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    Abstract     Models of the small neuronal networks from invertebrates, especially 
rhythmically active central pattern generators, have not only been useful experimen-
tal tools for circuit analyses but also been instrumental in revealing general princi-
ples of neuronal network function. This ability of small network models to illuminate 
basic mechanisms attests to their heuristic power. In the 20 years since the fi rst CNS 
meeting, theoretical studies, now supported abundantly by experimental analyses in 
several different networks and species, have shown that functional network activity 
arises in animals and models even though parameters (e.g., the intrinsic membrane 
properties (maximal conductances) of the neurons and the strengths of the synaptic 
connections) show two to fi vefold animal-to-animal variability.  
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 In our own work, presented at CNS 2010, we reviewed experiments, using the 
leech heartbeat CPG, which explore the consequences of animal-to-animal variabil-
ity in synaptic strength for coordinated motor output (Fig.  7.1 ). Our experiments 
focused on a set of segmental heart motor neurons that all receive inhibitory synap-
tic input from the same four premotor interneurons (Norris et al.  2011 ) (Fig.  7.1A ). 
These four premotor inputs fi re in a phase progression and the motor neurons also 
fi re in a phase progression because of differences in synaptic strength profi les of the 
four inputs among segments (Fig.  7.1B ). Our experiments showed that relative syn-
aptic strengths of the different premotor inputs to each motor neuron vary across 
animals yet functional output is maintained. Moreover, animal-to- animal variations 
in strength of particular inputs do not correlate strongly with output phase. We mea-
sured the precise temporal pattern of the premotor inputs, the segmental synaptic 
strength profi les of their connections onto motor neurons, and the temporal pattern 
(phase progression) of those motor neurons all in single animals and compiled a 
database of 12 individual animals (Fig.  7.1 C1, 2). We analyzed input and output in 
this database and our results suggest that the number (four) of inputs to each motor 
neuron and the variability of the temporal pattern of input from the CPG across 
individuals weaken the infl uence of the strength of individual inputs so that correla-
tions are not easily detected. Additionally, the temporal pattern of the output, albeit 
in all cases consistent with heart function, varies as much across individuals as that 
of the input. It seems then that each animal arrives at a unique solution for how the 
network produces functional output. This work has been supplemented by dynamic 
clamp analysis of pharmacologically isolated heart motor neurons using synaptic 
input patterns derived from the 12 individual of our database that further support 
these conclusions (Wright and Calabrese  2011a ,  b ).

   All the observations summarized above have contributed to the growing consen-
sus that to understand a neuronal network through biophysical modeling, we must 
construct populations of models with multiple sets of parameter values correspond-
ing to parameters from different individuals (Prinz  2010 ; Marder  2011 ; Marder and 
Taylor  2011 ). Thus the computational effort needed to produce a state-of-the-art 
biophysical model is vastly increased. The situation is clearly still fl uid, and the 
reaction in the modeling community has ranged from a continued pursuance “ideal 
parameter sets” or sticking to averaged values for parameters to what Prinz ( 2010 ) 
calls ensemble modeling, where multiple functional instances are identifi ed and 
examined. We have not come to this situation smoothly but by fi ts and starts, and the 
purpose of this chapter is to highlight two papers that were presented at CNS 1993 
that seem now dated but indeed presage this understanding. 

    Looking Back 

 At CNS 1993 two papers were presented and book chapters written in “Computation 
in Neurons and Neural Systems” edited by Frank H. Eeckman were inspired by 
work on invertebrate CPGs (LoFaro et al.  1994 ; Skinner et al.  1994 ). These papers 
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  Fig. 7.1    ( A ) Bilateral circuit diagram from the heartbeat control system of medicinal leeches 
including all the identifi ed heart (HN) interneurons of the core CPG showing the inhibitory connec-
tions from the heart interneurons of the leech heartbeat CPG onto heart (HE) motor neurons in the 
fi rst 12 midbody segmental ganglia. The ipsilateral HN(3) and HN(4) front premotor interneurons 
and the ipsilateral HN(6) and HN(7) middle premotor interneurons provide input to heart motor 
neurons (HE(3)–HE(12)) (Norris et al.  2007a ). The  large fi lled circles  are cell bodies and associ-
ated input processes.  Lines  indicate cell processes and  small fi lled circles  indicate inhibitory chem-
ical synapses. Connections among the interneurons of the CPG are not indicated. Standard colors 
for the heart interneurons are used in the rest of the fi gure. ( B ) There are two coordination modes 
(peristaltic and synchronous) of the heart motor neurons and heart interneurons one on either body 
side that switch sides regularly (Norris et al.  2006 ,  2007b ). Simultaneous extracellular recordings 
are shown of ipsilateral HN(3), HN(4), HN(6), and HN(7) premotor interneurons (inputs) (stan-
dard colors) and HE(8) and HE(12) motor neurons (outputs) ( black ) in peristaltic (p) coordination 
mode—similar recordings, not shown, were made in the synchronous (s) coordination mode. ( C1 , 
 2 ) Complete analysis of input and output temporal patterns and synaptic strength profi les for two 
different animals from our sample of 12. Summary phase diagram (temporal patterns of inputs and 
outputs) of the premotor interneurons (standard colors) and the HE(8) and HE(12) motor neurons 
in both the peristaltic (boxes outlined in  pink ) and synchronous (boxes outlined in  light blue ) coor-
dination modes for two different preparations. Phase diagrams were determined from recordings 
like in ( B ). The segmental synaptic strength profi les of the inputs were determined in the same 
preparations by voltage clamping each of the motor neurons (HE(8) and HE(12)) and performing 
spike-triggered averaging of IPSCs, and are shown to the  right  of each phase diagram. Standard 
colors are used. Animals are specifi ed by the day on which they were recorded; letters accompany 
the designation of day, if more than one animal was recorded on that day. Note that both the tem-
poral patterns (both input and output) and synaptic strength profi les vary between the two animals 
as in the rest of the sample of 12 animals. Adapted from Norris et al. ( 2011 )          
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refl ect the time in which they were written yet they point to the present day. They 
illustrate the limits of our technological ability to model small neuronal networks 
and the naiveté of our theoretical understanding of what a realistic neuronal network 
model was. They also illustrate how the then novel technique of dynamic current 
clamping would be brought to bear in future studies of small networks. Using these 
papers as a starting point, I will discuss how my own thinking and that of the fi eld 
has evolved since then. In both these papers, parameter variation in reduced models 
of half-center oscillators (oscillatory networks with reciprocal inhibition between 
two neurons (or groups of neurons)) is shown to lead to interesting changes in net-
work activity. 

 In the fi rst case, a two-cell network was modeled with one cell an inherent burster 
and the other not, the presence of  I   h   is shown to be critical for the non-bursting neu-
ron to assume an integer bursting ratio smaller than 1:1 as the level of injected cur-
rent in the non-bursting neuron is adjusted. The theoretical analysis was motivated 
and augmented by electrophysiological experiments in the crustacean stomatogas-
tric nervous system (STN) focusing on the well-characterized pyloric CPG. The LP 
neuron in the isolated STN is capable of plateau production: it is not an autonomous 
bursting neuron but it is engaged in reciprocal inhibitory connections to the bursting 
PD neurons. Normally these cells produce alternating bursts but with appropriate 
hyperpolarizing current injection into the LP neurons they assume a 6:1 (−3.6 nA) 
or 12:1 (−5.1 nA) burst ratio. The theoretical analysis modeled each neuron using 
the Morris–Lecar formalism (Morris and Lecar  1981 ) tuned so that the PD neuron 
was spontaneously oscillatory (a burster) whereas the LP neuron was silent in the 
absence of input from the PD but plateau forming. The LP neuron was additionally 
given the  I   h   current. A two-cell network was then constructed with reciprocal inhibi-
tory synapses, thus forming a half-center oscillator, with one cell (PD) an inherent 
burster and the other (LP) not. The presence of  I   h   in the non-bursting LP neuron was 
shown to be critical for it to assume an integer bursting ratio smaller than 1:1 as the 
level of injected current in the non-bursting neuron was adjusted. 

 This study was naïve in that simplifi ed neuron models were used and only one 
parameter was considered in determining how burst ratios less than 1:1 could be 
achieved—considering the desktop computational ability available at the time it is 
hardly surprising that simplifi ed neuron models were used and other parameters 
were not also analyzed. The study was forward-looking in that it was clearly tied to 
an interesting experimentally observed phenomenon—frequency de- 
multiplication—and implicated a specifi c ionic current as producing the phenome-
non. The real implications of this tenuous step were seen in strong experimental, 
modeling, and hybrid analysis with dynamic clamp that followed and which led to 
fundamental insights into how fast and slow rhythms in neuronal networks can 
interact not only in the crustacean STN (Bartos and Nusbaum  1997 ; Bartos et al. 
 1999 ) but also in general (Marder et al.  1998 ). 

 In the second case, again a half-center oscillator was formed between two oscil-
latory Morris–Lecar model neurons (Morris and Lecar  1981 )—and the mechanisms 
promoting the transitions during alternate “bursting” were explored. The most 
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interesting aspect of the analysis was a determination of the effect of synaptic 
threshold on the period of the half-center oscillator’s activity. The main fi nding was 
that there was a middle range where period was prolonged and relatively insensitive 
to synaptic threshold but fell of sharply on either side of this range. This theoretic 
analysis was given some experimental backing by forming a half-center oscillator 
between pharmacologically isolated leech heart interneurons using artifi cial inhibi-
tory synapses implemented with dynamic clamp. The hybrid half-center oscillators 
again showed a period maximum at a middle range of synaptic threshold with 
period falling off on either side. 

 Like the previous study, this one was naïve in that simplifi ed neuron models were 
used and only one parameter was considered in determining how burst period was 
controlled in a half-center oscillator. The study was very forward-looking in that it 
introduces the profound interaction of theory and experiment that is possible when 
hybrid systems are created with dynamic clamp. This analysis planted the seed for 
more sophisticated and systematic hybrid systems analysis of half-center oscillators 
that have defi ned the role of currents like  I   h   and low-threshold Ca current in produc-
ing half-center oscillations (Sorensen et al.  2004 ; Olypher et al.  2006 ). Other studies 
have used modeling and dynamic clamp and similar techniques to more fully 
explore the synaptic dynamics of mutually inhibitory neurons in controlling net-
work period (Mamiya and Nadim  2004 ; Nadim et al.  2011 ). Yet more interesting 
and germane to the current interest in how neuronal and synaptic variability affects 
circuit performance are more recent hybrid system analyses of half-center oscilla-
tors that employ ensemble modeling and database techniques to systematically 
explore the parameter space of the half-center oscillator and make an attempt to 
make sense of animal-to-animal variability in neuronal properties that confront all 
experimentalists (Grashow et al.  2009 ,  2010 ; Brookings et al.  2012 ).  

    Concluding Thoughts 

 Models of neuronal networks essentially consist of differential equations that 
describe the dynamics of state variables, e.g., membrane potential ( V  m ) and the gat-
ing variables of voltage-gated conductances and the variables controlling activation 
of synaptic conductances. Embedded in these equations are a number of parame-
ters, including maximal conductances, half-activation voltages and time constants 
of channel gates, and parameters controlling synaptic dynamics. Some of these 
parameters are considered free, or variable between instances, while the remaining 
parameters are fi xed. For example, in the pioneering work of Prinz et al. ( 2003 , 
 2004 ), only maximal conductances were considered free parameters. Indeed maximal 
conductances have been shown to be quite variable among animals (Bucher et al. 
 2005 ; Schulz et al.  2007 ; Goaillard et al.  2009 ; Tobin et al.  2009 ; Norris et al.  2011 ; 
Roffman et al.  2012 ). But it is clear that the other parameters mentioned will also 
show animal-to-animal variability though these have not been as widely studied 
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(Marder et al.  2007 ; Marder  2011 ). Even with powerful computing resources, it is 
not possible or desirable to consider all instances of a model. Making a model then 
involves deciding on a neuronal structure (single or multiple compartments), net-
work connectivity, descriptive equations (often derivatives of the Hodgkin–Huxley 
formalism), which parameters are free, and the range over which each may vary. 
These decisions will all be driven by the data available and by the investigators’ intu-
ition for which parameters are likely to be signifi cant in controlling neuronal activity. 
In short, the ability to consider multiple instances of a model does not free one from 
making a good model, and making a good model requires detailed knowledge of the 
system and judgment about what details can be ignored and parameters fi xed. 

 There are many pertinent issues which models of small networks can still help 
clarify many interesting issues. Although some studies have suggested that variabil-
ity in cellular intrinsic properties becomes less important when neurons are embed-
ded in networks (Grashow et al.  2010 ; Brookings et al.  2012 ), others suggest that the 
interaction network topology and neuronal dynamics are critical (Gaiteri and Rubin 
 2011 ). Moreover, we know that networks are subject to frequent environmental per-
turbations and that neuromodulation plays an important role in pattern generation in 
many networks. Nevertheless, the question of how networks can produce functional 
output despite perturbations and modulatable parameters and yet not crash has barely 
been addressed especially at the experimental level (Grashow et al.  2009 ; Marder 
and Tang  2010 ; Tang et al.  2010 ). The ensemble modeling approach to address such 
questions is likely to expand as we move forward, despite the caveat expressed 
above, especially given the ever-increasing computational capabilities available. The 
analysis experimental and computational of small neuronal networks like inverte-
brate CPGs is likely to lead the way in this endeavor for several years to come.     
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