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    Abstract     The fi rst Computational Neuroscience meetings in the 1990s fostered an 
increasing focus on biologically realistic modeling of neurons to understand the 
function of neural circuits. This chapter reviews some of the developments over the 
past 20 years, relating papers presented at the early meetings to subsequent develop-
ments. The review addresses developments in research on associative memory func-
tion, hippocampal memory function, the functional role of theta rhythm oscillations, 
and the discovery and modeling of grid cells.         

 Impact of the Computational Neuroscience Meeting 

 I remember the feeling of excitement associated with the fi rst Computational 
Neuroscience meetings in the early 1990s. I had a sense of a fi eld coalescing from 
many different disciplines, building on research that had started decades earlier. 
I anticipated great accomplishments to take place over the subsequent 20 years from 
those fi rst meetings. Now that the Computational Neuroscience meeting has taken 
place for 20 years, I can refl ect on how far we have progressed since that time. 

 There were a number of changes in cultural styles from the 1980s to the 1990s. 
Neural modeling was dominated by connectionist models (Rumelhart et al.  1986 ; 
McClelland and Rumelhart  1988 ) and attractor dynamic models (Amit  1988 ; Amit 
and Treves  1989 ) in the 1980s. At the start of the 1990s, the excitement about con-
nectionist models and attractor networks transitioned into a greater focus on bio-
physically detailed modeling of neural circuits. This type of work is essential to 
understanding the cellular and molecular mechanisms underlying behavior, which 
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will be essential to guiding the development of treatments for disorders such as 
schizophrenia and depression. Much of the infl uential work on biophysically 
detailed modeling was performed by founders and early participants of the 
Computational Neuroscience meeting, including John Rinzel, Bard Ermentrout, 
Jim Bower, Nancy Kopell, Matt Wilson, Erik DeSchutter, Charlie Wilson, David 
Golomb, Eve Marder, Todd Troyer, Francis Skinner, Alain Destexhe, Ron 
Calabrese, Orjan Ekeberg, and Christian Linster. There are too many names to 
provide a complete list here. 

 The growth of the fi eld was facilitated tremendously by the dedicated work of 
Dennis Glanzman, as the program chief of the Theoretical and Computational 
Neuroscience program at NIMH. His program provided guidance toward funding 
for many of the infl uential modelers in those early years. The work was also facili-
tated by a later collaborative funding venture between Dennis Glanzman at NIMH, 
Yuan Liu at NINDS, and Ken Whang at NSF in the program for Collaborative 
Research in Computational Neuroscience (CRCNS). 

 In describing progress over the past 20 years, I will focus on the biological 
dynamics of memory function, with a particular emphasis on understanding how 
episodic memories are encoded. I will address the progress in three general areas: 
(1) associative memory function, (2) hippocampal function, and (3) theta rhythm 
and grid cells. 

    Associative Memory Function 

 The early days of the Computational Neuroscience meeting included presentations 
addressing biological mechanisms for associative memory function. The theory of 
associations has a long history in research on human cognition. A review can be 
found in Schacter ( 1982 ). These models received a more detailed mathematical 
treatment in early linear associative memory models (Anderson  1972 ; Kohonen 
 1972 ,  1984 ). In these models, vectors represented patterns of neural activity in the 
brain. An association was encoded by modifi cation of synapses, represented math-
ematically by computing the outer product matrix between a presynaptic activity 
vector and the associated postsynaptic activity vector. Retrieval of the association 
was performed by allowing the presynaptic activity cue to spread across the modi-
fi ed synapses, represented mathematically by matrix multiplication of the presynap-
tic vector by the pattern of synaptic connections. 

 An important early paper by Marr proposed that the excitatory recurrent connec-
tions in hippocampal region CA3 could underlie autoassociative memory function 
(Marr  1971 ). This was expanded upon in subsequent papers by hippocampal 
researchers (McNaughton and Morris  1987 ) as described in more detail in the next 
section of the chapter. In addition, the primary olfactory cortex was also proposed by 
Haberly and Bower to function as an autoassociative memory (Haberly and Bower 
 1989 ). This proved an interesting model system. Early Computational Neuroscience 
meetings included presentations of detailed biophysical simulations of the olfactory 
cortex developed in the Bower laboratory (Bower  1990 ; Wilson and Bower  1992 ) 
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and models of the olfactory cortex as an autoassociative memory (Hasselmo et al. 
 1990 ,  1994 ; Bergman et al.  1993 ). These biophysical simulations used the GENESIS 
simulation package initially written by Matt Wilson and developed further by many 
researchers within the Bower laboratory (Bower and Beeman  1995 ). The Bower 
laboratory provided an exciting environment where both biologically realistic mod-
eling and intracellular recording experiments could be combined. 

 Excitatory recurrent connections will cause an explosion of activity unless the 
excitatory feedback is limited by the input–output function of individual neurons or 
by feedback inhibition. A dominant stream of research in the 1980s focused on fi xed 
point attractor dynamics in associative memory function, in which activity con-
verges to a stable fi xed point. Mathematically, Lyapunov functions were used to 
show the stability of attractor states (Hopfi eld  1982 ,  1984 ; Cohen and Grossberg 
 1983 ). Many of these studies focused on relatively abstract representations of neu-
rons and the computation of the storage capacity of attractor networks (Amit  1988 ). 
Initial models were highly unrealistic, for example, violating Dale’s law by having 
both excitatory and inhibitory connections arise from the same neuron and driving 
neurons up to an asymptotic maximum activity. However, later studies addressed 
making these attractor networks more biologically realistic, for example, by model-
ing neurons with lower fi ring rates (Amit and Treves  1989 ; Amit et al.  1990 ). 

 Many of the early models used single neuron models that artifi cially limited the 
maximal output of neurons (i.e., using a step function or sigmoid function). This 
was justifi ed as representing the maximal intrinsic fi ring rate of a neuron. However, 
recordings of cortical neurons in vivo almost never go above 100 Hz, whereas the 
maximal fi ring rate limited by intrinsic properties is usually higher. The intrinsic 
frequency–current ( f – I ) curve of a neuron is more accurately modeled with a thresh-
old linear function. A more realistic way of limiting the maximal fi ring rate of mod-
eled neurons is by use of feedback inhibition, for example as initially implemented 
by Wilson and Cowan ( 1972 ,  1973 ). In my own models, I used interactions of 
threshold linear excitatory and inhibitory neurons in attractor models of the hippo-
campus (Hasselmo et al.  1995 ; Kali and Dayan  2000 ). Carl van Vreeswijk wrote an 
unpublished paper with me on these types of models in my lab, and then went on to 
develop his model of balanced networks (van Vreeswijk and Sompolinsky  1996 ) in 
which chaotic activity involves a balance of excitatory and inhibitory activity. 

 Early associative memory models all used different dynamics during encoding 
and retrieval (Anderson  1972 ; Kohonen  1972 ,  1984 ; Hopfi eld  1982 ; Amit  1988 ). 
During encoding, activity in the network would be clamped to an external input pat-
tern. The dynamics of retrieval were explicitly prevented during computation of an 
outer product for encoding of new input patterns. This was essential for the proper 
function of associative memory models, as retrieval during encoding would cause a 
build-up of interference between overlapping patterns (Hasselmo et al.  1992 ). 
However, there was no clear biological mechanism for this difference in dynamics 
during encoding and retrieval. 

 The effects of acetylcholine provide a potential biological mechanism for the dif-
ference in dynamics between encoding and retrieval in associative memory. Working 
on slices of the piriform cortex in the laboratory of Jim Bower, I studied differences 
between the properties of glutamatergic synaptic transmission at the afferent input 
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from the olfactory bulb in layer Ia and the glutamatergic excitatory recurrent connec-
tions in layer Ib arising from other piriform cortex pyramidal cells, extending previ-
ous work on the physiological properties of these synapses done by Jim Bower 
(Haberly and Bower  1984 ; Bower and Haberly  1986 ). I found a striking difference 
in the effects of acetylcholine on the glutamatergic transmission at these synapses 
(Fig.  10.1 ). Activation of muscarinic acetylcholine receptors caused much stronger 
presynaptic inhibition of glutamate release at excitatory recurrent synapses in layer 
Ib compared to afferent synapses in layer Ia (Hasselmo and Bower  1992 ,  1993 ).

   The combined focus on modeling and physiology in the Bower lab gave me 
excellent tools for modeling the signifi cance of this function. In the rooms on the 
top fl oor of the Beckman Behavioral Biology, I remember preparing piriform cortex 
slices, then starting simulations on a Sun workstation, then running a slice experi-
ment, then checking on my simulation output and running a new batch fi le, in an 
interactive process throughout a 10 h experimental day. I found a clear effect of 
cholinergic modulation in abstract models of associative memory function in the 
piriform cortex. The selective suppression of excitatory recurrent connections 
clearly enhanced the encoding of new patterns by preventing interference from pre-
viously stored memories (Hasselmo et al.  1992 ; Hasselmo and Bower  1993 ). Later 
we simulated networks of piriform cortex neurons using the GENESIS simulation 
package for presentations at the Computational Neuroscience meeting (Bergman 
et al.  1993 ; Hasselmo et al.  1994 ), showing that encoding of new patterns was 
enhanced by these cholinergic effects. As shown in Fig.  10.2 , interference from 
previously stored patterns was prevented by cholinergic suppression of synaptic 
transmission, and the rate of encoding was enhanced by cholinergic depolarization 
of pyramidal cells and the suppression of spike frequency accommodation (Barkai 
et al.  1994 ; Barkai and Hasselmo  1994 ).

   These fi ndings in the piriform cortex have been shown to generalize to other 
cortical structures in a wide range of subsequent studies. Research in my laboratory 

  Fig. 10.1    Activation of acetylcholine receptors by the acetylcholine (ACh) agonist carbachol 
causes selective presynaptic inhibition of synaptic potentials evoked by stimulation of excitatory 
feedback synapses ( bottom ), with smaller change of synaptic potentials evoked by stimulation of 
excitatory afferent input ( top ) (Hasselmo and Bower  1992 )       
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extended this work to subregions of the hippocampal formation. In region CA1 of 
the hippocampus, we showed that muscarinic presynaptic inhibition was stronger at 
excitatory connections arising from within the hippocampus (in region CA3) and 
terminating in stratum radiatum of region CA1 compared to afferent input from 
entorhinal cortex terminating in stratum lacunosum-moleculare (Hasselmo and 
Schnell  1994 ). Similarly, muscarinic presynaptic inhibition was stronger for syn-
apses in stratum radiatum of region CA3 arising from CA3 pyramidal cells, com-
pared to weaker presynaptic inhibition at afferent synapses in stratum lucidum, at 
synaptic input arising from the dentate gyrus (Hasselmo et al.  1995 ). This effect was 
later replicated in stratum lucidum (Vogt and Regehr  2001 ) and was extended to 
show less presynaptic inhibition in stratum lacunosum-moleculare of region CA3 
(Kremin and Hasselmo  2007 ). 

 This principle of selective cholinergic suppression of excitatory feedback but not 
afferent input also proves to generalize to neocortical structures. In an early study, 
connections within somatosensory neocortex showed greater presynaptic inhibition 
than afferent input arising from the white matter (Hasselmo and Cekic  1996 ). This 
was subsequently shown in a study using thalamocortical slice preparations, 

  Fig. 10.2    ( a ) Biophysical simulation of spiking response to afferent input. Size of  black squares  
indicates the amount of spiking activity (example membrane potential traces are shown). ( b ) With 
no synaptic modifi cation (no learning), a degraded input pattern only activates a subset of neurons. 
( c ) After learning with ACh, the network effectively completes missing components of the input 
pattern. ( d ) After learning without ACh, proactive interference results in retrieval of multiple dif-
ferent input patterns (Hasselmo et al.  1994 ; Barkai et al.  1994 )       
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showing muscarinic presynaptic inhibition of excitatory recurrent connections in 
neocortex and also showing nicotinic enhancement of afferent input (Gil et al.  1997 ). 

 In the visual cortex, optical imaging was used to show cholinergic suppression of 
the internal spread of activity along excitatory recurrent connections compared to 
afferent input (Kimura and Baughman  1997 ; Kimura  2000 ). This indicated that ace-
tylcholine should reduce the functional spread of activity on excitatory recurrent 
connections in visual cortex. This was supported by in vivo experimental data show-
ing that iontophoretic application of acetylcholine decreases the extent of spatial 
integration, assessed by measuring a neuron’s tuning to length of visual stimuli 
(Roberts et al.  2005 ). These effects appear to contribute to the infl uence of top-down 
attention on the dynamics of visual cortex processing (Herrero et al.  2008 ). This 
work has been extended to human subjects in a study showing that the acetylcholin-
esterase blocker donepezil reduces the extent of the spread of activity in visual corti-
cal areas associated with foveal stimulation (Silver et al.  2008 ). Thus, the 
physiological effects of muscarinic activation modeled in these early papers in the 
Computational Neuroscience meeting have proved to be a general principle of corti-
cal function in subsequent studies. 

 The hippocampal data and modeling generated the prediction that blockade of 
muscarinic receptors by the muscarinic antagonist scopolamine should enhance 
proactive interference in a paired associate memory task (Hasselmo and Wyble 
 1997 ; Wyble and Hasselmo  1997 ). This was supported by experimental data on 
scopolamine effects in human subjects (Atri et al.  2004 ). Enhancement of proactive 
interference was also shown in studies on discrimination of pairs of odors in rats 
administered scopolamine (De Rosa and Hasselmo  2000 ) or after receiving selec-
tive lesions of the cholinergic innervation of the olfactory cortex (De Rosa et al. 
 2001 ). In computational models, the build-up of proactive interference causes run-
away synaptic modifi cation within cortical networks that can spread from one 
region to another. This mechanism was proposed to underlie the early appearance of 
Alzheimer’s disease neuropathology in the form of neurofi brillary tangles in lateral 
entorhinal cortex and the progressive spread from lateral entorhinal cortex to other 
regions (Hasselmo  1994 ,  1997 ). This provides a computational framework that 
would predict reductions in Alzheimer’s pathology with loss of fast hippocampal 
learning (e.g., in the most extreme case, patient HM would be expected to show 
absence of Alzheimer’s pathology in his remaining temporal lobe structures). This 
framework could account for the benefi cial effects of the NMDA blocker meman-
tine on Alzheimer’s disease (Reisberg et al.  2003 ) and supports the use of selective 
activation of presynaptic muscarinic receptors with M4 agonists to enhance presyn-
aptic inhibition of glutamate release in treatment of Alzheimer’s disease (Shirey 
et al.  2008 ). 

 The levels of acetylcholine change dramatically during different stages of waking 
and sleep. Acetylcholine levels are high during active waking, show decreases  during 
quiet waking, and decrease to less than 1/3 of waking levels during slow wave sleep 
(Marrosu et al.  1995 ). The decrease in acetylcholine levels during slow wave sleep has 
been proposed to decrease the presynaptic inhibition of glutamatergic transmission 
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at connections from hippocampus back to neocortex, allowing activity based on 
recently formed associations in the hippocampus to spread back to the neocortex and 
drive consolidation of memories in the neocortex (for review see Hasselmo  1999 ). 
This proposal is consistent with the muscarinic cholinergic presynaptic inhibition 
shown at a number of stages of the feedback connections (Fig.  10.3 ), including the 
excitatory recurrent connections in region CA3 (Hasselmo et al.  1995 ; Vogt and 
Regehr  2001 ; Kremin and Hasselmo  2007 ), the connections from region CA3 to 
region CA1 (Hounsgaard  1978 ; Valentino and Dingledine  1981 ; Hasselmo and 
Schnell  1994 ; de Sevilla et al.  2002 ), and the feedback connections within neocorti-
cal structures (Hasselmo and Cekic  1996 ; Gil et al.  1997 ).

   This model of the role of acetylcholine in consolidation led to some functional 
predictions that have been tested. If a reduction in cholinergic presynaptic inhibition 
enhances consolidation during slow wave sleep, then an increase in acetylcholine 
levels during slow wave sleep should impair consolidation. This was tested in a 
study in which subjects were administered physostigmine during slow wave sleep 
and showed reductions in subsequent tests of declarative memory consolidation per-
formed after the subjects were awakened (Gais and Born  2004 ). On the other hand, 
the model predicts that reductions in acetylcholine modulation during waking 
should enhance consolidation. This was shown in a study in which scopolamine was 
administered to block muscarinic cholinergic receptors after encoding of informa-
tion, and subjects showed an enhancement of consolidation on a later memory test 
(Rasch et al.  2006 ). Thus, computational modeling has provided an exciting link 
between cellular mechanisms of muscarinic presynaptic inhibition and behavioral 
studies in animals and humans. 

Hippocampus
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Neocortex
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  Fig. 10.3    (Left) During waking, high levels of ACh cause presynaptic inhibition of excitatory 
recurrent connections in CA3 as well as connections from region CA3 to region CA1 and feedback 
connections between neocortical structures. This allows a dominant infl uence of afferent input into 
the hippocampus during encoding. (Right) During slow wave sleep, lower levels of ACh allow 
stronger synaptic transmission at these connections. This results in a dominant infl uence of hip-
pocampus on neocortex that could be appropriate for consolidation of previously encoded memo-
ries (Hasselmo  1999 )          
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 This framework describes how the transitions between different levels of acetyl-
choline during waking and sleep can regulate the transition between encoding and 
consolidation. But this leaves the question of how more rapid transitions between 
encoding and retrieval could be regulated. Muscarinic presynaptic inhibition cannot 
change rapidly, as shown by studies in which 100 ms pressure pulse applications of 
acetylcholine cause changes in presynaptic inhibition that persist for 10–20 s 
(Hasselmo and Fehlau  2001 ). In contrast, rapid transitions between encoding and 
retrieval could be mediated by the change in dynamics during individual cycles of 
the theta rhythm oscillations in hippocampus (Hasselmo et al.  2002 ). These dynam-
ical changes could be regulated by postsynaptic GABAA inhibition (Toth et al. 
 1997 ) and presynaptic GABAB inhibition (Molyneaux and Hasselmo  2002 ). 
Encoding could take place when entorhinal synaptic input is strongest at the trough 
of the EEG recorded at the hippocampal fi ssure (Hasselmo et al.  2002 ), and retrieval 
could be dominant when region CA3 input is strongest at the peak of fi ssure theta. 
The change in relative strength of synaptic input is supported by studies showing 
phasic changes in strength of evoked synaptic transmission on different pathways at 
different phases of the theta rhythm oscillation (Wyble et al.  2000 ; Villarreal et al. 
 2007 ). Consistent with the theorized role of these different phases in encoding and 
retrieval, the human EEG shows reset to different phases of theta rhythm during 
encoding versus during  retrieval (Rizzuto et al.  2006 ), and spiking appears on 
 different phases of hippocampal theta during match and nonmatch stimuli (Manns 
et al.  2007 ).  

    Hippocampus 

 In addition to these studies on associative memory in the piriform cortex, the early 
days of the Computational Neuroscience also included presentations of hippocam-
pal models that have had a signifi cant impact on subsequent research. These 
included papers on hippocampal models by Burgess, O’Keefe, and Recce; Idiart 
and Abbott; Redish and Touretzky; Holmes and Levy; Blum and Abbott; and Mehta 
and McNaughton. Modeling of the hippocampus has been very successful in guid-
ing experimental work in this area. A number of experimental studies have tested 
specifi c predictions of computational models. 

 The phenomenon later described as spike-timing dependent plasticity was ini-
tially discovered by William B. “Chip” Levy (Levy and Steward  1983 ) and modeled 
extensively by Holmes and Levy ( 1990 ). The temporal asymmetry of synaptic mod-
ifi cation modeled by Holmes and Levy was incorporated in a circuit model by 
Abbott and Blum (Abbott and Blum  1996 ; Blum and Abbott  1996 ). This model 
predicted that the potentiation of excitatory connections should cause a backward 
expansion of hippocampal place fi elds. An experimental test of the model was per-
formed by Mayank Mehta in Bruce McNaughton’s laboratory (Mehta and 
McNaughton  1997 ). They presented the experimental data from this test at the 
Computational Neuroscience meeting, showing the predicted backward expansion 
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of the size of place fi elds of hippocampal place cells (Mehta et al.  1997 ; Mehta and 
McNaughton  1997 ). This phenomenon has been replicated extensively in subse-
quent studies (Mehta et al.  2000 ,  2002 ). 

 Some of the theories of hippocampal function had a slower time constant for 
their infl uence on experimental work in the fi eld. For example, the early paper by 
Marr ( 1971 ) is extensively credited with proposing the principle of pattern comple-
tion on excitatory recurrent connections in region CA3 of hippocampus. Marr also 
proposed that interference between patterns stored in CA3 could be reduced by the 
process of pattern separation (orthogonalization) in the dentate gyrus (the codon 
hypothesis of Marr). Several papers in the late 1980s and early 1990s reviewed 
these basic ideas of pattern separation in the dentate gyrus (McNaughton and Morris 
 1987 ; McNaughton  1991 ; O’Reilly and McClelland  1994 ; Hasselmo and Wyble 
 1997 ) and pattern completion by autoassociative memory function in hippocampal 
region CA3 (McNaughton and Morris  1987 ; Treves and Rolls  1994 ; Hasselmo et al. 
 1995 ). These principles were also combined together in a simulation of the role of 
the hippocampus in human episodic memory function presented at the Computational 
Neuroscience meeting (Hasselmo and Wyble  1997 ; Wyble and Hasselmo  1997 ). 

 The basic principles proposed by Marr had an impact on experimental work over 
20 years later. Selective genetic manipulations in mice allowed selective knockout 
of the NMDA receptor in hippocampal region CA3, and these mice showed an 
impairment of pattern completion based on learning a spatial response in an envi-
ronment with multiple cues and being tested for their response in an environment 
with a single cue (Nakazawa et al.  2002 ). Similarly, selective expression of tetanus 
toxin in mouse region CA3 to block synaptic transmission from these neurons also 
impairs pattern completion in that task (Nakashiba et al.  2008 ). In contrast, selective 
knockout of NMDA receptors in the dentate gyrus caused impairment of responses 
that required distinguishing two separate but similar contextual environments 
(McHugh et al.  2007 ). In addition, selective lesions of the dentate gyrus impair the 
capacity of rats to encode and selectively respond to spatial locations that are close 
to each other (Gilbert et al.  2001 ). 

 Unit recording studies have also analyzed the response properties of the dentate 
gyrus versus other hippocampal subregions. Neurons in the dentate gyrus show 
sparser coding of the environment, with fewer responsive cells and smaller response 
fi elds for dentate place cells (Barnes et al.  1990 ). Minimal changes in the spatial 
environment can cause distinct responses of dentate gyrus granule cells (Leutgeb 
et al.  2007 ). Other unit recording studies have tested for the effect of partial shifts in 
the environment on neural responses in region CA3. In one study, the partial shift 
caused less change of neural response in CA3 compared to CA1 suggesting pattern 
completion (Lee et al.  2004 ), whereas in another study, region CA3 responded with 
distinct representations to partial changes in the environment (Leutgeb et al.  2004 ). 
These apparently confl icting results were unifi ed by demonstration of a nonlinear 
transformation in region CA3 (Vazdarjanova and Guzowski  2004 ). Input patterns 
that are somewhat similar to each other induce very similar response patterns, 
whereas input patterns that are more different evoke more strongly differentiated 
patterns of neural activity (Guzowski et al.  2004 ; Vazdarjanova and Guzowski  2004 ).  
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    Theta Rhythm, Theta Phase Precession, and Grid Cells 

 Another important body of modeling research has focused on the role of oscillations 
in cortical function. Here I will focus on models of the role of theta rhythm in hip-
pocampal function. An early paper presented at the Computational Neuroscience 
meeting presented a model of goal-directed behavior in the hippocampus that used 
the phenomenon of theta phase precession to provide a more accurate spatial code 
(   Burgess et al.  1994 ). 

 Theta phase precession was fi rst discovered by O’Keefe and Recce ( 1993 ) and 
then replicated extensively in other studies (Skaggs et al.  1996 ; Huxter et al.  2003 ). 
In theta phase precession, the spiking response of hippocampal place cells changes 
relative to theta rhythm oscillations recorded simultaneously in the hippocampal 
EEG. When a rat fi rst enters the place fi eld of an individual place cell, the spikes 
occur predominantly at a relatively late phase of the theta rhythm. The spikes shift 
to progressively earlier phases as the rat traverses the fi eld. In the original paper 
describing theta phase precession, the phenomenon was proposed to arise from a 
progressive phase shift between the network EEG oscillation frequency and the 
intrinsic spiking frequency of the neuron which was shown to have a higher fre-
quency based on the autocorrelation of spiking activity (O’Keefe and Recce  1993 ). 
That paper presents a simple fi gure showing how the interaction of two oscillations 
of slightly different frequency will cause a precession of the summed oscillation 
relative to the lower frequency oscillation. This model makes an interesting addi-
tional prediction that there should be multiple fi ring fi elds, each showing the same 
precession. Since most place cells had a single fi ring fi eld, this was perceived as a 
problem of the model, and later implementations kept the oscillations out of phase 
with each other until one was shifted to a higher frequency in the fi ring fi eld (Lengyel 
et al.  2003 ). However, the later discovery of grid cells casts a different light on the 
original model, fulfi lling the prediction of the model for multiple fi ring fi elds that 
was initially perceived as a problem of the model. Thus, the model by O’Keefe and 
Recce essentially predicted the existence of grid cells. 

 A number of other models have also simulated theta phase precession. For exam-
ple, the oscillatory interference model has been presented in a variant involving 
inhibitory infl uences on pyramidal cells (Bose et al.  2000 ; Bose and Recce  2001 ). 
In another class of models, the replication of phase precession in the McNaughton 
laboratory was accompanied by a model of phase precession based on slow retrieval 
of a learned sequence of spatial locations during each theta cycle (Tsodyks et al. 
 1996 ). A similar sequence read-out model was presented that year by Jensen and 
Lisman ( 1996a ). In the Jensen and Lisman model, the phase precession during 
encoding arose from a working memory buffer in which afterdepolarization allowed 
neurons to be played out in a sequence on each theta cycle (Jensen and Lisman 
 1996b ). Both of these models required relatively slow read-out of the sequence 
across the full theta cycle, at a rate slower than the time constants of glutamatergic 
AMPA conductances. The following year a different model was presented 
(Wallenstein and Hasselmo  1997 ) in which read-out had the faster time course of 
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AMPA conductances, but the length of the read-out would shift across the theta 
cycle based on the level of presynaptic inhibition or the level of postsynaptic depo-
larization. This model was extended later to include the context-dependent retrieval 
of sequences, accounting for the reappearance of theta phase precession over initial 
trials on each new day (Hasselmo and Eichenbaum  2005 ). 

 Another class of models proposed that phase precession arose from progressive 
shifts in the postsynaptic depolarization of neurons, causing spikes to occur at dif-
ferent phases relative to network inhibitory oscillations (Kamondi et al.  1998 ; 
Magee  2001 ; Mehta et al.  2002 ). These different models have motivated a number 
of different experimental studies. The sequence retrieval models were supported by 
an initial study showing that reset of theta phase oscillations did not shift phase, 
spiking after reset would commence at the same phase as before the reset (Zugaro 
et al.  2005 ). However, a more recent study strongly supported the oscillatory inter-
ference model by showing that intracellularly recorded oscillations in membrane 
potential also show phase precession relative to network oscillations (Harvey et al. 
 2009 ), an effect not predicted by the sequence read-out model. The postsynaptic 
depolarization model did not predict this shift in phase of intracellular oscillations 
(Kamondi et al.  1998 ). In addition, the postsynaptic depolarization models pre-
dicted an asymmetrical sawtooth waveform for a depolarizing shift in the place 
fi eld, whereas the data showed a symmetrical depolarization in the place fi eld 
(Harvey et al.  2009 ). 

 As noted above, the original presentation of the oscillatory interference model of 
theta phase precession predicted the existence of neurons with multiple, regularly 
spaced fi ring fi elds (O’Keefe and Recce  1993 ). Though the authors initially saw this 
as a problem for the model, the generation of multiple fi ring fi elds by the model is 
explicitly shown in Fig. 10 of the O’Keefe and Recce ( 1993 ) paper. This initially 
undesired prediction of the model was validated by the later discovery of grid cells 
in the medial entorhinal cortex in the Moser laboratory. In the data from the Moser 
lab, the existence of repeating fi ring fi elds was fi rst noted in the dorsal portion of 
medial entorhinal cortex (Fyhn et al.  2004 ), and subsequently the regular hexagonal 
arrangement of fi ring fi elds was noted and found to extend to more ventral regions 
of medial entorhinal cortex with larger spacing between the fi ring fi elds (Hafting 
et al.  2005 ). The systematic increase in spacing between fi ring fi elds for neurons in 
more ventral locations has been shown in great detail in subsequent papers (Sargolini 
et al.  2006 ), including very large and widely spaced fi ring fi elds in more ventral 
medial entorhinal cortex (Brun et al.  2008 ). 

 When the fi rst paper on grid cells appeared, O’Keefe and Burgess immediately 
recognized the signifi cance of the repeating nature of grid cell fi ring, as this had 
been a strong feature of the theta phase precession model. They rapidly pointed out 
how oscillatory interference could underlie the properties of grid cell fi ring (O’Keefe 
and Burgess  2005 ). In the Computational Cognitive Neuroscience meeting in 
Washington in 2005, Neil Burgess presented a poster with a detailed model using 
velocity modulation of fi ring frequency to generate realistic grid cell fi ring fi elds 
(Burgess et al.  2005 ). The oscillatory interference model of grid cells immediately 
generated a prediction about the mechanism for the difference in spacing of grid 
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cells along the dorsal to ventral axis of medial entorhinal cortex (O’Keefe and 
Burgess  2005 ). To quote that paper directly: “The increasing spatial scale of the 
grid-like fi ring as you move from the postrhinal border of the medial entorhinal 
cortex would result from a gradually decreasing intrinsic frequency …” I saw Neil 
Burgess’s poster in Washington and with graduate student Lisa Giocomo set out to 
test this explicit prediction of the model. Neil kindly sent us a copy of his poster 
with the model that he presented later in a full paper (Burgess et al.  2007 ). 

 To test the prediction, Lisa performed intracellular whole cell patch recording 
from stellate cells in slice preparations of medial entorhinal cortex (Giocomo et al. 
 2007 ). She used horizontal slices of entorhinal cortex and kept track of the dorsal to 
ventral position of the individual horizontal slices, so she could plot differences in 
intrinsic properties relative to anatomical position. We found a clear difference in 
the resonant frequency and the frequency of subthreshold membrane potential oscil-
lations (Giocomo et al.  2007 ), with a gradual decrease in these intrinsic frequencies 
for slices more ventral relative to the postrhinal border. Thus, the prediction of the 
model was clearly supported by the data. The data on frequency membrane poten-
tial oscillations and resonance has been replicated by other groups (Boehlen et al. 
 2010 ) and by other researchers working in my laboratory (Heys et al.  2010 ). 

 In our initial presentation of the data on differences in intrinsic frequency 
(Giocomo et al.  2007 ), we illustrated the functional signifi cance of the data by 
incorporating the difference in intrinsic frequency into the oscillatory interference 
model by Burgess (Fig.  10.4 ). Using a multiplicative version of the model, we 
showed that higher intrinsic frequency in dorsal cells could generate the narrower 
spacing between fi ring fi elds of grid cells recording in dorsal entorhinal cortex and 
the lower frequency in ventral cells could generate the wider spacing in more ven-
tral cells. In a later paper, we showed that the data was more consistent with an 
additive model that could account for very wide spacings by having a shallower 
slope of change in frequency with velocity (Giocomo and Hasselmo  2008a ).

   The dorsal to ventral difference in intrinsic frequency was accompanied by a 
gradual slowing of the time constant of the depolarizing sag in stellate cells caused 
by hyperpolarizing current injections activating the H current and causing a depo-
larizing rebound (Giocomo et al.  2007 ). This suggested a role for H current in the 
dorsal to ventral difference in intrinsic frequency, which was supported by voltage 
clamp data suggesting a difference in the time constant of the H current as well as a 
trend toward differences in the magnitude of the H current (Giocomo and Hasselmo 
 2008b ). Testing of intrinsic frequencies in mice with knockout of the H current 
showed a fl attening of the gradients of intrinsic frequencies (Giocomo and Hasselmo 
 2009 ). These results were consistent with recordings in oocytes showing that homo-
meric H current channels using just HCN1 subunit had faster time constant than 
homomeric HCN2 channels, with an intermediate time constant for heteromeric 
channels combining HCN1 and HCN2 subunits (Chen et al.  2001 ). Thus, this model 
provided an exciting link between molecular and cellular properties of neurons in 
medial entorhinal cortex, and the functional coding of space by the grid cell fi ring 
properties of these neurons. This was beyond anything that I had dreamed of accom-
plishing when the Computational Neuroscience meeting started in the early 1990s. 
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 After we published the Science paper, I felt that the next step would be simple. 
The model in the Science paper used interference of cosine functions. The next step 
would be to implement the model within a compartmental simulation of an entorhi-
nal stellate cell as implemented in GENESIS by Fransén et al. ( 2004 ). I believed we 
could simulate subthreshold oscillations on different dendrites within a compart-
mental simulation (Hasselmo et al.  2007 ). However, in simulations run by Jim Heys 
in my laboratory, subthreshold oscillations on different dendrites tended to synchro-
nize. The same result was obtained in work by Michiel Remme with Boris Gutkin 
and Mate Lengyel in extensive simulations and computational analysis (Remme 
et al.  2009 ,  2010 ). In addition, analysis of the variability of oscillation period 
showed that the membrane potential oscillations were too noisy to allow stable cod-
ing of location by phase (Giocomo and Hasselmo  2008a ; Zilli et al.  2009 ). These 
points argued against a single cell implementation of the model and argued for a 
network implementation. 

 The effect of single cell resonance on spike timing is a topic of ongoing research. 
It is clear that resonance does not result in rhythmic spiking only at the resonant 
frequency, but allows a range of frequencies with only a small defl ection at the reso-
nant frequency (Giocomo and Hasselmo  2008a ). In contrast, recordings of intrinsic 
persistent spiking mechanisms in medial entorhinal pyramidal cells show that cells 
tend to spike rhythmically at steady frequencies around theta rhythm (Egorov et al. 
 2002 ; Fransén et al.  2006 ; Tahvildari et al.  2007 ). Therefore, I developed a model of 

  Fig. 10.4    ( a ) Anatomical location of grid cells with different spacing. ( b ) Dorsal cells near the 
postrhinal border have spacing between fi ring fi elds of about 40 cm ( top ). Cells recorded about 
1.5 mm more ventral from the postrhinal border have spacing between fi ring fi elds of about 80 cm 
( bottom ) (from Hafting et al.  2005 ). ( c ) The oscillatory interference model of grid cells can repli-
cate these spacing properties based on a steeper slope of oscillation frequency to velocity in dorsal 
compared to ventral cells (Burgess et al.  2007 ; Hasselmo et al.  2007 ). ( d ) The prediction of the 
model for different intrinsic oscillation frequencies during depolarization is supported by whole 
cell patch recordings of stellate cells in slice preparations of medial entorhinal cortex from dorsal 
( top ) versus ventral ( bottom ) anatomical locations (Giocomo et al.  2007 )       
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grid cells based on persistent spiking cells that could hold a steady baseline 
 frequency. Cells with stable baseline frequencies have been shown in deep layers of 
medial entorhinal cortex (Egorov et al.  2002 ; Fransén et al.  2006 ; Tahvildari et al. 
 2007 ), in layer III of lateral entorhinal cortex (Tahvildari et al.  2007 ), and in the 
postsubiculum (Yoshida and Hasselmo  2009 ). These neurons tend to fi re at the same 
stable baseline frequency regardless of the duration of the stimulation causing per-
sistent spiking (Yoshida and Hasselmo  2009 ). A computational model of grid cells 
based on persistent spiking was developed using grid cells responding to the con-
vergent input from different groups of persistent spiking cells that receive input 
from different sets of head direction cells (Hasselmo  2008 ). This effectively simu-
lated grid cells based on shifts in the frequency of persistent spiking input (Hasselmo 
 2008 ), and as shown in Fig.  10.5 , simulates theta phase precession in grid cells 
(Hasselmo  2008 ) consistent with experimental data showing theta phase precession 
in grid cells (Hafting et al.  2008 ).

   Persistent spiking also shows variability in fi ring frequency that could interfere 
with the stability of phase coding. However, network level dynamics may overcome 
this variability, allowing cells that are intrinsically noisy and irregular in their fi ring 
to still participate in a network oscillation with frequency and phase suffi ciently 
stable to generate grid cell fi ring (Zilli and Hasselmo  2010 ). This model can respond 
with different frequencies for different depolarizing inputs depending on the mag-
nitude of the H current in individual neurons, though it is diffi cult to maintain a 
linear relationship between depolarizing input and magnitude of frequency change. 

  Fig. 10.5    Theta phase precession using the persistent spiking neuron model. ( a ) Simulation of 
neuron in dorsal entorhinal cortex with higher persistent fi ring frequency for a given velocity. 
 Black dots  show phase of spiking versus location during multiple passes through fi ring fi elds.  Blue 
trace  shows simulated EEG with  dashes  indicating spike times. ( b ) Ventral entorhinal cortex neu-
ron with lower persistent spiking frequency for a given velocity, showing slower shift in phase with 
position in a larger grid cell fi ring fi eld (Hasselmo  2008 )       
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This model indicates the ongoing validity of the oscillatory interference model as a 
theory of the generation of grid cell fi ring responses and provides a framework for 
explaining the relationship between intrinsic resonance and the spacing of grid cell 
fi ring fi elds. 

 A number of alternate mechanisms have been proposed for the generation of grid 
cell fi ring properties, including attractor dynamics due to structured excitatory 
recurrent connectivity (Fuhs and Touretzky  2006 ; McNaughton et al.  2006 ; Burak 
and Fiete  2009 ) and self-organization of afferent input (Kropff and Treves  2008 ). 
The attractor dynamics models do not account for some data as well as oscillatory 
interference models, but they are better at accounting for the consistent orientation 
and spacing of grid cells within local regions of the medial entorhinal cortex 
(Hafting et al.  2005 ) and the apparent quantal transitions in the spacing between 
fi ring fi elds (Barry et al.  2007 ). However, most attractor dynamic models do not 
utilize theta frequency oscillations in spiking activity and do not account for theta 
phase precession. However, a recent model used attractor dynamics and simulated 
grid cell theta phase precession, while generating differences in spacing based on 
the time course of medium afterhyperpolarization (Navratilova et al.  2012 ). The 
importance of theta rhythm oscillations for grid cell generation has been demon-
strated by local infusions into the medial septum that block network theta rhythm 
oscillations in the entorhinal cortex. Grid cell fi ring patterns do not appear during 
pharmacological blockade of theta rhythm oscillations (Brandon et al.  2011 ), 
whereas head direction responses are spared. 

 As described here, the discovery of grid cells and their relationship to the intrin-
sic resonance properties of entorhinal neurons provides fascinating clues to the 
function of the entorhinal cortex and hippocampus in human episodic memory. 
A theoretical framework based on the oscillatory interference model can perform 
the encoding and retrieval of complex trajectories as episodic memories. The data 
have not yet converged on a fi nal model of the mechanism for generation of grid 
cells, but the ongoing interaction of computational modeling guiding experimental 
neurophysiology has provided insights beyond any that I imagined 20 years ago at 
the Computational Neuroscience meeting.      
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