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Preface

This book provides a different view to look at complex dynamics of dynamical
systems from the author’s research and teaching experience. The author hopes this
book can provide a better understanding of complexity and chaos caused by
nonlinearity, discontinuity, switching and impulses. The materials in this book are
scattered into six chapters plus two appendices.

The stability, stability switching and bifurcation of equilibriums and fixed points
for nonlinear continuous and discrete dynamical systems are systemically presented
in Chaps. 1 and 2, which is different from the traditional presentation. In Chap. 3,
the fractal theory based on single and multiple generators with single and multiple
measures are discussed, and the fractality of chaos in nonlinear discrete dynamical
systems are presented from self-similar geometric structures. In Chap. 4, the
Ying—Yang theory of nonlinear discrete dynamical systems is presented for the
complete dynamics of discrete dynamical systems. In addition, the companion and
synchronization of discrete dynamical systems are discussed to describe dynamical
relations between different discrete dynamical systems. In Chap. 5, nonlinear
dynamics of switching systems with impulses will be discussed. In Chap. 6,
mapping dynamics is presented as an extension of symbolic dynamics to describe
periodic flows and chaos in discontinuous dynamical systems. The grazing
phenomenon is a key to investigate the strange attractor fragmentation in discon-
tinuous dynamics, which can be easily extended to chaos caused by global trans-
versality in nonlinear continuous dynamical systems. To help one easily read the
main body, linear continuous and discrete dynamical systems are discussed in
Appendices A and B. The author believes that the presentation arrangement may
not always be reasonable. The author sincerely hopes readers point out and criti-
cizes for improvement.
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viii Preface

Finally, I would like to appreciate my students (Jianzhe Huang, Yu Guo, Yang
Wang, Bing Xue) for applying the theories to practical systems and completing
numerical computations. Herein, I would like to thank my wife (Sherry X. Huang)
and my children (Yanyi Luo, Robin Ruo-Bing Luo and Robert Zong-Yuan Luo)
again for tolerance, patience, understanding and support.

Edwardsville, Illinois Albert C. J. Luo
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Chapter 1
Nonlinear Continuous Dynamical Systems

In this Chapter, basic concepts of nonlinear dynamical systems will be presented as
a review material. Local theory, global theory and bifurcation theory of nonlinear
dynamical systems will be discussed. The stability switching and bifurcation on
specific eigenvectors of the linearized system at equilibrium will be presented. The
higher singularity and stability for nonlinear systems on the specific eigenvectors
will be developed. In addition, a periodically excited Duffing oscillator with cubic
damping and constant force will be discussed as an application. The stability of
approximate periodic solutions of such a Duffing oscillator will be discussed.

1.1 Continuous Dynamical Systems

Definition 1.1 For I/ € %, Q C %" and A C %™, consider a vector function
f:Qx1IxA— %" whichis C"(r > 1)-continuous, and there is an ordinary
differential equation in a form of

x=f(x,t,p) for tel,xe Q2 and pe A (1.1)

where x = dx/dt is differentiation with respect to time ¢, which is simply called the
velocity vector of the state variables x. With an initial condition of x(fy) = Xq, the
solution of Eq.(1.1) is given by

x(t) = ®(xo,t — 19, P)- (1.2)

(1) The ordinary differential equation with the initial condition is called a dynamical
system.
(i) The vector function f(x, ¢, p) is called a vector field on domain 2.
(iii) The solution ®(xq, t — o, p) is called the flow of dynamical systems.
(iv) The projection of the solution ®(xp, ¢ — o, p) on domain €2 is called the tra-
jectory, phase curve or orbit of dynamical system, which is defined as

I' = {x(¢) € Q|x(¢) = ®(xp,t — ty,p) for t € I} C Q. (1.3)

A. C.]. Luo, Regularity and Complexity in Dynamical Systems, 1
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2 1 Nonlinear Continuous Dynamical Systems

Definition 1.2 If the vector field of the dynamical system in Eq. (1.1) is independent
of time, such a system is called an autonomous dynamical system. Thus, Eq.(1.1)
becomes

x=f(x,p) for te ICZ,xecQC X" and pe A C Z". (1.4)

Otherwise, such a system is called non-autonomous dynamical systems if the vector
field of the dynamical system in Eq. (1.1) is dependent on time and state variables.

Definition 1.3 For a vector function f € #", f: %" — %". The operator norm
of f is defined by

n
1= 20y max_, 1fitx 0l (1.5)

For an n x n matrix f(x, p) = Ax with A = (4;j)uxx, the corresponding norm is
defined by

A= D" laijl. (1.6)

ij=1
Definition 1.4 For a vector function x(¢) = (x1, x2, - - -, xn)T c #", the derivative
and integral of x(¢) are defined by
dx(t)  dx\(t) dxx(1) dx, (1) )T
dt ~—  dt ~ dt ° dt

(1.7)
/x(t)dt = (/xl(t)dt,/xz(t)dt,~-~ ,/xn(t)dt)T.

For an n x n matrix A = (a;j)nxn, the corresponding derivative and integral are
defined by

dA(t) . (da,'j(t)

- ) and / A(z)dr=(/ a;(OdDnsn.  (18)

Definition 1.5 For I C %, Q C %" and A C %™, the vector function f(x, ¢, p)
withf : Q x I x A — %" is differentiable at xo € 2 if

of(x, t, p)
ox

. f(XO+ Axata p) _f(XO,t, p)
= lim .
Ax—0 AX

(1.9)
(x0,7,p)

of /0x is called the spatial derivative of f(x, 7, p) at Xo, and the derivative is given
by the Jacobian matrix

of(x,1,p) _ [i} _ (1.10)

0x ij



1.1 Continuous Dynamical Systems 3

Definition 1.6 For ] € #Z, Q C %" and A € %™, consider a vector function
fx,r,p) withf : Q x I x A > Z",t € l andx € Qandp € A. The vector
function f(x, ¢, p) satisfies the Lipschitz condition with respect to x for 2 x I x A,

[f(x2, 2, p) —f(x1,7,p)|| = Lllx2 — x| (1.11)

with X1, Xp € Q and L a constant. The constant L is called the Lipschitz constant.

Theorem 1.1 Consider a dynamical system as
x =f(x,,p) with x(f9) = xg (1.12)

with to,t € I = [t1,1],x € Q = {X]||x — xo|| < d} and p € A. If the vector
SJunction f(x, t, p) is C"-continuous (r > 1) in G = Q x I x A, then the dynamical
system in Eq. (1.12) has one and only one solution ®(xg, t — ty, p) for

|t —to| < min(t; —t;,d/M) with M = m£x||f||. (1.13)

Proof The proof of this theorem can be referred to the book by Coddington and
Levinson (1955). |

Theorem 1.2 (Gronwall) Suppose there is a continuous real valued function
g(t) = 0 1o satisfy

t
g < 51/ g(@)dt + 5 (1.14)
1

0

forallt € [tyg, t1] and 81 and 8> are positive constants. For t € [tg, t1], one obtains
g(t) < 810710, (1.15)

Proof Fort € [1y, 1], consider

t
G() = 51/ g(t)dt + 6.
1

0

Since §; > 0 and §, > 0 are constants, one obtains G(t) > 0 and G(¢) > g(t) for
t € [to, t1]. The derivative of the foregoing equation gives

G@t) = 818(1).
Further,

G@) _d18() _81G@) _
Gu) G — G()

’
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SO
d
J-(10gG (1) <81 = log G(1) <81t — t0) — log G (1o).

In other words, for all ¢ € [tg, t1]
G(t) < G(1g)e® 1710 = gl (=10,
Therefore, for all ¢ € [tg, t1]

g(1) < 8”71, u

Theorem 1.3 Consider a dynamical system as x=f(x, t, p) with x(ty) =X¢ in
Eq. (1.12) with tg,t € I =[t1,1],x € Q={x|||x — xo|| < d}and p € A. The
vector function £(x, t, p) is C"-continuous (r > 1) in G=Q x I x A. If the solu-
tion of x=f(x, t, p)with x(ty) =Xq is x(t) on G and the solution of y=~£(y, t, p)
with y(to) =yo is y(t) on G. For a given ¢ > 0, if ||xo — Yol| < &, then

I1x(t) — y(0)|| < ee~™ on I x A. (1.16)

Proof From the method of successive approximations, with the local Lipschitz con-
dition, the two initial value problems become

t 1
x(t) = Xp +/ f(x, 7,p)dt and y(r) = yo +/ f(y, 7, p)dr.
0]

4]

Thus,

t
x(t) — ¥(t) = X0 — Yo + / (Fx. 7. p) — £(y. . p))d,
0]

t
[Ix(1) —yOIl = IIXO—yo||+/ lfx, 7. p) — £(y, 7, p)lldz.
fo

Using the local Lipschitz condition of ||f(x, 7, p) — f(y, 7, p)|| < L||x —y|| gives
t
lx(r) —yOll <& +/ Lijx(z) —y(0)lldt.
0]

So, the Gronwall’s inequality gives

I1x(1) — y(0)|| < el

This theorem is proved. u
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1.2 Equilibriums and Stability

Definition 1.7 Consider a metric space 2 and 2, C Q¢ =1,2,---).

(i) A map h is called a homeomorphism of €, onto Qg (o, B = 1,2, ---) if the
map h : Q, — Qg is continuous and one-to-one, and h~!: Qg — Qq is
continuous.

(ii) Two sets 2 and Q2 are homeomorphic or topologically equivalent if there is a
homeomorphism of 2, onto Qg.

Definition 1.8 A connected, metric space 2 with an open cover {Q2,} (i.e., 2 =
U Q) is called an n-dimensional, C" (r > 1) differentiable manifold if the following
properties exist.

(i) There is an open unit ball B = {x € Z"|||x|| < 1}.
(i1) For all , there is a homeomorphism hy, : 2, — B.
(iii) If hy : Q4 — B and hg : Qg — B are homeomorphisms for 2, N Qg # O,
then there is a C"-differentiable map h = hy o hlgl for hy (2, N Qp) C Z"
and hg (R, N Qp) C Z" with

h:hp(Qe NQp) — he (e N Qp), (1.17)

and for all x € hg (2, N Qp), the Jacobian determinant det Dh(x) # 0.

The manifold €2 is called to be analytic if the maps h = h,, o hgl are analytic.

Definition 1.9 Consider an autonomous, nonlinear dynamical system x = f(x, p)
in Eq.(1.4). A point x* €  is called an equilibrium point or critical point of a
nonlinear system x = f(x, p) if

f(x*,p) = 0. (1.18)

The linearized system of the nonlinear system x = f(x, p) in Eq. (1.4) at the equi-
librium point x* is given by

y = Df(x*, p)y where y = x — x*. (1.19)

Definition 1.10 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x=f(x, p) in Eq. (1.4) with an equilibrium point x*. The linearized system
of the nonlinear system at the equilibrium point x* is y = Df(x*, p)y (y =x — x*)
in Eq. (1.19). The matrix Df(x*, p) possesses n eigenvalues Ax (k=1,2,---n). Set
N={L,2,---,n}, Ni={l1,lo,--- , [,,}U@ withl;; e N (j; =1,2,--- ,n;;i=1,
2,---,6) and E?zlni:n. U?zl Ni=N and N; N Nj=2({ # i). Nj=g if
n; = 0. The corresponding vectors for the negative, positive and zero eigenval-
ues of Df(x*, p) are {u,} (k; e N;, i =1, 2, 3), respectively. The stable, unstable
and invariant subspaces of the linearized nonlinear system in Eq.(1.19) are defined
as
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&5 = span {llk|(Df(X*, p)—ADu =0, <0,ke Ny CNU @};
&Y = span {uk|(Df(x*, p) —ADu =0, >0,ke NyCNU @} ;o (1.20)
&' = span {ug|(DE(x*, p) — Dug = 0,2 =0,k e N3 S NUD}.

Definition 1.11 Consider an 2n-dimensional, autonomous dynamical system x =
f(x, p) in Eq. (1.4) with an equilibrium point x*. The linearized system of the non-

linear system at the equilibrium point x* is y = Df(x*,p)y(y = x — x*) in
Eq.(1.19). The matrix Df(x*, p) has complex eigenvalues o £ if; with eigen-
vectors u; +ivy (k € {1, 2, ---, n}) and the base of vector is

B={up, vy, -, vg, - 0, V) (1.21)

The stable, unstable, center subspaces of Eq. (1.19) are linear subspaces spanned by
{ug, v} (ke N;, i =1, 2, 3), respectively. Set N; ={iy, iz, - ,ip;,}US S NUQZ
and N={1,2,--- ,n} withl; e N (j=1,2,--- ,n;,i = 1,2,3) and Z?Zlnizn.
U, N; = NandN; N N; = @(l # i).N; = @ifn; = 0. The stable, unstable,
center subspaces of the linearized nonlinear system in Eq. (1.19) are defined as

ar <0, B #0,

&% = span { (ug, vi) [ (DE(x*, p) — (ax £if)D) (wr £ivy) =0, ¢ ;
keN C{l,2,---,n)UD
ar >0, B #0,

&Y = span | (ug, vi) | (DEX*, p) — (o £ip)D) (g £ivy) =0, 5 (1.22)
keN,C{1,2,-- ,njUD
ar =0, B #0,

& = span § (ug, vi) | (DE(X*, p) — (ox £if)D) (ur £ivg) =0,
keN;C{l,2,-- ,n}UD

Theorem 1.4 Consider an n-dimensional, autonomous, nonlinear dynamical system
x = f(x, p) in Eq.(1.4) with an equilibrium point X*. The linearized system of the
nonlinear system at the equilibrium point x* is y = Df(x*,p)y (y = x — x¥) in
Eq.(1.19). The eigenspace of Df(x*, p) (i.e., & C #") in the linearized dynamical
system is expressed by direct sum of three subspaces

E=EDE" D E (1.23)
where &5, 8" and &€ are the stable, unstable and center spaces &°, &" and &€,
respectively.

Proof This proof is the same as the linear system in Appendix A. |

Definition 1.12 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq. (1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x*. The corresponding solution is
x(t) = ®(xg,t — 19, p) = P;(X0). The linearized system of the nonlinear system at
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the equilibrium point x* isy = Df (x*, p)y (y = x—x*) in Eq. (1.19). Suppose there
is a neighborhood of the equilibrium x* as U (x*) C €2, and in the neighborhood

[If(x* +y,p) — DEX*, p)yl| _
Ilyll—0 [yll

0. (1.24)

(i) A C" invariant manifold

Foc (X, X¥) = {x € U")| tl_l)rgo x(1) = x*,x(t) € Ux*) forall r > 0} (1.25)

is called the local stable manifold of x*, and the corresponding global stable
manifold is defined as

S (%, X*) = Ur<0® (Soc (X, X7)). (1.26)
(ii) A C" invariant manifold

Yioe (X, X*) = {x € U(x")| tliljloox(t) =x*x(t) € Ux*) forall ¢t <0}

(1.27)
is called the unstable manifold of x*, and the corresponding global unstable
manifold is defined as

U (x,X") = Urz0 @ (Xoc(x, X")). (1.28)

(iii) A C"~! invariant manifold €, (x, x*) is called the center manifold of x* if
Gloc (X, X*) possesses the same dimension of &€ for x* € .7(x, x*), and the
tangential space of %7,. (X, x*) is identical to &°.

The stable and unstable manifolds are unique, but the center manifold is not
unique. If the nonlinear vector field f is C°°-continuous, then a C” center manifold
can be found for any r < oco.

Theorem 1.5 Consider an n-dimensional, autonomous, nonlinear dynamical system
x = f(x, p) in Eq.(1.4) with a hyperbolic equilibrium point x* and f(x, p) is C”
(r = 1)-continuous in a neighborhood of the equilibrium x*. The corresponding
solution is x(t) = ®(xg, t — to, p) = ®:(X0). The linearized system of the nonlinear
system at the equilibrium point x* is y = Df(x*, p)y (y = x — x*) in Eq.(1.19).
Suppose there is a neighborhood of the hyperbolic equilibrium x* as U (x*) C Q. If
the homeomorphism between the local invariant subspace E (x, x*) C U (x*) under
the flow ®(xo,t — to, p) of X = f(x,p) in Eq.(1.4) and the eigenspace & of the
linearized system exists with the condition in Eq.(1.24), the local invariant subspace
is decomposed by

E(X, X*) = Lgﬂlac(X, X*) @ %oc(xa X*)- (129)

(a) The local stable invariant manifold Sj,c(X,X*) possesses the following
properties:
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(1) for x* € Soc(X, X*), Loc (X, X*) possesses the same dimension of &°
and the tangential space of S1oc (X, X*) is identical to &*,

(i) forxg € Loc (X, X*), X(t) € Soc (X, X*) foralltimet >ty andtlim x(1) =
—00

x*;

(iii) forxo ¢ Soc(X, X*), [|Xx —X*|[ =8 for 6 > 0 witht > | > 1.

(b) The local unstable invariant manifold .. (X, X*) possesses the following prop-
erties:

(1) for X* € Yo (X, X*), oc(X, X*) possesses the same dimension of &
and the tangential space of U (X, X*) is identical to &";

(ii) forxg € Yo (X, X*), X(t) € Uoc (X, X*) forall time t <ty ana; lim x(7) =
——00

x*;

(iii) for xg & Yoc (X, X*), ||x —x*|| > § for 8 > Owitht < t; < 1.

Proof The proof for stable and unstable manifolds can be referred to Hartman (1964).
The proof for center manifold can be referenced to Marsden and McCracken (1976)
or Carr (1981). |

Theorem 1.6 Consider an n-dimensional, autonomous, nonlinear dynamical system
x = f(x, p) in Eq. (1.4) with an equilibrium point X*. Suppose there is aneighborhood
of the equilibrium x* as U (x*) C Q, then f(x,p) is C" (r > 1)-continuous in a
neighborhood of the equilibrium x*. The corresponding solution is X(t) = ®(xg, t —
to, p). The linearized system of the nonlinear system at the equilibrium point X* is
y = DE(x*, p)y (y = x—Xx*) in Eq.(1.19). If the homeomorphism between the local
invariant subspace E (x, x*) C U (x*) under the flow ®(xq, t — ty, p) of x = f(x, p)
in Eq.(1.4) and the eigenspace & of the linearized system exists with the condition in
Eq.(1.24), in addition to the local stable and unstable invariant manifolds, there is a
C" ! center manifold €)oc (X, X*). The center manifold possesses the same dimension
of &€ for x* € Gy (X, X*), and the tangential space of €c(X, X*) is identical to €.
Thus, the local invariant subspace is decomposed by

E(X,X*) = S0c (X, X*) @ Yoc (X, X*) ® Gloc(X, X). (1.30)

Proof The proof for stable and unstable manifolds can be referred to Hartman (1964).
The proof for center manifold can be referenced to Marsden and McCracken (1976)
or Carr (1981). [ |

Definition 1.13 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq. (1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x*.

(1) The equilibrium x* is stable if all ¢ > 0, there is a § > 0 such that for all
Xo € Us(x™) where Us(x™) = {x|||x — x*|| < d}andt > 0,

®(xo, 1 — to, p) € Up(x¥). (1.31)
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(ii) The equilibrium x* is unstable if it is not stable or if all ¢ > 0, there is a
8 > 0 such that for all xg € Us(x*) where Us(x*) = {x|||x — x*|| < 8} and
t>1 >0,

®(xq, t — tg, p) ¢ Us(x¥). (1.32)

(iii) The equilibrium x* is asymptotically stable if all & > 0, there is a § > 0 such
that for all xg € Us(x*) where Us(x*) = {x| ||x —x*|| < 8} and ¢t > 0,

lim ®(xq, 1 — to, p) = x*. (1.33)
11— 00

(iv) The equilibrium x* is asymptotically unstable stable if all ¢ > 0, there is a
8 > 0 such that for all xg € Us(x*) where Us(x*) = {x]|||x — x*|] < 8} and
t <0,

lim ®(xq, 1 —tp,p) =X . (1.34)
t——00

Definition 1.14 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x,p) in Eq.(1.4) with an equilibrium point x*. Suppose there is a
neighborhood of the equilibrium x* as U (x*) C €, then f(x,p) is C" (r > 1)-
continuous and Eq.(1.24) holds in U(x*) C . The corresponding solution is
x(t) = ®(xg, t — 1y, p). For a linearized dynamical system in Eq. (1.19), consider a
real eigenvalue A of matrix Df (x*, p) (k € N = {1, 2, - - - , n}) with an eigenvector
vi. Fory® = c®vy y® = ¢®Oy, = 3 e®vy, thus ¢® = rpc®.

(i) x® at the equilibrium x* on the direction vy is stable if

lim ¢® = lim ci”e™ =0 for A <0. (1.35)
— 00 — 00

(ii) x® at the equilibrium x* on the direction v is unstable if

lim [¢®] = lim |c{’e*| = oo for ix > 0. (1.36)
t—0o0 t—00

(iii) x) at the equilibrium x* on the direction v is uncertain (critical) if

lim ¢® = lim "¢ = ¢ for A =0. (1.37)

t—00 —>00
Definition 1.15 Consider a 2n-dimensional, autonomous, nonlinear dynamical sys-
temx = f(x, p) in Eq. (1.4) with an equilibrium point x*. Suppose there is a neighbor-
hood of the equilibrium x* as U (x*) C €2, then f(x, p) is C” (r > 1)-continuous and
Eq.(1.24)holdsin U (x*) C Q. The corresponding solutionis x(z) = ®(xg, t—1g, p)-
For a linearized dynamical system in Eq.(1.19), consider a pair of complex eigen-
value o £ify (k € N = {1,2, -, n}, i = /—1) of matrix Df (x*, p) with a pair of
eigenvectors uy % ivg. On the invariant plane of (ug, vx), consider y(k) = yglf) + yg()
with
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vy = By 4+ dBvy, y O = Oy 4 dWv,. (1.38)

Thus, ¢® = (c®, d*HT with

é(k) — Ekc(k) = C(k) — e(xktBkc(()k) (1.39)
where
oo B | cos Byt sin Byt
Ey = |:—,Bk ak] and By = |:—sin,3kt cos ﬁkti| ’ (1.40)

(i) x® at the equilibrium x* on the plane of (uy, vy) is spirally stable if

lim [|¢®[] = lim e/ [[Bg]| x [|c{”|| =0 for Rerr = < 0. (1.41)
t—0o0 t—0o0

(ii) x®) at the equilibrium x* on the plane of (uy, vi) is spirally unstable if

lim [|¢®]] = Tim ¢ [|Bg|] x ||c{"|| = 0o for Rerr = g > 0. (1.42)
11— 00 11— 00

(iii) x® at the equilibrium x* on the plane of (u, vi) is on the invariant circle if

lim [[c® || = Tim % |[By|| x |le]] = [|c]] for Reix = ay = 0.
11— 00 11— 00
(1.43)

(iv) x® at the equilibrium x* on the plane of (ug, vi) is degenerate in the direction
of uy if ImAg, = 0.

Definition 1.16 Consider an n-dimensional, autonomous, nonlinear dynamical
system x = f(x, p) in Eq.(1.4) with an equilibrium point x*. Suppose there is a
neighborhood of the equilibrium x* as U (x*) C €, then f(x,p) is C" (r > 1)-
continuous in the neighborhood, and Eq. (1.24) holds. The corresponding solution
is x(t) = ®(xg,t — t9, p). The linearized system of the nonlinear system at the
equilibrium point x* is y = Df(x*, p)y (y = x — x*) in Eq. (1.19).

(i) The equilibrium x* is said a hyperbolic equilibrium if none of eigenvalues of

Df(x*, p) is zero real part (i.e., ReAy #0(k =1,2,--- ,n)).

(i1) The equilibrium x* is said a sink if all of eigenvalues of Df (x*, p) have negative
real parts (i.e., ReAy <0k =1,2,---,n)).

(iii) The equilibrium x* is said a source if all of eigenvalues of Df(x*, p) have
positive real parts (i.e., Rery >0k =1,2,---,n)).

(iv) The equilibrium x* is said a saddle if it is a hyperbolic equilibrium and
Df(x*, p) have at least one eigenvalue with a positive real part (i.e., ReA; >
0(j € {1,2,---,n}) and one with a negative real part (i.e., Rely < O(k €
{1,2,---,n}).

(v) The equilibrium x* is called a center if all of eigenvalues of Df(x*, p) have
zero real parts (i.e., ReA; =0(j = 1,2, ---, n)) with distinct eigenvalues.
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(vi) The equilibrium x* is called a stable node if all of eigenvalues of Df (x*, p) are
real Ay <0k =1,2,---n).
(vii) The equilibrium x* is called an unstable node if all of eigenvalues of Df(x*, p)
arereal Ay >0 (k=1,2,---n).
(viii) The equilibrium x* is called a degenerate case if all of eigenvalues of Df (x*, p)
arezerorr, =0k =1,2,---n).

As in Appendix A, the refined classification of the linearized nonlinear system
at equilibrium points should be discussed. The generalized stability and bifurcation
of flows in linearized, nonlinear dynamical systems in Eq. (1.4) will be discussed as
follows.

Definition 1.17 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x,p) in Eq.(1.4) with an equilibrium point x*. Suppose there is a
neighborhood of the equilibrium x* as U (x*) C €, then f(x,p) is C" (r > 1)-
continuous in the neighborhood, and Eq. (1.24) holds. The corresponding solution
isx(1) = ®(xg, t —tg, p). The matrix Df (x*, p) in Eq. (1.19) possesses n eigenvalues
A (k=1,2,---,n).SetN={1,2,--- ,m,m+1, (n—m)/2}, N; ={i1,i2, - ,in}
U@ withi;eN (=12 ,n;,i=12---,6), Z_n; = mand2%5 ,n; =
n—m. U?:l N; =N and N;N\N; = @(l #i). N; = @ifn; =0. The matrix Df (x*, p)
possesses np-stable, ny-unstable and n3-invariant real eigenvectors plus n4-stable,
ns-unstable and ng-center pairs of complex eigenvectors. Without repeated complex
eigenvalues of Redy = 0(k € N3 U Ng), the flow @(¢) of the nonlinear system
x = f(x,p) is an (n] : ny : [n3; m3]|na : ns : ng) flow in the neighborhood of x*.
However, with repeated complex eigenvalues of ReiA; = 0 (k € N3 U Ng), the flow
®(¢) of the nonlinear systemx = f(x, p)isan (n; : ny : [n3; k3]|na : ns : [ng, [; k¢gl)
flow in the neighborhood of x*. k3 € {@, m3}, k¢ = (K61, K62, - - - ke) T with kg €
(D, me;}i =1,2,---,1).mg = (me1, Mg, -+ - , me;) L. The meanings of notations
in the aforementioned structures are defined as follows:

(i) njrepresentsexponential sinksonni-directionsof vi (k € N1)ifAr <0 (k€ Ny
and 1 <n| <m) with distinct or repeated eigenvalues.

(i) ny represents exponential sources on ny-directions of vi (k€ Np) if A >0
(k € N> and 1 <n, <m) with distinct or repeated eigenvalues.

(iii) n3 = 1 represents an invariant center on 1-direction of v (k € N3) if Ay =0
(ke Ny and n3 = 1).

(iv) ng4 represents spiral sinks on n4-pairs of (ug, vi)(k € Ng) if ReA; < 0 and
Imiy # O0(k € Ngand 1 < ng < (n — m)/2) with distinct or repeated
eigenvalues.

(v) ns represents spiral sources on ns-pairs of (ug, vx) (k € Ns) if ReAy > 0
and ImA; # O0(k € Ns and 1 < ns < (n — m)/2) with distinct or repeated
eigenvalues.

(vi) ne represents invariant centers on ng-pairs of (ug, vi) (k € Ng) if ReAry = 0
and ImA; # 0 (k € Ng and 1 < ng < (n — m)/2) with distinct eigenvalues

(vii) @ represents none ifn; =0( € {1,2,---,6}).
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(viii) [n3; m3] represents invariant centers on (n3 — m3)-directions of v, (k3 € N3)
and sources in m3-directions of v;;(j3 € N3 and j3 # k3) if Ay =0 (k € N3
and n3 <m) with the (m3 + 1)th-order nilpotent matrix N_q)m3+1 =0

<n3z—1).

(ix) [n3; @] represents invariant centers on n3-directions of vi (k € N3) if Ay =
0 (k € N3 and 1 < n3 < m) with a nilpotent matrix N3 = 0.

(x) [n6, [; mg] represents invariant centers on (ng — Eézlmﬁs)-pairs of (U, Vig)
(k¢ € Ng), and sources in Eizlm(,s-pairs of (wjg, vjs) (Jo € N and jg # ko)
if ReAy = 0 and Imix # O(k € Ne and ng < (n — m)/2) for T!_ me-
pairs of repeated eigenvalues with the (mgs + 1)th-order nilpotent matrix
NS 00 <meg <l,s=1,2,---,1).

(xi) [ne,l; @] represents invariant centers on ng-pairs of (u, vy) (k € Ng) if
Reldy = OandImiy # O(k € Ngand 1 < ng < (n —m)/2) for (I + 1)
pairs of repeated eigenvalues with a nilpotent matrix Ng = 0.

0 <ms3

Definition 1.18 Consider an n-dimensional, autonomous, nonlinear dynamical
system x = f(x,p) in Eq.(1.4) with an equilibrium point x*. Suppose there
is a neighborhood of the equilibrium x* as U(x*) C €, then f(x,p) is C”
(r = 1)-continuous in the neighborhood, and Eq.(1.24) holds. The correspond-
ing solution is x(#) = ®(xg,t — fo, p). The matrix Df(x*, p) in Eq.(1.19) pos-
sesses n eigenvalues A (k=1,2,---,n). Set N={1,2,--- , mm+1,---,(n —
m)/2}, Ny ={i1, iz, -+ ,ip;} U withi; e N(j=1,2,--- ,n;,i=1,2,---,6),
>3 ni=mand2%% n;=n—m.U_ N;=Nand N; N\ Nj=2 (| #i).Ni =2
if n; =0. The matrix Df (x*, p) possesses n|-stable, np-unstable and n3-invariant real
eigenvectors plus n4-stable, ns-unstable and ng-center pairs of complex eigenvec-

tors. k3 € {F, m3}. k = (ke1, k62, - - -, kﬁ[)T with kg; € {D, mgi}(i =1,2,---,1).
The flow @ (¢) of the nonlinear system x = f(x, p) isan (ny : ny : [n3 : k3]|ng : ns :
[n6, [; k6]) flow in the neighborhood of x*.k3 € {@, m3}, ke = (K1, K62, - - - » Ke1) "
with kg; € {F, mei} (i =1,2,--- ,1).mg = (mg1, mep, - - , m61)T.

1. Non-degenerate cases

(i) The equilibrium point x* is an (n; : ny : J|ny : ns : F) hyperbolic point

(or saddle) for the nonlinear system.

(i1) The equilibrium point x* is an (n] : @ : Dlng : @ : ) sink for the
nonlinear system.

(iii) The equilibrium point x* is an (& : ny : I|F : ns : &) source for the
nonlinear system.

(iv) The equilibrium point x* is an (& : @ : I : @ : n/2) center for the
nonlinear system.

(v) The equilibrium point x* isan (@ : @ : (D : @ : [n/2,[; &]) center for
the nonlinear system.

(vi) The equilibrium point x* isan (& : @ : J|D : & : [n/2, [; mg]) point for
the nonlinear system.
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(vii) The equilibrium point x* is an (n] : @ : J|ng : T : ng) point for the
nonlinear system.

(viii) The equilibrium point Xx* is an (& : ny : | : ns : ng) point for the
nonlinear system.

(ix) The equilibrium point x* is an (n : ny : D|ng : ns : ne) point for the
nonlinear system.

II. Simple degenerate cases

(i) The equilibrium point x* is an (@ : @ : [n; &]|@ : @ : &)-invariant (or
static) center for the nonlinear system.
(i1) The equilibrium point x* is an (& : @ : [n; m3]|@ : & : &) point for the
nonlinear system.
(iii) The equilibrium point x* is an (& : & : [n3; T]|D : D : ng) point for the
nonlinear system.
(iv) The equilibrium point x* is an (@ : @ : [n3; m3]|D : T : ne) point for
the nonlinear system
(v) The equilibrium point x* is an (& : @ : [n3; F)|D : O : [ne, [; D)) point
for the nonlinear system.
(vi) The equilibrium pointx* isan (@ : @ : [n3; m3]|D : @ : [ne, [; D]) point
for the nonlinear system.
(vii) The equilibrium point x* is an (@ : @ : [n3; T]|D : D : [ne, [; mg))
point for the nonlinear system.
(viii) The equilibrium point x* is an (& : @ : [n3; m3]|D : D : [ng, [; mg])
point for the nonlinear system.

III. Complex degenerate cases

(1) The equilibrium point x*isan (n| : @ : [n3; D]|ng : @ : &) point for the
nonlinear system.
(i1) The equilibrium point x* is an (n] : @ : [n3; m3]|ng : @ : ) point for
the nonlinear system.
(iii) The equilibrium point x* is an (@ : ny : [n3; F]|2 : ns : ) point for the
nonlinear system.
(iv) The equilibrium point x* is an (& : ny : [n3; m3]|@ : ns : &) point for
the nonlinear system.
(v) The equilibrium point x* is an (n] : @ : [n3; D]|ng : F : ng) point for
the nonlinear system.
(vi) The equilibrium point x* is an (n| : @ : [n3; m3]|ng : D : ng) point for
the nonlinear system.
(vii) The equilibrium point x* is an (& : ny : [n3; D] : ns5 : ng) point for
the nonlinear system.
(viii) The equilibrium point x* is an (& : ny : [n3; m3]|D : ns : neg) point for
the nonlinear system.
(ix) The equilibrium point x* is an (n] : @ : [n3; D]|ng : S : [ne, l; kel)
point for the nonlinear system.
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(x) The equilibrium point x* is an (ny : @ : [n3; m3]|ng : O : [ne, [; k6))
point for the nonlinear system.

(xi) The equilibrium point x* is an (& : ny : [n3; F]|D : ns : [ne,1; ke])
point for the nonlinear system.

(xii) The equilibrium point X* is an (& : ny : [n3; m3]|D : ns : [ne, ; ke])
point for the nonlinear system.

Definition 1.19 Consider an n-dimensional, autonomous, nonlinear dynamical
system x =f(x, p) in Eq.(1.4) with an equilibrium point x*. Suppose there is a
neighborhood of the equilibrium x* as U (x*) C €2, then f(x,p) is C" (r > 1)-
continuous in the neighborhood, and Eq.(1.24) holds. The corresponding solu-
tion is x(¢) = ®(xg,t — ty, p). The matrix Df(x*, p) in Eq.(1.19) possesses n
eigenvalues Ay (k=1,2,---n). Set N={1,2,--- ,n}, N;={i1, iz, -+ ,ip,} UD
with i; € N(j=1,2,---,n;,i=1,2,3) and ¥}_n;=n. U}_; N;=N and
Ni NN =2 # i). Ny=o if n; =0. The matrix Df(x*, p) possesses n-stable,
np-unstable and n3-invariant real eigenvectors. Without repeated eigenvalues of
M = 0(k € N3), the flow ®(¢) of the nonlinear system x = f(x, p) in Eq.(1.4) is
an (n1 : np : & or (n1 : ny : 1] local flow in the neighborhood of equilibrium point
x*. However, with repeated eigenvalues of 1, = 0 (k € N3), the flow ®(¢) of the
nonlinear system x = f(x, p) in Eq.(1.4) is an (n; : ny : [n3; m3]| local flow in the
neighborhood of equilibrium point x*.

1. Non-degenerate cases

(1) The equilibrium point x* is an (n : & : &|-stable node for the nonlinear

system.

(i1) The equilibrium point x* is an (& : n : &|-unstable node for the nonlinear
system.

(iii) The equilibrium point x* is an (n; : ny : &|-saddle for the nonlinear
system.

II. Degenerate cases

(i) The equilibrium point x* is an (n] : ny : 1|-critical state for the nonlinear

system.

(i1) The equilibrium point x* is an (n] : ny : [n3; &]| point for the nonlinear
system.

(iii) The equilibrium point x* is an (n] : ny : [n3; m3]| point for the nonlinear
system.

Definition 1.20 Consider a 2n-dimensional, autonomous, nonlinear dynamical
system X = f(x, p) in Eq. (1.4) with an equilibrium point x*. Suppose there is a neigh-
borhood of the equilibrium x* as U (x*) C €2, then f(x, p) is C" (r > 1)-continuous
in the neighborhood, and Eq.(1.24) holds. The corresponding solution is x(f) =
®(xp, 1 — 19, p)- The matrix Df(x*, p) in Eq.(1.19) possesses n-pairs of complex
eigenvalues (k =1,2,--- ,n). Set N ={1,2,--- ,n}, N; ={i1,i2,--- ,ip,} UD
withl; e N(j = 1,2, ,n;5i = 4,5,6) and % _n; = n. US_, N; = N and
NN Ny =2 #1i). N; = @ if n; = 0. The matrix Df(x*, p) possesses ng-stable,
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ns-unstable and ng-center pairs of complex eigenvectors. Without repeated eigen-
values of Rely = 0(k € Ng), the flow ®(¢) of the nonlinear system x = f(x, p)
in Eq.(1.4) is an |n4 : ns5 : ne) local flow in the neighborhood of equilibrium point
x*. However, with repeated eigenvalues of ReA; = 0 (k € Ng), the flow ®(¢) of
the nonlinear system x = f(x, p) in Eq.(1.4) is an |n4 : ns : [ng, [; Kg]) local flow
in the neighborhood of equilibrium point x*. k¢ = (k¢1, k62, - - - , k1) With kg €
(@, mei} (i =1,2,-- ). mg = (me1, me2, - -+, me1) "

1. Non-degenerate cases

(i) The equilibrium point x* is an |n : & : &)-spiral sink for the nonlinear
system.

(ii) The equilibrium point x* is an |& : n : &)-spiral source for the nonlinear
system.

(iii) The equilibrium pointx*isan |@ : & : n)-center for the nonlinear system.

(iv) The equilibrium pointx* is an |n4 : ns : @)-spiral saddle for the nonlinear
system.

I. Quasi-degenerate cases

(i) The equilibrium point x* is an |ng : & : ng)-point for the nonlinear

system.

(i1) The equilibrium point X* is an |& : ns5 : ng)-point for the nonlinear
system.

(iii) The equilibrium point x* is an |n4 : @ : [ne, [; &])-point for the nonlinear
system.

(iv) The equilibrium point x* is an |ng : @ : [ng,[; kel)-point for the
nonlinear system.

(v) The equilibrium point x* is an |& : n5 : [ng; ])-point for the nonlinear
system.

(vi) The equilibrium point x* is an |& : ns : [ng,[; ke])-point for the
nonlinear system.

1.3 Bifurcation and Stability Switching

As before, the dynamical characteristics of equilibriums in nonlinear dynamical
systems in Eq.(1.4) are based on the given parameters. With varying parameters in
dynamical systems, the corresponding dynamical behaviors will change qualitatively.
The qualitative switching of dynamical behaviors in dynamical systems is called
bifurcation and the corresponding parameter values are called bifurcation values.
To understand the qualitative changes of dynamical behaviors of nonlinear systems
with parameters in the neighborhood of equilibriums, the bifurcation theory for
equilibrium of nonlinear dynamical system in Eq.(1.4) will be presented. Dx() =
0()/0x and Dp() = 3()/dp will be adopted from now on. For no specific notice,
D = Dy.
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Definition 1.21 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq.(1.4) with an equilibrium point (x*, p). Suppose there is a
neighborhood of the equilibrium x* as U (x*) C €2, and in the neighborhood, equa-
tion (1.24) holds. The linearized system of the nonlinear system at the equilibrium
point (x*, p) is y = Dxf(x*, p)y (y = x — x*) in Eq.(1.19).

(i) The equilibrium point (g, po) is called the switching point of equilibrium

solutions if Dyf(x*, p) at (xg, Po) possesses at least one more real eigenvalue
(or one more pair of complex eigenvalues) with zero real part.

(i) The value po in Eq.(1.4) is called a switching value of p if the dynamical
characteristics at point (Xg, Po) change from one state to another state.

(iii) The equilibrium point (x§, po) is called the bifurcation point of equilibrium
solutions if Dyf(x*, p) at (xg, Po) possesses at least one more real eigenvalue
(or one more pair of complex eigenvalues) with zero real part, and more than
one branches of equilibrium solutions appear or disappear.

(iv) The value pg in Eq. (1.4) is called a bifurcation value of p if the dynamical char-
acteristics at point (x;, po) change from one stable state into another unstable
state.

Definition 1.22 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x=f(x,p) in Eq.(1.4) with an equilibrium point x*. Suppose there is a
neighborhood of the equilibrium x* as U(x*) C 2, then f(x,p) is C" (r>1)-
continuous in the neighborhood, and Eq. (1.24) holds. The corresponding solution
is x(1) = ®(xq, t — 19, p). The matrix Df (x*, p) in Eq. (1.19) possesses n eigenvalues
Mk=1,2,---,n).Set N={1,2,--- ,mm+1,---,(n —m)/2}, Ni={i,id,

g U@ withijeN (j=1,2,---,n;, i=1,2,---,6), %} ;n; = m and
228 yni=n—m.US_ N;j=N and N; N N;=2( # i).N; =92 if n; =0. The
matrix Df(x*, p) possesses ni-stable, np-unstable and ns-invariant real eigen-
vectors plus ng-stable, ns-unstable and ng-center pairs of complex eigenvectors
k3 € {@, m3}). k6 = (K61, k62, -+ , k)" withkej € {@, mei}(i = 1,2, ).

L. Simple switching and bifurcation

(i) An (ny : np : 1jng : ns : @) state of equilibrium point (xgj, po) for the
nonlinear system is a switching of the (ny : no+1 : Jng : n5 : &)-spiral
saddle and (n1 + 1 : ny : D|ng : ns : @)-spiral saddle of equilibrium
point (x*, p).

(i) An(n; —1:@: 1|ng : @ : @) state of equilibrium point (xa‘ , po) for the
nonlinear system is a stable bifurcation of its (ny — 1 : 1 : Jlng : T : D)-
spiral saddle and (n] : @ : D|ng : & : &)-spiral sink of equilibrium point
x*, p).

(iii) An (@ :ny —1: 1|9 : ns : @) state of equilibrium point (X, po) for the
nonlinear system is an unstable bifurcation of its(1 : np — 1 : I\ : ns :
&)-spiral saddle and (@ : ny : F|D : n5 : J)-spiral source of equilibrium
point (x*, p).
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(iv) An (n1:ny:QJ|na:ns: 1) state of equilibrium point (xg, Po) for the non-
linear system is a Hopf bifurcation of its (n1 : ny : @|na+1:ns : &)-spiral
saddle and (n1 :ny : D|ng :ns5 + 1: )-spiral saddle of equilibrium point
x*, p).

(V) An (n : @ : @|ng —1: @ : 1) state of equilibrium point (x§, po) for the
nonlinear system is a stable Hopf bifurcation ofits (n1 : & : Dlna—1:1:
&)-spiral saddle and (n1 : @ : S|ng : & : &)-spiral sink of equilibrium
point (x*, p).

(vi) An (@ :ny : @D : ns—1: 1) state of equilibrium point (x{j, po) for the
nonlinear system is an unstable Hopf bifurcation of its (& : ny : |1 :
ns — 1 : &)-spiral saddle and (& : ny : J|D : ns : I)-spiral source of
equilibrium point (x*, p).

(vii) An (n1 : ny : lina : ns : ne) state of equilibrium point (xé‘, po) for the
nonlinear system is a switching of the (ny + 1 : ny : Glng : ns : ng) state
and (ny : np + 1 : |ng : ns : ne) state of equilibrium point (x*, p).

(viii) An (n1 : np : ling : ns : [ne; [; ke]) state of equilibrium point (xg, Po)
for the nonlinear system is a switching of its (n; + 1 : no : Glng : ns :
[ne; I; ke]) state and (n1 : no + 1 : Dlng : ns : [ne;l; ke]) state of
equilibrium point (x*, p).

(ix) An(ny :ny : DIng : ns : ng+1) state of equilibrium point (x§, po) for the
nonlinear system is a Hopf switching of its (n1 : np : D|nga + 1 : n5 : ng)
state and (n] : ny : D|ng : n5+ 1 : ne) state of equilibrium point (x*, p).

(x) An (n1 : np : [n3;3]|ng : ns : ne + 1) state of equilibrium point
(xé, po) for the nonlinear system is a Hopf switching of its (n : nj :
[n3; Dlng + 1 : ns : ng) state and (ny : ny : [n3; ng : ns + 1 : ng)
state of equilibrium point (x*, p).

II. Complex switching

(1) An (n1 : ny : [n3; k3]|na : ns : ng)-state of equilibrium point (Xé, po) for
the nonlinear system is a degenerate switching of its (n1+n3 : ny : Jlng :
ns : ne) state and (ny : ny + n3 : Jlng : ns : ng) state of equilibrium
point (x*, p).

(i) An (n1 —m : no : [n3 4+ m; k3]|ng : ns5 : ne)-state of equilibrium point
(x5 Po) for the nonlinear system is a degenerate switching of its (ny : ny :
[n3; K§]|n4 :ns5: ne)stateand (ny —m :no +m : [n3; K§]|n4 1 N5 i ng)
state of equilibrium point (x*, p).

(ii) An (ny : np —m : [n3 4+ m; k3]lna : ns : ne)-state of equilibrium
point (x(’;, po) for the nonlinear system is a switching of its (n] : ny :
[n3; K§]|n4 1 ns5 :ng)-state and (ny +m :nyp —m : [n3; K§]|n4 I N5 ng)
state of equilibrium point (x*, p).

(iv) An (ny —my : ny : [n3+my; k3]|ng : ns : ne)-state of equilibrium point
(x> po) for the nonlinear system is a switching of (ny : ny : [n3; Ké] |ng :
ns : ng) state and (ny —my 1 ny +my : [n3 +my —mo; k5] |ng : ns : ne)
state of equilibrium point (x*, p).
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(v) An (ny:ny — my:[n3 + mo; k3]|n4 :ns : ng)-state of equilibrium point
(x5 Po) for the nonlinear system is a degenerate switching of its (1 : n5 :
[n3; «}]Ing 1 ns :ne) state and (n +my :no—my : [n3+mo—my; kf1ng:
ns: ne) state of equilibrium point (x*, p).

(vi) An (n1 : ny : [n3;k3]|n4 @ ns : [ne, l; ke]) state of equilibrium point
(x5- po) for the nonlinear system is a degenerate Hopf switching of its
(ny : np : [n3;k3]| ng + ng : ns : @) state and (ng : ny : [n3; k3]|ng :
ns + ng : @) state of equilibrium point (x*, p).

(vil) An (n1:ny:[n3;k3llna — m:ns:[ne + m,li; kel) state of equilibrium
point (x§, po) for the nonlinear system is a degenerate Hopf switching
of its (ny:ny:[n3; k3llng :ns :[ne, l2; kel) state and (n:ny:[n3; k3]|
ng —m:ns +m:[ng, bo; k) state of equilibrium point (x*, p).

(viii) An (ny:n2:[n3; k3]|na:ns—m:[ne+m,l+m; kg]) of equilibrium point
(x5, po) for the nonlinear system is a degenerate Hopf switching of its
(ny :ny:[n3; k3l|ng :ns 2 [ne, I; ke)) state and (n; : ny : [n3; k3]|ng+m :
ns —m : [ng, [; kg]) state of equilibrium point (x*, p).

(ix) An (ng : no : [n3; k3]|n4 1 ns —m : [ng+m, l1; ke]) state of equilibrium
point (x3, po) for the nonlinear system is a degenerate Hopf boundary
of its (ny : ny : [n3;k3]|lng : ns : [ne,lp; kg]) state and (n; : no :
[n3; k3]|lng +m; ns —m : [ne, l2; lc’6]) state of equilibrium point (x*, p).

(xX) An(ng : no : [n3; k3]lna—my : ns : [ne+ma, l1; ke)) state of equilibrium
point (3, po) for the nonlinear system is a degenerate Hopf switching of
(ny : ny @ [n3; k3]|ng @ ns : [ne, b; IC/6]) state and (n1 : ny : [n3; k3]|ng —
my : ns+ms : [ng+mg—ms,[3; Kg]) state of equilibrium point (x*, p).

Definition 1.23 Consider an n-dimensional, autonomous, nonlinear dynamical
system x = f(x, p) in Eq. (1.4) with an equilibrium point x*. k3 € {@, m3}. Suppose
there is a neighborhood of the equilibrium x* as U (x*) C €, then f(x, p) is C”
(r = 1)-continuous in the neighborhood, and Eq. (1.24) holds. The corresponding
solution is x(z) = ®(xqg, t — ty, p). The matrix Df(x*, p) in Eq. (1.19) possesses n
eigenvalues Ay (k =1,2,---n).Set N ={1,2,--- ,n}, N; ={i1,i2, -, ip,}UD
withij € N (j = 1,2,---,n;, i = 1,2,3)and B})_n; =n. U_| N; = N
and N; NNy = @ (I #1i).N; = @ if n; = 0. The matrix Df (x*, p) possesses n]-
stable, np-unstable and n3-invariant real eigenvectors. Without repeated eigenvalues
of Ay = 0 (k € N3), the flow ®(7) of the nonlinear system x = f(x, p) in Eq.(1.4)
isan (ny : ny : @] or (ny : ny : 1] local flow in the neighborhood of equilibrium
point x*. However, with repeated eigenvalues of Ay = 0 (k € N3), the flow ®(¢) of
the nonlinear system x = f(x, p) in Eq.(1.4) is an (n; : ny : [n3; m3]| local flow in
the neighborhood of equilibrium point x*. k3 € {&, m3}.

1. Simple switching and bifurcation

(i) An (ny : np : 1] state of equilibrium point (xj, po) for the nonlinear
system is a saddle-saddle switching of its (ny + 1 : ny : &|-saddle and
(n1 : ny + 1 : &|-saddle of equilibrium point (x*, p).
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(i) An (n — 1 : @ : 1] state of equilibrium point (x, po) for the nonlinear
system is a stable saddle-node bifurcation of its (n — 1 : 1 : &|-saddle
and (n : @ : J|-stable node of equilibrium point (x*, p).

(iii) An (@ : n — 1 : 1] state of equilibrium point (x§, pp) for the nonlinear
system is an unstable saddle-node bifurcation of (1 : n — 1 : &J|-saddle
and (@ : n : I|-unstable node of equilibrium point (x*, p).

(iv) An (n1 — 1 :ny : [n3 + 1; k3]]| state of equilibrium point (Xé, po) for the
nonlinear system is a degenerate saddle-saddle switching of (ny : ny :
[n3; k3]|-degenerate saddle and (n; — 1 : ny + 1 : [n3; k3]|-degenerate
saddle of equilibrium point (x*, p).

II. Complex switching

(1) An(ng : na : [n3; k3]] state of equilibrium point (XS, Po) for the nonlinear
system is a degenerate switching of (n1 + n3 : ny : J|-saddle and (n; :
ny + n3 : |-saddle of equilibrium point (x*, p).

(i) An (n; —m :ny:[n3 + m; k3]| state of equilibrium point (x(’)‘, po) for the
nonlinear system is a degenerate switching of the (ny :ns : [n3; K§]| state
and (ny —m:ny +m:[n3; Ké]| state of equilibrium point (x*, p).

(iii) An (ny : ny —m : [n3+m; k3]| state of equilibrium point (xgj, po) for the
nonlinear system is a degenerate switching of its (n : ny : [n3; K§]|-state
and (ny +m :ny —m : [n3; Ké]| state of equilibrium point (x*, p).

@iv) An (n; — m1 : ny : [n3 4+ my; k3]|-state of equilibrium point (XS, Po)
for the nonlinear system is a degenerate switching of (n1 : ny : [n3; Ké]|
state and (n1 —m1 : na 4+ ma : [n3 +my — ma; k5 ]| state of equilibrium
point (x*, p).

(v) An (ny : np —my : [n3+my; k3]|-state of equilibrium point (x§, po) for
the nonlinear system is a degenerate switching of (ny : ny : [n3; Ké]|—state
and (ny +my : np —my : [n3 +my —my; k5 ]|-state of equilibrium point
x*, p).

Definition 1.24 Consider a 2n-dimensional, autonomous, nonlinear dynamical
systemx = f(x, p) in Eq. (1.4) with an equilibrium point x*. Suppose there is a neigh-
borhood of the equilibrium x* as U (x*) C 2, then f(x, p) is C" (r > 1)-continuous
in the neighborhood, and Eq.(1.24) holds. The corresponding solution is x(¢) =
®(xg,t — ty, p)- The matrix Df(x*, p) in Eq. (1.19) possesses n-pairs of complex
eigenvalues (k = 1,2,---,n). Set N ={1,2,--- ,n}, N; ={i1,iz,--- ,ip,} UD
withl; € N(j = 1,2,--- ,nj;i = 4,5,6) and £°_jn; = n. US_, N; = N and
NiNN; =0 #1i). N; =2 if nj = 0. The matrix Df (x*, p) possesses n4-stable,
ns-unstable and ng-center pairs of complex eigenvectors. Without repeated eigen-
values of Reiy = 0 (k € Ng), the flow ®(¢) of the nonlinear system x = f(x, p)
in Eq.(1.4) is an |n4 : ns5 : ne) local flow in the neighborhood of equilibrium point
x*. However, with repeated eigenvalues of ReA; = 0 (k € Ng), the flow ®(¢) of
the nonlinear system x = f(x, p) in Eq.(1.4) is an |n4 : ns : [ne, [; k¢]) local flow
in the neighborhood of equilibrium point x*. kg = (61, k62, * - , ke))T with ke €
(D, mei )i =1,2,---,1).
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L. Simple switching and bifurcation

(1) An |ng : ns : 1)-state of equilibrium point (xé, po) for the nonlinear
system is a Hopf switching of its |n4 + 1 : ns : @)-spiral saddle and
|ng : ns 4+ 1 : @)-spiral saddle of equilibrium point (x*, p).

(i) An|ng:@:1)-state equilibrium point (x;j, po) for the nonlinear system is
a stable Hopf bifurcation of its |ns + 1 : & : @)-spiral sink and |n4 : 1 : @)-
spiral saddle of equilibrium point (x*, p).

(iii) An |@:ns:1)-state equilibrium point (x{j, po) for the nonlinear system
is an unstable Hopf bifurcation of |@:ns 4+ 1:)-spiral source and
|1:ns: @)-spiral saddle of equilibrium point (x*, p).

(iv) An |n4 : ns : ng + 1)-state equilibrium point (X, po) for the nonlinear
system is a Hopf switching of its |n4 + 1 : n5 : ng)-state and |nq : n5+1:
ng)-state of equilibrium point (x*, p).

(v) An |ng : @ : ng + 1)-state equilibrium point (xj, po) for the nonlinear
system is a Hopf switching of its |n4 4+ 1 : @ : ng)-state and |n4 : 1 : ng)-
state of equilibrium point (x*, p).

(vi) A |9 : ns5 : ng + 1)-state equilibrium point (X;, po) for the nonlinear
system is a Hopf switching of |& : n5 + 1 : ng)-state source and |1 : n5 :
ne)-state of equilibrium point (x*, p).

II. Complex Hopf switching

(i) An|ng : ns : [ne, [; ke))-state of equilibrium point (xj, po) for the nonlin-
ear system is a degenerate Hopf switching of its |ng 4+ n4 : n5 : &)-spiral
saddle and |ny4 : n5 + ng : @)-spiral saddle of equilibrium point (x*, p).

(i) An |ng — m:ns:[ne + m,lp; ke])-state of equilibrium point (g, po)
for the nonlinear system is a degenerate Hopf switching of its |n4 :ns:
[n6. [1; kg))-state and [ng —m :ns+m: [ng, [3; k¢])-state of equilibrium
point (x*, p).

(iii) An |n4:ns — m:[ng + m,lp; ke))-state of equilibrium point (X, Po)
for the nonlinear system is a degenerate Hopf switching of its |n4:ns:
[n6, [1; kg))-state and |ng +m :ns —m: [ne, [3; k¢ ])-state of equilibrium
point (x*, p).

(iv) An |ng —my : ns : [ne + my, I; k¢)) state of equilibrium point (X, po)
for the nonlinear system is a degenerate Hopf switching of its |n4 : ns :
[ne: l1; kg])-state and |ng —my : ns+ms : [ne +mas —ms, I3; k¢ ])-state
of equilibrium point (x*, p).

(v) An |ng : ns —ms : [ng + ms; [2; kg])-state of equilibrium point (xg, Po)
for the nonlinear system is a degenerate Hopf switching of |n4 : ns :
[ne, I1; ke])-state and |ng +my : ns —ms : [ng +ms —my, [3; lcg])-state
of equilibrium point (x*, p).
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1.3.1 Stability and Switching

To extend the idea of Definitions 1.14 and 1.15, a new function will be defined to
determine the stability and the stability state switching.

Definition 1.25 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq. (1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x*. The corresponding solution is
x(t) = ®(x, t — ty, p). Suppose U (x*) C Q is a neighborhood of equilibrium x*,
and there are n linearly independent vectors vi (k = 1,2, - -- , n). For a perturbation
of equilibrium y = x — x*, let y® = ¢;vi and y® = ¢y,

Sk=Vp -y =V} - (x—x%) (1.44)
where s; = cx||v||?. Define the following functions
Gi(x,p) = v, -f(x,p) (1.45)
and

GV (x,p) = Vi - Dy f(X(s50). P)
= v} - Dxf(X(s1), P) e, X0s, i (1.46)

= v§ - D (X(s0), P)Vel Vel 72,

GU"(x,p) = vi - DYPE(x(sx), )
=V} - Dy (D" DE(x(s1), P))

Sk

(1.47)

where Dy, (-) = 3(-)/ds; and DIV () = Dy (DY V(). GV (x, p) = Gi(x, p) if

m = 0.

Definition 1.26 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq. (1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x*. The corresponding solution is
x(t) = ®(xp,t — 1y, p)- Suppose U (x*) C Q is a neighborhood of equilibrium x*,
and there are n linearly independent vectors v (k = 1,2, - - - , n). For a perturbation
of equilibrium y = x — x*, let y®) = ¢;vi and O = ¢y

(1) x®) at the equilibrium x* on the direction vy is stable if

vi - (x(r + &) —x(1)) <0 for v} - (x(t) —x*) > 0; (1.48)
V;{ - (x(t +¢) —x(t)) > 0 for vz - (x(1) —x¥) < 0; .

forall x € U(x*) C Q and all ¢ € [ty, 00). The equilibrium x* is called the
sink (or stable node) on the direction vy.
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(i) x® at the equilibrium x* on the direction vy, is unstable if

vi - (x(r + &) —x(1)) > 0 for v} - (x(t) —x*) > 0;

T T . (1.49)
Vi - (x(t +¢&) —x(1)) <0 for v; - (x(t) —x7) < 0;

forall x € U(x*) C Q and all ¢ € [ty, 00). The equilibrium x* is called the
source (or unstable node) on the direction vy.
(iii) x® at the equilibrium x* on the direction vy is increasingly unstable if

V;{ - (x(t +¢) —x(t)) > 0 for VE S (x(t) = x*) > 0;

T T . (1.50)
v, - (x(t +¢) —x(1)) > 0 for v, - (x(t) —x7) < 0;

forall x € U(x*) C Q and all ¢ € [ty, 00). The equilibrium x* is called the
increasing saddle-node on the direction vy.
(iv) x® at the equilibrium x* on the direction v is decreasingly unstable if

vi - (x(t + &) —x(1)) <0 for v} - (x(t) —x*) > 0;

1.51
Vi - (x(t + &) —x(1)) <0 for v} - (x(t) —x*) < 0; (>0

forall x € U(x*) C Q and all ¢ € [ty, 00). The equilibrium x* is called the
decreasing saddle-node on the direction vi.
(v) x at the equilibrium x* on the direction vy is invariant if

Vi (x(1+€) —x(1)) =0

T (1.52)
for v - (x(1) — x*) # 0;

forall x € U(x*) C Q and all ¢ € [ty, 00). The equilibrium x* is called to be
degenerate on the direction vg.

Theorem 1.7 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq.(1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x* (i.e., U(x*) C Q). The corre-
sponding solution is x(t) = ®(xq, t —to, p). Suppose Eq.(1.24) holds in U (x*) C Q.
For a linearized dynamical system in Eq.(1.19), consider a real eigenvalue L of
matrix Df(x*,p) (k € N = {1,2, --- , n}) with an eigenvector vi. Let y© = cyvy
and y® = évie, s = vy = V) - (x — x*) in Eq.(1.44) with sp = ci||vi||*.
Define

Sk=vi -y=v, -x=v] -f(x,p). (1.53)

(i) x% ar the equilibrium x* on the direction vy is stable if and only if

Gr(x,p) = V;{ f(x,p) <0 for s = VZ S (x(t) —x*) > 0; (L54)
Gr(x,p) = vi -£(x,p) >0 for sp = v} - (x(t) —x*) <0 ’

forallx € U(x*) C Qandall t € [tg, 00).
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(i) x® at the equilibrium X* on the direction vy, is unstable if and only if

Gi(x,p) = V;{ f(x,p) > 0 for s = VZ S (x(t) — x*) > 0; (1.55)
Gr(x,p) = vi -f(x,p) <0 for sp = v} - (x(t) —x*) <0 '

forallx € Ux*) C Qandall t € [ty, 00).
(iii) x® ar the equilibrium X* on the direction Vi is increasingly unstable if and
only if
Gr(x,p) = V;{ f(x,p) >0 for s = V;{ - (x(1) — x¥) > 0;

T T . (1.56)
Gr(x,p) =v -f(x,p) >0 for sx =v - (x(t) —=x") <0

forallx € UX*) C Qandall t € [ty, 00).
(iv) x® ar the equilibrium X* on the direction vy is decreasingly unstable if and

only if
Gr(x,p) = V;{ f(x,p) <0 for s = V;{ - (x(1) — x*) > 0; (L57)
Gk(x,p)zvg-f(x,p) < 0 for sk:VE-(x(t)—x*) <0 .
forj allx e UX*) C Qand all t € [ty, o0).
) xD at the equilibrium X* on the direction vy, is invariant if
Gr(x,p) =v; -f(x,p) =0 (1.58)

forallx € Ux*) C Qandallt € [ty, 00).

Proof Because

Vi - (X(t+ &) —x(1) = v; - (xX(1) + %(1)e + o(e) — x(1))

=v} -X(t)e + o(e)
and x = f(x, p), we have

vi - (x(t + &) — x(1)) = v; - f(x,p)e + o(e)
= Gi(x,p)e + o(e).

(i) Due to any selection of ¢ > 0, for s; = Vg -(x(1) —x*) <0
vi - (x(1 +¢) —x(1)) <0 if Gy(x,p) <0

vice versa; and for s; = vz S (x(t) —x*) >0
Vi (x(t +&) —x(1)) > 0 if Gg(x,p) >0

vice versa.
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(i) For s = v} - (x(t) —x*) > 0
vi - (x(t + &) —x(1)) > 0 if Gx(x,p) >0
vice versa; and for s = Vg S(x(t) —x*) <0
vi - (x(r + &) —x(1)) <0 if Gy(x,p) <0

vice versa.
(iii) Forsg = v} - (x(t) —x*) > 0

vi - (x(1 + &) —x(1)) > 0 if Gy(x,p) >0
vice versa; and for s; = vz S (x(t) —x*) <0
vi - (x(t + &) —x(1)) > 0 if Gg(x,p) >0

vice versa.
(iv) Forsg = v} - (x(t) —x*) > 0

Vi - (x(t + &) —x(1)) <0 if Gg(x,p) <0
vice versa; and for s; = vg S(x(®) —x*) <0
vi - (x(t + &) —x(1)) <0 if Gy(x,p) <0

vice versa.
(v) Forsg = v} - (x(t) —x*) > 0

Vi (X(t+8) —x(1) =0 if Gi(x,p)=0
vice versa. Similarly, for sy = VZ S(x(1) —x*) <0
vi - (x(1+6) —x(1)) =0 if Gy(x,p)=0

vice versa. The theorem is proved. |

Theorem 1.8 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq.(1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x* (i.e.,U (x*) C Q). The corre-
sponding solution is x(t) = ®(xq, t —to, p). Suppose Eq.(1.24) holds in U (x*) C Q.
For a linearized dynamical system in Eq.(1.19), consider a real eigenvalue 7 of
matrix Df(x*,p) (k € N = {1,2, --- , n}) with an eigenvector vi. Let y© = ¢y v
andy® = épvi, sk = vy = vl - (x—x*) in Eq.(1.44) with s = ci||vk||*. Define
$r = V] - £(x, p) in Eq.(1.53). Suppose ||G) (x*, p)|| < oc.
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(i) x% ar the equilibrium x* on the direction vy is stable if and only if
GD(x*p) =1 <0 (1.59)

forallx € U(x*) C Qandallt € [tg, 00).
(i) x® at the equilibrium X* on the direction v is unstable if and only if

GV(x*p) =1 >0 (1.60)

forallx € U(x*) C Qandallt € [ty, 00).
(iii) x® ar the equilibrium X* on the direction vy, is increasingly unstable if and
only if

GV(x*,p) =M =0, and G (x*,p) >0 (1.61)

forallx € Ux*) C Qandallt € [ty, 00).
(iv) x® ar the equilibrium X* on the direction vy is decreasingly unstable if and

only if

GV(x* p)=n =0, and GP(x*,p) <0 (1.62)

forallx € UX*) C Qandallt € [ty, ).
(v) X ar the equilibrium x* on the direction v is invariant if and only if

GM(x*,p)=0 m=0,1,2--) (1.63)

forallx € UX*) C Qandall t € [ty, 00).

Proof For x = x*, s; = 0. Using Taylor series expansion gives

§r =v; -£(x,p)
=vi - F(x*, p) + Do f(x*, P)si) + 0(s)
= [v; - Dy (X, P)Is + o(sk)
= G (x*, p)sk + o(s)

and
GV (x*, p) = v - Duf(X(51). P)e, XBy, Ck
= v - Dxf(x(s6), P)Vkl Vel 72
= Ag.
Thus,

$i =G (" p)sk + o(sk) = sk + o(sy).
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(i) Fors; >0

Gr(x,p) = sx = Mesg < 0.

and for s < O

Gr(X,p) = Sk = Mese > 0.

Thus, G (x*, p) = A < 0.
(i) For sy >0

Gi(x,p) = sx = Arsk > 0.

and for s <0

Gr(X,p) = 85k = Mese < 0.

Thus, G (x*, p) = A > 0.
(ii1) Fors; > 0

Gi(x,p) = sx = Arsk > 0.

and for s < 0
Gr(x,p) = Sk = Arsg > 0.
Thus, Gg)(x*, P) = Ax = 0 and the higher order should be considered. The
higher-order Taylor series expansion gives
s =v; -f(x, p)

= v} - (f(x*, p) + Dy f(xX*, p)si + 'D f(x*, p)s?) + o(s?)

2!
1
= 5k - DL pIs + o(s) = o G@u p)si + o(sp).

For s > 0

(M&m=&—5@WXph>0

and for s < 0

Gi(x,p) = §k = EGmaﬁm#>a

So we have

Gg,f)(x*, p) > 0.
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(iv) Similar to (iii), we have G\" (x*, p) = A4 = 0. In addition, for s > 0

Gr(x,p) = 5k = o, G<2><x p)s; < 0.

and for s < 0

.1 GO
Gk(x,p)zszcz2 (x*,p)si < 0.

So
G (x*,p) <0.

(v) Using Taylor series expansion yields

N
1
Sk=vi -f(x,p) = Z %Gg”)(x*, p)sy +o(s)) =0
m=1 "

(N=1,2,---)

for any selected values of si. Thus only if

GM(x*p=0m=12-)

the above equation holds, vice versa. The theorem is proved. |

Definition 1.27 Consider an n-dimensional, autonomous, nonlinear dynamical
system x = f(x, p) in Eq.(1.4) with an equilibrium point x* and f(x, p) is C"
(r > 1)-continuous in a neighborhood of the equilibrium x* (i.e.,U(x*) C Q).
The corresponding solution is x(¢) = ®(xq, t — o, p). Suppose Eq.(1.24) holds in
U (x*) C Q. For a linearized dynamical system in Eq. (1.19), consider a real eigen-
value A of matrix Df(x*,p) (k € N = {1, 2, ---, n}) with an eigenvector v; and
let y(k) = CkVk-

(i) x® at the equilibrium x* on the direction vy is stable of the (2my + 1)th order
if

GO, p) =0, g =0,1,2,--- , 2my;

V;{ - (x(t+¢)—x()) <0 forv,? - (x(1) — x*) > 0; (1.64)

Vi - (x(1 + &) —x(1)) > 0 forv] - (x(t) —x*) < 0

forall x € U(x*) C Q and all ¢ € [ty, 00). The equilibrium x* is called the
sink (or stable node) of the (2my + 1)th order on the direction vy.

(i) x® at the equilibrium x* on the direction v is unstable of the (2my + 1)th
order if
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GUO(x*,p) =0,r =0,1,2,--, 2my;
v - (x(t + &) —x(1)) > 0 for v} - (x(t) —x*) > 0; (1.65)
vi - (X(1 + &) —x(1)) <0 for v} - (x(t) —x*) <0
forall x € U(x*) C Q and all ¢ € [ty, 00). The equilibrium x* is called the
source (or unstable node) of the (2my + 1)th order on the direction vg.

(iii) x® at the equilibrium x* on the direction v; is increasingly unstable of the
(2my)th order if

GV (x*,p) =0, =0,1,2,---,2my — 1;
vi - (x(t + &) —x(1)) > 0 for v} - (x(t) —x*) > 0; (1.66)
Vi - (x(t + &) —x(1)) > 0 for v} - (x(t) —x*) <0
forall x € U(x*) C Q and all ¢ € [ty, 00). The equilibrium x* is called the
increasing saddle of the (2my)th order on the direction vi.

(iv) x® at the equilibrium x* on the direction vy is decreasingly unstable of the
(2my)th order if

GUF(x*,p)=0,rc =0,1,2,--,2my — 1;
vi - (X(r + &) —x(1)) <0 for v} - (x(t) —x*) > 0; (1.67)
vi - (x(t + &) —x(1)) <0 for v} - (x(t) —x*) <0

forall x € U(x*) C Q and all ¢ € [ty, 00). The equilibrium x* is called the
decreasing saddle of the (2my)th order on the direction vy.

Theorem 1.9 Consider an n-dimensional, autonomous, nonlinear dynamical
system x = f(x,p) in Eq.(1.4) with an equilibrium point x* and f(x, p) is C”
(r > 1)-continuous in a neighborhood of the equilibrium x* (i.e.,.U(x*) C Q).
The corresponding solution is X(t) = ®(xp, t — ty, p). Suppose Eq.(1.24) holds in
U(x*) C Q. For a linearized dynamical system in Eq.(1.19), consider a real eigen-
value Ly of matrix Df(x*,p) (k € N = {1,2,---, n}) with an eigenvector vy, and
let y(k) = C}Vk.

(1) x® at the equilibrium x* on the direction Vi is stable of the 2my, + 1)th order
if and only if
G . p) = 0.7 =0,1,2,-++, 2my;

(1.68)
Gy (x*, p) < 0

forallx € U(x*) C Qandallt € [tg, 00).
(i) x® ar the equilibrium x* on the direction vy is unstable of the (2my + 1)th
order if and only if

GUO, ) = 0,7 =0, 1,2, , 2my;

(1.69)
GgfmkH)(x*, p) >0
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forallx € U(x*) C Qandallt € [ty, 00).
(iii) x® ar the equilibrium x* on the direction vy is increasingly unstable of the

(2my)th order if and only if
GUV(x*,p)= 0,7k =0,1,2,-+ , 2mp — I; (170,
GE™(x*,p) > 0 '

forallx € Ux*) C Qandallt € [ty, 00).
(iv) x® ar the equilibrium X* on the direction vy is decreasingly unstable of the
(2my)th order if and only if

GEZk)(x*,P) =0,rr=0,1,2,---,2m — 1;
Ggfmk)(x*,p) <0 (w70
forallx € U(x*) C Qandallt € [1g, 00).

Proof For x = x*, s; = 0. Using the Taylor series expansion gives

S =i f(x, P)
2my 1
(i) (x* Tk Qmi+1) 2my+1 2my+1
=2, - vG &P+ i O GRS ol
and
<rk)(X p) =0 for rp =0,1,2,---, 2my;
1
Sk = vk f(x,p) = mGﬁf’”k“)(x p)s; 2m+1
(i) Fors; >0
. 1 )
Gr(xX,p) =8, = mGgimk+l)(X p)s; metl _ 0.
and for sy < 0
. 1
Gr(x,p) =8k = mGﬁf”’k“’(x p)szmk+1 -0
Thus, G (x*, p) < 0.
(1) For sy > 0
3 —1 2mg+1) 2my+1
Gr(x,p) = Sk = et 1)'GSk (x*, P)s; >0,
and for s, <0
. 1
Gr(xX,p) = s = m(}gmk-‘rl)(x p)s? 2my+1 <0

Thus, GC"™ 7V (x*, p) > 0.
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(iii) For x = x*, sx = 0. Using the Taylor series expansion gives

2mk71
fe= ViR = 30 G s o S G s o™
rr=1 :
and
GV (x*,p) =0 for rp =0,1,--+,2my — 1.
Thus,
Sk =v; -f(x,p) = G(Z’"U(x p)szmk.
(2 i)'
For sy > 0
Gir(x,p) = : G20 (x*, p)s;"™ > 0
(2 i)' '

and for s < 0

Gr(x,p) =

(2 = G20 (x*, p)sg™ > 0.

So we have

GO (x*, p) > 0.

(iv) Similar to (iii), for sy > 0

Gl p) =5 = (2my)! G (", p)s" <0,
and for sy < 0
. 1
Gr(x,p) = sk = W (ka)(x p)Ska 0.

So

GO (x*, p) < 0.

The theorem is proved.
|

Definition 1.28 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq. (1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x* (i.e.,U (x*) C ). The corre-
sponding solutionis x(¢) = ®(xg, t —tg, p). Suppose Eq. (1.24) holds in U (x*) C 2.
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For a linearized dynamical system in Eq.(1.19), consider a pair of complex eigen-

value oy tify (k € N ={1,2,---,n}, i = /—1)of matrix Df (x*, p) with a pair of

eigenvectors uy £ivy. On the invariant plane of (ug, v¢), considerry =y = yf) +yg()

with

ry = cpuy + divi=rie,,

ity = Gy + dipvi = ey, + ey, (1.72)
and
o = %mzmz -¥) = Ana(v; -y and dy = %[m(vz -y) = Ay -yl
A=l A = |l A =uf -viand A = AjAy — AD,. (1.73)
Consider a polar coordinate of (ry, 6;) defined by

Ck = rr cos O, and d = ry sin 6;

(1.74)
re = ,/c,% —i—d,f, and 6 = arctan di/cy;

€, = cosOruyg + sin v, and ey = — cos Qku,ﬂ‘A3 + sin Gkvlﬂ‘A4 (175)
A3:vz~ulﬂ‘ and&;:u{-v,ﬂ‘ ’
where ukl and V,ﬂ- are the normal vectors of u; and v, respectively.
) 1
Ck = Z[AzGck (x,p) — A12Gg (x, p)]
1 (1.76)
dy = Z[AIGdk (%, p) — A1nGy (X, p)l
where
— 1
G (6 p) =0 - £(x. ) = > -~ G " ',
m=l (1.77)
S L o
T m * m,
Ga,(x.p) = v} -f(x.p) = > —Ga, P
m=1
Gg'k")(x*, p) = uz - OUE(x, p)[ug cos b + v sin 6] '
P (1.78)

G;T)(x*, p) = v; - 3U"E(x, p)[ug cos G + v sin Qk]m‘(x* o

Thus
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o
. 1
Fx = Ck COS O + di sin by = E %Gﬁﬁ(e,{)rﬁ
m=1

o0 (1.79)
. . |
O = rk—l(dk coS Oy — Cx Sinby) = rk—l Z _'Gg:l)(@k)r]’:l_l
m=1 m:
where
1
Gﬁ;") k) = Z[(Az cos O — Ay sin Ok)uz + (A sin @y — A3 cos Qk)vz]
'3;§m)f(x, p) (g cos O + vy sin 6;)™

x*.p)

1
Gé’:)(@k) = —X[(Az sin 6 4+ A1 cos O )u; — (Ajcosby — Aqpsinby)vy ]

.3§m)f(x, p) (g cos O + vy sin 6;)™

R (1.80)
From the foregoing definition, consider the first order terms of G-function
GPx.p) =Gl (x.p) + G (x. p) s
Gy (x.p) = G{(x.p) + G4\ (x. p) '
where
Ggllc)l x,p) = u;f - Dyf(X, p)og,x = UZ - Dxf(x, p)ug
=u] - (—Bvk + ) = ax Ay — BrAra, 1.82)
Gé,lc)z(X, P) =] - Dyf (X, p)dg x = u; - Dyf(x, p)Vk
= - (B + Vi) = ox Ay + BrA;
and
G;i)l (X, p) = V] - Dxf (X, P)dg X = v} - Dyf (X, p)uy
=vi - (—Bivk + mw) = =By + axAn, (1.83)
GA(x.p) = V] - Duf(x, P)Agx = v - Duf(x, PV
=V - (Brw + i) = ax Ay + BrAra.
Substitution of Egs. (1.81)—(1.83) into Eq. (1.78) gives
GP(x,p) = G (x. p) cos b + G} (x, p) sin b
= (kA1 — BrA12) cos Ok + (ax A2 + BrAr) sin b, (184

1 .
G;}c) x,p) = Gé(ii)1 (X, p) cos O + Gf,k)z(x, p) sin 6
= (—BrA2 + ax A12) cos O + (ax Az + BrArz) sin 6.
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From Eq. (1.80), we have

1 1 1 .
¢V = X[(Ggmz — Gy Ap)cost + (Gy) AL — G A sin ] = s

1
1 1 .
Gy, (0) = —[(Gy) A1 = G M) cos b — (GL}) Ay = Gy Aro) sin 6] = —fi.

(1.85)
Furthermore, Eq. (1.79) gives
Fx = agry + o(ry) and Gy = —Birk + o(ry). (1.86)
Asrr << land r; — 0, we have
Fr = ogry and G = —PBy. (1.87)

With an initial condition of r; = r,? and 6, = 0,? , the corresponding solution of
Eq.(1.87) is

ri = ree®" and O = —pit + 6] (1.88)

and

cx = e cos(— it + 00) = e® ! [cos(Bt)c)+sin(Brr)dl];

(1.89)
di = e sin(— Bt + 60) = e[~ sin(Brr)cp+ cos(Brt)dL].
Letting c® = (c® gENT we have
¢® = Ere® = ¢ = eyl (1.90)
where
o B | cos Bkt sin Bt
E; _|:—,3k Olk:| and By = [—sinﬂkt cosﬂkt:|' (1.91)

If Gﬁk’”)(ek) and ng”)(ek) are dependent on 6, Eq.(1.79) gives the dynamical
systems based on the polar coordinates on the invariant plane of (ux, v¢) of matrix
Df(x*, p) with a pair of eigenvectors uy &+ ivy. If Gﬁ{,")(ek) and Gg:)(ek) are inde-
pendent of 6, the deformed dynamical system on the plane of (u, vi) is dependent
on ry, then the G-functions can be used to determine the stability of x® at the

equilibrium x* on the plane of (ug, v¢).

Definition 1.29 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq. (1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x*. The corresponding solution is
x(t) = ®(xg, t — to, p). Suppose U (x*) C € is a neighborhood of equilibrium x*.
For a linearized dynamical system in Eq. (1.19), consider a pair of complex eigen-
value g +ify (k € N = {1,2,--- ,n}, i = +/—1) of matrix Df (x*, p) with a pair of
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eigenvectors uy % ivy. On the invariant plane of (ug, vx), consider y(k) = yff) + yg()

with Eqs.(1.72) and (1.74). For any arbitrarily small ¢ > 0, the stability of the
equilibrium x* on the invariant plane of(u, v¢) can be determined.

(i) x% at the equilibrium x* on the plane of (uy, v¢) is spirally stable if
re(t +¢) —re(t) <O. (1.92)
(i) x% at the equilibrium x* on the plane of (uy, vi) is spirally unstable if
re(t+e) —rr(t) > 0. (1.93)

(iii) x® at the equilibrium x* on the plane of (ug, vi) is stable with the mth-order
singularity if for 6; € [0, 27 ]

GO (O) =0 for s =0,1,2,-- ,my — 1
re(t+¢e) —r(r) <O0. (1.94)
(iv) x® at the equilibrium x* on the plane of (uy, v;) is spirally unstable with the
myth-order singularity if for 6; € [0, 2]
GEP(Or) =0 for s =0,1,2,-+ ,my — 1
re(t4+¢e) —r() > 0. (1.95)

\2) x®) at the equilibrium x* on the plane of (ug, vx) is circular if for 6; € [0, 2]
ri(t+¢e)—r(t) =0. (1.96)

(vi) x® at the equilibrium x* on the plane of (ug, v) is degenerate in the direction
of Uy if

B =0 and O(t + &) — O (t) = 0. (1.97)

Theorem 1.10 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq.(1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x*. The corresponding solution
is X(t) = ®(xp,t — ty, p). Suppose U (X*) C Q is a neighborhood of equilibrium
x*. For a linearized dynamical system in Eq.(1.19), consider a pair of complex
eigenvalue o £ iy (k € N = {1,2,---,n}, i = /—1) of matrix Df(x*, p)
with a pair of eigenvectors wy £ ivg. On the invariant plane of (uy, vi), consider
y® = y© 4+ yO with Egs.(1.72) and (1.74) with GS¥ (6,) = const. For any
arbitrarily small ¢ > 0, the stability of the equilibrium X* on the invariant plane of
(g, vi) can be determined.

i) x% ar the equilibrium xX* on the plane of (ux, vi) is spirally stable if and only

if
G O) = < 0. (1.98)
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(i) x® ar the equilibrium X* on the plane of (uy, Vi) is spirally unstable if and
only if

G (O) = i > 0. (1.99)

(iii) x®) at the equilibrium X* on the plane of (0, vi) is stable with the myth-order
singularity if and only if for 6y € [0, 2]

GUF () =0 for s = 1,2, ,mp — 1

(1.100)
and GU"(6)) < 0.

@iv) x® ar the equilibrium x* on the plane of (g, vi) is spirally unstable with the
myth-order singularity if and only if for 6 € [0, 2]
GUY () =0 for s = 1,2, ,m — 1

(1.101)
and G"™ (6) > 0.

(v) x® at the equilibrium X* on the plane of (wy, Vi) is circular if and only if for
Or € [0, 27]

G,(«ik)(ek) —0 for Sk = 1, 2’ . (1102)

(vi) x®) at the equilibrium X* on the plane of (ug, Vi) is degenerate in the direction
of uy, if and only if

Imi, = B =0 and Gy (0) = 0 for s =2.3,--- . (1.103)

Proof Forx = x*, s, = 0. The first order approximation of ¢ and dy in the Taylor
series expansion gives

. 1

& = 102G (x.p) — MGy (x. p)]

de = S1a,GY ARG
L2166 X p) — AnG (X, p)]

where r;, = 1/c,% + d,% and

Gil)l (x,p) = u,f - Dyf (X, p)og,x = “z - Dyf (x, p)uy
=] - (—Bevi + aw) = ax Ay — BrAr,
EIIC)Z(X p) = uk D f(X P)adkx = uk Dyf(x, p)Vk

= “1? “(Brwg + o vi) = o Ap + BrAg;

and
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Gy (x.p) = v - Dyf(x, P)o,x = v} - Dyf(x, p)uy
=V} - (—Bevi + apug) = —BrAs + apAra,
G o, p) = v} - Db (x, P)agx = V) - Duf(x. IV

= V{ - (Bruy + Vi) = kA + BrAp.
Therefore, using

(x, ek + G (x, pydi

cx2

1
GV x,p) =G

crl

1 1
Gy (x.p) = G{ (x. p)ex + G4 (x, p)di
to the first order approximation of ¢ and dy yields

ék = agcr + Prd and dy = — Bk + axdy,

HEEHINE

Introduce the rotation coordinates (e, , eq,)

or

Iy = CpUg + dp Vi = 1€y,

where

Ck = 1 cos Oy, dr = ri sin O;

e, = Cos Oxuy + sin O vy,

eg, = —COS lelklA3 + sin GkvklAz;
and

l"k = C"kllk + dek = f'kerk + rkérka

¢, = —Oxuy sin O + Oy vk cos b.
Thus

T = Cr CcOS O + dk sin O,

O = rk_1 (di cos 6 — ¢ sin ).
For the first approximation of the relative change rate in the e,, direction, we obtain

i = (agck + Brdy) cos O + (—Brck + aydy) sin O
= U|Tk.
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Further

T = 0.
Similarly, the first approximation of rotation speed in the hoop direction is

Okri = (—Prck + ardy) cos O + (akck + Prdy) sin by
= —Brrk
SO
bk = —Prrk = 6 = —Pr.
Therefore,

Gl 6 = o and G (6 = — .

In fact, the relative change rate in the e,, direction is of interest. The corresponding
higher-order expression is given by

m—1 1 1
A (s%) Sk (mp) m
Tk = E et sk'G )1y k!Grk O)ry +0(rk ).

Because fore > Oand ¢ — O,
ri(t +¢&) —ri(t) = rre

—ey G“”(em”‘+s—G<’"k><ek)rZ“‘+o<er’k).

(i) For equilibrium stability, ry > 0 and ry — 0. If G(l)(Qk) = oy # 0, we have
e =G Or = owr.
Due to ry > 0, if a < 0, then 7, < 0. Therefore,
ri(@t+e)—r(t) =7 <0
which implies ¥ at the equilibrium x* on the plane of (u, v;) is spirally
stable, vice versa.
@i1) Duetory > 0, if o > 0, then 7, > 0. Thus,
r(t+¢8) —rp(t) =re >0,

which implies x®) at the equilibrium x* on the plane of (uy, vx) is spirally
unstable, vice versa.



38

1 Nonlinear Continuous Dynamical Systems

(iii) If for 6y € [0, 27 ] the following conditions exist

(iv)

v)

(vi)

(Sk)(ek)zo for Skzl 2, - mk—l'
G (@) # 0, and |GS¥ (6r)] < oo for s = mp + 1, my +2, -

then the higher-order terms can be ignored, i.e.,
. 1 (m ) mk
Fr = — K (Or)ry,
mg!

If GU™ (6 is independent of 6y (i.c., GU™ (6;) = const), it can be used to

determine the equilibrium stability. Due to ry > 0, if G(’”k’(ek) < 0, then
7 < 0. Therefore,

rie(t+¢e)—r(t) =re < 0.

In other words, x® at the equilibrium x* on the plane of (uy, vx) is spirally
stable with the mth-order singularity, vice versa.

Due to ry > 0, if G(mk)(ék) > 0, then 7 > 0. Therefore,
re(t+¢e)—r(t) =rfre > 0.
In other words, x¥) at the equilibrium x* on the plane of (uy, vx) is spirally
unstable with the mth-order singularity, vice versa.
If for 6, € [0, 27r] the following conditions exist
GO () =0 for sp =1,2,--,
then
ri(t+¢&) —re(t) = ke =0
vice versa. Therefore r; (1) is constant. x¥) at the equilibrium x* on the plane
of (ug, vg) is circular.
Consider
éks =0kt +¢) — O (1)
_ mi—1 (sx) Sk— 1 (my) mp—1 mp—1
=e[-m+2 S‘G(,A @} G(,A @org o h].

If for 6; € [0, 2] the following conditions exist

B =0and GS¥(0) = 0 for sp =2.3, .

Then
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O (t + &) — O (1) = fre = 0.

Therefore, x® at the equilibrium x* on the plane of (uy, v) is degenerate in

the direction of ug. This theorem is proved. |

Note that Gﬁi")(é’k) = const requires s; = 2my — 1 and one obtains GSj”(ek) =0
for s = 2my.

1.3.2 Bifurcations

Definition 1.30 Consider an n-dimensional, autonomous, nonlinear dynamical
system x = f(x,p) in Eq.(1.4) with an equilibrium point x* and f(x, p) is C"
(r = 1)-continuous in a neighborhood of the equilibrium x* (i.e., U (x*) C Q).
The corresponding solution is x(¢) = ®(xp, t — ty, p). Suppose Eq. (1.24) holds in
U (x*) C Q. For a linearized dynamical system in Eq. (1.19), consider a real eigen-
value Ay of matrix Df(x*,p*)(k € N = {1,2,---,n}) with an eigenvector vy.
Suppose one of n independent solutions y = ¢x vy and y = ¢y Vi,

Sk=Vy -y =vf-(x—x") (1.104)

where s¢ = cx||vi||?.

Sk=vp -y=v; -x=v} -f(x,p). (1.105)
In the vicinity of point (X, o), vg -f(x, p) can be expended for (0 < 6 < 1) as

vg -f(x, p)

m q
1 - —
= aj(sk — S;(ko) + bz -(p—po) + Z Z _|C(;a](<q r,r)(sk . s;{ko)q (p — po)”
g=2r=0 7’
1
1~ S0 + (0= p0)B]" (v - F0G + 04X po +0AP))
(1.106)

where - 95 F(x, p)

=~n

ay =V ,
(x3P0)

, (1.107)

(x55P0)

bl = v - 3pf(x, p)

al = vi. 90t (x, p)

(x5P0) '

If ax = 0 and p = po, the stability of current equilibrium x* on an eigenvector vy
changes from stable to unstable state (or from unstable to stable state). The bifurcation
manifold in the direction of vy is determined by
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b - (p— po)+ZZ cra"”%sk i) (P—po) =0.  (1.108)
g=2r= 0

In the neighborhood of (x;j, po), when other components of equilibrium x* on the
eigenvector of v; for all j # k, (j,k € N) do not change their stability states,
equation (1.108) possesses [-branch solutions of equilibrium s,’: (0 <[ < m) with
[1-stable and /,-unstable solutions (I, I, € {0, 1, 2, --- ,[}). Such [-branch solutions
are called the bifurcation solutions of equilibrium x* on the eigenvector of v in the
neighborhood of (x{j, po). Such a bifurcation at point (xgj, po) is called the hyperbolic
bifurcation of mth-order on the eigenvector of vy.

Three special cases are defined as

() If
1
a"" =0 and b} - (p - po) + 50152’0) (5; —si)* =0 (1.109)
where
Q0 _ T = v - 0Pt(x. p)| |
,Po) (XO,PO)
_— =G (5 p0) £0. (1L110)
X;:Po)
bT = Vk 75 03
0)
a>” x [bf - (p — po)] <O, (1.111)

such a bifurcation at point (x, po) is called the saddle-node bifurcation on the
eigenvector of vi.

@i1) If bT S(p—po) =0
1 (1.112)
al"V . (p— po)(sf — i) + 5 a>V (st —s5i)? =0
where
a? = vj — v} - 0f(x, p)
0-P0) (x55P0)
= V(AP POV = G (x5, po) # 0,
” (1.113)
alth T T
¢ * (x§.p0)

£0,
(x5-P0)

T 9x0pf (X, p)Vi

I
<
=
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a” x [al"V . (p—po)l <0, (1.114)

such a bifurcation at point (xj, po) is called the transcritical bifurcation on the
eigenvector of v.

(iii) I
bl - (p—po) =0,a7” =0,a" =0,a"? =0,
1 (1.115)
1,1 3,0
a0 = PG = sfo) + 5y G = i)’ =0
where
G.0) _ T _ ®
a v = v - 09f(x, p)
k e C P s po)
3
= =G0, po) #0,
X0-P0)
a . (1.116)
a’ ' '=v =v, -0
k k 3P0) ko (x5,P0)
= Vi - OxOpf (X, P)Vi # 0,
(x5-P0)
3,0 1,1
a” x [a"" - (p = po)l <0, (1.117)

such a bifurcation at point (X, po) is called the pitchfork bifurcation on the
eigenvector of vi.

The above three special case can be discussed through 1-D systems and intu-
itive illustrations are presented in Fig. 1.1 for a better understanding of bifurcation.
Similarly, other cases on the eigenvector of v can be discussed from Eq. (1.108). In
Fig. 1.1, the bifurcation point is also represented by a solid circular symbol. The stable
and unstable equilibrium branches are given by solid and dashed curves, respectively.
The vector fields are represented by lines with arrows. If no equilibriums exist, such
a region is shaded.

Consider a saddle-node bifurcation in 1-D system

= f(x, p)=p—x> (1.118)

The corresponding equilibriums of the foregoing equation are x* = +,/p (p > 0)
and no any equilibriums exist for p < 0. From Eq. (1.118), the linearized equation
in the vicinity of the equilibrium with y = x — x* is

y=Df(x* p)y=—2x"y. (1.119)
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‘f e

l j l \| ! 7 | ?
\{\L //q
(a) L ) (b)
. l - .

(© (d)

Fig.1.1 Bifurcation diagrams: a saddle-node bifurcation, b transcritical bifurcation, ¢ pitchfork
bifurcation for stable-symmetry and d pitchfork bifurcation for unstable-symmetry

For the branch of x* = + ,/p (p > 0), the equilibrium s stable due to Df (x*, p) <0.
However, for the branch of x* = — ﬁ (p > 0), such an equilibrium is unstable
due to Df(x*, p)>0. For p=po=0, we have x* =x; =0 and Df (x, po) =0.
D2 f(x}, po) = —2 is needed. Thus

y=D?f(x*, p)y* =2y (1.120)

At (x(’)‘, po) = (0, 0), the flow vector field is always less than zero. The equilibrium
point (x(*)‘, po) = (0,0) is bifurcation point, which is a decreasing saddle of the
second order. For p < 0, the vector field of Eq.(1.118) is always less than zero
without any equilibriums. The equilibrium varying with parameter p is sketched in
Fig. 1.1a. On the left side of x-axes, no equilibrium exist, so only the vector field is
presented.

Consider a transcritical bifurcation as
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X = f(x,p) = px —x°. (1.121)

The equilibriums of the foregoing equation are x* = 0, p. From Eq.(1.121), the
linearized equation in the vicinity of the equilibrium with y = x — x™ is

y=Df(x*, p)y=(p—2x")y. (1.122)

For the branch of x* =0 (p > 0), the equilibrium is unstable due to Df (x*, p) > 0.
For the branch of x* = p (p > 0), such an equilibrium is stable due to Df (x*, p) <
0. However, for the branch of x*=0(p < 0), the equilibrium is stable due to
Df(x*, p) < 0. For the branch of x*=p (p < 0), such an equilibrium is unsta-
ble due to Df(x*, p) > 0. For p=po=0, x*=x; = Oand Df(x{, po) =0
are obtained. D2 f (x5, po) = — 2 is needed. Thus the variational equation at the
equilibrium is in Eq.(1.120). At (xf)k , o) = (0, 0), the flow vector field is always
less than zero. The equilibrium point (x, po) = (0, 0)is bifurcation point, which is
a decreasing saddle of the second order. The equilibrium varying with parameter p
is sketched in Fig. 1.1b.
Consider the pitchfork bifurcation with stable-symmetry

X =px—x> (1.123)

from which its equilibriums are x* = 0, &,/p (p > 0) and x* = 0 (p < 0). From
Eq. (1.123), the linearized equation in the vicinity of the equilibrium with y = x —x*
is

y = Df(x*, p)y = [p — 3(*)*1y. (1.124)

For the branch of x* = 0 (p > 0), the equilibrium is unstable due to Df (x*, p) > 0.
For the branches of x* = +./p (p > 0), such equilibriums are stable due to
Df(x*, p) < 0.However, for the branchof x* = 0 (p < 0), the equilibrium is stable
due to Df(x*, p) < 0. For p = pp = 0, x* = x} = 0 and Df (x}, po) = 0 are
obtained. Because of sz(xf)‘, po) = —6x; = 0, we have D3f(x§, po) = —6 <0.
Thus the variational equation at the equilibrium is

¥y =D f(x*, p)y’ = —6y°. (1.125)

At (x(’)“, po) = (0, 0), the flow vector field is less than zero for y > 0 and the flow
vector field is greater than zero for y < 0. The equilibrium point (xg, po) = (0, 0)
is bifurcation point, which is a sink of the third order. The equilibrium varying with
parameter p is sketched in Fig. 1.1c.

Consider the pitchfork bifurcation for unstable-symmetry as

X =px+x° (1.126)

from which its equilibriums are x* = 0, =,/—p (p < 0) and x* = 0 (p > 0). From
Eq. (1.126), the linearized equation in the vicinity of the equilibrium with y = x —x*
is
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¥ =Df(*, py=I[p+3*1y. (1.127)

For the branch of x* = 0 (p < 0), the equilibrium is stable due to Df (x*, p) < 0.
For the branches of x* = +,/—p (p < 0), such equilibriums are unstable due
to Df (x*, p) > 0. However, for the branch of x* = 0 (p > 0), the equilibrium is
unstable due to Df (x*, p) > 0.For p = pp = 0, x* = x} = 0and Df (x§, po) =0
are obtained. Since sz(xa‘, po) = 6x5 = 0, we have Df (x*, p) < 0. Thus the
variational equation at the equilibrium is

¥ =D f(x* p)y’ = +6y°. (1.128)

At (xa‘ , po) = (0, 0), the flow vector field is bigger than zero for y > 0 and the flow
vector field is less than zero for y < 0. The equilibrium point (xg, po) = (0,0) is
bifurcation point, which is a source of the third order. The equilibrium varying with
parameter p is sketched in Fig. 1.1d.

From the analysis, the bifurcation points possess the higher-order singularity of
the flow in dynamical system. For the saddle-node bifurcation, the (2m)th order sin-
gularity of the flow at the bifurcation point exists as a saddle of the (2m)th order. For
the transcritical bifurcation, the (2m)th order singularity of the flow at the bifurcation
point exists as a saddle of the (2m)th order. However, for the stable pitchfork bifur-
cation, the (2m+ 1)th order singularity of the flow at the bifurcation point exists as
a sink of the (2m+ 1)th order. For the unstable pitchfork bifurcation, the (2m + 1)th
order singularity of the flow at the bifurcation point exists as a source of the (2m + 1)th
order.

Definition 1.31 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq. (1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x*. The corresponding solution is
x(t) = ®(xg,t — tg, p). Suppose U(x*) C Q is a neighborhood of equilibrium
x*. For a linearized dynamical system in Eq.(1.19), consider a pair of complex
eigenvalue oy £ ify (k € N = {1,2,---,n}, i = /—1) of matrix Df(x*, p)
with a pair of eigenvectors u; & ivi. On the invariant plane of (ug, vx), consider

ry=y= y:{() + yg() with

Iy = cpuyg + dpvi=riey,,
. . . . . (1.129)
Iy = Cruy +dpvy = rre€p, + riep,

and

1 1
cx = K[Az(u;f ¥) — App(vg - y)] and di = Z[Al(vz y) — Ay - y)]

Ar = |l Ax = (w3 A = ul -viand A = AA; — A3,
(1.130)
Consider a polar coordinate of (r, 6x) defined by
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Cck = rrycosO, and di = ri sin6;

e = ,/c,% + d,%, and 0y = arctandy /ck;

€, = cos Ouy + sin O v and (1.131)
€g, = —COS lelkLA3 + sin ka,fAA;
Az =V -ui and Ay =1} -vi.

Thus

¢k = —[A2G (X, p) — A12Gy (X, p)]

(1.132)

di = Z[AlGdk (x,p) — A12Gy (x, p)]

where
G (x,p) =ug - £(x,p) = a] - (p— Po) + ak11(ck — o) + axi2(dx — djfy)
" L roq-r
2 s 2y i CaGel PO (P — )

L 1
+ Dl [(ck — Co) e, + (di — dfip)da, + (p — Po)dp]™

x (u] - £(x§ +O0AX, po + 6Ap)),
(1.133a)

Ga (x,p) =V - £(X, p) = b} - (p — Po) + aka1 (ck — €fy) + axaa (di — dify)
n q 1 ( —r,r) —-r,
2 2 GG P~ po)

(m + 1)! + [(ex = ¢f)e, + (di — dig)da, + (P — Po)dp™ ™!

x (v§ -£(x} + 0 AX, po + 0 Ap))
(1.133b)
and

GU" (x*, p) = uj - [axOuy cos b + Ay vi sin 61 80 F(x, p)

s

o . _ COP L (1134)
G, " (x*, p) = vj - [0xOug cos 6k + dx vk sin 61° 05 (x, p)

x*p)

al =u] - 9,f(x,p), by = v} - dpf(x, p);
aril = ug - xF (X, P, a1z = i - F (X, P)Vi; (1.135)

a1 = Vi - KEX, Pk, axn = v; - KE (X, p)vi.
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Thus
Fx = ¢k cos O + di sin 6
m g 1 _ _
=2 2 i GG O PO = R0
. L (1.136)
Ok = r " (dy cos O — ¢y sin )
m q l ( —r, ) _
=2 2 i CaG " G BB~ o)
where
1
G Ok, po) = ~[(A2c0s 6 — Az sin 0)G ) (x*, po)
+ (Agsin b — A cos )G (x*, po)l,
1 (1.137)
G " (6. o) = — L [(Azsinbg + Aro cos GG (x", po)
— (Arcosf — Azsin )Gy~ (x*, po)].
Suppose
a; - (p—po) =0 and b] - (p—po) =0 (1.138)
then
. 1
Fe = (e + GV (0, po) - (P — POk + §G;g>°> (6k. PO}, + 0(r})
| : (1.139)
5 3,0
6 = Fic+ Gy, (6. p0) - (0 = po) + 3,65 Bk PO+ 0G)
where
GV (6r, po) = GV (pg) and GO (6, po) = GO (po) (1140)

Gél’])(ek, po) = Gél’l)(po) and Géi"o)((?k, po) = Géi’o) (o).

If oy = 0 and p = po, the stability of current equilibrium x* on an eigenvector plane
of (ug, vi) changes from stable to unstable state (or from unstable to stable state).
The bifurcation manifold in the direction of vy is determined by

1
(@10 + Gi{" B Po) - (0 — Po)rk + 5,610 6. po)ril =0
A (1.141)
Bro + G,V 0k po) - (p — po) + ;Géi’o) Ok, Po)rg =0

where
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Gﬁ;’])(@c, Po) = Opotklixt po) # 0

(1.142)
(G 0k po) - (P — Po)] x GV (6. po) < O.

Such a bifurcation at point (xj, po) is called the Hopf bifurcation on the eigenvector

plane of (ug, vg).

For the repeating eigenvalues of Df(x*, p), the bifurcation of equilibrium can
be similarly discussed in the foregoing two Theorems 1.9 and 1.10. Herein, such a
procedure will not be repeated.

Consider a dynamical system

% = [ad +a(x® + y)x + [B + ac + b(x* + yH)]ly,

. ) ) ) ) (1.143)
y=—[B+ac+bx"+y)ly+lad +alx"+ y)ly.
Setting
r2:x2+y2 with x =rcos@ and y =rsin0, (1.144)
we have
= [ad + ar?]r,
, , (1.145)
6 = Bo + ac + br-.
The equilibrium is
ri =0 for a € (—00,+00)
D (1.146)
ry = (—ad/a) 2 for (ad) x a < 0.
Ifd # 0, we have
DS, (r*, @) = ad + 3ar*. (1.147)

For ri‘ =0, Df, =ad. For d > 0, this equilibrium is stable as o < 0 or unstable as
o > 0. This equilibrium is critical point for « = 0. However, for d < 0, this equilib-
rium is stable as & > 0 or unstable as & < 0. The equilibrium of r} = (—ad Ja)'/?
requires (ad) x a < 0. For a x d > 0, such equilibrium solution exists for « < 0 and
for a x d <0, the equilibrium existence condition is « > 0. From Df, = —2ad, for
a xd > 0, the equilibrium is stable for (d > 0, a > 0) and unstable for (d <0, a < 0).
For a x d <0, the equilibrium is stable for (d < 0, a>0) and unstable for
(d>0, a<0).Fora=0, we have r* =0 and

Df.(r*,a) =ad =0 and D,Df,(r*, a) =d. (1.148)

Therefore, for « = 0, r* = 0 is stable for d > 0 and r* = 0 is unstable for d < 0.
The bifurcation of equilibrium at point (r*, o) = (0, 0) is the Hopf bifurcation. The
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(a) (b) v

Fig.1.2 Hopf bifurcations: a supercritical (d > 0, a > 0) and b subcritical (d < 0,a > 0)

Hopf bifurcation with stable focus (d > 0) is supercritical. The Hopf bifurcation
with unstable focus (d < 0) is subcritical. The supercritical and subcritical Hopf
bifurcation is shown in Fig. 1.2a and b. The solid lines and curves represent stable
equilibrium. The dashed lines and curves represent unstable equilibrium. Since § = f
is constant and r* # 0, one gets a periodic motion on the circle.

On the other hand, D?f,(r*, a)=6ar*=0 for r*=0.D3f.(r*, ) =6a is
obtained. Further, y = D3 £, (r*, a)y3 =6ay’ (y =r —r*). If a > 0, the vector field
is greater than zero if y > 0 and less than zero if y < 0. For this case, the bifurcation
point possesses a source flow of the third-order. The bifurcation branch is unsta-
ble. From Eq. (1.146), we have ad < 0 for such a unstable bifurcation because of
(xd) x a <0.If a <0, the vector field is less than zero if y > 0 and greater than zero
if y < 0. For such a case, the bifurcation point possesses a sink flow of the third-order.
The bifurcation branch is stable. From Eq. (1.146), we have ad > 0 for such a stable
bifurcation due to (ad) x a <0.

From the analysis, the Hopf bifurcation points possess the higher-order singularity
of the flow in dynamical system in the corresponding radial direction. For the stable
Hopf bifurcation, the mth order singularity of the flow at the bifurcation point exists
as a sink of the mth order in the radial direction. For the unstable Hopf bifurcation,
the mth order singularity of the flow at the bifurcation point exists as a source of the
mth order in the radial direction.

The stability and bifurcation for 2-D dynamic system are summarized in Fig. 1.3
with det(Df) = det(Df(xj, po)) and tr(Df) = tr(Df(x{, po)). The thick dashed
lines are bifurcation lines. The stability of equilibriums is given by the eigenvalues
in complex plane. The stability of equilibriums for higher dimensional systems can
be identified by using a naming of stability for linear dynamical systems in
Appendix A. The saddle-node bifurcation possesses stable saddle-node bifurcation
(critical) and unstable saddle-node bifurcation (degenerate).
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Fig.1.3 Stability and bifurcation diagrams through the complex plane of eigenvalues for
2D-dynamical systems

1.3.3 Lyapunov Functions and Stability

Consider an n-dimensional, autonomous, nonlinear dynamical system x = f(x, p)
inEq.(1.4). Let V : U — Z be a differentiable function defined in a neighborhood
of equilibrium x* on U/{x*}. A function V : U — Z defined by

V(x)=DV(x)=nT -f(x,1) (1.149)

where n = (0, V, -+, 0y, V)T and f(x, 1) = (f1,---, fn)T. The generalized case
will be discussed in Chap. 4.

Definition 1.32 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq. (1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x*. Suppose U (x*) C Q is a
neighborhood of equilibrium x*. There is a continuous function V : U — % which
is differentiable on U /{x*}, such that V (x*) = 0 and V (x) > 0 if x # x*.

(i) If V < 0in U/{x*}, the function V is called a Lyapunov function for equilibrium
x*,
(ii) If V. < 0 in U/{x*}, the function V is called a strict Lyapunov function for

equilibrium x*.
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Theorem 1.11 Consider an n-dimensional, autonomous, nonlinear dynamical sys-
tem x = f(x, p) in Eq.(1.4) with an equilibrium point x* and f(x, p) is C" (r > 1)-
continuous in a neighborhood of the equilibrium x*. Suppose U(x*) C Q is a
neighborhood of equilibrium X*. There is a continuous function V : U — % which
is differentiable on U /{x*}, such that V (x*) = 0 and V (x) > 0 if x # x*.

@) If\:/ < 0in U/{x*}, the equilibrium x* is stable.
(i) If V < 0in U/{x*}, the equilibrium X* is asymptotically stable.

Proof The proof can be referred to Hirsch and Smale (1974). |

1.4 Approximate Periodic Motions

In this section, the local stability and bifurcation theory will be applied to determine
the stability and bifurcation of approximate solutions of a nonlinear oscillator. Herein,
a generalized harmonic balance method is presented as in Luo and Huang (2011).

1.4.1 A Generalized Harmonic Balance Method

Consider a nonlinear dynamical system as
X+f(x,x,1)=0 (1.150)

where f(X,Xx,t) is a nonlinear function vector and is periodic for time with
T =27 /2. Assume an approximate generalized periodic solution for the steady-
state motion of Eq. (1.150) in the form of

N
x*(t) = ap(t) + Zbk(t) cos(kS2t) + ¢ (¢) sin(kS2t). (1.151)
k=1

Then the first and second order derivatives of x*(¢) are

N
x*(t) = a0+ Z [br + kSQc] cos(kQ2t) + [¢x — kQby] sin(kQ), (1.152)
k=1
X*(1) = o + > {[bx + 2k — (k2)*by] cos (k1)
k=1
+ [€ — 2k — (kQ)%er] sin(k Q1))

(1.153)

Suppose ag(t), br(¢) and ¢ (7) vary slowly with time. Substitution of Egs. (1.151)—
(1.153) into Eq.(1.150) and averaging for each harmonic terms of cos(k2t) and
sin(kQ)(k =1,2,--) gives
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4o + Fo(ag, b, ¢, a9, b, ¢) =0,

by + 29Kk ¢ — Q%koby + Fix(ag, b, ¢, a9, b, ¢) = 0,
¢ — Zlebk — szQCk + Fai (ag, f), ¢,ap,b,c) =0;
k=1,2,---,N

(1.154)

where

ky =diag(Lysn, 2lpscns -+ Nlyxn),
ko = diagMuxn, 2°Tusn. -+ N2Tn),
b= (by,ba,---,by)T and ¢ = (¢, ¢2, -+, cn)T, (1.155)
Fi = (F11,Fi2, - ,Fip)" and Fo = (Fyy, Fop, -+, Fon)’
for N=1,2,---,00

and
. 1 /T
Fo(ao. b, ¢ d0,b,&) = - / P, X, 1)d;
0

. 2 T
F 7b9 ) : 7b9 ( == = f .*, *,t th d[,
1x(ag c, ap ¢) T /0 (x",x", 1) cos( ) (1.156)

. 2 (T
For(ag, b, c, a0, b, ¢) = 7/ f(x*, x*, 1) sin(kQt)dt;
0

for k=1,2,---,N.

Without the assumption of slowly varying with time, the averaging cannot be
done for the dynamical system in Eq. (1.150) with the approximate solutions. The
approximate solution in Eq.(1.151) is treated as a transformation, which can be
applied to obtain any transient solution also. However, once the assumption of slow
varying with time is used, the form in Eq.(1.151) is an approximate solution for
steady-state motion in Eq. (1.150).

Setting z = (ag, b, ¢)T and z = z;, one obtains

g = (=Fo, —=F| — 2QKk¢ + Q%kob, —F» + 29Kk b + 2kyc)T. (1.157)
Equation (1.154) becomes
z=12 and 72| = g(z, 7). (1.158)
If z; = 0, the equilibrium points are given by g(0, z*) = 01 ,on+1), i.€.,

Fo(ag,b*,¢*,0,0,0) =0,
Fi(aj, b*, c*,0,0,0) — Q°kb = 0, (1.159)
F2(aj, b*, ¢*,0,0,0) — %k = 0.
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The foregoing equation is given by the traditional harmonic balance method. Once
the equilibrium point of z* = (ag, b*, ¢*)T is obtained, the approximate solution
in Eq. (1.151) is obtained, which gives the steady-state solution of dynamical sys-
tems in Eq.(1.150). The stability of approximate solution can be determined from
Eq.(1.159). Lety = (z, z)" and f = (z1, g)T. Equation (1.158) becomes y = f(y).
The linearized equation at the equilibrium point y* = (z*, 0)T is given by

Ay = DF(y")Ay and DF(y") = 9f(y)/dy|,. - (1.160)
The corresponding eigenvalue analysis requires
| DE(y*) — Aopan+1)x2nen+1)| = 0. (1.161)
The eigenvalues of Df(y*) are classified as
(n1, na, n3|ng, ns, ne) (1.162)

where n; is the total number of negative real eigenvalues, n5 is the total number of
positive real eigenvalues, n; is the total number of zero real eigenvalues; n4 is the
total pair number of complex eigenvalues with negative real parts, ns is the total pair
number of complex eigenvalues with positive real parts, ng is the total pair number
of complex eigenvalues with zero real parts. If all eigenvalues possess negative real
parts, the approximate steady-state solution is stable. If one of eigenvalues possesses
positive real parts, the approximate steady-state solution is unstable. The correspond-
ing boundary is the bifurcation condition, including saddle-node bifurcation, Hopf
bifurcation and so on.

1.4.2 A Nonlinear Duffing Oscillator

Consider a periodically forced Duffing oscillator as
X +dix 4 dax® + ayx + axx® = Q 4 Qg cos Q. (1.163)
From the foregoing equation, the standard form is
X+ f(x,x,1) =0, (1.164)
where
Fx, %, 1) =dix +dox> + aix +axx® — Q — Qg cos Q. (1.165)

The periodic solution for one degree of freedom system is assumed as

N
x* (1) = ao(t) + Z by (t) cos(kS2t) + ci (¢) sin(k2t). (1.166)
k=1
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The first and second order derivatives of x*(¢) are

N
X*(t) = ap + Z [br + kS2c] cos(kQ2) + [¢x — kQby] sin(kQ), (1.167)
k=1
N
#(0) = do + k; {[bx + 2kQ6x — (k2)* by cos (k1) (1.168)

+ [ — 2kQby — (k2)%ci] sin(kQ1)}.

Application of Egs.(1.166)—(1.168) into Eq.(1.163) and averaging all terms of
cos(n2t) and sin(n€2r) term gives fork =1,2,--- | N
do + Folao, b, ¢, éo, b, &) = 0;
by + (2kQ)éx — (kQ)*bx + Fix(ao, b, ¢, do, b, ¢) =0, (1.169)
& — (k)b — (kQ)*cx + Fa(ap, b, ¢, ag, b, ¢) = 0.

The coefficients of constant, cos k2¢ and sin k2¢ for the function of f(x, x, ) are

Folag. b, ¢, o, b, &) = dia + do f{” + ara + ar f;° — 0;
Fix(ao, b, €, do, b, &) = di (b + kQe) + do 15 + arby + az f5y) — Q0 63

For(ao, b, €, o, b, &) = di(¢x — kQby) + do £ + arcx + ar £
(1.170)
where

N

N
3ap
O =+ 32 3 S+ 19y + s o
=1 j=1i=1

1290 G~ b — b)) 8L

oy (i ¢j—J

1 . .
+ 3 Gi +iQc) (b + jQe) b + kszcl)((s?,j,l o) 80 )

3 ;. N . Nk 0 0 0
+Z(b1 +iQ0c;)(¢c; — jbj)(c _lQbZ)((S[_j_i +31—j+i 51_;,_]'_,') )

(1.171)

10— a3 ShSIEX 3ag 0
SCAP D HIETUENEE LS

=1 j=1i=1

1 1.172
i 80+ 800 (1172)

3
+Zbicjcl (8?—j+l + (S?_H_l - 8?—./—l)i| >
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10 _ 353 (30026, 4 16 5t
Fik —ZZZ[ (G + i) of

=1 j=1i=1

3ag . : .
t+ 5y i 190 b; + Qe+ 58y )
L

( lQb )(Cj ]Qb )(8‘1 jl 81+j)

(1.173)
+ Z(b,» +iQe)(bj + jQe)) by + 19er)

k k k k

X (8ji—j—g g jt T i jty T 8l jp)
3 . .

+ Z(bi +iQ0c;)(¢; — jj)(E — 1)

k k k k
X8 j) F O jy = Siyj — 8|i7jfl|)] ;

N N N
3ag
2 k k
© _ zzz[ Do 45y 5y + )
=1 j=1i=1

3ayp

k
+ 2NC’C’(3" —j1 7 8i4) (1.174)

k k k k
Zbibjbz(ﬁufjfu F0ig ot + 08—y F i jr)

3 k k k k
+bici @i+ 8jimja = Sigjur = Sji—jt) |-

N N N .2
1<li) —ZZZ[ (;lv—o) (& —iQb;) 8F
=1 j=1i=1
3ap . . . ) N 4 k
+ 206 — 900 B; + Qs — )by + ok,
42 +i9e) By + j2c)) 6 — 19 (1.175)

X [8f+j+1 +sgn(i — j + l)8|ki,j+,| —sgn(i +j — l)8|k1'+jfl|
—sgn(i —j —1) afi_j_”] + ‘1—1(61- —iQb;)(¢j — jQj) (¢ — Qb))
x [sgn(i = j +1) 8y = 8y jur sl +Jj =D 8y
—senti = j =Dy}
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N N N

;,?—ZZZH—f ¢i 8F +—b€ 1675 —sgn(i — j) ofi_ ]

=1 j=1i=1

55

3 o L
+ G bibjeildyy iy sgn = J D8y —senl+ ] =Dy

. 1 .
—sgn(i —j—1) 5|ki—j—l|] + Zcicjcl[sgn(z —j+D ‘Slli'—j-%l\

+sgn(@ + j — 1) Sﬁﬂ_” — 8f+./+l —sgn(i — j — k) 5|k[—j—1|]} .

Define
T T \T T
Z=(a05b C ) (a()abla' 7bNaC15"'5CN)
:(ZOsZ19"'sZ2N) i
T T \T . A A . . T
Zl_z_(a()’b c ) (a()’bl’""bN’c]’."’cN)
— T
= (20,21, """ 5 22N)
where
T _ T
b= (b1,by,---,by) and ¢=(ci,c2, " ,cN) .

Equation (1.169) can be expressed in the form of vector field as

z=1 and 7| = g(z,71)

where
FO(z,2y)
g(z,21) = | Fi(z,z1) — 2Qk;b + Q’kob
F»(z, 1) + 29Kk ¢ + Q%koc
and

ki = diag(1,2,---,N) and ky = diag(1,2%,---, N?)
Fi = (Fi1, Fi2,--, Fix)" and Fy = (Fay, Fap, -+, Fay)'
for N=1,2,---,00

Letting
y=(z.z) and f=(z1,8)".
Equation (1.179) becomes

y = f(y).

(1.176)

(1.177)

(1.178)

(1.179)

(1.180)

(1.181)

(1.182)

(1.183)
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The steady-state solutions for periodic motion can be obtained by settingy = 0, i.e.,

Fo(ag, b*,¢*,0,0,0) =0,
— Q%kyb* + Fy(ag, b*, ¢*,0,0,0) =0, (1.184)
— Q%kac* + Fa(ag, b*, ¢*,0,0,0) = 0.

The (2N + 1)nonlinear equations in Eq. (1.184) are solved by the Newton-Raphson

method. As in the previous section, the linearized equation at the equilibrium point
y* = (z*, 0)T is given by

Ay = Df(y")Ay and Df(y*) = 9f(y)/dyly+. (1.185)
The corresponding eigenvalues are determined by

|DE(y*) — Abon+1)x20en+1)| = 0. (1.186)

If Re(q) < 0 (k = 1,2,--- ,2(2N + 1)), the approximate steady-state solu-
tion y* with truncation of cos(NQ¢) and sin(N 1) is stable. If Re(Ax) < O(k €
{1,2,--- ,2(2N + 1)}), the truncated approximate steady-state solution is unstable.
The corresponding boundary between the stable and unstable solution is given by
the bifurcation condition, including saddle-node bifurcation, Hopf bifurcation and
SO on.

1.4.3 Approximate Solutions

From such approximate, analytical solutions, the stability and bifurcation analysis can
be done through eigenvalue analysis. The equilibrium solution can be obtained from
Eq. (1.184) by using the Newton-Raphson method as an example, and the stability
analysis will be presented. The system parameters are

dy =0.5,dr =0.05,a1 = —1.0,ao = 10, 0 = 1.0, Qo = 10.0.  (1.187)

The backbone curves of response amplitude varying with excitation frequency €2
are illustrated in Fig. 1.3, where harmonic amplitude and phase are defined by

Ap = ,/bl% + c,%, @ = arctan Z—i (1.188)

and the corresponding solution in Eq. (1.166) in

N
xX*(t) =ao+ Y Ay cos(kQt — gp). (1.189)
k=1
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Fig.1.4 Analytical prediction of periodic solutions based on two harmonic terms (HB2): a con-
stant term (ap), b first harmonic amplitude (A;), ¢ first harmonic phase (¢;), d second har-
monic amplitude (A3), e second harmonic phase (¢2). (d; = 0.5, d» = 0.05, a1 = —1.0,
a» =10, O = 1.0, Q¢ = 10.0)

The analytical approximate solutions for periodic motion are based on two har-
monic terms (HB2) as presented in Fig. 1.4. The constant term (ag), the first harmonic
term amplitude (A1) and phase (¢1), the second harmonic term amplitude (A;) and
phase (¢y) versus excitation frequency are presented in Fig. 1.4a—e, respectively.
The corresponding eigenvalue analysis is given by the real and imaginary parts
of eigenvalues, as shown in Fig. 1.5. The real and imaginary parts of eigenvalues
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Fig.1.5 Eigenvalue analysis of periodic solutions based on two harmonic terms (HB2): a real part
of eigenvalues and b imaginary parts of eigenvalues. (d; = 0.5, d» = 0.05,a; = —1.0, a» =
10, 0 =1.0, Q¢ = 10.0)

Table1.1 Stability classification of periodic motions based on the two harmonic terms (BH2)(d| =
0.5,d» =0.05,a; = —1.0,a, =10, Q0 = 1.0, Q9 = 10.0)

Type of eigenvalues Excitation Frequency 2 Stability
0,0,015,0,0) (0, 1.929), (1.988, 3.533), (3.97,4.178), (6.195, 10] Stable
(2,0,0/4,0,0) (3.533, 4.035), (1.929, 1.988), (3.957,3.97) Stable
(1,1,013,1,0) (3.956, 4.035) Unstable
0,0,03,2,0) (4.178, 6.153) Unstable
0,0,0/4,1,0) (6.153, 6.195) Unstable

for approximate solutions with such two harmonic terms are presented in Fig. 1.5a
and b, respectively. The eigenvalue analysis provides the possible stability and bifur-
cation analysis of the periodic motions based on such approximate solutions. The
solid and dashed curves represent the stable and unstable periodic solutions based
on the harmonic terms (HB2), respectively. The dot-dash vertical lines represent the
“jump” phenomena, and three periodic motions exist. The bifurcations are given by
solid vertical lines. The Hopf bifurcations (HB) occur at Q2 = 4.178 and 6.195. In
addition, the eigenvalue types of periodic motions are labeled through Eq. (1.162).
From such classification of eigenvalues, the stability and bifurcation characteristics
are presented. The corresponding stability classification is tabulated in Table 1.1. For
Q = (3.956, 4.035), there are three periodic motions. Two stable periodic motions
and one unstable periodic motion exist. As excitation frequency 2 increases, the
upper branch of periodic motion for A will disappear at 2 = 4.035, and jumps to
the lower branch. As excitation frequency €2 decreases, the bottom branch of periodic
motion for Ay will disappear and jumps to the upper branch. Similarly, the jump-
ing phenomena can be observed in the plots of ag, Ay, Az, ¢1 and ¢;. The middle
branch of solutions is unstable.

For a global view of stability of the approximate solutions (HB2), the correspond-
ing parameter map is presented in Fig.1.6. The regions of single stable periodic
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Fig.1.6 A parameter map (€2, Qp) for periodic motion based on two harmonic terms (HB2): a
Global view (2 = (0.0, 10.0)), b zoomed view (2 = (0.8, 1.9)), and ¢ zoomed view (2 =
(1.5,4.0)) (dy = 0.5, d» =0.05, a; =—1.0, ap =10, Q0 =1.0)

motion are shaded by gray color, labeled by “S”. The regions of single unstable peri-
odic motion are hatched, labeled by “U”. The regions of three periodic motions are
divided into three portions. The portions with two stable solutions and one unstable
solution are labeled by “SSU” (red). The portions with one stable solution and two
unstable solutions are labeled by “SUU” (blue), and the portions with three unstable
solutions are labeled by “UUU” (yellow). This parameter map gives a better under-
standing of dynamical behaviors of periodic solution based on the two harmonic
terms. Some region in parameter map in Fig. 1.6a is not clear. Thus, the zoomed
parameter map should be presented in order to show the dynamical behavior, as
shown in Fig. 1.6b and c. Similarly, for approximate solution with other higher-order
harmonic terms, the parameter maps can be developed. Herein, the parameter map
based on HB2 is as an example to show how to develop the parameter maps.
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Table1.2 Input data for numerical simulations of stable periodic motions (d; = 0.5,dy =
0.05,a; = —1.0,a; =10, Q = 1.0, Qg = 10.0)

Q=35 Initial conditions (9 = 0.0) Stable

X0 X0 Harmonic terms
Fig.1.7a 0.903000 4.305000 HB1
Fig.1.7b 0.898300 4.465300 HB2
Fig.1.7¢ 0.958100 4.709600 HB3
Fig.1.7d 0.955913 4.746170 HB4

1.4.4 Numerical Illustrations

In this section, numerical illustrations are given that are based on the analytical
solutions and numerical integration schemes. The initial conditions in numerical
simulation are obtained from approximate analytical solutions of periodic solutions.
Input data comprising system parameters and initial conditions for numerical simula-
tions are tabulated in Tables 1.2 and 1.3. In all plots for illustration, circular symbols
give approximate solutions, and solid curves give numerical simulation results.

Four approximate solutions of a stable periodic motion are illustrated in Fig. 1.7
for Q@ = 3.5. From the stability analysis of approximate solution based on HB2, the
solutions is a stable focus of (0, 0, 0|5, 0, 0). In Fig. 1.7a, the trajectory of periodic
motions based on one harmonic term expression (HB1) is plotted. The numerical
solution has a transient motion to reach the steady-state solution. The numerical and
analytical results are quite different. Thus more harmonic terms should be considered.
In Fig. 1.7b, the approximate solution of periodic motion with two harmonic terms
expression is adopted. Indeed, the transient motion in numerical result becomes
better. However, the approximate, analytical solutions are still different from the
numerical steady-state solution of periodic motions. In Fig. 1.7c, the approximate
solution with three harmonic terms is used. Compared to the analytical predictions
based on HB1 and HB2, the transient motion is very small before the steady-state
motion is obtained, which implies that the approximate solution gives a good approx-
imation of the steady-state periodic motion. Consider the higher-order harmonic term
solutions of periodic motion. The analytical prediction based on four harmonic terms
(HB4) is presented in Fig. 1.7d. Compared to the prediction of HB3, the analytical
prediction of HB4 gives a solution closed to HB3. Indeed, small improvements here
and where of trajectory in phase plane are presented. More harmonic terms included
will improve the analytical prediction of periodic motions. However, the computa-
tion workload will increase dramatically. It is very important to find the appropriate
harmonic terms to give a good approximation of periodic motion.

From the analytical prediction of HB2, during the range of 2 € (3.956, 4.035),
there are three periodic motions. One is unstable periodic motion of (1, 1, 0|3, 1, 0)
and two stable periodic motions are of (2, 0, 0|4, 0, 0). The stable solutions based
on HB1-HB4 can be illustrated. Herein, the unstable periodic motion is a spiral sad-
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Table 1.3 Input data for numerical simulations of unstable periodic motions (d; = 0.5,dy =
0.05,a; = —1.0,a; =10, Q = 1.0, Qg = 10.0)
Q = 4.0(middle) Initial conditions (tp = 0.0) Unstable
X0 X0 Harmonic terms
Fig.1.8a —0.871000 2.755200 HBI1
Fig.1.8b —0.881407 2.657200 HB2
Fig.1.8¢c —0.879248 2.194800 HB3
Fig.1.8d —0.879302 2.178870 HB4
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Fig.1.7 Analytical and numerical solutions of stable periodic motion in phase plane (2 = 3.5):
a HB1, b HB2, ¢ HB3 and d HB4. (d; = 0.5, d» = 0.05,a; = —1.0, a» = 10, Q = 1.0,
Qo = 10.0)

dle of (1, 1, 0|3, 1, 0). Consider the unstable periodic motion of (1, 1,03, 1,0) at
2 = 4.0. From the approximate, analytical solutions of BH1-HB4, the numerical and
analytical predictions of unstable periodic motions will be presented in Fig. 1.8a—d,
respectively. From the unstable periodic motion given by the approximate, analytical
solution, the numerical result of trajectory in phase space show the numerical solu-
tion reaches the stable periodic motion at €2 = 4.0. In Fig. 1.8a, the unstable periodic
motion is based on HB1. The unstable periodic motion moves to the outer stable peri-
odic motions (upper branch). The numerical result of trajectory in phase plane does
not stick with the analytical prediction of HB 1. Therefore, the analytical approximate
solution is not accurate. The triangle symbols give the outer stable periodic motion
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Fig.1.8 Analytical and numerical solutions of unstable periodic motion in phase plane (2 = 4.0,
middle branch): aHB1,bHB2,cHB3,d HB4. (d; = 0.5, d» =0.05, a; = —-1.0, a =10, Q0 =
1.0, Qo =10.0)

based on the HB4 with the initial conditions of (xg, yo) = (0.072388, 5.156110),
which matches well with the numerical results. It implies that the analytical approxi-
mate solution is on the outside of unstable periodic motion. In Fig. 1.8b, the unstable
periodic motion is based on HB2. The numerical result of trajectory in phase plane
still moves to the outer stable periodic motion, and still does not stick with the ana-
Iytical prediction of HB2, but such numerical result is better than the result given by
HBI1. Therefore, the analytical approximate solution is still not accurate. In Fig. 1.8c,
the unstable periodic motion based on HB3 is considered for illustration. The numer-
ical result of trajectory in phase plane still moves to the outer stable periodic motion.
However, such numerical result does stick with the analytical prediction of HB3,
which implies that the analytical, approximate solution of unstable periodic motion
given by HB3 is close to the exact one. Since the unstable periodic motion moves to
the outer stable periodic motion, the approximate solution is still on the outside of the
exact motion. In Fig. 1.8d, the unstable periodic motion based on HB4 is considered
for illustration. The numerical result of trajectory in phase plane still moves to the
inner stable periodic motion. The analytical solution of inner stable periodic motion
is based on the HB4 with (xq, yo) = (—0.704000, 1.010270), represented by trian-
gle symbols. The numerical result of trajectory in phase plane indeed sticks with the
unstable periodic motion. Since the final state of the numerical results moves to the
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inner stable periodic motion, it means that the approximate, analytical solution of
the unstable solution may be inside of the exact one.

For the constant term Q=0 without the cubic term of damping, the Duffing oscil-
lator will be reduced to the cases given in Luo and Han (1997). For those cases,
the approximate solutions with only one harmonic term can give the appropriate
approximation, and the corresponding analytical conditions for stability and bifur-
cation were presented. However, if more nonlinear terms and constant forces are
involved, the approximate solution needs more harmonic terms to get appropriate
approximations. Furthermore, the parameter maps for stability and bifurcation will
be more complicated.
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Chapter 2
Nonlinear Discrete Dynamical Systems

In this chapter, the basic concepts of nonlinear discrete systems will be presented.
The local and global theory of stability and bifurcation for nonlinear discrete systems
will be discussed. The stability switching and bifurcation on specific eigenvectors
of the linearized system at fixed points under specific period will be presented.
The higher singularity and stability for nonlinear discrete systems on the specific
eigenvectors will be developed. A few special cases in the lower dimensional maps
will be presented for a better understanding of the generalized theory. The route to
chaos will be discussed briefly, and the intermittency phenomena relative to specific
bifurcations will be presented. The normalization group theory for 2-D discrete
systems will be presented via Duffing discrete systems.

2.1 Discrete Dynamical Systems

Definition 2.1 For Q, € %" and A C #™ with a € Z, consider a vector function
f, : Qu x A — Q4 which is C" (r > 1)-continuous, and there is a discrete (or
difference) equation in the form of

Xi+1 = fo (Xk, Po) fOr Xg, Xpy1 € Qo k € Z and py € A. 2.1
With an initial condition of X; = Xq, the solution of Eq.(2.1) is given by

xi = £y (fe (- - - (£ (X0, P))))
k (2.2)
forx; € Qu, k€ Zandp € A.

(i) The difference equation with the initial condition is called a discrete dynam-
ical system.

(ii) The vector function f, (Xy, py) is called a discrete vector field on domain 2.

(iii) The solution x;, for each k € Z is called a flow of discrete dynamical system.

A. C.]. Luo, Regularity and Complexity in Dynamical Systems, 65
DOI: 10.1007/978-1-4614-1524-4_2, © Springer Science+Business Media, LLC 2012
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Fig.2.1 Maps and vector functions on each sub-domain for discrete dynamical system

(iv) The solution xj for all kK € Z on domain €2, is called the trajectory, phase
curve or orbit of discrete dynamical system, which is defined as

= {xk|xk+1 = f, (X, py) for k € Z and p,, € A} C Uy Ry - (2.3)
(v) The discrete dynamical system is called a uniform discrete system if
Xi+1 = fo Xk, Po) = £ (X, p) for k € Z and x; € Q. (2.4)

Otherwise, this discrete dynamical system is called a non-uniform discrete
system.

Definition 2.2 For the discrete dynamical system in Eq. (2.1), the relation between
state x;, and state Xz | (k € Z) is called a discrete map if

fo
Py Xj —> Xpq1 and X1 = Po Xy (2.5)

with the following properties:

Py py o xg M Xjtn and Xg 4y = Py, 0 Py, | 00 Py Xg (2.6)
where
Py = Py, 0 Pa, 00 Py. (2.7)
If Py, = Py, | == Py = Py, then
Py =P = PyoPyo---0P, (2.8)
with
P =P, 0P Vand PO =1 (2.9)

The total map with n-different submaps is shown in Fig.2.1. The map Py, with
the relation function fy, (ax € Z) is given by Eq.(2.5). The total map Py ) is
given in Eq. (2.7). The domains Q2, (o € Z) can fully overlap each other or can be
completely separated without any intersection.
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Definition 2.3 For a vector function in f, € #Z",f, : #" — %". The operator
norm of f, is defined by

n
all =2, max Vo (k. o)l (2.10)

For an n x n matrix f, (Xi, po) = AeXg and Ay = (@jj)nxn, the corresponding norm
is defined by

n
ALl = D lajl. (2.11)
ij=I

Definition 2.4 For Q, € %" and A C %" with ¢ € Z, the vector function
£, (Xi, pe) With £, : Q4 x A — Z" is differentiable at x;. € Q if

ofy (Xk, Pa)
0Xj

— lim fo Xk + AXp, Po) — fo (X, Par)
T Ax—0 AXj '

(2.12)
(Xk,P)

of, /0xy is called the spatial derivative of f, (X;, py) at X, and the derivative is
given by the Jacobian matrix

ofy (Xk, Pa) _ |:afa(i) ]
an 8Xk(l') nxn.

(2.13)

Definition 2.5 For Q, € %" and A C %", consider a vector function f(x, p)
withf : Q, x A — Z" where x; € Q4 and p € A with k € Z. The vector function
f (x;, p) satisfies the Lipschitz condition

[1E(yk. p) — £k DI < Lilyk — x| (2.14)

with Xy, yx € Q4 and L a constant. The constant L is called the Lipschitz constant.

2.2 Fixed Points and Stability

Definition 2.6 Consider a discrete, nonlinear dynamical system x; | = f(xi, p) in
Eq.(2.4).

(i) A point x; € € is called a fixed point or a period-1 solution of a discrete
nonlinear system X1 = f(Xi, p) under map P if for ;11 = X} = X}/

x; =f(x}, p). (2.15)

The linearized system of the nonlinear discrete system x| = f(Xg, p) in
Eq.(2.4) at the fixed point x; is given by
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Yi+1 = DP(X[, p)yi = DE(X[, p)y (2.16)

where
Yk =X, — X and yrp1 = Xpq1 — X (2.17)

(i) A set of points X]* € Qa/.( a;j € Z) is called the fixed point set or period-1
point set of the total map P, with n-different submaps in nonlinear discrete
system of Eq.(2.2) if

Xlz+j+1 = faﬂ (Xlt*ﬂ" Po;) forj € Z4 and j/ = mod(j, n) + 1; 2.18)
Xk+ mod (j,n) = Xk'

The linearized equation of each map in the total map P, gives

yk.+j+l = DPD(_]-/ (Xlt+j’ pot/-/)ykJrj = Dfot/-/ (X/t+j’ Pozj/))’kJrj
With Yipjp1 = Xkpjp1 — X g and Y = Xk — X (2.19)
forj € Zy and j' = mod(j, n) + 1.

The resultant equation for the total map is
Yitj+1 = DPeny (X5, P)Yij forj € Zy (2.20)

where

1
DP(k,n) (sz p) = Hj:n DPozj (X;‘Fj—l’ p)

= DPy, (X} 4 _1Pay) - - - - DPoy (X}, 1, Pary) - DPoy (X}, Pary)
= DAy, (X 15 Pay) * - - - Doy (X 15 Pay) - Dy (X[, Payy)-
2.21)

The fixed point X lies in the intersected set of two domains €2 and Q4 , as
shown in Fig.2.2. In the vicinity of the fixed point x;/, the incremental relations in the
two domains €24 and €2 are different. In other words, setting y; = x; — x;’ and
Yir1 = Xkp1 — Xj 41> the corresponding linearization is generated as in Eq. (2.16).
Similarly, the fixed point of the total map with n-different submaps requires the
intersection set of two domains €2 and 24, which are a set of equations to obtain
the fixed points from Eq.(2.18). The other values of fixed points lie in different
domains, i.e., Xl’-‘ €eQ(=k+1,k+2,.--- ,k+n—1), as shown in Fig.2.3.

The corresponding linearized equations are given in Eq. (2.19). From Eq. (2.20),
the local characteristics of the total map can be discussed as a single map. Thus,
the dynamical characteristics for the fixed point of the single map will be discussed
comprehensively, and the fixed points for the resultant map are applicable. The results
can be extended to any period-m flows with P,

Definition 2.7 Consider a discrete, nonlinear dynamical system x5, = f(X, p)
in Eq.(2.4) with a fixed point x;.. The linearized system of the discrete nonlinear
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Fig.2.2 A fixed point
between domains €2 and
Q.+ for a discrete
dynamical system

Xiin f

Fig.2.3 Fixed points with n-maps for a discrete dynamical system

system in the neighborhood of x} is yx1 = DE(X[,p)yx (y/ = X, — Xx; and
I=k,k + 1) in Eq.(2.16). The matrix Df(x};, p) possesses n; real eigenvalues
[Ajl <1 (j € Ni),ny real eigenvalues |Aj|>1 (j € Nz),n3 real eigenvalues
Aj=1 (j € N3), and ny real eigenvalues A; =—1 (j € Ny). Set N ={1,2,--- ,n}
and N; ={i1, ip, -+ ,ip,}U@ (i=1,2,3,4) with i, ¢ N (im=1,2,--- ,n;). N;
CNU®@,UL N;=N, NiNN,=2(p # i)and Z}_;n;=n.N; = @ifn; = 0. The
corresponding eigenvectors for contraction, expansion, invariance and flip oscilla-
tion are {v;} (j € N;) (i=1,2,3,4), respectively. The stable, unstable, invariant
and flip subspaces of yx; 1 = Df(x}, p)yx in Eq.(2.16) are linear subspace spanned
by {vj} G € N;) (i =1,2,3,4),respectively, i.e.,

&* = span [vj

(DE(xE. p) — Dy =0, |
hl<1,jeNJSNU®D

P — ADv; =0, ]

_SP"”[ Mjl>1,jeN,SNUD

(2.22)

(Dt(x;,p) —ADv; =0, |
AM=1jeN3CNUDZ |’

= span

[
[

—XDv; =0,
AM=-1,jeN,CNUGZ |~
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where
&% = &5 Uy U &Y with

(DE(xF, p) — 1Dy, =0, ] )

S __ .
gm_s”“”[vf 0<ij<l,je NNCNUD

2.23
&S = span i v; (DE(x;, p) — A Dv; =0, ' (2.23)
o Tl=1<2xj<0,jeNV S NUD [’
(DE(x}, p) — ;Dy; =0,

S . .
éaz—span[vj AJ:O’]EN]ZENUQ )

& = & U &Y with

(DE(x;, p) — 4Dy, =0,
u __ . .
éam—span["./ A>1LjeNPCNUG |’ (2.24)

* _ i ;=
ggl:span[v_, (DE(x, p) — 4DV, =0, ];

A<-1,jeNCNUD

where subscripts “m” and “o0” represent the monotonic and oscillatory evolutions.

Definition 2.8 Consider a 2n-dimensional, discrete, nonlinear dynamical system
X1 = f(xg, p) in Eq.(2.4) with a fixed point x;". The linearized system of the
discrete nonlinear system in the neighborhood of x;: iS Y1 = Df (X]t, P)y: (y; =
x;—x; and/ = k, k+1) in Eq. (2.16). The matrix Df (x;/, p) has complex eigenvalues

a; = if; with eigenvectors u; & iv; (j € {1, 2, --- , n}) and the base of vector is
BZ{UI,VI,"',Uj,Vj,"‘,un,Vn}- (225)
The stable, unstable and center subspaces of yxi1 = Dfi(x}, p)yx in Eq.(2.16)
are linear subspaces spanned by {u;,v;} (G € N;, i = 1,2,3), respectively.
N ={1,2,---,n}plus N; = {i1,ip, -+ ,ip;,} UD S NUD with i, € N (m =
1,2,--,m,i = 1,2,3). U_, N, = N with ;N N, = @(p # i) and
2,-3=1”i = n.N; = @ifn; = 0. The stable, unstable and center subspaces of

Yi+1 = DE(X}, p)y in Eq.(2.16) are defined by

&° = span 3 (. Vj) | (DE(x}, p) — (o7 £ iB)I) (wj £ivy) =0, [
JeENIS{L2, - nfUD

rp = /05].2~|—’3j2>17
&% = span \ (W, V) | (DE(xE, p) — (o £ i) (w £iv) =0, [
jeENC{1,2,--- ,n}UD
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rj = /(xj2 +ﬂ]2 = 1’
& = span 1 (W Vi) | (DE(xt, p) — (o £ifpI) (w; iv) =0, [~ (2:20)
jeEN;C{1,2,-- ,m}UD

Definition 2.9 Consider a discrete, nonlinear dynamical system x| = f(xg, p) in
Eq.(2.4) with a fixed point x}. The linearized system of the discrete nonlinear system
in the neighborhood of X is yx11 = DE(XL, p)yx (Y =x; —xj and [ = k, k + 1)
in Eq.(2.16). The fixed point or period-1point is hyperbolic if no eigenvalues of
Df(x}';, p) are on the unit circle (i.e., [Aj] # 1 forj=1,2,--- ,n).

Theorem 2.1 Consider a discrete, nonlinear dynamical system X1 = f (X, p) in
Eq.(2.4) with a fixed point X The linearized system of the discrete nonlinear system
in the neighborhood of x}_ is yx+1 = DE(X[, P)yr (Y1 = X, —X; and | =k, k+1) in
Eq.(2.16). The eigenspace of DE(x}, p) (i.e., & & %") in the linearized dynamical
system is expressed by direct sum of three subspaces

E=EHE" P ES (2.27)

where &%, &" and &€ are the stable, unstable and center subspaces, respectively.
Proof This proof is the same as the linear system in Appendix B. |

Definition 2.10 Consider a discrete, nonlinear dynamical system X4 = f(X, p)
in Eq. (2.4) with a fixed point x;". Suppose there is a neighborhood of the fixed point
x; as Uy (x}) C €, and in the neighborhood,

lim IIf(x} + Y, p) — DECX, pyell
AT [yl

0 (2.28)

and
Y1 = DE(XE, P)Yk- (2.29)
(i) A C" invariant manifold

Foe Xie, X32) = {xp € UX?)| lim X447 = X; and
Joe (Xkc k) {xk ( k)|j»+oo k+j k

L (2.30)
Xiyj € Uxp) with j € Z4}

is called the local stable manifold of x, and the corresponding global stable
manifold is defined as

S (X X]t) = UjEZ_f(%ZUC(Xk+j7 X]t.,.j))

i (2.31)
= UJGZ— f(]) (02/106 (X, X]t)) .



72 2 Nonlinear Discrete Dynamical Systems
(ii)) A C" invariant manifold %}, (X, X})

Uioe Xk, X)) = {x € URXP)| lim x4y = X
I (2.32)
and x;4; € U(xy) withj € Z_}

is called the unstable manifold of x*, and the corresponding global unstable
manifold is defined as

U (X, X;t) = UjeZJrf(éZ/lac(Xk-&-jv XZ-I—_/'))

) (2.33)

= jeZ_,.f(])(%ac(xk’ X]t))

(iii) A C™! invariant manifold €,.(x, x*) is called the center manifold of x* if

Gloc (X, X*) possesses the same dimension of &€ for x* € .7 (x, x*), and the
tangential space of €, (x, x*) is identical to &°.

As in continuous dynamical systems, the stable and unstable manifolds are unique,
but the center manifold is not unique. If the nonlinear vector field f is C°°-continuous,
then a C" center manifold can be found for any r < oo.

Theorem 2.2 Consider a discrete, nonlinear dynamical system Xy, = f(Xi, p)
in Eq.(2.4) with a hyperbolic fixed point x}.. The corresponding solution is Xy ; =
f(Xx1j—1,P) with j € Z. Suppose there is a neighborhood of the hyperbolic fixed
point x;. (i.e., Ux(x})) C Qq), and f(xy, p) is C" (r > 1)-continuous in Ui (x}). The
linearized system is yyyj+1 = DY, P)yis; 1 = xj—x; and | = k+j, k+j+1)
in Ur(x}). If the homeomorphism between the local invariant subspace E(x}) C
U(x}) and the eigenspace & of the linearized system exists with the condition in
Eq.(2.28), the local invariant subspace is decomposed by

EXpe, Xi) = Floe X, Xi) © Yoe Xic, X)) (2.34)
(@) The local stable invariant manifold %},.(X,X*) possesses the following
properties:

(i) for x; € Spec(Xic, X5)s Lpoc(Xke, Xi) possesses the same dimension of & and
the tangential space of S}pc (X, X)) is identical to &°;
(i) for xj € Slpe (X, X}:)v Xi+j € Soc (X, X]t) andj]ino]o Xj+j = X]t foralljeZy;

(iii) for Xk ¢ Soc(Xic, X)), ||Xpyj — XE|| = 8 for >0 with j, j1 € Zy andj >
Jj1=0.

(b) The local unstable invariant manifold %jyc(Xi., X;.) possesses the following prop-
erties:

(i) for x; € Uoe(Xk» X)), Ujoc(Xk, X)) possesses the same dimension of & and
the tangential space of Ujec(Xi, X;.) is identical to &;
(i) for Xy € Ujoc(Xye» Xz)v Xie+j € Wioe Xk, X/t) and lim Xi+j = x* for all
j——00

JEZ_
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i) forxp ¢ oe(x, X*), |[Xpyj—X(|| = 8 for8 > Owithji,j € Z—andj < jy <O0.
Proof See Hirtecki (1971). [

Theorem 2.3 Consider a discrete, nonlinear dynamical system Xj41 = (X, p) in
Eq.(2.4) with a fixed point X;.. The corresponding solution is Xjy; = f(Xg1;-1, p)
with j € Z. Suppose there is a neighborhood of the fixed point x. (i.e., Ui (x}) C
Qq), and £(xi, p) is C" (r = 1)—continuous in Ui (x}). The linearized system is
Yirj+1 = DY, P)Yirj (Vi = Xkt — X3) in Up(X}). If the homeomorphism
between the local invariant subspace E(x) C U(x}) and the eigenspace & of the
linearized system exists with the condition in Eq. (2.28), in addition to the local stable
and unstable invariant manifolds, there is a C"~! center manifold €pe (X, x;). The
center manifold possesses the same dimension of &€ for X* € Cjoc(Xi, X}.), and the
tangential space of €, (X, X*) is identical to &€. Thus, the local invariant subspace
is decomposed by

E(x, X]t) = S (X, X]t) © Yoe Xk X]t) ® Cloc (X, X]t) (2.35)

Proof See Guckenhiemer and Holmes (1990). |

Definition 2.11 Consider a discrete, nonlinear dynamical system x5 = f(xg, p)
in Eq. (2.4) on domain @, € £". Suppose there is a metric space (R4, p), then the
map P under the vector function f(xy, p) is called a contraction map if

po)x2) = ot p). txP p)) < 2o xP)  (236)

1 @ (1)

for i € (0, 1) and x|, x) € @ with p(x\”, x) = [Ix\V — x|].

Theorem 2.4 Consider a discrete, nonlinear dynamical system X4, = f (X, p) in
Eq. (2.4) on domain Q, C Z". Suppose there is a metric space (R, p), if the map
P under the vector function f (X, p) is a contraction map, then there is a unique fixed
point x; which is globally stable.

Proof Consider

(1) x? (1) 2 @O @
p(Xk+j+l’ k+1+1) p(f(xk_;’_]s p)v f(xk+]a p)) S )\'Io (Xk+] Xk-H)

1 2 1 2
=@ P FC_ P < A2 X )

— W) p) £ p) < M oY xP).

Asj — ooand 0 < A < 1, thus, we have

: (D (2) J+1 (]) (2) _
jlinolop(xkﬂﬂ’ X i) = 11m NTp( X)) =0
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If x](czlj = x,(cz) = x7, in domain Q, € %", we have

. (n) 2) T (D T
jl—lfgop(xkﬂ'ﬂv Xitj+1) —J.EIEO IXppjp1 — Xl = 0.

Consider two fixed points x;; and x;,. The above equation gives
* * : * *
X — Xl = Iim [|X}, — Xpqjp1 + Xppjr1 — X
Il k1 k2|| j—>oo|| k1 k+j+1 k+j+1 k2||

< lim ||X}, — Xg4i 4+ lim ||Xp4i01 — X || = 0.
_j_)oo|| i1 il ],_>OO|| k+j+1 ol

Therefore, the fixed point is unique and globally stable. This theorem is proved. W

Definition 2.12 Consider a discrete, nonlinear dynamical system x| = f(Xx, p)
in Eq.(2.4) with a fixed point x;.. The corresponding solution is given by Xz;; =
f(Xx4/—1, p) withj € Z. Suppose there is a neighborhood of the fixed point x}, (i.e.,
Uk(x;) C q), and f(xi, p) is C" (r > 1)-continuous in Uy (x}). The linearized
system is Yiij11 = DE(X, P)Yk+j (Vitj = Xkt — X;) in Ug(x}). Consider a
real eigenvalue A; of matrix Df(x,t, p) (i € N = {1,2,---,n}) and there is a
corresponding eigenvector v;. On the invariant eigenvector V,(C’) = v;, consider y,(;) =
() (O] O]

) _ RSN () Iy @ _ 5 0
¢ Vi and Yig1 = G Vi= AiCp Vi, thus, Cry1 = ricy”.

(@)

@) X, on the direction v; is stable if
lim e’ = lim [()F] x [c§] = 0 for A;] < 1. (2.37)
k— o0 k—o00
(i) x\” on the direction v; is unstable if
. O _ 1 N M _ _
lim |¢;”| = lim [(4;)"] X |¢y’| = oo for IA;| > 1. (2.38)
k—o0 k— o0

(iii) X](Ci) on the direction v; is invariant if

lim ¢’ = lim (.p)Fcef) = ¢ fora; = 1. (2.39)
k—o00

k—o0

@iv) x,(f) on the direction v; is flipped if

B % = am () ey =

— 00 — 00 i

lim ¢ = lim ()%t x ) =~ ford; ==L (240
2k+1—00 k 2k+1—00 ' 0 0

) x,(f) on the direction v; is degenerate if

o’ = (fel) =0 for ;= 0. (2.41)
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Definition 2.13 Consider a discrete, nonlinear dynamical system x4, = f(x, p)
in Eq.(2.4) with a fixed point x}.. The corresponding solution is given by X;;; =
f (X441, p) withj € Z. Suppose there is a neighborhood of the fixed point x}. (i.e.,
Uk (x}) C S24), and f(xg, p) is C" (r > 1)-continuous in Uy (x;). Consider a pair of
complex eigenvalues o; £if; of matrix Df(x;, p) (i € N={1,2,--- ,n},i= Jv—=1)
and there is a corresponding eigenvector u; =+ iv;. On the invariant plane of

(ll;((i)a V,((i)) = (u;, v;), consider x,((i) = X,(gr + X;((l), with

x,(cl) = c](cl)u,- + d,il)vi, X](;j_l = cl(;)rlui + d,&)rlvi. (2.42)

Thus, ¢’ = (c\”, d\)T with

¢}, =Eic)’ = rRyc) (2.43)
where
Ei = |:_al /31:| and Ri = |:_C0S9l9 Sani.i| s
Bi o; sin 0; cos 6; (2.44)
rp = ,/a,-z + ,3,-2, cos6; = «;/ri and sinb; = B;/ri;
and
k .
k| o Bi k| coskt; sink®;
E = [—,B,- a,-] and R; = [— sin k0; cosk6; | (2.45)
(i) x](f) on the plane of (u;, v;) is spirally stable if
lim |lel’]] = Tim | RE[] x [1e{ |l = 0 for r; = In;] < 1. (2.46)
k— o0 k— o0
(i) xl(f) on the plane of (u;, v;) is spirally unstable if
lim [e{”]] = lim rX|RE[] x [1ef’ || = oo forry = 14| > 1. (2.47)
k— o0 k—o0
(iii) x,(f) on the plane of (u;, v;) is on the invariant circles if,
e 11 = rFIREN] < 11efI] = [leg || for ry = 1a;] = 1. (2.48)

@iv) x,(f) on the plane of (u;, v;) is degenerate in the direction of u; if g; = 0.

Definition 2.14 Consider a discrete, nonlinear dynamical system X4 = f(X, p)
in Eq.(2.4) with a fixed point x;.. The corresponding solution is given by X;4; =
f (X441, p) withj € Z. Suppose there is a neighborhood of the fixed point x}. (i.e.,
Ur(x}) C Qq), and f(x4, p) is C" (r > 1)-continuous in Uy (x}) with Eq.(2.28).
The linearized system is yj ;41 = DEX}, P)Yitj (Yt = Xkt — X5) in U (x).
The matrix Df(x}, p) possesses n eigenvalues Ax (k = 1,2, ---n).
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(i) The fixed point x;’ is called a hyperbolic point if [A;| # 1 (i = 1,2,--- , n).
(i) The fixed point x}’; is called asink if |A;| <1 (i =1,2,---,n).
(iii) The fixed point x}; is called a source if |A;[ > 1(i = {1,2,--- , n}).
(iv) The fixed point x}. is called a center if [A;| = 1 (i = 1,2, --- , n) with distinct
eigenvalues.

Definition 2.15 Consider a discrete, nonlinear dynamical system x4, = f(x, p)
in Eq.(2.4) with a fixed point x}.. The corresponding solution is given by X;;; =
f (X441, p) withj € Z. Suppose there is a neighborhood of the fixed point x}; (i.e.,
Ur(x;) C Qq), and f(xg, p) is C" (r > 1)-continuous in Uy (x}) with Eq.(2.28).
The linearized system is y ;41 = DE(X}, P)Yir (Ve = Xk — Xp) in Up (X)),
The matrix Df(x}i, P) possesses n eigenvalues A; (i = 1,2, ---n).

(i) The fixed point x}’; is called a stable node if |1;| <1( = 1,2, ---,n).
(ii) The fixed point x}, is called an unstable node if [A;[>1 (i = 1,2,---, n).
(iii) The fixed point x;’ is called an (/; : /)-saddle if at least one [A;| > 1(i € Ly C
{1,2,---n}) and the other |A;| <1 (j € L, C {1,2,---n}) with L; U L, =
{1,2,---,nfand Ly N L, = @.
(iv) The fixed point x,t is called an /th-order degenerate case if A; = 0 (i € L C
{1,2,---n}).

Definition 2.16 Consider a discrete, nonlinear dynamical system x5 = f(xg, p)
in Eq.(2.4) with a fixed point x;.. The corresponding solution is given by x;; =
f(Xx4j—1, p) withj € Z. Suppose there is a neighborhood of the fixed point x}. (i.e.,
Uk (x;) C Qq), and f(x, p) is C" (r > 1)-continuous in Uy (x})) with Eq.(2.28).
The linearized system is yj ;1 = DEXE, P)Yitj Vit = Xkt — Xi) in Up(x).
The matrix Df (x}z, p) possesses n-pairs of complex eigenvalues A; (i = 1,2, ---, n).

(i) The fixed point x]t is called a spiral sink if [X;|<1 (@ = 1,2,---,n) and
Imi; #0 (G € {1,2,---, n}).
(i1) fixed point X]t is called a spiral source if [A;| > 1 (i = 1,2, ---, n) withIm A; #
0Ge{l,2,---,n}).
(iii) fixed point x; is called a center if [A;| = 1 with distinct Im2; # 0 (i €
{17 29 ) n})'

As in Appendix B, the refined classification of the linearized, discrete, nonlinear
system at fixed points should be discussed. The generalized stability and bifurcation
of flows in linearized, nonlinear dynamical systems in Eq. (2.4) will be discussed as
follows.

Definition 2.17 Consider a discrete, nonlinear dynamical system x; . =f(xx, p)
in Eq.(2.4) with a fixed point x7'. The corresponding solution is given by Xy ; =
f(Xk4j—1, p) with j € Z. Suppose there is a neighborhood of the fixed point x}; (i.e.,
Uk (x}) C Qq), and £(xi, p) is C" (r > 1)-continuous in Uy (x;) with Eq. (2.28). The
linearized system is i1 =DEX], P)Yi+j (Vitj =Xy — X)) in Up(x}). The
matrix Df(x;:, P) possesses n eigenvalues A; (i=1,2,---,n). Set N ={1,2,---, m,
m+1,---,(n —m)/Z},N,,:{pl,pz,'-',pnp}UQ withp, € N (¢=1,2,---,np,
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p=1,2,---, 7 and £;_n, = mand2¥)_s ny=n—m. Ul_ Ny=N and N, N
Ni=a( #p).Ny=0ifn,=0. Ny =NJUNg (¢ =1,2) and NJ' N N, = & with
ni' 4+ ng = n,, where superscripts “m” and “o” represent monotonic and oscillatory
evolutions. The matrix Df (x,t, P) possesses np-stable, ny-unstable, n3-invariant and
na-flip real eigenvectors plus ns-stable, ng-unstable and ny-center pairs of complex
eigenvectors. Without repeated complex eigenvalues of |A;| = 1(i € N3U N4 U N7),
an iterative response of Xy4.1 =f(xy, p) is an ([}, n{]: [15', n3]: [n3; k3] : [14; k4]
ns :ng :ny) flow in the neighborhood of the fixed point x;'. With repeated complex
eigenvalues of [A;| =1 (i € N3 U N4 U N7), an iterative response of x| =f(xx, p)
is an ([n]", n{]: [ny', n5]: [n3; k3] : [n4; kallns :ne : [n7, [; k7)) flow in the neighbor-
hood of the ﬁxedpointxz, wherek, € (T, my} (p=3,4), k7 = (k71. k72, - " - , K7[)T
withx7s € {@, mys}(s = 1,2, ---, ). The meanings of notations in the aforemen-
tioned structures are defined as follows:

(i) [n}', n{] represents that there are n1-sinks with 7}'-monotonic convergence
and n{-oscillatory convergence among n;-directions of v; (i € Np) if [A;] <1
(k € Ny and 1 < n; < m) with distinct or repeated eigenvalues.

(ii) [n3', n9] represents that there are np-sources with n}'-monotonic diver-
gence and nJ-oscillatory divergence among ny-directions of v; (i € N») if
[Ail > 1 (k € Ny and 1 < np < m) with distinct or repeated eigenvalues.

(iii)) n3 = 1 represents an invariant center on 1-direction of v; (i € N3) if A =
1 (e Nsandny =1).

(iv) nq = 1 represents a flip center on 1-direction of v; (i € Ng) if A; = —1 (i €
Ngand ng = 1).

(v) ns represents ns-spiral sinks on ns-pairs of (u;, v;) (i € Ns) if |X;] <1 and
Im A; #0 (i € Nsand 1 < ns < (n — m)/2) with distinct or repeated
eigenvalues.

(vi) ng represents ng-spiral sources on ng-directions of (u;, v;) (i € Ng) if [A;| > 1
andIm X; # 0 (i € Ng and 1 < ng < (n — m)/2) with distinct or repeated
eigenvalues.

(vii) n7 represents n;-invariant centers on ny-pairs of (u;, v;) (i € N7) if |A;] = 1
andIm A; #0 (i € N7 and 1 < ny7 < (n — m)/2) with distinct eigenvalues.

(viii) @ represents none if n; =0 (j € {1, 2,---,7}).

(ix) [n3; k3] represents (n3 — k3) invariant centers on (n3 — «3) directions of
Vi (i3 € N3) and k3-sources in k3-directions of vy, (j3 € N3 and j37# i3) if
Ai =1 (i € N3 and n3 < m) with the (k3 + 1)th-order nilpotent matrix
NS =0 (0<i3 <n3—1).

(x) [n3; @] represents n3 invariant centers on ns-directions of v;(i € N3) if
Ai =1 (i € N3 and 1 <n3 < m) with a nilpotent matrix N3 = 0.

(xi) [n4; k4] represents (n4 — k1) flip oscillatory centers on (14 — k4) directions
of v;, (is € N4) and k4-sources in k4-directions of v;, (j4 € N4 and j4 # iy)
if \; = —1 (i € N4 and ng < m) with the (x4 + 1)th-order nilpotent matrix
Nt =0 (0<wg <mg —1).

(xii) [n4; @] represents ny flip oscillatory centers on n4-directions of v; (i € N3)
if A; = —1 (i € N4 and 1 < ng < m) with a nilpotent matrix Ng = 0.
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(xiii) [n7,[; k7] represents (n7; — Zé:l k7¢) invariant centers on (17 — Zé:l K75)
pairs of (u;,v;)(i7 € N7) and Zi:] K7 sources on Zi:l K75 pairs of
(uj,,v,) (7 € Nyand j; # i7) if |A;] = 1andIm A; # 0 (i € Ny
and n; < (n — m)/2) for Zi: | k7s-pairs of repeated eigenvalues with the
(k75 + 1)th-order nilpotent matrix N'7(7‘+I =00<k7,<l,s=1,2,---,0).

(xiv) [n7, l; D] represents n7-invariant centers on n7-pairs of (w;, v;)(i € Ng) if
hil =TlandIm i; # 0 (i € Nyand 1 < n7 < (n—m)/2) for 3\, kr,-
pairs of repeated eigenvalues with a nilpotent matrix N7 = 0.

Definition 2.18 Consider a discrete, nonlinear dynamical system X =f(X;, p)
in Eq.(2.4) with a fixed point x;'. The corresponding solution is given by X, ; =
f(X4j—1, p) with j € Z. Suppose there is a neighborhood of the fixed point x;’ (i.e.,
Uk (x}) C Qq), and f(xx, p) is C" (r > 1)-continuous in Uy (x;) with Eq.(2.28). The
linearized system is yiyj41=DEX], P)Yryj (Vitj =Xkq; — X;) in Up(x}). The
matrix Df(xi, p) possesses n eigenvalues A; (i=1,2,---,n).Set N={1,2,---,m,
m+ 1, (n—=m)/2}, Ny=A{p1,p2, -+, pn,} UD withp, e N (¢=1,2,---, np,
p=1,2,--1, 5 _ny =mand 28] _sn, =n—m. U_; N,=N and N, N
Ni=2( #p).Ny=2ifn,=0. Ny = N} UN (a=1,2)and N} NNy = &
withn]' +ny, = ng, where superscripts “m” and “o” represent monotonic and oscilla-
tory evolutions. The matrix Df (x}:, P) possesses n1-stable, np-unstable, n3-invariant,
and n4-flip real eigenvectors plus ns-stable, ng-unstable and n;-center pairs of com-
plex eigenvectors. Without repeated complex eigenvalues of |1 | = 1(k € N3UN4U
N7), an iterative response of X1 = f(xi, p) is an ([n]", n{]: [, 0] : [n3; k3] :
[14; k4]|n5 : ne : n7) flow in the neighborhood of the fixed point xz. With repeated
complex eigenvalues of |A;| =1 (i € N3 U N4 U N7), an iterative response of Xy | =
f(xi, p) is an ([, nQ]: [0, 9] : [m3; k3]« [m4; k4lins ng : [n7, [; k7]) flow in the
neighborhood of the fixed point XZ , where k, € {T, mp}(p=3,4), k7 = (K71, K72,
< k)T withkrg = (@, mgd(s = 1,2, -+, ).

1. Non-degenerate cases

@) Th'e fixed point x; is an ([n}", n{] : [ny', nS] : @ : D|ns : ne : ) hyperbolic
point.
(ii) The fixed point xj is an ([n}', n{] : [@, @] : @ : D|ns : T : @)-sink.
(iii) The fixed point Xz isan ([@, @] : [ny',n3] : @ : B|D : ng : @)-source.
(iv) The fixed point x;; isan ([0,9] : [©,9] : @ : &|D : @ : n/2)-circular
center.
(v) The fixed point x; is an ([@, @] : [@, 2] : @ : @|@ : G : [n/2,]; T])-
circular center.
(vi) The fixed pointx; is an ([&, 9] : [@, ] : @ : G| : & : [n/2, ]; k7])-point.
(vii) The fixed point x; is an ([n]", n{] : [@, @] : & : Slns : S : n7)-point.
(viii) The fixed point X is an ([&, @] : [ny', nS] : & : D|D : ng : n7)-point.
(ix) The fixed point xj is an ([}, n{] : [n}', n3] : & : D|ns : ne : ny7)-point.

II. Simple special cases
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(i) The fixed point XZ isan ([9, 9] : [0, 9] : [n; D] : DD : I : I)-invariant

center (or static center).

(ii) The fixed point xz isan ([@, 9] : [, 9] : [n;m] : D|D : D : &)-point.
(iii) The fixed point x,”{‘ isan ([@, 2] : [9,9]: @ : [n; T]|2 : & : @)-flip center.

(iv) The fixed point X]t isan ([&, D] : [D, D] : D : [n; m]|D : & : @)-point.

(v) The fixed point x,t is an ([@, @] : [, D] : [n3; k3] : [n4; k4]|1D : O @ D)-

point.

(vi) The ﬁxedpointx/t isan ([@, @] : [@, D] : [1; D] : [na; k4]|D : @ : D)-point.
(vii) The ﬁxedpointxz isan ([@, @] : [9, D] : [n3; k3] : [1; D]|D : @ : &)-point.
(viii) The fixed point X;: isan ([, 9] : (@, D] : [n3; k3] : [D; DD : @ : ny)-

point.

(ix) The fixed pointxz isan ([@, @] : [9, 9] : [1; 2] : [9; D]|D : D : ny)-point.

(x) The fixed point x} is an ([F, 9] : [, @] :[n3; k3]: [F; D@ : @ : [n7, ]; k7])-

point.

(xi) The fixed point XZ isan ([@, @] : (@, D] : [D; D] : [n4; k4]|D : D : ny)-

point.
(xii) The ﬁxedpointx;z isan ([2, @]: (9, 21:(9; D) :[ng; k4|2 : D : [n7, [; K7])-
point.

(xiii) The fixed point X/t is an ([2, @] : (D, D] : [n3; k3] : [n4; k4]|D : D : n7)-
point.

(xiv) Theﬁxedpointxz isan ([, @] :[D, D] : [n3; k3] : [n4; k41|12 : D < 7, I; k7])-
point.

III. Complex special cases

(i) The fixed point x; is an ([n}', n{] : [y, nS] : [1; O] : [@; Dl|ns : ne : n7)-

(ii) "Pi"(k)lléltﬁxed point x is an ([n]",n{] : [n', 5] : [1; @] : [@; D|ns : ne :

(iii) '[I?IZ(; g)ﬁfil])l;glonltn;,t is an ([n", n}] : [nY', n3] : [@; @] : [1; D|ns : ne : ny)-

(iv) g(l)lléltﬁxed point x; is an ([n}", n{] : [n3',n3] : [@; 9] : [1;S]ns : ne :

v) "[;kZe, gxi?i];)_opi(r)lltn;t isan ([n}", n9] : [, n3] : [n3; k3] : [n4; kallns @ ng : ny)-

(vi) g‘(})lgl%xed point x; is an ([n", n{] @ [n3', nS] : [n3; &3] : [n4; kallns @ ne :
[n7, I; k7])-point.

Definition 2.19 Consider a discrete, nonlinear dynamical system x| = f(X¢, p)
in Eq.(2.4) with a fixed point x;.. The corresponding solution is given by Xz ; =
f(Xx4/—1, p) withj € Z. Suppose there is a neighborhood of the fixed point x}. (i.e.,
Ur(x;) C ), and f(xg, p) is C" (r > 1)-continuous in Uy (x}) with Eq.(2.28).
The linearized system is yj 41 = DEX}, P)Yitj Vit = Xkt — X3) in Up(x).
The matrix Df(x,t,p) possesses n eigenvalues A; (i = 1,2,---,n). Set N =
{1,2,--,n}, Ny ={p1,p2, -+, pn, VD withp, € N(¢g=1,2,---,np, p=1,2,3,4)
and )_my=n. Uy_; Ny=N and N, N N;=2(1 # p). Ny=2 if n,=0. N,
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=Ng'U Ng (e=1,2)and NJ' N Ny = @ with n}! + n, = n, where superscripts
“m” and “0” represent monotonic and oscillatory evolutions. The matrix Df (x;, p)
possesses 71 -stable, ny-unstable, n3-invariant and n4-flip real eigenvectors. An itera-
tive response of x;1 = f(xi, p) is an ([n]", n9] : [n5', 3] : [n3; k3] : [n4; k4]| flow
in the neighborhood of the fixed point X} k;, € {F, mp} (p = 3, 4).

1. Non-degenerate cases

(i) The fixed point x; is an ([n}", n{] : [#5', n5] : @ : @] saddle.
(ii) The fixed point xj is an ([1n}', n{] : [@, @] : & : J|-sink.
(iii) The fixed point x is an ([@, @] : [n5', n] : & : T|-source.

IL. Simple special cases

(i) The fixed point Xlt is an ([9, 9] : [9, D] : [n; @] : J|-invariant center (or
static center).

(ii) The fixed point X}, is an ([, &

(iii) The fixed point x; is an ([&, @

(iv) The fixed point XZ isan ([@, &

(v) The fixed point x; is an ([&, @

1 [@, @] : [n; m] : D|-point.
1 [, @] . @ : [n; T]|Alip center.
1@, @]+ @ : [n; m]|-point.

]
]
]
1: [, D] : [n3; k3] : [14; Kk4]|-point.
]
]
]
]

(vi) The fixed point xz isan ([@, @] : [@, @] : [1; D] : [n4; ka]|-point.
(vii) The fixed point x,”{‘ isan ([@, 9] : [, @] : [1n3; k3] : [1; D]|-point.
(viii) The fixed point Xz isan ([&, D] : [D, ] : [n3; k3] : [F; &]|-point.

(ix) The fixed point x}i isan ([&, D] : [D, D] : [D; D] : [n4; k4]|-point.

III. Complex special cases

(i) The fixed point x; is an ([#}", n{] : [n5', nS] : [1; 9] : [@; @]|-point.
(i1) The fixed point x}’; is an ([n)", n{] : [0, n3] : [@; @] : [1; &]|-point.
(iii) The fixed point xj is an ([n]", n{] : [n5', n3] : [n3; &3] : [n4; k4]|-point.

Definition 2.20 Consider a discrete, nonlinear dynamical system X =f(xz, p)
€ %" in Eq.(2.4) with a fixed point x;. The corresponding solution is given by
X4 =F(Xjj—1, p) with j € Z. Suppose there is a neighborhood of the fixed point
x; (i.e., Ur(x}) C Qq), and f(x¢, p) is C" (r > 1)-continuous in Uy (x}) with
Eq.(2.28). The linearized system is yx ;1 = DE(X}, P)Yitj (Yt = Xk4j — X;) in
Uy (x}i). The matrix Df(x}:, P) possesses n-pairs of eigenvalues A; (i = 1,2, ---, n).
Set N = {1,2,---,n}), N, = {pl,p2,~-~,pnp} U@ with p, € N (¢ =
1,2,--mp, p =567 and £)_s ny =n. U_sN, = Nand Ny, NN, =
@(l #p). Ny = @ if n, = 0. The matrix Df(x,t, P) possesses ns-stable, ng-unstable
and n7-center pairs of complex eigenvectors. Without repeated complex eigenvalues
of |Ax| =1(k € N7), an iterative response of X1 | =f(Xy, p) is an |ns : ng : n7) flow.
With repeated complex eigenvalues of [Ar| = 1 (k € N7), an iterative response of
Xi+1 = f (X, p) is an |ns5 : ng : [n7, [; k7]) flow in the neighborhood of the fixed point
X}, where k7 = (k71, k72, - -+, k77)" Withkzs € (@, m7g)(s = 1,2, -+, ).

1. Non-degenerate cases

(i) The fixed point x;’ is an |ns : ng : @) spiral hyperbolic point.
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(ii) The fixed point X7 is an |1 : @ : &) spiral sink.
(iii) The fixed point X} is an |& : n : &) spiral source.
p i P
(iv) The fixed point X is an |& : & : n)-circular center.
p k
(v) The fixed point X} is an |ns5 : & : ny)-point.
p k p
(vi) The fixed point Xz is an | : ng : ny)-point.
(vii) The fixed point x}i is an |ns5 : ng : ny)-point.

IL. Special cases

(i) The fixed point x; is an |@ : @ : [n, [; @])-circular center.
(ii) The fixed point X}: isan |@ : @ : [n, [; k7])-point.
(iii) The fixed point X/t is an |n5 : @ : [n7, [; k7])-point.
(iv) The fixed point X} is an |@ : ng : [n7, [; k7])-point.
(v) The fixed point x; is an |ns : ng : [n7, [; k7])-point.

2.3 Bifurcation and Stability Switching

To understand the qualitative changes of dynamical behaviors of discrete systems
with parameters in the neighborhood of fixed points, the bifurcation theory for fixed
points of nonlinear dynamical system in Eq. (2.4) will be investigated.

Definition 2.21 Consider a discrete, nonlinear dynamical system xj; =f(xz, p)
in Eq.(2.4) with a fixed point x7'. The corresponding solution is given by Xj; =
f(x41j—1,p) with j € Z. Suppose there is a neighborhood of the fixed point
x; (e, Up(xp) CQ), and f(xg,p) is C" (r>1)-continuous in Uy (x}) with
Eq.(2.28). The linearized system is yjyji1 =Df(x;';, P)Yit+i Vitj=Xiqj — xz)
in Ug(x;). The matrix Df(x}, p) possesses eigenvalues A; (i=1,2,---,n). Set
N={1,2,---mm+1,---,(n—m)/2}, sz{pl,pz,-u,pnp} U g with p; €
N(g=1,2,nmp,p=1,2,---7), T3_; mpy = mand 28] _s my=n—m. U)_,
N, = NandN, N N; = &( # p).N,=2 if n,=0. Ny =NJUN; (@=1,2)
and N' NN =@ with ny' 4+ n$ =n,, where superscripts “m” and “o” represent
monotonic and oscillatory evolutions. The matrix Df(x}, p) possesses nj-stable,
np-unstable, n3-invariant and n4-flip real eigenvectors plus ns-stable, ng-unstable
and n7-center pairs of complex eigenvectors. Without repeated complex eigenval-
ues of |Li|=1(k € N3 U N4U Ny), an iterative response of x;; =f(Xg, p) is an
([, n31: [, 9] : [n3; k3] : [M4; k4]| 15 :n6:n7) flow in the neighborhood of the
fixed point x;’;. With repeated complex eigenvalues of |A;| =1 (k € N3U Ng U N7),
an iterative response of X, | = f(xi, p) is an ([n}', n{] : [1n5', n3]: [n3; k3] : [14; k4]
ns:ng:[n7, [; k7)) flow in the neighborhood of the fixed point x};, where «, €
{@, mp}(p =3,4), k7 = (k71, K72, -, K71)T withk7, € (@, my}(s =1,2, -+, D.

1. Simple switching and bifurcation

(i) An ([n]",n]] : [n', n3] : 1 : Olns : ne : @) state of the fixed point (X}:O, Po) is
a switching of the ([n}',n} + 1] : [n5',n5] : @ : D|ns : ng : J) spiral saddle
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and ([n]", n{] : (05 + 1,n3] : @ : D|ns : ne : @) spiral saddle for the fixed
point (x};, p).

An ([}, n{]: [n3', n3] : @ : 1|ns : ne : @) state of the fixed point (x},, po) is
a switching of the ([n]*, n} + 1] : [n]', n3] : @ : G| ns : ng : ) spiral saddle
and ([n]*, n{] : [n3', 0§ + 1] : @ : D|ns : ne : @) spiral saddle for the fixed
point (X}, p).

An ([n)', n{]: [@, @] : 1: Dns : & : D) state of the fixed point (X}, po) is a
stable saddle-node bifurcation of the ([n]'+1,n}] : [&, @] : @ : Dns : T : @)
spiral sink and ([#]', n{] : [1, @] : @ : D|ns : @ : &) spiral saddle for the fixed
point (x,t, p).

An ([n',n0]: [@, @] : @ : 1|ns : @ : @) state of the fixed point (), po) is a
stable period-doubling bifurcation of the ([#}",n} + 1] : [@, D] : @ : Bns :
@ : @) sink and ([n]", n{] : [@,1] : @ : Sns : @ : D) spiral saddle for the
fixed point (x}, p).

An ([@, @] : [y, nS] : 1 : D|D : ne : ©) state of the fixed point (), po) is
an unstable saddle-node bifurcation of the ([, @] : [#]' +1,15] : @ : @D :
ng : @) spiral source and ([1, @] : [n3', n3] : @ : D@ : ng : D) spiral saddle
for the fixed point (x}, p).

An ([@, 2] : [n5,n5] : @ : 1|@ : ne : @) state of the fixed point (X}, Po)
is an unstable period-doubling bifurcation of the ([@, @] : [n)',nS + 1] : @ :
B|D : ng : @) spiral source and ([, 1] : [ny', n3] : @ : D|@ : ng : ) spiral
saddle for the fixed point (x}, p).

An ([n]', n{]: [0, nS] : @ : Dlns : ne : 1) state of the fixed point (x}, Po) is
a switching of the ([n}", n]] : [n]', n3] : @ : D|ns + 1 : ng : @) spiral saddle
and ([n{", n{] : [}, n3] : @ : Bns : ng + 1 : &) saddle for the fixed point
(X7, p)-

An ([n]',n0] : [@, @] : @ : S|ns : & : 1) state of the fixed point (), po) is a
Neimark bifurcation of the ([n}", n{] : [@, @] : @ : D|ns + 1 : & : @) spiral
sink and ([1}", n}] : [&, @] : @ : D|ns : 1 : @) spiral saddle for the fixed point
x;, p)-

An([@, ] : [ny', nS]: @ : D|D : ne : 1) state of the fixed point (X}, po) is an
unstable Neimark bifurcation of the ([&, @] : [1n}', n3] : @ : B|D : ng+ 1 : @)
spiral source and ([, @] : [n3',n3] : @ : D|1 : ne : @) spiral saddle for the
fixed point (x}, p).

An ([n]', n0] @ [ny', nS] : 1 : Dlns : ne : n7) state of the fixed point (X}, Po)
is a switching of the ([n}" + 1,n9] : [n5',n5] : @ : Ons : ng : n7) state and
([n}', n{1: [0y +1,n3] : @ : S|ns : ng : n7) state for the fixed point (x}, p).
An ([}, n}] @ [ny', n3] © @ @ 1|ns @ ne : n7) state of the fixed point (x}, po)
is a switching of the ([n",n} 4+ 1] : [n5',n5] : @ : G|ns : ng : n7) state and
([n', mQ] < [ny', n§ + 1] : @ : @|ns : ne : n7) state for the fixed point (X}, p).
An ([n",n}] : [n3', n5] : 1 : @lns : ne : [n7,]; @]) state of the fixed point
(X}» Po) is a switching of the ([n)" + 1,n7] : [ny',nS] : @ : Dlns : ng :
[n7,1; k7)) state and ([n)', 9] : [n5' +1,n5] : @ : B|ns : ne : [n7,1; k7)) state
for the fixed point (x}, p).
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(xiii) An ([n]", n9] : 05", nS] : @ : 1lns : ng : [n7,1; k7]) state of the fixed point
(X}, Po) is a switching of the ([n]",n + 1] : [0y, n3] : @ : Dlns : ne :
[n7,[; k7)) state and ([n}", n}] : [0, nS 4+ 1] : @ : Bns : ng : [n7, [; k7)) state
for the fixed point (x}, p)-

(xiv) An ([n]",n7] : [n)',n3] : @ : @lns : ng : n7 + 1) state of the fixed point
(X}» Po) is a switching of its ([n}", n{] : [ny', n3] : @ : Dlns + 1 : ne : n7)
state and ([}, n{] : [n)', nS] : @ : Sns : ng + 1 : ny) state for the fixed point
(X3, p)-

(xv) An([n]", n9]:[n5', n§]: [n3; 3] : [n4; k4]ns : ne : n7 + 1) state of the fixed point
(XZO, po) is aswitching of the ([}, n7]: [n5', n3] : [n3; k3] : [n4; k4]l 05+ 1:ng
: my) state and ([n}', n{]: [ny', n§]: [n3; k3] : [n4; kallns : ne + 1:n7) state for
the fixed point (x}, p).

1. Complex switching

(i) An ([n}',n]] : [ny', n3] : [n3; k3] : @lns : ne : ny) state of the fixed point
(xzo, Po) is a switching of the ([n)' + n3, n9] : [n3', 3] : @ : Sns : ne : n7)
state and ([n]", n{] : [n5' +n3,n3] : @ : B|ns : ng : ny) state for the fixed point
(X}, p)-

(i) An ([n]",n9] : [n5', n5] : @ : [n4; k4llns : ne @ n7) state of the fixed point
(X3 Po) is a switching of the ([n]', n{ + na] : [n5', n3] : @ : Slns : ne : n7)
state and ([n*, n{] : [}, S +n4] : @ : B|ns : ng : n7) state for the fixed point
3, p)-

(iii) An ([n]", n{]: [n5', 0] : [n3 + k3; k3] : Dns : ng : ny) state of the fixed point
(X}, Po) is a switching of the ([n]" + k3, n{] : [n3', n3] : [n3; 5] 1 @ns : ng
ny) state and ([n]*, n] : [n5' + k3, nS] : [n3; k5] : S|ns : ne : ny) state for the
fixed point (x;, p).

(iv) An ([n]',n]]: [n3', nS]: @ : [n4 + ka; k4]|ns : ne : ny) state of the fixed point
(X}» Po) is a switching of the ([n}', n{ + ka] : [n5', nS] : @ : [na; kyllns < ng :
ny) state and ([n]*, n] : [0S, n§ + k4] : @ : [n4; k4]|ns @ ne : ny) state for the
fixed point (x}, p).

(V) An ([n}', n9] @ [ny', 3] @ [n3 + k33 k3] : [n4 + ka; kallns @ ng : n7) state of
the fixed point (x,to, Po) is a switching of the ([n]* + k3, n + k4] : [n3', n3] :
[n3; k5] © [n4; kyllns @ ne @ ng) state and ([n]', 9] @ [R5 + k3, n§ + k4] :
[n3; k5] : [n4: k4]Ins : ne @ n7) state for the fixed point (x}, p).

(vi) An ([n], n7] : [n5', 0] : [n3 + k3; k3] - Blns : ne : [n7, [; k7]) state of the
fixed point (X}, po) is a switching of the ([n}" + k3, n{] : [n5', n3] : [n3; K51
Dns : ng : [n7,1; k7]) state and ([n]*, n{] : [05' + k3, n3] : [n3, k5] : Slns :
ne : [n7, [; k7)) state for the fixed point (x}i, P

(vii) An([n]", n{]: [n5', 9] : @ : [na+kya; k4llns : ne = [n7, [; k7]) state of the fixed
point (X}, Po) is a switching of the ([1}", n{ +k4] : [1n5', n5] : @ : [na; Kkyllns
ne : [n7, 15 k7)) state and ([n]", n] : [0, 0§ + ksl @ @ @ [n4; k4]ns : ne :
[n7, [; k7]) state for the fixed point (X}, p).

(viii) An ([n]", n{]: [n3', nS] : [n3+ks; k3] @ [ma+ka; k4llns < ng - [n7, [; k7)) state
of the fixed point (), po) is a switching of the ([1}" + k3, n{ + k4] : [n3', n3] :
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[n3; k51 = [n4; k4lIns < ng : [n7, [; k7)) state and ([n}, 9] =[] +k3, n§ + k4] :
[n3; k5] : [na: kylins < ng @ [n7, [; ke7]) state for the fixed point (X}, p).

(ix) An ([n}", n9] : [0, n3] : [n3; k3] : [n4; k4llns @ ne @ [n7 4 k7, [t k7]) state of
the fixed point (x},, po) is a switching of the ([n", n{] : [n3', n3] : [n3; k3] :
[n4; kallns + k7 = ng : [n7, l; k5]) state and ([n]', n9] = ng + k4] : [n3: k3] :
[n4; k4llns = ng + k7 = [n7, I35 k%)) state for the fixed point 7, p)-

Definition 2.22 Consider a discrete, nonlinear dynamical system X =f(xz, p)
in Eq.(2.4) with a fixed point x;.. The corresponding solution is given by X;;; =
f(x41j—1,p) with j € Z. Suppose there is a neighborhood of the fixed point
x; (e, Ur(x}) CQ), and f(x;,p) is C" (r>1)-continuous in Ui (x}) with
Eq.(2.28). The linearized system is yj ;1 =DEX, P)Yk+j (Vi) =Xktj — Xp)
in Uk(xl”;). The matrix Df(x,t, P) possesses n eigenvalues A; (i=1,2,---,n). Set
N={1,2,---,n}, sz{pl,pz,-u,pnp}U@ with PgEN (q=1,2,---,ny,p=
1,2,3, ) and £;_; mpy=n. Us_ N = Nand N,(\N; = &(I # p).Np=@ifn, =0.
Nog=NJUNQ (¢=1,2)and NJ' N N, = @ with n}} + ny, =n, where superscripts
“m” and “0” represent monotonic and oscillatory evolutions. The matrix Df (x;, p)
possesses 71 -stable, ny-unstable, n3-invariant and n4-flip real eigenvectors. An itera-
tive response of X;4.1 =f (X, p) is an ([n}", n}]: [n]', n3]: [n3; k3] : [n4; k4]| flow in
the neighborhood of the fixed point x}’; kpe{D,mp} (p=3,4).

L. Simple critical cases

() An ([n]', n9] : [ny', nS] : 1 : & state of the fixed point (x},, po) is a switching
of the ([n}" + 1, n9] : [n}}, n§] : @ : @] saddle and ([1}', n{] : [n5' + 1, 5] :
& : 2| saddle for the fixed point (X}, p).

(i) An ([n}', n}]: [n3', n3] : @ : 1] state of the fixed point (X}, po) is a switching
of the ([n{", ny 4+ 11 : [n}', n3] : @ : @] saddle and ([1}", n{] : [n5', n§ + 1] :
@ : 2| saddle for the fixed point (X}, p).

(iii) An ([n]",n7] : [2,9] : 1 : Q] state of the fixed point (X}, po) is a stable
saddle-node bifurcation of the ([n}' + 1,n]] : [@,0] : @ : I sink and
([7", n] : [1, @] : @ : @] saddle for the fixed point (x}’;, P

(iv) An ([n]',n0] : [@, @] : @ : 1] state of the fixed point (x}, po) is a stable
period-doubling bifurcation of the ([#}",n} 4+ 1] : [@, @] : @ : @] sink and
([n", n}] : [9, 1] : @ : ] saddle for the fixed point (x};, p).

(v) An ([@, @] : [ny', nS] : 1 : O] state of the fixed point (X, po) is an unstable
saddle-node bifurcation of the ([&, @] : [n3' + 1,n5] : @ : O source and
([1, @] : [n3', n3] : @ : @] saddle for the fixed point (x}';, p).

(vi) An ([@, @] : [ny', n3] : @ : 1] state of the fixed point (X}, Po) is an unstable
period-doubling bifurcation of the ([&, &] : [ngl, ”(2) + 1] : @ : &| source and
([2, 1] : [n5', n3] : @ : & saddle for the fixed point (x};, p)-

(vii) An ([n]", n{]: [ny', nS] : 1 : @] state of the fixed point (X, Po) is a switching
of the ([n}' + 1, n7] : [n3', n3] : @ : @] saddle and ([n}', n{] : [n5' + 1, n3] :
& : | saddle for the fixed point (x}, p).
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(viii) An ([}, nf]: [ny', n3] : @ : 1] state of the fixed point (x}, po) is a switching
of the ([n", n} 4 1] : [n}}, n§] : @ : @] saddle and ([1}", n{] : [n5', n§ + 1] :
@ : | saddle for the fixed point (X}, p).

II. Complex switching

(i) An ([n]', n(] : [n3', n5] : [n3; k3] : @] state of the fixed point (x},, po) is a
switching of the ([n]" 4+ n3,n{] : [n})',n9] : @ : @] saddle and ([1]", n]] :
[n' + n3, n3] : @ : @] saddle for the fixed point (x};, p).

(i) An ([n]",n]] : [n3',n3] © @ : [n4; k4]| state of the fixed point (X}, po) is a
switching of the ([n]', n + n4] : [ny', n5] : @ : & saddle and ([1}", n]] :
[ny', nS+n4]: @ : & saddle for the fixed point (x}, p).

(i) An ([n]", n0]: [n5', n5] 2 [n3 + k3; k3] @ O] state of the fixed point (X, po) is
a switching of the ([n}" + k3, n{] : [n]', n9] : [n3; /cé] : @] state and ([n]", n9]
[nS' + k3, n3] : [n3; k5] : @] state for the fixed point (X3, p)-

(v) An ([n]", n{]: [0, n5] : @ : [na + ka; Kka]| state of the fixed point (X, po) is
a switching of the ([n]", n{ 4+ k4] : [n', nS] : @ : [n4; k4] state and ([n]", nJ] :
[n5', n + k4] : @ : [n4; k]| state for the fixed point 3, p)-

(V) An ([n], n9] : [0, n9] : [n3 + k3; k3] @ [n4 + ka; k4]] state of the fixed point
(X% Po) is aswitching of the ([n]' +k3, n{+ka] : [n5', n5] : [n3; k3]« [n4s «4]|
state and ([n}", n{] : [n]' + k3, n§ + k4] : [n3; k5] : [n4; k4] state for the fixed
point (X}, p).

Definition 2.23 Consider a discrete, nonlinear dynamical system xj; =f(xz, p)
€ #%" in Eq.(2.4) with a fixed point x;.. The corresponding solution is given by
Xjeyj = E(Xj1j—1, p) withj € Z. Suppose there is a neighborhood of the fixed point x;;
(ie., Up(x}) C ), and £(x, p) is C" (r > 1)-continuous in Uy (x;) with Eq. (2.28).
The linearized system is yjyj1 = DEXE, P)Yiktj (Yt =Xkt — X3) in Ur(x}).
The matrix Df(x;:, P) possesses n-pairs of eigenvalues A; (i=1,2,---,n). Set
N={1,2,---,n}, N, = {p1,p2,---,pnp}U®Withpq EN@=12--n,p=
5,6, Yand X)_sny = n. U)_sN, = Nand NyNN; = @(l # p). N, = @ifn, = 0.
The matrix Df (x,t, P) possesses ns-stable, ng-unstable and n7-center pairs of complex
eigenvectors. Without repeated complex eigenvalues of [A;| = 1(i € N7), an itera-
tive response of X;1 = f(Xg, p) is an |n5 : ng : n7) flow in the neighborhood of the
fixed point x;’ . With repeated complex eigenvalues of |A;| = 1 (i € N7), an iterative
response of X;1| = f(Xg, p) is an |n5 : ng : [n7, [; k7]) flow in the neighborhood of
the fixed point X;t Jk7 = (K71, k72, - -+, k7)) T withkrs € (@, mygl(s = 1,2, -+, ).

L. Simple switching and bifurcation

(i) An |ns : ng : 1) state of the fixed point (xzo, Po) is a switching of the |n5 + 1 :
ne : &) spiral saddle and |ns : ne + 1 : &) saddle for the fixed point (x};, p)-

(ii) An|ns: @ : 1) state of the fixed point (X, Po) is a stable Neimark bifurcation
of the [ns + 1 : @ : @) spiral sink and |ns : 1 : &) spiral saddle for the fixed
point (x;, p).
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(iii)) An |@ : ng : 1) state of the fixed point (Xlto’ Po) is an unstable Neimark
bifurcation of the |& : ng + 1 : &) spiral source and |1 : ne : &) spiral saddle
for the fixed point (x}, p)-

(iv) An |ns : ne : n7 + 1) state of the fixed point (x;), po) is a switching of the
[ns + 1 : ne : ny) state and |ns : ng 4+ 1 : ny) state for the fixed point (X/t’ P

(v) An |@ : ng : n7 + 1) state of the fixed point (X}:O’ Po) is a switching of the
[1: ng : ny) state and |ns : ne + 1 : n7) state for the fixed point (x}, p).

(vi) An |n5 : @ : n7 + 1) state of the fixed point (X, po) is a switching of the
[ns +1: @ : n7) state and |ns : 1 : n7) state for the fixed point (x;/, p).

II. Complex switching

() An |ns : ne : [n7,1; k7]) state of the fixed point (x;, Po) is a switching of the
|ns 4+ n7 : ne : &) spiral saddle and |ns : ne + n7 : ) spiral saddle for the
fixed point (x}, p).

(ii) An |ns : ne : [n7 + k7, 11; k7)) state of the fixed point (x},, po) is a switching
of the |ns + k7 : ng : [n7, I1; k5]) state and |ns : ne + k7 : [n7, [; k7)) state for
the fixed point (x}, p).

(iii) An |n5 : ng : [n7 + ks — ke, Lo; k7)) state of the fixed point (x},, po) is a
switching of the |ns+ks : ng : [n7, 11 k5]) state and |ns : ng+ke : [n7, 35 k5])
state for the fixed point (X}, p).

2.3.1 Stability and Switching

To extend the idea of Definitions 2.11 and 2.12, a new function will be defined to
determine the stability and the stability state switching.

Definition 2.24 Consider a discrete, nonlinear dynamical system x4, = f(x, p)
€ #" in Eq.(2.4) with a fixed point x;. The corresponding solution is given by
Xt = f(Xgyj—1, p) with j € Z. Suppose there is a neighborhood of the fixed
point x; (i.e., Uk (x}) C ), and f(x,, p) is C" (r > 1)-continuous in Uy (x}) with
Eq.(2.28). The linearized system is yx1 11 = DE(X, P)Yiyj (Yktj = Xkt — X)
in Uy (xlt) and there are n linearly independent vectors v; (i = 1,2, ---,n). For a

perturbation of fixed point y; = x; — xJ, let y]((i) = c,((i) v; and yg_)H = C;(f_)HVi,

s =vl oy =v - (x —xP) (2.49)

) @

@ (D) 2
where 5,7 = ¢, ||vil|

. Define the following functions

Gi(xk, p) = v} - [F(xk, p) — x[] (2.50)
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and

Gf;,f xp) =V - Ds/g)f(xk (s]({i)), p)
F - Dy f G5 )3 oxid 0 ¢ (2.51)

= vI - Df x5\, pvillvil| 2

GS(Z? x,p) =v; 'D%)f(xk(sl((i)), p)
' T ) (m—1) () (2.52)
=V; .Ds;(i) (D f(xx(s;7). p)

1 (i)
Sk

where D (1) = 3()/ds” and D) () =D oy (D ().
Sp s Sk sp

Definition 2.25 Consider a discrete, nonlinear dynamical system x5 = f(xg, p)
€ %" in Eq.(2.4) with a fixed point x;. The corresponding solution is given by
X4 = f(Xgyj—1,p) with j € Z. Suppose there is a neighborhood of the fixed
point X}’ (i.e., Ur(x}) C ), and f(x¢, p) is C" (r > 1)-continuous in Uy (x;) with
Eq.(2.28). The linearized system is yx 111 = DY, P)Yitj (Viktj = Xkyj — X))
in Uy (x}) and there are n linearly independent vectors v; (i = 1,2, ---,n). For a

perturbation of fixed point y; = x; — xJ, let y/(ci) = c,(f)vi and yl(gr = c,(gr Vi

() Xx4;(/ € Z) at fixed point x. on the direction v; is stable if
Vi (kn = X1 < V] - (g — X)) (2.53)
for x; € U(x}) C Sq. The fixed point xj is called the sink (or stable node) on
the direction v;.
(i) xj4;(j € Z) at fixed point x]t on the direction v; is unstable if
V] (gt = X1 > V] - g = xp) (2.54)
for x; € U(x}) C 4. The fixed point x;’ is called the source (or unstable
node) on the direction v;.
(iii) Xx4,;(j € Z) at fixed point x,’; on the directionv; is invariant if

Vi (R = X)) = V) - (% — X)) (2.55)

for x € U(x}) C Q2. The fixed point x} is called to be degenerate on the
direction v;.
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(@)

(iv) x; 4

(j € Z) at fixed point x;. on the direction v; is symmetrically flipped if
Vi Xpep1 — X5 = =V - (X — X)) (2.56)

for x; € U(x}) C Q4. The fixed point x} is called to be degenerate on the
direction v;.

The stability of fixed points for a specific eigenvector is presented in Fig.2.4.
The solid curve is ViT “Xfpl = Vl-T - f(xg, p). The circular symbol is the fixed point.
The shaded regions are stable. The horizontal solid line is for a degenerate case.
The vertical solid line is for a line with infinite slope. The monotonically stable
node (sink) is presented in Fig.2.4a. The dashed and dotted lines are for vl-T S Xp =
Vl.T - Xj41 and Vl.T “ Vi1 = —Vl.T - Yk, respectively. From the fixed point X}, y; =
x; — X and yx1 = Xg41 — X; . The iterative responses approach the fixed point.
However, the monotonically unstable (source) is presented in Fig. 2.4b. The iterative
responses go away from the fixed point. Similarly, the oscillatory stable node (sink)
is presented in Fig. 2.4c. The dashed and dotted lines are for vl-T Vi1 = —vl-T -y and
V,.T X = Vl.T -Xj+1, respectively. The oscillatory unstable node (source) is presented
in Fig.2.4d.

Theorem 2.5 Consider a discrete, nonlinear dynamical system Xjy1 = f(Xi, p)
€ #Z" in Eq.(2.4) with a fixed point x}.. The corresponding solution is given by
Xkt = F(Xpqj—1, ) with j € Z. Suppose there is a neighborhood of the fixed point
x; (e, Up(xp) C Q), and £(x¢,p) is C" (r = 1)-continuous in Uy (x}) with
Eq.(2.28). The linearized system is Yiyj1 = DE(X), P)Yiyj (Vi) = Xkyj — X))
in Ui (x}) and there are n linearly independent vectors v; (i = 1,2, ---,n). For a

perturbation of fixed point y; = X — Xj., let y,(f) = cl((i)v,- and yl(cij_l = C/(ci—)i-lvi'

() Xx1;( € Z) at fixed point x;_ on the direction v; is stable if and only if

Gs(ff(xlﬁ p)=r¢e(=1L1D (2.57)
k

forxy € U(x}) C Q4.
(ii) Xx4;(j € Z) at fixed point X_ on the direction v; is unstable if and only if

G} (x}. p) = 24 € (1, 00) and (—o0, —1) (2.58)
k

forxy € U(x}) C Q4.
(iii) Xx4;(j € Z) at fixed point X on the direction v; is invariant if and only if

GS(/(I,))(XZ, p) =X =1and G;;;;’)(x,t, p)=0 form; =2,3,--- (2.59)

forxy € U(x) C Q4.
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(@ (b)

(© d)

Fig.2.4 Stability of fixed points: a monotonically stable node (sink), b monotonically unstable
node (source), ¢ oscillatory stable node (sink) and d oscillatory unstable node (sink). Shaded areas
are stable zones. (y; = X — x,’j and Y41 = Xpp1 — xz)

(@iv) x (j € Z) at fixed point X;. on the direction v; is symmetrically flipped if and

k+j
only if
GOt p) =2 =—1and G0V (xt,p) =0 form;=2,3,--- (2.60)
Sk Sk

forxj € U(xy) C Q4.
Proof Because
. : . .
0 = e —xp =V G o o) v g

_ M (@) (@)
= GS]((,-) (. p)s, +o(s;”)
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due to any selection of s,
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% and s,(cljrl as an infinitesimal, we have

1
Serr = G(@)(Xk’ sy,
GV (xt, p) = vI - Def(xt, pyvil|vil| 2
S/('i) i P)=V; xI(X;, P)Vil|Vi

T -2
=V; - AVillVill T = A4

(i) From the definition in Eq. (2.53), we have

(i)

(iii)

VT et — XD < IV - (% = XD = [s8),1 < sy
which gives
|G(<,) . psy | < sy

Thus,

|G(<,)(xk,p)|<1:GS,)(xk,p)—A,e( 1,0).

Therefore, x;4;(j € Z) at fixed point x;' on the direction v; is stable and vice
versa.
From the definition in Eq. (2.54), we have

(@)

T T (@)
Vi + (i1 — X1 > vy - (e = X0 = s 1> 18|

which gives

|G(<,) ot sy > [s).

Thus,
|G‘},3<x;;, pl>1= Gﬂ{?(xz, p) = A € (—o00, —1) and (1, 50).

Therefore, x;1;(j € Z) at fixed point x;’ on the direction v; is unstable and vice
versa.
Because

©)] T *
Sy = Vi (Xke+1 — Xp)

1 i i
=v; -x G((,z(xk,p)s(’) Z G(Eﬁ)(xk,p)(s(’))’” —vix;

mj=

1 i
= Gl sy Z G<Z§><xk,p>(s<’)>’”f

mj=



2.3 Bifurcation and Stability Switching 91

from the definition in Eq. (2.55)

T T . .
Vi - (Xpp1 —X) =V, - (X —Xp) = s,((l)+1 = s,((l).

@

Due to any selection of s, " and s

41 @s an infinitesimal, we have

GOt p) =2 =1and G (xf,p) =0 form; =2,3,---.
Sk Sk

Therefore, X;1;(j € Z) at fixed point ;' on the direction v; is invariant and
vice versa.
(iv) From the definition in Eq. (2.56)

T T @) (@)
Vi - (X1 — X)) = =V - (X = XP) = 850 = sy

Due to any selection of s,((i) and s . as an infinitesimal, we have

k+1

G;;liZ(X]t’ p) =A; = —1land Gs(gi")(x}:, p)=0 form =23,

Therefore, xi4;(j € Z) at fixed point x;’ on the direction v; is flipped and vice
versa. The theorem is proved. |

Definition 2.26 Consider a discrete, nonlinear dynamical system X1 = f(Xx, p) €
Z" in Eq. (2.4) with a fixed point x;. The corresponding solution is given by x;.; =
f (X441, p) withj € Z. Suppose there is a neighborhood of the fixed point x;; (i.e.,
Ur(x}) C Q), and f(x, p) is C" (r > 1)-continuous in Uy (x}) with Eq.(2.28). The
linearized system is yx1;11 = DE(X}, P)Yik+j (Yitj = Xy — X3) in Up(x}) and
there are n linearly independent vectors v; (i = 1,2, ---, n). For a perturbation of
the fixed point y; = x; — x;, let y](;) = c,((l)vi and y,((’il = c,((lilvf.

(i) Xx4;(j € Z) at fixed point x;_ on the direction v; is monotonically stable of the

(2m; + 1)th-order if

1
Gl (i p) =2 =1,
k

Gt p) =0 forry =2,3,--, 2my,
50 (2.61)
Gﬁ;”"“)(xz, p) #0,
k
VE - (ke =Xl < V] - 0 — %))

for x; € U(x;) C Qq. The fixed point x; is called the monotonic sink (or
stable node) of the (2m; + 1)th-order on the direction v;.

(ii) Xx4;(j € Z) at fixed point x;’ on the direction v; is monotonically unstable of
the (2m; + 1)th-order if
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1
G;(,.;@;;, p) =4 =1,
k

G(Z‘ii))(xlta p) =0forr, =2,3,---,2my;

(2.62)
G(ii”'“)(x;i, p) # 0;
V] (g1 = x> V] - (k= xP)

forx;, € U (x;‘;) C Q. The fixed point x; is called the monotonic source (or
unstable node) of the (2m; + 1)th-order on the direction v;.

(iii) Xp4,;(j € Z) at fixed point xz on the direction v; is monotonically unstable of
the (2m;)th-order, lower saddle if

(if(xk,p) =2 =1,
G(:f))(X/t, p) =0forr; =2,3,---,2m — 1;

GS‘};"')( X p) # 0, (263

Sk
T i
IV,- - (Xgg1 — X < |v; - (X — x;)| for s]({) >0
T T @)
v - Xkp1 =X > |v; - (¢ —xp)| fors,” <0

forx; € U(x}) C Q. The fixed point x} is called the monotonic, lower saddle
of the (2m;)th-order on the direction v;.

(iv) Xk4,;(j € Z) at fixed point x}i on the direction v; is monotonically unstable of
the (2m;)th-order, upper saddle if

G((ll))(xk, p=Ar=1,

G(.zl-'))(xk’ p) =0forr =23, 2m—1;

G(ﬁi"’)(xz, p) #0, (2.64)
V] Reg1 = X1 > V] - (%% = x| for 5 >0

T T i
Vi - X1 — X1 <|v; - (x — x3)| for s,({) <0

forx; € U(x}) C Q. The fixed point x} is called the monotonic, upper saddle
of the (2m;)th-order on the direction v;.

(V) Xk4j (j € Z) at fixed point x;. on the direction v; is oscillatory stable of the
(2m; + 1)th-order if

G%}(x;:, p) =i =1,
(f,'ﬁ(xk, p)=0forr;=2,3,---,2m;;
Em,
G(<,§” Dk, p) # 0; (2.65)

T
V- X1 — XD < V] - (¢ — X7
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for x; € U(x}) C 4. The fixed point x}. is called the oscillatory sink (or
stable node) of the (2m; + 1)th-order in the direction v;.

(vi) X4;(j € Z) at fixed point x; on the direction v; is oscillatory unstable of the
(2m; + 1)th-order if

GO p =r=—1;
Sk
GU)(xt, p) =0forr; =2,3,---, 2m;
Sl(ci) ka p - 1 — k] ’ El Is (2 66)
GO (xt, p) # 0;

G
k
V] Ry = XD1> V] - (k= X
for x; € U(x}) C Q2. The fixed point x; is called the oscillatory source (or
unstable node) of the (2m; + 1)th-order in the direction v;.

(vii) Xx4;(j € Z) at fixed point x;. on the direction v; is oscillatory unstable of the
(2m;)th-order, lower saddle-node if

Gt p)=n =—1,

S(f)
k
G\ (xf.p) = 0forr; =2,3, - 2m; — I;
Yk
G(Zmi) (X}:, p) 75 O, (267)

o)
k
V] (Reg1 = X1 > V] - (¢ = xp)| for sy >0,
VE - (e — XDI < V] - (¢ — x0)| for s <0,
forx; € U(x}) C Q. The fixed point x; is called the oscillatory lower saddle
of the (2m;)th-order on the direction v;.

(viii) x;1;(j € Z) at fixed point x;’ on the direction v; is oscillatory unstable of the
(2m;)th-order, upper saddle-node if

1
Gs((ff(X}i, p) =i =—1,
k

G(:};)(X/t, p)=0forr, =23, ---,2m — 1;
S/{

2m;
G.:;f;11 o p) 0. (2.68)
Vi (Xpeqr — x| < vl (xq — x?)| for S]({i) - 0.
|Vl-T (X1 — X0 > |ViT - (X% — x| for S/(gi) -0
forx; € U(x}) C 2. The fixed point x; is called the oscillatory, upper saddle

of the (2m;)th-order on the direction v;.

The monotonic stability of fixed points with higher order singularity for a specific
eigenvector is presented in Fig.2.5. The solid curve is VlT c Xyl = Vl.T -f Xk, p)-
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The circular symbol is fixed pointed. The shaded regions are stable. The horizontal
solid line is also for the degenerate case. The vertical solid line is for a line with
infinite slope. The monotonically stable node (sink) of the (2m; + 1)th order is
sketched in Fig.2.5a. The dashed and dotted lines are for v,.T CXp = VI.T - Xje4+1 and
v;r Vit = —V;r - Yk, respectively. The nonlinear curve lies in the unstable zone,
and the iterative responses approach the fixed point. However, the monotonically
unstable (source) of the (2m; + 1)th order is presented in Fig.2.5b. The nonlinear
curve lies in the unstable zone, and the iterative responses go away from the fixed
point. The monotonically lower saddle of the (2m;)th order is presented in Fig.2.5c.
The nonlinear curve is tangential to the line of v;r “Xj = Vl.T - Xj41 with the (2m;)th
order, and one branch is in the stable zone while the other branch is in the unstable
zone. Similarly, the monotonically upper saddle of the (2m7;)th order is presented in
Fig.2.5d.

Similar to Fig.2.5, the oscillatory stability of fixed points with higher order
singularity for a specific eigenvector is presented in Fig.2.6. The oscillatory sta-
ble node (sink) of the (2m; 4+ 1)th order is sketched in Fig.2.6a. The dashed and
dotted lines are for Vl-T Vi1 = —Vl.T -y and Vl-T SXjp = Vl-T - Xk 41, respectively. The
nonlinear curve lies in the unstable zone, and the iterative responses approach the
fixed point. However, the oscillatory unstable (source) of the (2m; + 1)th order is
presented in Fig. 2.6b. The nonlinear curve lies in the unstable zone, and the iterative
responses go away from the fixed point. The oscillatory lower saddle of the (2m;)th
order is presented in Fig.2.6¢c. The nonlinear curve is tangential to and below the
line of vl.T “Vigl = —vl.T - y) with the (2m;)th order, and one branch is in the stable
zone while the branch is in the unstable zone. Finally, the oscillatory upper saddle
of the (2m;)th order is presented in Fig.2.6d.

Theorem 2.6 Consider a discrete, nonlinear dynamical system X1 = f(Xi, p)
€ #Z" in Eq.(2.4) with a fixed point x}.. The corresponding solution is given by
Xitj = F(Xpqj—1, p) with j € Z. Suppose there is a neighborhood of the fixed point
x; (e, Uc(xp) C Q), and £(x, p) is C" (r = 1) -continuous in Uy (X}) with
Eq.(2.28). The linearized system is Yiyj1 = DEX), P)Yiyj (Vi) = Xkwj — X)
in Ui (x}) and there are n linearly independent vectors v; (i = 1,2, ---,n). For a
perturbation of fixed point yi = X — X, let y,((’) = c,({l)vi and y,(cl)+l = c,(grlvi.

() Xx1;(/ € Z) at fixed point X;_ on the direction v; is monotonically stable of the

(2m; + Dyth -order if and only if

Gl p) =i =1,
Sk

Gi{;‘) (xt,p) =0forr; =2,3,---,2m;, (2.69)
Yk

GO (xr, p) <0

(D)
S

forx, € U(X) C Q.
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X

iRk

(© (d)

Fig.2.5 Monotonic stability of fixed points with higher order singularity: a monotonically stable
node (sink) of (2m; 4 1)th-order, b monotonically unstable node (source) of (2m; + 1)th-order, ¢
monotonically lower saddle of (2m;)th-order and d monotonically upper saddle of (2m;)th-order.
Shaded areas are stable zones

(i) x¢4;(j € Z) at fixed point X;; on the direction v; is monotonically unstable of
the 2m; + 1)th -order if and only if

1
G;(l-))(xz, p=Xx=1,
k

G(1) (x p) = Ofor ry = 2,3, -, 2m;, 2.70)
k

G;ﬁ;”"H)(xz, p) >0
k

forx, € U(X) C Q.
(iii) Xx4;(j € Z) at fixed point X;. on the direction v; is monotonically stable of the
(2m;)th -order, lower saddle if and only if
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T T T T,
Vi X =V X Vi Yen =7V ¥y T o
N N Vi X =V Xy
N N .
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\\ v, N
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A N
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Fig.2.6 Oscillatory stability of fixed points with higher order singularity: a oscillatory stable node
(sink) of (2m; + 1)th-order, b oscillatory unstable node (source) of (2m; + 1)th-order, ¢ oscillatory
lower saddle of (2m;)th-order and d oscillatory upper saddle of (2m;)th-order. Shaded areas are
stable zones (yx = X¢ — X} and yi 41 = X411 — X))

GOEp) = hi =1,
Sk

G;Ell))(xlt, p) = 0 for ri = 2, 3, S 2mi — 1’
k

G(Zml-) (271)
0
3

G2 (x* p) < 0 unstable for s <0
s]((i) i P k

(x}, p) <0 stable for s,((i) >0;

Jorxi € URXP) C Q-
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(iv) Xi1;(j € Z) at fixed point x;_ on the direction v; is monotonically unstable of
the (2m;)th order, upper saddle if and only if

G((lg(xlt, p) =i =1,
G(Zl))(xlt’ p) = 0 for ri = 2’ 3’ cen 27”1‘ _ 1’
2.72)

((2,;"’) (x}, p) > 0 unstable for s,(;) >0;

G((Z,;"’) (x, p) > 0 stable for s,(ci) <0

forxj € U(x) C Q4.
(V) Xk1;( € Z) at fixed point x;. on the direction V; is oscillatory stable of the
(2m; + Dth -order if and only if

Gl (. p) = hi = —1,
Sk
G({;;) (xf,p) =0forr; =2,3,--,2m;, 2.73)

2mi+1
G((,§"+ '(x,p) >0

forx, € U(X) C Q-
(Vi) Xi1;(j € Z) at fixed point x;_ on the direction v; is oscillatory unstable of the
(2m; + Dth -order if and only if
Gy O P) = 2 = —1.
G:?;)) (xp,p) =0forr; =2,3,--,2m;, (2.74)
Sk

Gﬁ;’““’ (x},p) <0
k

forxy € U(x) C Q4.
(vii) Xi4;(j € Z) at fixed point x;. on the direction v; is oscillatory unstable of the
(2m;)th -order, upper saddle if and only if

1
((zg(xk? p) == _1»

G(Ei))(xltv p)=0forr;=2,3,---,2m; — 1,
: (2.75)
G((z,;n’) (x}, p) > 0 stable for s,(;) > 0;

G((Zl;"’) (x3, p) > 0 unstable for s/(j) <0

forx, € U(X)) C Q.
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(viii) Xi4;(j € Z) at fixed point x;_ in the direction v; is oscillatory unstable of the
(2m;j)th -order lower saddle if and only if

G(Zl))(xlt’p) = 0 for ri = 2’ 3’ .. '727”1' _ 1’

(2.76)

G((Z,;"’) (x}, p) <O stable for s,((i) <0;

((2,;"’) (xk, p) < 0 unstable for s](() >0

forxj € U(x) C Q4.
Proof Because
S;(CZJ)FI =V} - (Xk41 — X})

2mi+1
=v, X} +G((,)(xk,p)s(’) Z —G((r,’))(xk,p)(s(l))r"

—vi.xt+ 0((s(i))2mf+l)
2m;

—G((l,f(xk, p)s(’) + Z G((r,’)) (xy, p)(s('))”

1 ) D 2
+ G D Gj<,-§"’+”(xk, P 4 o5
i < Sk

and
s,(cl) = v} - (x¢ — x}).
(i) From the first two equations of Eq. (2.69), for the infinitesimal S]((i), one obtains
Sl(clJ)rl [G(m (ka p) + ﬁ G((zz;nlﬂ)(xlt’ p) (Sl({i))zm,-]slii).
Since
Vi (et = X1 < V7 - (= x4

we have



2.3 Bifurcation and Stability Switching 99

; 1
(@) (1) (% 2mj+1) (0)\2m;q (@)
=[G, , —G , i
|Sk+1| ‘[ S]((;)(Xk p) + Qm; + 1)! (;) (x; X P)(S ) ]S
(1) @mi+1) ;% @\2m; | | @)
‘ (;)( k’p)—(Zm,- ) + GS]((,) (X P)(s;.7) s |
< |s(l)|

For G((l,.z (xz, p) = 1, we have
Sk

! 2mi+1 . .
[T+ mG(;‘l;"l + )(X]t’ P)(S/((l))zm’l <1

Since the infinitesimal s,((i) is arbitrarily selected, the foregoing equation gives
2mj+1
G((,;” '(xf,p) < 0.

Therefore, x;; (j € Z) at fixed point x;. on the direction v; is monotonically
stable of the (2m; + 1)th-order, vice versa.
(ii) Similarly, since

T T
Vi - k1 =X < Vi - (X = Xp)],

we have

1 2mi+1
F T O e ) > 1

For the arbitrarily infinitesimal s,((i), the foregoing equation requires
2m;+1
GO (xk, p) > 0.
Sk

Therefore, x;4;(j € Z) at fixed point x}i on the direction v; is monotonically
unstable of the (2m; + 1)th-order and vice versa.
(iii) The Taylor expansion of s,(cll keeps up to the (2m;)th term of ! s
i =V e — X))
2m;

Tox;+ G((,) x5 psy) + Z G&”/R( x5, P (s

—ViXEF o((s(”)””f)
2mi—1
1 i i
—G((,i(xk,ws(’) Z ((,3( L)
r,_
(2ml

Q1 s )(Xk,P)(S('))Z’”"+o((s,(f))2’"").

+
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(iv)

)
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From the first two equations of Eq. (2.71), for the infinitesimal s]((i) , one obtains

=+ s G D
Thus
Isi| = ‘[1 + —),Gj?,:”')(xk, P (s> s
_ ‘1 G (5;41,)( : oy syt 50

For G(zm’)(x*, p) <0, if sO S 0, we have
O k k

(@ (@) T T
Ispg | <Is T=1v; - Reer = X1 < V7 - (i = X1,

if s,({i) <0, we have

i 1> 15301 = 1V] - (Rker = X1 > IV - (3 = X)),
Thus, x4 (j € Z) at fixed point x; on the direction v; is monotonically unstable
of the (2m;)th-order, lower saddle and vice versa.

Similar to (iii), for G# 0 )(xk, p) >0, if Sk) > 0, we have

(@) () T T
g > 1 1= 1v; - Rker — x> v - (% — X)),

if sl((i) <0, we have

] i) T T
sty <1501 = IV G — XD < V- e = X)L,

Thus, x4 (j € Z) at fixed point x; on the direction v; is monotonically unstable
of the (2m;)th-order, upper saddle and vice versa.
Similar to case (i), consider

Vi - (et — X1 < V) - (% — X1,
For G((lig (x;, p) = —1, we have
Sk
1 2mi+1 N2
= GG P <L

Since the infinitesimal s(i) is arbitrarily selected, the foregoing equation gives
pa y go1ng eq g
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2mi+1
G;(,;" + )(X/t’ p) > 0.
k

Therefore, x;1;(j € Z) at fixed point x;” on the direction v; is oscillatory stable
of the (2m; + 1)th-order, vice versa.
(vi) Similar to case (ii), consider

T T
Vi - (k1 — X1 > v - (= X0,

For G((l,.g (XZ, p) = —1, we have
Sk

1 . ; )
S GG P

Since the infinitesimal s,((i) is arbitrarily selected, the foregoing equation gives
2m;+1
GS(](;" )(xt,p) <0.

Therefore, x;1;(j € Z) at fixed point X} on the direction v; is oscillatory
unstable of the (2m; + 1)th-order and vice versa.
(vii) Similar to (iii), from the first two equations of Eq. (2.75), for the infinitesimal

s,(c’), one obtains

: A ) om
S/((l-)i-l =5+ G (g ) (s )

@Cmp)! s
Thus
] 1 o2m: . o -
1= 1+ G O o P )
i) Sk
1 _ : . .
— ‘_1+_G(Znh)(xz’p)(sl(cl)fml 1 |S1(cl)|‘

Qm)! s
For G%;”")(xlt, p) > 0, if s,i[) <0, we have
sk

(@) (&) T T
st ] <151 = V) - e = xO1< V] - G — X)),

if s](f) < 0, we have
0 () T o T o
Isgigl > 18 1= v - Rier = X1 > v - (X — X))

Thus, x4 ,;(j € Z) at fixed point x;. on the direction v; is oscillatory unstable
of the (2m;)th-order, upper saddle and vice versa.
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(viii) Similar to (vii), for G'o"” (x%, p) <0, if st > 0, we have
Sk
(@) () T " T —
|Sk+1| > |Sk [ = 1V » K1 — X1 > vy - X — X)),

if s](f) > 0, we have

i i T T

s L <Isi = V] - kgt — XD < V] - (3 — X))

Thus, x4 (j € Z) at fixed point x}_ in the direction v; is monotonically unstable
of the (2m;)th-order, lower saddle and vice versa. This theorem is proved. H

Definition 2.27 Consider a discrete, nonlinear dynamical system X4 = f(X, p)
€#" in Eq.(2.4) with a fixed point x;.. The corresponding solution is given by
Xjyj = £(Xj1j—1, p) withj € Z. Suppose there is a neighborhood of the fixed point x;;
(.e., Ur(x) C Q), and f(xg, p)is C" (r > 1)-continuous in Uy (x}) with Eq. (2.28).
The linearized system is yj ;1 = DEX}, P)Yitj (Yt = Xk4j — Xi) in U ().
Consider a pair of complex eigenvalue o;; £if; (i e N = {1,2,---,n}, i = /—1)
of matrix Df (x*, p) with a pair of eigenvectors u; % iv;. On the invariant plane of

(u;, v;), consider r,((i) =yr = y,((lﬂ)L + y,((l)_ with

r =y +dv,

. ' _ 2.77)
0 _ o @ ..
I‘k+1 = Ck+1u1 + dk+1Vla
and
- 1
c](c’) = Z[Az(ul»T Vi) — At -yl
: 1
d¥ = Z[Al(V,-T “VK) — An@) - yol; (2.78)

2 2 T .
Ay = [lw||7, Ax = [Ivill7, Az = u; - V53
A=AAy— AL,

Consider a polar coordinate of (r, 6 ) defined by

cf(i) = r/((i) cos 9,5i), and dlii) = rl((i) sin 9/?);

) : . ) ) ] (2.79)
r](c‘) =/ (cl((l))2 + (dlil))z, and 6’,8) = arctan d,i’)/cl({l).

Thus

1
Cry1 = Z[AzGCL” (X, p) — AlzGd,ﬁ") Xk, p)]
(2.80)

; 1
d/&)rl = K[AlGd/f»” Xk, p) — AlZGC/(Ci) Xk, p)]
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where

. _ T =5 L gom oy oym
Gy (o ) = uf - Mo ) = X1 = D - G0 6))

(2.81)
Gyo Oxk.p) = V] - [0 p) = X1 = D7 " mi,G;735)<9;§’)><r;§’)>’”';
G O0) = ul - 8" f(x., p)[uj cos . + vising1"|
* P (2.82)
G 0Dy = vT . aUf (x¢, p)[u; cos 8 + v; sin P17 '
0 Nk Vi Ox, ks P)LW; i i i .
P
Thus
=2+ @, = \/Z 0y G 6
\/G<® /0 / 1463 ) 12 Ly G(Zﬁ’)(é’,ﬁi’) (2.83)
Tkt Tk
91&11 = arctan(d,&)rl/ Cl(cl)+1
where

o0 o
i 11
G(Z’it)(elil)) — Z Z _'_' ((rll)) (9(1))6((\;)) (9(1)) 4 G((z) (9(1))G(&(lz) (9(1))8r1+s,

Tket1 i

ri=1s;=1
LS @ (o0 G0 Dy 1 @ (gD M=) ()
= ) Cm,[G <,> (ek )G@ (Gk )+ G (:) (9k )G Fio) (9k )
i- g=1 k+l
(2.84)
and
1 Ny N
G O) = 1826576 — MG @)1,
Cl+1 A k dy
1 .
Gy’ @) = F (816 O = AnG i 6], (2.:85)
(s
q _ mi!
" qlmi = g
From the foregoing definition, consider the first order terms of G-function
1
Go) %k P) = Gy, (5. P) + G, (. ).
(2.86)

(lo)) (X, p) = G;& Xk, p) + G\

d(,)2 (Xk s P) s
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where
Gy, @k ) = 0l - Dy fxe P 0% = u - Dy Fxi, P,
=u/ - (—Bivi + o) = oA — BiAn,
Gy, (ks P) = 0] - Dy fxe D)o Xk = 0] - Dy f (i PV
=u] - (B + Vi) = 0 A + BiAr;
and
Gin, 0% P) = V7 - Dy £, D)0, = V7 - Dy Fxi, Py
=V} - (=Bivi + o) = —BiAs + aiAp,
Gyiny X P) = VI - Dy £ D)0 = V] - D £ PV

=V, - (B +ovi) = @i A + BiAr.
Substitution of Eqs. (2.86)—(2.88) into Eq. (2.82) gives

1 i 1 1 . i
Gl 6 = Gli) (i P cos6” + G, (xe p)sin €

= (a;A] — ,BiAlz)coseli) + (@A + ﬂiA1)Sin9,§i),

1 i 1 j 1 . i
Gy 6 = G ke )03 + Gl (ke p)sin 6
k k

= (—Bidr + @iA1) cos 0 + (@i Ay + BiA1) sin 6.

From Eq. (2.85), we have

Gy @) = [A Gﬂ,)(e‘”) AIZG((,)(Q(Z))]

Chkt1

= @, COS QIE) + Bisin 6(’)

. 1 . .
1 1 1
GU 6 = <16 O — A G((,Z G0
dk+1 A dy

= q; sin 0]?) — Bicos 6,9.

Thus
G((Zl)) (9(1)) — G((;) (9(1))G((1) (Q(l)) + G((,) (9(1))G((l) (9(1))]
/»+l k+l 1\+1

=af + 67

Furthermore, Eq. (2.83) gives

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)
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iy = o) + o) and ) = 6 — v; + o(r?), (2.92)

¥; = arctan(B; /) and p; = /a? + B2 (2.93)

As r](j) < 1 and r]((i) — 0, we have

where

r, = piry) and 6" = v; — 6. (2.94)
With an initial condition of r,((i) = r2 and Glii) = 0,8), the corresponding solution of
Eq.(2.94) is

ey = () and 07} = i — 0. (2.95)

From Egs. (2.80), (2.81) and (2.90), we have

c](clil = ocl-r](cl) cos 918) + ﬂ,-rl(;) sin 9]8) = oz,-cl(;) + ﬂidlil),

. . . . . . . (2.96)
d,ﬁlj_l = a,-rf(l) sin 0,8) — ,Bl-rl((l) cos 9151) = —/3,-0,((1) + a,-dlil).
That is,
(@) (@] . (1)
[Ckl+l}_|:01i ﬂi][ckl ]_p'[cosz%- smz?z-”%l ] (2.97)
o | 7| =B @ [ ~ " —sin®; cos; o[- ’
dk—H ﬂz i dk i i dk

From the foregoing equation, we have

@) i () . .. @)
i | [a,- Bi T [ e ] — (o’ [cosﬁ‘i sin ji; } i o } (2.98)
O [ 7| =B o | 7" | —sinjv; cos vy UN '
dk+j Bi ai d; JUi COSJU; dy;

Definition 2.28 Consider a discrete, nonlinear dynamical system x; 1 = f(Xx, p) €
Z" in Eq.(2.4) with a fixed point x}. The corresponding solution is given by x;.,; =
f (X441, p) withj € Z. Suppose there is a neighborhood of the fixed point x}. (i.e.,
Ur(x;) C ), and f(xg, p) is C" (r > 1)-continuous in Uy (x}) with Eq.(2.28).
The linearized system is yx ;41 = DE(X}, P)Yis (Ve = Xk — X;) in Up (X)),
Consider a pair of complex eigenvalues o; £if; i e N ={1,2,---,n}, i= \/—_1)
of matrix Df(x*, p) with a pair of eigenvectors w; & iv;. On the invariant plane
of (u;, v;), consider r,((’) =Yyi = y,(;)r + y,({’)_ with Egs. (2.77) and (2.79). For any
arbitrarily small & > 0, the stability of the fixed point x; on the invariant plane of
(u;, v;) can be determined.

(1) x5 at the fixed point XZ on the plane of (u;, v;) is spirally stable if

i, = <0 (2.99)
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(ii) x® at the fixed point x} on the plane of (u;, v;) is spirally unstable if
i, = >o. (2.100)

(iii) x® at the fixed point x;* on the plane of (u;, v;) is spirally stable with the
mjth-order singularity if for 9,8) € [0, 2]

pi = Jai + B} =1,

¢

G ) =0 forsy =1,2,--,m—1; (2.101)
Tkt
r,(clj_l — rl(;) <0.

(iv) x®) at the fixed point X/t on the plane of (u;, v;) is spirally unstable with the
m;th-order singularity if for 9]8) € [0, 2n]

pi = Jai + B =1,

1)

Gk ) =0 forsy =0,1,2,---,m—1; (2.102)
k+1
r](grl — r](f) > 0.

) x®) at the fixed point xz on the plane of (u;, v;) is circular if for 9]8') e [0, 2]

rh, - =o. (2.103)

(vi) x® at the fixed point x* on the plane of (u;, v;) is degenerate in the direction
of uy if

pi=0andg.) -6 =0. (2.104)

Theorem 2.7 Consider a discrete, nonlinear dynamical system X1 = f(Xi, p) €
X" in Eq.(2.4) with a fixed point .. The corresponding solution is given by Xy, ; =
f(Xk1j—1, P) with j € Z. Suppose there is a neighborhood of the fixed point xJ_ (i.e.,
Ur(x;) C ), and £(xi, p) is C" (r > 1)-continuous in Ui (x}) with Eq.(2.28).
The linearized system is Yy yjr1 = DEXE, P)Yitj (Vi) = Xy — X)) in Up(x)).
Consider a pair of complex eigenvalues o; £if; (i € N ={1,2,---,n}, i= V—=1)
of matrix Df(x*, p) with a pair of eigenvectors w; £ iv;. On the invariant plane
of (u;, v;), consider rl(cl) =Yyr = y]((lj_ + y](c')_ with Egs.(2.77) and (2.79). For any
arbitrarily small ¢ > 0, the stability of the fixed point x;. on the invariant plane of
(u;, v;) can be determined.
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1) x® at the fixed point X, on the plane of (w;,v;) is spirally stable if and
only if

pi<1. (2.105)
(i) x® ar the fixed point x. on the plane of (;, v;) is spirally unstable if
pi>1. (2.1006)

(iii) x® at the fixed point x; on the plane of w;, v; is spirally stable with the (my.)th-
order singularity if and only if for 918) € [0, 27]

pi = Jal + B} =1,

(@) . .
G 6" =0 fors(’ =1,2,mi—1; (2.107)
k+1
G e0) <o.
e}

(iv) x% at the fixed point x;. on the plane of (w;, v;) is spirally unstable with the
(m;)th-order singularity if and only if for 0,8) € [0, 2]

pi=rJal + B} =1,

(i) . .
fo/; ') =0 fors® =0,1,2, - m;—1; (2.108)
k+1
G\ ) >o.

k+1

v) x5 at the fixed point x;. on the plane of (w;, v;) is circular if and only if for

6" € [0, 27]
pi = Jal + B} =1,

(i)

(s,
G,.(i)
k+1

- 4 (2.109)
@) =0 fors!’=0,1,2,---

Proof Since
o _ 1
Cry1 = Z[AzGc}j) Xk, p) — AIZGdIEi) Xk, p)]

; 1
'Ly = 181G 0 (%6 ) = A12G 0 (%0 )]

For X1 = X; = X}, 1} = 0. The first order approximation of cl(grl and dlii-:-l in the
Taylor series expansion gives
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i =G O+ o)),
di'ly = %,1 @ + o0t

/c-H

where r =,/ (c(l))2 + (d(l))2 and 9(1) = arctan(d(l)/c(l))

1
Gy ) = NS G&,)(e‘”) AuG((,)(e,i’))]

et
~ 1
1 1
G;(z)) (9/8)) = Z[AlG((,)) (9(1)) — A]zG((,> (9(1))]
k+1
and
G(,(lg (9;?)) = (a;jA1 — BiA12) cos 918) + (aj A2 + BiAY) sin9(l),
o) O) = (—BiAs + @iA1) cos 8 + (@iAg + BiA12) sin 6
d(z)k— A2 iA12 K ojA2 iA12 P
Therefore,
((]3 (Ch ) = o C089 + B;sin 0(1)
1
G (0) = a;sing” — icos6”.
dk+l
Further
c,((’)H = Otlr,(;) cos G(i) + ,Bir,({i) sin 9]8) = O‘l‘l(cl) + Bid (l)’
d,gl_)H =q; r( D sin 6’(1) ﬂl-r](ci) cos 9]8) —Bic! M 4 aid,ﬁi)-
That is,

¢ 1 Bi c,(f) | cos?¥ sindy; c,(f)
k-?-l ,3, o || a” [~ P —sin v, cos v 4|

From the foregoing equation, we have

iy =i + o)) and ) = 67 — 0 + o(r}).

where
¥; = arctan(B;/«;) and p; = ,/ozl-z + ,312.

) _, 0, we have

As r(l) < 1 and T

(@) (@) (@) (i)
Fil = Pify ankoJrl =10 —0,".



2.3 Bifurcation and Stability Switching 109

(i) For fixed point stability, if p; < 1, then

() ()
Fir <Tp

which implies that x(l) at the fixed point x}z on the plane of (u;, v;) is spirally
stable and vice versa
@i1) If p; > 1, then

() ()
Fietr > Ty

which implies that X(l)
stable and vice versa.
(iii) If for 6’,8) € [0, 27r] the following conditions exist

2
pi= (G5 =} + 4 =

k+1

at the fixed point x;. on the plane of (u;, v;) is spirally

G(;f/; (9,?)) =0 for sl((i) =1,2,--,mj — 1;

Tiet1

G 0) #0, and |G((,§ )(9,8))| <oofors =mi+1,m+2.--.

Tiet1 Tt

then the higher terms can be ignored, i.e.,

(@) (@) D\m;—2 (m,) (@)
AN SN L )

/Hrl

If G(Zg’)(Q(’)) is independent of 6y (i.e. G((,) )(9 ) = const). it can be used to

T4 T4

determine the stability of the fixed point. If G(Zi’) (9,5’)) <0, then
/»+l

(0 (@)
T <7 -
In other words this implies x,(f) at the fixed point x;’ on the plane of (u;, v;) is
spirally stable with m;th order singularity, and vice versa.
(iv) If G<;’,§'>(9<’>) > 0, then

"k

@) ()
Py =T -

That is, x®) at the fixed point x,t on the plane of (u;, v;) is spirally unstable
with the mth-order singularity, and vice versa.
(v) If for 6(1) € [0, 27r] the following conditions exist
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(i)
(s3.)
Grm

k+1

@)y =0fors =12,

then

@O _ .0
Pieyr = Tk

and vice versa. Therefore x*) at the fixed point xj; on the plane of (u;, v;) is
circular. This theorem is proved. |

2.3.2 Bifurcations

Definition 2.29 Consider a discrete, nonlinear dynamical system X4 = f(X, p)
€ %" in Eq.(2.4) with a fixed point x;. The corresponding solution is given by
Xiyj = f(Xgyj—1,p) with j € Z. Suppose there is a neighborhood of the fixed
point X}’ (i.e., Ur(x}) C ), and f(x¢, p) is C" (r > 1)-continuous in Uy (x;) with
Eq.(2.28). The linearized system is yx 111 = DY, P)Yitj (Yt = Xy — X))

in Uy (x}) and there are n linearly independent vectors v; (i = 1,2,---,n). For a
perturbation of the fixed point y; = x; — xJ, let yl(ci) = c,({i) v; and Y/(Q_l = Cl(ci—)i-lvi'
Sz@ = ViT Yk = ViT - (Xk — Xp) (2.110)
where s,((i) = cg)llvi||2.
S/(f)ﬂ =V, Yir1 =V, - [, p) — x(1. (2.111)

In the vicinity of point (XZ(O), Po), V;F -f(xy, p) can be expended for (0 <6 < 1) as
vl [k, p) — X)) = ai(S,(f) - S%}) +b; - (p—po)
m q 1
(g—r.,r) , (D) @) yqg—
+ Z Z acgai (Sk - Sk(o))q r(p - pO)r
q=2 r=0
1 ) .
@) _ (Dxyg _ m+1
+ m—+ 1) [(Sk Sk(o))aslil) + (P p())ap]
x (vj £ o) + O AXL, po + O Ap))
(2.112)

where
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T
a =v; - asmf(xk, P) i ,
“k (Xk(o),p())

Il
<

T
bi

T
- opf (X, P) ,
i OplXp, P (X0 P0) (2.113)

" = vl 000 0. p)

(X% (0)-P0)

Ifa; = 1and p = po, the stability of fixed point x;' on an eigenvector v; changes from
stable to unstable state (or from unstable to stable state). The bifurcation manifold
in the direction of v; is determined by

b/ - (p— P0)+ZZ (Coa™ 70— po) (s = sy = 0. @2114)
q= 2)—0

In the neighborhood of (Xlt(O)’ Po), when other components of fixed point x;g on the
eigenvector of v; for all j # i, (i,j € N) do not change their stability states,

Eq.(2.114) possesses I-branch solutions of equilibrium 5() 0<! < m) with
[-stable and l-unstable solutions (/;, € {0,1,2,-- l}) Such [-branch solu-
tions are called the bifurcation solutions of fixed point x;* on the eigenvector of v; in
the neighborhood of (Xlt(O)’ Po)- Such a bifurcation at point (X}‘; 0) Po) is called the
hyperbolic bifurcation of mth-order on the eigenvector of v;. Consider two special
cases herein.

() If

200 — 502 =g (2.115)

,1
all) = 0.and b - (p — po) + 5,0 Sko

where

2,0 2 2
a?? =T 3(@) (O)f(Xk»P) v 3((3f(xk,p)

(X]t(o) PO) Sk (XZ(O) Po)

= v} 0P f(x, p)(vm)) (,) 2 (X0 P0) 0, (2.116)
k(o) pO)
b/ = v/ - 0pf(x¢. p) £0,
(X/‘(()) Po)
a®” x [b] - (p — po)] <0, (2.117)

such a bifurcation at point (xj, po) is called the saddle-node bifurcation on the
eigenvector of v;.
(i) If
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b} - (p — po) = 0and

1,1 2,0
( ) -(p—Po )(S(l)* /((z()g)) +— 5 1( )( (OEN /((z()g))Z -0 (2.118)
where
2,0 2 2
az(' ) _ V;.r . 3(([))3(0)f(xk’ P T 8((,3f(Xk, )
(X,t(o),l’o) (x3.P0)
2
= v/ AR Piv)| ((,3 (X} )+ P0) # O,
Xk(()) pO)
1,1 1
alV = vl 8((,))8(1>f(xk, p) = v/ 90 0pf X6 p)|
(X]t((» ,PO) k (Xk(()) ’ pO)
= V;.r - Ox, Opf (X, P)V; . ,
X%(0)P0)
(2.119)
2,0) (1,1
a®0 ™V . (p— po)1 <0, (2.120)

such a bifurcation at point (xl”; ) Po) is called the transcritical bifurcation on
the eigenvector of v;.

Definition 2.30 Consider a discrete, nonlinear dynamical system X;4+; = f(X, p)
€ #" in Eq.(2.4) with a fixed point x;. The corresponding solution is given by
Xjyj = f(Xg 11, p) withj € Z. Suppose there is aneighborhood of the fixed point x;
(i.e., U (x}) C Q), and f(xy, p)is C" (r > 1)-continuous in Uy (x;) with Eq. (2.28).
The linearized system is yx1j41 = DE(X, P)Yikyj (Vi = Xkt — Xp) in Ug (X))
and there are n linearly independent vectors v; (i = 1,2, - - -, n). For a perturbation
of fixed point y; = x — X}, let y(’) = c(’)v, and y,((’)+1 = c,(grlvl Equations (2.110),
(2.111) and (2.113) hold. In the vicinity of point (xko, Po), V - f(Xx, p) can be
expended for (0 <0 < 1) as

V;F [f(xk, p) — X]t+1(0)] = at(S]({l) - S]((l()g)) + bT (P — Po)

+ZZ Cral™" (s — 5001 (0 — po)”

q210

(@) (D) ) _ m+1
T e 1L T ko)) 90 + (P~ Po)dp]
X (Vk -f(xk(o) + 0Axg, po + 0 Ap))
(2.121)
and
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V;r : [f(Xk+l P) — X]t(())] = ai(S]((i_),_l ](Cl_):l(o)) + b -(p— po)

+ Z Z C’ (q ") (Sl(cljr] ](CIJ): (0))q7r(p - pO)r
q=2 r= 0

* +1),[<Sz(!)+1 Sit10)0,0 + @ = po)opl™"!

X (Vi : f(xk+1(()) + 0AXp41, po + 0 Ap)).
(2.122)
If a; = —1 and p = po, the stability of current equilibrium x} on an eigenvector v;
changes from stable to unstable state (or from unstable to stable state). The bifurcation
manifold in the direction of v; is determined by

b} - (p— po) + ailsy — ()

(11 r r) (l) (l)* - _Dx (l)*
+ Z Z Cr k(O))q "P—p0) = (54 — Sk410))}
q=2 r=| O
R (2.123)
b '(p_PO)—i—ai(Sk k+1(0))

@0 (@ gD e (i _ ()
+ ZZ Cr (i1 = Si10)? @ —P0)" = (577 = 550)-
q=2 1_0

In the neighborhood of (x,’;(o), Po), when other components of fixed point x;';(o) on
the eigenvector of v; for all j # i, (j,i € N) do not change their stability states,
Eq.(2.123) possesses /-branch solutions of equilibrium s,((l)* (0 <! < m) with [;-
stable and /-unstable solutions (/;,, € {0,1,2,---,1}). Such [-branch solutions
are called the bifurcation solutions of fixed point x; on the eigenvector of v; in
the neighborhood of (x,t ©0)° Po)- Such a bifurcation at point (Xlt(O)’ Po) is called the
hyperbolic bifurcation of mth-order with doubling iterations on the eigenvector of
v;. Consider a special case. If

bY - (p—po) =0,4; = —1,a>” =0,a*V = 0,a"? =0,

3,0
Y. (p—po + al](s(l)* ,((’()g)) + yaf )(s,t — s,t(o))?’
= (Sl(ch l(cl-)i-*l )" (2.124)

1.1 RTROL ()% (3 0) 3
[aY - (p —po) + ail(sihy = Sihro)] + 3% (k1 = Skt100)

(z)* (i)*
(5 k(O))

where
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450 _ v 3(3)3l(,0)f(xk, D)

3
(i) = V,'T : 8( )f(Xk, p)
Sk

@)
Sk

(Xz 0)° PO) (XZ 0)° PO)
3
=v; - 3§i)f(xk, P)(Viviv;) o GA‘(';(;(XZ(O)’ po) # 0,
ror (2.125)
1,1 1
aiV = v -0l Exe p) = vi - 8,0 3pf (Xt p)‘ .
Sk (x]t(o) »PO) k (X/C(O) ’pO)
=V} O Opf (X, V| 0,
(X/C(O)-,PO)
3,0 1,1
a>? x @ (p —po)1 <0, (2.126)

such a bifurcation at point (xz«)), Po) is called the pitchfork bifurcation (or period-
doubling bifurcation) on the eigenvector of v;.

The three types of special cases can be discussed through 1-D systems and intu-
itive illustrations are presented in Fig.2.7 for a better understanding of bifurcation
for nonlinear discrete maps. Similarly, other cases on the eigenvector of v; can be
discussed from Eqs. (2.114) and (2.123). In Fig. 2.7, the bifurcation point is also rep-
resented by a solid circular symbol. The stable and unstable fixed point branches are
given by solid and dashed curves, respectively. The vector fields are represented by
lines with arrows. If no fixed points exist, such a region is shaded.

Consider a saddle-node bifurcation in 1-D system

X1 =S (k. p) = X+ p — X3 (2.127)

For xj11 = Xy, the fixed points of the foregoing equation are x; = +./p (p > 0)
and no fixed points exist for p < 0. From Eq.(2.127), the linearized equation in the
vicinity of the fixed points with y; = xj — X is

Vi1 = Df &, p)yie = (1 = 2x) . (2.128)

For the branch of xz = +./p (p>0), the fixed point is stable due to [yr11| < [yil.
However, for the branch of x; = —,/p (p > 0), such a fixed point is unstable due to
[Vk+1]> yil, For p=po=0, we have x}, =x/t(0) =0and Df(x/t(o),po) =1. Since

D2f(x;';(0),po) = —2 <0, we have

Vi1 = Yk + D (5 0y )7 = (1 = 290 (2.129)

AL (X5 g)» 20) = (0, 0), [yk41] < [yk| for y >0 and [yg41|> |yk| for yi <O0. The
fixed point (x,t(o), o) = (0, 0) is bifurcation point, which is a decreasing saddle of
the second order. For p <0, from Eq.(2.127), p — (x;;)z < 0. Thus, no fixed point
exists. The fixed point x}' varying with parameter p is sketched in Fig.2.7a. On the
left side of xj-axes, no fixed point exists. So only the vector field of the map in
Eq.(2.127) is presented.
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Fig.2.7 Bifurcation diagrams: a saddle-node bifurcation of the first kind, b transcritical bifurcation,
¢ pitchfork bifurcation for stable-symmetry (or saddle-node bifurcation of the second kind) and d
pitchfork bifurcation for unstable-symmetry (or unstable saddle-node bifurcation of the second
kind)

Consider a transcritical bifurcation through a 1-D discrete system as
X1 = (Xke ) = Xp + pxi — X (2.130)

The fixed points of the map in the foregoing equation are x;. = 0, p. From Eq. (2.130),
the linearized equation in the vicinity of the fixed points with y = x; — x} is

Vi+1 = Df (X5, pyie = (L+p — 2x) .- (2.131)

For the branch of x; = 0 (p>0), the fixed point is unstable due to [yx41| <
|vk|. For the branch of x}=p (p>0), such a fixed point is stable because of
[Vk+1] < |yk|. However, for the branch of x; =0 (p <0), the fixed point is stable
due t0 |yg41] < [yk|. For the branch of x; =p (p <0), such a fixed point is unsta-
ble owing to [yg41]> [ykl. For p=po=0, x =x;§(0) =0 and Df(x;‘;(o),po) =1
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are obtained. D*f (XZ(O), po) =—2 is needed. Thus the variational equation at the
fixed point is given by yry1 =yr — 2y,2C =(1 — 2y;)yr. From this equation, at
(X%0y> P0) = (0,0), |yrs1| < lykl for yi > Oand |ygy1] > [yl for yp < 0. The
fixed point (x,t(o) , po) = (0, 0) is a bifurcation point, which is a decreasing saddle of
the second order. The fixed point varying with parameter p is sketched in Fig.2.7b.

Consider the pitchfork bifurcation with stable-symmetry (or saddle-node bifur-
cation of the second kind, or period-doubling bifurcation) with a 1-D system
as

X1 = (=1 = pxi + X3 (2.132)

For —xj41 = x; = X7, the corresponding fixed point are x} = 0, £,/p (p > 0) and
x; =0 (p < 0). From Eq. (2.132), the linearized equation in the vicinity of the fixed
point with yx = xj — x} is

Vi1 = DI, p)yk = [=1 — p +3(x)* k. (2.133)

For the branch of x,’; =0 (p>0), the fixed point is unstable due to |ygy1|> |Vkl-
For the branches of x; = £ ./p (p>0), such two fixed points are stable because
of [yk41] < |yk|. However, for the branch of x;; =0 (p <0), the fixed point is sta-
ble due 0 |ygq1]| < |yk|. For p=po=0, x =x;§(0) =0 and Df(x,t(o),po) =—-1
are obtained. However, D?f (x,t(o), po) = 6x,t(0) = 0 is also obtained. Further,
D3f (x; ) Po) = 6 >0 is computed. Thus the variational equation at the fixed point
is

Vi1 = =y + Df (X 0), POV = (=1 4+ 630y (2.134)

At (xz(o),po) =(0,0), [yx+1] < |yk| exists always. The fixed point (x7,, po) = (0, 0)
is a bifurcation point, which is an oscillatory sink of the third order due to D3f > 0.
The fixed point varying with parameter p is sketched in Fig.2.7c.

Consider the pitchfork bifurcation for unstable-symmetry (or unstable saddle-
node bifurcation of the second kind, or unstable period-doubling bifurcation) with a
1-D system as

N1 = (=1 = p)xg — X3 (2.135)
For —xx41 = xx = xj, the fixed points are x; = 0,+£,/—p (p<0) and
x; =0 (p = 0). From Eq.(2.135), the linearized equation in vicinity of fixed points

¢ T
with yx = xp — X7 is

Vi1 = DI, pyk = [=1 — p = 3(x)* k. (2.136)

For the branch of X} = 0 (p < 0), the fixed pointis stable due to |y 41| < [yx|. Forthe
branches of x} = £/—p (p <0), such two fixed points are unstable due to |y 41| >
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|vk|. However, for the branch of x; =0 (p > 0), the fixed point is unstable due to
[Vks1l > [yil.Forp=po=0, xj= xlt(()) =0and Df(x]t(o),[)o) = —1 are obtained.
D*f (x;;(o), pp) = —6x1’:(0) = 0 are obtained. .Fur.thermore, D3f (x;;(o), po)=—6<0.
Thus the variational equation at the fixed point is

Vi1 = =¥k + Df (5 0y, 0OV = (=1 — 637 7k (2.137)

At (x,t(o),po) = (0,0), [yk41] > |yk| exists always. The fixed point (x, po) =
(0, 0) is a bifurcation point, which is an oscillatory source of the third order. The
fixed point varying with parameter p is sketched in Fig.2.7d.

From the proceeding analysis, the bifurcation points possess the higher-order
singularity of the flow in discrete dynamical system. For the saddle-node bifurcation
of the first kind, the (2m)th order singularity of the flow at the bifurcation point exists
as a saddle of the (2m)th order. For the transcritical bifurcation, the (2m)th order
singularity of the flow at the bifurcation point exists as a saddle of of the (2m)th
order. However, for the stable pitchfork bifurcation (or saddle-node bifurcation of
the second kind, or period-doubling bifurcation), the (2m + 1)th order singularity
of the flow at the bifurcation point exists as an oscillatory sink of the (2m + 1)th
order. For the unstable pitchfork bifurcation (or the unstable saddle- node bifurcation
of the second kind, or unstable period-doubling bifurcation), the (2m + 1)th order
singularity of the flow at the bifurcation point exists as an oscillatory source of the
(2m + 1)th order.

Definition 2.31 Consider a discrete, nonlinear dynamical system x; 1 = f(Xx, p) €
R?"in Eq. (2.4) with a fixed point x; . The corresponding solution is given by X ; =
f (X411, p) withj € Z. Suppose there is a neighborhood of the fixed point x}. (i.e.,
Ur(x;) C ), and f(x¢, p) is C" (r > 1)-continuous in Uy (x}) with Eq.(2.28).
The linearized system is y ;41 = DE(X}, P)Yirj (Yetj = Xk — X;) in Up ().
Consider a pair of complex eigenvalues o; £ip; i e N ={1,2,---,n}, i= \/—_1)
of matrix Df (x*, p) with a pair of eigenvectors u; % iv;. On the invariant plane of

(u;, v;), consider r,(ci) = yg) = yl(c’i + y](c’)_ with

r = +dv;,

. . . (2.138)
@ _ 0 @) .
Tl = G Wi T Vi
and
G _ 1 T T
¢ = X[Az(u,- “¥i) — An(v; -yl
; 1
d;il) = K[AI(VI-T VK — A - yol; (2.139)

2 2 T ..
A = lw||7, Ay = [[vill*, Az = u; - v;;

T,
A=A1Ay — AL,

Consider a polar coordinate of (ry, 6x) defined by
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cl(f) (l) cos 0,8), and d, @ _ (l) sin 9(1)

) o (2.140)
r1(<l) =/ (cl((l))2 + (dlfl))z, and 9,8) = arctan d,ﬁ’)/cl(;).

Thus
o _ 1
Cral = X[AzGL,](p Xk, p) — AlzGd/a) Xk, p)]
g 2.141
49 = L1A1G 000 p) = ARG o (xe, P)] S
k1 = A LB10,0 ks P 1260 ks P
where
(l)(Xk p) = ll [f(Xk p) — Xk(O)]
=al (p—po)+ aiu(t’k - c,i’()g‘)) + auz(d,ﬁ’) l()(;)
by Z C“G(‘{,) " (¢ Do) (B — po) (1
q= 2r|—0
@ _ (D= () ()% ) _ mi+1
+ (ml ! [(C k(O))a (l) + (d dk(o))adlf'l) +(p pO)ap]

X (u- -f(xko + 0AXy, po +6Ap)),
d(t) X, p) = V [ (xp, p) — Xk(o)]

=b] - —po) +ani ) — ) +apd? —a%*)

“k(0) (0)
+ Z Z ”G%’ " (xE, po)(p — po) (1)1
q= 2r,_0
@ _ O ) (O ) _ m+1
(ml T [( k(o))a (l) + (d dk(o))adlfl) + P0)3p]

X (V,' : f(Xk(()) +0Ax,po +0Ap));

(2.142)
and
G(SJ‘)(X* )
c/(ci) k(0)° Po
= ul [0y, Ouscos 0+, Ovisin O PO f ke )|
sPO
. kO (2.143)
Gd(l) (Xk(O)’ pO)
- [0x, Ou; cosO() + %, OV; 51n9(1)]s3(r)f(x
X 1 Xi J k> p)
Xk(()) pO)
al = .T.apf(xk,p) bl = -T-apf(Xk,p)'
aim =} - 35, F(Xg, P, a2 = u; - I F(xp, PIUs; (2.144)

apt = Vi - dx E Xk, P, aino = V) - 3 £ (X, PV
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Suppose
a;=0andb; =0 (2.145)

then

(l) @ 2 @ o _ (@) (m
=Vl @l = 3 el

_ (2,0) (1) ; @) (Dm—2 (2.146)
= /Gr&1 ry \/ 1420 4 Zm=3 A (D ym

9&1 = arctan(d(’) 1/c](grl

where

G0 =G5+ G and 2 = 6LV /GG with

T+ T+ ’k+1 s Tiet1
2,0 1,0 ] 1,0

G =166 b + 1G5 6 po)T’,
s e+ k+1
G\.D ol
1({111 Zm,—Z ij_z (ml + m] ) mi+mj— 2

_ L 1 —1 i .
1656, po) - @ = o) NG " @ p0) - (P07

1 Cle+1

1,m;—1 ] i— (1,mj—1) L
+165:" V0 po) - (0 =0 NG "6 po) - (0 = p0)" D)
k+1 k+1
(2.147)
and
2,0 .
AD G(ff;) /G((,) ) with
k+l k+1
(m) Z Z b (m,-—n r,)(e(z) Y- (p — po)™ "]
(1) m;=0 ;=0 ml‘ m;! , /(ci_)¢_| » PO P —Po
(mj—sj, .
x G 9D gy (p — o)™
k+1
+ G('Zi_r’ D00, po) - (p — po)" "]
k+1
(mj—sj,57) (rits))
<G o @ o) - (0~ po)™ " V16n
k+1
-1 M M
I T
ml (m; +mj —m)! "
s=1 mi=1m;=1
: i—s (n(m—=s.mj—m+s) i —m+
(65" V@ po) - (= p0)" G T 0 po) - (0~ po)™ T
k+1 k+1
=) (i sl —mts) —
+G£f(,'>n 26" po) - (p— po)™ SG;:; ST 01 po) - (p — po)™i T,
k+1 k+1

(2.148)



120 2 Nonlinear Discrete Dynamical Systems

1
G(,;;) lr ')(91(, po) = Z[AZG(’:) ") (Xk(())y Po) — A12Gd(,) )(X]t(()), pPo)l,
i+
(m—r,r) 1 (m—r,r) ,_x (m—r,r) ,_%x (2149)
G 0 Ok, po) = —[AIG (i) (Xk(O)’ po) — AxG 10 (Xk(O)’ po)l.
diyy A dy Ck

It G((z,)o) = l and p = po, the stability of current fixed point X} on an eigenvector

s
plane of (u;, v;) changes from stable to unstable state (or from unstable to stable
state). The bifurcation manifold in the direction of v is determined by

,\“>+Z,\<’> 2 =o. (2.150)

m

Such a bifurcation at the fixed point (xl”;(o), Po) is called the generalized Neimark
bifurcation on the eigenvector plane of (u;, v;).
For a special case, if

20 4002 =0, for A x 2 <0and 2 =0 (2.151)
such a bifurcation at the fixed point (x,t )’ Po) is called the Neimark bifurcation on

the eigenvector plane of (u;, v;).

For the repeating eigenvalues of DP(x}, p), the bifurcation of fixed point x;’ can
be similarly discussed in the foregoing two Theorems 2.5 and 2.6. Herein, such a
procedure will not be repeated.

Consider a dynamical system

Xpa1 = all + A+ a(x? 4+ y)Ixk + BIL+ A + a(x? + y)v,

5 ) ) ) (2.152)
Viet1 = =PI+ A +alxp +yi)lxe +all + 1 +alxi + yi)lyk.
Setting
r,% = x,zC + y,% with x; = r cos 6y and y, = ry sin O, (2.153)
we have
T = 2 2 = 14+ A 2
k+1 = xk+1+yk+l_prk( + +ark)a
— B cos 6y + o sin Oy
041 = arct =6 — 1,
k41 = arctan Bsin0; + o cos Oy i (2.154)
p =+/a? 4+ B2 and ¥ = arctan ﬁ
o
If p = 1, the fixed point is
r]t(l) = 0 for A € (—00, +00),
(2.155)

r,t(z) = (=1/a)'/* for A x a < 0.
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Fig.2.8 Neimark bifurcations: a supercritical (a < 0) and b subcritical (a > 0)

If A # 0, we have Df,(r;;, 1) = 1 + A + 3a(r,t)2, the variational equation is

Sk41 = DA Msie =1+ 4+ 3a(r,t)2]sk with s = rp — 1. (2.156)

For r;’;(l) =0, Df, =1+ X. This fixed point is stable for A <0 owing to sg+| < Sk
or unstable for A >0 owing to si4+; > s. The fixed point is a critical point for
A = 0. The fixed point of V}t(z) = (—A/a)'/? requires ax < 0. For a > 0, such a fixed
point exists for A < 0. For a < 0, the fixed point existence condition is A > 0. From
Df, = 1 — 24, the fixed point is stable for A > 0 owing to s < s and unstable
for L <0 owing to sy > si. For A = 0, we have Vlt(()) = 0and

Df,(rf, 1) = 1 and Dy Df, (¥, &) = 1 # 0. (2.157)

For r,";(o) =0and A =0, Df,(r;;,») = l and szr(r;z, 1) = 6ar;, = 0 exists. So we
have D3 fr(r,t, A) = 6a. The variational equation is given by s+ = (1 + 6as,2€)sk.
Fora <0, sgy1 < s, the fixed point (1} ) A) = (0, 0) is sprially stable of the third
order. The bifurcation of the fixed point (r} ©0)° A) = (0, 0) is the Neimark bifurcation.
The Neimark bifurcation with stable focus (a < 0) is called a supercritical case. For
a >0, sg+1 > Sk, the fixed point (r,t(o), A) = (0, 0) is spirally unstable of the third
order. The bifurcation of the fixed point (r;: 0)° A) = (0, 0) is the Neimark bifurcation.
The Neimark bifurcation with unstable focus (¢ > 0) is called a subcritical case. The
supercritical and subcritical Neimark bifurcation is shown in Fig. 2.8a and b. The solid
lines and curves represent stable fixed point. The dashed lines and curves represent
unstable fixed point. The phase shift is determined by 6, = 6 — ¥ and r,t(z) # 0,
one get a unstable or unstable periodic solution on the circle.

From the foregoing analysis of the Neimark bifurcation, the Neimark bifurcation
points possess the higher-order singularity of the flow in discrete dynamical system
in the radial direction. For the stable Neimark bifurcation, the mth order singularity
of the flow at the bifurcation point exists as a sink of the mth order in the radial
direction. For the unstable Neimark bifurcation, the mth order singularity of the flow
at the bifurcation point exists as a source of the mth order in the radial direction.
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2.4 Lower Dimensional Discrete Systems

For a better understanding, the stability and bifurcation of 1-D and 2-D maps will be
discussed.

2.4.1 One-Dimensional Maps

Consider a 1-D map,
P xp — Xpqg with xg ) = (k, p) (2.158)

where p is a parameter vector. To determine the period-1 solution (fixed point) of
Eq.(2.158), substitution of x;; = xi into Eq.(2.158) yields the periodic solution
Xi = xj. The stability and bifurcation of the period-1solution is presented.

(i) Pitchfork bifurcation (period-doubling bifurcation)

dxp1 _ df Ok, p) — (2.159)
dxk dxk Xk=X7;
(i) Tangent (saddle-node) bifurcation
dxgyr  df (xg, p)
= =1. 2.160
dx;. dx;, ( )

X=X,

With two such conditions and fixed points x; = x;;, the critical parameter vector
po on the corresponding parameter manifolds can be determined. The two kinds
of bifurcations for 1-D iterative maps are depicted in Fig.2.9. Note that the most
common pitchfork bifurcation involves an infinite cascade of period-doubling bifur-
cations with universal scalings. An exact renormalization theory for period-doubling
bifurcation was developed in terms of a functional equation by Feigenbaum (1978),
and Collet and Eckmann (1980). Helleman (1980a, b) employed an algebraic renor-
malization procedure to determine the rescaling constants. It is assumed that f (xy, p)
has a quadratic maximum at x; = x,(z. If chaotic solution ensues at p, via the period-
doubling bifurcation, the function x4 = f (X%, Poo) is rescaled by a scale factor o
and a self-similar structure exists near x; = xg. Under the transition to chaos, the
period doubling bifurcation will be discussed where two renormalization procedures
will be presented in next section, namely, the renormalization group approach via the
functional equation method as outlined by Feigenbaum (1978) (see also, Schuster
1988; Lichtenberg and Lieberman 1992), and the algebraic renormalization tech-
nique as described by Helleman (1980a, b). In next section, the quasiperiodicity
route to chaos and the intermittency route to chaos will be discussed.
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(a) )

Fig.2.9 Bifurcation types: a period-doubling and b saddle-node

2.4.2 Two-Dimensional Maps

Consider a 2-D map
P :x; — Xpy1 with xgy = (X, p), (2.161)

where x; = (x, yi)T and f = (f, f>)T with a parameter vector p. The period-n
fixed point for Eq. (2.161) is (x}';, p), ie., P(”)xz = szrn, where PO = p o p—1)

and P(O) =1, and its stability and bifurcation conditions are given as follows:

(i) period-doubling (flip or pitchfork) bifurcation
tr(DP™) + det(DP™) 4+ 1 = 0; (2.162)

(i) saddle-node bifurcation

det(DP™) + 1 = tr(DP™); (2.163)
(iii) Neimark bifurcation
det(DP™) =1, (2.164)
where
DP(”)(X}:) _ HO_ » DP(x},) = [M} . |:3Xk+1i| .
Jj=n ' -1 Jxr, | CAV )

n

(2.165)
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For n = 1, we have

Oy dy
DP(x}) = [8xk+l] = [ w1 ”ﬁ} (2.166)
X XZ

an axku 3ykf2

tr(DP) = axkfl + ayku

(2.167)
det(DP) = 8xkfl . ayku - aykfl : axkf2
and
8xkfl = afl (Xkap)/gxklxk=x;: ’
aykfi = 8f1 (Xk’ P)/aJ/k|X,‘:x7 )
‘ (2.168)

axkf2 = afZ(Xkap)/axka:x;‘f s
8}’kf2 = afz(xk’l’)/ayklx,€=x,’; :

The bifurcation and stability conditions for the solution of period-n for Eq.(2.161)
are summarized in Fig. 2.10 with det(DP™) = det(DP" (x} (0> Po)) and tr (DP™) =

tr(DP(”) (x,t ©0)° Po))- The thick dashed lines are bifurcation lines. The stability of
fixed point is given by the eigenvalues in complex plane. The stability of fixed point
for higher dimensional systems can be identified by using a naming of stability for lin-
ear dynamical systems in Appendix B. The saddle-node bifurcation possesses stable
saddle-node bifurcation (critical) and unstable saddle-node bifurcation (degenerate).

2.4.3 Finite-Dimensional Maps

Consider an m-D map
P xp — Xppq withxgy ) = f(Xg, p), (2.169)

where X; = (X1x, Xoks -+ X)L and £ = (f1, /3, -+, /)T with a parameter p.
The period-n fixed point for Eq.(2.169) is (x;, p), and its stability and bifurcation
conditions are given as follows. Similarly, P(”)x,’; = Xy ,,» Where P" = popn—D
and PO =1

(i) period-doubling (flip or pitchfork) bifurcation
IDP™ + Lyysm| =0, (2.170)
(i1) saddle-node bifurcation

IDP™ — Lysm| = 0, (2.171)
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Fig.2.10 Stability and bifurcation diagrams through the complex plane of eigenvalues for 2D-
discrete dynamical systems
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(ii1) Neimark bifurcation

DP™ — alyxm  —BLnxm

: 2 2
Blnxcm PP — g1, | = OWithe +p7=1 " (2.172)

where
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0 X 0Xje11
() (*) — * _ +n +
DPT (%) = Hj=n*1 DP(Xk+j) B |:3Xk+n—1i|xz+ 1 [ Xy X}
n
(2.173)
with
ax'(kJrj)f ! axZ(k+/>f1 ey 1
« OX4j+1 Wiy 2 a2 0 gy f2
DP(x ;) = . = . : . .
ki Xy : :
ax‘(kH)f m ax2<k+j)fm 8xﬂ7(k+j)fm Xjoyj
(2.174)
forj=0,1,---,n—1and
0f8 (Xjtj,
i /B = Yoxk4y. 2) fora, p=1,2,--,m. (2.175)

X (k+)

2.5 Routes to Chaos

The routes to chaos will be discussed. The 1-D discrete system will be discussed
first, then we will discuss the 2-D discrete systems.

2.5.1 One-Dimensional Maps

(A) Period doubling route to chaos

Herein, two renormalization group methods will be discussed as follows.
(i) Functional renormalization theory. Consider a universal function as
g (x) = lim o"f ) (x/a", poo) (2.176)
n—00
where g* must satisfy the rescaling equation of the geometry, that is,
g =ag" (g (x/a) = Tg* (2.177)
in which T is a period-doubling operator. From Eq. (2.177), the universality of

the scale factor « is obtained. The linearization of /' (x, p,) at p, = po yields
the universal constant §.
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af (x, pn)

3 (Prn — Poo) + 0l P — Poo -
P

Prn=Pco
(2.178)
Applying the period-doubling operator n times to Eq.(2.178) yields,

f(xv p}’l) :f(xs pOO) +

(8]'(x, Pn)

)
opn

(P — Poo).  (2.179)
Prn=Px

lim T"f(x,p,n) =g"(x) + Lg*
n—0o0

Substitution of the unstable eigenvalue of L+ into Eq.(2.179) gives

. af (x, pn)

lim 7"/ (x, pn) = g*(x) + 6”(Q) (Prn — Poo)-  (2.180)
e apn Prn=Pco

Transformation of the point of origin to x = Xx¢ and normalization of

Eq.(2.158) by setting g*(0) = 1, the condition is

£0,p,) = 0. (2.181)

From Egs. (2.180) and (2.181), the universal constant is proportional to

[IPn — Pool| ~ 87", (2.182)

(ii) Algebraic renormalization theory. Taking into account the period-2 solutions
of Eq.(2.158), we can solve for x14, X2+ at Xy = Xj42:

S Xk p) = Xgg1 and f (X g1, P) = X2 (2.183)

Using a Taylor series expansion, we can apply a perturbation to Eq. (2.183) at

Xk = Xk@yx + AXg,  Xky1 =Xk()+ + AXggr and Xy =Xg2)+ + AXpto,
that is,

Axpy1 = f1(Axk, ), (2.184)

Axpi2 = f2(AXpt1, P)- (2.185)
Substitution of Eq.(2.184) into Eq. (2.185) yields

Axiy2 = 2(fi(Axk, p), p) = f (Axg, ). (2.186)
Rescaling Eq. (2.186) with

Xj, = ¢ Axy (2.187)

gives the corresponding renormalized equation, i.e.,
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Xjeyo =f (X Pors1), (2.188)

where
Pokt1 = (Pyk). (2.189)

Equation (2.189) presents a relationship of the bifurcation values between two
period-doubling bifurcations. The rescaling factor « is determined by com-
paring Eq (2.161) with Eq. (2.158). If chaos appears via the period-doubling
cascade, i. €., Pok+1 = Pok = Poo, the universal parameter manifolds are deter-
mined.

Quasiperiodicity route to chaos
Consider a mapping defined on the unit interval 0 < x < 1, that is,

X1 = X + Q4 (X, p) = F(xp, 2, p), (2.190)

where f(xy, p) is a periodic modulo, i. e., f(x; + 1,p) = f(xk, p); and
is a prescribed parameter defined in the interval 0 < © < 1. In Eq.(2.190),
parameters (€2, p) can be adjusted to generate a transition from quasiperiodicity
to chaos. We can increase the parameter vector amplitude ||p|| first under a
rational winding number w = p/q fixed to a selected value, and we will have
to increase 2 as well. The winding number w is an important quantity for
describing the dynamics, which is defined by

Xl — X0

k

w(2,p) = lim . (2.191)
k—o00
Define a quantity €2, ,(p) which belongs to a g-cycle of the map f'(x, p) and

shifted by p. This quantity generates a rational winding number w = p/q and
for a fixed value of p, it can be determined from

F9(0,92p4,p) =p, (2.192)

where F@ = F(F=D). Choosing the winding number equal to the golden
mean w* = («/5 — 1)/2, the universal constants for chaos can be computed.

Intermittency route to chaos

There are three types of intermittencies, Types I, II and III. In this section, we
will present only Type I and III intermittencies. The Type II intermittency will
be discussed in a later section under 2-D maps.

Type L intermittency. Consider an iterative map with a small perturbation defined
by

Xt =f (g, ) = & + Xp + nxg, (2.193)
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(a) (b)

'xk
. N €<0 L >0

SN oy,

N\ E': Intermittency %

7

M\

s
X < u
k xk‘ X Xy

Fig.2.11 a bifurcation and b iterative map for Eq. (2.193)

(@) (b)

Xt

<0
Xis1 <l

T

s u
X Xk

Fig.2.12 a Intermittency and b stable and unstable fixed points for Eq.(2.193)

where ¢ is a control parameter and 1 is a prescribed parameter. This mapping
results in the Type I intermittency caused by the tangent bifurcation which
occurs when a real eigenvalue of Eq.(2.193) crosses the unit circle at +1. In
other words,

x; = £(—¢/m"* and Df (x}) = df fdxp )= =1+ 20xf. (2.194)

Forn > 0, if & > 0, no fixed pointexists. If e = 0, x; = x; = Owith Df (x}) =
1. Since D?*f (x3) = 2n # 0, the saddle-node bifurcation occurs. For >0,
if >0, xj = (—¢/m)'/? = x¥ with Df (x}) > 1 and x} = —(—¢/n)'/? =
x;. with Df (x}) < 1. The tangent bifurcation and iterative map for the Type
I intermittency is shown in Fig.2.11. The intermittency and the stable and
unstable fixed points are presented in Fig. 2.12. This case includes the Poincare
map for the Lorenz model and the iterative map for the window of period-3
solution in the chaotic band. The renormalization procedure of Eq. (2.193) has
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been presented in Hu and Rudnick (1982). Also, interested readers can refer to
Guckenheimer and Holmes (1990), and Schuster (1988) for details.

Type 111 intermittency. Consider the following an iterative map
X1 =f (xk, &) = —(1 + &)xp — nxz, (2.195)

which produces the Type III intermittency caused by the inverse pitchfork
bifurcation. The fixed points are

xj =0and x} = £(—¢/n)'/? with

(2.196)
Df (xf) = df [dxylg=x: = —(1+ &) = 3nx;.

For n > 0, if ¢ > 0, only one unstable fixed point exists. x;i = xZ =0 because
of Df(x;)<—1. If ¢ <0, there are three fixed points. x;=x; =0 and
Df(x})>—1l;x; = xj= *(—¢/m'/? are stable with Df(x})<—1. If
=0, x;=x =0 with Df (x})=—1. sz(xZ) = — 6nx; =0, however,
D3 'f (x}) = —6n <0. This is an inverse pitchfork bifurcation (unstable period-
doubling bifurcation). The bifurcation diagram and the iterative map for the
Type II intermittency is presented in Fig.2.13. In addition, the intermittency
and the stable and unstable fixed points are presented in Fig.2.14.

2.5.2 Two-Dimensional Systems

For 2-D invertible maps, the transition from regular motion to chaos takes place
via a series of cascades of period-doubling bifurcations. The renormalization pro-
cedure of the period-doubling route to chaos for a 2-D map appears in next section
through an example. The quasi-periodic transition to chaos and the intermittence
to chaos are briefly presented through an example. The quasiperiodic transition to
chaos and the intermittence to chaos are presented briefly.

(A)

Quasiperiodic transition to chaos
This route to chaos is presented via the standard map as

Xk41 = X + K sin 6 and 01 = O + Xjey1- (2.197)

The critical condition of Eq. (2.197) for transition from local to global stochas-
ticity is K &~ 0.9716- - -. For a dissipative standard map, consider

Xk+1 = (1 = 8)xx + K sinby and 6j 1| = O + Xp41, (2.198)

where § is the dissipative coefficient. Some results are given in Lichtenberg
and Lieberman (1992).
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~ Xy

u

X, X
} £

X, X, X}
Fig.2.13 a Inverse pitchfork bifurcation and b iterative map for Eq. (2.195)

(a) (b)

&>0
X = X

Xewr A Xen

Xt = 7%

u X,
k u s u k
i X X, X}

Fig.2.14 a Intermittency and b stable and unstable fixed points for Eq.(2.195)

(B) Type II intermittency to chaos
Consider the following mapping which represents Type II intermittency to
chaos,

el = (1 + o) + 771’,3C and 641 = 6k + 2, (2.199)
Xj = i cos 0 and yj = 1y sin 6. (2.200)

When a pair of complex eigenvalues of Eq.(2.199) passes over the unit cir-
cle, the subcritical Neimark bifurcation occurs. Hence, Type II intermittency
results from the subcritical Neimark bifurcation as shown in Fig.2.15, and the
corresponding intermittency and stable and unstable fixed points are presented
in Fig.2.16.
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(@) (b)

n) n

Fig.2.15 a Subcritical Neimark bifurcation and b iterative map for Eq.(2.199)

(a) (b)

Fig.2.16 a Intermittency and b stable and unstable fixed points for Eq. (2.199)

2.6 Universality for Discrete Duffing Systems

Consider a Duffing oscillator
¥4 0x+aix +oapx’ = Qo cos Q, (2.201)

where system parameters are §, a1, a2, Qp and 2. Discretizing it with respect to
time yields a discrete map to investigate qualitatively its universal behavior. Here,
by means of the Naive discretization of the time derivative, Eq. (2.201) is discretized
at xp = x(t) and t; = 2k /Q using time difference At = 27/ Q for external
excitation. Therefore

Nt — 2% + X1 + (1= D)Xk — Xk—1) + exg +dxi = (1 = by, (2.202)

where all parameters are defined as
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2 2 2 2
h=1-— 5”5, e = (é)zal, d = (g)z(xz, w2 (2.203)
From Eq. (2.202), a Duffing map is constructed as
P:Xxp1 =Xk +@ + Yy and yrg = byp — exg — dxi. (2.204)

To qualitatively investigate the Feigenbaum cascade of Eq.(2.201), the renor-
malization of Eq. (2.204) will be presented via period-doubling bifurcation cascade.
Consider a transformation as

Xi = Xj + 6 and Ve =Y —w. (2.205)

Substitution of the foregoing equation into Eq. (2.204) yields

Xir1 = Xk + Yip1 and Yiyy = BY; + CXi + DX} — EX], (2.206)
where

—d8* + 5+ (—1+byw =0, (2.207)

B=b,C=—(c+3ds*,D=—-3d5, and E =d. (2.208)

From Eq.(2.207), the parameter § is determined. Using Eq.(2.206), its period-1
solution is determined by

Y,f(l) =0and X,f(l) =0;

i . D+ /D2 +4CE (2:209)
Yk(2,3) =0and Xk(2,3) = .
2F
Deformation of Eq. (2.206) is
X1+ BXi_y = (1 + B+ O) X + DX} — EX}. (2.210)
The second iteration of Eq. (2.206) gives
X2 + BX = 1+ B+ O)Xps1 + DX, — EX} . (2.211)

The period-2 of Eq. (2.206) requires X1, = X} and Xy | = Xj;—_. Thus simplifi-
cation of Egs. (2.210) and (2.211) gives

agXP + asX) + as X} + as X + ao X7 + a1 Xy + ap = 0, (2.212)
where
ap = (1+ B)*[C +2(1+ B)].ay = D(1 + B)[C +2(1 + B)],
ay = D*(1 4+ B) + EC?> —3(1 + B)E[C +2(1 + B)], (2.213)

a3 =2DE[C — (1+ B)],as = E*[3(1 + B) + 2C] — D*E, a6 = —E°.
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For all the given parameters, solving Eq. (2.212) numerically obtains X} = X, mean-
while, using one of Eqgs. (2.210) or (2.211) and X4, = X and X4 = X1, the

second solution Xy =X}’ ; can be determined. With the periodicity of period-

2, solving of Eqgs.(2.210) and (2.211) directly gives the period-2 solutions via
Newton-Raphson method. In the neighborhoods of solutions X’ L consider a
perturbation as

Xieyj =X,:‘+j+AXk+j forj=-1,0,1,2. (2.214)
Substitution of them into Eq.(2.210) yields a group of iterative equations as:

AXj 4+ BAX;_y = e1|AXj_ + enAXE | — EAX} |,
AXir1 + BAXj—1 = e21 AX + enAXE — EAX], (2.215)
AXiyr + BAXy = e11AXjq1 + enAX] | — EAX}, |

where e, e12 and ep1, exo are

ei1 = 1+ B+ C +2DX} —3E(X})?, e1n = D — 3EX}

' C . (2.216)
e =1+ B+ C+2DX}, | —3E(X}, )% e = D — 3EX}, .

Multiplication of the firstequation by B and the second equation by e11 of Eq. (2.215),
and adding both equations into the third equation yields

AXjy2 + BPAXy 5 =(er1e21 — 2B)AX) + e11enAX}
—e11 AX] + enn(AXE, | + BAXZ ) (2.217)
+ei3(AXE,, +BAX] ).

For a small vicinity of the bifurcation of period-2, AXj;,| and AXj_; are quite
close. Therefore a similar linear scale ratio is introduced as

F=AXji1/AXp_1. (2.218)

The nonlinear terms can be ignored because A X;] kv G=-1,0,1,2) is the infinites-
imal quantity. The second equation of Eq. (2.215) gives an approximate relationship
as

€21

AXj_1 ~
k=l r+ B

AX;. (2.219)

From Egs. (2.212) and (2.219), equation (2.217) becomes

AXjio + B?AXy_5 = (e11€21 — 2B)A X
+ [er1e2n + e12e3,(* + BY)(r + B) 2]AXE  (2.220)
—[e11E —en3e3,(* + B (r + B)*1A X},
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From the renormalization theory, the rescaling length of the variables should be
adopted.

X, =eAXjand X} | = eAXj10, (2.221)

where ¢ is a scaling constant. The foregoing equation makes Eq.(2.220) have an
algebraically similar structure to Eq. (2.210), i.e.,

X, +BX,_ =CX,+D X)) —E X)), (2.222)
where

B'=B* C|=ejjeyy —2B,C;=14+B+C,
D' = elerien + enne3, (F + B*)(r + B) 7], (2.223)
E' = 82[611E — 613831 (}’3 + BS)(I’ + B)73]-
If Eq.(2.222) has a self-similarity with Eq.(2.210), the similar scaling ratio r in
Eq.(2.218) should be one, i.e., r = 1 in Eq.(2.218). The similar parameters have the
same property as the scaling of variable Axy, and this property indicates that the
cascade of bifurcations will be accumulated. Therefore the chaos is generated via
period-doubling bifurcation at B = B’ = B, C; = C| = Cioo, D =D’ = Do
and E = E’ = E4. Thus Eq.(2.223) becomes
B=0orl,
Ci +2B = [Cy +2DX} —3E(X)?I[Cy + 2DX},, — 3E(X;, D,
D = glejen + ened * + B*)(r + B) 7%,
E = 82[611E — elgegl(r3 + B3)(r + B)_3].

(2.224)

where C; = 1+ B+ C. To solve five parameters from four equations, one parameter
should be given. However, from Eqs. (2.207) and (2.207), the parameter D is deter-
mined if parameters B, C and E have already been computed. Employing Eqgs.(2.212),
(2.213), (2.223) and (2.224), the universal parameter values for Eq. (2.206) are deter-
mined. To verify these values, the corresponding universal values are determined
numerically via iteration of Eq. (2.206). Taking the parameters D = 1.0and £ = 1.0
into account, the universalized parameter C, computed via Renormalization Group
(RG) and Numerical Simulation (NS), versus the damping parameter B are shown in
Fig.2.17a with solid and circular-symbol curves, respectively. RG values are close
to the NS values. For the parameters D = —1.0 and £ = 1.0, the universalized
parameter C; values RG(+), NS(+), RG(—) and NS(—) are the RG(—), NS(—), RG(+)
and NS(+) of the situation of D = 1.0 and E = 1.0, respectively. As for the situation
of D = —1.0 and E = —1.0, the universalized parameter C; versus the damping
parameter B is also plotted in Fig.2.17b. This renormalization group can provide
a good prediction for D = 1.0 and £ = 1.0 as the parameter B corresponding to
the damping is in the range of B = (—0.5,0.9). However, a good prediction for
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(a) (b)

Universal Parameter C,
Parameter C,

28 1 1 1 1 0.0 1 1 1 1
-1.0 -0.5 0.0 0.5 1.0 1.5 -1.0 -0.5 0.0 0.5 1.0 15

Parameter B Parameter B

Fig.2.17 Universal parameters via renormalization: a Duffing map with a soft spring and b Duffing
map with a double-potential well

D =—-1.0and £ = —1.01is given for B = (—0.8,0.9). B = 1 implies the conser-
vative system, and B > 1 implies the negative damping system. From such universal
parameters for chaos generated by the period-doubling, the system parameters are
8, a1, a2, Qp and 2 can be determined.
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Chapter 3
Chaos and Multifractality

In this Chapter, basic concepts of fractal in nonlinear dynamical systems will be pre-
sented as an introduction. The fractal generation rules will be presented for nonran-
dom and random fractals. The multifractals based on the single- and joint-multifractal
measures will be presented. Multifractality of chaos generated by period-doubling
bifurcation will be presented via a geometrical approach and self-similarity. Fractal-
ity of hyperbolic chaos will be discussed.

3.1 Introduction to Fractals

Chaos possesses self-similar structures which imply the presence of fractals. By self-
similarity, we mean that no matter how much the view is zoomed, the same basic
shape is retained. Therefore, whether an object is viewed globally or locally, the same
basic structure is observed. It is also possible to use fractal dimension measurement
to describe chaotic or strange attractors in a dissipative dynamical system. Most
fractals in chaotic dynamics have multiscales and multimeasures, and thus, they are
nonuniform fractals or multifractals. Unlike fractals which are geometrically self-
similar, multifractals are statistically self-similar. Some basic concepts of fractals
necessary to study their characteristics in chaos will be presented next.

3.1.1 Basic Concepts

What are fractals? Simply speaking, fractals are geometric objects that possess non-
integer dimension and self-similarity. They do not necessarily have characteristic
sizes, namely, we cannot measure dimensional quantities such as length, area and
volume. The geometry can only be realized using a recursion of the iterative map.

Before definition of fractals is given, the following two examples known as the Sier-
pinski gasket fractals are presented. In Fig.3.1, the similar structures are generated

A. C.]. Luo, Regularity and Complexity in Dynamical Systems, 137
DOI: 10.1007/978-1-4614-1524-4_3, © Springer Science+Business Media, LLC 2012
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JALD L5 A

(Ist)  (2nd) (3rd) (4th)

Fig.3.1 The first four generations of the Sierpinski gasket fractals based on an expansion rule

(1st) (2nd) (3rd) (4th)

Fig.3.2 The first four generations of the Sierpinski gasket fractals based on a reduction rule

by an expansion rule, whereas in Fig.3.2, the similar structures are produced by
a contraction rule. Both of the similar structure possess the characteristics of self-
similarity, and have a non-integer dimension of 1.58. Thus, the Sierpinski gasket
is a fractal. From Figs.3.1 and 3.2, the scaling size L and number of self-similar
structures N(L) can be summarized in Tables 3.1 and 3.2. Note that ry is the original
size.

The self-similar law in Fig. 3.1, from Table 3.1 and the expansion rule, is:

N(L) = (L/ro)P. (3.1)
whereas, the self-similar law in Fig. 3.2, from Table 3.2 and the reduction rule, is:
N(L) = (ro/L)".. (3.2)

From Eq. (3.1), the scaling size L grows rapidly as expected under the aggregation
rule. On the other hand, from Eq. (3.2), the scaling size L shrinks rapidly as expected
under the reduction rule. To characterize a fractal, the Hausdorff dimension based
on a uniform formula is defined as follows.

Definition 3.1 For any object with non-empty N parts which are scaled by a ratio r
in the m-D Euclidean space, there is a self-similarity satisfying

NP =1, (3.3)
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Table3.1 Fractal distribution of the Sierpinski gasket with an expansion rule

Generation no. Scaling size L No. of self-similar structure N (L)
Ist 207 30
2nd 211 3!
3rd 22rg 3?
4th 2319 33
nth 2"rg 3"

Table 3.2 Fractal distribution of the Sierpinski gasket with a reduction rule

Generation no. Scaling size L No. of self-similar structure N (L)
Ist (1/2)%r 30
2nd 1/2)'rg 3!
3rd (1/2)%ry 32
4th (1/2)%rg 33
nth 1/2)"ry 3"

the Hausdorff dimension D in Eq. (3.3) is defined as

log N
p=_22% (3.4)
logr

From the measure theory, mathematically, the Hausdorff dimension can be defined
(e.g., Falconer 1990).

Definition 3.2 Consideramap S : E — E in %", where E € Z#" is a closed set.
If there is a number r with 0 < r < 1 such that |S(x) — S(y)| = r||x — y|| for
all x,y € E, then the mapping S is termed a similarity. Suppose a self-similar set
F C E is invariant under the mapping S. The Hausdorff dimension measure H? (F)
is defined for any § > O:

HP(F) = gin}) HY(F)
o0 (3.5)
= lim inf 1 3" U, ‘F C U, Uj and 0 < |Uj| < 6 forall j
—

j=1

where U; is any non-empty §-cover of F in %",

Theorem 3.1 If F C %" and r > 0 then

HP(F) = rPHP (F) (3.6)
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[ |
L] L

L] O

Fig.3.3 Fractals generated by an iterative map in 2-D space

where r FF = {rx|x € F} means that the set F is scaled by a similar factor r.

Proof Consider {U;} to be a non-empty §-cover of F in %" and {rU;} to be a
non-empty §-cover of rF in %". Thus

HE(rF) < D 1rU; 1P =rP >0 1P < rPHP(F).
j j

This is because U; is any 8-cover of F in %". If § — 0, H?(rF) < rPHP(F).

Similarly, if the scaling factor r is replaced by 1/r and F is replaced by rF, then

rPHP (F) < HP (r F). Therefore, H? (r F) = rPHP (F). [ ]
Application of H? (F) in Eq. (3.5) to the self-similar set F gives

N(E)
HP(F) = > HP (S(F)) = N(E)rPHP(F)
i=1
with F = UY®) F; and HP (r F) = rPHP (F).

3.7

The scaling ratios are r = ro/(2"rg) = 27" in Fig.3.1 and r = (27 "rg)/ro = 27"
in Fig.3.2. Thus, the Hausdorff dimension for the Sierpinski gasket fractals is

p=10eB) _log®) g0 (3.8)
log(2")  log(2)

Another interesting point about fractals is that different fractals can have the same
fractal dimension as for example, the Sierpinski gasket fractals. Consider a fractal
shown in Fig. 3.3. Using Eq. (3.4), the Hausdorff dimensionis D = 1.58 - - - .

Fractals can be classified as nonrandom and random. In addition, from scaling
and measures, fractal can also be uniform or nonuniform. Uniform fractals are called
simply as ‘fractals’ whereas nonuniform fractals are known as ‘multifractals’. As
expected, a nonrandom fractal is generated by a deterministic rule, such as a given
iterative map. However, a random fractal is generated by a stochastic rule. Random
fractals, whether uniform or otherwise, are always statistically self-similar. In other
words, such random fractals cannot be geometrically self-similar. However, random
fractals can represent natural phenomena such as coastlines, land surfaces, roughness,
cloud boundaries and so on.
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3.1.2 Fractal Generation Rules

The generation of fractals based on multiple generators will be briefly presented in
this section, and the detailed discussion can be referred to Luo (1991) (also see,
Leung and Luo 1992). The generation of nonrandom fractals will be discussed first
by use of a single-scale single generator. Next, the generation of random fractals will
be discussed through a single-scale multigenerator.

3.1.2.1 Nonrandom Fractals

If there are K generators in a fractal structure, and the ith generator has N; non-empty
sets with a linear scaling ratio r; in %", then for all K generators, the total number
of equivalent nonempty sets N and linear scaling ratio r are determined by

K

K
N=HN,- and r=Hr,-. (3.9)

i=1 i=1
From Eq. (3.3), the Hausdorff dimension of this fractal is
Zle | log N;
Zsz | logr;

To extend the above idea, consider the ith generator has m;-time action on the fractal.
The corresponding Hausdorff dimension is computed by

D=— (3.10)

ZiK=1 m; log N,'
ZiK=1 m; logr;
However, from Eq. (3.9), the Hausdorff dimension is independent of the action

order of the generators, which implies that the different fractals can have the same
Hausdorff dimension.

D= — @3.11)

3.1.2.2 Random Fractals
Basically, there are three possible methods of generation: random action, random
generators and combined random action and generators.

(A) Random action: From Eq. (3.11), setting M = Zlel m; and manipulation gives

mi
Z'Kzl — log N; K 5 los N;
p=-—"M _ _Zizipilogh; (3.12)

ZK: mi log r; Zlk=1 pilogri
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where p; is the action probability of the ith generator with the properties of
Z:’K:I pPi = 1 and Di =m,-/M.

(B) Random generator: If the ith generator has L; subgenerators with action prob-
ability of p;; ( 25":1 pij = 1), linear scaling ratio r;; and, N;; non-empty subsets
(j=1,2,..., L;), then the corresponding mean values are

sz/ ij and (ri) szﬂ’z/, (3.13)

and the corresponding Hausdorff dimension is given by

K
D:_Zizl mlog (Ni) _ 21 1 1M log(Z, 1 PijNij) (3.14)

S imilog(r) XK milog(Xi piiNy)

(C) Random action and random generator: The Hausdorff dimension for a fractal
generated by the combination of random action and random generators is given by

K
D— 2= pilog(Ni) _ Zz 1 Pi log(Z, 1 PijNij) (3.15)

ZiK=1 pi log (r;) Z, 1 Pi 10g(Z, 1171]sz)

Readers are interested in the other discussion of random fractals which can be referred
to Falconer (1990).

3.1.3 Multifractals

In the foregoing section, the fractal generators are based on the uniformal scaling. In
this section, the multifractals with nonuniform scales and measures will be discussed.
First, we introduce the concept of fractal measures and then fractal scales.

3.1.3.1 Single Multifractal Measure

(A) One scaling multifractal: Multifractal distributions can be described using the
scaling properties of the coarse-grained measures. Consider p, (x;) to be a probability
measure in a box of size /; centered at point x;, and this box has a scaling ratio
ri = l;/L, where L denotes its largest scale. The scaling index « can be defined as a
local singularity strength at position x; (e.g., Halsey et al. 1986),

pr (i) ~rf. (3.16)

Consider the scaling of the gth order moment of p,, (x;) with box size [;. A new
auxiliary parameter t(g) is introduced by
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D P 1!~ (3.17)
From Eq. (3.17), the auxiliary parameter 7(g) is defined as

log > i [pr, (x)]?

t(g) = lim (3.18)
1j—>00 log(r;)
The generalized dimension is introduced by
t(q)
D, = . 3.19
0= (3.19)

Consider N, (o) to be a number of a box of size r; with a value of « in the band
do. The fractal spectrum f (o) is defined though

N, (i) = p(r; T “da (3.20)

where p(«) is a nonsingular weighting function. From Egs. (3.16), (3.17) and (3.20),
for all «, one achieves

Sl = [ p@ntt g 7 (321)

For r = max(r;) — 0, the foregoing equation gives
l

t(q) = qa — f(a). (3.22)
Differentiation of Eq. (3.22) with respect to g yields

= TD g gY@ (3.23)
do

(B) Multiscaling fractals: Before discussion of the multiscaling fractals, the Haus-
dorff dimension of fractals with multiscales will be introduced as in Sect.3.1.1.

Definition 3.3 Consider a group of mappings S; : £ — E (i = 1,2,...) in #"
which E € #" is a closed set. For a number r; with0 < r; < 1.If |S;(x) — S; (y)| =
ri|x —y| for all x,y € E, the mapping S; is called the similarity. Suppose a self-
similar set ' C E is invariant under the mapping S; withF' = va:(f) S; (F). After
mapping S; has acted on F, it produced N(E) similar sets. The Hausdorff dimension
HP (F) for the self-similar set F is defined as for any § > 0,

N(E)

HP(F) = > 81im0H§(F)
i=1

hop|FCU UL U and
= > liminf § > |U;71P oy i . (324
im0 = 0<|U;"| <éforall j
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Theorem 3.2 If F; C #" and r; > 0 then
HP (r; F) = rPHP (F) (3.25)

where ri F = {rix| x € F} means that the set F is scaled by a similar factor r;.
Proof The proof is the same as the proof of Theorem 3.1. |
Application of H” (F) in Eq. (3.24) to the self-similar set F gives

N(E) N(E)

HP(F) = > HP(S;(F) = > rPHP(F). (3.26)

i=1 i=1
Simplification of the foregoing equation leads to

N(E)

Z rP=1 (3.27)
i=1

for the Hausdorff dimension of multifractals.

For the measure of a multifractal, consider a multiscaling box as a measure of
fractals. As in Grassberger (1983a, b, ¢), and Halsey et al. (1986), a general spectrum
of fractal dimensions is introduced. If the scaling ratio r; = [; /L of every box is
variable, a partition sum can be similarly defined as

r
L, t.r) = (3.28)

— .7(q)
1 1

where the auxiliary parameter 7 is
t(q) = (¢ — D Dy. (3.29)

For a chosen value of ¢, for r = max;{r;} — 0, the partition sum goes from zero to
infinity, i.e.,

0 T < 1(q)

I'(q,7t(q),ri) = { @ T > 1(q) (3.30)
constant T = 1(q)

and Egs. (3.22) and (3.23) can be used for the scaling index and fractal spectrum.

3.1.3.2 Joint Multifractal Measure

Asin Luo (1995), consider p;; (x;) denotes the jth measure in the total m-probability
measures for a box of size /; centered at the point x; for j = 1,2,...,m. The
box has a scaling ratio r; = [; /L, where L is the largest scale. The scaling index
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a;(q1, g2 - - - gm) is defined as alocal singularity strength at position x; for probability
pij(xi),ie.,

pij (i) ~ 1. (3.31)

Similarly, a partition sum is defined as

[T}, 1P'q'j
F({CII’CIL-n,CIm}yT(CIl,QLH-:Qm)’{r1’r2,o'-,rm}) :ZW
ST,
l
(3.32)
where the auxiliary parameter 7(q1, g2, . . ., ¢;) 1S NOW given by
70,...,qj,...,0) = (g; — 1)Dy;. (3.33)

For all g; with r = max{r;} — 0, the partition sum goes from zero to infinity.
1

F({Q1, q2, ~~s61m},f(6111 q2, -~'sCIm)v {}’1, r, -~-»rm})

0 T <1(q1,92, -+ qm),
=1 T>1(q1,92, - qm), (3.34)
constant T = 7(q1, g2, ..., qm)-

Consider Ny, (a1, a2, . .., o) boxes of size r;, with values of (a1, a2, ..., ay)ina
volume H;”zl daj, the fractal spectrum f(or1, a2, ..., o) is defined through

m
Ny (a1, 00, ...y o) = plag, oz, ..., otm)ri_f(o”’w2 """ om) Hdaj. (3.35)
i=1

For all (a1, a2, ..., o), with Egs. (3.31) and (3.35), equation (3.32) becomes

m 4j
Z Hj:l pl/
,1(91:42.-Gm)

i i
—1( Y+ g — [, 0m) "
:/P(Oll,OlL...,am)Vi e TS TSSO T . (3.36)
i=1

For r = max (r;) — O,
l

m
(g1, 925 -+ qm) = quaj = flap, az, ..., an). (3.37)
j=1

Differentiation of Eq. (3.37) with respect to ¢; and «; yields

ot(q1, 92, ---»qm) af (o, 02, ..y Q)
(1. q2. - Gm) = > "L oqp= o (339
J J
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3.2 Multifractals in 1D Iterative Maps

Consider the 1D iterative map
Xk+1 = f(xk, p) fork € N, (3.39)

where N is the natural number set. The kth iteration of f(x) is given by

FO@ ) = Ve, w), FOu,p) =x. (3.40)

For a 1D discrete process, the simplest nonlinear difference equation has rich dynami-
cal behaviors. Such a mathematical model has been studied extensively. For instance,
May (1976) gave an interesting discrete model for dynamical processes in biologi-
cal, economic and social sciences. The metric universality for such a discrete model
is a very important characteristic (e.g., Derrida et al. (1979)). Feigenbaum (1978,
1980) studied the universal behavior of 1D systems and quantitatively determined
the universal numbers. Such numbers give the threshold values from period doubling
bifurcation to chaos. In 1981, Nauenberg and Rudnick (1981) discussed the univer-
sality and the power spectrum at the onset of chaos for 1D iterative maps. Collet
et al. (1981) generalized the period doubling theory to higher dimensions. Zisook
(1981) studied the universal effects of dissipation in the 2D mapping. The computa-
tion of the universal rescaling factors for both 1-D and 2-D maps has been carried to
a very high precision by Hu and Mao (1985). Halsey et al. (1986) provided fractal
measures and their singularities, and applied them to characterize strange sets. They
studied the fractal of the 2°°-cycle of period doubling by choosing fractal scales
i = 1/app, [ =1 /al%D, where app = 2.502907 875 is the factor in the period
doubling for the iterate map xx+1 = uxi(l — xg). They obtained the following
dimensions:

Do=0537.. ..
_ 1082 75551
T logapp (3.41)
log 2
Divo= —2%  _037775...,
2logcxpD

where Dy is the Hausdorff dimension and D_,, and D are the limit dimensions.
A more accurate Hausdorff dimension was given by Rasband (1989):

log?2

D0=—10 [ 1 2.7 _
g | (app + (a@p)) log?2

=0.54387--- . (3.42)

In this section, a method to compute the period doubling solutions of a general 1D
iterative map is presented. An example is presented for demonstration and showing
procedure.
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3.2.1 Similar Structures in Period Doubling

Consider a 1D map of one parameter as

X1 = f (X, 1) (3.43)

where is the parameter. The fixed point x;° is determined from Eq. (3.43) by setting
X1 = X If

dxp41 _ df (xi, 1) - 1 (3.44)
dxy dxy ‘

Xp=x}

then this fixed point is the critical point of bifurcation. Suppose the solution of Eq.
(3.43) exist for x¢+1 = x¢ = x;. The minimum value 1 can be determined for
the onset of the fixed point x;/, and the maximum value of . just before the first
bifurcation is u}. Thus, the stable solution of Eq. (3.43) for the period-1 solution
can be determined for u € (g, uy). For u = uj, the period-doubling bifurcation
exists. For . > 7}, the period-2 solution of Eq. (3.43) is determined by

Xip2 = PO ) and X0 = xp = ;. (3.45)

If there is a critical parameter of w3 for x; 42 = x; = x;/, and the following equation
holds

dxiyo  dfP(xg, ) _dxpyo dXgqn

dxy dxy N dxiq1 dxy

Xp=x};

=1, (3.46)

k%
O x4 )

then the critical parameter ;1 = w3 is for the period-doubling bifurcation of the
period-2 solution. The stable period-2 solution of Eq. (3.43) exists at 1 € (i}, i43).
For v > 3, the period-4 solution of Eq. (3.43) is determined by

xkad = P, ) and xppgq = xx = X (3.47)
In general, the period-2" solution of Eq. (3.43) is determined by
X = @, ) and  xpyom = xx = x}'. (3.48)

To illustrate such iteration process, consider solutions caused by the period-
doubling bifurcation as in Fig.3.4(a)—(d). The similar structures of solution exis-
tence intervals are very clear with different scalings. From the horizontal direction,
the similar structures are extracted as summarized in Fig. 3.5. From the similar struc-
ture construction in Fig. 3.5, Eq. (3.48) can be renormalized by rescaling its map.
That is, the origin is moved to the fixed point in Eq. (3.43), by letting 7 = x — x*,
and z = az, where a is the scaling factor of renormalization. Equation (3.45) then
becomes
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(a) (b)
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* L1 |
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(c) (d)
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X

Fig.3.4 The iteration of iterative map (xx+1 = f(xk, u) = puxip(l — x¢)) : a the first iteration,
b the second iteration, ¢ the third iteration and d the fourth iteration

Zk+1 = f(2ks 1) (3.49)
where the new parameter 141 is given by the function

m1 = g(u). (3.50)

Equation (3.49) is similar to Eq. (3.43). If the period doubling bifurcation occurs
again, we obtain

2 = g(uy) = glg(n)). (3.51)

After m-cycle period-doubling bifurcations, we have
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Fig.3.5 Period-doubling A X A
construction of the 1-D P ‘
iterative map Iz o
X1 = f (X, )
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u | | | [
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pom = g(pm—1) = g™ (). (3.52)

If tm = n—1 = oo, the period-doubling process approaches chaos. For w,,;, < oo,
the iterative map, xx+1 = f (xx, n), will have m-cycles period-doubling bifurcations.
The period-doubling length scaling factors are defined as

1= Iy = g 1= I = 2| (353

5051 °S;

in which the index i € {1, 2, ..., m} refers to the ith bifurcation of the iterative map
and s; € {0, 1}. The terms z7_|, z Agysys; Are computed, respectively, from:

= G i, 2 =P @ i) (3.54)

In determining z Asgsyosp only two of its three nonzero z; | are selected which results
in minimum |z} ; — z;—1|. In particular, the length scaling factors of the first
period-doubling bifurcation are given by

Ig =x* — x4y, I} =xa, —x*, Iozx*—xAg (3.35)
where as shown in Fig.3.5, x4, and x4, are determined from
= A0 . (3.56)

In general, for the mth-cycle period-doubling bifurcations, the associated length
scaling factor of the similar structure is defined as

m
Lyysyosy = Loysgosy i Lo = [ T 1L (3.57)
i=1
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The solution of the period doubling for the iterative map in Eq. (3.43) is

(m—73" si)

Xsispeesy = Xspsoeesyy + (=1 =1 T oo, I™, (3.58)

where x;, = x* is its fixed point. Equation (3.58) becomes

m )
Xgsysy = X5+ (=)= T (3.59)
i=1
or
" . i " .
Xypigeosy = X"+ > (=) TZ= D T (3.60)
i=1 i=1

Since Eq. (3.60) gives all the solutions of the mth-cycle period-doubling bifurcation
of the iterative map, the mth-solutions xy,y,...s,, are stable just before mth cycle
period-doubling bifurcation. All other solutions up to the (m — 1)-cycle period-
doubling bifurcation (xy,, Xs;s,, - - ., Xsy55--.5,,_; ) are unstable. From the stable and
unstable solutions, the chaotic solutions caused by the period-doubling bifurcation
of the iterative map can be written as

Xsy53-5m = Xs1505m_1 T (_1)(m_k)(Ill)k(l(;)(m_k)loa (3.61)
where £ is the total number of s; = 1,i € _{1, 2,3,...,m}as m — oo. The length
scaling factors 11] = I, I(} = Ijand I' = 1° remain constant. The foregoing

equation can be expressed by
m
Xgpsgosy = X5+ D (DO AN AH TR (3.62)
i=1

where k is the number of s; = 1, j € {1,2,3,...,i} for every i, as m — oo. This
similar structure analysis can be done by the symbolic dynamics approach.

3.2.2 Fractality of Chaos Via PD Bifurcation

For the period-doubling bifurcation of 1D iterative map leading to chaos, the fractal
is a multifractal as shown in Fig.3.5. From Eq. (3.52), w,, is constant at chaos, i.e.,
Wm = oo, and the similar structure of iterative map will become the self-similar
structure. Thus

I =1} =15 €{0,1} forieN. (3.63)
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The chaotic fractal scalings of period doubling are constant, i.e.,
h=1ly, bLh=1I. (3.64)

From Halsey et al. (1986) the multifractal partition sum function is
— L=, (3.65)

where for the two-scale fractal (n = 2), t is a weight parameter and p; = 1/2 is the
action probability. For the same action in period-2 bifurcation similar structure, we
have:

271 274

Z_ 4. 3.66
i + I (3.66)

The weight parameter is

_log[1+ (Io/1)"] — g log?2

3.67
T(q) oz Iy (3.67)
Since t(q) = (¢ — 1) Dy, the generalized fractal dimension D, becomes
log [1 + (Io/ 1))~ DPa] — glog?2
, = g[1+ (o/11) | —qlog _ (3.68)

(g —Dloglo

Several special cases of the generalized fractal dimensions are given as follows. The
Hausdorff dimension is

B _log[l + (I /10)™]

= 3.69
log I ( )

The information dimension is

2log?2
=\ (3.70)
log Ip + log I
The two limit dimensions are
log?2 log?2

Do=——82 p, =_82 3.71)

Clogly’ T Tlogn
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The scaling index is

dt(q)  —log2[l+ (1i/1p)"]
a= = . (3.72)
dq (I1/1o)% log Iy + log I
The singular fractal spectrum function is
fla) =aq —t(q). (3.73)
For the correlation dimension D;, we have
Dy = 2a(q) — f ((g)|y=> - (3.74)

The characteristic parameters of the multifractal can be determined using Egs. (3.67)—
(3.74). The relationships are different from those in Halsey et al. (1986) and Cosenza
et al. (1989). Since the fractal is constructed from the similar structure of the period-
doubling solutions of the iterative map, the scaling factors derived herein are based
on a geometric approach.

3.2.3 An Example

To demonstrate the similar structure approach for the iterative map at periodic
doubling, consider

X1 = pxp (1 — xg). (3.75)

Renormalization of the ith-period-doubling bifurcation equation in Eq. (3.75) yields

Xpy = uixp(1 = xp), (3.76)
where the parameter relation is given by
i =7y =21 — 2. (3.77)

Let 4 = 3.5 and from Eq. (3.77), the renormalized parameter ;1 = 3.25. Since
w1 > 3 which is the threshold value determined from Eq. (3.44), the new iterative
map of Eq. (3.75) will exhibit period-doubling bifurcations. Invoking Eq. (3.77) once
again for w1 = 3.25 yields the renormalized parameter u, = 2.06, associated with
the period-2 doubling bifurcation. However, since uy < 3, this map will not exhibit
period-doubling bifurcations, and thus for this case, its solutions are stable. The first
fixed point of the iterative map in Eq. (3.75) is x* = 1 — 1/ and its period-doubling
factors are
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Table3.3 Solutions of xi4+1 = pxi(1 — x;) at u = 3.5
Sampling Doubling Stability Similar structure Exact result Relative
point time status solution error (%)
x* 0 unstable 0.714 285 143 0.714 285 143 0.00
X0 1 unstable 0.417 582 417 0.428 571 428 2.56
X 1 unstable 0.850 005 845 0.857 142 857 0.83
X01 2 stable 0.373 027 890 - -
X00 2 stable 0.502 497 502 - -
X10 2 stable 0.811 163 383 - -
X11 2 stable 0.870 386 293 - -
; 1
I'=z=1-——;
i
. 2 _ 4
1 ; Hi—1 /iy 378
ZA.)‘OS].“SI'_IO - Wi—1 ’ ZAA‘OS]..J,‘_]] - 2“’1’*] ’ ( 7 )
: 2 22—+ u -4
H=1-—", Ji= .
Mi—1 2pi-1
For ;v = 3.5, the solutions of Eq. (3.75) are
1
X =1-—;
%
X0 =x"— I&Il,xl :x*—l—]llll;
xo1 = x0 — IJIT1?, xo1 = xo + I I§ 12, (3.79)
X10 =)C1—1111g12, x10=x1—111112]2. ’

According to the above analysis, the solutions of iterative map x*, xo and x; are
unstable at 4 = 3.5 but the period-2 bifurcation solutions xo1, xg9, X190 and xyj are
stable. These results are tabulated in Table 3.1. For comparison, the exact period-2
solutions of Eq. (3.75) are

=1+M— /u? —2u —3 and 1=1+M+~/M2—2M_3
m

X
21 2

X0 (3.80)

In Table 3.3, the similar structure technique for computing the period-doubling
solutions for the 1D iterative map yields a good agreement with the exact solutions.
If the period-doubling solutions are chaotic at & = oo, this structure will be a
similar structure, and its solutions can be determined from Eq. (3.62). Note that
the scaling factors of period doubling for these solutions are constant. The period-
doubling solutions of the iterative map in Eq. (3.75) at t = oo = 3.5699456- - -
in a binary tree format is presented in Fig. 3.6.



154 3 Chaos and Multifractality

Xo;; = 0.329845 - {
Xy = 0.341795--
Xy = 0.368844-- {

x, =0.403302 .-
xooo =0.481299--- {

Xgo = 0.542524...

Xgo; = 0.569573-- {
x"=0.719883--
Xior = 0.786290-- {
X, =0.788238-
Xy, = 0.825287 {

x, =0.859745.-
Xpo = 0.874968--- {
X, = 0.886918...
Xoo1 = 0.892197... {

Fig.3.6 Binary tree for the chaotic solution at 4 = pteo = 3.5699456- - -

Taking pu; = pi—1 in Eq. (3.77), the critical chaos parameter of the period-
doubling solutions can be calculated to yield, 4 = ptoo = 3.5615528--- and the
length scaling factors are

Iop =1} =0.438 447 185 ...,
I = I =0.194 496 855 . ..., (3.81)
I1/1p = 0.433 603 840 ....

Substitution of these length scaling factors into Egs. (3.69)—(3.71), several of the
generalized fractal dimensions can be computed and the results are listed in the
Table 3.4. To assess the accuracy of these results obtained through renormalization,
the length scaling factors with the critical parameter (oo = 3.5699456 - - - for chaos
are

Io=13 = 0439767373 ...,
I =1 =0.194283973..., (3.82)
I1/Iy = 0.441 788 057 ---
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Table3.4 Comparison of the computed generalized fractal dimension D, for a iterative mapping
X1 = pxg(l — xx)

Dy, Renormalization results Exact solution Halsey et al. (1986), Rasband
Cosenza et al. (1989) (1989)

Dy 0.585 286 432 0.586 670 729 0.537 0.543 87

D, 0.563 109 625 0.563 547 168 -

D_ 0.840 671 676 0.843748337 0.75551 -

Do 0.423 337 537 0.423 054 580 0.37775 -

are exact, and when substitution of the accurate length scaling factors into
Egs. (3.69)—(3.71) yield the “exact” results of the generalized fractal dimensions.
It is observed that the renormalization technique gives very good results compared
to the exact resluts. For comparison, some available solutions are also tabulated in
Table 3.4. As shown, the results of Rasband (1989) are not only slightly larger than
those of Halsey et al. (1986) and Cosenza et al. (1989). However, the existing results
does not match very well with exact solutions because the approximate models were
adopted.

The fractality characteristics of chaos via period-doubling bifurcation are pre-
sented in Fig.3.7. The weight parameter function 7(g) in Eq. (3.67) is computed
using the two different sets of length scaling factors, as shown in Fig.3.7(a). The
generalized fractal dimension D, is sketched in Fig. 3.7(b), the scaling index a(g) in
Fig.3.7(c), and the fractal spectrum function in Fig.3.7(d). The “exact” and renor-
malization results are by solid and circular symbol curves, respectively. The results
of Halsey et al. (1986) are denoted by dotted curves. The experimental results of
Glazier et al. (1986) are denoted by solid circle symbols. The analytical solutions
presented herein (also see, Luo and Han, 1992) agree well with the experimental
results.

The complexity of chaos caused by tangential bifurcation is still unsolved. How
to construct the fractal structure of chaos should be further investigated, and the
fractality of chaos to measure the corresponding complexity should be completed.

3.3 Fractals in Hyperbolic Chaos

In this section, multifractals in chaotic dynamics of m-D horseshoe maps will be
discussed. In chaotic dynamics, characterizing the complexity of chaos is very impor-
tant. One adopted Poincare mapping sections, power spectrum analysis, Lyapunov
exponent and generalized Hausdorff dimension, statistical thermodynamic approach,
and ergodic theory.
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Fig.3.7 Fractality characteristics for the iterative map xx41 = pxx(1 — xx): a weight parameter
function 7, b generalized fractal dimensions Dy, ¢ scaling index a(g) and d fractal spectrum
function f(«). The solid, circular symbol and dotted curves are for exact and renormalization
solutions, and Hasley et al., respectively. The filled circular symbols are experimental results

3.3.1 Fractal Theory for Hyperbolic Chaos

In this section, a new theory for describing multifractals of the hyperbolic invariant
sets is established. Consider a 1D unit interval divided into M parts with a scaling
ratio of r = 1/M. Repeating this process ad infinitum for N non-empty parts among
M parts yields a fractal. As in Eq. (3.3), Mandelbrot (1977) presented the following
definition of a 1D fractal

NP =1. (3.83)
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Fig.3.8 2-D fractal object

The exponent D is called the Hausdorff dimension

log N log N

D=—r=——-. (3.84)
log M logr

Extending the 1D fractal concept to a 2D Euclidean fractal body, consider a non-
fractal body of unit square divided into M = M}, x M, parts in two directions with
rp = 1/Mjy and r, = 1/ M, where M}, and M, pieces are in the horizontal and verti-
cal directions, respectively. Repeating the process ad infinitum for non-empty parts
N = Nj x N, generate a 2D fractal object, as shown in Fig.3.8. It is assumed that
the fractals in each of the directions are generated independently. Thus,

NpNyrrPe = 1. (3.85)
For each of the directions, Nhrf " =1 and NUrUD v =1 leads to

_logNp,  logNj _ logN,  logN,

= = and D, = = 3.86
g log M}, log ry, ! log M, logry ( )

Thus the fractal dimension of the 2D fractal object is
D = Dy + D,. (3.87)

Generalizing the concept to handle the computation of the m-D fractal dimension
of an m-D fractal body where m < n. Dividing an n-D unit nonfractal geometric
object into M subobjects in the m-D Euclidean space leads to M = []/"; M; with
the scaling ratio r; = 1/M;. If there are N nonempty subobjects corresponding to
the m-D Euclidean space, then N = [[/L, N;.If the fractals in each of the directions
are generated independently, then

logN;  logN;

=1, D, = = .
! log M; logr;

(3.88)

The fractal dimension of the n-D objects is

D= —m)—l—ZDl-. (3.89)
i=1
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The foregoing idea will be extended to m-D nonuniform fractals (or simply, mul-
tifractals) in the n-D Euclidean space. Suppose there are N; subobjects having n;
scales in the ith direction. The jth-scale has a measured length r;;, its scale probabil-
ity weight p;; and its scale number n;; (j =1, 2, ..., n;). The multifractal partition
function is given by,

i pq.
Ly (miog) = 2 mij g =1, (3.90)
j=1 ij

where 7;(g) is the weight parameter for multifractals in the ith direction, given by
ti(q) = (¢ — D Di(q) (3.91)
and the partition function is defined as
0 atti < 7(q),
Li(ti,q) = § 0 at 7 > 7(q), (3.92)
constant at t; = 7;(q).

Furthermore, from thermodynamics, the scaling index in the ith direction is

a = fl—: (3.93)
and applying the Legendre transform yields,
Ti(q) = aiq — fi(ai) (3.94)
in which the f;(«;) is a fractal spectrum in the ith direction given by
j_i —q (3.95)

Summarizing the results for all the directions, the following equations for the m-D
multifractal theory in n-D Euclidean space are achieved,

w(g) = (n—m)(g — 1)+ D 79, (3.96)

i=1

m
o= Zai’ (3.97)
i=1

fl@)=>" fle). (3.98)
i=1
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3.3.2 A 1D Horseshoe Iterative Map

In this section, fractals generated by a 1D horseshoe iterative map in chaotic dynamics
are studied.

(A) A uniform 1D Cantor-horseshoe: Consider a 1D iterative map that possesses
a uniform horseshoe structure. In other words, a uniform cantor structure in phase
space xx4+1 = f(xk, u) (k € N) and p is a control parameter. Note that N is a natural
number set. Consider a tent map fin the unit interval / = [0, 1] as an example,

) | g forO <xx <1/2
S X = [u(l —x) forl/2<x <1 (3.99)

where © > 2. The phase graph and fractal structure are procreated using Eq. (3.99)
for aunitinterval / as shown in Fig. 3.9. The two subintervals, Iy and /; in Fig. 3.9(a),
are obtained from the first iteration of Eq. (3.99) with x;4+; < 1. Thatis, Ip = [
= 1/p. Therefore, for the first iteration of Eq. (3.99), its invariant set is

f)=IUl. (3.100)

Similarly for the second iteration, we have f (2)(1 ) = Uls,4,, and 0; € {0, 1} for
i € {1, 2}. Repeating such an iteration ad infinitum leads to its invariant set as

A =02 (3.101)

where f® (1) = Ukloi0y-0> and o; € {1, 2} fori € {1,2, ..., k}.
For any value £, the scale ratio and the number of the non-empty interval are

1

r=|Inoyo | = o and N =2k, (3.102)

The Hausdorff dimension of the invariant set shown in Eq. (3.101) is

logN  log2
Do = lim = .
k—oo logr log

(3.103)

(B) A nonuniform 1D Cantor-horseshoe: Consider a 1D iterative map experiencing
the multiscale Cantor-horseshoe structure. For instance, an asymmetric tent map is

41Xk for0 < < 52,
ey — f+u2 3.104
Tkt {uz(l ) for s <x < 1. (109

where the control parameters 1 and wo satisfy wipus > (1 + p2). In Fig.3.10,
the phase graph and fractal structure are procreated using Eq. (3.104). Due to the
nonuniform structure, we now have a two-scale multifractal. Thus, after the first
iteration of Eq. (3.104) on the original interval I = [0, 1], i.e., f(I) = o U I;
the lengths of two new subintervals are not identical, namely, ri = |Ip| = 1/u1,
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Fig.3.9 Phase graphs and fractal structures generated via Eq. (3.99)

rp = |I1| = 1/u;. Repeating this iterative process ad infinitum results in an invariant
set,

A=()r®wm (3.105)

k=0

where £ (1) = Uklsy0y-0p,and o; € {1, 2} fori € {1, 2, ..., k}. From the iteration
process, the probability of appearance for the two scales is

pPo=p1= (3.106)

1
h
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Fig.3.10 Phase graphs and fractal structures generated via Eq. (3.104)

Applying Eq. (3.91), a partition function for the horseshoe invariant set of Eq. (3.105)
is

LN
Iﬂ—(z—q—i-z—q) =1 (3.107)

from which, we obtain

_log(uy +u3)

3.108
log2 ( )

From Eqgs. (3.91)—(3.94) and (3.108), the fractal dimension, scaling index and fractal
spectrum are given, respectively, by
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log?2
Dy = z i Ogr , (3.109)
IOg(,bLl +u5) —log2
T + T 1 2
¢ = —datulos (3.110)
wilog g + pj log po
f(@) =ag —(q). (3.111)

Imposing ;1 < 2 in Egs. (3.109)—(3.111), the following specific fractal dimensions
are obtained.

log2 log2
Dy =a,D_x = , Do = ——; (3.112)
log i1 log w2
and the Hausdorff dimension Dy is determined using
w2 =1 (3.113)

3.3.3 Fractals of the 2D Horseshoe Chaos

In this section, for 2D fractals based on the Smale horseshoe map, consider fractals
of the uniform horseshoe sets, and then fractals of the nonuniform horseshoe sets.

(A) A uniform Smale horseshoe: The Smale horseshoe arising from the transversely
homoclinic orbits via the Poincare map is very important for describing chaotic
dynamics in neighborhood of the saddle. To analyze the fractality of this 2D invariant
set, consider the original 2D unit square D = {(x, y) € R D<x<1,0<y<1}
and define a mapping f : D — %°. Therefore,

IR Gl
Iz Yi+1 2 Yk (3.114)

Bl = Lo S Bl e o

where 0 < A < 1/2, 4 > 2. From Eq. (3.114), two rectangles in the horizontal
direction are defined as

Hy= {(x.y) e Z*10<x<1,0<y<1/u}, ] (3.115)

H= {x,ye#|0<x<1,1-1/p<y=<l1}.
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Application of f to the two horizontal rectangles produces two vertical rectangles.
That is,

f(H)=Vo= {(x,y) eZ*|0<x<2,0<y=<1},

FHY=Vi= {@.y) e |1-r<x<10<y=<1}. (3.116)

To construct the Smale horseshoe that intersects between a vertical invariant set and
a horizontal invariant set, application of f ad infinitum to the unit square S, namely,

o
Ay = m f(k)(D) = U (f(vs_z-‘-s_k-u) N Vs_l) = U Vg_l...s_k...
k=1 s_j€S s_;€S
i=1,2,- i=12,.
Z{('x’y)ED‘f(_’Jrl)(p)eVY_,apz(xvy)’Sfl655121527'}7

(3.117)

where S = {0, 1}. The results in the vertical invariant set are shown in Fig.3.11. The
fractal has a scaling ratio r, = A and the corresponding Hausdorff dimension can be
computed by

log2

Dy, = (3.118)

“log '

Since the vertical invariant set does not have fractals in the y-direction, Dy, = 1.
Therefore, the resultant Hausdorff dimension for the vertical invariant set is

log2

D = Doy + Doy =1 — 3.119)

log A’
Note that Eq. (3.119) is identical to the expression in Guckenheimer and Holmes
(1983). In a similar manner, the horizontal invariant set can be reprocreated via the
inverse map f(~1 acting on the unit square S, that is,

o0
Ag=(rm = |J (f(Hy.5.) N Hy) = Hyy.5.
k=1 s_;€S s_;€S
i=1,2,- i=1,2,-

= {(x,y) € D‘f(i)(p) €Hy,p=(x,y).5 €8,i=0, 1,2,---}. (3.120)

The result is sketched in Fig. 3.12 with its scaling ratio ry, = 1/. The fractal of the
horizontal invariant set in the y-direction has a Hausdorff dimension of

_ log2
logp

0y (3.121)

The intersection of the vertical and the horizontal invariant sets yields the Smale
horseshoe which is shown in Fig.3.13. That is, we have:
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Fig.3.11 Vertical invariant set procreated via Eq. (3.114)
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Fig.3.12 Horizontal invariant set procreated via an inverse map of Eq. (3.114)

=e
HH-

Fig.3.13 Smale horseshoe generated by iteration of Eq. (3.114).

) )

A=AyNAy= ﬂ F® (D). (3.122)

k=—o00

The Hausdorff dimension of the Smale horseshoe procreated via ad infinitum n
iterations of the 2D map f on the unit square S is

1 1
D = D Dy, = log?2 - . 3.123
ox + Doy og |:10gﬂ log)»i| ( )

(B) A nonuniform Smale horseshoe: The multifractality of the nonuniform Smale
horseshoe will be discussed through a map of nonuniform Smale horseshoe given

by
[Xk+1] I:klo i|[Xk] HO
Vk+1 0 123} Yk ’

Iz (3.124)

o0 e P 1 4 B8 P X
Vi+1 0 —p2 || J7%)
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where 0 < A; < 1/2 and p; > 2 and i = {1, 2}. From Eq. (3.124), two separate
rectangles in the horizontal direction can be defined as

Ho={(,y) e #20<x<1,0<y<1/m}, ] (3.125)

H={xyeZ0<x<11-1/up<y=<l1}.

Application of fin Eq. (3.124) to the two horizontal rectangles in Eq. (3.125) produces
two vertical rectangles, i.e.,

fH)=Vo={(x,y) e Z*0<x<1,0=<y <1}, ]

Application of maps fand £~ ad infinitum to the unit square S yields the Smale
horseshoe, that is,

A=AvNAp= () fOD = [ﬂ f(k)(D)] N [ﬂ f(")(D)i| . (3.127)

k=—00 k=0 k=1

The vertical invariant set of Eq. (3.124) has two scaling ratios r1, = A1 and roy = A2
and probability weight pj, = p1x = 1/2. Therefore, from the 1D multifractal theory,
its partition function in x-direction is

SRRt n—1 3.128

Re-expressing Eq. (3.128), we have

los(A 7™ + A, ™
g= gt " tA ) (3.129)
log?2

The multifractal dimension, scaling index and fractal spectrum for the vertical invari-
ant set in the x-direction are
_ 7, log2

log(h] ™ 42, ™) —log2’

D, (3.130)

AT A ™) log2
= _f ! ! _)r £ (3.131)
A “logiy + A, *logis

(o) = axg — 1:(q). (3.132)

Next, consider the multifractality of the horizontal invariant set of Eq. (3.124) in the
y-direction and the results are

_ log(uy" +115)

, 3.133
log2 ( )
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7y log2
Dyy = T 7 ) (3.134)
log(u, + pny ) —log2
Ty ‘L'y
+ log?2
ay = TV(“I o ),v £ (3.135)
wy logr 4wy log pio
flay) =ayg — 1y(q). (3.136)

Therefore, the multifractal characteristics for the vertical invariant set, the horizontal
invariant set and the nonuniform Smale horseshoe are

Tg=q— 147, Dg=1+Dyy, o =1+0ay, f(a) =14+ flay). ((3.137)
for vertical invariant set,
Ty=q—14+71y, Di=1+Dyy, a=14a,, fla)=1+ f(a,). (3.138)
for horizontal invariant set,
T =1+ 7y, Dy =Dyx+ Dyy, a =ay+ay, f(a)=f(a)+ f(ay). (3.139)

for the Smale horseshoe set.
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Chapter 4
Complete Dynamics and Synchronization

This chapter will present a Ying—Yang theory for nonlinear discrete dynamical sys-
tems with consideration of positive and negative iterations of discrete iterative maps.
In existing analysis, the solutions relative to “Yang” in nonlinear dynamical sys-
tems are extensively investigated. However, the solutions pertaining to “Ying” in
nonlinear dynamical systems will be presented. A set of concepts on “Ying” and
“Yang” in discrete dynamical systems will be introduced. Based on the Ying—Yang
theory, the complete dynamics of discrete dynamical systems can be discussed. A
discrete dynamical system with the Henon map will be presented as an example. The
companion and synchronization of discrete dynamical systems will be introduced,
and the corresponding conditions are developed. The synchronization dynamics of
Duffing and Henon maps will be discussed.

4.1 Discrete Systems with a Single Nonlinear Map

Definition 4.1 Consider an implicit vector function f : D — D on an open set
D C %" in an n-dimensional discrete dynamical system. For X, X¢+| € D, there is
a discrete relation as

f(x, X+1,p) =0 4.1)
where the vector function is f = (fi, fo,---, fu)T € %" and discrete variable
vectoris Xy = (Xk1, Xk2,- -+, Xkn) L € D with a parameter vector p = (p1, p2,-- -, pm)T

e %",

As in Luo (2010), to symbolically describe the discrete dynamical systems, intro-
duce two discrete sets.

Definition 4.2 For a discrete dynamical system in Eq. (4.1), the positive and negative
discrete sets are defined by

A. C.]. Luo, Regularity and Complexity in Dynamical Systems, 169
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Sy o= {XppilXeai € %”,l: €ZyyC D and] 42)
Yo ={Xp—i|Xk—i €EZ", i €L} C D
respectively. The discrete set is
Y=3X,UX_. (4.3)
A positive mapping is defined as
P X —> X, = Pp:ixp— Xyl 4.4)
and a negative mapping is defined by
P Y>> = P_:X— Xp_]. 4.5)

Definition 4.3 For a discrete dynamical system in Eq.(4.1), consider two points
Xy € D and X441 € D, and there is a specific, differentiable, vector function g € #"
to make g(Xg, Xx+1,A) = 0.

(i) The stable solution based on X;4+; = Pyx; for the positive mapping P
is called the “Yang” of the discrete dynamical system in Eq.(4.1) in sense
of g(Xk, X1, A) =0 if solutions (x}, XZ_H) of f(Xg, Xg+1,p) = 0 and g(x,
Xr+1, A) = 0 exist.

(i1) The stable solution based on x; = P_xX;4+; for the negative mapping P—
is called the “Ying” of the discrete dynamical system in Eq.(4.1) in sense
of g(Xk, Xk+1, A) =0 if solutions (x, x;, ;) of £(xk, Xk+1,p) = 0 and g(x,
Xr+1, A) = 0 exist.

(iii) The solution based on xx1; = P4+X; is called the “Ying—Yang” for the
positive mapping P of the discrete dynamical system in Eq.(4.1) in sense
of g(X, Xg+1, A) =0 if solutions (XZ,XZ+]) of f(x¢, X¢+1, p) =0 and g(x,
Xk+1, &) =0 exist and the eigenvalues of D P, (x}) are distributed inside and
outside the unit cycle.

(iv) The solution based on x; = P_Xy4 is called the “Ying—Yang” for the neg-
ative mapping P_ of the discrete dynamical system in Eq.(4.1) in sense
of g(Xk, X¢+1,A) = 0 if solutions (xi,x;, ) of f(xk,Xk+1,p)=0 and
g(Xk, Xk+1, A) = O existand the eigenvalues of D P_ (x}; 1) aredistributed inside
and outside unit cycle.

Consider the positive and negative mappings are
Xi+1 = P1x; and X; = P_Xp41. (4.6)

For the simplest case, consider the constraint condition of (X, Xg+1, A) = Xg+1 —
x; = 0. Thus, the positive and negative mappings have, respectively, the constraints

Xi+1 = X and Xg = Xg41. 4.7)
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Both positive and negative mappings are governed by the discrete relation in Eq. (4.1).
In other words, equation (4.6) gives

f (X, X1, p) = 0 and f(x¢, Xp41, p) = 0. (4.8)
Setting the period-1 solution x;’ and substitution of Eqgs. (4.7) into (4.8) gives
f(x;, x5, p) = 0 and £(x}, x;, p) = 0. 4.9)

It is observed that the period-1 solutions for the positive and negative mappings
are identical. The two relations for positive and negative mappings are illustrated
in Figs.4.1a, b, respectively. To determine the period-1 solution, the fixed points of
Eq. (4.7) exist under constraints in Eq. (4.8), which are also shown in Fig.4.1. The
two thick lines on the axis are two sets for the mappings from the starting to final
states. The relation in Eq. (4.7) is presented by a solid curve. The intersection points
of the curves and straight lines for relations in Egs.(4.7) and (4.8) give the fixed
points of Eq.(4.9), which are period-1 solutions, labeled by the circular symbols.
However, their stability and bifurcation for the period-1 solutions are different. To
determine the stability and bifurcation of the positive and negative mappings, the
following theorem is stated.

Theorem 4.1 For a discrete dynamical system in Eq.(4.1), there are two points
Xy € D and X1 € D, and two positive and negative mappings are

Xi+1 = PyXp and X = P_Xp41 (4.10)
with
f(Xk, Xk+1> p) =0 and f(Xk, Xk+1, p) =0. (4.11)

Suppose a specific, differentiable, vector function g € %" makes g(Xi, Xk+1, 1) = 0
hold. If the solutions (X}, XZ‘H) of both £(X, Xk+1, p) = 0 and g(Xi, Xg+1, 1) =0
exist, then the following conclusions in the sense of g(Xk, Xk+1, A) = 0 hold.

(1) The stable P-1 solutions are the unstable P_-1 solutions with all eigenvalues
of D P_(x}) outside the unit cycle, vice versa.

(ii) The unstable Py-1 solutions with all eigenvalues of D P (X)) outside the unit
cycle are the stable P_-1 solutions, vice versa.

(iii) For the unstable P -1 solutions with eigenvalue distribution of D P, (X)) inside
and outside the unit cycle, the corresponding P_-1 solution is also unstable
with switching the eigenvalue distribution of D P_(xX}) inside and outside the
unit cycle, vice versa.

(iv) All the bifurcations of the stable and unstable P-1 solutions are all the bifur-
cations of the unstable and stable P_-1 solutions, respectively.

Proof Consider the positive and negative mappings with relations in Eq. (4.9). The
periodic solution in sense of g(X, Xx+1, A) = 0 is given by



172

Fig.4.1 Period-1 solution
for a positive mapping and b
negative mapping. The two
thick lines on the axis are

(@) Xi
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f(x;,x,,,,p)=0

two sets for the mappings
from the starting to final
states. The mapping relation
is presented by a solid curve.
The circular symbols give
period-1 solutions for the
positive and negative
mappings

2 Xk+1

f(xx, Xk+1, p) = 0 and g(xx, Xk41,A) =0

from which the fixed points (x;, x;, ;) can be determined. Consider a small pertur-

bation

Xkl = Xgyp + 80X y1 and Xg = Xi + 0%y

The linearization of mappings in Eq. (4.6) gives

8Xiy1 = D Py (x;)8x; and 8x; = D P_ (X} |)8Xx1



4.1 Discrete Systems with a Single Nonlinear Map 173

where
dDP_(x!, ) = [
DP.(x{) = [ ]x* an —(Xpy1) = [mﬂ X
From Eq. (4.1), one obtains
of an_H
—_ =0,
( an] e o Vst =
g(st Xk+1> A’) = g(Xka Xk+]1 A') = 0,
of axk
— * * = 0’
(Pl [8Xk][ Dot

g8(X;, X 1, A) = g(Xx, X1, 4) = 0.

That is,
P =1 1|Xk=—<[ 2 e,
0X 11 Xy k> Fe+1
DP_ (ka—[ LB R L
Xkt 1 +1 Xy 3Xk+l k% k+1

Taking the inverse of the second equation in the foregoing equation gives

4, of
] [ ](xk+1 Xk)

DP- (xk+1)—[ 1 = [an+

which is identical to D P4 (xz). Therefore, one obtains
DPZ'(x}, ) = DPL(x}).

In other words, D P4 (x;) is the inverse of D P_(x; ).
Consider the eigenvalues A_ and A4 of DP_(x; ) and D P, (x;), accordingly.
The following relations hold

(DP_(x},)) — A-Doxps1 =0,
(DPy(x}) — 2y D)dx; = 0.

Left multiplication of D Py (x}) in the first equation of the foregoing equation and
0Xpt1 = k:ldxk gives

[DP.(x}) — AZ'T15x; = 0.
Thus, one can obtain
A =22l

From the stability and bifurcation theory for P, -1 and P_-1 solutions for discrete
dynamical system in Eq. (4.1), the following conclusions can be given as follows:
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(i) The stable P, -1 solutions are the unstable P_-1 solutions with all eigenvalues
of DP_ (XZ) outside the unit cycle, vice versa.

(i) The unstable P, -1 solutions with all eigenvalues of D P, (x}) outside the unit
cycle are the stable P_-1 solutions, vice versa.

(iii) For the unstable P, -1 solutions with eigenvalue distribution of D P (x}) inside
and outside the unit cycle, the corresponding P_-1 solution is also unstable with
switching the eigenvalue distribution of D P_(x}) inside and outside the unit
cycle, vice versa.

(iv) All the bifurcations of the stable and unstable P -1 solutions are all the bifur-
cations of the unstable and stable P_-1 solutions, respectively.

This theorem is proved. u

From the foregoing theorem, the Ying, Yang and Ying-Yang states in discrete
dynamical systems exist. To generate the above ideas to PJ(FN)-l and PY)-1 solutions
in discrete dynamical systems in sense of g(Xx, Xr+n, A) = 0, the mapping structure
consisting of N- positive or negative mappings is considered.

Definition 4.4 For a discrete dynamical system in Eq. (4.1), the mapping structures
of N-mappings for the positive and negative mappings are defined as

xk+N:P+0P+o~--oP+Xk=PJ(rN)Xk, 4.12)
N
X¢=P_oP_o-0P_xpen = PV xp4n. (4.13)
N
with
f(Xpti—1, Xp+i,p) =0fori =1,2,...,N 4.14)

where Pio) = 1and PEO) =1for N =0.

Definition 4.5 For a discrete dynamical system in Eq.(4.1), consider two points
Xp+i—1 € D@ =1,2,...,N)and x¢4+n € D, and there is a specific, differentiable,
vector function g € #" to make g(xk, Xy+n, 1) = 0.

(i) The stable solution based on Xi+ny = PJ(FN) x; for the positive mapping
P, is called the “Yang” of the discrete dynamical system in Eq. (4.1) in sense
of g(Xk, Xk+n, A) = 0 if the solutions (X, X; |, ..., X;, y) of Eq.(4.14) with
g(Xg, Xk, A) = 0 exist.

(i) The stable solution based on x; = PEN)X/C+ y for the negative mapping
P_ is called the “Ying” of the discrete dynamical system in Eq.(4.1) in sense
of g(Xk, Xk+n, A) = 0if the solutions (X, X;, |, - -+, X, y) of Eq.(4.14) with
g(Xx, Xk+N, A) = 0 exist.

(iii) The solution based on Xx+n = PJ(rN)xk is called the “Ying—Yang” for the
positive mapping Py of the discrete dynamical system in Eq. (4.1) in sense of
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g(Xk, Xk+n, A) = 0 if the solutions (X, x; |, ..., X}, y) of Eq.(4.14) with
g(Xx, Xk+N, A) = 0 exist and the eigenvalues of DP_f_N)(xZ) are distributed
inside and outside the unit cycle.

(iv) The solution based on x; = PEN)X/C+N is called the “Ying—Yang” for the
negative mapping P_ of the discrete dynamical system in Eq.(4.1) in sense
of g(Xk, Xk+n, A) = 0 if the solutions (X, X; |, - .., X y) of Eq.(4.14) with
g(Xx, Xk+N, A) = 0 exist and the eigenvalues of pr™ (x; ) are distributed
inside and outside unit cycle.

To determine the Ying—Yang properties of Pj_N)-l and PY)-1 in the discrete
mapping system in Eq. (4.1), the corresponding theorem is presented as follows.

Theorem 4.2 For a discrete dynamical system in Eq.(4.1), there are two points
X, € D and Xr+n € D, and two positive and negative mappings are

XprN = PJ(FN)xk and x; = PEN)X]H.N. 4.15)
and Xyyi = PyXpyi—1 and Xg+i—1 = P_Xg4i can be governed by
f(Xkti—1,Xp+i,p) =0fori =1,2,..., N. (4.16)

Suppose a specific, differentiable, vector function of g € X" makes g(Xi, Xk+nN, L)
= 0 hold. If the solutions (X}, ..., X; ;) of Eq.(4.16) with g(Xi, Xx+n, L) = 0 exist,
then the following conclusions in the sense of (X, Xk+n, L) = 0 hold.
(i) The stable Pj(LN)—l solution is the unstable PN -1 solution with all eigenvalues
of pp™ (x; ) outside the unit cycle, vice versa.
(i1) The unstable P4(_N)-1 solution with all eigenvalues of DPS_N)(XZ) outside the
unit cycle is the stable PEN)-I solution, vice versa.
(iii) For the unstable PiN) -1 solution with eigenvalue distribution of DPS:V)(XZ)
inside and outside the unit cycle, the corresponding P™ 1 solution is also

unstable with switching eigenvalue distribution of DP(_N)(X;(’F L) inside and
outside the unit cycle, vice versa.
(iv) All the bifurcations of the stable and unstable Pj_N)-l solution are all the bifur-

cations of the unstable and stable PN solution, respectively.
Proof Consider positive and negative mappings with relations in Eq. (4.16), i.e.,
f(Xpti—1, Xp+i,p) =0fori =1,2,...,N

from which x;; is a function of X;4;_1 in the positive mapping iteration and Xy4;—1
is a function of x;; in the negative mapping iteration. The periodic solution in sense
of g(Xx, Xk+n, A) = 01is given by

f(Xpt+i—1, Xgti, p) =0fori =1,2,...,N

g(Xk, Xk+N, A) = 0.
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Setting the period-1 solution be X;? i1 Or XZ i (i=1,2,..., N) and the foregoing
equation gives

fx, 1. Xy, P) =0fori =0,1,...,N;

g(x;, Xepys M) =0

for both the positive and negative mapping iterations. The existence condition of the
foregoing equation requires

det[(D;j)nxn] # 0

where
of Xk N—1, Xk, P) 0Xp 4
DN] = — ([ 8Xk+N ]nxn[BXk_;’_N ;1X’1)(XZ+N_I,X:)
f (Xk4-N—1, Xk 4N, P) 08(Xk+N, Xk, P) 1
- ([ nxn[ nxn
Xk N OXjy N
ag(xk+N9 Xk p)
X [—————1lnxn) | o
). ¢ e+ N—1%%
(X n—1, Xk, P)
Dyy =[ IXpeN_1 ]n><n|(x:+N71,x;),
Dyj =[0]yx, for j =2,3,...,N — 1;
Of (X 4i—1, Xkvi» P)
Dii =1 8Xk+i—1 ]nxn|(xz+1_l,xl’g+’,),
of (X i—1, Xkt P)
Dig+1y =1 OXpri ]nxnl(XZJri—l’X/tJri)
Dij = [0],xp fori =1,2,...,N — 1;
j=1,2,...i—1;i+2,i+3,....N.
Once x;,;_jorx; ; (i =1,2,..., N)is obtained in sense of g(Xk, Xk+n,1) =0,

the corresponding stability and bifurcation of the periodic solutions can be deter-

mined. However, the stability and bifurcation of the PJ(FN)-l and PEN)-l solutions
will be different. Herein, consider a small perturbation from the periodic solution

. .
Micki = Xy - Xt ] fori =0,1,....N.
Xti+l = X1 T OXktit1
With the foregoing equation, linearization of Eq. (4.15) gives
8Xk+N = DP+ . DP+ et DP+ |XZ8X/€
N
= pPM (x})sxs,
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8y = DP_-DP_-...-DP_ |x1’:+N8Xk+N
N
= DPM (7, \)ug -
On the other hand, for each single positive and negative mappings gives
8Xk+i = DP+(XZ+[‘—1)8X/€+Z'—1 fori = 1, 2, ..., N
8Xpqi1 = DP_(x;,;)8%py; fori =1,2,..., N

where

DP(x . )= [OXH L for =120 N

k-1 g1 L= T
OXpti—1 .
* — * =
DP_(xpy;) =1 Xir ]XW fori =1,2,...,N
and fori = 1, 2, ... N, linearization of Eq. (4.15) gives
OXp i of of
DP X* . = | —————— |* = — % % s
+( k+,_1) [axk-i-i—l ]xk+i—1 [an+[ [axk+i_l])(xk+i,xk+i_l)
OXpeti—1 of __, of
DP_ X>|< L) = * = — * * .
i) =1 Iy e [anH_l 8Xk+i])(xk+i‘xk+i—l)
Therefore, the resultant Jacobian matrices for P_f_N)-l and PEN)-I are
DPMV(x}) = DPy(Xfyn_1) - DPL(Xfyn_2) .- DPL(X,)) - DP4(x])
— XN . XN . I (% o 3Xk+1] .
- OXjaN_1 Xk+N-1 Xk N1 XipNn—2 77 OXk 11 X1 aXy X
of of
= (=N -1 T
(=D ([axk+N OXjaN_1 )(Xk+N’Xk+N—1)
of _, of
([aka] [8xk])(xz+1’x’t)’
N
PN (xt, )
=DP_ (X)) - DP_(x;_ ) -...- DP_(X; y_1) - DP_(X; )
Xy 0%+

0Xk4N—2 OXk+N—1 .

= Xipr X T XisN—1
OXgy1 K1 TOXpqp K OXpyN—1 KHN-

X
OXpynN N

ST ST
N Xy 0Xk41 (1 Xp)
of ., of

OXk 4 N_1 [axk+N ])(XZ+N’XI+N—|)'
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From the two equations, it is very easily proved that the two resultant Jacobian
matrices are inverse each other, i.e.,

DPMxt) - DPN (xf, ) = Lixa.

Similarly, consider eigenvalues A_ and A4 of DP(_N)(X;? . y) and DPS_N)(XZ),
accordingly. The following relations hold

(DP™M (x5, ) — A-Ddxey =0,
(DPM (x}) — A, Dox; = 0.

Left multiplication of DPSFN) (x;) in the first equation of the foregoing equation and
OXp+N = A:ldxk gives

(DPM (xf) — 2 2'sx, = 0.
Compared to (D PJ(FN)(X,’;) — A4+Déx; = 0, one obtains
Ay = A"

in the sense of g(Xk, Xx+n, A) = 0 hold. From the stability and bifurcation theory
for discrete dynamical systems, the following conclusions can be summarized as

(i) The stable PJ(FN)-I solution is the unstable P""-1 solution with all eigenvalues
of pPY) (x ) outside the unit cycle, vice versa.

(i1) The unstable PJ(FN)—I solution with all eigenvalues of DPEFN) (x;) outside the
unit cycle is the stable PM_1 solution, vice versa.

(iii) For the unstable PJ(FN)-I solution with eigenvalue distribution of DPSfV)(x;;)

inside and outside the unit cycle, the corresponding P™)_1 solution is also

unstable with switching eigenvalue distribution of pp™ (x; ) inside and
outside the unit cycle, vice versa.
(iv) All the bifurcations of the stable and unstable PiN)-l solution are all the bifur-

cations of the unstable and stable P"")-1 solution, respectively.

This theorem is proved. u

Notice that the number N for the P4(_N)-1 and PN-1 solutions in the dis-
crete dynamical system can be any integer if such a solution exists in sense of

g(Xk, XN, A) = 0.
Theorem 4.3 For a discrete dynamical system in Eq.(4.1), there are two points

X; € D and Xxn € D. If the period-doubling cascade of the P_i(rN)—l and P™N)-1
solution occurs, the corresponding mapping structures are given by
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2
Xp42N = Pj—N) o P-f-N)Xk = Pi My and g(xp, Xeraw, 1) = 0;

2N 2N 22N
Xpy22N = Pi ) . Pi )Xk = P_(F )Xk and g(xg, X 102N A =0;

Xp2IN =

4.17)

2-1N 21N 2N
PJ(r ) o PJ(r )xk = PJ(r )xk and g(Xi, X o1y, A) = 0;

for positive mappings and

x, =P

N N N
xp = P™M o PMxion = PPYx oy and g(xi, Xkpaw, ) = 0;

2N 2N 22N
k — P£ ) (o] P£ )Xk+22N = P( )Xk+22N and g(Xk,Xk+22N, A.) = 0,

(2171N) o P(zlle) IN)

@
Xepoin = P2 Xppory and (X, X1y, A) = 0

(4.18)

for negative mapping, then the following statements hold, i.e.,

®

(i)

(iii)

1
The stable chaos generated by the limit state of the stable P_f_z N1 solutions
(I — 00) in sense of g(Xk, Xg42in,A) = 0 is the unstable chaos generated

I
by the limit state of the unstable stable P£2 N1 solution (I — o0) in sense

!
of Xk, Xaoin. &) = 0 with all eigenvalue distribution of DPPN) outside
unit cycle, vice versa. Such a chaos is the “Yang” chaos in nonlinear discrete
dynamical systems.
I
The unstable chaos generated by the limit state of the unstable PJ(F2 M1
solutions (I — 00) in sense of g(Xk, Xy iy, A) = 0 with all eigenvalue

I
distribution of DPf N outside the unit cycle is the stable chaos generated

1
by the limit state of the stable Piz N1 solution (I — o0) in sense of
g(Xk, X 1ot y> &) = 0, viceversa. Such a chaos is the “Ying” chaos in nonlinear
discrete dynamical systems.

[
The unstable chaos generated by the limit state of the unstable Pf M1
solutions (I — 00) in sense of g(Xx, X iy, A) = 0 with all eigenvalue

[
distribution of DPS% N inside and outside the unit cycle is the unstable chaos

I
generated by the limit state of the unstable PPN _1 solution (I — o0) in sense

I
of 8(Xk, X101 » A) = 0 with switching all eigenvalue distribution ofDPf M

inside and outside the unit cycle, vice versa. Such a chaos is the “Ying-Yang”
chaos in nonlinear discrete dynamical systems.

Proof The proof is similar to the proof of Theorem 4.2, and the chaos is obtained
by ! — oo. This theorem is proved. |
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4.2 Discrete Systems with Multiple Maps
Definition 4.6 Consider a set of implicit vector functions f¢) : D — D (j =

1,2,---) on an open set D C %" in an n-dimensional discrete dynamical system.
For xi, Xx4+1 € D, there is a discrete relation as

£ x¢, xp1, p¥) =0for j =1,2,--- (4.19)
where the vector function is f¢) = ( fl(j ), f2(j ), e f,,(j ))T e %" and discrete
variable vector is Xg = (xg1, Xg2, -+ - , Xkn) T € Q with a parameter vector p¢/) =
P ps T e %

Definition 4.7 Consider a set of implicit vector functions f/) : D — D (j =
1,2,---) onanopenset D C %" in an n-dimensional discrete dynamical system.

(i) A set for discrete relations is defined as
o = (£ 1D (xz, x¢g1, pY) =0, j € Zys k € 7). (4.20)

(i) The positive and negative discrete sets are defined as

Yy = {Xp+ilXk+i € %"l e€eZyyC D and] @21
Yo ={xp—i|Xk—i €Z", i €Zi}C D
respectively, and the total set of the discrete states is
Y¥=X,UX_. (4.22)
(iii) A positive mapping for f) € ® is defined as
PI:iZ =% = Pixg— X (4.23)
and a negative mapping is defined by
Pj* XX = Pj* TXp —> Xp_1. 4.24)

(iv) Two sets for positive and negative mappings are defined as

Or = (PP :xx = xpq1 with £ (%, i1, pV) =0, j € Zy 1 k € Z)

O ={P;IP] : x¢s1 — x¢ with £ (xx, 3441, pY)) =0, j € Zy 3 k € Z)
(4.25)
with the total mapping sets as

O=0,U6_. (4.26)
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Definition 4.8 Consider a discrete dynamical system with a set of implicit vector
functions f) : D — D (j = 1,2, ---). For a mapping P].Jr € O, with Nj-actions
and P ;€ ©_ with Nj-actions. The resultant mapping is defined as

ij = Pj+ o P].+ 0---0 P].+ and Py = P o P o -0P; . 4.27)

N N

Definition 4.9 Consider a discrete dynamical system with a set of implicit vector
functions f) : D — D (j = 1,2,---). For the m- positive mappings of P;,' S
Oy@G = 1,2,---,m) with Nj-actions (N € {0,Z}) and the correspon(liing
m- negative mappings of P; €®_ (G =1,2,---,m)with Nj,-actions, the resultant
nonlinear mapping cluster with pure positive or negative mappings is defined as

+ _ pt+ . + + .
PNy = P, 000 Py 0 Py
m J2 J1
m—terms (4 28)
P =P, oP,y o---0P, . ’
(Njy Njy N Ny Ny Njim
Ji Ja Jm

m—terms

in which at least one of mappings (Ple_r and P J;) with N, € Z, possesses anonlinear
iterative relation.

Theorem 4.4 Consider a discrete dynamical system with a set of implicit vector
functions £ : D — D (j = 1,2,---). For the m- positive mappings of P/.':’ €
OL G =1,2,---,m)with Nj-actions (N, € {0,Z4}) and the corresponding m-
negative mappings of Pj: € ©_( =1,2,---,m) with Nj-actions, the resultant
nonlinear mapping with pure positive and negative mappings

— pt — p-

Xtk B Nje = P, n, Ny X A0 Xk = Py, o Xiersi v (429
and Xyyi = PXX;H_,-_I and Xgyi—1 = PJZX/H_,- can be governed by

f(Xkti1, Xp4i, p) =0fori =1,2,--- , X | Nj,. (4.30)

Suppose a differentiable, vector function g € %" possesses g(Xi, Xy FEM N
L) = 0hold. Ifthe solutions (X, - - -, Xetxm Ny ) of Eq.(4.29) with g(x¢, Xkt Njos
L) = 0 exist, then the following conclusions in the sense of 8(Xy, Xk+sm Ny s A)=0
hold. S

(i) The stable P(';,jm ~Nj,Nj, )-1 solution is the unstable P(Yle Ny ij)-l solutions

. . - « . . .
with all eigenvalues of DP NjyNjy i) (x; 43 N/_S) outside the unit cycle, vice
versa.

.. 4 . . . +
(i1) The unstable P(ij NN, )—1 solution with all eigenvalues ofDP(ij NN

" . . . - . . :
(x;) outside the unit cycle is the stable P( Njy Ny Ni) 1 solutions, vice versa.
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(iii) For the unstable PJ;V, N.N.y-1 solution with eigenvalue distribution of
( Jm J2 11)

DP?}V N, Nj])(XZ) inside and outside the unit cycle, the corresponding

Jm =V
P -1 solution is also unstable with switching eigenvalue distrib-
(Nj N]‘ZHIij) 8 8

ution of DP;, x* inside and outside the unit cycle, vice
f (lesz” ij)( k+2;n:1st) Y

versa.
(iv) All the bifurcations of the stable and unstable PJ]“V, No N
( Jm N 11)
the bifurcations of the unstable and stable Py NN -1 solution, respec-

( J14Y2 !m)

-1 solution are all

tively.
Proof The proof is similar to the proof of Theorem 4.2. This theorem is proved. ll

The chaos generated by the period-doubling of the P(J{Vj Njy le)-l and

P(7v~ N ij)—l solutions can be described through the following theorem.

Theorem 4.5 Consider a discrete dynamical system with a set of implicit vector
functions £9) : D — D (j = 1,2,---). For the m- positive mappings of P;' €
Oy @@ =12,---,m)with Nj-actions (N, € {0, Z}) and the correspondiné m-
negative mappings of PJ; € ©_(@ =1,2,---,m) with Nj-actions, the resultant
nonlinear mapping with pure positive and negative mappings

_ pt _ p— .
Xk+2" | Nj, = P(ij...szle)Xk and x; = P(Nj] sz..Aij)Xk+E:_”:1NjS ; (4.31)
and Xpyi = PJ.J:ka_l and Xgyi—1 = PJZX’H‘" can be governed by
£ (Xei—1, Xpti, pY) =0 fori = 1,2, -, T N, (4.32)

Suppose a differentiable, vector functiong € %" possesses g(Xx, Xkt Ny > A)=0
. . + =
hold. If the period-doubling cascade of the P(ij_“szle)-l and P(le ; ___ij)-l

solution occurs, the corresponding mapping structures are given by

_p+ +
X2 Njg =P, v, N © P, vy Xk
+

m*
=P2(ij =NjNj )Xk

g(Xk, Xkpoxm N 2 ) =05

+ +
X =P oP X
k+22 50 N jg 2(Njy Ny Njp) & T2(NjyNjy Njp) Pk
=P}, Xk
2*(Njy,~Njy Njp)

(X, Xp 4225 N s A) =0; (4.33)

+ +
X, ol _ oP X
k2 EM N =Ny +Njy Njp) © T 21, Ny Njy )R
JF

=P X,
2 (Njy Ny Njy) F

(X, Xp42l S Ny L) =0;
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for positive mappings and

Xk =Py, NN © P, Ny o, Xk 2E NG,
=Pz(1v,-1 Njy--Njp) XhA2E Njg

g(X, Xk 425 Ny, s A) =0;
= = (e} =

X P2<N/1sz"-ij) PZ(Nnsz-"ij>Xk+222?’:1st

=P X
22(Njy NjyoiNjy) K22 B Ny

=0; 4.34
gk, Xpi025m N, o M) = 0; (4.34)

Xy =P, oP, X

=Pt NN © Pty Ny X2 R NG,
=P21(Nj1 sz‘,.ij)Xk-i-zlE;":les

g (X, X2l s Ny o A) =0;

for negative mapping, then the following statements hold, i.e.,
(i) The stable chaos generated by the limit state of the stable P -1
2 (ij~~Nj2le)

(ii)

(iii)

solutions (I — o0) in sense of g(Xg, X ol xm Ny A) = 0 is the unstable chaos
§S= Js

generated by the limit state of the unstable stable P.; -1 solution
2U(Nj; Njy-+-Njm)

(I = oo)insense of g(Xk, X ot xm N> A) = Owith all eigenvalue distribution
sS= Js

ofDP"; outside unit cycle, vice versa. Such a chaos is the “Yang”
2 (Njpy Ny Njy)
chaos in nonlinear discrete dynamical systems.

The unstable chaos generated by the limit state of the unstable P -1
2 (ij "'N]-Z le )

solutions (I — o0) in sense of g(Xk, X pigm Ny A) = 0 with all eigenvalue
§= s

distribution of P
f 2'(NjyNjy Njp)

erated by the limit state of the stable P
Y f 2/(Njy Njy-+Nj)
sense of §(Xi, Xyl zm N; ,A) = 0, vice versa. Such a chaos is the “Ying”
5= s
chaos in nonlinear discrete dynamical systems.
The unstable chaos generated by the limit state of the unstable

-1 outside the unit cycle is the stable chaos gen-

-1 solution (I — o0) in

P -1
2X(NjpyNjyNjp)
solutions (I — 00) in sense of (X, X1y, &) = 0 with all eigenvalue dis-

tribution of DP, inside and outside the unit cycle is the unstable
2 (ij ~-'Nj2 N./l )

chaos generated by the limit state of the unstable P,

2 (N.fl N./2 '”Nﬁn)

(I — 00) in sense of g(X, X401 y» &) = O with switching all eigenvalue distri-

bution of DP_, inside and outside the unit cycle, vice versa. Such
2 (le sz '”N./m)

a chaos is the “Ying—Yang” chaos in nonlinear discrete dynamical systems.

-1 solution

Proof The proof is similar to the proof of Theorem 4.2, and the chaos is obtained by
| — o0. This theorem is proved. |
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4.3 Complete Dynamics of a Henon Map System

As in Luo and Guo (2010), consider the Henon map system as

f1(k, X4 1, P) = X1 — vk — L +axg =0, (4.35)
S2(Xk, Xp11, P) = Vi1 — bxg =0 ’

where x; = (xx, yo)T, £ = (f1, f»)T and p = (a, b)T. Consider two positive and
negative mapping structures as

Xk+N = P_E_N)Xk — P+o...P+ OP+Xk,
—_————
N-terms (4 36)
Xp = PEN)X]H_N =P_o---P_oP_xpyn.
[N —

N-terms

Equations (4.35) and (4.36) give

f(xg, Xkq1,p) =0,

f(Xk+1, X2, p) =0,
(4.37)

f(Xk+n—1, Xkt N, P) =0
and

f(Xk+N—1 ) Xk+N7 p) - 05
f(Xk+N-2, Xk+n-1,P) = 0,

(4.38)
f(xt, Xx41,p) = 0.

The switching of equation order in Eq. (4.38) shows Egs. (4.37) and (4.38) are iden-
tical. For periodic solutions of the positive and negative maps, the periodicity of the
positive and negative mapping structures of the Henon map requires

Xp+N = X OF Xg = Xp4N- (4.39)

So the periodic solutions x;; 4 (j=0,1,---, N) for the negative and positive map-
ping structures are the same, which are given by solving Egs. (4.37) and (4.38) with
(4.39). However, the stability and bifurcation are different because X ; varies with
X+ j—1 for the jth positive mapping and X ;1 varies with x ; for the jth negative
mapping. For a small perturbation, equation (4.37) for the positive mapping gives

of of 0%t )
1+ :
OXpt -1 OXpyj - Xkt j—1

N, ot =0 (4.40)
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where
[ 9f af1
of | %1 Okt
8 j— * * N
Xitj=1 o, e ) . a2 . df2 441
L OXk+j—1 OYk+j—1 (Xz+j71’xz+j)
_ _2ax,f+j_1 —1
__b '
[ ofi  afi
of . ax1<+j ayk+j
3 i * * -
Xt (XL ) anz. 38f2. “442)
L 0%k OVktj iy )
10
o1
So
OXjey of __ of
DP. X>|< . = — * = 1 *
+ (Xt j—1) [3Xk+j—1]xk+j_l [3Xk+j 3Xk+j_l]xk+j—1 a3
_ 2axlt+j71 -1 (449
- —b 0 |
Similarly, for the negative mapping,
of of an+ i—1
1+ : e, ) =0. (4.44)
0Xpyj OXptj—1 0 j DTk
With Egs. (4.41) and (4.42), the foregoing equation gives
OXjr i1 of _ of
DP(xj, ) =[— =1y =I : I,
OXpeyj —FH OXptj—1 OXjeyj  FH
(4.45)
_ 1[0 1
~ plb Zax;:ﬂ_l :
Thus, the resultant perturbation of the mapping structure in Eq. (4.36) gives
Sxtin = DPV)sxy = DPy ----- DP, - DP, 8x;,
; N-terms (4.46)
5xp = DPVsxiny = DP_ ... DP_ . DP_§xj1n

N-terms
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where

(N) N
Py = i PP Oy, } (4.47)

) 1
DP™ =TI}y DP_(X{ y_j1)-

Consider the eigenvalues A~ and A of DP(_N)(XZ L) and DPS_N)(Xz), respec-
tively. The following statements hold.

(i) If[A],] < 1(or|A7,| < 1), the periodic solutions of P{™ (x¢) (or PV (x4.n))
are stable.

(i) If |2}l > 1 (or [A7orol > 1), the periodic solutions of P (x;) (or
PﬁN) (X)) are unstable.

(iii) If real eigenvalues )\T = —1 and |)»;| < 1l(orA] = —land[A;,| < 1),
the period-doubling (PD) bifurcation of the periodic solutions of PJ(FN) (xx)

(N)
(orP>"" (Xk+N)) Occurs.

(iv) If real eigenvalues |)»fr| < 1 and ){ = 1(or |A|]| < 1and A, = 1), then
the saddle-node (SN) bifurcation of the periodic solutions relative to PJ(FN) (xx)
(orPiN) (Xk4+N)) oOccurs.

(v) If two complex eigenvalues of |AT2| = 1 (or |A| ,| = 1), the Neimark bifur-
cation (NB) of the periodic solutions of PJ(FN) (Xr) (orPﬁN) (Xx+N)) occurs.

A numerical prediction of periodic solutions of the Henon map is presented
with varying parameter b for a=1.1, as shown in Figs.4.2a—d. The dashed vertical
lines give the bifurcation points. The acronyms “PD”, “SN” and “NB” are repre-
sented the period-doubling bifurcation, saddle-node bifurcation and Neimark bifur-
cation, respectively. All the stable periodic solutions for positive mapping P lie in
b € (—1.0,1.0). The stable period-1 solution of P4 is in b € (—1.0,—0.22).
At b = —1, the Neimark bifurcation (NB) of the period-1 solution occurs. At
b ~ —0.22, the period-doubling bifurcation (PD) of the period-1 solution occurs.
This point is the saddle-node bifurcation (SN) for the period-2 solution of P,
(i.e.,P>)). The periodic solution of P> is in b € (~0.22,0.1133). Atb ~ 0.1133,
the corresponding period-doubling bifurcation (PD) of Pf) occurs, which also cor-
responds to the saddle-node bifurcation (SN) for the period-4 solution (i.e.,Pf)).
The periodic solution of P{¥ exists in b € (0.1133,0.2084). At b ~ 0.2084,
there is a period-doubling bifurcation (PD) of P(4), corresponding to the saddle-
node bifurcation (SN) of the period-8 solution (i.e.,PJ(rg)). The periodic solution
of PJ(FS) exist in b € (0.2084, 0.2468). Also the coexisting periodic solutions of
Pf) and Pf) exist in b € (—1.0, —0.344). The periodic solution of Pf) exists
inb € (—1.0,—-0.8771) and (—0.4, —0.344). At b ~ —0.344, the saddle-node
bifurcation (SN) of P_(f) occurs where the periodic solution of Pf) disappears. At
b ~ —0.4, the period-doubling bifurcation (PD) of P_(f) occurs, and the saddle-node
bifurcation (SN) for the periodic solution of PJ(f) appears. The periodic solution of
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Table4.1 Parameter ranges for stable periodic and Chaotic solutions in bifurcation scenario (a=1.1)

Mapping structure Parameter b
Positive mapping (stable) Py (—1.0,—-0.22)
PP (—0.22,0.1133)
pY (0.1133,0.2084)
p® (0.2084,0.2468)
pY (—1.0,—0.8771) and (—0.4,—0.344)
P (—0.482,—0.4) and (—0.8771,—0.8112)
Negative mapping (stable) P_ (—o00, —1.0) and (2.2184, 4+-00)
P& (1.1,2.2184)
P ((1.0,1.1))
pY (—1.0773,~1.0)
Chaos - (0.2468,0.523)

P lies in b € (—0.4582, —0.4) and (—0.8771, —0.8112). At b = 1, the Neimark

bifurcation (NB) of the periodic solution of Pf) occurs, which cannot be obtained
through the numerical prediction but is predicted by the analytical prediction. After
the Neimark bifurcation, the stable periodic solutions for positive mapping P, do not
exist any more. Such stable periodic solutions for positive mapping P, are shown in
Figs.4.2a, b. The stable solution for negative mapping P— isinb € (—oo, —1.0) and
b e (—1,400). At b = —1, the Neimark bifurcation (NB) of the periodic solutions
of P_ and P® coexist. The period-1 solution of P_ isin b € (—o0o, —1.0) and
b € (2.2184, 4-00). The period-doubling bifurcation (PD) of the period-1 solution
of P_ occurs at b ~ 2.2184 and the bifurcation point is also a saddle-node bifurca-
tion (SN) for the period-2 solution of P_ (i.e., Piz)). The stable periodic solution
of PP isin b e (1.1,2.2184). After the period-doubling bifurcation, the periodic

solution of P¥ is in b € (1.0, 1.1). The coexisting periodic solution of P is
inb € (—1.0773, —1.0), which is actually connected with the coexisting periodic
solution of Pf) through the Neimark bifurcation (NB). Atb = 1, the Neimark bifur-

cation (NB) of the periodic solution of P£4) occurs. Such stable periodic solutions
for negative mapping P_ are shown in Figs.4.2c, d. Finally the chaotic solutions
occurs in b € (0.2468, 0.523). The parameter range of » can be shown from nega-
tive to positive infinity. The values of b for bifurcation and stable periodic solution in
bifurcation scenario are tabulated in Table4.1. From the numerical prediction, some
of the stable periodic solutions of the Henon map can be obtained. However, the
unstable solution for each mapping structure can only be obtained by the analytical
prediction due to the sensitive dependency on initial conditions.

The stable and unstable periodic solutions for both positive and negative mappings
of the Henon maps are obtained in Figs. 4.3 and 4.4. The acronyms “PD”, “SN” and
“NB” represent the stable period-doubling bifurcation, stable saddle-node bifurcation
and Neimark bifurcation, respectively. The acronyms “UPD”, and “USN” represent
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Fig.4.2 Numerical predictions of periodic solutions of the Henon mapping: (a) and (b) positive
mapping (P4), (¢) and (d) negative mapping (P-). (a=1.1)

the period-doubling bifurcation from unstable nodes with negative eigenvalues to
saddle and the saddle-node bifurcation from unstable nodes with positive eigenval-
ues to saddle, respectively. The analytical stable and unstable periodic solutions of
positive mapping P for a=1.1 and b € (—o0, +00) are presented in Figs.4.3a—d.
The stable period-1 solutions of P lie in b € (—1.0, —0.2143), matched with the
numerical iteration. For b € (—0.2143, +00), the unstable period-1 solution of P
is saddle. For b € (—o00, —1.0), the unstable period-1 solution of Py is an unstable
focus. The corresponding bifurcations of the period-1 solution of P, are Neimark
bifurcation (NB) and period-doubling bifurcation (PD). The stability and bifurcation
of the unstable period-1 solution of P, is determined by the negative mapping P_.
Forb € (2.2211, 4-00), the period-1 solution of P, is an unstable node. The unstable
period-1 solution of Py is saddle for b € (—o0, 2.2211). Thus, the unstable period-
doubling bifurcation (UPD) of the period-1 solution of P occurs at b ~ 2.2211. At
this point, the unstable periodic solution is from unstable nodes with negative eigen-
values to saddle. Because of the unstable period-doubling bifurcation, the unstable
periodic solution of P_(f) for the unstable nodes with negative eigenvalues is obtained
for b € (1.0936, 2.2211). The unstable periodic solution is from unstable focus to
unstable node during the parameter of b € (1.0936,2.2211). At b =~ 2.2211, the
USN bifurcation of the unstable periodic solution of Pf) is from unstable nodes
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with positive eigenvalues to saddle. At such a point, the bifurcation for the map-
ping of P? is from the stable node to saddle. At b &~ 1.0936, the bifurcation of
the unstable periodic solution of Pf) is unstable period-doubling bifurcation. The
bifurcation of periodic solution of PP isa period-doubling bifurcation. The sta-

ble and unstable periodic solutions of Pf) exist in b € (—0.2143, 0.1068) and in
b € (0.1068, 1.0932) with saddle, respectively. At b =~ 0.1068, there is a period-

doubling bifurcation of Pf) from the stable nodes to saddle. The unstable periodic
solution of Pf) is saddle. Such a bifurcation point is also a SN bifurcation of P4(_4).
The stable periodic solution of P{" is b e (0.1068,0.2083) and (0.9842, 1.0).
The unstable periodic solution of Pf) is saddle in b € (0.2083, 0.9842). The two
points b = 0.2083 and 0.9842 are for the period-doubling bifurcation of Pf),
and for the saddle-node bifurcation of Pf), respectively. The unstable periodic
solution of Pf) are an unstable node in b € (1.0, 1.0936), determined by the
negative mapping of PY Ath = 1.0, the Neimark bifurcation (NB) for the period-
4 solution of positive mappings (i.e., Pf) ) occurs. The stable period-8 solution
lies in b € (0.2083,0.2556) and (0.9451, 0.9842). The unstable periodic solu-
tion of Pj_g) is saddle in b € (0.2556,0.9451). A zoomed view of the periodic
solutions of Pf) and PJ(rg) is given in Fig.4.3c. The coexisting stable solution of
PP is b € (=1.0,-0.8531) and b € (—0.3981, —0.3408). At b = —1.0 the
Neimark bifurcation (NB) of Pf) occurs. At points of b &~ —0.8531 and —0.3981,
the PD bifurcation of Pf) occurs, and the unstable periodic solution of
P is saddle in b € (—0.8531, —0.3981). The two points of b ~ —0.8531 and
—0.3981 are also the SN bifurcation of Pf). The unstable periodic solution of
Pf) inb € (—1.0917, —1.0) is determined by the negative mapping of PP At
b ~ —0.3408, the SN bifurcation of Pf) occurs and the corresponding periodic
solution disappears. At b ~ —1.0923, an USN bifurcation leads to the disappear-
ance of the unstable periodic solution of Pf). The stable periodic solution of PJ(:))
isin b € (—0.8531, —0.8088) and (—0.4384, —0.3947), and the unstable periodic
solution of P\? is saddle in b € (—0.8088, —0.4384). A zoomed view of P* and
Pf) for coexisting periodic solution of P, is presented in Fig.4.3d. For a clear
picture of bifurcation and stability, the bifurcation values and stability ranges of
parameter b for the periodic solutions of positive mapping are tabulated in
Table4.2. In a similar fashion, the analytical prediction of stable and unstable peri-
odic solutions for negative mapping P_ fora=1.1 and b € (—o00, +00) is presented
in Figs.4.4a, b.

The stable periodic solutions for negative mapping P_ lieinb € (—oo, —1.0) and
(1.0, 400), which is the same as in numerical prediction. The stable period- 1 solution
of P_ is a stable focus in b € (—o00, —1.0) and stable nodes in b € (2.2211, 4+00).
For b € (—1.0, —0.2143), the unstable period-1 solution of P_ is from an unstable
focus to unstable node. At b = —1, the bifurcation between the stable and unstable
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Table4.2 Parameter ranges for analytical stable and unstable periodic solutions for positive map-
pings (a=1.1)

Mapping structure Parameter b
Stable (nodes & focus) P, (—1.0,—0.2143)
PP (—0.2143,0.1068)
P (0.1068,0.2083) and (0.9842,1.0)
P (0.2083,0.2556) and (0.9451,0.9842)
P (—1.0,—0.8531) and (—0.3981,—0.3408)
P (—0.8531,—0.8088) and (—0.4384,—0.3947)
Unstable focus Py (=00, —1.0)
pY (—1.0917,—1.0)
Saddle P, (—0.2143, +00) and (=00, 2.2211)
PP (0.1068,1.0932)
P (0.2083,0.9842)
pY® (0.2556,0.9451)
pY (—0.8531,—3981)
P (—0.8088,—0.4384)
Unstable node Py (2.2211, +00)
PP (1.0936,2.2211)
pY (1.0,1.0936)

period-1 solution of P_ is the Neimark Bifurcation (NB). For b € (—0.2143, +00),
the unstable period-1 solution of P_ is saddle. Thus, the UPD bifurcation of P_
occurs at b = —0.2143. For b € (—o00, 2.2211), the unstable period-1 solution of
P_issaddle. Atb = 2.2211, the PD bifurcation of the period-1 solution of P_ occurs.

The unstable period-2 solution of P_ (i.e., P'?) exists in b € (—0.2143,0.1068)
and(0.1068, 1.0936). For b € (1.0936,2.2211), the stable period-2 solution of
P_ (ie., Pﬁz)) exists from the stable focus to nodes. The point at b ~ —0.2143
is the USN bifurcation of the unstable periodic solution of PP Atb~ 1.0936, the
PD bifurcation of the stable periodic solution of P occurs, and the saddle periodic
solution of P appears. Atb ~ 2.2211, the SN bifurcation of P takes place. The
unstable periodic solution of P is in b € (0.1068, 0.2083) and (0.9842, 1.0). An

USN bifurcation for the unstable periodic solution of P occurs at b ~ 0.1068. At
b =~ 0.2083 and 0.9842, the UPD bifurcation of the unstable periodic solution of

P occurs. For the point at b = 1, the Neimark bifurcation of the periodic solution
of P£4) occurs. Thus, the stable periodic solution of P£4) isin b € (1.0, 1.0936).
The SN bifurcation of P* occurs at b &~ 1.0936. The unstable periodic solution of
P® isinb e (0.2083, 0.2556) and (0.9451, 0.9842). The USN bifurcations of P¥
occur at b &~ (0.2083 and 0.9842. The unstable periodic solution of P® is saddle
in b € (0.2556,0.9451), and the UPD bifurcations of PES) are at b ~ 0.2556 and
0.9451. The stable periodic solution of P coexist with the period-1 motion of
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Table4.3 Parameter ranges for analytical stable and unstable periodic solutions for negative map-
pings (a=1.1)

Mapping structure Parameter b
Stable (nodes & focus) P_ (=00, —1.0) and (2.2211, 400)
P (1.0936,2.2211)
pY (1.0,1.0936)
pY (—1.0917,—1.0)
Unstable focus P_ (—1.0,—0.2143)
PP (—0.2143,0.1068)
Saddle P_ (—0.2143, 400) and (—o0, 2.2211)
P (0.1068,1.0932)
PW (0.2083,0.9842)
p® (0.2556,0.9451)
s (—0.8531,—3981)
p© (—0.8088,—0.4384)
Unstable node p® (0.1068,0.2083) and (0.9842,1.0)
p® (0.2083,0.2556) and (0.9451,0.9842)
P (—1.0,—0.8531) and (—0.3981,—0.3408)
p© (—0.8531,—0.8088) and (—0.4384,—0.3947)

P_inb € (—1.0917, —1.0), and the unstable periodic solution of PES) is an unsta-
ble node in b € (—1.0, —0.8531) and (—0.3981, —0.3408). The unstable periodic

solution of P is saddle in b € (—0.8531, —0.3981). At b = —1.0, the Neimark
bifurcation of the periodic solutions of P andP_ coexist. The unstable periodic

solution of Pfé) is saddle in b € (—0.8088, —0.4384) and is an unstable node in
b € (—0.8531, —0.8088) and (—0.4384, —1.0923). As in positive mapping, the
values of parameter b for stability ranges are listed in Table4.3.

From the analytical prediction, the following statements are verified.

(i) The stable periodic solution of positive mapping P is the unstable periodic
solution of negative mapping P_ with all eigenvalues outside the unit cycle.

(i) The stable periodic solution of negative mapping P_ is the unstable periodic
solution of positive mapping P4 with all eigenvalues outside the unit cycle.

(iii) The PD and SN bifurcations of the periodic solutions of positive mapping P4+
are the UPD and USN bifurcations of the periodic solutions of negative
mapping P_, vice versa.

(iv) The PD and SN bifurcations of the periodic solutions of negative mapping P_
are the UPD and USN bifurcations of the periodic solutions of positive
mapping P4, vice versa.

(v) If the unstable periodic solutions of positive mapping P, are saddle, the cor-
responding periodic solutions of negative mapping P_ are also saddle.



4.3 Complete Dynamics of a Henon Map System

Table4.4 Input data for
Poincare mappings of
period-1 at the Neimark
bifurcation (a=1.1 and
b=—1.0)

Table4.5 Input data for
Poincare mappings of
period-3 at the Neimark
bifurcation (¢=1.1 and

b=—1)
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(Xks )

(Xk> Vi)

(0.4083,—0.4083)
(0.4283,—0.4083)
(0.4383,—0.4083)
(0.4483,—0.4083)
(0.4583,—0.4083)

(0.4683,—0.4083)
(0.4783,—0.4083)
(0.4883,—0.4083)
(0.4983,—0.4083)
(0.5131,—0.4083)

(Xks Yi)

(X5 Yi)

(1.1966,0.2877)
(1.2067,0.2877)
(1.2167,0.2877)

(1.2267,0.2877)
(1.2367,0.2877)
(1.2413,0.2877)

From the analytical prediction, the parameter maps of both the positive and negative
mappings are developed. An overall view of the parameter map is given in Fig.4.5a.
The corresponding periodic solutions are labeled by mapping structures. “None”
represents no periodic solutions exists, which means the solution goes to infinity.
“Chaos” gives the regions for chaotic solutions. The existing theory can only give
the periodic solutions relative to the positive mapping. The coexistence of the peri-
odic solutions is observed. The unstable periodic solutions with saddle will not be
presented. The positive and negative mappings are separated by the two Neimark
bifurcations at b = £1. The zoomed views of the parameter map for periodic solu-
tions of Pf) and PJ(:) are presented in Figs. 4.5b, ¢ for better illustration, respectively.
The Neimark bifurcation of the periodic solution is relative to the unstable and stable
focuses, which is presented for a better understanding of the solution switching from
positive to negative mappings.

The Poincare mapping relative to the Neimark bifurcation of positive (or negative)
mapping at a=1.1 and b = —1 is presented in Fig.4.6. Two Neimark bifurcations
coexist with different initial conditions. The Neimark bifurcation of period-1 solution
is presented in Fig.4.6a, and the initial values of (xx, yx) are tabulated in Table 4.4.
The most inside point (x;, y{) =~ (0.4083, —0.4083) is the point for the period-1
solution of Py or P_ relative to the Neimark bifurcation. The most outside curve with
the initial condition ()c,zk , y,f ) ~ (0.5131, —0.4083) is the separatrix for the strange
attractors around the period-1 solutions with the Neimark bifurcation. The Neimark
bifurcation of period-3 solution is presented in Fig.4.6b. The initial conditions are
listed in Table4.5. For this case, there are three portions of the strange attractor.
The most inside points are (x;, y;) ~ (—0.2877, —1.1967), (-0.2877,0.2877)
and (1.1966, 0.2877) for the period-3 solution of P, or P_ relative to the Neimark
bifurcation. The initial condition for three portions of the strange attractor is
(e, yp) ~ (1.2067, 0.2877).
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Fig.4.5 Parameter map of
(a,b): (a) global view, (b)
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Fig.4.6 Poincare mappings at the Neimark bifurcation of period-1 and period-3 solution of the
Henon map (i.e., P+ — 1 orP_ — 1, P(S) 1orP® — 1). (a) Neimark bifurcation of period-1
solution, (b) Neimark bifurcation of perlod 3 solution. (a=1.1 and b=—1)

4.4 Companion and Synchronization

This section will extend the concepts presented in the previous section. The com-
panion and synchronization of two discrete dynamical systems will be presented.

Definition 4.10 Consider the ath implicit vector function f® : D — D(a =
1,2,---, N)onanopenset D C %" in an n-dimensional discrete dynamical system.
For xi, X¢4+1 € D, there is a discrete relation as

£ (%, X141, p ) =0 (4.48)
where the vector function is f©@® = (f(a) f(a), e, (a))T € %" and discrete
variable vector is X = (Xg1, Xk2, - - xkn)T € D with the corresponding parameter
vector p@ = (p(a) (a), : ,Pm))T R

Similarly, the discrete sets, positive and negative mappings for discrete dynamical
system of @ (x;, x¢ 41, p'*) = 0 in Eq. (4.48) are defined.

Definition 4.11 For a discrete dynamical system in Eq. (4.48), the positive and neg-
ative discrete sets are defined by

2@ = (x X% € #",i € Z+} C D and
@ @ 5@ ¢ gn | (4.49)
Y =2 x e ielyCD
respectively. The corresponding discrete set is
@ =—5®@yus®. (4.50)

A positive mapping for discrete dynamical system is defined as
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Pyy : 2@ - Ef) = Pyy: x,({a) — x,({oj_)l 4.51)

and a negative mapping is defined by
Py : 2@ 5 2@ o p x5 x@). (4.52)

Definition 4.12 For two discrete dynamical systems in Eq.(4.48), consider two
points X,((“), X,((ﬂ ) ¢ D and XIEOQ] , X,((’i)]
vector function @ = (¢1, @2, - -- ,§01)T € Z#'. For a small number &r > 0, there
is a small number e;4; > 0. Suppose there are two subdomains U,((a) C D and

U,(f ) C D, then for X](Ca) IS U,(C“) and X,(f ) € U},({’3 ),

€ D, and there is a specific, differentiable,

e, xP 1) < &. (4.53)

(i) For g1 > 0, there are two subdomains U@ C D and U(ﬂ ) C D. If for
+ k+1 k+1

(@) (@) B) B)
Xeyy € Uppy andx ) € Up sy
e, x I < exs, (4.54)

then, the discrete dynamical systems of £ and f#) are called the companion
in sense of @ during the kth and (k + 1)th iteration.

(i,) The discrete dynamical systems of £(®) and f®) are called the finite

companion if for x,(f_‘: i€ U,(;i) ;i C D and x,(fjr) i€ U,(fi) ;i C D
o x DIl < exsjfor j= 1,2, N. (4.55)

(ip) The discrete dynamical systems of £ and £ are called the absolute

permanent companion if x,(f: ;€ U,(c‘ij) C D and x,(fg ;€ U,({’ij.) cD

o, X2 VI < enyjfor j = 1,2, (4.56)

(ic) The discrete dynamical systems of £ and f®) are called the repeatable
()

finite companion if X,EOj:jN(_) € Uk+jN(—) C D and X]((/j_)j(_) € U,(ﬁ’j)(_) cD

AT 3"1((02]'1\1(—) - Xl(co—[i-)jN(-i-)’ and AL :Xl(clj—)jN(—) - Xl(cij—)jN(+)’
Xl(cojr)jN(Jr) = Xl(cti)jN(f) + AI%; and Xl(cli)jN(Jr) = Xl(fk)jN(f) + AI%\;;
10 1) X (1) M = etgmoaiin for j = 1,2,
with X, ) € Uiloagy 0d %) € l(fi)mod( j3%% i

(4.57)
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(ii) For ex > 0, &x4(N,:np) > O there are there are two subdomains Ul(co-(r)Na cD

B) (@) (@) B) ®B
and Uk+N;; C D. If for XN, € Uk+Nm and Xi4Ng IS Uk+Nﬁ if
1005 Xy M ki) (4.58)

then the discrete dynamical systems of f® from the kth to (k 4 N, )th iteration
and f® from the kthto (k+N s)thiteration are called the (Ny : Ng)-companion
in sense of @.

(iiy) The discrete dynamical systems of £(*) and f#) are called the finite (N, :

Np) companion if for xi € U c Dandx, e U, e D
OO Ny XK M = Bkt jvgeng for j = 1,2, N (459)
(iip) The discrete dynamical systems of £*) and £® are called the absolute
permanent (N, : Ng) companion if x,(fjr)j N, € U,(fjr)j N, © D and x,(fr) iNg €
(8)
Uk+jNﬁ cD
(@) ) L
OO XK iy M < Bl v for j = 1,2, (4.60)

(ii) The discrete dynamical systems of £ and £ are called the repeat-

N, C Dandx(ﬁ) €

able finite (N, : Ng) companion if Xl(ci)jNa e U@ ktjNg

k+j
®)
Uiy, €D

B . B )
and AI'" : Xt jNg (=)~ Xkg jNs()

@ _ @ @ ) _ B ®)
X iNa() = XitjNg() T AN, and Xy ) = X v, o) T ALy,
||(P(X]((D_(’_)jNa(+), X](('fj?jNﬂ(+)a A')|| =< €k+ mod (j,N)(Ng:Ng) fOI'j = 17 25 T,

(@) () B B
Xt iNg () € Uk mod (j,N) N, and XptjNg(+) € Uit mod (j.N)Ng"

@ . @ @
AL X NG (o) ™ Xk Ny (1)

(4.61)

Definition 4.13 For two discrete dynamical systems in Eq.(4.48), consider two

points x,(co‘), x,({ﬁ ) € D and x,({o_fl, X](fj_)l € D, and there is a specific, differentiable,
vector function @ = (¢1, @2, -, (pl)T e %' For
ox®, xP 1) =0. (4.62)
@G If
ox, xP 2 =0, (4.63)

then, discrete dynamical systems of £ and f®) are called the (1:1) synchro-
nization in sense of @;
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i) If

o2 x 0 =0,

(@) . (@) (@) B) . (B »B)
Al Xer1o) ™ Xer1(4) and AT : Xea1(—) > Xes1(h) @64
(@) —x® AT ang x® —xB® L AI® ’
X1+ = Xir1(0) and X1+ = Xk 1(0)

(@) —(:))] (B) _ B,
Xeri(4) =X and X7 ) =X

then, discrete dynamical systems of f®) and £ are called the repeatable (1:1)
synchronization in sense of @.
(iii) If

(@) (8)
(P(xk‘iNa, XN AN=0 (4.65)
then the discrete dynamical systems of £ and £f® are called the (N, : N, 8)-

synchronization in sense of @.
Giv) If

Oy, Xy, 2) = 0 with

L (@) (@) . oB B
AT@ . Xean, > Xx and AI® - Xpang = Xy
() (o) () B) B B) (4.66)
Xt No (1) = X No(-) T AT a0 Xy, () =Xy, o) + AL
(@) (@) B B)

XipNper) = X and Xy o =X

then the discrete dynamical systems of £(*) and £(#) are called the repeatable
(N : Ng)-synchronization in sense of @.

From the definition, the companions of two discrete dynamical systems are pre-
sented in Figs.4.7 and 4.8. For each step, if the corresponding relation satisfies
Eq. (4.62), the companion s called the (1:1)companion, whichis presented in Fig. 4.7.
The shaded areas are the companion domain which is controlled by & and @. For
the repeated companion, for each step, the companion with specific impulses will
have the same control domains. Such shaded areas can be overlapped or separated.
The (Ny : Ng) state for f @ with Ng-iterations and £#) with Npg-iterations satisfy
Eq. (4.65) is called the (N, : Ng)-companion, which is sketched in Fig.4.8a. This
companion does not require each iteration step to do so. The companion states are
shaded. For the repeated companion, the companion state with specific impulses will
have the same control domains. Similarly, the companion for negative maps can be
defined, as shown in Fig.4.8b.

Consider synchronization of two discrete dynamical systems, as shown in Fig. 4.9,
with

£ (x4 11, X, p@) = 0 and £7 (yi11, yi, pP) = 0. (4.67)
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N —actions

Fig.4.7 Companion of two discrete dynamical systems

(a)

N, —actions

f(a)
/\/\L/\f\
"% \ X
Xi43
Yiss
\//A y
f(ﬂ) f(/’) f(ﬁ)

N 5 —actions

(b) N, —actions
f@ £l £ f@
X
yk*N/} yk*NﬂH
y
f(ﬂ) f(ﬂ) f(ﬁ) f(ﬁ)
N —actions

Fig.4.8 Companion of two discrete nonlinear systems: a positive companion and b negative com-
panion
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For the initial state, there is a relation as

O(Xg, yr, L) =0,

(4.68)
For the positive synchronization, there are N,,-actions with function f*) and mapping
Py and Ng-actions with function f #) and mapping Pgy

£ (x4, X i1, p@) =0fori =1,2,--- , Ny

(4.69)
1,2,---, Ng

f(ﬁ)()’kﬂ', Yik+j-1, p®) =0 for j

and the synchronization is based on

P(Xit-N, > YitNg» &) = 0. (4.70)
For the negative synchronization, there are N,-actions with function f® and
mapping P,_ and Ng-actions with function f #) and mapping Pg_

£ (x4 i1, Xe—i—1, @) =0 for i

=1,2,--+, Ny
4.71)
£P (v, yi—jo1, pP) =0for j =1,2,--- , Ng
and the synchronization is based on
@Kk, » Yi—nys M) = 0. 4.72)
Thus there is a relation

X = Po_ o Py" o Poy o P{\x 4.73)
where

Po_ o Py"" o Pey o PN

=Pyp_oPg_oPg _o---0Pg 0Py oPyioPyyo---0Pyy. (4.74)
Np—actions

Ny —actions
From Eq. (4.73), we have

(Ng)
Xi+N, = Poi Xk and Yiyny = PoXiyn,
Yk =

4.75)
(Ng)
Py " yitny and g = Po-yi
and
— pWNa)yg and —p
Xk+Ny = g4 Xk aNAd Yik+Ng = Lo+ Xk+N,

(Vp) 4.76)
Poi Xk = yk and Py Yk = YN,
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(a)
N, —actions
gl £@ £l £
‘(\/\_/\\ o /\_» <
X, | Xy Xpi2 Xpi3 cee Xpimo | Xiwn,
yki‘ Yt Yis2 Yiss o Vi g Yien,
f(ﬂ) f(ﬂ) f(ﬁ) .. f(ﬂ)
Nﬁ —actions
(b) N, —actions
gl £« £ gl
& o TN
Xen, | XN, +1 X3 X2 X } X
Yi- Nil‘ Yi-ng+r - Yis Yi-2 Vit i Vi
y; ~ ~ N - y
N ¢(h) N £7
N— actions

Fig.4.9 Synchronization of two discrete nonlinear systems: a positive synchronization and b neg-
ative synchronization

The corresponding commutative diagram is given in Fig.4.10. The solid and dashed
arrows give the positive and negative mappings, respectively.
N,
From the above discussion on synchronization of P (N ) and Pé +ﬂ ) under the
constraint @, the following relations should exist

X/k = P(p, o P;]Xﬂ) o P(p+ @) Pa({ﬁa)Xk, or
4.77)

N,
X/k = POEIXQ) o P(p_ o P/;+/S) ] P(P+Xk~

The above equation forms an iterative mapping. If the fixed point exists, i.e.,
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Fig.4.10 Commutative

mapping diagram for P(iiv")
synchronization -
P(N“) *
- |
P
P(p_ | o+
(Np) |
Pﬂ+
(Np)
Pﬂ-
X/k = Xk (478)
. (Ng) (Np) . .
then the synchronization of P, *" and P4_"" under the constraint @ exists
(Na) (Np)
XN, = Py Xi, and yrpny = P (%
+No a+ Yi+nNg B+ y (4.79)

Yk = PoXi and Ying = PoXi4N,,-

Theorem 4.6 Consider two discrete dynamical systems (P, f @)Y and (Pg, f By as
in Eq.(4.48) with

Pyt 1 Xk — Xpq1 and Py— : Xy — Xk

4.80
£ (xy, X411, p®) = 0 (450
and

Pgy i yx — Yiy1and Py D yryp1 —> Y

(4.81)
£ (ye, yer1, p?) = 0.

For two points X, € Dy and yi € Dg, there is a specific, differentiable, vector func-
tion @ = (@1, @2, -+, )" € Z'. The synchronization of two discrete dynamical
systems (Py, £@) and (Pg,t By is under the following constraints

@(Xk, Yk, &) = 0 and @(X41, Ye+1,4) = 0. (4.82)
Consider a resultant hybrid mapping relation as

X/k = PXk = Pq)_ (@) Pﬂ_ (@) P(p+ o Pa_;,_Xk (483)

with
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Pot X = Xpp1 With £@ (x40, x¢, p@) = 0,
Poi : Xp11 = Yig1 With @(Xg41, Yig1, X)) =0,
Ps— : Yir1 — yi with €2 (yi1, yi, p@) = 0, (4.84)
Po_ 1 yi — X'i with @(x'g, yx, L) = 0;
/
X | = Xk

and
DP(x}) = DPo_(y) - DPg_(y;i,1) - DPoi (X}, ) - DPoi(X}) (4.85)

where

X'k 0Xk41

9 IYk+1
DP(x}) = || ,DPur(x}) = | —| ,DPor(x},)) = | - ’
X Xt Xk X OXjs1 X,

ax/k
, DPo_(y}) = |: :| .
Yi

ad
DPﬂ(ylt+1)=|: L :|

0Yk+1 oYk

i1

(4.86)

(1) The (1:1) synchronization of two discrete dynamical systems of (P,, f @) and

(Pg, £P)) is persistent if and only if all the eigenvalues A; (i = 1,2, -, n) of
DP(x}) lie in the unit circles, i.e.,

[Mi| < 1fori=1,2,---,n. (4.87)

(i1) The (1:1) synchronization of two discrete dynamical systems of (P,, f @)y and
(Pg,f ) is a saddle-node vanishing if and only if at least one of the real
eigenvalues A; (i = 1,2,---,ny and n; < n) of DP(x}) is positive one (+1)
and the other eigenvalues are in the unite circle, i.e.,

Ai=1land |A;| < 1fori,je{l,2,--- ,n}and j #1i. (4.88)

(iii) The (1:1) synchronization of two discrete dynamical systems of (P, f®) and
(Pg,f #)) is a period-doubling vanishing if and only if at least one of the real
eigenvalues A; (i = 1,2,---,ny and n; < n) of DP(x}) is negative one (—1)
and the other eigenvalues are in the unite circle, i.e.,

Ai=—land [A;] < 1fori, je{l,2,--- ,n}and j #1i. (4.89)

(iv) The (1:1) synchronization of two discrete dynamical systems of (P, ) and
(Pg,f (#)) is a Neimark vanishing if and only if one pair of all the complex
eigenvalues A; = o; = ;i(i =1,2,---,ny and n; < n/2) of DP(x}) are on
the unit circle and the other eigenvalues are in the unite circle, i.e.,

|hil =y/a? + p? =1and |A;| < Lfori, j € {1,2,--- ,n}and j #i.
(4.90)
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(v) The (1:1) synchronization of two discrete dynamical systems of (P, f®)) and
(Pg, fBYisa(l) : L : 13) vanishing if and only if /; and [, real eigenvalues A; of
DP(x7) are negative one (—1) and positive one (+1), respectively, and /3-pairs of
complex eigenvalues A; = a; £8;i (i =1,2,--- ,nyandn; < n/2) of DP(X})
are on the unit circle and the other eigenvalues are in the unite circle, i.e.,

A =—1fori =iy, ip,---,i, €{1,2,--- ,n},
)\-j=+1f0rj=j]9j27"'aj126{1527"'7’1}9

Al =JaZ+BF=1forr=ri,ra -,y €{1,2,-+- ,n},

|As] < Lfors e {l,2,--- ,n}and s¢ {i, j, r}. “4.91)

(vi) The (1:1) synchronization of two discrete dynamical systems of (P,, ) and
(Pg, £)) is instantaneous if and only if at least one of the eigenvalues A; (i =
1,2,---,n)of DP(XZ) lies out of the unit circle, i.e.,

|Aij] > 1fori e {1,2,---,n}. (4.92)
Proof From the definition of synchronization, we have

£ (1, %, ) = 0,8 (yir1, yi, pP) = 0;
@(Xk, Yk, &) = 0, @(Xg41, Y1, A) = 0.
Using positive and negative mapping concepts, a resultant mapping in Eq. (4.83) with

a relation in Eq.(4.84) can be developed as a hybrid discrete dynamical system with
positive and negative mappings, i.e.,

f(“)(xk+1, xi, p'*) = 0 for Pot @ Xp = Xi+1
@(Xk+1, Yet1, &) = 0 for Poy @ X1 — Vit 1,
£ (yig1, yi, pP) = 0 for P yis1 — yi,
O(x't, yi, L) = 0 for Po_ : yx — Xi;

X = x;.

Thus, two sets of equations are identical to each other. However, the foregoing equa-
tion gives an iterative mapping relation as

X/kzPXk:P(p_OPﬁ_OPqH_OPCH_Xk.

The fixed point of such a mapping relation yields the solutions of synchronization,
and the corresponding stability of the fixed point of the foregoing mapping relation
gives the persistence and instant of synchronization. In other words, the eigenvalue
analysis of DP(x}) in Eq. (4.75) gives the stability and bifurcation conditions of the
fixed point of the hybrid mapping, which is the persistence, vanishing and instant
conditions of the synchronization two discrete dynamical systems of (P, f®)) and
(Pg, f (A)). Thus, statements (i)—(v) can be proved directly. [ |
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Theorem 4.7 Consider two discrete dynamical systems (P, £©) and (Pg,t By as
in Eq.(4.48) with
Pyt i Xk — Xpp1 and Py Xy — Xk

(4.93)
£ (x¢, g 41, ) =0

and

Pgy i Yr — Yivr1and Pg_ i yrr1 —> Vi

(4.94)
£P (i, yir1, p?) =0

For two points Xy € Dy and 'y € Dg, there are two specific, differentiable, vector
function @ = (¢1,¢2,---, <pz)T e #'. The (Ng : Ng)-synchronization of two dis-
crete dynamical systems (Py, £®)) and (Pg, f B)Y is under the following constraints

P (X, Yk, A) = 0 and @(Xk4N,, Yk+nz, A) = 0. (4.95)
Consider a resultant hybrid mapping relation as
Xy = PNy = Py_o PN 0 Py o P %y (4.96)
with

Pogﬁ"‘) Xk —> Xg4N, With
f(()() (Xk-l-ls Xk p(a)) = 0
£ (X2, Xpg1, p@) =0

£ XNy Xt Ng—1, P@) =0
Poi @ Xpy1 = Vi1 With @(Xk+n,,, Yi+-Ng, A) = 05

P - yin, — yiwith (4.97)

£P (Vv Yirng—1.pP) =0

£P) (yes2, Yar1, pP) = 0
£P (yir1, ye. p?) =0

Po_ 1 yi — X xwith @(X's, yr, L) = 0;

X'k = Xi

and

. (Ng) N
DPNND (x5) = DPy(v) - DPy" (¥ n,) - DPot (X yn,) - DPY (X))

(4.98)
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where
Ny
DPE (X)) = DPay Xy y, 1) - DPay(Xy1) - DPoy (x7) w9)
(N ) :
Py k+N,g) =DPp_(Xppy) ... DPﬁ*(XZ+N,g—1) : DPﬁ*(XZ+N5)
/
DP(NaiNﬁ)(X;(k) — I:ax_ki| i
an x*
1
0Xj OYk+N,
No k+ +
peton = T [pact ], ot =552
Jj=Nu ktj—1 X1 k+No XNy
Nﬂ ,
(N,s) OVk+Ng—j . X'y
DPy Viin,) = P — ,DP¢(Y)=|:
Yk+nNg l—[l |:3Yk+Nﬂ—j+lj| . g Yk Jyr
J k+Npg—j+1
(4.100)

®

(ii)

(iii)

(iv)

The (N, : Ng)-synchronization of two discrete dynamical systems of (P, f (@)
and (Pg, £(A)) is persistent if and only if all the eigenvalues A; (i = 1,2, --- , n)
of DPMa:Ng) (x*) lie in the unit circles, i.e.,

hi] < lfori=1,2,---,n. (4.101)

The (Ny : Ng)-synchronization of two discrete dynamical systems of ( Py, f (@)
and (Pg, f (A)) is a saddle-node vanishing if and only if at least one of the real
eigenvalues A; (i = 1,2,--- ,nyandn; < n) ofDP(N“:Nﬂ)(x;:) is positive one
(+1) and the other eigenvalues are in the unite circle, i.e.,

Ai=1land |A;| < 1fori,je{l,2,--- ,n}and j #1i. (4.102)

The (Ny : Ng) synchronization of two discrete dynamical systems of ( Py, f (“))
and (Pg, f B)) is a period-doubling vanishing if and only if at least one of the
real eigenvalues A; i = 1,2,--- ,n;andn; < n) OfDP(N"‘:N/S)(XZ) is negative
one (—1) and the other eigenavalues are in the unite circle, i.e.,

Ai=—land |A;| < 1fori,je{l,2,--- ,n}and j #1i. (4.103)

The (Ny : Ng)-synchronization of two discrete dynamical systems of (P, f (@)
and (Pg, f #)) is a Neimark vanishing if and only if at least one pair of all
the complex eigenvalues ; = «; = B;i(i = 1,2,--- ,ny and n1 < n/2) of
DPWNa:Np) (x*) are on the unit circle and the other eigenvalues are in the unite
circle, i.e.,

|hil =y/a? + p? =1and |A;| < Lfori, j € {1,2,--- ,n}and j #i.

(4.104)
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(v) The (Ny : Ng) synchronization of two discrete dynamical systems of (P, f (@)
and (Pg, fBYisa (g :lh:13) vanishing if and only if /; and [, real eigenvalues
A of DPWa:Np) (x;) are negative one (-1) and positive one (+1), respectively, and

[3-pairs of complex eigenvalues A; = «; £6;i(i = 1,2,--- ,nyandn; < n/2)
of DPWe:Np) (x}) are on the unit circle and the other eigenvalues are in the unite
circle, i.e.,

)\'l = —1fori =i17i25“' 5il| € {1527"' 7n}’

)"] :+1 forj:jl’j27“' 7j12 € {1723"' ?n}’

(4.105)
] = /a2 + BE=1forr =ri,rp, -+ ,r; €{1,2,-- ,n},

[As| < 1fors € {1,2,--- ,n}and s¢{i, j, r}.

(vi) The (N, : Ng) synchronization of two discrete dynamical systems of (P, f (@)
and (Pg, £?)) is instantaneous if and only if at least one of the eigenvalues

A@G@E=1,2,---,n)of DP(N“:N/S)(X,’C‘) lies out of the unit circle, i.e.,
[Ai| > 1fori e{l,2,---,n}. (4.106)
Proof The proof is similar to Theorem 4.6. |

From Chap. 2, fixed points in nonlinear discrete dynamical systems possess many
types of unstable states from eigenvalue analysis. From the similar ideas, the instan-
taneous (N, : Ng) synchronization of two discrete dynamical systems can be
classified. Therefore, such instantaneous synchronization classification will not be
presented herein. If N, — oo and Ng — oo, the (Ny : Ng) synchronization of two
discrete dynamical systems should be chaotic. Consider two hybrid maps

(Z/_ NRON,) (Np) (N Np ()
P, :Pﬁ+ oP, o-~-oPﬁ+ o P, ",
n—terms
. ) 4.107
(I Mg@Ma) (M) My M), 10D
P, =Pg" 0Py " 00 Py m 0 Pyt
m—terms
(ZL, NioN}) (N)) (Np) (N™) (NG
P_ =P, oPﬂ_ o---o P, oPﬂ_ ,
n—terms (4 108)
Ej_,MaoMp by (M) gy (ME) '
P’ =P, oPy o0 P, " 0Py " .
m—terms

The (Ng ® Ny : Mg & M )-hybrid synchronization of two discrete systems with

(S Ny @NL) (=" MjoM])
two maps P, =" P and P

map

can be investigated via the following
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PGENMpEMy, _ P Piz}:mM&'@Mg) o Pos o PJ(FEE’:INi @N&)Xk, o i
POGENMpEMy, _ P sz}:ﬂzv,i@N,g) o Poy o PJ(FE?ZIMé@bek, (4.109)
Thus,

X = PNs®Na:Mp®Ma)y, (4.110)

Similar to the (Ny : Ng)-synchronization in Theorem 4.7, the corresponding fixed
point and the stability conditions of Eq. (4.110) gives the (Ng @ Ny : Mg @ My)—
hybrid synchronization of two discrete systems. This concept can be extended to the
discrete dynamical systems with multiple maps

As in discrete dynamical systems with multiple maps in Sect. 4.2, the synchro-
nization for the resultant mappings in multiple different maps can be developed.

Definition 4.14 Consider two sets of discrete dynamical systems |J;_ (Py,, f©)
and |J;_(Pg;, £ (B)) as in Eq. (4.48) for each discrete system with

Pyt 1 X —> Xpq1 and Py, @ Xy —> X

) , 4.111)
f(az)(xk’ Xk+17 p(O[,)) — 0
and
Pg.+ 1Yk — Yit1 and Pg,— 1 Yiy1 — Y
" S (4.112)
£P) (i, yi1, pP7) = 0
For the two sets of discrete dynamical systems, the resultant mappings are
P =Pt o...oPt opt -
(Notm'"NOlzNotl) aZmn °© ° aé\’az ° a:val ’
- . PTIW‘Y - 4.113)
m—terms
and
P+ . = + 0-+-0 P+ o P+ :
(Npy N, Npy) ﬁ,ivﬁ" ﬂ;vﬁz /31’\’/31
- e (4.114)
P(Nﬁl NgyNpy) - PﬂNﬁl °oF ;Vﬁz e Pﬂ:lvﬁ”

n—terms

where
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m n
Ny =) Ny and Ng = > Ng,. (4.115)
i=1 j=I

For two points x; € Dy, and y; € Dpg,, there is a specific, differentiable, vector
function @ = (¢1, 2, -+, )" € Z'.

a1 If

QL XNy M) = 0, (4.116)

then the two discrete dynamical systems | J;_; (P, f*”)and | J j=1(Pg;. £ G
are called the (N : Ng)-synchronization in sense of .

(i) If
OXL, XN, ) = 0 with
(may) () (am) (BuB1) . (Bn) (Bn)
AT x> X (4 and AT Pubr XN (o) 7 XN ()
(am) _ (am) (omary) (Bn) _ B (BuB1)
X N () = Xy AL and Xy, ) =Xy, o+ ALRE
(m) (a1) (Bn) (B

Xe+Np(+) = Xk and Xe+Ng(H) = Xk o
“4.117)

then the two discrete dynamical systems | J;_; (Py,, f @)y and | J i—1(Pp; £ By
are called the repeatable (N, : Ng)-synchronization in sense of @.

The corresponding theorem can be presented as in Theorem 4.7. For convenience,
the statement is given as follows.

Theorem 4.8 Consider two sets of discrete dynamical systems | J;_ (P, , £©)) and
Uj:l (Pg;, £8))) as in Eq.(4.48) for each discrete system with
Py+ : Xk = Xpq1 and Py, — : Xgq1 —> Xi

(4.118)
£ (x¢, ¢ 41, p0) = 0

and

Pg,+ : Yk = Yk+1 and Pg;— @ i1 —> Yk

. . 4.119)
£P (ye, yir1, p¥7) = 0.

For two points X € Dy, and y; € Dg,, there is a specific, differentiable, vector
function @ = (¢1,¢2,---, <pz)T e Z#'. The (Ng : Ng)-synchronization of two sets
of discrete dynamical systems | J;_;(Pu;, £@)y and szl(Plgj, £B1)Y is under the
following constraints

P (X, Yk, A) = 0 and @(Xi4N,, Yk+nNy, A) = 0. (4.120)
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Consider a resultant hybrid mapping relation as

X/k _ P(Na:N;;)Xk = Py_o PN,S— o Pgy o PNa+Xk 4.121)
with
_ pt .
PNyt = Py, gy Ny 304 PNp— = Pl v (4.122)
PNy + Xk T TING, T kTl N, with
fe )(Xk+2’ ~ Ny +10 Xk 22N, ’p(a)) =0
P Xy 515, 120 Xegmiz v, 410 P =0
f(ai)(xk+2£:1Nar Xigmitl,, -1 p@)) =0
fori =1,2,--- ,m;
P(p+ ¢ Xk+N, — Yk+N,=; with (P(Xk+Not’ yk+Nﬁ’ A') = 07
PN;;I. L Yi+Ng—S_ N, yk+N,3 s/ N with (4.123)
f(ﬂj)(Yk+N,3—Ef:jN/3r » Yt Np =3 Np, — 1> p) =0
£B) . - i)y =
P (yk-‘rN/s—Er/:j,lNﬂr""z’ yk-‘:—Nﬂ—E}/:jleﬂr""l’ pY ) =0
£ (yk+N/3—Ei=j71Nﬂ,+l7yk-‘rNﬂ—Zr]:j,]Nﬁr’p 7=0
forj=n,n—1,---,1;
— Yk — X/k Wlth (P(X/k, Yk, )") = 07
Xk =x;
and
(Np) Na
DPNeNE (xE) = DPo_(y}) - DPy " (¥} i n.) - DPor(X{, ) - DPI (x))
(4.124)
where
(Nﬂ) 1 pWNe)
DPy (k+N)_H,~: wit (%E):
( ;)
(x,+ (x k)
= DPal+(Xk+E; lNalfl) DPaI+(Xk+21 llN ) DPa +(Xk+2: ]lNa,)’

(4.125)
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¥p) mo N
DPy " Oksn,) = Hj:l DPg, yk+Nﬂ—z-,’=‘1'Na,.)’
( ;)
DPy, (k+N -z lNal)
e CEEEEY * . .
= DPp- (k+1vﬁ =7 N, ) DPﬁ*(XHNﬂ—zg;}Nai—l) DFg- (k+N,3 21:1Na,.)’
(4.126)
. ox’
DP<Na-Nﬁ>(x7;)=[—"] , (4.127)
an *
o pMe) «* ) l—[l 8Xk+2’:]Na,+s
o+ X i )= _ ae E
k+2r=lN“l S—Na[ axk+21 {No; +s—1
k+2’ i Na; 51
8y}(+Nﬂ
DPoi(Xj y,) = [BX } ,
k+Na XZ+N¢1
ay j
(Ng,) Ng. k+Ng—%:_ | Ng.—s
bp ,(k+N /7 Ng )_HY=JI 9 ; : ’
r=1 ‘ Vit Ng—5_ Ng;—s+1 | .
k+N5—Z'r/=1Nﬂj—S+l
ox'y
o= [ 2]
Yk yr
(4.128)

(i) The (Ny : Ng)-synchronization of two sets of discrete dynamical systems
Ui—i (Pa;, £©0) and Uj=1(Pg;. £81)Y is persistent if and only if all the eigen-
values Aj (i = 1,2,--- ,n) ofDP(NuzNﬂ)(xZ) lie in the unit circles, i.e.,

|)"l| < lf()ri = 192’ e, N (4.129)

(ii) The (Ny : Ng)-synchronization of two sets of discrete dynamical systems
Uiz (Pa;, £©) and Uj=1(Pg;» £B1)) is a saddle-node vanishing if and only
if at least one of the real eigenvalues ); (i = 1,2,--- ,nyand 1 <n; <n) of
DPWa:Np) (XZ‘) is positive one (+1) and the other eigenavalues are in the unite
circle, i.e.,

Ai=land |\j| <1fori,je{l,2,--- ,n}and j #1. (4.130)
(iii) The (Ny : Ng) synchronization of two sets of discrete dynamical systems

U,—; (Py,;, £©@)) and szl(P,gj, £81)) is a period-doubling vanishing if and
only if at least one of the real eigenvalues ; (i = 1,2,--- ,n1and1 < ny <n)
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of DPWNe:Np) (x}) is negative one (-1) and the other eigenavalues are in the unite
circle, i.e.,

Ai=—land |Aj| < 1fori,je{l,2,--- ,n}and j #i. 4.131)

(iv) The (Ny : Npg)-synchronization of two sets of discrete dynamical systems
U= (P, £©@) and szl(Pﬂj,f(ﬁf)) is a Neimark vanishing if and only if
at least one pair of all the complex eigenvalues A; = o; £ ii(i = 1,2,--- ,ny
and 1 < ny < n/2) of DP(N”:N/S)(XZ) are on the unit circle and the other
eigenvalues are in the unite circle, i.e.,

Ihil = /a2 + B2 =1land |rj| < 1fori,je{l,2,--- ,n}and j #i.

(4.132)
(v) The (Ny : Ng) synchronization of two sets of discrete dynamical systems
Uizl(Pai,f(“i)) and szl(Pﬁ/., £B)) is a (I : I : [3) vanishing if and only
if Iy and 1> real eigenvalues X; OfDP(N”:Nﬁ)(XZ) are (—1) and (+1), respec-
tively, and I3-pairs of complex eigenvalues .; = o; £ pii(i = 1,2,--- ,n1 and
1 <ny < n/2) of DPWNeiNp) (x;;) are on the unit circle and the other eigenvalues

are in the unite circle, i.e.,

)\.i=_1f0ri=i1,i2,"',il1 6{172"" ’n}
)\‘j=+1f0rj=jlsj27"' 7,].]26{1’2»"' »n}

(4.133)
|Ar|=,/a3+ﬂr2=1f0rr=r1,r2,-~- s €{L,2,--- ,n}

[Xs] < 1fors e {l1,2,--- ,n}ands ¢{i, j,r}.

(vi) The (Ny : Npg) synchronization of two sets of discrete dynamical systems
B
Uiz (Pa;, £©0) and U,=1(Pp; £81)) is instantaneous if and only if at least

one of the eigenvalues \; (i = 1,2,--- ,n) OfDP(N”:Nﬁ)(XZ) lies out of the unit
circle, i.e.,

(il > 1forie{l,2,---,n}. (4.134)

Proof The proof is similar to Theorem 4.6. |

Note that for higher-order singularity, the similar discussion can be done with the
stability with the higher-order singularity in Chapter 2.

4.5 Synchronization of Duffing and Henon Maps

As in Luo and Guo (2011), consider an identical synchronization of the Duffing and
Henon maps as an example. The Duffing map is

X1(k4+1) = X2(k) and X2(k+1) = —dxl(k) + CX2(ky — xg(k). (4.135)

and the Henon map is
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Yigk+1) = Y20 + 1 — aylz(k) and y2(it1) = by1(k)- (4.136)
Introduce the vectors as

X = (X100 X200) " and yx = (V1gys Y200) "

(4.137)
£ = (£, AT fora = 1,2,

Note that « = 1 for the Duffing map and o = 2 for the Henon map. Thus, the Duffing
map is described by

P; @ x; — Xeqq and £V (xp, x40, p) = 0 (4.138)
where

1
fl( ) xp, i1, p) = X1(k+1) = X2(k)>

1
fz( )(Xk1 Xk+15 p(l)) = X2k+1) dxl(k) —CcX2k) + x;(k); (4.139)
pV = (c.d)".

The Henon map is described by
Py : ¥k = Yie1 and P (i, yier1, p) = 0 (4.140)
where

2
£ e k1. ) = Yigen) — v20 — 1+ ayi -

2
fz( )i, Vir1, p?) = V20c+1) — by (4.141)
p? =(a.b".

Consider the (N : N3) synchronization of the Duffing and Henon maps with

O(Xk, Yk, M) =X, —yr =0,

(4.142)
O(Xk4+N> Yk+N2» &) = XNy — YN, = 0.
where
xiiny, = PVxp =Pio P Py x; with
k+Ny = P; "Xy =ProPro---0 P Xx Wit
[ S —)
Ny
1
fl( ) Xepiot, Xeri, pV) = X1 (k+i) — X2(k+i—-1) = 0,
1
fz( )(Xk+i—1, Xitis PD) = Xo0eti) + dX1pi—1) — CX2(kti—1) + x;(kﬂ-_l) =0

fori =1,2,---,N;
(4.143)
and
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Yit+N, = P2(N2)Yk =ProPro---0 Py, with
—_—
N
2
fl(z) Ykt js Vet j=1. PP) = Yigers) = V2w j—t) = 1+ ayig oy =0,
fz( vk, Vir1, p?) = V2(k+j) — by1ge+j-1) =0
forj=1,2,--- ,Np

For the (N7 : N>) synchronization, the equivalent mapping structure is (1
Xk = Pyo ;"% o Pyo PiVxi. (4.145)
If X'y = Xg, we have
£ ®erio1, Xt V) = X104y — X204i-1) = 0
) )(Xk+i—1, Xetis PV) = X2y + dX1(ktim1) — CX20htim1) + xg(k+i—1) _ 0}

fori =1,2,---, Ny;

Q(Xk+N,» Yk+Nys M) = Xk Ny — Yitn, = 0

F2 Gk Vi1 P®) = Vi) — Y2trj—n — 1+ ayf(kﬂ-_l) = 0}

fz(z) V& Y1, PP) = y20e4j) — by1getj—1) =0

for j =Ny, ---,2,1;

O(Xk, Yk, ) =X —yr = 0. (4.146)
From which the fixed points of Eq. (4.145) can be obtained, xk (i=1,2,---,Ny)

and y, ; (j = 1,2,--- Nz). The corresponding stability boundary of such fixed
points is given the eigenvalue analysis, i.e.,

AXy = DPo_ - DP,"” . DPy, - DP{YV Ax;. (4.147)
where
ox’ X'k 1 0

DPM = HDPz Vit )
j=1
Vit i1 170 1
DPy-(¥is)) = [y :——[ . };

Oyksj T b [b 2ayig ) (4.148)

ayk+N 10
DP¢+(XZ+N1) - [Bx N2 ]XZHVI - [0 1:|;

ppM = H DP (X}, ).
i=Nj

s i 0 1
* _ —J * =
DPiy Xy 1) = [3Xk+j—1 Lo [_d -+ 3(x;(k+jl))2} .
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(a) (b)
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Xy Figey

|
|
; |
-1.6 -1.4 -1.2

Parameter b

Fig.4.11 The numerical iteration for the (1:1) synchronization of two discrete dynamical systems
with the Duffing and Henon maps. Bifurcation scenario alike plots for xi) and xox) with yy)
andy): aand b for b € (—o0, —30.84) and b € (33.88, 00); cand d for b € (1.2431, 1.3687); e
and f for b € (—1.7667, —1.4216). The shaded regions are for the (1:1) synchronization. PD and
SN represent period-doubling and saddle-node vanishing of the (1:1) synchronization, respectively.
(a=0.8, c=275and d=0.2)

Through the above analysis procedure, the (N : N») synchronization domains
and boundaries can be determined from Theorem 4.7. In Eq. (4.145), we can form a
new map iteration
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Fig.4.12 The analytical prediction of the (1:1) synchronization of two discrete dynamical systems
with the Duffing and Henon maps. The iterative states x) and xp) with yj¢) and yy) are
presented: a and b for b € (—oo, —30.84) and b € (33.88, 00); ¢ and d for b € (1.2431, 1.3687);
eand f for b € (—1.7667, —1.4216). The shaded regions are for the (1:1) synchronization. PD and
SN represent period-doubling and saddle-node vanishing of the (1:1) synchronization, respectively.
The instantaneous (1:1) synchronizations are represented by the dotted curves. (¢ = 0.8, ¢ = 2.75

and d=0.2)

Xj4+1 = Px; with

Xy

xiand P = Po_ o Py 0 Pyy o PNV

(4.149)



4.5 Synchronization of Duffing and Henon Maps

217
(a) (b)
50 4.0
25 D 2.0 SN
= S
= o PD
8 o}
Q -
§ 0 ; 0.0
< ;
= A PD
251 20
D SN
.50 I I I 40 L L L
00 0.5 1.0 15 20 00 0.5 1.0 15 20
Parameter a Parameter a
(c) (d)
50 5.0
251 PD 251
= =
g 5
L SN B
g 0 SN g 0.0
z :
-25F PD 251
-50 : L - -50 L I I
-4.0 -20 00 20 40 -4 -2 0 2 4
Parameter d Parameter d
(e) ®
50 4.0
PD
251 2.0+ SN
=
- = PD
2 5}
] 2
L — ]| OF
< S PD
= £ SN
-251 PD 20k
-50 ! ! - -40 L L L
-4.0 -20 00 20 40 -4.0 -2.0 0.0 20 4.0
Parameter ¢

Parameter ¢

Fig.4.13 Parameter maps of the (1:1) synchronization of two discrete dynamical systems with the
Duffing and Henon maps: a and b parameter map(a, b) for c¢=2.75 and d=0.2; ¢ and d parameter
maps(d, b) for a=0.8 and c=2.75; e and f parameter (c, b) for a=0.8 and d=0.2. The overall views
are given on the left-hand side, and the zoomed view are given on the right-hand side. The shaded
regions are for the (1:1) synchronization. PD and SN represent period-doubling and saddle-node
vanishing of the (1:1) synchronization, respectively

Using Eq. (4.149), numerical iteration can be done to observe the (N7 : N») identical
synchronization of the Duffing and Henon maps.
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Fig.4.14 Parameter maps of the (1:2) synchronization of two discrete dynamical systems with the
Duffing and Henon maps: a and b parameter map(a, b) for c=2.75 and d=0.2; ¢ and d parameter
maps (d, b) fora=0.8 and ¢=2.75; e and f parameter (c, b) for a=0.8 and d=0.2. The overall views
are given on the left-hand side, and the zoomed view are given on the right-hand side. The shaded
regions are for the (1:2) synchronization. PD and SN represent period-doubling and saddle-node

vanishing of the (1:2) synchronization, respectively

Asin Luo and Guo (2011), consider parameters of a = 0.8, ¢ = 2.75 and d=0.2
From the mapping in Eq. (4.149), the (1:1)-identical synchronization of the Duffing
and Henon maps is simulated, as shown in Fig.4.11. The bifurcation scenario alike
plots for xq) and x2¢) with yi) and y,). The shaded regions are for the (1:1)
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Fig.4.15 Parameter maps of the (2:2) synchronization of two discrete dynamical systems with the
Duffing and Henon maps: a and b parameter map(a, b) for c=2.75 and d=0.2; ¢ and d parameter
maps (d, b) for a=0.8 and ¢=2.75; e and f parameter (c, b) for a=0.8 and d=0.2 The overall views
are given on the left-hand side, and the zoomed views are given on the right-hand side. The shaded
regions are for the (2:2) synchronization. PD and SN represent period-doubling and saddle-node
vanishing of the (2:2) synchronization, respectively

synchronization. PD and SN represent period-doubling and saddle-node vanishing
of the (1:1) synchronization, respectively. The synchronization range is be(—o00,
—30.84) and be(33.88, 00) in Figs.4.11a, b. In Figs.4.11c—, the zoomed view
for small parameter ranges are presented. The parameter ranges are given by
be(1.2431,1.3687) and be(—1.7667, —1.4216), respectively. The analytical
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Fig.4.16 Parameter maps of the (2:3) synchronization of two discrete dynamical systems with the
Duffing and Henon maps: a and b parameter map(a, b) for c=2.75 and d=0.2; ¢ and d parameter
maps(d, b) for a=0.8 and ¢=2.75; e and f parameter (c, b) for a=0.8 and d=0.2 The overall views
are given on the left-hand side, and the zoomed views are given on the right-hand side. The shaded

regions are for the (2:3) synchronization. PD and SN represent period-doubling and saddle-node
vanishing of the (2:3) synchronization, respectively

predictions of the (1:1)-synchronization is presented in Fig.4.12. The solid curves
are the (1:1) synchronizations. PD and SN represent period-doubling and saddle-
node vanishing of the (1:1) synchronization, respectively. The instantaneous (1:1)
synchronizations are represented by dashed curves. For numerical simulations, the
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instantaneous synchronization state cannot be achieved. The (1:1)synchronization
that is given by the analytical prediction matches with the numerical prediction. The
large parameter ranges for the (1:1)synchronization are presented in Figs.4.12a, b.
The small parameter ranges for the (1:1)-synchronization are arranged in Figs. 4.12c—
f. The corresponding parameter maps for (1:1)-synchronization are presented in
Fig.4.13. The shaded regions are for the (1:1) synchronization. PD and SN represent
period-doubling and saddle-node vanishing of the (1:1) synchronization, respec-
tively. The intersected points of the PD and SN vanishing are (1,1,0)-critical syn-
chronization vanishing with A1 = —1 and A, = 1. Figures4.13a, c, e is for overall
parameter maps, and Figs.4.13b, d, f is for the zoomed views of parameter maps.
Figures4.13a, b shows parameter map (a,b) for c=2.75 and d=0.2. Figures4.13c, d
presents the parameter maps (d,b) for a=0.8 and ¢=2.75. Figures4.13e, f gives the
parameter (c,b) for a=0.8 and d=0.2. For the parameter maps, the (1:1) synchro-
nizations exist in different regions with many cusp points, and such cusp points will
be very difficult to be analyzed by the catastrophe analysis.

Similarly, the parameter maps for (1:2), (2:2) and (2:3)-synchronizations are pre-
sentedinFigs.4.14,4.15,4.16, respectively. The shaded regions are for the (N, : Ng)
synchronization. PD, SN and NB represent period-doubling, saddle-node, Neimark
bifurcation vanishing of the (N, : Ng) synchronization, respectively. The intersected
points of the PD and SN vanishing are (1, 1, 0)-critical synchronization vanishing
with Ay = —1 and A, = 1. The intersected points of the PD and NB vanishing are
for (1,0,0) or (0,0,1)-critical synchronization vanishing with eigenvalues of A| = —1
and |A12| = 1, as observed in Fig.4.16. For the multiple-step synchronization, the
parameter maps become more complicated and many cusps exist. Again, the catastro-
phe theory to analyze the synchronization is very difficult. Other parameter maps for
(Ng : Ng) can be developed in the similar fashion. The vanishing boundaries will
include all possibility of synchronization vanishing.
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Chapter 5
Switching Dynamical Systems

In this chapter, dynamics of switching dynamical systems will be presented.
A switching system of multiple subsystems with transport laws at switching points
will be discussed. The existence and stability of switching dynamical systems will be
discussed through equi-measuring functions. The G-function of the equi-measuring
functions will be introduced. The local increasing and decreasing of switching
systems to equi-measuring functions will be presented. The global increasing and
decreasing of the switching systems to equi-measuring functions will be discussed.
Based on the global and local properties of the switching dynamical systems to the
equi-measuring function, the stability of switching systems can be discussed. To
demonstrate flow regularity and complexity of switching systems, the impulsive sys-
tem is as a special switching system to present, and the quasi-periodic flows and
chaotic diffusion of impulsive systems will be presented. A frame work for periodic
flows in switching systems will be presented. The periodic flows and stability for
linear switching systems will be discussed. This framework can be applied to non-
linear switching systems. The further results on stability and bifurcation of periodic
flows in nonlinear switching systems can be discussed.

5.1 Continuous Subsystems

On an open domain ; C %", there is a C"i-continuous system (r; > 1) in the time
interval ¢ € [fx—_1, t]

0 = FOx® 1, pD) e 7" xD = xV,x", .. x)T e ;. (5.1)
The time is ¢ and X = dx? /dr. p¥) = (pgi), pg), e ,p,(,i?)T € #™i is a para-
meter vector. On the domain ©; C %", the vector field F (x| z, p@) with the
parameter vector p(’) is C’i-continuous in x® for time interval ¢ € [fx_1, #;]. With
an initial condition x¥)(f; _1) = X]((lll, the dynamical system in Eq. (5.1) possesses
a continuous flow as

A. C.]. Luo, Regularity and Complexity in Dynamical Systems, 223
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xD ()= @D x|, 1, p®) with x) = @D x5y, p?). (5.2)

To investigate the switching system consisting of many subsystems, the following
assumptions of the ith subsystem should be held.

(A5.1)
F(i)(x(i) ¢ p(i)) e i
Sy T ’ Q; fort € [tr_1, t], 53
<I>(’)(X,((’),t,p(’))eC’f+1] on £2; for 7 € [tx—1, 1] (53)
(A5.2)
0 (i)
EI =< Kl(i)(con“)’ on Q; fort € [t_1, 1], (5.4)
1@ < K3 (const)
(A5.3)
xD = @D (1) ¢ 9 fort € [tr1, . (5.5)

(AS5.4) The switching of any two subsystems possesses the time-continuity.

From the foregoing assumptions, the subsystem possesses a finite solution in the
finite time interval as a candidate to be selected for the resultant switching system.
From Assumption (AS5.3), any flow in the ith subsystem for ¢ € (#_1, tx) will not
arrive to the boundary of the domains before the flow switches to the next subsystem.
If the flow of the ith subsystem for ¢ € (#;_1, ;) reaches the domain boundary of the
systems, it will be discussed in discontinuous switching systems. Suppose the vector
X € #Z" can be decomposed into two vectors X, € #Z"! and x,, € #", where
n =ny+nzand X = (X, x,,2)T. From such concepts, such a finite and bounded
solution in phase space is sketched for the time interval ¢ € [#_1, #] in Fig.5.1a,
and the corresponding time-history of the dynamical flow is presented in Fig.5.1b.

5.2 Switching Systems

To investigate the switching system, a set of dynamical systems in finite time inter-
vals will be introduced first. From such a set of dynamical systems, the dynamical
subsystems in a resultant switching system can be selected.

Definition 5.1 From dynamical systems in Eq.(5.1), a set of dynamical systems on
the open domain €2; in the time interval t € [fx_1, fx] fori = 1,2, --- , m is defined
as

Go={Sli=12,---,m}, (5.6)

where
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Fig.5.1 a A flow in phase a
space and b a flow in the @) aQi
time-history
X,
X,
(b)
X!, e
x|
TX—V
t tk—l tk
xD e @ c ", p? e pm;
Si= 1% =FO& 1.p") e 2" |xO)) =x2 i1 € [ s - 57

ke N

To discuss the switchability of two subsystems at time fz, the existence and unique-
ness of solutions of the two systems are very important. From Assumptions (A5.1-
A5.3), the subsystem possesses a finite solution in the finite time interval and such
a solution will not reach the corresponding domain boundary. From the set of sub-
systems, the corresponding set of solutions for such subsystems can be defined as
follows.

Definition 5.2 For the ith dynamical subsystems in Eq. (5.1), with an initial condition

x,({ill € Q; for k € N, there is a unique solution x)(r) = <I>(i)(x,((ill, t,p®). For
alli =1,2,.--,m, aset of solutions for the ith subsystem in Eq.(5.1) on the open

domain D; in the time interval ¢ € [t;_1, t] is defined as
S=[®<“|i=1,2,---,m}, (5.8)

where

(5.9)

x0(1) = @D (x|, 1,pD) |
t€ti—1, ],k eN
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To discuss the switching of two subsystems for time #;, the overlapping of domains
of vector fields should be discussed. For different time intervals, two open domains €2;
and €2 can be overlapped or separated, (i.e.,; NQ; # Tor2;NQ; = &). However,
in discontinuous dynamical systems, the open domains for subsystems should be
Q;NQ2; = @ (also see, Luo 2006). In other words, the domains for the discontinuous
systems cannot be overlapped. If the two domains of the ith and jth subsystems in
Eq. (5.1) can be overlapped partially or fully (i.e., ; € Q; or ; 2 ), there
are two kinds of switching in the overlapping zone of the two domains. The two
switching include (i) the continuous switching and (ii) C 0_discontinuous switching.
However, for either the two separated domains or the switching points in the non-
overlapping zone, only the C°-discontinuous switching. Because the time intervals
for two systems are different, the domains for the two systems can be overlapped. In
other words, on the same domain, many different dynamical systems can be defined.
Thus, there is a relation for the ith and jth switchable subsystems

Qigﬂj or QiQQj. (5.10)

From the foregoing relation, different systems can be defined on the full or partial,
same domain for different time intervals. To extend such a concept for two sub-
systems, the domain for the resultant switching system of many subsystems can be
defined. Before doing so, as in Luo (2005, 2006, 2008a), the inaccessible and acces-
sible domains in phase space will be defined for discontinuous dynamical systems
in phase space.

Definition 5.3 On a domain Q¢ C %" in phase space, if no dynamical system is
defined, the domain €2 is called an inaccessible domain.

Definition 5.4 Onadomain Q; C %" in phase space, if the ith-subsystem is defined,
the domain €2; is called an accessible domain.

Definition 5.5 In the neighborhood of a pointx,,, if there is a set of domains €2;; (/; €
{1,2,---,m}, i =1,2,--- ,mq) for subsystems and an inaccessible domain €2 in
phase space, there is the union of the domains as

U= U:?;]]Qli UQpand Q; €O 5.11)
for the subsystems to switch. Such a union is called the resultant domain in the
neighborhood of a point x, for the switching system of subsystems.

To investigate the responses of the switching system in the resultant domain D
in the neighborhood of a point x,,, the switchability of any two systems should be
discussed. The concept of the switching from a subsystem to another subsystem is
presented.

Definition 5.6 Consider two subsystems S;, S; € Gp on the domains €2; and ;.

(i) Forx),x) e @, NQ; £ @atr =g, if
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ax) axY)

fors =0,1,2,---,r;

des =odrs 5.12
dr+lxl(cl) dr+]X]((J) ( )
dr+1 der+1 7

then the switching of the two subsystems S; and S; at time #; is called a
C”-continuous switching,

(ii) For x,(:) € Q; and x,(f Ve Q jatt =, if x,(:) £ x,((" ) and there is an transport
law

gD x p;j) =0 (5.13)

then the switching of the two subsystems S; and §; at time #; is called the
CO-discontinuous switching.

To illustrate the aforementioned concept for the switching of the two subsystems,
the switching of the ith and jth subsystems are sketched in Fig.5.2. A flow from the
ith subsystem switching to the jth-subsystem at time #; is presented. The domain of
the ith subsystem is filled with gray color. The flow is depicted by the curves with
arrows. The switching points are labeled by circular symbols. The hatched areas are
the overlapped domains. In Fig.5.2a, the two subsystems at time #; are switched
with at least x,((') = x,((J ). In Fig.5.2b, the domains of the ith and ith subsystems are
separated at time #;. To complete the switching of the ith and jth subsystems at point
tx, the transport law (i.e., g(i-/ ) (x,(:), x,(cj ), tr) = 0) should be used. The transport law
is presented with a dashed line with an arrow.

Definition 5.7 For a flow x') € U, two positive constants with 0 < C; < C; exist.
If the following relation holds

Ci=llx=xpll = (5.14)
where ||*|| is a norm, the domain O is called the finite domain in the vicinity of point
Xp.

From the resultant domain U and the switchability conditions between any two
subsystems, a resultant switching system can be defined.

Definition 5.8 A switching system on the domain U = U;" S, U Q is defined as

x(@) = Fn) (x(@) ¢ p@)y for t € [tr_1, tx]

ar €{li, b, by} SHL2, - myk=1,2,--- (5.15)

with an given initial condition x®) = X(()“')

time 1y,

and the corresponding transport laws at

g(akak+l)(xl({ak)’ XI((akJrl), pakak+1) — 0 for k — 1, 2’ el (516)
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Fig.5.2 The dynamical system switching: a continuous switching, and b C?-discontinuous switch-
ing with transport laws Pé” ) in phase space

Ataswitching point at time f, if the C"-continuous switching of any the switching
system exists, then Eq. (5.16) is expressed by

dP g1 _ dﬂxl(cak“) dﬁxl(cak)
b dif dth

—0forkeN,B=0,1,2,---,r. (517)

For 8 = 0, one obtains g(®+1) = x,(cak“) - X,Eak) = 0. Therefore, no matter how
the system is switching, the transport law as a general expression is adopted from
now on. Consider a resultant switching system on the domain O = U;":]()Qli for

l; €{0,1,2,---,m} in the vicinity of point p; to be formed by
S=- @Sy, @ D Su D Sy
for S, € Gp,ax € {1, o, I} S {1,2,--- ,m},k=1,2,--- (5.18)

t € U2 [t tr—1]

with the corresponding switching conditions given by the transport law.
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Fig.5.3 A flow and switching of a switching system on the resultant domain in neighborhood
of point x,,

X =x(()°”) € Qg att =1

g(akak+1)(xl(<ak)’ X](cak+l)’ pakakH) =0atr =1, (5.19)
for k=1,2,---.

From the set of the solutions in Eq.(5.9) for subsystems, the solution of the
switching system is given by

x(@) = @) (x(®) 1, p@)) € Qg fort € [11. ]
g(akak+1)(xl((c{k)’ X]((OlkJrl)’ Poyersr) =0, (5.20)
ake{llles"'slml}g{lvzs"'1m}7k=1927""

Note that symbol “@” means the switching action of two subsystems. To explain
the two system switching, on the domain O = U;”zll €, U Qo a switching dynamical
system given by Eq. (5.18) with the switching and initial conditions are sketched in
Fig.5.3. The short-dashed curves are the boundary of the domain D in the neigh-
borhood of point x,, and the accessible domains are given by closed solid curves.
The thick solid curves with arrows are flows. The circular symbols represent the
switching points and the dashed lines with arrows are the transport laws for the two
systems.

Definition 5.9 For aswitching systemin Egs. (5.18) and (5.19), if there is a switching
pattern of the subsystems as

S=- @SV @5S? @S5V with 1 e Uj UM, 1), 1]

i—10 "

where SU) = S, @+ @ So, ® Sa; for 1 € U;nzll[t(j) £ (5.21)

i—10 1
tél):to for j=1,2,---;
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then, the switching system S is called a repeated, switching system of subsystems.
For each repeating pattern of the subsystem, if

D~ =T = const for j=1,2,---, (5.22)

I,

then, the switching system S in Eq. (5.21) is called a repeated, switching system with
the equi-time interval (or, an equi-time, repeated, switching system).

Definition 5.10 Under the switching conditions in Eq. (5.19), a switching system of
subsystems on the domain U = U} Q;, U Qq for /; € {1,2, -, m} in the vicinity
of point x,, is defined by

S

Setp, @+ ® Sa, ® So; With 1 € U i1, 1] (5.23)
If the flow of the switching system satisfies the following condition

X(Olml) _ X(()al)

my = and t,,, —to = T = const (5.24)

then, the switching system S in Eq. (5.23) possesses a periodic flow on the domain
G in the vicinity of point x,.

Definition 5.11 With the switching conditions in Eq. (5.19), for a switching system
Sin Eq. (5.23), if there is a new switching system as

S’ES@S:S%, 69"'@5@69&1@5% DD Sy, D Sy
e e (5.25)

fort Ul.zi’ll [ti—1, t]

with the conditions

) — x4 and ty, — tg = 2T = const (5.26)
then, the new switching system S is called a period-doubling system of the switching

system S. The corresponding flow is called the period-doubling flow of the switching
system S.

Definition 5.12 From the switching system S'in Eq. (5.23), if there is a new switching
system as
S=S®---dS
—————

/
:Saml @"'@S(le@Sdl@"'@Sdml@"'@S(Xz@Sal

(5.27)
N N

with ¢ € Ui:{“ [ti—1, t;]

with the conditions
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Z(Zr:tnll) — X(()al) and thml - t() El X T = const (528)

then, the new switching system S’ is called a period-/ system of the switching system
S. The corresponding flow is called the period-/ flow of the switching system S. If
I — oo, the new switching system S’ is called a chaotic system of the switching
system S, and the corresponding flow is called the chaotic flow of the switching
system S.

5.3 Measuring Functions and Stability

To investigate the stability of the switching systems consisting of many subsystems
on the domain in the vicinity of point X, a measuring function should be introduced
through the relative position vector to point x,. The relative position vector is given by

r=x-—Xp. (5.29)

From the relative position vector, a distance function of two points X, and x can
be defined. Further, using such a distance function, the measuring function can be
introduced herein. If x, = 0, such a position vector is called the absolute position
vector.

Definition 5.13 For a given point x,,, consider a flow x € U(x,) in the switching
system of Eq. (5.23). A relative distance function for the flow x to the fixed point x,
is defined by

dx,Xp) =[x = x,][. (5.30)

If d(x, x,) = C = const, there is a surface given by
[IXx —xpl| =C (5.31)

which is called the equi-distance surface of point x,,. Further, if there is a monoton-
ically increasing or decreasing function of the relative distance d(x, X,),

E=V(X,xp) = f(d(x,Xxp)) (5.32)
with the following property
V(x,Xp) = f(d(X,Xp)) = min (or max) if d(x, x,) = 0. (5.33)

Such a monotonic function V (X, X) is called a generalized measuring function of
switching system in neighborhood of the point x,,. If E = C = const, there is a
surface given by

V(x,x,)=C (5.34)
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E=V(d(x,X,))

Fig.5.4 A relative position vector from x, to x and a measuring function with n| +ny =n
which is called the equi-measuring function surface.

Consider a distance function d(x, x,) = [(X — X,) - (X — X,,)]!/? as an exam-
ple. From the foregoing definition, consider two monotonically increasing, metric
functions to the relative distance to the point x,, as

V=dx,x,)+C=[(x—Xp) x—x,)]"2+C or (5.35)
V=(dxx,)>+C=X-Xp) (x—x%,)+C ‘
where C is an arbitrarily selected constant. Without losing generality, one can choose
C=0. Similarly, the monotonically decreasing functions can be expressed. Such a
selection of the monotonic, measuring functions is dependent on the convenience
and efficiency in applications. From the foregoing discussion, the relative distance is
a simple measuring function. From Eq. (5.14), the maximum and minimum relative
distances in U(x) are Cy and C, respectively. The minimum and maximum values
of the monotonically increasing metric functions for domain x € U(xp) are Eyjn =
V(C1) and Epax = V(C3) from Eq.(5.32). For the two simple metric function in
Eq.(5.33), one obtains the minimum and maximum values (Epi, = C; + C and
Emax = C2 + C) or (Epin = C} + C and Epax = C3 + C).

To explain the concept of the measuring function, consider adomain U(x) in phase
space for a subsystem in the vicinity of the given point x,, with big circular symbol, as
shown in Fig. 5.4. Suppose a point x with a small circular symbol is the solution of the
subsystem. The relative location vector to the given point X, is expressed by a vector
r = X — X, and the corresponding relative distance is expressed by d (X, X,,). Such a
point X is on the equi-measuring function surface of £ = V (d(X, x,)). For different
valuesof E = E; (i = 1,2, ---), aset of the equi-measuring function surfaces will
fill the entire domain of U(x), which are depicted by the green curves in Fig.5.4.
Based on the equi-measuring function surface, there is a dynamical system.
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Definition 5.14 For any equi-measuring function surface in Eq.(5.34), there is a
dynamical system as

X" =" (x™) (5.36)

with the initial condition (x{', f9) and the equi-measuring function surface can be
expressed by

Vx",x,) = V&g, x,) =E. (5.37)

The dynamical system given in Eq.(5.36) is invariant in sense of the measur-
ing function in Eq.(5.34). The subscript or superscript “m” represents the follow
on the “equi-measuring function surface”. This system can be designed from the
practical applications. To measure the dynamical behaviors of any subsystems to the
equi-measuring function surface, from Luo (2008a, b), the following functions are
introduced.

Definition 5.15 Consider a flow x*) of the ith dynamical subsystem with a vector
field FOx® ¢, p@) in Eq.(5.1). At time ¢, if the flow x) arrives to the equi-
measuring function surface with the corresponding constant (E = C) in Eq.(5.33),
the kth-order, G-functions at the constant measuring function level are defined as

k .
ng)(x(l)’ Xp, 1) = (k+ 1)!2%@’[n(xm’ Xp, !+ g)]T . x(l)(t + &)

k
. 1 _ ;
— " x0T xO () = > ;GEZ V™ x,, r)eq}
q=1""
_ Zk+{ C]:+1D(k+1—r)[n(xm’ Xp, t)]T . [D(r_l)F(i)(X(i), t, p(i))

r=

_D(r—l)fm (x™, Xp)]

xM=x()

(5.38)
fork =0,1,2,--- . The normal vector of the equi-measuring function surface is
V", x,) av aV aV
moXpf) = ——— P (— — ... T 5.39
ne X, 1) ox Goxm o o (>39)
where the total differential operator is given by
D— % a n d
= X— —,
Jx ot 540
D)= Do DV =DV, (5.40)
and DO =1
with
k+1)!
r k+1) and r!'=1x2x3---xr. (5.41)

LT 0k + 1 =)

From Eq. (5.34), the following relation holds
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oV
0=x- T nx", x,) - " (x",xp). (5.42)
For a zero-order G-function (k = 0), one obtains

G, xp, 1) = ", x)1" - [FOXD, 1, p) =", x|
" ’ o - . PPhen=x (5.43)
— [n(x(’), Xp)]T . F(l)(X(l), t p(l)).

The zero-order G-function is the dot product of the vector field F) (x® ¢, p)) and

normal vector n(x", x,,) for the ith subsystem. Consider an instantaneous value of

the equi-measuring function at time f. In other words, letting x”"* = x',

equation (5.37) is
ED (@) = v x,). (5.44)

The corresponding time change ratio of the measuring function is
dED (1) _ aV(xQ, Xp) L0
dt ax(®
= nx®, x,)1" - FO, 7,p)
0 v (i
= G,(n)(x(’), Xp, 1).

(5.45)

From the foregoing equation, the change of the equi-measuring function for the ith
dynamical subsystem for time ¢ € [f, fx41] can be defined from Luo (2008a, b).

Definition 5.16 For a flow x) of the ith dynamical subsystem with a vector field
FOx® ¢, p@) in Eq.(5.1), consider the equi-measuring function V(x, x,) in
Eq. (5.32) to be monotonically increased to a metric function d(x, x,) in Eq. (5.30).
The total change of the equi-measuring function for the time interval [#, ¢] is defined

as
; TdED (1t ! :
L(l)(xpstkst)z/ d ( ) :/ G;S?)(X(Z),Xpyl‘)dl‘
179 t Ik
t
- / e xp)1 T FOO, 1 pyar 40
73
=vxD@),x,) - V", x,)
where X/(ci) =x (). Foragivent = t; 1 > f, the increment of the equi-measuring

function to the ith subsystem in Eq. (5.1) for ¢ € [#, fx4+1] is

. Tk+1 .
LOX,p, ty, tri1) = / GOV x,, 1)dt

73

Tk+1 . ) ) ‘
= / [l‘l(X(l), X[,)]T . F(’)(X(l)’ t p(’))dt 5.47)
73

=V xp) - Vi xp).
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From Eq. (5.47), it is observed that the equi-measuring function quantity is used to
measure changes of the ith subsystem. Thus such a function can be used to investigate
the stability of dynamical systems. Before the stability theory of the switching system
is discussed, the following concepts are defined first.

Definition 5.17 For the ith dynamical subsystem in Eq.(5.1), consider the equi-
measuring function V (x® x p)inEq. (5.32) to be monotonically increased to a metric
functiond(x, x,,) in Eq. (5.30). A flow xD () at x,(cl) fort = t; inthe domain ; C %"
is:

(i) locally decreasing to the equi-measuring function surface in ; C Z" if

Ve xp 1) = VL, xpee) <0, (5.48)
V(x,({’lg, Xp, lete) — V(X,(Ci), Xp, tx) < 0;

(ii) locally increasing to the equi-measuring function surface in ; C Z" if

(@) (@)
V(X ,X,tk)_V(X_,X ,tk_)>0,

I((i) ’ ' S(i)p 8 (5:49)
V(Xk+83 Xps tk-‘r&‘) - V(Xk ) Xps tk) > O,

(iii) locally tangential to the equi-measuring function surface in Q; C Z" if

Ve X ) -V xp 1) <0,
either 0 o
V(x,H_g, Xp, tkte) — V(X 7, Xp, 1) > 05 5.50)
v xp,) — VD, xp. te) > 0,
or ) '
V(X,?J)rg, Xp, tege) — V(x,E’), Xp, 1) < 0.

From the previous definitions, the locally increasing and decreasing of a flow
x® (1) at x; to the measuring function surface can be described in Fig.5.5 in the
vicinity of the pointx,,. A flow x® (1) at x,(cl), locally tangential to the equi-measuring
function surface, can be similarly sketched.

Theorem 5.1 For the ith dynamical subsystem in Eq.(5.1), consider the equi-
measuring function V(x®, Xp) in Eq.(5.32) to be monotonically increased to a

metric function d(X, X,) in Eq.(5.30). A flow xD(t) at x](j) fort = ty in the domain
Q C A" is:

(i) locally decreasing to the equi-measuring function surface in Q; C Z" if and
only if

GO x,, 1) =", x)" - FO, 4, p?) <0; (5.51)
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Fig.5.5 a A locally
increasing flow, and b a
locally decreasing flow to a
measuring function with
ny+ny=n

(ii) locally increasing to the equi-measuring function surface in Q; C Z" if and
only if

GO x,, 1) =", x)" - FO 4, p?) > 0; (5.52)

(iii) locally tangential to the equi-measuring function surface in Q; C %" if and
only if
G’ ) xp, 1) = Inx x)1T - FO (g 1, ) = 0; 559
G (x, xp, 1) # 0.

Proof Using G-functions and Taylor series expansion, this theorem can be proved
directly. |

Definition 5.18 For the ith dynamical subsystem in Eq.(5.1), consider the equi-
measuring function V x®, x p)inEq. (5.32) to be monotonically increased to a metric
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O}

function d (x, x,) in Eq. (5.30). A flow xV(¢) from x| to x{'} | fort = 1, € [ty 1]

in the domain Q; C Z" is:
(i) uniformly decreasing to the equi-measuring function surface in ; C Z" if

(i) (@)
Vg ' Xp, ts) — V(X ,Xp, 1) <0,
P sTer e (5.54)

V(xﬁ’lg, Xp, boge) — v, Xp, Iy) < 0;
(i1) uniformly increasing to the equi-measuring function surface in ; C Z" if

(i) ()
Vg, Xp, ts) = V(XL ,Xp, ts_¢) >0,
Ponee sTer T (5.55)

Ve Xp, te) = VX xp, 1) > 0;
(iii) uniformly invariant to the equi-measuring function surface in ; C Z" if
VD xp tere) = VED x,, 1) = VD x,, 1) (5.56)
s+er Aps bs+e) — s s Apsts) — s—gs Aps ts—e)-. .

Theorem 5.2 Forthe dynamical subsystem in Eq.(5.1), consider the equi-measuring
function V(x| x p) in Eq.(5.32) to be monotonically increased to a metric function
d(x,Xp) in Eq.(5.30). A flow x® (1) from X](Cl) to X,(c’ll fort € [tx, ty41] in the domain
Qi C A" is:
(1) uniformly decreasing to the equi-measuring function surface in Q; C %" if
and only if all points X (t) for t € [ty, tx 1] on the flow y satisfy the following
condition

GO x,, 1) =nx?, x,)" FOD 1, p?) < 0; (5.57)

(ii) uniformly increasing to the equi-measuring function surface in Q; C %" if
and only if all points X (t) for t € [ty, tr 1] on the flow y satisfy the following
condition

GO x,, 1) =nx?, x,)" FOD, 1, p?) > 0; (5.58)

(iii) uniformly invariant to the equi-measuring function surface in Q; C %" if and
only if all points XD (t) for t € [tx, try1] on the flow y satisfy the following
condition

GO x,, 1) =0k=0,1,2,---. (5.59)

Proof Using G-functions and Taylor series expansion, this theorem can be proved
directly. |

Definition 5.19 For the ith dynamical subsystem in Eq.(5.1), consider the equi-
measuring function V x®, x p)inEq. (5.32) to be monotonically increased to a metric
functiond(x, x,) inEq. (5.30). A flow xD (1) at X,({’) fort = f; inthe domain Q; C %"
is:
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(1) locally decreasing with the (2s)th-order to the equi-measuring function surface
inQ; Cc Z" it

G & x,, 00 =0for r=0,1,2,---,25 — ;
V(X,(j), Xp, tk) — V(x,@g, Xp, tk—e) < 0, (5.60)
V(X,({l;)ry Xp, lkye) — V(X,(j), Xp, 1) < 0;

(i1) locally increasing with the (2s)th-order to the equi-measuring function surface
in Q; C #"if

GZ)(X;(:), Xp,fir) =0for r =0,1,2,---,25 — I;
Vi Xy 0 — VL X, tie) > 0, (5.61)

V(Xl(clJ)rsv Xps lkts) — V(X,(f), Xp, 1k) > 0;

(iii) locally tangential with the (2s — 1)th-order to the equi-measuring function
surface in ; C #" if

G " x,, 1) =0forr=0,1,2,---,2s;
v X ) = VX iee) <0,
either ® 0
l
V(X e Xp, thte) — V(X Xp, tr) < 03 (5.62)
V! xp. 1) — VL Xp ti—e) > 0,
or . .
V(X]Elj_s, Xp, lite) — V(X]((l), Xp, ) > 0.

Theorem 5.3 For the ith dynamical subsystem in Eq.(5.1), consider the equi-
measuring function V(x®, Xp) in Eq.(5.32) to be monotonically increased to a
metric function d(X, X,) in Eq.(5.30). A flow xD () at X,(Cl)for t = ty in the domain
Q C A" is:

(i) locally decreasing with the (2s)th-order to the equi-measuring function surface
in Q; C Z" if and only if

G (X, Xp, 1) =0, for r=0,1,2,---,2s — 1
) (5.63)
G;nS)(Xk,Xp,tk) < 07

(i) locally increasing with the (2s)th-order to the equi-measuring function surface
in Q; C Z" if and only if

G (X, Xp, 1) =0, forr=0,1,2,---,2s — 1
) (5.64)
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(iii) locally tangential with the (2s — 1)th-order to the equi-measuring function
surface in Q; C Z" if and only if

GS,:)(Xk, Xp,1r) =0, forr=0,1,2,---,2s
2s+1) (5.65)
A
G Xk, Xp, 1) # 0.

Proof Using G-functions and Taylor series expansion, this theorem can be proved
directly. |

Definition 5.20 For the ith dynamical subsystem in Eq.(5.1), consider the equi-
measuring function V (x® x p)inEq. (5.32) to be monotonically increased to a metric
function d(x, x,) in Eq.(5.30). A flow x)(r) from X]((l) to x,((lll fort € [t, tr41] in
the domain ; C %" is:

(i) globally decreasing to the equi-measuring function surface in ©; C %" if the
equi-measuring function increment for ¢ € [fy, fx+1] is less than zero, i.e.,

. Tg+1 . . . .
LDy, 1y, try1) = / n(x?, x,)T - FO D 7, pydr <0; (5.66)

3

(ii) globally increasing to the equi-measuring function surface in €; C Z£" if the
equi-measuring function increment for ¢ € [#, tx41] is greater than zero, i.e.,

. Tk+1 . . . .
L(’)(Xp,tk,tk_,_])z/ nx?, x )" - FO D 1, pDydr > 0;  (5.67)
173

(iii) globally invariant to the equi-measuring function surface in Q; C %" if the
equi-measuring function increment for ¢ € [#, #x+1] is equal to zero, i.e.,

Tk

, +1 , . . ,
LY Xy, tr, tr41) = / nx?, x,)T - FOD 1, pD)dr =0.  (5.68)

Ik

From the foregoing definition, the global increase, decrease and invariance for
a single subsystem are defined. The L-function is pertaining to the averaging of a
flow x©(¢) to the equi-measuring function surface of v(x¥D, x p) = C for the time
period of [#, tx+1]. To determine the global increase, decrease and invariance for a
switching system, the resultant flow of the switching system is the union of all the
flows of the subsystems in a certain queue series, and the corresponding L-function
can be defined.

Definition 5.21 For a switching system in Egs. (5.15) and (5.16) on the domain
U= U;"ZIIQII, U Qo, there is a resultant flow y (g, 1), i.e.,

y(to, 1) = Uil y @ (e, 1) + v (41, 1), (5.69)

where
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Say x(@) = Flen) (x(@) ¢ plew))

Y@ (1, 1) = 1 x“0(1) [on Qg with xO () =xP . (5.70)
forall 1 € [tr—1, tx]

The corresponding L-function along the resultant flow y (¢, ¢) is defined as

-1
L& t0.0) = > [L Ryt 1) + A 10|+ L (11, 1),
(5.71)
where A @@+ (1) is the quantity increment of the equi-measuring function surface
for the switching from dynamical system Sy, to dynamical systems Sy, ,, through
the transport laws in Eq. (5.16), i.e., the quantity increment is equal to

A(ockolkJrl)(tk) _ V(X(O‘k+1) ) V(X(ak), ) (5.72)

Note that the resultant L-function for the total flow y (¢, ¢) is computed by
-1
L(xp, 1o, 1) = Zk: [L(o”‘)(xp, t—1, k) + A(“"O"‘“)] + L (xp, -1, 1)

_Zk 1[/ G (X, x,, di 4+ A1)
t
+/ GO, x,, t)dt
-1
=L (o) T g (@) ; o)
—Zkl n(x®), x,)]T . F@ (x@) 1 p@yqy
—1

t
+A(akak+1)} + / [n(x(az)’ Xp)]T . F(C(])(X(Oll)’ t, p(o”))dt

f—1

(5.73)
= 3 [V - Vi) + s ]
+VE (1), x,) — V) x,).

The resultant L-function in Eq. (5.73) can be sketched through the equi-measuring
functions, as shown in Fig.5.6. The measuring functions for each subsystem may
not always increase or decrease with increasing time. The total effect of equi-
measuring functions to all the queue series subsystems in the switching system
should be considered. The solid curves give the equi-measuring-function values of a
flow y(“k)(t) (k=1,2,---,m,---). The dashed lines are jumping changes of the
equi-measuring function, and the jumping changes are caused by the transport laws
between two adjacent queue subsystems. The circular points represent the switching
points for two adjacent queue subsystems. The L-function changes for the switching
system is clearly presented.

Since any switching system possesses a queue series of subsystems, the total effect
of equi-measuring functions to all the queue series subsystems in the switching
system should be considered. If each system is uniformly increasing to the equi-
measuring function, with a positive impulse, then the switching system is uniformly
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Fig.5.6 The equi-measuring function varying with flows of sub-systems. The solid curves give
the equi-measuring function values of a flow y ) (¢). The dashed lines are jumping changes of
the equi-measuring function, and the jumping changes are caused by the transport laws between
two adjacent queue subsystems. The circular points represent the switching points for two adjacent
queue subsystems

increasing. Otherwise, if each system is uniformly decreasing to the equi-measuring
functions, with a negative impulse, then the switching system is uniformly decreasing.

Definition 5.22 For a switching system in Eqs. (5.15) and (5.16) on the domain U =
UZ"ZI 1821; U2, there is an resultant flow y (fo, t) in Eq. (5.69). For the o th dynamical
subsystem Sy, , consider the equi-measuring function V(x@), x p)inEq.(5.32) tobe
monotonically increased to a metric function d(x, X,) in Eq. (5.30). A flow y (7, t)
from y @V (19, 1) to y @ (1;_1, t) for t € [tg, #;] in the domain U2:1Qak is:

(i) uniformly decreasing to the equi-measuring function surface in Uizl Qg 1f

V(Xgak)’ Xpﬂ tS) - V(thﬁ‘gv Xp9 tS*E) < ()7

VE X t1e) — V™ x5, 1) < 0,

for x™ € y @) (41, ) with 1; € [Br_1, i ];

A (1) <0 for k=1,2,---,1;

(5.74)

(i1) uniformly increasing to the equi-measuring function surface in Uf{zl Qq, if

V™ x,, 1) = VE, X, t5-¢) > 0,

() (otk) .
V(X Xps tsre) = VX, Xp, 15) > 0; (5.75)

for x\™ € y @) (4 _y, 1) with 15 € [t_1, 1]

A+ ) (1) > 0 fork =1,2,---,1;

(iii) uniformly and negatively impulsive to the equi-measuring function surface in
Uk Q if
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V(Xg(ﬁ;’ Xp, ls4e) = V(X§ak), Xp, Is) = V(Xgoﬁ}), Xp, Is—¢)
for x‘E"”‘) € )/(a")(tk_l, t) with 1 € [tr—1, tx], (5.76)

A gy <0 for k=1,2,---,1;

(iv) uniformly and positively impulsive to the equi-measuring function surface in
o @ i

V(Xg(ﬁ;’ Xp, ls4e) = V(X§ak), Xp, Is) = V(Xgoﬁ}), Xp, Is—¢)
for X‘Eak) € )/(a")(l‘k_l, ty) with tg € [tr—_1, tx], (5.77)

A () >0 for k=1,2,---,1;

(v) uniformly invariant to the equi-measuring function surface in Ui:l Qg 1f

VO, %, fope) = V™ X, 1) = V), X, 1)
for x\®) € y @) (11, 1) with t; € [te_1, t], (5.78)

At ) (g =0 fork =1,2,---, 1.

From the foregoing definition, the uniformly increasing and decreasing of a resul-
tant flow of the switching system to the equi-measuring surface require that each
subsystem should be uniformly increasing with a positive impulse and uniformly
decreasing with a negative impulse, respectively. For an intuitive illustration, such
uniformly increasing and decreasing of a switching system are presented in Fig.5.7a
and b, respectively. The corresponding trajectories in phase space are presented in
Fig.5.8a and b for uniformly increasing and decreasing.

Consider a dynamical system

O = O and 3O = — OO _ @) O (5.79)
with an impulsive function

) =2y =y +aDsgnHk=1,2,--)

. 5.80
for tp = kT/m with T =27//c,a’) > 0. (5-:80)
For the impulsive system in Eq. (5.79), consider a measuring function
v = Lyop p Logoy, (5.81)
2 2

The solutions for Eq. (5.79) can be easily obtained. Herein, for (d )2 < @ the
solution is given for ¢ € [y, tx+1)

%@ =e’d(i)(’*’k+)[Cf) cos w((ji)(t —ty) + Céi) sin wg)(t — )],
YD = V1010 — D) cos ) (t — 114) (5.82)
—(cdD + 0V cMysinw (1 — 1)1,
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(a) iV Ok/

tO Il IZ tk 1 tk

Fig.5.7 The equi-measuring function varying with time: a uniformly increasing, b uniformly
decreasing. The solid curves give the equi-measuring-function values of a flow y ) (¢). The dashed
lines are jumping changes of the equi-measuring function, and the jumping changes are caused by
the transport laws between two adjacent queue subsystems. The circular symbols represent the
switching points for two adjacent queue subsystems

where

C(l) ]Eli’ (l) — (y(l) (l)d(l))/ (1); wf;) — /C(i) _ (d(i))2_ (583)

For simplicity, consider a system with an impulsive function
D=c=1,d9 =d=-0.0054d"=a=10,m=2; (5.84)

and the initial condition is
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Fig.5.8 A flow to the equi-measuring function surface in vicinity of point x,, in phase space:
a uniform increase, and b uniform decrease. The cycles are equi-measuring function surfaces. The
circular symbols represent the switching points for two adjacent queue subsystems

=y =4 for 1 =0. (5.85)

Thus, the dynamical characteristics of the impulsive system are presented in Fig.5.9.
The impulsive system possesses the uniform increases of measuring function with
increasing impulses, as presented in Fig.5.9a. The corresponding trajectory for
such an impulsive system is presented in Fig.5.9b. The time-history of G-function
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Fig.5.9 Animpulsive system with negative damping: a uniformly increasing of measuring function
with increasing impulses, b trajectory in phase plane, ¢ G-function of measuring function, and
d discontinuous velocity. The circular symbols represent the impulsive points for such an impulsive
system. Two time impulses for each period are labeled by the vertical lines. (¢) = ¢ = 1,d® =

d=-001a" =a=10,m=2andx}’ =y’ =4 for 1p=0)

of the equi-measuring function is presented in Fig.5.9c. It is observed that the

G-function is less than zero. Since the impulsive effect is exerted, the velocity is

CO-discontinuous, which is presented in Fig. 5.9d. Thus, the corresponding displace-

ment is CY-continuous, which will not be presented herein. For uniform deceasing

of measuring function, the impulsive rule in Eq. (5.80) can be changed as
=20 oy =y —aDsgnyHk =12, ) 556
for ty = kT/m with T =2mr//c,a® > 0.

and the impulsive system with an impulsive function has the following parameters
to be considered as

D=c=1,d9=d=0.054d"=a=10,m=2. (5.87)
and the initial condition is
P =y =4 for t9=0. (5.88)

Thus, such an impulsive system with uniform decrease of measuring function is
in Fig.5.10. The uniform decrease of measuring function with increasing impulses
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Fig.5.10 An impulsive system with positive damping: a uniformly decreasing of measuring func-
tion with decreasing impulses, b trajectory in phase plane, ¢ G-function of measuring func-
tion, and d discontinuous velocity. The circular symbols represent the impulsive points for
such an impulsive system. Two time impulses for each period are labeled by the vertical lines.

P =c=1, dD=d=005a" =a=10,m=2andx}’ =y’ =4 for 1, =0)

for the impulsive system is presented in Fig.5.10a. The correspond trajectory for
such an impulsive system is presented in Fig 5.10b. It is observed that the trajectory
will approach the equilibrium point (x = y = 0). The time-history of G-function
of the equi-measuring function is presented in Fig.5.10c. It is observed that the
G-function is greater than zero. Again, since the impulsive effect are exerted, the
CO-discontinuous velocity is presented in Fig.5.10d.

For the switching system with uniformly increasing (decreasing) of measuring
function at impulses, each subsystem in the switching system is uniformly invariant
to the equi-measuring function, and only the uniform, positive (or negative) impulses
exist in the switching system, as shown in Fig.5.11a and b. The corresponding tra-
jectories in phase space are also presented in Fig.5.12a and b. The dashed lines
are jumping changes of the equi-measuring function, and the jumping changes are
caused by the transport laws between two adjacent queue subsystems. The circular
points represent the switching points for two adjacent queue subsystems.

To illustrate this case, consider the dynamical system in Eq. (5.79) without damp-
ing (d) = 0). The corresponding solution is
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Fig. 5.11 The equi-measuring function varying with time: a uniformly positive impulse only,
b uniformly negative impulse only. The solid lines give the invariant equi-measuring-functions of
a flow y @) (r). The dashed lines are impulsive changes of the equi-measuring function, which are
caused by the transport laws between two adjacent queue subsystems. The circular points represent
the switching points for two adjacent queue subsystems

x® = [Cfi) cos D (t — try) + Cg) sinw® (r — )],

. N . G ; 5.89
¥y =[S 0D cos 0D (t — t54) — 0@ C sinw®(t — 1)1, (>89)
where
) = xS =y jo®; 0D = V), (5.90)
With the strength of impulsive function (¢ = 0.8) and initial conditions in

Eq.(5.87), the corresponding measuring functions and trajectories in phase plane
are presented in Figs.5.13 and 5.14 for the uniformly increasing and decreasing of
impulses, respectively.

From the above definition, the corresponding theorem is presented as follows.
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Fig.5.12 A flow to the equi-measuring function surface in vicinity of point x,, in phase space:
a uniformly positive impulse, and b uniformly negative impulse. The cycles are equi-measuring
function surfaces. The circular symbols represent the switching points for two adjacent queue
subsystems

Theorem 5.4 For a switching system in Egs.(5.15) and (5.16) on the domain U =
U;"ZII Q;, UQ, there is an resultant flow y (19, t) in Eq.(5.69). For the o th dynamical
subsystem Sy, , consider the equi-measuring function V(x@) x p)inEq.(5.32) to be
monotonically increased to a metric function d(X, X,) in Eq.(5.30). A flow y (ty, 1)
from y @) 1y, 1) to y @ (1,_1, 1) for t € [to, 1] in domain Uf{zlﬂak is:

(1) uniformly decreasing to the equi-measuring function surface in Ui:l Qu ifand
only if
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Fig.5.13 An impulsive (a)
system without positive 60.0
damping: a invariant
measuring function with
increasing impulses,

b trajectory in phase plane.
The circular symbols
represent the impulsive
points for such an impulsive
system. Two time impulses
for each period are labeled
by the vertical lines.

(D =c=1,

a =a=0.8,m=4and 0.0
P =y =4 for 1p=0)
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12,0 1 1 1
-14.0 -7.0 0.0 7.0 14.0

Displacement, x

GO x®, xp, 1) = [nx?D, x,)]T - FO D, 1, p@) <0
for x\™ € @) (4 _1. 1) with t; € [t—1, t]; (5.91)

AC+) () <0 for k=1,2,---,1;

(1) uniformly increasing to the equi-measuring function surface in Ui:l Qg ifand

only if
G (xD, x,. 1) = D, x,)]T - FO O 1, pD) > 0
for x‘g"‘k) S )/(a")(l‘kfl, ty) with t; € [te—1, t]; (5.92)

A(akak+1)(tk) >0 for k=1,2,---,1;

(iii) uniformly and negatively impulsive (or jumping down, or jumping decreasing)
to the equi-measuring function surface in Ui:l Qq, if and only if

G (x@) x,, 1) =0 for r=0,1,2,---
for x§“k> €y (1, 1) with t; € [f_1, ], (5.93)

At ) () <0 for k=1,2,---,1;
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Fig.5.14 An impulsive (a)
system without damping: 20.0
a invariant measuring

function with decreasing 16.0

impulses, b trajectory in >
phase plane. The circular £
symbols represent the g 120
impulsive points for such an E“
impulsive system. Two time B 80
impulses for each period are z
labeled by the vertical lines. s

) =c=1a0=q= 4.0
0.8, m = 4 and

x(()’) = y(()l) =4 for top =0) 0.0
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(iv) uniformly and positively impulsive (or jumping up, or jumping increase) to the
equi-measuring function surface in Ui:l Qq, if and only if

G (X, x,, 1) =0 for r =0,1,2,---
for X\ € y @) (n_1, 1) with 15 € [t_1, 1], (554
A(Otk()tk+l)(tk) >0 for k=1,2,---,1;

(V) uniformly invariant to the equi-measuring function surface in Ui: 182, if and
only if

G x@) x,,1)=0 for r=0,1,2,--
for x\%) € y @) (41, 1) with t; € [te_1, t], (5.95)
Ay =0 for k=1,2,---,1.

Proof Using G-functions and Taylor series expansion, this theorem can be proved
directly. |
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For switching dynamical systems, it is very difficult to require all systems are
uniformly increasing, or decreasing or invariant. To construct a switching dynamics
system, subsystems do not require such strict increase, or decrease and invariance.
Thus, as in Definition 5.19, the L-function will be adopted to measure the resultant
flow y (19, t) withincrease, decrease and invariance to the measuring function surface.
The increase, decrease and invariance for the entire time interval are called the global
increase, or decrease, or invariance of the resultant flow to the measuring function
surface, which can be used to measure system stability. The corresponding definitions
are given as follows.

Definition 5.23 For a switching system in Egs. (5.15) and (5.16) on the domain U =
Uf":‘ 1821, UL, there is an resultant flow y (fo, ) in Eq. (5.69). For the o th dynamical
subsystem Sy, , consider the equi-measuring function V (x@) x p)inEq.(5.32) tobe
monotonically increased to a metric function d(x, X)) in Eq. (5.30). A resultant flow
y (to, t7) of the switching system from y(o‘l)(to, 1) to y(“’)(tl_l, 1) fort € [1g, ;] in
the domain Ui: 1 Q¢ 18:

(i) globally decreasing to the equi-measuring function surface in Ui: 12, if

[
Lpot0) = > [ &ttt + AV ] <0 (596)

(ii) globally increasing to the equi-measuring function surface in Uf(: 1824, if

l
Lpot0) =D (L& et 10 + A ] 500 (597)

(iii) globally invariant to the equi-measuring function surface in Ui:l Qg 1f

1
Lp i) = > [L &y o100 + A ] =0, (5.98)

To illustrate the above definitions, the global increase, global decrease and global
invariance of the resultant flow to the equi-measuring function surface can be pre-
sented through the equi-measuring function varying with time. The global increase,
decrease and invariance of the resultant flow for time interval ¢ € [tg, #;] require the
corresponding L-function L(X,, to, ;) be greater than, less than and equal to zero.
The global increase and decrease are illustrated in Fig.5.15a and b, respectively.
The corresponding trajectories in phase space are presented in Fig.5.16a and b. The
dashed lines are jumping changes of the equi-measuring function, and the jumping
changes are caused by the transport laws between two adjacent queue subsystems.
The circular points represent the switching points for two adjacent queue subsystems.

Theorem 5.5 For a switching system on the domain U = U{" |y, U Qq in the
vicinity of point pi in Eq.(5.23), if there is a periodic flow with periodicity condition
in Eq.(5.24), then the resultant L-function is zero, i.e.,
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Fig.5.15 The equi-measuring function varying with time: a globally deceasing, b globally increas-
ing. The solid lines give the invariant equi-measuring-functions of a flow y ®¥) (¢). The dashed lines
are jumping changes of the equi-measuring function, and the jumping changes are caused by the
transport laws between two adjacent queue subsystems. The circular points represent the switching
points for two adjacent queue subsystems

L(va to, tm) = zl]’{n 1 [L(“k)(xp, tk—1, tk) + A(Olkolkﬂ)] =0

Xf’;xmﬂ) (061)

(5.99)
stm=to+ T and ap4+1 = ay.

Proof From Eq.(5.73) with AC+D () = V(x ™ x,) — V(x™, x,), one
obtains

LO&psto ) = 2 [L(““(xp, f1, 1) + A("‘k"‘“”]
- Zk 1 I:V(X(ak)’ Xp) — V(X,((oﬁ(f, Xp) + A(akak+l)]
— V(X(Olm-H) p) _ V(X(()al), Xp).
(a m+l) (Ot])
Xy

The periodic flow requires Xy, =ty+ T and «p4+1 = o1, which

implies V(x( &1 ,Xp) = V(x(o”) Xp). Thus, L(xp, to, ;) = 0. This theorem is
proved. |

Periodic flows in switching systems with impulses are sketched to help one under-
stand the mechanism, characteristics and construction of periodic flow, which are
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(b)

Fig.5.16 A flow to the equi-measuring function surface in vicinity of point X, in phase space:
a global increase, and b global decrease. The cycles are equi-measuring function surfaces. The
circular symbols represent the switching points for two adjacent queue subsystems

different from the continuous dynamical systems. Herein, the simple cases will be
discussed first to build the corresponding concepts. Consider a flow with uniformly
invariance to the equi-measuring surface with positive and negative increase with
the same amplitude. Such a switching system is a conservative system to the equi-
measuring surface for given time intervals with a kind of impulse with a specific
transport law at given switching moments. In other words, one has

G x@) x,,1)=0 for r=0,1,2,--
for X (1) € y @) (1 _1, 1) with 1 € [tr_1, tx], (5.100)
A@s) () = —C or C at switching time 7;
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or

VE@(1), x,) = V™, x,) = V™, x,)

for X(a")(l‘) € )/(a")(tkfl, tr) with 1 € [tr_1, tr];

A+ () = C for jumping up, (5.101)
Aty = —C for jumping down

with A () = V@ x,) — V™, x,).

If the switching systems cannot form a periodic flow, then a chaotic flow can be
formed or at least a randomly switching flow can be observed. The stochasticity
of such a flow can be determined through a random setting of the switching time.
However, for (2m) switching with jumping up and down with constant magnitude,
if there is a relation as

x(()m) = ngf’"“) and to, =t9+ T

(5.102)
where T is period

then the switching flow can form a periodic flow. In addition, the switching is given
by the transport laws

g(akakﬂ)(xl((“k)’ X]((ak+1)) -0

V™ x,) =Cp and V), x,) = C. (>-103)
For linear switching systems, such a periodic flow is stable.

For a better understanding of the concepts, the following illustrations are given
to form periodic flows. The equi-measuring function varying with time for periodic
flows is sketched in Fig.5.17. In Fig.5.17a, the periodic motion with positive and
negative impulses with the same strength of impulses. In Fig.5.17b, the periodic
flows with positive and negative impulses with different strengths of impulses are
presented. The corresponding periodic trajectories for such periodic flows in phase
space are presented in Fig.5.18. For special cases, consider an impulsive system
with the measuring functions uniformly increase or decrease with time. However,
the impulsive jump can remove such increasing and decreasing of the measuring
functions. Thus, the periodic flows can be formed. For intuitive illustration, such
periodic flows are presented in Figs.5.19 and 5.20. The constant increments of mea-
suring function are adopted. In fact, such measuring functions increments are not
necessary to be constant. Periodic flows with the uneven increments of measuring
functions are sketched in Figs.5.21 and 5.22. If the total increments of measuring
functions can be cancelled by the total increments of impulsive jumps, the periodic
flow can formed. In other words, for unstable subsystems in the impulsive system, if
impulsive jumps can draw the measuring function to the original level, the resultant
impulsive system with unstable subsystems should be stable. For general case, it is
not necessary for subsystems to make the measuring function be uniformly increasing
or deceasing. The corresponding illustration is given in Fig.5.23.
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Fig.5.17 The equi-measuring function varying with time: a positive and negative impulses with
the same strength, and b positive and negative impulses with different strengths. The cycles are
equi-measuring function surfaces. The circular symbols are for switching points

Consider the dynamical system in Eq. (5.79) without damping () = 0) again.
However, the impulsive relation will be changed as

) =x oy =y +aPk =1,2,-)

) (5.104)
for ty = kT/m with T =27//c,a) > 0.
The corresponding solution in Eq. (5.89) and (5.90) will be used for dynamical system
in Eq. (5.79). The measuring function in Eq. (5.81) will be used herein.
With the strength of impulsive function (a = 1.0) and initial conditions are

=20,y =2.0 for t =0.0. (5.105)

The periodic motion for the switching system with impulses (m = 2) is presented in
Fig.5.24. The measuring functions are two invariants. The impulses possess “jump-
ing up” and “jumping down” with the same increments, which is clearly presented
in Fig.5.24a. The trajectory of the periodic motion in phase plane is presented in
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Fig.5.18 A periodic flow to the equi-measuring function surface in vicinity of point x,, in phase
space: a positive and negative impulses with the same strength, and b positive and negative impulses
with different strengths. The cycles are equi-measuring function surfaces. The circular symbols are
for switching points

Fig. 5.24b. Since subsystem in Eq.(5.79) with (d) = 0) is a conservative and the
Hamiltonian is selected as a measuring function. Thus, the subsystem possesses the
invariant measuring function without impulses. The time-histories of displacement
and velocity for such a periodic motion are presented in Fig.5.24c and d, respec-
tively. Since the impulsive effects are exerted on the velocity. The displacement is
C-continuous at the impulsive points, but the velocity is C°-discontinuous. With
multiple impulses, the corresponding periodic motions are presented in Fig.5.25
(m = 4). The same initial conditions and system parameters are used. Compared
with Fig.5.24, the impulsive effects on the measuring functions, trajectory in phase
plane, displacement and velocity time-histories are observed. If m — oo, the impul-
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Fig.5.19 The equi-measuring function varying with time: a uniformly increasing with constant
jump down only, b uniformly increasing with constant jumping up. The solid lines give the invari-
ant equi-measuring-functions of a flow y @) (¢). The dashed lines are jumping changes of the
equi-measuring function, and the jumping changes are caused by the transport laws between two
adjacent queue subsystems. The circular points represent the switching points for two adjacent
queue subsystems

sive force will become a constant force exerting on the vibration system. The analyti-
cal and numerical solutions can be easily obtained. However, the measuring function

is not necessary to be chosen as the Hamiltonian. Consider a measuring function in
Eq.(5.81) as

j 1 1o
vo = z(y°))2 + Zc(’)(x(’))z. (5.106)
Based on the foregoing measuring functions, the G-function is

. R B 1
GO = D30 4 Ecmxu)y(z) - —Ec(')x(')y('). (5.107)

The above measuring function and the corresponding G-functions for the same
periodic motion presented in Fig. 5.25 are presented in Fig. 5.26. Itis observed that the
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(b)

Fig.5.20 A flow to the equi-measuring function surface in vicinity of point x,, in phase space:
a uniform increasing with jump down, and b uniform decreasing with jump up. The cycles are equi-
measuring function surfaces. The circular symbols represent the switching points for two adjacent
queue subsystems

measuring function is not uniformly increasing or decreasing. From the traditional
Lyapunov method, the stability of this impulsive system cannot be determined. In
addition, the switching systems have many subsystems. If one measuring function
is used, definitely such a function cannot be the first integral invariant manifolds for
all subsystems. Thus, the L-function for measuring function should be adopted.

5.4 Impulsive Systems and Chaotic Diffusions

For further discussion on impulsive systems, consider a dynamical system as
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Fig.5.21 The equi-measuring function varying with time: a uniformly invariance with jumps only,
b uniformly increasing with jumping down. The solid lines give the invariant equi-measuring-
functions of a flow y @) (r). The dashed lines are jumping changes of the equi-measuring function,
and the jumping changes are caused by the transport laws between two adjacent queue subsystems.
The circular points represent the switching points for two adjacent queue subsystems

¥ =y@ and yO = —cOx®D 4+ aD f(x, y)8(t — knT/m)

k=1,2,---;i=1,2,---,0. (5.108)

The foregoing equation is equal to subsystems in Eq.(5.79) with d® = 0 and the
impulsive function in Eq. (5.80) becomes

for ty = knT/m with T =2/, a® > 0.

The solutions in Eqgs. (5.89) and (5.90) are adopted. Thus, for # = 1), we have
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Fig.5.22 A flow to the equi-measuring function surface in vicinity of point x,, in phase space: a
uniform increase, and b uniform decrease. The cycles are equi-measuring function surfaces. The
circular symbols represent the switching points for two adjacent queue subsystems

D = cos @ gy — ti) + v o@D sin oD (tggy— — )],
((/_c)—&-l) lz-l)— ' (k+1) k+ ® . (k+1)
y(;€+1)* = [ykl+ cos a)(‘)(t(kH)_ —tgy) — a)(‘))ckl_F sin w(’)(t(k+1)_ — tk+)(]5. o



5.4 Impulsive Systems and Chaotic Diffusions 261

(@ x»

Fig.5.23 The equi-measuring function varying with time: a globally deceasing, b globally increas-
ing. The solid lines give the invariant equi-measuring-functions of a flow y ®¥ (r). The dashed lines
are jumping changes of the equi-measuring function, and the jumping changes are caused by the
transport laws between two adjacent queue subsystems. The circular points represent the switching
points for two adjacent queue subsystems

Because

(i) 27T}’l(,()(i) 6)
cos ' (t(ky1)— — Ix4) = CcOS —a =K,

0 ’ (5.111)
sin@" (fg41)— — try) = sin ——— = K,

with Eq. (5.108), Equation (5.111) becomes
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Fig.5.24 Periodic motions for an impulsive system: a Measuring function with impulses, b trajec-
tory in phase plane, ¢ displacement and d discontinuous velocity. The circular symbols represent
the impulsive points for such an impulsive system. Two time impulses for each period are labeled

by the vertical lines. (cD=c=1,aD=a=10,m=2, x(()i) = yéi) =2.0forzp =0)

(@)
@) _ OO 2 r,® @) @) @O @)
'x(k-‘rl)— = Kl Xk_-i-m[yk_‘Fal fl (xk_’ yk_)]a (5112)
Yirn- =K'l +a® r Oyl - kP
Dropping subscript “-”, the foregoing equation becomes
. (@) . (@)
O ke Koy (R
=1t w® e @ 1a® O P 0y (5.113)
(@) o . (@) .
Ye+1 —Kél)a)(’) Kl(l) Yk Kl(l)

The mapping P; (i = 1,2,---,1) of Eq.(5.108) for ¢t € [tx41, tx] is developed.
Suppose there are m-subsystems during n-periods (n7). The resultant mapping is

P=P, o o0PyoP,ljell,2, - Jjandje (.2, .m). (5114)
For x; = (xx, yx)T, we have
Xi4m = PXy = P, 0---0 P, o P, Xg. (5.115)

The corresponding relations are
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Fig.5.25 Periodic motions for an impulsive system: a Measuring function with impulses, b trajec-
tory in phase plane, ¢ displacement and d discontinuous velocity. The circular symbols represent
the impulsive points for such an impulsive system. Two time impulses for each period are labeled
by the vertical lines. @ =c=1,a"=a=10,m=4, x(()l) = y((;) =2.0for g =0)

Xkt j =g(l«f)(Xk+j—l) forj=1,2,---,m (5.116)
where g7) (xiyj—1) = (81", g5” )T with
(¢ . (¢
@ ) K, ) K,
8 Ky — | | it —5 |y eap, ) ap
ap |~ o am [T oD 1 a P F 0oLy i)
82 —K;lj)a)(l-j) Kl(lf) Vitj—1 Kflf)
(5.117)
For periodic motion during n-periods (n7), the periodicity conditions are
Xk+m = Xk- (5.118)

The stability and bifurcation of the periodic solutions can be determined. Herein, it
should not be discussed. Similarly problems will be discussed in next section.

To illustrate complex motions in such impulsive system, as in Luo (2011), consider
a single system with the following function as example

S (e, yi) = sinxy. (5.119)

Thus, the mapping in Eq. (5.113) becomes
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Fig.5.26 Periodic motions
for an impulsive system: a
Measuring function with
impulses, b G-functions.
The circular symbols
represent the impulsive
points for such an impulsive
system. Two time impulses
for each period are labeled
by the vertical lines.
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Yk
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During n-periods (n7T), the resultant mapping is

For x; = (xg, yk)T, we have

P™ =Po...oPoP. (5.121)
——
m

xieny = PMxy. (5.122)

The corresponding relations are

Xitj = 8(Xtj—1) forj=1,2,--- N (5.123)
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where g(x¢+j—1) = (g1, g2)T with

% K> K>
[81 ] =" [xkﬂ—l ] +1 o fpasinxg;i. (5.124)
82 — Ko K Vie+j—1 K,

From the mapping in Eq. (5.123), the quasi-periodic motions and chaos can be
obtained via the impulsive points. The impulsive switching scenario with impulsive
strength is presented in Fig.5.27 forc) =c=1, Q=1.0, n=1, m =3, xé’) =
y(()l) = 4.0 and a®) = q for 1y = 0. The critical value of impulsive strength a., ~
1.2974 is for the motion from the quasi-periodic motion to the chaotic motion. If
a > acr, the chaotic diffusion will be observed. With such chaotic diffusion, long-
range interactions can exist via such an impulsive action. The quasi-periodic motion
and chaotic diffusion for mod(nw, m2) = [ with[ = 1,2,--- ,m — 1 are same.
Without loss of generality, we can set w = 2. All possible quasi-periodic motions
and chaotic diffusion can be obtained by mod(n, m) = [. The switching sections
are same for any specific / with all numbers of n with mod(n, m) = [. For n > m,
the trajectories in phase plane are same, which are different from the trajectory for
n = . However, the time responses are different for different n.

Consider ¢ = 1.0 with n = [ = 1 and m=3 for illustration in Fig.5.28
with same parameters and same initial conditions. The trajectory in phase plane
and impulsive switching sections are presented in Fig.5.28a and b, respectively.
The impulsive switching points before impulse jumps are labeled by circular
symbols. To show switching pattern, the impulsive switching points after impulse
jumps are not labeled. The impulsive jumps are connected by vertical lines. The
switching sections is based on the impulsive switching points before impulsive jumps.
The trajectory in phase plane is forn = [ = 1 and m = 3 only. However, the
switching section is for the quasi-periodic motion relative to all integers of n with
mod (n, 3) = 1 foraspecific /=1. In other words, forn = km+1 (k =0,1,2,--+),
the switching section are same. For this problem in Eq. (5.108), the trajectories for
k # 0 and k=0 are different. However, all trajectories for k # 0 are identical but
the corresponding time-histories of responses (e.g., displacement and velocity) are
different. In Fig. 5.29a and b, the trajectories in phase plane for n=1,4 are presented,
respectively. It is observed that the switching points are same but the trajectories are
different. Thus, the time-histories of velocity for n=1,4 are presented in Fig.5.29¢c
and d, respectively.

As a > a.r, the chaotic diffusion generates the chaotic impulsive motion pattern
with long-range interactions. The switching sections of chaotic impulsive motion for
(n=1m=3,a =14and a, ~ 1.2974) and (n = 2,m = 3,a = 1.89 and
acr ~ 1.8855) are presented in Fig.5.30a and b. The 20,000 impulsive switching
points are used to generate the switching sections. The chaotic diffusion patterns are
very clearly observed for two types of chaotic diffusion. They have three branches
for diffusion. The chaotic diffusion patterns for (1:3) and (2:3) resonant impulses
are different. For a further view of the chaotic diffusion patterns, the chaotic dif-
fusion patterns for (1:3), (1:4), (1:5) and (1:6) resonant impulses are presented in
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Flg'.5.27 Impulslve . (a) 20.0
switching scenario with
impulsive strength: a
switching displacement, b
switching velocity. (¢®) = - 10.0
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Fig.5.31a—d, respectively. Each branch of the chaotic diffusion is colored by a dif-
ferent color for a better view of chaotic diffusion pattern. This deterministic system
shows random walks properties. The complexity and randomness needs to be further
investigated.

5.5 Mappings and Periodic Flows

To describe the switching of sub-systems, consider a switching set for the ith sub-
system to be

») — { x,(f)

X]((i) =xD), ke{0,1,2,--- }} . (5.125)

From the solution of the ith subsystem, a mapping P; for a time interval [#;_1, #] is
defined as

P:xD 53D fori=1,2,---,m (5.126)



5.5 Mappings and Periodic Flows

Fig.5.28 A quasi-periodic
impulsive motions: a
trajectory in phase plane, b
switching sec-tions.
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for i=1,2,---,m. (5.127)

P;: x,(('zl — x,((i)

Define a time difference parameter for the ith subsystem for a time interval
[tx—1, tx] which can be set arbitrarily.

i
O‘]E) =1 — tg—1.

For simplicity, introduce two vectors herein

f(i) — (fl(i)7 fz(i), . fn(i))T and X(i) — (‘x{i), xél‘), . ')C}gi))T.

(5.128)

(5.129)

From the solution in Eq. (5.9) for the ith subsystem, the foregoing equation gives for

(i=1?2".'am)

(OG0, X0 ) =

x,(:) — <I>(i)(x

w1tk k-1, p) = 0.

(5.130)
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Fig.5.30 Switching sections (a)200.0
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Suppose the two trajectories of the ith and jth systems in phase space at the switching
time #; is continuous, i.e.,

X =x" at time 1 (5.131)
or
@ xS = (e xig) for i j e (1,2, m). (5.132)

If the two solutions of the ith and jth subsystems at the switching time 7 are discon-
tinuous, for instance, an impulsive switching system needs transport laws. From Luo
(2006), a vector for the transport law from the ith to jth systems is introduced as

g = (gl gl .. gliMnT, (5.133)
So the transport law between the ith and jth subsystems can be written as
g x" x) = 0 at time 7. (5.134)
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Fig.5.32 a Mapping P; and b transport mapping Péij )in phase plane (n] + ny = n)

In other words, one obtains

) @) @0 (@)
Y = 81 (xl(k)’ v n(k))
() (j) o (D) (@)
i =8 (Xigye s Xaty) o
for i,je{l,2,---,m}. (5.135)
(V) R (V) PN )] (@)
Xty =87 (XpGys s X))
From the transport law, a transport mapping is introduced as for i, j € {1,2,--- , m}
Pz & 2O (5.136)
ie.,
@) . L@ () @) . @ @) ) ()
Py’ ix — x or Py (xl(k), n(k)) — (x](k), . n(k)) (5.137)

The algebraic equations for the transport mapping are given in Eq. (5.135).

The mapping P; for the ith subsystem for time ¢ € [f;_1, tx] and the transport
mapping attime ¢ = #; are sketched in Figs. 5.32 and 5.33. The initial and final points
of mapping P; are xlgl) | and x(l) Similarly, the initial and final points of mapping P;

are X]((/ ) and X,((Ql . The mappings relative to subsystems are sketched by solid curves.

The two mappings are connected by a transport mapping at ¢ = #, which is depicted
by the dashed line. In phase space, there is a non-negative distance governed by
Eq. (5.134). However, the time-history of flows for the switching system experiences
ajump at time ¢ = #;. If the transport law gives a special case to satisfy Eq. (5.131),
the solutions of two sub-systems are C°-continuous at the switching time 7 = f.
The jump phenomenon will disappear.

Consider a flow of the switching system with a mapping structure for ¢t €
U}Vzl[thrjfl, fk+j]as

P=pPMND op onop,o P o Py = Py, (5.138)
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(a)

Fig.5.33 a Mapping P; and b transport mapping P(;ij ) in the time-history

where
P,e{Pli=12---,m} for j=1,2,---,m. (5.139)
Consider the initial and final states x(l‘) (xgl(‘k)y . ,%)T att =tz and xl((ljr";;) =
I 1 .
(xl((%jr']\),), e ,xi(’erllzj))T att = ;4 y, respectively.
X]((li[]tjl) Px (ll) P(1N1N+I) PZN 00 Plz ° Pglllz) ° Pllxl((ll)' (5140)
With each time difference, the total time difference is
N (l )
N =tk = Z/ s (5.141)
In addition, equation (5.140) gives the following mapping relations
i i i
X;((_:_)l—Pll (1):>P (1)_)Xl(c-t-)1’
(12) (i) (1) (1112) (11) (l2)
Xy =Py X = By X1 ™ X
(2) (2) (2) (2)
Xt = PuXpy = P i X = X,
(12) (I213) (12) (1113) (12) (G))
X1 =Py X = By X = Xy
(5.142)

(n) Un) (n) (In)
xkfr’n P xki’N = Py xkfr’N 1—>xki’N,

(IN+1) P(1N1N+1) (lN

UnIN+1) . JUN) (In+1)
XN Py 'X

IN= N 7 Xern

Mapping relations in Eq. (5.137) yields a set of algebraic equations as
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! ! !
f(ll)(xl(c—li-)l’ (1) (1))20’
! 1
g(lllZ)(Xl(c—:—)l’ l(ci)l) =0,
: (5.143)
() (UN) - L UN) (In)
F e v Xiep v -1 @eg ) = 0,
! !
gy Xy = 0.
If there is a periodic motion, the periodicity for tx4yny = T + 11 is
(IN+1) ()
X =X for Iyy1 =11 or
RN Tk (5.144)

USSY; KUy @
Yl+N) = 1wy *Eme+N) = Xk

where T is time period. The resultant periodic solution of the switching system is for
i=12,---,m

@) — xmdam+) ol o010 L

xD @y ={xW )| e s 1.t ;] for s=0,1,2---},
(1) = {x@0)| 1 € [teNgti=1, tkansi] for s } (5.145)
Xl Nsti = XetNoti

From Egs. (5.138) and (5.139), the corresponding switching points for the periodic
motion can be determined. From the time difference, the time interval parameter is
defined as

(l)

) k+j
kJJrj T (5.146)
Thus, one obtains
N ()
E it Qi = 1. (5.147)

If a set of the time interval parameters for switching subsystems during the next
period is the same as during the current period, the periodic flow is called the equi-
time-interval periodic flow. The pattern of the resultant flow for the switching system
during the next period will repeat the pattern of the flow during the current period. If
a set of the time interval parameters for the second period is different from the first
period, the periodic motion is called the non-equi-time-interval periodic motion. For
such a flow, the switching pattern during the next period is different from the current
one. For a general case, during two periods, only one pattern makes Eq. (5.147) be
satisfied. Hence, this switching pattern can be treated as a periodic flow with two
periods. To determine the stability of such a periodic motion, the Jacobian matrix
can be computed, for j = 1,2, - ,ni.e.,

pp=ppP" .DPy-....DP, - DP"™ . DP, (5.148)
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with
(. (D) () ()
%17 0 Gy okt ys " Xmlhr )
DpP, = | ——— =
J 8X(lj) 3(x(lj) x(lj) » _x(lj) )
k+i—1 L mxm Lk+j—1) *2(k+j—1) mk+j—1" | sem
a0 | af L)
- ) @
axk+j dmxm axk+j_1 mxm
(5.149)
Due to Eq.(5.130), one obtains
;)
of i) of ) ox, 1 .
3X( j)_ ax(j)' X( _,').
k+ji—1 L mxm k+ji—1 | xm k+j—=1 | mxm
Similarly, from the transport law, one obtains
(j+1)
galjli+D) golilj+1) X,
L L s —0, (5.151)
aX( j)' BX( j+‘1) ax( j)_
k=+j mxm k+j mxm k+j dmxm
Uj+1) o i) A1) Uj+1)
pplitisn) _ Xy ) OG0y )
0 - 8X(lj) - 8(x(lj) x(lj) ___x(lj) )
k+j dmxm L L(k+j)’ *2(k+j)’ mk+7)" | pxcm
_1 —
3g(ljl_/+1) ag(l,/lj+|)
- @) @
8Xk+] mxm L 8 k+] mxm
(5.152)
If the magnitudes of two eigenvalues of the total Jacobian matrix DP are less than
1Ge., |yl <1, a=1,2,---,m), the periodic motion is stable. If the magnitude
of one of two eigenvalues is greater than 1 (|Ay| > 1, o € {1,2,---,m}), the

periodic motion is unstable. If one of eigenvalues is a positive one (+1) and the rest
of eigenvalues are in the unit cycle, the periodic flow experiences a saddle-node
bifurcation. If one of eigenvalues is a negative one (—1) and the rest of eigenvalues
are in the unit cycle, the periodic flow possesses a period-doubling bifurcation. If a
pair of complex eigenvalues is on the unit cycle and the rest of eigenvalues are in the
unit cycle, the Neimark bifurcation of the periodic flow occurs.

Consider a switching system as a combination of two subsystems (i.e., /1th and
l>th subsystems). A point x,((l‘) att = 1y is selected as the initial point for the /;th-

subsystem. A mapping F;; maps the initial state to the final state x,(cli)l att = ftg41-

For the /1 th subsystem switching to the /th subsystem, the transport mapping POWZ)

will be adopted at time ¢ = #;4; and the initial condition of the /;th subsystem

will be obtained (i.e.,x,(fi)]). Through the mapping P, of the /;th subsystem, the
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Fig.5.34 A periodic motion (a)
of mapping structure Py, : a o
phase space and b X'
time-history (n] + ny = n) ) )
0 ()
X
(L)
x(b
k+2 I P( i)
0
X
n
P (h)
X L X1

final state x,(cli)z is obtained at time ¢ = f447. To form a periodic flow, the transport

mapping will map the point x,(cli)z to the starting point x,((ll) withty,p =t +T.
This process of flow formation is sketched in Fig.5.34. The solid curves give the
mappings for the /1 th and /> th subsystems, and the dashed lines represent the transport

mappings.

(1)
PO

5.6 Linear Switching Systems

As in Luo and Wang (2009a, b) consider the ith subsystem in a resultant switching
system for a time interval ¢ € [t;_1, ;] in a form of

x=ADx+ QW) fori=1,2,---,m, (5.153)

where A is a matrix for the ith system matrix in the time interval 7 € [f;_1, 7z]. Q@)
is a time-dependent vector function for the ith subsystem.

A = (aff) andQ? =(of®) . (5.154)

nxl1

Eigenvalues of A® given by |A()T — A®| = 0, possess p pairs of conjugated
complex eigenvalues (A1 2 = u£vii, A3 4 = up £, .-+, Aap_1,2p = uptvpi)
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withi = +/—1and (n — 2p) real eigenvalues of 15,11, A2p42, -+ , Ay. The closed-
form solution of the ith subsystem in Eq. (5.153) will be given herein to demonstrate

the methodology, i.e.,

n p
x0 = > LB exp P — -1+ D exp (1 — )]
r=2p+1 r=1

X {Sﬁi) cos vﬁ")(t —Ig—1) — Tfi) sin vﬁi)(t — tk_l)} + Xg)(t).

where
D _ 4 D ST
B = ey )
0 ® 110 0 @) Ak O g0 @) AT
Sj" = M7, Uy y My~ = Vo y N - S U MG = VNG
0 ® 176 N E L @) 4y E) O 0 @) CNT
T = WO Ul NE v mP L u® NP v O )T,

and the coefficients can be obtained by
. -1
i (@) (@) i
@ =[cfl 1] [-a®],

VR I ICYIES TA U4 [ a(z)]
-1 Cf] -~ Ia” o I

—1

v
where
y ) @ \T @ 00 @ T
D = (e 30y Cir) - U = W Usys o+ Uy

0 0 ONT () — 1, O (l) T
v = (VZ(k)’ 3y Vn(k)) ,al) = lay), azy, - I

and C(lil) is a matrix relative to the minor of aﬁ) in matrix A®,

(l) (l) (i)

Ayy dyz * -y,

@@ (i) (i)

) 32 d33 A3y
C =

ol

The corresponding coefficients are

M(k) [M(k) M2(k), cee M](Jk)]Tv
N© — [N(k) Nék), .. ’Nl(7k)]T’

k (k) (k)
L® — [L2p+l’ L2p+2’ N

(5.155)

(5.156)

(5.157)

(5.158)

(5.159)

(5.160)
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1 0 10 1 o1 7!
M® TG R R )
Uaay =V2a) = Vo) —V2p) C202p+1) " 2ty
NK | =
L& : : Do : : Do (5.161)
O 0 O 0 0
Unity =Vay = Unipy =Vap) Sn2ps1) " Cai)

X [X(i)(tk—l) - Xg)(lk—l)] ;

where Xg)(l‘k_1) is xg)(t) at time ;1 and x,({ill =xD ().
Consider three simple external forcing as examples herein

J
M sy — Wy s
QY=  alt—n-1)’,
J:
Q¥ =" a® cos [99(: _ tk,l)]+b§,2> sin [sz?)(z _ zk,l)], (5.162)
5=
J3
Q¥() = Zs:o a®exp [%@ (t — ,,H)]
with
. . . T
i) _ @ @) (i)
aj) = [“1(;) Ay (s) "'an(s)] )

b§2>=[b‘2> PP . p@

T (5.163)
1(s) “2(s) ° n(s)]

where al(és))(i =1,2,3;/=1,---,n) and QE.Z), <p§.2) and )‘(/'3) are coefficients. The
corresponding particular solutions are ' '

Ji .
(1) _ M, J
X =30 A -,

J:
X2 () =>"" A cos [szj?)(t—zk_l)]JrBf,” sin [Qj.z)(z—rk_l)], (5.164)

Jj=0
J3 3 3
x3) (1) = ijo A exp [x(, )t — rk_l)]
where

AP =AAD s+ 1) —al],

1 _ —1,(
AJ1 =—-A aj

. —1
AP AD _1Q¥? a? 6012 . (5.165)
= — . b s = 9 9 9 st 9 2 ;
B 12® A® by

—1
AV =-[a-nf] a5 =012, ).

(S=O,1,2,"',]1_]);
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Consider a periodic flow as in Eq. (5.140). The vector function for mapping P;; of
the /jth system is

(D) (1) (l)

) = (l)
k+]’ k+] 1 k+j

£ x g1 ) —dY )

() n a5, ) (
=%l =D o LOB o1, pexpli” (e — ter 1))

)
- z | xp LUy (et j = it j—1)]
(1 ), 1)

(l ) ()
x [ x k+, Deos vy (s — 1) = T 7))
1
X sin vr (tk+j [k+j71)} - X;J)(tk+,/‘)~
(5.166)
L .
From £ )(xk+], ,({+)j_1) = 0, one obtains
;) ()i (1)
kﬂ—G ]inj—1+d i (5.167)
where the corresponding mapping and constant vector are given by
. ;)
08" (%1 _1) ,
Gl = % and d) = x7. (5.168)
8Xk+j 1

Consider the transport law to be an affine transformation

l l YA E U ol

For the mapping structure in Eq. (5.140), one obtains

x o — clisnx = plis) (5.170)
where for j =0,1,2,--- , N

clir) — gUnlpg+ L gUDRGH ) . ,E(ZZII)G(II)’ (5.171)

DV — (E(1N+11N)G(1N))D(1N) +elvaln) o
DU+ — (E(lj+1lj)G(lj))D(lj) + e(lj+11j)7 . (5.172)
p®) — (E(lzll)G(ll))d(ll) +e(l2ll)7 DU — g,

The periodic motion requires

XV = X, (5.173)

If DUN+1) £ 0, the existence condition for periodic motion is
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[T — v+ £ 0. (5.174)
In other words, the solution for the periodic flow does not exist if
II— Cv+| = 0. (5.175)

That is, the existence condition for periodic flow with mapping in Eq. (5.140) is that
the eigenvalue of matrix is not one (+1). On the other hand, for the stability of the
linear switching system, equation (5.170) for j = N gives

Axl(clj-]}t/l) _ DPAXUI) CUv+D Ax (11) (5.176)

Let Ax,({li’;,‘) = AAx(ll) and the foregoing equation gives
IDP — AI| = |CV+D) — A1) = 0. (5.177)

If the magnitudes of all eigenvalues A; (j = 1,2,---,n) are less than one (i.e.,
|A;j] < 1), the periodic flow in the switching system is stable. If the magnitude of
one of eigenvalues A; (j = 1,2, ---, n) is greater than one, the periodic flow in the
switching system is unstable. However, the saddle-node bifurcation of such periodic
flow occurs if one of eigenvalues A; (j € {1,2,---,n}) is one. Meanwhile, the
periodic flow with such a mapping structure will disappear.

5.6.1 Vibrations with Piecewise Forces

As in Luo and Wang (2009a), consider the ith oscillator in a resultant switching
system for a time interval ¢ € [t;_1, ] as

F4+289% + (0)?x = 0D () for i =1,2,--- ,m, (5.178)

where ) and ) are damping coefficient and natural frequency in the ith oscillator
in the time interval ¢ € [f;_1, #], respectively. Q(i ) (t) is the ith external forcing. For
acase (8¢) < |w®), the closed-form solution of the ith oscillator in Eq. (5.178) will
be given herein.

D) — 8" =t-) [cgk) coswd)(t te—1) ~|—c2 s1nwd)(t tk,l)] +x1(f)(t),
D) = ¢80V t=t-1) [(—S(i)cgk) + a)g)cék)) cos a)g)(t —tr—1)

— (8(i)c§k) + a)t(;)cik)) sin a)(l)(t tk_l)] + )'cg)(t);
| (5.179)
with a)‘(;) = (0®)2 — (§©)2 and the two coefficients c(k) and c;k) are given by
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L )
=y - (I)(fkfl),

_xk 1
) y - (5.180)
oy = —(,) D) — 20 () + 80,
@y

Wherexp)(tk 1)andxp)(tk 1)arexp)(t)andx(l)(t)attnnetk 1 xlg) =xD (1)

(1)

and x; | = = D (#;_1). Consider three simple external forcing as

J .
0V =3"" ai’ -,
J:
0 (1) = Z;O a? cos[ QP (t — ti1) + 71, (5.181)

J3
09w =3 a7 exp 11 — )]

where a(.l) (Il =1,2,3)and Q(.z), <p(.2) and A(.3 ) are coefficients. The correspondin
. . J J J P g
particular solutions are

J1 .
M4y — 2 M J

NG 2 2
o= AP cos| QP (t — 1) + @ P,

(5.182)
B e
3y : J 3)
x,.(t) = exp [A7(t — tr—
FO=>_ O 0T 1 (@0 p A7 = )]
where
0 ay) B afl’ | — 28054
Ji T (w(l))z’ Ji—1 7 (w(i))z ’
(€)) ) 1) i N (5.183)
Ay = G [a}) — (J+2)(J + DAYL, — 289 + DAY
(J=O,],2,"‘,J1_]),
e
A(Z) J
T e — @D+ esna®)y 5180
Ho® '
0@ — O 24,

=@, —arctan ——.
Y ()2 — (@)

Consider a switching set for the ith oscillator to be

20 = {5 =200, 1) =iV, ke (0.1,2,- 3} 5.189)
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From the solution of the ith oscillator, a mapping P; for a time interval ¢ € [#x_1, t]
is defined as

P2 > 35D fori=1,2,--,m (5.186)
or
PP i) - ) fori=1,2,-- ,m. (5.187)
For simplicity, introduce two vectors for mapping P; herein
£O = (£, £ and x = (x@, xO)T, (5.188)
From the displacement and velocity solutions of the ith oscillator for the starting

and ending points, the two component functions of the vector function ) can be

determined. For instance, from the starting point ()C,E"_)1 , )'C,Ei_)l) at time f;_; and the

ending points (x,g) , )&,Ei)) at time 7, the two components of the vector function )

can be written fori = 1, 2, - - - , m by two algebraic equations, i.e.,

AP %D
(1) (@) @)

bt
£ ) = R0 8 G ) =0

Using Eq. (5.179), the algebraic equations of mapping P; for ¢ € [tx—1, tx] are

fl(i)(xl(ci)’ Xl(cill) leii) _ e—ﬁ(i)(fk—lk—l)[cgk_l) cOS a)g)(tk — 1)
+ cékfl) sin w,(f)(tk — -]+ xff)(tk) =0,
AP xD )y =i — e @[50 P 40D ) cos 0l (1 — 1)
- (S(i)cék) + wg)c§k)) sin w‘(f)(tk — )]+ )'cl(f)(tk) =0.
(5.190)
Suppose the two trajectories of the ith and jth oscillators in phase space at the switch-
ing time f;, is continuous, i.e.,

0 = ) o i e s19D)

If the two responses of the ith and jth oscillators at the switching time #; are discon-
tinuous, a transport law is needed. The transport law is assumed as

In other words, the transport law can be written as

x]i/) — gilJ)(xlgl)7x]El))

() (@) (

B ) for i,j e{l,2,---,m}. (5.193)
Xy :gélj)(xk )
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The ith and jth dynamical systems are evolving in the time intervals [#x_1, #;] and
[#, tk+1], respectively. The switching point for the two dynamical systems is at time
1. The transport law between the ith and jth dynamical systems is to transport the
final state of the ith dynamical system to the initial state of the jth dynamical system.
This process makes the responses of the two systems to be continued at time ;. This
phenomenon described by the transport law or the transport mapping extensively
exists, such as impact, control logic laws, impulse and other physical laws to make the
discontinuity. To describe the entire responses of the resultant systems, the mapping
structures are adopted as a kind of symbolic description. Thus, the transport mapping
relative to the transport law is used to possess the same function as the transport law.
From the transport law, a transport mapping is introduced as

P s 5 2 fori, jefl,2,-- ,m}, (5.194)
or
PP 0y > o 29y for i, je (1,2, m). (5.195)
The algebraic equations for the transport mapping are given by Eq.(5.193). The
transport mapping P(” ) is to make the final point of the trajectory of the ith system
jump to the starting pomt of the trajectory of the jth system at time #;.

If the system parameters of the oscillators in Eq. (5.178) will be invariant, consider
a switching system governed by a rectangular wave forcing as an example, i.e.,

0Vt =(=1DT'CcD forr ey, ] andi € {1,2}). (5.196)
The corresponding exact solution for each piece of the rectangular wave force is
D (1) = ¢80 [cg ) cos w( )t — ti1) —i—cz smwd )t — tr_ 1)]
c?

(@®)? (5.197)
#0(0) = D [(6De + 0P el) cos off (0 = 1)

+ (_1)i+1

— (8D 4 D0y sin D (¢ — tk-l)]
where

‘ 1
o) = x — (=it and ¢! = —= (i), +5Dc). (5198

(t)

For this switching system, the two subsystems switch with the transport law as

@l V) = L 52 for b e {12} and j=1,2,---.  (5.199)

Consider Q(l)(t) =CW and Q(z) (1) = —C@. The total solution of the resultant
systemis fori = 1,2
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x(0) = { D@, D)1 € [trg274i-1, ter2j4] and j=0,1,---} <200
(xlg G0 = G@ D o =0,1,2, (5200
J+D k+j+1 k+j+1° Yk+j+1
If the piecewise discontinuous forcing in switching systems is periodic, one often
uses the Fourier series expansion method to obtain the corresponding responses of the
switching systems. However, the Fourier series expansion method has smoothened
the discontinuity of piecewise discontinuous forcing. Suppose the infinite-term sum-
mation of the Fourier series can approach such piecewise discontinuous forcing.
In fact, once the discontinuity of the piecewise forcing is smoothened, the non-
smooth responses of the dynamical system cannot be accurately described. For the
jump or impulsive discontinuity of the forcing, the Gibbs phenomenon can never be
avoided. The method presented herein can treat the switching system through sub-
systems with switching connections, and the entire exact solutions can be obtained
through subsystems in the switching system. Such a method does not use the Dirich-
let conditions. If a piecewise forcing in subsystems is non-periodic, one cannot find
a traditional method to obtain any approximate solution to approach the exact solu-
tion. From the method presented herein, the exact solutions of the switching systems
consisting of a group of linear systems can be obtained for any randomly selected
piecewise forcing, as well as randomly impulsive forcing (see Luo and Wang, 2009a).
One cannot find any Fourier series to model such a random piecewise forcing. The
traditional methods based on the Lipschitz condition (e.g., Fourier series and Taylor
series expansions) cannot provide adequate solutions for the oscillator with the ran-
dom piecewise forcing. The method presented herein can easily achieve the exact
solution for such a switching linear system. In vibration testing, only random, piece-
wise, sinusoidal waves can be used in shaking tables. Thus, this method can provide a
reasonable wave for actuators to drive the shaking table in random vibration testing.
Consider an excitation of a two-uneven rectangular wave with the time interval
spans of T = 0.75T and T» = 0.257T (e.g.,T = 2) and C) = 1. The two pieces of
the excitation are considered as two different forcing, and the oscillator can be treated
as two switching systems to switch at given times. Therefore, from the presented
method in the previous section, the responses of the oscillator under such rectangular
wave forcing are presented in Fig.5.35. Such a rectangular excitation forcing is
illustrated in Fig. 5.35a. The two pieces of the rectangular uneven wave is illustrated.
The time-histories of displacement, velocity and acceleration for such oscillator are
presented in Fig.5.35b—d. It is observed that the exact solution of displacement is
smooth. However, the exact velocity response is non-smooth because the rectangular
wave forcing is discontinuous. Such a discontinuity causes the acceleration of the
oscillator to be discontinuous. However, for the Fourier series solution of this system,
the responses of velocity and acceleration are continuous. For a further look at the
dynamical behaviors of the oscillator, the trajectory for periodic response is presented
in Fig.5.35e, and the corresponding forcing distribution along the displacement is
presented in Fig. 5.35f.
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Fig.5.35 Periodic motion under two pieces of rectangular waves: a forcing, b displacement ¢
velocity, d acceleration, e phase plane and f acceleration versus displacement (0@ = 4.0, 8% =

1.0, =1,7y =151, =05,

5.6.2 Switching Systems with Impulses

x(0) = —1.3728, and x(0) = —3.2947)

As in Luo and Wang (2009b), consider a switching system with two 2-D subsystems

with two matrices for j =0, 1,2, ---
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ay by
AD — [61 d1i| fort € [try2j, tivajt1l,

ab 5.201
A® = [C d} for t € [tky2j41, ti2j+2]s ( )
QD = (01, 02)TcosQr for i =1,2.
The corresponding switching points are continuous but non-smooth, i.e.,
1 2 1 2
2V (ey ) = 27 (0erj) and x5ty ) = 257 (e ). (5.202)

Without losing generality, the parameters for a dynamical system are fixed and the
parameters for another subsystem are varied. Select parameters as

a=a =d =-1,by=1,c1 =-2. (5.203)

From Egs. (5.146) and (5.147), the time-interval parameters can be expressed as

(i) Dkt — Dkti-1
Diti-1 =~ 57

T for i =1,2 and
2 N .
()
I= Zi:] zk=1 q2k+i71 for k = 1’ 2’ e

(5.204)

If q&) il = g?, the ith subsystem possesses the equi-time interval. Otherwise,
the ith subsystem possesses the non-equi-time interval. Consider a simple periodic
motion with a mapping structure of P»;, and the corresponding time interval
parameter can be set as ¢ and ¢®. For ¢V = 0 (¢'® = 1), the switching system
is formed by the second subsystem only. For ¢V = 1 (¢® = 0), the switching
system is formed by the first subsystem only. For a periodic flow with P = Py,
consider an initial state x,(cl) and the final state X1(<1+)1 for the first subsystem in the

resultant, switching system, and an initial state X,(jzl and the final state x,((%gz for the

second subsystem. The analytical prediction of a periodic flow for such a mapping
structure is given in Fig.5.36 for parameters (b = —5.0,d = 1.6,qV = 0.25
and ¢® = 075, Q; = 1.0, O = 1.5, Q = 1.5) with other parameters in
Eq.(5.202) (i.e.,a = a1 =d; = —1,b; = 1,c; = —2). With varying parameter
¢, the switching points of the periodic flow with P»; for the two subsystems are
obtained, and the corresponding stability is presented in Fig. 5.37 through the eigen-
value analysis. The stable and unstable ranges of periodic flows of P, for parameter
c are clearly observed. With increasing parameter c, the stable range for such a sim-
ple periodic flow becomes large. If ¢ > 10, all the periodic flow is always stable.
The infinity solutions for the switching points are observed when the eigenvalue is
equal to positive one (+1), which agreed very well with the afore-mentioned discus-
sion. To further look into the stability of such a periodic flow, the parameter map
between the parameters d and ¢ are developed, as shown in Fig.5.36 for parame-
ters (b = =50, ¢V =025and¢® =075a =a; =d; = -1, b =1,
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Fig.5.36 Periodic motion (a)
scenario with P, : a 5.0 =N "
switching x (k) and b I ,I | ,:
switching X2(k)- b= "l I “
-5.0,d = 1.6, ¢V =0.25 251 v i
and¢® =075, a =a; = = | V)
[l’] = —l, b] = 1, cl = = i“k*”l‘ / ’
) A
02 =15, ®=1.5). The S xel \| g | |I
solid and dashed curves (/EJ N | I
represent stable and unstable o5 o | |
periodic flows with Py, || | | |
respectively \ | | |
5.0 L1 | I || | i B
0.0 2.0 4.0 6.0 8.0 10.0
Parameter, ¢
(b)
5.0 T I
p ] I |
i N !
S
= N | l ) I
5 LA |
£ 00F | \ I
S | 1
§ l’ , \ Lo
& h | Il
25+ l ' ‘ ‘ “
11 | I
Iy | I
5.0 [ | I l | I | . | “
0.0 2.0 4.0 6.0 8.0 10.0

Parameter, ¢

c1=-2, 01 =10, 02 =15, Q= 1.5). In Fig.5.38, the stable and unstable
periodic flows lie in the shaded and non-shaded areas, respectively. For the switching
system, the time-interval of each sub-system is significant to influence the stability
characteristics of the resultant system. The parameter maps between the parameter
d and the time interval parameter ¢! for a periodic flow of P»| are presented with
(c = —0.5,0.5, 1.0and 2.0) in Fig.5.39a—d, respectively. For ¢ = —0.5, the mini-
mum value of d for the unstable periodic motion is d ~ —0.271 with ¢V ~ 0.09.
The cusp point exists for this parameter map. Only two dents in parameter map exist
for the unstable periodic flow. For ¢ = 0.5, the minimum value of d for the unstable
periodic motionis d & 0.557 with g1 & 0.2. The three dents in parameter map exist
for the unstable periodic flow, but the cusp points do not exist. For ¢ = 1.0 and 2.0,
the number of dents in the parameter maps becomes four and five accordingly. The
dents in the stability maps are not uniform.
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Fig.5.37 Eigenvalue
analysis for periodic motions
with P, : a magnitudes and
b real and imaginary parts of
eigenvalues (b =

—50, d=16, ¢V =
025, ¢@ =075 a=
ay=d =-1, b =

1, aa=-2, 01=

1.0, Q2 =15, @=1.5)

Table5.1 Input data for numerical simulations of stable and unstable periodic flows of P>; (b

—5.0,d = 1.6,qV = 025,¢® =075, a =a; =d = —1,b; = l,¢c; = =2, 0

~~
5
N’
N -
o &

o
o

Magnitude of Eigenvalues, I, I

0.0

(b) 2.0

N
o

o
o

Eigenvalues, Re, ,, Im).,

L
o
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e PP b
| ] |
0.0 2.0 4.0 6.0 8.0 10.0
Parameter, ¢
Rex,,
R 6 ST A ARG
'I \\ // ) ( \\ // ) <
! \ \ \
i .' ‘l r / v/ \ /
H AW I Vo v ! \ oy
b=\ - [ t-- F—{ [
(IR Y (R [ /] \
[ Vg ;I\ ' / A\
(A / \ / / \
[ / \ / \
UNEAY 7/ N/ ~-7 S
Im)»,v2
] 1 ] ]
0.0 2.0 4.0 6.0 8.0 10.0

Parameter, ¢

10, 02=15 Q=15 1p=0.0)

Parameter ¢ Initial condition Stability
Figure5.41a ¢ =045 x\V ~ —5.4975, {0 &~ —2.0072 Unstable
Figure 5.41b ¢ =055 x" ~5.1645, x{V ~ 6.2506 stable
Figure5.41c ¢ =0.80 xM 202707, x{V ~ 27373 Unstable
Figure 5.41d c=110 xV A —0.6420, 13" ~ 4.1622 Stable

5.6.3 Numerical Illustrations

(A) A 2-D Switching System: The matrices and vectors for the 2-dimensional system
in Eq.(5.201) will be considered again, and the parameters in Eq.(5.203) will be
used. From the analytical prediction, the time histories for state variables for a stable
periodic flow of P>;(c = 0.55) are plotted in Fig.5.40 for parameters (b = —5.0,
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Fig.5.38 Parameter maps of (@30

(d, c¢): a stable and unstable
motion regions, b zoomed Unstable
view
(b=-50, ¢V =0.25and 201
g® =075 a=a =d = ~ \/ \/ \/
-Lby=1lc1=-2, 01 = 5
1.0, 0o =15, Q=1.5) g 1.0
g Stable
0.0
-1.0 L L L L
0.0 2.0 4.0 6.0 8.0 10.0
Parameter, ¢
(b)3.0 1 1 T I
[ | [ |
[ | [ |
. ‘ Il Unstable !
20+ [ | I |
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|
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Parameter, ¢
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[ \ [
| \ [
1 1 1

d=16, ¢V =025 ¢@ =075 a=a=d=-1, by=1,c=-2
01 =10, 0,=15 = 1.5)and the initial conditions (fp = 0.0, x\" ~
5.1645, xél) ~ 6.2506). The non-smooth behavior of the periodic flow for state
variables (x; and x;) are observed. For a further observation of non-smooth charac-
teristics of the switching system, the trajectories of stable and unstable periodic flows
in phase plane for P, is presented in Fig. 5.41a—d ford = 1.6, and the corresponding
input data is listed in Table 5.1. The initial conditions are obtained from the analytical
prediction. In Fig. 5.41a, the periodic flow for ¢ = —0.5 is unstable. The asymptotic
instability of the periodic flow in phase plane is observed. With increasing parameter
¢, a stable periodic flow with ¢ = 0.5 is presented in Fig. 5.41b. For ¢ = 0.8, another
unstable periodic flow can be observed, as plotted in Fig.5.41c. Compared to the
trajectory in Fig.5.41a, the configuration of trajectory is different. For ¢ = 1.1, the
stable periodic flow is observed, and the profile of the trajectory in phase plane is
changed. The stability of the periodic flows can be obtained through the parameter
map in Fig. 5.38.
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Fig.5.40 A stable periodic
flow of Py; (¢ = 0.55) fora
2-D switching system:

a time-history of x| and

b time-history of x;
(b=-50,d=

1.6, ¢ =0.25,

g® =0.75a=a; =
di=-1, by=1,¢c1 =
-2, 01=10,
0,=15 Q=

1.5) (1=0.0, x\" ~
5.1645, x3" ~ 6.2506)

5 Switching Dynamical Systems

6.0 8.0 10.0

-12.0
0.0

2.0

6.0 8.0 10.0

In the foregoing illustrations, the switching between two subsystems is continu-
ous but non-smooth. In fact, the switching between two systems can be completed
through a transport law. To discuss effects of the transport law on periodic motion,
the transport law in Eq. (5.169) for the 2-D switching system will be used. Four cases
of the linear transformation are:

(i) continuous switching for two sub-systems

(1)
k

:Xk

2

for k=1,2,---;

(ii) translation switching as a switching transport law

xD(14) = x? () +e'?
x® (51) = xV (1) +e@D

e(12) e = const

for k=1,2,---

(5.205)

: (5.206)
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(a) 9.0 (b) 8.0
6.0 4.0
Py P
< 3.0F < 0.0F
0.0} 4.0
3.0 . . -8.0 . . .
-30.0 -20.0 -10.0 0.0 10.0 0.0 6.0 12.0 18.0 24.0
X X
(c) 4.0
2.0
Py
£ 0.0 d
-2.0
-4.0 1 1 1 5.0 1 1 1
-1.0 1.5 4.5 6.5 9.0 -3.0 -0.5 2.0 4.5 7.0
X X

Fig.5.41 Trajectories of stable and unstable periodic flows in phase plane with P,; for a 2-
D switching system (19 = 0.0) : a (c = 045, x\") ~ —5.4975, x{" ~ —2.0072), b (¢ =
055, x\V ~ 51645 x" ~ 6.2506), ¢ (c = 0.80, x| ~ 0.2707, x{" ~ 2.7373) and d
(¢ = 110, xV ~ —0.6420, X" ~ 4.1622). (b = —=5.0,d = 1.6, ¢V = 0.25,¢@ =
075, a=a =d=—1, bj=1,c;=-2, 0;1=10, 02 =15, Q=1.5)

(ii1) scaling switching as a switching transport law

x@ () =E1 . xD ()
xD (1) = E@D . x@ (1) fork=1,2,--; (5.207)
E(12 E®D is diaginal matrix

(iv) affine switching as a switching transport law

x@ (1) = E12 . xD () + €12
xD(h) = E2D . x® () + @D
EU2 | ECD are const matrices
e12 e@D are const vectors

fork=1,2,---. (5.208)

Consider the effects of the transport laws to the dynamical behaviors of the resul-
tant system. The same system parameters are used but the switching laws are different.
The corresponding input data for numerical simulation is tabulated in Table 5.2 for
stable and unstable periodic flows of P>; with the transport laws.The trajectories
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Table5.2 Input data for numerical simulations of stable and unstable periodic flows of P> with

transportation laws (¢ = —1,b = =5, ¢ = 1.5, d = 0.5, ¢V = 0.25 and ¢® = 0.75,
ag=di=-1,by=1,ci=-2, 01 =10, 0, =15, Q=1.5)
Parameter ¢ Initial condition (x19, x29) Transport law
Figure5.42a E'? = (1)(1) el2 = ? (—8.7597, 8.8674) Translation
:1 0: :0:
E2! — 21
o1 ¢ T2
Figure5.42b E!2 = 0.50 el2 = 0 (—14.7546, 2.6000) Scaling
10 0.6 ] 1 0 ]
(307 [0
B2 — 21 _
oa] ¢ Tlo]
Figure5.42c E'? = 0.80.3 el2 = 0 (7.3426, 4.3876) Linear transformation
0.2 0.6 | 10 |
(857 [0
21 21 _
BN =134 ¢ 7|o]
) n 050 7 , o .
Figure5.42d E'- = 0 06 e =1 | (3.6392, 3.1714) Affine transformation
:2 3 - :0_
21 21 _
B =11s 1] e

of periodic flows with mapping structure P, are plotted in Fig.5.42. In Fig.5.42a,
the translation switching for the variable x, is considered. The jump of variable x;
is observed in phase plane. For this translation switching, the stability condition is
the same as in the continuous switching. Only the switching points are different. In
Fig.5.42b, the scaling transport law is considered. From the first subsystem to the
second subsystem, the shrinking transport law is used, but the stretching transport
law is adopted from the second subsystem to the first subsystem. Such a stretching
and shrinking can be observed very clearly. The scaling transport law will change
the stability for the switching of two subsystems. In Fig.5.42c, a linear transforma-
tion is used as a transport law, and the linear transformations with the shrinking and
stretching are for the first to second subsystem and for the second to first subsystem,
respectively. This linear transformation transport law will also change the stability
for the two system switching. Finally, the affine transformations as transport laws are
used for the switching of the two sub-systems in Fig. 5.42d. This affine transformation
includes the rotation, scaling and translation transformation.

(B) A 3-D Switching System: Consider three linear subsystems with matrices as

—12 -1 -1 052 —1-12
AV =] 21-1 [, AP =] -151 —1 |, A®=]2 —3—-1] (5.209)
1 3-3 -1 2 -1 1 -2-2
and from eigenvalue analysis of the three matrices, A(ll) = —1.4735, )Lg; =

—0.7633 + 2.0416i, 1Y = —3.3672, A%} = 0.1836 + 2.4906i, and A} =
—4.4260, 15 = —0.787 + 1.1891i where i = /—1. Because the time for



5.6 Linear Switching Systems 293
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Fig.5.42 Trajectories of stable periodic flows in phase plane with P, for a 2-D switching system
(to = 0.0): a (x\" ~ —8.7597, x{" ~ 8.8674), b (x\") ~ —14.7546, x{" ~ 2.6000), ¢ (x\V ~
7.3426, x{" ~ 4.3876) and d (x'" ~3.6392, x{" ~3.1714). (a = =1, b =5, c = 1.5, d =
0.5, ¢ =025and ¢® =075, aj =dy = —1,by = 1,¢; = =2, Q1 = 1.0, Qr = 1.5,
Q=15)

subsystems in switching systems is finite, it is not very significant that subsystems
are stable or unstable. It is sufficient that the solutions of subsystems exist during the
given time interval. The important issue is whether the flow of the resultant switch-
ing system is stable or unstable. The time interval for each system in the switching
system is a key issue to control the stability of the resultant flow of the switching
system. The external excitations for three subsystems in the 3-D switching system
are

QW = (AVe ™, AY x (1 — 1), AP)T (5.210)

where AV = A0V = Al) = 1,47 = AP = AP = 1,49 = 4P = AP =
—1. Select the period of T = 4.5 arbitrarily, and consider the time interval parameters
as ¢V = %, q? = % and ¢ = é for a periodic flow with a mapping structure
P31 for the 3-D switching system. The continuous and impulsive switching with the
same subsystems is considered for illustrations.

For the continuous switching, the analytical prediction gives the initial condition
x1(0) = —2.7348, x7(0) = —1.2346 and x3(0) ~ —1.7856 for the periodic flow
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Fig.5.43 Time-histories of variables (x;,i = 1,2, 3) for two 3-D switching systems: a—¢ con-
tinuous switching (x;(0) ~ —3.0672, x,(0) ~ 2.0328, x3(0) ~ 4.7815) and d—f impulsive
switching (x1(0) ~ —2.7348; x,(0) ~ —1.2346, x3(0) ~ —1.7856). (A" = AV = () =
L AP =aP =1, AP =1, AP =AY = -1, AP = 1,7 =45 ¢V =2 ¢®=
4. .3 1
9! q - 3)

of P3;1. For the impulsive switching, the impulsive vectors between the two sub-
systems are (12 = (0,5,5)T,e?> = (0,6,4)T and e®V = (0,4, 6)T. The state
variable x| is continuous, but the stable variables x, and x3 are discontinuous at
switching points. The initial condition for the 3-D, impulsive switching system is
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Fig.5.44 Trajectories in
phase space (x;,i =1, 2, 3)
for two 3-D switching
systems: a—c continuous
switching (x1(0) ~
—3.0672, x2(0) ~

2.0328, x3(0) ~ 4.7815)
and d—f impulsive switching
x1(0) &= —2.7348; x2(0) ~
—1.2346, x3(0) ~ —1.7856.
AP =a® = A =

1, AP =P =1, AP =
—1, AP = AP = —1,
AP =11 =45 ¢ =

3 g?P=5:49=1)

(a)
3071

0.0

=-3.0r

(b)
15.0

7.5

-15.0
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x1(0) =~ =3.0672, x2(0) ~ 2.0328, x3(0) ~ 4.7815. The time-histories of three
state variables (x;, i = 1,2, 3) for the periodic flow of the 3-D linear switching
system are presented in Fig. 5.43. In Fig. 5.43a—c, the periodic flows for the contin-
uous switching system are presented. It is observed that the periodic flow at all the
switching points is continuous but non-smooth. In Fig. 5.43d—f, the periodic flow for
the 3-D, impulsive switching system switching are presented. The time-history of
the state variable x| is continuous, while the time-history of the state variables x;
and x3 are discontinuous due to impulsive at switching points. The trajectories in
phase space for the continuous and impulsive switching are presented in Fig.5.44a

and b, respectively.
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Chapter 6
Mapping Dynamics and Symmetry

In the previous chapter, dynamics of switching systems were discussed. In this
chapter, mapping dynamics and symmetry in discontinuous dynamical systems will
be discussed. The G-function of the discontinuous boundary will be presented first.
To understand of nonlinear dynamics of a flow from one domain to another domain,
mapping dynamics of discontinuous dynamics systems will be presented, which is
a generalized symbolic dynamics. Using the mapping dynamics, one can determine
periodic and chaotic dynamics of discontinuous dynamical systems, and complex
motions can be classified through mapping structure. The nonlinear dynamics of the
Chua’s circuit system will be presented as an example. The flow grazing property
of a flow will be discussed, which is a source to generate the complex motions in
discontinuous dynamical systems. The flow symmetry in discontinuous dynamical
systems will be discussed through the mapping dynamics and grazing. The strange
attractor fragmentation generated by the grazing of flows to the boundary will be
presented.

6.1 Discontinuous Dynamical Systems

As in Luo (2005a, 2006a), consider a dynamic system consisting of N sub-dynamic
systems in a universal domain O C Z%". The accessible domain in phase space
means that a continuous dynamical system can be defined on such a domain. The
inaccessible domain in phase space means that no dynamical system can be defined
on such a domain. A universal domain in phase space is divided into N accessible
sub-domains €2; plus the inaccessible domain 2. The union of all the accessible
sub-domains is UlN: 2; and the universal domain is O = U{V: 182 U Qo, which can
be expressed through an n-dimensional sub-vector x,,, and an (n — n1)-dimensional
sub-vector X, _,,. o is the union of the inaccessible domains. Q¢ = U\ UL, Q;
is the complement of the union of the accessible sub-domain. If all the accessible
domains are connected, the universal domain in phase space is called the connectable
domain. If the accessible domains are separated by the inaccessible domain, the

A. C.]. Luo, Regularity and Complexity in Dynamical Systems, 297
DOI: 10.1007/978-1-4614-1524-4_6, © Springer Science+Business Media, LLC 2012
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(b) "

Fig.6.1 Phase space: a connectable and b separable domains

universal domain is called the separable domains, as shown in Fig. 6.1. To investigate
the relation between two disconnected domains without any common boundary,
specific transport laws should be inserted. Such an issue can be referred to in Luo
(2006). Herein, the flow switchability in discontinuous dynamical system focuses
on dynamics in the two connected domains with a common boundary. For example,
the boundary between two domains €2; and €2; is 9€2;; = QNG j» as sketched in
Fig.6.2. This boundary is formed by the intersection of the closed sub-domains.

On the ith open sub-domain €2;, there is a C"-continuous system (r; > 1) in the
form of

0 =FOD 1 py ez, xV =P, P, xDTeq. 6

The time is # and X0 = dx¥ /dr. In an accessible sub-domain €2;, the vector field
FO(x?, 1, p;) with parameter vectors p = (p!", p,.(z), e ,pl.(l))T e #'is C'i-
continuous (r; > 1) in a state vector x> and for all time #; and the continuous
flow in Eq. (6.1) x (1) = ®® (xD (1), 1, p;) with xD (9) = @D (xD (1), 10, pi) is
C"itl_continuous for time 7.



6.1 Discontinuous Dynamical Systems 299

Fig.6.2 Two adjacent
sub-domains €2; and 2;, the
corresponding boundary
0%

The discontinuous dynamics theory presented herein holds for the following
hypothesis.

He6.1: The switching between two adjacent sub-systems possesses time-continuity.
H6.2: For an unbounded, accessible sub-domain £2;, there is a bounded domain
D; C ; and the corresponding vector field and its flow are bounded, i.e.,

IIF?| < Ky (const) and ||®?|| < K»(const) on D; fort € [0,00).  (6.2)

H6.3: For a bounded, accessible domain €2;, there is a bounded domain D; C 2;
and the corresponding vector field is bounded, but the flow may be unbounded, i.e.,

[IFD|| < K;(const) and [|®?|| < o0 on D; fort € [0,00). (6.3)

Because dynamical systems on the different accessible sub-domains are different,
a relation between two flows in the two sub-domains should be developed for con-
tinuation. For a sub-domain €2;, there are k;-piece boundaries. Consider a boundary
set of any two adjacent sub-domains.

Definition 6.1 The boundary in an n-D phase space is defined as

Sjj = aQ,'j = 5_2,' N QJ’ 6.4)
= {X |g0,-j (x,1,1) =0, ¢;; is C"-continuous (r > 1) } c @ . '

From the boundary definition, we have 92;; = 9€2;. On the separation boundary
082;; with ¢;;(x, t, L) = 0, there is a dynamical system as

© — p© (X(O)’ 1), (6.5)

where x@ = (x!? x{? ... x)T The flow of x© (1) = ®© x© (19), £, 1) with
xO (1) = O xD (1), 10, 1) is C"t-continuous for time 7.
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6.2 G-Functions to Boundaries

Consider two infinitesimal time intervals [¢,, — ¢, t,,,) and (,,, t,, + &]. There are two
flows in domain Q24 (o« = i, j) and on the boundary 9€2;; in Egs. (6.1) and (6.5). Asin
Luo (2008a, b), the vector difference between the two flows for three time instants are

given by XZ(Z)_ e Xt(?)_ e x,(:f) x,(g) and xgaz_ e XZ(O)+ - The normal vector of the bound-

ary relative to the corresponding flow x (r) are expressed by ¢

nyo;;, "Nyg;; and
lmt-e n,q;;, respectively, and the corresponding tangential vectors of the flow xO (1)
on the boundary are the tangential vectors expressed by t %O ,t ©,andt <O .From

m—¢ m Xim+e

the normal vectors of the boundary 9€2;;, the dot products of the normal vectors and
the state vector difference between two flows in domain and on the boundary are
defined by

— 0
= G N,
di =l (x(“) —x\), (6.6)
() - (@) 0
dtm+5 _t +8ndQ (Xtm+€ Xtm+€)

where the normal vector of the boundary surface d€2;; at point xO (1) is given by

Mgy (X7, 1,3) = Vi, &0 1,0) = 0,005, 0, 001, 9,007 0,
(6.7)
for time . If the normal vector is a unit vector, the dot product is the normal com-
ponent, which is a distance of the two points of two flows in the normal direction of
the boundary surface.

Definition 6.2 Consider a dynamical system in Eq. (6.1) in domain Q4 (« € {i, j})
which has the flow x = (1), x,) (@)
the boundary 92;;, there is a ﬂow x = ®(1y, x(() ), A, t) with the initial condition
(t0, Xo). For an arbitrarily small ¢ > 0, there are two time intervals [t — ¢, t) or
(t,t + ¢] for flow x'* (& € {i, j}). The G-functions (G@‘) ) of the flow x* to the
0)

, p, t) with the initial condition (t, X(() ) and on

flow x;
as

on the boundary in the normal direction of the boundary 0€2;; are defined

.1 0 _ 0
= gf}) £ [tngﬁ (Xt(i.l) - Xt( )) —! Engﬂij ’ (Xt(a)s - X( ) ]’

(6.8)
0
G(‘()Og (X( ) t+1 X;f), pots A')

1 0 ©
= g]i% - I:t-‘ré‘nggl] (Xt((-)ll—)a — Xt(+)a) — 1139’] (X(D‘) - X, ))]

From equation (6.8), since x( * and xt(o) are the solutions of Egs. (6.1) and (6.5),

their derivatives exist. Further, by use of the Taylor series expansion, Eq. (6.8) gives
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(Dl) (X(O) (@) )\.)

©
tiaxtiapﬂla ))

Do ngQ g =)+ ngszij G %

(6.9)
where the total derivative D (0)( ) =29 (0)( )X ) 4 9;(+). Using Egs. (6.1) and (6.5),
the G-function in Eq. (6.9) becomes

G, (0, XY e ) = 0,0 (nlg D% + 81 (mjg )1+ (1% = x(”)
(6.10)
+n)g, (F(“)(x(“) t+,p) — FOO ¢ 1)),

If a flow x(®(¢) approaches the separation boundary with the zero-order contact at
t (1..X (tn—) = xn = x(1,,)), the G-function of the zero-order is defined as

Géogz)ij (va tmv p()tv A’)

= njo, 0.1, ) - K@) =X 1))

0
& X )

‘ (6.11)
_ n}Qij 0 - x90) + 9,0, x Q1,0 WO,
= Vi x©, 1, 0) - XD (1) + 8,01, 1, x)‘ o
K X s tm+)
With Egs. (6.1), (6.5), equation (6.11) can be rewritten as
Gy, (Xims s P A)
= njg, 0, 1.0 F&, 1.p) = FOO .01 )
m ’ m m (6.12)
= nyo, xV, 1, 1) - F&@, 1, po) + 101 xV, 1, WO
= Vo (<, 0) F&, 1, po) + i <0 1, “\<x<o> )

Definition 6.3 Consider a dynamical system in Eq.(6.1) in domain Q4 (« € {i, j})
which has the flow x(a) d(1p, x(()a), P, ¢) with the initial condition (7, (a)) and on
the boundary 9€2;;, there is a flow x(o) ®(1p, x(o) A, t) with the initial condition
(t0, Xo). For an arbitrarily small ¢ > 0, there are two time intervals [t — ¢, t) for
flow x, @) (o € {i, j}) and (¢, t + €] for flow x,ﬁ)(,B € {i, j}). The vector fields
F@x® ¢ py) and FO O ¢ 1) are C[z ettel -continuous (r, > k) for time
t. The flow of xga)(a e {i, j}) and X,( are Ct e OF C(z ite]

k + 1) for time #, ||d"«H1x®) /dtr«+1|| < oo and [|d"+1x? /dt" || < oo. The

G-functions of kth-order for a flow x; to a boundary flow Xt(o)

of the boundary 9€2;; are defined as

-continuous (ry >

in the normal direction
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G(k Ot)(X(O) r, x§°‘), Pas M)
. (=DF2 @ 0 @ _ O
=11m(k+1)!k—+l[n 2 = xi) = g (g — %
0
+ 345 +1>' Gl -, xf‘i),pa,x)(—s)‘“]
k, 0
( a)(X() t+axt(f)apaa)")
. 0 0
= lim (k + 1)!—1 [f“n}Q LD = %00 =g - () — %)
0 o
ZS =0 ( + 1)! (ng‘T/)(X( ) t, X;i)’pa’x)8b+lj|
(6.13)

Again, the Taylor series expansion applying to Eq. (6.13) yields

Gl %, 12, X%, pas 1)

0
_ Z"“ Cs  phHi=siyT (dsxia) d'x )) (6.14)
- 5=0 k+1 (0) 891] dtS dtS :
. rx2)
Using Eqgs. (6.1) and (6.5), the kth-order G-function becomes
Gho (" 1, X s M)
k+1 . k
= szl ClAc+lD (—g)l ”nasz (DS(MIF(X(Q) t,p) (6.15)
0 0
DS ]F(O) (X( ) .t u)) + Dk£)1 tnaﬂ (X(Ol) t( ))7
*© 1 x©)

with C} | = (k+Dk(k—1)--- (k—s+2)/s!and Cl(<)+1 = lwiths! =1x2x---x
The G-function G(k’?{,) is the time-rate of Gggijl’a). If the flow contacting with the

boundary 9€2;; at time #,, (i.e., x(a) = xt(g)) and ! nggij = ngQij’ the kth-order

G-function is computed by

(k a) (va Im, Pas A)

; § (0
_ Zk+l Ck+le(-g)1 Sn aQ . [dAx B 45x( )i|
X ij dts dt”

ket k=5 T -1 s—15(0) (4 (0
= Z LGl Dyo) Moy [Di F(x,1,pa) —Dlg FO ! ),f,l)]‘ X X o

(6.16)

x5, X,(n:)tJm:t)

FOr k —_ O we haVe G(a k) (va tm:l:’ pOl» A') Gi(}ogl.j (XI’H9 tm:l:, pa, A‘)
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Fig.6.3 Naming
sub-domains and boundaries:
the dotted route for the order
of naming for sub-domains,
and the solid route for
switching surfaces

n

6.3 Mapping Dynamics

As in Luo (2006a), if a flow of a discontinuous system just in a single sub-domain
cannot be intersected with any boundary, such a case will not be discussed because
characteristics of such a flow can be determined by the continuous dynamical sys-
tem theory. The main focus herein is to determine the dynamical properties of global
flows intersected with boundaries in discontinuous dynamical systems. To do so,
the naming of sub-domains and boundaries in discontinuous dynamic systems is
very crucial. Once domains and boundaries in discontinuous dynamical systems are
named, the mappings and mapping structures of the global flow in such discontin-
uous dynamical systems can be developed. Thus, consider a universal domain with
M-sub-domains in phase space, and N-boundaries among the M-sub-domains with
the universal domains. In the previous discussion, the boundaries are expressed by the
neighbored domains. For example, 9$2; s is the boundary between the sub-domains
Q2 and 2. To define the maps, the switching surfaces relative to boundary should
be named, and the domain should be named. The naming of switching surfaces and
sub-domains can be independent. In Fig. 6.3, the sub-domains are named through a
dotted route, and the switching planes are named by a solid route. In fact, the naming
of the sub-domains and the switching planes can be arbitrary.

Consider all the sub-domains and the switching surfaces expressed by Q7 (J =
1,2,--- ,M) and Ey (¢ = 1,2,---, N), respectively. The switching plane Z,
(¢ =1,2,---, N) defined on the boundary a2;; (I,J = 1,2,---, M) are given
by

Eo = {(tk, Xp) | 017 Xk, ) = O for time #,} C 02y 7. (6.17)

The local mappings relative to the switching sets E, by the dynamical system in the
sub-domain 2 is

1]

u (6.18)

e
P]aa.ua—>
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Q, o,
X’l

(c)

Fig.6.4 Mappings: a local mappings, and b global mapping, ¢ sliding mapping

The global mapping starting on the switching sets &, and ending on one of the rest
switching sets Eg (8 # «) relative to the sub-domain ; is

Pl Ba = Ep. (6.19)

The sliding mapping on the switching sets E, governed by the boundary ¢;; (X, t) =
0 is defined by

[]

Py, : Ba = Eq. (6.20)
Notice that no mapping can be defined for the inaccessible domain. The above map-
pings are described in Fig.6.4. The local mapping starting and ending at the same
switching sets are sketched in Fig.6.4(a). The global mapping starting and ending
different switching sets is presented in Fig.6.4(b). The sliding mapping is on the
switching sets, as shown in Fig. 6.4(c). The special case of the sliding mapping is the
sliding mapping on the edge.
For simplicity, the following notation for mapping is introduced as
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Pyjenjengn; = Pnj o0 Py o0 Ppyo Py, (6.21)

J

where all the local and global mappings are

P}li € {Pja/-; |a’ﬂ € {1727". 7N}’J € {0’ 1927"' ’M}} (6‘22)
for i € {1,2,---,j,---}. The rotation of the mapping of periodic motion in order
gives the same motion (i.e., Pnlnz.‘.nj, Pnzu.njnl, . ,Pnjnlu.nkfl), and only the

selected Poincare mapping section is different. The flow of the m-time repeating
of mapping Py, p,...n, 1s defined as

r:’;wnzm = P(”j'"nznl)’" = P(nj <eenpny)---(nj---nony)
" (6.23)
= (Py;0 0Py oPy)o--o(Py0--0Py0P).
m-sets
To extend this concept to the local mapping, define
P,;’}Mnj = P(n1-~»nj)"’ =(Pyo---0 Pnj) o--0(Pyo---o0 Pnj), (6.24)
m-sets
where the local mappings are
Py € {PJW ¢ e {1,2,--- ,N},J €{0,1,2,--- ,M}} (6.25)

for (j1 € {j,---,1}). The Jth-sub-domain for the local mappings should be the
neighbored domains of the switching set E,. For the special combination of global
and local mapping, introduce a mapping structure

Prgnpnjym-nan,

— m
= nko~--oPnl“_njo-~-oP,,20Pn1

(6.26)
=Py o--o(Pyo---oPy)o---0(Pyo---0PF)o--0PF,0P,.

m—Sets

From the definition, any global flow of the dynamical systems in Eq. (6.1) can be
very easily managed through a certain mapping structures accordingly. Further, all
the periodic flow of such a system in Eq. (6.1) can be investigated. For the sub-domain
2y, the flow is given by

xD ) = @D, x5 1) € #". (6.27)

Consider the initial condition to be chosen on the discontinuous boundary relative to
the switching plane E (i.e., (Xx, fx)). Once the flow in the sub-domain 2; for time
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tk+1 > 1t arrives to the boundary with the switching plane Eg (i.e., (Xk+1, t+1)),
equation (6.27) becomes

" = 0V, x", n) e 2. (6.28)

The foregoing vector equation gives the relationships for mapping Py, ,, which maps
the starting point (Xg, #) to the final point (Xg41, fx+1) in the sub-domain 2 ;. For
an n-dimensional dynamical system, equation (6.28) gives n-scalar equations. For
one-degree-of-freedom systems, two scalar algebraic equations will be given. For the
sliding flow on the switching plane &, the sliding mapping Py, with starting and
ending points (Xg, fx) and (Xx+1, fx+1). Consider an (n — 1)-dimensional boundary
0Ly, on which the switching set &, is defined. For the sliding mapping Py, :
Eq — Bq, the starting and ending points satisfies @77 (X, t) = @17 Xi+1, lk+1) =
0. The sliding dynamics on the boundary can be determined by Eq. (6.5), i.e.,

O = %) xO 1) € %"

0277, 6.29
orsx®,1) =0 on e (€29

With the starting point (X, ), Eq.(6.29) gives
xO ) = WO (s x¢, 1) and @75 (x?, 1) = 0. (6.30)

From the vanishing conditions of the sliding motion on the boundary, at the ending
point, equation (6.30) should be satisfied and one of G-functions should be zero.
Thus, the sliding mapping Py, on the boundary with @;j(Xk+1, tx+1) = 0 will be
governed by

X1 = WO (11, xp, 1) € B with @1y (Xe, k) = @17 Xkt 1, 1) = 0,
3Q”(Xk+l fe+1) = naQ” F<J)(Xk+l try1) =0, o € {1, J}

0, 0,
G (k. 1) < 0 and Gy (x¢, 1) > 0
fornygg,, — Qq;
asz”(xkﬂ fk+1) > 0 " 7
0, 0.6
Gig) Xk 1) > 0 and Gy (x¢, ) < 0
a. fornyg,, — Q5,
G;,Q”(Xkﬂ, fky1) <0
(6.31)
where 0 = Jifo =1 oro = [ if o = J. Equation (6.31) is re-written in a general
form of

<0W> — @O (g, X< ) 1) e B (6.32)

As in Luo (2011), the transport law can be defined as a transport mapping as Pr,, :
Ey — Ep. Similarly, using #x+1 — #% = A and the transport law gives

1({Totoc) (I)(Tau)(tk+l’ (TO‘O‘)’ tk) e %I‘l. (633)
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For practical computations, the transport law is not necessary to be treated as a map-
ping. Once all the single mappings are determined by the corresponding governing
equation. Because of the global flow on the discontinuous boundary in phase space,
anew vector y = (z,x)T is selected on the boundary. Through the new vectors and
boundaries, the global flow based on the mapping structure is expressed by

Yitr = Fug-(ny--njym---nani Yk (6.34)

where r is the total number of mapping actions in the mapping structure. For a global
periodic flow, the periodicity conditions are required by

(t4rs Xier) = (e + NT, i), (6.35)

where N is positive integer, and T is period of system in Eq. (6.1). For system without
external periodic vector fields, the flow with a certain time difference returns to the
selected reference plane, which will be a periodic motion. The governing equations
for Eq.(6.34) is
@) _ &) (o)
X = ®"Y (typ, X s tk+p—1)5
k+p (k+,o k+p—1° tk+p 1) } (6.36)

(PIJ(X/(;;)/,,I, trtp—1) = 05

foro = {ny,no,--- ,ni}, p={1,2,---,rtand 1, J =1,2,--- | M.

The global periodic flow relative to the mapping structure Py, ... -..n;ym...nyn; Will
be determined by Eqgs.(6.35) and (6.36). The global periodic flow may be stable
and unstable. The corresponding stability analysis can be completed through the
traditional local stability analysis. For the periodic flow with sliding or gazing flows,
the local stability analysis may not be useful. The sliding criteria in Luo (2009) should
be employed. Although the local stability analysis can be carried out, it cannot provide
enough information to check the disappearance of the certain global, periodic flow
in discontinuous dynamical systems. For the local stability analysis of the periodic

(o)

flow, the all switching points are given by (x tlgi)pf]) and the corresponding

1
perturbations SyI(C‘jr) 1 = (5XI(<G+) o1 StIEi)pf] )]fr+§re adopted. The perturbed equation
for the stable analysis is
OVk+r = DPnk...(nl,..,,j)m...nz,,lByk, (6.37)
and the Jacobian matrix is
DPy ..y jymmyny = DPuy - o - (DPyy - ... - DPy )™ - ... - DPyy - DPy,. (6.38)

For each single mapping,

(o)

(X, , tk+p)

DP0=|: (0)"“) *r ] (6.39)
Xy p1s thrp—1) !

o)
+p,l‘k+p)
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foroc = {ny,no,--- ,m}, p=A{1,2,---,r}and I,J =1,2,--- , M. The follow-
ing determinant gives the all eigenvalues to determine the stability, i.e.,

|DPyycuyoonyymany — M| = 0. (6.40)

From Chap. 2, for the entire eigenvalues A; (j = 1, --- ,s), if the magnitude of all
the s-eigenvalues is less than one (i.e., [A;| < 1), the periodic flow determined by
Eqgs. (6.35) and (6.36) is stable. If at least one of the magnitudes of the s-eigenvalues
is greater than one (i.e., [A;| < 1, j € {1, ---, s}), the periodic flow is unstable. The
other stability and bifurcation conditions can be found from Chap. 2.

6.4 Analytical Dynamics of Chua’s Circuits

Consider a simple Chua’s circuit, as shown in Fig.6.5. The capacitances of two
capacitors are C| and C,. The inductance of inductor is L, and the resistance of
linear resistor is R. A nonlinear resistor Ng possesses the V-I characteristic curve
in Fig.6.5. Assume V; and V; are the voltages of two capacitances, respectively.
The current in the inductor is /3. From the Kirchhoff’s law, equations of the Chua’s
circuit are written as

o L, vy~ ron
oo =rg"2- W 1,
dV, 1
Cr—=—(V| =V, I3, 6.41
2 R( 1—V2)+ 13 (6.41)
dl;
L— = -V,
drt
where
1
f(Vl)szVI_E(Ga+Gb)(|Vl+E|_|V1 - E|). (6.42)

Introduce dimensionless variables as

Vi Vs RI3 T C, C>R?
X =—, ZE’ZZ_’IZ_’QZ_’ﬁ:

E E RC, C L~ (643)
a=RG,—1, b=RGp+ 1.

The state variables and vector fields are defined as
x=(r,y,2)" and F(x) = (aly —h(x)],x —y+2z,—B»", (6.44)

where


http://dx.doi.org/10.1007/978-1-4614-1524-4_2
http://dx.doi.org/10.1007/978-1-4614-1524-4_2
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Fig.6.5 Chua’s circuit — /

1

7/ I }

I N Ty @/ |
’ v, Vil+ i Gy }
) A Y

L = R i
i |

- I

I

I

I

I+

bx+a+b x<-—1,
h(x) ={ —ax x| <1, (6.45)
bx—a—b x>1.

Equations (6.41) and (6.42) are converted into non-dimensional equations by the
dimensionless variables.

% = F(x, p), (6.46)

where the parameter vector p includes all parameters (i.e., a, b, «, 8). Because the
function i (x) is piecewise continuous, there are three vector fields in three regions.
Three domains are defined from the three regions as

Q—] = {(-x’ Y, Z)'-x < _1}’
Qo={(x,y,29l-1<x <1} (6.47)
Ql = {()C, D) Z)lx > 1}7

and two corresponding boundaries 9€2(p,—1) and 92,1y are

02(0,—1) = 92(—1,0) = Q_l N Qo ={(x,y,)x = —1},

6.48
89(0,1) = 39(1,0) =Q1NQy={(x,y,2)x =1}, ( )
where Q; (i = —1,0, 1) means the closure of the three domains €2;. The boundaries
and domains are sketched in Fig. 6.6.
In three domains, equation (6.46) can be expressed by
@ = FOx® ply = AOxD 4 p@ (i =—1,0,1). (6.49)
The linear matrices are foro = —1, 1
aa o O —ab o 0
A= 1 -1 1])andA = 1 -1 1 (6.50)
0 - 0 0 —-B0

with constant vectors

b = (ia(a +b),0,0)T. (6.51)
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Fig.6.6 Domains and
boundaries

For the homogeneous solution, the eigenvalue 1) satisfies the equation

' ‘ aa® —\® o 0
‘A(’) _ MI‘ - 1 120 1 |=o, (6.52)
0 L

where a© = g and ¢V = o=V = 4. Thus,
0 —(@a” — HAD)? — (@a® +a — pAD —aBa =0.  (6.53)
Consider a general form of a cubic equation as
100 =a? WD +a7 0.0 + a2 D +a’ =0, af’ £0, (654
where
al” =1, af) = —(@a® — 1), af) = —(@aV +a - p), ai = —apa?. (6.55)
Three cases are distinguished through the discriminant
AD — 4((1?))3 @ _ (aéi) (i))2 —|—4a§i>(a(i))3
(6.56)
~ 18a0aPaPa) 1 27V,

There are three cases:
(1) If AW < 0, equation (6.56) has three distinct real roots.
(i) If A®) > 0, equation (6.56) has one real root and a pair of complex conjugate
roots.

(iii) If A® = 0, at least two roots of Eq. (6.56) coincide. For this case, the equation
may have a double repeated real root and another distinct single real root, or the
coincidence of all three roots yields a triple real root.

Introduce several parameters p, ¢®, r@ and s as

9a{"al"al’ — 27(a{")2ay’ - 2(a’)}
54(a))3

W _ 3a§’)a§” (a(’))2 3 N2 A®
r= | oo @)= 4
9 108(a?)

g =

’

(6.57)
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and

5O =q® +r®, p = Jq0 —r®. (6.58)

Thus, the solutions are

a,
M =504 pl — 5,
a
(@) f
. . . a 3 . o
)»g) = —%(S(l) + p(l)) - ﬁ + T(S(l) — p(l))l, (6.59)
(@) «/—
. . . a 3 . o
W= —1(s® 4+ p®y — % - T(S(Z) - pi,
3a

wherei = +/—1.

Case 1 Discriminant AY) < 0. There are three different real eigenvalue )»E.i)( j=
1, 2, 3). Modal shape r?) = (rfl]), rél]), r3]))T is computed by

A(’) —aa® 40 B 1

(l) ) .G UNT
(rll ’r2l ’rg ) (17 a ) )\‘(l) ) __) (660)
J
Therefore, the general solution is
. . . (i) )
x® = Q(l)(x,((‘),t,tk) Z C(z)r(z) A (t—tr) +Xg) 661

. . (@) . . (i) .
_ Cil)l‘gl)e)hl (t—tr) +C§’)r§’)ekz (=t 4 Cé’)rgl)eAS (t—tr) +X§,’),

where

a+b a-+b

X\ =i( 0, ——

)T (6.62)

This case was discussed in Bartissol and Chua (1988).

Case 2 Discriminant AY) > 0. If )»Y) = 2@ and )»5’)3 = 80 + w®j, the general
solution is

x® (1) = (’>(x(’) £ :Xm C(i) (i> M =1
+(C(1)r(l)+c(l) (’)) 5()(1 1) COS[ (l)(l tk)] (663)

+ (—Cr) 4 e sinfoD (- 1)),

where
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; 2D —aa pa B

@ _ 2 Byt

) =1 = g — o)

2 T\ a ’(8(i))2+(w(i))2’ o
@) ® Baw') -

5= 0 T oy

Case 3 Discriminant AY) = 0. The general solution is
. . . . . i) . .
X(z) :¢(Z)(X](¢l)’ 1 1) = CEl)rit)ekl (t—tg) + [Cél)(rilo)
. . . . (i) ,
+(t = 1orl)) + € (5] + (1t — nors)ler T 4 x O
where
B- ) o
B(1+225)
o I+ )‘g) B T
(O (O )
1+ 248 1+ 14240
(o _ @B -0 A+ =B 05 -8
a2 pa+ 2l RN

riy = (1, 07,1 =

14229

rYl) = (xa — )»g) +

— AT

(6.64)

(6.65)

(6.66)

The two boundaries are governed by ¢ (x, y,z) = x £ 1 = 0. The normal vectors

of the two boundaries are

T
naQ(,l,o) = naQ(Q,l) = (1’ 0’ O) .

(6.67)

From the theory of discontinuous dynamic systems in Luo (2006, 2008a, b, 2009),

the condition for grazing response at the boundary (i.e., x,(,i) € 092, j)) at time f,

satisfies

n’  FOxYp@) =0,

I for (i, j) € {(1,0), (0, =1
 DEO R, iy = o, [ 1O €O O=D)

2, j)

nl  FO&G. p®) =0,

D IR for (i, j) € {(—1,0), (0, 1
'DF(l)(Xr(rlzit’p(l)) <0, (i, j) e{( ), (0, D},

9, j)
where

. 0
D iy IF 6
PE G PP = 5 X o, -

(6.68)

(6.69)

(6.70)
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Fig.6.7 Analytical conditions at x = 1 : a grazing and b passable

The condition for passable flows on the boundary (i.e., x,(f;) € 082, j)) at time t,,, is

O e, FOL p) >0 (671

In other words, one obtains

nT FOKY p@) <o,

992, j)

N () i for (i, j) = (1,0), (0, = 1), (6.72)
naQ(i 5 . F(j)(xfn/i’ p(])) < 0
n’ - FOY p®) >0, o
@) for (i, j) = (—1,0), (0, 1). (6.73)

. 'F(J)(Xr(p{—)lﬂ p¥) >0

For the Chua’s system, no sliding responses exist on the two boundaries. The
conditions for the sliding responses will not be presented herein. The grazing and
passable flows at the boundary 9€2(; ¢y are sketched in Fig.6.7. The normal vector
of the boundary points to the domain €2;. For a grazing flow in 21, the first equation
of Eq.(6.71) is satisfied as a necessary condition. The second equation gives the
sufficient condition for the grazing flow, as shown in Fig.6.7(a). A flow in € is
passable at the boundary 9210y, which is sketched in Fig. 6.7(b). It is observed that
Eq.(6.71) or (6.72) is satisfied. It means that two normal vector fields have the same
direction.

6.4.1 Periodic Flows

For periodic responses, switching sets are introduced from the switching boundaries.
The physical meaning of switching sets is a set including the switching points and
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Fig.6.8 Switching sets and mappings: a local mappings and b global mappings
switching time. The switching sets are defined as
E7 = {0k, Yo 2k )k = =171,
B = (ks vis 2k, 1)k = — 17},
—_— _ (6.74)
E] = {0, i 2 ) Xk = 171,
B = {0 v 26 1) |xe = 17}
The superscript “+ ” or “—” means that the switching set is close to the right or left

side of the boundary. In Fig. 6.8, the dash lines infinitesimally close to the boundaries
represent the switching sets X. From the switching sets, six basic mappings are
defined as

Py E,T_) Et’ P El_+_) El_’+ for local mappings;
P3:EZ, — E |, P : ET, - EI, (6.75)
Ps : Bf — EY, P : Ef, — E for global mappings.

where the mapping definitions do not follow the previous section because this map-
ping is very simple. The four local mappings, P; (I = 1,2, 3,4), map the initial
state to the final state in the same switching sets, as presented in Fig. 6.8(a). The two
global mappings, Ps and Pg, map the initial state from one switching set to another
switching set in order to obtain the final state, as in Fig. 6.8(b).

Consider an initial state (xi, yk, 2k, fx) with xx € {—1,1} and a final state
(Xk+1> Yk+15 Zk+1» tk+1) With xg41 € {—1, 1}. The four local mappings, P; (I =
1,2, 3, 4) are governed by the following algebraic equations

g = +1 -0 (1, yi, 210 ter, 1) =0,
, .
e =y — O (&1, i, 2 g1, 15) = 0, (6.76)

2
) .
gé) Tkt — <I>§’) (E1, yk, 2k, k1, ) =0

fori = —1, 0, 1. The algebraic equations for global mappings P; (I =5, 6) are
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Fig.6.9 A simple periodic y }
response of Pjp DI
(1’ y1+1 ’ Z1+1’t1+1)

1 .

g](l) = 1 — O (FL, ye. 2t ti1. 1) = 0,

gé) = Yitl — <Dg) (FL, vk, 2k, k1, ) = 0, (6.77)
] ‘

e = 21— O (F1, e 25 tit, 1) = 0

due to @@ = (dD(li), d>(2i), <I>§i>)T. From such basic mappings, periodic response can
be predicted analytically.

Consider a simple periodic flow Pj; = Pjo P, in Fig. 6.9 to explain how to predict
periodic flows by mapping structures. For a starting point (1, yg, zx, #%) € &| , aflow
in domain £2¢ arrives to the same switching set (i.e., (1, Yk+1, Zk+1, fk+1) € E) by
mapping P, at time #;41, and the passable condition of the flow is satisfied. The
final state (1, yx+1, Zk+1, tx+1) € E] becomes the initial state for mapping P; at the
switching set ET One has (1, Yk+1, Zk+1, tk+1) € ET The final state of a flow in
domain €2 is at the switching set Ef‘ by mapping P;. In other words, the final state
is (1, yk42, k42, tit2) € BT

Because of the periodicity of the flow, the following relations are satisfied, i.e.,

Vi+2 = Yk» k42 =2 W2 =tk + T (6.78)

where T is period for this periodic flow. Thus, the periodic flow based on mapping
structure P> = Pj o P; is described, as shown in Fig. 6.9. Other periodic responses
can be developed in a similar fashion. There are two mappings for the periodic
response of Pj», and for each mapping, there are three algebraic equations, i.e.,
0
0
Vi1 — cpé) (1, Yk, Zks tes tig1) = 0, (6.79)

0
Tkl — <1>§) (1, Yk, Zks tres tr41) = 0
for mapping P> and
_ oM —
1 — @7 (1, yer1s 2kt 1y let1, Iet2) =0,

Vit2 — <I>§” (L, Ykt1, Zkt1s fet1s teg2) =0, (6.80)

1
Th+2 — <I>§ V(L Ykt 2t s Bt 1 frg2) = 0
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for mapping P;. Note that #; and #;41 always appears as f+1 — #; because in the
Eq.(6.79), and #;11 and #;4> always appears as tx2 — tx+1 in Eq.(6.80). Introduce
two new variables Af; and Aty as

Atgp1 = tkp2 — k1, Al = g1 — e, Alp + Atgp1 =T (6.81)

The period of the periodic flow T can be calculated by the summation of all Ar.
Equations (6.79) and (6.80) give six equations with six unknowns, i.e.,
f1(2)(Yk+l,Zk+17Yk, Uk Atg) =1 — <I>§O) (1, yk, zx, Aty) =0,
f1(2)(Yk+l,Zk+17Yk, Zhr Alk) = Yk+1 — <I>§O) (1, Yk, 2k, Atg) =0,

AP Ot 21 Yo 2k A = k1 — D57 (1w, 2k, At =0, (6.82)
I Ok 2t Yty 2ty M) = 1= O (1, vt 2kt Atgr) = 0,
fz(l)()’k-i-z, Zk+2> Y415 Tht1s Alkt1) = Yi42 — ‘Dg) (1, Yk+1, 2k+15 Atkg1) = 0,

1 1
f3( ) (V4 2s Zht2s Vel Tt 1 Alip1) = Zkpa — <I>§) (L, Yk+15 Zk+1, Atgy1) = 0.

The switching points of the periodic flow can be obtained by Eqgs. (6.82) with (6.78)
by any numerical method. Other periodic responses are described in the same way.
For instance, a periodic response which contains 2n switching points, its algebraic
equation set has 3 x 2n unknowns and equations.

To discuss the stability of the periodic response of Pja, the switching points
(1, v, zi, 1) of the periodic solution is determined. For the mapping structure of

Pj>, one obtains

Xr+1 = PoXg and Xg19 = P1Xg41- (6.83)

Plugging in the switching points X', x;, |, and X, = x; of the periodic flow yields

X; 1 = Pxgand x;, = P1x; . (6.84)

Considerx; (I =k, k+1, k+2) to be a disturbance from xl*. Using the Taylor series
extension and keeping the terms up to §x;, gives

XZJFI + 8Xp+1 = PQXZ + DP2|X: 8Xx + 0(8xy)

6.85

Xjpp T 8Xk2 = Pixp + DPilg | 8Xkp1 + 0(8Xkt1) (6.85)
Equations (6.84) and (6.85) yields

OXpy1 = DP2|x,’g Xy and §Xpqp = DP]|X;:+1 OXft1- (6.86)

From the above equation,

OXp42 = DP1|X;§+1 . DP2|X;: OXy = DP|X; Xk, (6.87)
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where
Ikt it
DPy|ypzp) = 0kt Zhr) _ | e dm
0 (Vs 2k) E2D) m M
oyr 0z Ohz)

Okta Ovirz
DP2|(Y7§+1J7:+1) = M _ Vi1 0Zis1
Ok+15 26+ Lo, 22, ) 92442 0242
O0Vk+1 0Zk+1
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* *
Ogy102541)

(6.88)

To calculate such DP matrix, equation (6.82) is used. Taking total derivative of each
equation with respect to y, and z, (0 = k, k + 1), respectively, yields,

pf" af” oY ann,

Dy, 3y, Aty By

Dfy” 3" af dyern 0y AL

Dy, 3o = Yot+1 0ys ALy 3o

DfY AR 8fs 02041 | 8fs 3AL

Dy,  0yo = 02041 0ys  0Aly 0ys
and

DD af D arD gay

Dzo  9zo | Aty 0z,

pfy” afy” | af” dyesr | 0fy) BAIL

Dzo 920 | 0yor1 075 | A, 970

DY afD A dze Y 0AL,

Dz, - 024 0Zg+1 0Zg 0At, 0Zs

(6.89)

(6.90)

There are three equations with three unknowns in each set of Egs. (6.89) and (6.90).
From the first equation in each set, d At /0y, and d At, /07, can be solved, then plug-
ging into the other two equations, the components 9yy+1/0Vs, 026+1/9Yss 0Vo+1/
07y and 3z,41/0z4 for D Py and D P; are obtained.

If there exists one eigenvalue of DP matrix with magnitude larger than one,
[Ai| > 1, i € {1, 2}, the periodic response based on this Jacobian matrix is unstable.
On the other hand, if magnitudes of both eigenvalues are less then one |1;| < 1,
i = 1, 2, the periodic response is stable. Especially, if one eigenvalue is positive one
(+1), the absolute value of the other eigenvalue is less then one, saddle-node bifur-
cation happens. Period-doubling bifurcation occurs when one eigenvalue is negative
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one (-1), the absolute value of the other eigenvalue is less then one. If the two eigen-
values are a pair of complex number with magnitude equals to one, the Neimark
bifurcation takes place. Other periodic flows can be discussed in a similar fashion.

6.4.2 Analytical Predictions

As in Luo and Xue (2009), before analytical prediction of periodic flow, a bifurcation
scenario based on the switching plane in Egs. (6.74) and (6.75) is presented first for
parameters a = 0.142857,b = 0.285714 and B = 9. The bifurcation scenario is
presented via the switching sets versus parameter . Such a parameter represents
the ratio of capacitances, as shown in Fig.6.10. The acronym “GB” is the grazing
bifurcation, depicted by dashed lines, and such a grazing bifurcation occurs at about
a ~ 5.117. The periodic response of Py lies in « € (5.117,5.890). The periodic
doubling bifurcation of the periodic flow Pj> occurs at @ =~ 5.890. Thus the periodic
flow of Py, liesine € (5.890, 6.040) and the corresponding period-doubling bifur-
cation occurs ater & 6.040. With increasing «, the periodic flow of P54 is obtained.
Continuously, the onset of chaos relative to Py (n — 00) occurs at o ~ 6.12.
The acronym “PD” represents the period doubling bifurcation. With increasing «, the
chaotic responses are observed. However, in the region of chaotic responses, there
are many windows of periodic responses. Such periodic responses can be predicted
analytically later. In addition, the switching points are plotted through the plane of
(v, z) at the boundaries.

For a better understanding of complex responses in the Chua’s circuit, the
analytical prediction of periodic flows will be presented through the mapping struc-
tures as presented in the previous section. From a specific mapping structure, a set of
nonlinear algebraic equations will be solved through the Newton-Raphson method.
Using the local stability and bifurcation analysis, all the possible stable and unstable
responses of the Chua’s circuit can be obtained. However, the numerical computa-
tion can give only one of possible periodic flows. The disappearance of the periodic
responses can be determined by the first saddle-node bifurcation and grazing bifur-
cation. Once the grazing bifurcation occurs, the mapping structures will be changed,
which means the old responses cannot exist any more and the new periodic responses
may exist.

The analytical prediction gives the switching sets on the boundaries, as shown in
Fig.6.11. The solid and dotted curves give the stable and unstable periodic responses,
respectively. Due to symmetry, switching points in analytical prediction are shown
only at the boundary of x = 1. The parameter regions for the stable periodic responses
are the same as in the bifurcation scenario. The corresponding eigenvalue analysis
gives the local stability and bifurcation, as presented in Fig.6.12. However, graz-
ing bifurcations cannot be determined by such eigenvalue analysis. The analytical
conditions in Egs. (6.68) and (6.69) should be adopted. It is clearly observed that
the vanishing of periodic responses is caused by the grazing bifurcation. Only one
grazing bifurcation occurs at the stable periodic response, and the other grazing
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Fig.6.10 Bifurcation
scenario varying with
parameter « : a switching
current in the inductor, b
switching voltage of the
capacitor Cy and ¢ switching
current versus switching
voltage. (@ = 0.142857, b =
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bifurcations occur at the unstable periodic responses, which cannot be determined
through numerical prediction.

To further look into periodic responses embedded in chaotic responses, consider
a window of periodic response. The numerical prediction of periodic responses with
mapping structure of P(j5)3 is given in Fig.6.13. The analytical prediction of such
periodic responses is shown in Fig. 6.14. Two periodic responses with mapping struc-
tures of P(15)3 and Pj,s and their period-doubling responses with P(j5)6 and Pji0
are predicted analytically. In Fig. 6.15, the corresponding eigenvalue analysis is given
for the local stability and bifurcation. Again, the solid and dotted curves represent the
stable and unstable responses, respectively. In Fig. 6.14(a) , the onset of the periodic
response of mapping structure Pj,y3 is at « = 8.8784 owing to the saddle-node-
bifurcation. The periodic response of P53 becomes unstable at « = 8.8894 and
its grazing occurs at o« = 8.8923. At o = 8.8894, the period-doubling bifurcation
of the periodic response of P(;,)3 occurs and also the saddle-node bifurcation of the
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Fig.6.11 Analytical
prediction under different 0.4
parameter « : a switching
current in the inductor and b
switching voltage of the
capacitor C. (a =
0.142857, b = 0.285714 and
B=9
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periodic response of P(;,ys occurs. The grazing bifurcation for the periodic response
of Py is at o ~ 8.8898. Because of the grazing, the new periodic response of
P(12)s appears. With increasing «, the period-doubling bifurcation of such a periodic
responseisato = 8.8948 and its unstable periodic response grazes atoe = 9.787. The
period-doubling bifurcation of P;,)s generates the new periodic response of P50
for its onset. The corresponding period-doubling bifurcation is at « = 8.89614. The
grazing bifurcation occurs at the unstable response of P55 withor = 8.90282. With-
out discontinuity, no such grazing bifurcation exist to cause the switching between
the periodic responses of P56 and P5)s. Similarly, the other widows for periodic
responses can be carried out.
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Fig.6.12 Eigenvalues (a)
varying with parameter 2 for
periodic responses a

real part and b magnitude
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6.4.3 Illustrations

From the analytical prediction of periodic responses, the switching sets are obtained.
Such switching sets can be used as selected initial conditions, and the
periodic responses of the Chua’s circuit can be simulated. For example, consider
parameters («, 8) = {(5.86,9), (5.86,9), (6.01,9) and (8.88, 15)} for periodic
responses of Py, Pay2, Paiszaser, andPpyys, respectively. The initial conditions
are given by

Pa1 ¢ (x0, y0, 20) = (1.0, 0.233577, —0.335582) for @ = 5.86, f = 9,
Pay2 : (%0, y0, 20) = (1.0, 0.154142, —0.267826) for & = 6.01, f = 9,

Pais3azel & (X0, Yo, 20) = (1.0, 0.168254, —0.277345) for @ = 6.34, B = 9,
Py ¢ (x0, Y0, 20) = (1.0, 0.179989, —0.083352) for o = 8.88, f = 15.
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Fig.6.13 The window of
periodic responses of Pj;y3 :
a switching voltage of the
capacitor C3 versus
parameter « and b zoomed
area. (a = 0.142857,

b =0.285714 and g = 15)
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The corresponding trajectories of periodic responses relative to the Chua’s circuit
in (x, z)-plane are plotted in Fig.6.16. Dashed lines give the boundaries and the
hollow symbols are the switching points for periodic responses. The starting points
are given by solid circular symbols. The periodic responses pertaining to mappings
P21, Py2 and Py )3 are formed by the local mappings. The three periodic responses
are local. However, the periodic response of P»1534361 connects three domains and
such a response is a global response. For a clear illustration of periodic responses,
the 3-D view of the periodic responses relative to Fig. 6.16 is given in Fig.6.17. The
starting points are labeled by green circular symbols. The corresponding mappings
are labeled. It is clearly observed that how the periodic responses pass through
the boundary planes. In other words, the dynamic system will be switched at such
boundary planes. If readers are interested in determining the complicated periodic
motions in other discontinuous dynamical systems through the mapping structure
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technique, Luo and coworker’s papers (e.g., Han et al 1995; Luo 2002; 2005b; Luo
and Chen 2006; Luo and Gegg 2006, 2007; Luo and Zwiegart Jr. 2008; Luo and
O’Connor 2009; Luo and Rapp 2009; Luo and Guo 2010 ) can be referred.

For complicated, discontinuous dynamical systems, the naming system in
Sect. 6.1 should be used to identify the possible mappings. The mapping dynamics
of periodic motion in any system is to develop the mapping relations from which
expected periodic motions can be analytically predicted. The mapping dynamics
provides a possibility to obtain all stable and unstable periodic motions in dynamical
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Fig.6.15 Eigenvalues
varying with parameter « for
periodic responses in the
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and b magnitude.
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system rather than only one of stable solutions given by numerical simulations. Based
mapping structures, the stochasticity of chaos in discontinuous dynamical systems

can be investigated.

6.5 Flow Symmetry

In this section, the symmetry of discontinuous dynamical systems will be discussed.
The grazing cluster will be presented as in Luo (2006a). The symmetry of steady-state
flows in discontinuous dynamical systems will be discussed in order to determine
the co-existing steady-state flows.
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Fig.6.16 The periodic responses in plane of (x,z)(a = 0.142857 and b = 0.285714) : a
Py(e = 5.86, B =9.0,x = 1.0,y = 0.233577,z = —0.335582), b Py2(a¢ = 6.01,8 =
9.0,x = 1.0,y = 0.154142,z = —0.267826), ¢ Piis34361 (@ = 6.34,8 = 9.0,x =
1.0,y = 0.168254,z = —0.277345), d Py (¢ = 8.88, 8 = 15.0,x = 1.0,y = 0.179989,
z = —0.083352)

6.5.1 Symmetric Discontinuity

As in Sect.6.1, discontinuous dynamic systems with symmetry can be described.
Consider an n-dimensional dynamic system consisting of M -sub-systems on
m-accessible, sub-domains 2, (p = 1,2, .-, M) in a domain U C %". With the
inaccessible domain €2, the universal domain is expressed by U = UJI‘LIQ » U Q.
The M accessible domains and inaccessible domain €2( in phase space are sepa-
rated by boundary 92, ,, C "1 (p1,p2 € {0,1,2,---,m}), determined by
the specific function @, ,,(X,t) = 0. Among all the boundaries, there are some
pairs of boundaries 02, ,, with symmetry. For the pth accessible domain, there is
a continuous system in form of

x=FP(x,1,p,) =P (x,n,) +gx t,7),

. 6.91)
X=(x11x27"'7xn) ers
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Fig.6.17 The 3D views of periodic responses (x, y,z)(a = 0.142857 and b = 0.285714) :
a Py(e = 586, B = 90,x = 1.0,y = 0233577,z = —0.335582), b Pyp(e =
6.01,8 =9.0,x = 1.0,y = 0.154142,z = —0.267826), ¢ P21534361 (¢ = 6.34,8 = 9.0, x =
1.0,y = 0.168254,z = —0.277345), d P(y;)3 (@ = 8.88, 8 = 15.0,x = 1.0, y = 0.179989,
z = —0.083352)

where the forcing vector function g = (g1, g2, - - -, g,,)T is bounded, periodic func-
tions with period T = 2 /Q. The forcing frequency is 2. The phase variable
is ¢ = Qt and a parameter vector T = (7w, 7T ,nml)T. The vector func-

tion £ = (fl(p), fz(p), - YT are C-continuous ( > 2) with system para-

meter vector p, = (,u,gp ), ,u,ép ), e ,,uf,f?z) )T. In all accessible sub-domains Q,

(p = 1,2,---, M), the dynamical system in Eq.(6.91) is continuous and there
is a continuous flow expressed by

xP (1) = @V (xP (1), 1, ., 7),

X7 (19) = P xP (19). 19. .. 7). (6:92)
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Fig.6.18 Two symmetric X,

domains in phase plane. 0 02
| |
| |
| |
| .
Q T Q 1

| |
| |
} |
| | X,
[ [ :

- =~
| |
| |

m23 a‘(‘)]z

Consider one of the simplest sub-accessible domains in a two-dimensional
dynamical system in Fig.6.18. The universal domain is formed by three accessi-
ble sub-domains 2, (p = 1, 2, 3). With oriented directions, two boundaries 02, p,
(p1, p2 € {1, 2, 3}) exist. The accessible sub-domains (2] and €23) are of the skew-
symmetry. The direction-oriented boundaries (8_{22 1, ER)ZQ) and (8_5)223, EE)232) are
of the skew-symmetry, respectively. On the corresponding symmetric domains, the
dynamical systems in Eq. (6.91) are of the skew symmetry. On the boundaries (ﬁzlz
and 8_§>221 ), the governing equation is defined through ¢12(X,7) = @1 (x,1) =
x1 — E = 0, and on the corresponding symmetric boundaries (9€2»3 and 8_S>232),
the governing equation is determined by ¢23(Xx, ) = ¢32(X, 1) = x1 + E = 0. From
the above discussion, besides the assumptions in Sect. 6.1, the extra conditions should
be added to restrict our discussion. The following assumptions will be considered:
AG6.1: The systems in Eq. (6.91) possess time-continuity.

A6.2: For aunbounded domain €2, there is a open domain D, C 2. On the domain
D, the vector field and the flow are bounded for ¢ € [0,00), i.e.,

£ || + llgll < K1 (const) and ||@P|| < K>(const). (6.93)

A6.3: For a bounded domain €2, there is a open domain D, C €2,. On the domain
D, the vector field and the flow are bounded for ¢ € [0,00), i.e.,

£ + ||gl] < K1(constant) and ||®"|| < oo. (6.94)

A6.4: The dynamical subsystems possess symmetry at least in two corresponding
symmetric domains.

A6.5: The flow on the discontinuous boundaries is C'-discontinuous or there is a
transport law to connect two flows in two different domains.
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6.5.2 Switching Sets and Mappings

For convenience, without loss generality, the switching sets are from the boundary
—>
0, (q=0,1,2,-++ M) :

= Ppip2 Tk, X)) =0
g, = {(mod(th,2n),xk) oLy | € mps (699)

For simplicity in discussion, the following sign function is introduced as

_ | +1for nyQ,; — Qpg,
o = —1 fornyg,; — Qq. (6.96)

From Luo (2011), the singular sets on the switching sets are stated as follows:

Definition 6.4 For a discontinuous dynamical system of Eq.(6.91), the grazing
singular set on the «-side of the boundary 9$2,, », for o, B € {p1, p2} and B # «
with p1, po € {1,2,---, M} is defined as

haGdep2 (X, tw+) = 0 and
(1,a) C 891’11’2'
haGagp (Xms tmt) < 0

(6.97)
The double grazing singular set on both sides of the boundary 92, , is defined as

SO = {(mod(th, 277), Xi)

(1) _ ¢l (1,8)
Smpz - Splpz U SP1P2
() _
haGanpz (X s tn+) = 0 and

(1,0)
aGagplpz (Xm» tmt) < 0,

= 1 (mod(Qty,, 277), Xp) Coo
' ! hacgél)mpz X, tyt) = 0 and p1p2
L,
haGgQ/i?pz Xy tme) >0
(6.98)

Definition 6.5 For a discontinuous dynamical system of Eq. (6.91), the (2k, — 1)th-
order, grazing singular set on the a-side of the boundary 02, , fora, B € {p1, p2}
and 8 # « with p1, p» € {1,2,---, M} is defined as

ha Gy (om ) = 0
SOka t10) = 3 (mod(Qtm. 27), %) |for s =0, 1,2, -+, 2k C 32p, po-
(2kq+1,a)
and h“GBQmpz Y Xy tnt) < 0
(6.99)

The (2ky + 1 : 2kg + 1)-double grazing singular set on both sides of the boundary
0Q2p, p, 1s defined as
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Cka+1:2kp+1) — (2kg+1,00) (2kg+1,8)
Spipa = Spip USpipm

(sg,a) _
haGBQp]pz (Xm, tm:l:) - O
forse =0,1, -+, 2k,
(2kg+1,0) .
and haGanpz X, tmx) < 0;

I Ggsggflz (Xms i) =0
forsg =0,1,---,2kg

2kg+1
and haGgS];ﬁJr ’ﬁ)(xm, tmt) >0
pP1pP2

= (mod(le, 27[)5 Xm)

© (6.100)

A switching set on the discontinuous boundary €2, ,, is composed of two neigh-

- A — . .
bored boundaries E,, C 02, and E;, € 02, p, connected by a singular point

2kg+1, :
Cpipy = Sﬁnm ) (ke =0,1,2,---), ie.,

E‘IICIZ = EQI U qu U Fplpz - anlpz (6101)

for g1,q2 € {0,1,2,---, M}. The local mappings near the switching sets 8y, , is
defined for specific Ji, J» € {1,2,---, N} as

Py 1 By — By, Pyt By, = By (6.102)

If 85, € 0Rp,p, and E4y; € 9€2p, p,, the global mapping in an accessible domain
Qq (o € {p1, p2}) is defined for specific J3 € {1,2,---, N} as

Pp : By — By (6.103)

On the switching sets E;,, C 0K, p,, the sliding mapping is defined for specific
Jye{l,2,---,N}as

Py, : By — By (6.104)

For a C%-discontinuous switching set Egs C 0Qp, p,, there must be a transport law
to map it to another switching set, 45 C 0€2,p,. Therefore, the transport mapping
is defined for specific J5 € {1,2,---, N} as

P : By — Egs. (6.105)

The switching sets, the local, global, sliding and transport mappings are depicted
in Fig.6.19. The forbidden zone is shown for permanently-non-passable boundary.
Consider a discontinuous dynamical system with domains given in Fig. 6.20 to show
how to use the above concept. Four switching sets are defined as
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(a) (b)

Fig.6.19 Switching sets and generic mappings: a local and global mappings, b sliding mapping
and transport mapping. The shaded domain €2, is accessible, and the inaccessible domain is 2,,.
The domain €2 is accessible and s can be accessible or inaccessible

Fig.6.20 Switching sets and _ _
generic mappings for =4 =
x| = +E.

| J
|
(t,.E,0) (1,E,0)
[
Q/ A |
|
E1 = {(mod (R, 27), Xp)|x2 > 0, 921 (%, 1) = x1 — E = 0} € 3%,
q
E2 = {(mOd(QtWH 277)7Xm)|x2 < 01 (pIZ(Xm, t) = xl - E = O} g BQl2a
—
83 = {(mod (Q, 27), Xp) X2 < 0, 923X, 1) = x1 + E =0} € 08203,
ﬁ
84 = {(mod (Qt, 27), Xp)|x2 > 0, 032X, 1) = x1 + E =0} C 0Q32
(6.106)
and two singular points are
I's = {(mod (R, 27), Xp)|x2 =0, ¢ =x1 —E =0} C T2
12 (6.107)
I's; = {(mod (Q1, 27), Xpm)|x2 = 0, @23 =x1 + E =0} C I'z3
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The two switching sets are

B =E1UEUTlp C a2,

~ _ ~ (6.108)
B34 = B3 U Eq UT3 C 0Q03.
From four subsets, the local mappings are
Pi:Ey —> Erand P, : E] — Ep,0n 9212,
1 1 2 2 1 2 12 (6.109)
Py: B3 —> Egand Ps : E4 — E3,0n 023
and the global mappings from 921> and 92,3 are
P3;:E, > Eszand Pg: E4 — Ej. (6.110)

In this discontinuous system, no sliding mapping exists on this C!-discontinuous
boundaries. From the definition of mappings, the mappings P; (J = 1,2,4,5)
relative to one switching section are termed the local mapping, and the mappings
P; (J = 3, 6) relative to two switching sections are termed the global mapping.
The global mapping maps the motion from one switching boundary into another
switching boundary. The local mapping is the self-mapping in the corresponding
switching section. The six generic mappings are illustrated in Fig. 6.20.

6.5.3 Grazing and Mappings Symmetry

The initial and final times (f; and #;y1) are used for all the mappings P; (J =
1,2,---, N) defined through in Eqgs. (6.102)—(8.105), and the corresponding phases
are g = Q1 and @1 = Qtr41. Equation (6.92) gives

(p) — oW (p)
X (tgy1) = O (tpt1, X (1), tk, Wy, ), OF
+1 k+1 k Wp ©.111)

xP (1) = P (grp1, xP (1), g1 . ).

In an accessible domain €2, the foregoing equations with boundary constraint
equations give the governing equations for mapping P;. Consider a notation y; =
(o, xi)T € "), the governing equations for mapping Py (J = 1,2, -+, N) with
mapping relation y; 1 = Pyy; are

FU (0, Xe, @i 1, Xt 1, B, ) = 0 (6.112)

where FY) e g1,
For all mappings P; (J = 1,2,---, N), there are 2n-symmetric mappings P,
(g =1,2,---,2ny). The first ny-mappings Py, (g1 = 1,2, --- , n1) are symmetric
with the second ni-mappings Py, (g2 = ny + 1,n1 + 2,---, 2ny), respectively.

From Assumption (A6.4), the subsystems in domain €2, ~and €2, (pg,, pg, €
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{1,2,---,m}) are symmetric. Thus, Mp‘il = Hl’qz' For convenience, the following
notation is introduced as

g =mod(g +ny —1,2n1) +1,
9@ = mod (e, 22M; + 1)7), | . (6.113)
¢9 = mod(p?, 22M; + ).

Notice that the integer M1 =0, 1, 2, - -- and mod(-, -) is the modulus function.

Definition 6.6 For a discontinuous dynamical system in Eq.(6.91), under a trans-
formation Tp : Py — P, during (2M + 1)-periods with

Ag) _ ~(q)

¢ =mod(2M; + D + ¢, 22M; + D), 6.114)
X](cé) _ _X](cq) '

if a relation

(@ (q) (@) (q) (q) (q) (q) (q)
FO" x" o0 . x% n, 1) =-F20" x? 0. k+1,u,,q,6n) .
(6.115)

holds, then the mapping pair (P, P;) is of skew-symmetry. If a mapping pair is
relative to the local (or global, or sliding or transport) mapping, such a mapping
pair is termed the local (or global, or sliding or transport) skew-symmetric mapping
pair.

Theorem 6.1. The 2ni-mappings Py, (q = 1,2, - -, 2ny) for the dynamical system
in Eq.(6.91) are invariant under the two actions of a transformation Tp, i.e., TpoTp :
Py — Py

Proof Under the transformation Tp, the mapping P; and P; are of skew-symmetry,
thus, we have

Tp:Pq—>P,;andTp:P,§—>Pt§.

From the foregoing relations, for <pl.(q) € [0, 2M; + 1)xr], Definition 6.6 gives for a
certain given numberN; € {0, 1,2, ---}

oD = o + 2N, + @M, + D, andx? = —x;
F(q)((p(q) @ (@ (q) ):_F(q)(q)]iq) (@) (@) (q)

k Xk > Prrr Xkp1 Wpr T X Opr X s Wp, s )
and
<p,£‘§) (q) + 2N, + 1H)(2M; + 1)m, and x(q) X,((q),

D@ @ @ @ @ @ @ @
F(q)(‘Pk X P> X1 Wp,» ) = _F(q)(‘Pk X s P X1 Wy s 7).
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Substitution of the first equation into the second one of the foregoing two equations
leads to

QDIEQ) 90 + 22Ny +1)2M; + 1), and x(q) = x](cq),

@ (q) @ (q) _ @ @ @ (@
F(q)(‘/’ X Prg1 Xieg 1 Wpy s m) =F 2" x" o). x4, Wpy 70

It is easily proved that c? = ¢q from the property of the modulus function. Since
the period for mapping P, is (2M7 + 1)-periods, the phase satisfies a relation as

mod(go(q) 22M, + D) = go,iq) In a similar fashion, the case can be proved for

<q) e [2My + Dm,2(2M1 + 1)x]. Thus, the foregoing equatlon indicates that
Tp oTp : P; — P, holds. Namely, the mapping P, (g = 1,2, --- , 2n;) for dynam-
ical systems in Eq. (6.91) is invariant under the two actions of transformation Tp.
|
Consider a post-grazing mapping cluster of a specific local or global mapping
P; (J € {1,2,---,N}). For a local mapping P, on the boundary 9$2;, ,,, the
pre-grazing, grazing and post-grazing flows are illustrated in Fig. 6.21a—d. There are
many clusters of post-grazing mappings, which determines the property of the post-
grazing. Two clusters of the post-grazing mappings for mapping P, are sketched.
After grazing, the relation between the pre-grazing and post-grazing is

post—grazing
Py, = Py, OP‘/H2 <--0 Py oPy :PJI(‘]nZA..‘]BJZ) (6.116)

pre—grazing

local mapping cluster

for Ji,J2, -+, Jn, € {1,2,---,N}. The index Jo can be J; but the index J;
(Ji = J3,J4, -+, Jn,) should not be Ji. Pj, # P, can be any mappings on the
same boundaries. Similarly, consider the global mapping P, to map the flow on the
boundary €2, p, to another boundary 92, 5, in domain €2, . The pre-grazing, graz-
ing and post-grazing flows for the global mapping P;, are illustrated in Fig. 6.22a—d.
The relation between the pre-grazing and post-grazing is given by

post—grazing
7 = Pj,_o---0Pp OPJZZP(jnZ...j3)j2 (6.117)
—_—

. n2
pre—grazing

grazing mapping cluster

for (J1, J2, -+, Jn, € {1,2,---, N}). The index J can be J; but the index J;
(Ji = J3,J4,--, Jn,) should not be Ji. In post-grazing mapping clusters, the
mappings can be local mappings, sliding and transport mappings on the boundary
02 p, p3- Two clusters of post-mapping structure for such a mapping grazing are
sketched in Fig. 6.22¢ and d. For the grazing occurrence of the mapping P, on the
boundary €2, »,, the post-grazing mapping structure is the same as in Eq. (6.116).
However, the mapping P;, is global and the index J» cannot be J; because Py, is
any mapping rather than Pj, or another global mapping. This mapping can be a local
mapping. Without the mapping P;,, this post-grazing mapping structure is a local
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‘ Qa X \.\

X, N 1,
L vy h [—
Qy
X, 0 x

—_—

Q[I
V\
Q&
(0) (@)

Fig.6.21 Local mapping grazing switching Pj, (J; € {1,2,---, N}) : a pre-grazing mapping, b
grazing mapping, ¢, d two possible post-grazing mappings. The black solid circular symbols are
singular points. The rest circular points are switching points

mapping grazing structure as in Eq.(6.116). This concept is extended to the more
generalized case. The post-mapping cluster can include any possible mappings rather
than the local mappings.

Consider the generic mappings in Fig. 6.20. Once the grazing occurs, the flow of
P;(J =1,2,---,6) switches from an old flow to a new one, and the corresponding
post-grazing mapping structures are from Luo (2005b)
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Fig.6.22 Global mapping grazing switching: a pre-grazing mapping, b grazing mapping, ¢, d two

possible post grazing mappings. The black solid circular symbols are singular points. The rest
circular points are switching points

grazing

P, = PJOP/+1OPJfOr(J=1,4);
grazing
grazing grazing

P, = PgoPioP3, Ph = PyoPjoP
grazing grazing
grazing grazing

Ps = PioPloPs,Ps = PsoPyoPs; (6118)
grazing grazing
grazing

P; = PjoPjoo0Pyj_qfor(J=3,06),
grazing
grazing

7 = PjoPmod+1,6) © Pmod (s+2,6)for(J =3,0).

grazing J

From the above discussion, the invariance of the post-grazing under the transforma-
tion Tp is of great interest.
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Theorem 6.2. For symmetric mappings Py (g € {1,2,---,2n1}, ny < N/2) from
all N-mappings of the dynamical system in Eq.(6.91), if the mapping pair (Py, P;)
is of skew-symmetry with a symmetric transformation Tp, the post-grazing mapping
pair is still of skew-symmetry with the same transformation.

Proof For the dynamical system in Eq. (6.91), there are | skew-symmetric mapping
pairs (Py, P(;) (g € {1,2,---,2n1}) from all the N-mappings. Thus, from Definition
6.6, the skew-symmetry conditions are

o = W 4 My + Dr andx = —x@7
forgj ={q1.92--- . qn,} € {1,2,---,2n1}, and
N (g)) (q) (aj) _a))
F(qj)((/)k o 90;41, k+J]7 leq )
__F(éj)(‘/’liqjv @Gp @y (q,)

» Pt 10 Xit10 Wopy ”)-

Consider the post-grazing mapping structure of the skew-symmetry mapping pair
(Py,, Pz,). For alocal mapping P, , the post-grazing mapping structure is

post—grazing

P; = P; oP; o---0P; oP;.
D pre—grazing 91 " dna 43 ° g
The corresponding governing equations are
q;) (qj (q]) (q]) (q]) _
F o o0 Xk j o0 Prj— 1 X j— 1> Wpy; m) =0,

G ¢, @ (G G @G _
F4 (Prtny—1 Xktny—1> Phtny Xktny> Wpg,» ) = 0.

for j =2,3,---, ny. With Assumption (A6.5), the switching points satisfy

@) (qA_'-%—I) (Gn,) (G1)
Xitjo1 =X jo ad X 0 =X,
forj =2,3, -+, np—1.From Assumption (A6.1), the systemin Eq. (6.91) possesses
time-continuity. Therefore the switching phase for j = 2,3, --- , np — 1 should be
continuous, i.e.,

@) (Gj+1) @) @G
€0k+/1 1= ‘Pk+11 pand @ = P,

Multiplication of negative one (—1) on both sides of the governing equations and the
switching point state variable vectors, and simplification with the skew-symmetry
conditions gives

(qi) (@) (g)) (a)) (a)) _

F 90 i 0 X o Ol X 1 Mpg m) =0,
(q1) ¢, .(q1) (q1) (q1) (t]1)

Fi (Priny—1 Xkrny—10 Pty Xy Wy, o ) =0
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forj =2,3,---,ny. The switching points and switching phases satisfy the following
relations (j = 2,3,--- ,n2)
(g/) _ JWj+n (gny) _ v .
Xk—tij—l = Xk—i{j—l and Xy =X,

(q;) (gj+1) (gny) (q1)
‘Pk+jj—1 = ‘Pk+/j—1 and ‘Pk+7212—1 = Crtnp—1-

The foregoing equations form the post-grazing mapping structure of Py, is

post—grazing
o = Py oPg o--0PgoPy,.
pre—grazing "2

Thus, the post-grazing mapping structure (quqnz.i.qwz, Py, iy
symmetric mapping pair (Py,, P;,) is skew-symmetric. Because the local mapping
P, can be all the local mapping from mapping P, (g € {1,2, ---, 2n1}), the post-
grazing, skew-symmetry for the local skew-symmetric mapping pair is proved under
the symmetric transformation Tp. Similarly, the post-grazing, skew-symmetry of
the global skew-symmetric mapping pair (P, P;,) can be proved with a symmet-
ric transformation 7p. Because the skew-symmetry mapping pair (P, Pj ) are
chosen arbitrarily, the post-grazing mapping structure for a mapping pair (Py, Pj)
(g € {1,2,---,2n1}) in the skew-symmetry mapping is also skew-symmetric. This
theorem is proved. |

...43,;2) of the skew-

Since the symmetry invariance of the post-grazing of mapping exists, the combina-
tion of the symmetric mapping P, (¢ = 1,2, --- , 2n1) should possess a symmetry
invariance under transformation 7p. For convenience, the following notations for
mapping clusters are introduced.

P =P . . . . s
U i) an"‘q(iZ(k,1)+l)(‘1n(k_|> “'f1<n(k,2)+1))l’” An_y) ~“q(,,2+1) ((Inz“'lﬁ)ll q1’

(6.119)

P(lm’nk) = Pan "'q(n(k,l)#»l)(qn(k,l) "'Q(n(k,z)Jrl))lm (IIz(k,z) "'q(nz+l) (%2 "'QZ)II q1°

To determine such a symmetrical invariance of the skew-symmetry flow, from the
above notations, a theorem is stated as follows:

Theorem 6.3. For mappings P; (g = 1,2,---,2n1) of the dynamical system
in Eq.(6.91), if the mapping pair (Py, P;) during (2M; + 1)-periods is of skew-
symmetry with a transformation Tp, then the following two mappings

(P, niyy) © Py i) © 7 © Pl inig) © Pl oniy )

L —repeating

(6.120)

Pl niy) © Pl niyy) © 7+ © Py, i) © Pty niy))

L—repeating

form a skew-symmetric mapping pair under the same transformation Tp.
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Proof. Consider a motion relative to a mapping

Pl nigy) © Pl iy ) © 777 © Py, i) © Pllyy i)

L—repeating

with the initial state yx = (X, ¢x) and the final state yx 15, (S = ErLzlsr +5,), and
the mapping equation is

YitSy = Py, niyy) © Pty i) © 7 © Pllyynigy) © Pl oniy ) Vi

L—repeating

For mapping clusters P, ., )and ﬁ(lmzr ,ni,,) in the rth mapping pair with mapping
numbers s, and §,, the governing equations of the foregoing mapping structures for
r=1,2,---,8 are

(q1) ¢,.(q1) (q1) (q1) (q1) _
F (0 X, 1 Prs, 10 XS, 417 Wp, - 7T) =0,

(an ) (anlr) (anlr) (anlr) (an]r) o
F " (¢k+Sr71+Sr_1 ’ Xk"l‘Sr—lJl‘Sr_] ’ (pk+Sr71+Sr’ Xk+Sr71+Sr’ uipanlr ’ n) - 0’

@G0 ¢, (q1) (q1) q1) o
0SS,y 00 Pht Sy s 1 Xkt Sy s 10 Popgy > 1) = 0,

o (l}n ) (én ) (l}ll ) (gn )
(q ) ko kop ko ko _
F (o 1 Xes 10 Prss, » Xegs, Wy, m) =0.
.

where S,_1 = E;;ll So + S5 . Application of Egs. (8.114) and (8.115) to the foregoing
equations, and multiplication of negative one (—1) on both sides of the foregoing
equations leads to

@, @ (@n (q1) (qn _
F 05, X5, Pur Sy 10 Xk s,y 410 Wpg ) =0,

F(é”k)( <an2r) X(anZr) (an2r) X(q"er) ]1’) —0
Crt o145 =10 Xt S, 145, =10 Che o080 X s+ Wrgy, o ’
,

(q1) ¢.,(q1) (q1) (q1) (q1) _
B s, 16, Xies, 1460 Pide Sy 46,41 Xk §,_ iy 110 Wpgy» T =0,

(anlr) (anlr) (anlr) (anlr)

(an ) —_
F s, 10 X5, — 10 Pigs, o Xis, ”‘panl ) =0
,
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being governing equations for

YetSy = Py, niy,) © Py nig) © = © Pllyyney) © Plliyy inig)) Vi

L—repeating

Therefore, the following mapping pair

(P(lnlzL,nkZL) o P(lmlLsnle) 0---0 P(lmz]snkm) ° P(lmll v”k“)’

L—repeating

Py, niy,) © Pl nig,) © 7+ 0 Pl ney) © Pty oniy)))

L—repeating

is skew-symmetric under a transformation Tp. |

6.5.4 Symmetry for Steady-State Flows and Chaos

The symmetry invariance of combined mapping structures has been discussed. The
flow symmetry in discontinuous dynamical systems will be presented in this section.
Consider a skew-symmetry mapping cluster pair(P,, ;) 13(1"1,”,()). The mapping
numbers are s for two mapping clusters in the mapping pair. The corresponding
flows should be of the skew-symmetry. The theorem is presented herein.

Theorem 6.4. For mappings P, (¢ = 1,2,---,2ny) of the dynamical system in
Eq.(6.91), if the mapping pair (Py, P;) under (2M|+1)-periods is of skew-symmetry
with a transformation Tp, then the asymmetric flows respectively relative to two
mappings P, n,)yY =Y and Is(lm,nk)y =y with the same mapping number s under
Ni-periods with a periodicity

Yits = Yk OF Qs Xks) ' = (9 +2N17, 1) " (6.121)
have the corresponding solutions ((p,l(ﬂ., XII(H) and ((p,l(IJrj, X,I(lﬂ)forj ={0,1,---,s}

on the discontinuous boundaries to satisfy the following conditions

Ghs; = mod (@M1 + D7 + ¢l 1, 22M) + D),

I _ I
Xitj = "Xkt

(6.122)

Superscripts I and Il denote solutions of P, n,)y =y and ﬁ(lm,nk)y =y, respec-
tively.

. : I I 0 I
Proof From Definition 6.6, the solutions (¢; X j) and (¢, i Xt j) for the
mapping P, »,)y = Yy and the skew-symmetry mapping P, n,)y = y satisfy
Eq.(8.115). |
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If the local mappings in the mapping cluster exist only on a special boundary,
the two skew-symmetric, local flows relative to P, »,)y =y and ﬁ(lm,nk)y =y are
separated, as in Sect. 6.4. From the above theorem, once the solutions for one of the
two mapping clusters are determined, the solutions for the other mapping clusters
can be obtained right away. If the two mapping clusters are combined with global
mappings, the symmetric flows relative to a global symmetric mapping structure
ﬁ(lm,nk) o P, ny) are discussed first, and then the asymmetrical flows for such a global
symmetric mapping structure are presented. The theorem for the symmetrical flow
is stated as follows.

Theorem 6.5. For mappings Py, (¢ = 1,2, ---,2ny1) of the dynamical system in
Eq.(6.91), if the mapping pair (Py, Py) under (2M| +1)-periods is of skew-symmetry
with a transformation Tp, then the symmetric flow relative to a mapping 13(1,,1.,%) o
Py =y with the same mapping number s of two mapping clusters under Ni-
periods with a periodicity condition

Yit2s = Yk OF (Prt2s, Xkt25) " = (9r + 2N, x5) T (6.123)

have the corresponding solutions (¢;4j,Xi+j) for j = 0,1,---,2s on the discon-
tinuous boundaries to satisfy the following conditions

@rtj = mod (M1 + D7 + Gkt mod (s+j.25), 2@M1 + 1),

Xk+j = —Xk+ mod (s+j,2s)-

(6.124)

Proof For the symmetrical flow of a mapping ﬁ(z,,,‘w 0 Pupapy = y with Eq. (8.123),
the governing equations are

F(Ql)(wlglh) (q1)’ ‘P;E[ﬁ{v X/(ﬂi, T ) =0,

n (gng) (gng) (qn,) (qn,)
FU k)((pk-‘rslf 1 Xty 10 Pts—10 Xpepy 7“pq,,k’") =0;
@G, @ @G (@G (q1) _
F (0 e X5 Ot Xt 1 Wpg, - ) =0,
F(énk)(ga((blk) ((Ink) (link) ((Ink) 7[) —0.

k+25—1° Xk 25—1° Prt2s Xpt250 “pan )

Substitution of Eq. (6.124) into the foregoing equations and using modulus mod(s +
J, 2s) from (8.124) gives for a given number N, € {0, 1,2, ---}
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F (@) 4+ 2N, + D(2M; + D, —x,ﬁ'j,

o)+ QN+ DM+ D, —x ) g, ) =0

(gny) (gny)
F@ (o) 4 QNy + DMy + D, —x, %) |,

(Gny.) (gny)
L5 + QN2+ DM+ D, x0T =0

FaD () + 2N, + DM, + D, —x)

(plgil;erl + QN2+ DM + D7, XI(HE%3+1’ M‘I’q] 1) =0,

Flnd (¢ (?:gs) |+ QN2+ DM + D, xifi’éi 10

n ) n )
o) L Ny + DEMy + D, —x ) oy, - T) =0.

Using Eqgs. (6.114) and (6.115) in Definition 6.6 into the foregoing equations yields

@0, @) L@ (@G @qn _
F (0 X6 Os i1 X 10 Wpg, » ) =0

(Gn,) (é"k) (énk) (é”k) (l?nk)
F (0 551 X3 0515 Pt ag Xepass W Pay, * ) =0;

F(Ql)(w((ﬂ) (m)’ wl(cill)’ I(c(il;’ Y - ) =0,

(gny) (gny) () (any)
kts—10 Xis—10 Prs » Xiets - Py,

F(q ny ) (
After exchanging the order of the above two equations, they are identical to the
mapping structure of P, no © Panpy =y. If (gok+ jo Xkt J) is the solutions of peri-
odic flow, then (@4 mod (s+,25) > Xk+ mod (s-+ J,zs)) is also a skew-symmetry solution
satisfying Eq. (6.124). |

The foregoing theorem discussed about the symmetrical solutions of period-1
motion associated with mapping ﬁ(lm,nk) o Py .ny . This structure is quite stable. For
instance, the symmetrical period-1 motion of impacting oscillators can be referred
in references (e.g., Luo 2002; Luo and Chen 2005b). One thought this motion may
have period-doubling bifurcation. In fact, no period-doubling bifurcation exists. The
symmetrical motion will be converted into the asymmetrical period-1 motion with
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the same mapping structures through the saddle-node bifurcation of the first kind
and an unstable region. The flow symmetry for such an asymmetric period-2- (L =
0,1,2---00) motion is presented in the following theorem.

Theorem 6.6 For mappings Py (¢ = 1,2,---,2n1) of the dynamical system in
Eq.(8.1), if the mapping pair (Py, Py) under (2M| + 1)-periods is of skew-symmetry
with a transformation Tp, then the two asymmetric flows relative to a mapping

Pliyin) © Pliyan) © 0 Pty © Plipni) ¥ =¥ (6.125)

2L —repeating

for L =0,1,2,---, 00 with the same mapping number (i.e., s) in the two mapping
clusters under N1-periods with a periodicity condition

Yiqoltly = Yk OF (@ yortiy, Xeqort1y) ' = (9r + 2N17, xp) (6.126)
possess the following solution properties

~1 A1l
Deg2ir—1ys+j = MOd(2M1 + DT + Qo 1)st mod (s+7.25)» 2CM1 + D7),

I _ I )
Xe+2(0r—1Ds+j = “Xk+2(r—1)s+ mod (s+7,25)°
(6.127)
forr =1,2,--- 2L and j =0,1,---,2s. Superscripts I and Il denote the two
asymmetrical solutions.
Proof Suppose the mapping
Pty © Pty © =+ © Pltyyng) © Plyn) Yy =Y
2L —repeating
has a set of solutions (<p,£+2(r71)s+j, XII<+2(r71)s+j) forj =0,1,---,2s withr =
1,2,---,2N the governing equations are
(q1) ¢, Wq1) I(q1) I(q1) 1(q1) _
F (0 50— 1) Xk 1y Phr2r—1ys-+10 Xer2—1ys+17 Wpg, » ) = 0,
((In ) I(an) I(an) I(an) I(an) . N.
F (0 ar— 1510 Xk @r—1)5—1 Pht-2r— s> Xt 2r—1)s W pg,, - m) =0;
G ¢, 1@ 1(g1) 1@ 1(G1) _
F (0 0r—1)s» Xk @r—1)s ot r—1ys+1 Xer r— 1510 Wpg, - 1) =0,

1(Gny) 1(Gn, ) 1Gn)  1@Gn)

(@Gny) —
F ((pk+2rs—1’ Xiv2rs—10 Pr+orss Xitors qunk ) =0.
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Substitution of Eq. (6.126) into the foregoing equation and using modulus function
of mod (s + j, 2s) from Eq. (6.125) gives for a given number N, € {0, 1,2, ---}

11 11
FO () |+ QN2+ DMy + D, =X

l(q1) 1(q1)
(pk+(12r71)s+1 + 2N+ DM + D, _Xk+(12r71)s +1, uqul ,m) =0,

(g, ) (G, )
F%) (@ 55 |+ QN2+ DMy + D, —x 55
11(gn,) 1L(gn,)
Cesars + QN2+ DML+ D, =X (0 R, o 7) = 0;

. 1
FO M) N, + @M, + D, x|

G G
(ka(rq2lr)s+l + QN2 + DMy + D, _kazlr)sﬂ» Wpy, - ) =0,

G (G ) (G, )
F(an)(wk—ﬁ—(Z]‘r—ﬁ—l)s—l + QN2 + DMy + D, =X )5

1L(gn, ) 11(Gny )
Pt rpns T CN2+ DM+ D, =X 000 b, - T) = 0.

Using Eqgs. (6.114) and (6.115) in Definition 6.6 into the foregoing equations and
taking modulus of the index yields

G ¢, (@G 11(g1) 1(g1) 11(g1) _
F (0 0r 1) Xt 2r—1)5° Pkt 2r—1)s+1° Xt 2r—1ys+> Ppgy » ) = 0,

W(Gny) T(Gny) W(Gng) _ 1(Gny.)

(@Gny) Y
F (¢k+2rs—1’ Xk+2rs—l’ Pr+ors Xk+2rs ’ p"l’an ) =0;

(q1) ¢, q1) 1(q1) (q1) 1(q1) _
F (056 15 Xk42(r—1)s* Pht2r—1ys+1° Xt 21511 Wpg, - ) =0,

() 7 M) 1(gn,) 1(gn,) 1(qny ) _
F (@ ar— 151 X @r—1)s—1 Pht2r—1)57 Xk 2r—1s? W pq,, ) =0.

After exchanging the order of the above two sets of equations, it is clear that

1I II P ; — N ;
(¢i+2(r_l)s+j, Xi-l—_Z(r—l)s+j) forj =0,1,---,2s withr = 1,2,---,2" is another
solution for mapping structures

P, 1) © Pltyyng) © -+ 0 Payyng) © Pllyyn) Y =Y-

2L —repeating

This theorem is proved. |
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The above theorem discussed about the asymmetrical solutions of periodic and
chaotic flows induced by period-doubling bifurcation of ﬁ(]m,nk) o Puynpy =Y.
Similarly, the motions pertaining to the asymmetric mapping ﬁ<1,,,2.nk2) oPuy1 Y =Y
are presented in the following theorem.

Theorem 6.7. For mappings Py (¢ = 1,2, ---,2n1) of the dynamical system in
Eq.(6.91), if the mapping pair (Py, P;) under (2M\+1)-periods is of skew-symmetry
with a transformation Tp, then the asymmetric flows respectively relative to two
mappings

Plirnga) © Pllyinen) © *+* © Pllyo,ngn) © Pilyy ) ¥ =y and

2L —repeating

A N (6.128)
Plirni) © Plwainia) © =+ © Pty ngn) © Pllyoni) ¥ =Y
2L —repeating
for L = 0,1,2,---, 00 with different mapping numbers (i.e.,s1 and s3) in two

mapping clusters under N1-periods with a periodicity condition
T T
Yi42L (si4s2) = Yh OF (@l s) 155)> Xky2l sy 4s0) = (@ +2N17, X))~ (6.129)

1 1 11 11
a’ieh((pk+(r71)(sl+sz)+j’ Xt (=1 (s1452)+5) VDL 1) (51452147 Xed(r— 1) (51 452)+5)
wit,

A1
Pt (=) (s14s)+j = Mod(@M, + D
A1
+ Ph+(r—1)(s1+52)+ mod (s2+j, 51 +52)° 22M;1 4 D), (6.130)

X! — I .
k+(r—=1D(s1+s2)+j — k+(r—1)(s1+s2)+ mod (s2+j,51+52)°

or

AI1
Pit(r—1)1+sp+j = Mod(@My + D

AT
F Dit(r—1)(51 +52)+ mod (514 j,51+52)° 22My + D),  (6.131)

I L
Xit(r—1)(s145)+j = " Xit(r—1)(s1+52)+ mod (s;+j.51+s2)"
Forr =1,2,.--,2L and j =0,1,---,(s1 + s2). Superscripts I and II denote two
asymmetrical flows.

Proof Follow the same proof procedure of Theorem 6.5. Suppose

Pllp,m2) © Pllin) ©++ © Plyanga) © Pllyym) Y =¥

2L —repeating

: I I _ L .
has a solution ((pk+(r—1)(s1+s2)+j’ xk+(r_1)m+s2)+j) forr =1,2,---,2%and j =
0,1,---,2s, the governing equations are
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(q1) ¢, Wq1) I(q1) I(q1) I(q1) _
FO G- 1)51+50 Tk = D(s1+52) Pt r—Dis1-52)+1 Kt =D (s1452) 410 Ropgy » 1) = 0,

(qn,) I(%,) 1(417k) I(‘Ink) 1(417k) N
F (¢k+(r—l)sz+rs1 - Xk+(r—1)sz+r51—l ’ (pk+(r—l)xz+rs1 ’ Xk+(r—1)sz+rsl > M’I’an 1) =0;

@) ¢, 1@1) 1(q1) 1(q1) 1(q1) —
! ((pk+(r—l).s‘2+rs1 ’ Xk+(r—1)x2+rs1 > (pk+(r—l)s2+rs1+1 ’ xk+(r—1)s2+rs1+l ’ u’P(u 1) =0,

(én ) I(énk) I(énk) I(énk) I(énk) _
Fn (¢k+r(xl+52)—l’ Xk+r(51+52)—l’ Phr(s1452)° Xk+r(xl+52)’ u’Pan 7) =0.

Substitution of Eq. (6.130) into the foregoing equations and using modulus mod (s +
J»2s) from Eq. (6.129) gives for a given numberN, € {0, 1,2, ---}

1T 1I
F(ql)((pk-i(-q(l*)—l)x1+rs2 + 2N + DMy + D7), _Xk-f—q(lr)—l)sl-i-rsz’
M(g1) ) =0

II(q1)
(pk+(r—1)s1+rx2+1 + (2N2 + 1)(2M1 + 1)7[’ _Xk+(r—1)sl+rs2’ u!’ql »

(g, ) 1L(gn,)
F(q"k)(¢k+r(§1+sz)—1 + 22N> + DM, + D, _Xk—i-r(];l—i-xz)—l’
H(an) ) _ 0

11(gn; )
(pk+r(];1+sz) + QN2+ DEM; + D, _Xk+r(s1+sz)’ u’l’an T

11(q1)

g 1I(g
F(ql)((pk—i(z](llﬂz) +@N2 + DEM, + D, Xkt (s1452)°
11(g1) ) =0

(g1
Prrr(si 1 T CN2+ DCML+ DI, =X )10 Bpg

@) () 1(Gny)
Fne (wk+r(§1+s2)+s271 + @2N2 + DEM; + D, _Xk+r(liv1+sz)+szfl’
11(Gny)

1L(Gny )
<pk+r(x1+S2)+S2 + QN2+ 1) 2My + D7, _Xk+r(s1+sz)+s2’ lean 1) =0.

Using Eqgs. (6.114) and (6.115) in Definition 6.6 into the foregoing equations and
taking modulus of the index yields

G1) ¢, 1(q1) 11(g1) 11(41) 1(g1) _
F O rsstr—Ds1 Xetrsn40—1)s1> Phtrso+—s1+10 Xetrsatr—Dsi 10 Wpg - T) = 0,

@) ¢, T@Gny) () (G ) 1(Gn;.) Y
L ((pk+r(x1+xz)4 Xetr(s1452) 10 Photr(s1+52)° Xhotr(s1452)° 'Ll’an ) =0;
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(1) (1) () on o _
F 1510520 K- (s1-+52)° Pt 14520 +1 Xk oD o1-hsa) 1 By - ) = 0,

(gn;) M) (g, ) M)

(Gny.) _
O @ 51 rss— 10 Xkt (r=Dys1brss—10 Phobr—Ds1 752> ket r—Dsibrsy Wby, > ) = 0-

After exchanging the order of the above two sets of equations, it is clear that
Il : _ N
(‘Pk+(r De1+92)+7° Xt - +sp+) for =0, 1, 2s withr = 1,2, .-, 2

is a set of solutions for the mapping structure

Py ni1) © Pllonia) © - © Pty ) © Plprmin) Y = Y-

2N —repeating
This theorem is proved. u

The above results can be generalized in the following theorem.

Theorem 6.8 For mappings Py (¢ = 1,2, ---,2n1) of the dynamical system in
Eq.(6.91), if the mapping pair (Py, P;) under (2M|+1)-periods is of skew-symmetry
with a transformation Tp, then the asymmetric flows respectively relative to two
mappings

A

Py, inigy) © Pl iy ) © 7 © Pl inig)) © Pl iy ¥ =Y and

L —repeating

N N (6.132)
P(lmlL »nk]L) ° P(lmZN JKL) 0---0 P(lmllsnkll) © P(lm21 ’nkZI) y = y
L—repeating
for N = 1,2, ---, 00 with different mapping numbers (i.e., s1, and s2;) of the two

mapping clusters P(l,,, gy, and P
with a periodicity condmon

y(r = 1,2,---, N) under Ny-periods

moy Moy

— T
yk+Eerlslr+52r Yie or ((pk+EN S1r+s2r° Xk+2N lslr+52r) = ((pk + 2N17T, Xk)
(6.133)
H

are D) and

((pk+EN \S1pt82p +] k+): 1 S1pts20t] ) ((pk+EN 15]/)+Szp+] k+2p 151p+52p+1)
with a solutwn structure
d1=mod((2M; + D + ¢k+2,

) 1
(pk+2; sipts2pti ls1p+szp+j+ mod (sor+j,851,+52,)°

22My + D),
I XH .
k-i-E 131p+S2p+J k+E;;11S1p+52/)+j+ mod (s +j.51+527)”
(6.134)
or
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AT1 A1
_ = mod ((2M D _ ,
(pk+2;11151p+sz,)+j (« 1+ D+ (pk+>3;:11s1,)+szp+j+ mod (s1r+j,51,+52)

22M; + D),

<l - —x! .
k+>:;;‘,slp+szp+j k+2;;{s|p+szp+j+ mod (s1,+/,51,452)

(6.135)

for j ={0,1,---, (st + s2,)}. Superscripts I and II denote two skew-symmetric

solutions of flows.

Proof From Theorem 6.3, the two mapping structures are skew-symmetric. Thus,
the two solutions of the two mapping structures are skew-symmetric, which implies
that Egs. (6.132)—(6.135) hold. The alternative proof can be completed through the
procedure used in proof of Theorem 6.7. |

The symmetry of flow in discontinuous dynamical systems with mapping clus-
ters on many discontinuous boundaries is discussed. The grazing does not change
the symmetry invariance of mapping structures in such dynamical systems, and the
periodic and chaotic motions in such a dynamical system possess the symmetry
invariance as same as the basic mappings. From the discussion, the group structure
of mapping combination exists. Thus the further investigation on such an issue should
be carried out. The illustrations for the symmetry of periodic motions in symmetric,
discontinuous dynamic systems can be found. The detailed presentations can be also
seen in Luo (2005¢).

6.6 Strange Attractor Fragmentation

Before the discussion of the fragmentation mechanism, the initial and final sets of
grazing mapping will be presented. Because the grazing is strongly dependent on the
singular sets in Eqs.(6.97)-(6.100), the definitions are given as follows.

Definition 6.7 For a discontinuous dynamical system in Eq.(6.91), consider an
initial switching point (mod (¢k, 27), Xx)

ho G (ki) = g, - FPD (e xiq) < 0. (6.136)

If 84, € 082p,p, and By, € 0Qp o (@ € {p2, p3}, pi € {1,2,--- ,m} fori =
1, 2, 3), the following subset O, formapping Py : 84 — By, (J € {1,2,--- , N}
and q1,q2 € {0, 1,2, --- , M}) is called the initial set of grazing mapping,

Piyk = Yi+1,
Or; = { (mod (¢, 277), xi) Gg‘gila(xkﬂ, tk+n+) =0 C By (6.137)

L,
hpngQi:i(Xk+ls tk+1+) <0

where y; = (¢k, Xx)T. The corresponding grazing set is defined as
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Pyyr = Yi+1,
() _ G(Pl) -0 —_
Gy = { (mod (gxy1, 27), Xkt 1) 3Qpla(xk+1, fh+1)t) = C Eg-

hp]Gglg’ziii(Xk+1, lh+n+) <0
(6.138)

Definition 6.8 For a discontinuous dynamical system in Eq.(6.91), consider a final
switching point (mod (@x+1, 277), Xk4+1) With

I Gig) (et tarn-) = hpmjg - FD (@1, Xgan-) < 0. (6.139)

If 8, C 0Qp,p, and By, C 9Qp o € {p2, p3}, pi € {1,2,--- ,m} fori =

1, 2, 3), the following subset <f)FJ formapping Py : B4y — E4 (J €{1,2,---, N}

and gq1,q2 € {0,1,2,---, M}) is called the final set of grazing post-mapping:
Pr¥ik = Yik+1,

p1)

Or; = { (mod(ger1, 27m). xer1) | Gis), (ks tix) = 0 C &, (6.140)

QPII’

1,
Ry, Gggi:; (Xgs trt) <0
where yi = (Q1, x;)T . The corresponding grazing set of the post-grazing is defined

as

Pryr = Yk+1,
0G, = { (mod(gr. 27), %) | Gy}, (k1. 1) = O C 8. (6.141)
1,
B Giglh!) (i fie) <0

Definition 6.9 For a discontinuous dynamical system in Eq.(6.91), consider an
initial switching point (mod (¢, 27), Xx)

(spy>p1) _ _ . 1.
Gt ™ (i 1) = 0 for sy, = 0,1, -+, 2k, — 1

(2kpy,p1)
h ! Xy, trr) < O.
P19, Xk, fk+)

(6.142)

If 8, C 0Qp,p, and E,, - 0Qpala € {p2, p3}, pi € {1,2,--- ,m} fori =
1,2, 3), the following subset T ; for mapping P, : E,, — B4, (J € {1,2,--+, N}
and q1,q2 € {0, 1,2, ---, M}) is called the initial set of grazing mapping,

Pyyk = Yi+1s

(sp;»p1)
; Gas%la1 (Xkt-1 (k1)) = 0
Or, = { (mod(gx, 27). x¢) C By (6.143)
forsp, =0,1,---,2kp, and

(kal-i-l,Pl)
1 Gaq,. it 15 L+ 1)) <0
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where yx = (¢, Xx)T. The corresponding grazing set is defined as

Pyyk = Yi+1,

(spy-p1)

. 35;1&1 (Xk+15 1)) =0
DG, = { (mod (ger1,27), Xei1) C Eg-
for sy, =0,1,---,2k,, and

2k, +1,p1)
B, . (Xk+1, tgr ) <0

(6.144)
Definition 6.10 For a discontinuous dynamical system in Eq. (6.91), consider a final
switching point (mod (¢x+1, 277), Xk+1)

($py-P1)
Gaspz;la (Xk41, tk+1y—) =0forsp, =0,1, -+, 2ky, — 1;

(2kp,,p1)
hplGagzz:a (Xk+1, tk+1)—) < 0.

(6.145)

If 8y € 0RQp,p, and By, € 0Q) o(a € {p2, p3}tand p; € {1,2,--- ,m}fori =
1, 2, 3), the following subset Or, formapping Py : 84, — 8¢, (J €{L,2,--- , N}
and gq1,q2 €1{0,1,2,---, M}) is called the final set of grazing post-mapping:

Pryr = Yi+1,

) G (xk ti) =0
Or; = 1 (mod (@rs1, 27), Xkt1) C By (6.146)
s =0,1,---, 2k, and

(2kg+1,00)
thBQZ]]}2 Xk, k) <0 )

where y; = (Qt;, x¢)T. The corresponding grazing set of the post-grazing is defined
as

Pryr = Yi+1,
(Sa, ) _
GQQPIPZ (X, k) =0

DG, = { (mod(¢x, 27), xk) C By (6.147)
s =0,1,---, 2k, and

kot
haGgszplpz (%, fr) < 0 |

For global and local grazing mappings, the grazing and post-grazing mapping
are sketched in Figs. 6.23 and 6.24 through mapping Py (J € {J1, -+, Jiu}) on the
boundary 92, p,. The grazing in domain £2,, occurs at the final points of the grazing
mapping P, on the boundary 02, (e € {p1, p3}). The above definitions for both
the initial grazing sets of grazing mapping and the final sets of grazing post-mapping
are illustrated. The hollow symbol is the initial point for grazing mapping or the
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final point of grazing post-mapping. The circular symbolis the grazing point of the
grazing or post grazing mappings. The governing equations of mapping P; with the
final point on the boundary 9€2),4 in Q4 (@ € {p2, p3}) are expressed by

FY (0, X, @it =0;
(s Xk, Q15 Xkt1) (6.148)

Ppip2 Xk, k) =0, §0p1a(Xk+1, @i1) = 0.

From Luo (2009), the grazing necessary condition for mapping P at the singular
set T, in the sub-domain @, (, B = {p1, pa}, @ # B) is:

(p1) T
Gilan, ,, Rttt T ne) = Mg - FPV (g1, xi11) = 0. (6.149)

To guarantee the occurrence of the grazing flow at the singular points, the sufficient
condition is

hip, Gélgfiiz (Xt 15 L ) < 0. (6.150)

From Eqgs. (6.148) and (6.149), the initial set of grazing mapping is on an (n — 1)-
dimensional surface because of the (n+3)-equations with 2(n 4 1)-unknowns. Equa-
tion (6.150) is the sufficient condition for the initial set. The (n — 1)-dimensional
surface in phase space (mod (gi, 27), Xk NI2p, p,) is called the initial grazing mani-
fold. Such a manifold will be used in discussion of the strange attractor fragmentation.
Owing to ¢ = Qf, in computation, the switching time conditions ;41 > #; should
be inserted. The boundary 02, is given by ¢, o (Xk, @) = 0. In addition, equation
(6.136) should be satisfied. Similarly, when ¢ and k1 in Egs. (6.148)—(6.150) are
exchanged, the final grazing manifold can be determined through the final set of
grazing post-mapping under the condition in Eq. (6.139).

For higher order singularity, the grazing necessary condition for mapping P, at

the singular set F;,(i)a in domain Q4 (o, 8 = {p1, p2}, o # B) is:

2k, .P1)
aszﬁ,:,,zl (K15 tg+1)+) = 0. (6.151)

To guarantee the occurrence of the grazing flow at the singular point, the sufficient
condition is
(kpy+1,p1)
hip, 3921,2 (Xk+1, L+1y2) < 0. (6.152)

To investigate the strange attractor fragmentation of chaos through the switching
sets, consider each switching set &, consisting of a set of finite, independent subsets,

(ie, By = Ule S,;K) and K < 00) and the subsets possesses the following properties

SY) C By, SV NSH = @ik, € (1,2, K} butk # A (6.153)



6.6 Strange Attractor Fragmentation 351

Fig.6.23 a Local and b
global grazing mappings.
The filled solid circular
symbols are grazing points.
The hollow circular symbols
are initial switching points.
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For periodic flows, fixed points in the subset Sl.('f) for specific « are countable and
finite, and both the measure and Hausdorff dimension of all the subsets are zero.
However, from the definition of strange attractors for chaotic flows, the fixed points
in such bounded subsets are infinite and countable, and the corresponding Hausdorff
dimension is nonzero. In addition, the compact subsets are not hyperbolic. Based on
the mapping P; on the compact subsets of the strange attractor, the corresponding
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Fig.6.24 aLocal and b =
global grazing
post-mappings mappings.
The filled solid circular
symbols are grazing points.
The hollow circular symbols
are initial switching points.
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flows in domains are dense. All the subsets form the strange attractor of chaotic
flows. The denseness of flows on subsets in the strange attractor will cause more
possibilities for the strange attractor to access at least one of the initial grazing
manifolds. However, the flows in periodic motions have less possibility to access
the initial grazing manifolds. Without chaotic flows, the transition between the pre-
and post-grazing periodic flows can be carried out by a grazing catastrophe. The
grazing of periodic flows will be further discussed. To describe the fragmentation
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of the strange attractors in chaotic flows in discontinuous dynamical systems, the
bounded subsets of the strange attractors are used as the initial and final sets of the
local and global mappings.

Definition 6.11 For a discontinuous dynamical system in Eq.(6.91), the subsets
S By (ko =1,2,--- ,K)and S € E,,(h = 1,2, .-+, L) are termed the
initial and final subsets of the mapping P; (J € {1, 2, - - - , N}) if there is a mapping
Py Sy — 8¢ (@q2 €40, 1,2, MY, q1 # q0).

For convenience, after grazing, the post-grazing mapping structure is

Spy=Pj. 0 Pjo--0PnoPy =P 0 Py 1. (6.154)

post-grazing mapping cluster
Once the intersection exists between the invariant subsets of strange attractor and
one of the initial grazing manifolds of generic mappings, the strange attractor frag-
mentation will occur. For a subset S;'l() and an initial, grazing manifold VT, relative
to a mapping Py, if S,;'f) N DT, # @, then the final subset of the mapping P,
will be fragmentized. If one of the all initial, grazing manifolds is tangential to one
of the strange attractor subsets, the strange attractor fragmentation may appear or

vanish. Thus, a mathematical definition of strange attractor fragmentation is given
as follows.

Definition 6.12 For a discontinuous dynamical system in Eq.(6.91), there is a
mapping cluster P, ,,) with s mappings to generate the strange attractor of
chaotic flows on the switching set E, (¢ € {0,1,2,---, M}). For a mapping

Py o Y — S W e (1,2, Ny, if O = 550 nOr; # o
and S% = Fs¥ yUgld y O then O = s N Or; % o with
S;;‘) = FS;;") U US;;") u® 1'[,(1)2‘) exist to make the following mappings hold

P : (i)]‘[((ﬁ) N (f)G(JK), for (f)G(]K) C (f)G]7 (6.155)

Py US;’l() — US;;‘) and Py : FS;’I() — FS;’Z\). (6.156)

For the post-grazing mapping cluster © Py = P, o Pj, o---0 Py, o Py, if there
is a mapping chain as

Py P Py,
Fe) M Fokr) | Forkn—1) In Foy(,) L F ¢(b)
Sq’f L Q(p"ll Pt Q[p’; — 85 (6.157)

The union of all the switching sets generated by the mapping cluster of ¢ Py, A, =
Ul’.’lelgf") (‘212:") C By, for pi € {0,1,2,---, M}) is termed the fragmentation set

of the invariant set Sfl'f) C By, under the mapping cluster P, ,,)-
To intuitively demonstrate the concept introduced above, consider the invariant

subsets of a strange attractor on the boundary 92, ,, for the following mapping
structure
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Fig.6.25 a Invariant subsets and b invariant initial manifolds of grazing mapping on the boundary

I2p;
(6.158)

P..j,1 0y dy gz =020 Py 0(Pj0oPp)oPpoPpo- -0
m—sets

(6.159)

The invariant sets are generated by
= Pogyinyn iz 000 Pooly( i s

@)
P~~J4(1112)”’1113“~
[—o00

and the corresponding invariant sets on the boundary 92, , are
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F o(x)
mod(g,,27) 9

Fig.6.26 Invariant sets fragmentation on the boundary 92, ,

B¢ = UrH S and 8y, = Ut s (6.160)

The foregoing invariant subsets are illustrated in Fig. 6.25a through the filled areas
on the switching plane (mod(g;, 27), X;) N 982y, »,. The mapping relation for the
mapping structure in Eq.(6.148) is also presented. The initial grazing manifolds
O, (J e {J1, Ja, J3, Ja}) are sketched by the dashed curves in Fig.6.25b in
the switching planes. For this case, E,, NPT, = @ and E;, N VT, = o,
no fragmentation of the strange attractor occurs for the aforementioned map-
ping structure. If B4 N O, £ @ and/or 8y N O, £ @, the fragmenta-
tion will occur. The fragmentation of strange attractors on d€2,, p, is sketched in
Fig.6.26. Suppose V1% = S%' N OT,;, # & be represented by solid sym-
bols, S3) = Fs& uUsk U (i)H(J';). The initial grazing manifold is depicted by
the dashed curve. After fragmentation, two new invariant sets Ql;'?) C &y, and

Q(,(I'fl) C &y, exist, which are showed by hatched areas. The non-fragmentized map-

ping are: Py, : USg) — USfl'f+l) and the mappings relative to the fragmentation

are: Py, : FSW) %0 pyoc i) %) and Py, A% — FSEHY From
the new subsets to the non-fragmentized subsets, the final manifold of the post-
grazingOT J,, expressed by the dotted dash curve, separates the invariant subset into
two parts U S5« TV UF ST plus the intersected set O T T = s¥+n O, 2 o
Note that if O TT ;? possesses n-values, there are n-pieces of non-intersected, invariant
subsets in Ql(({lz) As n — 00, countable, infinite pieces of non-intersected invariant
subsets are obtained by such an attractor fragmentation. The initial sets of grazing
mapping are presented and the corresponding, initial grazing manifolds are presented.
Finally, the grazing-induced fragmentation of strange attractors of chaotic motions in
discontinuous dynamical systems is discussed. The theory for such a fragmentation
of strange attractors should be further developed.
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6.7 Fragmentized Strange Attractors

To demonstrate the fragmentized strange attractor, consider a periodically excited,
piecewise linear system as

X + 2dx + k(x) = a cos Qt, (6.161)

where X = dx /dt. The parameters (€2 and a) are excitation frequency and amplitude,
respectively. The restoring force is

cx —e, for x € [E, 00);
k(x) =10, for x € [-E, E]; (6.162)
cx +e, for x € (—oo0, —EJ;

with E = e/c. The foregoing system possesses three linear regions of the restoring
force (Region I: x > E, Region II: —F < x < E and Region III: x < —F). From
Egs. (6.161) and (6.162), the dynamical systems in Regions I and III do not have any
singularity. The motions of dynamical systems in Region I and III are finite. In Region
IL, the motion of dynamical systems is unstable. However, the displacement of the
domain on which the dynamical system is defined is bounded. Since the velocity is
the derivative of displacement with respect to time, the flows of the system in the
displacement-bounded, Region II is bounded.

The phase space in Eq.(6.161) is divided into three sub-domains, and the three
sub-domains are defined by

Ql = {(x7y)|-x € [Ev OO)»y S (—O0,00)},
QZZ{(J@Y)“C6[_E7E],y€(_00,00)}, (6163)
Q3 ={(x,y)|x € (—00, —E], y € (—00,00)}.
The entire phase space is given by
Q=U_ Q. (6.164)

o

The corresponding boundaries are

3912=Qmszz={(x,y)|<mz(x,y)EX_E:OL} (6.165)

0Q03 = 2N Q3 = {(x, y)|ga(x,y) =x + E =0}.

Such domains and the boundary are sketched in Fig. 6.27. From the above definitions,
Eqgs. (6.161) and (6.162) give

x@ = FO @ 1 u,, m)fora =1,2,3, (6.166)

where
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F(l)(x(l), LU, ) = (y(l), —Zdy(l) —cexW 4+ gqcos a)t)T, for x e Q;

FOx? 1,1y, 1) = 6@, —2dy? + acoswt)T, for x@ e Q;
FO O ¢, Uz, ) = (y(3), —Zdy(3) —cx® +acoswn)T, forx® e Qs.
(6.167)

Note that u; = 3 = (c, DT, u, = (0, )T and r = (Q,a)T. To investigate the
global dynamics of Eq. (6.161), an understanding of the local singularity of the flow
the boundary is very important. From Eq. (6.165), the normal vectors of the bound-
aries (i.e..nyq,; = Vg;;) is given by

Ny, = Mhoy, = (1,0)". (6.168)
From Eqs. (6.167) and (6.168), one gets

g, FOD . m) =yV nly FOD t oy, 1) =y@: (6.169)
ng§223 - F® (X(z), tly, ) = y(Z)v ng§223 -FO (X(S)v t, U3, ) = y(3)'

From Egs. (6.168) and (6.169), points (£ E, 0) are critical for a flow to be tangential
to the boundary. From Luo (2006a, 2009, 2011), the grazing bifurcation of a flow to
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the boundary in this discontinuous system are

M =, jz(l) >0atxV = E,
@ =0,y >0atx? = —E,
@ =0,7? <0atx® = E,
@ =0,5 <0atx® = —E.

(6.170)

= e =

Therefore, in the neighborhoods of the two equilibrium points, the local topologi-
cal structures of flows in the system given in Eq.(6.161) are sketched in Fig. 6.28.
The detailed discussion can be refereed to Luo (2006b). The switching sets and
mappings can be defined in Eqgs.(6.106)—(6.110). The mappings are switched in
Fig.6.20. Consider the initial and final states of (¢, x,x) to be (#, xx, yx) and
(tk+1, Xk+1, Yk+1) in the sub-domain 2, (o = 1, 2, 3), respectively. The local map-
pings are { Py, P3, Ps5, Pe} and the global mappings are { P>, P4}. The displacement
and velocity equations in the linear system in Eq. (6.161) with initial conditions give
the governing equations for mapping P; (j =1,2,---,6), i.e,,

)
(XK Vs T Xk 15 Yet1o tk1) = 0,
Pj_[fl Y. +1s Yh+1s Tt 6.171)

fz(j)(Xk, Vies tes Xkc-1s Vi1 te+1) = 0.
The necessary and sufficient conditions for all the six generic mappings are:

D _ o
Vi1 =05

30 = acos gyt > 0for P (j = 1,2,6), 6.172)
3 = acosQuy < 0for Py (j =3,4,5).
With the foregoing equation, once one of the initial time and velocity is selected, the
grazing bifurcation can be determined.

The fragmentation of strange attractors in chaotic motion is illustrated by the
Poincare mapping sections for four sub-switching planes. As in Fig.6.21, the sub-
sets (i.e., E7 and Ep) of the switching plane Zi, for strange attractors are on
the upper and lower dashed line. Similarly, the subsets (i.e., E3 and E4) of the
switching plane E34 separated by a dashed line are presented as well. The dashed
curves are the initial grazing, switching manifolds computed by Eq.(6.172) for
specific parameters. The location of grazing points are labeled by “Grazing”. The
parameters (@ = 20,¢ = 100, E = 1,d = 0.5, and x; = 1) are used. Con-
sider a motion with a single grazing first for 2 = 2.10 and the initial condi-
tion (mod(Q#tx, 27), yx) ~ (6.1117,6.5251) at x; = 1. The Poincare mapping
sections are plotted by the switching planes in Fig.6.29 for a strange attractor
of chaotic motion relative to mapping structures (Pe43(12)1, Pos31 and Pg(45431).
The initial, grazing switching manifold of P, has three intersected points with
the strange attractor in E; Based on three intersection points, the grazing points



6.7 Fragmentized Strange Attractors 359

8.0

»
o

Switching Velocity, y,
o
o

8oL Lo Lo \\ \\\\\ |
0.0 2.0 4.0 6.0
Switching Phase, mod(Q,,27)
(a)
8.0 [ 7
: / =
E ml—/
= 40 F /
5 b/
ER .
(5] C 4
> ol e N>
=y 00 E ( /\_ " Grazing
g T N //
& 40
_8-0:\\\\\\\\\|\\\\\\\\\\\\\\\\\l\
0.0 2.0 4.0 6.0

Switching Phase, mod(Qt,, 2m)
(b)

Fig.6.29 Chaotic motion associated with mappings (Pe45)431, Pea31 and Pea3(12)1) : a subsets of
switching plane Z12 (EjandE>) and b subsets of switching plane E34 (E3zandE4). (@ = 20, ¢ =
100, E =1,d =0.5, Qt = 6.1117, xy = 1, yp & 6.5251 and Q = 2.1)

are (mod(Qtx, 2m), yk) ~ (2.056,0.0), (2.087, 0.0) and (2.094, 0.0), labeled by
“Grazing”. The new invariant set of the strange attractor has two branches in both
E1 and E; compared to the strange attractor relative to Pe431. Hence, there are two
mappings of P, : E» — E; and one mapping of P; : E1 — &j. The chaotic motion
is relative to the mapping structure Pg43(12)1 and Pg431. However, for the switching
section of E3, the initial, grazing switching manifold of mapping Ps is similar to
mapping P> which possesses three intersected points with the strange attractor. The
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Fig.6.30 Fragmented strange attractor for chaotic motion associated with mappings
(Pe4s)431, Poaz1 and Pea3(12)1) : a subsets of switching plane Ej2 (EjandE;) and b subsets of
switching plane E34 (EzandE4). (@ =20,¢ =100, E =1,d = 0.5, Qt =~ 5.7257, x; = 1, yp =
6.2363 and Q2 = 1.89)

grazing locations are close to (mod (%, 27), yx) &~ (5.200, 0.0), (5.229, 0.0) and
(5.235, 0.0) accordingly. The initial grazing manifold of mapping P; is almost tan-
gential to the strange attractor at point mod(S2t, 27), yr) ~ (5.24,2.93) in &E;.
Some points in the strange attractor in & and E, are close to the grazing point
(mod(L21y, 2m), yr) ~ (0.0193,0.0), as shown in Fig.6.29. Similarly, the initial
grazing manifold of mapping P3 almost tangential to the strange attractor is observed.
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Fig.6.31 Chaotic motion relative to mappings (Pe45)43(12)1, P6(45)43(]2)21 and P6(45)243(|2)|) :
a subsets of switching plane Ej, (EjandE;) and b subsets of switching plane E34 (E3zandEy4).
(a=20,c=100,E =1,d =0.5, Qf ~ 0.1062, x;y = 1, yp ~ 2.4511 and 2 = 1.4)

Further illustrations of the fragmentized attractor relative to mapping Pe431 are
given for a better understanding of strange attractor fragmentation. For
Q2 = 1.89 with the same other system parameters, the fragmentized strange attrac-
tor of chaotic motion at x; = E is presented in Fig.6.30 with (Q1, yr) =
(5.7257,6.2363). The shape of the strange attractor is distinct from the one in
Fig.6.29. The grazing locations on the switching set E1, are close to (21, yx) ~
(2.018, 0.0), (1.991, 0.0), (1.956, 0.0) and (1.929, 0.0). The grazing locations on
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the switching set B34 are near by (1, yr) &~ (5.159, 0.0), (5.133, 0.0), (5.098, 0.0)
and (5.071, 0.0). It is observed that the two fragmentized attractors are distinguish-
ing. With varying system parameters, such fragmentized strange attractors of chaotic
motions will disappear. For instance, decreasing excitation frequency yields the sym-
metric and asymmetric, periodic motion relative to mapping Pe45y43(12)1. If the graz-
ing of the asymmetric periodic motion occurs, the fragmentized strange attractor
will exist. Consider another excitation frequency €2 = 1.4 with the initial condition
(R, yv) ~ (0.1062,2.4511) at x; = E. The Poincare mapping sections of the
strange attractor of chaotic motion are shown in Fig.6.31. There are three branches
of the strange attractor. The initial, grazing manifolds of the mappings P, in Ej
and Ps5 in E4 have one intersected point with one of three branches of the strange
attractor, and the corresponding grazing points are (g, yr) ~ (1.876,0.0) and
(5.0375,0.0) at E12 and Ea4, respectively. Owing to grazing, one of three branches
of the strange attractor is produced by such a grazing. Thus, the strange attractor of
the chaotic motion possesses the mapping structures of Pe45)43(12)1, P6(45)2 43(312)1
and Py 45)43(12)21 - The other fragmentized strange attractors of the chaotic motion
can be illustrated in the similar fashion.

From the foregoing discussion, the initial and final grazing, switching manifolds
are invariant for given system parameters, which is an important clue to investigate the
mechanism of strange attractor fragmentation. The criteria and topological structure
for the fragmentation of the strange attractor need to be further developed as in
hyperbolic strange attractors. The fragmentation of the strange attractors extensively
exists in discontinuous dynamical systems, which will help us better understand
motion complexity in discontinuous dynamic systems.

From this investigation, the dynamical behaviors in dynamical systems may not
need the Axioms in Smale (1967). The corresponding spectral decomposition of
diffeomorphisms can be directly obtained from the switching sets of discontinuous
boundary. The strange attractor fragmentation caused by grazing singularity is a key
to open the door for the topological structures of chaos in dynamical systems. The
hyperbolic set needed in Smale (1967) may be for separatrix as a hidden discontinuity.
No matter how, the continuous flow should be employed to discuss the topological
structures of chaos, rather than mappings only.
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Appendix A
Linear Continuous Dynamical Systems

In this Appendix, the theory of linear systems will be presented to review the
traditional linear dynamical systems. Separated linear systems and diagonalization
of square matrix will be discussed first. The linear operator exponentials will be
presented. The fundamental solutions of autonomous linear systems will be given
with the matrix possessing real eigenvalues, complex eigenvalues and repeated
eigenvalues. The stability theory for autonomous linear systems will be discussed.
The solutions of non-autonomous linear systems will be discussed and steady state
solutions will be presented. A generalized “resonance” concept will be introduced,
and the resonant solutions will be presented. Lower-dimensional linear systems
will be discussed in detail for solutions and stability.

A.1 Basic Solutions

Definition A.1 Consider a linear dynamical system
X = Ax+ Q(r)fort € Zandx = (x,x2,...,x,)" € R" (A.1)

where X = dx/dt is differentiation with respect to time z. A is an n X n matrix and
Q(¢) is a continuous vector function. If Q(7) = 0, the linear dynamical system in
Eq. (A.1) is autonomous. Equation (A.1) becomes

x = Axfort € # andx € #" (A2)

which is called an autonomous linear system or a homogenous linear system. With
an initial condition of x(#y) = X, the solution of Eq. (A.2) is given by

x(1) = Alx,, (A.3)

If Q(¢) # 0, the linear dynamical system in Eq. (A.1) is non-autonomous, and such
a non-autonomous system is also called a nonhomogenous linear system. With an
initial condition of x(#y) = xo, the solution of Eq. (A.1) is given by

A. C. I. Luo, Regularity and Complexity in Dynamical Systems, 365
DOI: 10.1007/978-1-4614-1524-4, © Springer Science+Business Media, LLC 2012
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t

x(t) = O()D (10)x0 + / O(1)® ' (7)Q(t)dr. (A.4)
t

where @(¢) is a fundamental matrix of the homogenous linear system in Eq. (A.2)

with

D(r) = AD(r) for all t € I C . (A.5)

Definition A.2 For a linear dynamical system in Eq. (A.2), if the linear matrix
A =diag(A, 22, ..., A,) is a diagonal matrix, then the linear dynamical system in
Eq. (A.2) is called an uncoupled linear homogenous system. With an initial
condition of x(fy) = X, the solution of the uncoupled linear homogenous solution
is

x(1) = diag[e™ ™10 /2070) gl (A.6)

Theorem A.1 Consider a linear dynamical system x = AX in Eq. (A.2) with
the initial condition of x(ty) = Xo. If the real and distinct eigenvalues of the

nXn matrix A are Ay, Aa,..., ,, then a set of corresponding eigenvectors
{v1,V2,...,V,} is determined by

(A — )LiI)Vl' =0 (A7)
which forms a basis in Q C #". The eigenvector matrix of P = [v1,Va,...,V,] is

invertible and

P 'AP = diag[iy, 72, . . ., ). (A.8)

Thus, with an initial condition of x(ty) = Xo, the solution of linear dynamical
system in Eq. (A.2) is

x(1) = Pdiag[e"!710) eR(=10)  o=t0)]p=lx
() = Paiage” ) Py, o)
= PE(Z — l())P_ X0
where the diagonal matrix E(t) is given by
E(r — 1) = diag[e"'™"), e(710)  Mli=i0)], (A.10)

Proof Assuming x(t) = Ce* = Cve* | equation (A.2) gives (A — AI)v = 0. Since
det(A — AI) = 0 gives real and distinct eigenvalues A; (i = 1,2,...,n), one gets
(A — )v,'I)V,' =0.
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[Avi,Avy, ..., Av,] = [41v1, Aava, .. Ay V).
Deformation of the foregoing equation gives
AV, Vo, V] = Vi, Vo, . V] diagAy, Aoy ey A
Further
AP =Pdiag[li, Aoy . . .y An).
The left multiplication of P~! on both sides of equation yields
P'AP = P 'Pdiag[l, 2a, . . ., 2] = diag|in, Ja, ..., 1.
Consider a new variable y = P~'x. Thus, application of x = Py to Eq. (A.2) yields
y =P 'x =P 'Ax = P APy = diag[)1, Ja, . . ., 2]y.
With initial conditions y, = P~'xo, the uncoupled linear system has a solution as

Ji(t=to) ,2(t—to) 2

y(¢) = diag[e ,e s )y
Using x = Py and y, = P~ 'xo, we have

x(1) = Pdiag[e"70) #1170 M=) p=lx; — PE(t — 10)P~'xo
where

E(t—1) = diag[emt*’“), e (i) ei”<’7’°>].

yee
This theorem is proved. |

It is very important to compute the eigenvector, which is a key to obtain the
general solution of linear dynamical systems. The eigenvector of v; is assumed as

1
vV, = {ri}v,‘. (All)
From Eq. (A.7), we have

an — A by } { 1 }v,- —o0. (A.12)

Ch—tyx1 An — Al nxp-n | | T

where the minor of matrix A is A, and other vectors are defined by
Cn-1)x1 = (ail)(nfl)xl(i =2,3,.. .771)
bixn-1) = (a1}) 11y = 2,3,...,n) (A.13)
An = (aij)(nfl)x(nfl)(iﬂj = 27 37 <. '7”)
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Thus,
ri= (A — iil(nq)x(nq))_lcnxl- (A.14)
The solution of linear dynamical system in Eq. (A.2) is
x(t) = 27:1 Cyv;eitt=h)
=[vi,v2,..., Vn]diag[ei‘(t*")), el eM’*’U)]C (A.15)
= Pdiag[e™ ™) 200)  oMl=0)]C
where
C=(C,C,...,C)" (A.16)
For ¢ = 1y, the initial conditions is x(¢) = X¢. Thus,
C=P'xp. (A.17)
Therefore, the solution is expressed by
x(1) = Pdiag[en1710) hl=0) A=) ]p~ly) — PE(t — 1o)P 'xo.  (A.18)
The two methods give the same expression.

Theorem A.2 Consider a linear dynamical system X = AX in Eq. (A.2) with the
initial condition of x(ty) = Xq. If the distinct complex eigenvalues of the 2n x 2n
matrix A are /; = o; + iff; and Z,- = o; — iff; with corresponding eigenvectors w; =
v +iv; and w; =w; —iv; (j=1,2,...,n and i = v/—1), then the corresponding
eigenvectors w; and v; (j = 1,2,...,n) are determined by

(A = (% +if))T) (w; +iv;) = 0, or

(A — (o —iB)T) (w — iv;) = 0. (A.19)

which forms a basis in Q C #*". The corresponding eigenvector matrix of P =

[wy, vy, a2, Vo, ..., 0,,V,] is invertible and
P 'AP = diag(B,B,,...,B,). (A.20)
where
T P
B']_[_ﬁ.i aj](}—l,z,...,n). (A21)

Thus, with an initial condition of X(ty) = Xo, the solution of the linear dynamical
system in Eq. (A.2) is

x(1) = PE(t — 1))P"'xo (A.22)
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where the diagonal matrix E(t — ty) is given by

E(t) = diag[E (t — t9), Ex(t — 10), .. ., B, (t — 19)],
cos B;(t —to)  sinf;(t — to) (A.23)

E;(t — 1)) = %) '
i ( o) =e —sin ﬁj(t —1ty) cos 'Bj(t — 1)

Proof Assuming x(f) = Ce” = Cwe’, equation (A.2) gives (A — I)w =0.
Since det(A — AI) =0 gives n distinct pairs of complex eigenvalues 4; = o; +
if; and 4; = —iB; (j=1,2,...,n), with conjugate vectors w; =u; + iv; and
w; = u; — iv;, we have
(A = oDw; + flv; = 0,
—pIu; + (A — oI)v; = 0.

Allj = (Ujvvj){ _O%]} and Avj = (uj’vj){ gj }

A(w;,v;) = (w;,v)) [dkj fﬂ

Assembling A(u;,v;) for (j=1,2,...,n) gives

o [m B[ B L
AP_Pdlag({_él a:}’{—éz “i}""’[—ﬁn ocnb

where
P=(u;,vi,up,vo,...,u,,V,).
The left multiplication of P~! on both sides of equation yields

B B o By w B o By
P'AP:PlPdiag([ ][ ][ ])
=By ] [-B » B o

) o ﬁl 0% Bz Oy ﬁn
dtag([ 1,[ ],...,[ ])
=B —pr =B, o

Consider a new variable y = P~'x. Thus, application of x = Py to Eq. (A.2) yields

y=P 'x=P 'Ax =P 'APy

N A B B
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With the initial condition, y, = P~!xo, the uncoupled linear system has a solution
as

y(t) = diag[E (t — t0), Ex(r — 19), . . -, Eu (2 — 10)]y¥o
=E(t — 1)y,
where

E(r —10) = diag[E (1 — 10), Ea(t — 1), .. ., Ex (1 — 10)],

cos f;(t — to)  sin B;(t —to)
E;(1 — 1) = ¢4
—sin B;(t —to) cos B;(t — o)

Using x =Py and y, = P~ 'x,, we have
x(1) = Pdiag[E,(t — 10), Es(t — 1o), ..., En(t — 10) P~ 'xo
=PE(t — 1)P 'xo.
This theorem is proved. u

Compared to the real eigenvectors, the computation of the complex eigenvectors
is much complicated, and the corresponding, detailed procedure is presented herein.
The conjugate complex eigenvectors are assumed as

u; +iv; = C,-{ 1} } and w; —iv; = C,{ ; } (A.24)
where the conjugate complex constants are assumed as
1 _ 1
C,' = = (Ml — lN,) and Ci = = (Ml —+ iNi),
2 2 (A.25)

r; =U; +iV;andr; = U; —iV,.

From Eq. (A.19), we have

ap — o; — ip; b1 (-1 1 c—o (A.26)
Cn—1)x1 Ay — (o + 1)1y (n—1) | | T L .

Thus, the foregoing equation gives

Cc+ [(All — OC,'I) — iﬁil]l‘[ = 0, (A27)

-1
r;, = [(All — OC,'I)Z + ﬁlzl] [(A]] - O(l‘I) + iﬁ,I c= Ui + iV,‘, (AZS)
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where

U = [(An — 1)’ + ﬁ?l} h (A — e,

Vi= [(All — o 1)* + ﬁizl} 71[{50- (A.29)
The solution of the linear dynamical system in Eq. (A.2) is

a1 . 1 i
x(r) = Zizl 2 (M; — lNi){ U4V, }e( i+iB;) (1=t0)

(M; +iN;) ! (1) (1=to)
U, —iV;

i ( )
= E cos fB;(t —t
M;U; + N;V; 0
{Ni
+
N;

+

N —

n ai(t—1o

e )
- } sin f3;(¢ — fo)]
L g%ilt=10) [(M,-{ ! } +Ni{ ) })cosﬁ[(t — o)
i= U; Vi
+(Ni{1 } _Mi{o })sinﬂi(t—fo)]
U; Vi

cos Bi(t —19)  sin (1 —10) | | M;
—sinf;(t —t9) cosfBi(t—1) | | N

=PE(r — 1)C (A.30)

- i=1

e (v [

where
P= [u17V1;"'7ul’lvvn]7
E(t —19) = diag[E (t — 19), Ea(t — 10), .. ., En(t — 19)],
C = (M17N17 .. '>Mn7Nn)T7
Ei(l‘ _ t()) _ eau(titn) |: CO'S ﬁi(r - [0) sin ﬁi([ - t()) :| ’ (A31)
—sinfi(t —19) cos Bi(t — o)

1 0
u = and v, = .
{Ui} {Vi}

For ¢ = 1y, the initial conditions is X(¢) = X¢. Thus,

C =P 'x. (A.32)
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Therefore, the solution is expressed by

x(1) = Pdiag[E, (¢ tlto)aEz(f — o), En(t — 10)]P™"x0 (A.33)
= PE(Z‘ — l())P X0

The two methods give the same expression.

Theorem A.3 Consider a linear dynamical system X = AX in Eq. (A.2) with the
initial condition of x(ty) = Xo. If the eigenvalues of the n x n matrix A possesses
p-pairs of distinct complex eigenvalues with /; = o; +i; and Ej = o; — if; with
corresponding eigenvectors W; = w; +iv; and wi=w; —iv; (j=1,2,...,p and
i=+/—1), and (n — 2p) distinct real eigenvalues of Japi1,%2p12; - - 7, then the
corresponding eigenvectors w; and Vv; for complex eigenvalues (J;, ;Ij) G=
1,2,...,p) are determined by

(A — (OCj + iﬁj)l) (llj + iVj) =0, or

(A = (o5 —iB)T) (w; —iv;) = 0 (A.34)
and the eigenvectors {V2p+1 s VP25 e v, } for real eigenvalues are determined by
(A — )ul‘I)Vi = 0 (A35)

which forms a basis in Q C R". The eigenvector matrix of
P=[u,vi,uy, Vo, ..., Uy, Vp, Vopi1, Vopi2, - - -, V) (A.36)
is invertible and

P 'AP = diag(B1,Ba, .. .,By, Jopi1, A2pi2s - s An) (A.37)

where
B = [—%ﬁj ﬁ-’}(j:l,z,...,n). (A.38)

Thus, with an initial condition of x(ty) = Xo, the solution of linear dynamical
system in Eq. (A.2) is

x(1) = Pdiag[E,(t — 1), Ex(t — t9), .. ., E,(t — 19),
grii=h) hapalt=to) e)‘”(’_"’)]P_]xo (A.39)

=PE(t — 1)P 'xo



Appendix A: Linear Continuous Dynamical Systems 373
where the diagonal matrix E(t — ty) is given by

E(t — ty) = diag[E(t — 1), Ex(t — 10), .. ., E,(t — 19),

ey (1—10)7 eizﬁz(t—ro)’ e eln(t—ro)];
(A.40)
cos fi(t — 1)  sinfi(t — 1)
E;(1 — 1) = &%) / / G=12...p).
—sin f;(t — ty) cos f;(t — o)

Proof The proof of the theorem is from the proof of Theorems A.1 and A.2. W

A.2 Operator Exponentials

Definition A.3 Consider a linear operator A : 2" — %" in linear operator space
(i.e., A € L(R")). The operator norm of A is defined by

l|A[l = max ||A(x)[| (A41)

IIxl[ <1

where ||x|| is the Euclidean norm of x € #". The operator norm has the following
properties for A,B € L(#") :

(i) ||A]|>0 and ||A|| = 0 if and only if A = 0.
(i) ||kA[| = k||A|| for k € .
(i) ||A+BJ|[<||A|l+|B]].

Definition A.4 Consider a sequence of linear operator Ay € L(#") and the linear
operator A € L(#"). For any ¢ > 0, there exists an N such that for k>N,

A — Agl| <e. (A.42)

Thus, the sequence of linear operator A; is called to be convergent to a linear
operator A as k — o0, i.e.,

lim Ay = A. (A.43)

Theorem A4 For A,B € L(#") and x € #",
0 [|Ax]] <[[A][ > ||,
(i) [[AB[| <[|A]| x [[B]], and
Giid) (A <[A]F"
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Proof
(i) Consider y = x/||x||. The definition of the norm of linear operator gives

[|Ax]|
x|

(ii) For |[x|| <1, the foregoing relation give

[|ABx|| < [|A] > |[Bx|| < [[A[] > [[B] x ||x[| < [|A]] x |[B]|

Al > [|Ay]| = = [JAx][ < [[A]] x [[x]].

Thus

[IAB[| = max [[ABx]| < [[A]] < [[B]]

(iii) For B = A, the foregoing equation gives ||A%|| < ||A[]*, and continuously
- k
[IAY < [|A] < (Al < [|A]I".

Theorem A.5 For A € L(#") and t € A with ty > 0, a series 1+ ;o | LA is
absolutely and uniformly convergent for |t| < to.

Proof For |t| <1y,

Ak AN 1A
15l I < IS

Using the Taylor series gives

k
ZO@ A" _ Al
Y

The triangle inequality gives

k
A7

00 At 00 Aklk 00
||I+Zk 1 Kl ||—Zk:0|| ! ||SZI<:0 k!

Therefore, the series I+, %Akt" is absolutely and uniformly convergent for
2] < to. |

Definition A.5 The exponential of a linear operator A € L(#") is defined by

k
_I—I—Zk 1EA (A.44)

If A is an n X n matrix, for t € X,

k
AM=T4+) " l—A (A.45)
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Theorem A.6 For A,B,P € L(#"),

(i) if P is nonsingular, then P AP — P~ lAP;
(i) if AB = BA, then A8 = 6B,
(i) e = (eA) .
(v) If A = I, then e* = ’1.

Proof
(i) Since the following relations exist

“'(A+B)P =P 'AP + P 'BP and
(P'AP)* = (P'AP)(P'AP)...(P"'AP) = P 'A*P,

Definition A.5 gives

P'AP _ oo 1 1 -1 k 1A
=D o (PAP) Py 0EAP Pl P.
(i1) Because
A/B
" _pl il
(A+B)"=n" > IR
Jt+k=n
(j=0,1,...,n)
we have
1 1 A/BF
A+B __ © b n__ RN | =2
€ _Zn:on!(A+B) _anon! (n! Z ;! k!)
Jjtk=n

(/=0,1,....n)

n
/OJIZkOklzeg'

(iii) If B = —A, then the case of (ii) gives
= A2 =t

Thus

(iv) If A = A1, from definition, one obtains

_I+Zklﬁlk Zklkl

This theorem is proved.
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Lemma A.1 For an n X n matrix A,

d At A
— A = AeM. A.46
Proof From the derivative definition,
A(t+Ar) _ LAt AAL T
At . € € : Ar €
— =lim—— =1
dt ¢ A}E}o At A}Lno ¢ At
=M lim lim (A +
At—0 mﬂoo
=AM,
This lemma is proved. ]

Theorem A.7 Consider a linear dynamical system x = AX in Eq. (A.2) with the
initial condition of x(0) = X¢. The solution of the linear dynamical system is
unique, which is given by

x = eM'xg. (A.47)
Proof From Lemma A.1, if x(¢) = e?'x exist, then for t € I C %, we have

d
X = o — (eMxg) = Aetxy = Ax.

In addition, x(0) = Ixg = Xo is an initial condition. Therefore, x(¢) = eA'xy is a

solution. If there is another solution x;(z) = e“A’x(t), then for t € I C %,

X1 (1) = e k(1) — Ae Mx ()
= e MAX(r) — Ae Mx(1)
= Ae Ax(1) — Ae Ax(1)
=0.

Thus, x;(t) = C (constant). Let t = 0, x;(0) = Ix(0) = X¢. So the deformation of

xo = e Ax(1) gives x(t) = eA'xq. This theorem is proved. [ |

A.3 Linear Systems with Repeated Eigenvalues

Definition A.6 Consider a linear dynamical system x = Ax in Eq. (A.2) with the
initial condition of x(0) = xo. If the n X n matrix A has an m-repeated real
eigenvalue of A with (m <n), then any nonzero eigenvector of

(A—D)"v=0 (A.48)

is called a generalized eigenvector of A.
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Definition A.7 An n x n matrix N is called a nilpotent matrix of order k if
N1 £ 0 and N* = 0.

Theorem A.8 Consider a linear dynamical system x = AX in Eq. (A.2) with the
initial condition of X(0) = X¢. There is a repeated eigenvalue J; with m-times

among the real eigenvalues Ai,Ay,...,%, of the n xn matrix A. If a set of
generalized eigenvectors {vi,va,...,v,} forms a basis in QC R". The
eigenvector matrix of P =[v|,va,...,v,] is invertible. For the repeated

eigenvalue A;, the matrix A can be decomposed by

A=S+N (A.49)
where

P 'SP = diag[);] (A.50)

nxn’

and the matrix N = A — S is nilpotent of order m <n (N = 0)with SN = NS.

P AP = diag(iy, ... -1, 24y s Ay Ams « - Jon). (A.51)
N——

m

Thus, with an initial condition of X(ty) = Xo, the solution of linear dynamical
system in Eq. (A.2) is

1 m—1 thk
x(1) =PE(P [T+ " | (A.52)
where
E(t) = diagle™’,...,e" " ", ... " ettt ™). (A.53)
——

m

Proof Consider the repeated real eigenvalue A; of the matrix A. The method of
coefficient variation is adopted, and the corresponding solution is assumed as

x) = CV)(r)e,
x0) = Vet 4 1,00 = ACD M,
Therefore,
CY = (A - 4)CY.
Let

cV) = V(i)vj and Cg) = Vg)vj.
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Consider the constant vector and eigenvector matrix as

V9 =(0,...,0,vY.0,...,0)"

P= (V[7 e Vi, Vi Vigg, . .,Vn).

Thus
PVO) = (A — PV = VY = P~1(A — Z1)PVU).
Let A =S + N, thus
NaUE STCHE S §) 29U
= (P7'SP — L1+ P 'NP)VV.

Because of P~!SP = diag[/;], the solution of the foregoing equation is
0 —a 1NP VO — m-1 PTINFPE )
V= +Z ) 0 _(I+Zk:1 k! Vo
m— N lk
S S T ) L
Therefore, the coefficient for the repeated eigenvalue 4;

; m— Ntk
ci =@+

Further
0 m— N tk
= e ]
Assuming
(/) - m—1 (J) lt k
7= k=0 Gy

one obtains

ke = NCY or (k+ 1)CY), = NCY.
If V,Ei) = vé”, then

k!v(’) Ny, (’) or (k+ )V,E’J)r1 = NV,({]).

Let

- 0) i T
C= (Vl>"'7‘/jflav() 7"'7V((jl)7‘/j+m7"'7vn> )
— —
m
P= (Vlv' c o Vi1 Vs oo oy Viem—1, Vitm, - - 'avn)-
~———

m
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Thus, there is a relation

P_]AP = diag[/ll, e ',;vj,],iﬁ .. ~7j~j7)tj+ma .. .,in],
N——

m

and the resultant solution is

X:X(l)+...+X(i71>+Xg>+XY>+"'+XZ)71 +XU+’”)+...+X(")

m
o i v thk
= Pdiag(e"?,... e et oM eht M) (14 E
————
m

For t = 0, using X = X, the foregoing equation give PC = x,, so C = P~ 'x.
Because of

(P~'NP) = P~'N‘P

One obtains

. . m—1 thk
x = Pdiag(e™!, ... "1 %t . et efnt oM (1 + ZT)PAXO
N—— .
k=1
m
, ) , LNk
= Pdiag(e"?,... e M el et P I + Z k' —)Xg.
S—— :
k=1
m
Therefore,
k k
m— lN t
x =PE()P~' (1 + Z — )Xo,
where
E(t) = diag(e™', ..., e 1eM . M ehmt L eMt).
This theorem is proved. ]

Consider the solution for repeated eigenvalues of a linear dynamical system as

x() = 3" eV, (A.54)
Xw(t) — o )b] it(C]EI (1) ) + e) t(kc(l () k 1) (ASS)

Submission of Egs. (A.54) and (A.55) into x = Ax in Eq. (A.2) gives

kO(A AN (CIVI Y — it (kNI 1) = 0. (A.56)



380 Appendix A: Linear Continuous Dynamical Systems

Thus fork =0,1,2,....m—2

(A= 4DCIVY — (k+1)cl) v, =0. (A.57)
With(A — /; I) _; = 0, once eigenvectors are determined, the constants C,E’) are
obtained. On the other hand, let
c? = (k+1)cY,. (A.58)
Thus, one obtains
nys (1) -0,
(A= 4DV, (A.59)
A= 2DV =v) | (k=0,1,2,...,m—2).
Deformation of the second equation of Eq. (A.59) gives
A0,...,0.vD VD 0 0)
—_— N———,— ——
j—1 m n—m—j+1
. (A.60)
=(0,...,0v) ¥ ¥ 0. 0)B;
S— —_——— ——
j—1 m n—m—j+1
where the Jordan matrix is
2 0 0 0 07
i 0 0 0
4 01 4 ... 00
B =| o : (A.61)
0 0 0 ... 4 O
LO 0 O ... 1 4d,.,
B = diag(0;_1)x(-1)sBY, 00 ji1)x (nm_ji1))- (A.62)
Thus
AP = szag(/l], ceey )jfl,B(j)|me, ;Lj+m’ oy )Ln), (A 63)
PilAP = diag(i], ceey ;Lj_l,BU)lme7 )Lj+;n, ceey /ln), '
where
— (v(D (-1 i) L) o (j+m) (n)
P=n"Y v vy v v v yee s, V) (A.64)

= (V],Vz, .. .,Vn).
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With Egs. (A.58), equation (A.54) becomes

where

eBt = diag(o(jfl)x(jflb ijta 0(n7m7j+1)><(nfmfj+l))7

i 1 0 0
t 1 0
2/2! t
ijz _ ezjt
M2 /m—=2)! "3 /(m—=3) "t/ (m—4)!
Lemt (m— 1) 72/ (m—2)! 3/ (m —3)!
¢ =0,...,0,cY,....c¥ o,.. .07
Jj—1 m n—m—j+1
Therefore,
x(1) = Pdiag (", . .. e, B ehint M) C
=PE(1)C
where

o= (cl,...,q_l,cg"),:..,cf,jll,cﬁm,..., )T,
E(t) = diag(e™?, ... e" 1" &bt ehint e,

From initial condition, we have x, = PC. So, C = P~ !x,. Further,
x(t) = PE(t)P"'xo = PE(¢)P'x,.
Deformation of E(¢) gives

E(r) = diag(e)"’, coL €00, L e/lnr)
m

+ diag(0, . . ., 0, (%)

mxm? 79

1 m—1 13k k
| } B N o 1 ) Nt
P = eI+ N+ ... + —1)!)me = eM(I+ Z k! Jwen-

(m — =1

381

(A.65)

(A.66)

(A.67)

(A.68)

(A.69)

(A.70)

(A1)

(A72)
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The m x m nilpotent matrix of order m is

o0 0 ... 00
1 0 0 ... 00O
N=|: ¢ ; (A.73)
0 0 O 00
0 0 O 1 0d,..
and
[0 0 O 0 0] 0 0 O 0 0]
0 0 0 0 0 0 0 O 0 0
_, 1 0 0 0 0 _ 0 0 O 0 0
N=1o0 10 oo o NT= :
: 0 00 0 0
100 0 ... 0 0],., L1 0 0 ... 0 0],,.m
(A.74)
where
N= dlag(o(] 1)x(j— 1)7N‘m><m’ (n—j— m+1)><(n—j—m+l))’
N2 = diag (0 1) 1) N Ly O 1<)
(A.75)
m— . Nt
N b= dlag(o(/fl)x(jfl)aN ‘mxm>0(n7j7m+1)><(n7j7m+1))'
Finally,
m— lN fk m— lN lk
x(f) OA+> 7 =P X = P+ (A.76)
where
E<t) = diag(ebta S e)hjilz e/l'/ta L) e)i/ta e/ljwta RS e;wz>‘ (A77>
e

The foregoing discussion shows how to determine the Jordan matrix and the
corresponding vectors for the repeated real eigenvalues. If one does not choose the
relation in Eq. (A.58), one can get the general form as stated in Theorem A.8.

Theorem A.9 Consider a linear dynamical system X = Ax in Eq. (A.2) with the
initial condition of x(0) = Xq. A pair of repeated complex eigenvalue with m-times
among the n-pairs of complex eigenvalues of the 2n x 2n matrix A is Z; = o; + if;
and ;'tj =o;—if; j=1,2,...,n and i = v —1). The corresponding eigenvectors
are w; = w; +iv; and W; = w; —iv;. If the corresponding eigenvector matrix of
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P = [u;,vi, U, Va,..., Uy, V,] is invertible as a basis in Q C #*". For the repeated
complex eigenvalue 4;, the matrix A can be decomposed by
A=S+N (A.78)
where
—1 . % P
PSP = diag( ) s> (A.79)
—b %

the matrix N = A — S is nilpotent of order m <n (i.e.,N" = 0)with SN = NS.

P 'AP = diag[By,...,B;_1,B;,...,B;,Bji,...,B,], (A.80)
N——_——
where
By = [ i ﬁk}(k: 1,2,...,n). (A.81)
—Br

Thus, with an initial condition of x(ty) = Xo, the solution of linear dynamical
system in Eq. (A.2) is

X(f) = Pdlag[E1 (t), .. .,Ej_] (Z),Ej([), Ceny Ej(l‘), Ej+m(t), .. .,En(l‘)}P71
~—————

Nmfltm—l

(m—1)!

m—ltmfl

7(,%_ 1>!]Xo7

X [T+ Nr+---+ 1Xo (A.82)

=PE)P [T+ Nt +---+

where the diagonal matrix E(t) is given by
E(r) = diag[E\(1),.. . ,E;i_1(2),E;(?), .., E;j(t),Ei1n(t), .. ., E,(2)],
—_———

" (A.83)
cos fiit sin fiit
Ek(t) — eotktR(k) _ exkt . Bk ﬁk

—sin it cos fit
Proof Consider a pair of repeated complex eigenvalues with /; = o; +if; and
;“tj =o; — iﬁj of matrix A. The method of coefficient variation is adopted, and a

pair of solutions relative to the two conjugate complex eigenvalue is

Xglr') = CO(1)e ) and x¥) = CV)(r)e(s i),
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Assume the coefficient vectors for complex eigenvalues as

ci) — ub) 4 iv0) — Z(Um W0 + i)

%(Uwum + vy — %i(vmum _ gy,
and
cli) — yb) _jvi) — %(Uo‘) +iv0) ) — vy
%(Umum + VOV 4 %i(V(f)uU) _ gy,
Thus,
x4+ x0) = €O (1) HiH) 4 CU) (1)l 1)
— (U 4 VOB (U0) — U)o
(UY +iv¥)e +(U iV¥)e
- (um VU))e"/’ cosfit  sinf;t 94Y)
B ’ —sinfiz cospir | | VO [
Further,

cosfit  sinft

—sin it cospt

)
L)
(i)
19

xg +x) = e (uV), VU)[

—sin it cosft

n ﬁjeajz(u(j)7 V(i)) l cos ﬁjt slnﬁ t

+e“f’(u0),v<">) coFﬁjt sinf;t
—sin it cospt

cosfit  sinft

A )] Dy = A(a? . y0)) et
(xy +x¥) (u’,v7)e —sin it cospit

The equation of X +x¥ = A(x? +x) gives

Uv
(w0, Vo>)Ro>{ v }

170 0 1 N e [ UW
= {A - OC]|:0 1:|12n><2n +ﬁ]|:_1 0:|12nx2n}(u0)7v(/))R(1){ V(J) }

RU) — [ cosf;t sinﬁjt}

—sin it cospit |

where
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Consider the constant vector and eigenvector matrix as

DY) = (0,0,...,0,0,U9,v" 0,0,...,0,0)]
T = diag(0,...,0,RY 0,...0)"

nxn’

1x2n»

P=(u, Vi, W, Vi1, W, Vi Wi 1, Vi1 - - o Uy V).
Thus
500 — % B )
P(TDY) = (A — B L) P(TDY).
J J
Let A=S+ N, thus

DY = (T)"'(P~'SP — B;L,,.x5, + P~'NP)TDV)

o . 1 0 .
B, = [ jﬁj gj]szz = {0 1} and Ip,xo, = diag(Inxo, Ioxa, - - s 1ox2) -

Because of

lSP dlag( |:ﬁ _O(ﬁj :| )n><n = dlag( )n><n - Bj12n><2n
J J

the solution of the foregoing equation is

. m—1 [(T'P NPT * 5
D(]) = (IZVL><211 + Zk:l [( )| ( )] )D(()I)

NK(PT)?
I2n><2n + Z ) ( ) )D(({)

(T Iznxzn 4 Zm 1 N t PT D((.)/)

Therefore, the coefficient for the repeated complex eigenvalue of /;
ri{ U9 " el N rk Uy
v(i) 2n><2n + Z Véj) .
Further

. k k
) 0) _ pout cosfit  sinf;t m— 1N t
Xy +x2 =Pe {— sin ;1 cosfjt (Laan + Z
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On the other hand, assuming

0 () _ N 0) | COsPit sinfiit | ()
xp+xl=> . Die {—sinﬁjt cosf;t D

one obtains

KDY = N'DY or (k+ 1)DY), = NDY.
1t UV = UY and v = VY| then

kY = N or (k + l)u,ill1 — Nu!;

k!v,(j) = Nkvg> or (k+ 1)v,(<jJ)rl = NV,@.

Consider the total solution of the complex eigenvalues. Let

D= (Ulavlw--anfl»ijl?U(j)a (gj)a'--7U(()i)vv(gj)aUj+mvvj+ma"'7Un;Vn)Ta

m

P= (u17 Vi,.. '7“]‘717 Vj*la uj7vj7 .. ~>uj+m717 Vj+)11717uj+m7vj+m7 - ey Uy, Vn)-
Thus, there is a relation

P 'AP = diag[By,...,B;_1,B;,...,B;,Bj1n,...,B,]
N—_——

m

and, the resultant solution for the repeated eigenvalues is

n ; m—1 i i
x() = >0 U+ x)-a)+ > ) +x)

e thk
= PE([) Lyxon + Zk:l T D.

where the diagonal matrix E(¢) is given by

E(t) = diag |E(1),.. ,E;i_1(1), E;j(1), .., E;(t), Ejyn(1), .. ., Ey(1) |,

Eu(1) = e“"t{ cos [t sinﬁkt} .

—sin it cos fiit
For t = 0, using x = x¢, one obtains PD = x(, so D = P~ !xy. Thus,

-1 m—1 Nklk
X(1) = PE(OP™ Loy + ) 7| — %o

This theorem is proved. ]
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Consider the solution for repeated eigenvalues of a linear dynamical system as
X0 =37 el el b and x0 = 3" CDe)e E (A84)

Xglr') _ Z:“O (OCJ lﬂ])CU c(l i) ]t —i—kC(’)c e(x,ﬂ/i) 1 k— 1

(i m—1 . ~(N=0) (o—i AN =) (o—if;)e k—
0 = Zk:o (o — lﬁj)cl(cj e el ik 4 kCPe) el i

(A.85)

Submission of Egs. (A.84) and (A.85) into X@ = Ax@ and x¥) = AxY) gives

Z,Zol (A — (o + iﬁj)lznxzn]C,g)c,g)e(“f“ﬁf)’tk - kcg>cg)e(“f+iﬁ.f)’tk_' =0,

S IA (3 — i) L O e ke B < g,
(A.86)
Thus
A — (o + iﬂj)12n><2n]C/Ei)clg) (k + )C,E’Hckil =0,
[A = (o + i)l €Y — (k +1)CY) ), =0 (A.87)
(k=0,1,2,...m —2).

With [A — (o +iﬁj)l2nxzn] ,(,’l ;=0 and [A— (y —ip; )) e ,(,’l) , =0, once

eigenvectors are determined, the constants CU ) are obtained. On the other hand, let

c? = (k+ 1), and €Y = (k+1)CY),. (A.88)
Thus, one obtains
A — (o +ip; )Ian2n]ch 1 =0,
[A — (o + j)IZnXZH]c]E] - ck+1 =
m<wmezwm (4.89)
A — (4 — lﬁJ)IZ"XZH]éI(cl - ék+l =0
(k=0,1,2,...m —2).

Assuming

¢ =u! +iv? and ¢V =uY —iv¥ (A.90)

deformation of Eq. (A.89) gives

Awd )= | 4 D]

m—1> 1 "'m—1 .
&%

N L CTR . ) A.91
awf )= @l % Doy Y
J J
(k=0,1,2,...m—2);
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A(O,...,O,ug),vg),ugj),vgj),...,u(j) vV 0,...,0 )
——

m—1° "m—1>

——
2(j—1) 2m 2(n—(j+m)+1)
= (0,...,0,u0 ,Vg),ug’),vgl),.. ,uf,? I ,(,’) s 0,...,0 B,
2(j—1) 2m 2(n—(j+m)+1)

where the Jordan matrix is

DY) = %5 b and
_*,Bj o
B = diag(OZ(jfl)xz(/fl)a BO)>02(117m7j+1)xz(nfmfjﬁLl))
™Y 0 o0 ... 0 0]
Lo DY 0 ... 0 0
A 0 Lo DY ... 0 0
BY) =
0 0o o .. DY o0
o 0 0 0 12><2 DO)- 2mx2m
Thus
AP = Pdaig(DV .. DV=D BY DU+ D),
P 'AP = daig(DV,.. DV-V BV DU+ p))
where
P= (u('),v(') Ludh yi=D) ug>,vg),u?),v§7>,
- Er]z) LV (i) u(}+m V(/+m) ”.’u(n)7v(n))
= <u17vlau27V27- . ->unvvn)'
Suppose two conjugate constants are
. 1 . . iy 1 . .
' =5 W) —iv)and ¢’ =2 (U +iv).

With Eq. (A.88), Eq. (A.83) becomes
x0) (1) = x¥ + x0)
_ Z C(I c/ e (0y+iB))t #* + Z C(/ cl((/) (o5~ 13,)

@?,v0 ¥ 30 0 Y0 )eBrct)

=My Vo, Uy, Vity e o Wy g,y

(A.92)

(A.93)

(A.94)

(A.95)

(A.96)

(A.97)
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where
I RY 0 0 0 ]
R RY) e 0 0
RY)¢2 /2! RY)¢ 00
M= e ' ' o | (A98)
RD2/(m—2)! RV 3/ (m—=3) ... RO 0
| RV /m— 1)l ROP2/(m—2)1 ... RYr RV |
¢ =(0,..009 v . uY vP o,...0)" (A.99)
~—— ——
2(j—1) 2m 2(n—m—j+1)
Therefore,
X(t) = P‘flag(El (t)7 < '7Ej71(t)ﬂ eB/ta Ej+m(t)7 cey En(t))c (A100>
=PE(r)C
where
C = (U(l)a V<l)a RS U(j_l)a V(j_wa UO)? é])? ce Ui(rflla Vr(r{zl?
‘ ‘ (A.101)
yum ym g, V("))T;
E(t) = Pdlag(El (t)a e Ej—l (t)7 ijtij-ﬁ—m(I)7 .. -7En(t))-
For initial conditions, we have xo = PC. So, C = P’lxo. Further,
x(t) = PE(t)P'xo = PE(1)P'xo (A.102)
where
E(t) = diag(E (1), .. ., E;_1(1),e® B (1), ..., Ey(1))
= dlag(El(t)a Tt Ejfl (t)v 07 e ~707Ej+m(t)7 e ~7En(t)) (A103)

m

+ diag(0,...,0, ("), ., .0,...,0)
and

) m—1 thk
Bt = e RU(T 4 ZT)zmxzw (A.104)
=1
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The 2m x 2m nilpotent matrix of order m is

r 0 0 0 ... 0 07
Ly, 0 0 ... 0 0
~ 0 Lo 0 ... 0 0
0 o o ... 0 o0
L 0 0 0 ... Ly 04, .,
and _ _
0 0 0 0
0 0 0 0
) 12><2 0 0 0
T 0 I 0 0 ’
L 0 0 0 0_ 2mx2m
(A.106)
0 0 0 00
0 0 0 00
n—1 0 0 0 0 0
N = : T :
0 0 0 00
szz 0 0 00 2mx2m
where
N = diag(02-1)x2(-1)s Nlamscams 02n—j-mt1)x2(0—j-m+1))s
) <2
N? = diag(02-1)x2(-1), N Lmscam: 020—j-m+1)x2(n—j-m+1))
(A.107)
— . om—1
Nl = diag(0z-1)x2(-1), N Loscom O2(n—j-m1)x2(n—j-m-+1))
Finally,
m— N t
x(1) OT+> " =P 'x
Nkk (A.108)
B _1 m—1 t
— PE()P (I+Zk:1 )Xo
where
E(1) = diag(EY,..,EV-D gV BV EUm g, (A.109)
N’
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The foregoing discussion shows how to determine the Jordan matrix and the
corresponding vectors for the repeated complex eigenvalues. If one does not choose
the relation in Eq. (A.88), one can get the general form as stated in Theorem A.9.

A.4 Nonhomogeneous Linear Systems
Definition A.8 For a linear dynamical system X = Ax in Eq. (A.2), there is a
fundamental matrix solution ®(7) to satisfy

®(r) = AD(r)for all t € X (A.110)
where ®(¢) is an n X n nonsingular matrix function.

Theorem A.10 For a linear dynamical system x = Ax + Q(¢)in Eq. (A.1) with
the initial condition of x(ty) = xo, if ®(t) is a fundamental matrix solution of
X = Ax in Eq. (A.2) , then the solution of Eq. (A.1) is given by

x(1) = O (1)@ (t9)x0 + /t(l)(t)(l)l(r)Q(r)dr. (A.111)

Proof Using the variation of coefficient, assume the solution as x(¢) = ®(¢)C(¢).
Thus, one obtains

So
C(t)= [ ® ' (7)Q(1)dt + C.

fo

x(t) = ®(1)C(t) = ®(r) | ®'(2)Q(1)dt + ®(r)Co.

fo

With initial conditions,

/ ®! (t)dt + D)D" (10)x0
The derivative of x(¢) from the foregoing equation gives
(1) = D)0 (1)x, + /m JQr)ds + (O~ ()Q(1)
=Ah< mm+/¢ Q)] + Q)
— AX(1) + QU1).

This theorem is proved. u
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Notice that the fundamental solution matrix is expressed by
D(1) = A0, (A.112)
Using Eqgs. (A.112), (A.111) becomes
t
x(1) = Ay, +/ AIQ(1)dx. (A.113)
)
For distinct real eigenvalues, the expression of the homogeneous solution for #o =0 is
q) t :Pd 21[7 ).zt"'.7 Ant ,
(1) = Pdiag(e™, e ) (A.114)
P=(Vi,v2, s Vi),

For distinct complex eigenvalues, the expression of the homogeneous solution for
to=01is
® (1) = Pdiag(e™'By,e”'By, ..., e"'B,),
cosfit  sinfit (A.115)
J J
P= (ul , V1,U2, V2,..., Uy, V’1)2n><2n and BJ =

—sinfjt cos Bt

For repeated eigenvalues, the fundamental solution matrix can be obtained from
the previous discussion.

Definition A.9 For a linear dynamical system X = Ax + Q(¢) in Eq. (A.1) with
Q(r) = Qe (A.116)

The system in Eq. (A.1) is called an excited nonhomogeneous system in the
direction of eigenvector vy if ; is one of eigenvalues of A, or

det(A — 4I) = 0. (A.117)
Definition A.10 For a linear dynamical system x = Ax + Q(¢) in Eq. (A.1) with
Q1) = QWe™! cos Bt + QX e sin f, 1. A.118
1 k 2 k

(i) The system in Eq. (A.1) is called an excited nonhomogeneous system in the
spiral oscillation if oy £if, is a pair of eigenvalues of A.

(i) The system in Eq. (A.1) is called a resonant nonhomogeneous system
(simply say, resonance) in such oscillation if o = 0 and +if}, is a pair of
eigenvalues of A.

For det(A — 4I) # 0, consider a few special cases herein. For the first case,

m

Q=" Qe (A.119)
Assuming
x,(1) = " DM, (A.120)



Appendix A: Linear Continuous Dynamical Systems

0=, anie
Thus

ZZ; LDVt = A Z::l Jeht Zk 1 M’

Therefore, if |A — 41| # 0,
DY = My, = —(A — 41)7'QY.
The particular solution of the nonhomogeneous solution is

Zk P\ 20 Qék)eikta

and the total solution is expressed by

X(1) = (1) + %, (1)
= AC -3 (A 40) Qe

With an initial condition, the total solution is

x(1) = A (% —x0) = D" (A= 4d) Qe

m Lo k)
Xg = — e (A — /L,kI) IQ(() )e ko

Consider the second example as
Q) = ZZLI Q(lk>e°‘” cos Bt + Qﬁk)e“k’ sin 1,
The particular solutions is assumed as
X, (1) = km:1 C\Pgltibir 1 b glmn—ibi)e
m 1 : 1 .

_ Zk:l 5 (cgk) _ ic(zk))e(ock+1/fk)t + 5 (c<1k> + icgk))e(ak—llik)z

= ka:1 cgk)e“” cos Bt + cgk>e°‘k’ sin B,
X, (1) = ZZ’:] (o + 1B ) C P e HB L (o — B, )OI (e —ibir

1 . . vt

= _Zk:l {(O‘k +if) (e} — e )e ot

+ (o — i) (e + ey el T

393

(A.121)

(A.122)

(A.123)

(A.124)

(A.125)

(A.126)

(A.127)

(A.128)

=" (el + Brel)en cos it + (el — Brel)e ! sin .

(A.129)
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[(A —ol) Bl } el _ Q¥
=B L (A — ouT) c<2k> ng)
1 {(A —al) B ] QY
cgk) —B;I (A — o) ng)

Consider the third example as

Q=Y "" Q. (A.131)

The corresponding particular solution is

XI’(t) = ZZ:O thka

Thus

(A.130)

. m 1 m—1 . (A.132)
() =Y " kCu Tt =" (k4 1)Cpi
and
m—1 m m—1
Zk:o (k+1)Crit* = A Zk:o Cut* + ZH Q.. (A.133)
Thus, if |A] # 0,
Cm = AilQma
Cr = A7 [(k+ 1)Crp1 — Q] (A.134)
(k=0,1,....m—1).
A.5 Linear Systems with Periodic Coefficients
Theorem A.10 (Floquet) Consider a linear dynamical system
x =A(f)x (A.135)

with A(t) is a continuous T-periodic, n X n matrix. The fundamental matrix ©(t) is
determined by

D(t) = P(t)e® (A.136)
where P(t) is T-periodic and B is a constant n X n matrix.

Proof If ®(¢) is the fundamental matrix of X = A(#)x, then it consists of n -
independent solutions. Letting t =7+ T,

dx _ dx

o= A()x = e A(r—T)x = A(7)x.
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Thus, ®(t) is also the fundamental matrix. Further, ®(7) and ®(t) are linearly
dependent with a constant nonsingular matrix C, i.e.,

D(1) =0(1)C=D(t+T) = ®(r)C.
Consider the time-varying eigenvector matrix as a constant matrix,
P(t) = ®(1)e ™
For time t = ¢ 4 T, the time-varying eigenvector matrix is
P(t+T)=®(t+T)e B0 = d(1)Ce BT ™
If there is a constant matrix B with
C =,
Then P(¢) is T-periodic, i.e.,
P(t+T)=®(t)e ™ =P(z).
Therefore, the fundamental matrix is determined by
P(1) = ®(t)e .
where P(¢) is T-periodic, and B is a constant n X n matrix. [ |
Using the transformation
x = P(t)y.
Taking derivatives gives

x =P()y + P(t)y = A(1)P(1)y,
y=P (AP - P)y.

However,
P(r) = ®(1)e ™™ + ®(r)e B (—B)
=ADe ¥ — @ BB
= AP — PB.
Therefore,

y = P"'PBy = By.

Note that the periodic solution of Eq. (A.135) and corresponding stability are
determined by the eigenvalues of the matrix B. The necessary condition of
periodic solution is that there is at least a pair of purely imaginary eigenvalue of
the matrix B.
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Theorem A.11 Consider a linear dynamical system of x = A(f)x in Eq. (A.135)
with characteristic multiplies

pp =T (A.137)

where Ji(k=1,2,....,n) are exponents of matrix A(t). The characteristic
multiplies and exponents have following characteristic.

n " A1)
Hk:l Pr = el A0 g

n 1 [T
o = ?/0 trA(1)dt.

Proof If ®(t) is the fundamental matrix of x = A(7)x with ®(0) = L,,, then
@(1) = A()D(2).

(A.138)

Dt + &) = D(1) + De + o(e)
=®(1) + A(r)Pe + o(e).

The determinant of the fundamental matrix is
det®(r + ¢) = det(D(1) + A(t)Pe + 0(¢))
= det(I+ A(t)e + o(e))det®(r)
= (1 4+ trA(¢)e + o(e))detd(z).

Further, one obtains

%detq)(z) — trA(1)det®(r),

det®(r) = Ces ™% = € = detd(0) = 1.

So
det®(1) = e ™0 = derd(7) = oy A0,
Since
Ot +T) =Pt + T)eP) = P(1)eP'ePT = d(1)eP
O(T) = B(0)eB” = BT
we have

T
det®(T) = det(ePT) = ¢ J; wAwar



Appendix A: Linear Continuous Dynamical Systems 397

Since

/11 T }..ZT /L,,T)
)

BT = diag(ehT, e, .. M),

the determinant of the foregoing equation gives

n

n n T
dete®” = dete®” = [ =[] o = [[ o = o 2.
k=1 k=1

k=1
So we have
n 1T
;)vk = ?A trA(1)dt.
This theorem is proved. |

A.6 Stability Theory of Linear Systems

In this section, the stability of linear dynamical systems will be presented.

Definition A.11 For a linear dynamical system x = Ax in Eq. (A.2), consider a
real eigenvalue 4; of matrix A(k € N = {1,2,...,n}) and there is a corresponding

eigenvector vi. For x¥ = Wy, x® = ¢®y, = 1,c®vy,, thus ¢® = 4c®).

(i) x® on the direction vy is stable if

lim ¢ = Tim et = 0 for 7 <0. (A.139)

1—00

(ii) x® on the direction vy is unstable if
lim [¢®] = Tim |cPe!| = oo for 4 > 0. (A.140)
1—00 —00

(>iii) x() on the direction v; is invariant if

lim ¢® = lim e*c) = ¢ for 4, = 0. (A.141)

1—00 1—00

Definition A.12 For a linear dynamical system x = Ax in Eq. (A.2), consider a
pair of complex eigenvalue oy & iff, of matrix A(k € N = {1,2,...,n}, i=+v—-1)
and there is a pair of eigenvectors u; +iv. On the invariant plane of (ug,vi),

consider x%) = x(f) +x%®) with

x0 = Oy 4+ dOv;, X0 = Oy 4 d®y;. (A.142)
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Thus, ¢® = (¢®,d®)T with

é®) = Eie® = ¢® = pnip el (A.143)
where
oo B | cosft sinfit
E;i = {_ﬁk Ofk:| and By = [— sin f§;,r  cos ff |’ (A-144)

(i) x% on the plane of (uy,v;) is spirally stable if

Tim [[e®)]| = lim */[|By| x lleW|] = 0 for Rey = oy <0. (A.145)

(i) x® on the plane of (u,vi) is spirally unstable if
lim [[c®]| = lim ¢*/|[By|| x ||e{|| = 0o for Reyx = oy > 0. (A.146)
t—00 1—00

(iii) x®) on the plane of (g, V) is on the invariant circle if
lim [ = lim e*/||By]| x 1)) = (1] for Redy = o = 0. (A.147)

(iv) x® on the plane of (uy, v;) is degenerate in the direction of uy, if Im/; = 0.

Definition A.13 For a linear dynamical system x = Ax in Eq. (A.2), the matrix
A has n; real eigenvalues A, <0(k € Ny), n; real eigenvalues 4, > 0 (k € N,) and
n3 real eigenvalues 4 = 0 (k € N3). The corresponding vectors for the negative,
positive and zero eigenvalues of Df(x*,p)are {w} (ke N, i=1,2,3),
respectively. Set N; = {iy,ip,...,ip, ) U C NU and N = {1,2,...,n} with
LEN (j=1,2,...,m, i=1,2,3).U N;=N,NiNN; =B #i)and Z}_n; =
n. The stable, unstable, and invariant subspaces of x = Ax in Eq. (A.2) are linear
subspaces spanned by {uy, }(k; € N;,i = 1,2, 3), respectively; i.e.,

& = span{uk|(A — /lkI)uk = 0,)uk <0,keNyCNU @},
& = span{w|(A — 4D, =0, 4 > 0,k € N, C NUT}; (A.148)
& = span{w|(A — 4w, =0, = 0,k € Ny C NUD}.

Definition A.14 For a linear dynamical system x = Ax in Eq. (A.2), the 2n x 2n

matrix A has complex eigenvalues oy +iff, with eigenvectors w +ivy (k €
{1,2,...,n}) and the base of vector is

B={u,vi,.., 0, V... 0, V,} (A.149)
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The stable, unstable, center subspaces of x = Ax in Eq. (A.2) are linear subspaces
spanned by {ug, v} (k € N;, i = 1,2,3), respectively. Set N; = {i1,i2,...,in} U
JCNUZ and N=1{1,2,...,n} with [ €N (j=1,2,...,n;,i=1,2,3) and
S mi=n UL, Ni=Nand N;NN; = (I #i). N; = D if n; = 0. The stable,
unstable, center subspaces of x = Ax in Eq. (A.2) are defined by

<0, B # 0,
8° = spang (ug, vi)| (A — (o £ if)I)(ux £ive) =0, »;
keN C{1,2,...,.n} U
e >0, B # 0,
8" = span] (ug, vi)| (A — (o £if)D(ug £ivy) =0, 3 (A.150)
keN, C{l1,2,....n} U
o =0, p, #0,
&° = spanq (w, vi)| (A — (o £if)I)(ue £ivy) = 0,
keN; C{l,2,...,.n}UJ

Definition A.15 For a linear dynamical system x = Ax € #" in Eq. (A.2), set
N:{1,2,...,m,m+1,...,(nfm)/2}, Ni:{il,iz,...,in[}U@ with ijE
N(G=1L12,..,n,i=1,2,...,6), Z?:ln; = m and 22?:411,- =n—m. U N, =
N and N;NN, =D (I1#i). N;=O if n; =0. If the matrix A possesses 7;-
stable, ny-unstable and n3-invariant real eigenvectors plus n4-stable, ns-unstable and
ne-center pairs of complex eigenvectors, a flow ®(7) of X = Ax is called an (n; :
ny : n3|ng : ns : ng) flow.

Definition A.16 For a linear dynamical system x = Ax in Eq. (A.2), a subspace of
& C A" is termed to be invariant with respect to flow ®(t) = e : #" — #" if
Mg C &forallt € A

Lemma A.2 For a linear dynamical system X = Ax in Eq. (A.2), if a generalized
eigenspace of A corresponding to 4 is E C R", then A& C &.

Proof For a generalized eigenvector {v;} (k =1,2,...,n) for & C #", consider a
new vector v € &, we have

n n
V= E CkVy = Av = E CLAVy.
k=1 k=1

For each v, the following relation exists
(A—v, =0
with a minimal n;. Thus,
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where V; € ker(A — AI)|, C & with dimension n;. Thus Avy = Av; + V; € &,
i.e.

Av = ZZ:I cAv, € 6.
So, one achieves A& C &. |

Theorem A.12 For a linear dynamical system X = Ax in Eq. (A.2), the
eigenspace of A (i.e., & C R") is expressed by direct sum of three subspaces

E=6 GE @ E (A.151)

where &°,&" and &° are the stable, unstable and center spaces, respectively. They
are invariant with respect to the flow ®(t) = e*' of X = Ax.

Proof For xy € &*° with ny -dimensions, one gets
1,
Xp = E kll Cka and
ng _
Vi € {Vi}i, € B ={u,vi,..u, v, u, .., )

The linearity of eA’ gives

Aty s At

X =eV'xy) = i Cke Vi,

m Ajtj
AV = lim (I+ =

m—00 j=1 ]'

_ Tt Ar s n
x=Y " aVies ceCa

)Vk S éas,

Therefore, eA&* C &°. That is, &* is invariant under the flow ¢A’. Similarly, &"

and &€ are invariant under the flow . |

Definition A.17 For a linear dynamical system x = Ax in Eq. (A.2),

(i) the linear system is asymptotically stable to the origin if

lim x(7) = lim eA'xy = 0 for xy € Q C %", or
1—00

e N (A.152)
lim ||x(¢)|| = lim ||e*'xg|| = oo for xg € Q but xo # 0;
——00 t——00
(ii) the linear system is unstable if
lim ||x(¢)|| = lim ||e'xo|| = oo for xg € Q C #" butx, # 0, or
e e (A.153)

lim x(7) = lim eAxy = 0 for xg € Q C R,

t——00 t——00
(iii) the origin of the linear system is a center if

[|x(2)]| < C||x0|| for positve constant C > 0. (A.154)
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Theorem A.13 Consider a linear dynamical system x = AX in Eq. (A.2) and the
matrix A possesses n eigenvalues A (k=1,2,...n). Let N =1{1,2,...,n}, and
N =N{UN, with Nt NN, = .

®
(i)

(iii)

@iv)

If Re 1 > 0 for k € N, the linear system is unstable.

If Re 1 <O for all k € N, the linear system is asymptotically stable to the
origin.

If Re k<0 for all k € Ny # N and Re 4; =0 for all j € Ny CN with
different eigenvalues, the linear system is stable. The linear system
is also said to be Lyapunov-stable to the origin, and the origin is a
center for this system.

If Re k<0 for all k€ Ny # N and Re; =0 for all j € N, CN with
repeated eigenvalues with N" =0 (1<m<n), the linear system is
unstable.

(v) If Re Ay <0 for all k€ Ny # N and Re i =0 for all j€ N, CN with

repeated eigenvalues with N = 0, the linear system is stable.

Proof Consider one of eigenvalue of A as 4; = o; + if; which is an m-repeated
eigenvalue (m <n). The corresponding solution of X = Ax in Eq. (A.2) is a linear
combination of functions of the form #*¢*’ cos B;t and /or e sin B;t (0 <k <m —
1), so that |[e?'xq|| > e*!||xo]|.

@

For o; > 0

lim |¢*" cos f;t| = oo and lim |*e*" sin f;1] = oo,
t—00 1—00

Thus ||e?'xo|| — oo as t — oco. In other words,

lim [|e*xo|| = oo or lim e*'xy # 0.
1—00 1—00

Therefore, if Re(4;) >0 (i € {1,2,...,n}), the origin of the linear system is
unstable.

ay

Thus

(I1T)

For o; =0 and k # 0, the eigenvalues with Re (1;) = 0 are repeated. At
least for one eigenvalue, one gets

lim |#* cos f3;t| = oo and lim |¢* sin f,f| = oo.
1—00 —00

lim |[e'xo|| = oo or lim e*'xq # 0.
1—00 1—00
For all o;<0 (i =1,2,...,n)

lim |*e*! cos fz| = 0 and lim |*e*" sin ft| = 0.
t—00 1—00
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Thus

€A% |
<HZ ciu;tfe™ cos fit| —l—HZ dyvit*e™" sin Bt
<3 el x (il x e cos Bit| + Y |di] x [[vil| x | sin Ba].

Since ¢; and d; are constant and the norms of eigenvector ||u;|| and ||v;|| are finite,
one obtains

tim [x(1)|
<7 lei] x Jjug]| lim |tke%" cos Bt + > ldil x |lvil| lim |t*e%" sin Bit|
1—00 1—00
=0.

Therefore

lim ¢*'x = 0.

[—00

(IV) Foro; =0 (j € {1,2,...,n}) and k=0
| cos ;¢] < land| sin f;¢| < 1.
If o; # 0, then o; <0. From the case (III), one obtains
[leAxo|| < | Z _ciuite™ cos Bit|| + || Z;& divit*e*" sin B;t||
+ Z, ;008 fytl + 11 djvs sin |
Therefore,
Tim [[x(0)]| = lim [|e*'xo]| = Cl[xo]l

This theorem is proved. u

Definition A.18 For an n-dimensional, linear dynamical system X = Ax in

Eq. (A.2), the matrix A possesses n eigenvalues A, (k = 1,2,...,n).
(i) The origin is called a sink for the linear system if Re 4, <0 (k = 1,2,...,n).
(ii) The originis called a source for the linear systemifRe 2, > 0 (k = 1,2,...,n).
(iii) The originis called a center for the linear systemifRe 4, = 0 (k = 1,2,...,n)

with distinct eigenvalues.
(iv) The originis called a source for the linear systemifRed, = 0 (k € {1,2,...,n})
with at least one-time repeated eigenvalues with N" = 0 (1 <m<n).

Definition A.19 For an n-dimensional, linear dynamical system X = Ax in
Eq. (A.2), the matrix A possesses n real eigenvalues A, (k = 1,2,...,n).

(i) The origin s called a stable node for the linear system if 2, <0 (k = 1,2,...,n).
(i) The origin is called an unstable node for the linear system if
>0(k=1,2,...,n).



Appendix A: Linear Continuous Dynamical Systems 403

(iil) The origin is called a saddle for the linear system if 4, > 0 and 4; <0 (j, k €
{1,2,...,n} and j # k).

(iv) The origin is called a degenerate case for the linear system if 4, =0
(k=1,2,...,n).

Definition A.20 For a 2n-dimensional, linear dynamical system X = Ax in
Eq. (A.2), the matrix A possesses n-pairs of eigenvalues 4 (k =1,2,...,n).

(i) The origin is called a spiral sink for the linear system if Red; <0 (k = 1,
2,...,n)and Im4; #0 (j € {1,2,...,n}).

(ii) The origin is called a spiral source for the linear system if Rel;, > 0 (k €
{1,2,...,n}) with Im4; #0 (j € {1,2,...,n}).

The above classification of stability is very rough. Thus, the refined classification
should be discussed. The generalized structures of stability characteristics of flows
in linear dynamical systems in Eq. (A.2) will be given first.

Definition A.21 For an n-dimensional, linear dynamical system x = Ax in Eq.
(A.2), the matrix A possesses n eigenvalues A (k=1,2,...,n). Set N =
{L,2,...omm+1,...,(n—m)/2}, N;={i1,ir,...,i, } U with ;€N (j=
1,2, om, i=1,2,...,6), > m;=mand 228 jn; =n—m. % N; =N and
N.NN =D (1 #1i). N;= if n; =0. The matrix A possessesn; -stable, ny -
unstable and n3 -invariant real eigenvectors plus ny -stable, ns -unstable and ng -
center pairs of complex eigenvectors. Without repeated complex eigenvalues of
Red, =0 (k € N3 UN), the flow ®@(¢) of X = Ax is an (n : ny : [n3;m3]|ng : ns
ne) flow. However, with repeated complex eigenvalues of Rely =0 (k € N3
UNs), the flow ®(¢) of X = Ax is an (ny : ny : [n3;m3]|na : ns : [ne, l;me]) flow
D(r)of x = Ax isan(n : ny : [n3;m3)|ng : ns : [ne, [; k6]) flow k3 € {F,m3}, ke =
(61, Ke2, -, Ke)| with ks € { &, mei} (i = 1,2, 1) mg = (mg1, mea, -+ -,
m61)T. The meanings of notations in the aforementioned structures are defined as
follows:

(i) n represents exponential sinks on n; -directions of v, (k € Ny) if 4, <0
(k € Ny and 1 <n; <m) with distinct or repeated eigenvalues.

(ii) n, represents exponential sources on n; -directions of vi (k € N,) if
k>0 (k€ N, and 1<n, <m) with distinct or repeated eigenvalues.

(ili) n3 = 1 represents an invariant center on 1-direction of v, (k € N3) if A =
0 (k € N3 and n3 = 1).

(iv) n4 represents spiral sinks on ny -pairs of (uy, vi)(k € Ny) if Re/; <0 and
ImA, #0 (k€ Ny and 1<ng<(n—m)/2) with distinct or repeated
eigenvalues.

(v) ns represents spiral sources on ns-pairs of (ug, v) (k € Ns) if Red; > 0 and
Iml #0 (k€ Ns and 1<ns<(n—m)/2) with distinct or repeated
eigenvalues.

(vi) ng represents invariant centers on ng -pairs of (u, vi) (k € Ng) if ReJy, =0
and Im/; # 0 (k € Ng and 1 <ng < (n —m)/2) with distinct eigenvalues
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(vii) J represents none or empty if n;, =0 (i € {1,2,...,6}).

(viii) [n3;ms3] represents invariant centers on (n3 — ms) -directions of v, (k3 € N3)
and sources in ms-directions of v;, (j3 € N3 andj3 # k3) if 4x = 0 (k € N3 and
ny <n) with the (m3 + 1)th -order nilpotent matrix N7**' = 0 (0<m;3 <
n3 — 1)

(ix) [n3; ] represents invariant centers on n3 -directions of v (k € N3)
ifAy =0 (k € N5 and 1 <n3 <m) with a nilpotent matrix N3 = 0.

(x) [ng,l; mg] represents invariant centers on (ng — Zi_zlmm) -pairs of (ug,, Vi)
(k¢ € Ng) and sources in Zéjlmm -pairs of (wj,, v;,) (jo € N and js # k) if
Relr =0 and Im/y # 0 (k € Ng and ng < (n —m)/2) for Zé:1m65 -pairs of
repeated eigenvalues with the (mg; + 1)th -order nilpotent matrix Ng"““ =
00<me <I, s=1,2,---,1]).

(xi) [ne, ;D] represents invariant centers on ng -pairs of (ug,vx) (k € Ng) if
Rely =0 and Imi; #0 (k€ Ng and 1<ne<(n—m)/2) for X'_ me,
pairs of repeated eigenvalues with a nilpotent matrix Ng = 0.

Definition A.22 For an n-dimensional, linear dynamical system x = Ax in Eq.
(A.2), the matrix A possesses n eigenvalues A (k=1,2,...,n). Set N =
{1,2,...,m,m+ 1,...,(n—m)/2}, N; = {il,iz,...,in,} UY with l/ eEN (] =
1,2,..on, i=1,2,....6), > n;=mand 25" jn; =n—m. U N; =N and
NNN, =D (1 #1i). Ny= if n; =0. The matrix A possesses nj-stable, n,-
unstable and n3-invariant real eigenvectors plus n4-stable, ns-unstable and ng-
center pairs of complex eigenvectors. k; € {(J, m;}(i =3, 6). The flow ®(r)
of X = AXx is an(m tnp [n3;m3]|n4 N5 [n6,l; K6]) flow K3 € {,@7m3}, K6:(K61,
Ke2, ", K@l)T with Kei € {Q,mﬁi} (l = 1,2, s ,l) mg = (m61,m62, ety mf,])T.
The flow ®(f) of x = Axis an (n; : ny : [n3;ms]|ng 1 ns : [ne, L)) isanx; €
{@,I’I’B}7 Ke = (K61, Ke2, K61)T with xg; € {@, m6,-}(i =1,2,--- ,l)

mg = (mg1, Mgz, - -, Mg1)" -

1. Non-degenerate cases

(i) The origin is an (n; : ny : Dng : ns : &) hyperbolic point (or saddle) for
the linear system.
(ii) The origin is an (n; : & : Dlng : & : J) -sink for the linear system.
(iii) The origin is an ((J: ny : Q|D : ns : J) -source for the linear system.
(iv) The origin is an (J: J: D|J : & : n/2) -circular center for the linear
system.
(v) The origin is an (J:J: DD : D : [n/2,1;]) -circular center for the
linear system.
(vi) Theoriginisan (J: O : DI : D : [n/2,1];me]) point for the linear system.
(vii) The origin is an (ny : & : D|ny : I : ng) -point for the linear system.
(viii) The origin is an (J: ny : Q| : ns : ng) -point for the linear system.
(ix) The origin is an (n; : ny : J|ny : ns : ng) -point for the linear system.
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II. Simple degenerate cases

(@)
(i)
(iii)
(iv)
(v)
(vi)
(vii)

(viii)

The origin is an (J : @ : [n; J)|D : @ : J) -invariant (or static) center for
the linear system.

The origin is an (J : I : [n;m]|D : & : ) point for the linear system.
The origin is an (J : I : [n3;J)|D : D : ng) point for the linear system.
The origin is an (& : & : [n3;m]|J : I : ne) point for the linear system
The origin is an (J:J: [n3; D||D : D : [ne, [;J]) point for the linear
system.

The originis an (& : & : [n3;m3]|D : D : [ng, [; J]) point for the linear system.
The origin is an (J: J: [n3;9)|D : & : [ne, [; mg]) point for the linear
system.

The origin is an (J: D : [n3;m3]| D : D : [ne, [;mg]) point for the linear
system.

III. Complex degenerate cases

()
(ii)
(iii)
(iv)
v)
(vi)
(vii)

(viii)

The origin is an (n; : J: [n3;D)|na : & : ) point for the linear system.
The origin is an (n; : & : [n3;m]|ng : & : &) point for the linear system.
The origin is an (& : n, : [n3; J]|D : ns : &) point for the linear system.
The origin is an (J : ny : [n3;m]|J : ns : &) point for the linear system.
The origin is an (n; : & : [n3;)|ng : I : ne) point for the linear system.
The origin is an (n; : & : [n3;m]|ng : & : ne) point for the linear system.
The origin is an (J: nj : [n37 )| : ns : ne) point for the linear system.
( [

a:
The origin is an (& : ny : [n3;m]|D : ns : ne) point for the linear system.

IV. Simple critical cases

®

(i1)

(iii)

@iv)

)

(vi)

An (ny :ny : lng @ ns : @) state of the origin for the linear system is a
boundary of its (n; :ny + 1: J|ng : ns : &) -spiral saddle and (n; + 1 :
ny : Olng : ns : &) - spiral saddle.

An (ny —1:J: 1|ny : @ : D) state of the origin for the linear system is a
boundary of its (nj —1:1:J|ny : & : ) -spiral saddle and (n; : J:
DIny : & : ) -spiral sink.

An (D :ny —1:1|D: ns : ) state of the origin for the linear system is a
boundary of its(1:ny —1: D : ns : ) -spiral saddle and (J: n, :
DD : ns : D) -spiral source.

An (ny :ny : Dlng : ns : 1) state of the origin for the linear system is a
boundary of its (n; : ny : Dlng + 1 : ns : J) -spiral saddle and (n; : ny :
Dlng :ns +1:J) - spiral saddle.

An (n; : D :Dny — 1 : D : 1) state of the origin for the linear system is a
boundary of its (n:J:ny —1:1: ) -spiral saddle and (n; : J:
Dlng : & : D) -spiral sink.

An (D :ny: Q| :ns — 1: 1) state of the origin for the linear system is a
boundary of its (J:ny: |1 :ns —1:) -spiral saddle and (J: n, :
DD : ns : D) -spiral source.
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(vii)

(viii)

(ix)
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An (ny :ny : 1|ng : ns : ng) state of the origin for the linear system is a
boundary of its (ny +1:ny:|ng:ns:ng) state and (ny:np+1:
Dlny : ns : ng) state.

An (ny : ny : 1lng : ns : [ne, I; kg)) state of the origin for the linear system is a
boundary of its (n; + 1 : 1y : Dlnyg : ns : [ne, l; ke)) state and (n; :np +1:
Dlny : ns : [ne, [; [n6, [; k6] state.

An (ny :ny : Dlng = ns : ng + 1) state of the origin for the linear system is
a boundary of its (n; :ny : Dlng + 1 : ns : ng) state and (ny : ny : Dlng :
ns + 1 : ng) state.

(x) An (ny :ny:[n3;Q)|ng : ns : ng + 1) state of the origin for the linear

system is a boundary of its (ny : ny : [n3;J]|ng + 1 : ns : ng) state and (n; :
ny : [n3;J)|ng : ns + 1 : ng) state.

V. Complex critical cases

®

(i1)

(iii)

@iv)

An (n) : ny : [n3;K3]|ng : ns : ng) -state of the origin for the linear system
is a boundary of its (n; +n3 : ny : D|ng : ns : ne) state and () : ny +n3 :
Dny : ns : ng) state.

An (ny —m : ny : [n3 + m; K3)|ng @ ns @ ng) -state of the origin for the linear
system is a boundary of its (n; : ny : [n3;K4]|n4 : ns : ne) state and (n; —
m:ny +m: [n3;K5)|ng 2 ns : ng) state.

An (ny : ng —m : [n3 + m; k3)|ng : ns @ ng) -state of the origin for the linear
system is a boundary of its (n; : ny : [n3; K5]|na : ns : ne) -state and (ny +
m:ny —m: [n3;K5]|ng : ns : ne) -state.

An (ny —my :ny : [n3 + my;Ks)|ng : ns : ng) -state of the origin for the
linear system is a boundary of (n : ny : [n3;K}||ns : ns : ne) -state and
(ni —my :np +my : [n3 +my —myp; Ky ]|na : ns : ng) -state.

(V) An (ny :np —my : [n3 + my; K3)|ng : ns @ ng) -state of the origin for the

(vi)

(vii)

(viii)

(ix)

linear system is a boundary of (n; :ny : [n3;15]|ns @ ns : ng) -state and
(ny +my :ng —my : [n3 +my —my;K5||na 2 ns 2 ng) -state

An (n) :ny : [n3;K3]|ng ¢ ns : [ng, [ kg)) state of the origin for the
linear system is a boundary of its (n; :ny : [n3;K3]|ne + na : ns : Q)
state and (ny : ny : [n3; K3]|na 2 ns + ne : J) state.

An (ng : ny : [n3;13)|ng —m : ns : [ng + m, Iy; kg)) state of the origin for the
linear system is a boundary of its (ny : ny : [n3; k3]|ng : ns @ [ng, b; Ke)) -
state and (ny : ny : [n3;K3)|ng —m : ns +m : [ng, b; Kg)) -state.

An (n; : ny : [n3;K3]|ng 1 ns — m : [ng + my, I1; Kg)) of the origin for the
linear system is a boundary of its (n; : ny : [n3; K3]|na @ ns = [ne, l; Kg)) state
and (ny :no : [n3;Ks){ng +m:ns —m: ng,b;kg]) state of equilibrium
point (x*, p).

An (ny : ny : [n3;K3]|ng — my : ns : [ng + my, [1; K6)) state of the origin for
the linear system is a boundary of its (n; : na : [n3; K3]|na @ ns = [ne, l; K§))
-state and (ng : ny @ [n3;K3]|ng — my 2 ns +ms @ [ng +my —ms, l3;kg]) -
state of equilibrium point (x*, p).
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(x) An (n; : ny : [n3;K3]|ng : ns — ms : [ng + ms, l1; Kg)) state of the origin for
the linear system is a boundary of (n : ny : [n3; K3]|na : ns : [ng, b; K)) -
state and (I’l] 1Ny [n3;1c3]|n4 +my ins —ms: [116 + ms — I’I’L4,l3;l€g}) -
state of equilibrium point (x*, p).

Definition A.23 For an n-dimensional, linear dynamical system x = Ax in Eq.
(A.2), the matrix A possesses n real eigenvalues 4, (k=1,2,...,n). Set N =
{1,2,..,n}, Ny ={i1,i2,..,in,} UDWithi; e N (j =1,2,...,n;,i = 1,2,3) and
T mi=n. UL N;=N and N;\N; =D (I #i). N; = Jif n; = 0. The matrix
A possesses n; -stable, n, -unstable, and n; -invariant real eigenvectors. Without
repeated eigenvalues of 4x = 0 (k € N3), the flow ®(¢) of x = Ax is an (n; : ny :
| or (ng : ny : 1| flow. However, with repeated eigenvalues of 4, = 0 (k € N3),
the flow @(r) of x = Ax is an (n; : ny : [n3;ms]| flow 13 € {F, ms3}.

1. Non-degenerate cases

(i) The origin is an (n : & : J| -stable node for the linear system.
(ii) The origin is an (J : n : J| -unstable node for the linear system.
(iii) The origin is an (n; : ny : J| -saddle for the linear system.

II. Degenerate cases

(i) The origin is in an (n; : ny : 1| -critical point for the linear system.
(ii) The origin is an (n; : ny : [n3;Q]| -point for the linear system.
(iii) The origin is an (n; : ny : [n3;ms3]| -point for the linear system.

IIl. Simple critical cases

(1) An (ny : ny : 1] state of the origin for the linear system is a boundary of its
(n +1:ny: Q| -saddle and (n; : ny + 1 : J| -saddle.
(ii)) An (n—1:: 1| state of the origin for the linear system is a boundary of
its (n—1:1: (| -saddle and (n : & : ] -stable node.
(ili) An (J:n—1: 1] state of the origin for the linear system is a boundary of
(1:n—1:)| -saddle and (J : n : J| -unstable node.
(iv) An (n; — 1: ny : [n3 + 1; k3| state of the origin for the linear system is a
boundary of (n; : ny : [n3;x3]| -degenerate saddle and (n; — 1 :my +1:
[n3; 13]| -degenerate saddle.

IV. Complex critical cases

(i) An (n; : ny : [n3; k3| -state of the origin for the linear system is a boundary

of (n; +n3 : ny : J| -saddle and (n; : ny + n3 : G| -saddle.

(ii) An (n; —m: ny : [n3 + m; 3]| -state of the origin for the linear system is a
boundary of its (n; : ny : [n3; k5| -stateand (ny — m : ny + m : [n3; K| -state.

(ii)) An(ny : ny —m : [n3 4+ m; i3] | -state of the origin for the linear system is a
boundary of its (n; : ny : [n3; k5| -state and (ny + m : np — m : [n3; K5]| -state.

(iv) An(n; —my : ny : [n3 + my; k3| -state of the origin for the linear system is
a boundary of (n;:ny:[n3;K}]| -state and (ny —my :np+my: [n3 +
my — my; k4| -state.
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(V) An (ny : np —my : [n3 + my; k3| -state of the origin for the linear system
is a boundary of (n; : ny : [n3;K5]| -state and (ny +my : np —my : [n3 +
my — my; k4| -state.

Definition A.24 For a 2n-dimensional, linear dynamical system x = Ax in Eq.
(A.2), the matrix A possesses n-pairs of complex eigenvalues A, (k = 1,2,...,n).
Set N=1{1,2,...,n}, Ni ={i1,i2,..., iy, } U with lj EN(G=1,2,....n; i=
4,5,6) and X jn; =n. WS, N; =N and NN, =D (1 #i). Niy=D if n; =0.
The matrix A possesses ny -stable, ns -unstable and ng -center pairs of complex
eigenvectors. Without repeated eigenvalues of Re/;, = 0 (k € Ng), the flow ®(¢) of
x = Axisan|ny : ns : ng, ; k¢ ) flow. However, with repeated eigenvalues of Re/;, =
0(keNg), the flow @) of Xx=Ax is an |n4:ns: [nel;ke]) flow.
Ke = (16617 Kg2, """ K61)T with k¢; € {@,I’I’l@‘}(i =1,2,---, l)

I. Non-degenerate cases

(i) The origin is an |n : & : J) -spiral sink for the linear system.
(ii) The origin is an |J : n : J) -spiral source for the linear system.
(iii) The origin is an |J : & : n) -circular center for the linear system.
(iv) The origin is an |n4 : ns : &) -spiral saddle for the linear system.

II. Quasi-degenerate cases

(i) The origin is an |ng : & : ng) -point for the linear system.

(ii) The origin is an |J : ns : ng) -point for the linear system.
(iii) The origin is an |ng : & : [ne, ;%)) -point for the linear system.
(iv) The origin is an |ng : & : [ne, I; k¢]) -point for the linear system.
(v) The origin is an |J : ns : [ne, [;J]) -point for the linear system.
(vi) The origin is an | : ns : [ns,l Ke]) -point for the linear system.

IIl. Simple critical cases

(1) An |ng :ns: 1) -state of the origin for the linear system is a boundary of
its |ng + 1 : ns : &) -spiral saddle and |ny : ns + 1 : &) -spiral saddle.

(ii) An |ng : D : 1) - state of the origin for the linear system is a boundary of
its |ng + 1 : & : &) -spiral sink and |ng : 1 : &) -spiral saddle.

(ili) An |J: ns: 1) -state of the origin for the linear system is a boundary of
| : ns + 1 : D) -purely spiral source and |1 : ns : J) -spiral saddle.

(iv) An |ng:ns:ng+ 1) -state of the origin for the linear system is a
boundary of its |ng+ 1:ns:ng) -state and |ng :ns+1:ne) -state.

(v) An |ng : D : ng + 1) -state of the origin for the linear system is a boundary
of its |ng + 1 : & : ng) -state and |ny : 1 : ng) -state.

(vi) An | : ns : ng + 1) -state of the origin for the linear system is a boundary
of |@:ns+ 1:ng) -state source and |1 : ns : ng) -state.

IV. Complex critical cases

(i) An |ng:ns: [ne,[;K6]) -state of the origin for the linear system is a
boundary of its |ng + n4 : ns : &) -spiral saddle and |ny : ns + ng : &) -
spiral saddle.
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(il) An|ns —m : ns : [ng + m, r; kg)) -state of the origin for the linear system is
aboundary of its|n4 : ns : [ne, [1; k;]) -state and |ny — m : ns +m : [ng, l3; Kj))
-state.

(ili) An |ng : ns —m: [ng + m, lr; Ks]) - state of the origin for the linear system
is a boundary of its |ns:ns: [ng,li;Kg]) -state and |ng+m:ns—m:
[n6,13; Kj]) -state.

(iv) An |ng —my : ns : [ng + my, l; kg)) state of the origin for the linear system
is a boundary of its |n4 :ns : [ne;l1;Kg]) -state and |ng —myg : ns + ms :
[ne + ms — ms, l3; Kf]) -state.

(V) An |ng : ns — ms : [ng + ms; I; kg)) -state of the origin for the linear system
is a boundary of |ng : ns : [ne,11;Kg]) -state and |ns + my : ns —ms : [ng +
ms — ny, 13; KgD -state.

For the linear system in Eq. (A.135) with periodic coefficients, the sufficient and
necessary conditions of stability to the origin are Re4; <0 (k = 1,2, .. .n) of matrix
B. However, the transformation matrix P() is very difficult to be determined. Thus
one uses the sum of characteristic exponents in Eq. (A.138) to determine stability.
The conclusion is that the linear system to the origin is unstable if X} _,2; > 0.
However, if X}_, 4 <0, one cannot conclude the linear system to the origin is
stable. Therefore, for each problem, it should be treated specially.

A.7 Lower-Dimensional Dynamical Systems

Consider a one-dimensional linear system as
X=x (A.155)
with initial condition x(#y) = xo. The solution is
x = xpe ), (A.156)
The following properties of the solution exist.

(i) lim,_« |x(z)] = 0, and the system to the origin is stable if 1<O0;
(ii) lim,_ |x(¢)| = oo, and the system to the origin is unstable if 1 > 0;
(iii) x(¢) = xo, and the origin to the system is center if 1 = 0.

The above solutions are illustrated in Fig. A.1 . The solutions and phase lines
for the unstable, stable and invariant linear systems are presented in Fig. A.la—c,
respectively. The gray points are the values of A.

Consider a one-dimensional linear system with external excitation

k= x+f(1) (A.157)

with initial condition x(#y) = xo. The solution is

t
x = xpe ™) 4 ei’/ e f(t)dr. (A.158)

fo
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Fig. A.1 Solution and phase

lineof x=/x:aan (J:1: x
| -unstable node (1 > 0),

ba (1:J: | -stable node
(A<O)andcan (J:J: 1] -

static invariance (1 = 0).

(a)

(b)

A.7.1 Planar Dynamical Systems
Consider a two-dimensional linear system as
X = Ax

with initial condition x(#y) = X¢, and

(o)

(A.159)

(A.160)
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Fig. A.2 Phase portraits and
eigenvalue diagrams of y =
By:aa (2:J: )| -stable
node (4 <0, k=1,2), b an
(D :2: Q)| -unstable node
>0 (k=1,2).

Fig. A.3 Phase portraits and
eigenvalue diagrams of a (1 :
1 : ] -saddle for y = By
with4; > 0 and /7, <0.

If detA # 0, x = 0 is a unique equilibrium point. With a nonsingular transform

Y2 ImA

M

.
ha.
N
N

matrix P, B =P~ 'AP. With x = Py,

where

There are four cases:

(A) For two real distinct eigenvalues (1 # /1,), the solution is expressed by

a0
B_{o P

y = By (A.161)

B = V‘ O]. (A.162)

eh(t=) 0
] and y(t) = [ 0 e)vz(t_m)}yo. (A.163)
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Fig. A.4 Phase portraits and ¥, ImA
eigenvalue diagrams of
y=By:a(2:J:J| (4=
h<0, k=1,2),b (D:2: \
O (e =2>0,k=1,2). ,
/ ReA

(@
p) ImA
i ——O—
Rel
(b)

The origin is called a node of the linear system if two real eigenvalues have the
same sign. If 4, <0 (k = 1,2), the origin is a stable node. If 4, > 0 (k = 1,2), the
origin is an unstable node. The corresponding phase portraits and eigenvalue
diagrams for the stable and unstable nodes of the linear systems are sketched in
Fig. A.2a and b, respectively.

The origin is called a saddle of the linear system if two real eigenvalues have
different signs (4; >0 and 1,<0). The linear system is unstable. The
corresponding phase portraits and eigenvalue diagram are presented in Fig. A.3.
On the eigenvector direction, the flows will come to or leave the origin.

(B) For two real repeated eigenvalues (4, = /1, = 1), the solution is given by

A1 , 1 ¢
B= [0 J andy(t) = eA(’["){ ]yo.

0 1
A.164
20 w10 ( )
B = 0 i andy(t) = e o 1Y

For repeated eigenvalues /; = A<0 (k = 1,2), the origin is a stable node. If
repeated eigenvalues A > 0 (k = 1,2), the origin is also an unstable node. The
corresponding phase portraits and eigenvalue diagram for the stable and unstable
nodes are shown in Fig. A.4a and b. For the second equation of Eq. (A.164), the
line exist in phase portrait. If 2 =0, then y, = ¢ and y; = ¢¢ + ct. This is the
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Fig. A.5 Phase portraits and v, ImA
eigenvalue diagrams of y =
By (ImAy = £ # 0,k = o
1,2):afora|l:J:J) - \
stable focus (Rel; = a<0), f-\r\
b an [J: 1: ) -unstable \J » Rel
focus (Rely = o > 0). / (e}
(a)
Y2 ImA
/‘\ O
-,
\J N ReA
_/ ©)
(b)

constant velocity case. If ¢ = 0, the dynamical system is in static state forever. For
the second case with A = 0, it gives stationary points in phase portrait.

(C) For 4 = a+ip and A, = o —if, the solution is given by

o cos f(t —tg) sinf(t —1g)
= — plt=t0)
B lﬁ a] and y(¢) = e l sin Bl — 1) cos Bt o) Yo- (A.165)

The origin is called a focus of the linear system if the real part of two complex
eigenvalues are nonzero (Rel;, = o # 0 for k = 1,2). The origin is called a stable
focus if Redy = a<0. The origin is called an unstable focus if Re4y = a > 0.
From the solutions, the phase portraits and eigenvalue diagram for stable and
unstable focuses are presented in Fig. A.5a and b, respectively. The eigenvalues
are a pair of complex eigenvalues. The initial point for the unstable focus cannot
be selected at the origin. For the stable focus, the solution of the linear system will
approach the origin as t — oco.

The origin is called the sink of the linear system in Eq. (A.159) if the real parts
of all eigenvalues are less than zero (Re/; <0 for k = 1,2). The origin is called the
source of the linear system in Eq. (A.159) if the real parts of all eigenvalues are
greater than zero (Rel; > 0 for k = 1,2). Compared to the node and saddle-nodes,
the stable and unstable focuses make a flow spirally come to the origin or spirally
leave for infinity, respectively.
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Fig. A.6 Phase portrait and v, ImA
eigenvalue diagram for an m
| 1) -center for
y =By
” ReAd
)
(D) For Ay =if and 4, = —if, the solution is given by
10 p | cosp(t—1ty) sinf(t—to)
- [—B 0} and y(r) = {— sin Bt —ty) cos Bt —19) Yo- (A.166)

The origin is called a center of the linear system if the real part of two complex
eigenvalues are zero (Rel;y = o # 0 and ImA, = £f # 0 for k = 1,2). For this
case, the phase portrait is a family of circles, and the eigenvalues lie on the
imaginary axes, as sketched in Fig. A.6.

The eigenvalues of A are determined by det(A — AI) = 0, i.e.

2% — tr(A) + det(A) = 0. (A.167)
where
tr(A) = aj, +ay and det(A) = :; ZZ . (A.168)
The corresponding eigenvalues are
tr(A) £ VA
PR )2 VA hdA— (tr(A))* — 4det(A). (A.169)

The linear system in Eq. (A.159) possesses

(i) a saddle at the origin for det(A) <0 with 4; <0 and 4, > 0;
(ii) a stable node at the origin for det(A) > 0, tr(A) <0 and A > 0 with 4; <0
and A, <0;
(iii) an unstable node at the origin for det(A) > 0, tr(A) > 0 and A > 0 with
)\,1 > 0 and }Q > 0,
(iv) a stable focus at the origin for det(A) >0, tr(A)<0 and A<O0 with
)\41,2 = tI‘(A) +i ‘A‘,
(v) an unstable focus at the origin for det(A) > 0, tr(A) > 0 and A<0 with
1172 = tI'(A) +i |A|,
(vi) a center at the origin for det(A) > 0 and tr(A) = 0 with 1;, = £i\/|A[;
(vii) a degenerate equilibrium point at the origin for det(A) = 0.
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Fig. A.7 Phase portraits and X,
eigenvalue diagram of an ImA
(D : I : 2| -critical case for o—T—
det(A) =0 and tr(A) =0: o—t>
a one-dimensional source O
ajp > 0, b invariance (aj; = -0 X Rel
0) and ¢ one dimensional -0 ¢
source (aj; <0)
(@)
X5
ImA
0|0 O O
‘xl
olo o o Res
(b)
% ImA
I E—g
-1 0
=~ X,
oO— Rel
o—
(©)
For the degenerate case, there are three cases
ai 0 0 apn 0 0
A= A= dA = A.17
[o 0}’ [o o}an {00 (A.170)

and the corresponding solutions are
_ e’ 0 _ 1 apt . 1 0
x(t) = [ 0 I}me(f)— [0 1 :|Xo and x(7) = [0 I]XO' (A.171)

The phase portraits and eigenvalue diagrams for degenerate cases are presented in
Figs. A.7 and A.8.

The summarization of stability and its boundary for the linear system in
Eq. (A.159) are intuitively illustrated in Fig. A.9. through the complex plane of
eigenvalue. The shaded area is for focus and center. The area above the shaded
area is for unstable node, and the area below the shaded area is for stable node. The
left area of the axis tr(A) is for saddle. The center is on the positive axis of det(A).
The phase portrait is based on the transformed system in Eq. (A.161).



416

Fig. A.8 Solution and phase
portraits for det(A) =0: a
(& :1: 1] -one-dimensional
source (tr(A) > 0), and b a
(1 : & : 1| -one-dimensional
sink (tr(A) <0)

Fig. A.9 Stability and its
boundary diagram through
the complex plane of
eigenvalues
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2 ImA
O | O
O | O
O 16 " Re A
O | O
(@)
%2 1 ImA
O— O
o wbe o
o i o N Re
O Q O
(b)
Im Im
Re Re Im
tr(A) | Re
//
Im // Im
/ (@)
Im Re |/ © Re 4) m
Re X Im  det(A) ® Re
Im N
-O—O=— NS O Re
Re ~

The solutions of x = Ax in Eq. (A.159) is given by x = Py. So the phase portrait
of X = Ax can be obtained by the transform of x = Py.

A.7.2 Three-Dimensional Dynamical Systems

Consider a three-dimensional linear system as

X = Ax

(A.172)
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with initial condition x(fy) = X0, and
aip ap a3
A= aryy dzy dz3 |. (A173)
asp  dasp ass

If detA # 0, x = 0 is a unique equilibrium point. With a nonsingular transform
matrix P, B = P~'AP. With x = Py,

y = By (A.174)
where
A1 0 0
B=|0 4 0. (A.175)
0 0 A3

(A) If three real eigenvalues are different (A, # /1, # 13), the solution is

/11 0 0 eil(t—to) 0 0
B=|0 /4 0 |andy(t)= 0 ekl 0 |y (A.176)
0 0 4 0 0 e’3(t=1)

The origin is called a node of the linear system if three real eigenvalues have
the same sign. If /; <0 (k = 1,2,3), the origin is a stable node. If J; > 0 (k =
1,2,3), the origin is an unstable node. The phase portraits and eigenvalue
diagrams for the linear system with stable and unstable nodes at the origin are
sketched in Fig. A.10a and b with one eighth view. All flows will come to the
origin as the stable node. However, the flows in a linear system with an unstable
node at the origin will leave away from the origin.

The origin is called a saddle-node of the linear system if three real eigenvalues
have the different signs. If 1, <0(k = 1,2) with 13 > 0, the origin is a saddle-node
with two-directional attraction and one-directional expansion. If 2z > 0 (k = 1,2)
with 13 <0, the origin is a saddle-node with one-directional attraction and two-
directional expansion. The phase portraits and eigenvalue diagrams for the linear
system with two saddle-nodes at the origin are sketched in Fig. A.11a and b with
one-eighth view. The flows in the linear systems with saddle-nodes shrink in the
attraction direction(s) and stretch in the expansion direction(s).

(B) For two repeated real eigenvalues (11 = 4, = 4 and /3), the solutions are

A 0 O M=) 0 0
B=|0 4 0 |andy(s) = 0 eHr=) 0 Yo- (A177)
0 0 43 0 0 e#a(t=1)
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Fig. A.10 One-eighth phase
portrait and eigenvalue dia-
gram: a a (3: J: | stable
node (or sink) 4, <0 (k =
1,2,3)and ba (J:3:J)| -
unstable node (or a source)
>0 (k=1,273).

Fig. A.11 One-eighth phase
portrait and eigenvalue dia-
grams:a a (1 :2: | -saddle
(A& >0, k=1,2 with
J3<0),andba (2:1:J) -
saddle (4 <0, k=1,2
withds > 0).

)’1/

Y1/
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ImA
Reld
ImA
O—O0—O—
e Re A
(b)
ImA
\ )
\ Y2 Re
(a)
ImA
\\ O—O+—0—
\ Y, Re A
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A1 0 eHi=t) (r— to)e).(t—to) 0
B=|0 4 0 |andy(?) = 0 oAi—t0) 0 Vo, (A.178)
00 /13 0 0 eis(lffo)

The stability characteristics of Eq. (A.172) with two repeated real eigenvalues
are similar to the case of three real distinct eigenvalues. The origin is a stable node
(sink) with (1 <0 and A3 <0), an unstable node (source) with (4 > 0 and 13 > 0),
and a saddle-node (A<0 and /3 > 0 or 4 > 0 and /3 <0) for the linear system.
The phase portraits and eigenvalue diagram will not be presented.

(C) For two repeated real eigenvalues (1; = 1, = A3 = 1), the solutions are

A 0 0 M=) 0 0
B=|0 4 O0|andy(r) = 0 M) 0 |Yo (A.179)
00 2 0 )
210 M) (t—gy)et0) 0
B=|(0 4 0]|andy(t) = 0 M=) 0 |yo- (A.180)
0 0 4 0 0 eHt—10)
210 M) (1 — 1)) L (1 — 1g) i)
B=|0 A 1| andy(s)= 0 eHit=10) (t — 19)e*i=10) |y,
0 0 2 0 0 PAGEY:

(A.181)

The stability characteristics of Eq. (A.172) with three repeated real eigenvalues
are similar to the case of three real distinct eigenvalues. The origin is a stable node
(sink) with A <0, an unstable node (source) with 2 > 0 for the linear system. The
phase portraits and eigenvalue diagram will not be presented.

(D) For (412 = axif) and ImA3 = 0, the solution is

"y B0
B=|-f « 0],and
L0 0 4
: (A.182)
=) cos Bt — 19) ) sin B(t — 1) 0
y(t) = | =" sin f(r —19) e cosp(t—1) O |V
I O O eASO*tO)
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Fig. A.12 Positive half ,,/"’""""); """" .
spiral flows and eigenvalue (\~\~ _ ’ > ImA
diagrams: a (J:1: | : N
1 : &) -spiral source N >
Re/x >0 (k=1,2,3), and b \

(1:D:)1:: D) -spiral ~ %’/

sink Re4x <0 (k = 1,2,3) % Rel

/\z’ h%)

R

(a)

ImA

C

ReA

o R ®)

Y

(b)

The origin is called a spiral focus of the linear system if the real parts of three
eigenvalues have the same sign. If Red, <0 (k = 1,2,3), the origin is called a
stable spiral focus (or a spiral sink). If Red; > 0 (k = 1,2, 3), the origin is called
an unstable spiral focus (or a spiral source or a tornado). The linear system with
stable and unstable spiral focuses at the origin is sketched in Fig. A.12a and b with
a half space view. The spiral flows and eigenvalue diagrams are presented. All
flows with a spiral sink spirally come to the origin. However, the flows in linear
system with a spiral source at the origin will spirally leave away from the origin
like a tornado. The origin is called a spiral saddle with a spiral-exponential
attraction and expansion of the linear system if the real parts of three eigenvalues
have different signs. If Re/;, = <0 (k = 1,2) with A3 > 0, the origin is a saddle
of the first kind which has an (& :1: |1 : & : &) spiral attraction and an
exponential expansion. If Rely = a >0 (k= 1,2) with A3 <0, the origin is a
saddle of the second kind which has a (1: & : | : 1: F) spiral expansion
with an exponential attraction and two-directional expansion. The flows and
eigenvalue diagrams for the two cases of the linear system are sketched in
Fig. A.13a and b, respectively.

(v) For (41, = £ip) and Im /3 = 0, the solution is given by
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Fig. A.13 Positive half
spiral saddle flows and ImA
eigenvalue diagrams: a an
(@:1:Q|1:D: D) -spiral Q
attraction and exponential i
expansion (Re/; = i O
u<0 (k= 1,2) with 43 > 0) y | Rel
andba(l:J:J|J:1:0) : O
-spiral expansion and expo-
nential attraction (Rel; =
a<0 (k= 1,2) with /3 <0). (a)
ImA
?
% ReAd
Y2 1e)
(b)
ro f 0
B= |- 0 O |,and
0 0 4
- . A.183
cosf(t —t9) sinf(t —19) 0 ( )
y(1) = | —sinf(t —t0) cosfplt—10) O |y,
0 0 e/3i—10)

The origin is called a cylindrical spiral of the linear system if Re4, = o = 0. If

A = %if (k= 1,2) with A3 > 0, the origin is a center of an unstable cylindrical

spiral. If 4 = +if (k=1,2) with 13<0, the origin is a center of a stable

cylindrical spiral. The flows and eigenvalue diagrams for the two special cases of
the linear system are sketched in Fig. A.14a and b.

The eigenvalues of A in Eq. (A.172) are determined by det(A — AI) =0, i.e.,

PBALl24+bi+L=0 (A.184)
where

I =tr(A) = a1 +axn +as,
L, = aynax + axpaz; + azza) — apax — axpaz — apas,
I; = det(A)
= a11a2a33 + a1pax3as; + ajzasndz) — A11a3ax — Axazds) — dszdpa) .-

(A.185)
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Fig. A.14 Positive cylindri-
cally spiral flows and eigen- ImA
value diagram(4;, = =£if,
k=1,2):aa(1:J:JJ:
& : 1) -cylindrically sink
flow (/3 >0),and b a (J: O
1: D : D : 1) cylindrically Rel
spiral source flow (43 <0). ¥,
()
ImA
J
ReAd
Y2
(b)

The corresponding eigenvalues are

)~l = Q/A»l+ y AZa
ly = wli/E+ wzi/Eand (A.186)
I3 = oo/ A+ 013/Ay

where
Dt B (IO S (VA
1= ) 2 — 2 )
Ay = _%i\/KandA: (%)h(%’)% (A.187)
1 1 2
p:Iz—gllzandq:h—glllz—l—ﬁlf.

The linear system in Eq. (A.172) possesses the following characteristics

(i) For A > 0, the matrix A has one real eigenvalue and a pair of complex eigen-
values. The spiral sink, spiral source, and spiral saddle exist at the origin, i.e.,
(1B D), (DB:1: DB 1:2), (B:1: D : D D)
and(1: @ : F|T:1: ).

(i) For A=0 and p = ¢ = 0, the matrix A has three repeated eigenvalues.
Stable and unstable nodes exist at the origin.
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ImA ImA ImA

C

ReA ReA Red

o———®
010

O =
>

(a) (b) (c)

Fig. A.15 Eigenvalue diagrams (Re/; <0 andIm/; # 0,k =1,2):aan (1 : J:D|1 : J: ) -
stable spiral sink (43<0), b an (J:J: 1|1 :J: ) stable focus in (u;,v;) -plane (or a
boundary of spiral sink and spiral saddle) (43 = 0), and can (J: 1: J|1 : & : &) -spiral saddle
(a spiral saddle of the first kind) (13 > 0)

(iii) For A=0 and ¢*> = —4p3/27 # 0, the matrix A has two repeated real
eigenvalues. Sink, source and saddle-node exist at the origin.

(iv) For A<O0, the matrix A has three different real eigenvales. There are six
cases at the origin: (3 : & : J| -stable node (sink); (J: 3 : J| -unstable
node (source); (2:1:J| and (1:2:(J| -saddles; the (2:O:1]
boundary of (2:1:(J| -saddle with (3 :: | -stable node; the (I :
2: 1| boundary of (1:2:(J| -saddle with (J:3:J| -unstable node;
and the (1:1:1] boundary (2:1:J| -saddle with (1:2: | -saddle.

(v) A degenerate equilibrium point is at the origin for det(A) = 0.

One of eigenvalues is zero, which is a degenerated case. The total degenerate
cases are given as follows. For the 1-dimensional degenerate case, there are four
basic cases.

«a p 0 A1 0 0
B=|(-f o 0|, andB=|0 4, O (A.188)
0O 0 0 0O 0 O
A 0 0 A blz
B=(0 A Of, and B= (A.189)
0 0 0
For the two-dimensional degenerate case, there are six basic cases.
ai 0 0 aj an 0 aj 0 0
A=]0 0 O|, A= 0 0 O|landA=|0 0 ax|. (A.190)
0O 0 O 0 0 0 0O 0 O
ain ap 0 air 0 a3 an ap aps
A= 0 0 ans ,A = 0 0 ans and A = 0 0 ans
0 0 0 0O 0 O 0 0 0

(A.191)
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ImA ImA ImA

Q-0

(@) (b) (c)

Fig. A.16 Eigenvalue diagrams (Red; >0 and ImA, #0,k=1,2):a (1: J:J|T:1: D) -
spiral saddle (or spiral saddle of the second) (43 <0), b an (J:: 1| : 1 : &) - unstable focus
in (uy,v;) -plane (or a boundary of spiral source and spiral saddle) (43 =0) and ¢ (J:1:
| : 1 : ) -unstable node (or spiral source) (43 > 0)

ImA ImA ImA

Rel Rel Rel

() (b) (©
Fig. A.17 Eigenvalue diagrams (Red, =0 andlm/; #0,k=1,2):aan (1: J: JT: D : 1)

stable cylindrical spiral (43 <0), ban (J:J: 1|J:J: 1) -center in(uy,v;) -plane (13 = 0),
and c an (J:1: | : D : 1) unstable cylindrical spiral (13 > 0)

ImA ImA ImA

ReA ReA

(a) (b) (0

Fig. A.18 Eigenvalue diagrams for degenerate cases (/3 =0 and Im/; # 0,k =1,2): a (J:
D:1]1:D:J) stable focus (or spiral sink) in plane (u;,v;) (Red<0), b
a(@:J: 1|J:J: 1) boundary of sink and source in plane (u;,v;)) (Red, =0) and ¢ (T :
D 1| :1: D) -spiral source in plane (u;,v;) (Red, > 0)
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ImA ImA ImA
-0—0—0 o0—O0—O——» —O0—0—FT—0—
ReA ReA ReA

() (b) (c)
Fig. A.19 Eigenvalue diagrams: a (3 :J:(J| -node (or stable node or sink) (/4 <0, k=
1,2,3), b (2:J: 1| saddle-node (or a boundary of saddle-stable node) (4, <0, k = 1,2 and
J3=0)and ¢ (2: 1 : (| -saddle (or a saddle of the first kind) (4 <0, k = 1,2 and 43 > 0).

ImA ImA ImA

ReA ReA ReA

(a) (b) (0

Fig. A.20 Eigenvalue diagrams: a (J: 3 : | -unstable node (source) (4 >0, k=1,2,3), b
(D :2: 1| boundary of (1:2: | saddle-( : 3 : | unstable node (4 >0, k=1,2 and 43 =
0) and ¢ (1 :2: | -saddle (or a saddle of the second kind) (4 > 0, k = 1,2 and 43 <0)

ImA ImA ImA

Re A ReA Red

(a) (b) (c)

Fig. A.21 Eigenvalue diagram: a a (2 : 1 : | -saddle (or a saddle of the first kind) (4 <0, k =
1,2 and 73>0). b a (I:1:1| boundary of the (2:1:{J| saddle to (1:2:{J| saddle

(A1 >0,72=0 and A3<0), and ¢ a (1:2:¢J| -saddle (or saddle of the second kind)
(>0, k=1,2 and 43 <0)

For the three-dimensional degenerate case, there are six basic cases.

0 0 0 00 O 0 a2 O
A=|0 0 O ,A =10 O axs |, and A= |0 0 azs | . (A192)
0 0 0 0 0 O 0 0 O
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ImA ImA ImA
A * Ay A f 45 lllf 4y
Oo—0C O —O—T—O0—
ReA ReA ReA
f f f
(a) (b) (©)
ImA ImA ImA
A A
+ ? 1 i} 1 * Z% /11 Q* ﬂ3
Rz N
*O . € A * Red A, Of Rel
(d) () ®

Fig. A.22 Eigenvalue diagrams (/3 >0): a (J:3:J| -unstable node (source) (X =
4>0,k=1,2),ban (J: 1:2|boundary of the (2 : 1 : | -saddle to (J : 3 : | -unstable node
(4 =24=0,k=1,2) and ¢ (2: 1 : J| -saddle (or a saddle of the first kind) (4 = A<0, k =
1,2); The reduction froms: d an (J: 1 : J| : 1 : &) -unstable spiral node (spiral source) (4 =
A>0k=1,2), ean (J:1:J| J:J:1) boundary of the (1:J:|J:1: ) -spiral
saddle to (J:1: D :1: D) -spiral node (44 =1 =0, k=1,2),and fan (J:1:[1:J:
) -spiral saddle (4 = 41<0, k =1,2)

Fig. A.23 Eigenvalue dia- ImA ImA
grams (4 = A=0,k=1,2):
aan (J:1:[2;1]| -one-
dimensional unstable source 2
flows (43 >0),ba (1:J: 4z A5 }: | b2
[2; 1]| -one-dimensional sta- ~ h
ble sink flows (43 <0) Red Re A
(@) (b)
0 an ap 0 0 ans 0 ann ax
A=10 0 ax3|,A=|0 0 apn|,andA=|0 O 0 [. (A.193)
0 O 0 00 O 0 O 0

The eigenvalue diagrams are presented in Figs. A.15-A.26 for all possible flows
and boundaries. The distinct eigenvalue diagrams are sketched in Figs. A.15-A.21.
The repeated eigenvalues are presented in Figs. A.22-A.26.
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ImA ImA ImA
A */11 2 Ay * Ais A, * Az
—0—0 o —o0—1—o0——~
* ReA * ReA * Red
(a) (b) (c)
ImA ImA ImA
A *(i) 4 A * A 4 *(i) A
—o0— o —o—t -
! Red Red | ReA
fo 4 fo 1, P
@ (e) ()
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Fig. A.24 Eigenvalue diagrams (43<0): a a (3: J: | -stable node (sink) (4 = A<0, k =
1,2),ba (1:J:2| boundary of (1:2: | -saddle to (3 : & : | -node , or the saddle-node of
the second kind) (4 =4 =0, k =1,2) and ¢ (1 : 2 : J| -saddle (or a saddle of the second kind)
(=4>0,k=12);d a (1:J:J|1:J:J) -node (stable spiral node or spiral sink)
(Rey <0,k =1,2),ea (1:J:J|J: ;1) -boundary of (1:J: |1 : I : ) -saddle to (1 :
D DD : D : 1) -saddle, or the spiral saddle-spiral node of the second kind) (Red, =0, k =
1,2), and f a (1:J:D|F:1:) -saddle (or a spiral saddle of the second kind)

(Red; >0, k = 1,2).

/11,23

ImA

ImA

//i'l.2.3

ImA

1,2,3

(a)

ReA

ReA

(b)

Red

()

Fig. A.25 Three repeated eigenvalue diagrams: a a (3 : & : J| -stable node (1;,3 = 41<0), b
an (J:: [3;2]] boundary of the (3:¢J:(J| -stable node to (J:3:(J| - unstable node
(Mi23=A=0)and c an (J: 3 : | -unstable node (4123 = 4> 0)
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ImA ImA ImA
/ll 2 jd3 /11'2 Z; l]yz ﬂ,;
ReA Rel Re
(a) (b) (©)
ImA ImA ImA
ﬂ’% ﬂ’l 2 Z’Z ﬂl\z 13 /11 2
— 00— O0— D O —O0——O0——
ReA Rel Red
(d) () ®

Fig. A.26 Eigenvalue diagram (1, = A<0, k=1,2): aa (3 : & : (J]| -stable node (/3 > 0),ba
(2:J: 1| boundary of (2:1: | -saddle to (3:J: | -node (13 =0),and ca (2:1:] -
saddle (/3 <0). Eigenvalue diagram (4 =1 >0, k=1,2) :d an (J:3: J| -node (13 > 0),
ean (J:2: 1| boundary of (1:2: | -saddle to (J: 3 : J| -node (43 =0),andfa (1:2:) -
saddle (43 <0)

It is very difficult to illustrate multiplicity of eigenvalues for nilpotent matrix
N =0 (m > 1). & can be used “0”, and herein J represents “no existing”.
For degenerate cases, most of cases cannot be illustrated through eigenvalue
diagrams. For more detail discussion, the textbook on linear dynamical systems
can be referred to Coddington and Levinson (1955), Hirsch et al (2004), Perko
(1991) and Verhulst (1996).
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Appendix B
Linear Discrete Dynamical Systems

In this Appendix, the theory of linear discrete dynamical systems will be
presented. The basic iterative solution for linear discrete systems will be presented
first. The iterative solutions based on distinct and repeated eigenvalues will be
discussed. The stability theory for linear discrete dynamical systems will be
presented. Compared to linear continuous systems, the stability of linear discrete
dynamical systems will be discussed from the oscillatory, monotonic and spiral
convergence and divergence. The invariant, flip and circular critical boundaries of
the stability in the specific eigenvector will be classified. The lower-dimensional
linear discrete systems will be discussed.

B.1 Basic Iterative Solutions

Basic concepts of discrete dynamical systems will be presented herein before
further discussion on the iterative solutions and stability.

Definition B.1 Consider a discrete linear dynamical system based on a linear map
P : X — X441 with the corresponding relation

Xi+1 = Ax; + B for k € Z and x; = (xyx, X0k, - - .,xnk)T cR" (B.1)

where A is an n X n matrix and B is a constant vector function. If B = 0, the
discrete linear dynamical system in Eq. (B.1) is homogeneous. Equation (B.1)
becomes

Xy 1 = Axy for k € Z and x; € #" (B.2)

which is called a homogeneous linear discrete system. If B # 0, the linear discrete
dynamical system in Eq. (B.1) is nonhomogeneous, and the corresponding linear
discrete system is an nonhomogeneous, linear, discrete system.

A. C. I. Luo, Regularity and Complexity in Dynamical Systems, 429
DOI: 10.1007/978-1-4614-1524-4, © Springer Science+Business Media, LLC 2012
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Consider P/ : x; — X;4; with P/ = Po P/™! and P =1. With Eq. (B.2), the
final state x;.; of mapping P/ is given by

Xk+j = Axk+j—l =...= Aij. (B3)
For Eq. (B.1), the final state x;.; of mapping P/ is given by

. i—1
kai = Axk+j71 + B = A(Axk+j72 + B) + B = AJXO + ! OAmB. (B4)

m=!

If det(I — A) # 0, one obtains

S AMI-A) =T-A/ = j;(')Amz(I—Af)(I—A)“. (B.5)

m=0
Thus, the final state x;,; of mapping P/ is given by
Xi1j = A/x; + (I— A/)(I—A)"'B. (B.6)
Definition B.2 Consider a discrete linear dynamical system based on a linear map

P : Xy — Xp1 with X1 = Axg + B in Eq. (B.1). If x4+ = x¢ = X}, then the point
X, is called the fixed point (or period-1 solution) which is determined by

x; =Ax; +B (B.7)
For map P/ : Xy — X, if Xx4j = X¢ = X}, then the point x; is called the period-
Jj solution which is determined by

* _ *
X = Ax; + B,

* _ *
X = AXp + B,

(B.8)
Xy = AXpy + B =x.
From the definition, the unique fixed point in Eq. (B.7) is given by
x; = (I—A)"'Bif det(I—A) # 0. (B.9)
(i) If B # 0 and det(I — A) = 0, then the fixed point x; is no solution.
(i) If B =0 and det(I — A) # 0, then the fixed point x; = 0 is unique.
(iil) If B =0 and det(I— A) = 0, then the fixed point X is uncertain.
Equation (B.6) with x;; = x; = X} gives
x; = (I—A)"'B if det(I — AY) # 0. (B.10)

B.2 Linear Discrete Systems with Distinct Eigenvalues

In this section, the solutions for linear discrete dynamical systems with distinct
eigenvalues will be presented.
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Definition B.3 For a linear dynamical system of x;.; = Ax; in Eq. (B.2), if the
linear matrix A = diag[l1, A2, . . ., A, is a diagonal matrix, then the linear discrete
dynamical system in Eq. (B.2) is called an uncoupled, linear, discrete homogenous
system. With an initial state of X;, the solution of the uncoupled linear
homogenous system is

X = diag[2%, 5, ..., 2X]xq. (B.11)

Theorem B.1 Consider a linear dynamical system X;+1 = AXy in Eq. (B.2) with
the initial state of Xi. If the real distinct eigenvalues of the n X n matrix A are

My A2, .. A, then a set of eigenvectors {V,il), v,(cz), el V,(:O} is determined by
(A — Iy =o. (B.12)
which forms a basis in Q C R". The eigenvector matrix of P = [v,gl),v,gz), ey v,((")]

is invertible and
P 'AP = diag[iy, 72, . . ., ). (B.13)

Thus, with an initial state of X, the solution of discrete linear dynamical system in
Eqg. (B.2) is

Xei1 = Pdiag[hy, 22, ..., 2n|P7'x; = PEP 'x; (B.14)

where the diagonal matrix E is given by
E = diag[l1, A2, -« -y 7). (B.15)

The iteration solution of discrete linear dynamical system in Eq. (B.2) is

xi = Pdiag[2%, 05, ... 25 |P~1xy = PEFP'x,. (B.16)
Proof Assuming xi;; = Ax; and x; = cvy, equation (B.2) gives c¢(A — AI)vy = 0.
Thus, (A — 4I)v{ = 0 yields

[AV,(CI), AV,EZ), e AV,({")] = [/llvl(:), }QV](CZ), . /lnv,(:’)].
Deformation of the foregoing equation gives
A[V,El),v,(f)7 . .,V,((")] = [V,((l),v,iz), . .,V,((")}diag[il,ig, ey P
Further
AP = Pdiag[i, 22, . . ., 2n)-

The left multiplication of P~! on both sides of equation yields

P 'AP = P 'Pdiag[iy, /s, . .., /] = diag[i1, 2, . . ., Jn).
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Consider a new variable of y, = P~'x;. Thus, application of x; = Py, to Eq. (B.2)
yields

Yig1 = P 'xi1 = P'Axy = P 'APy, = diag[i1, 2, . . ., J¥s.

Using x; = Py, and y, = P~'x;, we have
Xip1 = Pdiag[iy, 2, . . ., 2P x¢.
where
E = diag[l1, A2, .« -, 7).

Further, one obtains

x; = (PEPYfxy = (PEFP~")x) = Pdiag[2X, 2%, ..., 25 ]P~'x,.
This theorem is proved. u

The eigenvector of v; is assumed as

1
vV, = { r; }V,‘. (Bl7)
From Eq. (B.12), we have

ayp — /1,' blx(n—l) :| { 1 }Vi — 0’ (B18)

Ch-)x1 At — Ailp-1)xm-1) | | T
where the minor of matrix A is A, and other vectors are defined by
Cn—-1)x1 = (ail)(n,l)xl (i=2,3,...,n),
le(”*U = (alj)lx(n—l) (j:2737"'7n>1 (Blg)
A = (@) (1yxn-1y (6 =2,3,..,n).
Thus,
= (An = Al en)” Caxt- (B.20)
The solution of discrete linear dynamical system in Eq. (B.2) is
X = G = W v v diagli, da . ) C

(B.21)
= Pdiag[)vl, }uz, ceey /Ln]C

where

C=(C,C...,C) (B.22)
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If g1 = Xx, diag[h, 22, ..., An] =1 Thus
P 'x, =C. (B.23)
Therefore, the solution is expressed by
Xep1 = Pdiag[iy, 2, . . ., 2 |P7Ixp (B.24)
The two methods give the same expression.

Theorem B.2 Consider a linear dynamical system X;.1 = AXy in Eq. (B.2) with
the initial state of Xy. If the distinct complex eigenvalues of the 2n x 2n matrix
A are )= +ip; and Ji=o; —if; (i=1,2,...,n and i=+/—1) with
corresponding eigenvectors w,(f) = u,(f) + ivl@ and W,(:) = u,@ — iv,(f)7 then the
corresponding eigenvectors u,((i) and V,((i) (i=1,2,...,n) are determined by

(A= (0 +ig)D @ +ivl’) =0, or

) ) B.25
(A = (o —ip)D (W —iv)’) =0 52

which forms a basis in Q C #*". The corresponding eigenvector matrix of

P=[u" vl u? v? " V"] is invertible and
P~ 'AP = diag(B;,B,,...,B,), (B.26)
where
_ | w B
B, = [—ﬁi {xi:|(l—1,2,...,}’l). (B.27)

Thus, with the initial state of Xy, the solution of the linear dynamical system in
Eq. (B.2) is

Xi11 = PEP 'x; (B.28)
where the diagonal matrix E is given by

E = diag[E|,E2,. ..,En],
{ cos 0; sin@,-]
E;=r . )
—sinf; cos0;

with r; = y/o2 + > and 0; = arctan&,
o

o; = r;cos 0; and f5; = r;sin 0;.

(B.29)

The iteration solution of the linear dynamical system in Eq. (B.2) is

x; = PEFP'xy = PE(k)P'x, (B.30)
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where

E(k) = EX = diag[E, (k),Ey(k), . . ., E, (k)]
B coskl;  sink0; (B.31)
| —sink®; cosk0; |

Proof Assuming x;.; = Ax; and X; = cvy, equation (B.2) gives ¢(A — AI)v, = 0.
Since det(A — AI) = 0 gives 4; = o; +iff; and 4; = o; — if;. From Eq. (B.25), we
have

(A —oy )uk + B,Ivk =0,

~ Bl + (A — v = 0.
= ot -0 {1}

i (i (i % B

A<u,a>,v,a>><u;>,v,i>>[_;;i Al

Assembling A(u,({ , <>) for (i =1,2,...,n) gives

AP:Pdiag{oc] a} { » }{“ﬁ 5})
1 —Pn n

= Pdlag(El ) E27 ) En
where
cosl; sin0;
E =r ) )
—sin0; cos0;
o; = ricos; and f§; = r;sin 0;;

= /o2 + 7 and 0; = arctan%,

L

1 1 2 2 n n
P= (u,(<>,v,((>,u,<(>,v,((>,...,u,(<),v,(()).

The left multiplication of P~! on both sides of equation yields
P 'AP = P 'Pdiag(E,,E,,....E,)
=diag(E1,E,, .. E,).

Consider a new variable y, = P~'x;. Thus, application of x; = Py, to Eq. (B.2)
yields
Yerr = P 'xi1 = P 'Ax, = P APy,
=diag(E,E,, ... E,)y;.
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Using x; = Py, and y, = P"!x;, we have

Xi1 = Pdiag[E,E,, ..., E,JP"'x, = PEP 'x;.

Therefore,
x; = (PEP™)*xy = PEFP~'xy = PE(k)P'xo.
where
E(k) = EX = diag[E, (k),Ey(k), . . ., E, (k)]
B0 =7 Tt ok
This theorem is proved. u

The conjugate complex eigenvectors are assumed as

u,@ + iv,(f) = C,Ei) { r;{i) } and u,((i) - iv,@ = C,(f){ _}i) } (B.32)

where the conjugate complex constants are assumed as

@ 1
=5

r,(ci) = U,(f) + iV,Ei) and f,(f) = U,((i) — iV,(f).

(@) _ sy A0 _ L) o)
M’ —iN;’) and C;’ =-(M;’ +iN,"’).
(M, i) k 2( k i) (B.33)

From Eq. (B.25), we have

an —o; — if; bisxn-1) LI
Cln-1)x1 11— (o + i)y -1y | | 1%

Thus, the foregoing equation gives
¢+ [(An — o) —ipIr)) =0, (B.35)
A -1 A A :
r = [(An =)’ + 8] [(An - ) +igHe = U iV (B.36)

where

v = [(An —al)’ + ﬁ?l} (A — al)ey’ B.37
0) 2, p21] o (537
Vk — |:(A11 — CX,I) + ﬁl‘ I:| ﬂick .
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The solution of the linear dynamical system in Eq. (B.2) is

s = Gl + i) e +iB) + € (u) —iv)) (s — i)
My

Y W
— r; cosO;+< . o ¢ Sin0;
i=1 U() + N()V(> NIEl)Ul(cl) _ M/EI>V1<<I>
cosl; sin0; M,ii)
- Z (i, vi)r in0: 0. (i)
—sin0; cos0;] | N

=PEC
(B.38)
where
P= [ll],Vl,... lln,Vn],E:diag[E17E2,...,E,l],
_ T
C_<M17N17 . 7MnaNn) ) (B39)
i cost; sinb; i) 1 () 0
E = . W =9 o o and vt =9 o6 o
—sinf; cos0; U, A\
With the initial state of x;,.; = X, one obtains E = I. Thus,
C=P 'x. (B.40)
Therefore, the solution is expressed by
Xc11 = Pdiag[E,Es, ..., E,JP"'x, = PEP 'x;. (B.41)

The two methods give the same expression.

Theorem B.3 Consider a linear dynamical system X1, = Ax; in Eq. (B.2) with
the initial state of X. If the distinct complex eigenvalues of the n X n matrix A are

Ji = o +ip; and A; = oy —ip; (i =1,2,...,p and i = \/—1) with corresponding

eigenvectors w,f) = u,({i) + iv,(f) and v’v,(f> = u,@ - iv,(f), and (n — 2p) distinct real
eigenvalues of Aopi1,2py2,- - -, A, then the corresponding eigenvectors u,(f) and

V](ci) fOr complex el‘genvalugs (/li;;li) (l = 1,2, .. ,p) are determined by
(A — (& +ig)D +iv") =0, or
(A~ (% —ip)D( —ivl") =0

V]<(2p 2 V]((”)} is determined

(B.42)

(2p+1
and a set of corresponding eigenvectors {V P+l

by

(A—AiDv =0 (B.43)
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which forms a basis in Q C R". The eigenvector matrix of
1) (2 (2 2p+1) _(2p+2 n
P=] ,((),V,(( ),u,(( ),V](( ). .,u,(;"),v,((p),v,((‘” >,v,((p >,...,v,(( 4 (B.44)
is invertible and
P 'AP = diag(E1,Ea, .. ., Ep, Jopi1, 2pias - - o5 In)- (B.45)

where

E — i[ cosf; sinb;

St Cosol}(i: 1,2,...,n). (B.46)

Thus, with an initial state of Xy, the solution of linear dynamical system in
Eqg. (B.2) is

Xir1 = Pdiag[El,Ez, cen E‘,,7 ;u2p+1,}v2p+2, Cea ﬂvn]Pflxk

B.47
= PEP 'x. (B47)

The iterative solution of linear dynamical system in Eq. (B.2) is
X = Pdiag[E(k),Ea(k), .. . Ey(k), 75, 1, 75, 00 Ap P 'xg (B.48)

=PE(k)P 'xo

where

coskl; sink0; | .
Ei(k) = rf sinkl, cos k0, (i=1,2,...,n). (B.49)

Proof The proof of the theorem is from the proof of Theorems B.1 and B.2. W

B.3 Linear Discrete Systems with Repeated Eigenvalues

In this section, the solution for a discrete dynamical system possessing repeated
eigenvalues will be discussed. The case of repeated real eigenvalues will be
discussed first, and then the case of repeated complex eigenvalues will be
presented. Finally, the solutions for nonhomogeneous discrete dynamical systems
will be presented.

Theorem B.4 Consider a linear dynamical system X;,1 = AXy in Eq. (B.2) with
the initial state of Xy. There is a repeated eigenvalue 1; with m-times among the

real eigenvalues /i,73,...,2, of the n x n matrix A. If a set of generalized
eigenvectors {V,(<1>,V,(<2>, . V,E'l)}forms a basis in Q C R". The eigenvector matrix
of P = [V/({l), V/({2>, e V,((")] is invertible. For the repeated eigenvalue ;, the matrix

A can be decomposed by
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A=S+N (B.50)

where

P 'SP = diag[/)] (B.51)

nxn’

the matrix N = A — S is nilpotent of order m<n (N = 0) with SN = NS.

PilAP = dlag[)l, .oy /li_l,/li, .. .,/1,‘, /1i+m7 .. .72”}. (B52)

m

Thus, with an initial state of Xi+1 = Xy, the solution of the discrete linear
dynamical system in Eq. (B.2) is

xi11 = P[E + (P'NP)|P'x; (B.53)
where
E = diag[)vl, Ceey /1,;1,/1,‘7 ceey /1,', /1,'+m7 ce ey /L,,] (B54)
——

m

The iterative solution of linear dynamical system in Eq. (B.2) is
xc = P[E + (P~'NP)]“P'x,. (B.55)

Proof For the repeated real eigenvalue A; of the matrix A, consider the
corresponding solution as

I((tr{) _ C}({lj{) () A Ct+1) (1+J>7

XI((i-&-j) _ C/(<i+])vl(<l+j)v

Cklff ka) + iiC,EHj)V;(fH) _ AC’EiH)V](jH)_

Therefore,

VT = (A — 2D v

Consider the constant vector and eigenvector matrix as

¢ =(0,...,0,ci 0,....0)", ¢ = (0,...,0,¢7 0,...,0);

W—’
i+j—1 n—i—j i+j—1 n—i—j
(1) (i—1) (i) (i+m—1) _ (i+m) (n)
P=(v,/,...v; /. ,v,/,..,V; LV V).

Thus

PC/ = (A - 4DPCI) = ¢ = pY(A - ZT)PC),
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Let A=S+ N, thus
' =P (A - AD)PC

=P 'S+ N-AI)PC/™
= (PSP — 4,1+ P 'NP)C!"™).

Because of P~'SP = diag[/;], the solution of the foregoing equation is
Cil = (pINe)C.
Thus,
i m=1 = (i+j i)\ (it
= S (D 1
— 1,PC +PC{ Y = P11+ (P7'NP)|C.
Let

T
C:(Cla"wciflaci --~7Ci7Ci+ma"'7Cn) )
N——
m
P= (Vl a"'7Viflavia'"avi+m71;vj+m7"'>vt1)~
—————

m

Thus, there is a relation

P AP = diag(ly, ..., i1, iy oy iy Ry - - o 2on)s
————

and the resultant solution is

et = x4 xUTY ) XD Pl gy
X1 — P[dlag(/q, ooy ;Li—h}via coay }vi, iiﬁ—ma < ey )vn) + (PilNP)]Pilxk
——
=P[E + (P7'NP)|P 'x;
where

E= diag(il, ceey /l,;l,/ﬂui, .. .,/I,', ii+m7 cey /Ln)
——

m

Therefore, the iterative solution of linear dynamical system in Eq. (B.2) is

xc = P[E+ (P'NP)]“P'x,.

439

(n)
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This theorem is proved. u
Consider the solution for repeated eigenvalues of a linear dynamical system as
z+j — ) (i47) l+]) (i+j+1) 1+j+l)
k+1 C + C Vi (B56)
(]_0,1,..., -2).

Submission of (B.56) into x4+; = Ax; in Eq. (B.2) gives
Z] . (A - iI)( l+j ](<z+j))_’_(C]((i+j+1)vl(<i+j+1)) -0 (B.57)

Thus
i i+j i+j+1)_ (i+j+1
(A =2V = (TN =0 (B.58)
(i=0,1,2,...,m—2).

With (A — /”t,‘I)v,(jer*l) = 0, once eigenvectors are determined, the constants C ]((Hj )
are obtained. On the other hand, let

ci) = ¢t (B.59)
Thus, one obtains

(A o /II) (i+m—1) _ 0’

- (B.60)
(A — 2D =G = 01,2, m—2).
Deformation of Eq. (B.60) gives
Av]({i-‘rm—l) _ /livl((iﬁ-m—l)’
AV]((iJrj) _ ;Livl(ciJrj) + V]((i+j+l)(j =0,1,2,...,m—2), (B.61)
A0,..,0,v) VD D g ) '
=(0,...,0,v\) vtV D o 0)BO);
where the Jordan matrix is
BY) = diag(0(i_1)x(i-1), B]Ei)vO(nfmfiJrl)x(nfmfiJrl))a
(4 0 0 ... 0 07
1 24 0 ... 0 0
B0 _ 0O 1 4 ... 00 (B.62)
K = . ) .
0 0 A O
L0 0 L Zidm
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Thus
AP = Pdiag(1, .. ., 2i- 1, B Lscms Aikms -« - 2 )
P AP = diag(l1, ..., 21, B, s Aivms - P
where
P= (v,(f), .. .,v,(f*l), V]((i), V,(("H)7 .. .,v,(ch*l),V,((Hm), .. .,v,(("))

e
(V,E),V,(c),...,v,((")).

With Egs. (B.59), Eq. (B.56) becomes

i m—1 i+j)  (i+] i+j+1) _ (i+j+1
N = S AN )

= (V,((l), e V,iFl), V]ii>,V/(<i+l), I V,((Hm*l), V](ch), . V,@)Bka
= PB,C;.
1 i—1 i i+m—1 i+m n)\T
Ck ( ](<>7 7C](< )7C](¢)7"'7C]<(+ )7C]E+ >7 7C](< )) )
—_———

By = diag(0;_1)x(i-1), B;(f), O immt 1) (n—i-m+1)) -

Therefore,

i—1 0
X1 = E 1 Xt 1 +Xk+1 + E jitm1 k+1
:Pdlag()\,l,...,/L/[fl,o,...,o,ildrm,...7;\,’1)Ck
——

m

+ Pdiag(01)x(i-1), B, 0—i—mt1)x (n—i—m+1)) Ck

where
E = dl'(lg(/l], ceay )ui_l,B,({i), /IH—m; ceey )vn)

If Xp+r1 = Xk, diag[/ll, )Q, ceey /L,,] =L Thus,
P71Xk = C.

One obtains - -
xi+1 = PEP 'x; = PEP 'x;.

Deformation of E gives
E = diag()»l, ceey /1,',17 O7 “ oy 0, ;Li+l7la ooy )vn)
——
m

+diag(0,...,0,BY| 0,...,0)

mxm’

and
B = (L1+PNP7!).

441

(B.63)

(B.64)

(B.65)

(B.66)

(B.67)

(B.68)

(B.69)

(B.70)

(B.71)

(B.72)
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where

N = diag(0—1)x(i—1)s Nlpsems Opn—ivms 1) x (n—i-m-+1)) -

The m x m nilpotent matrix of order m is

0 0 0 0 0
1 00 00
_ 010 00
N= : s
0 00 00
O 0 O 1 O mxm
Finally,
Xi+1 = P[E+ P~ 'NP|P 'x;
where
E = diag(il, ceey /l,',l, /"ui, ceey /’{l', ii+m7 ce ey /ln)
——

Therefore, the iterative solution is
xc = P[E+ P 'NP|'P'x,
where

N = diag(0(;1)x(i-1)s Nlypsems On—icm+1)x (n—i-m-+1) )
. )
N = dlag(o(i—l)x(i—l)7N |m><ma0(;17i7m+1)><(n7i7m+1))7

m— . n—1
N I:dlag(o(i—l)x(i—l)7N |m><m7O(nfiferl)x(nfiferl))'

The m x m nilpotent matrix of order m (i.e.,N) has

000 ... 00 00 0
00 0 0 0 00 0

L, (100 0 0 . loo o0
N=1lo1 0 0 0 o NT = :
Co 0 0 0

00 0 0 0 1 0 0

(=)

0

(B.73)

(B.74)

(B.75)

(B.76)

(B.77)

(B.78)

mxm

(B.79)

Theorem B.S5 Consider a discrete linear dynamical system Xi.; = AX; in
Eq. (B.2) with the initial state of X;. A pair of repeated complex eigenvalue with
m-times among the n-pairs of complex eigenvalues of the 2n X 2n matrix A is



Appendix B: Linear Discrete Dynamical Systems 443

4 = o +if; and ;Ij =o;—if; (j =1,2,...,n and i = /—1). The corresponding
eigenvectors are wW; = W; + iv; and w; = w; — iv;. If the corresponding eigenvector

matrix of P = [uy, vy, U, Vs, ..., W,,V,] is invertible as a basis in Q C R*". For the
repeated complex eigenvalue J;, the matrix A can be decomposed by
A=S+N (B.80)
where
PSP —diag(| % Py (B.81)
—b o

the matrix N = A — S is nilpotent of order m<n (i.e., N" = 0) with SN = NS.

P 'AP = diag[By,...,B;_1,B;,..,B;,Bi,...,B,] (B.82)
N e’
where
B, = { X ﬁ"}(k 1,2,...,n). (B.83)
—Br

Thus, with an initial state of Xo, the solution of linear dynamical system in
Eq. (B.2) is

xe+1 = P[E + (P"'NP)|P 'x, (B.84)
where the diagonal matrix E is given by

E= diag[Eb .. ~>Eif1>Ei7 . '7Ei7Ei+m7 .. '7En}7
———

m

E — cosl;  sin0; =12 ) (B.85)
J =1 —sin0; cos0; = S
The iterative solution of linear dynamical system in Eq. (B.2) is
xc = P[E + (P"'NP)]“P'x,. (B.86)

Proof Consider a pair of repeated complex eigenvalues with /; = o; +if; and
Jj= o — if; of the matrix A, the method of coefficient variation should be
adopted. Thus a pair of solutions relative to the two conjugate complex eigenvalue
is given by

0, = O+ i)+ B and ) = GO o )+ B

Assume the coefficient vectors for complex eigenvalues as
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1

O = U v = LT v ) )

—

b

1 i (i S (i
(Ul VD) Ly g

i+j (i) (i+7) 1 i i i+j . (i+f
B/ = Ui +1Vk+{ = 2(U1E++lj> - VIEJ:rlJ))(uI(cﬂ) + ‘Vl(cm)

l 1 1 1 1 1 1 1 I 1
= G 4 T - O T,
and
= (i+] i) e i 1 i) e (i i) . (it
C](<+j> _ U]E_H) _ lV]((+]) — 5([]]E +7) +1V]£ +J))(ll](<+]) _ lV](€+]>)
1 i i i i L. i) (4 i) (i+]
_E(U]EH) (+J)+V(+J) (+J))+EI(V]E+J)HI((+J)_UIEH)V]((ﬂ)),
(i+) (i+)) +) 1 () | i)y () _ ()
Bk+{ _Uk+1 - Vk+1 :E(Uk 1 Vk+lj)( 7 iy, )
1 i i i i 1 i i ~(i47) _ (i+)
2(U,(<+]) (+J)+VI£+J) (+J))+2 (VIE:l]) (i+)) 7UI£:‘1])VI(<+J))'
Thus,

i i i+j . ~(i+] . i+j 5 (i+]
XEkJ:rjl))++ Ektr]:) _C1(<+J)(°‘i+lﬁi)+ck l)(“i_lﬁi)‘FB/((ﬂ)"'B/E 7

= (U iV (o i) + (U =iV ) (o — i)

i (i+) F(iH) e (i)
+(OL) VD) + O] -V
(i+)) (i+))
i) (i % P Uy i) (i Uk+1
=@mwmﬂ o (T
—Bi Vi Vk+1j
Further,
(i+)
(i) | o (i+) (i) S| % Bi|) Uy
A" +x7) = A(w v ) [_ﬁi Oti] { V]Ei+j) :
The e (0 ) A 450 o
quation of X/ )+ X,y = Ay +X;7) gives
77(i+) (i+)
i) (i), ) Uk % B i) (i) ) Ui
(u(ﬂ)’V(JrJ))( ) —JA_ Lyxon (u J v j )
k k V]£l+]) ﬂj O(j X k k V]EH_]>

Consider the constant vector and eigenvector matrix as
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D, = (0,0,...,0,0, U v;",0,0,...,0,0) 1,5,

(i) i+j i T
D} =(0,0,...,0,0, U,(Hf , k:{ ,0,0,...,0,0)],,,,
P=(u,v ,...,ui,vl,...,un,vn).

Thus

i o ; i+
PD 7 = (A - {—/3- i]lz,lxzn)PD,(f”.

Let A =S + N, thus

ﬁl(:‘t{) = (PilSP - Bi12n><2n + PilNP)DI(CH»])

where
o P 10
B, = o = and
_ﬁi o 0 1
Lyxon = diag(Ihx2,Ioxa, - ., 10x2) -
Because of

PSP = dlag( |:ﬁ _aﬁl:| )n><n = diag(Bi)nxn = Bilonxan,
the solution of the foregoing equation is

b’ = (P'NP)D{).
Further

() cost;  sin0;

= 1 i
X(k+1)+ + X(k+1), = P( [ —sin gj cosh: ]Imezm + P NP)])

Consider the total solution of the complex eigenvalues. Let

Dk _ (Ul((l)’ V]El)7 o U]((ifl)’ V,EFU, U]Ei), V]Ei); o U]((ierfl)7 V]Ei+m71),

m

U/Ei+m)7 V/Ei+m)’ N 'Ulgn)7 V/En))T.
Thus, there is a relation

P 'AP = diag[By,...,B;_1,Bi,..,B;, B, ...,B,]
N e’

m

and, the resultant solution for the repeated eigenvalues is
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n

_ 0 0 0)
Xit1 = ) o Xy + X )+ Z k+1 + X(r)-)
=P[E + (P 'NP)|Dy.

where the diagonal matrix E is given by

E = diag[E1, .. .Ei1,Ei, ... E, Eiip, .., B,
———

m

}(,'1,2,...,,1).

cosf; sinl;

E=r
/ ][— sin0; cos0;

For k = 0, using X441 = X; gives E = I and one obtains D; = P~ !'x,. Thus, the
solution is

xi+1 = P[E + (P'NP)|P'x;.
The iterative solution is
—P[E+ (P'NP)]"P'x.
This theorem is proved. ]

Consider the solution for repeated eigenvalues of a linear dynamical system as

XEQ-H)-% _ Z] . C]Ezﬂ) I(c )(ij-i-iﬁj) +C1(ci+j+1>cl(<i+j+l)’ .

I e L o NEC L S
Submission of Eq. (B.87) into x(;:;r)l Ax(’+’ dx&ijr)l Axk ) gives

S I ol I 0

m—1 — () (it _ (i (v
Zj:o A — (o — i,Bj)Ian2n]C]((+])CI<{+]) _ C}({+J+1)c]<{+1+1) —.

Thus
A _( ) iﬂj)1211><2n]cj((i+j)cl((i+j) . C}Ei+j+1) I<cl+]+1) 0,
[A — (o + 1) Tanx2a]C k’ﬂ)é]((iﬂ') _ C,Ei”“ i+ _ o (B.89)
(i=0,1,2,...m—2).

With [A — (o +if)Lucef™ ™ =0 and [A — (2~ iff) ol " =0,

)

once eigenvectors are determined, the constants C,E’ are obtained. On the other

hand, let
C]({i+j+l) - C,Eiﬂ') and C‘]E”j) - (_?,((i+j+1). (B.90)

Thus, one obtains
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A = (2 + B Tanca)e) ™ = 0,
A — (% + i) Lalel ) — e =0,
A — (% — iB) ey ™Y =0, (B.91)
[A (ocj lﬁ;)Ian2n]é/(<l+]) 7/(<i+j+l) 0
(i=0,1,2,....m—2)
Assuming
C](([+j) (”f/) +1V(I+j) and c(l‘U) u]({"+j) —iV]((i+j)7 (B92)
deformation of Eq. (B.91) gives
. . . . o f
A(u]((ermfl)’Vl((lerfl)) _ (u]((1+m1)’vl((l+ml))|: ﬁ :|,
—pi
i) (i i) (| % Bi i) (i B.93
A V) Z @) ) [_[g. ! } N ) (B.93)
(G=0,1,2,....,m—2);
A0,...,0,ul) vi) glD YD o gliEmel) Glim=D) fg g
( koo Vi Uk k k k )
i—1 m n—(i+m)+1
=(0,...,0, u,(f), V]((), u,({lH), v,(fH), c unif'r_l),vni'f_l), 0,...,0 )B@Inxn,
i—1+1 m n—(i+m)+1
(B.94)
where the Jordan matrix is
DY 0 o0 ... 0 0]
L., DO o ... 0 0
, 0 Lo DO .. 0 0
BY —= ,
0 0 o0 .. DY o (B.95)
Lo o o ... L, DOJ,
D<i> o o :Bi
__ﬁi 0l ’
Lixn = diag(Li—1)x(i—1)s Lnxm, Ipxp) Withp =n —i—m+ 1.
Thus
AP = Pdiag(D) ... DD BW pltm - pi)y,
(B.96)

P 'AP = diag(DV ... DD BO pltm  p)
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where
P= (u,(cl),v,(cl), . .,u,iiq),v,((' 1)7u,<( ,v,(f),u,(fﬂ),v,(fﬂ)7
. u]({i-&-m—l),vl(ci-ﬁ—m—l)’ (l+m) (i+m)7 . u/({n)’ Vl(cn>) (B.97)
= (u,(cl),v,(cl),u,(cz),v,(f), . .,u,(( >,v,((")).
Suppose two conjugate constants are
i :;(Uéw) i) and ) = %(Uom Vi), (B.98)

With Egs. (B.90), equation (B.87) becomes
() _ O 0]
Xt = Xepng T Xp1)-

_Z z+j z+j (cx +lﬁ)+cl+j+l) (i+j+1)
J

(B.99)
+Zm IC(l+j (,+, (o5 — i) + 1+]+l) I({i+j+l)
_ (ll](:')7‘,](<l')7 u,((Hl), Vl(ciﬂ)’ o ll](<i+m71>, V]((i+m71))BiC]((i)
where
B; = DL, + (P"'NP), (B.100)
¢ = i v gt yliEm T (B.101)
Therefore,
X1 = Pdiag(Ey,.. . E;_1,B;,E;\,,....E,)C
k+1 g(E; 1 + )Ci (B.102)
= PEC;
where
C = (UIE])’ IEI)’ . Ul(ci—l)’ V/Ei—l), U;Ei), V[Ei)’ . U[Ei+m—1)’ V[Ei+m—l),
UIEier)’ V]Eier)’ . U]En), V]E”))T- (B 103)

E = Pdlag(El, .. ~»Ei—17Ei7 .. ~7Ei,Ei+m7 .. .,En).
——

m

For initial conditions, we have x; = PCy. So C; = P~ 'x;. Further,

xXi+1 = P[E + (P7'NP)|P'x;. (B.104)
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The 2m x 2m nilpotent matrix of order m is

449

[0 0 0 0 O]
L 0 0 0 0
_ 0 Lo O 0 0
N=| . | L : (B.105)
0 0 0 0 0
L 0 0 0 Lo 0_ 2mx2m
where
N = diag(05(i_1)x2(i-1)> N omscams 02(1—i—m-+1)x2(n—i-m+1)) - (B.106)
Finally,
xc = P[E + (P"'NP)] P 'x,. (B.107)

where the 2m x 2m nilpotent matrix of order m N has the following property:

m—1

2|

where

0
0

| D0

0

L L2

0
0
0

I

=]

0

0
0
0

SRR

0

0
0
0

2mx2m

(B.108)

2mx2m

N = diag(02(i-1)x2(i—1)» Nlopsam O200—i-m-1)x2(n—i-m+1))

. =2
N = diag(0z(i-1)x2(i-1)s N [aymsoms 02(n—i-m+1)x2(n—ivm+1))s

(B.109)

m— . N
N1 = diag(0zi-1)x23i-1): N Lomscams O2(0—icms 1)x2(n—i-m+1) ) -

From the previous discussion, the solutions for homogenous discrete dynamical
systems were presented for distinct and repeated eigenvalues. For a nonhomogenous
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discrete dynamical system, the corresponding solution is presented through the
following theorem.

Theorem B.6 For a linear dynamical system Xy, = AX; + B in Eq. (B.1) with
the initial state of X, the solution of Eq. (B.1) is given by

x = PEFP7'(xp — x*) + X", (B.110)
where

x, = (I—A)"'B. (B.111)
Proof Letting X441 = X = X", then x, = (I — A)le.

Xerl — X = A(Xe — X;) = Vi = Ay
Since
A = PEP ',
one obtains
Yir1 = PEP 'y, =y, = PE'P .
So,
Xy = PEP ! (xo — x*) + x".

This theorem is proved. ]

B.4 Stability and Boundary

In this section, the stability of discrete dynamical systems will be presented.
Compared to continuous dynamical systems, discrete dynamical systems possess
much richer stability characteristics.

Definition B.4 For a discrete linear dynamical system x;,.,; = Ax; in Eq. (B.2),
consider a real eigenvalue A; of matrix A(i € N = {1,2,...,n}) and there is a
corresponding eigenvector v;. On the invariant eigenvector v,@ =v;, consider

x,(f) = c,(j)vi and x,({'ll = c,ﬁlvi = /Iic,(f)v,-, thus, c,(f}rl = /lic,({o.

6)) x,f) on the direction v; is stable if

lim ) = lim 1(2)F] % e = 0 for |4 < 1. (B.112)
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(>i1) X]Ei) on the direction v; is unstable if
lim e = lim |(4:)"] x lei?| = oo for |4;] > 1. (B.113)

iii) x\" on the direction v; is invariant if

lim ¢ = lim (4;)cy’ = ¢y for 4; = 1. (B.114)

(@iv) x,({i) on the direction v; is flipped if

lim c,@ = lim (4,)* x cf)[) = c((f)
ey BT e ) @ (for 4= —1. (B.115)
lim ¢’ = lim (4) x ¢y = —¢
2k+1—00 2k+1—00
) x,(f) on the direction v; is degenerate if
) = (3)el) = 0 for 4; =0. (B.116)

Definition B.5 For a discrete linear dynamical system x;,; = Ax; in Eq. (B.2),

consider a pair of complex eigenvalue o; & if5; of matrix A(i € N = {1,2,...,n},
i = V/—1) and there is a corresponding eigenvector u; = iv;. On the invariant plane
of (u,ii)7 V,(f)) = (u;,v;), consider X,(f) = x,i’i + x,(i with
X]((D = c,(f)u,- + d,ii)vi, x,((’ll = c,ﬁillui + d,(fllv,-. (B.117)
Thus, ¢! = (c{”, d")" with
¢! = Eel) = rRic)’ (B.118)
where
o P cosl; sinb;
E;, = and R; = ,
7ﬁi o —sin 0i COS 91' (Bllg)
ri =1/} + [)’l.z,cos 0; = o;/r; and sin0; = B, /r;
and
k .
‘ o b ' coskl; sink0;
E = and R} = . . (B.120)
B o —sinkf; cosk0;

) x,ii) on the plane of (u;,v;) is spirally stable if
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lim ||el”]| = lim | R¥|| x ||e{"|| = 0 for r; = | 4] <1. (B.121)
k—00 k—00

(i1) x,ii) on the plane of (u;,v;) is spirally unstable if

lim e = lim rf][RY| el || = oo for r; = | 4] > 1. (B.122)

(iii) x,({i) on the plane of (u;,v;) is on the invariant circles if,
eI = rFIIRE] x llegl| = lleg|| for ri = |2] = 1. (B.123)
@iv) x,ii) on the plane of (u;,v;) is degenerate in the direction of w; if f§; = 0.

Definition B.6 For a discrete linear dynamical system of x;;; = Ax; in Eq. (B.2),
the matrix A has n; real eigenvalues |4j| <1 (j € Ni), ny real eigenvalues
|4j] > 1 (j € N2), n3 real eigenvalues 4; = 1 (j € N3), and n4 real eigenvalues 4; =
—1(GEN). SetN={1,2,...n} and N;={i,is,...,i,} UD (i =1,2,3,4)
with i, EN(m=1,2,...,m). N;CNUJ, UL N;=N, NNNN, = (p # i)
and Z?:ln,- =n. N;=0if n; =0. The corresponding eigenvectors for
contraction, expansion, invariance and flip oscillation are {v;} (j € N;) (i =
1,2,3,4), respectively. The stable, unstable, invariant and flip subspaces of X, =
Ax; in Eq. (B.2) are linear subspace spanned by {v;} (j € N;) (i =1,2,3,4),
respectively,

& = span{v;|(A — 4I)v; =0, |4|<1,j € Ny CNUD};

(
(A—J2D)yv;=0,|4] >1,jeN, CNUD};

(B.124)
(
(

&" = span{vj|
&' = span{vj|(A — 4I)v;=0,%;,=1,j E N CNUD};

&" = span{v;|(A — JT)v; =0,/ = —1,j E Ny C NUD};
where

& =& UEUE with

&, = span{vj|(A = J1)v; =0,0<1;<1,j € N} CNUT};

B.125
&5 = span{vj|(A — 41)v; =0, —1<;<0,j € N{ C N UD}; | )
&, = span{v;|(A — 41)v; = 0,2, =0,j € N{ CNUD};
6" = &, U &, with
@@“m = span{Vj|(A - }ujI)Vj = 07 /lj > l,j € Nén CN UQ}; (B'126)
&8 = span{vj|(A = JT)v; =0,4;< — 1,j € Ny CNUJ};

where subscripts “m” and “o0” represent the monotonic and oscillatory evolutions.
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Definition B.7 For a discrete linear dynamical system x;,; = Ax; in Eq. (B.2),
the matrix A has complex eigenvalues o; £if}; with eigenvectors w; +iv;
(j € {1,2,...,n}) and the base of vector is

B={u,vi,..,u,v,..,u,v,}. (B.127)
The stable, unstable, center subspaces of x;,; = Ax; in Eq. (B.2) are linear
subspaces spanned by {uw;,v;} (j € N;, i = 1,2,3), respectively. N = {1,2,...,n}
and N; = {iy, i, .., iy, ) UJ CNUD with i, e N (m=1,2,...,n;,i=1,2,3).
UL,N; =N with N;NN,=D(p#i) and =} n; =n.N; = if n; = 0. The
stable, unstable, center subspaces of x;.1 = AX; in Eq. (B.2) are defined by

r=Jof + B <1,
&° = spanq (u;,v;) . : ;

v M) (A = (o £ 1B)T) (W £iv;) =0,
jEng{l,Z,...,n}U@

rj:w/oc]?+ﬁj.2> 1,
& = span (Uj7Vj) (A— (ocjj:iﬁj)l)(ujj:ivj) =0, ; (B.128)
jeN, C{1,2,...n}UD

rjzw/ocf—i—ﬁfzh
6% = span§ (W, V)| (A — (5 +if)1) (0 % iv;) = 0,
JENSC{1,2,...n}UD

Definition B.8 For a discrete linear dynamical system x;,; = Ax; in Eq. (B.2),

(i) the linear discrete system is stable if
Jim [|x| = lim ||A¥xo[| = 0 for xg € Q C %", (B.129)
(i1) the linear discrete system is unstable if
Jlim [x| = lim ||A¥xo|| = oo for xg € Q C %", (B.130)
(iii) the discrete origin of the linear system is a center if,

Jim [|x;| = lim ||A*xo|| = C for xg € Q C 2" (B.131)

Theorem B.7 Consider a discrete linear dynamical system Xi11 = Ax; in Eq.
(B.2) and the matrix A possesses n eigenvalues 2; (i = 1,2,...n). Let N =1{1,2,
...,n}, and N = U}_3N; with Ny N, =& (j,p = 1,2,3, j # p).

(i) If |Ai| > 1 for i € N, the linear discrete system is unstable.
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(i) If |k|<1foralli € N with distinct eigenvalues, the linear discrete system is
stable.

(iil) If|A| <1 for all i € Ny # Nand || =1 for all j€ N3 CNand N, =
with distinct eigenvalues, the linear discrete system is stable.

(iv) If [4]<1forall i € Ny # Nand |4;| = 1 for allj € Ny C N and N, =
with repeated eigenvalues with the mth -order nilpotent matrix N" = 0
(1<m<n), the linear discrete system is unstable.

w) If |j.,'|<1 for all i € N #Nand ‘/le =1 for all j€ N3 CN and N, =
with repeated eigenvalues with N = 0.the linear discrete system is stable.

Proof For the different real eigenvalues, from Eq. (B.15),

xc = Pdiag[2%, 75, ... )5 P~ 1xy = PEFP~'x,.

5,

For non-degenerate matrix P (detP # 0), and

0if |4 <1,
lim |25 = { oo if |4 > 1, fori=1,2,...,n.
koo 1if |2 =1

Thus for an arbitrary X, the following relations exist
klim [|xk|| =0, for |4;|<1 (i=1,2,...,n),

klim [|1X¢|| = o0, for |4;] > 1(i € {1,2,...,n}),
—00

klim [|IXk|| = |x0]|, for || =1({=1,2,...,n),
klim [|[x¢|| = C, for |4 =1 and |4;| <1 (all j € {1,2,...,n},j # i),
klim [|IX¢|| = o0, for | 4] =1and | 4| > 1(allj€ {1,2,...,n},j #i).

For different complex eigenvalues, from Eq. (B.48) with n = 2m

x; = PE(k)P~'xy = Pdiag(E,(k),Ez(k), ..., E,(k))P"'xq

where

)

[|E;(k)|| = 2|ri|k(| coskb;| + |sink6;|)(i = 1,2,...,m);

with | coskb;| <1 and |sink6;| < 1;

il = 2 B cost, = o/ 5 and sinth = .\ +
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0if |4 =r<l,
lim ||E;(k)|| =< occif |4 =r>1, fori=1,2,...,m
ke Lif |]=r=1

Since non-degenerate matrix P (detP # 0), as k — oo,

0 for | 4i|<1(@=1,2,...,n),
oo for | 4| >1(Ge€{l,2,...,n}),
/}LTCHX]‘H = ¢ ||xo]| for 4] =1 (i=1,2,...,n),
Cfor | ;| =1and | <1 (all j € {1,2,....n}.j # i),
oo for | Al =1land | 4| > 1 (allj € {1,2,...,n},j #i).

For the repeated eigenvalues A; with the mth-order nilpotent matrix of N, one
obtains N = 0. Consider

k!
(k =)yt

For the repeated real eigenvalues 4; , with Eq. (B.53), one obtains

[E + (P~'NP)]" =Y GE(PTINP) with €] =

EX = diag[/y, .. 25 0% Ak
——
Thus,
. : . n ki
Jim [INV]| = K and [[ES) = >0 124
0if |4|<1,
. k) . k! k .
lim C}|4 7| = lim ————|4j| = { oo if |4] > 1,
k—o0 ! k—o0 (k—j)'j' !
oo if |4 =1

fori=1,2,...,nand j=1,2,...,m— 1.

From Eq. (B.54),
xc = P[E + (P"'NP)]“P'x,

- p{ " CIE (P“NfP)} P 'x,.
As k — o0,

lim [} 0for | A4|<1 (G=1,2,...,n),
1m ||X =
¢ oo for | 4 > 1 G e{l,2,...,n}).
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If | 4] =13 € {1,2,...,n}) is relative to repeated eigenvalues,

k]im [|x¢|| = oo for | 4| <1 (allj € {1,2,...,n},j # i),
klim ||Xc|| = 00 for | 4;| > 1 (allj € {1,2,...,n},j #1i).

If | 4] = 1@ € {1,2,...,n}) is relative to non-repeated eigenvalues,

klim |[x¢|| = C for | 4| <1 (all j € {1,2,...,n},j # i),
klim [|X¢|| =00 for | 4;] > 1 (all j € {1,2,...,n},j#i).

For the repeated complex eigenvalues, with Eq. (B.83), one obtains

E' = diagE,,.. .. E._,E;,.. .. E.,Ei,_1,...,E,],
~—_——

m

Ef =¥ }(i:],Z,...,n).

1

coskl;  sink0;
—sinkf; cosk0;

Thus,
lim [|N'|| = K and [[E*[] = 0 CfIES;
B = 2n (| cos(k — 1)0i] + | sin(k — D)0;]) (i = 1,2,...,n);
with | cos(k — 1)6;| <1 and |sin(k — 1)0;| < 1;

il = m,cos&- = Otj/\/m and sin6; = f3;/ aiz+[;l2_

B = oo if [i] > 1,

0o if |4 =1

lim [|GES| = lim e
fori=1,2,...,nandl=1,2,....m— 1.
From Eq. (B.84) for repeated complex eigenvalues, one achieves
xc = [E+ (P_'NP)]kxo
= P[> CIEI(PINP) [P,
As k — o0,

lim [jx || = { O for [Al<1G=12,...n)
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If | 4] = 1@ € {1,2,...,n}) is relative to repeated complex eigenvalue,
klim [|X|| = o0 for | A4i|<1 (G €{1,2,...,n},j#i),
klim||xk|| =oo for | 4| >1(G € {1,2,...,n},j#i).

If | 4] = 1@ € {1,2,...,n}) is relative to non-repeated complex eigenvalue,
klim l|x¢|| = C for | 4j|<1 (Ge{1,2,....,n},j#1),
—00

klim [[x¢|| = 00 for | 4| > 1 (G e{1,2,...,n},j #i).
—00

For repeated eigenvalue 4, = A(i=1,2,...,n) with the zero-order nilpotent
matrix of N, one obtains

0 for | 4| =A<1(i=1,2,...,n),
limy_oo [|X|] = o0 for| 4|=2>1(i=1,2,...,n),
[[Xo]] for|A]=4A=1(@G=1,2,...,n).

From the above facts and Definition B.6, all the cases in this theorem exist, vice
versa. This theorem is proved. ]

Definition B.9 Consider a discrete linear dynamical system x;,; = AXx; in
Eq. (B.2), the matrix A possesses n eigenvalues /; (i = 1,2,...n).

(i) The origin is called a hyperbolic fixed point for the linear discrete system if
M,| 7é 1 (lZ 1,2,...,1’1).
(ii) The origin is called a sink for the linear discrete system if |4;]|<1 (i =

1,2,...,n).

(iii) The origin is called a source for the linear discrete system if |;| > 1 (i = 1,
2,...,n).

(iv) The origin is called a center for the linear discrete system if [4;| =1 (i =
1,2,...,n) with distinct eigenvalues.

(v) The origin is called a source for the linear discrete system if |4;| =1 (i €
{1,2,...,n}) with at least one repeated eigenvalues with the mth-order

nilpotent matrix N" =0 (1 <m<n).

Definition B.10 For an n-dimensional, linear discrete system X;.; = AX; in
Eq. (B.2), the matrix A possesses n real eigenvalues 4; (i = 1,2,...,n).

(i) The origin is called a stable node for the linear discrete system if |4;| <1
(i=1,2,...,n).

(i) The origin is called an unstable node for the linear discrete system if
|4 >1({=1,2,...,n).

(iii) The origin is called an (I, : I;) -saddle for the linear discrete system if at
least one |4;| > 1 (i€ L; C {1,2,...,n}) and the other |4;]|<1 (j€ L, C
{1,2,..,n}) with LyUL, ={1,2,...,n} and L, N L, = .

(iv) The origin is called an Ith -order degenerate case for the linear discrete
system if ;=0 (ieLC{l,2,...,n}).



458 Appendix B: Linear Discrete Dynamical Systems

Definition B.11 For a discrete linear dynamical system X1 = Ax; in Eq. (B.2),
the matrix A possesses n-pairs of complex eigenvalues 4; (i = 1,2,...,n).

(i) The origin is called a spiral sink for the linear discrete system if |4;| <1 (i =
1,2,...,n) and Im4; # 0 (j € {1,2,...,n}).
(ii) The origin is called a spiral source for the linear discrete system if |1;| > 1
(i=1,2,...,n) with Im4; # 0 (j € {1,2,...,n}).
(iii) The origin is called a center for the linear discrete system if |;| = 1 with
distinct Im/; # 0 (i € {1,2,...,n}).

The generalized structures of stability characteristics for iterative solutions of
linear dynamical systems in Eq. (B.2) will be given as follows.

Definition B.12 Consider a discrete linear dynamical system x;.; = Ax; in Eq.
(B.2), the matrix A possesses n eigenvalues A; (i=1,2,...,n). Set N =
{1,2,...mym+1,....(n—m)/2}, N, = {p1,p2,...,pn, } UD with p, € N (g =
1,2,..,ny, p=1,2,.. .,7),2;:111,, = mandZZ;:Snp =n—m. U_; N, = Nand
N,NN, =D (I # p). N, = Difn, =0. N, = N UN; (. =1,2)and N]) "N =
& with nj} + n) = n, where superscripts “m” and “o” represent monotonic and
oscillatory evolutions. The matrix A possesses 1| -stable, n, -unstable, n3 -invariant
and n4 -flip real eigenvectors plus ns -stable, ng -unstable and n; -center pairs of
complex eigenvectors. Without repeated complex eigenvalues of |A¢| = 1(k €
N3 UN4 UN7), an iterative response of X = Ax; is an ([n}",n{] : [n5,nd] :
[n3; 3] : [n4; K4]|ns @ e = n7) flow. With repeated complex eigenvalues of || =
1 (k € N3 UN4 U N7), an iterative response of X;11 = Axis an ([n",n{] : [n5, nd] :
[n3; k3] : [n4; ks |ns 2 ng : [n7,1;k7]) flow, where «, € {J,my}(p =3,4), k7 =
(K71, K72, -+ - K71)T with k7, € {J, m7,}(s = 1,2,...,1). The meanings of notations
in the aforementioned structures are defined as follows:

(i) [n],n?] represents ny -sinks with 2" -monotonic convergence and n{ -oscil-
latory convergence among n; -directions of v;(i € Ny) if |4 <1 (k€ N,
and 1 <n; <m) with distinct or repeated eigenvalues.

(ii) [n}',nS] represents n, -sources with n3' -monotonic divergence and n3 -oscil-
latory divergence among n, -directions of v;(i € N,) if |4;| > 1 (k € N, and
1 <ny <m) with distinct or repeated eigenvalues.

(iii) n3 = 1 represents an invariant center on l-direction of v;(i € N3) if 4 =1
(i € N3 and n3 = 1)

(iv) n4 = 1representsa flip center on 1-directionof v; (i € N4)if A, = —1 (i € Ny
and ny = 1).

(V) ns represents ns -spiral sinks on ns -pairs of (w;,v;)(i € N5) if |4 <1 and
ImA; #0 (i € Ns and 1<ns<(n—m)/2) with distinct or repeated
eigenvalues.

(vi) ng represents ng -spiral sources on ng -directions of (u;, v;) (i € Ng)if |4;| > 1
and Im/; # 0 (i € Ng and 1 <ne<(n—m)/2)) with distinct or repeated
eigenvalues.
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(vii) n; represents ny -invariant centers on 7 -pairs of (ug, v¢)(k € N7) if | 4] = 1
and Im/; # 0 (k € N7 and 1 <n; < (n—m)/2)) with distinct eigenvalues.

(viii) J represents empty or none if n; =0 (j € {1,2,...,7}).

(ix) [n3; ks3] represents (n3 — x3) invariant centers on (n3 — 3) directions of v;,
(i3 € N3) and k3 -sources in k3 -directions of v;,(j3 € N3 and j3 # i3) if
Ji=1(i € N3 and nz <m) with the (k3 + 1)th -order nilpotent matrix
N§3+1 =0 (0<K3 <nz— 1)

(x) [n3;<J] represents n3 invariant centers on nj -directions of v; (i € N3) if
i =1 (i € N3 and 1<n3; <m) with a nilpotent matrix N3 = 0.

(xi) [n4; k4] represents (ny — x4) flip oscillatory centers on (ns — K4) directions
of v;, (is € N4) and x4 -sources in x4 -directions of v;, (js € N4 and js # i4)
if 4; = —1 (i € N4 and ny <m) with the (x4 + 1)th -order nilpotent matrix
Nt =0 (0<ig<ng —1).

(xii) [ng; ] represents ny flip oscillatory centers on ny -directions of v; (i € N3)
if ,; = —1 (i € Ny and 1 <n4 <m) with a nilpotent matrix Ny = 0.

(xiii) [n7,1; k7] represents (n7 S.\_, —k,) invariant centers on (n7 Y.\ —i7,)
pairs of (w;,v;)(i; € N7) and Zizl K7, Sources on Zizl K7, pairs of
(llj7,Vj7) (j7 € N7 and J7 7& 17) if |4 =1 and Imi; # 0 (l € N7 and
n7 < (n —m)/2) for S2\_| iz, pairs of repeated eigenvalues with the (7, +
1)th -order nilpotent matrix N5**' =0 (0<w7, <1, s = 1,2,...,1).

(xiv) [n7,1;$D)] represents n7 -invariant centers on ny -pairs of (u;,v;) (i € Ne) if
|4 =1 and ImJ; # 0 (i € Ny and 1 <n; < (n—m)/2) for S_\_, ks, pairs
of repeated eigenvalues with a nilpotent matrix N; = 0.

Definition B.13 Consider a discrete linear dynamical system x;.; = Ax; in Eq.
(B.2), the matrix A possesses n eigenvalues A; (i=1,2,...,n). Set N =
{L,2,..omm+1,....(n—m)/2}, N, = {p1,p2,..,Pn, } UL With p, € N (q =
1,2,..,np, p=1,2,...,7), %) _n, =mand2%]_sn, =n—m. U_, N, = N and
N, NN, =l #p).N, =D if n, =0.N, =N UNy (2 =1,2) and N}) "N =
& with n}} + ng = n, where superscripts “m” and “o” represent monotonic and
oscillatory evolutions. The matrix A possesses 1| -stable, n, -unstable, n3 -invariant
and ny -flip real eigenvectors plus ns -stable, ng -unstable and n; -center pairs of
complex eigenvectors. Without repeated complex eigenvalues of |A¢| = 1(k €
N3 UN4 UN7), an iterative response of X1 = Ax; is an ([nf",n{] : [0, nS] :
[n3; 53] : [n4; K4]|n5 : e : n7) flow. With repeated complex eigenvalues of || =
1 (k € N3 UN4 UNy), an iterative response of X1 = Axy is an ([n]*,n{] : [0, n3] :
[n3; k3] : [n4; k4] |ns 2 ng = [n7,1;k7]) flow, where «k, € {,m,}(p =3,4),k7 =
(K71, K72, .+ K71)T with k7, € {@, m7s}(s =1,2,..., l)

I. Non-degenerate cases

(i) The origin is an ([n]",nS] : 05, nS] : & : D|ns : ne : &) hyperbolic point
for the linear discrete system.
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(i1)
(iif)
iv)
v)
(vi)
(vii)
(vii)

(ix)
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The origin is an ([n]",n9] : [J, D] : & : D|ns : & : J) -sink for the linear
discrete system.

The origin is an ([J, ] : [0y, nd]: & : DD : ng : &) -source for the
linear discrete system.

The origin is an ([(J,0]: [3,D]: D : D|D : D : n/2) -circular center
for the linear discrete system.

The origin is an ([J, 7] : (D, D] : T : DD : D : [n/2,1;]) -circular
center for the linear discrete system.

The origin is an ([J, D] : [J, 0] : T : DD : D : [n/2,1;%7]) -point for
the linear discrete system.

The origin is an ([n}',n}]: [J,J] : D : D|ns : & : ny) -point for the
linear discrete system.

The origin is an ([J, ] : [n},nS] : & : D|D : ne : n7) -point for the
linear discrete system.

The origin is an ([0, nS] : [n5', 18] : & : D|ns : ne : n7) -point for the linear
discrete system.

I. Simple special cases

@
(ii)
(iii)
iv)
)
(vi)
(vii)
(viii)
(ix)
(x)
(x1)
(xii)

(xiii)

The origin is an ([J,9)] : [J,9)] : ;9] : DD : D : D) -invariant
center (or static center) the linear discrete system.

The origin is an ([J, ] : [D,D] : [n;m3] : DD : & : &) -point for the
linear system.

The origin is an ([J,D)]: [J,D] : D : [n; )|D : & : ) -flip center for
the linear discrete system

The origin is an ([J,J] : [S,F] : D : [n;my]|D - & : &) -point for the
linear discrete system.

The origin is an ([, ] : D, ] : [n3; k3] : [n4; k4)|D : & : &) -point for
the linear discrete system.

The origin is an ([J, D] : (B, D] : [1;D)] : [n4; k4)|D : & : &) -point for
the linear discrete system.

The origin is an ([J, 7] : |3, D] : [n3; k3] : [1; )| : & : &) -point for
the linear discrete system.

The origin is an ([J,d] : [J, ] : [n3; 53] : [ D]|D : D : n7) -point for
the linear discrete system.

The origin is an ([J, D] : [, D] : [1; ] : [&;D]|F : & : n7) -point for
the linear discrete system.

The origin is an ([J,J] : [J,D)] : [n3; k3] : [T; NS : D [n7,1; k7)) -
point for the linear discrete system.

The origin is an ([(J,J] : [J, D] : [F; D] : [n4; k4]|D : D : ny) -point for
the linear discrete system.

The origin is an ([J, 9] : [J, D] : [T : [ma; k4]|D : D : [n7,1;%7]) -
point for the linear discrete system.

The origin is an ([J, ] : [D, D] : [n3; k3] : [na; k4)|D : D : n7) -point for
the linear discrete system.
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(xiv)

The origin is an ([J, ] : [, D] : [n3; k3] : [na; k4)|D - D 2 [n7,L;%7]) -

point for the linear discrete system.

. Complex special cases

@
(i1)
(iii)
iv)
(v)
(vi)

The origin is an ([n]',n9] : [0, n8] : [1; ] : [F; D|ns : ne : n7) -point for
the linear discrete system.

The origin is an ([n]',nS] : [n5,n3] : [1; D) : [J;D|ns : ne : [n7,1;%7]) -
point for the linear discrete system.

The origin is an ([n]',n{] : [n5',n3] : [(F; D] : [1;D|ns : ne : ny) -point for
the linear discrete system.

The origin is an ([n]",nS] : (05, nS] : (&5 QD] : [1;D]|ns : ne = [n7,1;%7]) -
point for the linear discrete system.

The origin is an ([, n3] : [0, 1] : [n3; k3] : [na; Ka]|ns @ ne = n7) -point
for the linear discrete system.

The origin is an ([, nS] : [0, N3] : [n3; k3] © [na; Ka]|ns < ne = (7,1 %7]) -
point for the linear discrete system.

IV. Simple critical cases

@

(ii)

(iii)

@iv)

)

(vi)

An ([n7,nS] : [n5,n8] : 1 : Dns : ne : D) state of the origin for the linear
discrete system is a boundary of its ([n\" + 1,n9] : [n3,n3] : & : Dlns :
ne : Q) spiral saddle and ([n]',nf]: [} +1,n8]: & : DIns : ne : D)
spiral saddle.

An ([nP,nS] : [n5,n8] : D : 1|ns : ne : D) state of the origin for the linear
discrete system is a boundary of its ([n'",n + 1] : [n5,n3] : & : Dlns :
ne : ) spiral saddle and ([n]",nS]: [0, nS +1]: D : DIns : ne : D)
spiral saddle.

An ([n7,n9]: [, D] : 1:Dns : & : ) state of the origin for the linear
discrete system is a boundary of its ([n" + 1,n{]: [, O] : & : D|ns :
& : D) spiral sink and ([n",n]:[1,0]: D :DIns : J: J) spiral
saddle.

An ([, n9]: [, D] : D : 1ns : & : &) state of the origin for the linear
discrete system is a boundary of its ([n",n} +1]:[J,J]: D : D|ns :
& : @) sink and ([n]',n9]: [, 1] : D : DIns : & : &) spiral saddle.

An (0,9 : [n5,ns] : 1 : DD : ne : ) state of the origin for the linear
discrete system is a boundary of its ([, ] : [0} + 1,n3]: & : T :
ne : &) spiral source and ([1,]: [nY,n3]: D : DD : ne: ) spiral
saddle.

An ([D, D] : [n5,n8] : D : 1|D : ne : ) state of the origin for the linear
discrete system is a boundary of its ([J,Q]: [n5,nS+1]: D : DD :
ne : ) spiral source and ([, 1] : [, nS]: T : DD :ne : &) spiral
saddle.
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(vii)

(viii)

(ix)

)

(xi)

(xii)

(xiii)

(xiv)

(xv)

Appendix B: Linear Discrete Dynamical Systems

An ([n],nS] : [n5,nS] : D : DIns : ne : 1) state of the origin for the linear
discrete system is a boundary of its ([n",n{]: [n5,nS]: D : Dlns +1:
ne : J) spiral saddle and ([n",nS]: [0S, n9]: D :Dlns:ne+1:J)
saddle.

An ([n],nf] : [D,9] : D : DIns : I : 1) state of the origin for the linear dis-
crete system is a boundary of its ([n]",n$] : [J, ] : F: Dns + 1 : & : &)
spiral sink and ([n]',n}] : [, ] : D : DIns : 1 : ) spiral saddle.

An ([D, D] : [n5,nS] : & : DD : ng : 1) state of the origin for the linear
discrete system is a boundary of its ([J, ] : [n5,nS] : & : DD : ne +
1:) spiral source and ([J,O]: [n],n9]: D : |1l :ne: ) spiral
saddle.

An ([n],n] : [n5,n8] : 1 : Dns : ne : ny) state of the origin for the linear
discrete system is a boundary of its ([ + 1,n%] : [n3,nS] : & : Dlns :
ne : n7) state and ([, n9] : [n5" + 1,n3] : & : Dlns : ne : ny7) state.

An ([, 0] : [0S, n3] : @ : D : 1|ns : ng : ny) state of the origin for the lin-
ear discrete system is a boundary of its ([n]",n$ + 1] : [n5",nS] : & : Dns :
ne : n7) state and ([0, nS] : [0S, n + 1] : @ : D|ns : ne : ny) state.

An ([nP,nS] : [0, n8] : 1: Dns : ne : [n7,1;D)) state of the origin for the
linear discrete system is a boundary of its ([n" 4+ 1,nS]: [n5,n3] : & :
Dlns : ne : [n7,0;57]) state and ([n]',nS] : [0} + 1,n8] : D : DIns : ne :
[n7,1;%7]) state.

An ([n7,nd] : [n5,n8] : D : 1ins : ne : [n7,1; k7)) state of the origin for the
linear discrete system is a boundary of its ([n",n + 1] : [nY,n3] : D :
Dlns : ne : [n7,l;%7]) state and ([nP,n9] : (03, nS + 1] : & : Dlns : n :
[n7,1;%7])) state.

An ([n,n9] : [n5,nS] : & : Dns : ne : n7 + 1) state of the origin for the
linear discrete system is a boundary of its ([n}",nS]: [nY,nd]: O :
Dlns +1:ng :ny) state and ([n],nl] : [n§,ns] : & : Dlns : ng + 1 : n7)
state.

An ([P, nf] : [0, 1] : [n3; k3] : [na; Ka]|ns @ n = n7 + 1) state of the origin
for the linear discrete system is a boundary of its ([n]',nS]: [n5',nS] :
[n3; 3] © [na; kal|ns + 1 :ng = ny) state and ([n,nS] : [0, n9] : [n3; K3 :
[n4; k4]|n5 2 ne + 1: ny) state.

V. Complex critical cases

@

(i1)

An ([n],nf] : 03, n9] : [n3; k3] : DIns : ne : n7) state of the origin for the
linear discrete system is a boundary of its ([nf" + n3,n{]: [0}, ns] : & :
Dlns :ng :ny) state and  ([n],nd] : 05 +n3,n3] : D : Dns : ne : ny)
state.

An ([0, nf] : [0S, 18] : D : [na; K4]|ns : ne : ny) state of the origin for the
linear discrete system is a boundary of its ([nT,n + na] : [0S, n8] : & :
Dns : ng : ny) state and ([n], 1Y) : (03, 1S + n4] : & : DIns : ng : ny) state.



Appendix B: Linear Discrete Dynamical Systems 463

(iil) An ([n],nf] : [0}, 0] : [n3 + k3; k3] : D|ns : ne : n7) state of the origin for
the linear discrete system is a boundary of its ([n}" + k3,n{] : [0, n9] :
[n3; 5] : Dlns < ne : ny) state and ([n',nS] : [0S + k3, n3] : [n3; k5] - Dlns
ne : n7) state.

@iv) An ([0, n%] : [0S, nS] : D : [n4 + ka; k4l|ns : ne : n7) state of the origin
for the linear discrete system is a boundary of its ([nT,n + k4] :
[R5, 18] : D [na; 1)]|dns : ne = ny) state and ([n,nl] : (03, nS + ka] : D :
[na; 6] |ns < ne = n7) state.

(v) An ([0, nS] : [n5,nS] : [n3 + ka; k3] : [na + ka; Ka]|ns < ne = n7) state of the
origin for the linear discrete system is a boundary of its ([nT + k3,nS +
k] 2[5, 18] : [n3;15] : [na; i]|ns : ne : ny) state and ([nf,nf] : (05 + ks,
n§ + ka) @ [n3;K5] : [na; k4]|ns : ne : ny) state.

(vi) An ([n],nS] : [n5,nS) : [n3 + ks; k3] : Dns < ne : [n7,1;K7]) state of the
origin for the linear discrete system is a boundary of its ([n" +
k3, n9| : [n5,nS] : [n3;15] : Dlns < ne : [n7,1; k7)) state and ([}, nf] : [n5'+
k3, n3] : [n3; 5] 1 | ns :ne: [ng, 1 K7]) state.

(vi)) An ([n],nS] : [n5,n8] : D : [n4 + ka; ka]|ns : ne : [n7,1;k7]) state of the
origin for the linear discrete system is a boundary of its ([n]',n{ +
ka] 2[5, 0S] - D« [na; k)] |ns < ng @ [n7, 1 %7])) state and ([n]', nf]: [n,
n§ +ky) : D [na; ]| s :ne: [ng, 1 Kq]) state.

(viii) An ([n",n9] : [0S, 03] : [n3 + k3; k3] : [na + ka; K4]|ns : ne : [n7,1; K7]) state
of the origin for the linear discrete system is a boundary of its ([n]" + k3,
ny + kg = [0S, 03] : [n3;14] « [nas wf]|ns : ne : [ng7,l; k7)) state and  ([n],
1] : 05 4 k3, nS + ka : [n3; 5] ¢ [na; k) |ns : ne - [n7,1; k7)) state.

(ix) An ([n,n9] : (05, nS] : [n3 + ks; k3] : [na + ka; Ka]|ns < ne = [n7 + k7,15 K7])
state of the origin for the linear discrete system is a boundary of its ([n!" +
k3,l’l(f + k4] : [nrzn,ng] : [I’l3;K3] : [I’l4;K4]|I15 +ky:ng: [l’l7,l; K;]) state and
([nT, 03] : [A5 + k3, nS + ka] = [n3; 53] © [na; Ka|ns 2 ne + k7 = [n7,1;65])
state.

Definition B.14 Consider a discrete linear dynamical system X = Ax; in Eq.
(B.2), the matrix A possesses n eigenvalues /; (i = 1,2,...,n). Set N ={1,2,
..,n}, N, = {pl,pz,...,pnp} U with p,eN(g=1,2,...,n,, p=1,2,3,4)
and Z,_n, =n. Uy_ N, =Nand N, NN, =& (I #p). N, =DBifn, =0. N, =
NP UNY (a=1,2) and N) "N = & with n} 4+ n) = n, where superscripts “m”
and “o0” represent monotonic and oscillatory evolutions. The matrix A possesses n -
stable, n, -unstable, n3 -invariant, and ny4 -flip real eigenvectors. An iterative response
of X¢p1 = Axy is an ([0, n]] : (05, nd] : [n3; 3] : [na; k4]| flow. K, € {,m,}

(p=3,4).

I. Non-degenerate cases

(i) The origin is an ([n]',nS] : [n5',nY] : & : | saddle for the linear discrete
system.
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(ii) The origin is an ([n}',n{] : [J,J] : @ : D] -sink for the linear discrete
system.

(iii) The origin is an ([, : [n5,n3] : & : & -source for the linear discrete
system.

II. Simple special cases

(i) The origin is an ([J, ] : [F, ] : [n; D] : G| -invariant center (or static
center) the linear discrete system.
(ii) The origin is an ([J, ] : [J, ] : [n;m3] : | -point for the linear system.
(iii) The origin is an ([J,Q)] : [D,9] : D : [n;J]| -flip center for the linear
discrete system
(iv) The origin is an ([J, Q] : [J, D] : & : [n;my4]| -point for the linear discrete
system.
(v) The origin is an ([J,J)] : [J,D] : [n3; 3] : [na; k4]| -point for the linear
discrete system.
(vi) The origin is an ([J,D]: [J,D)]: [1;C] : [n;x4]| -point for the linear
discrete system.
(vii) The origin is an ([, ] : [D,J] : [n3; k3] : [1;J]| -point for the linear
discrete system.
(viii) The origin is an ([J,Q)] : [D, D] : [n3; k3] : [F;]| -point for the linear
discrete system.
(ix) The origin is an ([J,D)] : [J, D] : [T; ] : [na; ks]| -point for the linear
discrete system.

IIl. Complex special cases

(i) The origin is an ([2",n] : [0S, nS] : [1;)] : [J; ]| -point for the linear
discrete system.

(ii) The origin is an ([n",nS] : [n5, N3] : [F; D] : [1; ]| -point for the linear
discrete system.

(iii) The origin is an ([n'",n9] : [, nS] : [n3; k3] : [n4; Ka]| -point for the linear
discrete system.

IV. Simple critical cases

(i) An (2", n9]: [0}, nd] : 1 : | state of the origin for the linear discrete
system is a boundary of its ([n]" + 1,n{]: [nY,nS] : @ : | saddle and
(7, nf] : [n) + 1,n8] : & : | saddle.

(i) An ([n],n9]: [0S, nd] : & : 1| state of the origin for the linear discrete
system is a boundary of its ([n]',n{+ 1] : [0}, ng] : D : | saddle and
(71, n] = [n5,nS + 1] : & : | saddle.

@(iii) An ([n],n9]:[D,J]:1: )| state of the origin for the linear discrete
system is a boundary of its ([n]'+ 1,n{]:[J,]: D : | sink and
([n7,n9] : [1,] : & : )| saddle.
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@iv)

An ([0, n9] : [, D] : D : 1] state of the origin for the linear discrete
system is a boundary of its ([n],n)+1]:[J,J]:J: | sink and
([P, n] 2 (D, 1] : & : | saddle.

(v) An ([, D] : [ny,nd]: 1:| state of the origin for the linear discrete

(vi)

(vii)

(viii)

system is a boundary of its ([J,J]: [nS + 1,n8] : &I : J| source and
(1,9 : [n5,n3] : D : | saddle.

An (9,9 : [n§,ns] : & : 1] state of the origin for the linear discrete
system is a boundary of its ([J, D] : [n',n§ + 1] : & : | source and
(D,1] : [0S, n9] : @ : | saddle.

An ([nP,nf] : [n5,n8] : 1 : ]| state of the origin for the linear discrete
system is a boundary of its ([n]'+ 1,n9] : [n5',n3] : & : | saddle and
([n,nS] : [0+ 1,n8] : & : D saddle.

An ([nP,nf] : [n§,n3] : & : 1] state of the origin for the linear discrete
system is a boundary of its ([n}",n{ +1]: [n},n5]: J: J| state and
([P, nY] : [n5,n§ + 1] : & : | saddle.

V. Complex critical cases

®

(i)

(iii)

@iv)

)

An ([0, n9] : [n5,nS] : [n3; k3] : D] state of the origin for the linear
discrete system is a boundary of its ([n]" +n3,nl] : [n5,nS] : & : |
saddle and ([n]",nS] : [n} + n3,nS] : & : J| saddle.

An ([0, n] : [0S, n3] : D : [na; k4]| state of the origin for the linear
discrete system is a boundary of its ([n",n{ + n4| : [n3,n3] : & : O
saddle and ([n]",nf] : [0, nS + na] : & : | saddle.

An ([0, n9] : [n5,nS] : [n3 | ks, x3] : ] state of the origin for the linear
discrete system is a boundary of its ([n]" + k3, nS] : [n5',nS] : [n3; 4] : O
state and ([n}",ny] : [n5' + k3, nd] : [n3; 5] : | state.

An ([n],nf] : [0}, n5] : & : [n4 + ka; 14]| state of the origin for the linear
discrete system is a boundary of its ([n]',nf + k] : [0, n5] : & : [na; 1]
state and ([n",n{] : [n),nS + k] - D : [n4; 1c}]| state.

An ([0, 1] : [0S, nS] : [n3 + k3; k3] : [na + ka; k4]| state of the origin for the
linear discrete system is a boundary of its ([n + k3, n$ + k4] : [0, nS] :
[n3;165] « [na; )| state and ([n], n™] = [0S + k3, nS + ka] @ [n3;15] = [na; 1]
state.

Definition B.15 Consider a 2n-dimensional, linear discrete system X;,; = AX; in
Eq. (B.2), the matrix A possesses n-pairs of eigenvalues /; (i = 1,2,...,n). Set
N={1,2,...,n}, N, ={p1,p2,..,pn, } ULD with p, e N (¢ =1,2,...,n,, p=
5,6,7) and X/ _in,=n. U _sN,=N and N,NN, =D (I#p). N,= if
n, = 0. The matrix A possesses ns -stable, ns -unstable and n; -center pairs of
complex eigenvectors. Without repeated complex eigenvalues of |4;| = 1(k € N7),
an iterative response of X1 = AX; is an |ns :ng:ny) flow. With repeated
complex eigenvalues of |A;| = 1 (k € N7), an iterative response of X;1; = Axy is

an |ns

i ng @ [n7,1; k7)) flow, where k7 = (K71, K72, - . .,K71)T with 7, € {J, my,}

(s=1,2,...,0).
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I. Non-degenerate cases

(i) The origin is an |ns: ne : J) spiral hyperbolic point for the linear
discrete system.
(ii) The origin is an |n:(J: J) spiral sink for the linear discrete system.
(iii) The origin is an | : n : &) spiral source for the linear discrete system.
(iv) The origin is an |J: J: n) -circular center for the linear discrete
system.
(v) The origin is an |ns : & : ny) -point for the linear discrete system.
(vi) The origin is an |J : ng : n7) -point for the linear discrete system.
(vii) The origin is an |ns : ng : n7) -point for the linear discrete system.

II. Special cases

(i) The origin is an |J : & : [n,[;D)])-circular center for the linear discrete
system.

(ii) The origin is an | : & : [n,I; k7]) -point for the linear discrete system.

(iii) The origin is an |ns : J : [n7,1; k7]) -point for the linear discrete system.

(iv) The origin is an |J : ng : [n7,[; k7])-point for the linear discrete system.

(v) The origin is an |ns : ng : [n7,1; k7]) -point for the linear discrete system.

IIl. Simple critical cases

(i) An |ns5:ng: 1) state of the origin for the linear discrete system is a
boundary of its |ns+ 1 :ng:J) spiral saddle and |ns:ng+ 1: Q)
saddle.

(ii) An |ns:J:1) state of the origin for the linear discrete system is a
boundary of its |ns+1:J:J) spiral sink and |ns:1:) spiral
saddle.

(ili) An | :ng: 1) state of the origin for the linear discrete system is a
boundary of its |J:neg+ 1:J) spiral source and |1 : ng: ) spiral
saddle.

(iv) An |ns : ne : n7 + 1) state of the origin for the linear discrete system is a
boundary of its |ns 4+ 1 : ng : ny7) state and |ns : ng + 1 : ny) state.

(V) An |J:ng:n7+ 1) state of the origin for the linear discrete system is
a boundary of its |1 : ng : ny) state and |ns : ng + 1 : ny) state.

(vi) An |ns: J:n7 + 1) state of the origin for the linear discrete system is a
boundary of its |ns + 1 : J: ny) state and |ns : 1 : ny) state.

IV. Complex critical cases

(i) An |ns : ng : [n7,1;%7]) state of the origin for the linear discrete system
is a boundary of its |ns+n;:ng: ) and |ns:ng+ny:J) spiral
saddles.
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(il) An|ns : ng : [n7 + k7, 1; k7)) state of the origin for the linear discrete system
is a boundary of its |ns + k7 : ne : [n7,[;%5]) and |ns : ne + k7 : [n7,1; K5])
states.

(iii) An |ns : ng : [n7 + ks — ke, lo; k7)) state of the origin for the linear discrete
system is a boundary of its |ns + ks : ng : [n7,l1;%5]) and |ns : ne + ke :
[n7, 13; K5]) states.

B.5 Lower-Dimensional Discrete Systems

Consider a one-dimensional linear system as

X1 = Axg (B.132)
with initial condition x; = xy. The iterative solution is

xe = kx. (B.133)
The following properties of the solution exist.

(i) limg_w |xx| = 0, and the system to the origin is stable if 1| <1;
(i) limg_ oo |x¢| = 00, and the system to the origin is unstable if |4] > 1;
(iil) xx =xp (k=1,2,---,00), and the system is invariant if A = 1;
(iv) xx € {x0, —x0} with x2,; # Xpps1(k,m = 1,2, 00), and the system is
symmetrically flipped if 2 = —1.

The above solutions are illustrated in Fig. B.1. The solutions and phase lines for
the unstable, stable and invariant linear systems are presented in Fig. B.la—f,
respectively. The gray points are values of A. In Fig. B.1a, the ([J,] : [1,] :
& : J| monotonical source is an unstable node of the first kind with 2 > 1. In
Fig. B.1b, the ([J, ] : [J, 1] : & : ] oscillatory source is an unstable node of the
second kind with —1< /. In Fig. B.1c, the ([1,d] : [J,J] : & : | monotonical
sink is a stable node of the first kind with 0<A<1. In Fig. B.1d, the ([, 1] :
(2,1] : [D,)] : & : J| -oscillatory sink is a stable node of the second with
—1<1<0. In Fig. B.1le, the(|[J,J] : [J,] : 1: | - state with A =1 is the
boundary of source and sink, which is also called the stability boundary of the first
kind. In Fig. B.1f, the ([, ] : [, ] : & : 1] state with A = —1 is an flip boundary
of flip source and flip sink, which is also called the stability boundary of the second
kind. In addition, the ([0,0] : [J, ] : & : | direct sink is a direct stable node of the
first kind with 4 = 0, as shown in Fig. B.1g. This sink is the boundary for the
monotonical and oscillatory sinks. This special case will not affect the stability but it
changes trajectory of the descrete system.
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Fig. B.1 Solution and phase line of xz+1 = Ax : a ([J, D] : [1,4] : & : &| -monotonic source
(A>1), b (D,9]:[,1]: D : Q| -oscillatory source (—1<4i), ¢ ([1,D]:[S,D]:D: | -
monotonic sink with 0<i<1), d ([J,1]: [J, ] : J: | - oscillaotory sink (—1<i<0),
e ([D,2)]: 3, : 1 : & -boundary of source and sink (1 = 1), f ([J,d] : [J, 2] : D : 1| - flip
boundary of source and sink (A= —1) and g ([0,0] : [J,T] : & : | - direct sink (1 = 0)

Consider a one-dimensional linear system with external excitation
Xk+1 = ixk + b (B134)
with initial condition xo. With the fixed point x*, the solution is

X1 = A — x°) +xF = x = Ky — x7) + 2" (B.135)
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B.5.1 Planar Discrete Linear Systems

Consider a two-dimensional linear system as

Xpr1 = AXk (B136)
with initial condition x;, and
A= ["“ “12} (B.137)
az ax

If det A # 0, x; = 0 is an unique fixed point. With a nonsingular transform matrix
P, B = P 'AP. With x; = Py,

Yir1 = Byx (B.138)
where
|40
B= {O }vz]. (B.139)

There are four cases:
(A) For two real distinct eigenvalues (4; # A2), the solution is expressed by

i 0 0
B = [01 }2] and y, = {01 )k}yo. (B.140)
. k

If | 4] <1 (k = 1,2), the origin is a stable node. If | 4| > 1 (k = 1,2), the origin is
an unstable node. The corresponding phase portraits and eigenvalue diagrams for
the stable and unstable nodes of the linear systems are sketched in Figs. B.2-B.4.

The origin is called a saddle of the linear system if |4;] > 1(i € {1,2})
and |4]<1 (e {1,2} and j#i). The linear system is unstable. The
corresponding phase portraits and eigenvalue diagram are presented in
Figs. B.5 and B.6. On the eigenvector direction, the discrete states will
come to or leave the origin.

The linear discrete system possess a saddle-stable node boundary of the first
kind to the origin if 7; = 1(i € {1,2}) and |4 <1 (j € {1,2} and j #i).

The linear discrete system possess a saddle-stable node boundary of the second
kind to the origin if 4; = —1 (i € {1,2}) and |4]|<1(j € {1,2} and j # i). The
phase portraits and eigenvalue diagram are presented in Figs. B.7 and B.8.
The linear system is critically stable. The origin is called the center of the linear
system. The linear discrete system possess a saddle-unstable node boundary of the
first kind to the origin if 4; = 1(i € {1,2}) and |4;]| > 1 (j € {1,2} and j #i).
The linear discrete system possess a saddle-unstable node boundary of the second
kind to the origin if 4; = —1 (i € {1,2}) and |4;| > 1 (j € {1,2} and j # i). The
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Fig. B.2 Sink or stable node
at the origin for D Im A
Yir1 = By ca ([1,1]:
(D, : & : D -sink (or
stable node of the third kind) W olo
(—1<Ai<0</y<1),b Yie
(12,9 : [@,92) : @ : D -sink Re 4
(or stable node of the first
kind) (0</; <Z;<1) and ¢ ()
(2,2] : 2,9 : & : | -sink
(or stable node of the second)
(—1< A <4, <0) ImA
(o
ik KJ Re A
(b)
ImA
b
ML kJ Re A
(c)

linear system is unstable. This is the boundary for unstable nodes and saddles. If
A1 = —1and A, = 1, this case is a critical case for saddle-node boundary of the
first or second kind. The phase portraits and eigenvalue diagram are presented in
Figs. B.9-B.11.

(B) For two real repeated eigenvalues (4; = A, = 1), the solution is given by

1 /lk k/lkfl
B:{o i] and y; = [0 | Yo

L0 ko0
B:{o z] nd y’“:lo zk]y“

For repeated eigenvalues |/ = [A|<1 (k = 1,2), the origin is a stable node. If
repeated eigenvalues |4x| = |A| > 1 (k = 1,2), the origin is also an unstable node.
The phase portraits and eigenvalue diagram for the stable and unstable nodes are

(B.141)
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Fig. B.3 Source or unstable
node of y; ., =By, : a
(2,9 :2,2] : D : Q| -
source (or unstable node of
the second kind) (4 </,
<-1), b (2,9 :[2,4]:
& : | - source (or unstable
node of the first kind)

().1 >l > 1)

Fig. B4 ([0, :[1,1]:
@ : | -source or unstable
node of the third kind for
Yer =By ral<—1
and 4y >1,b

A< —1and 4 >1

Yar

Vi

~

Yik

;
/
/

/

ik

(a)

(b)

()

(b)

N S N
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ImA

ReAd

Red

Reld

ReAd

shown in Figs. B.12 and B.13. For the second equation of Eq. (B.141), the points
for stable and unstable nodes exist on the line in phase plane.

From the first equation of Eq. (B.141), for A = 1, then one obtains y,; = yo and
Yik = V1o + kyao. If yo9 # 0, this is the unstable case as k — oo. If y,o = 0, the
linear discrete system has a fixed point. For the second equation of Eq. (B.141), the
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Fig. B.5 Saddle of y;,, =
Byk ca ([LQ} : [IQ] 1D
D -saddle (0< Ay <1</y)
and b ([, 1] : [, 1] : T : T
-saddle (4 < — 1<4,<0)

Fig. B.6 Saddle of y;,, =
By, :a ([J,1]:[1,4]: T
)| -saddle (—1<7; <0 and
Ja>1)and b ([1,2]:
D,1] : & : ] -saddle

(< —1and 0</iy<1)
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f Yik
(a
(b

ImA
E ReAd
)
ImA
E Reld
)
ImA
e E ReAd

(a)

Reld

N
/

(b)

discrete system possesses a fixed point, which is a critical point for saddle-node
boundary and flutter (Neimark) boundary. If A = —1, then y, = (—l)ky20 and
yix = (=1 y10 + (=1)* kyo. If yy0 # 0, this is an unstable case. If y,o = 0, the
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Fig. B.7 Saddle-stable node
boundary for the first kind for
Y =By, :a ([1,4]:
(D, : 1: D| boundary

(4 €(0,1)and 1, =1), b
([9,1]:[0,2] :1: ]
boundary (4; € (—1,0) and
la=1)

Fig. B.8 Saddle-stable node
boundary for the second kind
(or flip boundary) fory, | =
By, :a ([1,9]:[0,9]: I

1| boundary (4; € (0,1) and
p=-1),b([D,1]:[D,2]:
& : 1| boundary

(/11 S (*1,0) and J, = *1)

473
Yax ImA
Vi \ Re
(a)
Yax ImA
\\\\_7//
| O
e \j Reld
(b)
Yar ImA
roO—0O0——0O
VA
A
\
\\' \' T Rel
(a)
Yo ImA
///://
/7
s 7
/)/’/// ik Rel
(b)

discrete system has a pair of flip points in direction of y;. For the second equation
of Eq. (B.141) with 1 = —1, the discrete system possesses a pair of flipped points

yar = (=1)*y20 and yy; = (=1)*yjo. This is the critical point for saddle-node
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Fig. B.9 Saddle-unstable
node boundary of the first
kind for y;,; =By, (4 =
:a (3,9 :[1,0]:1:|
boundary (4; € (1,00)) and
b (D,9]: [, 1]:1:]
boundary (4; € (—o0, —1))

Fig. B.10 Saddle-unstable
node boundary of the second
kind (flip boundary) for

Yer1 =By, 1 a ([4,9] :
[1,0]: J: 1] -boundary

(41 € (1,00)) and b ([, D] :

B, 1] : & : 1] boundary
(71 € (=00, —1))
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OO0 O
OO0 O

(a)
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(b)

(b)

ImA
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Red
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ImA

Reld

ImA

ReA




Appendix B: Linear Discrete Dynamical Systems 475

Fig. B.11 Critical case of Xy
saddle-node boundary for

Yii1 = By, and eigenvalue - ~ -
diagram (|3, : [F,] : 1: O
1| -critical point (4; = —1
and 4, = 1)

ImA

Fig. B.12 Stable nodes of Vo
Yer1 =By, 1a ([3,2]:
D, : & : D] sink with
Ji=2¢€(0,1)(i=1,2), /\
b (2,9]:(J,9]: D : Q|

sink with 2, = 4 € (—1,0) Vir \)

(i=1,2)

ImA

Red

(a)

ik ReA

AR
N

(b)

boundary (flip) and flutter boundary. The illustrations are given in Figs. B.14 and
B.15.
(C) For Ay = a+1if and 7, = o — if3, the solution is given by
coskf  sinsk0

Be |y o) maw=r]
= and y, =r . Yo-
—B —sinkf cosk0 (B.142)

r=1/o?+ p* 0=rcosf,f = rsinb.

The origin is called a focus of the linear system if the imaginary part of two
complex eigenvalues are nonzero (ImA, = f# 0 for k = 1,2). The origin is
called a stable focus if the magnitude of two complex eigenvalues is less than one
(r<1). The origin is called an unstable focus if the magnitude of two complex
eigenvalues is greater than one (r > 1). If the magnitude of two complex
eigenvalues equals to one (r = 1), the origin is a center for the discrete system.
The discrete system possesses a flutter boundary (or Neimark boundary). From the
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Fig. B.13 Unstable nodes of
Yer1 =By, 1 a ([4,9] -

2, : & : J| monotonic
source A4; = A €

(I,00) (i=1,2) and b
(2,9]:12,2]: & :
oscillatory source 4; = 4 €
(—o0,—1)(i=1,2)

Fig. B.14 Phase portrait and
eigenvalue diagram y; | =
By,:a(J:0:[2;1:9) -
critical case (unstable source)
with the second-order nilpo-
tent matrix (4; = A= 1 and
b|2:17 l:1,2),b(®®
[2;(2)] : )| -critical boundary
with the first-order nilpotent
matrix for saddle-node
boundary of the first kind or
Neimark boundary (4; = 4 =
land b, =0, i=1,2)
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Yar
ik
(a)
Yor
Yik
(b)
Yor
—O0—O0—O01+0—0——0+=
Yix
(a)
Yax
O—0O—0
Yix
O—0O—0
(b)

ImA

Re i

N

N
/)

ReA

ImA

~
N

\
j Rel

ImA

p
\

\
j ReAd

solutions, the phase portraits and eigenvalue diagram for stable and unstable
focuses are presented in Figs. B.16 and B.17. The eigenvalues are a pair of
complex eigenvalues in or out the unit circle. The initial point for the unstable
focus cannot be selected at the origin. For the stable focus, the solution of the
linear system will approach the origin as k — oo. On the flutter boundary (r = 1)
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Fig. B.15 Phase portrait and
eigenvalue diagram of y; | =
By,:a(J:0:J:[2:1]] -
flip critical case (or unstable
node) with the second-order
nilpotent matrix

(li =/.=—1and b|2 =
1,i=1,2),b(D:9)::
[2; | -critical flip case with
the first-order nilpotent
matrix for saddle-node
boundary of the second kind
(flip boundary) or Neimark
boundary (4; = 2= —1 and
b =0,i=1,2)

Fig. B.16 |1 : & : ) -spiral
sink (or stable focus) and
eigenvalue diagram of y; | =
By,:aff>0and b <0

Yok

N

Yax

/
\
\

\

Yok

2
k

-/

N

N
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ImA
. Rel
(a)
ImA
Yk Rel
(b)
ImA
R
Tk y Re
(a)
ImA
R
SANDE
(b)

of discrete systems, the iterative points will oscillate on the circular curves, as

shown in Fig. B.18.

(D) The origin is called the sink of the linear system in Eq. (B.136) if the
magnitudes of all eigenvalues are less than zero (|4;| <1 for i = 1,2). The origin is
called the source of the linear system in Eq. (B.136) if the magnitudes of all
eigenvalues are greater than zero (|4;| > 1 for k = 1,2) . Compared to the node
and saddle-nodes, the stable and unstable focuses make discrete states spirally
come to the origin or spirally leave for infinity, respectively.
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Fig. B17 |J:1: Q) -spiral
source (unstable focus) and
eigenvalue diagram of y; | =
By,:af>0andb <0

Fig. B.18 |J:J: 1) -chat-
ter (Neimark) boundary and
eigenvalue diagram of y; | =
By,:aff>0andb <0
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Yar

E
C

ImA

&
% Rel

ImA

&
4 Rel

(b)

M ylk

(a)

M ylk

(b)

The eigenvalues of A are determined by det(A — AI) = 0, i.e.,

where

tr(A) = ay; + az and det(A) =

The corresponding eigenvalues are

22 —tr(A) A+ det(A) = 0,

apn  danz
ar A

ImA

ImA

(B.143)

(B.144)
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tr(A) + VA
2

Ao = and A = (tr(A))* — 4 det(A). (B.145)

The linear system in Eq. (B.136) possesses

(i) a saddle at the origin for real eigenvalues of |4;|<1 (i € {1,2}) and
[4| > 1 (G €{1,2} and j # i);

(ii) a stable node at the origin for real eigenvalues of |4;| <1 (i = 1,2);

(iii) an unstable node at the origin for real eigenvalues of |4;| > 1 (i = 1,2);

(iv) a stable focus at the origin for complex eigenvalues of |4;]| <1 (i = 1,2);

(v) an unstable focus at the origin for complex eigenvalues of |;]| > 1
(i=1,2);

(vi) a flutter phenomena (Neimark boundary) at the origin for complex
eigenvalues of |4;| =1 (i = 1,2), i.e.,

det(A) = 1; (B.146)

(vii) saddle-stable node boundary of the first kind at the origin for real
eigenvalues of 4; =1 and |4]<1 (i,j € {1,2} and j #1i), ie.,

tr(A) = 1 +det(A) for i € {1,2}

B.147
|4j| <1 for j € {1,2} and j # i; ( )

(viii) saddle-unstable node boundary of the first kind at the origin for real
eigenvalues of 4; =1 and |4 > 1 (i,j € {1,2} and j #i), ie.,
tr(A) = 1 +det(A) for i € {1,2}

B.148
Aj| > 1for j e {1,2} and j # i ( )

(ix) saddle-stable node boundary of the second kind (flip boundary) at the origin
for real eigenvalues of 4; = —1 and |4;| <1 (i,j € {1,2} and j # i), i.e.,

tr(A) + det(A) + 1 =0 for i € {1,2}

|| <1 forj € {1,2} and j # i; (B.149)

(x) saddle-unstable node boundary of the second kind (flip boundary) at the
origin for real eigenvalues of /; = —1 and |4;| <1 (j € {1,2} andj # i), i.e.,

tr(A) +det(A) + 1 =0 for i € {1,2}
|4j| > 1 for j € {1,2} and j # i

(B.150)
(xi) saddle-node boundary of the third kind at the origin for real eigenvalues of

Ji=—land ;=1 (i,j € {1,2} and j # i), i.e.,
tr(A) = 0 and det(A) = —1 (B.151)

from which there are eight possibilities;
(xii) a degenerate fixed point at the origin for det(A) = 0, which is reduced to
the one-dimensional case.
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Fig. B.19 Stability and its Im Im
boundary diagram through
trace tr(A) and determinant
det(A)

det(A)

Re
Im
Im
Re
Re
Im
Re
Flip boundary
I

m
Re

The summarization of stability and its boundary for the linear discrete system
in Eq. (B.116) are intuitively illustrated in Fig. B.19 through the complex plane
of eigenvalue. The shaded area is for stable nodes and stable focus. The area
above the shaded area is for unstable node, and the area below the shaded area is
for stable node. The left area of the axis of tr(A) outside of the shaded area is for
saddle. The vertical line is for center with det(A) = 1 and |tr(A)| <2, which is
also called the flutter boundary (Neimark boundary). For det(A) > 1, the area
between the dashed curves are for unstable focus. The dashed parabolic curve is
a boundary of complex and real eigenvalues. The upper line is the saddle-node
boundary of the first kind (saddle-node boundary). The lower line is the saddle-
node boundary of the second kind (flip boundary). The left point of the shaded
triangle is the saddle-node of the third kind. The phase portrait is based on the
transformed system in Eq. (B.138). The solutions of x;;; = Ax; in Eq. (B.136) is
given by x; = Py,.
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B.5.2 Three-Dimensional Discrete Systems

Consider a three-dimensional discrete, linear system as
Xpt+1 = AXk (B152)

with initial condition x, and

A= azy dpy Az (B153)

asy  dsy ass

ai  anp 013]

If det A # 0, x; = 0 is an unique fixed point. With a nonsingular transform matrix
P, B = P 'AP. With

X = Pyr, Y1 = By (B.154)
where
A1 0 0
B=|0 4 0]. (B.155)
0 0 4

(A) If three real eigenvalues are different (1; # Ay # 43), the solution is

B = diag ()1, /2,73) and y, = diag(/%, 75, 7%)y,. (B.156)

The origin is called a node of the discrete system if three real eigenvalues are
inside or outside the unit circle. If | ;] <1 (i = 1,2, 3), the origin is a stable node. If
|4] > 1 (i=1,2,3), the origin is an unstable node. The phase portraits and
eigenvalue diagrams for the linear discrete system with stable and unstable nodes at
the origin are sketched in Fig. B.20a and b with one eighth view. For two phase
portraits, 4; >0 (i = 1,2,3) is adopted. Thus, the iterative points of evolution
solutions in phase portrait decrease (or increase) monotonically for the stable or
unstable node in such an eighth view. All flows will monotonically come to the origin
as the stable node. However, flows in a linear discrete system with an unstable node at
the origin will monotonically leave away from the origin. If 2; <0 (i € {1,2,3}), the
phase portrait will be oscillatory. The iterative points of the evolution solutions in
phase portraits will be oscillatory in the direction of v; (i € {1,2,3}). If three
eigenvalues are negative (4; <0, i = 1,2, 3), the three directions will be oscillatory.
Therefore, the eigenvalue diagrams for the other sinks and sources are presented in
Figs. B.21 and B.22 , repsectively.

The origin is called a saddle-node of the linear system if three real eigenvalues
distribute inside and outside eigenvalues. If |4;| <1 (i = 1,2) with |43] > 1, the
origin is a saddle-node with two-directional attraction and one-directional
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Fig. B.20 Phase portrait and

. . ImA
eigenvalue diagrams: a
(3,9 : D : & : ] sink
(i e(0,1),i=1,2, 3)
and b (J:3,J] : I : |
source (/4; € (1, 00), Re A
i=1,2,3)
ImA
Yar Red

(b)

expansion. If |4;] > 1 (i = 1,2) with |13| <, the origin is a saddle-node with one-
directional attraction and two-directional expansion. The phase portraits and
eigenvalue diagrams for the linear system with two saddle-nodes at the origin are
sketched in Fig. B.23a and b with one-eighth view for /; > 0 (i = 1,2,3). The
flows in the linear discrete systems with saddle-nodes shrink in the attraction
direction(s) and stretch in the expansion direction(s). Once again, if 1;<0 (i €
{1,2,3}), the phase portrait will be oscillatory. The iterative points of the
evolution solutions in phase portraits will be oscillatory in the direction of v; (i €
{1,2,3}). If three eigenvalues are negative (1;<0, i=1,2,3), the three
directions will be oscillatory. For all possible cases, the corresponding
eigenvalue diagrams are presented in Figs. B.24 and B.25.

If |4;] <1 (i = 1,2) with 23 = 1, the linear discrete system has a saddle-stable
node boundary of the first kind to the origin. If |4;| > 1 (i = 1,2) with 13 = 1, the
linear discrete system possesses a saddle-unstable node boundary of the first kind to
the origin. Eigenvalue diagrams for the six critical states are presented in Fig. B.26.

If 4] <1 (i = 2,3) with 2; = —1, the linear discrete system has a saddle-stable
node boundary of the second kind to the origin. If | ;| > 1 (i = 2,3) with 4, = —1,
the linear discrete system possesses a saddle-unstable node boundary of the second
kind to the origin. For the saddle-stable node boundary, there are three cases. For this
boundary is often called the saddle-node boundary. For the saddle-unstable stable
node boundary, three are also three cases. For this boundary is often called the saddle-
node boundary, as shown in Fig. B.27 through eigenvalue diagrams.

If |41]<1 and |A;] > 1 with A3 = 1, the linear discrete system has the saddle—
saddle boundary of the first kind to the origin. For the saddle—saddle boundary of
the first kind, there are four cases, as shown in Fig.B.28 through eigenvalue
diagrams. If |4;]<1 and |4y] > 1 with A3 = —1, the linear discrete system
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Fig. B.21 Eigenvalue ImA ImA
diagrams for four stable
nodes (4; € (—1,1), i =

1,2,3):a (3,9]: @ : O /
D\ sink, b ([2,1] : J: F: D

sink, ¢ ([1,2] : F: I : I - \\J Rel

N
S

sink and d ([J,3] : J: I - et
| sink
(@) (b)
ImA ImA
E } Re A E ; ReAd
(c) (d)
Fig. B.22 Eigenvalue ImA ImA

diagrams for four sources

(unstable node) with

| > 1(i=1,2,3) :

a(Jd:3,9:3: -

source, b (J: [2,1] : T : O Red
-source, ¢ (J: [1,2] : & : O

-source and d (& : [, 3] :

(]

m
T

& : J)| -source
(a) (b)
ImA ImA
E ; Re i E 3 Red

(c) (d)

possesses a saddle—saddle boundary of the second kind to the origin. For the
saddle—saddle boundary of the second kind, three are also four cases, as shown in
Fig. B.29 through eigenvalue diagrams. If ; = —1 and |/,| <1 with A3 = 1, the
linear discrete system has the saddle-node boundary of the third kind to the origin.
There are two critical states ([1,]:[J,]:1:1| and ([J,1]: [F,D]:1:1|
states. The ([0,0] : [J,©] : 1 : 1] state is a special state.
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Fig. B.23 Phase portraits
and eigenvalue diagrams:
a([1,0):2,0]:J: ) -
saddle 4; € (1,00) (i =1,2)
and 23 € (0,1), b ([2,] :
[1,d]: J: | -saddle A; €
0,1) (i=1,2)

and/; € (1,00)
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ImA

A

W

ImA

A

B

(b)
Fig. B.24 Eigenvalue ImA ImA
diagrams for four saddles
with |/11‘<1 and |/‘L213| >1:
a([1,4]:2,9):D: ) -
saddle, b ([J,1]: [2,] : T :
@ -saddle, ¢ ([1,2)] : [2,2] : Rel Rel
@ : | -saddle and d
(2,1 :[2,2] . D : ] -
saddle
(a) (b)
ImA ImA
Red ; ReAd
(©) (d)
If 4y =—1 and || > 1 with A3 = I, the linear discrete system possesses a

saddle-unstable node boundary of the fourth kind to the origin. There are two
critical states ([J, ] : [1,] :1: 1] and ([, ] : [, 1] : 1 : 1] states. The above
mentioned cases will not be illustrated herein.

(B) For two repeated real eigenvalues (1; = A, = A and /3), the solutions are

B = daig(2, 2, 73) and y, = daig(2*, ¥, J8)y,. (B.157)
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ImA ImA

D P D
o " "
D s £
(d) (e) ®

Fig. B.25 Eigenvalue diagrams for six saddles with |1|<1 and |43 > 1:a ([2,9]: [1,2] :
D : | -saddle, b ([1,1]:[1,F]: T : | -saddle and ¢ ([F,2]:[1,0]: T : | -saddle,
d([3,2] : [D,1]: D : D| -saddle, e ([1,1] : [T, 1] : & : D| -saddle and £ ([2,] : [T, 1] : T : ]
-saddle

ImA ImA ImA
/
\ Rel Re A Rel
(a)
ImA ImA ImA
}Rfcﬂ O€ Rel ReAd
(b)

Fig. B.26 Eigenvalue diagrams (/; = 1) : a saddle-stable node boundary of the first kind
[Z23]<1 with (2,0]:D:1:9)|, (1,1]:D:1:C)], (F,2] :J:1:| states, b saddle-
unstable node boundary of the first kind |A23| > 1 with (J:[J,2]:1:|, (F:[1,1]:1:
D\, (D:2,]:1:] states
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ImA
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(b)

ImA

ImA

Rel

Fig. B.27 Eigenvalue diagrams (1; = —1) : a saddle-stable node boundary of the second kind
(423 <1) with (2,2]:0:D:1], (1,1]:S:D: 1|, ([&,2] : D :J: 1] states, b saddle-

unstable node boundary of the second kind with

(@:[1,1]:D: 1|, (D:[2,F): T 1] states

(1425 > 1) (@: 12,2 :2:1],

Fig. B.28 Eigenvalue
diagrams (4, = 1) for
saddle—saddle boundary of
the first kind: a |A,| <1
for([1,0]: [1,] : 1 : |
-state and ([, 1] : [1,] : 1 :
)| -state, and b |A3] > 1 for
([1,9] : &,1] : 1 : )| -state
and ([J,1]: [D,1]:1: ] -

state

ImA

PEIRN

(a)

ImA

PLRa

(b)

ImA

Rel

ImA

ReA
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Fig. B.29 Eigenvalue
diagrams (4; = —1) for
saddle—saddle boundary of

ImA
the second kind: a || <1
and 43 > 1 for ([1,4] :
[1,d] : & : 1| -state and Rel Red
(D, 1] : [1,] : & : 1] -state,

b ‘/12|<1 and A3 <1 for
([1,2)] : [B,1] : D : 1] -state

ImA

and ([&,1]: [&,1] : & : 1] (a)
-state
ImA ImA
E ReA E Re A
(b)
A1 0 ko
B=|0 A O|landy,=|0 X 0]y, (B.158)
0 0 /3 o o X

3

The stability characteristics of Eq. (B.158) with two repeated real eigenvalues
(A3 # A) are similar to the case of three real distinct eigenvalues. The origin is (a)
a stable node (sink) with (J]A] <1 and |13 <1), (b) an unstable node (source) with
(JA| > 1 and |A3] > 1), and (c) a saddle-node (|4| <1 and |43] > 1 or |A| > 1 and
|13] <1) for the linear system. For A3 = 1(43 = —1), the linear system to the origin
possesses (a) a saddle-stable node boundary of the first (second) kind with |4] <1,
and (b) a saddle-unstable node boundary of the first (second) kind with |4| > 1.
However, for Eq. (B.157), the origin is a stable node (sink) with (|1|<1 and
|43] < 1), an unstable node (source) with (|A| > 1 and |43]| > 1), and a saddle-node
(JA|<1 and |/3] > 1 or |A| > 1 and |A3|<1) for the linear system. For 4; = 1 or
(4 = —1) with (i € {1,2,3}), the linear system possesses (a) a saddle-stable node
of the first (second) kind to the origin with |4;| <1(j € {1,2,3} and j # i) and (b) a
saddle-unstable node of the first (second) kind to the origin with |4 > 1(j €
{1,2,3} and j # i). Notice that 1; = 1, = A. The phase portraits and eigenvalue
diagram will not be presented, which can be illustrated as 2-D linear discrete
systems.

(C) For three repeated real eigenvalues (1; = Ay = A3 = 1), the solutions are

B = diag(),2,2) and y, = diag()*, ¥, 2Ny, (B.159)
i 10 et o

B=|0 2 O|andy,=|0 ¥ 0|y (B.160)
00 2 o o X
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Fig. B.30 Spiral flows and
eigenvalue diagram: a (J :
1,]:8:0|d:1:J) -
spiral source |4;| > 1 (i =
1,2,3) and Im/; # 0 (j =
1,2);and b ([1,0]: J: I :
D1 : & : ) -spiral sink
[%i|<1(i=1,2,3) and
Imj; #0 (j=1,2)

A 10 o k(- 1)
B=|0 A l|andy(t)=y,=|0 J* k! yo- (B.161)
0 0 2 0 0 ok

The stability characteristics of Eq. (B.152) with three repeated real eigenvalues
are similar to the case of three real distinct eigenvalues. The origin is a stable node
(sink) with |A| <1, an unstable node (source) with |A| > 1 for the linear system.
The phase portraits and eigenvalue diagrams will not be presented.

(D) For (412 = a£1ip) and Im 43 = 0, the solution is

« B 0 *coskl  rfsink0 0
B=|-f o« 0/|,andy(t)= |—r*sink0 rfcosk0 0 |y, (B.162)
0 0 /3 0 0 s

The origin is called a spiral focus of the discrete linear system if the real parts of
three eigenvalues are inside or outside unit circle. If |4;] <1 (i = 1,2, 3), the origin
is a spiral sink for this linear discrete system, and there is a pair of complex
eigenvalue and a real eigenvalue. If |4;| > 1 (i = 1,2,3), the origin is a spiral
source (Tornado) for the linear discrete system. The linear discrete system with
stable and unstable spiral focuses at the origin are sketched in Fig.B.30a and b with
a half space. The spiral flows and eigenvalue diagrams are presented. Eigenvalues
A1, are complex and A3 > 0 is real. Thus the spiral sink (or source) flow increases
(or deceases) monotonically. All flows spirally come to the origin as the stable
spiral sink. However, flows in the linear system with an unstable spiral source at
the origin will spirally leave away from the origin like a tornado. For a pair of
complex eigenvalues with a real eigenvalue of A3 <0, the spiral sink and source
flows will be oscillatory in the eigenvector of vs, which will not be sketched. For
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Fig. B.31 Spiral saddle
flows and eigenvalue dia-
grams: a (J: [1,0]: T
|1 : & : ) spiral saddle
1,2) and /3 € (1,00)) and b
(1,9]: DD D|J:1:
) spiral saddle (|4;| > 1
with Im/A; # 0 (i = 1,2) and
73 €(0,1))

yu/

(b)

this case, the iterative points of the evolution solution for the linear discrete system
will jump from the positive to negative space to the plane of (yix,ya)-

The origin is called a spiral attraction and expansion of the linear system if the
three eigenvalues are outside and inside the unit circle. For a pair of complex
eigenvalues |4;|<1 (i = 1,2) with 3 € (1,00), the origin is a spiral attraction
with an expansion. For |4;| > 1 (i = 1,2) with 43 € (0, 1), the origin is a spiral
expansion with an attraction. Flows and eigenvalue diagrams for the two cases of
the linear system are sketched in Fig. B.31a and b, respectively. The origin is
called a cylindrical spiral saddle-focus of the linear discrete system for a pair of
complex eigenvalues |4;] = 1 (i = 1,2) with a real eigenvalue |13| # 1. For a pair
of complex eigenvalues |4;| = 1 (i = 1,2) with |43 > 1, the origin is a cylindrical
spiral saddle-source boundary. For a pair of complex eigenvalues |A;| =1 (i =
1,2) with |/3]<1, the origin is a cylindrical spiral saddle-sink boundary.
Cylindrically spiral saddle-sink and spiral saddle-source boundaries (or Niemark
boundary) and eigenvalue diagrams are sketched in Fig. B.32a and b with A3 €
(0,1) and 23 € (1,00).

The origin is called a circular saddle-node boundary for the linear discrete
system for a pair of complex eigenvalues |4;|=1(i=1,2) with a real

eigenvalue |43] = 1. For a pair of complex eigenvalues |4;] =1 (i = 1,2) with
/3 = 1, the origin is circular saddle. For a pair of complex eigenvalues |4;| =
1 (i=1,2) with 23 = —1, the origin is a center of a stable cylindrical spiral.

Circular saddle-node boundary (or circular Niemark-node boundary) and
eigenvalue diagrams are sketched in Fig. B.33a and b with /3 € (0,1) and
/3 € (1,00). In Fig. B.34a and b, the eigenvalue distribution for the first and
second kind spiral sources are 13 € (—o0,1) and 43 € (1,00) with |4;] > 1 (i =
1,2). Three kinds of spiral saddles for 3-dimensional system are for /13 €



490 Appendix B: Linear Discrete Dynamical Systems

Fig. B.32 Cylindrically I
spiral saddle-sink and spiral
saddle-source boundaries (or
Niemark boundary) and
eigenvalue diagram: a
(,2]:0:8:0|8: - =
1) -cylindrically spiral sad- =
dle-sink flow (or Neimark-
sink boundary) (|4;| = 1 with
Im/; #0(i=1,2) and 13 €
(0,1)),and b (& : [1,] :
DD : D : 1) -cylindri-
cally spiral saddle-source
flow (or Neimark-source
boundary) (|4;| = 1 with
ImA; #0 (i =1,2) and

A3 € (1,00))

Vipe,

S\

Fig. B.33 Circular saddle-
node boundary and eigen-
value diagrams: a (J: & :
1: G : D : 1) -spiral sad-
dle-node boundary of the first
0(i=1,2)and 43 = 1),
b(:0:0:110:T:1) -
spiral saddle-node boundary
of the second kind (|4;] =1
with Im/; # 0 and A3 = —1)

(b)

(=1,1) with |4] > 1 (i =1,2), as in shown Fig. B.35a—c. Two boundaries for
spiral saddle and spiral source are also presented in Fig. B.36a and b. In
addition, there are two kinds of spiral saddles with 43 > 1 and /3 < — 1 with
|4i]<1(i=1,2) in Fig. B.37a and b. The corresponding spiral sinks are
presented in Fig. B.38a—c. Such spiral saddles with the spiral sinks have
boundaries as in Fig. B.39a and b.
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Fig. B.34 Eigenvalue dia- ImA
grams: a (J: [1,0]:
DD : 1 : ) -spiral source of
the first kind (]4;] > 1 with
ImA; #0 (i =1,2) and
3>1)b (D:[D,1]:D:
DD : 1 : ) -spiral source of
the second kind (|4;| > 1 with
ImZ; #0and /3< — 1)

ImA ImA ImA

491

ImA

(a) (b) (c)

AN AN D
NNV

Re A

Fig. B.35 Eigenvalue diagrams: a ([1,J] : & : J: D|D : 1 : ) -spiral saddle of the first kind
(J4] > 1 withImd; 20 (i =1,2) and 23 € (0,1)),b ([J,1] : & : T : D|T : 1 : &) spiral saddle

of the second kind (|4;] > 1 with Im4; # 0 and /3 € (—1,0)) and ¢ ([0,0] : & : &
spiral saddle of the third kind (|4;| > 1 with Im4; # 0 and 43 = 0)

Fig. B.36 Eigenvalue dia- ImA
grams: a (J:J:1: DT

1 : ) spiral saddle-source @)
boundary of the first kind / \
(|44 > 1 with Tm#; £ 0 (i = |
1,2) and 23 = 1), and b (& : K/ Re
DD 1|D:1: D) spiral O

saddle-source boundary of
the second kind (|4;| > 1 with
Im/; #0 and A3 = —1

) (@)

Q1D 1:D)

ImA

(b)

The eigenvalues of A in Eq. (B.152) are determined by det(A — AI) =0, i.e.,

P+ L2+ bi+5L=0

where
I = tr(A) = a1 + axn + ass,

L, = anaxn + apazs + azzay — apay — ax;az; — apasg,
I = det(A) = ananass + appaxaz + aizanas

— d11a32d23 — da(3d3z; — Aszdpdri.

(B.163)

(B.164)
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Fig. B.37 Eigenvalue dia-
grams: a (J: [1,0]:
Q|1 : & : ) spiral saddle of
the fourth kind (|4;| <1 with
ImA; #0 (i =1,2) and
i3>1),b (D:[D,1]:D:
D1 : & : ) spiral saddle of
the fifth kind (/4] <1 with
Im4; #0and /3< — 1)

ImA
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ImA

ImA

(a)

ImA

il
N

(a)

AL
]/

(b)

/
Re2 K

(b)
ImA
K
y Re A

(]

Fig. B.38 Eigenvalue diagrams: a ([1,] : J:J: D1 : & : ) -spiral sink of the first kind
(|4l <1 with Im4; #0 (i =1,2) and 43 € (0,1)),b ([&,1]: & : T : J|1 : & : &) spiral sink of
the second kind (]/;| <1 with Im/; # 0 and 43 € (—1,0)) and ¢ ([0,0] : & : J: |1 : T : &)
spiral sink of the third kind (]4;| <1 with Im/; # 0 and A3 = 0)

(b)

Fig. B.39 Eigenvalue diagrams: a (J: @ : 1 : |1 : & : ) spiral saddle-sink boundary of the
first kind (J4;] > 1 with ImA; #0 (i =1,2) and 23 = 1), and b (J: J: F: 1|1 : & : ) -spiral
saddle-sink boundary of the second kind (|4;| > 1 with Im/; # 0 and 13 = —1)

The corresponding eigenvalues are

where

Al
Ja

\3/A71+ ) AZa
w1\3/A71+U)2\3/A_2,

23 = oav/ A+ 01/ Ay

(B.165)
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w ——_1+i\/§ and o —7_]_i\/§'
1= 2 2 = ) )
Ay = —%i VA and A = (%)2 + (%’)3; (B.166)
_ 1, _ 1 2 5
p_12_§ll and g =I5 31112+2711~

The linear system in Eq. (B.152) possesses the following characteristics

(i) For A > 0, the matrix A has one real eigenvalue and a pair of complex
eigenvalues. The spiral sink, spiral source and a spiral-exponential
attraction and expansion exist at the origin.

(i) For A=0 and p = g =0, the matrix A has three repeated eigenvalues.
Stable and unstable nodes exist at the origin.

(iii) For A=0 and ¢* = —4p*/27 #0, the matrix A has two repeated
eigenvalues. Sink, sources and saddle-node exist at the origin.

(iv) For A <0, the matrix A has three different eigenvales. Sink, sources and
saddle-node exist at the origin.

(v) A degenerate fixed point at the origin for det(A) = 0. For the degenerate
case, the readers can discuss the solutions as in 2-dimensional linear
systems.
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Bifurcation values, 15 Equilibrium point, 5

Expansion, 69

C

Cantor horseshoe, 159 F
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Complex eigenvalues, 6, 77 Flow, 1, 65
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Continuous switching, 226 Fragmentation, 358

Contraction, 73

Contraction map, 73
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Generalized Neimark bifurcation, 120
G-functions, 233, 300, 301

D Global stable manifold, 7, 72
Decreasing saddle-node, 22 Global unstable manifold, 7, 72
Degenerate switching, 17, 19 Grazing mapping, 347
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H (cont.)

Homeomorphisms, 5

Homogenous linear system, 364
Hopf bifurcation, 47

Hopf switching, 20

Hyperbolic bifurcation, 40, 113
Hyperbolic equilibrium, 710
Hyperbolic fixed point, 72, 77, 457

1

C" invariant manifold, 7, 73
Impulsive system, 263

Increasing saddle-node, 22
Increasingly unstable equilibrium, 22
Initial greazing manifold, 352
Intermittency route to chaos, 128
Invariance, 69

Invariant subspace, 5, 73, 398

J

Jacobain determinant, 5
Jacobian matrix, 2, 317

Joint multifractal measure, 137

L

Linear discrete system, 453

Linear discrete system with distinct
eigenvalues, 454

Linearized system, 5, 71

Linear switching system, 254

Linear system with distinct eigenvalues, 402
Linear system with periodic coefficients, 409
Linear system with repeated eigenvalues, 376

Lipschitz condition, 3, 67

Local invariant space, 7

Local stable invariant manifold, 7, 72
Local stable manifold, 7, 71

Local unstable invariant manifold, 8, 72

Local unstable manifold, 7, 71
Lyapunov function, 49, 50

M

Manifold, 5

Mapping, 271

Mapping dynamics, 323
Measuring function, 231-233
Monotonic, lower saddle, 92
Monotonic sink, 91
Monotonic source, 92

Monotonic, upper saddle, 92
Multifractal measure, 142
Multiscaling fractals, 143

N

Neimark bifurcation, 120, 123, 125
Negative mapping, 170, 179
Nonautonomous dynamical systems, 2
Nonautonomous linear systems, 365
Nonhomogenous linear system, 365
Nonlinear system, 5

Nonlinear discrete system, 65
Nonrandomfractal, 141

Index

Nonuniform discrete dynamical system, 66

(o)

Operator exponential, 373
Operator norm, 2, 67, 373
Oscillatory, lower saddle, 94
Oscillatory sink, 93
Oscillatory source, 93
Oscillatory, upper saddle, 94

P
Period-1 solution, 67

Period-doubling bifurcation, 122, 126, 127,

130
Period-doubling flow, 230

Period-doubling routes to chaos, 126, 130

Period-doubling system, 230
Period-m solution, 68

Periodic flow, 230, 254, 273, 318
Pitchfork bifurcation, 41, 114, 122
Positive mapping, 170, 179
Post-grazing, 333

Pre-grazing, 333

Q

Quasiperiodicity routes to chaos, 122, 128

R

Random action, 141

Random fractal, 141

Random generator, 142

Real eigenvalue, 9

Renormalization group, 122
Repeatable synchronization, 197, 209
Repeated switching system, 230
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Source, 10, 78, 93, 402, 457

Spatial derivative, 2

Spirally stable equilbrium, 10, 34
Spirally unstable equilbrium, 10, 34
Spiral saddle, 16, 20, 420, 461
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Spiral source, 16, 220, 408, 420, 458
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Stable bifurcation, 16

Stable equilibrium, 9, 10

Stable Hopf bifurcation, 20

Stable Hopf switching, 20

Stable node, 21, 96, 457

Stable saddle-node bifurcation, 19, 48
Stable saddle-node switching, 19
Stable subspace, 6, 71, 398
Switching, 15, 17

Switching sets, 303

Switching systems, 223, 224, 231
Switching systems with impulses, 252, 255
Switching values, 15

Symmetric discontinuity, 325
Synchronization, 213, 221
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T

Tangential bifurcation, 129
Trajectory, 1, 66

Transcritical bifurcation, 41, 112
Transport law, 223

U

Uniform discrete dynamical system, 66
Unstable equilibrium, 9, 10

Unstable Hopf bifurcation, 20

Unstable Hopf switching, 20

Unstable node, 22, 467

Unstable saddle-node bifurcation, 19, 48, 124
Unstable saddle-node switching, 19, 48, 124
Unstable subspace, 6, 69, 398

v
Vector field, 1
Velocity vector, 1

Y

Yang state, 174

Ying state, 174
Ying-Yang state, 174
Ying-Yang theory, 169
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