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Abstract  Reproducible experiments are the cornerstone of science: only observa-
tions that can be independently confirmed enter the body of scientific knowledge. 
Computational science should excel in reproducibility, as simulations on digital 
computers avoid many of the small variations that are beyond the control of the 
experimental biologist or physicist. However, in reality, computational science has 
its own challenges for reproducibility: many computational scientists find it difficult 
to reproduce results published in the literature, and many authors have met prob-
lems replicating even the figures in their own papers. We present a distinction 
between different levels of replicability and reproducibility of findings in computa-
tional neuroscience. We also demonstrate that simulations of neural models can be 
highly sensitive to numerical details, and conclude that often it is futile to expect 
exact replicability of simulation results across simulator software packages. Thus, 
the computational neuroscience community needs to discuss how to define success-
ful reproduction of simulation studies. Any investigation of failures to reproduce 
published results will benefit significantly from the ability to track the provenance 
of the original results. We present tools and best practices developed over the past 2 
decades that facilitate provenance tracking and model sharing.
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�Introduction

Reproducible experimental results have been the cornerstone of science since the 
time of Galileo (Hund 1996, p. 103): Alice’s exciting finding will not become part 
of established scientific knowledge unless Bob and Charlie can reproduce her results 
independently. A related concept is provenance—the ability to track a given scien-
tific result, such as a figure in an article, back through all analysis steps to the origi-
nal raw data and the experimental protocol used to obtain it.

The quest for reproducibility raises the question of what it means to reproduce a 
result independently. In the experimental sciences, data will contain measurement 
error. Proper evaluation and judgement of such errors requires a sufficient under-
standing of the processes giving rise to fluctuations in measurements, as well as of 
the measurement process itself. An interesting historical example is the controversy 
surrounding Millikan’s oil drop experiments for the measurement of the elementary 
charge, which led Schrödinger to investigate the first-passage time problem in sto-
chastic processes (Schrödinger 1915). As experimental error can never be elimi-
nated entirely, disciplines depending on quantitative reproducibility of results, such 
as analytical chemistry, have developed elaborate schemes for ascertaining the level 
of reproducibility that can be obtained and for detecting deviations (Funk et  al. 
2006). Such schemes include round robin tests in which one out of a group of labo-
ratories prepares a test sample, which all others in the group then analyze. Results 
are compared across the group, and these tests are repeated regularly, with laborato-
ries taking turns at preparing the test sample.

In computational, simulation-based science, the reproduction of previous experi-
ments and the establishment of the provenance of results should be easy, given that 
computers are deterministic and do not suffer from the problems of inter-subject 
and trial-to-trial variability of biological experiments. However, in reality, computa-
tional science has its own challenges for reproducibility.

As early as 1992, Claerbout and Karrenbach addressed the necessity of prove-
nance in computational science and suggested the use of electronic documentation 
tools as part of the scientific workflow. Some of the first computational tools that 
included a complete documentation of provenance were developed in the signal 
processing community (Donoho et al. 2009; Vandewalle et al. 2009) and other fields 
followed (Quirk 2005; Mesirov 2010). Generally, these important efforts are dis-
cussed as examples of reproducible research. However, following Drummond 
(2009), we find it important to distinguish between the reproduction of an experi-
ment by an independent researcher and the replication of an experiment using the 
same code perhaps some months or years later.

Independent reproducibility is the gold standard of science; however, replicabil-
ity is also important and provides the means to determine whether the failure of 
others to reproduce a result is due to errors in the original code. Replication ought 
to be simple—it is certainly easier than independent reproduction—but in practice 
replicability is often not trivial to achieve and is not without controversy. Drummond 
(2009) has argued that the pursuit of replicability detracts from the promotion of 
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independent reproducibility, since the two may be confused and due to the burden 
that ensuring replicability places on the researcher. Indeed, when the journal 
Biostatistics recently introduced a scheme for certifying papers as replicable after a 
review of code and data by the associate editor for reproducibility (Peng 2009), this 
led to a lively debate about the relative importance of replicability of data process-
ing steps in the context of complex scientific projects (Keiding 2010a, b; Breslow 
2010; Cox and Donnelly 2010; DeAngelis and Fontanarosa 2010; Donoho 2010; 
Goodman 2010b; Groves 2010; Peng 2010). Generally, the risk of confusing repli-
cability with reproducibility is an argument for education and discussion, not for 
neglecting replicability, and the extra workload of carefully tracking full prove-
nance information may be alleviated or eliminated by appropriate tools. Discussions 
of reproducibility generally include both of these concepts, and here, we find it 
useful to make further distinctions as follows.

Internal replicability: The original author or someone in their group can re-create the 
results in a publication, essentially by rerunning the simulation software. For com-
plete replicability within a group by someone other than the original author, espe-
cially if simulations are performed months or years later, the author must use proper 
bookkeeping of simulation details using version control and electronic lab journals.

External replicability: A reader is able to re-create the results of a publication using 
the same tools as the original author. As with internal replicability, all implicit 
knowledge about the simulation details must be entered into a permanent record and 
shared by the author. This approach also relies on code sharing, and readers should 
be aware that external replicability may be sensitive to the use of different hardware, 
operating systems, compilers, and libraries.

Cross-replicability: The use of “cross” here refers to simulating the same model 
with different software. This may be achieved by re-implementing a model using a 
different simulation platform or programming language based on the original code, 
or by executing a model described in a simulator-independent format on different 
simulation platforms. Simulator-independent formats can be divided into declara-
tive and procedural approaches. Assuming that all simulators are free of bugs, this 
would expose the dependence of simulation results on simulator details, but leads to 
questions about how to compare results.

Reproducibility: Bob reads Alice’s paper, takes note of all model properties, and 
then implements the model himself using a simulator of his choice. He does not 
download Alice’s scripts. Bob’s implementation thus constitutes an independent 
implementation of the scientific ideas in Alice’s paper based on a textual descrip-
tion. The boundary line between cross-replicability and reproducibility is not always 
clear. In particular, a declarative description of a model is a structured, formalized 
version of what should appear in a publication, so an implementation by Charlie 
based on a declarative format might be considered to be just as independent as that 
by Bob based on reading the article.

In our terminology, the reproducible research approach propagated by Donoho 
(2010) ensures internal replicability and to quite a degree external replicability as 
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well. As de Leeuw (2001) has pointed out, though, Donoho’s specific approach 
depends on the commercial Matlab software together with a number of toolboxes, 
and thus does not aim to ensure cross-replicability and independent reproducibility 
as defined above. So how have approaches for replicability and reproducibility 
evolved in the field of computational neuroscience? As early as 1992, one group of 
simulation software developers realized the need for computational benchmarks as 
a first step toward cross-replicability (Bhalla et  al. 1992); however, these bench-
marks were not broadly adopted by the simulator development community. There 
were also early efforts to encourage simulator-independent model descriptions for 
complex neural models. Building on general-purpose structures proposed by 
Gardner et  al. (2001), the first declarative description tools for models were 
described in 2001 by Goddard et al. Around the same time, the NMODL language 
developed by Michael Hines for describing biophysical mechanisms in the 
NEURON simulator was extended by Hines and Upinder Bhalla to work with 
GENESIS (GMODL; Wilson et al. 1989), making it perhaps the first programmatic 
simulator-independent model description language in computational neuroscience 
(Hines and Carnevale 2000). More recently, the activities of organizations, such as 
the Organization for Computational Neuroscience (http://www.cnsorg.org) and the 
International Neuroinformatics Coordinating Facility (http://www.incf.org), 
focused journals such as Neuroinformatics and Frontiers in Neuroinformatics and 
dedicated workshops (Cannon et al. 2007; Djurfeldt and Lansner 2007) have pro-
vided fora for an ongoing discussion of the methodological issues our field is facing 
in developing an infrastructure for replicability and reproducibility. The first com-
prehensive review of neuronal network simulation software (Brette et al. 2007) pro-
vides an example of the gains of this process.

However, there are still many improvements needed in support of reproducibility. 
Nordlie et al. (2009) painted a rather bleak picture of the quality of research report-
ing in our field. Currently, there are no established best practices for the description 
of models, especially neuronal network models, in scientific publications, and few 
papers provide all necessary information to successfully reproduce the simulation 
results shown. Replicability suffers from the complexity of our code and our com-
puting environments, and the difficulty of capturing every essential piece of infor-
mation about a computational experiment. These difficulties will become even more 
important to address as the ambition of computational neuroscience and the scrutiny 
placed upon science in general grow (Ioannidis 2005; Lehrer 2010).

In what follows, we will discuss further details of replicability and reproducibil-
ity in the context of computational neuroscience. In section “The Limits of 
Reproducibility,” we examine the limits of reproducibility in the computational sci-
ences with examples from computational neuroscience. Section “Practical 
Approaches to Replicability” deals with practical approaches to replicability such 
as code sharing, tracking the details of simulation experiments, and programmatic 
or procedural descriptions of complex neural models that aid in cross-replicability. 
In section “Structured, Declarative Descriptions of Models and Simulations,” we 
introduce a number of efforts to formalize declarative descriptions of models and 
simulations and the software infrastructure to support this. Finally, in section 
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“Improving Research Reporting,” we discuss more general efforts to improve 
research reporting that go beyond software development.

�The Limits of Reproducibility

Independent reproduction of experimental results will necessarily entail deviations 
from the original experiment, as not all conditions can be fully controlled. Whether 
a result is considered to have been reproduced successfully thus requires careful 
scientific judgement, differentiating between core claims and mere detail in the 
original report. However, solving the same equation twice yields precisely the same 
result from a mathematical point of view. Consequently, it might appear that any 
computational study which is described in sufficient detail should be exactly repro-
ducible: by solving the equations in Alice’s paper using suitable software, Bob 
should be able to obtain figures identical to those in the paper. This implies that 
Alice’s results are also perfectly replicable. It is obviously a prerequisite for such 
exact reproducibility that results can be replicated internally, externally, and across 
suitable software applications. In this section, we discuss a number of obstacles to 
external and cross-replicability of computational experiments which indicate that it 
is futile to expect perfect reproducibility of computational results. Rather, computa-
tional scientists need to apply learned judgement to the same degree as experimen-
talists in evaluating successful reproduction.

Faulty computer hardware is the principal—though not the most frequent—
obstacle: digital computers are electronic devices and as such are subject to failure, 
which often may go undetected. For example, memory may be corrupted by radia-
tion effects (Heijmen 2011), and as we are rapidly approaching whole-brain simula-
tions on peta-scale and soon exa-scale computers, component failure will become a 
routine issue. Consider a computer with one million cores. Even if each core has a 
mean time between failure of a million hours (roughly 115 years), one would expect 
on average one core failure per hour of operation. It seems questionable whether all 
such errors will be detected reliably—a certain amount of undetected data corrup-
tion appears unavoidable.

Even if hardware performs flawlessly, computer simulations are not necessarily 
deterministic. In parallel simulations, performance of the individual parallel pro-
cesses will generally depend on other activity on the computer, so that the order in 
which processes reach synchronization points is unpredictable. This type of unpre-
dictability should not affect the results of correct programs, but subtle mistakes may 
introduce nondeterministic errors that are hard to detect. Even if we limit ourselves 
to serial programs running on perfect hardware, a number of pitfalls await those 
trying to reproduce neuronal network modeling results from the literature, which 
fall into the following categories:

	1	 Insufficient, ambiguous, or inaccurate descriptions of the model in the original 
publication.
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	2	 Models that are mathematically well-defined, but numerically sensitive to imple-
mentation details.

	3	 Model specifications that are unambiguous and complete from a neuroscience 
point of view, but underspecified from a computational point of view.

	4	 Dependencies on the computing environment.

First, consider the first and last points. An insufficient model specification in a 
publication can be a major stumbling block when trying to replicate a model. Thus, 
ambiguous model descriptions provide a significant impediment to science that can 
only be avoided if authors, referees, and publishers adhere to strict standards for 
model specification (Nordlie et al. 2009) or rigorous, resource-intensive curation 
efforts (Lloyd et  al. 2008); we will return to this point in section “Improving 
Research Reporting.” Dependencies on the computing environment, such as the ver-
sions of compilers and external libraries used, will be discussed in section “Is Code 
Sharing Enough to Ensure Replicability?” Here, we consider model descriptions 
that are mathematically ambiguous or sensitive to the implementation details before 
discussing the consequences for computational neuroscience in section “Defining 
Successful Reproduction.”

�Ambiguous Model Numerics

The model equation for the subthreshold membrane potential V of a leaky integrate-
and-fire neuron with constant input is a simple, linear first-order ordinary differen-
tial equation (Lapicque 1907)

	

dV

dt
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(4.1)

Here, membrane potential V (in mV) is defined relative to the resting potential of 
the neuron, τ is the membrane time constant (in ms), C the membrane capacitance 
(in pF), and I(t) the input current to the neuron (in pA). As far as differential equa-
tions go, this equation is about as simple as possible, and solutions are well-defined 
and well-behaved. For the initial condition V(t = 0) = V0, (4.1) has the analytical 
solution
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Abbreviating Vk = V(kh) and a = IEτ/C gives the following iteration rule for time 
step h:
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This updating rule is mathematically exact, and similar rules can be found for 
any system of ordinary linear differential equations (Rotter and Diesmann 1999).

Now consider the following two implementations of (4.3)1:

	 V k V k a V k h[ ] [ ] ( [ ])* exp ( / )+ = - - -1 1m t 	 (4.4)

	 V k V k h a h[ ] [ ]* exp( / ) * exp ( / ).+ = − − −1 1t tm 	 (4.5)

Both implementations are mathematically equivalent, but differ significantly 
numerically, as can be seen by computing the evolution of the membrane potential 
for T = 1 ms using different step sizes, starting from V(t = 0) = 0 mV. We obtain the 
reference solution V* = V(T) directly from (4.2) as a *expm1(T/τ) with the following 
parameter values: IE = 1,000 pA, C = 250 pF, τ = 10 ms, so that a = 40 mV. We then 
compute V(T) using update steps from h = 2−1 ms down to h = 2−14 ms using both 
implementations and compute the difference from the reference solution; using step 
sizes that are powers of 2 avoids any unnecessary round-off error (Morrison et al. 
2007). Results obtained with the update rule provided by (4.5) are several orders of 
magnitude larger than those obtained with the rule in (4.4), as shown in Fig. 4.1. 
Data were obtained with a custom C++ program compiled with the g++ compiler 
version 4.5.2 and default compiler settings on a Apple Mac Book Pro with an Intel 

Fig. 4.1  Error of the membrane potential V(T) for T = 1 ms computed with two different imple-
mentations of (4.3) using step sizes from h = 2–1 to 2–14 ms, corresponding to 2 to 16384 steps. 
Circles show errors for the implementation given in (4.4), squares for the implementation given in 
(4.5); see text for details

1 expm1(x) is a library function computing exp(x)-1 with high precision for small x.
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i5 CPU under Mac OSX 10.6.6. Source code for this and the other examples in this 
chapter is available from http://www.nest-initiative.org.

This result implies that even a model containing only equations as simple as (4.1) 
is not cross-replicable even if the (exact) method of iteration of (4.3) is specified as 
part of the model definition. Precise results depend on which of several mathemati-
cally equivalent numerical implementations is used. Clearly, different simulators 
should be allowed to implement exact solvers for (4.1) in different ways, and even if 
the solver of (4.3) were prescribed by the model, its implementation should not be. 
Indeed, when using modern simulators based on automatic code generation (Goodman 
2010a), the computational scientist may not have any control over the precise imple-
mentation. Thus, even the simplest models of neural dynamics are numerically 
ambiguous, and it would be futile to expect exact model replicability across different 
simulation software even if detailed model specifications are provided.

One may raise the question, though, whether the errors illustrated in Fig. 4.1 are 
so minuscule that they may safely be ignored. Generally, the answer is no: many 
neuronal network models are exquisitely sensitive to extremely small errors, as 
illustrated in Fig. 4.2. This figure shows results from two simulations of 1,500 ms of 
activity in a balanced network of 1,250 neurons (80 % excitatory) based on Brunel 

Fig. 4.2  Raster plots of spike trains of 50 excitatory neurons in a balanced network of 1,250 neu-
rons exhibiting self-sustained irregular activity after Poisson stimulation during the first 50 ms and 
no external input thereafter. The network is based on Brunel (2000), but with significantly stronger 
synapses (Gewaltig and Koerner 2008). The first simulation (black raster) runs for 1,500 ms. The 
simulation is then repeated with identical initial conditions (gray raster), but after 200 ms, the 
membrane potential of a single neuron (black circle) is increased by 10–13  mV. From roughly 
400 ms onwards, spike trains in both simulations differ significantly. Simulations were performed 
with NEST 2.0.0-RC2 using the iaf_psc_alpha_canon model neuron with precise spike timing 
(Morrison et al. 2007)
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(2000), but with significantly stronger synapses (Gewaltig and Koerner 2008); see 
Fig. 4.4 for a summary overview of the model. In the second simulation run, the 
membrane potential of a single neuron is changed by 10−13 mV after 200 ms. Soon 
after, the spike activity in the two simulation runs has diverged entirely. In practice, 
this means that a scientist trying to replicate a model may obtain very different spike 
train results than those in the original publication. This holds both for cross-
replication using different simulator software and for external replication in a differ-
ent computational environment; the latter may even affect internal replication, cf. 
section “Is Code Sharing Enough to Ensure Replicability?” Gleeson et al. (2010) 
recently provided an example of the difficulties of cross-replication. They defined a 
network of 56 multicompartment neurons with 8,100 synapses using the descriptive 
NeuroML language and then simulated the model using the NEURON (Hines 1989; 
Hines and Carnevale 1997; Carnevale and Hines 2006), GENESIS (Bower and 
Beeman 1997), and MOOSE (http://moose.ncbs.res.in) software packages. These 
simulators generated different numbers of spikes in spite of the use of a very small 
time step (0.001 ms). Gleeson et al. concluded that “[t]hese results show that the 
way models are implemented on different simulators can have a significant impact 
on their behavior.”

�Computationally Underspecified Models

In the previous section we saw that even if the mathematics of a model are fully 
specified, numerical differences between implementations can lead to deviating 
model behavior. We shall now turn to models which may appear to be fully speci-
fied, but in fact leave important aspects to the simulation software. We refer to these 
models as computationally underspecified, as their specifications can be considered 
complete from a neuroscience point of view. We shall consider two cases in particu-
lar, spike timing and connection generation.

Most publications based on integrate-and-fire neurons contain a statement such 
as the following: “A spike is recorded when the membrane potential crosses the 
threshold, then the potential is reset to the reset potential.” In many publications, 
though, it is not further specified at precisely which time the spike is recorded and 
the potential reset. As many network simulations are simulated on a fixed time grid, 
one can only assume that both events happen at the end of the time step during 
which the membrane potential crossed the threshold. Hansel et al. (1998) were the 
first to point out that tying membrane potential resets to a grid introduces a spurious 
regularity into network simulations that may, for example, lead to synchronization 
of firing activity. This observation spurred a quest for efficient methods for simulat-
ing networks with precisely timed spikes and resets (Hansel et al. 1998; Shelley and 
Tao 2001; Brette 2006, 2007; Morrison et  al. 2007; Hanuschkin et  al. 2010; 
D’Haene 2010).

Let us now consider how connections within neuronal network models are speci-
fied. Nordlie et al. (2009) demonstrated that connectivity information is often poorly 
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defined in the literature, but even seemingly complete connectivity descriptions, 
such as given by Brunel (2000), will not ensure replicability across simulators. 
Specifically, Brunel states that each excitatory neuron receives input from 10 % of 
the excitatory neurons, chosen at random from a uniform distribution. Although 
different simulators may establish the correct number of connections using uni-
formly chosen sources, generally no two simulators will create the same network 
since the process of randomly drawing sources is implemented differently across 
simulators. Even if one prescribes which random number generators and seed 
values to use, little is gained unless the simulators use the random numbers in 
identical ways.

The only way to ensure that different software will create identical networks is to 
specify how the simulator iterates across nodes while creating connections. For 
example, the PyNN package (Davison et al. 2009) ensures that identical networks 
are generated in different simulators by iterating across nodes within PyNN and issu-
ing explicit connection commands to the simulators, which will in general be slower 
than allowing the simulators to use their own internal routines. One might argue that 
such detail is beyond the scope of models created to explain brain function—after 
all, there is no biological counterpart to the arbitrary neuron enumeration schemes 
found in simulators, which naturally leads to a discussion of how one should define 
successful reproduction of modeling results.

�Defining Successful Reproduction

Using proper documentation tools (see section “Practical Approaches to 
Replicability”), we can in principle achieve internal and external replicability in the 
short and long term. But this guarantees no more than that the same script on the 
same simulator generates the same results. As we have seen, in many cases we can-
not take a simulation from one simulator to another and hope to obtain identical 
spike trains or voltage traces. Thus, there is no easy way to test the correctness of 
our simulations.

For many physical systems, a scientist can rely on a conservation law to provide 
checks and balances in simulation studies. As an example, Fig. 4.3 shows the move-
ments of three point masses according to Newton’s gravitational law where energy 
should be conserved in the system. Integrating the equations of motion using a for-
ward Euler method yields incorrect results; when simulating with forward Euler, the 
total energy jumps to a much higher level when two planets pass close by each 
other. Fortunately, it is straightforward to compute the energy of the three-body 
system at any time, and a simulation using the LSODA algorithm (Petzold 1983) 
shows only a brief glitch in energy, demonstrating a better choice of numerical 
method. In the same manner, Ferrenberg et al. (1992) discovered important weak-
nesses in random number generators that were thought to be reliable when they 
observed implausible values for the specific heat of crystals in simulation experi-
ments. The specific heat, a macroscopic quantity, was independently known from 
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thermodynamical theory, thus providing a method for testing the simulations. 
Unfortunately, there are no known macroscopic laws governing neuronal dynamics 
(e.g., for the number of spikes in a network, for the resonance frequencies).

Twenty years ago Grebogi et al. (1990) posed a question for simulations of cha-
otic systems: “For a physical system which exhibits chaos, in what sense does a 
numerical study reflect the true dynamics of the actual system?” An interesting 
point in this respect is that the model which is based most closely on the physical 
system may not yield the best solution. Early models of atmospheric circulations 
were beset with numerical instabilities, severely limiting the time horizon of simu-
lations. This changed only when Arakawa introduced some nonphysical aspects in 
atmospheric models which ensured long-term stability and produced results in 
keeping with meteorological observations (Küppers and Lenhard 2005). Similarly, 
the computational neuroscience community should embark on a careful discussion 
of criteria for evaluating the results of neuronal network simulations. Perhaps the 

Fig. 4.3  Numerical solution of the Pythagorean planar three-body problem (Gruntz and Waldvogel 
2004): Three point masses of 3 kg (light gray), 4 kg (dark gray), and 5 kg (black) are placed at rest 
at the locations marked by circles and move under the influence of their mutual gravitational attrac-
tion with gravitational constant G = 1 m3 kg−1 s−2. Top: Solid lines show trajectories for the three 
bodies up to T = 5 s obtained with the LSODA algorithm (Petzold 1983) provided by the SciPy 
Python package (Jones et al. 2001), using a step size of 0.005 s; these agree with the trajectories 
depicted in Gruntz and Waldvogel (2004). Dashed lines show trajectories obtained using a custom 
forward Euler algorithm using the same step size. The trajectories coincide initially but diverge 
entirely as the black and dark gray planets pass each other closely. Bottom: Total energy for the 
solutions obtained using LSODA (solid) and forward Euler (dashed). While total energy remains 
constant in the LSODA solution except for short glitches around near encounters, the forward 
Euler solution “creates” a large amount of energy at the first close encounter, when trajectories 
begin to diverge
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same criteria for evaluating whether a model network provides a good model of 
neural activity should be used to compare the results of two different neuronal net-
work simulations. Regardless, computational scientists must be able to distinguish 
between numerical or programming errors and differences in simulator 
implementations.

�Practical Approaches to Replicability

As noted in the “Introduction,” there are some intermediate steps between pure 
internal replication of a result (the original author rerunning the original code) and 
fully independent reproduction, namely external replication (someone else rerun-
ning the original code) and cross-replication (running cross-platform code on a dif-
ferent simulation platform or re-implementing a model with knowledge of the 
original code). Both of these intermediate steps rely on sharing code, the simplest 
form of model sharing (Morse 2007). Code sharing allows other researchers to 
rerun simulations and easily extend models, facilitating a modular, incremental 
approach to computational science.

�Approaches to Code Sharing

There are a number of possible methods for sharing code: by e-mail, on request; as 
supplementary material on a publisher’s web-site; on a personal web-site; on a pub-
lic source-code repository such as SourceForge (http://sourceforge.net), GitHub 
(https://github.com), BitBucket (https://bitbucket.org), or Launchpad (https://
launchpad.net); or in a curated database such as ModelDB (Peterson et al. 1996; 
Davison et al. 2002; Migliore et al. 2003; Hines et al. 2004, http://senselab.med.
yale.edu/modeldb), the Visiome platform (Usui 2003, http://visiome.neuroinf.jp), 
the BioModels database (Le Novere et al. 2006, http://www.biomodels.net), or the 
CellML Model Repository (http://models.cellml.org).

Sharing on request is the simplest option for a model author at the time of publi-
cation, but does not provide a public reference to which any extensions or derived 
models can be compared, and has the risk that contacting an author may not be 
straightforward if his/her e-mail address changes, he/she leaves science, etc. This 
option can also lead to future problems for the author, if the code cannot be found 
when requested, or “suddenly” produces different results.

Many journals offer the possibility of making model code available as supple-
mentary material attached to a journal article, which makes it easy to find the model 
associated with a particular paper. The main disadvantages of this option are (1) 
lack of standardization in the format of the code archive or the associated metadata; 
(2) difficulty in updating the code archive and lack of versioning information if bugs 
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are found, improvements are made, or contact details are changed; and (3) quality 
control—article referees may check that the code runs and is correct, but this is not 
universal. Also, not all journals offer the option of supplementary material; and 
some are moving away from offering it (Maunsell 2010).

A personal or institutional web-site allows the authors to more easily make 
updates to the code and to maintain a list of versions. The same lack of standardiza-
tion of archive formats and metadata as for publisher sites exists. The major disad-
vantage is discoverability: it may not always be easy to find the author’s web-site in 
the first place, for example, in case of a change of affiliation when hosting on an 
institutional site, expiration of domain name registrations for personal sites, or 
internal site reorganizations that break links. A further disadvantage is even less 
quality control than for supplementary material. An attempt to address the discover-
ability and metadata standardization problems was made by Cannon et al. (2002), 
who developed an infrastructure for distributed databases of models and data in 
which each group maintains its own local database and a central catalogue server 
federates them into a single virtual resource. This idea did not take off at the time, 
but is similar to the approach now being taken by the Neuroscience Information 
Framework (Gardner et al. 2008; Marenco et al. 2010).

Public general-purpose source-code repositories have many nice features for 
code sharing: versioning using mainstream version control tools, standard archive 
formats for downloading, some standardization of metadata (e.g., authors, version, 
programming language), issue tracking, wikis for providing documentation, and the 
stability of URLs. The disadvantages are possible problems with discoverability 
(SourceForge, for example, hosts over 260,000 projects. Finding which if any of 
these is a neuroscience model could be challenging), lack of standardization of 
neuroscience-specific metadata (which cell types, brain regions, etc.), and lack of 
external quality control.

Curated model repositories, in which a curator verifies that the code reproduces 
one or more figures from the published article, and which often have standardized 
metadata which make it easier to find models of a certain type (e.g., models of corti-
cal pyramidal cells), address the issues of quality control, discoverability, and stan-
dardization (Lloyd et al. 2008). They perhaps lack some of the features available 
with public general-purpose code repositories, such as easy version tracking, issue 
tracking, and documentation editing, although the CellML Model Repository has 
fully integrated the Mercurial version control system (http://mercurial.selenic.com) 
into its site through the concept of a workspace for each model, and ModelDB has 
begun experimenting with integration of Mercurial.

Currently, the best solution for an author who wishes to share the code for their 
published model is probably to maintain the code in a public general-purpose repos-
itory such as GitHub or BitBucket (for the very latest version of the model and to 
maintain a record of previous versions) and also to have an entry for the model in a 
curated database such as ModelDB (for the latest version to have been tested by the 
curators, together with neuroscience-specific metadata). This recommendation may 
change as curated repositories become more feature-rich over time.
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When sharing code, intellectual property issues should be considered. Presently, 
most researchers in computational neuroscience do not provide an explicit license 
when sharing their code, perhaps assuming that they are placing it in the public 
domain or that general scientific principles of attribution will apply when others 
reuse their code. For much more information on legal issues related to reproducible 
research see Stodden (2009a, b).

�Steps from Replicability to Reproducibility

One approach to cross-replicability is the use of simulator-independent formats for 
describing models. These may be divided into declarative and programmatic—
although here again the distinction is not always clear cut, since programming lan-
guages can be used in a declarative way, and not all declarative descriptions are 
really simulator-independent. Declarative model and simulation experiment specifi-
cation is discussed in the next section. Here we consider programmatic simulator-
independent formats.

A simulator-independent/simulator-agnostic programming interface allows the 
code for a simulation to be written once and then run on different simulator engines. 
Unlike declarative specifications, such a description is immediately executable 
without an intermediate translation step, which gives a more direct link between 
description and results. The use of a programming language also provides the full 
power of such a language, with loops, conditionals, subroutines, and other program-
ming constructs. The great flexibility and extensibility this gives can be a strong 
advantage, especially in an exploratory phase of model building. It may also be a 
disadvantage if misused, leading to unnecessary complexity, bugs, and difficulty in 
understanding the essential components of the model, which are less common with 
declarative specifications.

In neuroscience, we are aware of only one such simulator-independent interface, 
PyNN (Davison et al. 2009), which provides an API in the Python programming 
language, and supports computational studies using the software simulators 
NEURON (Hines 1989; Hines and Carnevale 1997; Carnevale and Hines 2006), 
NEST (Gewaltig and Diesmann 2007; Eppler et al. 2008), PCSIM (Pecevski et al. 
2009), and Brian (Goodman and Brette 2008), as well as a number of neuromorphic 
hardware systems (Brüderle et al. 2009; Galluppi et al. 2010). This is not a recent 
idea: as mentioned in the “Introduction,” at one time the NMODL language devel-
oped by Michael Hines for describing biophysical mechanisms in the NEURON 
simulator was extended by Hines and Upinder Bhalla to work with GENESIS 
(GMODL; Wilson et al. 1989), making it perhaps the first simulator-independent 
description in computational neuroscience (Hines and Carnevale 2000). To the best 
of our knowledge, however, GMODL no longer exists and it is certainly not com-
patible with the most recent evolutions of NMODL.
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�Is Code Sharing Enough to Ensure Replicability?

Sharing code is not a panacea for ensuring replicability. It is often the case that a 
given result from a published paper cannot be re-created with code that has been 
made available. The reasons for this may include: differences in the version of the 
simulator, the compiler, or of shared libraries that are used by either the simulator or 
the code; differences in the computing platform (e.g., 32-bit vs. 64-bit systems, 
changes in the operating system); or simply poor record-keeping on the part of the 
researcher. It is our experience that often the set of parameters used to obtain a par-
ticular figure is different from that stated in the published article, sometimes due to 
typographical errors. Finally, for older publications, the model may have been run 
originally on a platform which is no longer available.

A more systematic approach to record-keeping is essential for improving the 
replicability of simulation studies. An important first step is the use of version con-
trol systems so that handling the problem of tracking which version of a model and 
which parameters are used to produce a particular result or figure is as simple as 
making a note of the version number. Making the version number part of a filename 
or embedded comments is even better.

The problem of changing versions of simulators and their dependencies, and of 
a changing computing environment, may be addressed by, first, making note of the 
software version(s) used to produce a particular result (including compiler versions 
and options and library versions, when the software has been compiled locally). It 
may be possible to automate this process to a certain extent (see below). A second 
step may be to capture a snapshot of the computing environment, for example, using 
virtual machines. For models that were originally simulated on now-obsolete hard-
ware, software emulators (see, for example, http://www.pdp11.org) are a possible 
solution. Another is for the original authors or curators to port the code to a newer 
system or to a declarative description when the original system nears the end of its 
life.

A further step would be to automate the record-keeping process as much as pos-
sible, using, for example, an electronic lab notebook to automatically record the 
version of all software components and dependencies, and automatically check that 
all code changes have indeed been committed to a version control system prior to 
running a simulation. One of the authors (APD) has recently initiated an open-
source project to develop such an automated lab notebook for computational experi-
ments. Sumatra (http://neuralensemble.org/sumatra) consists of a core library 
implemented in Python, together with a command-line interface and a web-interface 
that builds on the library; a desktop graphical interface is planned. Each of these 
interfaces enables (1) launching simulations with automated recording of prove-
nance information (versions, parameters, dependencies, input data files, and output 
files) and (2) managing a simulation project (browsing, viewing, annotating, and 
deleting simulations). The command-line and web-interface are independent of a 
particular simulator, although some information (e.g., model code dependencies) 
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can only be tracked if a plug-in is written for the simulation language of interest; 
plug-ins for NEURON, GENESIS, and Python are currently available.

A number of tools exist for enabling reproducible data analysis and modeling 
workflows in a visual environment, for example, Kepler (Ludäscher et al. 2006), 
Taverna (Oinn et al. 2006), and VisTrails (Silva et al. 2007). VisTrails is of particu-
lar interest since it focuses on tracking changes to workflows over time in a way that 
is particularly well suited to the often exploratory process of neuronal modeling. 
The main disadvantage of using such a workflow framework is the extra develop-
ment burden of wrapping simulation software to fit within the framework.

�Structured, Declarative Descriptions of Models  
and Simulations

As described above, the intermediate steps between replicability and reproducibility 
for computational models include the expression of the model in a simulator-
independent format that can be used on a different computational platform from the 
original model. One approach is to use a declarative description of the model that is 
simulator-independent. Software and database developers in many fields, including 
neuroscience, have enthusiastically adopted EXtensible Markup Language (XML) 
technology (Bray et al. 1998) as an ideal representation for complex structures such 
as models and data, due to its flexibility and its relation to the HTML standard for 
web pages. Like HTML, XML is composed of text and tags that explicitly describe 
the structure and semantics of the content of the document. Unlike HTML, develop-
ers are free to define the tags and develop a specific XML-based markup language 
that is appropriate for their application. A major advantage of XML is that it pro-
vides a machine-readable language that is independent of any particular program-
ming language or software encoding, which is ideal for a structured, declarative 
description that can provide a standard for the entire community.

A representation of a model in a specific markup language is essentially a text 
document that consists of XML descriptions of the components of the model. 
Usually, the structure of a valid XML document is defined using a number of XML 
Schema Definition (XSD) files. Using these, standard XML handling libraries can 
be used to check the validity of an XML document against the language elements. 
Once an XML file is known to be valid, the contents of the file can be transformed 
into other formats in a number of different ways. For example, an application can 
read the XML natively using one of the commonly used parsing frameworks such 
as SAX (Simple API for XML, http://sax.sourceforge.net) or DOM (Document 
Object Model, http://en.wikipedia.org/wiki/Document_Object_Model). An alterna-
tive approach is to transform the XML description into another text format that can 
be natively read by an application, which can be done using Extensible Stylesheet 
Language (XSL) files. For more details regarding the use of XML technology for 
declarative model descriptions, see Crook and Howell (2007).
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A number of ongoing projects focus on the development of these self-documenting 
markup languages that are extensible and can form the basis for specific implemen-
tations covering a wide range of modeling scales in neuroscience. The Systems 
Biology Markup Language, SBML (Hucka et al. 2003), and CellML (Hedley et al. 
2000; Lloyd et al. 2004) are two popular languages for describing systems of inter-
acting biomolecules that comprise models often used in systems biology, and both 
languages can be used for describing more generic dynamical models, including 
neural models. NeuroML (Goddard et al. 2001; Crook et al. 2007; Gleeson et al. 
2010) differs from these languages in that it is a domain-specific model description 
language, and neuroscience concepts such as cells, ion channels, and synaptic con-
nections are an integral part of the language. The International Neuroinformatics 
Coordinating Facility aims to facilitate the development of markup language stan-
dards for model descriptions in neuroscience, and is providing support for the devel-
opment of NineML (Network Interchange format for NEuroscience, http://nineml.
org), which focuses on descriptions of spiking networks. Additionally, the 
Simulation Experiment Description Markup Language (SED-ML) (Köhn and Le 
Novère 2008) is a language for encoding the details of simulation experiments, 
which follows the requirements defined in the MIASE (Minimal Information about 
Simulation Experiments) guidelines (http://biomodels.net/miase). These markup 
languages are complementary and, taken together, they cover the scales for the 
majority of neuroscience models. The use of namespaces allows for unambiguous 
mixing of several XML languages; thus, it is possible to use multiple languages for 
describing different modules of a multiscale model.

Here we provide more details about these languages and their contexts for 
declarative descriptions of models and simulations. We also provide an introduction 
to how these markup languages can provide an infrastructure for model sharing, tool 
development and interoperability, and reproducibility.

�SBML and CellML

The main focus of SBML is the encoding of models consisting of biochemical enti-
ties, or species, and the reactions among these species that form biochemical net-
works. In particular, models described in SBML are decomposed into their explicitly 
labeled constituent elements, where the SBML document resembles a verbose ren-
dition of chemical reaction equations. The representation deliberately avoids pro-
viding a set of differential equations or other specific mathematical frameworks for 
the model, which makes it easier for different software tools to interpret the model 
and translate the SBML document into the internal representation used by that tool.

In contrast, CellML is built around an approach of constructing systems of equa-
tions by linking together the variables in those equations. This equation-based 
approach is augmented by features for declaring biochemical reactions explicitly, as 
well as grouping components into modules. The component-based architecture 
facilitates the reuse of models, parts of models, and their mathematical descriptions. 
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Note that SBML provides constructs that are more similar to the internal data 
objects used in many software packages for simulating and analyzing biochemical 
networks, but SBML and CellML have much in common and represent different 
approaches for solving the same general problems. Although they were initially 
developed independently, the developers of the two languages are engaged in 
exchanges of ideas and are seeking ways of making the languages more interoperable 
(Finney et al. 2006).

Both of these model description efforts are associated with model repositories 
that allow authors to share simulator-independent model descriptions. Currently, the 
BioModels database (Le Novere et  al. 2006, http://www.biomodels.net) contains 
several hundred curated models, and even more non-curated models, that are avail-
able as SBML documents as well as in other formats. The CellML Model Repository 
(Lloyd et al. 2008, http://models.cellml.org) also contains hundreds of models that 
are available as CellML documents. In addition, both efforts have associated simu-
lation tools and modeling environments, tools that validate XML documents for 
models against the language specifications, and translation utilities that are described 
in detail on their web-sites.

�NeuroML

The declarative approach of the NeuroML standards project focuses on the key 
objects that need to be exchanged among existing applications with some anticipa-
tion of the future needs of the community. These objects include descriptions of 
neuronal morphologies, voltage-gated ion channels, synaptic mechanisms, and net-
work structure. The descriptions are arranged into levels that are related to different 
biological scales, with higher levels adding extra concepts. This modular, object-
oriented structure makes it easier to add additional concepts and reuse parts of mod-
els. As models of single neurons are at the core of most of the systems being 
described, neuroanatomical information about the structure of individual cells 
forms the core of Level 1, which also includes the specification for metadata. The 
focus of Level 2 is the electrical properties of these neurons which allows for 
descriptions of cell models with realistic channel and synaptic mechanisms distrib-
uted on their membranes. Level 3 describes networks of these cells in three dimen-
sions including cell locations and synaptic connectivity. Networks can be described 
with an explicit list of instances of cell positions and connections, or with an algo-
rithmic template for describing how the instances should be generated.

While there is overlap in the types of models that NeuroML and SBML/CellML 
can describe, such as a single compartment conductance-based model, NeuroML 
provides a concise format for neuronal model elements that can be readily under-
stood by software applications that use the same concepts. NeuroML version 2, 
which is under development, will have greater interaction with SBML and CellML, 
with SBML being an initial focus of the work. This will allow, for example, com-
plex signaling pathways to be expressed in one of these formats with the rest of the 
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cell and network model specified in NeuroML. Since NeuroML is completely com-
patible with the structure of the user layer of NineML (see below), the goal is to be 
able to represent a multiscale neuroscience model that includes processes from the 
molecular to the network levels with a combination of SBML, NeuroML, and 
NineML.

The NeuroML project (http://neuroml.org) provides a validator for NeuroML 
documents. The project also provides XSL files for mapping NeuroML documents 
to a HTML format that provides detailed user-friendly documentation of the model 
details and for mapping NeuroML documents to a number of simulator scripting 
formats, including NEURON (Hines 1989; Hines and Carnevale 1997; Carnevale 
and Hines 2006), GENESIS (Bower and Beeman 1997), PSICS (http://www.psics.
org), and additional simulators through PyNN (Davison et al. 2009). This approach 
has the advantage that in the short term, applications need not be extended to 
natively support NeuroML, but can still have access to NeuroML models.

�NineML

With an increasing number of studies related to large-scale neuronal network mod-
eling, there is a need for a common standardized description language for spiking 
network models. The Network Interchange for Neuroscience Modeling Language 
(NineML) is designed to describe large networks of spiking neurons using a layered 
approach. The abstraction layer provides the core concepts, mathematics, and syn-
tax for explicitly describing model variables and state update rules, and the user 
layer provides a syntax to specify the instantiation and parameterization of the net-
work model in biological terms. In particular, the abstraction layer is built around a 
block diagram notation for continuous and discrete variables, their evolution accord-
ing to a set of rules such as a system of ordinary differential equations, and the 
conditions that induce a regime change, such as a transition from subthreshold 
mode to spiking and refractory modes. In addition, the abstraction layer provides 
the notation for describing a variety of topographical arrangements of neurons and 
populations of neurons (Raikov and The INCF Multiscale Modeling Taskforce 
2010). In contrast, the user layer provides the syntax for specifying the model and 
the parameters for instantiating the network, which includes descriptions of indi-
vidual elements such as cells, synapses, and synaptic inputs, as well as the con-
structs for describing the grouping of these entities into networks (Gorchetchnikov 
and The INCF Multiscale Modeling Taskforce 2010). Like NeuroML, the user layer 
of NineML defines the syntax for specifying a large range of connectivity patterns. 
One goal of NineML is to be self-consistent and flexible, allowing addition of new 
models and mathematical descriptions without modification of the previous struc-
ture and organization of the language. To achieve this, the language is being itera-
tively designed using several representative models with various levels of complexity 
as test cases (Raikov and The INCF Multiscale Modeling Taskforce 2010).
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�SED-ML

A simulation experiment description using SED-ML (Köhn and Le Novère 2008) is 
independent of the model encoding that is used in the computational experiment; 
the model itself is only referenced using an unambiguous identifier. Then SED-ML 
is used to describe the algorithm used for the execution of the simulation and the 
simulation settings such as step size and duration. SED-ML also can be used to 
describe changes to the model, such as changes to the value of an observable or 
general changes to any XML element of the model representation. The simulation 
result sometimes does not correspond to the desired output of the simulation. For 
this reason, SED-ML also includes descriptions of postsimulation processing that 
should be applied to the simulation result before output such as normalization, 
mean-value calculations, or any other new expression that can be specified using 
MathML (Miner 2005). SED-ML further allows for descriptions of the form of the 
output such as a 2D-plot, 3D-plot, or data table. So far, SED-ML has been used in 
conjunction with several different model description languages including SBML, 
CellML, and NeuroML, and the BioModels database supports the sharing of simu-
lation descriptions in SED-ML.

�Other Tools Based on Declarative Descriptions

neuroConstruct is an example of a successful software application that uses declara-
tive descriptions to its advantage (Gleeson et al. 2007). This software facilitates the 
creation, visualization, and analysis of networks of multicompartmental neurons in 
3D space, where a graphical user interface allows model generation and modifica-
tion without programming. Models within neuroConstruct are based on the 
simulator-independent NeuroML standards, allowing automatic generation of code 
for multiple simulators. This has facilitated the testing of neuroConstruct and the 
verification of its simulator independence, through a process where published mod-
els were re-implemented using neuroConstruct and run on multiple simulators as 
described in section “Ambiguous Model Numerics” (Gleeson et al. 2010).

The ConnPlotter package (Nordlie and Plesser 2010) allows modelers to visual-
ize connectivity patterns in large networks in a compact fashion. It thus aids in com-
municating model structures, but is also a useful debugging tool. Unfortunately, it is 
at present tightly bound to the NEST Topology Library (Plesser and Austvoll 2009).

�Improving Research Reporting

The past 2 decades have brought a significant growth in the number of specialized 
journals and conferences, sustaining an ever growing volume of scientific commu-
nication. Search engines such as Google Scholar (http://scholar.google.com) and 
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Thomson Reuters Web of Knowledge (http://wokinfo.com) have revolutionized lit-
erature search, while the internet has accelerated the access to even arcane publica-
tions from weeks to seconds. Electronic publication permits authors to complement 
terse papers with comprehensive supplementary material, and some journals even 
encourage authors to post video clips in which they walk their audience through the 
key points of the paper.

But have these developments improved the communication of scientific ideas 
between researchers? Recently, Nordlie et  al. (2009) surveyed neuronal network 
model descriptions in the literature and concluded that current practice in this area 
is diverse and inadequate. Many computational neuroscientists have experienced 
difficulties in reproducing results from the literature due to insufficient model 
descriptions. Donoho et  al. (2009) propose as a cure that all scientists in a field 
should use the same software, where the software is carefully crafted to cover the 
complete modeling process from simulation to publication figure. While this 
approach successfully addresses software quality and replicability issues, it falls 
short of contributing to the independent reproduction of results, which by definition 
requires re-implementation of a model based on the underlying concepts, preferably 
using a different simulator.

To facilitate independent reproduction of neural modeling studies, a systematic 
approach is needed for reporting models, akin to the ARRIVE Guidelines for 
Reporting Animal Research (Kilkenny et al. 2010). Such guidelines can serve as 
checklists for authors as well as for referees during manuscript review. For neuronal 
network models, Nordlie et  al. (2009) have proposed a good model description 
practice, recommending that publications on computational modeling studies 
should provide:

•	 Hypothesis: a concrete description of the question or problem that the model 
addresses.

•	 Model derivation: a presentation of experimental data that support the hypothe-
sis, model, or both.

•	 Model description: a description of the model, its inputs (stimuli) and its outputs 
(measured quantities), and all free parameters.

•	 Implementation: a concise description of the methods used to implement and 
simulate the model (e.g., details of spike threshold detection, assignment of spike 
times, time resolution), as well as a description of all third party tools used, such 
as simulation software or mathematical packages.

•	 Model analysis: a description of all analytical and numerical experiments per-
formed on the model, and the results obtained.

•	 Model justification: a presentation of all empirical or theoretical results from the 
literature that support the results obtained from the model and that were not used 
to derive the model.

Nordlie et al. also provide a checklist for model descriptions, requiring informa-
tion on the following aspects of a model: (1) model composition, (2) coordinate 
systems and topology, (3) connectivity, (4) neurons, synapses, and channels, (5) 
model input, output, and free parameters, (6) model validation, and (7) model 
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implementation. They further propose a concise tabular format for summarizing 
network models in publications; Fig. 4.4 provides an example. These guidelines and 
tables present information about a model that referees can check for completeness 
and consistency, and also allow referees to judge whether the employed simulation 

Fig. 4.4  Concise tabular presentation of the network model introduced in section “Ambiguous 
Model Numerics” with spike trains shown in Fig. 4.2, using the template proposed by Nordlie et al. 
(2009)
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methods appear adequate for the model, as well as the plausibility of the results 
obtained.

Publication standards such as those discussed in Nordlie et al. ensure that all pos-
sible, relevant model details are provided. However, it is also important to note what 
such guidelines and tables cannot provide: sufficient detail to allow exact replica-
tion of the simulation and of the figures presented in the publication for the reasons 
discussed in the sections above. Since it is futile to strive for details that would lead 
to exact replication of scientific publications, and since referees cannot confirm cor-
rectness without replicating all of the work in a manuscript, some have advocated 
that authors should focus only on main concepts that can be evaluated by referees, 
neglecting model details. Note that the Journal of Neuroscience recently ceased to 
publish supplementary material for the precise reason that it provides unreviewed 
(and essentially unreviewable) detail (Maunsell 2010).

Where do all of these issues leave reproducibility? It seems that improved repro-
ducibility requires two important measures for reporting results. First, on the techni-
cal side, replicability of simulation studies should be ensured by requiring that 
authors use proper code sharing techniques and automated practices for recording 
provenance as described in section “Practical Approaches to Replicability.” If code 
is not reviewed, then this is best done through a curated database rather than in the 
supplementary material. This model deposition provides a reference for readers if 
they encounter difficulties in reproducing the results of a publication. Note that the 
increasing use of a limited set of simulator software packages (Brette et al. 2007) 
facilitates this type of model archeology due to the widespread expertise with these 
packages in the computational neuroscience community—no need to decipher 
Fortran code left behind by the Ph.D.-student of yesteryear.

Second, publications in computational neuroscience should provide much more 
information about why a particular model formulation was chosen and how model 
parameters were selected. Neural models commonly require significant parameter 
tuning to demonstrate robust, stable, and interesting dynamics. In some cases, the 
selection of models for synapses and excitable membranes may be shaped by neu-
rophysiological evidence, while in others, they are selected based on ease of imple-
mentation or mathematical analysis. Such choices should be clearly articulated, and 
much would be gained by details about (1) which aspects of the model proved 
essential to obtaining “good” simulation results and (2) which quantities and prop-
erties constrained parameter tuning. In discussing these aspects, it might be helpful 
to consider recent advances in the theory of science with regard to both the role of 
simulations in the scientific process (Humphreys 2004) and the role of explanatory 
models that are common in neuroscience (Craver 2007).

�Discussion

In this chapter we have exposed the distinction between replicability and reproduc-
ibility, and explored the continuum between the two. We also have seen that there are 
scientific benefits to promoting each point on the continuum. Replication based on 
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reuse of code enables more rapid progress of computational studies by promoting 
modularization, improved code quality, and incremental development, while indepen-
dent reproduction of an important result (whether manually, through reading an arti-
cle’s Methods section, or (semi-)automatically, using a declarative, machine-readable 
version of the methods) remains as the gold standard and foundation of science.

In our terminology, replication of results implies reusing the original code in 
some way, either by rerunning it directly or by studying it when developing a new 
implementation of a model. If this replication is done by someone other than the 
original developers, the code must therefore be shared with others. This raises many 
issues including licensing, version tracking, discoverability, documentation, soft-
ware/hardware configuration tracking, and obsolescence.

Independent reproduction of a computational experiment without using the orig-
inal code is necessary to confirm that a model’s results are general and do not depend 
on a particular implementation. Traditionally, this has been done by reading the 
published article(s) describing the models, and most often corresponding with the 
authors to clarify incomplete descriptions. In this chapter we have discussed in 
some depth the difficulties usually encountered in this process, and ways in which 
published model descriptions can be improved. We summarize these recommenda-
tions below. More recently, several efforts have been made to produce structured, 
declarative, and machine-readable model descriptions, mostly based on XML. Such 
structured descriptions allow the completeness and internal consistency of a descrip-
tion to be verified, and allow for automated reproduction of simulation experiments 
in different simulation environments.

In considering how to improve the reproducibility of computational neurosci-
ence experiments, it is important to be aware of the limits of reproducibility, due to 
component failure, environmental influences on hardware, floating point numerics, 
and the amplification of small errors by sensitive model systems. The question of 
how best to determine whether differences between two simulations are due to 
unavoidable computational effects or whether they reflect either errors in the code 
or important algorithmic differences has not been satisfactorily answered in compu-
tational neuroscience.

Based on the issues identified and discussed in this chapter, we propose a number 
of steps that can be taken to improve replication and reproduction of computational 
neuroscience experiments:

Modelers

•	 Use version control tools.
•	 Keep very careful records of the computational environment, including details of 

hardware, operating system versions, versions of key tools, and software librar-
ies. Use automated tools where available.

•	 Use best practices in model publications; see Nordlie et al. (2009).
•	 Plan to release your code from the beginning of development to aid in code 

sharing.
•	 Make code available through ModelDB, BioModels, or other appropriate curated 

databases.
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•	 Make models available using simulator-independent model descriptions if 
possible.

•	 Evaluate your career by downloads and users in addition to citations.

Tool developers

•	 Incorporate version control tools and tools for automated environment tracking 
into your software.

•	 Collaborate with model description language efforts.

Reviewers and editors

•	 Demand clear model descriptions following Nordlie et al. (2009).
•	 Demand and verify code and/or model availability.
•	 Make sure publications include details of model choices and behavior.

Computational neuroscience has made enormous progress in the past 20 years. 
Can the same be said for the reproducibility of our models and our results? The 
range and quality of the available tools for ensuring replicability and reproducibility 
has certainly improved, from better version control systems to structured, declara-
tive model description languages and model databases. At the same time, the typical 
complexity of our models has also increased, as our experimental colleagues reveal 
more and more biological detail and Moore’s Law continues to put more and more 
computing power in our laboratories. It is this complexity which is perhaps the 
major barrier to reproducibility. As the importance of computational science in sci-
entific discovery and public policy continues to grow, demonstrable reproducibility 
will become increasingly important. Therefore, it is critical to continue the develop-
ment of tools and best practices for managing model complexity and facilitating 
reproducibility and replicability. We must also attempt to change the culture of our 
computational community so that more researchers consider whether their reported 
results can be reproduced and understand what tools are available to aid in repro-
ducibility. These changes are needed so that reproducibility can be front and center 
in the thinking of modelers, reviewers, and editors throughout the computational 
neuroscience community.
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