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Abstract  The central nervous system is subject to many different forms of noise, 
which have fascinated researchers since the beginning of electrophysiological 
recordings. In cerebral cortex, the largest amplitude noise source is the “synaptic 
noise,” which is dominant in intracellular recordings in vivo. The consequences of 
this background activity are a classic theme of modeling studies. In the last 20 years, 
this field tremendously progressed as the synaptic noise was measured for the first 
time using quantitative methods. These measurements have allowed computational 
models not only to be more realistic and closer to the biological data but also to 
investigate the consequences of synaptic noise in more quantitative terms, measur-
able in experiments. As a consequence, the “high-conductance state” conferred by 
this intense activity in vivo could also be replicated in neurons maintained in vitro 
using dynamic-clamp techniques. In addition, mathematical approaches of stochas-
tic systems provided new methods to analyze synaptic noise and obtain critical 
information such as the optimal conductance patterns leading to spike discharges. 
It is only through such a combination of different disciplines, such as experiments, 
computational models, and theory, that we will be able to understand how noise 
participates to neural computations.

�Introduction

The central nervous system is subject to many different forms of noise, which 
have fascinated researchers since the beginning of electrophysiological recordings. 
In cerebral cortex, the largest amplitude noise source is the “synaptic noise,” 
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which is dominant in intracellular recordings in vivo. Indeed, one of the most 
striking characteristics of awake and attentive states is the highly complex nature 
of cortical activity. Global measurements, such as the electroencephalogram 
(EEG) or local field potentials (LFPs), display low amplitude and very irregular 
activity, the so-called desynchronized EEG (Steriade 2003). This activity has very 
low spatiotemporal coherence between multiple sites in cortex, which contrasts 
with the widespread synchronization in slow-wave sleep (Destexhe et al. 1999). 
Local measurements, such as extracellular (unit activity) or intracellular record-
ings of single neurons, also demonstrate very irregular spike discharge and high 
levels of fluctuations similar to noise (Steriade et al. 2001), as shown in Fig. 8.1. 
Multiple unit activity (Fig. 8.1A) shows that the firing is irregular and of low cor-
relation between different cells, while intracellular recordings (Fig. 8.1B) reveal 
that the membrane potential (Vm) is dominated by intense fluctuations (“noise”).

How neurons integrate synaptic inputs in such noisy conditions is a problem 
which was identified in early work on motoneurons (Barrett and Crill 1974; Barrett 
1975), which was followed by studies in Aplysia (Bryant and Segundo 1976) and 
cerebral cortex (Holmes and Woody 1989). This early work motivated further stud-
ies using compartmental models in cortex (Bernander et al. 1991) and cerebellum 
(Rapp et al. 1992; De Schutter and Bower 1994). These studies pointed out that the 
integrative properties of neurons can be drastically different in such noisy states. 
However, at the time, no precise experimental measurements were available to char-
acterize the noise sources in neurons.

How neurons integrate their inputs in such states and, more generally, how entire 
populations of neurons represent and process information in such noisy states are 
still highly debated. In this chapter, we will describe recent measurements and asso-
ciated progress to characterize the nature and the impact of this noisy activity. We 
will show that a series of major progress have been made in the last 20 years, and 
that computational neuroscience has played a particularly important role in this 
exploration.

�Characterization of Synaptic Noise In Vivo

A first major advance was that this amount of “noise” was characterized and mea-
sured for the first time using quantitative methods. Figure 8.2 illustrates such mea-
surements (Paré et  al. 1998; Destexhe and Paré 1999). This first quantitative 
characterization was done using the “up-states” of ketaminexylazine anesthesia, 
which display very similar network activity as the awake brain (they were later 
measured in awake animals; Rudolph et al. 2007). The experiments were designed 
such that the same cell could be recorded before and after total suppression of net-
work activity. A powerful blocker of network activity (tetrodotoxin, TTX) was 
micro-perfused during the intracellular recordings, enabling characterization of the 
membrane state before and after TTX infusion (Fig. 8.2, top scheme). The comparison 
between these two states included measuring the membrane potential (Fig. 8.2A), 
input resistance (Fig. 8.2B), and voltage distributions (Fig. 8.2C). These experiments 
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Fig. 8.1  Highly complex and “noisy” cortical activity during wakefulness. (a) Irregular firing 
activity of eight multiunits shown at the same time as the local field potential (LFP) recorded in 
electrode 1 (scheme on top). During wakefulness, the LFP is of low amplitude and irregular activ-
ity (“desynchonized”) and unit activity is sustained and irregular (see magnification below; 20 
times higher temporal resolution). (b) Intracellular activity in the same brain region during wake-
fulness. Spiking activity was sustained and irregular, while the membrane potential displayed 
intense fluctuations around a relatively depolarized state (around −65 mV in this cell; see magnifi-
cation below). (a) Modified from Destexhe et al. 1999; (b) modified from Steriade et al. 2001
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revealed that about 80 % of the membrane conductance is attributable to synaptic 
activity (Paré et al. 1998; Destexhe and Paré 1999), demonstrating that neurons in 
vivo operate in a “high-conductance state.”

�Detailed Biophysical Models of Synaptic Noise

Investigating the consequences of noisy background activity is a classic theme 
which started by studies in motoneurons (Barrett and Crill 1974; Barrett 1975) and 
followed by model studies of neurons in cerebral cortex (Holmes and Woody 1989; 

Fig. 8.2  Characterization of synaptic noise by suppression of network activity using micro-perfusion 
of tetrodotoxin (TTX). Top: experimental setup; a micro-perfusion pipette was used to infuse TTX 
into the cortex in vivo, at the same time of the intracellular recording. Left: characterization of 
network states in vivo. Right: same measurements after dialysis of TTX. The different measure-
ments are the membrane potential (A), the averaged response to hyperpolarizing pulses (B), and 
the voltage distribution (C). (A–C) Modified from Destexhe and Paré 1999
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Bernander et al. 1991) and cerebellum (Rapp et al. 1992; De Schutter and Bower 
1994). The measurements of synaptic background activity outlined above (Paré 
et al. 1998) have allowed computational models not only to be more realistic and 
closer to the biological data but also to investigate the consequences of synaptic 
noise in more quantitative terms. Figure 8.3 summarizes a first approach consisting 
of biophysically detailed models based on morphologically accurate reconstruc-
tions of cortical pyramidal neurons, combined with realistic patterns of synaptic 
input and intrinsic voltage-dependent conductances (see details and parameters in 
Destexhe and Paré 1999). These models could be tuned to reproduce all experimen-
tal measurements (Fig. 8.3A–C).

Fig. 8.3  Detailed biophysical models of synaptic background activity in cortical pyramidal neurons. 
Top: scheme of the model, based on a reconstructed cell morphology from cat parietal cortex. 
The model can reproduce the main features of in vivo measurements ((A)–(C) arranged similarly 
as Fig. 8.2). Figure modified from Destexhe et al. 2001
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Such detailed biophysical models have been used to investigate the consequences 
of synaptic background activity in cortical neurons, starting with the first investiga-
tion of this kind by Bernander et al. (1991). This study revealed that the presence of 
background activity, although at the time nonconstrained by experimental measure-
ments, was able to change several features of the integrative properties of the cell, 
such as coincidence detection.

Using models constrained from experiments, such as that of Fig. 8.3, enabled the 
derivation of several interesting properties, which we enumerate here.

	1.	 Enhanced responsiveness. The presence of background activity was found to 
markedly change the cell’s excitability, and produce a detectable response to 
inputs that are normally subthreshold (Hô and Destexhe 2000). This prediction 
was verified in dynamic-clamp experiments (see section “Synaptic Noise in 
Dynamic-Clamp”).

	2.	 Location-independence. The effectiveness of synaptic inputs becomes much less 
dependent on their position in dendrites, as found in cerebellar (De Schutter and 
Bower 1994) and cortical neurons (Rudolph and Destexhe 2003b), although 
based on very different mechanisms.

	3.	 Different integrative mode. As initially predicted by Bernander et al. (1991), this 
important property was indeed confirmed with models constrained by experi-
mental measurements (Rudolph and Destexhe 2003b).

	4.	 Enhanced temporal processing. As a direct consequence of the “high-
conductance state” of the neurons under background activity, the faster mem-
brane time constant allows the neuron to perform finer discrimination, which is 
essential for coincidence detection (Softky 1994; Rudolph and Destexhe 2003b; 
Destexhe et  al. 2003) or detecting brief changes of correlation (Rudolph and 
Destexhe 2001). The latter prediction was also verified experimentally (Fellous 
et al. 2003).

	5.	 Modulation of intrinsic properties. It was found that in the presence of synaptic 
background activity, the responsiveness of bursting neurons is strongly affected 
(Wolfart et al. 2005). This aspect will be considered in more detail below.

These properties have been summarized and detailed in different review papers 
and books (Destexhe et  al. 2003; Destexhe 2007; Haider and McCormick 2009; 
Destexhe and Rudolph 2012) which should be consulted for more information.

�Simplified Models of Synaptic Noise

A second major step was to obtain simplified representations that capture the main 
properties of the synaptic “noise.” This advance is important, because simple mod-
els have enabled real-time applications such as the dynamic-clamp (see section 
“Synaptic Noise in Dynamic-Clamp”). Simple models also have enabled a number 
of mathematical treatments, some of which resulted in methods to analyze experi-
ments, as outlined in sections “Stochastic Systems Analysis of Synaptic Noise” and 
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“Estimating the Optimal Conductance Patterns Leading to Spikes in ‘Noisy’ States.” 
These approaches relied on a simplified model of synaptic noise, called the “point-
conductance model” (Destexhe et al. 2001), which can be written as:

	
C dv
dt

g V E g V E g V E I= − − − − − − +L L e e i i ext( ) ( ) ( )
	

(8.1)

	

dg t
dt

g t g te

e
e e

e

e
e

( )
( ) ( )= − −[ ] +

1 2
0

2

τ
σ
τ

ξ
	

(8.2)

	

dg t
dt

g t g ti

i
e i

i

i
i

( )
( ) ( )= − −[ ] +

1 2
0

2

τ
σ
τ

ξ
	

(8.3)

where C denotes the membrane capacitance, Iext a stimulation current, gL the leak 
conductance, and EL the leak reversal potential. ge(t) and gi(t) are stochastic excit-
atory and inhibitory conductances with respective reversal potentials Ee and Ei. The 
excitatory synaptic conductance is described by Ornstein–Uhlenbeck (OU) stochas-
tic processes (8.2), where ge0 and σe

2  are, respectively, the mean value and variance 
of the excitatory conductance, τe is the excitatory time constant, and ξe(t) is a 
Gaussian white noise source with zero mean and unit standard deviation. The inhib-
itory conductance gi(t) is described by an equivalent equation (8.3) with parameters 
gi0, σi

2 , τi, and noise source ξi(t). Note that all conductances are here expressed in 
absolute units (in nS) but a formulation in terms of conductance densities is also 
possible.

In many previous models, synaptic activity was modeled by a source of current 
noise in the neuron (Tuckwell 1988), and thus the membrane potential is equivalent 
to a stochastic process. In contrast, in the point-conductance model, the conduc-
tances are the stochastic processes, and the Vm fluctuations result from the combined 
action of two of such fluctuating conductances. This model is thus capable of repro-
ducing all features of the high-conductance state found in cortical neurons in vivo, 
such as large-amplitude fluctuations, low input resistance, and depolarized Vm 
(Fig. 8.4). In addition, it also captures the correct power spectral structure of the 
synaptic conductances (see Destexhe et al. 2001).

�Synaptic Noise in Dynamic-Clamp

An elegant technique to investigate the effect of synaptic noise on neurons is to use 
the dynamic-clamp technique (Robinson and Kawai 1993; Sharp et al. 1993; for a 
recent review, see Destexhe and Bal 2009). This technique can be used to artificially 
reproduce stochastic synaptic activity by injecting the corresponding computer-
generated conductance in a living neuron (Destexhe et al. 2001; Chance et al. 2002; 
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Fellous et al. 2003; Mitchell and Silver 2003; Prescott and De Koninck 2003; 
Shu et al. 2003). This approach was first applied to cortical neurons, and revealed 
an important effect of the stochastic synaptic activity on neuronal responsiveness 
(Destexhe et al. 2001; Chance et al. 2002; Mitchell and Silver 2003; Prescott and De 
Koninck 2003; Shu et al. 2003; Higgs et al. 2006), similar to computational model 
predictions (Hô and Destexhe 2000). Some of these properties are reminiscent of 
the “stochastic resonance” phenomenon, which is an optimal signal-to-noise ratio in 
nonlinear systems subject to noise, and which was long studied by physicists 
(Wiesenfeld and Moss 1995; Gammaitoni et al. 1998).

Fig. 8.4  Point-conductance model of synaptic background activity in cortical neurons. Top: 
scheme of the point-conductance model, where two stochastically varying conductances determine 
the Vm fluctuations through their (multiplicative) interaction. This simplified model reproduces the 
main features of in vivo measurements (same arrangement of (A)–(C) as in Fig. 8.2). Figure modi-
fied from Destexhe et al. 2001
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Figure  8.5 shows the “high-conductance state” conferred by intense synaptic 
activity, as replicated in neurons maintained in vitro using the dynamic-clamp tech-
nique. As for models, this technique enables the experimentalist to reproduce (and 
modulate at will) a background activity with similar properties as found in vivo.

Perhaps the most unexpected property of synaptic noise was found when inves-
tigating the effect of noise on thalamic neurons (Wolfart et al. 2005). These neurons 
are classically known to display two distinct firing modes, a single-spike (tonic) 
mode and a burst mode at more hyperpolarized levels (Llinas and Jahnsen 1982). 

Fig. 8.5  Dynamic-clamp recreation of high-conductance states in neurons in vitro. Top: scheme 
of the dynamic-clamp, the point-conductance model is simulated and the excitatory and inhibitory 
conductances are injected in a living neuron using dynamic-clamp. This technique enables obtain-
ing states very similar to in vivo measurements (similar arrangement of panels as Fig. 8.2). Figure 
modified from Destexhe et al. 2001
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However, thalamic neurons are also known to receive large amounts of synaptic 
noise through their numerous direct synaptic connections from descending cortico-
thalamic fibers, and this activity accounts for about half of the input resistance of 
thalamic neurons (Contreras et al. 1996). Based on these measurements, the effect 
of synaptic noise was simulated using dynamic-clamp on thalamic neurons in slices, 
and remarkably it was found that under such in vivo-like conditions, the duality of 
firing modes disappears because single spikes and bursts now appear at all Vm levels 
(Wolfart et al. 2005). But more interestingly, if one calculates the full transfer func-
tion of the neuron, the amount of spikes transmitted to cortex becomes independent 
of the Vm level (Fig. 8.6). This property is due to the fact that for hyperpolarized Vm, 
the low-threshold Ca2+ current generates more bursts, and thus “compensates” for 
hyperpolarization. This remarkable property shows that both the intrinsic properties 
and synaptic noise are necessary to understand the transfer function of central neu-
rons in vivo.

�Stochastic Systems Analysis of Synaptic Noise

Another consequence of the simplicity of the point-conductance model is that it 
enables mathematical approaches. In particular, if one could obtain an analytic 
expression of the steady-state voltage distribution (such that shown in Fig. 8.2C1), 
fitting such an expression to experimental data could yield estimates of conduc-
tances and other parameters of background activity. This idea was formulated for 
the first time less than 10 years ago (Rudolph and Destexhe 2003a) and subse-
quently gave rise to a method called the “VmD method” (Rudolph et  al. 2004), 
which we outline here.

Fig. 8.6  Dynamic-clamp investigation of the transfer function of thalamic neurons in vitro.  
(a) Scheme of the dynamic-clamp experiment, in which stochastic conductances are injected in the 
neuron. (b) Effect of synaptic noise in thalamic neurons. The conductance noise interacts with 
burst generation to generate transfer response curves that are roughly independent on the Vm.  
(b) Modified from Wolfart et al. 2005
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The method to obtain an analytical expression for the voltage distribution is to 
consider the point-conductance model ((8.1), (8.2), and (8.3)) and evaluate the prob-
ability density of finding the system at a value V at time t, denoted ρ(V, t). The 
time evolution of this probability density is given by a Fokker–Planck equation 
(Risken 1984), and at steady-state, the probability density gives the voltage distribu-
tion ρ(V). So obtaining an analytic estimate of this voltage distribution requires finding 
the steady-state solution of the Fokker–Planck equation for the system ((8.1), (8.2), 
and (8.3)). However, this system is nonlinear due to the presence of conductances 
and their multiplicative effect on the membrane potential, so the corresponding 
Fokker–Planck equation is not solvable, and one has to rely on approximations. This 
problem was studied by several groups who proposed different approximations to 
this problem (Rudolph and Destexhe 2003a, 2005; Richardson 2004; Lindner and 
Longtin 2006; for a comparative study, see Rudolph and Destexhe 2006).

One of these expressions is invertible (Rudolph and Destexhe 2003a, 2005), 
which enables one to directly estimate the parameters (ge0, gi0, σe, σi) from experi-
mentally calculated Vm distributions. This constitutes the basis of the VmD method 
(Rudolph et al. 2004).

One main assumption behind this method is that the conductance variations are 
Gaussian-distributed, and thus this distribution can be described by the mean (ge0, 
gi0) and the standard deviations (σe, σi) for each conductance. We use the following 
expression for Vm fluctuations
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where V  is the average Vm and σV its standard deviation. This expression provides 
an excellent approximation of the Vm distributions obtained from models and exper-
iments (Rudolph et al. 2004), because the Vm distributions obtained experimentally 
show little asymmetry (for up-states and activated states; for specific examples, see 
Rudolph et al. 2004, 2005, 2007).

This Gaussian distribution can be inverted, which leads to expressions of the syn-
aptic noise parameters as a function of the Vm measurements, V  and σV. To extract 
the four parameters, means (ge0, gi0) and standard deviations (σe, σi), from the Vm 
requires to measure two Vm distributions obtained at two different constant levels of 
injected current. In this case, the Gaussian fit of the two distributions gives two mean 
Vm values, V1  and V2 , and two standard deviation values, σV1

 and σV2
. The system 

can be solved for four unknowns, leading to expressions of ge0, gi0, σe, σi from the 
values of V1 , V2 , σV1

, and σV2
 (for details, see Rudolph et al. 2004).

This method was tested using controlled conductance injection in neurons using 
the dynamic-clamp technique, as shown in Fig.  8.7. In this experiment, cortical 
neurons were recorded in slices displaying spontaneous “up-states” of activity. 
These up-states were analyzed by computing their Vm distribution, which was then 
used to evaluate the synaptic conductance parameters according to the VmD 
method. This estimate of conductances was then used to generate synthetic conduc-
tance noise traces, which were injected in the same neuron during silent states. 
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The match between the original Vm distribution with the one obtained synthetically 
demonstrated that the VmD method provides good conductance estimates.

The main advantage of the VmD method is that it provides a full characterization 
of the stochastic conductances. Like other “classic” methods of conductance esti-
mation (reviewed in Monier et al. 2008), the VmD method provides estimates of the 
total (mean) level of excitatory and inhibitory conductances (ge0, gi0). In addition, it 
also provides estimates of the conductance fluctuations, through the standard devia-
tion of conductances (σe, σi). This information is not readily obtained by other 

Fig. 8.7  VmD method and test using dynamic-clamp experiments. (a) VmD conductance estima-
tion and test of the estimates. Top left: spontaneous active network states (“up-states”) were 
recorded intracellularly in ferret visual cortex slices at two different injected current levels (Iext1, 
Iext2). Top right: the Vm distributions (gray) were computed from experimental data and used to 
estimate synaptic conductances using the VmD method (analytic expression of Vm distribution 
shown by solid lines). Bottom right: histogram of the mean and standard deviation of excitatory 
and inhibitory conductances obtained from the fitting procedure (gray). Bottom left: a dynamic-
clamp protocol was used to inject stochastic conductances consistent with these estimates, there-
fore recreating artificial up-states in the same neuron. (b) Example of natural and recreated 
up-states in the same cell as in (a). This procedure recreated Vm activity similar to the active state. 
Figure modified from Rudolph et al. 2004
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methods but is important because it provides estimates of the respective contribu-
tions of excitation and inhibition to the Vm fluctuations, and thus offers a quantita-
tive characterization of the “synaptic noise.”

Another advantage of the VmD method is that it does not require to record in 
voltage-clamp mode, which considerably simplifies the experimental protocols, as 
everything can be estimated from recordings of the Vm activity (current-clamp). 
However, action potentials must be removed, because the associated Na+ and K+ 
conductances can significantly bias the VmD estimates, so the Vm distributions must 
be estimated exclusively by accumulating periods of subthreshold activity in-
between spikes. Using such a procedure, the VmD method was applied to intracel-
lular recordings in vivo during anesthetized states (Rudolph et  al. 2005) and in 
awake cats (Rudolph et al. 2007). The latter provided the first quantitative conduc-
tance estimates in awake animals.

�Estimating the Optimal Conductance Patterns Leading  
to Spikes in “Noisy” States

The estimation of conductance fluctuations by the VmD method had an important 
consequence: it opened the route to experimentally characterize the influence of 
fluctuations on action potential generation. This was the object of a recent method 
to estimate the spike-triggered average (STA) conductance patterns from Vm record-
ings (Pospischil et  al. 2007). This “STA method” is also based on the point-
conductance model, and requires the prior knowledge of the parameters of mean 
excitatory and inhibitory conductances (ge0, gi0) and their variances (σe, σi), which 
can be provided by the VmD method. Using this knowledge, one can use a maxi-
mum likelihood estimator to compute the STA conductance patterns. Similar to the 
VmD method, the STA method was also tested using dynamic-clamp experiments 
and was shown to provide accurate estimates (Pospischil et al. 2007; Piwkowska 
et al. 2008).

Figure 8.8 illustrates STA estimates in a computational model reproducing two 
extreme conditions found experimentally. First, states where both excitatory and 
inhibitory conductances are of relatively low and comparable amplitude (“Equal 
conductance,” left panels in Fig.  8.8), similar to some measurements (Shu et  al. 
2003; Haider et al. 2006). Second, cases where the inhibitory conductance can be up 
to several-fold larger than the excitatory conductance (“Inhibition-dominated,” right 
panels in Fig.  8.8), which was observed in other measurements in anesthetized 
(Borg-Graham et al. 1998; Hirsch et al. 1998; Destexhe et al. 2003; Rudolph et al. 
2005) or awake preparations (Rudolph et al. 2007). These two extreme cases pro-
duce similar mean Vm and Vm fluctuations, but they predict different patterns of 
conductance STA, as shown in Fig. 8.8B. In the “Equal conductance” condition, the 
total conductance increases before the spike, and this increase is necessarily due to 
excitation. In “Inhibition-dominated” neurons, the opposite pattern is seen: there is 
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a decrease of total conductance prior to the spike, and this decrease necessarily 
comes from the decrease of inhibition before the spike.

To determine which conductance pattern is seen in cortical neurons in vivo, we 
applied the STA method to intracellular recordings in awake cats (Rudolph et al. 2007). 
From intracellular recordings of electrophysiologically identified RS cells, we 
evaluated the STA of excitatory and inhibitory conductances, as well as the total 
conductance preceding the spike for neurons recorded in awake (Fig. 8.9A, top) or 
naturally sleeping (Fig. 8.9A, bottom) cats (see details in Rudolph et al. 2007). In 
most cells tested (7 out of 10 cells in awake, 6 out of 6 cells in slow-wave sleep, and 
2 out of 2 cells in REM sleep), the total conductance drops before the spike, in 
yielded STAs qualitatively equivalent to that of the model when inhibition is domi-
nant (Fig. 8.8B, right panels).

Note that this pattern is opposite to what is expected from feed-forward inputs. 
A feed-forward drive would predict an increase of excitation closely associated to an 

Fig. 8.8  Two patterns of conductances associated to generating spikes in model neurons. Two 
different “states” are displayed, both leading to comparable Vm fluctuations. Left: “Equal conduc-
tance” pattern, where ge and gi are of comparable amplitude and statistics. Right: “Inhibition-
dominated” pattern, where ge0 is stronger than with equal conductances, but gi0 needs to be 
several-fold larger to maintain the Vm at a similar level. (a) ge, gi, and Vm activity. (b) Spike-
triggered conductance patterns associated to each state. Figure modified from Rudolph et al. 2007
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increase of inhibition, as seen in many instances of evoked responses during sensory 
processing (Borg-Graham et al. 1998; Monier et al. 2003; Wehr and Zador 2003; 
Wilent and Contreras 2005). There is no way to account for a concerted ge increase 
and gi drop without invoking recurrent activity, except if the inputs evoked a 
strong disinhibition, but this was so far not observed in conductance measurements. 
Indeed, this pattern with inhibition drop was found in self-generated irregular states 
in networks of integrate-and-fire neurons (Fig. 8.9B; see details in El Boustani et al. 
2007). This constitutes direct evidence that most spikes in neocortex in vivo are 
caused by recurrent (internal) activity, and not by evoked (external) inputs.

Fig. 8.9  Evidence for “Inhibition-dominated” states in wake and sleep states, as well as in net-
work models. (a) Spike-triggered average (STA) of the excitatory, inhibitory, and total conduc-
tances obtained from intracellular data of regular-spiking neurons in an awake (top) and sleeping 
(slow-wave sleep up-states, bottom) cat. The estimated conductance time courses showed in both 
cases a drop of the total conductance caused by a marked drop of inhibitory conductance within 
about 20 ms before the spike. (b) STA of conductances in a representative neuron in a network 
model displaying self-sustained asynchronous irregular states. A 10,000-cell network of integrate-
and-fire neurons with conductance-based synaptic interactions was used (see details in El Boustani 
et al. 2007). (a) Modified from Rudolph et al. 2007; (b) modified from El Boustani et al. 2007
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�Discussion

In this chapter, we have overviewed several recent developments of the exploration 
of the integrative properties of central neurons in the presence of “noise.” This 
theme has been popular in modeling studies, starting from seminal work (Barrett 
and Crill 1974; Barrett 1975; Bryant and Segundo 1976; Holmes and Woody 1989), 
which was followed by compartmental model studies (Bernander et al. 1991; Rapp 
et al. 1992; De Schutter and Bower 1994). In the last 2 decades, significant progress 
was made in several aspects of this problem.

The first aspect which we overviewed here is that background activity was mea-
sured quantitatively for the first time in “activated” network states in vivo (Paré 
et al. 1998). Based on these quantitative measurements, constrained models could 
be built (Destexhe and Paré 1999) to investigate integrative properties in realistic in 
vivo-like activity states. Consequences on dendritic integration, such as coincidence 
detection and enhanced temporal processing, as predicted (Bernander et al. 1991; 
Softky 1994), were confirmed (Rudolph and Destexhe 2003b). New consequences 
were also found, such as enhanced responsiveness (Hô and Destexhe 2000) and 
location-independent synaptic efficacy (Rudolph and Destexhe 2003b). The first of 
these predictions was confirmed by dynamic-clamp experiments (Destexhe et al. 
2001; Chance et al. 2002; Fellous et al. 2003; Mitchell and Silver 2003; Prescott and 
De Koninck 2003; Shu et al. 2003; Higgs et al. 2006).

We reviewed another aspect that tremendously progressed, namely the formula-
tion of simplified models that replicate the in vivo measurements, as well as impor-
tant properties such as the typical Lorentzian spectral structure of background 
activity. This point-conductance model (Destexhe et al. 2001) had many practical 
consequences, such as to enable dynamic-clamp. Indeed, many of the aforemen-
tioned dynamic-clamp studies used the point-conductance model to recreate in 
vivo-like activity states in neurons maintained in vitro. In addition to confirm model 
predictions, dynamic-clamp experiments also took these concepts further and inves-
tigated important properties such as gain modulation (Chance et al. 2002; Fellous 
et al. 2003; Mitchell and Silver 2003; Prescott and De Koninck 2003). An inverse 
form of gain modulation can also be observed (Fellous et  al. 2003) and may be 
explained by potassium conductances (Higgs et al. 2006). It was also found that the 
intrinsic properties of neurons combine with synaptic noise to yield unique respon-
siveness properties (Wolfart et al. 2005).

It must be noted that although the point-conductance model was the first model 
of fluctuating synaptic conductances injected in living neurons using dynamic-
clamp, other models are also possible. For example, models based on the convolu-
tion of Poisson processes with exponential synaptic waveforms (“shot noise”) have 
also been used (e.g., see Chance et  al. 2002; Prescott and De Koninck 2003). 
However, it can be shown that these models are in fact equivalent, as the point-
conductance model can be obtained as a limit case of a shot-noise process with 
exponential conductances (Destexhe and Rudolph 2004).

An important consequence, specific to the point-conductance model, is that its math-
ematical simplicity enabled formulation of a number of variants of the Fokker–Planck 
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equation for the membrane potential probability density (Rudolph and Destexhe 2003a, 
2005; Richardson 2004; Lindner and Longtin 2006), which led to a method to estimate 
synaptic conductances from Vm recordings (Rudolph et al. 2004). This “VmD method” 
decomposed the Vm fluctuations into excitatory and inhibitory contributions, estimating 
their mean and variance. This method was successfully tested in dynamic-clamp exper-
iments (Rudolph et al. 2004) as well as in voltage-clamp (Greenhill and Jones 2007; see 
also Ho et al. 2009). The most interesting aspect of the VmD method is that it provides 
estimates of the variance of conductances or, equivalently, conductance fluctuations. 
This type of estimate was made for cortical neurons during artificially activated brain 
states (Rudolph et al. 2005) or in awake animals (Rudolph et al. 2007). The latter pro-
vided the first quantitative characterization of synaptic conductances and their fluctua-
tions in aroused animals.

Finally, this approach was extended to estimate dynamic properties related to 
action potential initiation. If the information about synaptic conductances and their 
fluctuations is available (for example following VmD estimates), then one can use 
maximum likelihood methods to evaluate the spike-triggered conductance patterns. 
This information is very important to determine which optimal conductance varia-
tions determine the “output” of the neuron, which is a fundamental aspect of inte-
grative properties. We found that in awake and naturally sleeping animals, the 
majority of spikes are statistically related to disinhibition, which plays a permissive 
role. This type of conductance dynamics is opposite to the conductance patterns 
evoked by external input, but can be replicated by models displaying self-generated 
activity. This suggests that most spikes in awake animals are due to internal network 
activity. This argues for a dominant role of the network state in vivo and that inhibi-
tion is a key player. Both aspects should be investigated by future studies.

Thus, the last 20 years have seen a tremendous theoretical and experimental 
characterization of the synaptic “noise,” and its consequences on neurons and net-
works. Computational models have played—and still continue to play—a pivotal 
role in this exploration.
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