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    Abstract     I have been asked to review the progress that computational neuroscience 
has made over the past 20 years in understanding how vision works. In refl ecting on 
this question, I come to the conclusion that perhaps the most important advance we 
have made is in gaining a deeper appreciation of the magnitude of the problem 
before us. While there has been steady progress in our understanding—and I will 
review some highlights here—we are still confronted with profound mysteries 
about how visual systems work. These are not just mysteries about biology, but also 
about the  general principles  that enable vision in any system whether it be biologi-
cal or machine. I devote much of this chapter to examining these open questions, as 
they are crucial in guiding and motivating current efforts. Finally, I shall argue that 
the biggest mysteries are likely to be ones we are not currently aware of, and that 
bearing this in mind is important as it encourages a more exploratory, as opposed to 
strictly hypothesis-driven, approach.  

        Introduction 

 I am both honored and delighted to speak at this symposium. The CNS meetings 
were pivotal to my own coming of age as a scientist in the early 1990s, and today 
they continue to constitute an important part of my scientifi c community. Now that 
20 years have passed since the fi rst meeting, we are here today to ask, what have we 
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learned? I have been tasked with addressing the topic of vision, which is of course 
a huge fi eld, and so before answering I should disclose my own biases and the 
 particular lens through which I view things: I began as an engineer wanting to build 
robotic vision systems inspired by biology, and I evolved into a neuroscientist trying 
to understand how brains work inspired by principles from mathematics and engi-
neering. Along the way, I was fortunate to have worked and trained with some of the 
most creative and pioneering scientists of our fi eld: Pentti Kanerva, David Van 
Essen, Charlie Anderson, Mike Lewicki, David Field, and Charlie Gray. Their own 
way of thinking about computation and the brain has shaped much of my own out-
look, and the opinions expressed below stem in large part from their infl uence. I also 
benefi ted enormously from my fellow students in the Computation and Neural 
Systems program at Caltech in the early 1990s and the interdisciplinary culture that 
fl ourished there. They impressed upon me that the principles of vision are not owned 
by biology, nor by engineering—they are universals that transcend discipline, and 
they will be discovered by thinking outside the box. 

 Now to begin our journey into the past 20 years, let us fi rst gain some perspective 
by looking back nearly half a century, to a time when it was thought that vision 
would be a fairly straightforward problem. In 1966, the MIT AI Lab assigned their 
summer students the task of building an artifi cial vision system (Papert  1966 ). This 
effort came on the heels of some early successes in artifi cial intelligence in which it 
was shown that computers could solve simple puzzles and prove elementary theo-
rems. There was a sense of optimism among AI researchers at the time that they 
were conquering the foundations of intelligence (Dreyfus and Dreyfus  1988 ). Vision 
it seemed would be a matter of feeding the output of a camera to the computer, 
extracting edges, and performing a series of logical operations. They were soon to 
realize however that the problem is orders of magnitude more diffi cult. David Marr 
summarized the situation as follows:

  …in the 1960s almost no one realized that machine vision was diffi cult. The fi eld had to go 
through the same experience as the machine translation fi eld did in its fi ascoes of the 1950s 
before it was at last realized that here were some problems that had to be taken seriously. …
the idea that extracting edges and lines from images might be at all diffi cult simply did not 
occur to those who had not tried to do it. It turned out to be an elusive problem. Edges that 
are of critical importance from a three-dimensional point of view often cannot be found at 
all by looking at the intensity changes in an image. Any kind of textured image gives a 
multitude of noisy edge segments; variations in refl ectance and illumination cause no end 
of trouble; and even if an edge has a clear existence at one point, it is as likely as not to fade 
out quite soon, appearing only in patches along its length in the image. The common and 
almost despairing feeling of the early investigators like B.K.P. Horn and T.O. Binford was 
that practically anything could happen in an image and furthermore that practically every-
thing did. (Marr  1982 ) 

   The important lesson from these early efforts is that it was from  trying to solve the 
problem  that these early researchers learned what were the diffi cult computational 
problems of vision, and thus what were the important questions to ask. This is still true 
today: Reasoning from fi rst principles and introspection, while immensely valuable, 
can only go so far in forming hypotheses that guide our study of the visual system. 
 We will learn what questions to ask by trying to solve the problems of vision.  Indeed, 
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this is one of the most important contributions that computational  neuroscience can 
make to the study of vision. 

 A decade after the AI Lab effort, David Marr began asking very basic questions 
about information processing in the visual system that had not yet been asked. He 
sought to develop a computational theory of biological vision, and he stressed the 
importance of  representation  and the different types of information that need to be 
extracted from images. Marr envisioned the problem being broken up into a series 
of processing stages: a primal sketch in which features and tokens are extracted 
from the image, a 2.5D sketch that begins to make explicit aspects of depth and 
surface structure, and fi nally an object-centered, 3D model representation of objects 
(Marr  1982 ). He attempted to specify the types of computations involved in each of 
these steps as well as their neural implementations. 

 One issue that appears to have escaped Marr at the time is the importance of 
 inferential computations  in perception. Marr’s framework centered around a mostly 
feedforward chain of processing in which features are extracted from the image 
and progressively built up into representations of objects through a logical chain of 
computations in which information fl ows from one stage to the next. After decades 
of research following Marr’s early proposals, it is now widely recognized (though 
still not universally agreed upon) by those in the computational vision community 
that the features of the  world  (not images) that we care about can almost never be 
computed in a purely bottom-up manner. Rather, they require inferential computa-
tion in which data is combined with prior knowledge in order to estimate the 
underlying causes of a scene (Mumford  1994 ; Knill and Richards  1996 ; Rao et al. 
 2002 ; Kersten et al.  2004 ). This is due to the fact that natural images are full of 
ambiguity. The causal properties of images—illumination, surface geometry, 
refl ectance (material properties), and so forth—are entangled in complex relation-
ships among pixel values. In order to tease these apart, aspects of scene structure 
must be estimated simultaneously, and the inference of one variable affects the 
other. This area of research is still in its infancy and models for solving these types 
of problems are just beginning to emerge (Tappen et al.  2005 ; Barron and Malik 
 2012 ; Cadieu and Olshausen  2012 ). As they do, they prompt us to ask new ques-
tions about how visual systems work. 

 To give a concrete example, consider the simple image of a block painted in 
two shades of gray, as shown in Fig.  12.1  (Adelson  2000 ). The edges in this 

  Fig. 12.1    Image of a block painted in two shades of  gray  (from Adelson  2000 ). The edges in 
this image are easy to extract, but understanding what they mean is far more diffi cult       
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image are easy to extract, but understanding what they mean is far more diffi cult. 
Note that there are three different types of edges: (1) those due to a change in 
refl ectance (the boundary between  q  and  r ), (2) those due to a change in object 
shape (the boundary between  p  and  q ), and (3) those due to the boundary between 
the object and background. Obviously it is impossible for any computation based 
on purely local image analysis to tell these edges apart. It is the context that 
informs us what these different edges mean, but how exactly? More importantly, 
 how are these different edges represented in the visual system and at what stage 
of processing do they become distinct? 

   As one begins asking these questions, an even more troubling question arises: 
How can we not have the answers after a half century of intensive investigation of 
the visual system? By now there are literally mounds of papers examining how 
neurons in the retina, LGN, and V1 respond to test stimuli such as isolated spots, 
white noise patterns, gratings, and gratings surrounded by other gratings. We know 
much—perhaps too much—about the orientation tuning of V1 neurons. Yet we 
remain ignorant of how this very basic and fundamental aspect of scene structure is 
represented in the system. The reason for our ignorance is not that many have looked 
and the answer proved to be too elusive. Surprisingly, upon examining the literature 
one fi nds that, other than a handful of studies (Rossi et al.  1996 ; Lee et al.  2002 ; 
Boyaci et al.  2007 ), no one has bothered to ask the question. 

 Vision, though a seemingly simple act, presents us with profound computational 
problems. Even stating what these problems are has proven to be a challenge. One 
might hope that we could gain insight from studying biological vision systems, but 
this approach is plagued with its own problems: Nervous systems are composed of 
many tiny, interacting devices that are diffi cult to penetrate. The closer one looks, 
the more complexity one is confronted with. The solutions nature has devised will 
not reveal themselves easily, but as we shall see the situation is not hopeless. 

 Here I begin by reviewing some of the areas where our fi eld has made remark-
able progress over the past 20 years. I then turn to the open problems that lie ahead, 
where I believe we have the most to learn over the next several decades. Undoubtedly 
though there are other problems lurking that we are not even aware of, questions 
that have not yet been asked. I conclude by asking how we can best increase our 
awareness of these questions, as these will drive the future paths of investigation.  

    Questions Answered 

 Since few questions in biology can be answered with certainty, I cannot truly claim 
that we have fully answered any of the questions below. Nevertheless these are areas 
where our fi eld has made concrete progress over the past 20 years, both in terms of 
theory and in terms of empirical fi ndings that have changed the theoretical 
landscape. 
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    Tiling in the Retina 

 A long-standing challenge facing computational neuroscience, especially at the 
 systems level, is that the data one is constrained to work with are often sparse or 
incomplete. Recordings from one or a few units out of a population of thousands of 
interconnected neurons, while suggestive, cannot help but leave one unsatisfi ed 
when attempting to test or form hypotheses about what the system is doing as a 
whole. In recent years, however, a number of advances have made it possible to 
break through this barrier in the retina. 

 The retina contains an array of photoreceptors of different types, and the output 
of the retina is conveyed by an array of ganglion cells which come in even more 
varieties. How these different cell types tile the retina—that is, how a complete 
population of cells of each type cover the two-dimensional image through the spa-
tial arrangement of their receptive fi elds—has until recently evaded direct observa-
tion. As the result of advances in adaptive optics and multielectrode recording 
arrays, we now have a more complete and detailed picture of tiling in the retina 
which illuminates our understanding of the fi rst steps in visual processing. 

 Adaptive optics corrects for optical aberrations of the eye by measuring and 
compensating for wavefront distortions (Roorda  2011 ). With this technology, it is 
now possible to resolve individual cones within the living human eye, producing 
breathtakingly detailed pictures of how L, M, and S cones tile the retina (Fig.  12.2a ) 
(Roorda and Williams  1999 ). Surprisingly, L and M cones appear to be spatially 
clustered beyond what one would expect from a strictly stochastic positioning 
according to density (Hofer et al.  2005 ). New insights into the mechanism of color 

  Fig. 12.2    Tiling in the retina. ( a ) Tiling of L, M, S cones; scale bar = 5 arcmin (from Roorda and 
Williams  1999 ). ( b ) Tiling of parasol retinal ganglion cell receptive fi elds;  A , on cells;  B , off cells 
(from Gauthier et al.  2009a ,  b )       
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perception have been obtained by stimulating individual cones and looking at how 
subjects report the corresponding color (Hofer and Williams  2005 ). Through com-
putational modeling studies, one can show that an individual cone’s response is 
interpreted according to a Bayesian estimator that is attempting to infer the actual 
color present in the scene in the face of subsampling by the cone mosaic, not simply 
the cone’s “best color” (Brainard et al.  2008 ). It is also possible to map out receptive 
fi elds of LGN neurons cone by cone, providing a more direct picture of how these 
neurons integrate across space and wavelength (Sincich et al.  2009 ).

   Another important question that can be addressed with adaptive optics is the 
effect of fi xational drifts and microsaccades on perception. It is now possible to 
track movements of the retina in real-time with single-cone precision, allowing one 
to completely stabilize retinal images or even introduce artifi cially generated drifts 
(Vogel et al.  2006 ; Arathorn et al.  2007 ). These studies strongly suggest the pres-
ence of internal mechanisms that compensate for drifts during fi xation to produce 
stable percepts (Austin Roorda, personal communication). 

 At the level of retinal ganglion cells, large-scale neural recording arrays have 
enabled the simultaneous mapping of receptive fi elds over an entire local population 
(Litke et al.  2004 ). These studies reveal a beautifully ordered arrangement not only 
in how receptive fi elds are positioned but also in how they are shaped so as to obtain 
optimal coverage of the image for each of the four major cell types (i.e., each of the 
different combinations of on/off and midget/parasol) (Gauthier et al.  2009a ,  b ). 
Although the position of receptive fi elds can be somewhat irregular, the shape of 
each receptive fi eld is morphed so as to fi ll any gaps in coverage, as shown in 
Fig.  12.2b . Remarkably, despite the irregular spacing, the receptive fi eld overlap 
with nearest neighbors is fairly constant, which is a further testament to the degree 
of precision that is present in retinal image encoding. 

 Together, these developments provide a solid picture of retinal organization and 
resolve questions regarding the completeness of coverage that were unresolved just 
a decade ago. Importantly, these developments also open a new door in allowing us 
to ask more detailed questions about the link between neural mechanisms and 
perception.  

    The Relation Between Natural Image Statistics 
and Neural Coding 

 Twenty years ago, most people (myself included) thought of neurons at early stages 
of the visual system in terms of feature detection. For example, Marr had proposed 
that retinal ganglion cells function as edge detectors by computing zero crossings of 
the Laplacian operator (which indicates extrema in the fi rst derivative) and this 
became a fairly popular idea. Similarly, the oriented receptive fi elds of V1 neurons 
were thought to operate as oriented edge detectors that encode the boundaries or 
geometric shape of objects. However, in the early 1990s it became clear there is 
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another way to think about what these neurons are doing in terms of  effi cient coding 
principles . Here the goal is to consider how information about the image can be 
encoded and represented in a complete manner that is adapted to the input statistics. 
In contrast to detection, which is typically a lossy process designed for a specifi c 
purpose, the goal of effi cient coding is to form a generic representation that could 
be used for myriad tasks, but which nevertheless exploits and makes explicit the 
structure contained in natural images. 

 Although the effi cient coding hypothesis was fi rst proposed by Barlow more than 
50 years ago (Barlow  1961 ), it was not until decades later that investigators such as 
Laughlin and Srinivasan began making serious quantitative connections between 
the statistics of natural scenes and neural coding (Srinivasan et al.  1982 ). David 
Field subsequently showed that the power spectrum of natural images follows a 
characteristic 1/ f    2  power law, and he pointed out how the scale-invariant structure 
of cortical receptive fi elds is well matched to encode this structure (Field  1987 ). 
Atick and Redlich formulated the whitening theory of retinal coding, which pro-
posed that the purpose of the circularly symmetric, center-surround receptive fi elds 
of retinal ganglion cells is not to detect edges as Marr claimed, but rather to remove 
redundancies in natural images so as to make maximal use of channel capacity in 
the optic nerve (Atick and Redlich  1992 ). Subsequent neurophysiological experi-
ments in the LGN seemed to support this assertion (Dan et al.  1996 ). Around the 
same time, David Field and I showed through computer simulation that the local-
ized, oriented, and multiscale receptive fi elds of V1 neurons could be accounted for 
in terms of a sparse coding strategy adapted to natural images (Olshausen and Field 
 1996 ). These theories and fi ndings have drawn considerable interest because they 
offer an intimate, quantitative link between theories of neural coding and experi-
mental data. Moreover it is not just a theory of vision, but a general theory of sen-
sory coding that could be applied to other modalities or subsequent levels of 
representation, and indeed there has been much work investigating these directions 
(Geisler et al.  2001 ; Hyvarinen and Hoyer  2001 ; Schwartz and Simoncelli  2001 ; 
Karklin and Lewicki  2003 ,  2005 ,  2009 ; Hyvarinen et al.  2005 ; Smith and Lewicki 
 2006 ). 

 A related theoretical framework that has been used to make connections between 
natural scene statistics and neural representation is that of  Bayesian inference . Here 
the goal is to go beyond coding to consider how the properties of scenes are inferred 
from image data. As mentioned above, making inferences about the world depends 
upon strong prior knowledge. Often this knowledge is probabilistic in nature. For 
example, in the simple scene of Fig.  12.1 , we could choose to interpret it either as a 
fl at scene created entirely by paint (which it is), as a scene created entirely by struc-
tured light, or as a three-dimensional object in two shades of paint (Adelson  2000 ). 
All three are valid interpretations when judged purely in terms of the image data. 
Our visual system chooses the latter interpretation because it is the most parsimoni-
ous or  probable  interpretation that is consistent not only with the data but also with 
our experience in interacting with the world. A goal of many modeling efforts over 
the past 20 years has been to show how probabilistic information about the world 
can be learned from visual experience and how inferential computations can be 
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performed in neural systems (Dayan et al.  1995 ; Rao et al.  2002 ; Ma et al.  2006 ). 
Some of these models make predictions about higher level visual representations 
beyond V1, in addition to providing a possible account for the role of feedback con-
nections from higher areas to lower areas (Lee and Mumford  2003 ; Karklin and 
Lewicki  2005 ; Cadieu and Olshausen  2012 ). An important property of these models 
is the manner in which different hypotheses compete to explain the data—termed 
“explaining away” (Pearl  1988 )—which provides an account for the nonlinear, 
 suppressive effects of context upon the responses of visual neurons (Vinje and 
Gallant  2000 ; Murray et al.  2002 ; Zhu and Rozell  2011 ).  

    The Nature of Intermediate-Level Vision 

 For many years intermediate-level vision was the  terra incognita  of our fi eld. It is 
the murkiest territory because unlike low-level vision its neural substrates cannot be 
directly identifi ed or characterized, and unlike high-level phenomena such as object 
recognition and attention we have no well-established terms or conceptual frame-
works for what goes on at this stage. In fact, it is diffi cult even to defi ne what 
“intermediate-level vision” means. Processes such as grouping or segmentation are 
often ascribed to this stage, but the range of other things that could be going on is so 
broad and ill-defi ned that it is semi-seriously referred to as “everything between 
low-level and high-level vision.” Over the past 20 years however this area has 
become progressively less murky through insightful and penetrating psychophysi-
cal experiments. 

 In particular, Nakayama and colleagues have provided compelling evidence that 
intermediate-level representations are organized around  surfaces  in the 3D environ-
ment, and that these representations serve as a basis for high-level processes such as 
visual search and attention (Nakayama et al.  1995 ). This view stands in contrast to 
previous theories postulating 2D features such as orientation and motion energy as 
the basis of perceptual grouping that underlies texture segmentation, search, and 
attention (Treisman and Gelade  1980 ; Julesz  1981 ). Nakayama’s experiments sug-
gest that representations of 3D surface structure are formed prior to this stage, and 
that perceptual grouping operates primarily on surface representations rather than 
2D features. For example, when colored items are arranged on surfaces in different 
depth planes, detection of an odd-colored target is facilitated when pre-cued to the 
depth plane containing the target; but if the items are arranged so as to appear 
attached to a common surface receding in depth, then pre-cueing to a specifi c depth 
has little effect. Thus, it would appear that attention spreads within surfaces in 3D 
coordinates in the environment, not within 2D proximity or a simple disparity 
measure. 

 Another contribution of Nakayama’s work is in pointing out the importance of 
 occlusion  in determining how features group within a scene. Once again, they show 
that simple grouping rules based on 2D proximity or similarity do not suffi ce. This 
should not be surprising, because under natural viewing conditions the 2D image 
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arises from the projection of 3D surfaces in the environment. When these surfaces 
overlap in the projection, the one nearest the observer “overwrites” or occludes the 
other. Thus, a proper grouping of features would need to take this aspect of scene 
composition into account in determining what goes together with what, as shown in 
Fig.  12.3 . By manipulating disparity cues so as to reverse fi gure–ground relation-
ships in a scene, they show that the visual system groups features in a way that 
obeys the rules of 3D scene composition. Features are grouped within surfaces, even 
when parts of the surface are not visible, but not beyond the boundary of a surface. 
Thus, the neural machinery mediating this grouping would seem to require an 
explicit representation of border ownership, such as described by von der Heydt 
(Zhou et al.  2000 ; Qiu and von der Heydt  2005 ), or some other variable that 
expresses the boundaries and ordinal relationship of surfaces.

   Nakayama’s work is not the only in this realm, there are many others (Adelson 
 1993 ; Mamassian et al.  1998 ; Knill and Saunders  2003 ). It is a body of work that 
suggests what to look for at the neural level. Much as color psychophysics preceded 
the discovery of its neural mechanisms, these psychophysical experiments suggest 
the existence of certain neural representations at the intermediate level of vision.  

    Functional Organization of Human Visual Cortex 

 In 1991, Felleman and Van Essen published their now famous diagram of connec-
tions between visual cortical areas in the macaque monkey (Felleman and Van Essen 
 1991 ). This diagram and the detailed information about laminar patterns of connec-
tions that went alongside it shed new light on the hierarchical organization and divi-
sion of labor in visual cortex. In the years since, we have seen an almost equally 
detailed picture of the functional organization of human visual cortex emerge from 
fMRI studies (Wandell et al.  2007 ). The signifi cance of having these areas mapped 

  Fig. 12.3    Occlusion and border ownership. When image regions corresponding to different sur-
faces meet in the projection of a scene, the region corresponding to the surface in front “owns” the 
border between them. A region that does not own a border is essentially unbounded and can group 
together with other unbounded regions. Here, surface  x  owns the borders  λ   xy   and  λ   xz  . Thus, regions 
 y  and  z  are unbounded at these borders and they are free to group with each other, but not with 
region  x  because it owns these borders and is therefore bounded by them (adapted from Nakayama 
et al.  1995 )       
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out in humans is that it enables a more direct connection to perception, since one can 
tie the amount of activity in a given brain area to variations in both stimulus space 
and psychophysical performance (Heeger  1999 ; Grill-Spector et al.  2000 ; Ress and 
Heeger  2003 ). This has made it possible to identify areas involved in the representa-
tion of three-dimensional form, such as the lateral occipital complex (Kourtzi and 
Kanwisher  2001 ). It has also enabled us for the fi rst time to see evidence of “explain-
ing away,” in which top-down signals originating from high-level areas appear to 
decrease the activity in lower level areas when subjects perceive an entire 3D object 
or scene layout as opposed to its individual parts (Murray et al.  2002 ). 

 Some visual areas and neurons exhibit a striking degree of specifi city, such as 
those responsive to faces. Tsao and Livingston used fMRI to localize areas in 
macaque cortex that are selectively activated by faces and then subsequently 
recorded in those areas with microelectrodes to characterize responses of individual 
neurons (Tsao et al.  2006 ). These studies have revealed a complex of areas that 
appear to specialize for different aspects of faces such as identity vs. pose (Freiwald 
et al.  2009 ). There is now evidence for corresponding areal specializations in 
humans (Tsao et al.  2008 ). In addition, Izhak Fried’s recordings from the medial 
temporal lobes in humans have revealed neurons that appear every bit as selective as 
“grandmother cells,” an idea which for years was the subject of theoretical specula-
tion but usually regarded with great skepticism (Quiroga et al.  2005 ). 

 Another method that is providing new insights about cortical organization in 
humans is  neural decoding . In contrast to traditional approaches that attempt to 
characterize which class of stimuli a neuron or cortical region responds to, here the 
goal is to fi nd out what those neurons tell you about the stimulus. When applied to 
BOLD signals measured over a wide swath of human visual cortex in response to 
natural images, one fi nds that lower level areas do a reasonable job at reconstructing 
image properties such as color and texture, whereas higher level areas reconstruct 
information about the semantic content of the scene (Naselaris et al.  2009 ,  2011 ; 
Nishimoto et al.  2011 ). While these particular fi ndings are not surprising given our 
current understanding of visual cortex, they are nevertheless a testament to the rich, 
multidimensional information provided by fMRI. Rather than testing specifi c 
hypotheses about selected regions of interest, this approach treats the entire 3D 
volume of BOLD signals as a multielectrode recording array and lets the data speak 
for itself. Importantly, these studies are most informative when the visual system is 
presented with complex natural scenes or movies, since these stimuli contain the 
rich, multidimensional forms of information that are most likely to evoke patterns 
of activity revealing the functional signifi cance of different brain regions.  
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    How to Infer Scene Geometry from Multiple Views 

 In parallel with these achievements in neuroscience and psychophysics, the fi eld of 
computer vision has undergone a number of dramatic advances. Chief among these 
is the ability to infer three-dimensional scene structure from multiple views, termed 
 multiple-view geometry  (Hartley and Zisserman  2003 ). This has been enabled in 
part by the discovery of stable and unique keypoint detectors and invariant feature 
descriptors which allow for solving the correspondence problem effi ciently (Lowe 
 2004 ). It is now possible, given an unordered set of images of the same three- 
dimensional scene taken from different viewpoints, to simultaneously recover a rep-
resentation of the 3D scene structure as well as the positions in the scene from 
which the images were taken (Brown and Lowe  2005 ). This technology has enabled 
commercial products such as  Photosynth  which assimilate information from the 
many thousands of photographs stored on repositories such as Flickr into a unifi ed 
scene model (Snavely et al.  2006 ). 

 While many computer vision algorithms are divorced from biology, there has 
long been a productive interchange of ideas between the fi elds of computer vision 
and biological vision. I believe the advances in multiple-view geometry tell us 
something important about vision, and that they open the door to a new area of 
investigation in visual neuroscience—namely, how do animals assimilate the many 
views they obtain of their environment into a unifi ed representation of the 3D scene? 
The ability to navigate one’s surroundings, to remember where food is, and how to 
get home is fundamental to the survival of nearly all animals. It would seem to 
demand an allocentric representation of the 3D environment. However, there has 
been considerable debate among cognitive psychologists as to whether humans or 
other animals actually build 3D models as opposed to simply storing 2D views. It is 
often tacitly assumed that storing 2D views is the simpler, cheaper strategy. But 
from the standpoint of effi cient coding it actually makes the most sense to combine 
the images acquired while moving through the environment into a single 3D repre-
sentation, since that is the lowest entropy explanation of the incoming data stream. 
Now the mathematics and algorithms of multiple-view geometry show us that the 
computations needed to do this are really quite feasible. In fact these algorithms can 
run in real-time from video camera input (Newcombe and Davison  2010 ). The chal-
lenge for theorists and modelers now is to fi gure out how these computations can be 
performed in a more holistic manner (drawing upon all the data rather than just 
keypoints), how to exploit the continuity in images over time, and in what format 
3D scene information should be represented.   
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    Questions Unanswered 

 There is little doubt that we are closer to understanding how visual systems work 
than we were 20 years ago. But how much remains to be understood? Here I shall 
review areas in which there are still gaping holes in our knowledge. As we shall see, 
the scope of our ignorance is vast. It is not simply a matter of fi lling in holes here 
and there; rather we are missing something fundamental. 

    How Is Sophisticated Vision Possible in Tiny Nervous Systems? 

 Much effort in neuroscience is expended to understand how neural circuits in the 
visual cortex of cats and monkeys enable their perceptual abilities. An often unstated 
assumption behind these studies is that mammalian cortex is uniquely suited for 
gaining insight into the neural mechanisms of perception. But one must begin ques-
tioning this assumption when confronted with the highly sophisticated visual capa-
bilities found in nervous systems that are smaller by several orders of magnitude. 

 Consider for example the jumping spider (Fig.  12.4 ). Unlike other spiders that 
use a web to extend their sensory space, this animal relies entirely upon vision to 
localize prey, identify potential mates, and navigate complex terrain. It does so 

  Fig. 12.4    ( a ) Jumping spider ( Habronattus ). ( b ) Jumping spider visual system showing antero- 
median, antero-lateral, and posterior-lateral eyes. ( c ,  d ) Orienting behavior of a 1-day-old jumping 
spider ( lower right ) during prey capture. ( a ,  b ) From Wayne Maddison’s   Tree of Life    ; ( c ,  d ) video 
frames fi lmed by Bruno Olshausen and Wyeth Bair in the Bower lab (Caltech 1991)       
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using a highly elaborate visual system comprising four pairs of eyes: one pair of 
frontal facing principal eyes (antero-median eyes) provide a high-resolution image 
over a narrow fi eld of view, while the other three pairs provide lower resolution 
images over a wide fi eld of view and are mounted on different parts of the head so 
as to provide 360° coverage of the entire visual fi eld (Land  1985 ). Interestingly, the 
retinae of the antero-median eyes are highly elongated in the vertical direction so as 
to essentially form a one-dimensional array of photoreceptors. These retinae move 
from side to side within the head in a smooth (approximately 1 Hz) scanning motion 
to perform pattern analysis (Land  1969 ). The jumping spider uses its low resolution 
system to detect targets or objects of interest, and then orients its body to position 
the target within the fi eld of view of the high-resolution antero-median eyes for 
more detailed spatial analysis via scanning (Land  1971 ).

   The jumping spider exhibits a number of striking visual behaviors. 
Figure  12.4c, d  illustrates the tracking and pursuit behavior involved in hunting. 
The spider initially follows the target (in this case, a fruit fl y) with its eye and head 
movements. It then stalks the fl y in a crouching motion before pouncing on it. 
Mediating this behavior demands the ability to maintain attention on a target, to 
track the target via appropriate motor commands, and to perform distance estima-
tion. In this case the spider happens to be only 1 day old, so these abilities are 
largely innate. Another striking visual behavior of the jumping spider is exhibited 
during courtship, in which the male performs an elaborate dance for the female. 
During these dances the female visually inspects and attends to the male. Complex 
pattern recognition via scanning is utilized by both parties during this interaction. 
Courtship dances may be elicited by presenting a video image of a female (Clark 
and Uetz  1990 ), or even a line drawing depicting a jumping spider, to the male 
(Drees  1952 ), which further testifi es to the role of vision in mediating this behavior. 
Vision also plays an important role in 3D path planning and navigation. One par-
ticular species,  Portia fi mbriata , appears to use its visual system to survey the 3D 
visual environment before embarking on a path that requires a complex detour to 
obtain a prey item beyond jumping range (Tarsitano and Jackson  1997 ; Tarsitano 
and Andrew  1999 ). 

 Thus it would seem that the jumping spider performs complex pattern recogni-
tion, visual attention, motion analysis and tracking, distance estimation via stereop-
sis, and 3D path planning. These are all abilities that most would consider the 
hallmark of visual cortical function, yet in the jumping spider they are being carried 
out by a visual system that is no larger than a single hypercolumn of V1, and requir-
ing little or no visual experience during development. There seems to be a huge 
explanatory gap here between our conventional wisdom and reality. 

 Another small animal that challenges our conventional wisdom is the sand wasp, 
 Philanthus triangulum . The navigational abilities of this animal were intensely 
studied and described by Tinbergen ( 1974 ). He demonstrated that the wasp fi nds its 
nest, consisting of a small burrow in the sand, by memorizing the spatial arrange-
ment of debris that happen to immediately surround the nest such as twigs, rocks, or 
other items. If these items are displaced by a meter or so while the wasp is away 
hunting, keeping the relative spatial positions of the items intact, it returns to a point 
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in the center of this new arrangement rather than the actual location of its nest. 
Initially stunned, the animal eventually fi nds its nest. However, when it next emerges 
to go out hunting it makes an extra set of circular fl ights over its nest, as though 
recommitting to memory the pattern of landmarks surrounding the nest. What is 
perhaps most astonishing here is that the sand wasp does all of this utilizing only a 
compound eye, which has very low spatial-resolution. Thus, the complex spatial 
layout of the environment must somehow be accumulated over time from the 
dynamic pattern of activity coming from the ommatidia during fl ight. 

 It is often tempting to explain away these abilities as the result of simple but 
clever tricks. To those who try I challenge them to prove such strategies are actually 
viable by building an autonomous system by these rules that exhibits the same 
degree of robust, visually guided behavior. Such systems do not exist, and I contend 
they are still far away from being realized because  we do not understand the funda-
mental principles governing robust, autonomous behavior in complex environments . 
Evolution has discovered these principles and they are embodied in the nervous 
systems of insects and spiders. There are valuable lessons to be learned from study-
ing them. 

 The fact that sophisticated visual abilities are present in simpler animals also 
raises a disturbing question:  If so much can be done with a tiny brain, what more can 
be done with a large brain?  Perhaps the vast cortical circuits of mammals are carry-
ing out a more complex set of functions than we are currently considering. Perhaps 
we lack the intellectual maturity needed to ask the right questions about what cortex 
is doing. 

 I do not suggest that we must fully understand invertebrate vision as a prerequisite 
to studying vision in mammals. But I do think that our fi eld is guilty of taking a cor-
tico-centric approach, and that simpler animals have been prematurely dismissed and 
unjustly neglected in the quest to understand intelligent behavior. One often hears the 
argument that invertebrates are likely to utilize highly specialized or idiosyncratic 
neural processing strategies that will not generalize to mammals. But biology is 
teeming with examples of molecular and cellular mechanisms that are recapitulated 
across the animal kingdom. Those who study fl y genetics are not just interested in 
fl ies, they want to know how genes work. At this point there are astonishingly few 
examples of computations in the nervous system that anyone truly understands. Thus, 
gaining a solid understanding of neural computation as it occurs in  any  animal would 
give us much needed insight into the space of possible solutions.  

    How Do Cortical Microcircuits Contribute to Vision? 

 Not long after the discovery of orientation selectivity and columnar structure in 
visual cortex, the view began to emerge that V1 operates as a fi lter bank in which 
the image is analyzed in terms of oriented features at different spatial scales 
(Blakemore and Campbell  1969 ; De Valois et al.  1982 ), now often modeled with 
Gabor functions (Marcelja  1980 ; Daugman  1985 ). Others further elaborated on this 
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idea by building hierarchical models composed of successive stages of feature 
detection and spatial pooling (Fukushima  1980 ), inspired by Hubel and Wiesel’s 
early proposals (Hubel and Wiesel  1962 ,  1965 ). In the ensuing decades, this con-
ceptual framework has come to dominate the theoretical landscape. It has had a 
profound impact in shaping how neuroscientists form and test hypotheses regarding 
visual cortical function, and it has infl uenced the development of computer vision 
algorithms. It is even referred to as the “standard model” (Riesenhuber and Poggio 
 2004 ), and theories that strongly deviate from this framework are often dismissed as 
biologically implausible. However, this view begins to clash with reality as one 
takes a closer look at the detailed structure of cortical circuits. 

 As all students of neuroanatomy know, mammalian neocortex is a layered struc-
ture. By convention it has been subdivided into six laminar zones according to vari-
ous histological criteria such as cell density and morphology. Underlying this overt 
structure is a detailed microcircuit that connects neurons in a specifi c way according 
to the layer they reside in (Douglas et al.  1989 ; Thomson and Bannister  2003 ; 
Douglas and Martin  2004 ). Inputs from thalamus terminate principally on neurons 
in layer 4. These neurons in turn project to neurons in layers 2 and 3, which then 
project back down to layers 5 and 6. Neurons within each layer are recurrently con-
nected by horizontal fi bers, with the most extensive of these networks found in lay-
ers 2 and 3. Inhibitory interneurons have their own specialized cell types and 
circuits, and some are interconnected by gap junctions and exhibit synchronous, 
high gamma oscillations (Mancilla et al.  2007 ). Layer 1 is mostly composed of the 
distal tufts of pyramidal cell apical dendrites and the axonal fi bers of neurons in 
other layers. On top of all this, we are beginning to appreciate the “deep molecular 
diversity” of cortical synapses, which increases the potential complexity of synaptic 
transmission and plasticity (O’Rourke et al.  2012 ). 

 To those who subscribe to the Gabor fi lter model of V1 I ask, where are these 
fi lters? In which layers do they reside, and why do you need such a complex circuit 
to assemble them? In 1 mm 2  of macaque V1 there are 100,000 neurons, yet the 
number of LGN afferents innervating this same amount of cortex amounts to the 
equivalent of only a 14 × 14 sample node array within the retinal image (Van Essen 
and Anderson  1995 ). Why so many neurons for such a small patch of image? To 
complicate matters further, each neuron is a highly nonlinear device with inputs 
combining in a multiplicative or “and-like” manner within local compartments of 
the dendritic tree (Poirazi et al.  2003 ; Polsky et al.  2004 ). Such nonlinearities are 
notably absent from the L-N cascade models commonly utilized within the neural 
coding community. What are the consequences of these nonlinearities when large 
numbers of such devices are densely interconnected with one another in a recurrent 
circuit? It is well known that recurrent networks composed of perceptron-type neu-
rons (linear sum followed by point-wise nonlinearity) can have attractor dynamics, 
but what are the consequences of dendritic nonlinearities? Is such complexity com-
patible with the simple notion of a fi lter or a receptive fi eld? Moreover, why have 
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different layers of processing, and how do the computations and formatting of visual 
information differ between these layers? 

 There are numerous hand-wavy explanations and ad hoc models that can be (and 
have been) constructed to account for all of these things. At the end of the day we 
are faced with this simple truth:  No one has yet spelled out a detailed model of V1 
that incorporates its true biophysical complexity and exploits this complexity to 
process visual information in a meaningful or useful way . The problem is not just 
that we lack the proper data, but that we don’t even have the right conceptual frame-
work for thinking about what is happening. 

 In light of the strong nonlinearities and other complexities of neocortical circuits, 
one should view the existing evidence for fi lters or other simple forms of feature 
extraction in V1 with great skepticism. The vast majority of experiments that claim 
to measure and characterize “receptive fi elds” were conducted assuming a linear 
systems identifi cation framework. We are now discovering that for many V1 neu-
rons these receptive fi eld models perform poorly in predicting responses to complex, 
time-varying natural images (David et al.  2004 ; Frégnac et al.  2005 ; Khosrowshahi 
et al.  2007 ). Some argue that with the right amount of tweaking and by including 
proper gain control mechanisms and other forms of contextual modulation that you 
can get these models to work (Carandini et al.  2005 ; Rust and Movshon  2005 ). My 
own view is that the standard model is not just in need of revision,  it is the wrong 
starting point and needs to be discarded altogether.  What is needed in its place is a 
model that embraces the true biophysical complexity and structure of cortical micro-
circuits, especially dendritic nonlinearities. The ultimate test of such a model will be 
in how well it accounts for neural population activity in response to dynamic natural 
scenes (as opposed to simple test stimuli), and the extent to which it can begin to 
account for our robust perceptual abilities.  

    How Does Feedback Contribute to Vision? 

 At nearly every stage of processing in the visual system, one fi nds feedback loops 
in which information fl ows from one set of neurons to another and then back again. 
At the very fi rst stage, photoreceptors provide input to a network of horizontal cells 
which in turn provide negative feedback onto photoreceptors. Hence a photorecep-
tor does not report a veridical measurement of the amount of light falling upon it, 
but rather a signal that is modifi ed by context. At later stages, LGN relay neurons 
provide input to the reticular nucleus which in turn provides negative feedback to 
LGN relay neurons; LGN projects to V1 and V1 projects back to LGN; V1 projects 
to V2 which projects back to V1, and so on. What are these feedback loops doing 
and how do they help us see? 

 In some cases, such as horizontal cells in the retina, we have fairly good models 
to suggest what feedback is doing and what it might be good for (i.e., mediating 
lateral inhibition among photoreceptors to reduce redundancy and increase dynamic 
range). But in other cases, such as in the thalamo-cortical loop or cortico-cortical 
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loops, there has yet to emerge a clear conceptual model, supported by the data, that 
tells us what function is being served. There have been numerous experimental 
attempts to uncover what feedback is doing, for example, by cooling or disabling 
the neurons in a higher area that feedback onto a lower area and characterizing how 
response properties in the lower area change (Hupé et al.  2001 ; Angelucci and 
Bullier  2003 ; Andolina et al.  2007 ). One sees a variety of modulatory effects, but so 
far there has not emerged a clear consensus or framework for how to incorporate 
these fi ndings into a larger theory. Indeed there is considerable doubt among neuro-
scientists as to whether feedback plays any role in dynamically shaping information 
processing (Lennie  1998 ). 

 Perhaps the most striking sign of our conceptual ignorance here is the fact that 
modern computer vision systems are still largely based on feedforward processing 
pipelines: image data is preprocessed, features are extracted and then pooled and 
fed to another layer of processing, or histogrammed and fed to a classifi er. One does 
not typically see algorithms that use the outputs of a higher stage of processing to 
modify the input coming from a lower stage (though see Arathorn  2005  for a nota-
ble exception). In other areas of engineering, such as in the design of control sys-
tems or electronic amplifi ers, the advantages of feedback are well understood and it 
is exploited to build robust, stable systems that work in practice. But currently, other 
than automatic gain control or other early forms of preprocessing, researchers have 
not discovered how to exploit feedback for more advanced forms of processing that 
support recognition or other perceptual tasks. 

 One rationale that is offered in support of feedforward models is that visual rec-
ognition occurs so exceedingly fast that there is little time for the iterative type of 
processing that feedback loops would entail (Thorpe and Imbert  1989 ). EEG signals 
correlated with visual recognition in humans arise 150 ms after stimulus onset 
(Thorpe et al.  1996 ). In macaque monkey cortex, the earliest neural signals in 
inferotemporal cortical areas that are discriminative for objects occur ca. 125 ms 
after stimulus onset (Oram and Perrett  1992 ; Hung et al.  2005 ). Given the number 
of stages of processing and axonal and synaptic delays, it is argued, there is precious 
little time for any feedback loops to play a signifi cant role in supporting these sig-
nals. But this reasoning is based upon overly simplistic and dour assumptions about 
how feedback works. The conduction velocities of feedforward and feedback axons 
between V1 and V2 are on the order of 2–4 ms (Angelucci and Bullier  2003 ). Even 
between thalamus and V1 the round trip travel time can be as short as 9 ms (Briggs 
and Usrey  2007 ). Most importantly though, vision does not work in terms of static 
snapshots but rather as a dynamical system operating on a continuous, time-varying 
input stream. Axonal and synaptic delays simply mean that sensory information 
arriving at the present moment is processed in the context of past information that 
has gone through a higher level of processing. 

 Given the space and resource constraints faced by the brain, it seems unlikely 
that such vast amounts of white matter would be devoted to feedback pathways 
unless they were serving a useful purpose in shaping information processing. Over 
the past decade two promising theoretical ideas have been advanced. One is based 
on the idea of  predictive coding , in which higher levels send their predictions to 
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lower levels where they are compared, and the residual or degree of mismatch is 
sent forward (Rao and Ballard  1999 ). Such a coding scheme would be useful to 
reduce redundancy and detect novelty. The other is based on  perceptual inference  
(or Bayesian inference, as described above) (Lee and Mumford  2003 ). Here, higher 
levels also send their predictions to lower levels, but rather than computing differ-
ences, the parts where the predictions agree are amplifi ed and the parts where they 
disagree are suppressed. This type of processing is most useful when lower levels of 
representation are ambiguous (such as the aperture problem in the computation of 
motion). Higher level knowledge and context are used to adjudicate between differ-
ent interpretations and resolve ambiguity. Formally this may be cast in terms of 
probabilistic inference in graphical models or “belief propagation.” To validate 
either of these hypotheses one would need to investigate the effects of feedback dur-
ing the viewing of natural images or other complex, structured images where pre-
diction can play a role, or the need for disambiguation arises. Indeed this may 
explain why the fi ndings of previous experiments using simplifi ed test stimuli have 
been rather inconclusive.  

    What Is the Role of Neuronal Oscillations in Visual Processing? 

 Since Hans Berger’s fi rst EEG measurements in the 1920s it has been known that 
the brain oscillates. Early investigators ascribed the terms  alpha ,  beta , and  gamma  
to oscillations occurring in different frequency bands, and they attempted to relate 
these oscillations to various states of arousal, perception, cognition, or clinical 
pathologies. Later, when neurophysiologists such as Barlow, Kuffl er, Hubel, and 
Wiesel began achieving success with single-unit recordings, attention turned to the 
activity of individual neurons. Interest in oscillations dissipated, and the focus 
instead shifted to studying how the  stimulus-driven  fi ring rate of neurons encodes 
features of the visual world. Against this backdrop in 1989, Gray and Singer showed 
that the activity of single neurons in V1 is phase-locked to gamma oscillations in the 
local fi eld potential (LFP), and furthermore that the degree of synchrony between 
neurons depends on whether the features they encode belong to a common object 
(Gray and Singer  1989 ). This fi nding reignited interest in oscillations, especially 
among theorists who speculated that they may serve as a mechanism for feature 
binding and attention, or even consciousness. Experimentalists argued among them-
selves as to whether oscillations or synchrony were actually present. Sides were 
taken and debates were staged (e.g., at the Society for Neuroscience 1993 annual 
meeting), and each side argued passionately for their point of view. 

 Now almost 20 years later the debate has mostly subsided. Few doubt the exis-
tence of oscillations—they have withstood the test of time and have been shown to 
be a ubiquitous property of sensory systems, from the locust olfactory system to the 
mammalian retina and visual cortex. One senses that the fi eld has settled into taking 
a more dispassionate approach to investigate what causes these oscillations, under 
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what conditions they arise, and how they relate to perception. However, there is still 
little concrete evidence that suggests what they are doing and how they help us see. 

 One recent fi nding that I believe points to an important role for oscillations in 
vision comes from recordings from cat LGN neurons in Judith Hirsch’s laboratory 
(Koepsell et al.  2009 ). These data reveal that the spiking activity of some neurons in 
the LGN is phase-locked to the 50 Hz oscillations arising from the retina. These 
oscillations are readily apparent in the electro-retinogram and have been observed 
in recordings from retinal neurons, but their effect on downstream processing was 
previously unknown. Koepsell et al. showed that when the phase of these ongoing 
oscillations is taken into account, the apparent variability in the response latency of 
LGN neurons—commonly attributed to “noise”—is vastly reduced (Fig.  12.5 ). In 
other words, LGN neurons exhibit a much higher degree of temporal precision—
and hence information carrying capacity—when the phase of ongoing oscillations 
is included in reading out their activity (as opposed to considering the stimulus-
driven component only). What could this extra information be used for? Koepsell 
and Sommer propose that oscillations propagating through distributed networks in 
the retina could be used to compute “graph cuts,” an effective method of image 
segmentation that is widely used in computer vision (Koepsell et al.  2010 ). In their 
model, the fi ring rate of a neuron encodes contrast and the phase of oscillation 
encodes region membership. While highly speculative, the theory nevertheless 
demonstrates how oscillations could be leveraged in a profound and elegant way to 
carry out computations requiring the rapid and global spread of information across 
an image to solve a diffi cult problem in vision.

   When considering oscillation-based theories it is important to bear in mind that 
the prevailing rate-based, stimulus-driven view of neural function, while often por-
trayed as fact, is itself a theory. Though there are countless examples where fi ring 
rate correlates with perceptual variables, this in itself does not demonstrate that 
information is actually encoded and read out this way. So little is known at this point 

  Fig. 12.5    LGN neurons synchronize to 50 Hz retinal oscillations. ( a ) PSTH and spike rasters in 
response to repeated presentations of a stimulus. Note the apparent variability in the latency of the 
LGN neuron’s response. ( b ) When the LGN spikes are realigned to the instantaneous phase of reti-
nal oscillations extracted from the EPSPs for each trial, the variability in response latency is vastly 
reduced (from Koepsell et al.  2009 )       
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that there is much room for alternative theories. But if one accepts that neural activ-
ity is an information-bearing signal in the brain, then oscillations and other forms of 
ongoing activity must be included in a full account of neural function.  

    How to Build Robust, Autonomous Vision Systems? 

 In 1973 Sir James Lighthill issued a report to the British Parliament that condemned 
AI for failing to achieve its grandiose objectives and recommended that its funding 
be cut off (the recommendation was subsequently adopted, killing AI research in the 
UK for nearly a decade). At the center of his argument was that robotic systems 
were only capable of operating in restricted domains, and that scaling up to general 
purpose intelligence that could deal with real world conditions would require a 
combinatorial explosion in computational resources. The idea that we might some-
day build general purpose robots, he claimed, was a “mirage.” A debate was held 
between Lighthill and three leading AI researchers, Donald Michie, John McCarthy, 
and Richard Gregory, who defended their aims and work as realistic and worthwhile 
(BBC  1973 ). State-of-the-art robots of the day such as SRI’s  Shakey  and Edinburgh’s 
 Freddy  took center stage to illustrate the promising achievements of AI. These 
robots could perceive the world through cameras that extracted the outlines of 
objects and could guide an actuator to grasp or manipulate the objects. They could 
execute complex tasks, such as assembling a toy car from parts randomly arranged 
on a table, in a completely autonomous manner without human intervention. 

 Now almost 40 years later, with all of the participants of that debate gone, it is 
almost too painful to ask this, but … was Lighthill right? Consider that over this 
span of time Moore’s law has brought us an increase of  six orders of magnitude  in 
available computational resources. Can we claim that robots have similarly advanced 
compared to their predecessors in the early 1970s?  Stanley , the robot that won 
DARPA’s Grand Challenge desert road race in 2005, is heralded as a triumph of AI. 
But upon closer examination it would seem to exemplify exactly the sort of domain- 
specifi c limitations that Lighthill railed against—it was preprogrammed with a map 
of the entire route and 3000 GPS waypoints, and it followed a road with few major 
obstacles on a bright sunny day. As such, it was primarily a test of high-speed road 
fi nding, obstacle detection, and avoidance in desert terrain (Thrun et al.  2006 ). Its 
success in navigating the course was mainly the result of clever engineering—
Kalman fi lters to compute robust, optimal estimates of position, and combining 
LIDAR and image data to fi nd drivable terrain and stay in the center of the road. 
These are notable achievements, but it is diffi cult to imagine that this is the level of 
visual intelligence that Michie, McCarthy, and Gregory would have hoped to see 
emerge by the early twenty-fi rst century. 

 Now consider these robots in comparison to the jumping spider or sand wasp. To 
survive they must navigate unfamiliar, complex terrain that is fi lled with obstacles, 
variable illumination from shadows, and potentially unstable surfaces. They have no 
GPS way points or roads to provide guidance. Rather, they must acquire and store 
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information about the environment as they go so as to remember where they have 
been, where the food is, and how to get home. They must detect, localize, track, and 
successfully capture prey, even when seen against complex backgrounds. They 
must deal with unforeseen events such as getting knocked off course by wind or 
debris. They must continue to function 24/7 in the face of the elements such as rain 
or dust or changes in lighting conditions. And they do all of this while consuming 
only minuscule amounts of power in comparison to their robotic counterparts. 

 While  Stanley  unquestionably represents an advance over  Shakey , both of these 
systems would seem equally far removed from the jumping spider or sand wasp, 
let alone humans, when measured in terms of the level of robust, autonomous 
behavior they exhibit (Fig.  12.6 ). That we stand at this impasse after 40 years I 
believe tells us something important. It suggests that the problem we face is not just 
technological but rather due to a scientifi c gap in our knowledge.  We are missing 
something fundamental about the principles of vision and how it enables autono-
mous behavior.  Computing optic fl ow or building a depth map of a scene, while 
useful, is not suffi cient to robustly navigate, interact with, and survive in the natural 
three-dimensional environment. What exactly  is  needed is of course diffi cult to 
say—that is the problem we are up against. But I would point to two things. One is 
a richer representation of surface layout in the surrounding environment that 
expresses not only its 3D geometry but also its  affordances —that is, the actions that 
are possible (Gibson  1986 ). The other is to move beyond the Turing machine, proce-
dural framework that today’s robots are trapped in—that is, an infi nite loop of 
“acquire data,” “make decisions,” and “execute actions.” What is needed is a more 
fl uid, dynamic interaction between perception and action. Theories for how to do this 
are now beginning to emerge but it is a fi eld still in its infancy (Gordon et al.  2011 ).

        Questions Not Yet Asked 

 The answers we get from experiments are only as useful as the questions we ask. 
The key is to ask the right questions to begin with. But how do we know what these 
are? Most of the questions described in the preceding section are ones that scientists 

  Fig. 12.6    When measured in terms of visual intelligence, there is still a wide gulf separating 
robots such as Shakey and Stanley from biological visual systems       
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are already keenly aware of and which drive current research efforts. Undoubtedly 
though there are other important questions that no one working in the fi eld today has 
even thought to ask yet, just as computer vision researchers in the 1960s never 
thought to ask how you fi nd the edges of an object in a scene. This points to the 
importance of another process of discovery beyond answering questions—that is, 
discovering the questions that need to be asked. 

 Here I will suggest two ways that we can accelerate the process of discovering 
what these questions are. One is to take an  exploratory approach  that casts a wide 
net and seeks to reveal interesting phenomena. The other is to educate ourselves 
about the problems of vision by attempting to  build  neuromorphic visual systems 
that enable autonomous behavior. 

    The Need for Exploratory Approaches 

 Scientists by their nature are eager to test hypotheses or to tell a story about how a 
given set of facts or fi ndings fi t together and explain perceptual phenomena. But as 
we have seen, vision presents us with deep computational problems, and nervous 
systems confront us with stunning complexity. Most of the hypotheses we test and the 
stories we tell are far too simple minded by comparison, and ultimately they turn out 
to be wrong. Worse yet, they can be misleading and stifl ing because they encourage 
one to look at the data through a narrow lens. When one carefully designs a set of 
experiments to test a specifi c set of hypotheses, the data obtained are often of little 
value for looking at other issues. In some cases this may be warranted, but when the 
hypothesis landscape is not well formed to begin with it may be more worthwhile to 
take an exploratory approach. 

 The exploratory approach is more observational in nature. The goal is to docu-
ment how the system works in its natural state—for example, what are the distribu-
tions of fi ring rates among neurons in different layers, and in different cortical areas, 
during natural vision? Such experiments do not test any particular hypothesis, and 
the outcome may simply be a large table of numbers. But such data would be of 
immense value in helping us to understand what kind of a system we are dealing 
with, and they are of pivotal importance in shaping theories. 

 Another goal of the exploratory approach is discover new phenomena that sur-
prise us and defy conventional wisdom. These can then provide clues about what we 
 should  be looking for. A notable example is the discovery of orientation selectivity. 
The idea that visual neurons might be selective to lines or edges at different orienta-
tions did not occur to Hubel and Wiesel a priori. Rather, they were probing the 
visual cortex with spots of light using a slide projector, and in the process of moving 
slides in and out of the projector they noticed that the edge of the slide moving over 
the receptive fi eld happened to elicit a robust neural response (Hubel  1982 ). This 
observation in turn led to a revolution in visual neuroscience. Tinkering is often 
frowned upon in scientifi c circles, especially by study sections and review panels of 
the major scientifi c funding bodies. But when one is mostly in the dark to begin 
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with—as I would argue we are in our understanding of the visual cortex—a certain 
amount of tinkering seems warranted. 

 I do not advocate that we abandon the hypothesis-based approach—it has formed 
the bedrock of modern science because in many cases it has been a fruitful and 
productive path to knowledge. But we should recognize when this approach is 
appropriate and when it is not. Storytelling makes science interesting, and it often 
makes a fi nding seem more compelling, but it can also lead to a false sense of com-
placency, a feeling that we have understood something when in fact the real story is 
orders of magnitude more complicated. We should be more inclined to take these 
stories with a grain of salt and instead be on the lookout for something deeper lurk-
ing beneath the surface. And no one should feel ashamed to report a complete, 
unfi ltered set of fi ndings without a story to envelop them. After all, one person’s 
untidy fi nding may provide the missing piece in another person’s theory.  

    Learning About Vision by Building Autonomous Systems 

 There is very little that neuroscience per se has taught us about the principles of 
vision. That we know there is a ventral and dorsal stream, a hierarchy of visual 
areas, and neurons that selectively respond to certain visual features in these areas 
does not tell us  what  problems are being solved and  how . They provide strong hints 
and tantalizing clues to be sure, but trying to build a functional vision system by 
directly mimicking these attributes in a computer chip is like trying to build a fl ying 
machine out of fl apping wings and feathers. 

 By contrast, the failures of robot vision in the 1960s were a transformative learn-
ing experience in the study of vision. They set the stage for people like David Marr 
to intensely study the computational problems of vision and to theorize how bio-
logical vision systems work. The fi eld thus made an advance by trying to solve an 
important and unsolved problem, the depth of which was previously unappreciated. 
I believe this will continue to be the case in the future—we will learn the most about 
the principles of vision by attempting to build autonomous vision systems, learning 
what works and what does not, and then drawing upon these insights in studying the 
visual systems of humans and other animals. 

 To some extent this is a role that computer vision already plays. However, main-
stream computer vision is focused on solving a prescribed set of problems that have 
been defi ned by computer scientists and engineers. Algorithms for shape from shad-
ing, optic fl ow, and stereo are judged by how well they perform on standard bench-
marks, where the correct representation is assumed to be known. Object recognition 
is distilled down to a problem of classifi cation, one of converting pixels to labels, 
again with benchmark datasets for judging performance. If we wish to gain insight 
into the principles of biological vision, or autonomous visual behavior in general, it 
will require a different approach. 

 What is needed is an approach that, like computer vision, attempts to solve prob-
lems, but where more attention is paid to how we defi ne those problems, and the 
computational architectures we draw upon to solve them. The choice of problems 
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should be guided by animal behavior and psychophysics: What are the tasks that 
animals need to solve in order to survive in the natural environment? What are the 
performance characteristics of human or other animal observers in these tasks? In 
addition, it is important to take into account and exploit the unique computational 
properties of neural systems, what Carver Mead called “neuromorphic engineer-
ing.” The only functional vision systems we know of today are built out of nonlinear 
recurrent networks, they compute with analog values, and they run in continuous 
time. They are not Turing machines. Thus, in considering the space of solutions to 
visual problems this needs to be taken into account. 

 Finally, it is important to bear in mind that vision did not evolve as a stand-alone 
function, but rather as part of the perception–action cycle. As philosopher Robert 
Cummins put it, “Why don’t plants have eyes?” We have much to gain by building 
vision systems with tight sensorimotor loops and learning what problems need to be 
overcome in doing so. This area remains vastly under investigated, and is likely to 
uncover to many questions that have yet to be asked.      
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