3 D KT

3 > 0 such that the overall closed-loop control system
is semi-globally stable in the sense that all of the closed-loop signals z1, z2, z3, Q�1,Q�2 and Q' are bounded.

Proof. The proof is similar to that of Theorem 6.4 and is omitted here. ut
Remark 6.6. In the proposed approximation-based flight control of the helicopter,
from (6.91) and (6.92), we can see that satisfactory closed-loop stability with
suitable transient performance can be achieved by properly adjusting design pa-
rameters Ki , �i , �i , and � , i D 1; 2; 3. For example, the tracking error could be
decreased by increasing the value of Ki , but that increase would also increase the
control signal as in (6.54), (6.65), (6.84), and could excite unmodeled dynamics.
Therefore, caution must be exercised in the choice of these parameters, due to
the fact that there are some trade-offs between the control performance and other
issues.
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6.6 Simulation Results

In this section, extensive simulations are given to demonstrate the effectiveness of
the proposed helicopter attitude control techniques. The APID MK-III helicopter
model is used in our simulation, which is described by [6, 46]

Rz D 1

m
.Zg �KM˝

2�M cos� cos �/

R� D �a P� C dKM˝
2b1s�M

R� D �b P� � eKM˝
2a1s�M

R D �c P C f .�T C  T/

Pb1s D �	.b1s � ub1s /

Pa1s D �	.a1s � ua1s /

P�M D �	.�M � u�M/

P�T D �	.�T � u�T/ (6.94)

It is apparent that the dynamics of the APID MK-III helicopter shown in (6.94) have
the same form of the model (6.1) if we neglect the flapping dynamics and engine
dynamics. The helicopter’s nominal parameters are shown in Table 6.1.
In this simulation, the control objective is to keep a certain desired altitude/attitude
of the helicopter. In Sects. 6.6.1 and 6.6.2, we test the proposed flight control on the
desired maneuver requiring aggressive attitude configurations and suppose that the
desired altitude/attitude is x1d D Œ20; 0:2 sin.1:5t/ C 0:5 cos.0:5t/; 0:4.sin.t/ C
0:5 sin.0:5t//; 0:1 sin.1:5t/ C 0:4 cos.0:5t/�T. Initial states z D 15:0, � D 0:2,
� D �0:1,  D 0:1, b1s D 0:0, a1s D 0:0, �M D 0:0 and �T D 0:0.
In Sect. 6.6.3, the hovering flight is used to illustrate the effectiveness of the
proposed approximation-based attitude control. In all cases, the saturation values
of the command control signals are chosen as jub1s j D jua1s j D 1:8 and ju�M j D
ju�Tj D 1:0. The control gain matrix G and design matrix W are chosen as
follows:

G D

2
664

100 100 �1703:4=m 0

223:5824 0 223:5824 0

0 �58:3258 �58:3258 0

0 0 0 31:9065

3
775 ;W D

2
664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
775

Table 6.1 Parameters of the helicopter

m D 50 kg, a D 8:7072, b D 10:1815, c D 0:434, KM˝
2 D 1703:4,

dKM˝
2 D 223:5824, eKM˝

2 D 58:3528, f D 31:9065, 	 D 300
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Table 6.2 Design parameters of the model-based attitude control

K1 D diagf2; 2; 2; 2g, K2 D diagf100; 100; 100; 100g, K3 D diagf300; 300; 300; 300g
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Fig. 6.1 Altitude/attitude tracking performance using the model-based control

6.6.1 Model-Based Attitude Control

In this subsection, the model-based attitude control is designed according to (6.29).
The control design parameters are shown in Table 6.2.

Under the proposed model-based attitude control, it can be observed from
Fig. 6.1 that the maneuver altitude/attitude of the helicopter can be maintained
within a small envelop of the desired altitude/attitude. From Fig. 6.2, we know
that the velocity along z axis and angular velocity under the model-based control
converge to a small neighborhood of the origin. Figure 6.3 shows that the command
control signals are saturated within the limits of the actuators. There exists chattering
phenomenon in Figs. 6.2 and 6.3 which are caused by the discontinuous control
input and the maneuver flight.
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Fig. 6.2 Velocity along z axis and angular velocity signals using the model-based control
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Fig. 6.4 Altitude/attitude signals using the robust control with disturbance and uncertainty

6.6.2 Robust Attitude Control

To improve the robustness of the attitude control, the robust attitude control
of helicopters using neural networks is designed according to (6.48) and the
adaptation law is presented as (6.41) in this subsection. In this simulation, we
consider the parameter uncertainties, function uncertainties and external disturbance
in helicopter dynamics (6.94). Consider that the helicopter has 10% mass (m)
uncertainty and 20% system parameter .a; b; c/ uncertainties. At the same time,
the function uncertainties and external disturbance are give by

F1 D 5:25.0:3 sin.0:6Pz P�/C 0:04 cos.0:3t/C 0:06 sin.1:5t//C 0:5CdAcV
2

W

F2 D 4:5.0:2 sin.0:5 P� P�/C 0:05 sin.1:5t/C 0:05 sin.0:8t//

F3 D 9:5.0:2 sin.0:6 P P�/C 0:04 sin.0:45t/C 0:06 sin.1:9t//

F4 D 9:45.0:3 sin.0:5 P Pz/C 0:06 sin.0:5t/C 0:04 sin.1:8t// (6.95)

where Ac D 4
R2c . Ac is the area of the cabin in each direction, Cd is a given drag
coefficient and VW is the wind speed. Here, we choose wind speed VW D 10m=s.
The robust control design parameters are chosen as in Table 6.2.

The simulation results under the robust attitude control (6.41) are given in
Figs. 6.4–6.6. It can be observed from Fig. 6.4 that the altitude/attitude of the
helicopter can also be maintained within a small envelop of the desired maneuver
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Fig. 6.5 Velocity along z axis and angular velocity signals using the robust attitude control with
disturbance and uncertainty

altitude/attitude with the uncertainties and disturbances. From Fig. 6.5, the velocity
along z axis and angular velocity with the uncertainties and disturbances can
converge to a compact set. Figure 6.6 shows that the command control signals are
saturated within the limits of the actuators.

6.6.3 Approximation-Based Attitude Control

In this subsection, the approximation-based attitude control is designed according
to (6.84). In the approximation-based attitude control, we would like to highlight
that parametric uncertainties may exist in the helicopter model. All helicopter
moment coefficients and helicopter mass are completely unknown. At the same
time, the function uncertainties and external disturbance described in (6.95) are
included. Here, we assume that the helicopter is in hovering flight. Thus, the desired
altitude/attitude is given by x1d D Œ20; 0; 0; 0�T. Initial states z D 15:0, � D 0:01,
� D 0,  D 0:04, b1s D 0:0, a1s D 0:0, �M D 0:0 and �T D 0:0. The saturation
values of the command control signals are the same as aforementioned.
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Fig. 6.6 The command control signals using the robust attitude control

In practice, the selection of the centers and widths of RBF has a great influence on
the performance of the designed controller. According to [90], Gaussian RBFNNs
arranged on a regular lattice on Rn can uniformly approximate sufficiently smooth
functions on closed, bounded subsets. Accordingly, in the following simulation
studies, the centers and widths are chosen on a regular lattice in the respective
compact sets. Specifically, we employ 8 nodes for each input dimension of
OW T
1 S.Z1/ and four nodes for each input dimension of OW T

2 S.Z2/, thus, we end up
with 512 nodes (i.e., l1 D 512) with centers �i (i D 1; 2; :::l1) evenly spaced in
Œ�1:0;C1:0� and widths �i D 2; 000:0 for neural network OW T

1 S.Z1/; and 64 nodes
(i.e., l2 D 64) with centers �j (j D 1; 2; :::l2) evenly spaced in Œ�1:0;C1:0� and
widths �j D 1;000:0 for neural network OW T

2 S.Z2/.
Under the proposed approximation-based attitude control (6.84), we observe

that the hovering flight is stable, i.e., the altitude/attitude of the helicopter can be
maintained within a small envelop of the desired altitude/attitude in Fig. 6.7. From
Fig. 6.8, it can be observed that the line velocity along the z axis and the angular
velocity of the hovering flight converge to a small neighborhood of the origin. The
command control signals are shown in Fig. 6.9.
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Fig. 6.7 Altitude/attitude signals using approximation-based attitude control
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Fig. 6.8 Velocity along z axis and angular velocity signals using approximation-based attitude
control
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Fig. 6.9 The command control signals using approximation-based attitude control

6.7 Conclusion

In this chapter, three control designs have been proposed for attitude control of
helicopters with actuator dynamics. First, the model-based control was presented
for the nominal attitude dynamics. Then, robust attitude control was proposed
for helicopters in the presence of parametric uncertainty, function uncertainty and
unknown disturbance. Considering the unknown moment coefficients and helicopter
mass, approximation-based attitude control has been investigated for helicopters.
Compared with the model-based control, the other two methods can improve the
robustness to the external disturbances and system uncertainties which always
exist in practice. In all proposed attitude control techniques, the MIMO nonlinear
dynamics have been considered and the semi-globally uniform boundedness of the
closed-loop signals have been guaranteed via Lyapunov analysis. Finally, simulation
studies have been provided to illustrate the effectiveness of the proposed attitude
control.



Chapter 7
Kinematic Formation Control Using
Q-structures

7.1 Introduction

Research in multi-agent cooperative systems has been active in recent years,
covering topics in consensus, high level decision making, and low level control
mechanisms [24, 26, 29]. Multiple helicopter cooperation can accomplish complex
tasks such as automated transportation, surveillance, and large area search and
rescue. A fundamental problem in multi-helicopters cooperation is formation
control, the structure in which the helicopters keep a desired formation configuration
and at the same time complete the assigned tasks.

There are four approaches to formation control, namely behavioral [3], virtual
structure [63], queues and artificial potential trenches [26,29], and leader-following
[107], all of which can be applied to multi-helicopter control. Firstly, in the
behavioral approach [3], the control action for each helicopter is derived by a
weighted average of each desired behavior, such as formation keeping, goal seeking
and obstacle avoidance. Secondly, the virtual structure approach [63] treats the
entire formation as a single rigid body, and derives the motion of each agent from
the trajectory of a corresponding point on the structure.

Thirdly, for the queues and artificial potential trenches approach [29], the
formation structures were presented by queues and artificial potential trenches,
of which the explicit representation of every single node is not required and the
scalability of the formation is improved when the team size changes. The original
scheme [29] was extended to improve the performance of the scheme when only
local communication is present, and resulted in a weakly connected network [26].

Last but not the least, in the leader–follower approach [89,107], the leader tracks
a predefined path and the follower maintains a desired geometric configuration
with the leader. The follower can in turn be designated as a leader for another
helicopter resulting in scalability of the formation. The advantage of this approach
is that specifying a single quantity (the leader’s motion) directs the group behavior.
Therefore, it is simple since a reference trajectory is clearly defined by the leader

B. Ren et al., Modeling, Control and Coordination of Helicopter Systems,
DOI 10.1007/978-1-4614-1563-3 7, © Springer Science+Business Media, LLC 2012
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and the internal formation stability is induced by the control laws of individual
helicopters.

Beyond the methods of single-helicopter control detailed in Chaps. 4–6, this
chapter touches on the kinematic formation control of multiple helicopters. This
kinematic control can be viewed as a higher level decision making process that
coordinates individual helicopter actions in order to produce an overall desired
formation. The main purpose of the kinematic controller is to generate a desired
reference plan and/or trajectory for each helicopter in the team, which will then be
fed to the lower level helicopter controllers that take into account the dynamics of
each helicopter. The control laws that govern the dynamics of a specific helicopter
in the multi-agent system will be considered to be based on control strategies similar
to those presented in earlier chapters of this book.

The kinematic control is based on the concept of a Q-structure, a novel and
flexible methodology to define and support a large variety of formations. The
Q-structure allows automatic scaling of formations according to changes in the
overall size of the helicopter team. The chapter begins by exploring the use of the
Q-structure for formation control where perfect communication is present between
all members of the team. The second part of the chapter focuses on how the
Q-structure can be adapted and used for teams where communication is imperfect.

7.2 Q-Structures and Formations

7.2.1 Assumptions

The following assumptions are made:

Assumption 1. Each helicopter is equipped with wireless broadcasting abilities.
This enables the helicopter to broadcast information about itself to others within the
broadcast range. The reaction of the team to failure of communication links to some
of its members is described in Sects. 7.3.1 and 7.4.

Assumption 2. The team follows a single target (either virtual or real), and the
position qt , velocity vt and topside orientation vector �t of the target are known,
with kvtk < vmax, where vmax is the maximum velocity of each helicopter.1 The unit
vector �t is normal to the top surface of the target, and together with vt specifies
the overall orientation of the target in the 3-Dimensional space. This is shown in
Fig. 7.1.

Assumption 3. A helicopter ri is able to localize itself, hence obtaining its
position qi . It can also estimate the values of vi and �i in the world coordinate
system. The various vectors are shown in Fig. 7.1.

1For this chapter, we shall be working in the R
3-space.
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Fig. 7.1 Vectors qi , vi and
�i of ri in the world
coordinate system

A formation FN can be viewed as a set of constraints on the positions of
each helicopter in relation to others in the team, such that each formation has a
specific appearance. In conventional graphical notation, the constraints come in
the form of nodes and edges in a connectivity graph (for instance in [69, 70]),
where nodes represent the location of each helicopter and the edges represent the
presence of communication links between helicopters. Consider an undirected graph
GF D .Vg; Eg/ 2 GN , where GN is the space containing all possible graphs that
can be formed from the set of N vertices, given by Vg . Let the set of locations of all
of the N helicopters at any time t be represented by

LT .t/ D fq1.t/; q2.t/; : : : ; qN .t/g 2 CN (7.1)

where CN is the configuration space of the team as a whole. Define a function ˚c W
CN ! GN to give

Gc.t/ D ˚c.LT .t// D � fq1.t/; : : : ; qN .t/g ; (7.2)
˚
.qi ; qj /ji ¤ j and kqi � qj k � dij

� 
(7.3)

with dij being the cut-off distance beyond which there will not be communications
between helicopters ri and rj .

In a graphical representation, with converging formation controls/protocols

Gc.t/ ! FN D Gc;d ; as t ! 1 (7.4)

where Gc;d is the connectivity graph of the desired formation. A general collec-
tion of helicopters in different (non-overlapping) positions does not constitute a
formation.2 It is also assumed thatGc;d is weakly connected, althoughGc.t/ can be
disconnected. In [99], it was shown that the stability of agent flocks with a switching
communication network can be maintained as long as the flock remains connected.
It has also been shown (e.g., in [20]) that stability and convergence can still be

2This distinguishes formations from flocking/swarming.
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achieved in systems that sometimes become disconnected, if there is a common
objective. It is the latter case that is considered here, with the common objective
being the desired formation FN that can either be stationary or moving along a
desired path.

7.2.2 Division of Information Flow

Information flow is separated into slow and fast time scales. The control of the
formation takes place on these two levels based on the information available on
each time scale. This reduces the amount of information that must be available to
each helicopter for reactive decision making.

1. Fast-time scale: This facilitates time critical and reactive decision making,
such as inter-helicopter collision avoidance and getting into formation. It only
involves local communications between helicopters with limited communication
range. Explicit controls governing the actual movements and paths of the
helicopters occur at this level. Such decisions take place at a higher frequency
when information is available.

2. Slow-time scale: This refers to the gradual multi-hop transfer of information,
through a weakly connected communication network, between helicopters that
are not within the immediate vicinity of each other. The collection of information
over a longer time period allows for intermittent information losses between
links. Formation control on this level involves low frequency decisions regarding
the (re)allocation of helicopters to different parts (either vertices or queues) of a
formation.

The interactions between the helicopters are mostly local since the helicopters
respond immediately and reactively to data they obtain from others around them-
selves based on direct communication. This is not equivalent to requiring global
information at all times for all decisions. (Re)Allocation based on long term
information flows occurs at fixed periods. This information might not be the most
current and subjected to time delays. Hence, there is no need for constant global
communications between all helicopters. In addition, while information regarding
out-of-range helicopters may be available, this is not taken into consideration while
making pathing decisions other than for (re)allocation.

7.2.3 Elements of the Q-structure

In practical applications, formations usually take the form of geometric shapes,
which may be conveniently subdivided into a series of smooth line segments. Here,
each of these line segments are referred to as queues. The proportion of all the
Ntot helicopters in the team to be allocated to each queue for each formation is
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pre-specified. This increases the flexibility of formations, which scales according to
changes in Ntot, since proportions are used instead of exact numbers.

Definition 1 (Formations). A formation is denoted by F D .Q;G.Ntot//, where
Q is the set of all the queues that make up the formation,3 and G.Ntot/ represents
the set of formation vertices, Vi .i D 1; : : : ; Nv/,4 around the target.

The positions of the formation vertices may be specified such that they scale
proportionally with Ntot, and thereby avoid having an arbitrarily densely packed
queue. For instance, assuming that V2 D .�4; 5/ in Fig. 7.2a is specified for a team
of Ntot;0 helicopters, V2 may be rewritten as V2 D Ntot

Ntot;0
.�4; 5/. Note that formation

vertices do not uniquely define the appearance of a formation. They merely represent
a minimal number of pertinent locations in a formation and pure examination of the
formation vertices does not yield complete information about what the formation
looks like. As such, two different formations may have the same G.Ntot/. This may
be seen from the two formations in Fig. 7.2. The actual appearance of the formation
is mainly specified by the queues.

Definition 2 (Queues). A queue, Qj 2 Q, is denoted as Qj D .Vj ;Sj ; Cj ; Ej
.Ntot//. The four elements characterizing a queue are described as follows:

(i) Vj � G.Ntot/ (Queue Vertices): a list of formation vertices through which Qj

passes.
(ii) Sj (Shape): a set of points following an equation inR3 that describes the spatial

appearance of Qj , and is specified in the coordinate frame of the first formation
vertex in the list Vj . In general, this can be the equation of a curve in R

3 that
produces a queue like the example shown in Fig. 7.2.

(iii) Cj (Capacity): a fraction that refers to the proportion of all the helicopters in

the formation it can hold, i.e.,
PNq

jD1 Cj D 1, where Nq is the total number of
queues in the formation.

(iv) Ej (Encapsulating Region): the set of all the points within a certain distance,
dec , of the queue. The region is dependent on the number of helicopters that
should reside on the queue, and is hence, related to Ntot.5

Queues may further be classified into closed and open queues. This characteristic
of queues influences the constraints on the shape of the queues.

3Note that when the number of helicopters is too small (i.e. � Nv, the number of formation
vertices), the helicopters will all be located at the vertices, and the scheme becomes highly similar
to strategies using node-to-helicopter formation structures. However, in such a case, the helicopters
are not able to reasonably form up into the desired formation no matter what scheme is used (e.g.
two helicopters trying to form a wedge formation).
4Each formation vertex is represented by its position relative to the coordinate frame of the target.
5In a way, Ej provides a wrap around each queue, and when the formation reaches its intended
form, all helicopters should rightly be within the encapsulating region of their respective queues.
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Fig. 7.2 Examples of queues, and formation vertices (circles), where xt and yt are the axes of the
coordinate frame of the target centered at V1. Open queues are drawn with solid (and dashed) lines,
indicating that they extend indefinitely from the vertex. (a) Queues and vertices. (b) Helicopters
(black triangles) entering their queues on a 2-D plane. (c) and (d) Queues and vertices in 3D space,
with three and six queues respectively

Definition 3 (Closed Queues). Closed queues are those that have two formation
vertices in Vj . The curve describing Sj is constrained to pass through the second
vertex in Vj (e.g., Q1 in Fig. 7.2a). As the formation reaches steady state, all
helicopters residing on a closed queue Qj will be on the part of Qj that are between
the two vertices.

Definition 4 (Open Queues). Open queues are able to extend to infinity starting
from the formation vertex in Vj , and where jVj j D 1.

Many commonly used formations, such as the wedge and line formations, involve
open queues. Formations such as the diamond and circle, consist of closed queues.
Figure 7.2a shows an arbitrary formation that consists of five queues together with
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the corresponding queue capacities, in the coordinates of the target. The formation
vertices (circles, labeled V1 – V3) are also reflected. In the figure, Q2 and Q3 share
the same vertex. Queue 1 is a closed queue (with the set of vertices V1 D fV1; V2g),
starting at V1 and ending at V2, while the rest are classified as open queues. Figure
7.2b shows a formation with three queues, and six helicopters (black triangles)
attracted to the nearest point in their respective queues.

7.2.4 Properties of the Q-structure

The main difference between the proposed approach and other approaches (such
as [17, 20]) is the use of the Q-structure. In the following, we derive the graph
equivalence of the Q-structure, and use it for comparison with conventional con-
nectivity graph representations based on formation consistency and computational
requirements.

7.2.4.1 Graphical Representation of Q-structure

To map the Q-structure into a conventional graph representation, a set of virtual
queue vertices, Vv are added to the set VF .N /, to produce

V˛.N / D VF .N /
[
Vv (7.5)

The virtual Q-vertices are added to impose a limit on the length of queues with only
one queue vertex, which would otherwise stretch to infinity. Therefore, each set of
queue vertices contains a pair of formation vertices

Vj D ˚
Vi ; Vj

�
; where i ¤ j and Vi ; Vj 2 V˛ (7.6)

We then define a function ˚˛ W F ! GN , such that ˚˛.FN / D GF . Specifically,
we have

˚˛.FN / D �V˛.N /;
˚Vj jj D 1; : : : ; Nq

�
(7.7)

Each queue is represented in GF by its two queue vertices, which forms an edge
of the undirected graph. Formations and their graphical representations are shown
in Fig. 7.3. It should be mentioned that these are not connectivity graphs showing
sensing/communication links.

7.2.4.2 Consistency in Formation Representation

The Q-structure results in consistent formation representations, independent of the
helicopter team size. It does not ascribe specific positions for individual helicopters,
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a b

dc

Fig. 7.3 Graphical representation of Q-structures. Dotted circles represent virtual vertices.
(a) A triangular formation, (b) A three column formation, (c) Graphical representation of triangular
formation, (d) Graphical representation of three column formation

and relies on a set of decentralized, self-organizing behaviors to determine the
final position of each helicopter. Typical graphical representations of formations
rely on exact placement of each helicopter to achieve the final appearance of the
formation. Based on graphs defined in [69], the addition or removal of helicopters
in formation maintenance schemes in [17, 85] will result in different formations
and connectivity graphs. Since the appearance of the formation is the important
factor in many applications (such as helicopter convoys or target encirclement),
the Q-structure allows formation specification based on appearance, the reverse
of what graph-based approaches adopt. The consistent representation dispenses
with the additional computation required for the addition/removal of nodes and the
calculation of new inter-helicopter relationships. Figure 7.4 shows the two different
connectivity graph representations of a triangular formation with three and five
helicopters respectively, while the Q-structure for the same formation (Fig. 7.3c)
remains unchanged regardless of team size.
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a bFig. 7.4 The triangular
formation represented using
connectivity graphs. (a)
Teams with three helicopters,
(b) Teams with six
helicopters

7.2.4.3 Formation Decomposition and Computation

The Q-structure allows a formation to be divided into smaller and simpler forma-
tions. Each queue, and its vertices, is a formation, i.e.,

F D ˚Fk j k D 1; 2; : : : ; Nq
�

(7.8)

where Fk D .Qk;Vk/. After the initial allocation phase of helicopters to queues,
short term information required by a helicopter can be limited to those within the
same queue and others in the immediate vicinity. This reduces the communication
load in the system especially for more complex formations.

We measure computational complexity in terms of the frequency at which
a helicopter performs a resource expensive computation (e.g., the “comparison”
-operation), and thus, how the complexity order scales with N . The simplest
method for (re)allocating helicopters to either vertices for graph-representations,
or to queues, is via greedy allocation.

Assuming that greedy assignment is made based on shortest distance, and that the
graph-representation (such as those in [2,76]) contains the same number of vertices
as the number of helicopters, each helicopter compares its distance to N vertices.
Therefore, withN helicopters, the computational complexity isO.N2/. For queues,
each helicopter makes 2Nq comparisons, comparing its distance to the queue and
considers also the current capacity of that queue. This results in complexity of
O.NNq/ where Nq � N . Therefore, the Q-structure would potentially result in
a lower computational cost, by implicitly decomposing a formation and lumping
groups of vertices together.

7.2.4.4 Efficiency and Optimality

As described in the earlier sections, a major difference between the Q-representation
and conventional graph-based ones is the flexibility of the individual positioning
of each helicopter. This property makes room for easy adaptation and scaling of
the formations to changes within a team. However, graph-based representations
(intrinsically) produces constant targets, which renders them much more favorable
for optimizing the convergence process of helicopters into their desired formations,
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in terms of path lengths and minimum distance traveled while avoiding obstacles.
Q-structures are subjected to reactive changes in desired targets as the neighborhood
condition of each helicopter changes, and this can result in longer path lengths
and convergence times. However, the more efficient treatment of the teams’
representations renders the Q-representations more suitable for large helicopter
teams where, in contrast to graph-based approaches, complex computation required
to scale and adapt formations is not necessary.

7.2.4.5 Robustness

Related to the issues of scalability and flexibility described above, the Q-structure
is robust and more adaptable to team changes compared to existing approaches.
Such team changes can encompass helicopter failures which removes subsets of he-
licopters from the team (resulting in scaling down of formations). The remainder of
this chapter examines the adaptation of the system to limitations in communication
ranges, under the assumption that helicopters have formed bidirectional links within
the ad-hoc network. Due to the reactive nature, each helicopter is highly reliant
on neighborhood information when deciding their desired targets. This causes the
system to be relatively more sensitive to short term intermittent communication
losses compared to graph-based approaches that provides constant targets for
each helicopter. What these approaches lack in flexibility, they make up by their
constancy and lower sensitivity of the formation framework to environmental
changes.

7.3 Q-Structure with Perfect Communication

7.3.1 Changing Queues

Each helicopter changes their queue depending on information gathered via the
slow time scale. Let Nj D Nearest Integer.CjNtot/ be the number of helicopters
allowed in Qj , and �i .t/ be the queue status6 of ri at time t . The helicopters are
first randomly initialized such that they belong to one of the queues in the current
formation. A helicopter i in queue j continually broadcasts its (1) distance (dij )
from the first formation vertex in Vj , and (2) queue status, to the other helicopters
within the broadcast range. From the data broadcasted by the other helicopters, the
following information may be derived by each helicopter:

6It may also be interpreted as the information (which may be susceptible to time/ communication
lags) regarding the queue status of ri that another helicopter ri� has at time t .
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1. The current number of helicopters in Qj , given by Nj;0, as well as Ntot.
2. The excess length of each queue in the formation, Ej . Excess length refers to

the number of excess helicopters in the queue, e.g., in a queue with a capacity
of 0.5, the excess length Ej D Nj;0 � 0:5Ntot. A negative value of excess length
means that the queue is not fully filled up.

3. The last member of each queue, defined by the helicopter in the queue that is the
furthest from the corresponding queue vertex.

The queue evaluation process is decentralized and performed individually by
each helicopter continuously over time. At every time step t , the ri currently in
Qj (i.e. �i .t/ D j ) uses the following algorithm, and the most recent information it
obtained from the broadcast channel (which may be subjected to network latencies)
to arrive at a decision of its queue status for step t C 1.

Algorithm 1 Obtaining the queue status
1: for k D 1 to Nq do
2: Determine:

Nk;0 D
NtotX
hD1

�
1; �h.t/ D k

0; otherwise
(7.9)

3: // Any helicopter that lags too far behind the main team (due perhaps to equipment failure)
will eventually move out of the team’s broadcast range and be excluded.

4: end for
5: if Ej � 0 then
6: The current queue is either exactly full (and has no extra helicopters), or still has available

space for more helicopters. No changes will be made to ri ’s queue status.
7: else
8: if ri is the last member of its queue then
9: The queue status will be modified as:

�i .t C 1/ D arg min
k2E�

.`k;i;nr / (7.10)

where E� is the set of all the queues with negative excess length, and `k;i;nr is the
shortest distance between ri and Qk . If more than one queue in E� are equally near
to ri , one will be chosen at random.

10: else
11: ri will retain its current queue status.
12: end if
13: end if

Helicopters in queues with (positive) excess length will move towards the
nearest queue that has negative E . By allowing only the last helicopter in each
overpopulated queue to change their queue status, the formation will not experience
large reshuffling when many helicopters from an overpopulated queue rush to
occupy the extra space in an underpopulated queue. Whenever queue switching
occurs, at least one space in all the underpopulated queues will be filled. In
situations when an underpopulated queue becomes overpopulated due to a high
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influx of helicopters from other queues, the algorithm ensures that only the
extra helicopters (furthest from the queue vertex) switches queue. The number
of helicopters which will potentially change queue will hence be less than that
which had entered the queue. As such, the number of helicopters that are eligible
for changing their queue will gradually decrease until all the queues reach full
capacity.

Remark 1. When helicopters join or leave the team, the values of Ntot and Ej will
change. The algorithm allows the dynamic redistribution of the helicopters amongst
the queues (based on Cj ). This scales the formation accordingly.

7.3.2 Potential Trench Functions

After a helicopter determines the queue it belongs to, it will be influenced by the
artificial potential trench associated with that queue. The artificial potential trench
for each queue may be synthesized with respect to the associated formation vertex
such that it has the shape of the queue. Helicopters in a potential trench will tend to
fall to the bottom of the trench. In other words, these helicopters will be attracted
to the line that describes the bottom of the trench, which, in this case is also the
equation describing the shape .Sj / of the corresponding queue.

Assuming that �i D j , the following analysis is done in the coordinate system
of the first formation vertex (at qvj in the world frame) in the list Vj . The x-axis
(x.vj /) for this coordinate system is taken to be the unit vector of the velocity
vector (Ovt ), and the z-axis, (z.vj /), to be equal to the topside orientation vector �t
of the corresponding formation vertex. This can be seen more clearly from Figs. 7.1
and 7.5b.

In general, let g.vj / define the shape of Qj , which is continuously differentiable
over the range in which the queue exists, and passes through all the formation
vertices in the set VQ. Furthermore, every point on the curve must be at a different
distance from the origin. This ensures that for any point q.vj /;i in R

3, there will be
a point q.vj /;nr on g.vj /.x; y/ that is nearest to q.vj /;i , while maintaining as close a
distance from the origin as possible. This is shown in Figs. 7.6 and 7.7. The point
q.vj /;nr can be obtained from

q.vj /;nr D arg min
qs12Qn

.kqs1k/ (7.11)

whereQn is the set of points on the queue that satisfies

�
arg min

qs2Sj
.`Qj .qs//

�
and

`Qj .qs/ D kqs � q.vj /;ik (7.12)

Note that g.vj / can be any curve that satisfies the conditions listed above and is not
restricted to straight lines.
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a

b

Fig. 7.5 Examples of
queues, and formation
vertices (circles), where xt
and yt are the axes of the
coordinate frame of the target
centered at V1. Open queues
are drawn with solid (and
dashed) lines, indicating that
they extend indefinitely from
the vertex. (a) Queues and
vertices. (b) Helicopters
(black triangles) entering
their queues on a 2-D plane

Let Ucross.d/ be a function that describes the cross section of the potential
trench. The potential trench’s cross section at any point is taken along the vector
q.vj /;i;nr D q.vj /;nr � q.vj /;i . The shortest distance between these two points is given
by `j;i;nr . These are shown in Figs. 7.6 and 7.7. Therefore, a helicopter at q.vj /;i
would be attracted to the nearest point, q.vj /;nr , on the queue, and the attractive
force it experiences may be calculated as

Ffm
.vj /;i D



rdUcross.d/j`j;i;nr

�
Oq.vj /;i;nr (7.13)

Note that the force is represented in the coordinate frame of the first vertex in Vj .
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Fig. 7.6 Forces acting on a helicopter (ri ) when it enters a queue. A helicopter is attracted to
the point on Qj (at q.vj /;nr ) that is nearest to it. Helicopters interacting with queues and potential
trenches

Fig. 7.7 Top view of plane
formed by points A, B and C
for Fig. 7.6

7.3.2.1 Formation Adaptation and Deformation

When an obstacle is detected to be in the direction of Oq.vj /;i;nr , ri is attracted to the
point that is before the obstacle, but still along the vector Oq.vj /;i;nr . This can be seen
more clearly in Fig. 7.8. In this case, the attractive force is modified to become

Ffm
.vj /;i D



rdUcross.d/j`j;i;adp

�
Oq.vj /;i;nr (7.14)
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Helicopter

Helicopter

Obstacle

Fig. 7.8 Instead of the
original queue (that passes
through the obstacle), the
presence of the obstacle
causes the helicopters
(triangles) to be attracted to
the deformed queue that hugs
the obstacle at a distance
of �adp

where `j;i;adp is given by

`j;i;adp D
�

`j;i;nr ; no obstacles in the direction Oq.vj /;i;nr
�ob � �adp; otherwise

(7.15)

and �ob > 0 is the distance along Oq.vj /;i;nr between ri and the obstacle, and �adp >

�sf is the distance the deformed formation is to be from the obstacle, where �sf is a
safety distance between a helicopter and an obstacle.

For the purposes of illustration, consider Q4 in Fig. 7.5a, with the helicopters
moving in R

2. As such, �t D Œ 0 0 1 �T. The cross section of the queue may be
designed to take the form

Ucross.d/ D afmf .d/ (7.16)

where f .d/ D p
1C d2 � 1, and the user defined parameter afm > 0 determines

the slope of the potential trench. This potential function is similar to that used by
Saber and Murray [88]. Forces generated by such potentials have the advantage of
being bounded, and will not approach arbitrarily high values when the helicopter is
far removed from the zero potential point. Attractive potentials in the rest of chapter
will adopt forms similar to f .d/. The differential of f .d/ with respect to scalar d
is given by

f 0.d/ D dp
1C d2

D d

f .d/C 1
(7.17)

The entire potential trench function in the 3Dimensional space, for a D 2, is shown

in Fig. 7.9, with respect to the coordinate space of the vertex V3.
Helicopters belonging to a different queue will be affected by different sets

of potential trenches. The repulsive forces (described in Sect. 7.3.3) between
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Fig. 7.9 3D view of the potential trench function of Q4 in the (x; y)-coordinate space of the
vertex, V3

helicopters will ensure that the helicopters maintain a desired distance between each
other in the potential trench. The force that ri experiences at q.v3/;i , in the coordinate
system of the queue’s vertex, due to the presence of the potential trench is computed
as the negative gradient of the potential. The force is calculated using (7.13) as

Ffm
.v3/;i D afmf

0.`4;i;adp/ Oq.v3/;i;nr (7.18)

with afm as defined in (7.16). The forces may then be converted into the world
coordinate frame, in which all the forces acting on ri are calculated, as follows

Ffm
i D T.w/.v3/F

fm
.v3/;i (7.19)

where
T.w/.v3/ D � Ovt �t ˝ Ovt �t


(7.20)

7.3.3 Helicopter Behaviors

Besides the formation behavior, helicopters should be equipped with other behav-
iors, such as target/goal tracking and obstacle avoidance, to navigate effectively.
The behavior of ri is determined by the vector summation of the formation behavior
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Table 7.1 Parameter values for
simulations

Parameters afm aob atg aig �0 �sf

Value 10 2.5 1.5 2 2.15 m 0.5 m

with the target tracking (Ftg
i ) and obstacle avoidance (Fob

i;.j;k/) behaviors. This may
be written as

Fall
i D Ffm

i C
N�X
jD1

N�X
kD1

Fob
i;.j;k/ C Ftg

i (7.21)

The parameters afm; aob; atg; aig > 0 are user defined and may be set so as to weight
the relative importance of the different behaviors.

7.3.4 Simulation Experiments

Simulations are performed using the Player/ Stage platform [36]. Differential drive
models of helicopters are used for the simulations. Player and Stage allows the user
to set the speed (vi ) and turning rate (!i ) of each differential drive helicopter. Let
�f and �i (in degrees) be the angle of Fall

i and ri in the world coordinate system
respectively. The speed and turning rate is determined with a simple strategy (similar
to that used in the experiment section of [28]) as follows

vi D min
�
KsF

all
i cos

�
0:5.�f � �i /


; vmax


(7.22)

! D !max.�f � �i /=180ı (7.23)

where Ks is a positive constant. For the simulations Ks D 0:1, vmax D 100mm/s,
and !max D 30ı/s. Range sensing information is obtained from 32 sonar beams that
are equally spaced over 360ı. Nine such helicopters are used for the simulations.
The parameters used for the simulations are given in Table 7.1.

For the simulations, the four representative formations: (1) Wedge (One Vertex,
two open queues), (2) Column (One Vertex, one open queue), (3) Double Column
(Two Vertices, two open queues), and (4) Circle (One vertex, two closed queues),
are used. In order to determine the closeness of a team of helicopters to a desired
formation, we use a distance measure, ı, given by

ı D 1

Ntot

NtotX
rD1
.`�i ;i;nr C `�i ;i;E/ (7.24)

where `�i ;i;E is the distance of the helicopter from the nearest point of the
encapsulating area of the queue (Q�i ) it belongs to. The distance, ı, may also be
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viewed as a form of error measure. Note that the distance of helicopters from their
queues is, by itself, unable to provide a good measure of how closely the team
has formed up into the desired formation. This is because helicopters may have
already moved into the potential trench (and `�i ;i;nr will either be zero or very small)
before reaching the vicinity of the formation vertex. As such, the distance from the
respective encapsulating area is used together with `�i ;i;nr .

Remark 2. Four regular formations are used in the simulations. The concept of
the proposed method may also be generalized easily for irregular formations. The
difference is only in how the queues (or positions of nodes for NR-approaches) are
specified for the two classes of formations. The main advantage of the proposed
approach lies in its concise and flexible representation of formations that is
independent of team size. This may be more clearly and adequately brought out
with commonly used formations (e.g., wedge) without the distractions associated
with complicated irregular formations. Consider the case when a team, in a double
column formation, increases from 10 to 30 helicopters. The proposed representation
will always consist of two vertices and two open queues (regardless of team size),
while NR-approaches require 20 nodes to be dynamically added and assigned. This
observation is independent of whether the columns are straight or irregular squiggly
lines.

7.3.4.1 Convergence to Formations and Scaling

The helicopters are initialized to random positions around a stationary target7, and
the value of ı against time as the helicopters settle into each of the four formations
is shown in Fig. 7.10. It may be observed that for the column and double column
formations, the value of ı decays to almost zero when the formation reaches steady
state. On the other hand, for the wedge and circle formations, there is a constant
steady state error of approximately 0.15 m. This is due to interference of the obstacle
avoidance potential with the potential trench of the formation in the area near the
formation vertex, where the helicopters in the two queues are closest to each other.
Hence, the helicopters near the front of each queue are pushed a slight distance
from the queue due to the repulsion from helicopters at the front of the neighboring
queue. Five snapshots of the nine helicopters entering a wedge formation during
the simulation are shown in Fig. 7.11. For the circle formation, there are additional,
but relatively small, interferences between the potentials at the end of both queues.
Due to the presence of uncertainties and imperfection of the position data that each
helicopter obtains, as well as the finite reaction times of the helicopters, we observe

7We note that the initial positions of the helicopters affect the time of convergence. This is certainly
true for any scheme, and is also the case for both moving and stationary targets. The main objective
of the work presented in this Chapter is not to minimize convergence time, but to investigate how
formations may be represented, for greater scalability and flexibility, while achieving convergence
in a realistic amount of time.
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Fig. 7.10 Convergence of team to desired formation. Solid: Wedge, Dashed: Column, Dash-dot:
Double Column, Dotted: Circle
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Fig. 7.11 Snapshots of the team of nine helicopters forming the wedge formation

from the simulations results that the error in the formation never decays to exactly 0.
The resulting average error is approximately 0.1–0.15 m. This is relatively small,
and does not greatly affect the team’s overall formation. The effect of uncertainties
is also evident in the experiments carried out in the following sections.

To examine the effect a sudden reduction in Ntot, for the simulations, at time
t ' 110 s, we remove half of the helicopters. The simulation results are shown in
Fig. 7.12. We observe that for all the four formations, the helicopters are eventually
able to scale the formation and form up accordingly. The wedge formation suffers
the greatest error. This may be due to the fact that the distance between the
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t = 0 s t = 25 s t = 50 s t = 75 s

t = 150 s

a b c d

e

Fig. 7.12 Scaling of formations. Solid: Wedge, Dashed: Column, Dash-dot: Double Column,
Dotted: Circle

helicopters at the end of a queue and the other queue of the wedge is the greatest
compared to the rest of the formations (the two queues diverge from each other as
they extend from the formation vertex). Thus helicopters that switches queues in
response to the reduction in team size will cause a larger initial error. In addition,
we note that for the column formation the error that arises due to a reduction in the
number of helicopters is smallest. This is because there is only one queue, and all
the remaining helicopters are already on the queue. The error mainly results due
to the distance from the encapsulating region, and in moving around the stalled
helicopters.

7.3.4.2 Maneuvers in Confined Spaces

This part of the simulation studies the effect of making turns in confined corridors
on the team’s formation. The adaptation of the formation to travel into narrow
paths is also examined. The team is required to follow a moving target (another
helicopter traveling at a speed of 0:6m/s via a series of waypoints) through a
winding corridor shown in Fig. 7.13. The graphs of ı against time for the column and
wedge formations are shown in Fig. 7.14. To observe the effect of having adaptive
queues (as described in Sect. 7.3.2), another distance measure

ıa D 1

Ntot

NtotX
rD1
.`�i ;i;adp C `�i ;i;E/ (7.25)

is also used, and plotted as dashed lines in the graphs of Fig. 7.14. The distance
measure in (7.25) is essentially the same as that in (7.24), except that it is dependent
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Fig. 7.13 Snapshot of
corridor and waypoints

on the distance of the helicopter from the deformed queue instead of the original
queue. As such, it is an indicator of how close the helicopters are to a deformed
formation. By comparing the solid and dashed lines, we are able to observe the
instances during the team’s traversal through the corridor when the formations adapt
and deform themselves in response to nearby obstacles. The spikes in the graphs
occur when the target (and hence the formation vertex) makes turns around the
corners of the corridor. The turns and the corresponding spikes are numbered in
Figs. 7.13 and 7.14. As expected, milder turns result in lower spikes in the error
graphs. In addition, the wedge formation suffers a greater degree of deformation
since it is laterally more spread out, and there are not enough room for the
helicopters to spread out in most parts of the narrow corridor. Snapshots of the
formations (wedge and column) as the team makes the turn at Point 5 (Fig. 7.13) are
shown in Fig. 7.15.

Next, we examine the manner in which a wedge formation may adapt (and
deform) itself to suit traversal in two corridors of different widths. For the circle
and double column formations, the results are highly similar to that of the wedge.
As for the column, travel through a narrow corridor is trivial. Hence, due to
space constraints, we shall only present the results for the wedge formation here.
The results are shown in Fig. 7.16. For the corridor of width 5m, the degree of
deformation, as can be seen by the difference between the ı and ıa graphs, is smaller
and similar to the case above, where the team travels through the twisting corridor.
The maximum error is ı ' 0:8m at t ' 360 s. For the case when the team moves
through the 3m wide corridor, deformation is more severe, with maximum errors
ı ' 1:4m and ıa ' 1m. Due to the lack of space, it was observed that the formation
was compressed into a column formation as the team moves through the extremely
narrow corridor, although the team is programmed to move in the wedge formation.
A snapshot of the deformed wedge is shown in Fig. 7.17.
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Fig. 7.14 Team Maneuver through a confined corridor Solid: ı, Dashed: ıa . (a) Wedge formation
movement, (b) Column formation movement

7.3.4.3 Reaction of Formations to Obstacles

We examine the effect that the presence of obstacles have on the team formation,
as the team follows a virtual target that moves through two different obstacle fields
with a speed of 0:6m from Point A to Point B as shown in Fig. 7.18. The helicopters
are positioned at random initial positions near Point A.8 The obstacles we consider
here can mainly be classified into: (1) Type I: Large (more than ten times the radius
of each helicopter) and concave and (2) Type II: Small (less than three times of
each helicopter’s radius) and convex. The effect Type I and Type II obstacles have
on the team formation are shown in Fig. 7.19. The wedge formation is used in
this part of the simulation studies. For the environment with Type I obstacles in

8The helicopters are initialized behind the target so that they require less time to get into formation
before encountering any obstacles. This, however, does not detract us from the main objective of
this subsection, which is to examine the effects obstacles have on the team formation.
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Fig. 7.15 Formation
deformation during a turn. (a)
Wedge, (b) Column

Fig. 7.19a, part of the wedge first encounters obstacle OB1, resulting in the first
spike in Fig. 7.19a. The size and shape of the obstacles account for the considerably
large error of ı ' 5:5m and amount of time required by the helicopters to maneuver
around them. Despite this, the instant goal behavior is able to eventually bring
the affected helicopters out of the local minima. Before these helicopters are able
to form back into the formation, those at the right of the formation encounter
obstacle OB2, causing the second spike in the error function. The helicopters are
then able to eventually escape from the local minimums and form back into the
wedge formation. In comparison, Type II obstacles produce a smaller effect on the
formation, causing only a maximum average error of ı ' 0:8m.
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Fig. 7.16 Team Maneuver through a confined corridor. Solid: ı, Dashed: ıa. (a) Movement
through the 5 m wide corridor, (b) Movement through the 3 m wide corridor
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Fig. 7.17 Snapshot of wedge
deformed into a column in a
narrow corridor

7.3.4.4 Disruption of Wireless Communications

It is of interest to study the effectiveness of the proposed scheme in the presence of
noisy or interrupted communications. Communication in simulated agent societies
was studied by MacLennan [65]. Parker [79, 80] investigated how helicopter
awareness of the actions of other team members affect the overall performance
of the helicopter team. For our simulations, each helicopter loses contact with a
random number of team members at random time instants. The double column
formation is used since the formation is simple, and can therefore clearly reflect
what happens (e.g. queue changes) in the event of communication loss. This
formation consists of two open queues, Q1 and Q2, with capacities C1 D C2 D 0:5.
When a helicopter fails to receive a signal from another helicopter, it assumes that
the helicopter is no longer in the team, and performs its calculations for queue
status accordingly. Communication links between pairs of helicopters are disrupted
with equal probability. We examined the errors (ı) associated with the formations
when communications are lost for 5%, 25%, 50%, and 100% of the time, i.e.
with probability (Ptxloss) 0.05, 0.25, 0.5, and 1.0 respectively. When a helicopter
experiences breaks in communication links, varying amounts of information (Iloss)
may be lost. In this section, we study the cases for which the helicopter may lose up
to a maximum of (1) all (Iloss D 1:00), (2) half (Iloss D 0:50), and (3) a quarter
Iloss D 0:25, of the information in the channel. The plots of the errors for the
different frequencies of communication breaks when Iloss D 0:50 are shown in
Fig. 7.20.

The numerous spikes in the graphs reflect the instants when communication links
are lost between at least one pair of helicopters, and the helicopter at the receiving
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Fig. 7.18 Snapshot of
environment with Types I and
II obstacles. (a) Type I
obstacle field, (b) Type II
obstacle field

end of the information decides to change queues. This occurs when this helicopter
detects that it is the last helicopter in its current queue and that the other queue
has negative excess capacity. Therefore, helicopters at the end of both queues have
a relatively higher probability of switching queues due to communication breaks.
For most cases, most of the team continues in formation, with those at the end
of the queues toggling between the queues, and the error ı is mainly the result
of such queue switches. Since all links are not disrupted at the same time, this
decision is broadcasted, and will cause the helicopter in the other queue that is
furthest from the formation vertex to react by changing queues. For Iloss D 0:50

with communication disruptions for 5% of the time, the queue status of the nine
helicopters in the team are shown in Fig. 7.21. From Fig. 7.21, we see that only
helicopters r1, r7 and r8 change their queue status frequently in response to the
breaks in communications. Since the other helicopters are at the front of their
queues, they will still detect another helicopter in its queue that is further from
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Fig. 7.19 Plot of ı vs. time for team traversal through obstacle fields. (a) Type I obstacles, (b) Type
II obstacles
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Fig. 7.20 Plot of ı vs. time for disruption to a maximum of half the communications links

the formation vertex, even if they perceive that there is negative excess capacity in
the other queue. Therefore, the algorithm that governs a helicopter’s decision of its
queue status is able to maintain the formation to a certain extent even in the presence
of some imperfect communications. Similar simulations have also been carried out
for the other combinations of Ptxloss and Iloss. The graphs in Fig. 7.22 show the
number of helicopters involved in frequent toggling between queues for the various
cases, and the average error in the formation over the simulation time interval. As
expected, the extreme failure of helicopters to receive communicated information
causes them to constantly switch between queues, and the formation is unable to
settle into the desired form. When absolutely no information is received over all
times, every helicopter will determine they belong to Q1 (according to Sect. 7.3.1).
As a result, a column formation will form instead of the double column.
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Fig. 7.21 Queue status of the helicopters for Iloss D 0:50, Ptxloss D 0:05

7.4 Q-Structure with Imperfect Communication

As seen from Sect. 7.3.4, over-reliance on inter-robot communication negatively in-
fluences the robustness of the team. The use of Q-structures is therefore augmented
with an additional target determination mechanism that utilizes only information
in the fast time-scale. This allows the system to be robust against limitations in
communication ranges.

7.4.1 Determination of Target on Queue

As opposed to formation representations relying on assigning helicopters to specific
nodes (targets) within a formation, the helicopters using the Queue-based formation
representation do not have fixed targets in their formation. Rather, the helicopters
are only constrained by the queue, and can occupy any position in the queue that
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Fig. 7.22 Effect of different degrees of communication breakdown on the formation. Circle .�/:
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is the most convenient. This section describes an algorithm that each helicopter ri ,
associated with a queue Q.i/ uses for target determination.

The algorithm also governs the distance between helicopters within the same
queue. Compared to the purely reactive scheme in [29], it improves the scaling of
formations through an adaptation of the parameter dir (acceptable inter-helicopter
distance for helicopters on the same queue).

Algorithm 2 Determining target on queue (by helicopter ri )
1: Let Rc;i 2 RN be an ordered set of helicopters (according to increasing Euclidean distance

from VQ.i/.1/) within communication range of ri and belonging to the same queue as ri , i.e.,
belonging to Q.i/.

2: Suppose ri is the n-th helicopter in the list Rc;i .
3: if n=1 then
4: Set qtg;i D VQ.i/.1/.
5: else
6: Let rj 2 Rc;i be the .n� 1/-th helicopter in the list.
7: Set qtg;i D arg min

q2Q
kq �VQ.i/.1/k where Q D fq 2 Q.i/ j kq � qtg;j k D dir and kq�

VQ.i/.1/k > kqtg;j � VQ.i/.1/kg.
8: end if

The algorithm is executed when Rc;i changes. It works by considering the
helicopters within communication range of ri which also belong to the same queue
as ri . The target of ri is set to be a point on Q.i/ and at a distance of dir away
from the target of rj . If ri is the helicopter in Rc;i that is closest to the queue vertex
VQ.i/.1/, its target will be set to be the queue vertex.

The target changes in response to the information it has of other helicopters
within communication range and which are of the same queue. The common objec-
tive (FN , as mentioned in Sect. II) will result in a weakly connected communication
network for each subset of helicopters within the same queue. Although a helicopter
may not be in direct communications with some others within the same queue, the
decisions of preceding helicopters will be reflected/propagated via the decisions
made by others within communication range.

Lemma 7.4.1. Given a set of helicopters and considering only direct communica-
tions between a helicopter and those in its neighborhood, Algorithm 2, together with
the common objective given in the form of the desired formation FN , will result in
constant targets for each helicopter on each queue.

Proof. Let ri and rj be the n-th and .n � 1/-th furthest helicopters in Rc;i from the
queue vertex VQ.i/.1/. According to Algorithm 2, if qtg;j is constant, qtg;i will be
constant too, and at a distance of dir along the queue from qtg;j .

Consider a queue Q� where all helicopters belonging to this queue have
converged into a weakly connected net due to the common objective. Let RQ� D
frq1; rq2; : : : ; rqNq g be this set of Nq helicopters, ordered in ascending order
according to their distance from the queue vertex VQ�.1/. For the set Rc;q1, rq1
will be the closest to the vertex, and from Algorithm 2, its target will be constant
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and locked to qtg;q1 D VQ�.1/. From the argument in the preceding paragraph,
the target of the second helicopter in RQ�, qtg;q2 will be constant because qtg;q1 is
fixed. Therefore, by induction, the target of the n-th helicopter will be fixed and
constant, once the helicopters have converged into a weakly connected net around
their respective queues. ut

7.4.2 Navigation of Helicopters to Positions in Formations

Direct communication between helicopters in each others’ neighborhoods allows
target and position information to be transmitted between these helicopters. At any
time instant, each helicopter will have their targets determined by their position
relative to their related queues as described in Algorithm 2. Upon termination of
Algorithm 2, from Lemma 7.4.1, the targets of each helicopter will become constant
within finite time, and the control laws presented in this section will first bring
each helicopter to converge according to the common objective (queues within
formations) and onto their desired targets.

Consider the following potential function:

U D Utg C Uob (7.26)

that consists mainly of two parts:

1. Utg describes the attractive potentials between the helicopters and their targets,
and may be written as:

Utg D 1

2

NX
iD1

kqi � qtg;ik2 (7.27)

since it is initially assumed that each helicopter’s communications range is large
enough to cover the team.

2. Uob reflects the collision avoidance behavior of the helicopters with their
neighbors. It is chosen such that it is equal to infinity in the presence of
collisions, and is at its minimum value when the helicopters are at their desired
locations. Furthermore, in real life scenarios, the communication range of a
helicopter is often limited to a set of helicopters near it. This can be due to
power constraints and the presence of obstacles and noise. Let a helicopter,
ri , be able to reliably communicate with only Ni helicopters (comprising the
set Ri 2 R). Communication signals that could be received from helicopters
outside this range would be heavily attenuated. Each helicopter treats the
other helicopters within its communications neighborhood as obstacles and
constructs an instantaneous path according to a control law ui . In view of these
considerations, we may choose the function to be
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Uob D
N�1X
iD1

NX
jDiC1

Uob;ij (7.28)

where Uob;ij is a function of Uij and Utg;ij , which are given by

Uij D 1

2
kqi � qjk2 (7.29)

Utg;ij D 1

2
kqtg;i � qtg;j k2 (7.30)

and Uob;ij is chosen such that it exhibits the following properties:

(a) Uob;ij D 1, if Uij D 0

(b) Uob;ij > 0, if Uij ¤ 0

(c) U 0
ob;ij D @Uob;ij

@Uij
D 0, if Uij D Utg;ij

(d) U 00
ob;ij D @2Uob;ij

@U 2ij
� 0, if Uij D Utg;ij

(e) Uob;ij 	 0, if Uij � 0:5d2ij

Based on the above properties, Uob;ij is chosen as

Uob;ij D fij

 
Uij

U 2
tg;ij

C 1

Uij

!
(7.31)

where

fij D 1

1C exp.at .Uij � Utg;ij /3/
(7.32)

where at is a user-defined constant.
At each time instant, each helicopter moves along the negative gradient of the

potential function U . In general, the time derivative of the overall potential function
U in (7.26) is given by

PU D
NX
iD1
.qi � qtg;i /

Tui C
N�1X
iD1

NX
jDiC1

U 0
ob;ij .qi � qj /T.ui � uj /

D
NX
iD1

0
@.qi � qtg;i /

T C
NX
j¤i

U 0
ob;ij q

T
ij

1
A ui

D
NX
iD1

˝T
i ui (7.33)

where qij D qi � qj and˝i is defined as
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˝i D .qi � qtg;i /C
NX
j¤i

U 0
ob;ij qij (7.34)

This implies that a choice of
ui D �C˝i (7.35)

where C 2 R
nw�nwC is a symmetric, positive definite matrix, which is chosen as

C D Inw�nwc where c > 0, will result in

PU D �
NX
iD1

˝T
i C˝i (7.36)

and the closed loop dynamics of a single helicopter ri in the team is then given by

Pqi D �C˝i (7.37)

If the helicopters are at different positions (i.e. non-colliding) at an initial time
t0, and the target of each helicopter is different as well, these conditions may be
written as

kqi .t0/� qj .t0/k � �1 (7.38)

where �1 is a strictly positive constant, andR is the set of helicopters comprising the
team. In addition, Algorithm 2 guarantees that if the condition in (7.38) is satisfied,
the targets for each cycle do not collide, i.e., kqtg;i �qtg;j k � �2; 8i; j 2 R, where
�2 is strictly positive. It is thus desired that, under such conditions, each helicopter
will converge toward their targets, and at the same time avoiding collisions, i.e.

lim
t!1.qi .t/ � qtg;i / D 0

kqi .t/ � qj .t/k � �3; 8i; j 2 R and 8t � t0 � 0

(7.39)

where �3 is a strictly positive number representing the minimum acceptable inter-
helicopter distance.

Theorem 7.4.2. Under the conditions stated in (7.38), the common formation
objective given by FN , and Algorithm 2, the control input to each helicopter, given
in (7.35), will result in the convergence of each helicopter to their desired targets,
such that:

(i) The target at qtg is located at an asymptotically stable equilibrium point of
(7.37), and

(ii) The critical points of the system other than that at qtg are unstable equilibrium
points.
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Proof. The proof is structured into two main parts. It begins with the proof of
non-collision between the agents in the team, followed by the examination of the
system’s behavior around the set of critical points to show that only critical points
coinciding with the location of the desired targets are stable. The latter portion of the
proof is achieved by splitting the critical points into two non-intersecting sets, the
set which, by design, coincides with the set of desired targets, and the set consisting
of all other critical points. The behavior of the system around each of these two
sets are examined. The first set is shown to be stable equilibrium points, while the
second set is shown to be unstable.

To show that there will be no collision between any two agents, (7.36) is
integrated on both sides, from t0 to t , to obtain

Utg.t/C
N�1X
iD1

NX
jDiC1

Uob;ij .t/ � Utg.t0/C
N�1X
iD1

NX
jDiC1

Uob;ij .t0/ (7.40)

where

Utg.t/ D 1

2

NX
iD1

kqi .t/ � qtg;ik2

Uob;ij .t/ D fij .t/

 
Uij .t/

U 2
tg;ij

C 1

Uij .t/

!
(7.41)

From the conditions in (7.38),Uij .t0/ andUtg;ij are strictly larger than some positive
constants. Furthermore, since fij is also bounded (0 < fij < 1), the right hand
side of (7.40) is bounded by some positive constant (the value of which depends
on the initial conditions at t0). Hence, the left hand side is also bounded, which in
turn implies that Uij .t/ must be strictly larger than some positive constant for all
t � t0 � 0. From (7.41), kqi .t/ � qj .t/k will therefore always be larger than some
strictly positive constant, and there will be no collisions. The boundedness of the left
hand side of (7.40) also implies that of kqi .t/k for all t � t0 � 0, and the solutions
of the closed loop system in (7.37) exist.

To prove that the system will converge onto the subset of critical points that
by design coincides with the set of desired targets, we begin by letting the root
sets (critical points) of the system in (7.37) be represented by qe . It consists of
points at q D qtg (due to Property (c) of Uob;ij ) and q D qc (representing
the remaining critical points), where the overall system for the N helicopters is
Pq D �c˝ , with q D ŒqT

1 ; : : : ; q
T
N �

T, ˝ D Œ˝T
1 ; : : : ;˝

T
N �

T, qtg D ŒqT
tg;1; : : : ; q

T
tg;N �

T

and qc D ŒqT
c;1; : : : ; q

T
c;N �

T. The equilibrium points are not separated into stable
and unstable points at the outset before the following analysis, but rather, the
properties of the points which are desired to be stable are examined vs. the rest
of the equilibrium points. By construction, qtg is an equilibrium point, and the main
objective is for this to be stable and for the remaining critical points qc, wherever
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they may be, to be unstable. Furthermore, the targets for each helicopter in the
system is determined by Algorithm 2 and are constant for the time period under
consideration, and the system, by inspection, is Linear-Time-Invariant (LTI). For
the remainder of the proof, the property at Nqtg is examined first, followed by the
properties of Nqc . Linearizing the closed loop system about the equilibrium point qe
gives

Pq D �c @˝
@q

ˇ̌
ˇ̌
qDqe

.q � qe/ (7.42)

where the general gradient of˝ with respect to q is

@˝

@q
D

2
66666666666664

@˝1

@q1

@˝1

@q2
: : : : : :

@˝1

@qN
:::

:::
:::

:::
:::

@˝i

@q1
: : :

@˝i

@qi
: : :

@˝i

@qN
:::

:::
:::

:::
:::

@˝N

@q1
: : : : : : : : :

@˝N

@qN

3
77777777777775

(7.43)

with

@˝i

@qi
D
0
@1C

NX
j¤i

U 0
ob;ij

1
A I C

NX
j¤i

U 00
ob;ij qij q

T
ij (7.44)

@˝i

@qj
D �U 0

ob;ij I � U 00
ob;ij qij q

T
ij (7.45)

At the equilibrium points at qe D qtg, based on the properties ofUob;ij , and letting
qtg;ij D qtg;i � qtg;j , (7.44) and (7.45) become

@˝i

@qi
D I C

NX
j¤i

U 00
ob;ij qtg;ij q

T
tg;ij (7.46)

@˝i

@qj
D �U 00

ob;ij qtg;ij q
T
tg;ij (7.47)

Considering the Lyapunov candidate

Vqtg D 1

2
kq � qtgk2 (7.48)

and using (7.46) and (7.47) we obtain
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PVqtg D �c.q � qtg/
T @˝

@q

ˇ̌
ˇ̌
qDqtg

.q � qtg/ (7.49)

D �c
NX
iD1

NX
jD1

.qi � qtg;i /
T @˝i

@qi
.qj � qtg;j / (7.50)

D �c
NX
iD1

kqi � qtg;ik2 � c
NX
iD1

NX
jD1;j¤i

U 00
ob;ij .q

T
tg;ij .qij � qtg;ij //

2 (7.51)

Since U 00
ob;ij � 0 at q D qtg,

PVqtg � �2cVqtg (7.52)

indicates the equilibrium points at qtg are asymptotically stable.
To show that the remaining critical points of the system, i.e., qc, are unstable

equilibrium points, consider the following.

NqT
c F . Nqc; Nqtg/ D 0 (7.53)

)
N�1X
iD1

NX
jDiC1

�
qT
c;ij .qc;ij � qtg;ij /CN U 0

ob;ij

ˇ̌
ˇ
qij Dqc;ij

qT
c;ij qc;ij

�
D 0

)
N�1X
iD1

NX
jDiC1

�
1CN U 0

ob;ij

ˇ̌
ˇ
qijDqc;ij

�
qT

c;ij qc;ij D
N�1X
iD1

NX
jDiC1

qT
c;ij qtg;ij

(7.54)

where qc;ij D qc;i � qc;j , ˝ij D ˝i �˝j and

Nq D ŒqT
12; q

T
13; : : : ; q

T
ij ; : : : ; q

T
N�1N �T (7.55)

Nqtg D ŒqT
tg;12; q

T
tg;13; : : : ; q

T
tg;ij ; : : : ; q

T
tg;N�1N �T (7.56)

Nqc D ŒqT
c;12; q

T
c;13; : : : ; q

T
c;ij ; : : : ; q

T
c;.N�1/.N /�T (7.57)

F. Nq; Nqtg/ D Œ˝T
12;˝

T
13; : : : ;˝

T
ij ; : : : ;˝

T
N�1N �T (7.58)

Consider the term qT
c;ij qtg;ij and the helicopters i and j . The helicopter j can be

seen as an obstacle situated at qij D 0. Similarly, helicopter i is an obstacle with
respect to j at qj i D 0. At qij D qc;ij , both helicopters are at their critical points.
For this to hold, both critical points must lie along a straight line along the vector
qtg;ij and between qtg;i and qtg;j . That is, the point qij D 0 must lie between the
points qij D qtg;ij and qij D qc;ij , and such that these three points are colinear.

Thus, the term
N�1P
iD1

NP
jDiC1

qT
c;ij qtg;ij is strictly negative and there exists at least one
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pair .i; j / denoted by .i�; j �/ 2 R� such that

1CN U 0
ob;i�j�

ˇ̌
ˇ
qi�j� Dqc;i�j�

� �b (7.59)

where b is a strictly positive constant. For the system under consideration, the
inter-helicopter repulsive forces are dependent on the relative distances between
individual helicopters. For a helicopter i , the other helicopters can be treated as
obstacles, and the equilibrium points are a direct result of the relative positions.
Therefore, instead of considering the function Vc D kq � qck2, the behavior of the
equilibrium points in the system are examined first by considering the Lyapunov
function based on the relative distances (i.e., Nq and Nqc), and the result is then linked
to stability of the points qc in the last part of the proof. Consider the Lyapunov
function candidate

V Nqc D k Nq � Nqck2 (7.60)

whose derivative along the solution of (7.60) gives

PV Nqc D �2c
N�1X
iD1

NX
jDiC1

.qij � qc;ij /
T

�
Inw�nw CN Inw�nw U

0
ob;ij

ˇ̌
ˇ
qijDqc;ij

CN U 00
ob;ij

ˇ̌
ˇ
qij Dqc;ij

qc;ij q
T
c;ij

�
.qij � qc;ij /

� 2cb.qi�j� � qc;i�j�/T.qi�j� � qc;i�j�/� 2c

N�1X
iD1;i¤i�

NX
jDiC1;j¤j�

.qij � qc;ij /
T

�
Inw�nw CN Inw�nw U

0
ob;ij

ˇ̌
ˇ
qij Dqc;ij

�
.qij � qc;ij /

�2c
N�1X
iD1

NX
jDiC1

.qij � qc;ij /
T

�
N U 00

ob;ij

ˇ̌
ˇ
qijDqc;ij

qc;ij q
T
c;ij

�
.qij � qc;ij / (7.61)

Consider a subspace such that qij D qc;ij 8.i; j / 2 f1; : : : ; N g; .i; j / ¤ .i�; j �/
and .qij � qc;ij /

Tqc;ij q
T
c;ij .qij � qc;ij / D 0; 8.i; j / 2 f1; : : : ; N g. In this subspace,

the following holds

V Nqc D
X

.i;j /2R�

kqij � qc;ij k2 (7.62)

PV Nqc � 2bcV Nqc (7.63)

which implies that
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X
.i;j /2R�

kqij .t/ � qc;ijk �
X

.i;j /2R�

kqij .t0/ � qc;ij kebc.t�t0/ (7.64)

where t � t0 � 0. Assume that qc is a stable equilibrium with lim
t!1 kqi .t/� qc;ik D

ai where ai is a positive constant. This further implies that lim
t!1

P
.i;j /2R�

kqij .t/ � qc;ij k D a�, 8.i; i/ 2 R� and a� being a positive constant, which
contradicts the result obtained in (7.64), and qc is an unstable equilibrium point
of the closed loop system. ut
Remark 3. In the above proof of qc being unstable equilibrium points, an exception
occurs when all the helicopters start at positions that coincides exactly with their
critical points at qc (i.e.,

P
.i;j /2R� kqij .t0/ � qc;ij k D 0), in this case qc will be

marginally stable (similar to a linear system where the real part of one or more
eigenvalues equals zero). However, for practical systems that are considered here,
noise and other disturbances will cause

P
.i;j /2R� kqij .t�0 / � qc;ij k ¤ 0 for some

finite t�0 > t0. Therefore instability of qc can be analyzed in the same way as above
with t0 replaced by t�0 .

For a practical implementation, a helicopter ri may only be able to compute an
approximate value of ˝i in (7.34) since it may not receive any information at all
from helicopters outside the communications radius di . The approximation of ˝ is
given by

Ő
i D .qi � qtg;i /C

X
j¤i;j2Ri

U 0
ob;ij qij (7.65)

where Ri is the set of helicopters within the di -neighborhood of ri , and the control
law becomes

POu D �C Ő (7.66)

The approximation error for each helicopter may thus be written as

e˝ D ˝ � Ő
D

X
j¤i;j2Rni

U 0
ob;ij qij (7.67)

where Rni D R n Ri is the set of helicopters that ri cannot communicate with, and
“n” denotes the set subtraction operation. From property (e) of Uob;ij , we know that
for j 2 Rni ,Uob;ij ; Uob;ij 	 0. In addition, assuming that kqij .0/k is bounded, since
the helicopters converge to their targets on the queues and kqtg;ij k is also bounded,
the value of e˝ is bounded by some small positive real value, and the error that
arises due to incomplete information from helicopters out of communication range
can be kept small through the use of fij to weight the importance of repulsive forces
between helicopters. Therefore, for the control law described in (7.34) and (7.35) for
an helicopter i , the use of fij heavily attenuates the contribution of any helicopter
j that is out of range to approximate the control when global communications is
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present, to facilitate practical implementation with limited communication ranges
and scaling.

7.4.3 Simulation Studies

As in the previous section, simulations were conducted using Player and Stage
[103]. The simulated system consists of five circular, omni directional helicopters,
of diameter 0.3 m. Each of these helicopters acts based on commands to their speed,
which in this case is determined by the control input ui in (7.66) with the estimated
Ő
i in (7.65). The parameters at , dir and C are chosen to be 10, 2 and the identity

matrix respectively. It is assumed that each helicopter is able to localize itself in the
global frame. Furthermore, each helicopter is equipped with a laser scanner (180ı)
and 16 sonar range sensors arranged in a ring around the circular helicopters for
obstacle avoidance. The sensor noise introduced into the range sensing has a normal
distribution of 0.2 variance. The communication range of the helicopters is set to
3 m, and there will be connectivity between each helicopter on each queue as they
converge into position as long as dir is set to be less than the communication range.

7.4.3.1 Formation Convergence and Scaling

The first part of the simulations consists of examining the convergence of the
helicopters to a given wedge formation, and how it scales when two helicopters
are removed (deactivated) at t D 10 s. In the final formation, helicopters are to
be a minimum of 2 m from others. The helicopters are initialized at random (non-
colliding) positions in a 20 m�20 m square around the point (10 m,10 m) in the
workspace. Figure 7.23 shows how the distance of the helicopters from their targets
vary over time. The targets evolve according to Algorithm 2.

From the graphs, we can see that the helicopters are able to converge to the
formation in a relatively short time of 6–8 s, and in approximately 3 s after scaling.
Figure 7.24a shows the minimum center-to-center distance that exists between any
two helicopters in the team at each time. It can be seen that the minimum distance
between any two helicopters is always greater than 0.5 m at all times, and hence, no
collisions occur. Figure 7.24b shows the control signals applied by each helicopter
over time. It should be noted that Fig. 7.23 shows the distance of each helicopter
from their target at each time instant. The spikes in the graphs are the result of
changes in the targets for each helicopter (according to Algorithm 2) as they interact
with others within communication range. It can also be noted that these spikes,
however, cease to appear when the helicopters get within communication range of
each other and their targets reach a constant state. This is further evidenced by the
absence of spikes when scaling occurs at t D 10 s, and the helicopters converge to
their new targets. This observation applies also to the subsequent subsections.
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Fig. 7.23 Helicopter convergence to formation with helicopter deactivation/removal at t D 10s

For comparison, the convergence of helicopters using the purely reactive tech-
nique presented in [29], with limited communication ranges between helicopters
and for a wedge formation, is shown in Fig. 7.25. It can be seen that convergence
is adversely affected by limited communication ranges, since the helicopters
frequently reallocate themselves to different queues depending on the helicopters
within their own neighborhoods, which causes constant shuttling between queues.
This is an effect that has been removed by the current proposed scheme.

7.4.3.2 Moving Formations

In order to verify the effectiveness of the proposed method in enforcing formation
maintenance relative to a moving target, simulations are run on the same team
of helicopters with a separate sixth helicopter acting as a moving target. The
formation vertex of the wedge formation is set to be at a distance of 2 m along the
negative x-axis of the target helicopter as shown in Fig. 7.26a. The moving target is
programmed to start moving at time t 	 3 from its initial point at .11:4m; 11:4m/
(such that the initial formation vertex is approximately at .10m; 10m/) at a constant
velocity of Œ 0:2 0:2 �T m/s. The helicopters’ task is to form a straight line formation
(2 m apart from each other) behind the target when it is not moving and to follow it
in a wedge formation when it starts to move. The convergence of the helicopters to
the formation is shown in Fig. 7.26b. It can be observed that when the target begins
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Fig. 7.24 Helicopter separation and control forces. (a) Minimum inter-helicopter separation,
(b) Forces due to potential field
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Fig. 7.25 Distance of helicopters from related queue’s encapsulating area

to move, the line formation that the helicopters are originally in is disrupted as they
attempt to form a wedge. Convergence into the wedge formation is subsequently
observed after approximately 4 s. The minimal inter-helicopter distance and the
control signals are shown in Fig. 7.27.

7.4.3.3 Changing Formations

To further investigate the proposed method when the formation changes, we conduct
similar experiments for the case when the formation changes at predefined times
from a wedge to a column (perpendicular to the orientation of the target), and finally
to a line (parallel to the target’s orientation). The results are shown in Figs. 7.27 and
7.28. We can observe spikes in the graphs at the times when formation changes are
initiated, occurring due to the abrupt change in targets. Furthermore, comparing the
second the third clusters of spikes, it can be seen that, as expected, the transition
from a column to a line is more disruptive compared to the transition from a wedge
to a column, due to the further distances to the new targets. On the whole, the team
requires an average of 4–6 s to transition between formations and settle stably into
the new formation (Fig. 7.29).
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Fig. 7.26 Formation convergence with a moving target. (a) Moving target, the queues and virtual
formation vertex, (b) Helicopter convergence to formation
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Fig. 7.27 Helicopter separation and control forces. (a) Minimum inter-helicopter separation,
(b) Forces due to potential field
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Fig. 7.28 Helicopter convergence to formation with formation switching. Wedge: t D Œ0 s; 15 s/,
Column: t D Œ15 s; 30 s/, Line: t D Œ30 s; 45 s/

7.4.3.4 Discussion

Throughout this section, it is assumed that the helicopters have identical commu-
nication ranges, and that the wireless communication network have bi-directional
links. For the purposes of this work, we are more concerned with link breakdowns,
and therefore assume that as long as a link exists between two helicopters,
intermittent packet losses are handled by wireless transmission protocols and are
hence negligible.

For practical implementation in environments where communication and sensing
can be extremely noisy (such as in highly populated areas where there can be a
large amount of interference from other wifi devices), extreme packet losses can
result in the unintended periodic omission of certain helicopters (which are facing
problematic transmissions) although they may be within each other’s usual sensing
neighborhood. This can result in problems like constantly changing desired targets
with the convergence algorithm which uses neighborhood data to produce the targets
on the queue, that in turn results in constant oscillations between queues and within
positions on queues (e.g., the effect shown in Sect. 7.3.4).

This problem is somewhat abated by the current advances in wireless technology,
especially since the inter-helicopter distances that are considered in helicopter
formations are typically below 10 m, which is well within the threshold of the
commonly used wireless techniques (50–100 m for IEEE 802.11 [58]) where the
quality of service is typically high and reliable.
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Fig. 7.29 Helicopter separation and control forces. (a) Minimum inter-helicopter separation,
(b) Forces due to potential field
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7.5 Conclusion

In this chapter, we examined the properties of Q-structures in relation to other
formation representation schemes, and looked at the ways Q-structures can be
used with artificial potential trenches to improve the scalability of the formations
and support a large number of different formations. In particular, the Q-structure
does not require explicit representation of every single node of the formation and
is able to ensure the formation maintenance of a large number of helicopters.
The formation is also robust against possible communication breakdown and/or
limited wireless communication ranges. Our kinematic control scheme is useful
for formation motion planning to determine the desired motion of the helicopters.
Dynamic formation control using Q-structures is an open and challenging problem
for future investigations.



Chapter 8
Dynamic Altitude Synchronization Using
Graph Theory

8.1 Introduction

The Q-structure proposed in Chap. 7 provides a promising avenue for formation
control of helicopters under a flexible and scalable framework. We presented a
kinematic control scheme that does not consider the dynamics of the helicopters,
and is useful for formation motion planning to determine the desired motion of the
helicopters. Dynamic formation control using Q-structures in which the helicopter
dynamics are directly taken into account in the formation control design can yield
better flight performance, but it is an open and challenging problem. In this chapter,
we take a different approach to solving the dynamic formation control problem, by
combining graph theory with adaptive neural networks.

We focus on the synchronized tracking problem of helicopters in vertical flight,
in which multiple helicopters track the same desired trajectory while the desired
trajectory is not accessible to all the helicopters in the team. The vertical fight mode
starts when the helicopter is at rest on the ground IGE (in ground effect). Then take-
off is started and the helicopter climbs. Vertical descent precedes landing. Since
the coupling between longitudinal and lateral-directional equations in this flight
regime is weak, it can be presented by single-input–single-output (SISO) models
with zero-dynamics to yield useful results [83, 102]. In the formation group, the
desired trajectory is not available to all the helicopters in the team, synchronized
tracking control is designed for each helicopter by using the information exchange
with its neighbors. The main contributions of the work are as follows:

1. The extended formation graph Laplacian, which contains a spanning tree which
the root helicopter can access for the desired trajectory, is proved to be positive
definite.

2. The neural approximation based control is designed for the purpose of syn-
chronized tracking of each helicopter by using the weighted average of its
neighbors’ states. All signals are proved to be bounded and the tracking errors
of all helicopters will converge to a neighborhood of the origin.

B. Ren et al., Modeling, Control and Coordination of Helicopter Systems,
DOI 10.1007/978-1-4614-1563-3 8, © Springer Science+Business Media, LLC 2012
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3. A high gain observer is employed for each helicopter to estimate the unaccessi-
ble derivation of the states of both itself and its neighbors. It is shown that in this
case, the boundness of all the closed-loop signals are guaranteed.

8.2 Problem Formulation

8.2.1 Helicopter Dynamics

Consider the class of SISO helicopter systems described by

Pxj D xjC1; j D 1; : : : ; � � 1
Px� D f .�; x/C g.x; �/.u C d/

P� D q.x; �/

y D x1 (8.1)

where x D Œx1; : : : ; x��
T 2 R

� and � 2 R
n�� are the states of the system, u; y 2 R

the input and output, respectively, f W R
n ! R an unknown smooth function,

and q W R
n ! R is a partially unknown vector field satisfying certain properties,

which will be described shortly, g W R
n ! R is an unknown function with certain

properties, and d is the external disturbance in the input channel.

Assumption 8.1. The zero dynamics of system (8.1), given by P� D q.x; �/, are
exponentially stable. In addition, q.�; �/ is Lipschitz in x, i.e., there exists positive
constants aq and ax such that

kq.x; �/ � q.0; �/k � axkxk C aq 8.x; �/ 2 R
n (8.2)

Under the assumption that the zero dynamics are stable, by the converse Lyapunov
theorem, there exists a Lyapunov function V0.�/ which satisfies the following
Lyapunov inequalities for .x; �/ 2 R

n:

�1k�k2 � V0.�/ � �2k�k (8.3)

@V0

@�
q.0; �/ � �	ak�k2 (8.4)

����
@V0

@�

���� � 	bk�k (8.5)

where �1 , �2, 	a, and 	b are positive constants.
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Assumption 8.2. The external disturbance d is an uncertain bounded function d 2
L1. That is, there exists unknown positive constants % such that jd.t/j � % < 1
where % can be arbitrarily large.

Assumption 8.3. There exist smooth functions Ng.x; �/ and a positive constant g >

0, such that Ng.x; �/ � g.x; �; u/ > g > 0, 8.x; �/ 2 NU . Without loss of generality,

it is further assumed that the sign of g.x; �; u/ is positive 8.x; �/ 2 NU .

Assumption 8.4. There exists a positive function g0.x; �/ satisfying j Pg.x; �/=2g
.x; �/j � g0.x; �/, 8.x; �/ 2 NU .

Remark 8.1. The SISO representation considered in this chapter is valid for simple
operations involving the regulation or tracking of a single degree of freedom, such
as altitude tracking and pitch regulation, among others. The general nonlinear SISO
helicopter model can be described in [48]

Px D f .x; u/

y D h.x/ (8.6)

with some assumptions such as it can be input–output linearizable with strong
relative degree � < n, which can be described as (8.1). In addition, we will show that
the helicopter given in Sect. 4.5.2, which will be used in the subsequent simulation
section, can be changed to (8.1) and satisfies the above assumptions.

8.2.2 Formation Control of Helicopters

We associate the helicopters with nodes in a graph and information exchange with
the graph edges. The Following definitions are useful for describing the formation.

Definition 8.2. [24] A directed graph G0 consists of a non-empty finite set V 0 of
elements called nodes and a finite set E 0 � V 02 of ordered pairs of nodes called arcs,
where e D .vi ; vj / 2 E 0 and vi ; vj 2 V 0. The neighbors set of vertical vi is defined
as N 0

i D fvj 2 V 0j .vj ; vi / 2 E 0g.

For the multiple agents tracking problem, we introduce a virtual agent v0, whose
motion follows the desired trajectory restrictively. And we define a non-empty set
V0 � V 0, in which the elements can access the desired trajectory, i.e., v0 2 Nj ,
iff vj 2 V0. Then the extended formation graph can be described as G D fV ; Eg,
where V D V 0 [ fv0g, and E D E 0 [ f.v0; vj /jv0 2 Nj g. For all agents vj 2 V0,
Nj D N 0

j [ fv0g.

Definition 8.3. The weighted adjacency matrix of the extended formation graph
G, denoted as A�.G/, is a square matrix of size jV j, with its elements A�

ij > 0 if
.vj ; vi / 2 G, and is zero otherwise. Define a diagonal matrix.G/ with its elements
jj D P

k A
�
jk , and the normalized Laplacian of the graph is defined as L D I �A

with A D �1A�.
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Definition 8.4. A spanning tree of a directed graph G0 is a directed tree formed by
graph edges that connect all the nodes of the graph. We say that a graph has (or
contains) a spanning tree if a subset of the edges forms a spanning tree.

Definition 8.5. A substochastic matrix is a square matrix with nonnegative entries
such that every row adds up to at most 1.

Definition 8.6. A directed graph is called weakly connected if there exits a node
which is globally reachable.

Definition 8.7. [92] If matrix L D .`ij / 2 R
.nC1/�.nC1/ satisfies the following

three conditions:

1. j`i i j � P
j¤i j`i;j j; .i D 0; 1; : : : ; n/;

2. J D fk 2 N j j`kkj > Pn
jD1;j¤k j`kj jg ¤ ¿, where N D f0; 1; : : : ; ng, it also

means that there at least exists an i that satisfies j`i i j >Pj¤i j`ij j; and
3. For each i … J there exists a sequence of nonzero elements of L with the form
`i i1 , `i1i2 , : : :, `isk with k 2 J .

Then we say L is a diagonally dominant matrix with nonzero elements chain.

Property 8.8. [92] For a diagonally dominant matrix with nonzero elements chain
L D .`ij /, we have the following properties:

1. L is a nonsingular matrix;
2. If B D I � D�1L, where D D diagf`11; : : : ; `nng, `i i ¤ 0, then �.B/ < 1,

where �.B/ is the spectrum of B; and
3. If L is real and `ij � 0, `i i > 0, then L is an M -matrix.

Theorem 8.9. Consider the multiple agent synchronized tracking problem, if the
formation graph G0 contains a spanning tree with its root vj 2 V0. Then the
normalized adjacent matrix A of the extended formation graph G is sub-stochastic,
and L D I �A is positive definite, which inverse is given by L�1 D P1

lD0 Al .

Proof. By introducing the virtual agent v0, we know that N0 D ¿ in the extended
formation graph G, as it does not accept any other agents’ information and follows
the desired trajectory strictly, and we also know that all the elements of the first row
of A are zero. Since G0 has a spanning tree and vj 2 fV0g is the root, this means that
each agent has at least one neighbor, therefore the sum of any other row of A equals
to 1. According to Definition 8.5, we know that A is a sub-stochastic matrix.

It is clear that all the diagonal elements of L are 1, and all the row sums of A are
1 except the first row, this means L is a diagonal dominant matrix with the J D f0g
(Since the virtual agent is added, we start the row number from 0 corresponding to
the label of agents). Let us revisit that G0 has a spanning tree with vj 2 V0 as the
root, this also means that there is a path from v0 to any agent vi 2 V ; therefore,
in the matrix L, for every element i ¤ 0, there exists a sequence of nonzero
elements form `i i1 ; `i1i2 ; : : : ; `is0. Then L satisfies all the conditions of Definition
8.7. Since L is real and `ij < 0; i ¤ j; `i i D 1, According to Property 8.8, L is a
nonsingularM -matrix [92]. By using Gerschgorin disc theory, we also know that all
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Re1

r = 1

ImFig. 8.1 Eigenvalue
distribution of L D .I � A/

Fig. 8.2 Sample graph and its Laplacian

the eigenvalues of L lie in the right part of the complex plane as shown in Fig. 8.1;
therefore, we can conclude that L is positive definite. Furthermore, it follows from
�.A/ < 1 that liml!1Al D 0. Then,

.I �A/.ICACA2C� � � / D .ICACA2C� � � /�.ACA2CA3C� � � / D I (8.7)

We obtain L�1 D P1
lD0 Al . This completes the proof. ut

Example 8.10. To demonstrate Theorem 8.9 clearly, take the sample graph shown
in Fig. 8.2 for example. Both v1 and v3 can access the desired trajectory and G0
contains a spanning tree with 1 as its root. Take the node 5 for example, we can find
that in the Laplacian matrix L, there exists a sequence `54, `43, `32, `21, `10 ¤ 0.

In this chapter, we studied the synchronized tracking problem of multiple
unmanned helicopters as follows:

Considering a group of helicopters, the desired trajectory of the team yd .t/ and
its derivations up to �-th order are bounded, and are only available to the helicopters
vj 2 V0. For each helicopter, design a control, (1) using its own full states and its
neighbors’ full states and (2) using its outputs and its neighbors’ outputs, such that

lim
t!1 jyi .t/ � yd .t/j D N"; i D 1; : : : ; N (8.8)

where N" is a small positive constant.
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The desired trajectory yd .t/ is generated by the following reference model:

Pxdj D PxdiC1; i D 1; : : : ; � � 1

Pxd� D fd .xd ; t/

yd D xd1 (8.9)

where � � 2 is a constant index, xd D Œxd1; : : : ; xd��
T 2 R

� are the states of the
reference system, and yd 2 R is the system output.

Assumption 8.5. The reference trajectory yd .t/ and its �-th derivatives remain
bounded, i.e., xd 2 ˝d � R

�, 8t � 0.

Assumption 8.6. The formation graph G0 of the helicopter group has a spanning
tree which the root helicopter can access for the desired trajectory.

The following lemma is useful for analysis of the internal dynamics of the
helicopter.

Lemma 8.11. [35] Denote positive constants a1 D .	bax/=	a and a2 D .	baq/=	a.
If Assumptions 8.1 and 8.5 satisfied, there exists a positive constant T0 such that the
trajectories �.t/ of the internal dynamics satisfy

k�k � a1kx.t/k C a2 (8.10)

8.3 Control with Full Information

In this section, we design the tracking control for each helicopter using the
full information of itself and its neighbors. The adaptive NN control scheme is
constructed for the synchronized tracking control. Since not all the helicopters can
access the information of the desired trajectory, the tracking control is designed
based on the relative states with its neighbors. Define the following error variables
for the helicopters:

zi;1 D yi;1 � yir ; zi;2 WD Pzi;1 D xi;2 � Pyir ; : : : ; zi;� WD z.�/i;1 D xi;� � y
.�/
ir

(8.11)

with

yir .t/ D
X
j2Ni

aij yj .t/; y
.k/
ir .t/ D

X
j2Ni

aij y
.k/
j .t/; k D 1; : : : ; � � 1

(8.12)
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where aij is the element of the normalized adjacent matrix A of the extended
formation graph G.

Remark 8.12. In (8.12), we defined that the reference state of each helicopter is the
weighted average of its neighbors’ states. If the helicopter vi can access the desired
trajectory, the virtual agent v0 is viewed as one of its neighbors, and 1 � ai0 > 0.
While considering the pure tracking, we may choose ai0 D 1 for better tracking
performance. In the synchronized tracking problem, if vi has other neighbors vj 2
Ni , we prefer to choose ai0 < 1 for better synchronization with its neighbors.

For each helicopter, we define vectors Nzi , and Zi as

Nzi D Œzi;1; : : : ; zi;��
T 2 R

�

Zi D Œzi;1; : : : ; zi;��1�T 2 R
��1

and the filtered tracking error as

si D Œ�T 1�Nzi (8.13)

where � D Œ	1; 	2; : : : ; 	��1�T is an appropriately chosen coefficient vector so that
zi;� ! 0 as si ! 0, i.e., p��1 C 	��1p��2 C � � � C 	1 is Hurwitz. Then we have

PZi D ApZi C bsi (8.14)

where Ap D

2
6664

0 1 � � � 0
:::

:::
: : :

:::

0 0 : : : 1

�	1 �	2 � � � �	��1

3
7775, and b D Œ0; : : : ; 0„ ƒ‚ …

��2
; 1�T.

The dynamics of si are written as

Psi D fi .xi ; �i /C gi .ui C di/C Œ0 �T�Nzi � y.�/ir (8.15)

Consider the Lyapunov function candidate

Vi D 1

2gi
s2i C 1

2�2
Q�T
i

Q�i C 1

2�1
Q'2i (8.16)

where Q�i D O�i � ��
i , and Q'i D O' � '�

i are the estimated errors of parameters and
the error bounded, respectively.
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Then,

PVi D � Pgi
2g2i

s2i C 1

gi
si Psi C 1

�2
Q�i PQ�i C 1

�1
Q'i PQ'i

D �
�
g0 C Pgi

2g2i

�
s2i C si .ui C di/C si

fi .xi ; �i /C Œ0 �T�Nzi � y.�/ir C gig0si

gi

C 1

�2
Q�i PQ�i C 1

�1
Q'i PQ'i (8.17)

We use the parameter linearized NN to approximate the unknown nonlinear function
Nfi .xi ; �i ; Nzi ; y.�/ir / D fi .xi ;�i /CŒ0 �T�Nzi�y.�/ir Cgig0si

gi
, which can be described as

Nfi .Zi / D ��T
i 'i .Zi /C N"i (8.18)

where Zi D Œxi ; �i ; Nzi ; y.�/ir �T.

Remark 8.13. The NN is constructed to approximate Nfi .xi ; �i ; Nzi ; y.�/ir / D
fi .xi ;�i /CŒ0 �T�Nzi�y.�/ir Cgig0si

gi
on a whole, which avoids the possible singularity of

the direct approximation of gi .

Select the following control ui for each helicopter

ui D � O�T
i  i � ki si � 1

2
O'isi ; i D 1; : : : ; N (8.19)

where O'i and O�i denote the estimate of '�
i D .%i C N"i /2 and ��

i , respectively.
The update law of parameters are designed as

PO'i D ��1
�
�1
2
.1 �$'/s

2
i C �1 O'i

�

PO�i D ��2
� �  i si C �2 O�i


(8.20)

By using the Using Young’s inequality, we have

� �2 Q�T
i

O�i � ��2
2

k Q�ik2 C �2

2
k��
i k2

��1 Q'i O'i � ��1
2

Q'2i C �1

2
'�2
i

.%i C N"i /si � 1

2
C 1

2
s2i '

�
i
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Considering (8.19) and (8.20), the time derivation of Vi in the closed-loop trajectory
can be written as

PVi D �
�
g0 C Pgi

2g2i

�
s2i � ki s

2
i C si

�
N"i C di � 1

2
O'i
�

� �2 Q�T
i

O�iC1

2
.1�$'/si Q'i si

��1 Q'i O'i
� �ki s2i C 1

2
C 1

2
s2i '

�
i � 1

2
s2i O'i � �2

2
k Q�ik2 C �2

2
k��
i k2 C 1

2
Q'i s2i � �1

2
Q'2i

C�1

2
'�2
i

D �ki s2i � �1

2
Q'2i � �2

2
k Q�ik2 C �2

2
k��
i k2 C �1

2
'�2
i C 1

2
(8.21)

Then,

PVi � �c1iVi C c2i (8.22)

c1i D minfki ; �2�2; �1�1g (8.23)

c2i D �2

2
k��
i k2 C �1

2
k'�

i k2 C 1

2
(8.24)

Now define

˝si D
(
si

ˇ̌
ˇ̌
ˇ jsi j �

s
2c2i

c1i

)
(8.25)

˝�i D
(
. Q�i ; Q'i /

ˇ̌
ˇ̌
ˇk Q�ik �

s
2c2i

�2
; j Q'i j �

s
2c2i

�1

)
(8.26)

˝ei D
n
.si ; Q�i ; Q'i /

ˇ̌
ˇki s2i C �2

2
Q�T
i

Q�i C �1

2
Q'2i � c2i

o
(8.27)

Since c1i , �1, �2, and ki are positive constants, we know that ˝si , ˝�i and ˝ei

are compact sets. Equation (8.22) shows that PVi � 0 once the errors are outside
the compact set ˝ei . According to the standard Lyapunov theorem, we conclude
that si , Q�i , and Q'i are bounded. From (8.22) and (8.25), it can be seen that Vi is
strictly negative as long as si is outside the compact set ˝si . Therefore, there exists
a constant T1 such that for t > T1, the filtered tracking error si converges to ˝si ,
that is to say, si � ˇsi .ki ; �1; �2; �1; �2; �

�
i ; '

�
i ; "

�
i / D p

2c2i=c1i .
Now we will show that all the helicopters will track the desired trajectory

although only some of them can access the desired trajectory. Define the error
between i -th helicopter and the desired trajectory as Qyi .t/ D yi .t/ � yd .t/ D
yi .t/ � y0.t/, and the auxiliary states of each helicopter �i .t/ D Œ�T 1�Yi with
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Yi D Œyi ; y
.1/
i ; : : : ; y

.��1/
i �T. The filtered error is denoted as Q�i .t/ D �i .t/� �d .t/ D

�i .t/ � �0.t/.
Using the fact that si .t/ D �i .t/ �P

j2Ni
aij �j .t/, we have

Q�i D �i � �0

D
X
j2Ni

aij �j C si � �0; i D 1; : : : ; N

and in the vector form

Q� D A� C s � �01 (8.28)

where 1 D Œ1; : : : ; 1�T, s D Œs0; s1; : : : ; sN �
T, and A is the normalized adjacency

matrix of the extended formation graph. Note that the elements in the first row of A
are all equal to 0, and the other row summations of the matrix A are 1, and we have
Œ0; 1; : : : ; 1�T D AŒ0; 1; : : : ; 1�T. Then,

Q� D A. Q� C �01/C s C Œ1; 0 : : : ; 0�T�0 � �01

D A Q� C Œ0; 1; : : : ; 1�T�0 C s C Œ1; 0 : : : ; 0�T�0 � �01

D A Q� C s (8.29)

Under the Assumption 8.6, we know that L D .I � A/ is an invertible matrix, and
we have

Q� D L�1s (8.30)

Define vectors

Y D ŒY T
0 ; Y

T
1 ; : : : ; Y

T
N �

T

QY D Œ QY T
0 ;

QY T
1 ; : : : ;

QY T
N �

T

X D ŒXT
0 ; X

T
1 ; : : : ; X

T
��1�T

QX D Œ QX0; QX1; : : : ; QX��1�T

whereXj D ŒX0;j ; X1;j ; : : : ; XN;j �
T, QXj D Xj�Xjd D Xj�y.j /0 1, QYi D Yi�Yd D

Yi � Y0. Then we have
PQY D NAp QY C Nb Q� (8.31)

where NAp D INC1 ˝ Ap and Nb D INC1 ˝ b.
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Considering (8.29), the error dynamics can be written as

PQY D NAp QY C Nb Q� D NAp QY C NbL�1s (8.32)

Lemma 8.14. Define si;max D sup0���t jsi .t/j, ˇsi D supt>T1jsi .t /j, and smax;i .t/ D
maxi sup0���t jsi .t/j, then the following equations hold:

k QY.t/k � k0e�	0tk QY.0/k C k0

	0

�
N	max.L

�1/CN � 1
	
smax;i .t/

k QY.t/k � k0e�	0t
�

k QY.0/k C e	0T1

	0
ˇs.T1/

�
C k0

	0
ˇsT

where ˇs.t/ D N	max.L
�1/smax;i .t/ and ˇsT D N	max.L

�1/ supT1�t smax;i .t/ with
constants 	0 > 0 and k0 > 0.

Proof. From (8.32) and the fact that Ap is Hurwitz, we have

QY.t/ D QY.0/e NApt C
Z t

0

e NAp.t��/ NbL�1s d�

ke NAptk � k0e�	0t

Then,

k QY.t/k � k0e�	0tk QY.0/k C
Z t

0

e�	0.t��/ �� NbL�1s
�� d�

� k0e�	0tk QY.0/k C k0e�	0t �N	max.L
�1/smax;i .t/

	 Z t

0

e	0� d�

� k0e�	0tk QY.0/k C k0e�	0t �N	max.L
�1/
	
smax;i .t/

e	0t � 1

	0

� k0e
�	0tk QY.0/k C k0

	0

�
N	max.L

�1/
	
smax;i .t/ (8.33)

where 	max.�/ is the maximum eigenvalue of the matrix.
Noting the above equation and that

Z t

0

e�	0.t��/ �� Nb.L�1s/
�� d� D

Z T1

0

e�	0.t��/ �� Nb.L�1s/
�� d�

C
Z t

T1

e�	0.t��/ �� Nb.L�1s/
�� d�
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We have (8.33) as follows:

k QY.t/k � k0e
�	0tk QY.0/k C k0e

�	0t e	0T1 � 1

	0
ˇs.T1/C k0e

�	0t e	0t0 � e	0T1

	0
ˇsT

� k0e�	0t
�

k QY.0/k C e	0T1

	0
ˇs.T1/

�
C k0

	0
ˇsT (8.34)

This completes the proof. ut
Now we will show that for a proper choice of the control parameters, the trajectories
of each vehicle do remain in the compact set. From the fact that L�1s D .Œ�T 1�˝
INC1/ QNX , where QNX D Œ QXT QxT

� �
T, we can see that Qx� D L�1s � .�T ˝ IN / QX .

Therefore,

k QNXk � k QXk C k Qx�k
� .1C k�k/k QXk C kL�1kksk
� �

1C k�k/k QYk C 	max.L
�1/ksk

It follows from (8.34) and the fact that si will converge to˝si , we know that k QNXk �
kak QY.0/k C kbˇsT C kc , 8t � T1, with ka D .1C k�k/k0, kb D .ka=	0/C 1 and
kc D ka.e	0T1=	0/ˇs.T1/. Hence,

k NX.t/k � k QNX.t/k C k NXd.t/1k
� kak QY.0/k C kbˇsT C kc C c; 8t � T1 (8.35)

We now provide the conditions which guarantee NX 2 ˝ NX , 8t � 0. Define the
compact set

˝0 WD ˚ NX.0/ ˇ̌f NX jk NX.t/k < kak QY.0/kg � ˝ NX ; 	max.L
�1/ks.0/k < ˇsT

�

and the positive constant

c� WD sup
c2RC

˚
c
ˇ̌˚ NX jk NXk < kak QY.0/k C kc C c; NX.0/ 2 ˝0

� � ˝ NX
�

(8.36)

We summarize our results for the full-state feedback case in the following theorem.

Theorem 8.15. Consider a group of helicopters dynamics (8.1) and the communi-
cation graph containing a spanning tree which the root helicopter can access for
the desired trajectory, with Assumptions 8.1–8.5, under the action of the control
(8.19) and parameters update law (8.20) for each helicopter. For initial conditions
NX.0/; �.0/, Q�i .0/ and Q'i.0/ starting in any compact set, and the desired trajectory
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with its derivations up to �-th bounded, all closed signals of the system are Semi-
Globally Uniformly Ultimately Bounded (SGUUB), and the total tracking error of

the helicopters QNX converges to a neighborhood of the origin.

Proof. From (8.35), we know that the overall system state NX.t/ will stay in ˝ NX for
all time. Furthermore, because the NN weights have been proven bounded for any
bounded O�i .0/ and O'i.0/, and due to Lemma 8.11, it can be seen that �i is bound if
xi is bounded. As a result, the states of the internal dynamics of the helicopter will
converge to the compact set ˝�i D f�i 2 R

pj k�ik � a1.
p
2c2=c1 C kXdk/C a2g,

where a1 D 	bax=	a and a2 D 	baq=	a are positive constants. Because the control
signal ui .t/ is a function of the weights O�i and O'i , the states �i , xi , and the filtered
tracking error si , we know that it is also bounded. Therefore, we know that all the
closed-loop signals are SGUUB. This completes the proof. ut

8.4 Control with Partial Information

From the definition (8.11) of reference states of each helicopter, we know that not
all of the helicopters can access the desired altitude and its derivation. For each
helicopter in the team, its reference output at time t is the weighted average of its
neighbors’ outputs at the same time, and in the control design, each helicopter needs
to use its neighbors’ states y.k/ir .t/, k D 1; : : : ; �, which are not easy for them to
access. In this section, we assume that each helicopter can only access its neighbors’
output information yir , and use high observer to estimate y.k/ir .t/, k D 1; : : : ; �.

In the following lemma, high gain observer used in [7] is presented, which will
be used to estimate the neighbors’ states.

Lemma 8.16. [35][102] Consider the following linear system:

� P
i D 
iC1 i D 1; 2; : : : ; � � 1
� P
� D � N�1
� � N�2
��1 � � � � � N���1
2 � 
1 C �.t/ (8.37)

where � is a small positive constant and the parameters N�1 to N���1 are chosen such
that the polynomial s�C N�1s��1C: : :C N���1sC1 is Hurwitz. Suppose the states �.t/
and its first n derivatives are bounded, so that �.k/ < $k with positive constants
$k . Then the following property holds:

Q�.k/ WD 
k

�k�1 � �.k/ D ���.k/; k D 1; 2; : : : ; � (8.38)

where � WD 
p C N�1
��1 C � � � C N���1
1 and �.k/ denotes the kth derivative of �.
Furthermore, there exist positive constants hk and t� such that for all t > t� we
have j�.k/j � hk , k D 2; 3; : : : ; �.
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Note that 
kC1=�k asymptotically converges to �.k/, with a small time constant
provided that � and its k derivatives are bounded. Hence, 
kC1=�k for k D 1; : : : ; �

is a suitable observer to estimate the output derivatives up to the �-th order.
To prevent peaking [52], saturation functions are employed on the observer

signals whenever they are outside the domain of interest ˝ as follows:


si;j D N
i;j �
�

i;j

N
i;j
�
; N
i;j � max

. Qyi ;si ; Q�i ; Q'i /2˝
.
i;j /

�.a/ D

8̂
<̂
ˆ̂:

�1; for a < �1
a; for jaj < 1
1; for a > 1

(8.39)

Now, we revisit the control law (8.19) and adaption laws (8.20) for the full-state
feedback case. Via the certainty equivalence approach, we modify them by replacing
the partially available quantities with their estimates, which can be written as

ui D � O�T
i  i .

OZi/� ki Osi � 1

2
O'i Osi ; i D 1; : : : ; N (8.40)

And the update law of parameters is designed as

PO'i D ��1
�
�1
2
.1 �$'/Os2i C �1 O'i

�

PO�i D ��2
� �  i Osi C �2 O�i


(8.41)

where �1, �2, �1 and �2 are positive constants, and

$'i D
(
0; if j O'i j � M'i

1; otherwise
(8.42)

whereM'i is a designed positive constant.
Select Lyapunov function candidate

Vie D 1

2
s2i C 1

2�2
Q�T
i

Q�i C 1

2�1
Q'2i (8.43)

And the following lemma is useful for handling the terms containing the estimation
errors.
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Lemma 8.17. There exist positive constants Fik which are independent of �i , such
that for t > t�, the estimate Oy.k/ir , i D 1; : : : ; N , k D 1; : : : ; �, satisfy the following
inequalities:

j Qy.k/ir j D j Oy.k/ir � y
.k/
ir j � �iFik (8.44)

Since si is the linear combination of Yi and Yj ; j 2 Ni , we know that there exist
positive constants Gis which are independent of �i such that jQsi j � �iGis .

Taking the time derivative of Vi along the closed-loop trajectory and using the
property i. OZi/� i .Zi / D �i ti , where ti is a bounded vector function [30], we
have

PVie D �
� Pgi
2g2i

C g0

�
s2i � ki s

2
i � ki si Qsi � si O�T

i  i .
OZi/ � 1

2
O'isi Osi C si .di C N"i /

Csi ��T i.Zi /C 1

�2
Q�i PQ�i C 1

�1
Q'i PQ'i

� �ki
2
s2i C ki

2
Qs2i � 1

2
O'i si Osi C 1

2
'is

2
i C 1

2
Q'i Os2i � si O�T

i  i .
OZi/C si �

�T i.Zi /

COsi Q�T
i  i .

OZi/ � �2 Q�T
i

O�i � �1 Q'i O'i C 1

2

For the term �s2i Q'i � si Qsi O'i C Os2i Q'i , we have

� s2i Q'i � si Qsi O'i C Os2i Q'i D Qsi .si Q'i C Qsi Q'i � si'i /

� �Gisjsi Q'i j C �2G2
isj Q'i j C �Gisjsi'i j

� 1

2
.s2i C �2G2

isj Q'i j2/C 1

2
�2G2

is Q'2i C 1

2
�2G2

is C 1

2
s2i

C1

2
�2G2

is'
2
i

D s2i C �2i G
2
is Q'2i C 1

2
�2i G

2
is'

2
i

� s2i C �2i G
2
is

�
O'2i C 3

2
'2i

�
(8.45)

For the term �si O�T
i  i .

OZi/C si �
�T i.Zi /C Osi Q�T

i  i .
OZi/, we have

�si O�T
i  i .

OZi/C si �
�T i .Zi /C Osi Q�T

i  i .
OZi /

D �si Q�T
i  i .

OZi/� si �
�T
i  i . OZi /C si �

�T i.Zi /C Osi Q�T
i  i .

OZi/
D Qsi Q�T

i  i .
OZi/� �i si �

�T
i  ti

� 1

2
Q�T
i

Q�i C 1

2
�iG

2
isk tik2 C 1

2
s2 C 1

2
�2i k tik2k��

i k2 (8.46)
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Then,

PVie � �1
2
.ki � 2/s2i � �2 � 1

2
Q�T
i

Q�i � �1

2
Q'2i C 1

2
�2i G

2
is O'2i C 1

2
�iG

2
isk tik2

C�2i k tik2 C �2

2
k��
i k2 C

�
3

4
�2i G

2
is C �1

2

�
'�2
i C ki

2
�2i C 1

2
(8.47)

Then,

PVie � �c1ieVie C c2ie (8.48)

c1ie D min

�
1

2
.ki � 2/; .�2 � 1/�2; �1�1

�
(8.49)

c2ie D 1

2
�2i G

2
is O'2i C 1

2
�iG

2
isk tik2 C �2i k tik2 C �2

2
k��
i k2 (8.50)

C
�
3

4
�2i G

2
is C �1

2

�
'�2
i C ki

2
�2i C 1

2

Now define

˝sie D
(
si

ˇ̌
ˇ̌
ˇ jsi j �

s
2c2ie

c1ie

)
(8.51)

˝�ie D
(
. Q�i ; Q'i /

ˇ̌
ˇ̌
ˇk Q�ik �

s
2c2ie

�2
; j Q'i j �

s
2c2ie

�1

)
(8.52)

˝eie D
n
.si ; Q�i ; Q'i /

ˇ̌
ˇki s2i C �2

2
Q�T
i

Q�i C �1

2
Q'2i � c2ie

o
(8.53)

Since c1ie , �1, �2, and ki are positive constants, we know that ˝sie, ˝�i e and ˝eie

are compact sets. Equation (8.48) shows that PVie � 0 once the errors are outside
the compact set ˝ei . According to the standard Lyapunov theorem, we conclude
that si , Q�i , and Q'i are bounded. From (8.48) and (8.51), it can be seen that Vie is
strictly negative as long as si is outside the compact set˝sie. Therefore, there exists
a constant T1 such that for t > T1, the filtered tracking error si converges to ˝sie,
that is to say, si � ˇsie , with ˇsie.ki ; �1; �2; �1; �2; ��

i ; '
�
i ; �i / D p

2c2ie=c1ie.
We can conclude the following theorem.

Theorem 8.18. Consider a group of helicopters dynamics (8.1) and the com-
munication graph containing a spanning tree with the leader as the root, with
Assumptions 8.1–8.5, under the action of the control law (8.40), parameters update
law (8.41), and the high gain observer (8.37), which is turned on at time t�
in advance. For initial conditions NX.0/, �.0/, Q�i .0/ and Q'i.0/ starting from any
compact set, and the desired trajectory with its derivations up to �-th bounded,
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all closed signals of the system are SGUUB, and the total tracking error of the

helicopters QNX converges to a neighborhood of origin.

Proof. We have concluded that si will converge to a compact set ˝sie, then follow-

ing Lemma 8.17, it can be concluded that k QYk � k0e�	0t


k QY.0/k C e	0T1

	0
ˇs.T1/

�
C

k0
	0
ˇsT , and from (8.35), we can find that k NXk is also bounded. Following the same

procedure in the full-state feedback control, we can complete the proof. ut
Remark 8.19. It is shown in (8.50) that the smaller c2ie might be obtained by
choosing a smaller �1 and �2, which may lead to a smaller tracking error.
Nevertheless, from (8.52) it can be seen that the smaller �1 and �2 may cause large
NN weight and disturbance compensation errors. If �1 and �2 are chosen to be very
large, it will lead to a large tracking error. Hence, the parameters �1 and �2 should
be adjusted carefully in practical implementations.

8.5 Simulation Study

In this section, we consider the synchronized altitude tracking of 6 X-cell 50
helicopters whose communication graph is shown in Fig. 8.2. The dynamics of the
helicopter can be written as follows as in Sect. 4.5.2

P�1 D �2

P�2 D a0 C a1�2 C a2�
2
2 C



a3 C a4�4 �

p
a5 C a6�4

�
�23

P�3 D a7 C a8�3 C .a9 sin �4 C a10/�
2
3 C ath

P�4 D �5

P�5 D a11 C a12�4 C a13�
2
3 sin �4 C a14�5 �K1u (8.54)

where �1 denotes altitude (m), �2 the height rate of the altitude rate (m/s), �3 the
rotational speed of the rotor blades (rad/s), �4 the collective pitch angle (rad), �5 the
collective pitch rate (rad=s), ath D 111:69 s�2 the constant input to the throttle, and
u the input to the collective servomechanisms.

Let y be the altitude �1. By restricting the throttle input to be constant, we obtain
a SISO in which u is the only input variable forcing the output y to track a desired
trajectory yd , which is generated by

yd D 150:056

s4 C 12:6s3 C 64:19s2 C 154:35s C 150:056
href (8.55)

where
href.t/ D 5:5� 0:5 sin t (8.56)



212 8 Dynamic Altitude Synchronization Using Graph Theory

0 5 10 15
4

4.5

5

5.5

6

6.5

7

7.5

time [s]

al
tit

ud
e 

of
 h

el
ic

op
te

rs
 [f

t]

y6

y5

y4

y3
yd

y2

y1

Fig. 8.3 Altitude of all helicopters with output feedback control

The nominal values for constants K1 and ai are given to be: K1 D 0:25397s�2,
a0 D �17:67m=s2, a1 D a2 D �0:1 s�2, a3 D 5:31 � 10�4, a4 D 1:5364 � 10�2,
a5 D 2:82�10�7, a6 D 1:632�10�5, a7 D �13:92s�2, a8 D �0:7 s�2, a9 D a10 D
�0:0028, a11 D 434:88 s�2, a12 D �800 s�2, a13 D �0:1 and a14 D �65 s�2.

It can be shown that the system has strong relative degree 4 as in Sect. 4.5.2.
The control parameters are chosen as � D Œ64; 48; 12�T, ki D 3; i D
1; : : : ; 6, while the NN parameters for each helicopter are chosen as �1 D 0:05,
�1 D 1, �2 D 0:01, �2 D 100. For high gain observer, we choose �i D
0:08, N�1 D 4, N�2 D 6, N�3 D 4, N
2 D 0:1, N
3 D 0:15, N
4 D 0:025.
The saturation limits of the control are ˙400mrad. The initial conditions are
�1.0/ D Œ4:3; 0:0; 95:3567; 0:222; 0:0�T, �2.0/ D Œ4:8; 0:0; 95:3567; 0:3; 0:0�T,
�3.0/ D Œ5:9; 0:0; 95:4; 0:22; 0:0�T, �4.0/ D Œ6:2; 0:0; 95:3567; 0:3; 0:0�T, �5.0/ D
Œ6:8; 0:0; 95:3567; 0:22; 0:0�T, �6.0/ D Œ7:4; 0:0; 95:4; 0:21; 0:0�T, O�i .0/ D 0, and
O'i.0/ D 0 for each helicopter.

Simulation results are shown in Figs. 8.3–8.6. From Fig. 8.3, we can find that
good tracking performance is achieved for each helicopter by the proposed control.
The tracking performance for full-state and output feedback cases are similar for the
choice of �i made. The initial errors of all helicopters are sufficiently reduced and
the altitude trajectories all lie in close proximity of the desired sinusoidal trajectory.
Meanwhile, the internal dynamics and the NN weights are all bounded, as shown in
Figs. 8.5 and 8.6. From Fig. 8.4, we can find that the control input of the helicopters
are bounded, both in the full-state feedback and the output feedback cases.
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Fig. 8.4 Control input of helicopters under full-state (solid) and output (dash-dot) feedback
control
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Fig. 8.5 Norm of neural weights under full-state (solid) and output (dash-dot) feedback control.
Norm of neural weights (a) k O�1k, (b) k O�2k, (c) k O�3k, (d) k O�4k, (e) k O�5k, (f) k O�6k
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Fig. 8.6 Internal state response under full-state (solid) and output (dash-dot) feedback control.
(a) Internal state of helicopter 1, (b) Internal state of helicopter 2, (c) Internal state of helicopter 3,
(d) Internal state of helicopter 4, (e) Internal state of helicopter 5, (f) Internal state of helicopter 6
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8.6 Conclusion

In this chapter, we studied the synchronized tracking problem of multiple heli-
copters in vertical flight mode. Under the condition that the Laplacian matrix of the
extended formation graph, which contains a spanning tree which the root helicopter
can access for the desired trajectory, by using the weighted average of its neighbors’
states as its reference signal, through neural network based approximation, the
adaptive tracking control law has been designed for each helicopter. By using high
gain observer to reconstruct the unavailable states, an extension has been made to
the output feedback case where both the helicopter’s states and its neighbors’ states
are not available for control design. It has been shown that the tracking errors of
each helicopter converge to adjustable neighborhoods of the origin for both cases,
although some of them do not access the desired tracking trajectory. Simulation
results have shown the effectiveness of the approach presented.
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A
Actuator dynamics. See Attitude control,

uncertain helicopters
Aerodynamic interference

power penalties, 31
superposition method, 31

AF25B helicopter, forward flight
coupled linearized model, 55–56
eigenvalue distribution, 57–58
sanity check, 56–57

Altitude and yaw control
control design

MNN, 106–114
RBFNN, 97–105

formulation and preliminaries
dynamics structure, 94–95
Lagrangian formulation, 94
simulation section, 95
stability analysis, 96
VARIO scale model, 94
vertical flight mode, 95

MIMO model, 93
MNN and RBFNN, 93–94
simulation

adaptive neural control, 114
aerodynamical disturbances, 116
altitude tracking performance, 117
control inputs, altitude and yaw angle,

117, 119
internal dynamics stability analysis,

115–116
norm, neural weights, 117, 118
trajectories, 114
yaw angle tracking performance, 117,

118

Altitude tracking
proposed controller, 84
rotor RPM and neural weights, 84, 85
Yamaha R50 helicopter, 83

APID MK-III helicopter
approximation-based attitude control

angular velocity signals, 145
command control signals, 145
nodes, 146
parametric uncertainties, 142

model-based attitude control
angular velocity signals, 141
command control signals, 141
tracking performance, 140

parameters, 139
robust attitude control

function uncertainties and external
disturbance, 142

uncertainties and disturbances, 143
saturation values, 139

Approximation-based attitude control
adaptive laws, 135, 137
APID MK-III helicopter

angular velocity signals, 145
command control signals, 145
nodes, 146
parametric uncertainties, 142

backstepping technique, 133
closed-loop stability, 138
Lyapunov function candidate, 133, 136
NNs, 136–137
RBFNN, 134
stability, error signals, 135, 137
time derivative, 137
unknown moment coefficients, 136, 138
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Approximation-based attitude control (cont.)
variables, 136
virtual control law, 133, 134

Attitude control, uncertain helicopters
approximation-based (see Approximation-

based attitude control)
model-based, nominal plant

bounded initial condition, 128–129
chattering phenomenon, 129
Lyapunov analysis, 127–128
moment coefficients and mass, 126

problem formulation
coefficients, moment equations,

122–123
continuous functions, 126
control gain parameters, 125
forces and torques, 123
model-based control, 126
model uncertainty and external

disturbance, 124–125
nonlinear form, 122
propulsions, 123
system modeling uncertainties, 124
thrusts, main and tail rotors, 123

robust, uncertainties and disturbances
closed-loop system, 132
error variables, 129
Lyapunov function candidate, 129–131
RBFNN (see Radial basis function

neural network)
simulation

APID MK-III model, 139
approximation-based, 142, 145–146
control gain and design matrix, 139
model-based, 140–141
nominal parameters, 139
robustness, 142–144

B
Blade flapping dynamics

body angular rates, 14
low frequency, 15
mass distribution, 13
parameters, 13
second-order differential equation, 12–13
teetering configuration, 16

C
Control design

adaptive neural control, 96
computable signals, 96

MNN-based (see Multilayer neural
network)

RBFNN-based (see Radial basis function
neural network)

Controllability matrix, 46, 49

D
Diagonally dominant matrix, 198
Directed graph, 197–198
Division, information flow

fast-time scale, 150
(re)allocation, 150
slow-time scale, 150

E
e-modification law, 98
Equations of motion

force equation, 7–8
kinematic equation, 9
moment equation, 8–9
navigation equation, 9–10

F
Filtered tracking error, 96, 201, 203, 207, 210
Flight control system

cyclic controls, 33
first order dynamic system, 34
fly bar, teetering rotor configuration, 33
rotor blades, 34

Force equation, 7–8
Formations, 3, 151–153, 164–166. See also

Q-structures
Formulation control

graph edge definitions, 197–198
Laplacian matrix, 199
positive constants, 200
synchronized tracking problem, 198–199
trajectory model, 200

Full information control
closed-loop trajectory, 203
compact set and positive constant, 206
dynamics theorem, 206–207
error dynamics, 205
extended formation graph, 204
filtered error, 204
Hurwitz equation, 205
invertible matrix, 204
maximum eigenvalue, 205–206
NN control scheme, 200
nonlinear function, 202
standard Lyapunov theorem, 203
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synchronized tracking problem, 201
trajectories, 206
Young’s inequality, 202

Full state feedback control
adaptation laws, 69
compact set, SGUUB and tracking error,

71–72
Lyapunov function, 68
Mean Value Theorem, 67–68
trajectories, 70–71
virtual control function, 66–67

Function approximation
MNN (see Multilayer neural network)
RBFNN, 64–65

Fuselage
aerodynamic database, 30
velocity components, local body axes

system, 30

G
Graph theory

altitude, output feedback control, 212
formulation, problem

bounded vector function, 209
communication graph, 210–211
control, helicopters, 197–200
filtered tracking error, 208
helicopter dynamics, 196–197
information control, 200–207
linear system, 207
Lyapunov function, 208
positive constants, 209
saturation functions, 208

internal state response control, 212, 215
kinematic control scheme, 195
neural weights, feedback control, 212,

214
solid and dash-dot feedback control, 212,

213
strong relative degree, 212
synchronized tracking, 195–196
throttle restriction, 211
6 X-cell tracking, 211

H
Helicopter dynamics

SISO systems description, 197
smooth functions, 198
zero dynamics, 197

Helicopter model in hover
aerodynamic parameters, 47–48
MATLAB, 49

symbols and subscripts, 46, 47
Taylor series expansion, 48–49

High gain observer, 85, 196, 207, 212
Horizontal tail

lift and drag, local wind axes system, 28
pitch moment, 28
velocity components, local body axes

system, 27–28
Hub-wind axes system

horizontal and side force, 19–20
rolling and pitching moment, 21
rotor torque, 22
thrust equation, 18, 19

I
Imperfect communication, helicopter team

changing formations
separation and control forces, 189, 193
spikes, graphs, 189
switching, 192

formation convergence and scaling
deactivation/removal, 186, 187
distance, queue’s encapsulating area,

189
minimum inter-helicopter separation,

186, 188
potential field forces, 188

link breakdowns, 192
moving formations

minimal inter-helicopter distance and
control signals, 191

queues and virtual formation vertex,
190

navigation (see Navigation)
target determination, queue

algorithm, 177
constant targets, 177–178
position, queue, 175

Implicit function theorem, 60, 63, 92
Information flow, 150
Internal dynamics stability analysis

main rotor angular velocity, 115, 116
RBFNN and MNN based control, 115

J
Jacobian matrix, 42, 43, 62

K
Kinematic equation, 9
Kinematic formation control

approaches, 147
multi-helicopters cooperation, 147
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Kinematic formation control (cont.)
Q-structure

assumptions, 148–150
elements, 150–153
imperfect communication (see

Imperfect communication,
helicopter team)

information flow division, 150
perfect communication (see Perfect

communication, helicopter team)
properties, 153–156

L
Lagrangian formulation, 94

M
Main rotor helicopters

blade flapping, 11
hub-wind axes system, 18–21
quasi-steady flapping dynamics, 11
rigid blade, 11
small angle approximation, 10

Mean Value Theorem, 60, 63, 67, 92
MNN. See Multilayer neural network
� -Modification law, 98
Moment equation, 8–9
Momentum theory

flow interaction, 17
vortex rings model, 17–18
VRS, 17

Multilayer neural network (MNN)
approximation error, 110
constant vectors, 111
continuous function, 65
estimation errors, 106
ideal weights, 65–66
inequalities, 112
Lyapunov function, 107
nonlinear parameterization, 106
positive definite functions, 110
residual term, 110
robust controller, 68
SGUUB system, 113
sigmoidal functions, 66
Taylor series expansions, 106
Young’s inequality, 109

N
Navigation

approximation error, 185
attractive potentials, 178

closed loop dynamics, 180
collision avoidance behavior, 178–179
equilibrium points, 181, 182
linear-time-invariant (LTI), 182
Lyapunov candidate, 182–183
non-collision, agents, 181
subspace, 184
time derivative, 179
unstable equilibrium points, 183, 184

Navigation equation, 9–10
Neural network (NN) control

altitude tracking, 83–85
approximate dynamic inversion, 60–61
full state feedback control, 68–72
MNN, 65–66
modeling errors, 60
nonlinear model

PD control and norm of neural weights,
90, 91

rotor speed and collective pitch angle,
90, 91

SISO system and relative degree, 88
tracking performance, 89–90
X-cell 50 helicopter, 88

output feedback control (see Output
feedback control)

pitch tracking, 85–87
RBFNN, 64–65
SISO helicopter systems, 61–63
unrestrained helicopter motion, 59

Nonaffine, 4, 60, 63, 82, 83
Nonlinear rotary-wing aircraft model

aerodynamic interference, 31
blade flapping dynamics (see Blade

flapping dynamics)
equations of motion

force equation, 7–8
kinematic equation, 9
moment equation, 8–9
navigation equation, 9–10

features, 38
flight control system, 33–34
fuselage, 30
horizontal tail, 27–28
main rotor

blade flapping, 11
forces and moments, hub-wind axes

system, 18–22
quasi-steady flapping dynamics, 11
rigid blade, 11
small angle approximation, 10

Momentum Theory, 17–18
performance prediction

endurance and range, 37
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main rotor power, 34
profile power, 37
tail rotor and ancillary power, 35
Yamaha RMAX helicopter, power

prediction, 36
propeller, 24–26
rotorcraft model, 10, 11
rotor rotational degree of freedom, 31–32
tail rotor, 23–24
transformation, body to hub, 12, 22
vertical tail, 29
wing, 29

Nonsingular, 128, 129
Normal form, 62

O
Observability matrix, 46, 49
Output feedback control

bounding control, 76
closed loop trajectories, 75
control law and adaptation laws, 74–75
Hurwitz, 73–74
inequalities, 76–79
saturation functions, 74
SGUUB, 80–82

P
Perfect communication, helicopter team

changing queues
evaluation process, 157
status, algorithm, 157
switching, 157

convergence
circle formation, 164, 165
column formation, 166
scaling, 166
wedge formation, 164, 165

disruption, wireless communications, 171,
172, 174, 175

double column formation, 171
maneuvers, confined spaces

corridor and waypoints, 166, 167
deformation, turn, 169
deformed wedge, 167, 171
distance measure, 166
movement, 5m and 3m wide corridor,

170
wedge and column formation

movement, 168
potential trench functions

forces acting, 160

formation adaptation and deformation,
160–162

top view, plane, 160
reaction, obstacles

ı vs. time, 173
size and shape, 169
type I and II field, 168, 172

regular formations, 164
representative formations, 163
wireless communication disruption

degrees, communication breakdown,
174, 176

different frequencies, error, 171,
174

Ptxloss and Iloss, 174, 175
queue status, 172, 175

Performance prediction
endurance and range, 37
main rotor power, 34
profile power, 37
tail rotor and ancillary power, 35
Yamaha RMAX helicopter, power

prediction, 36
Pitch tracking

control input and norm of neural weights,
87

tracking errors and observer errors, 86
Yamaha R50 helicopter, 85

Potential trench functions
forces acting, 160
formation adaptation and deformation,

160–162
top view, plane, 160

Propeller
closed-form equations, 24
Momentum-Blade Element Theory and

Vortex Theory, 26, 27
thrust and torque calculation procedure,

24–26

Q
Q-structures

assumptions
graphical notation, 149
stability and convergence, 149–150
vectors, 148, 149

consistency, formation representation
addition/removal, nodes, 154
connectivity graphs, 154, 155

division, information flow
allocation, 150
fast-time and slow-time scale, 150

efficiency and optimality, 155–156
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Q-structures (cont.)
elements

closed queues, 152
formation, 151
open queues, 152–153
queues, 151–152

formation decomposition and computation,
155

graphical representation
triangular and three column formation,

154
virtual Q-vertices, 153

imperfect communication (see Imperfect
communication, helicopter team)

perfect communication (see Perfect
communication, helicopter team)

robustness, 156
Queues

changing, 156–158
closed, 152
elements, 151
open, 152

R
Radial basis function neural network (RBFNN)

bounded system, 105
closed loop stability, 100
continuous function, 64
e-modification law, 98
Gaussian function, 64
hyperbolically minimum-phase, 102
ideal weight vector, 65
inequalities, 102
internal dynamics, 103
Lyapunov synthesis, 97
� -modification law, 98
positive constant, 99–100
positive definite functions, 100
stability analysis, internal dynamics,

104
subsystem, closed-loop, 103
time derivative, 97
time-invariant functions, 100
weight adaption law, 101
Young’s inequality, 99
zero dynamics, 102

RBFNN. See Radial basis function neural
network

Relative degree, 61, 62, 88, 197, 212
Rotary-wing aircraft, stability analysis

Copterworks AF25B helicopter, forward
flight, 55–58

linearization process
control matrix, 46
drag damping, 44
gravitational and inertial terms, 45
helicopter model, hover, 46–49
pitch attitude, 43
stability and control derivatives, 44
sub-matrices, 44–45

stability and control derivatives
angle of attack stability, 50
drag damping, 49–50
pitch damping and dihedral effect, 50
roll damping and weathercock stability,

51
speed stability, 50
trim, 41–43

Yamaha R50 helicopter at hover, 51–54
Rotor rotational degree of freedom, 31–32

S
Saturation function, 74
Semi-globally uniformly ultimately bounded

(SGUUB), 63, 71, 72, 80, 82
SGUUB. See Semi-globally uniformly

ultimately bounded
Single-input-single-output (SISO) helicopter

systems
implicit function theorem, 63
Jacobian matrix, 62
Mean Value Theorem, 63
positive function, 62–63
reference trajectory, 61
SGUUB, 63
zero dynamics of system, 62

Singularity, 9, 42, 89
SISO helicopter systems. See Single-

input-single-output helicopter
systems

Spanning tree, 198–200
Substochastic matrix, 198

T
Tail rotor

features, 23
teetering configuration, 23–24

Taylor series expansion, 48–49, 63
Trim calculation

Jacobian matrix, 42
MatlabTM , 41
Newton’s method, 42–43
variables and targets, 43
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U
Unmanned helicopters

control techniques, 2
linearized models, 1–2
MIMO nonlinear dynamic systems, 5
nonlinear flight dynamic modeling, 3–4
Q-structure formation control, 5–6
robust adaptive NN control, 4–5
stability analysis, 4
UAV formation control, 2–3
underactuated configuration, 1

V
VARIO scale model helicopter, 94
Vertical tail, 29
Vortex rings model

convection speed and velocity, 17
downward velocity, 18
effect, 18

W
Weighted adjacency matrix, 197
Wing, 29

Wireless communication disruption
degrees, communication breakdown, 174,

176
different frequencies, error, 171, 174
Ptxloss and Iloss, 174, 175
queue status, 172, 175

X
X-cell 50 helicopter, 88, 211

Y
Yamaha R50 helicopter

eigenvalue plot, 52
longitudinal linearized model, 51
main rotor, 52
pitch damping, 53, 54
speed stability, 53, 54

Z
Zero dynamics, 59, 62, 66
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