
33J.M. Bower (ed.), 20 Years of Computational Neuroscience, Springer Series
in Computational Neuroscience 9, DOI 10.1007/978-1-4614-1424-7_3,
© Springer Science+Business Media New York 2013

 Abstract This chapter provides a brief history of the development of software for
simulating biologically realistic neurons and their networks, beginning with the pio-
neering work of Hodgkin and Huxley and others who developed the computational
models and tools that are used today. I also present a personal and subjective view
of some of the issues that came up during the development of GENESIS, NEURON,
and other general platforms for neural simulation. This is with the hope that devel-
opers and users of the next generation of simulators can learn from some of the good
and bad design elements of the last generation. New simulator architectures such as
GENESIS 3 allow the use of standard well-supported external modules or special-
ized tools for neural modeling that are implemented independently from the means
of the running the model simulation. This allows not only sharing of models but also
sharing of research tools. Other promising recent developments during the past few
years include standard simulator-independent declarative representations for neural
models, the use of modern scripting languages such as Python in place of simulator-
specifi c ones and the increasing use of open-source software solutions.

 Introduction

 When Jim Bower fi rst asked me if I would write a chapter on the history of realistic
neural simulators, I refused. I reminded him that although I am at an age when sci-
entists wrap up their long careers with a historical account full of advice for young
researchers, I have only been involved with computational neuroscience for a little
more than 20 years, and I am just getting started with serious cortical modeling.

 Chapter 3
 History of Neural Simulation Software

 David Beeman

 D. Beeman (*)
 Department of Electrical, Computer, and Energy Engineering ,
 University of Colorado at Boulder , Boulder , CO 80309-0425 , USA
 e-mail: dbeeman@colorado.edu

34

Furthermore, my experience has been almost entirely as a developer of tutorials and
documentation for the GEneral NEural SImulation System (GENESIS). Not only
that, but I missed out on the crucial fi rst 2 years of GENESIS development.

 However, Jim can be very persuasive, and I gave in after he told me that I could
tell the story my way as a personal history of what I have learned during the past 22
years. Of course, the task was made easier by the fact that I share Jim’s defi nition,
considered very narrow by many, of what constitutes a “realistic neural simulator”
(Bower 1992 , 2005). What I offer is a somewhat GENESIS-centric and subjective
view of some of the issues that came up during the last 20 years of development of
GENESIS, NEURON, and other platforms for structurally realistic simulations of
neurons and their networks.

 More specifi cally, I fi nally agreed to write this chapter because it provides an
opportunity to use the last 20 year history of the development of neural simulators
to offer a few, hopefully useful, opinions on what the developers and users of the
next generation of simulators can learn from some of the good and bad design ele-
ments of those from the last generation. My own current view is that it is time for a
new generation of simulators that addresses a large range of issues beyond merely
creating numerical solutions to mathematical models of neural systems. As will be
discussed later, new simulation architectures such as that being developed for
GENESIS 3 (G-3) offer options for extensibility, interoperability, and model shar-
ing that will signifi cantly extend the capacity and value of simulation technology,
providing a foundation for the next 20 years and beyond (Cornelis et al. 2012a). My
hope is that this chapter will help motivate and inform these efforts going forward.

 My Seduction by Neuroscience

 This chapter is in large part a personal recounting of my own experience in the
design and development of GENESIS and it is therefore appropriate, I think, to
provide the reader some background information on my own path to computational
neuroscience. In the spring of 1989 I was 51 years old, and a happily tenured
Professor of Physics at Harvey Mudd College, an undergraduate science and engi-
neering college about 30 miles from Caltech. I enjoyed the atmosphere at Harvey
Mudd because the students are very intelligent, self-motivated, and creative. In
addition, without graduate students, I was able to concentrate on undergraduate
education, and to take advantage of the great freedom I had to create and teach
interdisciplinary special topics courses on nearly anything that interested me.

 Although it might seem strange that, 20+ years later, I would have abandoned
physics, given up my tenured faculty position at Harvey Mudd, and now be deeply
involved in building models of the mammalian auditory cortex, in fact, looking
back, the transition from teaching undergraduate physics to working on GENESIS
makes some sense.

 A core component of the GENESIS project from the outset, and one that I have
been particularly involved with, is the development and application of simulation-
based tutorials to engage students in learning. At Harvey Mudd, I had already

D. Beeman

35

developed several simulation-based tutorials for teaching concepts in upper division
physics courses (e.g., Beeman and Boswell 1977). My transition to computational
neuroscience as a subject of study was also linked to my teaching through my research
interests, which at an undergraduate college, need to be tied closely together. That
research involved the computer modeling of amorphous solids or disordered spin sys-
tems which served as a very good source of student projects, and a few publications
(e.g., Maley et al. 1988 ; Thorpe and Beeman 1976 ; Alben et al. 1977).

 Because of the spin system modeling I had been doing, I became aware of the
publication by Hopfi eld (1982) applying spin glass models as a possible model for
how networks of neurons might operate. As a result, I volunteered to give some
lectures in an interdisciplinary course that was to be taught during my sabbatical in
spring 1990. For that course, a biologist was to lecture on basic properties of neu-
rons, a mathematician would present a mathematical approach to artifi cial neural
networks, and I would give a more engineering-oriented approach to artifi cial neural
networks, aided with tutorial simulations.

 Of course I was also aware that John Hopfi eld was at that time a professor in the
new Computation and Neural Systems program at Caltech just down the 210 freeway
from Harvey Mudd. My fi rst thought was to ask Dr. Hopfi eld about spending some
time with his group at Caltech during my sabbatical year. However, our department
received a weekly list of seminars at Caltech, which was posted outside the Physics
Department offi ce, and given my interest in simulation technology, I was intrigued
by the description of a talk to be given by Matt Wilson on a simulator for biologically
realistic neurons and neural networks called GENESIS. I went to the talk and became
fascinated with the prospect of actually building models of real neurons. Although
Matt’s seminar emphasized the use of GENESIS as a research tool, I thought that I
might also be able to use it in the course I was planning to teach at Harvey Mudd. I
also thought that, through the simulator, I might be able to learn something about
biological neurons myself. I had no idea at the time that this was the fi rst step on the
long slippery slope that has led so many physicists into neuroscience.

 After the talk, as I spoke to Matt, Jim introduced himself and we talked about the
possibility of using GENESIS as a basis for a simple tutorial on the properties of
biological neurons. Jim told me of his strong commitment to developing tools for
education, and we discussed possible collaborations. As a result, I spent my sabbati-
cal year in Jim’s laboratory, learning about GENESIS, and far more about neurosci-
ence than I had ever intended.

 History of Neural Modeling Prior to Fall 1989

 Before I could write tutorial simulations about neuroscience, I needed to learn some-
thing about the subject. Of course, I was familiar with the history of artifi cial “neu-
ron-like” networks, beginning with the Mcullough and Pitts (1943) model, but had
no knowledge of modeling spiking neurons, nor very much about their physiology. I
sat in on David van Essen’s introductory neuroscience course, along with the fi rst

3 History of Neural Simulation Software

36

year graduate students in neuroscience, and also began learning how to use GENESIS.
As always, I learn best by doing, so I started writing my fi rst tutorial based on a
simulation of a simple neuron model, as I learned about the Hodgkin–Huxley model,
and about compartmental modeling of dendrites.

 Of course, I read the classic paper by Hodgkin and Huxley (1952) to understand
the modeling of action potentials. Their work, carried out in the early 1950s and
described in a series of 1952 papers, won them the Nobel Prize in 1963 and exem-
plifi es, in my view, the ideal combination of modeling and experimental measure-
ments. I can’t emphasize enough the importance of this connection between
modeling and experimental work. Too many theoretically inclined people get lost in
a world of their own when doing computer modeling and lose touch with the world
of experiment. This is a common pitfall for theoretical physicists who hope to apply
their expertise to the study of the brain. Likewise, experimentalists may end up
mindlessly gathering data without having a clear idea of how it will advance theo-
retical understanding.

 The importance of this connection is also clear in computational neuroscience
and was essential to what I regard as the fi rst great success of computational neuro-
science, the Hodgkin–Huxley model (now 60 years old), which still stands as the
basis for most neuronal cell models. Most neurobiologists recognize the importance
of Hodgkin and Huxley’s work and their development of the voltage clamp tech-
nique without realizing how important the modeling was to the work. Essentially,
the model was what made them throw out their old way of looking at the changes in
the membrane and introduce a new viewpoint. It is important to remember that at
the time of their experiments, the modern concept of ion-selective channels control-
ling the fl ow of current through the membrane was only one of the several compet-
ing hypotheses. It was the model that ruled out these alternative ideas, and also
predicted the results of experiments that were not used in formulating the model.
The fascinating history of this pioneering synthesis of experiment and modeling has
been told in reviews by Cole (1968), Rinzel (1990), Nelson and Rinzel (1998), and
many others.

 However, it is important to mention how Hodgkin and Huxley quantitatively
explained the process by which action potentials are formed by the voltage-
dependent activation and subsequent inactivation of sodium channels, terminated
by a delayed activation of potassium channels. They did this not by fi tting model
parameters to those needed to produce action potentials, but by fi tting them to an
entirely different set of experimental data, obtained using the voltage clamp. Then,
with no further changes in parameters, they were able to reproduce the action poten-
tial, correctly calculate the velocity of propagation, analyze the refractory period,
and account for the phenomenon of post-inhibitory rebound or “anode break.” All
of this modeling was performed by integrating the coupled differential equations,
step by step, on mechanical “hand-crank” calculators, following the method used 20
years before by the physicist Hartree (1932) to calculate atomic wave functions.

 As a perhaps ironic aside, a few years after I had taken charge of the GENESIS
Users Group (BABEL), I received an email from a postdoctoral student who pointed
out what he claimed to be a serious bug in GENESIS. He found that using a

D. Beeman

37

hyperpolarizing current injection pulse in one of the GENESIS tutorial simulations
produced the obviously impossible result of producing an action potential! I tact-
fully suggested that he read the original Hodgkin–Huxley papers. At that time, I had
been extending Mark Nelson’s “Squid” tutorial for use with the chapter that he and
John Rinzel were writing for “The Book of GENESIS” (Bower and Beeman 1998),
familiarly called “The BoG.” It was only after I added the ability to plot the channel
activation variables during a current pulse that I fully understood myself the action
potential refractory period and the biological phenomenon of post-inhibitory
rebound.

 In my own efforts to understand the existing techniques for simulating real neu-
rons, the next step was to understand why GENESIS broke a neuron into “compart-
ments.” I quickly learned of the other crucial development in the history of neural
modeling, which was the introduction of compartmental modeling by Rall (1964).
Rall had previously contributed a great deal to the understanding of postsynaptic
potential (PSP) propagation in dendrites by applying the mathematical analysis of
the attenuation of signals in the transatlantic telephone cable by William Thompson
(Lord Kelvin). For example, neural modeling has benefi ted from the simplifi cations
introduced by the “trees equivalent to a cylinder” transformation, in which Rall
(1959 , 1962a) demonstrated the conditions under which a branched dendritic tree
can be collapsed into a linear cable. The “cable” theory of propagation in dendrites
has been reviewed by Rall and Agmon-Smir (1998).

 By using a lumped parameter model, dividing a branched dendritic tree into cou-
pled chains of approximately equipotential compartments, Rall’s method made it
possible to explore realistic dendritic morphologies that could only be analyzed by
using numerical methods and computer simulations. In one of the fi rst applications
of this method Rall (1967) modeled a linear chain model of a motor neuron with a
soma and nine dendritic compartments, activated with an “alpha function” form of
synaptic conductance having a linear rise and exponential decay with time. It had no
voltage-activated conductances.

 Rall and Shepherd (1968) created the fi rst model to combine compartmental
modeling of dendrites into a cell model that generated action potentials. Their
model with a soma and ten dendritic compartments used parameters taken from rab-
bit olfactory bulb mitral and granule cells. Because the Hodgkin–Huxley model
parameters for the neurons being simulated were not yet known, a simpler and less
computationally intensive model was used for the generation of action potentials
with active conductances. These simulations were carried out on a Honeywell 800
computer during 1963 and 1964 at the NIH, at a time when realistic simulation of
ionic currents was considered to be very time-consuming. Personally, I believe that
Rall’s pioneering modeling efforts have been on a par with those of Hodgkin and
Huxley, and perhaps the only reason that he has not received a Nobel Prize is due to
the sheer complexity of dendrites themselves, whose function we still don’t under-
stand. Certainly Rall’s technical contribution to modeling is on the same level as
that of Hodgkin and Huxley.

 Around the time that Rall and Shepherd were building their fi rst models of neu-
rons, others were applying the Hodgkin–Huxley equations to single compartment

3 History of Neural Simulation Software

38

neuron models. For example, Connor and Stevens (1971) performed one of the fi rst
computer simulations of the ionic currents and the resulting action potentials in
giant molluscan neurons. This model added a transient potassium conductance
(“A-current”) to modifi ed Hodgkin–Huxley fast sodium and delayed potassium cur-
rents, using parameters fi tted to experiments.

 Dodge and Cooley (1973) were the fi rst to publish a description of a model that
combined compartmental modeling with the Hodgkin–Huxley equations. They col-
lapsed a large spinal motor neuron into a compartmentalized nonuniform equivalent
cylinder by the method of Rall (1962b) and used fast sodium and delayed rectifi er
potassium channels with parameters modifi ed to fi t motor neuron voltage clamp
data.

 This model became the basis for later models by Traub (1977), who included
calcium-dependent potassium channels in the dendrites. This led to a series of
increasingly realistic hippocampal pyramidal cell models (Traub and Llinás 1979 ;
Traub 1982 ; Traub et al. 1991 , 1994) with active conductances in the dendrites.
These were run on IBM mainframe computers, with programs initially written in
PL/1 and later in FORTRAN.

 The earliest network model with multi-compartmental spiking neurons of which
I am aware was a simplifi ed model of the cerebellar cortex of the frog by Pellionisz
et al. (1977). These used 62-compartment Purkinje cell models having modifi ed
Hodgkin–Huxley conductances.

 The Introduction of Neural Simulation Systems

 In each of the cases mentioned to this point, the computational modeling was done
with specifi c code written by the individual researchers. To my knowledge, there
was no effort made to provide that code to anyone else or to generalize it beyond a
particular model. There was also no explicit effort to use these simulations as a tool
in neuroscience education. Their intended purpose was purely research and was
based only in the individual research labs. Yet, the nervous system itself is made up
of neurons that share many common components (e.g., ion-selective channels), rais-
ing the distinct possibility that a modeling system with common code and a com-
mon set of libraries could allow the sharing of components between different
laboratories. In effect, this kind of sharing in physics has occurred for hundreds of
years, in part because it is easier to share equations than complex biological models
dependent on a whole system of equations. In principle, however, a common model-
ing platform for neural simulations could not only support the sharing of compo-
nents, but also start to build a common set of models, which we have called
“community models,” supporting communication between different laboratories
and research projects. Jim Bower’s chapter in this volume talks about what may be
the fi rst such model, of the cerebellar Purkinje cell, originally developed in
GENESIS and now implemented in numerous other simulation systems (including

D. Beeman

39

NEURON) and also now being used as the basis for research in a growing number
of laboratories. Of particular interest to me, such a general neural simulation system
could also, in principle, be used to generate simulation-based tutorials for education
in the tools of computational neuroscience, as well as neuroscience itself.

 The use of an electrical network simulator was fi rst suggested by Shepherd and
Brayton (1979) for a simulation of a dendro-dendritic synapse circuit in the olfac-
tory bulb. However, the fi rst software that could be called a general simulator spe-
cifi cally for realistic neural models was a suite of FORTRAN programs called
MANUEL developed by Don Perkel in 1981 (Perkel and Watt 1981). MANUEL
generalized some of his earlier custom made programs into a package for construct-
ing multi-compartmental neurons and small circuits. Jim Bower tells me that one of
the fi rst things he did after moving to Caltech was to visit Don Perkel in his research
trailer parked behind a research building at the University of Irvine. Don had
recently been fi red as a professor by Stanford, but had used grant money to purchase
a trailer, outfi tted with computer equipment, and had made a temporary arrange-
ment with UC Irvine renting space in their parking lot. Don was well ahead of his
time. The MANUEL programs allowed a wide variety of physiological and ana-
tomical properties to be specifi ed and provided a versatile set of utilities for provid-
ing stimuli and recording the results. As a way to provide support for his pioneering
efforts, MANUEL was available for a substantial fee, and was written in a Digital
Equipment Corporation (DEC) variant of FORTRAN IV, and did not run on Unix
systems. MANUEL was used by Peter Getting to make what was probably the fi rst
network model made out of realistic neurons to study the swim central pattern gen-
erator circuit of the mollusc Tritonia diomedea (Getting 1989). Ironically enough,
Peter Getting had also not been given tenure at Stanford and ended up at the
University of Iowa, where he built his model accurately reproducing the swim pat-
tern and explaining the role of the various ionic conductances in determining the
behavior of this small network. Sadly, both Don Perkel and Peter Getting shortly
thereafter developed serious health problems that ended their research careers.

 There was also an effort in the 1980s to use simulators built for modeling electric
circuits, such as SPICE (Segev et al. 1985) and SABER (Carenvale et al. 1990) to
construct models of neurons. In principle these simulation systems had the built-in
tools needed for simulating the circuits used in compartmental models. They also
had the advantage that they were widely used by electrical engineers and also had
the advantage of being available for a wide range of computer operating systems. In
the end, however, most of the development of these systems was focused on electri-
cal circuit simulation and they were not further optimized for building neuronal
models. Similarly, the growth in interest in neural networks for engineering pur-
poses also resulted in the construction of several “neural network” simulation sys-
tems such as the Rochester Connectionist Simulator (Goddard et al. 1987) that were
also promoted for their possible use in biological network simulations. These also
turned out to be too specialized and restricted in their capacity to support full real-
istic models.

3 History of Neural Simulation Software

40

 Early History of GENESIS and NEURON

 It was during this same period of time, in the middle 1980s, that the development of
both GENESIS and NEURON started as dedicated systems specifi cally for building
realistic simulations of the nervous system. By 1989, when I fi rst learned of
GENESIS, both systems were well into the early phase of their development—each,
however, starting from a different point of view and with somewhat different
objectives.

 The NEURON simulator had its beginnings in the laboratory of John W. Moore
at Duke University, where Michael Hines developed an effi cient implicit numerical
integration algorithm for use in branched compartmental dendritic models (Hines
 1984). The Hines method was initially implemented in CABLE, a simulator devel-
oped for modeling propagation of PSPs in dendrites (Hines 1989).

 Although it was primarily being used for modeling dendritic structures at this
time, it already had the capability of making multi-compartmental models of single
cells. In addition to the standard voltage-activated Hodgkin–Huxley sodium and
potassium channels, it could model basic mechanisms for calcium dynamics and
calcium-dependent potassium channels. By 1990, the name had changed to
NEURON, and its single cell modeling capabilities began to expand. Over the next
2 years, it gained a scriptable GUI, the ability to model small networks, and a
method of loading and compiling user-specifi ed channel kinetics.

 A Personal History of GENESIS

 Of course, my personal knowledge of the development of GENESIS is much more
detailed than that of NEURON.

 GENESIS had its origins during 1984, when Matt Wilson was studying for a
Master’s degree in electrical engineering at the University of Wisconsin. During this
time, after having done postdoctoral studies in the laboratory of Rudolfo Llinás at
New York University, Bower was fi nishing up his postdoctoral work in Lewis
Haberly’s lab at the University of Wisconsin, studying the olfactory cortex.

 As Bower recalls, Matt had been hired to program data acquisition software for
a new brain slice preparation he was setting up in the Haberly Laboratory. Jim had
also brought to Wisconsin the data he had recorded from many cerebellar Purkinje
cells at once while a postdoc at NYU. This data was unusual and complex as it was
one of the fi rst sets of multi-single neuron data ever obtained, consisting of record-
ings of 16–32 signals at once (Sasaki et al. 1989). Bower was interested in fi nding
some means of analyzing the data other than cross-correlation analysis. After
approaching Josh Chover, head of the Math Department at the University of
Wisconsin, Chover and Bower decided to co-teach a course on statistical analysis of
multiunit recording data, for which Matt became the teaching assistant.

 During that course, Jim realized that understanding complex neurobiological
data would eventually require a tight coupling between experimental and

D. Beeman

41

model-based studies (Bower 1991). As an experimentalist, he believed that the
types of model that would be most useful were ones that as closely as possible
approximated the actual morphological and physiological properties of the brain
structures being studied. While it was several years before his laboratory began
developing models of the cerebellum (e.g., Santamaria et al. 2007), he decided to
see if a model of the olfactory cortex might help explain the pattern of oscillations
he was studying in the Haberly laboratory. Working together, Jim and Matt gener-
ated the fi rst network model of the olfactory cortex constructed on an IBM XT
computer. The model consisted of a linear chain of 75 5-compartment neurons
which almost as soon as it was constructed began oscillating with 40 Hz bursts at
Theta frequency. Jim’s recollection is that it took several weeks to fi gure out how
the bursts were generated in the model.

 When Jim came to Caltech in early 1985, as one of the cofounders of the inter-
disciplinary graduate degree program “Computation and Neural Systems,” he
encouraged Matt to apply as a doctoral student. After arriving from Wisconsin, Matt
continued to elaborate the olfactory cortex model, and published a thesis in 1990
predicting the neural mechanisms underlying the 40 Hz and theta frequency oscilla-
tions in cerebral cortex (Gray et al. 1989 ; Wilson and Bower 1991 , 1992).

 According to Jim, while Matt was working on his own modeling studies, he
asked Matt to generalize his simulation software so that it could be used as a general
purpose simulator, rather than as a stand-alone single purpose model. Matt resisted
at fi rst, feeling that no computational modeler would ever want to use software that
was written by someone other than themselves. Fortunately, Matt relented and
began work on GENESIS (Wilson et al. 1989).

 Later, as I attended the annual Computational Neuroscience meetings in the early
to mid 1990s, and collected data to satisfy funding agencies that GENESIS indeed
was being widely used outside the Bower laboratory, Matt’s prediction that real
programmers would write their own code seemed to be born out. During that decade,
the number of poster presentations using GENESIS or NEURON was generally
outnumbered by those that used custom software written for a particular simulation
or category of simulation. However, today, the number of scientists using simulation
systems continues to rise, and importantly, the simulators are increasingly providing
an opportunity for nonprogrammers to engage in computational studies. They are
also increasingly being used in graduate and even undergraduate education, replac-
ing textbooks with dynamic simulation tutorials.

 As a side note, as he continued to develop GENESIS, Matt became increasingly
interested in the experimental side of neuroscience research, and the studies of the
hippocampus being carried out by Bruce McNaughton. After he received his Ph.D.
in 1990, he went to the McNaughton laboratory at the University of Arizona for his
postdoctoral studies, bringing the multielectrode array design with him. Legend has
it that he said that he would come only if he were not required to do further model-
ing. Matt is now Sherman Fairchild Professor in Neurobiology, Departments of
Brain and Cognitive Sciences and Biology at MIT, researching the role of sleep in
learning and memory.

3 History of Neural Simulation Software

42

 With respect to the early history of GENESIS, it is also important to mention the
contributions of Upinder S. Bhalla who developed the fi rst GUI for GENESIS,
XODUS (the X Oriented Display Utility for Simulations) (Bhalla 1998). Entering
the Bower laboratory as a doctoral student in Neuroscience in 1986, “Upi’s” princi-
pal focus was on multielectrode recording in the olfactory bulb of awake behaving
animals, where, along with Matt Wilson, he designed a unique multielectrode array
that has subsequently became the basis for many multi-single unit recording experi-
ments in many laboratories. However, Upi was also using GENESIS to model olfac-
tory bulb mitral and granule cells, and started adding graphical capabilities around
1987. The initial version of XODUS was based on the Unix X Window System, and
added scripting commands to Matt’s Script Language Interpreter (SLI).

 Although it is getting somewhat ahead of the story, it is appropriate to mention
that after completing his Ph.D. in April 1993, Upi began his postdoctoral studies
with Ravi Iyengar at Mount Sinai School of Medicine in New York, contributing to
GENESIS development over the Internet. By November 1995 he had added the
kinetics library and Kinetikit GUI for modeling chemical kinetics and signaling
pathways (Bhalla and Iyengar 1999). After assuming his faculty position at the
National Centre for Biological Sciences in Bangalore in January 1996, he continued
to study the systems biology of olfaction and memory, and to extend the capabilities
of the GENESIS kinetics library (Bhalla 2000). In order to exchange biochemical
signaling models, he established the Database of Quantitative Cellular Signaling
(DOQCS), one of the fi rst databases of models of signaling pathways in the brain
(Bhalla 2003). DOQCS (http://doqcs.ncbs.res.in/) currently contains 76 models
contributed by users world-wide. The model representation format used in DOQCS
is based on GENESIS 2 SLI commands using the kinetics library; however, it is now
being extended to include SBML (Hucka et al. 2003) and Matlab formats. Later, as
the limitations of the 1980s and 1990s simulator architectures became apparent, Upi
began a major reimplementation of GENESIS 2 as MOOSE (Ray and Bhalla 2008).

 Because the technical basis for GENESIS was a model of the olfactory cortex,
GENESIS differed from the design of NEURON in that, from the outset, it was
designed to simulate neural structures at multiple levels of scale (Wilson et al.
 1989). Due to the infl uence of the parallel computing group at Caltech headed by
Geofry Fox, GENESIS was also from the outset, designed to be implemented on
parallel computers (Nelson et al. 1989). Although NEURON had its origins as a
simulator for single cell models, it acquired improved network modeling capabili-
ties and a parallel implementation in the following years.

 By the July 1990 public release of GENESIS version 1.1 with full source code,
Upi had added the “Neurokit” graphical environment for editing and running single
cell models to GENESIS. Neurokit was written entirely in the GENESIS scripting
language, using XODUS. Figure 3.1 shows this fi rst version of Neurokit running a
mitral cell model, with the menus, cell view, and graph displayed. By 1991, Upi had
added the Hines (1984) integration method to GENESIS and added a cell reader to
read in cell model specifi cations from a GENESIS cell parameter (“.p”) fi le, greatly
increasing its capabilities for large single cell models.

D. Beeman

http://doqcs.ncbs.res.in/

43

 GENESIS and NEURON Go Public

 Returning to the chronology, the next major step for GENESIS and NEURON, and
the initial availability for the use of both systems by those outside the founding
laboratories, came as a result of the establishment of the Summer Course in Methods
in Computational Neuroscience at the Marine Biological Laboratory (MBL) in

 Fig. 3.1 An early GENESIS 1 version of Neurokit used to run and edit a mitral cell model. This
used scripted XODUS objects to create menus, an animated cell view, and graph

3 History of Neural Simulation Software

44

Woods Hole. As Jim Bower recounts the history, he and his Caltech colleague
Christof Koch were sitting in Christof’s backyard on a particularly hot and smoggy
day in the summer of 1986 in Pasadena California, discussing what they could do
the following year to be somewhere more pleasant with their families. Jim, who has
spent time as a postdoctoral fellow doing summer research at the MBL, suggested
that they propose offering a course in computational neuroscience, and spend the
late summer in Woods Hole. That fall, the MBL accepted the course and the fi rst in
what has now become a series of courses around the world was offered. The fi rst
course of its kind, Jim’s strong bias towards “hands on science learning” meant that
the course was designed so that its central focus was on student projects based in a
computer laboratory. For the fi rst course, Jim and his feisty laboratory systems
administrator John Uhley manually pulled the fi rst Internet lines from the Woods
Hole Oceanographic Institute in the tunnels under Water Street in Woods Hole to
the MBL. Uhley installed 20 brand-new graphics workstations that were donated by
the now defunct DEC in the laboratory, and literally the night before the opening
day of the course, a public version of GENESIS was installed for the fi rst time.
Although Matt regarded this as version 0.001 of GENESIS, it already included a
graphical user interface (thanks to Upi), powerful network creation commands, and
an effi cient method of summing spike events from multiple connections to a synap-
tically activated channel (Wilson and Bower 1989). The offi cial release of GENESIS
1.0 coincided with the second Woods Hole course in July 1989 with usability greatly
increased, due to continued work by Matt, Upi, Dave Bilitch , and John Uhley.

 However, the fi rst course in Woods Hole was not only the introduction of
GENESIS but also of NEURON. As Jim recounts the story, on the very fi rst day of the
course, Michael Hines approached Jim and Christof about the possibility of installing
CABLE on the laboratories computers as well, and giving students the option to use
either GENESIS or CABLE (soon to be NEURON). Both Jim and Christof thought
that this was a wonderful idea, and Michael Hines and NEURON became a regular
part of the course from then on.

 Federation and User Support

 While I missed the fi rst two Woods Hole courses, in the spring of 1990, as Matt was
fi nishing his work at Caltech, my wife received a job offer that was too good to pass
up in Boulder, Colorado. I then said goodbye to Harvey Mudd and came to the
University of Colorado, supported as a consultant on GENESIS grants. This began
the “federalization” of GENESIS development via the Internet, and a collaboration
between GENESIS developers that still continues to this day. With the departure of
Matt, Dave Bilitch gradually took over as the lead GENESIS software developer,
coordinating our efforts with the crude Internet tools of the time: text-based email
without attachments, ftp, and remote logins to the server “smaug” at Caltech via
telnet. During the 1990s, as former members of the Bower laboratory formed

D. Beeman

45

research groups using GENESIS, and the expanding number of GENESIS users
contributed to GENESIS capabilities, GENESIS development became increasingly
distributed. To facilitate communication between users and developers, an email
newsletter to the GENESIS users group was established in April 1991, and the
GENESIS web site was established in June 1994.

 When I entered the Bower laboratory in fall 1989, GENESIS development
seemed to “just happen” by a small group interacting closely without a lot of formal
organization. I would tell Upi “it would be nice if GENESIS could do ….” A couple
of days later he would casually mention that GENESIS could now do it. I noticed
this among the Bower lab group at Woods Hole. Someone noticed that something
needed to be done, and just did it. This may not be a scalable plan for a major soft-
ware development project, but it worked extremely well in those days. As GENESIS
development has spread from a single laboratory to many, we have had to face the
challenge of “federalizing” a large software development project among many
user-developers.

 From the beginning, GENESIS had the framework for interactive help, but not
yet a lot of content. The “man page” was often a shout down the hall to Matt’s offi ce
“Hey, man. I have a question.” Gradually his answers evolved into additions that I
made to the documentation as I saw the need for it. The interactive help was invoked
in a terminal window at the “genesis >” prompt, and was plain text, formatted simi-
larly to a Unix “man page.” Upi added a printed manual with LaTeX source that
covered basic syntax for the SLI, and the main GENESIS and XODUS objects and
commands.

 The GENESIS 1.0 release came with two tutorials that were created in April
1989. Mark Nelson contributed the “Squid” tutorial on the Hodgkin–Huxley model
that is still in use today after years of enhancements by GENESIS users. The
“MultiCell” tutorial was a simulation of two neurons having a soma and dendrite
compartment with synaptic connections, with one being excited and the other being
inhibited. The GUI had a control panel, graphs of membrane potential and channel
conductances, and labeled text fi elds (called “dialogs” in XODUS) for changing the
synaptic channel parameters. The extensive documentation with reference to a line-
numbered version of the main scripts was the most useful early GENESIS
documentation.

 At an early GENESIS developers meeting, around the time that we launched the
GENESIS web site in June 1994, we discussed ways to use a common source for the
generation of plain text “help,” a printed manual, and an Hypertext Markup
Language (HTML) version for the web. I had been looking at an open-source pack-
age called “linuxdoc-sgml” that was then being used by The Linux Documentation
Project (http://www.tldp.org) for doing this by writing the documentation, not in
HTML, but in the much richer Standard Generalized Markup Language (SGML),
that was the basis of HTML, and a few years later would become the basis for the
now-popular eXtensible Markup Language (XML).

 The near-unanimous decision was that I should use a well-supported commercial
tool, FrameMaker to generate the documentation. As I was the one writing the

3 History of Neural Simulation Software

http://www.tldp.org/

46

documentation and I lived in Colorado, not Pasadena, I went home and wrote the
documentation for the GENESIS 2.0 release in SGML. Now, FrameMaker no lon-
ger exists, but SGML lives on in the form of an open standard, XML. Actually, this
move from commercial software to an open standard was only the fi rst in a series of
similar events in computational neuroscience.

 Discussions of a major rewrite of GENESIS to create version 2.0 began in early
1993. After more than 2 years of development and several months of beta testing,
GENESIS version 2.0 was fi nally released in August 1995. In addition to having a
detailed reference manual in all three formats, it now ran under the Linux and
FreeBSD operating systems, and with programming help from Maneesh Sahani,
had a completely rewritten version of the XODUS graphical interface. The add-on
library for Parallel GENESIS (PGENESIS) was released at the same time, allowing
simulations to be spread over multiple processors or networks of workstations on a
variety of hardware and software platforms.

 In addition to their own research, one of the motivations for the further develop-
ment of GENESIS was provided by its potential use as a tool in neuroscience educa-
tion. “The BoG” mentioned previously, was written and edited by Jim Bower and
myself as a step-by-step tutorial and interactive self-study for professionals,
researchers, and students working in neuroscience. The free Internet edition (http://
www.genesis-sim.org/GENESIS/bog/bog.html) and the printed version (Bower and
Beeman 1998) use exercises and hands-on tutorials developed at the Woods Hole
and later courses, with contributed chapters by researchers in computational neuro-
science that are linked to the tutorials.

 Expanding Simulator Capabilities

 With the early history of simulator development now described, I will turn to the
discussion of some of the issues in the construction of neural simulations that arose
in the evolution of GENESIS and NEURON to their current state, their differences,
and what I think this portends for the future.

 It is easy to argue that the expanding base of the use of simulation systems is
directly related to the expansion of their technical capabilities as well as their ease
of use. During the 1990s, both GENESIS and NEURON expanded their graphical
capabilities and repertoire of built-in tools specifi c to neural modeling, making the
advantages of using a general simulator package obvious. These simulators then
became the preferred method of constructing these types of models. At present,
GENESIS and NEURON have very similar functionality for realistic neural model-
ing. However, there are some signifi cant differences in the way that simulations are
created and models are represented. An examination of the different approaches
taken in their design may offer some insight into issues facing developers of the next
generation of neural simulators.

D. Beeman

http://www.genesis-sim.org/GENESIS/bog/bog.html
http://www.genesis-sim.org/GENESIS/bog/bog.html

47

 Scripting and GUIs

 I was attracted to the idea of using GENESIS to write tutorials because of its built-in
graphical tools that I could use with the same scripting language that would be used
to construct models. Matt never made much use of GUIs in his simulations, prefer-
ring to run his long network simulations in batch mode, sending the output to fi les
for later analysis. Many modelers still follow this approach, using simulation scripts
written with a text editor, and minimal graphics. However, a customizable GUI was
necessary for developing tutorials. Later, I found out how important it could be for
interpreting the results of parameter changes in a simulation during run time, allow-
ing a quick exploration of a model.

 At the time, most neural modelers, and even nonprogrammer users of personal
computers, were at home in a command-line computer environment. Over the years,
the expectations of modelers have changed, and a GUI is considered essential.
However, using scripting commands to position graphical “widgets” (buttons, text
fi elds, graphs, etc.) in a window is diffi cult and time-consuming. Newer graphical
libraries provided for Java or Python, or the cross-platform wxWidgets library being
used for G-3 provide more powerful tools than the comparatively low-level syntax
used in XODUS. Nevertheless, the script code to set up a neural simulation GUI is
often much longer than that needed to set up and run the simulation.

 Generic GUIs such as the GENESIS Neurokit or the NEURON Cell Builder can
be very useful for analyzing or tuning a single cell model, but rarely have the fl exi-
bility or unique features needed to perform and visualize the results of a research
simulation, or to use as the basis of a tutorial simulation. In principle, Neurokit and
the Purkinje Cell Tutorial can be modifi ed by the user, as they are written in the
XODUS extensions to the GENESIS SLI language. In practice, the scripts are far
too complicated for most users to want to modify. G-3 allows for the future use of
an Integrated Development Environment (IDE) such as Glade to let users create,
size, and position graphical elements with a mouse, saving the layout in a standard
format (Cornelis et al. 2012b).

 When I began writing my fi rst GENESIS tutorial simulation, the “Neuron” tuto-
rial (Beeman 1994), I began to appreciate the object-oriented (OO) nature of the
language that Matt had created for building simulations. I admit to being a some-
what lazy programmer who would rather hack at an existing example than to plan a
program out from the beginning and start with a blank screen. I think that every
computer program or simulation script that I have ever written has been a modifi ed
version of something else. Of course, I want to give a lot of thought to planning the
structure of the program before I start, but I am likely to start with something that I
have already written as a template. Then I fi ll in bits of code taken from examples
or from other programs that I had written for something else. This wasn’t too hard
with my own FORTRAN, Pascal, or C code, but trying to merge pieces of someone
else’s code into my own and keep track of all the global variables and dependencies
was often more work than starting over and writing it myself from the beginning.

3 History of Neural Simulation Software

48

 The scripting language that Wilson developed for the GENESIS SLI had a syntax
similar to C, and the ability to create simulation “elements” (or “objects” in modern
terminology) from templates or “object types” (i.e., “classes”). This enabled neural
models to be constructed using a “building block” approach. Simulations are con-
structed from modules that receive inputs, perform calculations on them, and then
generate outputs. Model neurons are constructed from these basic components, such
as dendritic compartments, and variable conductance ion channels. Compartments
are linked to their channels and are then linked together to form multi-compartmen-
tal neurons of any desired level of complexity. Neurons may be linked together to
form neural circuits. By keeping most of the variables and functions (methods or
“actions”) local to these elements, it was easy to pull in pieces of another model
without having to understand very much about the large script in which it was
embedded. This approach to building simulations has worked very well when build-
ing neural models.

 Object-oriented programming concepts were well known among the artifi cial
intelligence community at the time that GENESIS was written, but had not entered
the mainstream of computer programming until the mid-1990s. The object-oriented
programming language C++ was then in its infancy and would not become stan-
dardized until much later.

 The parser for the scripting language devised by Matt Wilson was written by him
in C. In order to make GENESIS as fl exible as possible for creating different types
of models, the object types were made as general as possible. For example, an “hh_
channel” was not a particular Hodgkin–Huxley squid axon channel, but would
model any channel that could be modeled with Hodgkin–Huxley type equations.
The “tabchannel” and “tab2Dchannel” objects with tables for gate activation, intro-
duced shortly afterwards, provided further generality. Later, De Schutter (De
Schutter and Smolen 1998) added a library of GENESIS objects for modeling cal-
cium diffusion.

 By giving these objects different parameter values, creatively connecting them
together in a script, and manipulating them with user-defi ned commands, a great
amount of user-extensibility was achieved without having to do any programming
outside of the scripting language. Inevitably, the time comes when a new object type
or command needs to be defi ned and compiled into GENESIS. This requires some
C programming ability of the user, although the process is simplifi ed considerably
by the detailed documentation and examples that are provided. Once the new ver-
sion of GENESIS is compiled, the new functionality is available for any subsequent
use of GENESIS.

 NEURON is written in C, but made use of an existing scripting language and
parser software by choosing HOC (Kernigan and Pike 1984). HOC has a C-like
syntax and is also written in C. It was easily extended to include functions specifi c
to modeling neurons, and over the years graphical commands and object-oriented
programming concepts were added.

 However, it proved diffi cult for users to add new channel mechanisms in HOC,
so a high-level model description language, NMODL (Kohn et al. 1989) was incor-
porated into NEURON (Hines and Carnevale 2000). This made it much easier for

D. Beeman

49

users to extend the functionality of NEURON by writing defi nitions in NMODL,
and then having them automatically compiled and linked into NEURON. This pro-
vides some advantages over the GENESIS approach, such as allowing a high-level
scripting language to specify the differential equations to be solved, rather than
writing lower level C modules. However, this means that most NEURON models of
any complexity involve a mixture of HOC and NMODL, and require a recompila-
tion and link step each time a simulation is run.

 Parameter Search, Model Tuning, and Comparison

 Upi’s additions to XODUS enabled me to have pop-up help windows with scrolling
text and images in my completed “Neuron” tutorial in time to use it with assigned
exercises in the “Modeling and Analysis of Neural Networks” course (CS 189B) at
Harvey Mudd in the spring of 1990. Jim suggested that I next write a simulation of
a bursting molluscan neuron and develop a tutorial to go along with a manuscript
“The Dance of the Ions,” that he was writing to explain the role of the various types
of ionic conductances in shaping the fi ring patterns in molluscan pacemaker cells.

 It seemed like a simple thing to do. The principal channel types were well char-
acterized with published voltage clamp data from the sea slugs Tritonia and Aplysia
californica . GENESIS had all the features that I needed to implement a single-
compartment model with six varieties of conductances and a calcium diffusion
mechanism. That was my introduction to the diffi culties and complexities of param-
eter searching and model comparison. My model was a “generic burster,” loosely
based on an Aplysia R15 neuron, with channel data taken from both Tritonia and
 Aplysia cells under different conditions.

 I soon realized, along with many of the students that I tutored over the years in
the MBL neural modeling courses and future ones in the EU Advanced Course in
Computational Neuroscience and the Latin American School on Computational
Neuroscience (LASCON), that parameter fi tting is the most time-consuming task of
single cell modeling. This requires scaling several conductance densities, shifting
activation curves to account for different rest potentials, and varying time constants
to account for temperature variations. Varying these many parameters in order to fi t
fi ring patterns obtained under current clamp conditions remains a diffi cult task
today.

 By the time I was happy with my model and tutorial, far better models of the
 Aplysia R15 neuron had been published (e.g., Canavier et al. 1991), but the tutorial
and the one that I based on a GENESIS recreation of the Traub et al. (1991) hippo-
campal pyramidal cell, are still the best way I know of to get a feel for the role of the
various conductances by modifying them within a GUI. The most sophisticated
GENESIS single cell tutorial is the Purkinje cell tutorial, developed by Hugo
Cornelis.

 The experience of converting the Traub model and other published neural mod-
els to GENESIS revealed another sobering aspect of model replication and

3 History of Neural Simulation Software

50

comparison. Of the many published descriptions of models that I have attempted to
reimplement, I can think of very few that did not have errors or signifi cant omis-
sions. As discussed later, I feel that this stems from the limitations of the present
system of publishing model-based research. Thus, there may be some parameter
searching involved even when replicating an existing model, as well as the very
important matter of making a meaningful comparison between the results from dif-
ferent implementations of what is ostensibly the same model.

 A parameter search often involves doing the very easiest form of parallel com-
puting: running many separate uncoupled simulations with different sets of param-
eters. One evening in the computer lab during the 1991 Woods Hole course, the
students discovered that their simulations had suddenly slowed down to a crawl. It
turned out that Erik De Shutter was doing a parameter search on the Purkinje cell
model by running a background simulation on every workstation. I believe that he
obligingly consented to cease, although John Uhley may have threatened actual
physical violence.

 To address the problem of comparing the results of dendritic cable model simula-
tions when run on different simulators, Bhalla et al. (1992) developed the Rallpacks
set of benchmarks. These demonstrated that GENESIS and NEURON had equiva-
lent speed and accuracy for these models. Shortly later, GENESIS gained a number
of parameter search commands that were used for tuning the olfactory bulb mitral
and granule cell models of Bhalla and Bower (1993). Vanier and Bower (1999)
performed a detailed study of a variety of automated parameter search methods,
using the GENESIS parameter search library developed by Vanier. In most cases the
simulated annealing algorithm gave the best performance.

 There are, however, some pitfalls in performing an automated search. In addition
to the time consumed by searching unproductive regions of a large parameter space,
there can be multiple regions that give equivalent local minima in the error function
for the fi t.

 In order to know where to start a search, one needs to have an understanding of
the roles that many different ionic currents play in the timing of action potentials, in
order to have a sense of which parameters are most relevant. For example, knowing
the role that the “H-current” plays in producing an overshoot in the membrane
potential after a hyperpolarizing current injection can help defi ne the area in param-
eter space to be searched.

 I have found it most helpful to begin with a manual search, starting with the best
available data for initial values. By varying the parameters by hand, using a custom
GUI scripted with GENESIS/XODUS, and plotting the results, I can fi nd a much
better set of initial parameters for an automated search. Figure 3.2 shows such an
interface for tuning a simple pyramidal cell model.

 The largest problem when fi tting parameters to current clamp experiments is the
same as the one when comparing the results of two different simulations. Simply
matching the positions of action potentials is not a suffi cient condition to judge
when a simulation agrees with experimental results, or those of another model,
unless the model is a tonically fi ring one, such as the axon model used in the
Rallpacks (Bhalla et al. 1992) set of benchmarks. The diffi cult problem of

D. Beeman

51

reproducibility in computational neuroscience is addressed in detail in another
chapter in this volume by Crook et al. (2013).

 The distinction between incorrect results and those in “reasonable agreement,” is
particularly diffi cult to make in the case of cells that display spike frequency adapta-
tion or bursting behavior. These models contain slow hyperpolarizing currents (e.g.,
Muscarinic or AHP) that are active near the threshold voltage for an action poten-
tial. Thus the membrane potential can hover about threshold, and these currents can
have the effect of magnifying the effect of small deviations between two numerical
solutions that can push the balance in one direction or the other.

 Figure 3.3 shows the membrane potential for a model (Traub et al. 1994) of a
burst-fi ring hippocampal pyramidal cell under conditions with two slightly different
numerical precisions.

 The upper plot, shown with a prototype Python plotting module for G-3, shows
the result of a current injection over a 0.2 s interval. These small deviations eventu-
ally cause signifi cant differences in the position of the fi nal spike of the burst. When
plotted over a 5 s period (below), the bursts have roughly the same time intervals,
but drift in and out of coincidence with each other. One would call these “equivalent
results,” but it is diffi cult to quantify the differences in a meaningful way. Baldi et al.
(1998) have addressed this problem by suggesting the use of Bayesian inference in
the comparison of spike trains. However, making quantitative comparisons of this
nature remains a largely unsolved problem.

 Fig. 3.2 Custom scripted GUI for adjusting channel parameters to fi t response to a 0.4 nA current
injection pulse to a model layer 5 pyramidal cell

3 History of Neural Simulation Software

52

 The “Decade of the Brain” and the Human Brain Project

 The US Congress established the 1990s as the “Decade of the Brain,” and 16 federal
agencies, including the NIH, issued program announcements in April 1993 and
again in October 1995 soliciting proposals for the Human Brain Project. The
research to be supported would develop informatics tools for accessing and integrat-
ing the huge amounts of data produced by neuroscience research, with an emphasis
on web-based databases for data sharing (Koslow and Huerta 1997). Suddenly
“neuroinformatics” became a popular word in research proposals. A great many of
these proposals involved brain atlases and dealing with the huge data sets produced
by neuroimaging experiments. However, there were many opportunities offered to
neural modelers and simulator developers. The development of realistic neural
models can benefi t, not only from model sharing, but from the development of tools
for managing notes and model development histories, and for linking models to
experimental data and bibliographic references.

 Fig. 3.3 Two simulation runs of a burst fi ring pyramidal cell with slightly different numerical
precision. Upper plots : Membrane potential during the fi rst 0.2 s. Lower plots : Membrane potential
during 5 s of a longer run

D. Beeman

53

 The initial goals of the SenseLab project at Yale University (Shepherd et al.
 1997) were concerned with creating a comprehensive database of information about
the olfactory system and tools for access. The system was to be built upon a com-
mercial object-oriented database (OODB) called Illustra, and included an olfactory
receptor database (ORDB), a database of neuron descriptions (NeuronDB), and a
database of computational models of olfactory and other neurons (ModelDB).

 The GENESIS group was awarded a grant in the fi rst round to develop a
“GENESIS Simulator-Based Neuronal Database” that would use an OODB with a
query interface to mine the information contained within GENESIS simulations of
a model neuron or network, and to link it with model descriptions, relevant data, and
reference materials (Beeman et al. 1997). The initial choice of database was the
commercial database UniSQL, and later prototypes were implemented with one
called ObjectStore.

 Two issues came up regularly at the annual Human Brain Project principal inves-
tigators meeting at the NIH in Bethesda. The question of how to best represent,
store, and exchange models was a continuing theme, as well as what particular
database to use. OODBs were in vogue at the time and were widely used in business
software (Loomis 1995). An object-oriented representation was natural for describ-
ing neural models, and particularly for GENESIS models. However, the available
OODBs were commercial products with proprietary data formats. The open-source
options at that time were earlier incarnations of the relational databases PostgreSQL
and MySQL. It is worth noting that none of the three commercial products men-
tioned above are in existence today, but PostgreSQL and MySQL are still widely
used and available for a wide variety of platforms.

 The other trend in the world of business software at that time was the use of
SGML for representation of a large variety of data objects in a “document.” A “doc-
ument” could be, and often was, a description of a textual document, such a one
described by a subset of SGML, HTML. The use of SGML in the publishing indus-
try was well known. However, the use of SGML gave a powerful object- oriented
description of items that could also be represented with OODBs, and it was often
used as an interchange format between OODBs. An SGML document could just as
well be a collection of data relating to the inventory of a business, a collection of
customer contact information, or perhaps a description of a neural model.

 Unfortunately, the SGML specifi cation was needlessly complex to use or imple-
ment parsers for, and not very standard. Preliminary discussions by the World Wide
Web Consortium (W3C) of a simpler standard more suitable for use with the WWW
called the eXtensible Markup Language (XML) were underway at that time, but the
XML 1.0 specifi cation would not become a W3C recommendation until February
1998.

 In March of 1996, Michael Arbib invited HBP participants with an interest in
neural modeling to a “Workshop on Brain Models on the Web” held at the University
of Southern California. His group had an HBP grant to develop a web-accessible
database of neural models and to construct tools for sharing and exploring models
and associated data that would be contributed by other modelers. The neural simula-
tion system in use was NSL (Weitzenfeld 1995), a simulator for large networks of

3 History of Neural Simulation Software

54

point integrate and fi re neurons, and it would be advantageous to incorporate more
realistic models generated with GENESIS and NEURON. These were to be stored
in an Illustra OODB. Michael Hines and Matt Wilson had discussed the conversion
between NEURON NMODL and GENESIS SLI scripts since 1989, and made some
initial steps towards a conversion program. But, the problem was diffi cult because
of the very different representations used in the two simulators.

 The GENESIS “.p” format provides a machine-readable description of a
branched compartmental cell model with active conductances. It can easily be trans-
lated to other formats. However, the channel names that appear in the fi le are names
of elements that are created with GENESIS scripts for the SLI. Figure 3.4 is taken
from a slide given at my presentation on the use of SGML for model representation,
showing a fragment of an NMODL script and one of a GENESIS SLI script.
Someone familiar with both simulators would recognize that both represent the
same Hodgkin–Huxley model of the squid giant axon potassium channel, with one
using physiological and the other SI units, but it is hard to imagine a machine trans-
lation between the two formats and their many possible variations.

 The ModelDB project (Migliore et al. 2003) was one of the most successful and
well known of those to come out of the HBP, primarily because of its simplicity.
Rather than take the path of many others that attempted to put models into some OO
format, it simply stores simulation scripts in the native simulator languages along
with documentation, and is well indexed. However it suffers from the problem that
the scripts are not portable, sometimes even to later versions of the simulator on
which they were developed. This is because the simulators use procedural scripting
languages that give a sequence of instructions telling the simulator how to construct
a model, rather than declarative representations that describe the model, leaving it
to the simulator to determine how it should be created in the context of the simulator
implementation and its data structures.

 The key to model sharing would be to translate this scripted procedural represen-
tation to a declarative object-oriented representation. I tried to argue persuasively
that an SGML representation was preferable to storage in an OODB, but I don’t
think that anyone was convinced. My notes from the meeting say that Michael
Hines was “pessimistic about the possibilities of representing a simulation outside
of the structure of the simulation code.” By the year 2000, when XML became
widely known and open-source parsers were available, it would seem obvious that
describing the objects with XML and storing XML fi les in a generic (and replace-
able) relational database would be the best solution.

 Model Sharing and Simulator Interoperability

 During the fi nal phase of the Human Brain Project, the focus of the GENESIS group
turned towards creating the Modeler’s Workspace (MWS). The MWS (Forss et al.
 1999 ; Hucka et al. 2002) was a design for a graphical environment for constructing
and exploring neuron and network models with simulations, experimental data, and
bibliographic material. It would also allow collaborative development of models.

D. Beeman

55

The GENESIS HBP funding was to develop a prototype user interface for the exam-
ination and sharing of neural models with related metadata, rather than to enhance
the functionality of the simulator core. Nevertheless, under continuing NSF fund-
ing, we were also looking forward to a major reorganization of GENESIS that

 Fig. 3.4 Fragments of simulation scripts for a Hodgkin–Huxley potassium channel (a) NEURON
NMODL script (b) GENESIS SLI script

3 History of Neural Simulation Software

56

would have the modularity and interoperability required to support the functionality
of the MWS design.

 As a key component, the MWS design contained an XML-based representation
of cell and channel models. By the late 1990s, several other groups were also using
XML-based descriptions of neuroscience-related data and models.

 Daniel Gardner’s group at Cornell had an HBP-funded effort to create an XML-
based Common Data Model for the exchange of neurophysiology data and related
metadata (Gardner et al. 2001). Although this was not intended for model descrip-
tion, it was very infl uential in our design of what eventually became a large part of
NeuroML.

 In late 1999, Michael Hucka, the main developer for the Modeler’s Workspace
Project, began working with what was then called the ERATO project at Caltech to
develop SBML, the Systems Biology Markup Language (http://sbml.org). This
team, consisting of Hamid Bolouri, Andrew Finney, and Herbert Sauro, was devel-
oping an infrastructure for computational modeling in systems biology. It faced
many of the representation and design issues of the MWS project, and there was a
great deal of overlap in the design of SBML and the MWS XML description of
neural models (Hucka et al. 2003).

 In June 2000, Hucka circulated the fi rst draft of the notation used by the MWS
for model descriptions (http://modelersworkspace.org/mws-rep/mws-rep.html) to
the ERATO project and to Nigel Goddard’s group in Edinburgh, who were working
on model representations for their (now-defunct) simulator NEOSIM (Goddard
et al. 2001a).

 At about that time, Hugo Cornelis was fi nishing his Ph.D. thesis in Computer
Science, while working in the laboratory of Erik De Schutter in Antwerp. Needing
to develop a user-friendly declarative interface to the Hines method solver in
GENESIS 2, he developed the Neurospaces model-container and the Neurospaces
Description Format (NDF) for single neuron and network model representation in
1999 (Cornelis and De Schutter 2003). He described it in a meeting with the
Goddard group in summer 2000 and, with Fred Howell, wrote a fi rst draft of a pro-
posal to use it as a representation for NEOSIM.

 In a collaboration between these groups, a paper describing the initial specifi ca-
tion for NeuroML (http://www.neuroml.org) was submitted in December 2000.
After much discussion and further revision during a meeting in Edinburgh in early
2001, the representation was further clarifi ed, incorporating the MWS cell and
channel representations with the NEOSIM network-level representations (Goddard
et al. 2001b).

 In 2002, Fred Howell and Robert Cannon implemented the NeuroML
Development Kit in Java, with classes corresponding to an extended version of the
XML schema described in Goddard et al. (2001b), and tools for parsing NeuroML
fi les. This was then used to implement a prototype MySQL database and Java-based
GUI for to retrieve GENESIS ionic conductance models described with NeuroML,
and convert them to procedural GENESIS SLI scripts (Beeman and Bower 2004).

 The next signifi cant application of NeuroML was the neuroConstruct project,
initially begun in 2004 as a tool with a GUI for creating network models with

D. Beeman

http://sbml.org/
http://modelersworkspace.org/mws-rep/mws-rep.html
http://www.neuroml.org/

57

NEURON. NeuroConstruct (Gleeson et al. 2007) is implemented in Java, and the
latest version (http://neuroconstruct.org/) uses the current NeuroML specifi cation
(Gleeson et al. 2010), which incorporates the MorphML (Crook et al. 2007) schema
for cell morphology description. Rather than being a simulator, it provides an envi-
ronment for creating large networks of biologically realistic neurons with complex
connectivity patterns, using NEURON-, GENESIS-, MOOSE-, PSICS-, and PyNN-
based simulators to perform the actual simulations. This is accomplished by gener-
ating simulation scripts for these simulators in their native scripting languages.

 The International Neuroinformatics Coordinating Facility (INCF) has formed a
program to develop another standardized description language for spiking neuronal
network models, the Network Interchange for Neuroscience Modeling Language
(NineML). NineML (Gorchetchnikov 2010 ; Raikov 2010 ; http://nineml.org) incor-
porates features of NeuroML and SBML and is based on a layered approach. An
abstraction layer allows a full mathematical description of the models, including
events and state transitions, while the user layer contains parameter values for spe-
cifi c models. There are frequent discussions between the NineML and NeuroML
groups. It is likely that there will be some convergence between the two standards.

 In the fall of 2005, Cornelis joined the Bower lab in San Antonio as a postdoc-
toral student, and began the integration of Neurospaces into G-3 as its internal data
representation format and model container. Hucka is now the Team Leader and
Chair of the SBML editors for the SBML project, working on all aspects of SBML
development.

 Choice of Programming Languages

 In retrospect, the choice of C as the programming language for GENESIS and
NEURON during the mid-1980s may seem like an obvious decision. But, there
were other alternatives that could have been chosen, and C was a fortunate choice.
At this time most scientifi c computations were performed in FORTRAN, running
on mainframe computers without graphics. Graphical displays were available on
workstations made by a variety of manufacturers including DEC, Xerox, Evans and
Sutherland, Apollo, and Xerox, as well as Sun Microsystems and Silicon Graphics.
These typically had their own specialized software libraries and software to take
advantage of their hardware. C was the standard language for Unix-based systems,
and the X Window System was just beginning to emerge as a standard hardware-
independent protocol for the display of graphics.

 There were a number of dialects of C, and much early software, including
GENESIS, used the original informal specifi cation by Kernighan and Ritchie (1978)
that is often called “K&R C.” The fi rst standard for what became known as “ANSI
C” was not adopted by the American National Standards Institute until 1989, and
adopted by the International Organization for Standardization in 1990. During the
1990s, a great deal of time was spent updating and slowly “ANSIfying” the
GENESIS base code in order to guarantee that it would compile under the various

3 History of Neural Simulation Software

http://neuroconstruct.org/
http://nineml.org/

58

workstation operating system implementations of Unix, such as SunOS, Solaris,
Irix, Ulttrix, and HPUX.

 However, the US government was pushing strongly for the use of the language
Ada. Although Pascal was originally proposed as a teaching language, it was
becoming popular, and there were inexpensive Pascal compilers and interpreters
widely available for personal computers. Many computer scientists favored Algol or
Modula-2, or “fi fth generation” languages such as Prolog or Lisp. In fact, a notable
single neuron simulator, Surf-Hippo was written in Lisp (Borg-Graham 2000).

 Many IBM mainframe computers ran a proprietary language PL/1/, and DEC
minicomputers such as the PDP8 used FOCAL. Although object-oriented C++ had
been under development since 1983 as an extension of C, standardization was slow
to come and the C++ programming language standard was not ratifi ed until 1998.

 During the development of a neural simulator, it is obviously of great importance
to “pick a winner” among emerging software standards for programming languages
and graphical packages. The approach taken by GENESIS was a conservative one,
using standard C and X libraries, at the cost of having to write much of the “middle-
level” software such as the SLI and XODUS to connect low-level function calls to
high-level commands in a scripting language. NEURON has tended to use available
software packages (HOC, NMODL, InterViews, etc.) as an easy way to gain func-
tionality, whereas GENESIS has tended to develop its own built-in libraries or mod-
ules. Thus, the SLI, XODUS, and the original mailing list management software
were written “in-house,” based on widely accepted standard low-level Unix and X
libraries. Each of these approaches has both advantages and disadvantages.

 Open Source vs. Proprietary Software

 Many of the HBP-funded database projects elected to use proven, professionally
developed commercial software, rather than less stable free open-source software.
However, most of these companies and their software with proprietary data formats
no longer exist. Today it is much easier to make an argument in favor of using open-
source software to avoid dependence on a closed platform that may not exist in the
future. However, it is certainly an advantage to have someone else do the hard work,
and it is a safe bet that tools such as MATLAB and their data formats will be around
for a long time.

 However, the choice of an open-source package also presents a dilemma. Is it
best to incorporate the needed code into the simulator, or rely on loadable libraries
that are maintained elsewhere and distributed from an Internet-accessible reposi-
tory? Obviously the latter is the easiest route, if only one can guarantee that the
package will not become like so many orphaned software projects on Sourceforge.
net. If the package is not large, at least the source code will be available to be incor-
porated and maintained by the simulator developers.

 The GENESIS experience with the NetCDF package from Unidata is an example
of a decision that wasn’t entirely optimal. GENESIS has a very fast and effi cient

D. Beeman

59

binary fi le format (FMT1) for outputting the state (virtually any variable of interest)
of the neurons in a large network at specifi ed time intervals. However, it is platform-
dependent and cannot be reliably used for exchanging fi les between different com-
puters. The NetCDF package provided an easy way to give GENESIS a
platform-independent output format with many other features. However, it is a very
large package with a great deal that is not relevant to GENESIS. The NetCDF
license allowed the incorporation of parts of the code into GENESIS with proper
attribution, so it was decided to make a GENESIS “netcdfl ib” from parts of NetCDF.
During the early years of patching GENESIS in order to compile on the many vari-
ants of the Unix operating system, maintaining netcdfl lib became a tiresome task.
Although the compilation of netcdfl ib is optional in GENESIS 2, it now runs (more
slowly than the default FMT1) on all the major Unix variants. NetCDF is currently
still maintained by Unidata, and updated packages are available. In retrospect, life
would be simpler if netcdfl ib were a library maintained by Unidata, or if we had
written our own software with a NetCDF-compatible format, or picked another
widely used and supported format.

 NEURON relied heavily on open-source software packages that might now be
considered orphans, but with few ill effects. HOC and MOD (from which NMODL
was developed) are used nowhere else but in NEURON. The Unix InterViews pack-
age upon which the NEURON GUI is based had its last major release in 1993. As
long as these are part of NEURON and can be maintained with the rest of the code,
it does not matter if they are otherwise unsupported.

 In 2011, there are very powerful and complex graphical libraries available that
are popular and being extensively developed. Today, no one would think of writing
a programmable GUI such as XODUS from scratch, using basic X Window System
function calls. For example, G-3 makes use of the platform-independent libraries
for wxWidgets and the Python tool Matplotlib. Compiled binary libraries for nearly
any operating system are maintained and may be updated from Internet repositories.
Using these is a great advantage, but there is always the gamble of betting on a loser
that will fall from favor and no longer be maintained.

 Some Identifi ed Problems with Past Simulators

 Scripting a simulation with SLI or HOC is diffi cult because they each have an idio-
syncratic syntax that must be learned. They lack the generality and the data struc-
tures available in more general purpose programming languages, and have no
supported external libraries that can be used to easily gain additional functionality.
Creating a custom GUI for a simulation or a tutorial with SLI or HOC is even
harder, because of the lack of built-in tools for designing GUIs. Modelers also
require that a simulator provide a large variety of tools for visualization, analysis, or
model construction, in addition to fast and accurate simulation of the model.

 Increasingly, neural simulations need to cover many scales of modeling, ranging
from the subcellular level of biochemical kinetics and diffusion modeling, through

3 History of Neural Simulation Software

60

single cell, network, and system modeling. Specialized simulators exist that are an
excellent solution at a particular level. For example, MOOSE provides very good
capabilities for biochemical kinetics modeling, based on the GENESIS 2 kinetics
library component. MCell (Stiles and Bartol 2001) uses Monte Carlo methods to
model diffusion and stochastic activation of synapses. Due to the lack of interoper-
ability between simulators, it has generally required extending the simulator in
order to include similar capabilities.

 As mentioned in the section on parameter search, model tuning, and comparison,
publication of the results of a simulation in a way that allows the results to be repro-
duced or compared with the results from other models is a nearly impossible task.
This is true even if the source code for the simulation is made available. This is
because there is no way to track either the micro-evolution of a model during a
single published research project or the macro-evolution of a model across longer
time periods and multiple publications by multiple researchers. There is no guaran-
tee that the model parameters that were used to generate a particular fi gure are the
same as those described in the paper or used in the provided simulation scripts. In
the traditional scientifi c process the actual records of day-to-day activity are kept in
research notebooks or log books. In the case of computational modeling, a model
may be incrementally modifi ed with an incomplete record kept of all changes. Most
neural simulators provide facilities for keeping “Notes” fi les, but not a comprehen-
sive system for tracking model evolution using a verifi able digital description of the
model and the exact conditions for the simulated experiments.

 The monolithic architecture of simulators that were developed during the last
century makes it diffi cult to add “plug-in” software components to the simulator
without making major changes to the core simulator code. For example, GENESIS
2 has various components such as the cell reader, the hsolve compartmental solver,
the SLI parser, and XODUS. However these were not implemented in a modular
fashion and cannot be used as stand-alone software components.

 By the end of the twentieth century, the limitations of the 1980s software that
was the basis for GENESIS, NEURON, and other simulators were becoming appar-
ent. Although emerging standards for declarative model descriptions showed prom-
ise for simulator-independent model sharing, the fundamental barrier to simulator
interoperability and collaborative model development was the monolithic architec-
ture of the simulators. The only way to communicate with GENESIS or NEURON
was via an exchange of fi les. Not only does this limit the ability of two simulations
to closely interact in real time, but it forces an “all-or-nothing” approach to the use
of tools to control the simulation, provide stimuli, or analyze and display the results.
Although GENESIS has many built-in tools for spike train analysis of the output of
single cell models, this can easily be done with external tools such as Matlab or
custom tools written in Python, if spike times are sent to a fi le for post-run analysis.
Modelers have long used tools such as Matlab or various plotting programs to ana-
lyze the results of simulations. New tools are being developed specifi cally to aid
neural simulation. However, they presently communicate with simulators indirectly
by loading simulation scripts and communicating via fi les.

D. Beeman

61

 The problem comes if one wants to connect them more directly to a simulation
during the run, without resorting to communication via data fi les. When calculating
extracellular potentials or simulated EEG and MEG recordings from a large net-
work model, it is necessary to sum channel currents from many compartments of
very many cells. Unless the analysis application and the simulator have been
designed to communicate with each other, the only other alternative is to generate
enormous data fi les that give meaningful results only when the simulation is over,
and no feedback while it is running. Although long “production runs” may be per-
formed non-interactively, it is useful during the exploratory phase, and essential for
educational tutorials, to perform these operations while the simulation is running.
Thus, GENESIS 2 and NEURON each have a great deal of code that is devoted to
built-in tools that are not concerned with specifying and simulating a model. Ideally,
there should be no need to have a morphology fi le converter or spike train analyzer
encapsulated within a simulator. It would be much better if these tools were imple-
mented as external simulator-independent plug-in modules.

 The Twenty-First Century: Next Generation
Neural Simulators

 By the beginning of the twenty-fi rst century, the basic simulation capabilities of
GENESIS and NEURON had reached maturity, although there were continuing
improvements, leading up to the latest releases of GENESIS 2.3 (May 2006) and
NEURON 7.1 (October 2009). Recent development efforts have shifted to provid-
ing other capabilities for the analysis or construction of models. For NEURON, the
focus has been on better integrated graphical tools, such as Cell Builder, Channel
Builder, Kinetic Scheme Builder, and built-in tools, for parameter fi tting and import-
ing cell morphology fi les, as well as model import functions for NeuroML and other
standard declarative formats. As described below, the approach taken by G-3 has
been somewhat different.

 I believe that the twentieth century simulators described above and their architec-
ture have reached the end of their life cycles, and it is time for a new generation of
modular, interoperable realistic neural simulators. These should be built upon mod-
ern software designs, with care to pick standards, formats, and externally developed
packages that will be in existence 20 years from now.

 It may be useful to briefl y describe here some simulators that have been devel-
oped or extended during the present century. Brette et al. (2007) reviewed eight
currently available simulators that are capable of modeling networks of spiking neu-
rons. In addition to GENESIS and NEURON, this capability is present to one degree
or another in NEST (Eppler et al. 2008), NCS (Drewes et al. 2009), CSIM (http://
www.lsm.tugraz.at/csim/), SPLIT (Hammarlund and Ekeberg 1998), Mvaspike
(Rochel and Martinez 2003), and XPPAUT (Ermentrout 2006).

3 History of Neural Simulation Software

http://www.lsm.tugraz.at/csim/
http://www.lsm.tugraz.at/csim/

62

 NEST specializes in very large networks of neurons having one or a small num-
ber of compartments. It uses parallelism and has its own interpreted scripting lan-
guage with no GUI. NCS, the NeoCortical Simulator, has an inherently parallel
implementation and is used for large networks of multi-compartmental integrate
and fi re neurons.

 CSIM and the Python version PCSIM (Pecevski et al. 2009) model large net-
works of point neurons that are typically integrate and fi re, but may also include
Hodgkin–Huxley channels. Rather than having its own GUI, it is controlled by
Matlab, and more recently with Python.

 SPLIT is designed for massively parallel simulations of networks of multi-
compartmental neurons with Hodgkin–Huxley dynamics. It was recently used in a
neocortical simulation with eight million neurons and four billion synapses per-
formed on the Blue Gene/3 supercomputer (Djurfeldt et al. 2005). The user speci-
fi es the model in a C++ program, rather than using an interpreted simulation
language. The program is linked to the SPLIT library, compiled, and run. It has a
minimal GUI and no analysis tools.

 Mvaspike is based on an event-based modeling and simulation strategy, mainly
using pulse-coupled integrate-and-fi re point neurons.

 XPPAUT is in a class by itself. It is not so much a neural simulator, but an analy-
sis tool for understanding the equations that are used in simulations of cells and
small networks. The equations used are completely specifi able by the user and can
be analyzed with bifurcation diagrams and similar phase plane representations.

 Another new simulator, Brian (Goodman and Brette 2008) models networks of
integrate-and-fi re or Hodgkin–Huxley single or few compartment neurons. It is
written entirely in Python, making it highly portable, easy to learn and use, and suit-
able for rapid prototyping of models. However, this prevents it from being as fast as
other simulators that make use of compiled C or C++ libraries to perform most of
the numerical calculations in a simulation.

 PyNN (Davison et al. 2009) and MUSIC (Djurfeldt et al. 2010) are not simula-
tors, but provide interfaces for existing simulators. PyNN, discussed below, pro-
vides a common Python-based scripting interface for many simulators. MUSIC is a
C++ library implementing an API which allows large-scale neuronal network simu-
lators to exchange data during run time. NeuroConstruct (Gleeson et al. 2007),
described previously, is an environment for creating simulations that run under sev-
eral simulators, using NeuroML as a declarative model description language.

 The GPU-SNN simulator (Richert et al. 2011) models large networks of spiking
Izhikevich model neurons, having spike-timing-dependent plasticity and short-term
plasticity. It can run on an “off-the-shelf” Graphical Processing Unit (GPU) such as
the Nvidia GTX-280 at speeds of up to 26 times faster than a CPU version for a
simulation of 100,000 neurons with 50 million synaptic connections. It is written in
C and C++ and has a Python-based user interface similar to PyNN.

 MOOSE (http://moose.ncbs.res.in) is the Multiscale Object-Oriented Simulation
Environment for large, detailed simulations including computational neuroscience
and systems biology. It was developed by Upi Bhalla as a reimplementation of
GENESIS 2 in a cleaner, more modular manner. Although it retains the GENESIS

D. Beeman

http://moose.ncbs.res.in/

63

2 use of objects that pass messages between them, it does so in a more effi cient
manner. It is completely rewritten in C++ and has a different architecture, with no
old GENESIS 2 code except for the SLI parser defi nition. The SLI parser allows it
to maintain a high degree of backwards compatibility with GENESIS 2 scripts, and
the new Python interface (Ray and Bhalla 2008), allows scripting of simulations in
Python.

 The development of G-3 has taken a different path from that of the simulators
described above. Rather than adding new features and capabilities to GENESIS, the
functionality of its monolithic architecture has been completely reimplemented as a
collection of independent software components. These, and other independently
developed components may be used individually or in combination with others to
perform the functions desired for running a particular simulation.

 The modular CBI architecture used by G-3 (Cornelis et al. 2012a) is based on
plug-ins and has multiple interfaces. This modularization provides a number of
advantages for simulator development and for interoperability with other simulators
across scales ranging from subcellular to systems level.

 The clean separation of modules allows developers and users to choose to con-
tribute to only a single component, instead of being exposed to the complexity of the
entire simulator. Decomposition of an application into multiple software compo-
nents not only allows reuse and extension of individual modules, facilitating both
simulator and model development, but individual components can be independently
updated, enhanced, or replaced when needed. The use of multiple parsers for script-
ing simulations allows G-3 users to maintain backwards compatibility with
GENESIS 2, while making use of scripts written in Python or other new scripting
languages. Modules can be run separately on different machines. For example, the
GUI and modeling environment might be run locally, while the simulation is run
remotely on more powerful, possibly parallel, machines.

 Some of the more relevant G-3 components for creating and running a
simulation are:

• The Neurospaces Model Container (NMC) contains the biological model
description and separates it from the details of the implementation.

• Multiple solvers perform numerical calculations and allow highly effi cient solv-
ers to be implemented for particular model objects.

• The Experiment component provides experimental protocols for applying stim-
uli, or for recording and analyzing the model behavior.

• A scheduler (SSP in Perl or SSPy in Python) binds the contents of the NMC with
needed solvers and experimental protocols, and runs the simulation.

• The G-shell (or the new Python shell) provides a console for issuing interactive
commands.

• G-Tube provides a GUI for running G-3 simulations.
• Studio allows the visualization of models in the Model Container.
• NS-SLI provides backwards compatibility with the GENESIS 2 SLI.
• The Exchange component provides model exchange using common standards

such as NeuroML and NineML.

3 History of Neural Simulation Software

64

• The G-3 Documentation System not only provides user and developer documen-
tation on all aspects of G-3, but is the basis for the model publication system.

 Heccer is the default fast implicit numerical solver for compartmental models. It
transparently incorporates the hsolve object of GENESIS 2. The Discrete Event
System (DES) component is a separate solver used for delivering spike events in
network simulations. The Chemesis-3 solver is a numerical solver optimized for the
solution of reaction–diffusion equations (Blackwell 2000). The use of these sepa-
rate numerical solvers for different types of models allows improved optimization
over that obtained by the generic solver used by GENESIS 2. It also allows the use
of multiple simulation engines to perform the numerical calculations of the simula-
tion. In principle, the solvers of simulators such as NEURON and MOOSE could be
used along with the G-3 solvers to perform parts of a simulation. Keeping the
declarative model description separate from the simulator-dependent solver facili-
tates the exchange and reuse of models. The use of separate parsers for simulator
commands allows simulations to be constructed with the G-shell, NS-SLI for
GENESIS 2 scripts, or SSPy for scripts written in Python.

 From the standpoint of a modeler constructing a simulation, G-3 preserves the
GENESIS 2 paradigm of creating simulation objects that exchange messages during
a simulation. However, unlike the approach taken with MOOSE, G-3 does not inter-
nally use objects with messages. This allows highly effi cient numerical methods to
be used without resort to “hacks” such as the GENESIS 2 hsolve object.

 The G-3 model-based publication system (Cornelis et al. 2010) addresses the
limitations of current paper and digital publications, by providing model compari-
son tools, model lineage inspection tools, and model verifi cation tools. This is
intended to lay the ground work for making models, rather than, as at present, the
written description of models, the basis for scientifi c publication in neuroscience.
The Publication System is designed to be platform independent as it adheres to the
CBI federated software architecture (Cornelis et al. 2012a).

 Choice of Python as a Scripting Language

 The term scripting language is often used for a programming language that is used
for control over applications or as a “glue” that links compiled libraries that are
written in other languages designed for effi cient numerical computations. Scripting
languages are usually interpreted, for run-time interaction with the user, and are
designed to be easily writeable and modifi able by the user. This is in contrast to the
programming language that is used for the implementation of the core simulator
functionality. In the past, simulators have used simulator-specifi c scripting lan-
guages, such as SLI or HOC.

 As early as 1999, Michael Vanier was working on PyGenesis to provide a better
object-oriented declarative scripting language than the SLI syntax used with
GENESIS 2. However, the monolithic architecture of GENESIS 2 prevented this

D. Beeman

65

from being an easily interfaced plug-in module, and it was never offi cially released.
Further development of Python interfaces to GENESIS was postponed until recently,
when it became possible to use them as plug-in components of G-3 (Cornelis et al.
 2012b).

 Python has recently become very popular as a scripting language for neurosimu-
lators because it has a far simpler syntax than other languages such as Perl, with
very fl exible object-oriented capabilities and powerful built-in data structures. It
also has a wide variety of well-supported open-source libraries for scientifi c com-
puting and graphical display. For example, NumPy (http://numpy.scipy.org) pro-
vides arrays and fast matrix manipulation tools, and matplotlib (http://matplotlib.
sourceforge.net) can duplicate most of the functionality of Matlab. These modules
are widely used for neuroscience data acquisition and analysis (Spacek et al. 2009).
Although it may be considered a procedural language, the ability to create purely
declarative representations of models using Python objects makes it a good choice
as a scripting language for OO model descriptions.

 The PyNN project (Davison et al. 2009) attempts to provide a common Python-
based scripting interface for nearly any neural simulator, allowing a mixture of
Python and native simulator code. Many of the neural simulators described in the
previous section have developed Python interfaces that aim for some degree of com-
patibility with PyNN, including G-3 (Cornelis et al. 2012b), NEURON (Hines et al.
 2009), MOOSE (Ray and Bhalla 2008), and NEST (Eppler et al. 2008).

 Conclusion: What Have We Learned?

 In the preceding narrative history of neural simulator development, certain issues
arose repeatedly. A summary of these may provide some guidance for future simu-
lator development.

 The advantages of using a well-supported simulator rather than dedicated
simulation- specifi c code have now been widely recognized. However, the choice of
a particular simulator usually means a commitment to spending time learning the
details of using that simulator. That tends to lock the user into that choice and dis-
courage the use of another tool more appropriate for the task. Modern simulator
development has attempted to avoid this problem with efforts towards simulator
interoperability and model sharing. New simulator architectures allow the use of
standard, well-supported external modules, or specialized tools for neural model-
ing, that are implemented independently from the means of running the model sim-
ulation. This allows not only sharing of models, but sharing of research tools.

 The OO paradigm of constructing models from basic reusable “objects” has now
become nearly standard in current neural simulator interfaces, whether through a
scripting language or a GUI. This trend has been encouraged by the development of
standard declarative representations for models such as NeuroML and NineML,
which are based on an inherently OO structure. However, there is more to be done

3 History of Neural Simulation Software

http://numpy.scipy.org/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/

66

in the way of standardization, and of representation of models that lie beyond the
current capabilities of GENESIS 2 and NEURON.

 Parameter search is a necessary part of modeling. Some simulators have imple-
mented parameter search algorithms within the simulator. A more modular simula-
tor architecture and the use of standard scripting languages can allow the use of
more general purpose external simulator-independent search tools. Parameter
searching is a very appropriate and simple use of parallelism, and simulator archi-
tectures should be designed for easy and transparent division of a simulation or
many simulation runs over multiple computers or processors. It is also important to
have the ability to easily add numerical solvers for new hardware devices such as
powerful GPUs that were developed for display rendering and are now being used
for high performance scientifi c computing.

 As extensively discussed in the chapter by Crook et al. (2013) and earlier in this
one, reproducibility of simulation results is hampered not only by insuffi cient,
ambiguous, or inaccurate descriptions of the model in the original publication, but
by sensitivity to implementation details, and dependencies on the computing envi-
ronment. As with other identifi ed problems with past simulators discussed earlier,
the key to these problems seems to be a combination of standard declarative model
descriptions, and modular simulator architectures that permit the use of external
tools to perform the ancillary tasks of model tracking, publication, comparison, and
parameter fi tting.

 The choice of a programming or scripting language and whether to use code
developed in-house, open-source code, or proprietary commercial software has
become simpler with the increased availability of well-supported open-source soft-
ware packages. Their use has been made easier by attempts to increase the modular-
ity of new simulator architectures and through the use of standard scripting
languages such as Python. I have seen languages come and go in popularity. Perl is
a powerful scripting language with very good string handling capabilities. It has
long been a favorite scripting language of software developers and system adminis-
trators, but is diffi cult for the novice or occasional “script hacker.” Not long ago,
Java was everyone’s favorite bet for a programming or scripting language with great
promise to run on all platforms. Now Python is the favorite and is being challenged
by other alternatives such as Ruby or C#, which also have OO capabilities, and can
be used as a “glue” to provide access to compiled libraries within a script. C# (by
Microsoft) and other new languages such as Go (by Google) are also “Internet
aware,” with built-in security and run-time execution distribution support, favoring
modular architectures to prevent vendor lock-in. For these reasons, it is important to
design a simulator so that its operations can easily be bound to a user’s choice of
scripting language. For example, the use of separate modules for a declarative
model description, numerical solver, and command parser can reduce the depen-
dency on a particular scripting language, as well as facilitate the exchange of
models.

 Fortunately for the future of computational neuroscience, the “lessons” men-
tioned above, and throughout this chapter, appear to be taken seriously by today’s
simulator developers. Annual workshops held at the Computational Neuroscience

D. Beeman

67

conference (http://cnsorg.org), by the NeuroML developers (http://neuroml.org),
and the INCF (http://incf.org) bring together participants from all the major neural
simulator and database projects. Standards and designs are vigorously debated, and
progress continues.

 Acknowledgment The author acknowledges support from the National Institutes of Health under
grant R01 NS049288-06S1.

 References

 Alben R, Kirkpatrick S, Beeman D (1977) Spin waves in random ferromagnets. Phys Rev B15:346
 Baldi P, Vanier MC, Bower JM (1998) On the use of Bayesian methods for evaluating compart-

mental neural models. J Comput Neurosci 5:285–314
 Beeman D (1994) Simulation-based tutorials for education in computational neuroscience. In:

Eeckman FH (ed) Computation in neurons and neural systems. Kluwer Academic, Norwell,
MA, pp 65–70

 Beeman D, Boswell J (1977) Computer graphics and electromagnetic fi elds. Am J Phys 45:213
 Beeman D, Bower JM (2004) Simulator-independent representation of ionic conductance models

with ChannelDB. Neurocomputing 58–60:1085–1090
 Beeman D, Bower JM, De Schutter E, Efthimiadis EN, Goddard N, Leigh J (1997) The GENESIS

simulator-based neuronal database (chap 4). In: Koslow SH, Huerta MF (eds) Neuroinformatics:
an overview of the human brain project. Lawrence Erlbaum Associates, Mahwah, NJ, pp 57–80

 Bhalla US (1998) Advanced XODUS techniques (chap 22). In: Bower JM, Beeman D (eds) The
book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation
System, 2nd edn. Springer, New York, pp 381–405

 Bhalla US (2000) Modeling networks of signaling pathways (chap 2). In: De Schutter E (ed)
Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton,
FL, pp 25–48

 Bhalla US (2003) Managing models of signalling networks. Neurocomputing 52–54:215–220
 Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simula-

tions of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69:1948–1965
 Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways.

Science 283:381–387
 Bhalla US, Bilitch DH, Bower JM (1992) Rallpacks: a set of benchmarks for neuronal simulators.

Trends Neurosci 15:453–458
 Blackwell KT (2000) Evidence for a distinct light-induced calcium-dependent potassium current

in Hermissenda crassicornis. J Comput Neurosci 9:149–170
 Borg-Graham LJ (2000) Additional effi cient computation of branched nerve equations: adaptive

time step and ideal voltage clamp. J Comput Neurosci 8:209–226
 Bower JM (1991) Relations between the dynamical properties of single cells and their networks in

piriform (olfactory) cortex. In: McKenna T, Davis J, Zornetzer S (eds) Single neuron computa-
tion. Academic, San Diego, pp 437–462

 Bower JM (1992) Modeling the nervous system. Trends Neurosci 15:411–412
 Bower JM (2005) Looking for Newton: realistic modeling in modern biology. Brains Minds Media

1:bmm217 (urn:nbn:de:0009-3-2177)
 Bower JM, Beeman D (1998) The book of GENESIS: exploring realistic neural models with the

GEneral NEural SImulation System, 2nd edn. Springer, New York, http://www.genesis-sim.
org/GENESIS/bog/bog.html

3 History of Neural Simulation Software

http://cnsorg.org/
http://neuroml.org/
http://incf.org/
http://www.genesis-sim.org/GENESIS/bog/bog.html
http://www.genesis-sim.org/GENESIS/bog/bog.html

68

 Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A,
Goodman PH, Harris FC, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M,
Lansner A, Rochel O, Vieville T, Muller E, Davison AP, El Boustani S, Destexhe A (2007)
Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci
23:349–398. doi: 10.1007/s10827-007-0038-6

 Canavier CC, Clark JW, Byrne JH (1991) Simulation of the bursting activity of neuron R15 in
 Aplysia : role of ionic currents, calcium balance, and modulatory transmitters. J Neurophysiol
66:2107–2124

 Carenvale NT, Woolfe TB, Shepherd GM (1990) Neuron simulations with SABER. J Neurosci
Methods 33:135–148

 Cole K (1968) Membranes, ions, and impulses: a chapter of classical biophysics. University of
California Press, Berkeley

 Connor JA, Stevens CF (1971) Prediction of repetitive fi ring behavior from voltage clamp data on
an isolated neurone soma. J Physiol 213:31–53

 Cornelis H, De Schutter E (2003) Neurospaces: separating modeling and simulation.
Neurocomputing 52–54:227–231. doi: 10.1016/S0925-2312(02)00750-6

 Cornelis H, Coop AD, Bower JM (2010) Development of model-based publication for scientifi c
communication. BMC Neurosci 11(suppl 1):P69. doi: 10.1186/1471-2202-11-S1-P69

 Cornelis H, Coop AD, Bower JM (2012a) A federated design for a neurobiological simulation
engine: the CBI federated software architecture. PLoS One 7:e28956. doi: 10.1371/journal.
pone.0028956

 Cornelis H, Rodriguez AL, Coop AD, Bower JM (2012b) Python as a federation tool for GENESIS
3.0. PLoS One 2:e29018

 Crook S, Gleeson P, Howell F, Svitak J, Silver R (2007) MorphML: Level 1 of the NeuroML stan-
dards for neuronal morphology data and model specifi cation. Neuroinformatics 5:96–104.
doi: 10.1007/s12021-007-0003-6

 Crook S, Davison AP, Plesser HE (2013) Learning from the past: approaches for reproducibility in
computational neuroscience. In: Bower JM (ed) 20 Years of computational neuroscience.
Springer, New York

 Davison AP, Brüderle D, Eppler JM, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P (2009)
PyNN: a common interface for neuronal network simulators. Front Neuroinform 2:11.
doi: 10.3389/neuro.11.011.2008

 De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal models. In: Koch C, Segev I
(eds) Methods in neuronal modeling: from ions to networks, 2nd edn. MIT Press, Boston, pp
211–250

 Djurfeldt M, Johansson C, Ekeberg Ö, Rehn M, Lundqvist M, Lansner A (2005) Massively paral-
lel simulation of brain-scale neuronal network models. Tech. Rep. QC 20100709. KTH, School
of Computer Science and Communication (CSC), oai:DiVA.org:kth-10606

 Djurfeldt M, Hjorth J, Eppler J, Dudani N, Helias M, Potjans T, Bhalla U, Diesmann M, Hellgren
Kotaleski J, Ekeberg Ö (2010) Run-time interoperability between neuronal network simulators
based on the MUSIC framework. Neuroinformatics 8:43–60. doi: 10.1007/s12021-010-9064-z

 Dodge FA, Cooley JW (1973) Action potential of the motor neuron. IBM J Res Dev 17:219–229
 Drewes RP, Zou Q, Goodman PH (2009) Brainlab: a Python toolkit to aid in the design, simulation,

and analysis of spiking neural networks with the neocortical simulator. Front Neuroinform
3:16. doi: 10.3389/neuro.11.016.2009

 Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO (2008) PyNEST: a convenient inter-
face to the NEST simulator. Front Neuroinform 2:12. doi: 10.3389/neuro.11.012.2008

 Ermentrout B (2006) XPPAUT. Scholarpedia 1(10):1399. doi: 10.4249/scholarpedia.1399
 Forss J, Beeman D, Bower JM, Eichler West RM (1999) The modeler’s workspace: a distributed

digital library for neuroscience. Future Gener Comp Syst 16:111–121
 Gardner D, Knuth KH, Abato M, Erde SM, White T, DeBellis R, Gardner E (2001) Common data

model for neuroscience data and data model interchange. J Am Med Inform Assoc 8:17–33

D. Beeman

http://dx.doi.org/10.1007/s10827-007-0038-6
http://dx.doi.org/10.1016/S0925-2312(02)00750-6
http://dx.doi.org/10.1186/1471-2202-11-S1-P69
http://dx.doi.org/10.1371/journal.pone.0028956
http://dx.doi.org/10.1371/journal.pone.0028956
http://dx.doi.org/10.1007/s12021-007-0003-6
http://dx.doi.org/10.3389/neuro.11.011.2008
http://dx.doi.org/10.1007/s12021-010-9064-z
http://dx.doi.org/10.3389/neuro.11.016.2009
http://dx.doi.org/10.3389/neuro.11.012.2008
http://dx.doi.org/10.4249/scholarpedia.1399

69

 Getting PA (1989) Reconstruction of small neural networks (chap 6). In: Koch C, Segev I (eds)
Methods in neuronal modeling. MIT Press, Cambridge, MA, pp 171–194

 Gleeson P, Steuber V, Silver RA (2007) neuroconstruct: a tool for modeling networks of neurons
in 3d space. Neuron 54:219–235

 Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP,
Ray S, Bhalla US, Barnes SR, Dimitrova YD, Silver RA (2010) NeuroML: a language for
describing data driven models of neurons and networks. PLoS Comput Biol 6(6):e1000–e1815.
doi: 10.1371/journal.pcbi.1000815

 Goddard NH, Lynne KJ, Mintz T (1987) Rochester connectionist simulator. Tech. Rep.
ADA191483. Department of Computer Science, University of Rochester

 Goddard NH, Hood G, Howell FW, Hines ML, De Schutter E (2001a) NEOSIM: portable large-
scale plug and play modelling. Neurocomputing 38–40:1657–1661. doi: 10.1016/
S0925-2312(01)00528-8

 Goddard NH, Hucha M, Howell F, Cornelis H, Shankar K, Beeman D (2001b) Towards NeuroML:
model description methods for collaborative modelling in neuroscience. Philos Trans R Soc
Lond B Biol Sci 356:1209–1228. doi: 10.1098/rstb.2001.0910

 Goodman DFM, Brette R (2008) Brian: a simulator for spiking neural networks in Python. Front
Neuroinform 2:5. doi: 10.3389/neuro.11.005.2008

 Gorchetchnikov A, The INCF Multiscale Modeling Taskforce (2010) Nineml: a description lan-
guage for spiking neuron network modeling: the user layer. BMC Neurosci 11(suppl 1):P71.
doi: 10.1186/1471-2202-11-S1-P71

 Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual-cortex exhibit
inter-columnar synchronization which refl ects global stimulus properties. Nature
338:334–337

 Hammarlund P, Ekeberg Ö (1998) Large neural network simulations on multiple hardware plat-
forms. J Comput Neurosci 5:443–459. doi: 10.1023/A:1008893429695

 Hartree DR (1932) A practical method for the numerical solution of differential equations. Mem
Manchester Lit Phil Soc 77:91–107

 Hines M (1984) Effi cient computation of branched nerve equations. Int J Biomed Comput
15:69–79

 Hines M (1989) A program for the simulation of nerve equations with branching geometries. Int J
Biomed Comput 24:55–68

 Hines ML, Carnevale NT (2000) Expanding NEURON’s repertoire of mechanisms with NMODL.
Neural Comput 12:995–1007

 Hines M, Davison AP, Muller E (2009) NEURON and Python. Front Neuroinform 3:1. doi: 10.3389/
neuro.11.001.2009

 Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application
to conduction and excitation in nerve. J Physiol (London) 117:500–544

 Hopfi eld JJ (1982) Neural networks and physical systems with emergent collective computational
abilities. Proc Natl Acad Sci USA 79:2554

 Hucka M, Shankar K, Beeman D, Bower JM (2002) The Modeler’s workspace: making model-
based studies of the nervous system more accessible (chap 5). In: Ascoli G (ed) Computational
neuroanatomy: principles and methods. Humana Press, Totowa, NJ, pp 83–115

 Hucka M, Finney A, Sauro H, Bolouri H, Doyle J, Kitano H, Arkin A (2003) The systems biology
markup language (SBML): a medium for representation and exchange of biochemical network
models. Bioinformatics 19:524–531

 Kernigan BW, Pike R (1984) The Unix programming environment. Prentice-Hall, Englewood
Cliffs, NJ

 Kernighan B, Ritchie D (1978) The C programming language. Prentice-Hall, Englewood Cliffs,
NJ

 Kohn MC, Hines ML, Kootsey JM, Feezor MD (1989) A block organized model builder. Math
Comp Mod 19:75–97

3 History of Neural Simulation Software

http://dx.doi.org/10.1371/journal.pcbi.1000815
http://dx.doi.org/10.1016/S0925-2312(01)00528-8
http://dx.doi.org/10.1016/S0925-2312(01)00528-8
http://dx.doi.org/10.1098/rstb.2001.0910
http://dx.doi.org/10.3389/neuro.11.005.2008
http://dx.doi.org/10.1186/1471-2202-11-S1-P71
http://dx.doi.org/10.1023/A:1008893429695
http://dx.doi.org/10.3389/neuro.11.001.2009
http://dx.doi.org/10.3389/neuro.11.001.2009

70

 Koslow SH, Huerta MF (eds) (1997) Neuroinformatics: an overview of the human brain project.
Vol: Progress in neuroinformatics research series. Lawrence Erlbaum Associates, Mahwah, NJ

 Loomis ME (1995) Object databases—the essentials. Addison-Wesley, Reading, MA
 Maley N, Beeman D, Lannin JS (1988) Dynamics of tetrahedral networks: amorphous Si and Ge.

Phys Rev B38:10,611
 Mcullough WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull

Math Biophys 5:115–133
 Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML (2003) ModelDB:

making models publicly accessible to support computational neuroscience. Neuroinformatics
1:135–139. doi: 10.1385/NI:1:1:135

 Nelson M, Rinzel J (1998) The Hodgkin-Huxley model (chap 4). In: Bower JM, Beeman D (eds)
The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation
System, 2nd edn. Springer, New York, pp 29–49

 Nelson M, Furmanski W, Bower JM (1989) Simulating neurons and neuronal networks on parallel
computers (chap 12). In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT Press,
Cambridge, MA, pp 397–438

 Pecevski D, Natschläger T, Schuch K (2009) PCSIM: a parallel simulation environment for neural
circuits fully integrated with Python. Front Neuroinform 3:11. doi: 10.3389/neuro.11.011.200

 Pellionisz A, Llinás R, Perkel DH (1977) A computer model of the cerebellar cortex of the frog.
Neuroscience 2:19–35

 Perkel DH, Watt JH (1981) A manual for MANUEL. Stanford University Press, Stanford CA
 Raikov I, INCF Multiscale Modeling Taskforce (2010) NineML: a description language for spik-

ing neuron network modeling: the abstraction layer. BMC Neurosci 11(suppl 1):P66.
doi: 10.1186/1471-2202-11-S1-P66

 Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol
1:491–527

 Rall W (1962a) Electrophysiology of a dendritic neuron model. Biophys J 2:145–167
 Rall W (1962b) Theory of physiological properties of dendrites. Ann N Y Acad Sci

96:1071–1092
 Rall W (1964) Theoretical signifi cance of dendritic tress for neuronal input–output relations. In:

Reiss RF (ed) Neural theory and modeling. Stanford University Press, Stanford CA, pp 73–97
 Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma- dendritic

distributions of synaptic input. J Neurophysiol 30:1138–1168
 Rall W, Agmon-Smir H (1998) Cable theory for dendritic neurons (chap 2). In: Koch C, Segev I

(eds) Methods in neuronal modeling: from ions to networks, 2nd edn. MIT Press, Boston, pp
27–92

 Rall W, Shepherd GM (1968) Theoretical reconstruction of fi eld potentials and dendrodendritic
synaptic interaction in olfactory bulb. J Neurophysiol 31:884–915

 Ray S, Bhalla US (2008) PyMOOSE: interoperable scripting in Python for MOOSE. Front
Neuroinform 2:6. doi: 10.3389/neuro.11.006.2008

 Richert M, Nageswaran JM, Dutt N, Krichmar JL (2011) An effi cient simulation environment for
modeling large-scale cortical processing. Front Neuroinform 5:19

 Rinzel J (1990) Electrical excitability of cells, theory and experiment: review of the Hodgkin-
Huxley foundation and an update. Bull Math Biol 52:5–23

 Rochel O, Martinez D (2003) An event-driven framework for the simulation of networks of spik-
ing neurons. In: ESANN-2003, Bruges, Belgium, pp 295–300

 Santamaria F, Tripp PG, Bower JM (2007) Feedforward inhibition controls the spread of granule
cell: induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol 97:248–263.
doi: 10.1152/jn.01098.2005 , http://jn.physiology.org/content/97/1/248.full.pdf+html

 Sasaki K, Bower JM, Llinás R (1989) Purkinje cell recording in rodent cerebellar cortex. Eur J
Neurosci 1:572–586

D. Beeman

http://dx.doi.org/10.1385/NI:1:1:135
http://dx.doi.org/10.3389/neuro.11.011.200
http://dx.doi.org/10.1186/1471-2202-11-S1-P66
http://dx.doi.org/10.3389/neuro.11.006.2008
http://dx.doi.org/10.1152/jn.01098.2005
http://jn.physiology.org/content/97/1/248.full.pdf+html

71

 Segev I, Fleshman JW, Miller JP, Bunow B (1985) Modeling the electrical behaviour of anatomi-
cally complex neurons using a network analysis program: passive membrane. Biol Cybern
53:27–40

 Shepherd GM, Brayton RK (1979) Computer simulation of a dendro-dendritic synapse circuit for
self- and lateral-inhibition in the olfactory bulb. Brain Res 175:377–382

 Shepherd GH, Healy MD, Singer MS, Peterson BE, Mirsky JS, Wright L, Smith JE, Nadkarni P,
Miller PL (1997) SenseLab: a project in multidisciplinary, multilevel sensory integration (chap
3). In: Koslow SH, Huerta MF (eds) Neuroinformatics: an overview of the human brain project.
Lawrence Erlbaum, Mahwah, NJ, pp 21–56

 Spacek MA, Blanche T, Swindale N (2009) Python for large-scale electrophysiology. Front
Neuroinform 2:1. doi: 10.3389/neuro.11.009.2008

 Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiol-
ogy using MCell. In: Schutter ED (ed) Computational neuroscience: realistic modeling for
experimentalists. CRC Press, Boca Raton, pp 87–127

 Thorpe MF, Beeman D (1976) Thermodynamics of an Ising model with random exchange interac-
tions. Phys Rev B14:188

 Traub R (1977) Motor neurons of different geometry and the size principle. Biol Cybern
25:163–176

 Traub RD (1982) Simulation of intrinsic bursting in CA3 hippocampal neurons. Neuroscience
7:1233–1242

 Traub RD, Llinás R (1979) Hippocampal pyramidal cells: signifi cance of dendritic ionic conduc-
tances for neuronal function and epileptogenesis. J Neurophysiol 42:476–496

 Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal neuron
incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650

 Traub RD, Jeffereys JGR, Miles R, Whittington MA, Tóth K (1994) A branching dendritic model
of a rodent CA3 pyramidal neurone. J Physiol (London) 481:79–95

 Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for
compartmental neural models. J Comput Neurosci 7:149–171

 Weitzenfeld A (1995) NSL—neural simulation language. In: Arbib MA (ed) The handbook of
brain theory and neural networks, 1st edn. Bradford Books/MIT Press, Cambridge, pp
654–658

 Wilson MA, Bower JM (1989) The simulation of large scale neural networks (chap 9). In: Koch C,
Segev I (eds) Methods in neuronal modeling. MIT Press, Cambridge, MA, pp 291–333

 Wilson M, Bower JM (1991) A computer simulation of oscillatory behavior in primary visual
cortex. Neural Comput 3:498–509

 Wilson M, Bower JM (1992) Cortical oscillations and temporal interactions in a computer simula-
tion of piriform cortex. J Neurophysiol 67:981–995

 Wilson MA, Bhalla US, Uhley JD, Bower JM (1989) GENESIS: a system for simulating neural
networks. In: Touretzky D (ed) Advances in neural information processing systems. Morgan
Kauffman, San Mateo, CA, pp 485–492

3 History of Neural Simulation Software

http://dx.doi.org/10.3389/neuro.11.009.2008

	Chapter 3: History of Neural Simulation Software
	Introduction
	My Seduction by Neuroscience

	 History of Neural Modeling Prior to Fall 1989
	The Introduction of Neural Simulation Systems
	 Early History of GENESIS and NEURON
	A Personal History of GENESIS

	 GENESIS and NEURON Go Public
	 Federation and User Support

	 Expanding Simulator Capabilities
	Scripting and GUIs
	 Parameter Search, Model Tuning, and Comparison
	 The “Decade of the Brain” and the Human Brain Project
	Model Sharing and Simulator Interoperability

	 Choice of Programming Languages
	 Open Source vs. Proprietary Software

	 Some Identified Problems with Past Simulators
	 The Twenty-First Century: Next Generation Neural Simulators
	Choice of Python as a Scripting Language

	 Conclusion: What Have We Learned?
	References

