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   Foreword   

    A Venue for Establishing Training and Collaborations among Computational Neuroscientists  

   National Institutes of Health (NIH) Director Dr. Francis Collins was interviewed by 
Charlie Rose in 2010, where he remarked “Computational biologists will be the 
‘breakthrough’ artists of the future.” Taking this one step further, Dr. James Bower, 
the co-founder and long-term co-organizer of the annual Computational 
Neuroscience (CNS) meeting, has often suggested that “ every NIH - funded grant 
should include a computational analysis and / or modeling component .” 

 The reasoning behind these statements stems from the nature of empirical 
research and the needs of today’s biomedical science community. As neuroscien-
tists, we all know that the most exciting, and also most daunting challenge facing us 
is to understand the intricate structures and dynamic functions of the nervous sys-
tem. However, given the vast amount of extremely complex data that is routinely 
being collected, this understanding cannot be readily achieved without using a com-
bination of experimental and computational approaches. Computational neurosci-
ence requires either a close collaboration between experimentalists and theorists, or, 
perhaps even better, the participation of  bilingual  scientists—a cadre of well-trained 
individuals who are fl uent in both experimental and theoretical “languages” and 
scientifi c perceptions. 

 In the past 2 decades, under the leadership of Drs. Bower, Miller, Linster, Jung, 
De Schutter, and others, the annual CNS meetings have served as a forum for close 
interactions between experimental and computational neuroscientists. Formal pre-
sentations during the main meetings, provocative discussions during the post- 
meeting workshops, and informal dialogues during poster sessions provided ample 
opportunities for the exchange of ideas that have led to much fruitful 
collaboration. 

 More importantly, the CNS meetings have served as a venue of the training of a 
new generation of bilingual scientists. From the very beginning, the meeting orga-
nizers have put an emphasis on providing a stage for young scientists, and this 
unique feature of the meeting has persisted to this day. Over the years, countless 
young investigators (many of them had early training in quantitative sciences and 
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later became interested in neuroscience) gave their very fi rst scientifi c presentations 
at these meetings—one of the fi rst steps in preparation for an academic research 
career. Many of those early attendees are now well-established investigators with 
their own laboratories and successful careers. They are actively mentoring the next 
generation of CNS meeting attendees. 

 The pre-meeting tutorial is another platform for cross-education and enrichment, 
which provides training opportunities for both junior and established experimental 
scientists to learn computational approaches, and vice versa. Another such opportu-
nity lies in the keynote speeches by invited outside speakers, who often provide 
wisdom and insight from different angles and an outsider’s point of view. 

 Another unique feature of the CNS meeting is its emphasis on promoting the 
participation of female scientists in a fi eld that was once male-dominated. 
The increasingly large number of women serving on the Board of Directors and 
Executive Program Committee, as well as presenters and meeting participants, dem-
onstrates the success of this approach. 

 The NIH has long recognized the importance of the fi eld of computational neu-
roscience and has strongly invested in supporting a wide array of computational 
neuroscience projects, research training and related meetings. As early as 1988, the 
National Institute of Mental Health (NIMH) and the then-named National Institute 
of Neurological and Communication Disorders and Stroke jointly released the  Mat
hematical / Computational / Theoretical Neuroscience Research Awards Program 
Announcement , and the NIMH has maintained an active Theoretical and 
Computational Neuroscience Program ever since. 

 During 1999 and 2000, three NIH institutes [the National Institute of Neurological 
Disorders and Stroke (NINDS), the National Institute on Drug Abuse (NIDA), and 
the National Institute on Alcohol Abuse and Alcoholism (NIAAA)] organized 
workshops to evaluate needs and identify opportunities on how to further nurture 
this emerging fi eld. These workshops provided suggestions for future research 
directions, and identifi ed challenging needs in the fi eld, including encouraging 
equal level collaborations, early training and cross-training of bilingual computa-
tional scientists, creating career paths for quantitatively trained scientists in neuro-
science, and enhancing peer reviewers’ appreciation of multidisciplinary approaches. 

 Based on these recommendations, nine NIH institutes joined force with fi ve 
National Science Foundation (NSF) directorates, and developed the  Collaborative 
Research in Computational Neuroscience  ( CRCNS ) program. Over the past decade, 
this program has funded almost 200 collaborative projects, involving well over 400 
principal investigators, and also providing training opportunities for several hun-
dred graduate students and postdoctoral fellows. NIH’s devotion to this fi eld has 
also been shown as one of the priorities of the NIH Blueprint for Neuroscience 
Research—a cooperative effort among 15 NIH institutes, centers, and offi ces. 
In 2006, and again in 2010, the NIH Blueprint issued initiatives on  Training in 
Computational Neuroscience  and supported several training grants. Many of the 
benefi ciaries of these NIH programs are previous and current participants of the 
CNS meetings. 
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 Computational neuroscience research has expanded from basic science, and the 
study of small circuits, to include translational research and clinical research; from 
cellular and network levels to include subcellular, molecular, and genetic levels and 
up through systems, and disease levels. The NIMH has supported the CNS meeting 
since its infancy, and over the past 2 decades many other NIH institutes, including 
NINDS, NIDA, NIAAA, and the National Institute of Biomedical Imaging and 
Bioengineering (NIBIB) have co-supported this meeting as well. The NIH has 
played an important role in nurturing the growth of the fi eld of computational 
neuroscience.  

       Dennis L. Glanzman         
Program Chief Theoretical and 

Computational Neuroscience Program,
National Institute of Mental Health

Yuan Liu
Chief, Offi ce of International Activities

National Institutes of Health/National
Institute for Neurological Disorders and Stroke                           
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   Disclaimer   

 This foreword was prepared by Dennis Glanzman and Yuan Liu in their personal 
capacity. The opinions expressed in this article are the authors’ own and do not 
refl ect the view of the National Institutes of Health (NIH), the Department of Health 
and Human Services, or the United States government.  
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    Abstract     Since their offi cial inception in 1992, the annual Computational 
Neuroscience (CNS) meetings have served as a format for the presentation and dis-
cussion of a broad range of research employing theoretical and experimental meth-
ods to study the functional organization and operation of an equally broad range of 
nervous systems. As the CNS meetings have now entered their third decade, this 
volume as a whole considers how the understanding of several of the subjects con-
sistently highlighted in those meetings has advanced and changed over the last 20 
years. Given the infl uence of the CNS meetings on many of this volume’s authors, 
as well as the fi eld of CNS as a whole, we thought it might be appropriate to provide 
a brief historical perspective and “back story” on the meeting’s origins now more 
than 20 years ago. This chapter is therefore a narrative and combined personal rec-
ollection from the two scientists who worked together to conceive the CNS 
meetings.  

        Early Days 

 The fi rst Computational Neuroscience (CNS) meeting was held from July 14th to 
18th, 1992, at the University of California’s Conference Center on Lister Hill in San 
Francisco and included 116 presented papers and 215 participants. Looking back at 
that meeting now, it is clear that not only the science but also much of the character 
of the subsequent CNS meetings was already established in that fi rst meeting. 

    Chapter 1   
 Introduction: Origins and History 
of the CNS Meetings 

             John     Miller     and     James     M.     Bower    

        J.   Miller    
  Department of Cell Biology and Neuroscience ,  Montana State University ,   Bozeman ,  MT ,  USA    

    J.  M.   Bower      (*) 
  Health Sciences Center ,  University of Texas ,   San Antonio ,  TX ,  USA   
 e-mail: bower@uthscsa.edu  
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 The original impetus for this new series of meetings was to provide an open 
forum to specifi cally consider the computational structure of nervous systems. 
While by 1992 a number of meetings had been established that sought to link com-
putational studies of the nervous system to more engineering related fi elds like neu-
ral networks (see below), CNS*92 was the fi rst ‘open’ meeting to specifi cally focus 
on computational research intended to understand brains for their own sake. Thus, 
as stated in the original call for papers for CNS*92:

  This is an interdisciplinary conference intended to address the broad range of research 
approaches and issues involved in the new fi eld of Computational Neuroscience. The meet-
ing is intended to bring together experimental and theoretical neurobiologists along with 
engineers, computer scientists, cognitive scientists, and physicists to consider the function-
ing of biological nervous systems. Peer reviewed papers will be presented on a range of 
subjects related to understanding how nervous systems compute. 

   In addition to the clear focus on understanding nervous systems as the primary 
objective of the meeting, the organizers were also very aware that this was a new 
fi eld and accordingly that its growth would be especially dependent on nurturing the 
young scientists entering the fi eld. While a few universities in the late 1980s had 
begun to organize graduate programs in CNS, in most research laboratories, compu-
tational techniques were being introduced by individual isolated students who we 
felt would benefi t from a place to come, present their work, and commune with 
like-minded colleagues. Quoting from the original NIH grant application to support 
the CNS meetings:

  The meetings organizers are particularly committed to providing graduate students, post- 
doctoral fellows, and young research faculty the opportunity to attend this meeting. We 
believe that this is generally important for the future growth of computational approaches 
to neuroscience, (as) it is often the case that individual students and postdocs are the instiga-
tors of computational research in their laboratories, and thus are often isolated. 

   This focus on building a community of graduate students, postdocs, and young 
research faculty had several important structural consequences for the meeting. 
First, from its inception, a signifi cant percentage of the CNS operating budget and 
fund raising efforts were devoted to providing travel support for students. In fact, in 
the early days of the meeting senior invited speakers were often asked to pay their 
own travel expenses so that more resources could be made available for student 
participants. As a result of this focus on young investigators, many of today’s lead-
ing computational neuroscientists, while still students, gave their fi rst major science 
presentations at CNS. That includes several of the contributors to this current 
volume. 

 Second, while CNS papers have always been peer reviewed, the large majority of 
papers have always been accepted on the assumption that the meeting itself pro-
vided an important opportunity for scientifi c feedback, especially for students. Most 
of the accepted papers were presented in poster sessions in order to maximize the 
opportunity for this feedback. In fact, in the early days, an important factor for invit-
ing senior faculty was the likelihood they would be willing to spend time interacting 
with students in front of their posters. To facilitate the culture of the poster sessions, 
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the organizing committee made sure they were well lubricated and, importantly, had 
no scheduled end. As a result, it was not unusual in early CNS meetings to fi nd 
groups of participants sitting on the fl oor talking and debating until the wee small 
hours of the morning. To accommodate and support this obsessive behavior, the 
starting time for the morning oral sessions on each day was delayed more and more. 
To our delight, meeting evaluations consistently rated the poster sessions as the best 
feature of the meeting   . 

 Another early objective of the meeting was to provide the opportunity for partici-
pants to publish their science in the meeting proceedings. Once peer reviewed had 
accepted the paper to the meeting, the authors were free to write up their results for 
publication in the conference proceedings as they saw fi t. It seemed like almost 
every year the question was raised as to whether “real” peer review should be 
applied to the published papers themselves, for example, by requiring full papers to 
be submitted before the meeting. The organizers always argued that, given the youth 
of the fi eld and its participants, the fi nal published papers should benefi t from the 
feedback at the conference. In addition the organizers always felt that once the sci-
ence was accepted, it should be up to the individual researchers to present the work 
as they saw fi t. After all, it was their reputation they were establishing. Looking 
back at the conference proceedings now, and as outlined in other chapters in this 
book, the publication process resulted in the publication of a number of important 
early papers in the fi eld that may not have passed traditional peer review at the time. 
In fact, in those early days it was diffi cult to get computational papers published in 
more traditional forums. This is one reason why the CNS meeting organizers also 
worked to organize the Journal of Computational Neuroscience, which is, in fact, 
another spin off of the CNS meetings. 

 With respect to the proceedings themselves, during the fi rst several years of the 
meeting, the publisher Kluwer Academic Press insisted that it would help sales if 
we came up with a new name for the volume each year. Accordingly, “Computation 
and Neural Systems 1992,” became “Computation in Neurons and Neural 
Systems” in 1993, and then “The Neurobiology of Computation” in 1994. In 
1995, a new publisher, Academic Press, fi nally allowed us to simply refer to the 
proceedings volume as “Computational Neuroscience: Trends in Research 1995” 
… 1996 … 1997. By 2002, the proceedings volume had reached almost 1,200 
pages in length. 

 As already stated, a core function of the CNS meeting and its design was to 
promote interactions between its young and enthusiastic participants. Therefore, 
the 3 days of the formal meetings were followed by 2 days of workshops designed 
for yet more discussion and interaction. The early tradition of the meeting was to 
have these workshops at a separate site, and preferably a site remote enough to 
allow participants to focus on absorbing and debating what they had heard at the 
meeting with minimal outside distraction. For the fi rst meeting, we chose the 
Marconi Center located on a remote site on the Pt. Reyes peninsula north of San 
Francisco. While the Marconi center was the site where Guglielmo Marconi fi rst 
broadcast a radio signal across the Pacifi c in 1914, in 1992 it had no Internet 
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connections, no computers, and almost no way for code hackers and computational 
neurobiologists to exercise their fi ngers. It is still one of the more amusing “CNS 
scenes” watching 150 tech savvy and already tech- dependent CNSers all playing 
Frisbee on the lawn in order to have something to do with their hands. This fi rst 
workshop also established a tradition that lasted for the next 10 years of not allow-
ing formal workshop presentations. The meeting organizers provided fl ip charts 
and not much more, and many of the workshops took place outside, a tradition that 
was revisited at CNS 2010, when at least one workshop took place while “tubbing” 
down the Guadalupe River in Texas. In 1992, after 2 days of workshops, the confer-
ence participants were very happy to be bussed back to civilization. The “summer 
camp” atmosphere of the CNS meeting at the    Asilomar Conference Center outside 
Monterey California in 2002 is explicitly captured in the poster for that year’s meet-
ing (see Chap. 2). 

 The other important CNS tradition established in the fi rst meeting, which has 
lived on now for 20+ years, is the effort spent to assure that the CNS banquet is a 
memorable event with a location and character appropriate for the culture of the 
host city. The organizers were very intent on assuring that long after the particular 
scientifi c results were forgotten, memories of the CNS banquet would live on. 

This is perhaps true for no banquet more than the fi rst held in 1992. 
 Given the meeting was in San Francisco, and given the strong “hands on” orien-

tation of the organizers, the obvious choice for the site of the fi rst CNS banquet was 
the world famous Exploratorium Science Museum on the Embarcadero. Built after 
World War II by Frank Oppenheimer (the brother of Robert Oppenheimer), the 
Exploratorium was already the most famous “hands on” science museum in the 
world. A visitor to the museum then and now could put their hands on the exhibits, 
including many in 1992 that had to do with human perception and brain science. 
Perhaps the most remarkable of these was the “tactile dome” in which patrons 
entered into a completely dark space and climbed up, down, and around through 
various rooms and spaces designed to provide different tactile sensations. While the 
Exploratorium was the obvious choice for the banquet site, the culture of San 
Francisco also required that the food served be well above the average banquet fare. 
Accordingly, Frank Eeckman, the conference organizer in charge of logistics, was 
asked to fi nd a caterer worthy of San Francisco. Unbeknownst to either of us, Frank 
took this charge very seriously, and arranged for catering by one of the BEST cater-
ers in San Francisco, oysters on the half shell, curried shrimp, wonderful sourdough 
breads, fresh asparagus, and all in unlimited amounts as one after another catering 
truck replenished the tables adorned with ice sculptures. Further, also taking seri-
ously our instructions that the CNS banquet should be a memorable (if not exactly 
precisely a remembered) event, Frank had arranged for an open bar. His and our 
assumption was that computational neurobiologists were not likely to over indulge. 
We were wrong. Worse the “hands on” and innovative nature of the museum com-
bined with the equally inventive nature of the meeting attendees meant that once the 
party was in full force, several of the party faithful took “hands on” on face value 
and started modifying, or as they put it at the time, “improving” the exhibits. One of 
the meeting organizers (whose identity we continue to protect) ended up in the tactile 
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dome, where, sliding into a pit of Ping-Pong balls in the complete dark, he happened 
upon a biological experiment fully underway. The upshot of all this chaos was a 
staggering catering bill, and a clear indication from the Exploratorium staff that, 
perhaps, the CNS meeting should seek another venue for future banquets (a few 
years later we had sushi at the San Francisco Aquarium instead). The next several 
months were spent trying to fi gure out how to pay for the banquet before the 
University of California followed through on its threat to confi scate John Miller’s 
house to pay the outstanding bill. Those of you who have attended CNS meetings 
since will note that free drinks are limited to two tickets each, in many cases you can 
thank your faculty mentors’ youthful indiscretion for that.  

    The Back Story 

 What should be clear from the previous account is that the CNS meeting had a very 
particular and intentional design from the start. The primary reason is that the fi rst 
CNS meeting was actually a confl uence of the experience of the conference orga-
nizers with several previous meetings, some of that experience good and some not 
so good. That is the back story of the CNS meetings. 

 [Jim’s story] As briefl y recounted by Dave Beeman in his article in this volume 
on the origin and development of neuronal simulators, my fi rst efforts to build real-
istic models of the nervous system started while I was a postdoctoral fellow in Lew 
Haberly’s laboratory in Madison Wisconsin in 1983. During that same period of 
time, I had co-taught a course with Dr. Josh Chover, then chairman of the Department 
of Mathematics at UW on methods for the analysis of multi-neuronal data. During 
this course, one of Josh’s long time friends, Ed Posner, from the Jet propulsion 
Laboratory and Caltech, visited Madison and gave a talk on the exciting new devel-
opments in “neural network engineering” happening at Caltech. The week before 
Ed’s visit, Caltech and AT&T’s Bell Labs had organized a “Hop-fest” at Caltech, 
centered on the “‘neural-like’ ‘Hopfi eld network’” that Caltech Professor John 
Hopfi eld had just published. Because I had just accepted a faculty position in the 
Department of Biology at Caltech, I was invited to dinner with Ed, who subse-
quently invited me to the follow-up “Hop-fest” that took place at the Miramar Hotel 
in Santa Barbara, California a few months later. 

 For a young faculty member interested in neuronal-modeling, what turned out to 
be the fi rst “Neural Network” meeting of the modern era was a remarkable event, 
full of an extraordinary level of excitement and anticipation among a broad range of 
computational scientists. The “Hopfi eld network” was regarded by the participants 
as a breakthrough return to research on “‘nervous system like’ ‘neural network’” 
engineering models after MIT professors Minsky and Papert put a damper on the 
fi eld with their famous book on perceptrons (Minsky and Papert  1969 ). Refl ected 
the renewed wide ranging interest in what were regarded as nervous system-like 
engineering solutions, the 40 participants in the Santa Barbara meeting represented 
a remarkable mix of scientists and government offi cials, including representatives 
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from powerful federal funding agencies like the DOD, CIA, NSA, etc. Of those 
participants, only two made any claim to being real biologists, myself and Terry 
Sejnowski. In fact, this was the fi rst time I met Terry and, as I recall, the fi rst time I 
heard his “net-talk” network “babbling” in what seemed to be a remarkable human- 
like fashion as it “learned” to produce speech from text. While Terry had been 
scheduled to give a talk at the meeting, I was only there as an observer until a sched-
uled speaker didn’t show up, and I was asked to talk about modeling the actual 
brain. This turned out to be the fi rst time I presented my work with Matt Wilson 
modeling the olfactory cortex (Wilson and Bower  1988 ) and I remember distinctly 
that it was news to many in the room that synaptic inputs could also be inhibitory. 
Having described olfactory cortex as having an extensive set of “associative” con-
nections, I also remember being asked if olfactory cortex might be a Hopfi eld net-
work. Although it was several years before I calculated (on a bar napkin) that if a 
human brain was fully interconnected like a Hopfi eld network, it would be 10 km in 
diameter, I remember saying that no, it wasn’t; going on to suggest that because all 
real neural networks are much more complex than the basic Hopfi eld network, it 
was likely that hard problems would need to be solved by much more complex net-
works. This was not an opinion that the meeting participants believed or wanted to 
hear in 1985. 

 Regardless of the biological signifi cance of neural networks, what was abso-
lutely clear from the meeting in Santa Barbara was that the neural network move-
ment was going to grow and that many more people would want to attend the next 
meeting. It was therefore decided to expand the meeting the following year, and 
hold it at the Snowbird Ski resort outside of Salt Lake City, Utah, the favorite skiing 
venue for one of the Bell Lab organizers. I attended that meeting and this time gave 
a prearranged invited talk on basic neurobiology, continuing to insist that a real 
neurobiological connection to neural networks required that engineers, physicists 
and mathematicians actually learn about the brain. Like the “Hopfest,” the Snowbird 
meetings was also closed, with all speakers being invited by the organizing commit-
tee. However, the number of people who wanted to attend the Snowbird meetings 
continued to grow and quickly outstripped the capacity of the resort hotel. As a 
result, in the second year of the Snowbird meeting the decision was made to orga-
nize a more open meeting. In what I took at the time as an ecumenical gesture, it was 
suggested that I co-organize the meeting with my Caltech colleague Yasir Abu 
Mustafa, a well known learning theorist. The meeting we organized was the fi rst 
NIPS (Neural Information Processing) meeting in Denver, CO, a meeting that will 
soon celebrate its 25th continuous year. I wrote the meeting announcement to 
emphasize the meetings interest in engineering as well as neuroscience. 

 To telescope events, by the end of the second NIPS meeting, I was growing 
increasingly uncertain as to whether the optimistic fusion of neurobiology with 
engineering really had legs. Not surprisingly, the principle focus of the engineers 
was on engineering, and the neurobiologists, including my friend John Miller, who 
I had invited to participate in the second NIPS meeting, found most of the talks 
either irrelevant to neurobiology or naive in their neurobiological claims. The meeting 
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also became wrapped up in politics especially when the newly formed Neural 
Network Society decided to organize its own meeting. I decided that it was time to 
consider founding a computational meeting specifi cally focused on the nervous sys-
tem by itself. As John recounts in his own history, a meeting at the Neuroethology 
meeting in Berlin, followed by an invitation to attend the workshop on CNS John 
was organizing in San Francisco, led to our mutual decision to organize the fi rst 
CNS meeting. 

 [John’s story] In some ways complementary to Jim, and certainly refl ected in the 
interdisciplinary nature of the CNS meetings, my own training spanned a large 
range of disciplines and approaches, ultimately pointing me toward the application 
of engineering and modeling approaches to studies of neural function. My under-
graduate training was in physics, at U.C. Berkeley. On a lark, I took a Sensory 
Neurophysiology class during my senior year from a young professor named Frank 
Werblin, who got me interested in cracking simple neural circuits using neurophysi-
ology and engineering analysis. After doing graduate work on the neurophysiology 
of the stomatogastric ganglion with Al Selverston at U.C. San Diego, I did a post-
doctoral project with Wil Rall and John Rinzel at the NIH, where I soaked up their 
perspectives and approaches toward compartmental neuron modeling. During that 
postdoc, I also benefi tted from interactions with Bob Burke at NIH and Gordon 
Shepherd at Yale, picking up knowledge and inspiration from the cutting edge elec-
trophysiological and quantitative neuroanatomical studies they were pursuing. We 
all subsequently collaborated on the development of several complex compartmen-
tal neural models, all of which used a program called “NET-2,” which was an early 
equivalent to the electronic simulation program “SPICE” (way back in 1985, we 
used compartmental models to study the implications of active membrane on den-
dritic spine heads, and made predictions that have only recently been verifi ed by 
Roberto Araya and his colleagues (Miller et al.  1985 ; Araya et al.  2007 )). So I came 
out of my postdoctoral studies with my training (and attention) distributed at uneven 
depths over a pretty broad terrain, but inspired to focus on quantitative analysis of 
synaptic integration in neurons with complex dendritic architectures. 

 Starting as a young assistant professor at Berkeley in 1981 “inspired” me to 
focus even more, and also exposed me to other researchers with similar and compli-
mentary interests. In retrospect, one of the guiding lights during my early career at 
Berkeley, and a very important (but not-so-familiar) fi gure in quantitative systems 
neurophysiology in general, was Ted Lewis in the Department of Electrical 
Engineering. Ted was a senior Professor, and was way ahead of his time in applying 
advanced engineering and control theory approaches to the study of operational 
aspects of the auditory system. It was my interactions with Ted that ultimately led 
to my involvement in the establishment of the CNS meetings, which will also 
answer the question why was CNS*2010 identifi ed as the 20th anniversary meeting 
(since, as Jim noted above, the fi rst offi cial CNS meeting was held in 1992). The 
CNS meetings were a direct descendent of a series of two workshops that were held 
the preceding 2 years at U.C. Berkeley. In 1989, Ted Lewis and I, along with Frank 
Eeckman and Muriel Ross at Lawrence Livermore National Labs, decided that it 
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would be interesting to organize an invited workshop built around our common 
interest in the nature of the processing tasks executed by nerve cells and systems, 
the codes by which information is represented during the execution of these tasks, 
and the structure of the neural machinery through which the computational algo-
rithms are implemented. Although we always enjoyed communicating with one 
another during random encounters at committee meetings or other specialized sci-
entifi c conferences, we lamented that there was no single meeting that took the 
general fi eld of “Computational Neuroscience” as its core theme. At the time, there 
were several other excellent smaller conferences that were meeting on an annual 
basis, featuring excellent CNS research. However, these all tended to focus on spe-
cifi c subdisciplines or technological approaches: e.g., meetings on Vision, Audition, 
or the application of back-propagation to tune artifi cial neural networks, or compu-
tational brain models based on Adaptive Resonance Theory as mentioned above by 
Jim. A notable exception to that trend was the International Congress of 
Neuroethology, which hosted presentations of interdisciplinary research on a wide 
variety of vertebrate and invertebrate preparations, framed within the context of 
natural behaviors. While these meetings featured many excellent talks at the inter-
faces between neuroscience, engineering, applied mathematics, and computational 
modeling, they only took place every 3 years at the far ends of expensive plane 
tickets. It was actually at the second International Congress of Neuroethology in 
Berlin, in September 1989, where Jim Bower and I met, were inspired by some 
great presentations, and began to hatch schemes that eventually led to our mutual 
involvement in the CNS meetings (as well as John’s ultimate move from Berkeley 
to Jim’s old  alma mater : Montana State University in Bozeman). There was also the 
Annual Society for Neuroscience meeting, but the size and complexity of that meet-
ing, and the fact that many computational scientists didn’t attend, were limiting. 
Accordingly, Frank and Muriel came up with the idea of running a workshop on 
CNS, and played major roles in organizing and raising the necessary funding. The 
Berkeley workshops in 1990 and 1991 were extremely popular and successful from 
a scientifi c standpoint, and seemed to fi ll a very important niche. At that point, Jim 
and I decided to “incorporate” the workshops as the “CNS Meetings,” and continue 
them on a regular (and more fi nancially stable!) basis.  

    The Ongoing CNS Culture 

 From the previous brief histories, the distinct cultural origins of the CNS meetings 
should be clear. Instead of a closed meeting with the meeting organizers determin-
ing invited presentations, we pushed hard in the direction of few invited speakers 
and a meeting consisting mostly of submitted papers. Instead of a meeting domi-
nated by the current “dons” of the fi eld, our strong sense was that the real growth of 
CNS should be fostered from the ground up, with strong support for student partici-
pation and presentations. If something new was really starting, then students were 
probably in a better position to recognize and pursue the new directions than more 
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seasoned faculty members anyway. To preserve its scientifi c and political integrity, 
the meeting had a very strong policy that members of the organizing committee not 
be allowed to give oral presentations themselves and that the program committee 
and organizers change frequently and include young faculty. We put in place what 
we considered to be a strong and fair peer review system predisposed to accept 
rather than to reject papers. In addition to the promotion of young scientists, the 
CNS meeting has also always placed particular emphasis on diversity and, as a 
result, the CNS organizing committee has, for 20 years, included an approximately 
even mix of men and women. In the early days, the CNS meeting even included day 
care options for young parents. Early on we decided it would increase the ability of 
students to attend if the meeting changed locations each year, and that the meeting 
should have a designated local organizer to help with logistics, but also to identify 
an appropriate location of the meeting as well as the all important banquet. By tradi-
tion, the CNS meeting venue is often old and sometimes a bit funky, but strongly 
refl ective of local culture. The point being again that the CNS meeting should be 
fun, interesting, and anything but generic. The CNS meeting has also, from the 
outset, been highly multinational, and now explicitly alternates between North 
America and Europe every other year. 

 Programmatically, the CNS meetings have always been crafted to attract grad 
students, postdocs, and early-career researchers from a variety of intersecting fi elds 
and give them the opportunity to interact and learn from each other. The main meet-
ing sessions are held over a period of 3 days, with no concurrent sessions. The large 
majority of presentations are selected from those submitted in response to an open 
call for abstracts, with the best submitted papers, often authored by students, offered 
longer oral presentations. Approximately two talks per day are reserved for longer 
invited seminars, given by international leaders in the fi eld. In the early meetings, 
these speakers were often chosen based on their likely receptivity to the use of com-
putational techniques, the idea being that they should learn by attending the meeting 
as well. As the fi eld has grown, distinguished invited speakers are often now full 
fl edged computational neurobiologist in their own right, many of whom, again, gave 
their fi rst major talks at a CNS meeting as students. Speakers are expected to stay 
for the entire meeting, providing student attendees in particular the opportunity to 
meet with leading fi gures in the fi eld within an extremely interactive atmosphere. 
We steadfastly maintain time for questions at the end of all oral presentations, and 
dedicated a signifi cant proportion of the meeting time toward smaller “break-out” 
workshops, organized by meeting participants themselves. In the early days the 
topics of the workshops were actually chosen during the meeting to directly refl ect 
the content and important issues raised in the meeting. We also encouraged a 
“no-holds- barred” attitude toward incorporating extreme mathematical and theo-
retical rigor in all presentations. And to encourage (and facilitate) the interdisciplin-
ary nature of the early meetings, we added 1-day pre-meeting tutorial sessions: in 
the early days offering one in “neuroscience for non-neuroscientists,” and a concurrent 
one in “computational analysis for neuroscientists.” One of us (JPM) remembers 
organizing (along with his grad student Frederic Theunissen) an exciting “hybrid” 
pre- meeting tutorial at CNS*94 intended for both groups, on “applications of 
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information theory to CNS.” Only a handful of people in the room had even heard 
about  information theory at the time. 

 Refl ecting the fi rst meeting, CNS continues to represent an extraordinary diver-
sity of specifi c problems, preparations, and methods used in computational research. 
Through the years, it has became obvious that no one approach to CNS is ideally 
suited to all problems, and that all researchers interested in the structure and opera-
tion of nervous systems can benefi t from a deeper understanding of the values and 
limitations of a variety of theoretical and modeling strategies. Likewise, no one 
preparation is ideally suited for all analyses, and the meetings have seen the presen-
tation of a huge variety of vertebrate and invertebrate studies. With all of these fac-
tors in mind, this meeting was always intended to facilitate cross-fertilization 
between experimentalists and theorists using a wide variety of preparations and 
approaches, and to help those researchers discover and articulate the general prin-
ciples that emerge. We believe that each of these objectives, designs, and properties 
of the CNS meeting are responsible for its continuing success and extension into a 
third decade. In addition, the CNS meeting now benefi ts from the establishment of 
the Organization for Computational Neurosciences (OCNS) which has provided 
important fi nancial and leadership stability, and whose organization itself refl ects 
many of the design features of the meeting itself. 

 Of course, the ultimate success of any scientifi c meeting, or any human endeavor, 
depends not only on the strength of its program and scientifi c content but also on the 
level of engagement of its participants. From the outset, CNS meeting attendees 
have been willing to get down and party scientifi cally and otherwise. All of that 
said, however, the other essential ingredient in the success of the meeting has been 
the extraordinary people (and we don’t mean ourselves) who have spent hours even 
years of their lives supporting the meeting. Of the large number of people in this 
category, several are worthy of special mention. First, it is not at all clear that 
CNS*92 would have happened had it not been good fortune that a seasoned Belgian 
meeting organizer, Chris Plougart, was not already indirectly (through family rela-
tions) associated with Jim’s laboratory at Caltech. Her previous experience with 
meeting organization was invaluable in establishing the basic administrative struc-
ture for the meeting. All participants in the next 10 years of the meeting also know 
that the meeting would have stopped in its tracks had it not been for the extraordi-
nary skills and efforts of Judy Macias, Jim’s secretary at Caltech. For 10 years, Judy 
Macias was synonymous with the CNS meeting, managing every component of the 
meeting from the most minute to the most absurd. Finally, it is important to acknowl-
edge one other important, even critical reason for the meetings success, and that is 
the unwavering assistance, guidance, and support of Dennis Glanzman initially and 
then Dennis and Yuan Liu at the National Institutes of Health together. Dennis actu-
ally attended the fi rst CNS meeting and it was at his suggestion that the second 
meeting be held in Washington, DC. Designed to expose other government offi cials 
to this developing fi eld, discussions with Dennis about the second meeting inspired 
the fi rst of the CNS meeting posters which are now included together in chapter two 
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of this volume with commentaries for the fi rst time. While other governmental 
agencies, and notably the National Science Foundation, have provided support for 
the CNS meeting through the years, at 20 years, it is our understanding that the CNS 
meeting currently has the record as the scientifi c meeting with the longest continu-
ous funding from NIH. Continuing in the tradition he himself helped to establish, 
the CNS meeting has always openly encouraged attendance by program offi cers and 
others interested in CNS, providing them a spot in the agenda to present the interests 
and new funding opportunities of their agencies. In this case, the invitation to Yuan 
Liu to the CNS meeting in Montana in 1997 proved a personal life changing experi-
ence for both Dennis and Yuan. We have always thought of the CNSers as being a 
family operation. In the case of Dennis and Yuan, it literally is. 

 Finally, in retrospect and looking back, it is rewarding to look at the list of early 
student attendees of the CNS meetings and fi nd a veritable roll-call of the current 
“rich and famous” mid-career and senior computational neuroscientists. In addition, 
the meetings have always been a lot of fun. Through the hard work of a lot of differ-
ent people, we still regard it as remarkable that the CNS meeting continues to live 
up to its original objectives as listed in the fi rst grant submitted to NIH:

  to provide an annual open forum for the discussion of progress in CNS, broadly defi ned… 
to support the increase in the quantity and quality of research being carried out in the fi eld 
of computational neuroscience… to stimulate and facilitate interdisciplinary collaborative 
research… to provide a forum for young researchers to present their research and get pro-
fessional feedback… to provide for rapid publication of current work in computational 
neurobiology through a well-organized set of meeting proceedings. 
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    Abstract     In addition to its oral history, the CNS meeting also has a graphical or 
pictorial history represented by the series of posters produced for CNS*93–CNS*03, 
and explicitly captured in the poster produced for CNS*10, which represented the 
meeting’s transition into its 20th year. These posters, reproduced in annotated form 
here for the fi rst time, hang in laboratories around the world and in the halls of the 
U.S. National Institutes of Health, and represent in their own way, the history of 
computational neuroscience.  

     Chapter   1     in this volume recounts an oral history of the origins of the CNS meeting. 
This chapter in some sense tells the same story, through the posters produced for the 
CNS meetings (Fig.  2.1 ). The posters reproduced here refl ect those produced from 
1993–2003, as well as the explicitly historical poster produced to celebrate the 
beginning of the 20th year of CNS meetings. The posters reproduced here were cre-
ated in close collaboration with two artists, Erica Oller (CNS*93–CNS*2000) and 
Bonnie Callahan (CNS*2001–CNS*2003 and CNS*2010) and can be found on the 
walls of laboratories around the world as well as in the halls of the U.S. National 
Institutes of Health   .

   So, why reproduce the posters here? In keeping with the theme of this book, this 
art itself refl ects the growth and development of the fi eld. Even a cursory examina-
tion should make clear that each is allegorical, blending some characteristic of each 
meeting’s venue with some perceived aspect of the fi eld of computational neurosci-
ence. It is important to note that because neither artist had any direct association 
with the fi eld of computational neuroscience, all implied interpretations regarding 
the fi eld should be entirely attributed to me. This, in fact, is another motivation for 
publishing the posters with explanations. Through the years I have been quite 
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amazed with interpretations I have heard as to their signifi cance, especially with 
respect to the presumed representation of particular individuals. While it does state 
in the text at the bottom of the poster produced for CNS*93 that “any similarity to 
computational neurobiologists either living or dead may be intended,” (Fig.  2.3 ) 

  Fig. 2.1    So many years, so many posters       
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in fact, in the majority of posters very few of the fi gures represented real people. 
It clearly was my intent, however, to capture some sense of the CNS meetings and 
the computational neuroscience enterprise. To this point, some years ago I was visit-
ing MIT and noticed the original CNS*93 poster (Fig.  2.3 ) hanging on the wall 
behind a receptionist. She did not know that I had anything to do with the design, so 
when I asked her where the rather odd poster behind her desk came from she said, 
“I have no idea, but they sure got the craziness around here right.” I couldn’t have 
asked for anything more.

   In the brief descriptions of the posters that follow, I will mostly provide the most 
general context, refraining from detailing every buried meaning and signifi cance. 
Like the brain itself, I believe that one can generally discover more, by looking 
closely (see photo of students at CNS*09 in Berlin: Fig.  2.2 ). To encourage that 
exploration, or just to decorate more laboratory walls, high-resolution images of 
each poster can be obtained online:   http://www.genesis-sim.org/CNSposters    .

   We were far too busy organizing the fi rst CNS meeting to generate a poster. 
Accordingly, the series of CNS posters began with the second meeting held in 
Washington, DC, with a poster designed to represent the complex state of computa-
tional neuroscience “hung” on the beautiful and complex dendrite of the cerebellar 
Purkinje cell (Fig.  2.3 ). The explicit reason we took the meeting to Washington was 

  Fig. 2.2    Who dat?        
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to expose federal funding agencies to computational neuroscience as a fi eld deserv-
ing support. One can see a funding fi ght taking place in the geographical center of 
the dendritic tree while a poor young theorist (no despite the beard not a young, 
svelte Bill Bialek) is grasping at a few dollars, while a fully funded experimentalist 
and his rats sit contently just above. 

  Fig. 2.3    Beware theorists       
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 The poster was also intended to contrast the still largely detached experimental 
and theoretical efforts. Therefore, we see two industrious scientists struggling to 
impale the Purkinje cell soma and a third clearly in love with his section of the den-
drite. However, also note the fellow spreading TTX apparently at random, unguided 
by theoretical considerations. All theorists in the poster are located on the margins 
of the dendrite, with one in the lower right explicitly refusing to consider the com-
plexities of real biology. Observing this confl ict, a concerned experimentalist 
clutches both the core of the dendritic tree and his data. In the upper left three col-
laborating modelers seem confused as they examine their computer screen while the 
theorists in the most precarious position (other than the one about to fall out of the 
tree altogether) are sitting on the top right, engaged in translating the complex 
geometry of the Purkinje cell into the standard mathematical formulation for a 
Hopfi eld Neural Network. While clearly excited about the possibilities, they seem 
oblivious to the two experimentalists sawing through the branch (limb) on which 
they are sitting. In this case, the theorist enthusiastically directing this effort is 
Christof Koch (the only real person represented in this poster), my friend, and col-
league at Caltech and then fellow director of the Methods in Computational 
Neuroscience Summer Course at the Marine Biological Laboratory in Woods Hole. 
As discussed in the introduction to this volume, the CNS meeting itself originated 
in part from a concern that the neural networks community might not be paying 
enough attention to the actual structure of the nervous system, although in fairness 
to Christof he always has. 

 Finally, I also want to mention explicitly one unfortunate misinterpretation that I 
know exists concerning this poster. It is my understanding that this is the only one 
of the CNS posters that is not hanging in the halls at NIH, as there was some con-
cern that the somewhat darker skinned young female graduate student in the center 
of the tree wistfully dreaming of graduation could be interpreted as implying sloth 
or laziness. This is absolutely not the intention. Instead, I wanted to give the sense 
that even in the nasty political mix of science and funding, and abstract and realistic 
modeling, it is still possible, especially for young scientists, to dream and aspire.

   CNS*94 and *95 were both held the Double Tree Hotel in beautiful Monterey, 
CA, at a time when we thought it would be logistically easier to have the meeting 
each year in the same place (and why not Monterey?). Accordingly, this poster was 
originally produced for CNS*94, but was so well received, and we felt so beautiful, 
that we decided to use it again for CNS*95. As a consequence, I can now confess, 
one reason for deciding to move the meeting in 1996 was to provide a new source 
of inspiration for the CNS poster. 

 Of all the CNS posters, this poster is at the same time the simplest and perhaps 
the most graphically complex (Fig.  2.4 ). The thematic simplicity is based once 
again on the perceived importance of hauling in federal funding to support a grow-
ing fi eld. In fact, perhaps in part as a result of locating CNS*93 in Washington, DC, 
CNS*94 and *95 were supported by grants from no less than fi ve federal agencies, 
four at the National Institutes of Health and an additional grant from the National 
Science Foundation. (Support for the original CNS meetings from the offi ce of 
Naval Research had been withdrawn as commemorated in the CNS*98 poster as 
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discussed below.) Of course the complexity of this poster is manifest in the structure 
of the Kelp forest, which on closer inspection can actually be seen to represent the 
neuronal circuitry of the mammalian primary visual cortex, beautifully and care-
fully rendered by Erika Oller. Monterey Bay and especially the Monterey aquarium 
(where the meeting banquet was held) are famous for their kelp forests, and visual 
cortex was then and remains today one of the most studied subjects in computa-
tional neuroscience. 

 This poster is also probably the least political of all the posters, with one feature 
as an exception. When the poster was fi rst designed, several members of the orga-
nizing committee felt that it contained too little explicit information about the meet-
ing itself. In particular, they believed that including a list of speakers would attract 
more participants. As discussed in the introduction to this volume, our emphasis 
was always more on students than on invited speakers, and as should already be 
clear, my motivations for poster design did not only include advertising. However, 
in deference to the concern I added eight white “speaker fi sh” fl oating along the 
bottom. If you look very closely at their fi ns, you can actually see the names of the 
speakers (I think☺). One fi nal historical note is that this poster includes a meeting 
email address. While younger scientists might fi nd it hard to believe, in fact, the 
CNS meetings were one of the fi rst to make use of the Internet for communication 
and advertising.

  Fig. 2.4    What a nice catch       
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   After 2 years on the west coast, the organizing committee decided to move the 
meeting back to the east coast, and what better place than Boston. Of all the CNS 
posters, this poster is the one whose symbolism has apparently been the hardest to 
decipher, even for people living in Boston (Fig.  2.5 ). While neurobiologically rep-
resenting the complexities of intracellular traffi cking in a small network of neurons, 
the poster itself is based on the also complex traffi c patterns in Boston. Accordingly, 
in the upper left is Logan airport, with the T’s representing the various stops on the 
MTA. Note also the large synaptic connection between Harvard and MIT, with 
characteristically (for each institution) attired pre- and postsynaptic faculty. With 
respect to computational neuroscience, in 1996 MIT was defi nitely presynaptic. 
There are many other bits of Boston both modern and historic represented in this 
poster (note for example the somewhat industrial effort at Boston University), but 
like molecular traffi cking and the streets of Boston, the details are too complex and 
numerous to go into. Holding the CNS meeting in Boston fully established the 
importance of moving the meeting each year, as easier access for students resulted 
in a doubled meeting attendance and great vitality. The Boston meeting was also the 
fi rst performance at a CNS meeting by Ramon and the K-halls (Fig.  2.6 ).

    The “Computational Gang” defi nitely came to town in beautiful Big Sky Montana 
in the summer of 1997 (Fig.  2.7 ), however, in addition John Miller and I were also 
at the same time engaged in establishing the new Computational Biology Institute 
at nearby Montana State University, which shortly thereafter became John’s new 

  Fig. 2.5    Lost on the MTA       

 

2 A Pictorial History of the Early Days of Computational Neuroscience…



20

academic home. In the poster, John is represented by the tall fi gure in the center 
with the orange pants and red shirt about to draw calculators from his holsters. As 
shown in the photograph, John’s entrance to the meeting itself was on horseback, 
being “hauled in” as the Computational Neuroscience Unibomber (Fig.  2.8 ).

   This poster also represents the fi eld of experimental neuroscience as a kind of 
lawless western town in need of the structure and organization that, in principle, 
computational neuroscience could provide. What organization exists in this town is 
based on what part of the brain, or what type of organism is being studied, with the 
poster characterizing the different scientifi c cultures in each case. Thus, on the left, 
the “United Cerebral Evangelical Fellowship” is advertising a sermon titled 
“Oscillations to Higher Consciousness”, while local maps can be obtained at the 
Hotel Hippocampus. The Crunchies and Squishies General Store is a fairly colle-
gial happy place with lots of odd creatures hanging around, whereas next door, 
there is an all out fi st fi ght raging at the Cerebellar Bar. At the end of the street are 
two banks: the Bank of NIMH, large and quite prosperous, and the Bank of NSF, 
quite a bit more modest. At this early stage of the computational neuroscience inva-
sion, the few townspeople paying any attention seem either dubious or actively 
resistant.

  Fig. 2.6    What would Ramon 
have thought?       
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   The poster for CNS*98 held in Santa Barbara, CA, is the design that has apparently 
produced the most consternation and speculation regarding who is being represented 
doing what (Fig.  2.9 ). In 1998, “Santa Barbara” was one of the more famous 
US-produced daytime soap operas around the world. In fact, the Santa Barbara script 

  Fig. 2.7    The Wild Wild West       

  Fig. 2.8    Not IACUC approved       
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in the poster is taken directly from the trademark for that soap opera. Of course in 
Southern California, the city of Santa Barbara is also generally associated with a soap 
opera-like culture. Accordingly, this seemed a wonderful opportunity to illustrate 
the more “soap opera-like” features of computational neuroscience. 

 Over many years, I have heard numerous speculations regarding who is repre-
sented in the poster (as one would expect from a soap opera) but, in fact, only four 
fi gures are based on actual individuals. The fi gure on the left (with a nametag) com-
memorates the winner of the offi cial tequila drink off (and the fi rst runner up in the 
barrel races) at CNS*97 in Montana. Despite this fact, I understand this poster is 
hanging in the halls at NIH.    The women playing catch-up behind him was the prin-
ciple competitor in the actual tequila drink off, even though she was at a decided 
handicap having spent the entire previous evening in Montana playing drums for 
Ramon and the K-halls while standing up. Then there is a somewhat unseemly 
transaction going on at a table in the back between someone dressed in a naval uni-
form and someone being asked to sign a contract in exchange for cash. The naval 
offi cer actually represents a real program offi cer at the Offi ce of Naval Research 
who several years earlier had cut grant funding for the CNS meetings because the 
meeting’s participants had voted down his proposal to merge with a neural networks 
meeting. In this poster, for the fi rst time, I included myself—I am riding the horse. 
But the computational neuroscientist drowning himself in the center of the poster 
was intended to more generally represent the plight of modelers trying to publish 

  Fig. 2.9    Such a tangled web we weave       
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their results. Specifi cally, he is clutching a rejection letter from Science Magazine, 
which had recently introduced a new process to “reject without review” papers 
judged by a small group of senior editors to be less interesting than other papers 
submitted during the same week. In my view this introduced a new and unfortunate 
level of scientifi c politics more appropriate to a soap opera.

   The poster for CNS*99 commemorates both the city of Pittsburgh and the increas-
ing growth in papers submitted to the meeting describing molecular and cellular 
level modeling (Fig.  2.10 ). As a welcoming gesture, the poster refl ects not only 

  Fig. 2.10    Visions of the future       
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Pittsburgh’s famous history as a steel town but also what seemed to me to be the 
more industrial nature of many molecular and cellular research efforts. Produced by 
a cloning machine on the second fl oor, the basement is fi lled with graduate students 
laboring with pipet men in individual cubicles collectively producing a delicate 
thread of DNA. That DNA fi rst winds through a huddle of postdoctoral fellows try-
ing to make sense of the sequence by hand, before ascending to the head of the labo-
ratory, who sits converting the DNA into cash. While perhaps a bit dark, there is 
hope in the form of a group of computational biologists breaking into the building 
from above. They have actually divided into two groups, one with decidedly greedy 
expressions headed straight for the head of the laboratory (and the cash), and the 
other parachuting from a loftier height on the way to the postdocs doing the analysis. 
I would note that nobody is heading to liberate the poor basement dwelling graduate 
students. To my amazement, I have seen this poster on the wall in many molecular 
biology laboratories. Of course, the CNS meeting has always warmly welcomed 
molecular and cellular experimentalists as well as theorists. “The photograph from 
CNS*99 shown in Fig.  2.11 , commemorates another performance by Ramon and the 
K-halls, this time in a “Pittsburgh appropriate” bar discovered by a dedicated group 
of local CNS graduate students.

    The new millennium meeting in Brugge, Belgium, represented an important step 
for the CNS meetings, as it was the fi rst meeting held outside the United States. 
Today, the meeting alternates between the United States and a foreign site, but CNS 
2000 was our fi rst trip to Europe. It seemed fi tting, therefore, to represent this 
important step as yet another invasion, this time backwards from the new world to 
the old (Fig.  2.12 ). Thus, the Santa Maria can be seen unloading computational 
neurobiologists (as well as computers, and  Rattus norvegicus ) to a decidedly old 
masters version of Belgium. Greeting the arriving hoard at the doc is one Erik De 
Schutter, dressed in a green hoody and standing in front of the conference fl ag. It is 
clear that the Europeans, in general, are not quite sure what to make of the scene. 
The Nina, the next ship to be unloaded, is carrying “Ramon and the K-halls” for 

  Fig. 2.11    It’s only rock and 
roll …       

 

J.M. Bower



25

their upcoming performance at a Celtic Bar in Brugge (Fig.  2.13 ). Unfortunately, an 
effort to quickly make a Stonehenge pillar for that performance was thwarted 
because the artist thought that I had mistakenly specifi ed the pillar in inches rather 
than feet. This poster was the last drawn by Erika Oller, as her growing independent 
art career left her little time for such frivolities.

    In addition to the artist transition to Bonnie Callahan, CNS 2001 also represented 
a transition for me as I had decided, after 10 years, to resign as meeting chairman. 
It was at this meeting that the initial steps to form the Organization for Computational 
Neuroscience (OCNS) were initiated as a way to continue the meeting as well as 
provide more general support for the fi eld of computational neuroscience. Because 
CNS 2001 was also the meeting’s 10th anniversary, I wanted to use the poster to 
commemorate the many individuals who had played an important role in the meet-
ing’s growth and also to refl ect the meeting’s fun/festival/summer camp-like culture 
they had helped to establish (Fig.  2.14 ). Asylomar on the California coast was the 
ideal venue. 

 In this poster, for the fi rst time, everybody is somebody. This poster also includes 
more inside information than any poster in the series, most of which, to protect the 
guilty and the innocent, I won’t go into. There are, however, several individuals and 
circumstances worth noting: First, this poster specifi cally includes a performance 
by Ramon and the K-halls now named simply “the K-halls,” as Ramon has left the 
band (note the free standing microphone and the fellow slipping away in the dis-
tance carrying his cowboy boots). Second, the occupants of the deck on the right are 
all important fi gures in guiding and growing the CNS meeting. Especially worth 

  Fig. 2.12    Re-migration       
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  Fig. 2.13    Druids all       

  Fig. 2.14    Summer camp       
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noting are the meeting’s cofounder John Miller (wearing his unibomber outfi t), our 
Federal Government Liaisons Dennis Glanzman and Yuan Liu (who also wrote the 
introduction to this book), and Ranu Jung, who played a particularly important role 
in the birth of OCNS. A few other individuals scattered about are Bill Bialek (sage- 
like), Eve Marder (famous for mentoring her graduate students), Erik De Schutter 
(proud to be a member of the EU and also subsequently central to the growth and 
success of OCNS), and Valentino Braitenburg who only attended one CNS meeting 
(in Montana) but astonished everyone by not leaving the dance fl oor while the 
K-halls performed (for four hours). Dancing near Valentino is David Nicoladie Tam 
who is the only scientist to have attended every CNS meeting for the last 22 years, 
and Dave Beeman and his wife, once again reliving the 60s. Of particular impor-
tance is Judy Macias, dancing and holding the tambourine, who, as the conference 
secretary, was the heart and soul of the meeting for many years. This poster also 
includes, for the second time, Christof Koch, standing behind the fence along with 
several other prominent computational neuroscientists (behind the hedge) who for 
one reason or another had not yet attended a CNS meeting. Finally, behind this 
group is someone hanging from a gallows. I have heard many amusing speculations 
as to who that person might be, but, it turns out that Bonnie Callahan (the artist) 
snuck the image in at the last minute to represent what might happen to her if all the 
stories buried in this poster were brought to light. No risk there.

   The new CNS meeting chair for 2002 was the Phil Ulinski aided by his lovely 
wife Mary (Fig.  2.15 ). For the fi rst time in 10 years my only responsibility was for 
the poster and a not very inspiring K-Halls unplugged acoustic guitar session. 
Given that Chicago was at that time world famous for the Chicago Bulls, it seemed 
reasonable to use a basketball motif for the meeting (Fig.  2.16 ). Interestingly 
enough, the depicted basketball game has often been misinterpreted as a contest 

  Fig. 2.15    A tribute       
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between real neurons and neuronal models. In fact, my intention was a competition 
between more abstract models and those based on actual neuronal morphology. In 
this case, no doubt refl ecting my own scientifi c biases, the biologically realistic 
models are ahead 69–66 and have the ball. However, storm clouds are brewing in 
the distance. The game is being referred by NIH and NSF and is, in fact, still on 
going as there is no offi cial game clock. Phil Ulinski, who sadly passed in 2010, 
played an important role in the CNS meetings, the growth of computational neuro-
science, and the formation of the OCNS   .

    The poster for CNS 2003 was the fi rst poster that was only available in digital form 
(Fig.  2.17 ). Capitulating, the poster also included the names of the invited speakers. 
Because the meeting was held in Spain, I thought that it was simply too wonderful an 
opportunity to make a fi nal personal statement about the nature of computational 
neuroscience and neuroscience as a whole. In this case, instead of windmills, Don 
Quixote, dressed in the offi cial medieval academic robes of a biologist, is tilting at 
Purkinje cells while poor Poncho Panza (his graduate student) is trying to make sense 
of the data using an ever more complex set of experimental and computational tools. 
However, in contrast to the poster for CNS*93 designed 10 years earlier, this time the 
electrode being inserted into the Purkinje cell is directly connected to computational 
tools, and the experimentalist is technically linked to the computational neurobiolo-
gist. While this is still clearly madness, there is now hope. Figure  2.18  provides some 
sense of the process involved in generating the CNS poster each year.

    In the years from 2003 to 2010 meetings were held, and posters were made 
(Fig.  2.1 ), however, I did not return to CNS poster design until 2010, when Charlie 

  Fig. 2.16    Michael with the ball       

 

J.M. Bower



29

Wilson, Todd Troyer, and myself were appointed local co-organizers for the meet-
ing in San Antonio, TX. While offi cially the 19th CNS meeting, the poster cele-
brates the full sequence of meetings, going back to its origins (Fig.  2.19 ). As shown, 
this poster was also produced in two slightly different forms, one to advertise the 
meeting (above) and one handed out during the meeting (below). 

  Fig. 2.17    Many knights-errant astride Ratinante          

 

2 A Pictorial History of the Early Days of Computational Neuroscience…



30

  Fig. 2.18    The back and forth—creation of a CNS poster. At the top are the artist’s choices for 
design of the central Purkinje cell in the poster for CNS 2003. In the center is the original sketch 
by JMB of the cart containing the long suffering graduate student. At the bottom is an early version 
of the cart by the artists with design notes. Iteration on poster design often continued for several 
months before the fi nal version was ready for production. Artist renderings by Bonnie Calahan       
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 The poster venue is the famous San Antonio River Walk running adjacent to the 
meeting site. In the pre-meeting version of the poster, the riverboat is being piloted 
by a somewhat shady fi gure, and the boat passengers (actually the OCNS organizing 
committee) seem clearly to be worried, this despite the fact that two additional lines 
are being held on the shore for stability. In the fi nal version handed out at the meet-
ing, the boat has moved a bit further down the river and the OCNS committee seems 
somewhat less concerned, perhaps because there isn’t much that can be done about 
the situation now anyway. As with the poster for CNS*2001, all the fi gures repre-
sent real individuals who have played an important role in the development of the 
CNS meetings and computational neuroscience as a whole. Ranu Jung, at the far 
head of the boat before the meeting, is seen leaping out in the second poster, as she 
transitioned after a number of years as OCNS president. Erik De Schutter is seen 
climbing on, unaware that he would soon be arrested at the CNS banquet. 

  Fig. 2.19    In sum and summary       
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 On the banks of the river, as on the San Antonio River Walk, are clubs, restaurants, 
and other establishments in this case representing the 18 previous CNS meetings. In 
the far distance, the river bifurcates at the eternal Purkinje cell into two streams, 
each presenting the meetings from which the original CNS meeting evolved. One 
stream represents the early Berkeley workshops organized by John Miller and 
colleagues (John standing on the bridge), and the other representing the original 
Neural Information Processing (NIPS) meetings. Old style signs made from the 
meetings’ posters hang from each establishment commemorated 20+ years of meetings. 
From neurobiologists populating the dendrite of a Purkinje cell, to the complex 
serenity of a kelp forest, to the tangled complexity of Boston, to the wild west, to a 
return trip to the old country, and a summer camp in Asylomar, this fi nal poster, for 
me, represents the process involved in the emergence of computational neurosci-
ence as a stable, organized, and sophisticated science, as well as a certain wistful-
ness about its more playful and less certain past. Figure  2.20  shows the “walk down 
memory lane” at CNS 2010. Here is to another 20 years of CNS meetings.    

  Fig. 2.20    The hall of fame and shame at CNS 2010       
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    Abstract     This chapter provides a brief history of the development of software for 
simulating biologically realistic neurons and their networks, beginning with the pio-
neering work of Hodgkin and Huxley and others who developed the computational 
models and tools that are used today. I also present a personal and subjective view 
of some of the issues that came up during the development of GENESIS, NEURON, 
and other general platforms for neural simulation. This is with the hope that devel-
opers and users of the next generation of simulators can learn from some of the good 
and bad design elements of the last generation. New simulator architectures such as 
GENESIS 3 allow the use of standard well-supported external modules or special-
ized tools for neural modeling that are implemented independently from the means 
of the running the model simulation. This allows not only sharing of models but also 
sharing of research tools. Other promising recent developments during the past few 
years include standard simulator-independent declarative representations for neural 
models, the use of modern scripting languages such as Python in place of simulator-
specifi c ones and the increasing use of open-source software solutions.  

        Introduction 

 When Jim Bower fi rst asked me if I would write a chapter on the history of realistic 
neural simulators, I refused. I reminded him that although I am at an age when sci-
entists wrap up their long careers with a historical account full of advice for young 
researchers, I have only been involved with computational neuroscience for a little 
more than 20 years, and I am just getting started with serious cortical modeling. 

    Chapter 3   
 History of Neural Simulation Software 

                David     Beeman    

           D.   Beeman      (*) 
  Department of Electrical, Computer, and Energy Engineering , 
 University of Colorado at Boulder ,   Boulder ,  CO   80309-0425 ,  USA   
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Furthermore, my experience has been almost entirely as a developer of tutorials and 
documentation for the GEneral NEural SImulation System (GENESIS). Not only 
that, but I missed out on the crucial fi rst 2 years of GENESIS development. 

 However, Jim can be very persuasive, and I gave in after he told me that I could 
tell the story my way as a personal history of what I have learned during the past 22 
years. Of course, the task was made easier by the fact that I share Jim’s defi nition, 
considered very narrow by many, of what constitutes a “realistic neural simulator” 
(Bower  1992 ,  2005 ). What I offer is a somewhat GENESIS-centric and subjective 
view of some of the issues that came up during the last 20 years of development of 
GENESIS, NEURON, and other platforms for structurally realistic simulations of 
neurons and their networks. 

 More specifi cally, I fi nally agreed to write this chapter because it provides an 
opportunity to use the last 20 year history of the development of neural simulators 
to offer a few, hopefully useful, opinions on what the developers and users of the 
next generation of simulators can learn from some of the good and bad design ele-
ments of those from the last generation. My own current view is that it is time for a 
new generation of simulators that addresses a large range of issues beyond merely 
creating numerical solutions to mathematical models of neural systems. As will be 
discussed later, new simulation architectures such as that being developed for 
GENESIS 3 (G-3) offer options for extensibility, interoperability, and model shar-
ing that will signifi cantly extend the capacity and value of simulation technology, 
providing a foundation for the next 20 years and beyond (Cornelis et al.  2012a ). My 
hope is that this chapter will help motivate and inform these efforts going forward. 

    My Seduction by Neuroscience 

 This chapter is in large part a personal recounting of my own experience in the 
design and development of GENESIS and it is therefore appropriate, I think, to 
provide the reader some background information on my own path to computational 
neuroscience. In the spring of 1989 I was 51 years old, and a happily tenured 
Professor of Physics at Harvey Mudd College, an undergraduate science and engi-
neering college about 30 miles from Caltech. I enjoyed the atmosphere at Harvey 
Mudd because the students are very intelligent, self-motivated, and creative. In 
addition, without graduate students, I was able to concentrate on undergraduate 
education, and to take advantage of the great freedom I had to create and teach 
interdisciplinary special topics courses on nearly anything that interested me. 

 Although it might seem strange that, 20+ years later, I would have abandoned 
physics, given up my tenured faculty position at Harvey Mudd, and now be deeply 
involved in building models of the mammalian auditory cortex, in fact, looking 
back, the transition from teaching undergraduate physics to working on GENESIS 
makes some sense. 

 A core component of the GENESIS project from the outset, and one that I have 
been particularly involved with, is the development and application of simulation- 
based tutorials to engage students in learning. At Harvey Mudd, I had already 
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developed several simulation-based tutorials for teaching concepts in upper division 
physics courses (e.g., Beeman and Boswell  1977 ). My transition to computational 
neuroscience as a subject of study was also linked to my teaching through my research 
interests, which at an undergraduate college, need to be tied closely together. That 
research involved the computer modeling of amorphous solids or disordered spin sys-
tems which served as a very good source of student projects, and a few publications 
(e.g., Maley et al.  1988 ; Thorpe and Beeman  1976 ; Alben et al.  1977 ). 

 Because of the spin system modeling I had been doing, I became aware of the 
publication by Hopfi eld ( 1982 ) applying spin glass models as a possible model for 
how networks of neurons might operate. As a result, I volunteered to give some 
lectures in an interdisciplinary course that was to be taught during my sabbatical in 
spring 1990. For that course, a biologist was to lecture on basic properties of neu-
rons, a mathematician would present a mathematical approach to artifi cial neural 
networks, and I would give a more engineering-oriented approach to artifi cial neural 
networks, aided with tutorial simulations. 

 Of course I was also aware that John Hopfi eld was at that time a professor in the 
new Computation and Neural Systems program at Caltech just down the 210 freeway 
from Harvey Mudd. My fi rst thought was to ask Dr. Hopfi eld about spending some 
time with his group at Caltech during my sabbatical year. However, our department 
received a weekly list of seminars at Caltech, which was posted outside the Physics 
Department offi ce, and given my interest in simulation technology, I was intrigued 
by the description of a talk to be given by Matt Wilson on a simulator for biologically 
realistic neurons and neural networks called GENESIS. I went to the talk and became 
fascinated with the prospect of actually building models of real neurons. Although 
Matt’s seminar emphasized the use of GENESIS as a research tool, I thought that I 
might also be able to use it in the course I was planning to teach at Harvey Mudd. I 
also thought that, through the simulator, I might be able to learn something about 
biological neurons myself. I had no idea at the time that this was the fi rst step on the 
long slippery slope that has led so many physicists into neuroscience. 

 After the talk, as I spoke to Matt, Jim introduced himself and we talked about the 
possibility of using GENESIS as a basis for a simple tutorial on the properties of 
biological neurons. Jim told me of his strong commitment to developing tools for 
education, and we discussed possible collaborations. As a result, I spent my sabbati-
cal year in Jim’s laboratory, learning about GENESIS, and far more about neurosci-
ence than I had ever intended.   

    History of Neural Modeling Prior to Fall 1989 

 Before I could write tutorial simulations about neuroscience, I needed to learn some-
thing about the subject. Of course, I was familiar with the history of artifi cial “neu-
ron-like” networks, beginning with the Mcullough and Pitts ( 1943 ) model, but had 
no knowledge of modeling spiking neurons, nor very much about their physiology. I 
sat in on David van Essen’s introductory neuroscience course, along with the fi rst 
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year graduate students in neuroscience, and also began learning how to use GENESIS. 
As always, I learn best by doing, so I started writing my fi rst tutorial based on a 
simulation of a simple neuron model, as I learned about the Hodgkin–Huxley model, 
and about compartmental modeling of dendrites. 

 Of course, I read the classic paper by Hodgkin and Huxley ( 1952 ) to understand 
the modeling of action potentials. Their work, carried out in the early 1950s and 
described in a series of 1952 papers, won them the Nobel Prize in 1963 and exem-
plifi es, in my view, the ideal combination of modeling and experimental measure-
ments. I can’t emphasize enough the importance of this connection between 
modeling and experimental work. Too many theoretically inclined people get lost in 
a world of their own when doing computer modeling and lose touch with the world 
of experiment. This is a common pitfall for theoretical physicists who hope to apply 
their expertise to the study of the brain. Likewise, experimentalists may end up 
mindlessly gathering data without having a clear idea of how it will advance theo-
retical understanding. 

 The importance of this connection is also clear in computational neuroscience 
and was essential to what I regard as the fi rst great success of computational neuro-
science, the Hodgkin–Huxley model (now 60 years old), which still stands as the 
basis for most neuronal cell models. Most neurobiologists recognize the importance 
of Hodgkin and Huxley’s work and their development of the voltage clamp tech-
nique without realizing how important the modeling was to the work. Essentially, 
the model was what made them throw out their old way of looking at the changes in 
the membrane and introduce a new viewpoint. It is important to remember that at 
the time of their experiments, the modern concept of ion-selective channels control-
ling the fl ow of current through the membrane was only one of the several compet-
ing hypotheses. It was the model that ruled out these alternative ideas, and also 
predicted the results of experiments that were not used in formulating the model. 
The fascinating history of this pioneering synthesis of experiment and modeling has 
been told in reviews by Cole ( 1968 ), Rinzel ( 1990 ), Nelson and Rinzel ( 1998 ), and 
many others. 

 However, it is important to mention how Hodgkin and Huxley quantitatively 
explained the process by which action potentials are formed by the voltage- 
dependent activation and subsequent inactivation of sodium channels, terminated 
by a delayed activation of potassium channels. They did this not by fi tting model 
parameters to those needed to produce action potentials, but by fi tting them to an 
entirely different set of experimental data, obtained using the voltage clamp. Then, 
with no further changes in parameters, they were able to reproduce the action poten-
tial, correctly calculate the velocity of propagation, analyze the refractory period, 
and account for the phenomenon of post-inhibitory rebound or “anode break.” All 
of this modeling was performed by integrating the coupled differential equations, 
step by step, on mechanical “hand-crank” calculators, following the method used 20 
years before by the physicist Hartree ( 1932 ) to calculate atomic wave functions. 

 As a perhaps ironic aside, a few years after I had taken charge of the GENESIS 
Users Group (BABEL), I received an email from a postdoctoral student who pointed 
out what he claimed to be a serious bug in GENESIS. He found that using a 
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hyperpolarizing current injection pulse in one of the GENESIS tutorial simulations 
produced the obviously impossible result of producing an action potential! I tact-
fully suggested that he read the original Hodgkin–Huxley papers. At that time, I had 
been extending Mark Nelson’s “Squid” tutorial for use with the chapter that he and 
John Rinzel were writing for “The Book of GENESIS” (Bower and Beeman  1998 ), 
familiarly called “The BoG.” It was only after I added the ability to plot the channel 
activation variables during a current pulse that I fully understood myself the action 
potential refractory period and the biological phenomenon of post-inhibitory 
rebound. 

 In my own efforts to understand the existing techniques for simulating real neu-
rons, the next step was to understand why GENESIS broke a neuron into “compart-
ments.” I quickly learned of the other crucial development in the history of neural 
modeling, which was the introduction of compartmental modeling by Rall ( 1964 ). 
Rall had previously contributed a great deal to the understanding of postsynaptic 
potential (PSP) propagation in dendrites by applying the mathematical analysis of 
the attenuation of signals in the transatlantic telephone cable by William Thompson 
(Lord Kelvin). For example, neural modeling has benefi ted from the simplifi cations 
introduced by the “trees equivalent to a cylinder” transformation, in which Rall 
( 1959 ,  1962a ) demonstrated the conditions under which a branched dendritic tree 
can be collapsed into a linear cable. The “cable” theory of propagation in dendrites 
has been reviewed by Rall and Agmon-Smir ( 1998 ). 

 By using a lumped parameter model, dividing a branched dendritic tree into cou-
pled chains of approximately equipotential compartments, Rall’s method made it 
possible to explore realistic dendritic morphologies that could only be analyzed by 
using numerical methods and computer simulations. In one of the fi rst applications 
of this method Rall ( 1967 ) modeled a linear chain model of a motor neuron with a 
soma and nine dendritic compartments, activated with an “alpha function” form of 
synaptic conductance having a linear rise and exponential decay with time. It had no 
voltage-activated conductances. 

 Rall and Shepherd ( 1968 ) created the fi rst model to combine compartmental 
modeling of dendrites into a cell model that generated action potentials. Their 
model with a soma and ten dendritic compartments used parameters taken from rab-
bit olfactory bulb mitral and granule cells. Because the Hodgkin–Huxley model 
parameters for the neurons being simulated were not yet known, a simpler and less 
computationally intensive model was used for the generation of action potentials 
with active conductances. These simulations were carried out on a Honeywell 800 
computer during 1963 and 1964 at the NIH, at a time when realistic simulation of 
ionic currents was considered to be very time-consuming. Personally, I believe that 
Rall’s pioneering modeling efforts have been on a par with those of Hodgkin and 
Huxley, and perhaps the only reason that he has not received a Nobel Prize is due to 
the sheer complexity of dendrites themselves, whose function we still don’t under-
stand. Certainly Rall’s technical contribution to modeling is on the same level as 
that of Hodgkin and Huxley. 

 Around the time that Rall and Shepherd were building their fi rst models of neu-
rons, others were applying the Hodgkin–Huxley equations to single compartment 
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neuron models. For example, Connor and Stevens ( 1971 ) performed one of the fi rst 
computer simulations of the ionic currents and the resulting action potentials in 
giant molluscan neurons. This model added a transient potassium conductance 
(“A-current”) to modifi ed Hodgkin–Huxley fast sodium and delayed potassium cur-
rents, using parameters fi tted to experiments. 

 Dodge and Cooley ( 1973 ) were the fi rst to publish a description of a model that 
combined compartmental modeling with the Hodgkin–Huxley equations. They col-
lapsed a large spinal motor neuron into a compartmentalized nonuniform equivalent 
cylinder by the method of Rall ( 1962b ) and used fast sodium and delayed rectifi er 
potassium channels with parameters modifi ed to fi t motor neuron voltage clamp 
data. 

 This model became the basis for later models by Traub ( 1977 ), who included 
calcium-dependent potassium channels in the dendrites. This led to a series of 
increasingly realistic hippocampal pyramidal cell models (Traub and Llinás  1979    ; 
Traub  1982    ; Traub et al.  1991 ,  1994 ) with active conductances in the dendrites. 
These were run on IBM mainframe computers, with programs initially written in 
PL/1 and later in FORTRAN. 

 The earliest network model with multi-compartmental spiking neurons of which 
I am aware was a simplifi ed model of the cerebellar cortex of the frog by Pellionisz 
et al. ( 1977 ). These used 62-compartment Purkinje cell models having modifi ed 
Hodgkin–Huxley conductances. 

    The Introduction of Neural Simulation Systems 

 In each of the cases mentioned to this point, the computational modeling was done 
with specifi c code written by the individual researchers. To my knowledge, there 
was no effort made to provide that code to anyone else or to generalize it beyond a 
particular model. There was also no explicit effort to use these simulations as a tool 
in neuroscience education. Their intended purpose was purely research and was 
based only in the individual research labs. Yet, the nervous system itself is made up 
of neurons that share many common components (e.g., ion-selective channels), rais-
ing the distinct possibility that a modeling system with common code and a com-
mon set of libraries could allow the sharing of components between different 
laboratories. In effect, this kind of sharing in physics has occurred for hundreds of 
years, in part because it is easier to share equations than complex biological models 
dependent on a whole system of equations. In principle, however, a common model-
ing platform for neural simulations could not only support the sharing of compo-
nents, but also start to build a common set of models, which we have called 
“community models,” supporting communication between different laboratories 
and research projects. Jim Bower’s chapter in this volume talks about what may be 
the fi rst such model, of the cerebellar Purkinje cell, originally developed in 
GENESIS and now implemented in numerous other simulation systems (including 
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NEURON) and also now being used as the basis for research in a growing number 
of laboratories. Of particular interest to me, such a general neural simulation system 
could also, in principle, be used to generate simulation-based tutorials for education 
in the tools of  computational neuroscience, as well as neuroscience itself. 

 The use of an electrical network simulator was fi rst suggested by Shepherd and 
Brayton ( 1979 ) for a simulation of a dendro-dendritic synapse circuit in the olfac-
tory bulb. However, the fi rst software that could be called a general simulator spe-
cifi cally for realistic neural models was a suite of FORTRAN programs called 
MANUEL developed by Don Perkel in 1981 (Perkel and Watt  1981 ). MANUEL 
generalized some of his earlier custom made programs into a package for construct-
ing multi-compartmental neurons and small circuits. Jim Bower tells me that one of 
the fi rst things he did after moving to Caltech was to visit Don Perkel in his research 
trailer parked behind a research building at the University of Irvine. Don had 
recently been fi red as a professor by Stanford, but had used grant money to purchase 
a trailer, outfi tted with computer equipment, and had made a temporary arrange-
ment with UC Irvine renting space in their parking lot. Don was well ahead of his 
time. The MANUEL programs allowed a wide variety of physiological and ana-
tomical properties to be specifi ed and provided a versatile set of utilities for provid-
ing stimuli and recording the results. As a way to provide support for his pioneering 
efforts, MANUEL was available for a substantial fee, and was written in a Digital 
Equipment Corporation (DEC) variant of FORTRAN IV, and did not run on Unix 
systems. MANUEL was used by Peter Getting to make what was probably the fi rst 
network model made out of realistic neurons to study the swim central pattern gen-
erator circuit of the mollusc  Tritonia diomedea  (Getting  1989 ). Ironically enough, 
Peter Getting had also not been given tenure at Stanford and ended up at the 
University of Iowa, where he built his model accurately reproducing the swim pat-
tern and explaining the role of the various ionic conductances in determining the 
behavior of this small network. Sadly, both Don Perkel and Peter Getting shortly 
thereafter developed serious health problems that ended their research careers. 

 There was also an effort in the 1980s to use simulators built for modeling electric 
circuits, such as SPICE (Segev et al.  1985 ) and SABER (Carenvale et al.  1990 ) to 
construct models of neurons. In principle these simulation systems had the built-in 
tools needed for simulating the circuits used in compartmental models. They also 
had the advantage that they were widely used by electrical engineers and also had 
the advantage of being available for a wide range of computer operating systems. In 
the end, however, most of the development of these systems was focused on electri-
cal circuit simulation and they were not further optimized for building neuronal 
models. Similarly, the growth in interest in neural networks for engineering pur-
poses also resulted in the construction of several “neural network” simulation sys-
tems such as the Rochester Connectionist Simulator (Goddard et al.  1987 ) that were 
also promoted for their possible use in biological network simulations. These also 
turned out to be too specialized and restricted in their capacity to support full real-
istic models.  
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    Early History of GENESIS and NEURON 

 It was during this same period of time, in the middle 1980s, that the development of 
both GENESIS and NEURON started as dedicated systems specifi cally for building 
realistic simulations of the nervous system. By 1989, when I fi rst learned of 
GENESIS, both systems were well into the early phase of their development—each, 
however, starting from a different point of view and with somewhat different 
objectives. 

 The NEURON simulator had its beginnings in the laboratory of John W. Moore 
at Duke University, where Michael Hines developed an effi cient implicit numerical 
integration algorithm for use in branched compartmental dendritic models (Hines 
 1984 ). The Hines method was initially implemented in CABLE, a simulator devel-
oped for modeling propagation of PSPs in dendrites (Hines  1989 ). 

 Although it was primarily being used for modeling dendritic structures at this 
time, it already had the capability of making multi-compartmental models of single 
cells. In addition to the standard voltage-activated Hodgkin–Huxley sodium and 
potassium channels, it could model basic mechanisms for calcium dynamics and 
calcium-dependent potassium channels. By 1990, the name had changed to 
NEURON, and its single cell modeling capabilities began to expand. Over the next 
2 years, it gained a scriptable GUI, the ability to model small networks, and a 
method of loading and compiling user-specifi ed channel kinetics. 

    A Personal History of GENESIS 

 Of course, my personal knowledge of the development of GENESIS is much more 
detailed than that of NEURON. 

 GENESIS had its origins during 1984, when Matt Wilson was studying for a 
Master’s degree in electrical engineering at the University of Wisconsin. During this 
time, after having done postdoctoral studies in the laboratory of Rudolfo Llinás at 
New York University, Bower was fi nishing up his postdoctoral work in Lewis 
Haberly’s lab at the University of Wisconsin, studying the olfactory cortex. 

 As Bower recalls, Matt had been hired to program data acquisition software for 
a new brain slice preparation he was setting up in the Haberly Laboratory. Jim had 
also brought to Wisconsin the data he had recorded from many cerebellar Purkinje 
cells at once while a postdoc at NYU. This data was unusual and complex as it was 
one of the fi rst sets of multi-single neuron data ever obtained, consisting of record-
ings of 16–32 signals at once (Sasaki et al.  1989 ). Bower was interested in fi nding 
some means of analyzing the data other than cross-correlation analysis. After 
approaching Josh Chover, head of the Math Department at the University of 
Wisconsin, Chover and Bower decided to co-teach a course on statistical analysis of 
multiunit recording data, for which Matt became the teaching assistant. 

 During that course, Jim realized that understanding complex neurobiological 
data would eventually require a tight coupling between experimental and 
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model-based studies (Bower  1991 ). As an experimentalist, he believed that the 
types of model that would be most useful were ones that as closely as possible 
approximated the actual morphological and physiological properties of the brain 
structures being studied. While it was several years before his laboratory began 
developing models of the cerebellum (e.g., Santamaria et al.  2007 ), he decided to 
see if a model of the olfactory cortex might help explain the pattern of oscillations 
he was studying in the Haberly laboratory. Working together, Jim and Matt gener-
ated the fi rst network model of the olfactory cortex constructed on an IBM XT 
computer. The model consisted of a linear chain of 75 5-compartment neurons 
which almost as soon as it was constructed began oscillating with 40 Hz bursts at 
Theta frequency. Jim’s recollection is that it took several weeks to fi gure out how 
the bursts were generated in the model. 

 When Jim came to Caltech in early 1985, as one of the cofounders of the inter-
disciplinary graduate degree program “Computation and Neural Systems,” he 
encouraged Matt to apply as a doctoral student. After arriving from Wisconsin, Matt 
continued to elaborate the olfactory cortex model, and published a thesis in 1990 
predicting the neural mechanisms underlying the 40 Hz and theta frequency oscilla-
tions in cerebral cortex (Gray et al.  1989 ; Wilson and Bower  1991 ,  1992 ). 

 According to Jim, while Matt was working on his own modeling studies, he 
asked Matt to generalize his simulation software so that it could be used as a general 
purpose simulator, rather than as a stand-alone single purpose model. Matt resisted 
at fi rst, feeling that no computational modeler would ever want to use software that 
was written by someone other than themselves. Fortunately, Matt relented and 
began work on GENESIS (Wilson et al.  1989 ). 

 Later, as I attended the annual Computational Neuroscience meetings in the early 
to mid 1990s, and collected data to satisfy funding agencies that GENESIS indeed 
was being widely used outside the Bower laboratory, Matt’s prediction that real 
programmers would write their own code seemed to be born out. During that decade, 
the number of poster presentations using GENESIS or NEURON was generally 
outnumbered by those that used custom software written for a particular simulation 
or category of simulation. However, today, the number of scientists using simulation 
systems continues to rise, and importantly, the simulators are increasingly providing 
an opportunity for nonprogrammers to engage in computational studies. They are 
also increasingly being used in graduate and even undergraduate education, replac-
ing textbooks with dynamic simulation tutorials. 

 As a side note, as he continued to develop GENESIS, Matt became increasingly 
interested in the experimental side of neuroscience research, and the studies of the 
hippocampus being carried out by Bruce McNaughton. After he received his Ph.D. 
in 1990, he went to the McNaughton laboratory at the University of Arizona for his 
postdoctoral studies, bringing the multielectrode array design with him. Legend has 
it that he said that he would come only if he were not required to do further model-
ing. Matt is now Sherman Fairchild Professor in Neurobiology, Departments of 
Brain and Cognitive Sciences and Biology at MIT, researching the role of sleep in 
learning and memory. 
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 With respect to the early history of GENESIS, it is also important to mention the 
contributions of Upinder S. Bhalla who developed the fi rst GUI for GENESIS, 
XODUS (the X Oriented Display Utility for Simulations) (Bhalla  1998 ). Entering 
the Bower laboratory as a doctoral student in Neuroscience in 1986, “Upi’s” princi-
pal focus was on multielectrode recording in the olfactory bulb of awake behaving 
animals, where, along with Matt Wilson, he designed a unique multielectrode array 
that has subsequently became the basis for many multi-single unit recording experi-
ments in many laboratories. However, Upi was also using GENESIS to model olfac-
tory bulb mitral and granule cells, and started adding graphical capabilities around 
1987. The initial version of XODUS was based on the Unix X Window System, and 
added scripting commands to Matt’s Script Language Interpreter (SLI). 

 Although it is getting somewhat ahead of the story, it is appropriate to mention 
that after completing his Ph.D. in April 1993, Upi began his postdoctoral studies 
with Ravi Iyengar at Mount Sinai School of Medicine in New York, contributing to 
GENESIS development over the Internet. By November 1995 he had added the 
kinetics library and Kinetikit GUI for modeling chemical kinetics and signaling 
pathways (Bhalla and Iyengar  1999 ). After assuming his faculty position at the 
National Centre for Biological Sciences in Bangalore in January 1996, he continued 
to study the systems biology of olfaction and memory, and to extend the capabilities 
of the GENESIS kinetics library (Bhalla  2000 ). In order to exchange biochemical 
signaling models, he established the Database of Quantitative Cellular Signaling 
(DOQCS), one of the fi rst databases of models of signaling pathways in the brain 
(Bhalla  2003 ). DOQCS (  http://doqcs.ncbs.res.in/    ) currently contains 76 models 
contributed by users world-wide. The model representation format used in DOQCS 
is based on GENESIS 2 SLI commands using the kinetics library; however, it is now 
being extended to include SBML (Hucka et al.  2003 ) and Matlab formats. Later, as 
the limitations of the 1980s and 1990s simulator architectures became apparent, Upi 
began a major reimplementation of GENESIS 2 as MOOSE (Ray and Bhalla  2008 ). 

 Because the technical basis for GENESIS was a model of the olfactory cortex, 
GENESIS differed from the design of NEURON in that, from the outset, it was 
designed to simulate neural structures at multiple levels of scale (Wilson et al. 
 1989 ). Due to the infl uence of the parallel computing group at Caltech headed by 
Geofry Fox, GENESIS was also from the outset, designed to be implemented on 
parallel computers (Nelson et al.  1989 ). Although NEURON had its origins as a 
simulator for single cell models, it acquired improved network modeling capabili-
ties and a parallel implementation in the following years. 

 By the July 1990 public release of GENESIS version 1.1 with full source code, 
Upi had added the “Neurokit” graphical environment for editing and running single 
cell models to GENESIS. Neurokit was written entirely in the GENESIS scripting 
language, using XODUS. Figure  3.1  shows this fi rst version of Neurokit running a 
mitral cell model, with the menus, cell view, and graph displayed. By 1991, Upi had 
added the Hines ( 1984 ) integration method to GENESIS and added a cell reader to 
read in cell model specifi cations from a GENESIS cell parameter (“.p”) fi le, greatly 
increasing its capabilities for large single cell models.
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        GENESIS and NEURON Go Public 

 Returning to the chronology, the next major step for GENESIS and NEURON, and 
the initial availability for the use of both systems by those outside the founding 
laboratories, came as a result of the establishment of the Summer Course in Methods 
in Computational Neuroscience at the Marine Biological Laboratory (MBL) in 

  Fig. 3.1    An early GENESIS 1 version of Neurokit used to run and edit a mitral cell model. This 
used scripted XODUS objects to create menus, an animated cell view, and graph       
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Woods Hole. As Jim Bower recounts the history, he and his Caltech colleague 
Christof Koch were sitting in Christof’s backyard on a particularly hot and smoggy 
day in the summer of 1986 in Pasadena California, discussing what they could do 
the following year to be somewhere more pleasant with their families. Jim, who has 
spent time as a postdoctoral fellow doing summer research at the MBL, suggested 
that they propose offering a course in computational neuroscience, and spend the 
late summer in Woods Hole. That fall, the MBL accepted the course and the fi rst in 
what has now become a series of courses around the world was offered. The fi rst 
course of its kind, Jim’s strong bias towards “hands on science learning” meant that 
the course was designed so that its central focus was on student projects based in a 
computer laboratory. For the fi rst course, Jim and his feisty laboratory systems 
administrator John Uhley manually pulled the fi rst Internet lines from the Woods 
Hole Oceanographic Institute in the tunnels under Water Street in Woods Hole to 
the MBL. Uhley installed 20 brand-new graphics workstations that were donated by 
the now defunct DEC in the laboratory, and literally the night before the opening 
day of the course, a public version of GENESIS was installed for the fi rst time. 
Although Matt regarded this as version 0.001 of GENESIS, it already included a 
graphical user interface (thanks to Upi), powerful network creation commands, and 
an effi cient method of summing spike events from multiple connections to a synap-
tically activated channel (Wilson and Bower  1989 ). The offi cial release of GENESIS 
1.0 coincided with the second Woods Hole course in July 1989 with usability greatly 
increased, due to continued work by Matt, Upi, Dave Bilitch   , and John Uhley. 

 However, the fi rst course in Woods Hole was not only the introduction of 
GENESIS but also of NEURON. As Jim recounts the story, on the very fi rst day of the 
course, Michael Hines approached Jim and Christof about the possibility of installing 
CABLE on the laboratories computers as well, and giving students the option to use 
either GENESIS or CABLE (soon to be NEURON). Both Jim and Christof thought 
that this was a wonderful idea, and Michael Hines and NEURON became a regular 
part of the course from then on.  

    Federation and User Support 

 While I missed the fi rst two Woods Hole courses, in the spring of 1990, as Matt was 
fi nishing his work at Caltech, my wife received a job offer that was too good to pass 
up in Boulder, Colorado. I then said goodbye to Harvey Mudd and came to the 
University of Colorado, supported as a consultant on GENESIS grants. This began 
the “federalization” of GENESIS development via the Internet, and a collaboration 
between GENESIS developers that still continues to this day. With the departure of 
Matt, Dave Bilitch gradually took over as the lead GENESIS software developer, 
coordinating our efforts with the crude Internet tools of the time: text-based email 
without attachments, ftp, and remote logins to the server “smaug” at Caltech via 
telnet. During the 1990s, as former members of the Bower laboratory formed 
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research groups using GENESIS, and the expanding number of GENESIS users 
contributed to GENESIS capabilities, GENESIS development became increasingly 
distributed. To facilitate communication between users and developers, an email 
newsletter to the GENESIS users group was established in April 1991, and the 
GENESIS web site was established in June 1994. 

 When I entered the Bower laboratory in fall 1989, GENESIS development 
seemed to “just happen” by a small group interacting closely without a lot of formal 
organization. I would tell Upi “it would be nice if GENESIS could do ….” A couple 
of days later he would casually mention that GENESIS could now do it. I noticed 
this among the Bower lab group at Woods Hole. Someone noticed that something 
needed to be done, and just did it. This may not be a scalable plan for a major soft-
ware development project, but it worked extremely well in those days. As GENESIS 
development has spread from a single laboratory to many, we have had to face the 
challenge of “federalizing” a large software development project among many 
user-developers. 

 From the beginning, GENESIS had the framework for interactive help, but not 
yet a lot of content. The “man page” was often a shout down the hall to Matt’s offi ce 
“Hey, man. I have a question.” Gradually his answers evolved into additions that I 
made to the documentation as I saw the need for it. The interactive help was invoked 
in a terminal window at the “genesis >” prompt, and was plain text, formatted simi-
larly to a Unix “man page.” Upi added a printed manual with LaTeX source that 
covered basic syntax for the SLI, and the main GENESIS and XODUS objects and 
commands. 

 The GENESIS 1.0 release came with two tutorials that were created in April 
1989. Mark Nelson contributed the “Squid” tutorial on the Hodgkin–Huxley model 
that is still in use today after years of enhancements by GENESIS users. The 
“MultiCell” tutorial was a simulation of two neurons having a soma and dendrite 
compartment with synaptic connections, with one being excited and the other being 
inhibited. The GUI had a control panel, graphs of membrane potential and channel 
conductances, and labeled text fi elds (called “dialogs” in XODUS) for changing the 
synaptic channel parameters. The extensive documentation with reference to a line- 
numbered version of the main scripts was the most useful early GENESIS 
documentation. 

 At an early GENESIS developers meeting, around the time that we launched the 
GENESIS web site in June 1994, we discussed ways to use a common source for the 
generation of plain text “help,” a printed manual, and an Hypertext Markup 
Language (HTML) version for the web. I had been looking at an open-source pack-
age called “linuxdoc-sgml” that was then being used by The Linux Documentation 
Project (  http://www.tldp.org    ) for doing this by writing the documentation, not in 
HTML, but in the much richer Standard Generalized Markup Language (SGML), 
that was the basis of HTML, and a few years later would become the basis for the 
now-popular eXtensible Markup Language (XML). 

 The near-unanimous decision was that I should use a well-supported commercial 
tool, FrameMaker to generate the documentation. As I was the one writing the 
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documentation and I lived in Colorado, not Pasadena, I went home and wrote the 
documentation for the GENESIS 2.0 release in SGML. Now, FrameMaker no lon-
ger exists, but SGML lives on in the form of an open standard, XML. Actually, this 
move from commercial software to an open standard was only the fi rst in a series of 
similar events in computational neuroscience. 

 Discussions of a major rewrite of GENESIS to create version 2.0 began in early 
1993. After more than 2 years of development and several months of beta testing, 
GENESIS version 2.0 was fi nally released in August 1995. In addition to having a 
detailed reference manual in all three formats, it now ran under the Linux and 
FreeBSD operating systems, and with programming help from Maneesh Sahani, 
had a completely rewritten version of the XODUS graphical interface. The add-on 
library for Parallel GENESIS (PGENESIS) was released at the same time, allowing 
simulations to be spread over multiple processors or networks of workstations on a 
variety of hardware and software platforms. 

 In addition to their own research, one of the motivations for the further develop-
ment of GENESIS was provided by its potential use as a tool in neuroscience educa-
tion. “The BoG” mentioned previously, was written and edited by Jim Bower and 
myself as a step-by-step tutorial and interactive self-study for professionals, 
researchers, and students working in neuroscience. The free Internet edition (  http://
www.genesis-sim.org/GENESIS/bog/bog.html    ) and the printed version (Bower and 
Beeman  1998 ) use exercises and hands-on tutorials developed at the Woods Hole 
and later courses, with contributed chapters by researchers in computational neuro-
science that are linked to the tutorials.   

    Expanding Simulator Capabilities 

 With the early history of simulator development now described, I will turn to the 
discussion of some of the issues in the construction of neural simulations that arose 
in the evolution of GENESIS and NEURON to their current state, their differences, 
and what I think this portends for the future. 

 It is easy to argue that the expanding base of the use of simulation systems is 
directly related to the expansion of their technical capabilities as well as their ease 
of use. During the 1990s, both GENESIS and NEURON expanded their graphical 
capabilities and repertoire of built-in tools specifi c to neural modeling, making the 
advantages of using a general simulator package obvious. These simulators then 
became the preferred method of constructing these types of models. At present, 
GENESIS and NEURON have very similar functionality for realistic neural model-
ing. However, there are some signifi cant differences in the way that simulations are 
created and models are represented. An examination of the different approaches 
taken in their design may offer some insight into issues facing developers of the next 
generation of neural simulators. 

D. Beeman

http://www.genesis-sim.org/GENESIS/bog/bog.html
http://www.genesis-sim.org/GENESIS/bog/bog.html


47

    Scripting and GUIs 

 I was attracted to the idea of using GENESIS to write tutorials because of its built-in 
graphical tools that I could use with the same scripting language that would be used 
to construct models. Matt never made much use of GUIs in his simulations, prefer-
ring to run his long network simulations in batch mode, sending the output to fi les 
for later analysis. Many modelers still follow this approach, using simulation scripts 
written with a text editor, and minimal graphics. However, a customizable GUI was 
necessary for developing tutorials. Later, I found out how important it could be for 
interpreting the results of parameter changes in a simulation during run time, allow-
ing a quick exploration of a model. 

 At the time, most neural modelers, and even nonprogrammer users of personal 
computers, were at home in a command-line computer environment. Over the years, 
the expectations of modelers have changed, and a GUI is considered essential. 
However, using scripting commands to position graphical “widgets” (buttons, text 
fi elds, graphs, etc.) in a window is diffi cult and time-consuming. Newer graphical 
libraries provided for Java or Python, or the cross-platform wxWidgets library being 
used for G-3 provide more powerful tools than the comparatively low-level syntax 
used in XODUS. Nevertheless, the script code to set up a neural simulation GUI is 
often much longer than that needed to set up and run the simulation. 

 Generic GUIs such as the GENESIS Neurokit or the NEURON Cell Builder can 
be very useful for analyzing or tuning a single cell model, but rarely have the fl exi-
bility or unique features needed to perform and visualize the results of a research 
simulation, or to use as the basis of a tutorial simulation. In principle, Neurokit and 
the Purkinje Cell Tutorial can be modifi ed by the user, as they are written in the 
XODUS extensions to the GENESIS SLI language. In practice, the scripts are far 
too complicated for most users to want to modify. G-3 allows for the future use of 
an Integrated Development Environment (IDE) such as Glade to let users create, 
size, and position graphical elements with a mouse, saving the layout in a standard 
format (Cornelis et al.  2012b ). 

 When I began writing my fi rst GENESIS tutorial simulation, the “Neuron” tuto-
rial (Beeman  1994 ), I began to appreciate the object-oriented (OO) nature of the 
language that Matt had created for building simulations. I admit to being a some-
what lazy programmer who would rather hack at an existing example than to plan a 
program out from the beginning and start with a blank screen. I think that every 
computer program or simulation script that I have ever written has been a modifi ed 
version of something else. Of course, I want to give a lot of thought to planning the 
structure of the program before I start, but I am likely to start with something that I 
have already written as a template. Then I fi ll in bits of code taken from examples 
or from other programs that I had written for something else. This wasn’t too hard 
with my own FORTRAN, Pascal, or C code, but trying to merge pieces of someone 
else’s code into my own and keep track of all the global variables and dependencies 
was often more work than starting over and writing it myself from the beginning. 
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 The scripting language that Wilson developed for the GENESIS SLI had a syntax 
similar to C, and the ability to create simulation “elements” (or “objects” in modern 
terminology) from templates or “object types” (i.e., “classes”). This enabled neural 
models to be constructed using a “building block” approach. Simulations are con-
structed from modules that receive inputs, perform calculations on them, and then 
generate outputs. Model neurons are constructed from    these basic components, such 
as dendritic compartments, and variable conductance ion channels. Compartments 
are linked to their channels and are then linked together to form multi-compartmen-
tal neurons of any desired level of complexity. Neurons may be linked together to 
form neural circuits. By keeping most of the variables and functions (methods or 
“actions”) local to these elements, it was easy to pull in pieces of another model 
without having to understand very much about the large script in which it was 
embedded. This approach to building simulations has worked very well when build-
ing neural models. 

 Object-oriented programming concepts were well known among the artifi cial 
intelligence community at the time that GENESIS was written, but had not entered 
the mainstream of computer programming until the mid-1990s. The object-oriented 
programming language C++ was then in its infancy and would not become stan-
dardized until much later. 

 The parser for the scripting language devised by Matt Wilson was written by him 
in C. In order to make GENESIS as fl exible as possible for creating different types 
of models, the object types were made as general as possible. For example, an “hh_
channel” was not a particular Hodgkin–Huxley squid axon channel, but would 
model any channel that could be modeled with Hodgkin–Huxley type equations. 
The “tabchannel” and “tab2Dchannel” objects with tables for gate activation, intro-
duced shortly afterwards, provided further generality. Later, De Schutter (De 
Schutter and Smolen  1998 ) added a library of GENESIS objects for modeling cal-
cium diffusion. 

 By giving these objects different parameter values, creatively connecting them 
together in a script, and manipulating them with user-defi ned commands, a great 
amount of user-extensibility was achieved without having to do any programming 
outside of the scripting language. Inevitably, the time comes when a new object type 
or command needs to be defi ned and compiled into GENESIS. This requires some 
C programming ability of the user, although the process is simplifi ed considerably 
by the detailed documentation and examples that are provided. Once the new ver-
sion of GENESIS is compiled, the new functionality is available for any subsequent 
use of GENESIS. 

 NEURON is written in C, but made use of an existing scripting language and 
parser software by choosing HOC (Kernigan and Pike  1984 ). HOC has a C-like 
syntax and is also written in C. It was easily extended to include functions specifi c 
to modeling neurons, and over the years graphical commands and object-oriented 
programming concepts were added. 

 However, it proved diffi cult for users to add new channel mechanisms in HOC, 
so a high-level model description language, NMODL (Kohn et al.  1989 ) was incor-
porated into NEURON (Hines and Carnevale  2000 ). This made it much easier for 

D. Beeman



49

users to extend the functionality of NEURON by writing defi nitions in NMODL, 
and then having them automatically compiled and linked into NEURON. This pro-
vides some advantages over the GENESIS approach, such as allowing a high-level 
scripting language to specify the differential equations to be solved, rather than 
writing lower level C modules. However, this means that most NEURON models of 
any complexity involve a mixture of HOC and NMODL, and require a recompila-
tion and link step each time a simulation is run.  

    Parameter Search, Model Tuning, and Comparison 

 Upi’s additions to XODUS enabled me to have pop-up help windows with scrolling 
text and images in my completed “Neuron” tutorial in time to use it with assigned 
exercises in the “Modeling and Analysis of Neural Networks” course (CS 189B) at 
Harvey Mudd in the spring of 1990. Jim suggested that I next write a simulation of 
a bursting molluscan neuron and develop a tutorial to go along with a manuscript 
“The Dance of the Ions,” that he was writing to explain the role of the various types 
of ionic conductances in shaping the fi ring patterns in molluscan pacemaker cells. 

 It seemed like a simple thing to do. The principal channel types were well char-
acterized with published voltage clamp data from the sea slugs  Tritonia  and  Aplysia 
californica . GENESIS had all the features that I needed to implement a single- 
compartment model with six varieties of conductances and a calcium diffusion 
mechanism. That was my introduction to the diffi culties and complexities of param-
eter searching and model comparison. My model was a “generic burster,” loosely 
based on an  Aplysia  R15 neuron, with channel data taken from both  Tritonia  and 
 Aplysia  cells under different conditions. 

 I soon realized, along with many of the students that I tutored over the years in 
the MBL neural modeling courses and future ones in the EU Advanced Course in 
Computational Neuroscience and the Latin American School on Computational 
Neuroscience (LASCON), that parameter fi tting is the most time-consuming task of 
single cell modeling. This requires scaling several conductance densities, shifting 
activation curves to account for different rest potentials, and varying time constants 
to account for temperature variations. Varying these many parameters in order to fi t 
fi ring patterns obtained under current clamp conditions remains a diffi cult task 
today. 

 By the time I was happy with my model and tutorial, far better models of the 
 Aplysia  R15 neuron had been published (e.g., Canavier et al.  1991 ), but the tutorial 
and the one that I based on a GENESIS recreation of the Traub et al. ( 1991 ) hippo-
campal pyramidal cell, are still the best way I know of to get a feel for the role of the 
various conductances by modifying them within a GUI. The most sophisticated 
GENESIS single cell tutorial is the Purkinje cell tutorial, developed by Hugo 
Cornelis. 

 The experience of converting the Traub model and other published neural mod-
els to GENESIS revealed another sobering aspect of model replication and 
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comparison. Of the many published descriptions of models that I have attempted to 
reimplement, I can think of very few that did not have errors or signifi cant omis-
sions. As discussed later, I feel that this stems from the limitations of the present 
system of publishing model-based research. Thus, there may be some parameter 
searching involved even when replicating an existing model, as well as the very 
important matter of making a meaningful comparison between the results from dif-
ferent implementations of what is ostensibly the same model. 

 A parameter search often involves doing the very easiest form of parallel com-
puting: running many separate uncoupled simulations with different sets of param-
eters. One evening in the computer lab during the 1991 Woods Hole course, the 
students discovered that their simulations had suddenly slowed down to a crawl. It 
turned out that Erik De Shutter was doing a parameter search on the Purkinje cell 
model by running a background simulation on every workstation. I believe that he 
obligingly consented to cease, although John Uhley may have threatened actual 
physical violence. 

 To address the problem of comparing the results of dendritic cable model simula-
tions when run on different simulators, Bhalla et al. ( 1992 ) developed the Rallpacks 
set of benchmarks. These demonstrated that GENESIS and NEURON had equiva-
lent speed and accuracy for these models. Shortly later, GENESIS gained a number 
of parameter search commands that were used for tuning the olfactory bulb mitral 
and granule cell models of Bhalla and Bower ( 1993 ). Vanier and Bower ( 1999 ) 
performed a detailed study of a variety of automated parameter search methods, 
using the GENESIS parameter search library developed by Vanier. In most cases the 
simulated annealing algorithm gave the best performance. 

 There are, however, some pitfalls in performing an automated search. In addition 
to the time consumed by searching unproductive regions of a large parameter space, 
there can be multiple regions that give equivalent local minima in the error function 
for the fi t. 

 In order to know where to start a search, one needs to have an understanding of 
the roles that many different ionic currents play in the timing of action potentials, in 
order to have a sense of which parameters are most relevant. For example, knowing 
the role that the “H-current” plays in producing an overshoot in the membrane 
potential after a hyperpolarizing current injection can help defi ne the area in param-
eter space to be searched. 

 I have found it most helpful to begin with a manual search, starting with the best 
available data for initial values. By varying the parameters by hand, using a custom 
GUI scripted with GENESIS/XODUS, and plotting the results, I can fi nd a much 
better set of initial parameters for an automated search. Figure  3.2  shows such an 
interface for tuning a simple pyramidal cell model.

   The largest problem when fi tting parameters to current clamp experiments is the 
same as the one when comparing the results of two different simulations. Simply 
matching the positions of action potentials is not a suffi cient condition to judge 
when a simulation agrees with experimental results, or those of another model, 
unless the model is a tonically fi ring one, such as the axon model used in the 
Rallpacks (Bhalla et al.  1992 ) set of benchmarks. The diffi cult problem of 
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reproducibility in computational neuroscience is addressed in detail in another 
chapter in this volume by Crook et al. ( 2013 ). 

 The distinction between incorrect results and those in “reasonable agreement,” is 
particularly diffi cult to make in the case of cells that display spike frequency adapta-
tion or bursting behavior. These models contain slow hyperpolarizing currents (e.g., 
Muscarinic or AHP) that are active near the threshold voltage for an action poten-
tial. Thus the membrane potential can hover about threshold, and these currents can 
have the effect of magnifying the effect of small deviations between two numerical 
solutions that can push the balance in one direction or the other. 

 Figure  3.3  shows the membrane potential for a model (Traub et al.  1994 ) of a 
burst-fi ring hippocampal pyramidal cell under conditions with two slightly different 
numerical precisions.

   The upper plot, shown with a prototype Python plotting module for G-3, shows 
the result of a current injection over a 0.2 s interval. These small deviations eventu-
ally cause signifi cant differences in the position of the fi nal spike of the burst. When 
plotted over a 5 s period (below), the bursts have roughly the same time intervals, 
but drift in and out of coincidence with each other. One would call these “equivalent 
results,” but it is diffi cult to quantify the differences in a meaningful way. Baldi et al. 
( 1998 ) have addressed this problem by suggesting the use of Bayesian inference in 
the comparison of spike trains. However, making quantitative comparisons of this 
nature remains a largely unsolved problem.  

  Fig. 3.2    Custom scripted GUI for adjusting channel parameters to fi t response to a 0.4 nA current 
injection pulse to a model layer 5 pyramidal cell       
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    The “Decade of the Brain” and the Human Brain Project 

 The US Congress established the 1990s as the “Decade of the Brain,” and 16 federal 
agencies, including the NIH, issued program announcements in April 1993 and 
again in October 1995 soliciting proposals for the Human Brain Project. The 
research to be supported would develop informatics tools for accessing and integrat-
ing the huge amounts of data produced by neuroscience research, with an emphasis 
on web-based databases for data sharing (Koslow and Huerta  1997 ). Suddenly 
“neuroinformatics” became a popular word in research proposals. A great many of 
these proposals involved brain atlases and dealing with the huge data sets produced 
by neuroimaging experiments. However, there were many opportunities offered to 
neural modelers and simulator developers. The development of realistic neural 
models can benefi t, not only from model sharing, but from the development of tools 
for managing notes and model development histories, and for linking models to 
experimental data and bibliographic references. 

  Fig. 3.3    Two simulation runs of a burst fi ring pyramidal cell with slightly different numerical 
precision.  Upper plots : Membrane potential during the fi rst 0.2 s.  Lower plots : Membrane potential 
during 5 s of a longer run       
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 The initial goals of the SenseLab project at Yale University (Shepherd et al. 
 1997 ) were concerned with creating a comprehensive database of information about 
the olfactory system and tools for access. The system was to be built upon a com-
mercial object-oriented database (OODB) called Illustra, and included an olfactory 
receptor database (ORDB), a database of neuron descriptions (NeuronDB), and a 
database of computational models of olfactory and other neurons (ModelDB). 

 The GENESIS group was awarded a grant in the fi rst round to develop a 
“GENESIS Simulator-Based Neuronal Database” that would use an OODB with a 
query interface to mine the information contained within GENESIS simulations of 
a model neuron or network, and to link it with model descriptions, relevant data, and 
reference materials (Beeman et al.  1997 ). The initial choice of database was the 
commercial database UniSQL, and later prototypes were implemented with one 
called ObjectStore. 

 Two issues came up regularly at the annual Human Brain Project principal inves-
tigators meeting at the NIH in Bethesda. The question of how to best represent, 
store, and exchange models was a continuing theme, as well as what particular 
database to use. OODBs were in vogue at the time and were widely used in business 
software (Loomis  1995 ). An object-oriented representation was natural for describ-
ing neural models, and particularly for GENESIS models. However, the available 
OODBs were commercial products with proprietary data formats. The open-source 
options at that time were earlier incarnations of the relational databases PostgreSQL 
and MySQL. It is worth noting that none of the three commercial products men-
tioned above are in existence today, but PostgreSQL and MySQL are still widely 
used and available for a wide variety of platforms. 

 The other trend in the world of business software at that time was the use of 
SGML for representation of a large variety of data objects in a “document.” A “doc-
ument” could be, and often was, a description of a textual document, such a one 
described by a subset of SGML, HTML. The use of SGML in the publishing indus-
try was well known. However, the use of SGML gave a powerful object- oriented 
description of items that could also be represented with OODBs, and it was often 
used as an interchange format between OODBs. An SGML document could just as 
well be a collection of data relating to the inventory of a business, a collection of 
customer contact information, or perhaps a description of a neural model. 

 Unfortunately, the SGML specifi cation was needlessly complex to use or imple-
ment parsers for, and not very standard. Preliminary discussions by the World Wide 
Web Consortium (W3C) of a simpler standard more suitable for use with the WWW 
called the eXtensible Markup Language (XML) were underway at that time, but the 
XML 1.0 specifi cation would not become a W3C recommendation until February 
1998. 

 In March of 1996, Michael Arbib invited HBP participants with an interest in 
neural modeling to a “Workshop on Brain Models on the Web” held at the University 
of Southern California. His group had an HBP grant to develop a web-accessible 
database of neural models and to construct tools for sharing and exploring models 
and associated data that would be contributed by other modelers. The neural simula-
tion system in use was NSL (Weitzenfeld  1995 ), a simulator for large networks of 
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point integrate and fi re neurons, and it would be advantageous to incorporate more 
realistic models generated with GENESIS and NEURON. These were to be stored 
in an Illustra OODB. Michael Hines and Matt Wilson had discussed the conversion 
between NEURON NMODL and GENESIS SLI scripts since 1989, and made some 
initial steps towards a conversion program. But, the problem was diffi cult because 
of the very different representations used in the two simulators. 

 The GENESIS “.p” format provides a machine-readable description of a 
branched compartmental cell model with active conductances. It can easily be trans-
lated to other formats. However, the channel names that appear in the fi le are names 
of elements that are created with GENESIS scripts for the SLI. Figure  3.4  is taken 
from a slide given at my presentation on the use of SGML for model representation, 
showing a fragment of an NMODL script and one of a GENESIS SLI script. 
Someone familiar with both simulators would recognize that both represent the 
same Hodgkin–Huxley model of the squid giant axon potassium channel, with one 
using physiological and the other SI units, but it is hard to imagine a machine trans-
lation between the two formats and their many possible variations.

   The ModelDB project (Migliore et al.  2003 ) was one of the most successful and 
well known of those to come out of the HBP, primarily because of its simplicity. 
Rather than take the path of many others that attempted to put models into some OO 
format, it simply stores simulation scripts in the native simulator languages along 
with documentation, and is well indexed. However it suffers from the problem that 
the scripts are not portable, sometimes even to later versions of the simulator on 
which they were developed. This is because the simulators use  procedural  scripting 
languages that give a sequence of instructions telling the simulator how to construct 
a model, rather than  declarative  representations that describe the model, leaving it 
to the simulator to determine how it should be created in the context of the simulator 
implementation and its data structures. 

 The key to model sharing would be to translate this scripted procedural represen-
tation to a declarative object-oriented representation. I tried to argue persuasively 
that an SGML representation was preferable to storage in an OODB, but I don’t 
think that anyone was convinced. My notes from the meeting say that Michael 
Hines was “pessimistic about the possibilities of representing a simulation outside 
of the structure of the simulation code.” By the year 2000, when XML became 
widely known and open-source parsers were available, it would seem obvious that 
describing the objects with XML and storing XML fi les in a generic (and replace-
able) relational database would be the best solution. 

    Model Sharing and Simulator Interoperability 

 During the fi nal phase of the Human Brain Project, the focus of the GENESIS group 
turned towards creating the Modeler’s Workspace (MWS). The MWS (Forss et al. 
 1999 ; Hucka et al.  2002 ) was a design for a graphical environment for constructing 
and exploring neuron and network models with simulations, experimental data, and 
bibliographic material. It would also allow collaborative development of models. 
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The GENESIS HBP funding was to develop a prototype user interface for the exam-
ination and sharing of neural models with related metadata, rather than to enhance 
the functionality of the simulator core. Nevertheless, under continuing NSF fund-
ing, we were also looking forward to a major reorganization of GENESIS that 

  Fig. 3.4    Fragments of simulation scripts for a Hodgkin–Huxley potassium channel ( a ) NEURON 
NMODL script ( b ) GENESIS SLI script       
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would have the modularity and interoperability required to support the functionality 
of the MWS design. 

 As a key component, the MWS design contained an XML-based representation 
of cell and channel models. By the late 1990s, several other groups were also using 
XML-based descriptions of neuroscience-related data and models. 

 Daniel Gardner’s group at Cornell had an HBP-funded effort to create an XML- 
based Common Data Model for the exchange of neurophysiology data and related 
metadata (Gardner et al.  2001 ). Although this was not intended for model descrip-
tion, it was very infl uential in our design of what eventually became a large part of 
NeuroML. 

 In late 1999, Michael Hucka, the main developer for the Modeler’s Workspace 
Project, began working with what was then called the ERATO project at Caltech to 
develop SBML, the Systems Biology Markup Language (  http://sbml.org    ). This 
team, consisting of Hamid Bolouri, Andrew Finney, and Herbert Sauro, was devel-
oping an infrastructure for computational modeling in systems biology. It faced 
many of the representation and design issues of the MWS project, and there was a 
great deal of overlap in the design of SBML and the MWS XML description of 
neural models (Hucka et al.  2003 ). 

 In June 2000, Hucka circulated the fi rst draft of the notation used by the MWS 
for model descriptions (  http://modelersworkspace.org/mws-rep/mws-rep.html    ) to 
the ERATO project and to Nigel Goddard’s group in Edinburgh, who were working 
on model representations for their (now-defunct) simulator NEOSIM (Goddard 
et al.  2001a ). 

 At about that time, Hugo Cornelis was fi nishing his Ph.D. thesis in Computer 
Science, while working in the laboratory of Erik De Schutter in Antwerp. Needing 
to develop a user-friendly declarative interface to the Hines method solver in 
GENESIS 2, he developed the Neurospaces model-container and the Neurospaces 
Description Format (NDF) for single neuron and network model representation in 
1999 (Cornelis and De Schutter  2003 ). He described it in a meeting with the 
Goddard group in summer 2000 and, with Fred Howell, wrote a fi rst draft of a pro-
posal to use it as a representation for NEOSIM. 

 In a collaboration between these groups, a paper describing the initial specifi ca-
tion for NeuroML (  http://www.neuroml.org    ) was submitted in December 2000. 
After much discussion and further revision during a meeting in Edinburgh in early 
2001, the representation was further clarifi ed, incorporating the MWS cell and 
channel representations with the NEOSIM network-level representations (Goddard 
et al.  2001b ). 

 In 2002, Fred Howell and Robert Cannon implemented the NeuroML 
Development Kit in Java, with classes corresponding to an extended version of the 
XML schema described in Goddard et al. ( 2001b ), and tools for parsing NeuroML 
fi les. This was then used to implement a prototype MySQL database and Java-based 
GUI for to retrieve GENESIS ionic conductance models described with NeuroML, 
and convert them to procedural GENESIS SLI scripts (Beeman and Bower  2004 ). 

 The next signifi cant application of NeuroML was the neuroConstruct project, 
initially begun in 2004 as a tool with a GUI for creating network models with 
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NEURON. NeuroConstruct (Gleeson et al.  2007 ) is implemented in Java, and the 
latest version (  http://neuroconstruct.org/    ) uses the current NeuroML specifi cation 
(Gleeson et al.  2010 ), which incorporates the MorphML (Crook et al.  2007 ) schema 
for cell morphology description. Rather than being a simulator, it provides an envi-
ronment for creating large networks of biologically realistic neurons with complex 
connectivity patterns, using NEURON-, GENESIS-, MOOSE-, PSICS-, and PyNN- 
based simulators to perform the actual simulations. This is accomplished by gener-
ating simulation scripts for these simulators in their native scripting languages. 

 The International Neuroinformatics Coordinating Facility (INCF) has formed a 
program to develop another standardized description language for spiking neuronal 
network models, the Network Interchange for Neuroscience Modeling Language 
(NineML). NineML (Gorchetchnikov  2010 ; Raikov  2010 ;   http://nineml.org    ) incor-
porates features of NeuroML and SBML and is based on a layered approach. An 
abstraction layer allows a full mathematical description of the models, including 
events and state transitions, while the user layer contains parameter values for spe-
cifi c models. There are frequent discussions between the NineML and NeuroML 
groups. It is likely that there will be some convergence between the two standards. 

 In the fall of 2005, Cornelis joined the Bower lab in San Antonio as a postdoc-
toral student, and began the integration of Neurospaces into G-3 as its internal data 
representation format and model container. Hucka is now the Team Leader and 
Chair of the SBML editors for the SBML project, working on all aspects of SBML 
development.   

    Choice of Programming Languages 

 In retrospect, the choice of C as the programming language for GENESIS and 
NEURON during the mid-1980s may seem like an obvious decision. But, there 
were other alternatives that could have been chosen, and C was a fortunate choice. 
At this time most scientifi c computations were performed in FORTRAN, running 
on mainframe computers without graphics. Graphical displays were available on 
workstations made by a variety of manufacturers including DEC, Xerox, Evans and 
Sutherland, Apollo, and Xerox, as well as Sun Microsystems and Silicon Graphics. 
These typically had their own specialized software libraries and software to take 
advantage of their hardware. C was the standard language for Unix-based systems, 
and the X Window System was just beginning to emerge as a standard hardware- 
independent protocol for the display of graphics. 

 There were a number of dialects of C, and much early software, including 
GENESIS, used the original informal specifi cation by Kernighan and Ritchie ( 1978 ) 
that is often called “K&R C.” The fi rst standard for what became known as “ANSI 
C” was not adopted by the American National Standards Institute until 1989, and 
adopted by the International Organization for Standardization in 1990. During the 
1990s, a great deal of time was spent updating and slowly “ANSIfying” the 
GENESIS base code in order to guarantee that it would compile under the various 
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workstation operating system implementations of Unix, such as SunOS, Solaris, 
Irix, Ulttrix, and HPUX. 

 However, the US government was pushing strongly for the use of the language 
Ada. Although Pascal was originally proposed as a teaching language, it was 
becoming popular, and there were inexpensive Pascal compilers and interpreters 
widely available for personal computers. Many computer scientists favored Algol or 
Modula-2, or “fi fth generation” languages such as Prolog or Lisp. In fact, a notable 
single neuron simulator, Surf-Hippo was written in Lisp (Borg-Graham  2000 ). 

 Many IBM mainframe computers ran a proprietary language PL/1/, and DEC 
minicomputers such as the PDP8 used FOCAL. Although object-oriented C++ had 
been under development since 1983 as an extension of C, standardization was slow 
to come and the C++ programming language standard was not ratifi ed until 1998. 

 During the development of a neural simulator, it is obviously of great importance 
to “pick a winner” among emerging software standards for programming languages 
and graphical packages. The approach taken by GENESIS was a conservative one, 
using standard C and X libraries, at the cost of having to write much of the “middle- 
level” software such as the SLI and XODUS to connect low-level function calls to 
high-level commands in a scripting language. NEURON has tended to use available 
software packages (HOC, NMODL, InterViews, etc.) as an easy way to gain func-
tionality, whereas GENESIS has tended to develop its own built-in libraries or mod-
ules. Thus, the SLI, XODUS, and the original mailing list management software 
were written “in-house,” based on widely accepted standard low-level Unix and X 
libraries. Each of these approaches has both advantages and disadvantages.  

    Open Source vs. Proprietary Software 

 Many of the HBP-funded database projects elected to use proven, professionally 
developed commercial software, rather than less stable free open-source software. 
However, most of these companies and their software with proprietary data formats 
no longer exist. Today it is much easier to make an argument in favor of using open- 
source software to avoid dependence on a closed platform that may not exist in the 
future. However, it is certainly an advantage to have someone else do the hard work, 
and it is a safe bet that tools such as MATLAB and their data formats will be around 
for a long time. 

 However, the choice of an open-source package also presents a dilemma. Is it 
best to incorporate the needed code into the simulator, or rely on loadable libraries 
that are maintained elsewhere and distributed from an Internet-accessible reposi-
tory? Obviously the latter is the easiest route, if only one can guarantee that the 
package will not become like so many orphaned software projects on Sourceforge.
net. If the package is not large, at least the source code will be available to be incor-
porated and maintained by the simulator developers. 

 The GENESIS experience with the NetCDF package from Unidata is an example 
of a decision that wasn’t entirely optimal. GENESIS has a very fast and effi cient 
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binary fi le format (FMT1) for outputting the state (virtually any variable of interest) 
of the neurons in a large network at specifi ed time intervals. However, it is platform- 
dependent and cannot be reliably used for exchanging fi les between different com-
puters. The NetCDF package provided an easy way to give GENESIS a 
platform-independent output format with many other features. However, it is a very 
large package with a great deal that is not relevant to GENESIS. The NetCDF 
license allowed the incorporation of parts of the code into GENESIS with proper 
attribution, so it was decided to make a GENESIS “netcdfl ib” from parts of NetCDF. 
During the early years of patching GENESIS in order to compile on the many vari-
ants of the Unix operating system, maintaining netcdfl lib became a tiresome task. 
Although the compilation of netcdfl ib is optional in GENESIS 2, it now runs (more 
slowly than the default FMT1) on all the major Unix variants. NetCDF is currently 
still maintained by Unidata, and updated packages are available. In retrospect, life 
would be simpler if netcdfl ib were a library maintained by Unidata, or if we had 
written our own software with a NetCDF-compatible format, or picked another 
widely used and supported format. 

 NEURON relied heavily on open-source software packages that might now be 
considered orphans, but with few ill effects. HOC and MOD (from which NMODL 
was developed) are used nowhere else but in NEURON. The Unix InterViews pack-
age upon which the NEURON GUI is based had its last major release in 1993. As 
long as these are part of NEURON and can be maintained with the rest of the code, 
it does not matter if they are otherwise unsupported. 

 In 2011, there are very powerful and complex graphical libraries available that 
are popular and being extensively developed. Today, no one would think of writing 
a programmable GUI such as XODUS from scratch, using basic X Window System 
function calls. For example, G-3 makes use of the platform-independent libraries 
for wxWidgets and the Python tool Matplotlib. Compiled binary libraries for nearly 
any operating system are maintained and may be updated from Internet repositories. 
Using these is a great advantage, but there is always the gamble of betting on a loser 
that will fall from favor and no longer be maintained.   

    Some Identifi ed Problems with Past Simulators 

 Scripting a simulation with SLI or HOC is diffi cult because they each have an idio-
syncratic syntax that must be learned. They lack the generality and the data struc-
tures available in more general purpose programming languages, and have no 
supported external libraries that can be used to easily gain additional functionality. 
Creating a custom GUI for a simulation or a tutorial with SLI or HOC is even 
harder, because of the lack of built-in tools for designing GUIs. Modelers also 
require that a simulator provide a large variety of tools for visualization, analysis, or 
model construction, in addition to fast and accurate simulation of the model. 

 Increasingly, neural simulations need to cover many scales of modeling, ranging 
from the subcellular level of biochemical kinetics and diffusion modeling, through 
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single cell, network, and system modeling. Specialized simulators exist that are an 
excellent solution at a particular level. For example, MOOSE provides very good 
capabilities for biochemical kinetics modeling, based on the GENESIS 2 kinetics 
library component. MCell (Stiles and Bartol  2001 ) uses Monte Carlo methods to 
model diffusion and stochastic activation of synapses. Due to the lack of interoper-
ability between simulators, it has generally required extending the simulator in 
order to include similar capabilities. 

 As mentioned in the section on parameter search, model tuning, and comparison, 
publication of the results of a simulation in a way that allows the results to be repro-
duced or compared with the results from other models is a nearly impossible task. 
This is true even if the source code for the simulation is made available. This is 
because there is no way to track either the micro-evolution of a model during a 
single published research project or the macro-evolution of a model across longer 
time periods and multiple publications by multiple researchers. There is no guaran-
tee that the model parameters that were used to generate a particular fi gure are the 
same as those described in the paper or used in the provided simulation scripts. In 
the traditional scientifi c process the actual records of day-to-day activity are kept in 
research notebooks or log books. In the case of computational modeling, a model 
may be incrementally modifi ed with an incomplete record kept of all changes. Most 
neural simulators provide facilities for keeping “Notes” fi les, but not a comprehen-
sive system for tracking model evolution using a verifi able digital description of the 
model and the exact conditions for the simulated experiments. 

 The monolithic architecture of simulators that were developed during the last 
century makes it diffi cult to add “plug-in” software components to the simulator 
without making major changes to the core simulator code. For example, GENESIS 
2 has various components such as the cell reader, the hsolve compartmental solver, 
the SLI parser, and XODUS. However these were not implemented in a modular 
fashion and cannot be used as stand-alone software components. 

 By the end of the twentieth century, the limitations of the 1980s software that 
was the basis for GENESIS, NEURON, and other simulators were becoming appar-
ent. Although emerging standards for declarative model descriptions showed prom-
ise for simulator-independent model sharing, the fundamental barrier to simulator 
interoperability and collaborative model development was the monolithic architec-
ture of the simulators. The only way to communicate with GENESIS or NEURON 
was via an exchange of fi les. Not only does this limit the ability of two simulations 
to closely interact in real time, but it forces an “all-or-nothing” approach to the use 
of tools to control the simulation, provide stimuli, or analyze and display the results. 
Although GENESIS has many built-in tools for spike train analysis of the output of 
single cell models, this can easily be done with external tools such as Matlab or 
custom tools written in Python, if spike times are sent to a fi le for post-run analysis. 
Modelers have long used tools such as Matlab or various plotting programs to ana-
lyze the results of simulations. New tools are being developed specifi cally to aid 
neural simulation. However, they presently communicate with simulators indirectly 
by loading simulation scripts and communicating via fi les. 
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 The problem comes if one wants to connect them more directly to a simulation 
during the run, without resorting to communication via data fi les. When calculating 
extracellular potentials or simulated EEG and MEG recordings from a large net-
work model, it is necessary to sum channel currents from many compartments of 
very many cells. Unless the analysis application and the simulator have been 
designed to communicate with each other, the only other alternative is to generate 
enormous data fi les that give meaningful results only when the simulation is over, 
and no feedback while it is running. Although long “production runs” may be per-
formed non-interactively, it is useful during the exploratory phase, and essential for 
educational tutorials, to perform these operations while the simulation is running. 
Thus, GENESIS 2 and NEURON each have a great deal of code that is devoted to 
built-in tools that are not concerned with specifying and simulating a model. Ideally, 
there should be no need to have a morphology fi le converter or spike train analyzer 
encapsulated within a simulator. It would be much better if these tools were imple-
mented as external simulator-independent plug-in modules.  

    The Twenty-First Century: Next Generation 
Neural Simulators 

 By the beginning of the twenty-fi rst century, the basic simulation capabilities of 
GENESIS and NEURON had reached maturity, although there were continuing 
improvements, leading up to the latest releases of GENESIS 2.3 (May 2006) and 
NEURON 7.1 (October 2009). Recent development efforts have shifted to provid-
ing other capabilities for the analysis or construction of models. For NEURON, the 
focus has been on better integrated graphical tools, such as Cell Builder, Channel 
Builder, Kinetic Scheme Builder, and built-in tools, for parameter fi tting and import-
ing cell morphology fi les, as well as model import functions for NeuroML and other 
standard declarative formats. As described below, the approach taken by G-3 has 
been somewhat different. 

 I believe that the twentieth century simulators described above and their architec-
ture have reached the end of their life cycles, and it is time for a new generation of 
modular, interoperable realistic neural simulators. These should be built upon mod-
ern software designs, with care to pick standards, formats, and externally developed 
packages that will be in existence 20 years from now. 

 It may be useful to briefl y describe here some simulators that have been devel-
oped or extended during the present century. Brette et al. ( 2007 ) reviewed eight 
currently available simulators that are capable of modeling networks of spiking neu-
rons. In addition to GENESIS and NEURON, this capability is present to one degree 
or another in NEST (Eppler et al.  2008 ), NCS (Drewes et al.  2009 ), CSIM (  http://
www.lsm.tugraz.at/csim/    ), SPLIT (Hammarlund and Ekeberg  1998 ), Mvaspike 
(Rochel and Martinez  2003 ), and XPPAUT (Ermentrout  2006 ). 
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 NEST specializes in very large networks of neurons having one or a small num-
ber of compartments. It uses parallelism and has its own interpreted scripting lan-
guage with no GUI. NCS, the NeoCortical Simulator, has an inherently parallel 
implementation and is used for large networks of multi-compartmental integrate 
and fi re neurons. 

 CSIM and the Python version PCSIM (Pecevski et al.  2009 ) model large net-
works of point neurons that are typically integrate and fi re, but may also include 
Hodgkin–Huxley channels. Rather than having its own GUI, it is controlled by 
Matlab, and more recently with Python. 

 SPLIT is designed for massively parallel simulations of networks of multi- 
compartmental neurons with Hodgkin–Huxley dynamics. It was recently used in a 
neocortical simulation with eight million neurons and four billion synapses per-
formed on the Blue Gene/3 supercomputer (Djurfeldt et al.  2005 ). The user speci-
fi es the model in a C++ program, rather than using an interpreted simulation 
language. The program is linked to the SPLIT library, compiled, and run. It has a 
minimal GUI and no analysis tools. 

 Mvaspike is based on an event-based modeling and simulation strategy, mainly 
using pulse-coupled integrate-and-fi re point neurons. 

 XPPAUT is in a class by itself. It is not so much a neural simulator, but an analy-
sis tool for understanding the equations that are used in simulations of cells and 
small networks. The equations used are completely specifi able by the user and can 
be analyzed with bifurcation diagrams and similar phase plane representations. 

 Another new simulator, Brian (Goodman and Brette  2008 ) models networks of 
integrate-and-fi re or Hodgkin–Huxley single or few compartment neurons. It is 
written entirely in Python, making it highly portable, easy to learn and use, and suit-
able for rapid prototyping of models. However, this prevents it from being as fast as 
other simulators that make use of compiled C or C++ libraries to perform most of 
the numerical calculations in a simulation. 

 PyNN (Davison et al.  2009 ) and MUSIC (Djurfeldt et al.  2010 ) are not simula-
tors, but provide interfaces for existing simulators. PyNN, discussed below, pro-
vides a common Python-based scripting interface for many simulators. MUSIC is a 
C++ library implementing an API which allows large-scale neuronal network simu-
lators to exchange data during run time. NeuroConstruct (Gleeson et al.  2007 ), 
described previously, is an environment for creating simulations that run under sev-
eral simulators, using NeuroML as a declarative model description language. 

 The GPU-SNN simulator (Richert et al.  2011 ) models large networks of spiking 
Izhikevich    model neurons, having spike-timing-dependent plasticity and short-term 
plasticity. It can run on an “off-the-shelf” Graphical Processing Unit (GPU) such as 
the Nvidia GTX-280 at speeds of up to 26 times faster than a CPU version for a 
simulation of 100,000 neurons with 50 million synaptic connections. It is written in 
C and C++ and has a Python-based user interface similar to PyNN. 

 MOOSE (  http://moose.ncbs.res.in    ) is the Multiscale Object-Oriented Simulation 
Environment for large, detailed simulations including computational neuroscience 
and systems biology. It was developed by Upi Bhalla as a reimplementation of 
GENESIS 2 in a cleaner, more modular manner. Although it retains the GENESIS 
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2 use of objects that pass messages between them, it does so in a more effi cient 
manner. It is completely rewritten in C++ and has a different architecture, with no 
old GENESIS 2 code except for the SLI parser defi nition. The SLI parser allows it 
to maintain a high degree of backwards compatibility with GENESIS 2 scripts, and 
the new Python interface (Ray and Bhalla  2008 ), allows scripting of simulations in 
Python. 

 The development of G-3 has taken a different path from that of the simulators 
described above. Rather than adding new features and capabilities to GENESIS, the 
functionality of its monolithic architecture has been completely reimplemented as a 
collection of independent software components. These, and other independently 
developed components may be used individually or in combination with others to 
perform the functions desired for running a particular simulation. 

 The modular CBI architecture used by G-3 (Cornelis et al.  2012a ) is based on 
plug-ins and has multiple interfaces. This modularization provides a number of 
advantages for simulator development and for interoperability with other simulators 
across scales ranging from subcellular to systems level. 

 The clean separation of modules allows developers and users to choose to con-
tribute to only a single component, instead of being exposed to the complexity of the 
entire simulator. Decomposition of an application into multiple software compo-
nents not only allows reuse and extension of individual modules, facilitating both 
simulator and model development, but individual components can be independently 
updated, enhanced, or replaced when needed. The use of multiple parsers for script-
ing simulations allows G-3 users to maintain backwards compatibility with 
GENESIS 2, while making use of scripts written in Python or other new scripting 
languages. Modules can be run separately on different machines. For example, the 
GUI and modeling environment might be run locally, while the simulation is run 
remotely on more powerful, possibly parallel, machines. 

 Some of the more relevant G-3 components for creating and running a 
simulation are:

•    The Neurospaces Model Container (NMC) contains the biological model 
description and separates it from the details of the implementation.  

•   Multiple solvers perform numerical calculations and allow highly effi cient solv-
ers to be implemented for particular model objects.  

•   The Experiment component provides experimental protocols for applying stim-
uli, or for recording and analyzing the model behavior.  

•   A scheduler (SSP in Perl or SSPy in Python) binds the contents of the NMC with 
needed solvers and experimental protocols, and runs the simulation.  

•   The G-shell (or the new Python shell) provides a console for issuing interactive 
commands.  

•   G-Tube provides a GUI for running G-3 simulations.  
•   Studio allows the visualization of models in the Model Container.  
•   NS-SLI provides backwards compatibility with the GENESIS 2 SLI.  
•   The Exchange component provides model exchange using common standards 

such as NeuroML and NineML.  
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•   The G-3 Documentation System not only provides user and developer documen-
tation on all aspects of G-3, but is the basis for the model publication system.    

 Heccer is the default fast implicit numerical solver for compartmental models. It 
transparently incorporates the hsolve object of GENESIS 2. The Discrete Event 
System (DES) component is a separate solver used for delivering spike events in 
network simulations. The Chemesis-3 solver is a numerical solver optimized for the 
solution of reaction–diffusion equations (Blackwell  2000 ). The use of these sepa-
rate numerical solvers for different types of models allows improved optimization 
over that obtained by the generic solver used by GENESIS 2. It also allows the use 
of multiple simulation engines to perform the numerical calculations of the simula-
tion. In principle, the solvers of simulators such as NEURON and MOOSE could be 
used along with the G-3 solvers to perform parts of a simulation. Keeping the 
declarative model description separate from the simulator-dependent solver facili-
tates the exchange and reuse of models. The use of separate parsers for simulator 
commands allows simulations to be constructed with the G-shell, NS-SLI for 
GENESIS 2 scripts, or SSPy for scripts written in Python. 

 From the standpoint of a modeler constructing a simulation, G-3 preserves the 
GENESIS 2 paradigm of creating simulation objects that exchange messages during 
a simulation. However, unlike the approach taken with MOOSE, G-3 does not inter-
nally use objects with messages. This allows highly effi cient numerical methods to 
be used without resort to “hacks” such as the GENESIS 2 hsolve object. 

 The G-3 model-based publication system (Cornelis et al.  2010 ) addresses the 
limitations of current paper and digital publications, by providing model compari-
son tools, model lineage inspection tools, and model verifi cation tools. This is 
intended to lay the ground work for making models, rather than, as at present, the 
written description of models, the basis for scientifi c publication in neuroscience. 
The Publication System is designed to be platform independent as it adheres to the 
CBI federated software architecture (Cornelis et al.  2012a ). 

    Choice of Python as a Scripting Language 

 The term  scripting language  is often used for a programming language that is used 
for control over applications or as a “glue” that links compiled libraries that are 
written in other languages designed for effi cient numerical computations. Scripting 
languages are usually interpreted, for run-time interaction with the user, and are 
designed to be easily writeable and modifi able by the user. This is in contrast to the 
programming language that is used for the implementation of the core simulator 
functionality. In the past, simulators have used simulator-specifi c scripting lan-
guages, such as SLI or HOC. 

 As early as 1999, Michael Vanier was working on PyGenesis to provide a better 
object-oriented declarative scripting language than the SLI syntax used with 
GENESIS 2. However, the monolithic architecture of GENESIS 2 prevented this 
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from being an easily interfaced plug-in module, and it was never offi cially released. 
Further development of Python interfaces to GENESIS was postponed until recently, 
when it became possible to use them as plug-in components of G-3 (Cornelis et al. 
 2012b ). 

 Python has recently become very popular as a scripting language for neurosimu-
lators because it has a far simpler syntax than other languages such as Perl, with 
very fl exible object-oriented capabilities and powerful built-in data structures. It 
also has a wide variety of well-supported open-source libraries for scientifi c com-
puting and graphical display. For example, NumPy (  http://numpy.scipy.org    ) pro-
vides arrays and fast matrix manipulation tools, and matplotlib (  http://matplotlib.
sourceforge.net    ) can duplicate most of the functionality of Matlab. These modules 
are widely used for neuroscience data acquisition and analysis (Spacek et al.  2009 ). 
Although it may be considered a procedural language, the ability to create purely 
declarative representations of models using Python objects makes it a good choice 
as a scripting language for OO model descriptions. 

 The PyNN project (Davison et al.  2009 ) attempts to provide a common Python- 
based scripting interface for nearly any neural simulator, allowing a mixture of 
Python and native simulator code. Many of the neural simulators described in the 
previous section have developed Python interfaces that aim for some degree of com-
patibility with PyNN, including G-3 (Cornelis et al.  2012b ), NEURON (Hines et al. 
 2009 ), MOOSE (Ray and Bhalla  2008 ), and NEST (Eppler et al.  2008 ).   

    Conclusion: What Have We Learned? 

 In the preceding narrative history of neural simulator development, certain issues 
arose repeatedly. A summary of these may provide some guidance for future simu-
lator development. 

 The advantages of using a well-supported simulator rather than dedicated 
simulation- specifi c code have now been widely recognized. However, the choice of 
a particular simulator usually means a commitment to spending time learning the 
details of using that simulator. That tends to lock the user into that choice and dis-
courage the use of another tool more appropriate for the task. Modern simulator 
development has attempted to avoid this problem with efforts towards simulator 
interoperability and model sharing. New simulator architectures allow the use of 
standard, well-supported external modules, or specialized tools for neural model-
ing, that are implemented independently from the means of running the model sim-
ulation. This allows not only sharing of models, but sharing of research tools. 

 The OO paradigm of constructing models from basic reusable “objects” has now 
become nearly standard in current neural simulator interfaces, whether through a 
scripting language or a GUI. This trend has been encouraged by the development of 
standard declarative representations for models such as NeuroML and NineML, 
which are based on an inherently OO structure. However, there is more to be done 
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in the way of standardization, and of representation of models that lie beyond the 
current capabilities of GENESIS 2 and NEURON. 

 Parameter search is a necessary part of modeling. Some simulators have imple-
mented parameter search algorithms within the simulator. A more modular simula-
tor architecture and the use of standard scripting languages can allow the use of 
more general purpose external simulator-independent search tools. Parameter 
searching is a very appropriate and simple use of parallelism, and simulator archi-
tectures should be designed for easy and transparent division of a simulation or 
many simulation runs over multiple computers or processors. It is also important to 
have the ability to easily add numerical solvers for new hardware devices such as 
powerful GPUs that were developed for display rendering and are now being used 
for high performance scientifi c computing. 

 As extensively discussed in the chapter by Crook et al. ( 2013 ) and earlier in this 
one, reproducibility of simulation results is hampered not only by insuffi cient, 
ambiguous, or inaccurate descriptions of the model in the original publication, but 
by sensitivity to implementation details, and dependencies on the computing envi-
ronment. As with other identifi ed problems with past simulators discussed earlier, 
the key to these problems seems to be a combination of standard declarative model 
descriptions, and modular simulator architectures that permit the use of external 
tools to perform the ancillary tasks of model tracking, publication, comparison, and 
parameter fi tting. 

 The choice of a programming or scripting language and whether to use code 
developed in-house, open-source code, or proprietary commercial software has 
become simpler with the increased availability of well-supported open-source soft-
ware packages. Their use has been made easier by attempts to increase the modular-
ity of new simulator architectures and through the use of standard scripting 
languages such as Python. I have seen languages come and go in popularity. Perl is 
a powerful scripting language with very good string handling capabilities. It has 
long been a favorite scripting language of software developers and system adminis-
trators, but is diffi cult for the novice or occasional “script hacker.” Not long ago, 
Java was everyone’s favorite bet for a programming or scripting language with great 
promise to run on all platforms. Now Python is the favorite and is being challenged 
by other alternatives such as Ruby or C#, which also have OO capabilities, and can 
be used as a “glue” to provide access to compiled libraries within a script. C# (by 
Microsoft) and other new languages such as Go (by Google) are also “Internet 
aware,” with built-in security and run-time execution distribution support, favoring 
modular architectures to prevent vendor lock-in. For these reasons, it is important to 
design a simulator so that its operations can easily be bound to a user’s choice of 
scripting language. For example, the use of separate modules for a declarative 
model description, numerical solver, and command parser can reduce the depen-
dency on a particular scripting language, as well as facilitate the exchange of 
models. 

 Fortunately for the future of computational neuroscience, the “lessons” men-
tioned above, and throughout this chapter, appear to be taken seriously by today’s 
simulator developers. Annual workshops held at the Computational Neuroscience 
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conference (  http://cnsorg.org    ), by the NeuroML developers (  http://neuroml.org    ), 
and the INCF (  http://incf.org    ) bring together participants from all the major neural 
simulator and database projects. Standards and designs are vigorously debated, and 
progress continues.     
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Abstract  Reproducible experiments are the cornerstone of science: only observa-
tions that can be independently confirmed enter the body of scientific knowledge. 
Computational science should excel in reproducibility, as simulations on digital 
computers avoid many of the small variations that are beyond the control of the 
experimental biologist or physicist. However, in reality, computational science has 
its own challenges for reproducibility: many computational scientists find it difficult 
to reproduce results published in the literature, and many authors have met prob-
lems replicating even the figures in their own papers. We present a distinction 
between different levels of replicability and reproducibility of findings in computa-
tional neuroscience. We also demonstrate that simulations of neural models can be 
highly sensitive to numerical details, and conclude that often it is futile to expect 
exact replicability of simulation results across simulator software packages. Thus, 
the computational neuroscience community needs to discuss how to define success-
ful reproduction of simulation studies. Any investigation of failures to reproduce 
published results will benefit significantly from the ability to track the provenance 
of the original results. We present tools and best practices developed over the past 2 
decades that facilitate provenance tracking and model sharing.
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�Introduction

Reproducible experimental results have been the cornerstone of science since the 
time of Galileo (Hund 1996, p. 103): Alice’s exciting finding will not become part 
of established scientific knowledge unless Bob and Charlie can reproduce her results 
independently. A related concept is provenance—the ability to track a given scien-
tific result, such as a figure in an article, back through all analysis steps to the origi-
nal raw data and the experimental protocol used to obtain it.

The quest for reproducibility raises the question of what it means to reproduce a 
result independently. In the experimental sciences, data will contain measurement 
error. Proper evaluation and judgement of such errors requires a sufficient under-
standing of the processes giving rise to fluctuations in measurements, as well as of 
the measurement process itself. An interesting historical example is the controversy 
surrounding Millikan’s oil drop experiments for the measurement of the elementary 
charge, which led Schrödinger to investigate the first-passage time problem in sto-
chastic processes (Schrödinger 1915). As experimental error can never be elimi-
nated entirely, disciplines depending on quantitative reproducibility of results, such 
as analytical chemistry, have developed elaborate schemes for ascertaining the level 
of reproducibility that can be obtained and for detecting deviations (Funk et  al. 
2006). Such schemes include round robin tests in which one out of a group of labo-
ratories prepares a test sample, which all others in the group then analyze. Results 
are compared across the group, and these tests are repeated regularly, with laborato-
ries taking turns at preparing the test sample.

In computational, simulation-based science, the reproduction of previous experi-
ments and the establishment of the provenance of results should be easy, given that 
computers are deterministic and do not suffer from the problems of inter-subject 
and trial-to-trial variability of biological experiments. However, in reality, computa-
tional science has its own challenges for reproducibility.

As early as 1992, Claerbout and Karrenbach addressed the necessity of prove-
nance in computational science and suggested the use of electronic documentation 
tools as part of the scientific workflow. Some of the first computational tools that 
included a complete documentation of provenance were developed in the signal 
processing community (Donoho et al. 2009; Vandewalle et al. 2009) and other fields 
followed (Quirk 2005; Mesirov 2010). Generally, these important efforts are dis-
cussed as examples of reproducible research. However, following Drummond 
(2009), we find it important to distinguish between the reproduction of an experi-
ment by an independent researcher and the replication of an experiment using the 
same code perhaps some months or years later.

Independent reproducibility is the gold standard of science; however, replicabil-
ity is also important and provides the means to determine whether the failure of 
others to reproduce a result is due to errors in the original code. Replication ought 
to be simple—it is certainly easier than independent reproduction—but in practice 
replicability is often not trivial to achieve and is not without controversy. Drummond 
(2009) has argued that the pursuit of replicability detracts from the promotion of 
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independent reproducibility, since the two may be confused and due to the burden 
that ensuring replicability places on the researcher. Indeed, when the journal 
Biostatistics recently introduced a scheme for certifying papers as replicable after a 
review of code and data by the associate editor for reproducibility (Peng 2009), this 
led to a lively debate about the relative importance of replicability of data process-
ing steps in the context of complex scientific projects (Keiding 2010a, b; Breslow 
2010; Cox and Donnelly 2010; DeAngelis and Fontanarosa 2010; Donoho 2010; 
Goodman 2010b; Groves 2010; Peng 2010). Generally, the risk of confusing repli-
cability with reproducibility is an argument for education and discussion, not for 
neglecting replicability, and the extra workload of carefully tracking full prove-
nance information may be alleviated or eliminated by appropriate tools. Discussions 
of reproducibility generally include both of these concepts, and here, we find it 
useful to make further distinctions as follows.

Internal replicability: The original author or someone in their group can re-create the 
results in a publication, essentially by rerunning the simulation software. For com-
plete replicability within a group by someone other than the original author, espe-
cially if simulations are performed months or years later, the author must use proper 
bookkeeping of simulation details using version control and electronic lab journals.

External replicability: A reader is able to re-create the results of a publication using 
the same tools as the original author. As with internal replicability, all implicit 
knowledge about the simulation details must be entered into a permanent record and 
shared by the author. This approach also relies on code sharing, and readers should 
be aware that external replicability may be sensitive to the use of different hardware, 
operating systems, compilers, and libraries.

Cross-replicability: The use of “cross” here refers to simulating the same model 
with different software. This may be achieved by re-implementing a model using a 
different simulation platform or programming language based on the original code, 
or by executing a model described in a simulator-independent format on different 
simulation platforms. Simulator-independent formats can be divided into declara-
tive and procedural approaches. Assuming that all simulators are free of bugs, this 
would expose the dependence of simulation results on simulator details, but leads to 
questions about how to compare results.

Reproducibility: Bob reads Alice’s paper, takes note of all model properties, and 
then implements the model himself using a simulator of his choice. He does not 
download Alice’s scripts. Bob’s implementation thus constitutes an independent 
implementation of the scientific ideas in Alice’s paper based on a textual descrip-
tion. The boundary line between cross-replicability and reproducibility is not always 
clear. In particular, a declarative description of a model is a structured, formalized 
version of what should appear in a publication, so an implementation by Charlie 
based on a declarative format might be considered to be just as independent as that 
by Bob based on reading the article.

In our terminology, the reproducible research approach propagated by Donoho 
(2010) ensures internal replicability and to quite a degree external replicability as 
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well. As de Leeuw (2001) has pointed out, though, Donoho’s specific approach 
depends on the commercial Matlab software together with a number of toolboxes, 
and thus does not aim to ensure cross-replicability and independent reproducibility 
as defined above. So how have approaches for replicability and reproducibility 
evolved in the field of computational neuroscience? As early as 1992, one group of 
simulation software developers realized the need for computational benchmarks as 
a first step toward cross-replicability (Bhalla et  al. 1992); however, these bench-
marks were not broadly adopted by the simulator development community. There 
were also early efforts to encourage simulator-independent model descriptions for 
complex neural models. Building on general-purpose structures proposed by 
Gardner et  al. (2001), the first declarative description tools for models were 
described in 2001 by Goddard et al. Around the same time, the NMODL language 
developed by Michael Hines for describing biophysical mechanisms in the 
NEURON simulator was extended by Hines and Upinder Bhalla to work with 
GENESIS (GMODL; Wilson et al. 1989), making it perhaps the first programmatic 
simulator-independent model description language in computational neuroscience 
(Hines and Carnevale 2000). More recently, the activities of organizations, such as 
the Organization for Computational Neuroscience (http://www.cnsorg.org) and the 
International Neuroinformatics Coordinating Facility (http://www.incf.org), 
focused journals such as Neuroinformatics and Frontiers in Neuroinformatics and 
dedicated workshops (Cannon et al. 2007; Djurfeldt and Lansner 2007) have pro-
vided fora for an ongoing discussion of the methodological issues our field is facing 
in developing an infrastructure for replicability and reproducibility. The first com-
prehensive review of neuronal network simulation software (Brette et al. 2007) pro-
vides an example of the gains of this process.

However, there are still many improvements needed in support of reproducibility. 
Nordlie et al. (2009) painted a rather bleak picture of the quality of research report-
ing in our field. Currently, there are no established best practices for the description 
of models, especially neuronal network models, in scientific publications, and few 
papers provide all necessary information to successfully reproduce the simulation 
results shown. Replicability suffers from the complexity of our code and our com-
puting environments, and the difficulty of capturing every essential piece of infor-
mation about a computational experiment. These difficulties will become even more 
important to address as the ambition of computational neuroscience and the scrutiny 
placed upon science in general grow (Ioannidis 2005; Lehrer 2010).

In what follows, we will discuss further details of replicability and reproducibil-
ity in the context of computational neuroscience. In section “The Limits of 
Reproducibility,” we examine the limits of reproducibility in the computational sci-
ences with examples from computational neuroscience. Section “Practical 
Approaches to Replicability” deals with practical approaches to replicability such 
as code sharing, tracking the details of simulation experiments, and programmatic 
or procedural descriptions of complex neural models that aid in cross-replicability. 
In section “Structured, Declarative Descriptions of Models and Simulations,” we 
introduce a number of efforts to formalize declarative descriptions of models and 
simulations and the software infrastructure to support this. Finally, in section 
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“Improving Research Reporting,” we discuss more general efforts to improve 
research reporting that go beyond software development.

�The Limits of Reproducibility

Independent reproduction of experimental results will necessarily entail deviations 
from the original experiment, as not all conditions can be fully controlled. Whether 
a result is considered to have been reproduced successfully thus requires careful 
scientific judgement, differentiating between core claims and mere detail in the 
original report. However, solving the same equation twice yields precisely the same 
result from a mathematical point of view. Consequently, it might appear that any 
computational study which is described in sufficient detail should be exactly repro-
ducible: by solving the equations in Alice’s paper using suitable software, Bob 
should be able to obtain figures identical to those in the paper. This implies that 
Alice’s results are also perfectly replicable. It is obviously a prerequisite for such 
exact reproducibility that results can be replicated internally, externally, and across 
suitable software applications. In this section, we discuss a number of obstacles to 
external and cross-replicability of computational experiments which indicate that it 
is futile to expect perfect reproducibility of computational results. Rather, computa-
tional scientists need to apply learned judgement to the same degree as experimen-
talists in evaluating successful reproduction.

Faulty computer hardware is the principal—though not the most frequent—
obstacle: digital computers are electronic devices and as such are subject to failure, 
which often may go undetected. For example, memory may be corrupted by radia-
tion effects (Heijmen 2011), and as we are rapidly approaching whole-brain simula-
tions on peta-scale and soon exa-scale computers, component failure will become a 
routine issue. Consider a computer with one million cores. Even if each core has a 
mean time between failure of a million hours (roughly 115 years), one would expect 
on average one core failure per hour of operation. It seems questionable whether all 
such errors will be detected reliably—a certain amount of undetected data corrup-
tion appears unavoidable.

Even if hardware performs flawlessly, computer simulations are not necessarily 
deterministic. In parallel simulations, performance of the individual parallel pro-
cesses will generally depend on other activity on the computer, so that the order in 
which processes reach synchronization points is unpredictable. This type of unpre-
dictability should not affect the results of correct programs, but subtle mistakes may 
introduce nondeterministic errors that are hard to detect. Even if we limit ourselves 
to serial programs running on perfect hardware, a number of pitfalls await those 
trying to reproduce neuronal network modeling results from the literature, which 
fall into the following categories:

	1	 Insufficient, ambiguous, or inaccurate descriptions of the model in the original 
publication.
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	2	 Models that are mathematically well-defined, but numerically sensitive to imple-
mentation details.

	3	 Model specifications that are unambiguous and complete from a neuroscience 
point of view, but underspecified from a computational point of view.

	4	 Dependencies on the computing environment.

First, consider the first and last points. An insufficient model specification in a 
publication can be a major stumbling block when trying to replicate a model. Thus, 
ambiguous model descriptions provide a significant impediment to science that can 
only be avoided if authors, referees, and publishers adhere to strict standards for 
model specification (Nordlie et al. 2009) or rigorous, resource-intensive curation 
efforts (Lloyd et  al. 2008); we will return to this point in section “Improving 
Research Reporting.” Dependencies on the computing environment, such as the ver-
sions of compilers and external libraries used, will be discussed in section “Is Code 
Sharing Enough to Ensure Replicability?” Here, we consider model descriptions 
that are mathematically ambiguous or sensitive to the implementation details before 
discussing the consequences for computational neuroscience in section “Defining 
Successful Reproduction.”

�Ambiguous Model Numerics

The model equation for the subthreshold membrane potential V of a leaky integrate-
and-fire neuron with constant input is a simple, linear first-order ordinary differen-
tial equation (Lapicque 1907)

	

dV

dt

V I

C
E= −

t
+ .

	
(4.1)

Here, membrane potential V (in mV) is defined relative to the resting potential of 
the neuron, τ is the membrane time constant (in ms), C the membrane capacitance 
(in pF), and I(t) the input current to the neuron (in pA). As far as differential equa-
tions go, this equation is about as simple as possible, and solutions are well-defined 
and well-behaved. For the initial condition V(t = 0) = V0, (4.1) has the analytical 
solution
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Abbreviating Vk = V(kh) and a = IEτ/C gives the following iteration rule for time 
step h:
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This updating rule is mathematically exact, and similar rules can be found for 
any system of ordinary linear differential equations (Rotter and Diesmann 1999).

Now consider the following two implementations of (4.3)1:

	 V k V k a V k h[ ] [ ] ( [ ])* exp ( / )+ = - - -1 1m t 	 (4.4)

	 V k V k h a h[ ] [ ]* exp( / ) * exp ( / ).+ = − − −1 1t tm 	 (4.5)

Both implementations are mathematically equivalent, but differ significantly 
numerically, as can be seen by computing the evolution of the membrane potential 
for T = 1 ms using different step sizes, starting from V(t = 0) = 0 mV. We obtain the 
reference solution V* = V(T) directly from (4.2) as a *expm1(T/τ) with the following 
parameter values: IE = 1,000 pA, C = 250 pF, τ = 10 ms, so that a = 40 mV. We then 
compute V(T) using update steps from h = 2−1 ms down to h = 2−14 ms using both 
implementations and compute the difference from the reference solution; using step 
sizes that are powers of 2 avoids any unnecessary round-off error (Morrison et al. 
2007). Results obtained with the update rule provided by (4.5) are several orders of 
magnitude larger than those obtained with the rule in (4.4), as shown in Fig. 4.1. 
Data were obtained with a custom C++ program compiled with the g++ compiler 
version 4.5.2 and default compiler settings on a Apple Mac Book Pro with an Intel 

Fig. 4.1  Error of the membrane potential V(T) for T = 1 ms computed with two different imple-
mentations of (4.3) using step sizes from h = 2–1 to 2–14 ms, corresponding to 2 to 16384 steps. 
Circles show errors for the implementation given in (4.4), squares for the implementation given in 
(4.5); see text for details

1 expm1(x) is a library function computing exp(x)-1 with high precision for small x.
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i5 CPU under Mac OSX 10.6.6. Source code for this and the other examples in this 
chapter is available from http://www.nest-initiative.org.

This result implies that even a model containing only equations as simple as (4.1) 
is not cross-replicable even if the (exact) method of iteration of (4.3) is specified as 
part of the model definition. Precise results depend on which of several mathemati-
cally equivalent numerical implementations is used. Clearly, different simulators 
should be allowed to implement exact solvers for (4.1) in different ways, and even if 
the solver of (4.3) were prescribed by the model, its implementation should not be. 
Indeed, when using modern simulators based on automatic code generation (Goodman 
2010a), the computational scientist may not have any control over the precise imple-
mentation. Thus, even the simplest models of neural dynamics are numerically 
ambiguous, and it would be futile to expect exact model replicability across different 
simulation software even if detailed model specifications are provided.

One may raise the question, though, whether the errors illustrated in Fig. 4.1 are 
so minuscule that they may safely be ignored. Generally, the answer is no: many 
neuronal network models are exquisitely sensitive to extremely small errors, as 
illustrated in Fig. 4.2. This figure shows results from two simulations of 1,500 ms of 
activity in a balanced network of 1,250 neurons (80 % excitatory) based on Brunel 

Fig. 4.2  Raster plots of spike trains of 50 excitatory neurons in a balanced network of 1,250 neu-
rons exhibiting self-sustained irregular activity after Poisson stimulation during the first 50 ms and 
no external input thereafter. The network is based on Brunel (2000), but with significantly stronger 
synapses (Gewaltig and Koerner 2008). The first simulation (black raster) runs for 1,500 ms. The 
simulation is then repeated with identical initial conditions (gray raster), but after 200 ms, the 
membrane potential of a single neuron (black circle) is increased by 10–13  mV. From roughly 
400 ms onwards, spike trains in both simulations differ significantly. Simulations were performed 
with NEST 2.0.0-RC2 using the iaf_psc_alpha_canon model neuron with precise spike timing 
(Morrison et al. 2007)
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(2000), but with significantly stronger synapses (Gewaltig and Koerner 2008); see 
Fig. 4.4 for a summary overview of the model. In the second simulation run, the 
membrane potential of a single neuron is changed by 10−13 mV after 200 ms. Soon 
after, the spike activity in the two simulation runs has diverged entirely. In practice, 
this means that a scientist trying to replicate a model may obtain very different spike 
train results than those in the original publication. This holds both for cross-
replication using different simulator software and for external replication in a differ-
ent computational environment; the latter may even affect internal replication, cf. 
section “Is Code Sharing Enough to Ensure Replicability?” Gleeson et al. (2010) 
recently provided an example of the difficulties of cross-replication. They defined a 
network of 56 multicompartment neurons with 8,100 synapses using the descriptive 
NeuroML language and then simulated the model using the NEURON (Hines 1989; 
Hines and Carnevale 1997; Carnevale and Hines 2006), GENESIS (Bower and 
Beeman 1997), and MOOSE (http://moose.ncbs.res.in) software packages. These 
simulators generated different numbers of spikes in spite of the use of a very small 
time step (0.001 ms). Gleeson et al. concluded that “[t]hese results show that the 
way models are implemented on different simulators can have a significant impact 
on their behavior.”

�Computationally Underspecified Models

In the previous section we saw that even if the mathematics of a model are fully 
specified, numerical differences between implementations can lead to deviating 
model behavior. We shall now turn to models which may appear to be fully speci-
fied, but in fact leave important aspects to the simulation software. We refer to these 
models as computationally underspecified, as their specifications can be considered 
complete from a neuroscience point of view. We shall consider two cases in particu-
lar, spike timing and connection generation.

Most publications based on integrate-and-fire neurons contain a statement such 
as the following: “A spike is recorded when the membrane potential crosses the 
threshold, then the potential is reset to the reset potential.” In many publications, 
though, it is not further specified at precisely which time the spike is recorded and 
the potential reset. As many network simulations are simulated on a fixed time grid, 
one can only assume that both events happen at the end of the time step during 
which the membrane potential crossed the threshold. Hansel et al. (1998) were the 
first to point out that tying membrane potential resets to a grid introduces a spurious 
regularity into network simulations that may, for example, lead to synchronization 
of firing activity. This observation spurred a quest for efficient methods for simulat-
ing networks with precisely timed spikes and resets (Hansel et al. 1998; Shelley and 
Tao 2001; Brette 2006, 2007; Morrison et  al. 2007; Hanuschkin et  al. 2010; 
D’Haene 2010).

Let us now consider how connections within neuronal network models are speci-
fied. Nordlie et al. (2009) demonstrated that connectivity information is often poorly 
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defined in the literature, but even seemingly complete connectivity descriptions, 
such as given by Brunel (2000), will not ensure replicability across simulators. 
Specifically, Brunel states that each excitatory neuron receives input from 10 % of 
the excitatory neurons, chosen at random from a uniform distribution. Although 
different simulators may establish the correct number of connections using uni-
formly chosen sources, generally no two simulators will create the same network 
since the process of randomly drawing sources is implemented differently across 
simulators. Even if one prescribes which random number generators and seed 
values to use, little is gained unless the simulators use the random numbers in 
identical ways.

The only way to ensure that different software will create identical networks is to 
specify how the simulator iterates across nodes while creating connections. For 
example, the PyNN package (Davison et al. 2009) ensures that identical networks 
are generated in different simulators by iterating across nodes within PyNN and issu-
ing explicit connection commands to the simulators, which will in general be slower 
than allowing the simulators to use their own internal routines. One might argue that 
such detail is beyond the scope of models created to explain brain function—after 
all, there is no biological counterpart to the arbitrary neuron enumeration schemes 
found in simulators, which naturally leads to a discussion of how one should define 
successful reproduction of modeling results.

�Defining Successful Reproduction

Using proper documentation tools (see section “Practical Approaches to 
Replicability”), we can in principle achieve internal and external replicability in the 
short and long term. But this guarantees no more than that the same script on the 
same simulator generates the same results. As we have seen, in many cases we can-
not take a simulation from one simulator to another and hope to obtain identical 
spike trains or voltage traces. Thus, there is no easy way to test the correctness of 
our simulations.

For many physical systems, a scientist can rely on a conservation law to provide 
checks and balances in simulation studies. As an example, Fig. 4.3 shows the move-
ments of three point masses according to Newton’s gravitational law where energy 
should be conserved in the system. Integrating the equations of motion using a for-
ward Euler method yields incorrect results; when simulating with forward Euler, the 
total energy jumps to a much higher level when two planets pass close by each 
other. Fortunately, it is straightforward to compute the energy of the three-body 
system at any time, and a simulation using the LSODA algorithm (Petzold 1983) 
shows only a brief glitch in energy, demonstrating a better choice of numerical 
method. In the same manner, Ferrenberg et al. (1992) discovered important weak-
nesses in random number generators that were thought to be reliable when they 
observed implausible values for the specific heat of crystals in simulation experi-
ments. The specific heat, a macroscopic quantity, was independently known from 
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thermodynamical theory, thus providing a method for testing the simulations. 
Unfortunately, there are no known macroscopic laws governing neuronal dynamics 
(e.g., for the number of spikes in a network, for the resonance frequencies).

Twenty years ago Grebogi et al. (1990) posed a question for simulations of cha-
otic systems: “For a physical system which exhibits chaos, in what sense does a 
numerical study reflect the true dynamics of the actual system?” An interesting 
point in this respect is that the model which is based most closely on the physical 
system may not yield the best solution. Early models of atmospheric circulations 
were beset with numerical instabilities, severely limiting the time horizon of simu-
lations. This changed only when Arakawa introduced some nonphysical aspects in 
atmospheric models which ensured long-term stability and produced results in 
keeping with meteorological observations (Küppers and Lenhard 2005). Similarly, 
the computational neuroscience community should embark on a careful discussion 
of criteria for evaluating the results of neuronal network simulations. Perhaps the 

Fig. 4.3  Numerical solution of the Pythagorean planar three-body problem (Gruntz and Waldvogel 
2004): Three point masses of 3 kg (light gray), 4 kg (dark gray), and 5 kg (black) are placed at rest 
at the locations marked by circles and move under the influence of their mutual gravitational attrac-
tion with gravitational constant G = 1 m3 kg−1 s−2. Top: Solid lines show trajectories for the three 
bodies up to T = 5 s obtained with the LSODA algorithm (Petzold 1983) provided by the SciPy 
Python package (Jones et al. 2001), using a step size of 0.005 s; these agree with the trajectories 
depicted in Gruntz and Waldvogel (2004). Dashed lines show trajectories obtained using a custom 
forward Euler algorithm using the same step size. The trajectories coincide initially but diverge 
entirely as the black and dark gray planets pass each other closely. Bottom: Total energy for the 
solutions obtained using LSODA (solid) and forward Euler (dashed). While total energy remains 
constant in the LSODA solution except for short glitches around near encounters, the forward 
Euler solution “creates” a large amount of energy at the first close encounter, when trajectories 
begin to diverge
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same criteria for evaluating whether a model network provides a good model of 
neural activity should be used to compare the results of two different neuronal net-
work simulations. Regardless, computational scientists must be able to distinguish 
between numerical or programming errors and differences in simulator 
implementations.

�Practical Approaches to Replicability

As noted in the “Introduction,” there are some intermediate steps between pure 
internal replication of a result (the original author rerunning the original code) and 
fully independent reproduction, namely external replication (someone else rerun-
ning the original code) and cross-replication (running cross-platform code on a dif-
ferent simulation platform or re-implementing a model with knowledge of the 
original code). Both of these intermediate steps rely on sharing code, the simplest 
form of model sharing (Morse 2007). Code sharing allows other researchers to 
rerun simulations and easily extend models, facilitating a modular, incremental 
approach to computational science.

�Approaches to Code Sharing

There are a number of possible methods for sharing code: by e-mail, on request; as 
supplementary material on a publisher’s web-site; on a personal web-site; on a pub-
lic source-code repository such as SourceForge (http://sourceforge.net), GitHub 
(https://github.com), BitBucket (https://bitbucket.org), or Launchpad (https://
launchpad.net); or in a curated database such as ModelDB (Peterson et al. 1996; 
Davison et al. 2002; Migliore et al. 2003; Hines et al. 2004, http://senselab.med.
yale.edu/modeldb), the Visiome platform (Usui 2003, http://visiome.neuroinf.jp), 
the BioModels database (Le Novere et al. 2006, http://www.biomodels.net), or the 
CellML Model Repository (http://models.cellml.org).

Sharing on request is the simplest option for a model author at the time of publi-
cation, but does not provide a public reference to which any extensions or derived 
models can be compared, and has the risk that contacting an author may not be 
straightforward if his/her e-mail address changes, he/she leaves science, etc. This 
option can also lead to future problems for the author, if the code cannot be found 
when requested, or “suddenly” produces different results.

Many journals offer the possibility of making model code available as supple-
mentary material attached to a journal article, which makes it easy to find the model 
associated with a particular paper. The main disadvantages of this option are (1) 
lack of standardization in the format of the code archive or the associated metadata; 
(2) difficulty in updating the code archive and lack of versioning information if bugs 

S.M. Crook et al.

http://sourceforge.net/
https://github.com/
https://bitbucket.org/
https://launchpad.net/
https://launchpad.net/
http://senselab.med.yale.edu/modeldb
http://senselab.med.yale.edu/modeldb
http://visiome.neuroinf.jp/
http://www.biomodels.net/
http://models.cellml.org/


85

are found, improvements are made, or contact details are changed; and (3) quality 
control—article referees may check that the code runs and is correct, but this is not 
universal. Also, not all journals offer the option of supplementary material; and 
some are moving away from offering it (Maunsell 2010).

A personal or institutional web-site allows the authors to more easily make 
updates to the code and to maintain a list of versions. The same lack of standardiza-
tion of archive formats and metadata as for publisher sites exists. The major disad-
vantage is discoverability: it may not always be easy to find the author’s web-site in 
the first place, for example, in case of a change of affiliation when hosting on an 
institutional site, expiration of domain name registrations for personal sites, or 
internal site reorganizations that break links. A further disadvantage is even less 
quality control than for supplementary material. An attempt to address the discover-
ability and metadata standardization problems was made by Cannon et al. (2002), 
who developed an infrastructure for distributed databases of models and data in 
which each group maintains its own local database and a central catalogue server 
federates them into a single virtual resource. This idea did not take off at the time, 
but is similar to the approach now being taken by the Neuroscience Information 
Framework (Gardner et al. 2008; Marenco et al. 2010).

Public general-purpose source-code repositories have many nice features for 
code sharing: versioning using mainstream version control tools, standard archive 
formats for downloading, some standardization of metadata (e.g., authors, version, 
programming language), issue tracking, wikis for providing documentation, and the 
stability of URLs. The disadvantages are possible problems with discoverability 
(SourceForge, for example, hosts over 260,000 projects. Finding which if any of 
these is a neuroscience model could be challenging), lack of standardization of 
neuroscience-specific metadata (which cell types, brain regions, etc.), and lack of 
external quality control.

Curated model repositories, in which a curator verifies that the code reproduces 
one or more figures from the published article, and which often have standardized 
metadata which make it easier to find models of a certain type (e.g., models of corti-
cal pyramidal cells), address the issues of quality control, discoverability, and stan-
dardization (Lloyd et al. 2008). They perhaps lack some of the features available 
with public general-purpose code repositories, such as easy version tracking, issue 
tracking, and documentation editing, although the CellML Model Repository has 
fully integrated the Mercurial version control system (http://mercurial.selenic.com) 
into its site through the concept of a workspace for each model, and ModelDB has 
begun experimenting with integration of Mercurial.

Currently, the best solution for an author who wishes to share the code for their 
published model is probably to maintain the code in a public general-purpose repos-
itory such as GitHub or BitBucket (for the very latest version of the model and to 
maintain a record of previous versions) and also to have an entry for the model in a 
curated database such as ModelDB (for the latest version to have been tested by the 
curators, together with neuroscience-specific metadata). This recommendation may 
change as curated repositories become more feature-rich over time.
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When sharing code, intellectual property issues should be considered. Presently, 
most researchers in computational neuroscience do not provide an explicit license 
when sharing their code, perhaps assuming that they are placing it in the public 
domain or that general scientific principles of attribution will apply when others 
reuse their code. For much more information on legal issues related to reproducible 
research see Stodden (2009a, b).

�Steps from Replicability to Reproducibility

One approach to cross-replicability is the use of simulator-independent formats for 
describing models. These may be divided into declarative and programmatic—
although here again the distinction is not always clear cut, since programming lan-
guages can be used in a declarative way, and not all declarative descriptions are 
really simulator-independent. Declarative model and simulation experiment specifi-
cation is discussed in the next section. Here we consider programmatic simulator-
independent formats.

A simulator-independent/simulator-agnostic programming interface allows the 
code for a simulation to be written once and then run on different simulator engines. 
Unlike declarative specifications, such a description is immediately executable 
without an intermediate translation step, which gives a more direct link between 
description and results. The use of a programming language also provides the full 
power of such a language, with loops, conditionals, subroutines, and other program-
ming constructs. The great flexibility and extensibility this gives can be a strong 
advantage, especially in an exploratory phase of model building. It may also be a 
disadvantage if misused, leading to unnecessary complexity, bugs, and difficulty in 
understanding the essential components of the model, which are less common with 
declarative specifications.

In neuroscience, we are aware of only one such simulator-independent interface, 
PyNN (Davison et al. 2009), which provides an API in the Python programming 
language, and supports computational studies using the software simulators 
NEURON (Hines 1989; Hines and Carnevale 1997; Carnevale and Hines 2006), 
NEST (Gewaltig and Diesmann 2007; Eppler et al. 2008), PCSIM (Pecevski et al. 
2009), and Brian (Goodman and Brette 2008), as well as a number of neuromorphic 
hardware systems (Brüderle et al. 2009; Galluppi et al. 2010). This is not a recent 
idea: as mentioned in the “Introduction,” at one time the NMODL language devel-
oped by Michael Hines for describing biophysical mechanisms in the NEURON 
simulator was extended by Hines and Upinder Bhalla to work with GENESIS 
(GMODL; Wilson et al. 1989), making it perhaps the first simulator-independent 
description in computational neuroscience (Hines and Carnevale 2000). To the best 
of our knowledge, however, GMODL no longer exists and it is certainly not com-
patible with the most recent evolutions of NMODL.
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�Is Code Sharing Enough to Ensure Replicability?

Sharing code is not a panacea for ensuring replicability. It is often the case that a 
given result from a published paper cannot be re-created with code that has been 
made available. The reasons for this may include: differences in the version of the 
simulator, the compiler, or of shared libraries that are used by either the simulator or 
the code; differences in the computing platform (e.g., 32-bit vs. 64-bit systems, 
changes in the operating system); or simply poor record-keeping on the part of the 
researcher. It is our experience that often the set of parameters used to obtain a par-
ticular figure is different from that stated in the published article, sometimes due to 
typographical errors. Finally, for older publications, the model may have been run 
originally on a platform which is no longer available.

A more systematic approach to record-keeping is essential for improving the 
replicability of simulation studies. An important first step is the use of version con-
trol systems so that handling the problem of tracking which version of a model and 
which parameters are used to produce a particular result or figure is as simple as 
making a note of the version number. Making the version number part of a filename 
or embedded comments is even better.

The problem of changing versions of simulators and their dependencies, and of 
a changing computing environment, may be addressed by, first, making note of the 
software version(s) used to produce a particular result (including compiler versions 
and options and library versions, when the software has been compiled locally). It 
may be possible to automate this process to a certain extent (see below). A second 
step may be to capture a snapshot of the computing environment, for example, using 
virtual machines. For models that were originally simulated on now-obsolete hard-
ware, software emulators (see, for example, http://www.pdp11.org) are a possible 
solution. Another is for the original authors or curators to port the code to a newer 
system or to a declarative description when the original system nears the end of its 
life.

A further step would be to automate the record-keeping process as much as pos-
sible, using, for example, an electronic lab notebook to automatically record the 
version of all software components and dependencies, and automatically check that 
all code changes have indeed been committed to a version control system prior to 
running a simulation. One of the authors (APD) has recently initiated an open-
source project to develop such an automated lab notebook for computational experi-
ments. Sumatra (http://neuralensemble.org/sumatra) consists of a core library 
implemented in Python, together with a command-line interface and a web-interface 
that builds on the library; a desktop graphical interface is planned. Each of these 
interfaces enables (1) launching simulations with automated recording of prove-
nance information (versions, parameters, dependencies, input data files, and output 
files) and (2) managing a simulation project (browsing, viewing, annotating, and 
deleting simulations). The command-line and web-interface are independent of a 
particular simulator, although some information (e.g., model code dependencies) 
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can only be tracked if a plug-in is written for the simulation language of interest; 
plug-ins for NEURON, GENESIS, and Python are currently available.

A number of tools exist for enabling reproducible data analysis and modeling 
workflows in a visual environment, for example, Kepler (Ludäscher et al. 2006), 
Taverna (Oinn et al. 2006), and VisTrails (Silva et al. 2007). VisTrails is of particu-
lar interest since it focuses on tracking changes to workflows over time in a way that 
is particularly well suited to the often exploratory process of neuronal modeling. 
The main disadvantage of using such a workflow framework is the extra develop-
ment burden of wrapping simulation software to fit within the framework.

�Structured, Declarative Descriptions of Models  
and Simulations

As described above, the intermediate steps between replicability and reproducibility 
for computational models include the expression of the model in a simulator-
independent format that can be used on a different computational platform from the 
original model. One approach is to use a declarative description of the model that is 
simulator-independent. Software and database developers in many fields, including 
neuroscience, have enthusiastically adopted EXtensible Markup Language (XML) 
technology (Bray et al. 1998) as an ideal representation for complex structures such 
as models and data, due to its flexibility and its relation to the HTML standard for 
web pages. Like HTML, XML is composed of text and tags that explicitly describe 
the structure and semantics of the content of the document. Unlike HTML, develop-
ers are free to define the tags and develop a specific XML-based markup language 
that is appropriate for their application. A major advantage of XML is that it pro-
vides a machine-readable language that is independent of any particular program-
ming language or software encoding, which is ideal for a structured, declarative 
description that can provide a standard for the entire community.

A representation of a model in a specific markup language is essentially a text 
document that consists of XML descriptions of the components of the model. 
Usually, the structure of a valid XML document is defined using a number of XML 
Schema Definition (XSD) files. Using these, standard XML handling libraries can 
be used to check the validity of an XML document against the language elements. 
Once an XML file is known to be valid, the contents of the file can be transformed 
into other formats in a number of different ways. For example, an application can 
read the XML natively using one of the commonly used parsing frameworks such 
as SAX (Simple API for XML, http://sax.sourceforge.net) or DOM (Document 
Object Model, http://en.wikipedia.org/wiki/Document_Object_Model). An alterna-
tive approach is to transform the XML description into another text format that can 
be natively read by an application, which can be done using Extensible Stylesheet 
Language (XSL) files. For more details regarding the use of XML technology for 
declarative model descriptions, see Crook and Howell (2007).
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A number of ongoing projects focus on the development of these self-documenting 
markup languages that are extensible and can form the basis for specific implemen-
tations covering a wide range of modeling scales in neuroscience. The Systems 
Biology Markup Language, SBML (Hucka et al. 2003), and CellML (Hedley et al. 
2000; Lloyd et al. 2004) are two popular languages for describing systems of inter-
acting biomolecules that comprise models often used in systems biology, and both 
languages can be used for describing more generic dynamical models, including 
neural models. NeuroML (Goddard et al. 2001; Crook et al. 2007; Gleeson et al. 
2010) differs from these languages in that it is a domain-specific model description 
language, and neuroscience concepts such as cells, ion channels, and synaptic con-
nections are an integral part of the language. The International Neuroinformatics 
Coordinating Facility aims to facilitate the development of markup language stan-
dards for model descriptions in neuroscience, and is providing support for the devel-
opment of NineML (Network Interchange format for NEuroscience, http://nineml.
org), which focuses on descriptions of spiking networks. Additionally, the 
Simulation Experiment Description Markup Language (SED-ML) (Köhn and Le 
Novère 2008) is a language for encoding the details of simulation experiments, 
which follows the requirements defined in the MIASE (Minimal Information about 
Simulation Experiments) guidelines (http://biomodels.net/miase). These markup 
languages are complementary and, taken together, they cover the scales for the 
majority of neuroscience models. The use of namespaces allows for unambiguous 
mixing of several XML languages; thus, it is possible to use multiple languages for 
describing different modules of a multiscale model.

Here we provide more details about these languages and their contexts for 
declarative descriptions of models and simulations. We also provide an introduction 
to how these markup languages can provide an infrastructure for model sharing, tool 
development and interoperability, and reproducibility.

�SBML and CellML

The main focus of SBML is the encoding of models consisting of biochemical enti-
ties, or species, and the reactions among these species that form biochemical net-
works. In particular, models described in SBML are decomposed into their explicitly 
labeled constituent elements, where the SBML document resembles a verbose ren-
dition of chemical reaction equations. The representation deliberately avoids pro-
viding a set of differential equations or other specific mathematical frameworks for 
the model, which makes it easier for different software tools to interpret the model 
and translate the SBML document into the internal representation used by that tool.

In contrast, CellML is built around an approach of constructing systems of equa-
tions by linking together the variables in those equations. This equation-based 
approach is augmented by features for declaring biochemical reactions explicitly, as 
well as grouping components into modules. The component-based architecture 
facilitates the reuse of models, parts of models, and their mathematical descriptions. 
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Note that SBML provides constructs that are more similar to the internal data 
objects used in many software packages for simulating and analyzing biochemical 
networks, but SBML and CellML have much in common and represent different 
approaches for solving the same general problems. Although they were initially 
developed independently, the developers of the two languages are engaged in 
exchanges of ideas and are seeking ways of making the languages more interoperable 
(Finney et al. 2006).

Both of these model description efforts are associated with model repositories 
that allow authors to share simulator-independent model descriptions. Currently, the 
BioModels database (Le Novere et  al. 2006, http://www.biomodels.net) contains 
several hundred curated models, and even more non-curated models, that are avail-
able as SBML documents as well as in other formats. The CellML Model Repository 
(Lloyd et al. 2008, http://models.cellml.org) also contains hundreds of models that 
are available as CellML documents. In addition, both efforts have associated simu-
lation tools and modeling environments, tools that validate XML documents for 
models against the language specifications, and translation utilities that are described 
in detail on their web-sites.

�NeuroML

The declarative approach of the NeuroML standards project focuses on the key 
objects that need to be exchanged among existing applications with some anticipa-
tion of the future needs of the community. These objects include descriptions of 
neuronal morphologies, voltage-gated ion channels, synaptic mechanisms, and net-
work structure. The descriptions are arranged into levels that are related to different 
biological scales, with higher levels adding extra concepts. This modular, object-
oriented structure makes it easier to add additional concepts and reuse parts of mod-
els. As models of single neurons are at the core of most of the systems being 
described, neuroanatomical information about the structure of individual cells 
forms the core of Level 1, which also includes the specification for metadata. The 
focus of Level 2 is the electrical properties of these neurons which allows for 
descriptions of cell models with realistic channel and synaptic mechanisms distrib-
uted on their membranes. Level 3 describes networks of these cells in three dimen-
sions including cell locations and synaptic connectivity. Networks can be described 
with an explicit list of instances of cell positions and connections, or with an algo-
rithmic template for describing how the instances should be generated.

While there is overlap in the types of models that NeuroML and SBML/CellML 
can describe, such as a single compartment conductance-based model, NeuroML 
provides a concise format for neuronal model elements that can be readily under-
stood by software applications that use the same concepts. NeuroML version 2, 
which is under development, will have greater interaction with SBML and CellML, 
with SBML being an initial focus of the work. This will allow, for example, com-
plex signaling pathways to be expressed in one of these formats with the rest of the 
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cell and network model specified in NeuroML. Since NeuroML is completely com-
patible with the structure of the user layer of NineML (see below), the goal is to be 
able to represent a multiscale neuroscience model that includes processes from the 
molecular to the network levels with a combination of SBML, NeuroML, and 
NineML.

The NeuroML project (http://neuroml.org) provides a validator for NeuroML 
documents. The project also provides XSL files for mapping NeuroML documents 
to a HTML format that provides detailed user-friendly documentation of the model 
details and for mapping NeuroML documents to a number of simulator scripting 
formats, including NEURON (Hines 1989; Hines and Carnevale 1997; Carnevale 
and Hines 2006), GENESIS (Bower and Beeman 1997), PSICS (http://www.psics.
org), and additional simulators through PyNN (Davison et al. 2009). This approach 
has the advantage that in the short term, applications need not be extended to 
natively support NeuroML, but can still have access to NeuroML models.

�NineML

With an increasing number of studies related to large-scale neuronal network mod-
eling, there is a need for a common standardized description language for spiking 
network models. The Network Interchange for Neuroscience Modeling Language 
(NineML) is designed to describe large networks of spiking neurons using a layered 
approach. The abstraction layer provides the core concepts, mathematics, and syn-
tax for explicitly describing model variables and state update rules, and the user 
layer provides a syntax to specify the instantiation and parameterization of the net-
work model in biological terms. In particular, the abstraction layer is built around a 
block diagram notation for continuous and discrete variables, their evolution accord-
ing to a set of rules such as a system of ordinary differential equations, and the 
conditions that induce a regime change, such as a transition from subthreshold 
mode to spiking and refractory modes. In addition, the abstraction layer provides 
the notation for describing a variety of topographical arrangements of neurons and 
populations of neurons (Raikov and The INCF Multiscale Modeling Taskforce 
2010). In contrast, the user layer provides the syntax for specifying the model and 
the parameters for instantiating the network, which includes descriptions of indi-
vidual elements such as cells, synapses, and synaptic inputs, as well as the con-
structs for describing the grouping of these entities into networks (Gorchetchnikov 
and The INCF Multiscale Modeling Taskforce 2010). Like NeuroML, the user layer 
of NineML defines the syntax for specifying a large range of connectivity patterns. 
One goal of NineML is to be self-consistent and flexible, allowing addition of new 
models and mathematical descriptions without modification of the previous struc-
ture and organization of the language. To achieve this, the language is being itera-
tively designed using several representative models with various levels of complexity 
as test cases (Raikov and The INCF Multiscale Modeling Taskforce 2010).
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�SED-ML

A simulation experiment description using SED-ML (Köhn and Le Novère 2008) is 
independent of the model encoding that is used in the computational experiment; 
the model itself is only referenced using an unambiguous identifier. Then SED-ML 
is used to describe the algorithm used for the execution of the simulation and the 
simulation settings such as step size and duration. SED-ML also can be used to 
describe changes to the model, such as changes to the value of an observable or 
general changes to any XML element of the model representation. The simulation 
result sometimes does not correspond to the desired output of the simulation. For 
this reason, SED-ML also includes descriptions of postsimulation processing that 
should be applied to the simulation result before output such as normalization, 
mean-value calculations, or any other new expression that can be specified using 
MathML (Miner 2005). SED-ML further allows for descriptions of the form of the 
output such as a 2D-plot, 3D-plot, or data table. So far, SED-ML has been used in 
conjunction with several different model description languages including SBML, 
CellML, and NeuroML, and the BioModels database supports the sharing of simu-
lation descriptions in SED-ML.

�Other Tools Based on Declarative Descriptions

neuroConstruct is an example of a successful software application that uses declara-
tive descriptions to its advantage (Gleeson et al. 2007). This software facilitates the 
creation, visualization, and analysis of networks of multicompartmental neurons in 
3D space, where a graphical user interface allows model generation and modifica-
tion without programming. Models within neuroConstruct are based on the 
simulator-independent NeuroML standards, allowing automatic generation of code 
for multiple simulators. This has facilitated the testing of neuroConstruct and the 
verification of its simulator independence, through a process where published mod-
els were re-implemented using neuroConstruct and run on multiple simulators as 
described in section “Ambiguous Model Numerics” (Gleeson et al. 2010).

The ConnPlotter package (Nordlie and Plesser 2010) allows modelers to visual-
ize connectivity patterns in large networks in a compact fashion. It thus aids in com-
municating model structures, but is also a useful debugging tool. Unfortunately, it is 
at present tightly bound to the NEST Topology Library (Plesser and Austvoll 2009).

�Improving Research Reporting

The past 2 decades have brought a significant growth in the number of specialized 
journals and conferences, sustaining an ever growing volume of scientific commu-
nication. Search engines such as Google Scholar (http://scholar.google.com) and 

S.M. Crook et al.

http://scholar.google.com/


93

Thomson Reuters Web of Knowledge (http://wokinfo.com) have revolutionized lit-
erature search, while the internet has accelerated the access to even arcane publica-
tions from weeks to seconds. Electronic publication permits authors to complement 
terse papers with comprehensive supplementary material, and some journals even 
encourage authors to post video clips in which they walk their audience through the 
key points of the paper.

But have these developments improved the communication of scientific ideas 
between researchers? Recently, Nordlie et  al. (2009) surveyed neuronal network 
model descriptions in the literature and concluded that current practice in this area 
is diverse and inadequate. Many computational neuroscientists have experienced 
difficulties in reproducing results from the literature due to insufficient model 
descriptions. Donoho et  al. (2009) propose as a cure that all scientists in a field 
should use the same software, where the software is carefully crafted to cover the 
complete modeling process from simulation to publication figure. While this 
approach successfully addresses software quality and replicability issues, it falls 
short of contributing to the independent reproduction of results, which by definition 
requires re-implementation of a model based on the underlying concepts, preferably 
using a different simulator.

To facilitate independent reproduction of neural modeling studies, a systematic 
approach is needed for reporting models, akin to the ARRIVE Guidelines for 
Reporting Animal Research (Kilkenny et al. 2010). Such guidelines can serve as 
checklists for authors as well as for referees during manuscript review. For neuronal 
network models, Nordlie et  al. (2009) have proposed a good model description 
practice, recommending that publications on computational modeling studies 
should provide:

•	 Hypothesis: a concrete description of the question or problem that the model 
addresses.

•	 Model derivation: a presentation of experimental data that support the hypothe-
sis, model, or both.

•	 Model description: a description of the model, its inputs (stimuli) and its outputs 
(measured quantities), and all free parameters.

•	 Implementation: a concise description of the methods used to implement and 
simulate the model (e.g., details of spike threshold detection, assignment of spike 
times, time resolution), as well as a description of all third party tools used, such 
as simulation software or mathematical packages.

•	 Model analysis: a description of all analytical and numerical experiments per-
formed on the model, and the results obtained.

•	 Model justification: a presentation of all empirical or theoretical results from the 
literature that support the results obtained from the model and that were not used 
to derive the model.

Nordlie et al. also provide a checklist for model descriptions, requiring informa-
tion on the following aspects of a model: (1) model composition, (2) coordinate 
systems and topology, (3) connectivity, (4) neurons, synapses, and channels, (5) 
model input, output, and free parameters, (6) model validation, and (7) model 
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implementation. They further propose a concise tabular format for summarizing 
network models in publications; Fig. 4.4 provides an example. These guidelines and 
tables present information about a model that referees can check for completeness 
and consistency, and also allow referees to judge whether the employed simulation 

Fig. 4.4  Concise tabular presentation of the network model introduced in section “Ambiguous 
Model Numerics” with spike trains shown in Fig. 4.2, using the template proposed by Nordlie et al. 
(2009)
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methods appear adequate for the model, as well as the plausibility of the results 
obtained.

Publication standards such as those discussed in Nordlie et al. ensure that all pos-
sible, relevant model details are provided. However, it is also important to note what 
such guidelines and tables cannot provide: sufficient detail to allow exact replica-
tion of the simulation and of the figures presented in the publication for the reasons 
discussed in the sections above. Since it is futile to strive for details that would lead 
to exact replication of scientific publications, and since referees cannot confirm cor-
rectness without replicating all of the work in a manuscript, some have advocated 
that authors should focus only on main concepts that can be evaluated by referees, 
neglecting model details. Note that the Journal of Neuroscience recently ceased to 
publish supplementary material for the precise reason that it provides unreviewed 
(and essentially unreviewable) detail (Maunsell 2010).

Where do all of these issues leave reproducibility? It seems that improved repro-
ducibility requires two important measures for reporting results. First, on the techni-
cal side, replicability of simulation studies should be ensured by requiring that 
authors use proper code sharing techniques and automated practices for recording 
provenance as described in section “Practical Approaches to Replicability.” If code 
is not reviewed, then this is best done through a curated database rather than in the 
supplementary material. This model deposition provides a reference for readers if 
they encounter difficulties in reproducing the results of a publication. Note that the 
increasing use of a limited set of simulator software packages (Brette et al. 2007) 
facilitates this type of model archeology due to the widespread expertise with these 
packages in the computational neuroscience community—no need to decipher 
Fortran code left behind by the Ph.D.-student of yesteryear.

Second, publications in computational neuroscience should provide much more 
information about why a particular model formulation was chosen and how model 
parameters were selected. Neural models commonly require significant parameter 
tuning to demonstrate robust, stable, and interesting dynamics. In some cases, the 
selection of models for synapses and excitable membranes may be shaped by neu-
rophysiological evidence, while in others, they are selected based on ease of imple-
mentation or mathematical analysis. Such choices should be clearly articulated, and 
much would be gained by details about (1) which aspects of the model proved 
essential to obtaining “good” simulation results and (2) which quantities and prop-
erties constrained parameter tuning. In discussing these aspects, it might be helpful 
to consider recent advances in the theory of science with regard to both the role of 
simulations in the scientific process (Humphreys 2004) and the role of explanatory 
models that are common in neuroscience (Craver 2007).

�Discussion

In this chapter we have exposed the distinction between replicability and reproduc-
ibility, and explored the continuum between the two. We also have seen that there are 
scientific benefits to promoting each point on the continuum. Replication based on 
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reuse of code enables more rapid progress of computational studies by promoting 
modularization, improved code quality, and incremental development, while indepen-
dent reproduction of an important result (whether manually, through reading an arti-
cle’s Methods section, or (semi-)automatically, using a declarative, machine-readable 
version of the methods) remains as the gold standard and foundation of science.

In our terminology, replication of results implies reusing the original code in 
some way, either by rerunning it directly or by studying it when developing a new 
implementation of a model. If this replication is done by someone other than the 
original developers, the code must therefore be shared with others. This raises many 
issues including licensing, version tracking, discoverability, documentation, soft-
ware/hardware configuration tracking, and obsolescence.

Independent reproduction of a computational experiment without using the orig-
inal code is necessary to confirm that a model’s results are general and do not depend 
on a particular implementation. Traditionally, this has been done by reading the 
published article(s) describing the models, and most often corresponding with the 
authors to clarify incomplete descriptions. In this chapter we have discussed in 
some depth the difficulties usually encountered in this process, and ways in which 
published model descriptions can be improved. We summarize these recommenda-
tions below. More recently, several efforts have been made to produce structured, 
declarative, and machine-readable model descriptions, mostly based on XML. Such 
structured descriptions allow the completeness and internal consistency of a descrip-
tion to be verified, and allow for automated reproduction of simulation experiments 
in different simulation environments.

In considering how to improve the reproducibility of computational neurosci-
ence experiments, it is important to be aware of the limits of reproducibility, due to 
component failure, environmental influences on hardware, floating point numerics, 
and the amplification of small errors by sensitive model systems. The question of 
how best to determine whether differences between two simulations are due to 
unavoidable computational effects or whether they reflect either errors in the code 
or important algorithmic differences has not been satisfactorily answered in compu-
tational neuroscience.

Based on the issues identified and discussed in this chapter, we propose a number 
of steps that can be taken to improve replication and reproduction of computational 
neuroscience experiments:

Modelers

•	 Use version control tools.
•	 Keep very careful records of the computational environment, including details of 

hardware, operating system versions, versions of key tools, and software librar-
ies. Use automated tools where available.

•	 Use best practices in model publications; see Nordlie et al. (2009).
•	 Plan to release your code from the beginning of development to aid in code 

sharing.
•	 Make code available through ModelDB, BioModels, or other appropriate curated 

databases.
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•	 Make models available using simulator-independent model descriptions if 
possible.

•	 Evaluate your career by downloads and users in addition to citations.

Tool developers

•	 Incorporate version control tools and tools for automated environment tracking 
into your software.

•	 Collaborate with model description language efforts.

Reviewers and editors

•	 Demand clear model descriptions following Nordlie et al. (2009).
•	 Demand and verify code and/or model availability.
•	 Make sure publications include details of model choices and behavior.

Computational neuroscience has made enormous progress in the past 20 years. 
Can the same be said for the reproducibility of our models and our results? The 
range and quality of the available tools for ensuring replicability and reproducibility 
has certainly improved, from better version control systems to structured, declara-
tive model description languages and model databases. At the same time, the typical 
complexity of our models has also increased, as our experimental colleagues reveal 
more and more biological detail and Moore’s Law continues to put more and more 
computing power in our laboratories. It is this complexity which is perhaps the 
major barrier to reproducibility. As the importance of computational science in sci-
entific discovery and public policy continues to grow, demonstrable reproducibility 
will become increasingly important. Therefore, it is critical to continue the develop-
ment of tools and best practices for managing model complexity and facilitating 
reproducibility and replicability. We must also attempt to change the culture of our 
computational community so that more researchers consider whether their reported 
results can be reproduced and understand what tools are available to aid in repro-
ducibility. These changes are needed so that reproducibility can be front and center 
in the thinking of modelers, reviewers, and editors throughout the computational 
neuroscience community.
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    Abstract     The previous chapter in this volume considers the 20-year development 
of technology supporting the reuse and reproducibility of computational models. 
This chapter considers the specifi c case of the 40-year history of modeling cerebel-
lar Purkinje cells, resulting in the emergence of one of the fi rst “community models” 
in computational neuroscience. The chapter traces the model-based progress in 
understanding the relationship between Purkinje cell structure and function, as well 
as the implications of those results for our understanding of the function of this cell 
and the cerebellum in general. Using the history of Purkinje cell modeling as an 
example, the chapter also identifi es the importance of the development of commu-
nity models as a base for the eventual establishment of a quantitative understructure 
for neuroscience as a whole.  

           Introduction 

 While all chapters in this book describe progress made in our computational under-
standing of specifi c neural systems over the last 20 years, this chapter, in addition, 
considers how the use of models can potentially change the structure and organiza-
tion of neuroscience itself. Specifi cally, this chapter reviews the now 40+-year 
effort to realistically model the cerebellar Purkinje cell, focused on the evolution 
of a particular model fi rst described by Rapp et al. ( 1992 ,  1994 ) and then extended 
by De Schutter and Bower ( 1994a ,  b ,  c ). To quote from a recent review article on 
data sharing in neuroscience, this model “remain(s) among the most successful, 
cited, and re-used/updated in computational neuroscience” (Ascoli  2007 , p. 156). 
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In fact, it is the overall thesis of this chapter that the Rapp et al., De Schutter/Bower 
model (R-DB Model) has become one of the fi rst “community models” in neuro-
science.    While there are a few models of biophysical processes that have tran-
scended individual research laboratories (e.g., Hodgkin and Huxley  1952 ), most 
models of neurobiological structures whether at the synaptic, neuronal, network, or 
systems levels have not migrated out of their laboratories of origin with many 
resulting in only a single publication. As a result, computational neuroscience is 
full of separate models of the same structures, many addressing the same issues, 
but with no clear articulation or connection between them (Manninen et al.  2010 ). 

 While isolated models can be valuable for individual researchers to explore func-
tion, in principle, community use of models can provide a mechanism supporting 
scientifi c communication, coordination, and collaboration, coming to represent the 
current state of our understanding of the relationship between biological structure 
and function. Models shared in this way can also refl ect the continued evolution of 
the views of a fi eld as a whole, providing a mechanism to organize and evaluate 
debates and opinions. While still rare, the development of such models is likely to 
be essential to construct a formal, quantitative underpinning for neuroscience which 
has been essential in other scientifi c fi elds to make measurable scientifi c progress 
(Kuhn  1962 ). 

 With these ideas in mind, this chapter begins by considering the fi rst efforts to 
build models of cerebellar Purkinje cells in the 1960s and 1970s. The chapter then 
describes the emergence of the R-DB Model as a community model, subsequently 
considering how the model has changed our views of cerebellar organization and 
function. Finally, the chapter briefl y discusses technical and structural issues related 
to the emergence and further development of community models. It is my hope that 
the story told here will encourage other modelers to adopt and support community 
models of their own systems.  

    Early Stages in Modeling the Cerebellar Purkinje Cell 

 The cerebellum was one of the fi rst brain structures in which computer models were 
built refl ecting the actual morphological structure of its networks (Bower  2012 ). 
This is in part because the overall structural organization of cortical circuitry as well 
as its major afferent and efferent connections has been known since the turn of the 
twentieth century (Cajal  1911 ), but is also due to the fact that the regular structure 
of this network allowed for a relatively early detailed analysis of its physiological 
properties and cellular relationships (Eccles et al.  1967 ). Those relationships are 
shown in Fig.  5.1 .

   The historically close link between cerebellar modeling and specifi c structure/
function relationships is actually refl ected in the fi rst published discussions of 
Purkinje cell modeling, which arose in the context of a controversy involving the 
existence of active conductances in the Purkinje cell dendrite (Calvin and Hellerstein 
 1969 ). Specifi cally, Llinas et al. had proposed that the Purkinje cell dendrite was 
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capable of “active” current conduction due to differences in the latencies of fi eld 
potentials recorded at different depths in the molecular layer following direct corti-
cal stimulation (Llinas et al.  1968 ). This interpretation was challenged by Calvin 
and Hellerstein ( 1969 ), who pointed out that the recent cable theory models devel-
oped by Rall ( 1964 ) predicted similar delays from passive dendritic current conduc-
tion alone. In response, Llinas et al. asserted that models based on volume conductors 
rather than cables were more appropriate for the analysis of extracellular fi eld 
potentials (Calvin and Hellerstein  1969 ). A few months later, Zucker entered the 
debate by actually performing calculations comparing both types of models, con-
cluding that neither approach in its classical form could resolve the issue (Zucker 
 1969 ). However, Zucker pointed out that similarities in simulated fi eld potential 
results recently obtained from cable theory models for olfactory bulb mitral cells 
(Rall and Shepherd  1968 ) supported Llinas’ original interpretation. In response, 
Calvin suggested that Zucker’s model had too many free parameters, and defended 
his own argument as based on “the simplest possible model consistent with our 
objective (to demonstrate that a) commonplace explanation for conduction veloci-
ties was as good as the more esoteric” (Calvin  1969 , p. 637). It took 10 more years 
and the development of brain slice procedures and more sophisticated intracellular 

  Fig. 5.1       Connections of the cerebellar cortex as drawn by Ramon y Cajal ( 1911 ). Following the 
 arrows  on the left side of the diagram, mossy fi ber inputs (A) make excitatory connections with 
granule cells (a), whose axons ascend through the molecular layer, bifurcate and then all course as 
parallel fi bers (b) through the isoplanar dendritic tree of the Purkinje cell (c). The Purkinje cell axon 
(B) then provides the sole output of the cerebellar cortex. Also shown in this diagram is the other 
major afferent input to cerebellar cortex, the climbing fi ber projection (d) arising in the inferior olive. 
In the adult each Purkinje cell receives only one climbing fi ber projection but tens of thousands of 
granule cell inputs. Figure used with permission from Ito ( 2001 ) modifi ed from Cajal ( 1911 )       
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recording techniques for Llinas and Sugimori to provide conclusive experimental 
evidence that Purkinje cell dendrites are in fact electrically active (Llinas and 
Sugimori  1980a ). As will be clear from this chapter, the functional signifi cance of 
these active dendritic properties, however, continues to be a major computational 
and modeling issue to this day. 

 It is important to point out that while this early debate concerned modeling, no 
effort was actually made to build a model of the Purkinje cell dendrite (Calvin and 
Hellerstein  1969 ). The fi rst model of a Purkinje cell with dendritic structure was 
actually published in 1974 by Pellionisz and Szentagothai as the last of a series of 
cerebellar network models (Pellionisz  1970 ; Pellionisz and Szentagothai  1973 , 
 1974 ). As shown in Fig.  5.2 , in that model the Purkinje cell dendrite was repre-
sented as four branches in which synaptic infl uences were calculated independently 
using a simple algebraic summation. On reaching threshold each branch indepen-
dently generated a dendrite spike which was then assumed to be summed by the 
soma. Because each branch generated a dendritic spike, in some sense this model 

  Fig. 5.2    Schematic representation of a model Purkinje cell model simulated in Pellionisz and 
Szentagothai ( 1974 ). The dendritic tree is divided into four nonoverlapping synaptic territories 
meant to represent the main Purkinje cell dendritic branches. (A) Shows the distribution of parallel 
fi ber synapses on each dendritic branch, (B) is the modeled Purkinje cell viewed in a parasagittal 
plane and (C) is the Purkinje cell viewed from above. The fi ne structure within each branch in this 
fi gure is only for illustrative purposes and did not infl uence the summation of synaptic inputs. The 
model was programmed in FORTRAN and ran on a CDC 3300 computer. Reproduced with per-
mission from Pellionisz and Szentagothai ( 1974 )       
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was also the fi rst with some form of active dendritic structure. Comparing results of 
network simulations using these four-branch Purkinje cells to previous results with 
no dendritic structure these authors concluded that: “the simulation experiments are 
giving quite strong hints in favor of the importance of dendritic geometry” (Pellionisz 
and Szentagothai  1974 , p. 28).

   Perhaps refl ecting the infl uence of the original debate between Llinas and Calvin 
and Hallerstein in the 1960s (Calvin and Hellerstein  1969 ), Llinas and Nicholson 
published the fi rst compartmental model of the Purkinje cell dendrite to test new 
speculations on cerebellar organization made on the basis of fi eld potential record-
ings (Llinas and Nicholson  1976 ). In this case, the experiments involved climbing 
fi ber-evoked responses in cat cerebellar cortex, which, Llinas and Nicholson (also it 
turns out again correctly) believed, were likely a result of synapses distributed 
widely over the Purkinje cell dendrite. As shown in Fig.  5.3 , while a compartmental 
model that also included for the fi rst time conductances represented with Hodgkin/
Huxley model parameters (Hodgkin and Huxley  1952 ), the entire Purkinje cell den-
drite was represented by only three dendritic compartments and despite the earlier 
debate regarding active dendritic properties, the only active conductances were 
synaptic.

   One year later, Llinas, now working with Pellionisz, published the fi rst compart-
mental Purkinje cell model that included a full dendritic tree (Pellionisz and Llinas 
 1977 ) as shown in Fig.  5.4 . Based on extending a compartmental model of the spi-
nal motorneuron (Dodge and Cooley  1973 ) this more realistic Purkinje cell model 
consisted of 62 compartments with the soma and initial segment and also 

  Fig. 5.3    The fi rst published compartmental model of a Purkinje cell consisting of a soma and 
three dendritic compartments. As shown, the soma and fi rst two dendrites included an element 
representing synaptic input in the form of a variable battery ( E   j  ) and a variable resistor ( R   j  ). The 
model was used in conjunction with experimental data to support the hypothesis that the climbing 
fi ber made multiple synaptic inputs on the proximal Purkinje cell dendrite. Reproduced with per-
mission from Llinas and Nicholson ( 1976 )       
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incorporated Hodgkin/Huxley conductance kinetics (Hodgkin and Huxley  1952 ). 
Schematically representing a frog Purkinje cell, the authors also sought, for the fi rst 
time, to replicate basic characteristics of the Purkinje cell physiological responses: 
(1) the rapid “antidromic” decrement in action potential amplitude in the dendrite 
following somatic current injection (Llinas et al.  1969b ; Freeman and Nicholson 
 1975 ); (2) the orthodromic activation of Purkinje cells following parallel fi ber stim-
ulation (Eccles et al.  1966a ); and (3) the spike burst resulting from climbing fi ber 
synaptic input (Eccles et al.  1966b ,  1967 ). In fact, the authors suggested that the 
replication of these three physiological effects should constitute the minimum 
requirement for Purkinje cell modeling.    While the authors state explicitly in the 
paper that compartmental modeling is an essential technique to: “(handle) a par-
tially or totally active dendritic tree” (Pellionisz and Llinas,  1977 , p. 37) this model 
still did not include active voltage-dependent dendritic conductances.

  Fig. 5.4    The fi rst full compartmental model of the Purkinje cell dendritic tree represented by 62 
dendritic compartments ( a ), with each of the compartments ( b ) simulating ionic conductances 
using an equivalent electrical circuit ( c ). ( d – f ) show the responses of three different compartments 
after a simulated somatic current injection (dendritic branch point, upper row; soma middle row; 
node of Ranvier, lower row). The 62 compartmental model was implemented in Fortran and run on 
a PDP-15 computer (Digital Equipment Corp.) with the authors explicitly noting that it generating 
data 5 × 10 5  times slower than real time activity. Reproduced with permission from Pellionisz and 
Llinas ( 1977 )       
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       Establishing the Purkinje Cell Community Model Lineage 

 In the justifi cation for building the fi rst large scale Purkinje cell model, Llinas and 
Pellionisz explicitly state that: “Rigorous mathematical models of the electrical 
activity of central neurons (are) a powerful tool to test and interpret experimental 
data” (Pellionisz and Llinas  1977 , p. 37). And, in fact this model was the fi rst to 
represent the complete Purkinje cell dendritic tree and also consider the biophysical 
mechanisms responsible for generating this cell’s specifi c and characteristic physi-
ological responses (Pellionisz and Llinas  1977 ). However, while the model did 
include a full dendrite, the modeling effort was actually not an exploration of the 
infl uence of morphology on physiology, but instead was used to demonstrate the 
plausibility of mechanisms previously inferred from physiological data. Accordingly, 
the model was used to demonstrate mechanisms rather than discover them. 

 The fi rst published Purkinje cell model that explicitly set out to deduce function 
from structure was published by Shelton 8 years later (Shelton  1985 ). As shown in 
Fig.  5.5 , this was also the fi rst model based on an actual anatomical reconstruction 
of a real Purkinje cell. Like the earlier Purkinje cell models, this model also did not 
include active dendritic properties, an omission justifi ed by the author’s assertion 
that: “the part of the dendritic tree of the Purkinje cell which is thought to be essen-
tially passive forms a very large fraction of the total membrane surface area of the 
cell” (Shelton  1985 , p. 111), although the author later notes that dendritic passivity 
is an assumption of the model, rather than a conclusion. Instead the model was used 
to provide a description of the expected passive electrical properties of the Purkinje 
cell given the morphology of its dendrite. This was accomplished by tuning the 
model to replicate experimentally observed differences in dendritic and somatic 
input conductances. It should be noted that while the model was built on an actual 
anatomical reconstruction of a rat Purkinje cell, the physiological data was actually 
obtained from Guinea Pigs. Accordingly in the model, the dendritic morphology 
was actually “stretched” to better resemble a Guinea Pig Purkinje cell.

   In addition to being the fi rst Purkinje cell model used to deduce function from 
structure, the Shelton model is also the fi rst model whose components have been 
reused by other modelers (Blum and Wang  1990 ; Bush and Sejnowski  1990 ; Genet 
et al.  2010 ; Brown et al.  2011 ). This use was in keeping with Shelton’s intent that 
his exploration of the passive properties of the dendrite “form the substrate for 
extensions which would treat more complex properties” (Shelton  1985 , p. 111). As 
such, the Shelton model was the fi rst constructed with the explicit intent of reuse. 

 The model, however, that seeded the R-DB Model lineage was published 7 years 
later by Rapp et al. ( 1992 ,  1994 ) and was based on reconstructions of three Guinea 
Pig Purkinje cells (see Fig.  5.6 ). Like the Shelton model, the Rapp model was used 
to study the passive electrical properties of the dendrite on the similar assumption 
that this was “an essential step—a skeleton—for constructing biologically more 
realistic models of PC dendrites” (Rapp et al.  1994 , p. 114). For the fi rst time, these 
publications also included new experimental data obtained by the authors them-
selves specifi cally to parameterize the model. While Shelton had speculated on the 
possible infl uence of active synaptic conductances on passive membrane properties, 
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  Fig. 5.5    From Shelton ( 1985 ) showing details of each of the modeled Purkinje spiny dendritic 
branches. Simulations were again written in FORTRAN and run on a VAX 11/780 computer 
(Digital Equipment Corporation) with 10 μs of real time requiring 1 s of compute time. Used with 
permission from Shelton ( 1985 )       
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Rapp et al. actually applied the fi rst synaptic inputs to a fully realistic dendritic 
model (Rapp et al.  1992 ). These authors also considered in some detail the applica-
tion of newly developed parameter estimation methods for large compartmental 
models (Holmes and Rall  1992 ), and tested their results using all three reconstructed 
morphologies (Rapp et al.  1994 ). The modeling effort also explicitly compared 
compartmental modeling results to analytical cable model solutions (Rall  1964 ; 
Segev et al.  1985 ).

       Modeling the Active Properties of the Purkinje Cell Dendrite 

 As just described, the fi rst two Purkinje cell models based on actual anatomical 
reconstructions both considered only the passive electrical properties of the dendrite 
(Shelton  1985 ; Rapp et al.  1992 ,  1994 ). However, by the 1990s, the signifi cance of 
the active properties of the Purkinje cell dendrite had been a subject of debate and 

  Fig. 5.6    The original Rapp et al. Purkinje cell model, reconstructed from a Guinea Pig. The model 
was built in SPICE (Vladimirescu et al.  1981 ), and ran on a VAX/VMS 6830 computer (Digital 
Equipment Corp), with 10 min of processor time necessary to simulate a 200 ms of real time. 
Reproduced with permission from Rapp et al. ( 1992 )       
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discussion for almost 30 years. In fact, as already described, the very fi rst published 
discussion of Purkinje cell modeling involved speculations involving the active 
properties of the Purkinje cell dendrite (Calvin and Hellerstein  1969 ), and the con-
struction of the fi rst compartmental Purkinje cell model was justifi ed as necessary 
to model those active properties (Pellionisz and Llinas  1977 ). 

 By the 1990s, due largely to the pioneering experimental studies of Llinas and 
Sugimori ( 1980a ,  b ), there was little doubt that not only the Purkinje cell dendrites 
but also the Purkinje cell soma included many more voltage-dependent conduc-
tances than those traditionally associated with the action potential and dendritic 
synapses. As already mentioned, both Rapp and Shelton considered their modeling 
efforts as a fi rst step towards the study of active dendritic properties with Rapp et al. 
explicitly declaring that it was now essential that Purkinje cell models, “incorporate 
a variety of non-linear voltage- and ligand-gated channels that we know exist in the 
Purkinje cell dendrite” (Rapp et al.  1994 , p. 114), and two Purkinje cell models with 
some active dendritic components were actually published in the proceedings of the 
1990 Conference on Analysis and Modeling of Neural Systems from which the 
CNS meetings evolved (Blum and Wang  1990 ; Travis  1990 ). However, the fi rst 
realistic large scale compartmental Purkinje cell model with full Hodgkin/Huxley 
active voltage-dependent conductances was presented at the fi rst CNS meeting in 
San Francisco in 1992 and then published for the fi rst time in that meeting’s fi rst 
proceedings volume (De Schutter and Bower  1993 ; Jaeger et al.  1993 ). These initial 
conference reports were followed by three full length papers published in the fol-
lowing year (De Schutter and Bower  1994a ,  b ,  c ). As shown in Fig.  5.7 , this model 
was based on the Rall et al. dendritic morphology and included all ten then known 
active conductances differentially distributed in the soma and dendrite as suggested 
by data from in vitro voltage clamp experiments (Gähwiler and Llano  1989 ; Hirano 
and Hagiwara  1989 ; Kaneda et al.  1990 ; Regan  1991 ; Wang et al.  1991 ).

   The fi rst of the 1994 papers (De Schutter and Bower  1994a ) explicitly extended 
the work of Shelton ( 1985 ) and Rapp et al. ( 1992 ,  1994 ) with an analysis of the 
electrical structure of the Purkinje cell dendrite now including active voltage- 
dependent conductances (Fig.  5.7 ). The second paper (De Schutter and Bower 
 1994b ) explored dendritic responses to climbing fi ber input and then extended the 
study of background excitatory synaptic inputs fi rst introduced by Rapp et al. ( 1992 , 
 1994 ) but for the fi rst time including inhibitory synapses. The third paper (De 
Schutter and Bower  1994c ) considered for the fi rst time the response of Purkinje 
cells to the type of synaptic activity expected to result from stimulus-driven input. 
As the fi rst neuronal model to use concurrent supercomputers (De Schutter and 
Bower  1992 ), these simulations involved a much more extensive test of parameter 
space than previously possible, demonstrating that modeled responses were quite 
robust to changes in its primary parameters. Importantly for the reuse of this model 
by others, this was also the fi rst model published online using a simulation system 
specifi cally developed for realistic neurobiological modeling (Bower and Beeman 
 1995 ). It should be noted that the wholesale migration of a complex multi- 
compartment single neuron model from one set of investigators (Rapp et al.  1994 ) 
to another (De Schutter and Bower  1994a ,  b ,  c ) was also one of the fi rst in compu-
tational neuroscience.  
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    Emergence of a Community Model 

 The papers by Rapp et al. ( 1992 ,  1994 ) and De Schutter and Bower ( 1994a ,  b ,  c ) have 
collectively been cited more than 500 times, with the fi rst description of the active 
Purkinje cell model (De Schutter and Bower  1994a ) responsible for almost half those 
citations. Perhaps more importantly for the defi nition of a “community model” the 
R-DB Model has also been used by a growing number of authors as a base for further 
modeling work outside the laboratories of its origin. Thus, as described in the next 
section, over the last 20 years, the model has been contributed to, evaluated, and 

  Fig. 5.7    Schematic description of the De Schutter and Bower Purkinje cell model with equivalent 
circuit diagrams for the modeled ionic conductance included in each section of the cell. Reproduced 
with permission from De Schutter ( 1999 )       
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adopted by the larger scientifi c community. It also continues to be used to test and 
generate new hypothesis about the functional organization of the Purkinje cell as 
well as cerebellar cortical circuitry. 

    Model Reuse 

 The adoption of the R-DB Model as a community model can be explicitly repre-
sented by an expanding lineage of model-dependent publications. As already 
described, the core lineage root for the R-DB Model was the original Rapp et al. 
( 1992 ,  1994 ) model, enhanced with active properties by De Schutter and Bower 
( 1994a ,  b ,  c ). This model subsequently formed the basis for a series of modeling and 
experimental publications over the next 20 years originating from the Bower labora-
tory and refl ecting the efforts of a sequence of students (De Schutter  1994 ; Jaeger 
et al.  1996 ; Baldi et al.  1998 ; Sultan and Bower  1998 ; Jaeger and Bower  1999 ; 
Mocanu et al.  2000 ; Santamaria et al.  2002 ,  2007 ; Santamaria and Bower  2004 ; Lu 
et al.  2005 ; Cornelis et al.  2010 ). Further, the model has continued to be used by 
students of these original students in their own independent laboratories (De Schutter 
 1998 ; Vos et al.  1999 ; Howell et al.  2000 ; Steuber and De Schutter  2001 ,  2002 ; 
Gauck and Jaeger  2003 ; Solinas et al.  2003 ,  2006 ; Kreiner and Jaeger  2004 ; Shin and 
De Schutter  2006 ; Shin et al.  2007 ; Steuber et al.  2007 ; Achard and De Schutter 
 2006 ,  2008 ; De Schutter and Steuber  2009 ; Anwar et al.  2010 ; Coop et al.  2010 ; 
Santamaria et al.  2011 ; Tahon et al.  2011 ). Finally, and perhaps most importantly 
from the point of view of a community model, the R-DB Model has become the basis 
for a growing number of publications in laboratories not directly related to my own 
(Staub et al.  1994 ; Coop and Reeke  2001 ; Mandelblat et al.  2001 ; Miyasho et al. 
 2001 ; Roth and Häusser  2001 ; Chono et al.  2003 ; Khaliq et al.  2003 ; Ogasawara 
et al.  2007 ; Yamazaki and Tanaka  2007 ; Kulagina et al.  2008 ; Traub et al.  2008 ; 
Brown et al.  2011 ; Brown and Loew  2012 ; Forrest et al.  2012 ) and several of these 
modeling efforts have now initiated their own lineage sequences with, for example, 
the adaptation of the original R-DB Model by Miyasho et al. ( 2001 ), being further 
extended by Chono et al. ( 2003 ), Kulagina ( 2008 ), and Brown et al. ( 2011 ). 

    Testing Model Parameters Against New Experimental Data 

 One of the fi rst uses of the R-DB Model outside of my own laboratory’s lineage 
explicitly tested the model’s ability to replicate PC physiological responses obtained 
using a new set of ion channel blockers (Miyasho et al.  2001 ). Using dendritic mor-
phology from the rat (Shelton  1985 ) parameterized with data from the R-DB Model, 
these authors modifi ed channel descriptions and conductance densities to reproduce 
the repetitive Ca 2+  spike fi ring they had found after the application of TTX in vitro. 
These authors also refi ned the kinetics of the K + -delayed rectifi er current, applying 
a new mechanism for calculating intracellular Ca 2+  concentration while also 
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changing the Ca 2+  sensitivity of the calcium-activated dendritic K +  conductance. 
With these changes, the model was extended to replicate physiological responses 
including: (1) characteristic Ca 2+  dendritic spikes in the presence of TTX; (2) repeti-
tive Ca 2+  spiking patterns resulting from the presence of TTX; (3) the lack of Ca 2+  
spikes found after application of a P-type Ca 2+  channel blocker; (4) the slow onset 
of the Ca 2+  spikes in response to depolarizing current steps; and (5) the marked 
shortening of the Ca 2+  spike onset seen in the presence of 4-AP. These authors also 
added a Ni2+-sensitive Ca2+ (class-E type) channel to the model’s dendrites, allow-
ing it to replicate the longer onset Ca 2+  spikes found in the presence of Ni 2+    . Two 
years later, Chono et al. ( 2003 ) further refi ned the Miyasho et al. ( 2001 ) model by 
adding new channel descriptions as well as refi nements in the conductance values 
for the simulated Ca 2+  and Ca 2+ -dependent K +  channels. These enhancements have 
since been incorporated into subsequent Purkinje cell modeling efforts by other 
groups (Traub et al.  2008 ; Brown et al.  2011 ).  

    Additional Analysis 

 Equally important to changes in the structure of a community model is the use of 
that model to explore new forms of behavior or perform new forms of analysis not 
considered by the original model’s authors. Several authors have used the R-DB 
Model in a reduced form to more closely examine Purkinje cell neuronal dynamics 
(Mandelblat et al.  2001 ; Fernandez et al.  2007 ). In a series of recent publications, 
Brown et al. have adapted the original R-DB Model to explore how mechanisms at 
the subcellular (biochemical) levels might be linked to somatic output (Brown et al. 
 2011 ; Brown and Loew  2012 ). At the subcellular level as well, the R-DB Model has 
provided a larger context for studies of calcium diffusion (Santamaria et al.  2006 , 
 2011 ; Anwar et al.  2010 ) as well as biophysical mechanisms of synaptic plasticity 
(Vladimirescu et al.  1981 ; Antunes and De Schutter  2012 ; De Schutter  2012 ). At 
more network levels, Traub et al. recently built a new model based in large part on 
R-DB Model parameters to explore the possible role of gap junctions between the 
initial axon segments of Purkinje cells in cerebellar cortical oscillations (Traub et al. 
 2008 ). To do so these authors reduced overall dendritic complexity while maintain-
ing a “realistic” path from the distal dendrite to the soma (see Fig.  5.8 ). The model 
has also been used as a base to build network level simulations in reduced (Yuen 
et al.  1995 ; Coop and Reeke  2001 ; Sarro  2004 ) and full (Howell et al.  2000 ; Solinas 
et al.  2003 ; Santamaria et al.  2007 ) forms. The R-DB Model has also been applied 
to new analytical studies, including, for example, questions involving the informa-
tion processing potential of dendrites (Coop et al.  2010 ) as well as possible spike 
coding strategies (Steuber and De Schutter  2001 ,  2002 ; Steuber et al.  2007 ; De 
Schutter and Steuber  2009 ). Efforts have also been made to link the structure of the 
R-DB Model to the kind of analysis involved in the fi eld of artifi cial neural networks 
(Steuber and De Schutter  2001 ; Sarro  2004 ). Finally, the R-DB Model has also been 
used as a base for assessing modeling technology itself, including parameter esti-
mation techniques (Van Geit et al.  2007 ) and the relationship between parameter 
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variations and modeling results (Achard and De Schutter  2008 ). The R-DB Model 
has even been used to test whether experimental techniques like the voltage clamp 
are appropriate for evaluating the physiological properties of Purkinje cells (Staub 
et al.  1994 ).

        Understanding Purkinje Cell Physiological Responses 

 While the previous sections have discussed the general reuse and improvement of 
the R-DB Model, ultimately the utility of any model, whether used by the commu-
nity or not, is its ability to generate and test hypothesis regarding physiological 
function. This is also the most complex use of any model, and perhaps especially a 
community model. As context for considering what has been learned about the 

  Fig. 5.8    Schematic 
representation of the 
cerebellar Purkinje cell model 
in Traub et al. (2008). 
Refl ecting the focus of the 
study on putative gap 
junctions between the initial 
axon segments of Purkinje 
cells, the axonal region was 
represented by 6 
compartments while the 
dendrite was reduced to 553 
compartments with a 
particular emphasis on the 
spiny branchlets. This model 
was hand coded entirely in 
Fortran. Used with 
permission from Traub 
et al. ( 2008 )       
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functional organization of Purkinje cells using the R-DB Model, the next section is 
organized around the R-DB Model’s replication of the electrical behavior of Purkinje 
cell that Pellionisz and Llinas proposed in 1977 as a standard for, “any Purkinje cell 
model which claims to be adequate” (Pellionisz and Llinas  1977 , p. 42). Some of 
these results are described in more detail in a review by De Schutter ( 1999 ).  

    Antidromic Spike Activation of the Purkinje Cell Dendrite 

    Perhaps the most straightforward characteristic Purkinje cell response identifi ed by 
Pellionisz and Llinas ( 1977 ) as a core requirement for any model of this neuron is 
the fact that action potentials generated in its soma do not propagate to the dendrite 
(Fig.  5.9 ). At the time of the fi rst Purkinje cell modeling studies, this lack of 
antidromic dendritic invasion had already been predicted based on fi eld potential 
recordings (Llinas et al.  1969b ; Freeman and Nicholson  1975 ), although the 
phenomenon was not directly observed until much later (Llinas and Sugimori 
 1980b ). In the early passive models, the lack of back propagation was attributed to 
the relative surface area of the cell dendrite compared to its soma (Pellionisz and 
Llinas  1977 ; Rapp et al.  1994 ). This explanation was further elaborated in a recent 
passive modeling study using parameters obtained from the R-DB Model (although 
with different dendritic morphology) as due to a large cumulative impedance 
mismatch resulting from the high branching density of the Purkinje cell dendrite 

  Fig. 5.9    Simulation of the lack of antidromic action potential dendritic invasion in a modeled 
Purkinje cell following simulated current injection in the soma. Used with permission from Rapp 
et al. ( 1994 )       
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(Roth and Häusser  2001 ). Active dendritic modeling efforts have also noted that the 
very low Na +  channel density in Purkinje cell dendrites provides no mechanism to 
overcome these morphological effects (Kitamura and Häusser  2011 ) as has been 
found in other types of mammalian neurons (Vetter et al.  2001 ).

       Responses to Somatic Current Injection 

 The results shown in Fig.  5.9  were obtained from a passive Purkinje cell dendritic 
model in response to current injection in the soma. In fact, as shown in Fig.  5.10 , 
current injection in a real Purkinje cell produces a much more complex pattern of 
somatic and dendritic activity (Gähwiler and Llano  1989 ; Hirano and Hagiwara 
 1989 ; Kaneda et al.  1990 ; Regan  1991 ; Wang et al.  1991 ; Lev-Ram et al.  1992 ). 
In part for this reason, although not explicitly a part of the original Pellionisz and 
Llinas ( 1977 ) standard for Purkinje cell models, the ability to replicate the results of 
in vitro current injection studies has become the defacto standard for testing and 
tuning realistic Purkinje cell models (Bush and Sejnowski  1990 ; De Schutter and 
Bower  1994a ; Coop and Reeke  2001 ; Mandelblat et al.  2001 ; Miyasho et al.  2001 ; 
Forrest et al.  2012 ). Accordingly, as shown in Fig.  5.10 , the fi rst test of the active 

  Fig. 5.10    Simulation of somatic responses to three different amplitude synaptic current injections 
in models with two different dendritic morphologies. Reproduced with permission from De 
Schutter and Bower ( 1994a )       
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R-DB Model involved determining whether a reasonable set of model parameters 
could replicate this in vitro data.

   While a full description of the mechanisms responsible for these in vitro response 
patterns is beyond the scope of this chapter, the general result from modeling stud-
ies is that this behavior is a function of a complex interaction between all the 
Purkinje cell’s biophysical and anatomical properties (De Schutter  1999 ). This con-
clusion is somewhat in contrast with the more typical analysis from experimental 
studies which tend to associate different features of the in vitro response properties 
specifi cally to different kinds of afferent input (Gähwiler and Llano  1989 ; Hirano 
and Hagiwara  1989 ; Kaneda et al.  1990 ; Regan  1991 ; Wang et al.  1991 ; Lev-Ram 
et al.  1992 ). Thus, for example, typically, these complex waveforms are considered 
to be made up of three different types of electrical events: fast events associated 
with somatic action potential generation; the somewhat slower Ca 2+ -related den-
dritic bursting behavior assumed to be related to climbing fi ber inputs; and longer 
time course events assumed to be infl uenced by granule cell-related synaptic inputs 
(Isope et al.  2012 ; Kitamura and Kano  2012 ). Again, the analysis of modeling 
results suggests that all components of the dendrite contribute to each type of 
Purkinje cell activity as well as its response to afferent inputs (De Schutter  1999 ). 

 Interestingly, the interdependence of physiological properties revealed by model 
analysis is even evident in understanding the somewhat unusual in vitro behavior of 
the Purkinje cell. Specifi cally it has been known for many years that the spontane-
ous behavior of Purkinje cells in vitro is quite different from the spontaneous 
behavior of Purkinje cell in vivo (Llinas and Sugimori  1980b ). As shown in 
Fig.  5.11A , in vitro behavior consists of relatively rapid (usually >100 Hz) action 
potentials, interrupted periodically by spontaneous dendritic calcium spikes. In 
contrast, as simulated in Fig.  5.11C , Purkinje cells in vivo generate spontaneous 
action potentials at lower frequencies (usually <80 Hz) that are quite irregular. In 
vivo, dendritic Ca 2+  spikes only appear in response to climbing fi ber inputs (Llinas 
and Nicholson  1976 ) while they occur spontaneously in vitro.

   Given that Purkinje cells are essentially deafferented in brain slice preparations, 
it seemed reasonable to assume that these differences in in vivo and in vitro behav-
ior might be due to a lack of spontaneous background input from the 150,000 excit-
atory parallel fi ber inputs. However, when provided with background excitatory 
input alone, the R-DB Model produced a pattern of output that resembled neither 
the in vitro nor the in vivo conditions (Fig.  5.11B ). Instead, replication of in vivo 
patterns required spontaneous input from both excitatory and inhibitory synaptic 
inputs (Fig.  5.11C ). The model both in single cell (Jaeger et al.  1996 ; Watanabe 
et al.  1998 ) and network form (Howell et al.  2000 ) predicted that normal Purkinje 
cell behavior depends on the presence of constant background synaptic inputs inter-
acting with the active Ca 2+ - and K + -dependent channels in the dendrite and soma 
(De Schutter  1999 ). Experimental studies specifi cally designed to test these model-
ing predictions are consistent with this interpretation (Jaeger and Bower  1999 ; 
Kreiner and Jaeger  2004 ). These results also suggest that caution is necessary in 
inferring too much about the natural in vivo behavior of Purkinje cells based on 
their in vitro response properties.  

5 The Emergence of Community Models in Computational Neuroscience…



120

    Purkinje Cell Responses to Climbing Fiber Activation 

 Returning to the properties of Purkinje cells that Pellionisz and Llinas ( 1977 ) 
suggested were a critical test for any Purkinje cell model, the fact that the Purkinje 
cell responds to climbing fi ber activation in vivo with a burst of action potentials has 
also been known for many years (Eccles et al.  1966b ). In fact as already noted, the 
fi rst compartmental Purkinje cell model was specifi cally constructed to test the 
experimentally derived prediction (Llinas and Hillman  1969 ) that single climbing 
fi bers made multiple synaptic contacts distributed over the Purkinje cell dendrite 
(Llinas and Nicholson  1976 ). One year later, the modeling focus shifted to a consid-
eration of the actual biophysical mechanisms responsible for producing the “oscil-
latory wavelets” or “spike burst” characteristic (see Fig.  5.12F ) of climbing fi ber 
somatic Purkinje cell responses (Pellionisz and Llinas  1977 ). At the time, these 
authors concluded that the different peaks in the somatic burst response were gener-
ated by repetitive fi ring of the initial segment of the axon rather than by an active 
dendritic mechanism as had previously been proposed (Eccles et al.  1966b ).

   Neither Shelton ( 1985 ) nor Rapp et al. ( 1992 ,  1994 ) attempted to replicate Purkinje 
cell responses to climbing fi ber activation, however, this was an important compo-
nent of the initial analysis of the active dendritic and somatic model of De Schutter 
and Bower ( 1994b ). In fact, after tuning model parameters to replicate responses to 
somatic current injection data (De Schutter and Bower  1994a ), the ability of the 

a
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  Fig. 5.11    Comparison of 
responses of the R-DB Model 
in the absence of background 
synaptic input to the dendrite 
( a ), in the presence of only 
excitatory synaptic input 
( b ) and both excitatory and 
inhibitory input ( c ). As 
described in the text, the 
fi ring pattern in ( a ) resembles 
Purkinje cell activity 
recorded in vitro, while 
( c ) resembles in vivo activity. 
Figure used with permission 
from De Schutter ( 1999 ); 
Traub et al. ( 2008 )       
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model to generate climbing fi ber burst responses was the fi rst measure of the model’s 
likely realism (see Fig.  5.12 ). As already described, the model predicted that the 
correct in vivo form of the climbing fi ber response was dependent on background 
patterns of excitatory and inhibitory synaptic inputs. But analysis of the model also 
predicted that the dendritic response was dependent on the activation of P-type Ca 2+  
channels in both the cells’ smooth and the spiny dendrites, with the duration of the 
dendritic spike being regulated by Ca 2+ -activated K +  conductances. The modeling 
results also suggested that the duel reversal potential for the climbing fi ber input 
previously shown experimentally (Llinas and Hillman  1969 ) and attributed to the 
spatial distribution of climbing fi ber synapses (Llinas and Nicholson  1976 ) was also 
dependent on the active properties of the Purkinje cell dendrite. Further, an unex-
pected but important prediction of the model was that climbing fi ber activation 
resulted in substantial increases in intracellular calcium not only in the smooth den-
drites, where climbing fi ber synapses terminate, but also in the smallest spiny 

  Fig. 5.12    False color representation of membrane potential and Ca 2+  concentration during simula-
tion of a climbing fi ber input. ( a ) Membrane potential 1.4 ms after beginning of the resulting 
complex spike. ( b ) Membrane potential 4.0 ms after beginning of complex spike. ( c ) Membrane 
potential 10.0 ms after beginning of a complex spike (after the last somatic action potential). ( d  and 
 e ) sub membrane Ca 2+  concentration at same times as ( a ) and ( b ), respectively. ( f ) complex spike 
as it appears in the soma ( red ) and distal dendrite ( green ) at the same times represented by ( a – c ) as 
indicated. Note the nonlinear [Ca 2+ ] scales. This model was built in GENESIS (version 1.4) and 
was the fi rst simulation to be run concurrently on a large scale parallel supercomputer (De Schutter 
and Bower  1992 ), and across multiple workstations (8 Sun Sparc2). Using this technology, 550 ms 
of real time activity could be simulated in approximately 1 h. Figure used with permission from De 
Schutter and Bower ( 1994b )       
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dendritic branches receiving granule cell synaptic inputs (Gundappa- Sulur et al. 
 1999 ; Lu et al.  2009 ). The involvement of the entire dendrite in the climbing fi ber 
event was simultaneously shown experimentally (Konnerth et al.  1992 ; Miyakawa 
et al.  1992 ). The model also predicted that inhomogeneities in local levels of calcium 
activation in the dendrite did not depend on a nonuniform distribution of Ca 2+  chan-
nels as had previously been suggested (Tank et al.  1988 ; Llinas and Sugimori  1992 ). 
Instead the pattern of calcium response was a consequence of the nonuniform geom-
etry of the Purkinje cell dendrite, and likely varied from Purkinje cell to Purkinje cell. 
Thus, unlike Rapp et al. ( 1994 ), who reported little effect of individual dendritic 
variations on cellular passive properties, the active model suggested that differences 
in individual Purkinje cell morphologies might, in fact have functional signifi cance.  

    Purkinje Cell Responses to Granule Cell Pathway Related Input 

 The third standard for Purkinje cell modeling proposed by Pellionisz and Llinas 
( 1977 ) was the ability to replicate simple spike fi ring in response to granule cell 
(parallel fi ber) input. It is, in fact, on this question that the R-DB Model has actually 
produced the most interesting and provocative set of predictions.  

    Signifi cance of Background Synaptic Inputs 

 As already described, one important prediction of the R-DB Model is that the natu-
ral behavior of the Purkinje cell dendrite depends on the presence of continuous 
background excitatory and inhibitory synaptic input from the granule cell pathway. 
Having replicated the characteristic somatic response to climbing fi ber input, the 
next test for the R-DB Model was to determine whether these background patterns 
of granule cell pathway synaptic inputs would generate the proper frequencies of 
Purkinje cell simple spike fi ring (De Schutter and Bower  1994b ). Again, while 
background excitatory granule cell (parallel fi ber) synaptic activity had been antici-
pated for some time to infl uence ongoing Purkinje cell fi ring (Llinas et al.  1969a ), 
in order to get realistic patterns of spiking out of the active Purkinje cell model it 
was necessary to also add background inhibitory synaptic inputs (De Schutter and 
Bower  1994b ). This was the fi rst time that inhibitory inputs had been included in a 
Purkinje cell model. Further, the model predicted that the same frequency of 
Purkinje cell output could be generated by different combinations of background 
excitatory and inhibitory inputs. 

 It is again not possible to fully describe the complex dendritic and somatic inter-
actions resulting in the ongoing patterns of simple spike activity. Those explana-
tions can be found in the original modeling and experimental papers themselves (De 
Schutter and Bower  1994a ,  b ; Jaeger et al.  1996 ; De Schutter  1999 ; Jaeger and 
Bower  1999 ), as well as subsequent R-DB Model-based investigations (Santamaria 
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et al.  2002 ). However, these modeling efforts resulted in several key predictions. 
First the model predicted that Purkinje cell behavior was dependent on the ability of 
the soma, itself, to spontaneously generate action potentials. This ability now spe-
cifi cally demonstrated experimentally (Pugh and Raman  2009 ) has recently been 
further studied using a model derived from the R-DB line (Forrest et al.  2012 ). 
Second, as shown in Fig.  5.13 , the model predicted that the large intrinsic voltage 
gated currents and not the relatively smaller currents associated with synaptic acti-
vation, most infl uenced ongoing somatic spiking (Jaeger et al.  1996 ; De Schutter 
 1998 ; Jaeger and Bower  1999 ). In fact, the model predicted that the Purkinje cell 
dendrite is actually dominantly a current synch rather than a source. Further, the 
model suggested that background spontaneous parallel fi ber inputs had much less of 
an effect on the actual timing of Purkinje cell spikes than did inhibitory synaptic 
input (Jaeger et al.  1996 ). While a full description is again beyond the scope of this 
chapter, experimental (Jaeger and Bower  1999 ; Womack and Khodakhah  2002a ,  b , 
 2004 ; Womack et al.  2004 ; Santamaria et al.  2007 ) and subsequent R-DB Model 
related studies (Howell et al.  2000 ; Miyasho et al.  2001 ; Coop et al.  2010 ; Brown 
et al.  2011 ; Forrest et al.  2012 ) have supported these unexpected interactions 
between the Purkinje cell dendrite and soma.

  Fig. 5.13    False color representation of membrane potential and Ca 2+  concentration during a 
2.0 nA current injection in the soma of the modeled Purkinje cell. Simulated membrane potential 
is shown during a somatic action potential ( a ), at the beginning of a dendritic spike ( b ) and 1.6 ms 
later ( c ). ( d ) Shows predicted somatic ( red ) and dendritic ( Green ) membrane potential at the times 
indicated. ( e ) and ( f ) indicated submembrane Ca 2+  concentration at the same time as ( b ) and 
( c ) respectively. Reproduced with permission from De Schutter and Bower ( 1994b )       
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       Dendritic Democracy and Distal Synaptic Inputs 

 The infl uence of excitatory synaptic input in such a large dendrite has been a central 
issue for Purkinje cell modeling for many years. In fact, the publication by Llinas 
et al. ( 1968 ) that sparked the fi rst consideration of modeling in Purkinje cells (Calvin 
 1969 ; Calvin and Hellerstein  1969 ; Zucker  1969 ) started by posing the following 
fundamental question: “In studying the anatomy of the Purkinje cell, one wonders 
how the distal region of (these large) dendrites can act upon the soma and axon …” 
(Llinas et al.  1968 , p. 1132). That paper went on to identify two possibilities: 
“(1) by direct electrotonic spread from the distal dendrite to the soma, or (2) by the 
initiation of action potentials or local responses which can be conducted either in an 
all- or-none manner or in a decremental fashion down to the axon.” (Llinas et al. 
 1968 , p. 1132). Considering this question was also a primary objective of the mod-
eling efforts of both Shelton ( 1985 ) and Rapp et al. ( 1992 ,  1994 ), who, based on 
their passive models both predicted that the Purkinje cell dendrite was actually elec-
trotonically compact and therefore that distal and proximal synaptic inputs should, 
in principle, have an equal infl uence on the soma. Shelton specifi cally describes the 
functional signifi cance of the high passive dendritic input resistance and thus the 
electrotonic compactness as “a specialization which optimizes the dendrites for sig-
naling (the soma) with minimum (synaptic) attenuation” (Shelton  1985 , p. 127). 
This apparent characteristic of the passive electrical properties of the Purkinje cell 
dendrite has since been described as promoting “dendritic democracy” so that: 
“somatic EPSP amplitude is only weakly dependent on synaptic location on Purkinje 
cell spiny branchlets” (Roth and Hausser  2001 , p. 469). 

 Of course, Llinas et al. ( 1968 ); Pellionisz and Llinas ( 1977 ); Shelton ( 1985 ); and 
Rapp et al. ( 1992 ,  1994 ), all recognized that this baseline “dendritic democracy” 
only applied to the passive electrical properties of the dendrite, and was therefore 
likely to change with the addition of active conductances. Shelton specifi cally pre-
dicted that the addition of synaptic conductances would likely “swamp” (Shelton 
 1985 , p. 128) the passive membrane conductivity, signifi cantly extending the elec-
trotonic length of the dendrite. Actual simulations by Rapp et al. ( 1992 ,  1994 ) sup-
ported Shelton’s speculation, predicting that individual parallel fi ber synapses 
“essentially loose their functional meaning (in the presence of large amounts of 
background synaptic input) and only activation of a large number of parallel fi bers 
will signifi cantly displace the membrane potential” (Rapp et al.  1992 , p. 530). 

 It therefore was not surprising that adding both synaptic conductances as well as 
the large voltage dependent dendritic Ca 2+  related membrane conductances further 
extend the electrotonic length of the dendrite (De Schutter and Bower  1994a ) a 
modeling result subsequently tested experimentally (Staub et al.  1994 ; Ascoli 
 2007 ). However, as described in the third paper in the 1994 series (De Schutter and 
Bower  1994b ; De Schutter  1999 ), what was surprising was that the addition of den-
dritic voltage dependent Ca 2+  membrane conductances uncovered a new and unex-
pected biophysical mechanism in which synchronously activated granule cell inputs 
induced a subthreshold Ca 2+  dependent amplifi cation mechanism that restored 
“democracy” to the dendrite (Fig.  5.14 ). While Pellionisz and Llinas ( 1977 ) had 
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suggested the general possibility that active membrane properties could facilitate 
the infl uence of synapses on the soma, and Shelton specifi cally speculated that 
“active dendritic spikes or active graded potentials may act as a booster mechanism 
to overcome the electrotonic lengthening of the dendrite due to synaptic activation” 
(Shelton  1985 , p. 128), the particular mechanism that emerged from the active 
R-DB Model was unexpected. Instead of being dependent on a dendritic calcium 
spiking mechanism as previously assumed (Pellionisz and Szentagothai  1974 ), the 
mechanism involved activation of a sub-spiking threshold event (Fig.  5.14 ). Because 
of this mechanism, the model predicted that a small number of synchronously acti-
vated granule cell synaptic inputs would produce a similar level of depolarization in 
the soma regardless of where they were located on the dendrite (De Schutter and 
Bower  1994c ). Similar results have now been shown using the model for synchro-
nous inhibition (Solinas et al.  2006 ). Importantly, while generating a somatic spike 

  Fig. 5.14    False color images of the response of the R-DB Model to a synchronous synaptic input 
on a distal ( a – f ) and proximal ( g – i ) branchlet. Membrane potential is shown in ( a – c ) and ( g – i ) 
while ( d – f ) indicates sub membrane Ca 2+  concentrations corresponding to activity in ( a )–( c ). 
Reproduced with permission from De Schutter and Bower ( 1994c )       
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in the passive dendritic models required the activation of large numbers of excit-
atory synapses (Llinas and Sugimori  1980b ; Rapp et al.  1992 ,  1994 ), spike genera-
tion in the active membrane model required an order of magnitude fewer active 
synapses (De Schutter and Bower  1994c ). Since the original model-based predic-
tion that dendritic calcium channels can have signifi cant effects on the transmission 
of synaptic input to the soma, considerable experimental work has been done to 
characterize the effects of dendritic voltage gated calcium channels on Purkinje cell 
spiking (Cavelier et al.  2002 ; Rancz and Häusser  2010 ) and experimental studies 
have shown that relatively few synchronous excitatory inputs are necessary to gen-
erate a somatic spike (Isope and Barbour  2002 ).

       Purkinje Cells in Their Network Context 

 As is probably the case for all neurons, the functional signifi cance of the physiologi-
cal properties of any neuron must be considered and will probably only be fully 
understood in the context of the network in which they are embedded. For Purkinje 
cells, this has meant embedding the R-DB Model within realistic network simula-
tions (Santamaria et al.  2007 ). As with single cell modeling, it is also important for 
network level modeling to have a clearly defi ned set of physiological behaviors it 
seeks to simulate, preferably behaviors that are surprising or not yet well under-
stood (Bower  1990 ). As it turns out the original motivation for cerebellar modeling 
in my laboratory was to investigate an unexpected and counterintuitive pattern of 
experimentally observed Purkinje cell responses in response to peripheral sensory 
stimuli (Bower and Woolston  1983 ). Specifi cally, as shown in Fig.  5.15 , the spatial 
extent of Purkinje cell responses to peripheral stimuli is far more restricted than 
expected from the spatial spread of the parallel fi bers (Eccles et al.  1972 ; Bower and 
Woolston  1983 ). Further, as also shown in Fig.  5.15 , when the spatial location of 
Purkinje cells was compared to the spatial distribution of activity in the granule cell 
layer the results demonstrated that only Purkinje cells recorded immediately over 
the region of activated granule cells were directly excited (Bower and Woolston 
 1983 ). Results consistent or directly supporting this fi nding have now been reported 
in numerous subsequent experiments (Kolb et al.  1997 ; Cohen and Yarom  1998 ; Lu 
et al.  2005 ; Holtzman et al.  2006 ; Heck et al.  2007 ; de Solages et al.  2008 ; Rokni 
et al.  2008 ; Brown and Ariel  2009 ; Walter et al.  2009 ; Dizon and Khodakhah  2011 ).

   In the original experimental studies, the restricted extent of Purkinje cells acti-
vated by peripheral stimuli was interpreted to suggest that parallel fi bers were less 
infl uential on Purkinje cell output than had previously been assumed (Bell and 
Grimm  1969 ; Eccles et al.  1972 ; Bower et al.  1980 ; Bower and Woolston  1983 ). As 
diagrammed in Fig.  5.16 , Llinas subsequently suggested that the experimental data 
could be explained if Purkinje cells were driven by synchronous input from synapses 
made by granule cells as they ascend through the molecular layer (Mugnaini  1972 ), 
but not by a more asynchronous input from parallel fi bers activated by the same 
stimulus (Llinas  1982 ). Considered now in the context of the R-DB Modeling results, 
this explanation seemed perfectly consistent with the relative lack of direct infl uence 
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of background parallel inputs on Purkinje cell spiking, and the existence of an ampli-
fi cation mechanism for synchronous excitatory inputs discovered using the model 
(De Schutter and Bower  1994c ). Accordingly it was fully expected that the R-DB 
Model, when placed in a network context, would fully support the Llinas hypothesis. 
It was surprising therefore, that even a highly desynchronized pattern of parallel 
fi bers following simulated peripheral stimulation, still drove Purkinje cell spiking as 
a result of the dendritic boosting mechanism (Santamaria et al.  2007 ). Instead, once 
again replicating the physiological data required the addition of feedforward 

  Fig. 5.15    ( a ,  b , and  c ): show the restricted spatial pattern of excitatory ( dark stippling ) and inhibi-
tory ( light hatching ) Purkinje cell responses following peripheral stimulation in three different 
experiments. The stimulus activated only granule cells beneath the region of excitatory PC 
responses. ( d ) Shows the expected pattern of activation if parallel fi bers drove Purkinje cell 
responses. ( e ) Original drawing from Llinas ( 1982 ) illustrating the hypothesis that synapses associ-
ated with the ascending segment of the granule cell axon are responsible for the restricted spatial 
activation of Purkinje cells. Reprinted with permission from Bower and Woolston ( 1983 )       
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inhibitory synaptic inputs. In fact, the model predicted (Santamaria et al.  2007 ), and 
subsequent experimental results confi rmed (Santamaria et al.  2007 ; Walter et al. 
 2009 ), that parallel fi ber inputs would drive Purkinje cell responses in vivo when 
inhibition was blocked.

       Implications for Functional Structure 

 What has emerged from the combination of single cell and network modeling results 
using the R-DB Model is a very different view of the functional organization of 
cerebellar cortical networks (Bower  1997a ,  2010 ). Instead of being driven by paral-
lel fi ber excitation, somatic output appears to be infl uenced primarily by synapses 
associated with the ascending segment of the granule cell axon. Parallel fi bers and 
the inhibition they also drive through feedforward molecular layer inhibitory neu-
rons, instead seem to indirectly infl uence the ongoing spiking behavior of the soma. 
As diagramed in Fig.  5.17 , what is interesting is that the interactions between these 
different synaptic infl uences turn out to be manifest in the fi ne physical structure of 
the Purkinje cell dendrite itself. Specifi cally, anatomical studies have shown that the 
synapses associated with the ascending granule cell axon segments are found only 

  Fig. 5.16    Diagram contrasting synapses made on Purkinje cell dendrites by ascending ( red ) and 
parallel ( blue ) branches of the granule cell. Anatomical studies have shown that ascending segment 
synapses make direct projections on only the most distal fi ne Purkinje cell dendritic branches 
(Gundappa-Sulur et al.  1999 ; Lu et al.  2009 )       
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on the distal regions of the dendrite, while parallel fi ber inputs are found dominantly 
on the more proximal spiny dendrites (Gundappa-Sulur et al.  1999 ; Lu et al.  2009 ). 
In principle what this means is that synapses from parallel fi ber (and molecular 
layer interneurons) are in an ideal position to modulate somatic responses to ascend-
ing segment inputs. A modulatory effect is further expected by the fact that both the 
amplifi cation mechanism and the infl uence of background parallel fi ber and molec-
ular layer inhibitory on the soma appear to be mediated through voltage dependent 
calcium channels (Bower  2010 ). It is interesting to note that the R-DB Model also 
predicts that climbing fi ber activation would fl ood the entire spiny branchlet region 
with calcium, potentially providing a general reset function for these modulatory 
effects (Bower  1997c ).

   This R-DB Model-based reevaluation of the functional structure of cerebellar 
cortical circuitry has signifi cant implications for cerebellar function (Bower  1997b , 
 2002 ,  2012 ; Bower and Parsons  2003 ; Manto et al.  2012 ). Instead of performing a 
traditional parallel fi ber mediated role in timing (Braitenberg  1967 ; Heck and Sultan 
 2002 ), or pattern recognition (Marr  1969 ; Albus  1971 ; Ito  2006 ; Ohyama et al. 
 2010 ), Purkinje cells would seem to be more involved in a contextual kind of func-
tion, where specifi c sensory inputs via the ascending segment synapses are placed 

  Fig. 5.17    Schematic representation of the proposed synaptic and functional structure of cerebellar 
Purkinje cells. Each element and region is color coded as shown in the fi gure legend. The diagram 
demonstrates that the infl uence of ascending segment synapses must traverse regions of the spiny 
dendrite infl uenced by parallel fi bers and molecular layer inhibitory interneurons. This is predicted 
to form the anatomical basis for modulation of the Purkinje cell’s response to peripheral input. 
Reproduced with permission from Bower ( 2012 )       
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in a modulatory context provided the parallel fi ber and molecular layer interneuron 
activity (Bower  2012 ). As only one resulting change in perspective, parallel fi ber 
synaptic plasticity has generally been interpreted in the context of Purkinje cells 
serving a pattern recognition function. Specifi cally, fi rst predicted in the context of 
theories of cerebellar motor learning (Marr  1969 ; Albus  1971 ), parallel fi ber synap-
tic plasticity has been assumed for many years to be a mechanism to select which 
of the tens of thousands converging parallel fi ber’s actually drive Purkinje cell out-
put (Ito  2006 ; Steuber et al.  2007 ). In the context of the results of the R-DB Model, 
however, it has been proposed instead that parallel fi ber synaptic plasticity serves to 
keep the overall levels of excitatory input to the Purkinje cell dendrite in balance 
with overall levels of inhibitory input (De Schutter  1997 ). In other words, synaptic 
plasticity in cerebellar cortex may be providing what is, in effect, a more homeo-
static function than one specifi cally related to pattern recognition and learning.   

    Why Build and Use Community Models? 

 First, before considering why it is important to build and use community models, it 
is important to state that one purpose of community models is NOT to force every-
one to accept the same functional interpretations. In fact, having originally pub-
lished the fi rst suggestion that parallel fi ber synaptic modifi cation might not be 
related to learning (De Schutter  1997 ), De Schutter et al. have recently been using 
the R-DB Model to explore synaptic learning mechanisms (Achard and De Schutter 
 2008 ). However, even or maybe especially in the context of ongoing controversies 
and debates regarding Purkinje cell and cerebellar function, there are several dis-
tinct and clear advantages to the use of community models: 

    Confi dence in Model Structure 

 As should be clearly evident in this chapter, realistic biological models are becom-
ing more and more complex as more information is available and the behavior we 
seek to replicate is becoming fi ner grained. Some have suggested, for this reason, 
that modelers should build less complex, more abstract Purkinje cell models (Bush 
and Sejnowski  1990 ; Coop and Reeke  2001 ). These models, however, have barely 
been referenced in the literature and have not resulted in any further modeling stud-
ies. Accordingly, realistic models are likely to continue to be developed and propa-
gate. Therefore, especially given their complexity a basic but important use of 
community models is to develop confi dence in model structure through testing by 
multiple investigators in multiple-laboratories. 

 Of course, the growing complexity of realistic models as well as their common 
use also requires the concomitant growth in modeling infrastructure and techniques. 
In fact, anticipating the importance of modeling systems, the original transfer of the 
model from the Segev to Bower laboratories involved converting from the electronic 
circuit modeling system SPICE (Bunow et al.  1985 ) into GENESIS, a modeling 
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system specifi cally designed for models of this type (Bower and Beeman  1995 , 
 2007 ). More recently, the R-DB Model, has been translated into NEURON (Hines 
and Carnevale  1997 ), and been built into Neuroconstruct (Gleeson et al.  2007 ), fur-
ther extending its reach and availability. It is also necessary to continue to develop 
new tools for model visualization, publishing and perhaps especially the quantita-
tive study of parameter variations (Cornelis et al.  2010 ,  2011 ).  

    Reinventing the Wheel 

 While the R-DB Model has emerged as a community model, this does not mean that 
other realistic Purkinje cell models have not been developed. In the last 10 years 
several other multi-compartmental single cell Purkinje cell models have been pub-
lished (Roth and Häusser  2001 ; Vetter et al.  2001 ; Heck et al.  2003 ; Steuber and 
Willshaw  2004 ; Kulagina et al.  2008 ; Sjostrom et al.  2008 ; Genet et al.  2010 ). In 
some cases, new models were developed so that experimental results could be eval-
uated in the context of the specifi c dendritic morphologies of the recorded neurons 
(Roth and Häusser  2001 ). In most others however, it is not at all clear why it was 
necessary to build an entirely new model. So far there is no evidence that these 
models have been used outside of their labs of origin and most have been described 
in only one publication, refl ecting what is the more common general state of com-
putational neuroscience (Manninen et al.  2010 ). The risk to the fi eld is additional 
confusion and uncertainty as well as less clarity in measuring and understanding 
progress. As one recent example, the “new unifying hypothesis” on the infl uence of 
the Purkinje cell dendrite on its soma, recently proposed by Genet et al.  2010 , is 
largely a replication of work done 20 years earlier with the R-DB Model (Jaeger 
et al.  1996 ). This earlier effort is only referenced for a technical detail. In another 
example, the role of intrinsic somatic spike generation in Purkinje cell behavior is 
the subject of a recent modeling study that actual does uses the same morphologies 
as Shelton and Rapp (Forrest et al.  2012 ), but fails to reference or take advantage of 
previous related work.  

    Establishing Modeling Standards 

 Perhaps one of the most important reasons to develop and adopt community models 
is to establish specifi c and agreed upon modeling standards. It is a remarkable fact 
that even though Pellionisz and Llinas fi rst proposed more than 25 years ago that the 
“adequacy” of a Purkinje cell model should depend on its ability to replicate its 
characteristic response properties (Pellionisz and Llinas  1977 ), many Purkinje cell 
models, especially those providing the base for network simulations, have made no 
attempts to do so (Blum et al.  1993 ; Buonomano and Mauk  1994 ; Yuen et al.  1995 ; 
Barto et al.  1999 ; Chauvet and Chauvet  1999 ; Medina and Mauk  2000 ; Spoelstra 
et al.  2000 ; Kistler and De Zeeuw  2002 ; Brunel et al.  2004 ; Mauk and Ohyama 
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 2004 ; Steuber and Willshaw  2004 ; Yamazaki and Tanaka  2007 ; Carrillo et al.  2008 ; 
Kulagina et al.  2008 ; de Gruijl et al.  2009 ; Dean et al.  2009 ; Abrams et al.  2010 ; 
Ohyama et al.  2010 ; Dean and Porrill  2011 ; Li et al.  2012 ; Yamazaki and Nagao 
 2012 ). It is entirely unclear what the value of a network model is if the properties of 
its principle neuron bears little resemblance to physiological reality.  

    Establishing an Accepted Understanding of Purkinje Cell 
Behavior and Function 

 Quoting from the summary of De Schutter and Bower ( 1994b ): “This simulation 
work demonstrates that a model based on voltage clamp data and tuned entirely on 
the response of Purkinje cells to current injection is capable of reproducing a wide 
range of synaptically activated responses” (De Schutter and Bower  1994b , p. 401). 
By incorporating active dendritic properties, the model addressed questions regard-
ing the infl uence of an active dendrite on cellular processes that had motivated 
Purkinje cell modeling from the previous 25 years (Calvin and Hellerstein  1969 ; 
Pellionisz and Llinas  1977 ; Shelton  1985 ; Rapp et al.  1992 ,  1994 ; Bush and 
Sejnowski  1990 ; Travis  1990 ). In doing so, the model revealed many new features 
of cerebellar Purkinje cells many of which were subsequently supported by experi-
mental studies (De Schutter  1999 ; Bower  2010 ). Perhaps especially important, this 
combination of modeling and experimental studies has revealed that Purkinje cell 
responses to granule cell-related excitatory and inhibitory synaptic inputs are quite 
different from the parallel fi ber dominant, integrate and fi re type cellular dynamics 
assumed by the most dominant current theories of cerebellar function (Braitenberg 
 1967 ; Marr  1969 ; Albus  1971 ; Pellionisz and Szentagothai  1974 ; Medina and Mauk 
 2000 ; Vetter et al.  2001 ; Heck and Sultan  2002 ; Ito  2006 ; Kitamura and Kano  2012 ). 
Perhaps it is not surprising that the models built primarily to support those theories 
continue to assume that Purkinje cells can be represented as simple integrate and 
fi re neurons (Buonomano and Mauk  1994 ; Medina and Mauk  2000 ; Mauk and 
Ohyama  2004 ; Yamazaki and Tanaka  2007 ; Carrillo et al.  2008 ; Hong and Optican 
 2008 ; Ohyama et al.  2010 ; Li et al.  2012 ). In principle, full adoption of a community 
model could help develop some uniformity in how Purkinje cells are represented 
and considered.  

    Effi cient Collaborative Communication 

 This then leads to what is perhaps the most practical and important value of a com-
munity model: its use as a means of communication and collaboration. For the 
R-DB Model, this is evident in the continuing expansion of related modeling stud-
ies. In quantitative fi elds, like physics and chemistry, this type of shared model is the 
basis for publishing as well as funding results. Philosophers of science have long 
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recognized the importance for science of an eventual transition from an observation- 
based story telling, to a quantitative model-based structure (Kuhn  1962 ). It is worth 
noting again, that models that misrepresent the actual physical properties of the 
neurons or circuits in order to demonstrate the plausibility of a preexisting theory or 
hypothesis are essentially an extension of the story telling tradition. 

 Beyond modelers, while the R-DB Model has been referenced more than 500 
times in the last 20 years, the same 20 years have seen the publication of over 
10,000 experimental papers on Purkinje cells. Many of those papers, even today, 
raise issues that modelers have considered for many years, and in some cases have 
even resolved years ago. Yet even review articles on subjects as central to 40 years 
of Purkinje cell modeling as the active properties of the Purkinje cell dendrite can 
quite remarkably be published with hardly any mention of these modeling results 
(Kitamura and Kano  2012 ). 

 This therefore, is perhaps the most important reason that over the next 20 years 
it will be critical for the computational neuroscience community to adopt and 
build community models. By committing to the use of community models we 
establish a common structure that can be presented to the larger neuroscience 
community, not as just another model, but as a model that has been built, tested, 
verifi ed and accepted. Why shouldn’t those models fi nd their way into graduate 
training programs, or neuroscience textbooks? As long as we fail to cooperate, we 
will likely continue to be largely ignored, not only be experimentalists, but also by 
our fellow modelers. It is only through the cooperative building and testing of 
models that an underlying quantitative infrastructure will begin to be constructed 
for neuroscience.      
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    Abstract     Calcium plays a critical role in numerous physiological processes, both 
inside and out of the nervous system, and thus is widely studied by both experimen-
tal and theoretical neuroscientists. While the role of calcium in the nervous system 
has been studied by experimentalists for many decades, the last 20 years has seen 
considerable growth in the use of computational modeling as a tool to unravel the 
complex cellular mechanisms requiring calcium. For example, computational mod-
eling has enhanced our understanding of processes such as release of neurotransmit-
ter and excitation–contraction coupling in myocytes. Long-term synaptic plasticity 
and the control of neuronal activity patterns are two additional functions of calcium 
that are of particular interest to computational neuroscientists. This chapter presents 
a brief history of computational modeling studies that investigate either the relation-
ship between calcium and long-term synaptic plasticity, or the relationship between 
calcium and neuronal fi ring patterns. The focus is on the subset of models that made 
advancements either in the form of the model or by addressing a novel scientifi c 
question.  

        Introduction 

 Calcium plays a critical role in numerous physiological processes, both inside and 
out of the nervous system, and thus is widely studied by experimental and theoreti-
cal neuroscientists. The earliest studies demonstrated that calcium was the trigger 
for neurotransmitter release (Katz and Miledi  1967 ); however, the complete bio-
physical and biochemical mechanisms still are not delineated. In the past 20 years, 
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even with advanced imaging techniques it has not been possible to visualize the 
calcium nanodomains directly surrounding the synaptic vesicles. Thus modeling of 
calcium in the axon terminal has addressed issues such as proximity of channels to 
vesicles, and mechanisms relating calcium concentration in the terminal to short- 
term plasticity (Schneggenburger and Neher  2005 ). Another critical function of cal-
cium is excitation–contraction coupling in myocytes (Williams et al.  2010 ). 
Depolarization of myocytes triggers release of calcium through calcium-dependent 
calcium-permeable channels located on an intracellular organelle called the sarco-
plasmic reticulum. The calcium then binds to proteins which modify the interaction 
of actin with myosin. In neurons and excitable endocrine cells the smooth endoplas-
mic reticulum (SER) is a store of calcium that is analogous to the sarcoplasmic 
reticulum. Release of calcium through two types of calcium-permeable channels, 
ryanodine receptor channels (RyR) and inositol triphosphate receptor channels 
(IP 3 R), causes calcium spikes and waves. Modeling has been valuable for exploring 
interactions between calcium release mechanisms and calcium dynamics, such as 
demonstrating that gap junctions coordinate the rate of calcium oscillations in hepa-
tocytes (Dupont et al.  2007 ). 

 Two additional functions of calcium of particular interest to computational neu-
roscientists are long-term synaptic plasticity and the control of neuronal activity 
patterns. Long-term potentiation (LTP) and long-term depression (LTD) are two 
types of synaptic plasticity both of which require elevations in intracellular calcium 
concentration for their induction (Teyler et al.  1994 ). Over the past 20 years model-
ing studies have addressed the relationship among calcium concentration, temporal 
pattern of stimulation, and direction of plasticity. In particular modeling studies 
have investigated whether the frequency of stimulation controls the level of calcium 
in hippocampal and neocortical pyramidal neurons, and why stimulation of two dif-
ferent sets of inputs is required for a large calcium elevation in cerebellar Purkinje 
neurons. A second experimental observation explored with computational models is 
that diverse neuronal fi ring patterns, such as spike frequency adaptation and burst 
fi ring, cannot be produced by the standard Hodgkin–Huxley sodium and potassium 
channels alone. Many other voltage-dependent ion channels are needed, including 
both calcium-permeable channels and calcium-dependent potassium channels. As 
these fi ring patterns may be important for information processing, modeling studies 
have evaluated the role of calcium in producing these patterns. 

 Accurate modeling of calcium dynamics involves numerous mechanisms for 
controlling intracellular concentration (De Schutter and Smolen  1998 ), and multiple 
feedback loops at multiple time scales are important (Fig.  6.1 ). Calcium fl ows into 
the cell through various types of voltage-dependent calcium channels (VDCC), and 
ligand-gated ion channels such as the NMDA type of glutamate receptor channels. 
Much of this calcium binds to various buffer proteins, such as calmodulin or calbi-
ndin, or is pumped out of the cytoplasm into the extracellular space by the plasma 
membrane calcium ATPase (PMCA) or the sodium calcium exchanger (NCX). 
Calcium also is released from the SER via IP 3 R and RyR channels, and is pumped 
back into the SER by the smooth endoplasmic reticulum calcium ATPase (SERCA) 
pump. In addition, diffusion of either calcium or calcium buffers redistributes the 
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calcium from high concentration regions to low concentration regions. The free 
calcium participates in a fast negative feedback loop which involves binding to 
calcium- dependent potassium channels. By hyperpolarizing the membrane, these 
potassium channels decrease infl ux of calcium through VDCC. A slow feedback 
loop involves activation of calcium-dependent phosphatases and kinases, which 
phosphorylate various ion channels, such as the AMPA and NMDA receptor chan-
nels, or sodium and potassium channels. By changing the kinetics or voltage depen-
dence of channel opening, these calcium-mediated phosphorylation events modulate 
membrane excitability and subsequent calcium infl ux.

   This review presents a brief history of computational modeling studies that 
investigate either the relationship between calcium and long-term synaptic plastic-
ity, or the relationship between calcium and neuronal fi ring patterns. The focus is on 
the subset of models that made advancements either in the form of the model or by 
addressing a novel scientifi c question. Technical advancements include increasing 
the accuracy of the electrical model of the neuron, the types of calcium regulatory 
mechanisms included, and whether simulations were performed deterministically 

  Fig. 6.1    Calcium enters the cell through NMDA receptor channels or voltage-dependent calcium 
channels. Most of the calcium binds to various buffer proteins or is pumped out of the cell. The 
remaining free calcium may activate calcium-dependent potassium channels, which oppose mem-
brane depolarization (fast feedback loop). Alternatively, the calcium may activate various kinases 
and phosphatases, which modify ionic and synaptic channels, forming slow positive or negative 
feedback loops       
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or stochastically. Note that progress has been highly nonlinear, with increased 
details in one aspect of the model being accompanied by simplifi cations in other 
aspects of the model. A further caveat is that technical advancements mentioned in 
the context of synaptic plasticity or fi ring patterns sometimes follow identical mod-
eling approaches employed for investigating neurotransmitter release or calcium 
waves.  

    Models Investigating Long-Term Synaptic Plasticity 

 A critical question addressed with computational models of calcium dynamics is 
whether the elevation in intracellular calcium is sensitive to the characteristics of 
synaptic activation, as postulated by theories on synaptic plasticity. In the hippo-
campus, high frequency stimulation is thought to produce LTP because it produces 
a large calcium elevation, whereas low frequency stimulation produces a small cal-
cium elevation, leading to LTD (Teyler et al.  1994 ; Bear and Malenka  1994 ). In the 
cerebellum, induction of LTD requires pairing of two different types of synaptic 
inputs (Ito  2001 ). 

    Early Models 

 The earliest models focused on calcium within a single dendritic spine to investigate 
the relationship between synaptic activation pattern and calcium infl ux through the 
NMDA receptor. The spine was subdivided into a small number of compartments, 
representing the postsynaptic density (PSD), spine head and spine neck and attached 
to a single dendritic compartment. Diffusion was modeled in one dimension, from 
the synaptic channels located at the PSD toward the dendrite, and calcium was regu-
lated further by one or two buffer proteins and one or two membrane pumps 
(Fig.  6.2 , Table  6.1 ). Gamble and Koch ( 1987 ) evaluated frequency-dependent ele-
vation of calcium within the dendritic spine, and demonstrated that not only peak 
calcium but also calcium-bound-calmodulin was signifi cantly greater with high fre-
quency (100 Hz) stimulation as compared to low frequency (1 Hz) stimulation. 
Zador et al. ( 1990 ) coupled their model of calcium dynamics to a simplifi ed 
28- compartment electrical model of hippocampal CA1 neuron activity to investi-
gate why both presynaptic activity and postsynaptic depolarization were required 
for LTP. They demonstrated that the postsynaptic depolarization was required to 
relieve the magnesium block of NMDA receptors and allow calcium to fl ow into the 
cell. Even more interesting, simulations showed that calcium infl ux was sensitive to 
the temporal interval between presynaptic glutamate release and postsynaptic depo-
larization, long before the experimental demonstration of spike timing-dependent 
plasticity (Bi and Wang  2002 ). Holmes and Levy ( 1990 ) were the fi rst to evaluate 
the frequency dependence of LTP using a complete multi-compartment electrical model. 
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They demonstrated that the frequency dependence of calcium elevation crucially 
depended on the number of activated synapses, similar to the experimentally 
observed property of cooperativity (Wigstrom and Gustafsson  1986 ).

    Two additional models published in the 1990s coupled calcium dynamics to elec-
trical activity to explore additional characteristics of LTP. Schiegg et al. ( 1995 ) 
explored the experimental observation that calcium must be elevated for >2 s for suc-
cessful LTP induction (Malenka et al.  1992 ). Specifi cally, they demonstrated that the 
calcium dynamics model of Zador et al. ( 1990 ) produces a fast calcium decay which 
is not compatible with the prolonged calcium elevation required for LTP. Then they 
included additional equations describing calcium release from intracellular stores, 
and showed that this calcium source maintained the calcium elevation for a suffi -
ciently long time. Another model (Holmes and Levy  1997 ) investigated the experi-
mental observation that weak and strong inputs must be close to each other on a 
hippocampal granule cell dendritic tree to produce associative LTP of the weak input 
pathway. This model represented a signifi cant advance because the electrical model 
included voltage-dependent sodium, potassium, and calcium channels. This model 
demonstrated that the proximity requirement for the weak and strong inputs is due to 
shunting inhibition by GABA activation, which produces strong voltage attenuation. 

  Fig. 6.2    Early models of calcium dynamics focused on calcium within single spine, and included 
one or two pumps, one or two buffers, axial diffusion infl ux through NMDA or VDCC       
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Thus, blocking GABAA inputs experimentally, or raising the membrane resistance of 
the model, eliminated this requirement, because the depolarization produced by the 
strong inputs then could spread throughout the dendritic tree.  

    Role of Calcium Buffers 

 The next set of models investigated how characteristics of calcium buffers, such as 
the rate of binding, modify calcium dynamics. Though these models were not cou-
pled to neuron electrical activity, in some cases direct comparison to calcium imag-
ing was used to constrain or validate the calcium model. The calcium dynamics 
were controlled by one-dimensional (1D) diffusion within a spherical neuron, a 
membrane pump, and several calcium buffers, which were characterized by three 
basic properties: diffusion rate, affi nity, and the speed of binding to calcium. Sala 
and Hernandez-Cruz ( 1990 ) showed that the initial calcium decay was governed by 
diffusion, whereas a later decay phase depended on extrusion via membrane pumps. 
In the submembrane shell, calcium increased rapidly to a steady state plateau, 
whose amplitude was governed by the balance between calcium infl ux and binding 
to buffer. Consequently, an increase in buffer binding speed produced a decrease in 
the submembrane calcium concentration. Nowycky and Pinter ( 1993 ) further inves-
tigated the role of buffer properties, and showed that during slow changes in cal-
cium (such as those that occur in the interior of the cell), the fraction of calcium 
bound to a buffer depended on its affi nity, but in response to rapid or brief changes 
in calcium concentration (as typically occurs in the submembrane region), the bind-
ing rate was more important. Markram et al. ( 1998 ) reevaluated the role of buffer 
speed using patterns of calcium infl ux produced by single or trains of action poten-
tials. They demonstrated that with strong calcium extrusion, the calcium due to a 
single action potential (AP) mostly bound to the fastest buffers. In contrast, during 
repetitive trains of action potentials, the slower calcium buffers ultimately bound a 
proportion of the calcium which depended on affi nity and buffer quantity more than 
buffer speed. These studies all demonstrated that calcium dynamics could not be 
described adequately by a single time constant of decay; rather the buffers produced 
diverse calcium dynamics depending on the spatiotemporal input pattern.  

    Role of Diffusion and Morphology 

 The morphology of dendrites and spines, whose thin necks are diffusional barriers, 
infl uences calcium dynamics. The role of the spine neck on calcium dynamics was 
investigated (Volfovsky et al.  1999 ) using a model with 2D diffusion of calcium in 
a spine attached to a dendrite. Simulations studied how spine neck length and the 
presence of a calcium indicator dye infl uenced calcium concentration in response to 
caffeine, which causes calcium release from intracellular stores. Experiments and 
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model simulations together demonstrated that the gradient from spine to dendrite 
was larger when the spine neck was longer. Simulations further showed that both 
peak calcium and the spine to dendrite gradient were larger in the absence of the 
calcium indicator dye. This role of spine neck as diffusional barrier also was observed 
in cerebellar Purkinje neurons (Schmidt and Eilers  2009 ) in response to burst stimu-
lation of parallel fi ber (PF) synapses. Nonetheless, the weaker diffusional barrier of 
a short stubby spine permitted suffi cient diffusion of calcium-bound buffers to ele-
vate calcium slightly in the dendrite. If neighboring spines were activated together, 
then the calcium accumulation in the dendrite could be suffi cient to activate down-
stream signaling pathways. In summary, the strength of diffusional barriers critically 
depended on the quantities of immobile and diffusible calcium buffers.  

    Mechanisms Underlying the Requirement 
for Conjunctive Stimulation 

 Whereas the early models focus on hippocampal LTP, another set of models inves-
tigates synaptic plasticity in cerebellar Purkinje cells. Activity in Purkinje neurons 
is correlated with classical conditioning behavior (Gould and Steinmetz  1996 ), in 
which learning occurs in response to repeated pairings of a tone (conditioned stimu-
lus or CS) with an air puff to the eye (unconditioned stimulus or US). In the cerebel-
lum, information about the CS (tone) is conveyed by parallel fi bers (PFs) while 
climbing fi bers (CFs) carry the US information (Thompson and Steinmetz  2009 ). In 
vitro plasticity in Purkinje neurons resembles classical conditioning in the require-
ment for paired climbing fi ber and parallel fi ber inputs (Schreurs et al.  1996 ). The 
main question addressed by models of calcium dynamics in Purkinje neurons is 
“Why is paired stimulation required to trigger synaptic plasticity?” 

 One hypothesis tested with several computational models is that paired stimula-
tion produces a supralinear calcium increase, which in turn activates critical down-
stream kinases. To test this hypothesis, the model of Kotaleski et al. ( 2002 ) included 
mechanisms for calcium elevation by both PF and CF. PF activation of metabotropic 
glutamate receptors produced IP 3  which leads to calcium release from intracellular 
stores (Li and Rinzel  1994 ). Activation of VDCC by climbing fi ber stimulation was 
modeled as calcium infl ux into the dendrite, which then diffused into the spine. 
Simulations showed that the calcium elevation was signifi cantly larger in response 
to conjunctive stimulation, but only if CF and PF had the appropriate temporal inter-
val. Both the calcium elevation and activation of protein kinase C were sensitive to 
the temporal interval between PF and CF stimulation, similar to the sensitivity of 
classical conditioning behavior to temporal interval between CS and US (Fig.  6.3 ). 
This result was replicated in another model (Doi et al.  2005 ).

   The issue of temporal sensitivity was reassessed together with spatial specifi city 
of the calcium elevation in a 50 μm dendrite with attached spines (Hernjak et al. 
 2005 ). Simulations demonstrated that cooperativity of PF and CF for calcium 
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depends on spine neck radius. If the spine neck radius was small, acting as a barrier 
for calcium diffusion, then conjunctive stimulation yielded a supralinear calcium 
increase, but a wide spine neck did not act as a barrier, yielding a small calcium 
elevation. The major advancement in this model was the morphology, with multiple 
spines attached to a long dendrite. Simulations using this morphology permitted 
investigation of spatial specifi city, and demonstrated that calcium release did not 
occur in nearby spines because the diffusional barrier of the spine neck prevented 
suffi cient elevation in IP 3  concentration in nearby spines. 

  Fig. 6.3    In the cerebellar Purkinje cell, the calcium elevation is greatest for PF–CF intervals 
between 0.1 and 1.0 s. This calcium contributes to the temporal sensitivity of protein kinase C 
activation       
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 Only one model tightly integrates realistic neuronal electrical activity with equa-
tions describing calcium release from intracellular stores to address the mechanisms 
underlying the requirement for conjunctive stimulation. Pairing light (CS) and ves-
tibular stimulation (US) produces both classical conditioning behavior and plastic-
ity of intrinsic excitability of the photoreceptors of the sea slug  Hermissenda 
crassicornis  (Alkon et al.  1982 ). A model of calcium dynamics (Blackwell  2004 ) 
addresses the hypothesis that vestibular stimulation causes a calcium elevation in 
the terminal branches, which propagates as a wave to the soma where it combines 
supralinearly with the light-induced calcium elevation. This model demonstrates 
that the two sources of calcium do  not  combine supralinearly; rather, they destruc-
tively interfere (Fig.  6.4 ). The critical difference between this result, showing a lack 
of cooperativity, and the cooperativity exhibited in the Purkinje cell models is due 
to the spatial distance between CS and US signals. In the Purkinje cell models, 
CF-induced depolarization causes a calcium elevation everywhere in the dendrite, 
and thus this calcium is close to PF-induced IP 3  production. In the  Hermissenda  
photoreceptor, the CS and US signals are separated by more than 100 μm, too far to 
interact via diffusion alone. This inability to interact via wave propagation rules out 
one of the several alternative mechanisms underlying CS–US cooperativity.

       Nanodomains of Calcium 

 The advancement in calcium imaging techniques has produced a revolution in our 
concepts of calcium domains which has been accompanied by a major transforma-
tion in the models of calcium dynamics. In particular, recent models focus on the 
generation of nanodomains of calcium within the spine, and readdress questions of 
synaptic plasticity. One outstanding conundrum is how the neuron can discriminate 
the calcium elevation required for LTD, which is induced with low frequency stimu-
lation, from the calcium elevation required for LTP, which is induced with high 
frequency stimulation. Some experiments suggest that LTP and LTD have different 
sources of calcium, e.g., NMDA versus VDCC, and also different molecular targets. 
The difference in calcium source and molecular targets suggests that some calcium 
binding proteins may discriminate temporal patterns of calcium, or that molecular 
targets are colocalized with the appropriate calcium source and sense nanodomains 
of calcium. Due to the small size of spines, the numbers of molecules are small, and 
interactions between calcium and its binding proteins occur stochastically; thus, 
several of these recent models use stochastic simulation techniques. 

 The fi rst model to address nanodomains related to synaptic plasticity (Naoki 
et al.  2005 ) investigated whether either calcium or calcium-bound-calmodulin 
could decode both frequency and amplitude of calcium infl ux. Model simulations 
showed that the PSD calcium concentration was sensitive to amplitude of calcium 
infl ux, but not frequency; whereas whole spine calcium concentration was sensi-
tive to frequency of stimulation, but not amplitude of calcium infl ux. On the other 
hand, the quantity of calcium-bound-calmodulin was sensitive to both frequency 
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and amplitude, which may be important for activation of downstream kinases and 
phosphatases. More recently, newly developed simulation software has facilitated 
investigation of nanodomains through stochastic simulation of calcium reaction–
diffusion systems. Kubota et al. ( 2007 ) investigate the role of neurogranin, which 

  Fig. 6.4    Regardless of the intersimulus interval, light-induced calcium and turbulence-induced 
calcium propagate toward each other along the neurite (shown by  arrows ), and meet in the 
middle ( asterisk ). Neither intersimulus interval contributes to the calcium elevation in the soma. 
( a ) Forward pairing: when the US occurs 1 s after the CS, the calcium waves meet 45 μm from the 
terminal branches. ( b ) Backward pairing: when the US occurs 1 s before the CS, the calcium waves 
meet 65 μm from the terminal branches. No calcium elevation is observed at 5.6–6 s due to destruc-
tive interference of the two waves at 4.7–5.1 s       
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binds to and acts as a buffer for calmodulin, in controlling calcium dynamics in a spine. 
Neurogranin has a lower affi nity for the calcium-bound form of calmodulin than 
for the calcium-free form; conversely, neurogranin binding to calcium–calmodulin 
accelerates calcium dissociation from the C-terminal lobe of calmodulin. Model 
simulations show that by decreasing calcium binding to calmodulin, neurogranin 
delays the transition of calmodulin to the fully saturated state. Keller et al. ( 2008 ) 
couple a stochastic simulation of spine calcium dynamics to neuron electrical 
activity to investigate the experimental observation that the elevation in calcium 
depends on the timing of presynaptic glutamate release relative to an action poten-
tial (Bi and Wang  2002 ). Though the overall calcium elevation is greater when the 
glutamate occurs prior to the action potential, due to the voltage dependence of the 
NMDA receptor, this difference in calcium elevation does not appear at the base of 
the spine, but is emphasized at the PSD, suggesting that proteins located here 
would sense a huge difference in calcium concentration due to temporal interval.   

    Models Investigating Neuronal Firing Patterns 

 Another crucial issue addressed with computational models of calcium dynamics is 
the production of diverse fi ring patterns such as spike frequency adaptation, burst-
ing, or pacing by interaction between various ionic channels. Experiments have 
shown that these fi ring patterns are generated by various calcium-dependent potas-
sium channels and diverse VDCC in different cell types (Faber and Sah  2003 ; Bond 
et al.  2005 ). Computational models integrating calcium dynamics with electrical 
activity have been developed to identify critical characteristics of the channels and 
their interactions (Table  6.2 ). Numerous studies which simplify calcium regulatory 
mechanisms as a single time constant of decay are not addressed here.

      Oscillations 

 The fi rst set of models investigates the interaction between calcium concentration 
and ionic channels underlying the generation of burst fi ring and slow membrane 
potential oscillations (Canavier et al.  1991 ; Chay  1996a ,  b ; Amini et al.  1999 ). Most 
of these studies represent the neuron as a single spherical compartment with multi-
ple plasma membrane channels, and regulate the intracellular calcium using several 
pumps and a single calcium buffer. Action potentials are generated by the fast 
sodium and delayed rectifi er potassium currents, but slower dynamics are rendered 
by diverse ionic channels. 

 The model of the Aplysia R15 (Canavier et al.  1991 ) includes a fast calcium- 
permeable channel and a slow calcium-permeable calcium-inactivated channel, 
both of which are activated by depolarization. Simulations demonstrate that a burst 
of action potentials produces an increase in calcium, which then inactivates the 
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slow calcium-permeable channel to terminate the burst. During the subsequent 
repolarization the calcium declines; consequently, the fl uctuations in calcium have 
the same period as the slow variation in potential on which the bursts were 
superimposed. 

 A slightly different mechanism to control bursting in Aplysia and Helix neurons 
was proposed (Chay  1996a ,  b ). Similar to the previous model, this model contains 
both fast and slow calcium-permeable channels, but the latter is voltage- independent 
and activated by depletion of calcium in the SER, analogous to the store-operated 
current that has been found in other neurons. The model also contains a calcium 
release channel on the ER. During the burst, calcium in the SER increases (due to 
the SERCA pump) until it reaches a level which inactivates the slow calcium- 
permeable channel. While the cell repolarizes, SER calcium decreases due to a slow 
rate of release, until the slow calcium-permeable channel reactivates. 

 The phenomenon of bursting also was investigated in dopamine neurons of the 
midbrain (Amini et al.  1999 ). Elevation of calcium during the depolarizing phase of 
the oscillations activates the SK channels, which then hyperpolarize the membrane, 
turning off calcium infl ux and allowing a decrease in calcium concentration. In 
addition to SK channels, voltage-dependent activation of potassium channels also 
contributes to the oscillations but at a slower pace. Thus, inactivating the SK chan-
nels, both experimentally and in the model, produces much lower frequency 
oscillations. 

   Table 6.2    Characteristics of models used to study fi ring patterns   

 Author, date  Pumps  Buffers  Diffusion  Electrical comp; ion channels 

 Yamada et al. 
( 1989 ) 

 1  1  1D  1 comp; NaF, KDr, VDCC, KCa 

 Canavier et al. 
( 1991 ) 

 PMCA, NCX  1  –  1 comp; NaF, KDr, VDCC, SI, NS 

 Chay ( 1996a ,  b )  SERCA, 
PMCA 

 1  –  1 comp; NaF, KDr, VDCC, SOC, 
release 

 Amini et al. ( 1999 )  PMCA, NCX  1  –  1 comp; NaF, KDr, KA, H, CaL, 
CaN, CaT, CaP/R, SK 

 Wilson and 
Callaway ( 2000 ) 

 PMCA  2 (RBA)  1D  1, 5, or many comp; VDCC, KDr, 
SK 

 Engel et al. ( 1999 )  1  1  1D  4 comp; NaF, KDr, KA, VDCC, SK, 
BK 

 Shao et al. ( 1999 )  1  1 (RBA)  1D  6 comp; NaF, KDr, KA, KD, KM, 
H, CaL, CaN, CaT, SK, BK 

 Gu et al. ( 2005 , 
 2007 ) 

 1  1 (RBA)  1D  5 comp; NaF, NaP, KDr, KA, KD, 
KM, H, CaL, CaN, SK, BK 

 Goldberg et al. 
( 2009 ) 

 1  3  1D  1 comp; SK 

  Buffers and pumps are identifi ed by name when provided in the publication. Voltage-dependent 
calcium channels are identifi ed either with a specifi c subtype or as VDCC if type is unspecifi ed. 
  SOC  store-operated current,  SI  slow calcium-permeable calcium-inactivated current,  NS  nonspe-
cifi c cation current,  H  hyperpolarization-activated current,  KA ,  KD  transient potassium currents, 
 KM  M type potassium current,  RBA  rapid buffer approximation  
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 All of these studies of oscillatory mechanisms deserve commendation because 
they further investigate how the dynamics depend on parameter values, and then 
simplify the models to use theoretical analysis to identify which mechanisms are 
essential for oscillations. In summary, the crucial elements producing slow oscilla-
tions are a calcium-permeable current that produces both a slow depolarization and 
slow accumulation in calcium, and either calcium inactivation of the depolarizing 
current or calcium activation of a hyperpolarizing current. 

 Independent of the exact ionic channels producing oscillations, the rate of change 
in calcium concentration depends on the balance between infl ux, which is propor-
tional to surface area, and effl ux, which depends both on surface area via the mem-
brane pumps and volume via buffering. Consequently, the rate of calcium oscillations 
should be different in a large diameter dendrite compared to a small diameter den-
drite. This model prediction was not supported by calcium imaging of dopamine 
neurons, which reveals a single rate of oscillations, with smaller amplitude oscilla-
tions in the larger diameter dendrites. This observation was investigated using a 
multi-compartment model (Wilson and Callaway  2000 ) of a single tapered dendrite. 
Simulations revealed that electrical coupling of the different diameter dendritic 
compartments synchronized both the electrical oscillations and the calcium oscilla-
tions, and compartment diameter instead had an effect on the amplitude of oscilla-
tions. This elegant intertwining of experimental measurements and model 
simulations revealed a parsimonious explanation of the experimental observation.  

    Spike Frequency Adaptation 

 Calcium-dependent potassium currents also are implicated in the phenomenon of 
spike frequency adaptation and control the shape of the action potential. In particu-
lar, the shape of the after hyperpolarization (AHP) was modifi ed by calcium infl ux 
(Yamada et al.  1989 ) in a model of bullfrog sympathetic ganglion neuron which 
included one buffer, one pump, and radial diffusion. Though this model contained a 
single calcium- dependent potassium channel, another set of models investigated 
whether BK or SK types of calcium-dependent potassium channels were more 
important. One model (Engel et al.  1999 ) demonstrated that the slow SK channel, 
but not the faster BK channel, produced the observed spike frequency adaptation. 
Another model investigated the observation that blocking BK channels, but not SK 
channels, caused a broadening of the spikes, and decreased fi ring rate at large cur-
rent injections (Shao et al.  1999 ; Gu et al.  2005 ,  2007 ); thus, BK channels contrib-
ute signifi cantly to spike repolarization.  

    Channel Colocalization 

 The studies that demonstrated a role for BK channels colocalize the VDCC with BK 
channels and place both apart from SK channels, refl ecting experimental studies 
suggesting colocalization (Berkefeld et al.  2006 ). One such experiment (Goldberg 
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and Wilson  2005 ) reports that calcium infl ux through N type VDCC triggered by a 
single AP produces a medium AHP through activation of SK channels, whereas a 
calcium infl ux through L type VDCC due to a long, subthreshold depolarization 
produces a slow AHP through activation of a different calcium-dependent potas-
sium channel. The compelling question is whether this effect requires that N type 
VDCC and SK channels be colocalized. The alternative is that different electrical 
activity produces different calcium dynamics, which lead to activation of different 
calcium-dependent potassium channels. 

 Goldberg et al. ( 2009 ) developed a model to test whether different temporal pat-
terns of electrical activity could activate different calcium-dependent potassium 
channels  without  channel colocalization. The model has three types of calcium 
binding proteins: a fast, high affi nity, mobile protein representing calmodulin; a 
fast, low affi nity protein; and a slow, high affi nity, mobile protein. SK channels in 
the model have the same binding properties as calmodulin. Simulations show that a 
brief, large amplitude calcium infl ux, as occurs with a single action potential, binds 
mostly to the fast proteins, including SK channels. Calcium does redistribute to 
slower binding proteins, but with low concentration because total calcium infl ux is 
small. In contrast, a low amplitude, long duration calcium infl ux, as occurs during a 
long, subthreshold depolarization, is too low in amplitude to activate the SK chan-
nel. Instead, most of the calcium binds to the slow, high affi nity binding protein. 
Thus, this elegant study demonstrates that channel colocalization is not required to 
explain preferential coupling between subtypes of calcium channels and calcium- 
dependent potassium channels.   

    Discussion/Conclusion 

 The future direction of the fi eld of calcium dynamics can be seen from the past 
evolution of calcium dynamics models, not only those used for studying plasticity 
and fi ring patterns but also those developed for calcium release and neurotransmit-
ter release. In model simulations as in experiments, the trend is to investigate func-
tions of calcium within ever smaller regions of space. Interestingly, model 
advancements both follow and lead advancements in experiments. As experimental 
technique improves, the data provides better constraints for the model, allowing 
more precise implementation of realistic mechanisms. The models also lead the 
experiments by evaluating even smaller spatial and temporal domains, or by evalu-
ating response to in vivo-like spatiotemporal input patterns. 

 Whether the investigation involves plasticity or fi ring patterns, the trend is toward 
more realistic mechanisms. Why do many advancements comprise increasing com-
plexity of the calcium dynamics? Two valid disadvantages of complex models are 
the diffi culty in estimating parameters and the diffi culty in fully understanding the 
mechanisms that produce the essential effect. However, the highly nonlinear nature 
of calcium mechanisms also makes it extremely diffi cult to derive simplifi ed models 
that capture the myriad interactions. For example, models that use a single time 
constant of decay for calcium do not exhibit calcium dynamics in the spine head 
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that are sensitive to the diameter of the spine neck. Diffusion is required to explain 
this observation. Similarly, the speed of binding interacts with the dynamics of the 
calcium infl ux to control whether calcium binds to one type of potassium channel 
versus another type. Models with one or two decay time constants or a single cal-
cium buffer cannot explore alternative mechanisms for why certain calcium- 
permeable channels seem to be coupled to certain calcium-dependent potassium 
channels. 

 One of the most important questions still not adequately answered is the relation-
ship between calcium concentration and direction of synaptic plasticity. One experi-
mental investigation has demonstrated that the level of calcium elevation does not 
suffi ciently predict the direction of plasticity (Nevian and Sakmann  2006 ). Modeling 
approaches are evaluating activation of other molecules that are critical for induc-
tion of synaptic plasticity (Kotaleski and Blackwell  2010 ) (Chap.   9    , this volume). 
Alternatively, calcium concentration might predict the direction of plasticity if it 
were measured or simulated in the correct local nanodomains. Similarly, the spatio-
temporal pattern of calcium infl ux may indeed control which downstream calcium 
binding proteins are activated. Future models of calcium dynamics in nanodomains 
with appropriately localized calcium channels and binding proteins are certain to 
readdress these critical questions of neuronal function.     
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    Abstract     Models of the small neuronal networks from invertebrates, especially 
rhythmically active central pattern generators, have not only been useful experimen-
tal tools for circuit analyses but also been instrumental in revealing general princi-
ples of neuronal network function. This ability of small network models to illuminate 
basic mechanisms attests to their heuristic power. In the 20 years since the fi rst CNS 
meeting, theoretical studies, now supported abundantly by experimental analyses in 
several different networks and species, have shown that functional network activity 
arises in animals and models even though parameters (e.g., the intrinsic membrane 
properties (maximal conductances) of the neurons and the strengths of the synaptic 
connections) show two to fi vefold animal-to-animal variability.  

     Models of the small neuronal networks from invertebrates, especially rhythmically 
active central pattern generators (CPGs), have not only been useful experimental 
tools for circuit analyses but also been instrumental in revealing general principles 
of neuronal network function. This ability of small network models to illuminate 
basic mechanisms attests to their heuristic power. 

 In the 20 years since the fi rst CNS meeting, theoretical studies, now supported 
abundantly by experimental analyses in several different networks and species, have 
shown that functional network activity arises in animals and models even though 
parameters (e.g., the intrinsic membrane properties (maximal conductances) of the 
neurons and the strengths of the synaptic connections) show two to fi vefold animal-
to- animal variability (Golowasch et al.  2002 ; Prinz et al.  2004 ; Bucher et al.  2005 ; 
Marder and Goaillard  2006 ; Marder et al.  2007 ; Prinz  2007 ; Schulz et al.  2007 ; 
Goaillard et al.  2009 ; Tobin et al.  2009 ; Doloc-Mihu and Calabrese  2011 ; Norris 
et al.  2011 ; Roffman et al.  2012 ). 
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 In our own work, presented at CNS 2010, we reviewed experiments, using the 
leech heartbeat CPG, which explore the consequences of animal-to-animal variabil-
ity in synaptic strength for coordinated motor output (Fig.  7.1 ). Our experiments 
focused on a set of segmental heart motor neurons that all receive inhibitory synap-
tic input from the same four premotor interneurons (Norris et al.  2011 ) (Fig.  7.1A ). 
These four premotor inputs fi re in a phase progression and the motor neurons also 
fi re in a phase progression because of differences in synaptic strength profi les of the 
four inputs among segments (Fig.  7.1B ). Our experiments showed that relative syn-
aptic strengths of the different premotor inputs to each motor neuron vary across 
animals yet functional output is maintained. Moreover, animal-to- animal variations 
in strength of particular inputs do not correlate strongly with output phase. We mea-
sured the precise temporal pattern of the premotor inputs, the segmental synaptic 
strength profi les of their connections onto motor neurons, and the temporal pattern 
(phase progression) of those motor neurons all in single animals and compiled a 
database of 12 individual animals (Fig.  7.1 C1, 2). We analyzed input and output in 
this database and our results suggest that the number (four) of inputs to each motor 
neuron and the variability of the temporal pattern of input from the CPG across 
individuals weaken the infl uence of the strength of individual inputs so that correla-
tions are not easily detected. Additionally, the temporal pattern of the output, albeit 
in all cases consistent with heart function, varies as much across individuals as that 
of the input. It seems then that each animal arrives at a unique solution for how the 
network produces functional output. This work has been supplemented by dynamic 
clamp analysis of pharmacologically isolated heart motor neurons using synaptic 
input patterns derived from the 12 individual of our database that further support 
these conclusions (Wright and Calabrese  2011a ,  b ).

   All the observations summarized above have contributed to the growing consen-
sus that to understand a neuronal network through biophysical modeling, we must 
construct populations of models with multiple sets of parameter values correspond-
ing to parameters from different individuals (Prinz  2010 ; Marder  2011 ; Marder and 
Taylor  2011 ). Thus the computational effort needed to produce a state-of-the-art 
biophysical model is vastly increased. The situation is clearly still fl uid, and the 
reaction in the modeling community has ranged from a continued pursuance “ideal 
parameter sets” or sticking to averaged values for parameters to what Prinz ( 2010 ) 
calls ensemble modeling, where multiple functional instances are identifi ed and 
examined. We have not come to this situation smoothly but by fi ts and starts, and the 
purpose of this chapter is to highlight two papers that were presented at CNS 1993 
that seem now dated but indeed presage this understanding. 

    Looking Back 

 At CNS 1993 two papers were presented and book chapters written in “Computation 
in Neurons and Neural Systems” edited by Frank H. Eeckman were inspired by 
work on invertebrate CPGs (LoFaro et al.  1994 ; Skinner et al.  1994 ). These papers 
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  Fig. 7.1    ( A ) Bilateral circuit diagram from the heartbeat control system of medicinal leeches 
including all the identifi ed heart (HN) interneurons of the core CPG showing the inhibitory connec-
tions from the heart interneurons of the leech heartbeat CPG onto heart (HE) motor neurons in the 
fi rst 12 midbody segmental ganglia. The ipsilateral HN(3) and HN(4) front premotor interneurons 
and the ipsilateral HN(6) and HN(7) middle premotor interneurons provide input to heart motor 
neurons (HE(3)–HE(12)) (Norris et al.  2007a ). The  large fi lled circles  are cell bodies and associ-
ated input processes.  Lines  indicate cell processes and  small fi lled circles  indicate inhibitory chem-
ical synapses. Connections among the interneurons of the CPG are not indicated. Standard colors 
for the heart interneurons are used in the rest of the fi gure. ( B ) There are two coordination modes 
(peristaltic and synchronous) of the heart motor neurons and heart interneurons one on either body 
side that switch sides regularly (Norris et al.  2006 ,  2007b ). Simultaneous extracellular recordings 
are shown of ipsilateral HN(3), HN(4), HN(6), and HN(7) premotor interneurons (inputs) (stan-
dard colors) and HE(8) and HE(12) motor neurons (outputs) ( black ) in peristaltic (p) coordination 
mode—similar recordings, not shown, were made in the synchronous (s) coordination mode. ( C1 , 
 2 ) Complete analysis of input and output temporal patterns and synaptic strength profi les for two 
different animals from our sample of 12. Summary phase diagram (temporal patterns of inputs and 
outputs) of the premotor interneurons (standard colors) and the HE(8) and HE(12) motor neurons 
in both the peristaltic (boxes outlined in  pink ) and synchronous (boxes outlined in  light blue ) coor-
dination modes for two different preparations. Phase diagrams were determined from recordings 
like in ( B ). The segmental synaptic strength profi les of the inputs were determined in the same 
preparations by voltage clamping each of the motor neurons (HE(8) and HE(12)) and performing 
spike-triggered averaging of IPSCs, and are shown to the  right  of each phase diagram. Standard 
colors are used. Animals are specifi ed by the day on which they were recorded; letters accompany 
the designation of day, if more than one animal was recorded on that day. Note that both the tem-
poral patterns (both input and output) and synaptic strength profi les vary between the two animals 
as in the rest of the sample of 12 animals. Adapted from Norris et al. ( 2011 )          
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refl ect the time in which they were written yet they point to the present day. They 
illustrate the limits of our technological ability to model small neuronal networks 
and the naiveté of our theoretical understanding of what a realistic neuronal network 
model was. They also illustrate how the then novel technique of dynamic current 
clamping would be brought to bear in future studies of small networks. Using these 
papers as a starting point, I will discuss how my own thinking and that of the fi eld 
has evolved since then. In both these papers, parameter variation in reduced models 
of half-center oscillators (oscillatory networks with reciprocal inhibition between 
two neurons (or groups of neurons)) is shown to lead to interesting changes in net-
work activity. 

 In the fi rst case, a two-cell network was modeled with one cell an inherent burster 
and the other not, the presence of  I   h   is shown to be critical for the non-bursting neu-
ron to assume an integer bursting ratio smaller than 1:1 as the level of injected cur-
rent in the non-bursting neuron is adjusted. The theoretical analysis was motivated 
and augmented by electrophysiological experiments in the crustacean stomatogas-
tric nervous system (STN) focusing on the well-characterized pyloric CPG. The LP 
neuron in the isolated STN is capable of plateau production: it is not an autonomous 
bursting neuron but it is engaged in reciprocal inhibitory connections to the bursting 
PD neurons. Normally these cells produce alternating bursts but with appropriate 
hyperpolarizing current injection into the LP neurons they assume a 6:1 (−3.6 nA) 
or 12:1 (−5.1 nA) burst ratio. The theoretical analysis modeled each neuron using 
the Morris–Lecar formalism (Morris and Lecar  1981 ) tuned so that the PD neuron 
was spontaneously oscillatory (a burster) whereas the LP neuron was silent in the 
absence of input from the PD but plateau forming. The LP neuron was additionally 
given the  I   h   current. A two-cell network was then constructed with reciprocal inhibi-
tory synapses, thus forming a half-center oscillator, with one cell (PD) an inherent 
burster and the other (LP) not. The presence of  I   h   in the non-bursting LP neuron was 
shown to be critical for it to assume an integer bursting ratio smaller than 1:1 as the 
level of injected current in the non-bursting neuron was adjusted. 

 This study was naïve in that simplifi ed neuron models were used and only one 
parameter was considered in determining how burst ratios less than 1:1 could be 
achieved—considering the desktop computational ability available at the time it is 
hardly surprising that simplifi ed neuron models were used and other parameters 
were not also analyzed. The study was forward-looking in that it was clearly tied to 
an interesting experimentally observed phenomenon—frequency de- 
multiplication—and implicated a specifi c ionic current as producing the phenome-
non. The real implications of this tenuous step were seen in strong experimental, 
modeling, and hybrid analysis with dynamic clamp that followed and which led to 
fundamental insights into how fast and slow rhythms in neuronal networks can 
interact not only in the crustacean STN (Bartos and Nusbaum  1997 ; Bartos et al. 
 1999 ) but also in general (Marder et al.  1998 ). 

 In the second case, again a half-center oscillator was formed between two oscil-
latory Morris–Lecar model neurons (Morris and Lecar  1981 )—and the mechanisms 
promoting the transitions during alternate “bursting” were explored. The most 
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interesting aspect of the analysis was a determination of the effect of synaptic 
threshold on the period of the half-center oscillator’s activity. The main fi nding was 
that there was a middle range where period was prolonged and relatively insensitive 
to synaptic threshold but fell of sharply on either side of this range. This theoretic 
analysis was given some experimental backing by forming a half-center oscillator 
between pharmacologically isolated leech heart interneurons using artifi cial inhibi-
tory synapses implemented with dynamic clamp. The hybrid half-center oscillators 
again showed a period maximum at a middle range of synaptic threshold with 
period falling off on either side. 

 Like the previous study, this one was naïve in that simplifi ed neuron models were 
used and only one parameter was considered in determining how burst period was 
controlled in a half-center oscillator. The study was very forward-looking in that it 
introduces the profound interaction of theory and experiment that is possible when 
hybrid systems are created with dynamic clamp. This analysis planted the seed for 
more sophisticated and systematic hybrid systems analysis of half-center oscillators 
that have defi ned the role of currents like  I   h   and low-threshold Ca current in produc-
ing half-center oscillations (Sorensen et al.  2004 ; Olypher et al.  2006 ). Other studies 
have used modeling and dynamic clamp and similar techniques to more fully 
explore the synaptic dynamics of mutually inhibitory neurons in controlling net-
work period (Mamiya and Nadim  2004 ; Nadim et al.  2011 ). Yet more interesting 
and germane to the current interest in how neuronal and synaptic variability affects 
circuit performance are more recent hybrid system analyses of half-center oscilla-
tors that employ ensemble modeling and database techniques to systematically 
explore the parameter space of the half-center oscillator and make an attempt to 
make sense of animal-to-animal variability in neuronal properties that confront all 
experimentalists (Grashow et al.  2009 ,  2010 ; Brookings et al.  2012 ).  

    Concluding Thoughts 

 Models of neuronal networks essentially consist of differential equations that 
describe the dynamics of state variables, e.g., membrane potential ( V  m ) and the gat-
ing variables of voltage-gated conductances and the variables controlling activation 
of synaptic conductances. Embedded in these equations are a number of parame-
ters, including maximal conductances, half-activation voltages and time constants 
of channel gates, and parameters controlling synaptic dynamics. Some of these 
parameters are considered free, or variable between instances, while the remaining 
parameters are fi xed. For example, in the pioneering work of Prinz et al. ( 2003 , 
 2004 ), only maximal conductances were considered free parameters. Indeed maximal 
conductances have been shown to be quite variable among animals (Bucher et al. 
 2005 ; Schulz et al.  2007 ; Goaillard et al.  2009 ; Tobin et al.  2009 ; Norris et al.  2011 ; 
Roffman et al.  2012 ). But it is clear that the other parameters mentioned will also 
show animal-to-animal variability though these have not been as widely studied 
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(Marder et al.  2007 ; Marder  2011 ). Even with powerful computing resources, it is 
not possible or desirable to consider all instances of a model. Making a model then 
involves deciding on a neuronal structure (single or multiple compartments), net-
work connectivity, descriptive equations (often derivatives of the Hodgkin–Huxley 
formalism), which parameters are free, and the range over which each may vary. 
These decisions will all be driven by the data available and by the investigators’ intu-
ition for which parameters are likely to be signifi cant in controlling neuronal activity. 
In short, the ability to consider multiple instances of a model does not free one from 
making a good model, and making a good model requires detailed knowledge of the 
system and judgment about what details can be ignored and parameters fi xed. 

 There are many pertinent issues which models of small networks can still help 
clarify many interesting issues. Although some studies have suggested that variabil-
ity in cellular intrinsic properties becomes less important when neurons are embed-
ded in networks (Grashow et al.  2010 ; Brookings et al.  2012 ), others suggest that the 
interaction network topology and neuronal dynamics are critical (Gaiteri and Rubin 
 2011 ). Moreover, we know that networks are subject to frequent environmental per-
turbations and that neuromodulation plays an important role in pattern generation in 
many networks. Nevertheless, the question of how networks can produce functional 
output despite perturbations and modulatable parameters and yet not crash has barely 
been addressed especially at the experimental level (Grashow et al.  2009 ; Marder 
and Tang  2010 ; Tang et al.  2010 ). The ensemble modeling approach to address such 
questions is likely to expand as we move forward, despite the caveat expressed 
above, especially given the ever-increasing computational capabilities available. The 
analysis experimental and computational of small neuronal networks like inverte-
brate CPGs is likely to lead the way in this endeavor for several years to come.     
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Abstract  The central nervous system is subject to many different forms of noise, 
which have fascinated researchers since the beginning of electrophysiological 
recordings. In cerebral cortex, the largest amplitude noise source is the “synaptic 
noise,” which is dominant in intracellular recordings in vivo. The consequences of 
this background activity are a classic theme of modeling studies. In the last 20 years, 
this field tremendously progressed as the synaptic noise was measured for the first 
time using quantitative methods. These measurements have allowed computational 
models not only to be more realistic and closer to the biological data but also to 
investigate the consequences of synaptic noise in more quantitative terms, measur-
able in experiments. As a consequence, the “high-conductance state” conferred by 
this intense activity in vivo could also be replicated in neurons maintained in vitro 
using dynamic-clamp techniques. In addition, mathematical approaches of stochas-
tic systems provided new methods to analyze synaptic noise and obtain critical 
information such as the optimal conductance patterns leading to spike discharges. 
It is only through such a combination of different disciplines, such as experiments, 
computational models, and theory, that we will be able to understand how noise 
participates to neural computations.

�Introduction

The central nervous system is subject to many different forms of noise, which 
have fascinated researchers since the beginning of electrophysiological recordings. 
In cerebral cortex, the largest amplitude noise source is the “synaptic noise,” 
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which is dominant in intracellular recordings in vivo. Indeed, one of the most 
striking characteristics of awake and attentive states is the highly complex nature 
of cortical activity. Global measurements, such as the electroencephalogram 
(EEG) or local field potentials (LFPs), display low amplitude and very irregular 
activity, the so-called desynchronized EEG (Steriade 2003). This activity has very 
low spatiotemporal coherence between multiple sites in cortex, which contrasts 
with the widespread synchronization in slow-wave sleep (Destexhe et al. 1999). 
Local measurements, such as extracellular (unit activity) or intracellular record-
ings of single neurons, also demonstrate very irregular spike discharge and high 
levels of fluctuations similar to noise (Steriade et al. 2001), as shown in Fig. 8.1. 
Multiple unit activity (Fig. 8.1A) shows that the firing is irregular and of low cor-
relation between different cells, while intracellular recordings (Fig. 8.1B) reveal 
that the membrane potential (Vm) is dominated by intense fluctuations (“noise”).

How neurons integrate synaptic inputs in such noisy conditions is a problem 
which was identified in early work on motoneurons (Barrett and Crill 1974; Barrett 
1975), which was followed by studies in Aplysia (Bryant and Segundo 1976) and 
cerebral cortex (Holmes and Woody 1989). This early work motivated further stud-
ies using compartmental models in cortex (Bernander et al. 1991) and cerebellum 
(Rapp et al. 1992; De Schutter and Bower 1994). These studies pointed out that the 
integrative properties of neurons can be drastically different in such noisy states. 
However, at the time, no precise experimental measurements were available to char-
acterize the noise sources in neurons.

How neurons integrate their inputs in such states and, more generally, how entire 
populations of neurons represent and process information in such noisy states are 
still highly debated. In this chapter, we will describe recent measurements and asso-
ciated progress to characterize the nature and the impact of this noisy activity. We 
will show that a series of major progress have been made in the last 20 years, and 
that computational neuroscience has played a particularly important role in this 
exploration.

�Characterization of Synaptic Noise In Vivo

A first major advance was that this amount of “noise” was characterized and mea-
sured for the first time using quantitative methods. Figure 8.2 illustrates such mea-
surements (Paré et  al. 1998; Destexhe and Paré 1999). This first quantitative 
characterization was done using the “up-states” of ketaminexylazine anesthesia, 
which display very similar network activity as the awake brain (they were later 
measured in awake animals; Rudolph et al. 2007). The experiments were designed 
such that the same cell could be recorded before and after total suppression of net-
work activity. A powerful blocker of network activity (tetrodotoxin, TTX) was 
micro-perfused during the intracellular recordings, enabling characterization of the 
membrane state before and after TTX infusion (Fig. 8.2, top scheme). The comparison 
between these two states included measuring the membrane potential (Fig. 8.2A), 
input resistance (Fig. 8.2B), and voltage distributions (Fig. 8.2C). These experiments 
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Fig. 8.1  Highly complex and “noisy” cortical activity during wakefulness. (a) Irregular firing 
activity of eight multiunits shown at the same time as the local field potential (LFP) recorded in 
electrode 1 (scheme on top). During wakefulness, the LFP is of low amplitude and irregular activ-
ity (“desynchonized”) and unit activity is sustained and irregular (see magnification below; 20 
times higher temporal resolution). (b) Intracellular activity in the same brain region during wake-
fulness. Spiking activity was sustained and irregular, while the membrane potential displayed 
intense fluctuations around a relatively depolarized state (around −65 mV in this cell; see magnifi-
cation below). (a) Modified from Destexhe et al. 1999; (b) modified from Steriade et al. 2001
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revealed that about 80 % of the membrane conductance is attributable to synaptic 
activity (Paré et al. 1998; Destexhe and Paré 1999), demonstrating that neurons in 
vivo operate in a “high-conductance state.”

�Detailed Biophysical Models of Synaptic Noise

Investigating the consequences of noisy background activity is a classic theme 
which started by studies in motoneurons (Barrett and Crill 1974; Barrett 1975) and 
followed by model studies of neurons in cerebral cortex (Holmes and Woody 1989; 

Fig. 8.2  Characterization of synaptic noise by suppression of network activity using micro-perfusion 
of tetrodotoxin (TTX). Top: experimental setup; a micro-perfusion pipette was used to infuse TTX 
into the cortex in vivo, at the same time of the intracellular recording. Left: characterization of 
network states in vivo. Right: same measurements after dialysis of TTX. The different measure-
ments are the membrane potential (A), the averaged response to hyperpolarizing pulses (B), and 
the voltage distribution (C). (A–C) Modified from Destexhe and Paré 1999
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Bernander et al. 1991) and cerebellum (Rapp et al. 1992; De Schutter and Bower 
1994). The measurements of synaptic background activity outlined above (Paré 
et al. 1998) have allowed computational models not only to be more realistic and 
closer to the biological data but also to investigate the consequences of synaptic 
noise in more quantitative terms. Figure 8.3 summarizes a first approach consisting 
of biophysically detailed models based on morphologically accurate reconstruc-
tions of cortical pyramidal neurons, combined with realistic patterns of synaptic 
input and intrinsic voltage-dependent conductances (see details and parameters in 
Destexhe and Paré 1999). These models could be tuned to reproduce all experimen-
tal measurements (Fig. 8.3A–C).

Fig. 8.3  Detailed biophysical models of synaptic background activity in cortical pyramidal neurons. 
Top: scheme of the model, based on a reconstructed cell morphology from cat parietal cortex. 
The model can reproduce the main features of in vivo measurements ((A)–(C) arranged similarly 
as Fig. 8.2). Figure modified from Destexhe et al. 2001
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Such detailed biophysical models have been used to investigate the consequences 
of synaptic background activity in cortical neurons, starting with the first investiga-
tion of this kind by Bernander et al. (1991). This study revealed that the presence of 
background activity, although at the time nonconstrained by experimental measure-
ments, was able to change several features of the integrative properties of the cell, 
such as coincidence detection.

Using models constrained from experiments, such as that of Fig. 8.3, enabled the 
derivation of several interesting properties, which we enumerate here.

	1.	 Enhanced responsiveness. The presence of background activity was found to 
markedly change the cell’s excitability, and produce a detectable response to 
inputs that are normally subthreshold (Hô and Destexhe 2000). This prediction 
was verified in dynamic-clamp experiments (see section “Synaptic Noise in 
Dynamic-Clamp”).

	2.	 Location-independence. The effectiveness of synaptic inputs becomes much less 
dependent on their position in dendrites, as found in cerebellar (De Schutter and 
Bower 1994) and cortical neurons (Rudolph and Destexhe 2003b), although 
based on very different mechanisms.

	3.	 Different integrative mode. As initially predicted by Bernander et al. (1991), this 
important property was indeed confirmed with models constrained by experi-
mental measurements (Rudolph and Destexhe 2003b).

	4.	 Enhanced temporal processing. As a direct consequence of the “high-
conductance state” of the neurons under background activity, the faster mem-
brane time constant allows the neuron to perform finer discrimination, which is 
essential for coincidence detection (Softky 1994; Rudolph and Destexhe 2003b; 
Destexhe et  al. 2003) or detecting brief changes of correlation (Rudolph and 
Destexhe 2001). The latter prediction was also verified experimentally (Fellous 
et al. 2003).

	5.	 Modulation of intrinsic properties. It was found that in the presence of synaptic 
background activity, the responsiveness of bursting neurons is strongly affected 
(Wolfart et al. 2005). This aspect will be considered in more detail below.

These properties have been summarized and detailed in different review papers 
and books (Destexhe et  al. 2003; Destexhe 2007; Haider and McCormick 2009; 
Destexhe and Rudolph 2012) which should be consulted for more information.

�Simplified Models of Synaptic Noise

A second major step was to obtain simplified representations that capture the main 
properties of the synaptic “noise.” This advance is important, because simple mod-
els have enabled real-time applications such as the dynamic-clamp (see section 
“Synaptic Noise in Dynamic-Clamp”). Simple models also have enabled a number 
of mathematical treatments, some of which resulted in methods to analyze experi-
ments, as outlined in sections “Stochastic Systems Analysis of Synaptic Noise” and 
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“Estimating the Optimal Conductance Patterns Leading to Spikes in ‘Noisy’ States.” 
These approaches relied on a simplified model of synaptic noise, called the “point-
conductance model” (Destexhe et al. 2001), which can be written as:
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where C denotes the membrane capacitance, Iext a stimulation current, gL the leak 
conductance, and EL the leak reversal potential. ge(t) and gi(t) are stochastic excit-
atory and inhibitory conductances with respective reversal potentials Ee and Ei. The 
excitatory synaptic conductance is described by Ornstein–Uhlenbeck (OU) stochas-
tic processes (8.2), where ge0 and σe

2  are, respectively, the mean value and variance 
of the excitatory conductance, τe is the excitatory time constant, and ξe(t) is a 
Gaussian white noise source with zero mean and unit standard deviation. The inhib-
itory conductance gi(t) is described by an equivalent equation (8.3) with parameters 
gi0, σi

2 , τi, and noise source ξi(t). Note that all conductances are here expressed in 
absolute units (in nS) but a formulation in terms of conductance densities is also 
possible.

In many previous models, synaptic activity was modeled by a source of current 
noise in the neuron (Tuckwell 1988), and thus the membrane potential is equivalent 
to a stochastic process. In contrast, in the point-conductance model, the conduc-
tances are the stochastic processes, and the Vm fluctuations result from the combined 
action of two of such fluctuating conductances. This model is thus capable of repro-
ducing all features of the high-conductance state found in cortical neurons in vivo, 
such as large-amplitude fluctuations, low input resistance, and depolarized Vm 
(Fig. 8.4). In addition, it also captures the correct power spectral structure of the 
synaptic conductances (see Destexhe et al. 2001).

�Synaptic Noise in Dynamic-Clamp

An elegant technique to investigate the effect of synaptic noise on neurons is to use 
the dynamic-clamp technique (Robinson and Kawai 1993; Sharp et al. 1993; for a 
recent review, see Destexhe and Bal 2009). This technique can be used to artificially 
reproduce stochastic synaptic activity by injecting the corresponding computer-
generated conductance in a living neuron (Destexhe et al. 2001; Chance et al. 2002; 
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Fellous et al. 2003; Mitchell and Silver 2003; Prescott and De Koninck 2003; 
Shu et al. 2003). This approach was first applied to cortical neurons, and revealed 
an important effect of the stochastic synaptic activity on neuronal responsiveness 
(Destexhe et al. 2001; Chance et al. 2002; Mitchell and Silver 2003; Prescott and De 
Koninck 2003; Shu et al. 2003; Higgs et al. 2006), similar to computational model 
predictions (Hô and Destexhe 2000). Some of these properties are reminiscent of 
the “stochastic resonance” phenomenon, which is an optimal signal-to-noise ratio in 
nonlinear systems subject to noise, and which was long studied by physicists 
(Wiesenfeld and Moss 1995; Gammaitoni et al. 1998).

Fig. 8.4  Point-conductance model of synaptic background activity in cortical neurons. Top: 
scheme of the point-conductance model, where two stochastically varying conductances determine 
the Vm fluctuations through their (multiplicative) interaction. This simplified model reproduces the 
main features of in vivo measurements (same arrangement of (A)–(C) as in Fig. 8.2). Figure modi-
fied from Destexhe et al. 2001
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Figure  8.5 shows the “high-conductance state” conferred by intense synaptic 
activity, as replicated in neurons maintained in vitro using the dynamic-clamp tech-
nique. As for models, this technique enables the experimentalist to reproduce (and 
modulate at will) a background activity with similar properties as found in vivo.

Perhaps the most unexpected property of synaptic noise was found when inves-
tigating the effect of noise on thalamic neurons (Wolfart et al. 2005). These neurons 
are classically known to display two distinct firing modes, a single-spike (tonic) 
mode and a burst mode at more hyperpolarized levels (Llinas and Jahnsen 1982). 

Fig. 8.5  Dynamic-clamp recreation of high-conductance states in neurons in vitro. Top: scheme 
of the dynamic-clamp, the point-conductance model is simulated and the excitatory and inhibitory 
conductances are injected in a living neuron using dynamic-clamp. This technique enables obtain-
ing states very similar to in vivo measurements (similar arrangement of panels as Fig. 8.2). Figure 
modified from Destexhe et al. 2001
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However, thalamic neurons are also known to receive large amounts of synaptic 
noise through their numerous direct synaptic connections from descending cortico-
thalamic fibers, and this activity accounts for about half of the input resistance of 
thalamic neurons (Contreras et al. 1996). Based on these measurements, the effect 
of synaptic noise was simulated using dynamic-clamp on thalamic neurons in slices, 
and remarkably it was found that under such in vivo-like conditions, the duality of 
firing modes disappears because single spikes and bursts now appear at all Vm levels 
(Wolfart et al. 2005). But more interestingly, if one calculates the full transfer func-
tion of the neuron, the amount of spikes transmitted to cortex becomes independent 
of the Vm level (Fig. 8.6). This property is due to the fact that for hyperpolarized Vm, 
the low-threshold Ca2+ current generates more bursts, and thus “compensates” for 
hyperpolarization. This remarkable property shows that both the intrinsic properties 
and synaptic noise are necessary to understand the transfer function of central neu-
rons in vivo.

�Stochastic Systems Analysis of Synaptic Noise

Another consequence of the simplicity of the point-conductance model is that it 
enables mathematical approaches. In particular, if one could obtain an analytic 
expression of the steady-state voltage distribution (such that shown in Fig. 8.2C1), 
fitting such an expression to experimental data could yield estimates of conduc-
tances and other parameters of background activity. This idea was formulated for 
the first time less than 10 years ago (Rudolph and Destexhe 2003a) and subse-
quently gave rise to a method called the “VmD method” (Rudolph et  al. 2004), 
which we outline here.

Fig. 8.6  Dynamic-clamp investigation of the transfer function of thalamic neurons in vitro.  
(a) Scheme of the dynamic-clamp experiment, in which stochastic conductances are injected in the 
neuron. (b) Effect of synaptic noise in thalamic neurons. The conductance noise interacts with 
burst generation to generate transfer response curves that are roughly independent on the Vm.  
(b) Modified from Wolfart et al. 2005
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The method to obtain an analytical expression for the voltage distribution is to 
consider the point-conductance model ((8.1), (8.2), and (8.3)) and evaluate the prob-
ability density of finding the system at a value V at time t, denoted ρ(V, t). The 
time evolution of this probability density is given by a Fokker–Planck equation 
(Risken 1984), and at steady-state, the probability density gives the voltage distribu-
tion ρ(V). So obtaining an analytic estimate of this voltage distribution requires finding 
the steady-state solution of the Fokker–Planck equation for the system ((8.1), (8.2), 
and (8.3)). However, this system is nonlinear due to the presence of conductances 
and their multiplicative effect on the membrane potential, so the corresponding 
Fokker–Planck equation is not solvable, and one has to rely on approximations. This 
problem was studied by several groups who proposed different approximations to 
this problem (Rudolph and Destexhe 2003a, 2005; Richardson 2004; Lindner and 
Longtin 2006; for a comparative study, see Rudolph and Destexhe 2006).

One of these expressions is invertible (Rudolph and Destexhe 2003a, 2005), 
which enables one to directly estimate the parameters (ge0, gi0, σe, σi) from experi-
mentally calculated Vm distributions. This constitutes the basis of the VmD method 
(Rudolph et al. 2004).

One main assumption behind this method is that the conductance variations are 
Gaussian-distributed, and thus this distribution can be described by the mean (ge0, 
gi0) and the standard deviations (σe, σi) for each conductance. We use the following 
expression for Vm fluctuations
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where V  is the average Vm and σV its standard deviation. This expression provides 
an excellent approximation of the Vm distributions obtained from models and exper-
iments (Rudolph et al. 2004), because the Vm distributions obtained experimentally 
show little asymmetry (for up-states and activated states; for specific examples, see 
Rudolph et al. 2004, 2005, 2007).

This Gaussian distribution can be inverted, which leads to expressions of the syn-
aptic noise parameters as a function of the Vm measurements, V  and σV. To extract 
the four parameters, means (ge0, gi0) and standard deviations (σe, σi), from the Vm 
requires to measure two Vm distributions obtained at two different constant levels of 
injected current. In this case, the Gaussian fit of the two distributions gives two mean 
Vm values, V1  and V2 , and two standard deviation values, σV1

 and σV2
. The system 

can be solved for four unknowns, leading to expressions of ge0, gi0, σe, σi from the 
values of V1 , V2 , σV1

, and σV2
 (for details, see Rudolph et al. 2004).

This method was tested using controlled conductance injection in neurons using 
the dynamic-clamp technique, as shown in Fig.  8.7. In this experiment, cortical 
neurons were recorded in slices displaying spontaneous “up-states” of activity. 
These up-states were analyzed by computing their Vm distribution, which was then 
used to evaluate the synaptic conductance parameters according to the VmD 
method. This estimate of conductances was then used to generate synthetic conduc-
tance noise traces, which were injected in the same neuron during silent states. 
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The match between the original Vm distribution with the one obtained synthetically 
demonstrated that the VmD method provides good conductance estimates.

The main advantage of the VmD method is that it provides a full characterization 
of the stochastic conductances. Like other “classic” methods of conductance esti-
mation (reviewed in Monier et al. 2008), the VmD method provides estimates of the 
total (mean) level of excitatory and inhibitory conductances (ge0, gi0). In addition, it 
also provides estimates of the conductance fluctuations, through the standard devia-
tion of conductances (σe, σi). This information is not readily obtained by other 

Fig. 8.7  VmD method and test using dynamic-clamp experiments. (a) VmD conductance estima-
tion and test of the estimates. Top left: spontaneous active network states (“up-states”) were 
recorded intracellularly in ferret visual cortex slices at two different injected current levels (Iext1, 
Iext2). Top right: the Vm distributions (gray) were computed from experimental data and used to 
estimate synaptic conductances using the VmD method (analytic expression of Vm distribution 
shown by solid lines). Bottom right: histogram of the mean and standard deviation of excitatory 
and inhibitory conductances obtained from the fitting procedure (gray). Bottom left: a dynamic-
clamp protocol was used to inject stochastic conductances consistent with these estimates, there-
fore recreating artificial up-states in the same neuron. (b) Example of natural and recreated 
up-states in the same cell as in (a). This procedure recreated Vm activity similar to the active state. 
Figure modified from Rudolph et al. 2004
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methods but is important because it provides estimates of the respective contribu-
tions of excitation and inhibition to the Vm fluctuations, and thus offers a quantita-
tive characterization of the “synaptic noise.”

Another advantage of the VmD method is that it does not require to record in 
voltage-clamp mode, which considerably simplifies the experimental protocols, as 
everything can be estimated from recordings of the Vm activity (current-clamp). 
However, action potentials must be removed, because the associated Na+ and K+ 
conductances can significantly bias the VmD estimates, so the Vm distributions must 
be estimated exclusively by accumulating periods of subthreshold activity in-
between spikes. Using such a procedure, the VmD method was applied to intracel-
lular recordings in vivo during anesthetized states (Rudolph et  al. 2005) and in 
awake cats (Rudolph et al. 2007). The latter provided the first quantitative conduc-
tance estimates in awake animals.

�Estimating the Optimal Conductance Patterns Leading  
to Spikes in “Noisy” States

The estimation of conductance fluctuations by the VmD method had an important 
consequence: it opened the route to experimentally characterize the influence of 
fluctuations on action potential generation. This was the object of a recent method 
to estimate the spike-triggered average (STA) conductance patterns from Vm record-
ings (Pospischil et  al. 2007). This “STA method” is also based on the point-
conductance model, and requires the prior knowledge of the parameters of mean 
excitatory and inhibitory conductances (ge0, gi0) and their variances (σe, σi), which 
can be provided by the VmD method. Using this knowledge, one can use a maxi-
mum likelihood estimator to compute the STA conductance patterns. Similar to the 
VmD method, the STA method was also tested using dynamic-clamp experiments 
and was shown to provide accurate estimates (Pospischil et al. 2007; Piwkowska 
et al. 2008).

Figure 8.8 illustrates STA estimates in a computational model reproducing two 
extreme conditions found experimentally. First, states where both excitatory and 
inhibitory conductances are of relatively low and comparable amplitude (“Equal 
conductance,” left panels in Fig.  8.8), similar to some measurements (Shu et  al. 
2003; Haider et al. 2006). Second, cases where the inhibitory conductance can be up 
to several-fold larger than the excitatory conductance (“Inhibition-dominated,” right 
panels in Fig.  8.8), which was observed in other measurements in anesthetized 
(Borg-Graham et al. 1998; Hirsch et al. 1998; Destexhe et al. 2003; Rudolph et al. 
2005) or awake preparations (Rudolph et al. 2007). These two extreme cases pro-
duce similar mean Vm and Vm fluctuations, but they predict different patterns of 
conductance STA, as shown in Fig. 8.8B. In the “Equal conductance” condition, the 
total conductance increases before the spike, and this increase is necessarily due to 
excitation. In “Inhibition-dominated” neurons, the opposite pattern is seen: there is 
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a decrease of total conductance prior to the spike, and this decrease necessarily 
comes from the decrease of inhibition before the spike.

To determine which conductance pattern is seen in cortical neurons in vivo, we 
applied the STA method to intracellular recordings in awake cats (Rudolph et al. 2007). 
From intracellular recordings of electrophysiologically identified RS cells, we 
evaluated the STA of excitatory and inhibitory conductances, as well as the total 
conductance preceding the spike for neurons recorded in awake (Fig. 8.9A, top) or 
naturally sleeping (Fig. 8.9A, bottom) cats (see details in Rudolph et al. 2007). In 
most cells tested (7 out of 10 cells in awake, 6 out of 6 cells in slow-wave sleep, and 
2 out of 2 cells in REM sleep), the total conductance drops before the spike, in 
yielded STAs qualitatively equivalent to that of the model when inhibition is domi-
nant (Fig. 8.8B, right panels).

Note that this pattern is opposite to what is expected from feed-forward inputs. 
A feed-forward drive would predict an increase of excitation closely associated to an 

Fig. 8.8  Two patterns of conductances associated to generating spikes in model neurons. Two 
different “states” are displayed, both leading to comparable Vm fluctuations. Left: “Equal conduc-
tance” pattern, where ge and gi are of comparable amplitude and statistics. Right: “Inhibition-
dominated” pattern, where ge0 is stronger than with equal conductances, but gi0 needs to be 
several-fold larger to maintain the Vm at a similar level. (a) ge, gi, and Vm activity. (b) Spike-
triggered conductance patterns associated to each state. Figure modified from Rudolph et al. 2007
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increase of inhibition, as seen in many instances of evoked responses during sensory 
processing (Borg-Graham et al. 1998; Monier et al. 2003; Wehr and Zador 2003; 
Wilent and Contreras 2005). There is no way to account for a concerted ge increase 
and gi drop without invoking recurrent activity, except if the inputs evoked a 
strong disinhibition, but this was so far not observed in conductance measurements. 
Indeed, this pattern with inhibition drop was found in self-generated irregular states 
in networks of integrate-and-fire neurons (Fig. 8.9B; see details in El Boustani et al. 
2007). This constitutes direct evidence that most spikes in neocortex in vivo are 
caused by recurrent (internal) activity, and not by evoked (external) inputs.

Fig. 8.9  Evidence for “Inhibition-dominated” states in wake and sleep states, as well as in net-
work models. (a) Spike-triggered average (STA) of the excitatory, inhibitory, and total conduc-
tances obtained from intracellular data of regular-spiking neurons in an awake (top) and sleeping 
(slow-wave sleep up-states, bottom) cat. The estimated conductance time courses showed in both 
cases a drop of the total conductance caused by a marked drop of inhibitory conductance within 
about 20 ms before the spike. (b) STA of conductances in a representative neuron in a network 
model displaying self-sustained asynchronous irregular states. A 10,000-cell network of integrate-
and-fire neurons with conductance-based synaptic interactions was used (see details in El Boustani 
et al. 2007). (a) Modified from Rudolph et al. 2007; (b) modified from El Boustani et al. 2007
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�Discussion

In this chapter, we have overviewed several recent developments of the exploration 
of the integrative properties of central neurons in the presence of “noise.” This 
theme has been popular in modeling studies, starting from seminal work (Barrett 
and Crill 1974; Barrett 1975; Bryant and Segundo 1976; Holmes and Woody 1989), 
which was followed by compartmental model studies (Bernander et al. 1991; Rapp 
et al. 1992; De Schutter and Bower 1994). In the last 2 decades, significant progress 
was made in several aspects of this problem.

The first aspect which we overviewed here is that background activity was mea-
sured quantitatively for the first time in “activated” network states in vivo (Paré 
et al. 1998). Based on these quantitative measurements, constrained models could 
be built (Destexhe and Paré 1999) to investigate integrative properties in realistic in 
vivo-like activity states. Consequences on dendritic integration, such as coincidence 
detection and enhanced temporal processing, as predicted (Bernander et al. 1991; 
Softky 1994), were confirmed (Rudolph and Destexhe 2003b). New consequences 
were also found, such as enhanced responsiveness (Hô and Destexhe 2000) and 
location-independent synaptic efficacy (Rudolph and Destexhe 2003b). The first of 
these predictions was confirmed by dynamic-clamp experiments (Destexhe et al. 
2001; Chance et al. 2002; Fellous et al. 2003; Mitchell and Silver 2003; Prescott and 
De Koninck 2003; Shu et al. 2003; Higgs et al. 2006).

We reviewed another aspect that tremendously progressed, namely the formula-
tion of simplified models that replicate the in vivo measurements, as well as impor-
tant properties such as the typical Lorentzian spectral structure of background 
activity. This point-conductance model (Destexhe et al. 2001) had many practical 
consequences, such as to enable dynamic-clamp. Indeed, many of the aforemen-
tioned dynamic-clamp studies used the point-conductance model to recreate in 
vivo-like activity states in neurons maintained in vitro. In addition to confirm model 
predictions, dynamic-clamp experiments also took these concepts further and inves-
tigated important properties such as gain modulation (Chance et al. 2002; Fellous 
et al. 2003; Mitchell and Silver 2003; Prescott and De Koninck 2003). An inverse 
form of gain modulation can also be observed (Fellous et  al. 2003) and may be 
explained by potassium conductances (Higgs et al. 2006). It was also found that the 
intrinsic properties of neurons combine with synaptic noise to yield unique respon-
siveness properties (Wolfart et al. 2005).

It must be noted that although the point-conductance model was the first model 
of fluctuating synaptic conductances injected in living neurons using dynamic-
clamp, other models are also possible. For example, models based on the convolu-
tion of Poisson processes with exponential synaptic waveforms (“shot noise”) have 
also been used (e.g., see Chance et  al. 2002; Prescott and De Koninck 2003). 
However, it can be shown that these models are in fact equivalent, as the point-
conductance model can be obtained as a limit case of a shot-noise process with 
exponential conductances (Destexhe and Rudolph 2004).

An important consequence, specific to the point-conductance model, is that its math-
ematical simplicity enabled formulation of a number of variants of the Fokker–Planck 
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equation for the membrane potential probability density (Rudolph and Destexhe 2003a, 
2005; Richardson 2004; Lindner and Longtin 2006), which led to a method to estimate 
synaptic conductances from Vm recordings (Rudolph et al. 2004). This “VmD method” 
decomposed the Vm fluctuations into excitatory and inhibitory contributions, estimating 
their mean and variance. This method was successfully tested in dynamic-clamp exper-
iments (Rudolph et al. 2004) as well as in voltage-clamp (Greenhill and Jones 2007; see 
also Ho et al. 2009). The most interesting aspect of the VmD method is that it provides 
estimates of the variance of conductances or, equivalently, conductance fluctuations. 
This type of estimate was made for cortical neurons during artificially activated brain 
states (Rudolph et al. 2005) or in awake animals (Rudolph et al. 2007). The latter pro-
vided the first quantitative characterization of synaptic conductances and their fluctua-
tions in aroused animals.

Finally, this approach was extended to estimate dynamic properties related to 
action potential initiation. If the information about synaptic conductances and their 
fluctuations is available (for example following VmD estimates), then one can use 
maximum likelihood methods to evaluate the spike-triggered conductance patterns. 
This information is very important to determine which optimal conductance varia-
tions determine the “output” of the neuron, which is a fundamental aspect of inte-
grative properties. We found that in awake and naturally sleeping animals, the 
majority of spikes are statistically related to disinhibition, which plays a permissive 
role. This type of conductance dynamics is opposite to the conductance patterns 
evoked by external input, but can be replicated by models displaying self-generated 
activity. This suggests that most spikes in awake animals are due to internal network 
activity. This argues for a dominant role of the network state in vivo and that inhibi-
tion is a key player. Both aspects should be investigated by future studies.

Thus, the last 20 years have seen a tremendous theoretical and experimental 
characterization of the synaptic “noise,” and its consequences on neurons and net-
works. Computational models have played—and still continue to play—a pivotal 
role in this exploration.
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    Abstract     Computational neuroscientists have been playing around with plastic 
synapses for several decades. Interestingly, mechanistically detailed models of syn-
aptic plasticity started around the same time as the CNS meetings. This was when 
the associative properties of the N-methyl- d -aspartate (NMDA) receptor were dem-
onstrated, fi rst setting out the molecular and mechanistic underpinnings of synaptic 
plasticity. Some 20 years ago there was little reason to expect that the underlying 
biology would turn out to be as outrageously complicated as we now fi nd it. 
Associativity seemed to be established by the NMDA receptor especially through 
the work of Collingridge, and there were already a couple of candidate mechanisms 
for how to maintain synaptic weights: the CaMKII autocatalytic process found by 
several people and fi rst modeled by Lisman, and the PKA story from Kandel. These 
leads led into a maze. Even 10 years ago, there were over a 100 known molecules 
implicated in synaptic plasticity. The fi rst major molecular models of synaptic plas-
ticity had some dozen signaling pathways—a far cry from what was known. The 
fi eld as a whole is still playing catch-up. Nevertheless, most of the key properties of 
plasticity have had a good share of models, at various levels of detail. I suggest that 
there has been a recent shift in perspective, from enumerating molecules to looking 
at functional roles that may involve different, often overlapping sets of molecules. It 
is the identifi cation and integration of these diverse functions of the synapse that is 
the key conceptual direction of the fi eld. This has combined with technical and data- 
driven advances in managing and modeling multiscale phenomena spanning single- 
molecule reaction–diffusion, through chemistry, electrical and structural effects, 
and the network. As many of us felt, 20 years ago, we are again at a fascinating time 
where the experiments, the databases, and the computational tools are just coming 
together to address these questions.  

    Chapter 9   
 Still Looking for the Memories: Molecules 
and Synaptic Plasticity 
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        Introduction 

 Memory, as we think of it today, bridges many concepts. We are all familiar with the 
immediate personal working of memory, its sometimes diffi cult recall, and the sen-
sory completeness inherent in “reliving” an experience. We are also used to memory 
expressed as information storage and retrieval in computing devices. The gap 
between these two concepts is large. It is a long way indeed from information stor-
age to human memory, and a considerable section of computational neuroscience 
has sought to span this divide. Many of the early inspirations in the fi eld derive from 
this effort. These include “learning” networks like multilayer perceptrons with 
back-propagation (Minsky and Papert  1969 ; Rosenblatt  1962 ; Rumelhart et al. 
 1986 ) and Hopfi eld networks for associative memory (Hopfi eld  1982 ). The role of 
the synapse as the likely locus of these mechanisms has been apparent since before 
Hebb ( 1949 ) articulated it in the form we still use: “When an axon of cell A is near 
enough to excite a cell B and repeatedly or persistently takes part in fi ring it, some 
growth process or metabolic change takes place in one or both cells such that A’s 
effi ciency, as one of the cells fi ring B, is increased.” 

 What is this “growth process or metabolic change?” This leads to another vener-
able thread of memory research, dating from the earliest days of computational 
neuroscience, to understand the most basic mechanisms for information storage in 
the brain. What, in other words, are the biological equivalents of transistors and 
gates for memory? Here I will trace the evolution of our understanding of these 
mechanisms, as articulated in computational models.    I will do so in the form of 
three snapshots, of each a decade apart, refl ecting the early, middle, and current 
periods of the computational neuroscience (CNS) meetings   .  

    Snapshot 1: 1990 

 Around 1990, synaptic plasticity was already well established and was accepted as 
the cellular correlate of Hebb’s rule (Bliss and Collingridge  1993 ). In the typical 
experiment to measure synaptic plasticity, one records from a thin slice of tissue 
from the hippocampus of a rat, cut so as to preserve cell bodies from input and out-
put regions, and also the fi bers and synapses between them (Fig.  9.1 ). Widely spaced 
test stimuli are given on the fi ber bundles to “tickle” the synapses, and the baseline 
response in the target cells is measured. Then a series of strong stimuli are deliv-
ered, following which the test stimuli are resumed. The response is now about twice 
the original baseline, and this elevated response continues for hours, as long as the 
slice remains healthy. Elaborations of this experiment, specially using patch record-
ing for greater precision, established the key tenets of Hebb’s rule: associativity, 
correlations between inputs and outputs, and input specifi city. This body of effects 
is widely referred to as long-term potentiation, LTP. While it took a long while, 
another key theoretical prediction had also been established by 1990: the existence 
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of the complementary process for reversal of the enhanced response (Bienenstock 
et al.  1982 ; Ito  1989 ). LTD was fi rst characterized in cerebellum, but hippocampal 
forms soon followed (Dudek and Bear  1992 ; Mulkey and Malenka  1992 ; Stanton 
and Sejnowski  1989 ). Instead of brief strong input, the most commonly elicited 
form of hippocampal LTD requires the delivery of sustained low-frequency (1 Hz) 
stimuli (Fig.  9.1 ). Many other brain regions, other stimulus patterns, and almost all 
nervous systems were found to exhibit some variant of these forms of synaptic 
plasticity. At least at face value, the synapse offered all that could be asked by 
Hebb’s rule. So how does it do it?

   In 1984, the fi rst key aspect of Hebb’s rule was reduced to a single molecule. It 
was shown that the excitatory neurotransmitter glutamate caused the opening of a 
specifi c receptor protein that exhibited associativity (Nowak et al.  1984 ). This 
receptor, called the N-methyl- d -aspartate (NMDA) receptor, did so through a par-
ticularly simple mechanism (Fig.  9.2 ). The channel opened when neurotransmitter 
was present: this was the presynaptic activity from Hebb’s rule. However, it also 
required postsynaptic activity to depolarize the synapse enough to release a block 
caused by Mg 2+  plugging the channel. Thus the NMDA receptor acted as a molecu-
lar association device. It would only open when both pre- and postsynaptic activity 
were present. Numerous papers explored the effectiveness of this associativity (e.g., 
Zador et al.  1990 ).

   The second key aspect of synaptic plasticity, its persistence, also was reduced to 
a possible set of molecular event terms in the late 1980s. Many researchers had been 
intrigued by the properties of the calcium–calmodulin-dependent type II kinase 
(CaMKII) (Malinow et al.  1989 ). Among other things, this molecule is present in 
outrageously high concentrations at the synapse, and it has the peculiar ability to 
activate itself. John Lisman was one of the fi rst to point out using computational 
studies that this could readily form the basis for an autocatalytic feedback switch 

  Fig. 9.1    Hippocampal long-term potentiation (LTP)/LTD experiments. ( a ) Schematic of hippo-
campal brain slice experiment. A stimulating electrode is placed on the Schaffer collaterals toward 
the CA3. A recording electrode is placed in the dendritic region (stratum oriens) of the CA1. 
( b ) Recordings. An initial baseline is established by delivering test pulses to the stimulating elec-
trode, and recording fi eld or intracellular responses. Following this the plasticity stimuli are given, 
for example, a tetanic burst for LTP or a 1 Hz series of pulses for 900 s for LTD. After these stimuli, 
the test stimuli are resumed and the response is monitored to observe increase or decrease with 
reference to baseline       
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(Lisman  1989 ). Better still, the CaMKII switch could be triggered by the calcium 
infl ux through the NMDA channel. While the applicability of the putative CaMKII 
switch remains a matter for contention, the concept of molecular switches in the 
synapse has proven popular and most current molecular models for long-term plas-
ticity incorporate some kind of a bistable switch. In chemical terms, a bistable 
switch is a system of reactions which has two stable steady states. Note that these 
are not equilibrium states, as energy is required to maintain them. Since each state 
is steady, the system will tend to restore itself to that state even when perturbed by 
metabolic changes, chemical signals, or even noise. It takes a large stimulus to push 
the system over from one state to another (Fig.  9.2 ). 

 How does one achieve bistability through chemical reactions? Many theoretical 
studies have addressed this question over the years (Ferrell and Xiong  2001 ; 
Ramakrishnan and Bhalla  2008 ), but rather fewer are backed by experimental cor-
relates. The core attribute of a bistable chemical system is the presence of feedback 
interactions with a net positive sign around the feedback loop. This is not suffi cient. 
The slope of the respective dose–response curves for mutual activation of the com-
ponents of the loop must be steep enough that they intersect 3 times. These intersec-
tion points defi ne fi xed points of the system. The outer two fi xed points are the 
stable states, and the intermediate fi xed point behaves like a transition point or 
threshold. If you push the system above threshold, it will settle to the upper fi xed 
point. If you now push it down past threshold again, it will settle to the lower one. 

 Why a bistable switch and not just some kind of slow-decaying molecular capac-
itor? An example of the latter would be a one-time event which inserted a lot of 
receptors into the postsynaptic density, and then left them there. If the receptors 
were to stay there stably, this one-time insertion event itself would be suffi cient to 
establish a change in synaptic weight. The slow-decay model is attractive both for 

  Fig. 9.2    The two key mechanisms proposed for long-term synaptic plasticity. ( a ) Associativity 
due to the N-methyl- d -aspartate (NMDA) receptor. Presynaptic input resulting in glutamate release 
must be associated with postsynaptic depolarization of the dendrite (indicated by  plus  symbols). 
The postsynaptic depolarization releases the block of the open channel due to magnesium ions, and 
this allows cations to fl ow through the receptor into the dendritic spine. ( b ) Activation and autoca-
talysis of CaM kinase II. Calcium enters through the NMDA receptor and binds to CaM, which 
binds to and activates individual subunits of the CaMKII enzyme ( circles ). The CaMKII holoen-
zyme has 12 subunits stacked in rings of 6, each of which can activate its neighbor       
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its simplicity and the fact that it can store analog values for synaptic weight. 
Unfortunately, it won’t work for long-term memory. From experiments and simple 
calculations, it was clear long before the 1990s that there were at least three rather 
formidable problems for any kind of long-term molecular storage of synaptic state 
information.

    1.    All molecules in the brain turn over, typically with a time constant of 1 or 2 days 
or less (Ehlers  2003 ). This means that one cannot store information through 
accumulation of receptor or regulatory molecules, like charge in a capacitor: it 
will decay rather quickly.   

   2.    Molecules in the brain diffuse and undergo transport. So even if the molecules 
didn’t turn over, they might move away.   

   3.    Synapses are so small that the molecular reactions within them (involving recep-
tors, for example) are highly stochastic. A simple calculation shows that a typical 
0.5 μm spine head would have around fi ve free calcium ions. More recent mea-
surements show that the number of receptor proteins in a typical synapse is in the 
low hundreds—again, a likely range for stochasticity.     

 With these constraints in mind, the advantage of bistable systems over other 
forms of molecular memory maintenance becomes more apparent. Specifi cally, 
molecular turnover has little impact. Turnover times of days or even hours are a 
rather small perturbation on the kinds of molecular switches that have been pro-
posed for the synapse. The other two issues of diffusion and stochasticity turned out 
to be more diffi cult to analyze computationally, and indeed these established fertile 
grounds for computational research that still continue. 

 In summary, the beginning years of computational neuroscience also coincided 
with a molecular simplicity of memory mechanisms that seemed irresistible. The 
key questions of synaptic plasticity seemed to be resolved: associativity and long- 
term information storage had promising molecular correlates, and the fi eld seemed 
ready to move on to using these building blocks to make circuits that could bridge 
the rest of the great divide between synapses and systems memory.  

    Snapshot 2: 2000 

 The decade of the 1990s was a triumphal period for molecular biology. Genomes 
began to be sequenced, and this fl ood of new data, new techniques, and new mole-
cules transformed neuroscience. Many aspects of computational neuroscience were 
hardly affected by this, but anything to do with synaptic plasticity underwent huge 
changes. Specifi cally, the nascent fi eld of computational studies of mechanisms of 
synaptic plasticity had to struggle to keep itself afl oat in the fl ood. Computational 
neuroscientists often wish they had more data. Here was a situation where there was 
way too much data, and not quite of the kind that they were hoping for. It would 
have been nice to have gotten better data about reaction rates, mechanisms, and 
concentrations. Instead, what the fi eld did get was more molecules, more pathways, 
and far more complexity. 
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 Two particularly telling illustrations of the change are provided by a review and 
a paper that came out in the year 1999. The review posed the question: “Can mole-
cules explain long-term potentiation?” (Sanes and Lichtman  1999 ). Of course this 
question is one that the computational neuroscientists in the area were scrambling 
to answer in the affi rmative. The review traced the very same developments in the 
fi eld that we have touched upon here. The authors listed over 100 molecules that 
were then known to be important for LTP (Table  9.1 ). They remarked, somewhat 
ominously, that there were indications that the number might be far greater. This has 
turned out to be true, in the light of fi ndings in the decade since this review.

   The same infl ux of molecular and pathway data that had overwhelmed the study 
of signaling also provided an impetus to the new (or at least newly renamed) fi eld of 
systems biology. The key attribute of this somewhat broadly defi ned area was its use 
of quantitative techniques to analyze complex biological problems. This, of course, 
is what computational neuroscientists had been doing all along. The second illustra-
tion I pick is about a project at this intersection of systems biology and computa-
tional neuroscience. It was a computational analysis of the emergent properties of 
the then best understood signaling pathways involved in synaptic plasticity (Bhalla 
and Iyengar  1999 ). The analysis used straightforward ordinary differential equation 
modeling to represent the time-evolution of signaling responses following different 
kinds of synaptic input. Ironically, though the study utilized relatively recent molec-
ular insights for the topology of signaling networks, the “hard data” for the calcula-
tions (rate constants and concentrations) were available only from classic, tedious, 
test-tube biochemistry. This reiterated the complaint of data, data everywhere, but 
none of the numbers that we really needed. 

 Even though it covered only a subset of the species in the Sanes and Lichtman 
review, our signaling model incorporated over 200 molecules, many of them phos-
phorylation or binding states of primary signaling molecules (Fig.  9.3 ). Not coinci-
dentally, this early synaptic model incorporated not one but two bistable switches. 
One of these was, of course, the classic CaMKII autophosphorylation feedback 
switch. The other was a prediction of a feedback cycle involving two of the major 
kinases, protein kinase C (PKC) and microtubule-associated protein kinase 
(MAPK)   . Remarkably, the prediction of bistability in this cycle was subsequently 
supported by experiments (Bhalla et al.  2002 ; Tanaka and Augustine  2008 ). The key 
point of the signaling simulations was that putting together a lot of signaling path-
ways didn’t just add up their properties, there were unexpected and emergent behav-
iors of the system as a whole.

   The common subtext to both these studies was the demise of the simple, optimis-
tic view of synaptic plasticity as a process that could be understood by a few clear- 
cut mechanisms. Synaptic plasticity no longer offered even the hope of being a 
closed system: both studies discussed here emphasized their own incompleteness. 
The open-ended and somewhat fractious character of the fi eld of experimental syn-
aptic plasticity research reinforced this pessimistic outlook. 

 Beyond the broad sweep of these two illustrative studies, there was a steady 
stream of studies that began to nibble away at the pile of molecules in specifi c 
domains. Some of these studies took specifi c phenomena, such as calcium 
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dynamics, and incorporated more molecular, physiological, and spatial details 
(Gold and Bear  1994 ; Jaeger et al.  1997 ; Zador et al.  1990 ). In addition to consider-
able work in the area of subcellular calcium dynamics, there were numerous studies 
on synaptic release, including detailed stochastic and spatial simulations (e.g., 
Anglister et al.  1994 ; Bennett et al.  1995 ). There was an interesting confl uence of 
experimental and modeling studies on homeostasis, and its implications for synap-
tic normalization and memory retention (Liu et al.  1998 ; Turrigiano  1999 ). As dis-
cussed below, these studies began a shift in thinking toward key functional roles 
that had to be assembled to understand synapses.  

    Snapshot 3: 2010 

 In the second decade of this history and of the computational neuroscience meeting, 
the model building efforts of many groups fi nally began to make headway. The fl ood 
of new molecules and interactions continued unabated, but the fi elds of systems 
biology and computational neuroscience had begun to organize their troops. These 
included a well-defi ned numerical framework for tackling and modeling complex 
signaling networks, the recruitment of control theory techniques to this analysis, and 
many computational tools. There were also the beginnings of standards for data 
handling and sharing (Crook et al.  2007b ; Hucka et al.  2003 ), and a new wave of 
experimental inputs, notably imaging, that began to provide comparable quantita-
tive data to back up the qualitative, topological information from molecular work. 
Most importantly—and this was a specifi c contribution of the computational view-
point—it became possible to recognize functional motifs in signaling pathways. 
This meant that instead of puzzling out a continually growing tapestry of molecules 
and interactions, one could view the system in terms of larger, logically coherent 

  Fig. 9.3    Positive feedback and bistability. ( a ) Illustrative positive feedback loop involving three 
molecular species, A, B, and C, each of which activates the next. ( b ) Criterion for bistability. The 
solid curve is a dose–response curve indicating the strength of response of A to different values of 
its input C. The dashed line is the converse line, indicating the activation of C for a given activity 
of A. Intersections between these two curves are fi xed points of the system. The low and high fi xed 
points are stable states, and the intermediate fi xed point is an unstable transition point. Any two 
molecules in the feedback loop could be plotted to get the stable points       
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operations (Alon  2007 ; Bhalla  2003 ; Tyson et al.  2003 ). This was in parallel with 
the experimental realization that the process of synaptic plasticity had much more to 
it than the bald reiteration of Hebb’s rule. Here I will trace some of this evolution, 
much of which was refl ected in work presented at the CNS meetings. 

    Bistability 

 Bistable biochemical switches were one of the key early ideas about the mechanisms 
for long-lasting synaptic change. Molecular and genomic techniques brought in an 
infl ux of molecular candidates and signaling pathway networks, and many of the 
key synaptic players turned out to be plausible candidates for bistable switches. 
The most obvious way to fl ag a network for possible bistability is the presence of 
positive feedback loops (Fig.  9.4 ). New positive feedback motifs suggested in this 
period included switches involving PKA (Lindskog et al.  2006 ; Nakano et al.  2010 ; 
Song et al.  2006 ), protein synthesis (Aslam et al.  2009 ; Jain and Bhalla  2009 ), and 
gene switches (Sanyal et al.  2002 ) . Models involving such feedback systems have 
been proposed to account for long-term plasticity in systems ranging from Aplysia 
to Drosophila and mammalian hippocampus. Research has also continued to con-
solidate the ideas around the venerable CaMKII autophosphorylation loop (Graupner 
and Brunel  2007 ; Lisman and Zhabotinsky  2001 ; Miller et al.  2005 ; Pepke et al. 
 2010 ). The MAPK–PKC feedback loop received both theoretical and experimental 
support (Bhalla et al.  2002 ), and its possible role was extended to LTD in Purkinje 
neurons (Kuroda et al.  2001 ; Tanaka and Augustine  2008 ). Not all bistable systems 
have overt positive feedback. For example, multisite phosphorylation cascades can 
exhibit multistability (Markevich et al.  2004 ; Smolen et al.  2008 ). The process of 
receptor traffi cking, which has very direct correlations with synaptic strength, was 
found to be a potential bistable through a computational study (Hayer and Bhalla 
 2005 ). This has yet to be experimentally validated.

   These illustrations of nonobvious bistables suggested a reverse computational 
approach to fi nding possible signaling systems that had bistability. Instead of look-
ing for feedback motifs in known chemical networks and then testing for bistability, 
we tested for bistability in a systematic sweep through all possible permutations of 
chemical topologies up to a certain size (Ramakrishnan and Bhalla  2008 ). The 
resultant bistables were then examined to look for reaction topologies that might be 
bistable. This study suggested that as many as 10 % of all possible reaction topolo-
gies might give rise to bistability.  

    Non-bistable Memories 

 Notwithstanding the arguments for bistability as the basis for long-lasting plastic 
changes, there have been several proposals for non-bistable memories. Many studies 

U.S. Bhalla



197

  F
ig

. 9
.4

  
  Sc

he
m

at
ic

 o
f c

he
m

ic
al

 in
te

ra
ct

io
ns

 in
 a

 1
99

9 
m

od
el

 o
f s

ig
na

lin
g 

in
 th

e 
sy

na
ps

e 
(B

ha
lla

 a
nd

 Iy
en

ga
r  1

99
9 )

. Th
 i

s r
ep

re
se

nt
s o

nl
y 

a 
sm

al
l f

ra
ct

io
n 

of
 

kn
ow

n 
m

ol
ec

ul
ar

 p
la

ye
rs

 at
 th

e s
yn

ap
se

       

 

9 Still Looking for the Memories: Molecules and Synaptic Plasticity



198

analyze processes for triggering synaptic change and assume persistence till the 
next volley of plasticity-inducing input (D’Alcantara et al.  2003 ). This formulation 
has a counterpart in a large body of work on network-level plasticity, where the 
synapse is envisioned as having a continually changing synaptic strength. One pro-
posed way to achieve long-term synaptic stability (>1 year) without bistability, in the 
presence of stochasticity and turnover, is through receptor clustering (Shouval 
 2005 ). The key idea is that receptor replacement in a vacated position in the cluster 
is much faster than for isolated receptors.  

    Stochasticity and Memory 

 Stochasticity has already been pointed out as a particularly challenging aspect of 
synaptic signaling that any theory of chemical memory must address. The classic 
way of doing such calculations was devised by Gillespie ( 1977 ). This lets one take 
a chemical reaction system and treat rate terms as probabilities for reaction transi-
tions. Using this, one can uniformly and exactly sample possible trajectories of the 
evolution of the chemical system in time. With enough such trajectories, one can 
fi nd the probability distribution of the time-evolution of the system. Given the obvi-
ous relevance of stochasticity to synaptic plasticity, several studies looked at what 
would happen to chemical switches in synaptic volumes. The fi rst order expectation 
of a stochastic biochemical switch is that it should spontaneously fl ip state at a rate 
that depends on the level of noise, or inversely on the reaction volume if concentra-
tions and rates are held fi xed. Theoretical calculations showed that, in principle, the 
right combination of rates and concentrations should allow for state stability for a 
century or more, even with synaptic volumes (Bialek  2001 ). It turned out to be 
much harder to account for such stability using existing models. The MAPK feed-
back loop, for example, turned out to have a spontaneous switching time of a few 
hours or less, if one just made the original model stochastic (Bhalla  2004 ). Eventually 
a specifi c set of parameters and mechanisms for the CaMKII switch were found that 
were able to hold its state for at least a century, while retaining the ability to switch 
in response to a calcium stimulus of around a second (Miller et al.  2005 ). The recep-
tor traffi cking switch discussed above also has century-long state retention with its 
physiologically derived parameters (Hayer and Bhalla  2005 ). Interlinked positive 
feedback loops have also been suggested as a mechanism for producing long-term 
stability as well as fast switching (Smolen et al.  2009 ).  

    Input Pattern Selectivity 

 Synaptic plasticity is, both from a theoretical and experimental viewpoint, a highly 
selective phenomenon. Theoretically, the system has to distinguish between “learn-
ing” signals and regular ongoing activity which should pass through the synapse 
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without affecting its weights. One way of doing this is through the addition of exter-
nal modulators such as acetylcholine (Barkai and Hasselmo  1994 ; Hasselmo et al. 
 1992 ). However, it is also interesting to consider how the synapse can itself select 
between different patterns of input to decide whether to change, in what direction, 
and by how much. Partly inspired by this theoretical argument, a large variety of 
input stimuli have been tried out in experiments, and four major patterns have 
become standards in the fi eld. Interestingly, these patterns seem to elicit quite dif-
ferent plasticity mechanisms, with different time-courses and signaling pathways. I 
will discuss spike-timing-dependent plasticity (STDP) below. The four major pat-
terns are in Table  9.2 .

   The challenge for computational neuroscientists here was to fi nd out if and how 
signaling networks could select between these different input patterns. 

 The most pronounced distinction in this list was between LTD and the various 
LTP stimuli. It was already apparent from experiments and theory that the LTP 
stimuli tended to be brief but strong, whereas the LTD stimulus was lower but pro-
longed. Converted to calcium infl ux, this observation bore a striking resemblance to 
the classic Bienenstock–Cooper–Munroe (BCM) curve (Bienenstock et al.  1982 ). 
A suggestion by John Lisman and others (Lisman  1989 ) was that kinases such as 
CaMKII were triggered by high-threshold calcium sensors, whereas phosphatases 
such as calcineurin required lower calcium levels for activation. 

 Signaling pathways turn out also to be good at more subtle discriminations of 
input pattern. A series of theoretical (Bhalla  2002a ,  b ) and experimental (Ajay and 
Bhalla  2004 ) studies showed that the MAPK pathway discriminated between 
massed and spaced stimulus patterns. The mGluR pathway (Steuber and Willshaw 
 2004 ) and the PKA pathway are also capable of similar pattern selectivity (Kim 
et al.  2010 ; Lee et al.  2009 ). 

 STDP brought a much fi ner level of timing precision to input patterning than had 
previously been expected (Bi and Poo  1998 ; Magee and Johnston  1997 ; Markram 
et al.  1997 ). Instead of pattern discrimination of the order of many seconds or 
minutes, STDP depended on millisecond differences between pre- and postsynaptic 

   Table 9.2    Synaptic plasticity stimuli and their effects   

 Stimulus  Description  Effect 

 Massed tetanic stimuli  1–3 strong bursts of pulses 
(e.g., 100 Hz) of 1 s each, 
separated by 10–20 s 

 S-LTP. Plasticity of the order of 
50–100 %, lasting an hour or so. 
Does not trigger protein synthesis 

 Spaced tetanic stimuli  3–4 strong bursts of pulses 
(100 Hz of 1 s each) 
separated by 5–10 min 

 L-LTP. Plasticity around 100 %, 
lasting indefi nitely, depends on 
protein synthesis 

 Theta burst 
stimulation 

 L-LTP, as above 

 Pronged low- 
frequency 
stimulation 

 900 s of 1 Hz stimulation  LTD. Reduces synaptic strength by 
30–50 %, lasts indefi nitely, 
depends on protein synthesis 
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spike timings. How did the cell do it? This question has engaged many experimental 
and computational groups (Appleby and Elliott  2005 ; Badoual et al.  2006 ; Froemke 
et al.  2005 ; Graupner and Brunel  2007 ; Zou and Destexhe  2007 ). The answer turned 
out to be suggestive of the directions for the fi eld: both electrical and chemical 
signaling had to be considered to achieve bidirectional plasticity with millisecond 
time-resolution. Higher order spike combinations such as triplets add another layer 
to the synaptic pattern decoding (Badoual et al.  2006 ; Pfi ster and Gerstner  2006 ; 
Zou and Destexhe  2007 ). This branch of research remains lively, with numerous 
network implications as well as growing activity at the interface between chemical 
and electrical signaling.  

    Homeostasis 

 Cellular homeostasis is another major theme of synaptic plasticity research that 
highlights the intersection between chemical and electrical scales. Plasticity in indi-
vidual synapses changes excitability in a very small part of the cell. However, the 
cell has to retain an overall balance of excitability otherwise it (and the network) 
risks going into an epileptic state. Theoretical constructs, such as synaptic renor-
malization, have achieved this for network models in an abstracted way. An elegant 
series of experimental and computational studies has examined how this homeo-
static signaling may be achieved within a cell (Liu et al.  1998 ; Marder and Goaillard 
 2006 ; Olypher and Prinz  2010 ; Turrigiano  2008 ). 

 In summary, the computational neuroscience of synapses and molecules began 
the decade with an overabundance of qualitative data—molecules and interactions—
which quite swamped the earlier simplicity of ideas about synaptic plasticity. Over the 
course of the decade, a few key functional motifs kept coming up from the profusion 
of interactions. Bistability, long-term stability, pattern selection, and homeostasis 
were some of these core motifs. These functions often shared molecular players, 
and often had alternate pathways for their mechanisms. This functional perspective 
was a powerful way to step back from the molecular complexity and better under-
stand how different aspects of synaptic plasticity might work.   

    Directions 

 Extrapolating from work in the past few years, the trajectory of computational stud-
ies of synaptic plasticity seems to be to push toward greater completeness, of two 
kinds. On the one hand there is a continuing process of modeling and understanding 
further pathways crucial for plasticity, as the experimental literature identifi es and 
characterizes them. In this vein there have been recent studies on dendritic protein 
synthesis control during synaptic plasticity (Aslam et al.  2009 ; Clopath et al.  2008 ; 
Jain and Bhalla  2009 ), and the role of PKM zeta (Ajay and Bhalla  2004 ; Shema 

U.S. Bhalla



201

et al.  2007 ). The older pathways too still have life in them, and models there are 
being further refi ned as better data come in (e.g., Byrne et al.  2009 ; Kim et al.  2010 ). 

 The other direction for completeness is toward more inclusive detail. Better data 
and better simulation tools have made it possible to now model synaptic events at 
literally single-molecule resolution (Andrews et al.  2010 ; Coggan et al.  2005 ; 
Oliveira et al.  2010 ). Models of this kind take enormously detailed three- dimensional 
structural data for synaptic geometry and populate the space with the best current 
information about receptor and other molecular localization. Due to the extreme 
technical requirements, detailed chemistry in such models is currently traded off for 
better spatial resolution, with different studies favoring one or the other. Progress is 
clearly being made on both fronts. 

 Detail is also improving at the intersection between different kinds of cellular 
events. Multiscale models of this kind consider electrical and chemical events 
simultaneously, so as to more completely understand processes such as plasticity 
which are inherently multilevel. The close coupling between electrical events and 
calcium concentration change, calcium concentration change and signaling, and 
signaling and modifi cation of ion channels is one that has mostly been avoided. The 
fortuitous separation of time-scales between these events has let us get away with 
approximations of quasi-steady states in many models. Simulation hardware and 
software are now at the point where one can tackle these multiscale problems 
through brute force, and this opens out new forms of multiscale feedback and cou-
pling. Among these are highly detailed single-molecule views of coupled reaction–
electrodiffusion systems (Santamaria et al.  2006 ; Wils and De Schutter  2009 ), and 
coarser grained models incorporating reaction–diffusion signaling with compart-
mental electrical models (Ajay and Bhalla  2007 ). Further along this line, we are 
likely to see how signaling interacts with mechanical events, and that to structure 
(Crook et al.  2007a ), leading to yet more ways to alter the synapse. 

 In closing, we are still looking for the memories. Computational neuroscience 
has had the privilege of being part of a transformation of understanding about syn-
aptic plasticity: from the apparently simple to the overwhelmingly complex, and 
from there to a better appreciation of conceptual and scientifi c frameworks that can 
deal with the complexity. This journey has been shared with many other parts of 
biology, and there has been a fertile cross-talk between systems modelers of differ-
ent persuasions. The memories themselves are still a little further away, perhaps we 
can gather them in when we have had another decade or two to digest how informa-
tion fl ows back and forth between molecules, ions, synapses, cells, and networks.     
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    Abstract     The fi rst Computational Neuroscience meetings in the 1990s fostered an 
increasing focus on biologically realistic modeling of neurons to understand the 
function of neural circuits. This chapter reviews some of the developments over the 
past 20 years, relating papers presented at the early meetings to subsequent develop-
ments. The review addresses developments in research on associative memory func-
tion, hippocampal memory function, the functional role of theta rhythm oscillations, 
and the discovery and modeling of grid cells.         

 Impact of the Computational Neuroscience Meeting 

 I remember the feeling of excitement associated with the fi rst Computational 
Neuroscience meetings in the early 1990s. I had a sense of a fi eld coalescing from 
many different disciplines, building on research that had started decades earlier. 
I anticipated great accomplishments to take place over the subsequent 20 years from 
those fi rst meetings. Now that the Computational Neuroscience meeting has taken 
place for 20 years, I can refl ect on how far we have progressed since that time. 

 There were a number of changes in cultural styles from the 1980s to the 1990s. 
Neural modeling was dominated by connectionist models (Rumelhart et al.  1986 ; 
McClelland and Rumelhart  1988 ) and attractor dynamic models (Amit  1988 ; Amit 
and Treves  1989 ) in the 1980s. At the start of the 1990s, the excitement about con-
nectionist models and attractor networks transitioned into a greater focus on bio-
physically detailed modeling of neural circuits. This type of work is essential to 
understanding the cellular and molecular mechanisms underlying behavior, which 
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will be essential to guiding the development of treatments for disorders such as 
schizophrenia and depression. Much of the infl uential work on biophysically 
detailed modeling was performed by founders and early participants of the 
Computational Neuroscience meeting, including John Rinzel, Bard Ermentrout, 
Jim Bower, Nancy Kopell, Matt Wilson, Erik DeSchutter, Charlie Wilson, David 
Golomb, Eve Marder, Todd Troyer, Francis Skinner, Alain Destexhe, Ron 
Calabrese, Orjan Ekeberg, and Christian Linster. There are too many names to 
provide a complete list here. 

 The growth of the fi eld was facilitated tremendously by the dedicated work of 
Dennis Glanzman, as the program chief of the Theoretical and Computational 
Neuroscience program at NIMH. His program provided guidance toward funding 
for many of the infl uential modelers in those early years. The work was also facili-
tated by a later collaborative funding venture between Dennis Glanzman at NIMH, 
Yuan Liu at NINDS, and Ken Whang at NSF in the program for Collaborative 
Research in Computational Neuroscience (CRCNS). 

 In describing progress over the past 20 years, I will focus on the biological 
dynamics of memory function, with a particular emphasis on understanding how 
episodic memories are encoded. I will address the progress in three general areas: 
(1) associative memory function, (2) hippocampal function, and (3) theta rhythm 
and grid cells. 

    Associative Memory Function 

 The early days of the Computational Neuroscience meeting included presentations 
addressing biological mechanisms for associative memory function. The theory of 
associations has a long history in research on human cognition. A review can be 
found in Schacter ( 1982 ). These models received a more detailed mathematical 
treatment in early linear associative memory models (Anderson  1972 ; Kohonen 
 1972 ,  1984 ). In these models, vectors represented patterns of neural activity in the 
brain. An association was encoded by modifi cation of synapses, represented math-
ematically by computing the outer product matrix between a presynaptic activity 
vector and the associated postsynaptic activity vector. Retrieval of the association 
was performed by allowing the presynaptic activity cue to spread across the modi-
fi ed synapses, represented mathematically by matrix multiplication of the presynap-
tic vector by the pattern of synaptic connections. 

 An important early paper by Marr proposed that the excitatory recurrent connec-
tions in hippocampal region CA3 could underlie autoassociative memory function 
(Marr  1971 ). This was expanded upon in subsequent papers by hippocampal 
researchers (McNaughton and Morris  1987 ) as described in more detail in the next 
section of the chapter. In addition, the primary olfactory cortex was also proposed by 
Haberly and Bower to function as an autoassociative memory (Haberly and Bower 
 1989 ). This proved an interesting model system. Early Computational Neuroscience 
meetings included presentations of detailed biophysical simulations of the olfactory 
cortex developed in the Bower laboratory (Bower  1990 ; Wilson and Bower  1992 ) 
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and models of the olfactory cortex as an autoassociative memory (Hasselmo et al. 
 1990 ,  1994 ; Bergman et al.  1993 ). These biophysical simulations used the GENESIS 
simulation package initially written by Matt Wilson and developed further by many 
researchers within the Bower laboratory (Bower and Beeman  1995 ). The Bower 
laboratory provided an exciting environment where both biologically realistic mod-
eling and intracellular recording experiments could be combined. 

 Excitatory recurrent connections will cause an explosion of activity unless the 
excitatory feedback is limited by the input–output function of individual neurons or 
by feedback inhibition. A dominant stream of research in the 1980s focused on fi xed 
point attractor dynamics in associative memory function, in which activity con-
verges to a stable fi xed point. Mathematically, Lyapunov functions were used to 
show the stability of attractor states (Hopfi eld  1982 ,  1984 ; Cohen and Grossberg 
 1983 ). Many of these studies focused on relatively abstract representations of neu-
rons and the computation of the storage capacity of attractor networks (Amit  1988 ). 
Initial models were highly unrealistic, for example, violating Dale’s law by having 
both excitatory and inhibitory connections arise from the same neuron and driving 
neurons up to an asymptotic maximum activity. However, later studies addressed 
making these attractor networks more biologically realistic, for example, by model-
ing neurons with lower fi ring rates (Amit and Treves  1989 ; Amit et al.  1990 ). 

 Many of the early models used single neuron models that artifi cially limited the 
maximal output of neurons (i.e., using a step function or sigmoid function). This 
was justifi ed as representing the maximal intrinsic fi ring rate of a neuron. However, 
recordings of cortical neurons in vivo almost never go above 100 Hz, whereas the 
maximal fi ring rate limited by intrinsic properties is usually higher. The intrinsic 
frequency–current ( f – I ) curve of a neuron is more accurately modeled with a thresh-
old linear function. A more realistic way of limiting the maximal fi ring rate of mod-
eled neurons is by use of feedback inhibition, for example as initially implemented 
by Wilson and Cowan ( 1972 ,  1973 ). In my own models, I used interactions of 
threshold linear excitatory and inhibitory neurons in attractor models of the hippo-
campus (Hasselmo et al.  1995 ; Kali and Dayan  2000 ). Carl van Vreeswijk wrote an 
unpublished paper with me on these types of models in my lab, and then went on to 
develop his model of balanced networks (van Vreeswijk and Sompolinsky  1996 ) in 
which chaotic activity involves a balance of excitatory and inhibitory activity. 

 Early associative memory models all used different dynamics during encoding 
and retrieval (Anderson  1972 ; Kohonen  1972 ,  1984 ; Hopfi eld  1982 ; Amit  1988 ). 
During encoding, activity in the network would be clamped to an external input pat-
tern. The dynamics of retrieval were explicitly prevented during computation of an 
outer product for encoding of new input patterns. This was essential for the proper 
function of associative memory models, as retrieval during encoding would cause a 
build-up of interference between overlapping patterns (Hasselmo et al.  1992 ). 
However, there was no clear biological mechanism for this difference in dynamics 
during encoding and retrieval. 

 The effects of acetylcholine provide a potential biological mechanism for the dif-
ference in dynamics between encoding and retrieval in associative memory. Working 
on slices of the piriform cortex in the laboratory of Jim Bower, I studied differences 
between the properties of glutamatergic synaptic transmission at the afferent input 
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from the olfactory bulb in layer Ia and the glutamatergic excitatory recurrent connec-
tions in layer Ib arising from other piriform cortex pyramidal cells, extending previ-
ous work on the physiological properties of these synapses done by Jim Bower 
(Haberly and Bower  1984 ; Bower and Haberly  1986 ). I found a striking difference 
in the effects of acetylcholine on the glutamatergic transmission at these synapses 
(Fig.  10.1 ). Activation of muscarinic acetylcholine receptors caused much stronger 
presynaptic inhibition of glutamate release at excitatory recurrent synapses in layer 
Ib compared to afferent synapses in layer Ia (Hasselmo and Bower  1992 ,  1993 ).

   The combined focus on modeling and physiology in the Bower lab gave me 
excellent tools for modeling the signifi cance of this function. In the rooms on the 
top fl oor of the Beckman Behavioral Biology, I remember preparing piriform cortex 
slices, then starting simulations on a Sun workstation, then running a slice experi-
ment, then checking on my simulation output and running a new batch fi le, in an 
interactive process throughout a 10 h experimental day. I found a clear effect of 
cholinergic modulation in abstract models of associative memory function in the 
piriform cortex. The selective suppression of excitatory recurrent connections 
clearly enhanced the encoding of new patterns by preventing interference from pre-
viously stored memories (Hasselmo et al.  1992 ; Hasselmo and Bower  1993 ). Later 
we simulated networks of piriform cortex neurons using the GENESIS simulation 
package for presentations at the Computational Neuroscience meeting (Bergman 
et al.  1993 ; Hasselmo et al.  1994 ), showing that encoding of new patterns was 
enhanced by these cholinergic effects. As shown in Fig.  10.2 , interference from 
previously stored patterns was prevented by cholinergic suppression of synaptic 
transmission, and the rate of encoding was enhanced by cholinergic depolarization 
of pyramidal cells and the suppression of spike frequency accommodation (Barkai 
et al.  1994 ; Barkai and Hasselmo  1994 ).

   These fi ndings in the piriform cortex have been shown to generalize to other 
cortical structures in a wide range of subsequent studies. Research in my laboratory 

  Fig. 10.1    Activation of acetylcholine receptors by the acetylcholine (ACh) agonist carbachol 
causes selective presynaptic inhibition of synaptic potentials evoked by stimulation of excitatory 
feedback synapses ( bottom ), with smaller change of synaptic potentials evoked by stimulation of 
excitatory afferent input ( top ) (Hasselmo and Bower  1992 )       
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extended this work to subregions of the hippocampal formation. In region CA1 of 
the hippocampus, we showed that muscarinic presynaptic inhibition was stronger at 
excitatory connections arising from within the hippocampus (in region CA3) and 
terminating in stratum radiatum of region CA1 compared to afferent input from 
entorhinal cortex terminating in stratum lacunosum-moleculare (Hasselmo and 
Schnell  1994 ). Similarly, muscarinic presynaptic inhibition was stronger for syn-
apses in stratum radiatum of region CA3 arising from CA3 pyramidal cells, com-
pared to weaker presynaptic inhibition at afferent synapses in stratum lucidum, at 
synaptic input arising from the dentate gyrus (Hasselmo et al.  1995 ). This effect was 
later replicated in stratum lucidum (Vogt and Regehr  2001 ) and was extended to 
show less presynaptic inhibition in stratum lacunosum-moleculare of region CA3 
(Kremin and Hasselmo  2007 ). 

 This principle of selective cholinergic suppression of excitatory feedback but not 
afferent input also proves to generalize to neocortical structures. In an early study, 
connections within somatosensory neocortex showed greater presynaptic inhibition 
than afferent input arising from the white matter (Hasselmo and Cekic  1996 ). This 
was subsequently shown in a study using thalamocortical slice preparations, 

  Fig. 10.2    ( a ) Biophysical simulation of spiking response to afferent input. Size of  black squares  
indicates the amount of spiking activity (example membrane potential traces are shown). ( b ) With 
no synaptic modifi cation (no learning), a degraded input pattern only activates a subset of neurons. 
( c ) After learning with ACh, the network effectively completes missing components of the input 
pattern. ( d ) After learning without ACh, proactive interference results in retrieval of multiple dif-
ferent input patterns (Hasselmo et al.  1994 ; Barkai et al.  1994 )       
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showing muscarinic presynaptic inhibition of excitatory recurrent connections in 
neocortex and also showing nicotinic enhancement of afferent input (Gil et al.  1997 ). 

 In the visual cortex, optical imaging was used to show cholinergic suppression of 
the internal spread of activity along excitatory recurrent connections compared to 
afferent input (Kimura and Baughman  1997 ; Kimura  2000 ). This indicated that ace-
tylcholine should reduce the functional spread of activity on excitatory recurrent 
connections in visual cortex. This was supported by in vivo experimental data show-
ing that iontophoretic application of acetylcholine decreases the extent of spatial 
integration, assessed by measuring a neuron’s tuning to length of visual stimuli 
(Roberts et al.  2005 ). These effects appear to contribute to the infl uence of top-down 
attention on the dynamics of visual cortex processing (Herrero et al.  2008 ). This 
work has been extended to human subjects in a study showing that the acetylcholin-
esterase blocker donepezil reduces the extent of the spread of activity in visual corti-
cal areas associated with foveal stimulation (Silver et al.  2008 ). Thus, the 
physiological effects of muscarinic activation modeled in these early papers in the 
Computational Neuroscience meeting have proved to be a general principle of corti-
cal function in subsequent studies. 

 The hippocampal data and modeling generated the prediction that blockade of 
muscarinic receptors by the muscarinic antagonist scopolamine should enhance 
proactive interference in a paired associate memory task (Hasselmo and Wyble 
 1997 ; Wyble and Hasselmo  1997 ). This was supported by experimental data on 
scopolamine effects in human subjects (Atri et al.  2004 ). Enhancement of proactive 
interference was also shown in studies on discrimination of pairs of odors in rats 
administered scopolamine (De Rosa and Hasselmo  2000 ) or after receiving selec-
tive lesions of the cholinergic innervation of the olfactory cortex (De Rosa et al. 
 2001 ). In computational models, the build-up of proactive interference causes run-
away synaptic modifi cation within cortical networks that can spread from one 
region to another. This mechanism was proposed to underlie the early appearance of 
Alzheimer’s disease neuropathology in the form of neurofi brillary tangles in lateral 
entorhinal cortex and the progressive spread from lateral entorhinal cortex to other 
regions (Hasselmo  1994 ,  1997 ). This provides a computational framework that 
would predict reductions in Alzheimer’s pathology with loss of fast hippocampal 
learning (e.g., in the most extreme case, patient HM would be expected to show 
absence of Alzheimer’s pathology in his remaining temporal lobe structures). This 
framework could account for the benefi cial effects of the NMDA blocker meman-
tine on Alzheimer’s disease (Reisberg et al.  2003 ) and supports the use of selective 
activation of presynaptic muscarinic receptors with M4 agonists to enhance presyn-
aptic inhibition of glutamate release in treatment of Alzheimer’s disease (Shirey 
et al.  2008 ). 

 The levels of acetylcholine change dramatically during different stages of waking 
and sleep. Acetylcholine levels are high during active waking, show decreases  during 
quiet waking, and decrease to less than 1/3 of waking levels during slow wave sleep 
(Marrosu et al.  1995 ). The decrease in acetylcholine levels during slow wave sleep has 
been proposed to decrease the presynaptic inhibition of glutamatergic transmission 
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at connections from hippocampus back to neocortex, allowing activity based on 
recently formed associations in the hippocampus to spread back to the neocortex and 
drive consolidation of memories in the neocortex (for review see Hasselmo  1999 ). 
This proposal is consistent with the muscarinic cholinergic presynaptic inhibition 
shown at a number of stages of the feedback connections (Fig.  10.3 ), including the 
excitatory recurrent connections in region CA3 (Hasselmo et al.  1995 ; Vogt and 
Regehr  2001 ; Kremin and Hasselmo  2007 ), the connections from region CA3 to 
region CA1 (Hounsgaard  1978 ; Valentino and Dingledine  1981 ; Hasselmo and 
Schnell  1994 ; de Sevilla et al.  2002 ), and the feedback connections within neocorti-
cal structures (Hasselmo and Cekic  1996 ; Gil et al.  1997 ).

   This model of the role of acetylcholine in consolidation led to some functional 
predictions that have been tested. If a reduction in cholinergic presynaptic inhibition 
enhances consolidation during slow wave sleep, then an increase in acetylcholine 
levels during slow wave sleep should impair consolidation. This was tested in a 
study in which subjects were administered physostigmine during slow wave sleep 
and showed reductions in subsequent tests of declarative memory consolidation per-
formed after the subjects were awakened (Gais and Born  2004 ). On the other hand, 
the model predicts that reductions in acetylcholine modulation during waking 
should enhance consolidation. This was shown in a study in which scopolamine was 
administered to block muscarinic cholinergic receptors after encoding of informa-
tion, and subjects showed an enhancement of consolidation on a later memory test 
(Rasch et al.  2006 ). Thus, computational modeling has provided an exciting link 
between cellular mechanisms of muscarinic presynaptic inhibition and behavioral 
studies in animals and humans. 

Hippocampus

Waking   Slow-wave sleep

Neocortex

CA3

ACh

CA1

Neocortex

DG

ACh

ACh

ACh

Neocortex

CA3

CA1

Neocortex

DG

Acetylcholine regulates feedback

  Fig. 10.3    (Left) During waking, high levels of ACh cause presynaptic inhibition of excitatory 
recurrent connections in CA3 as well as connections from region CA3 to region CA1 and feedback 
connections between neocortical structures. This allows a dominant infl uence of afferent input into 
the hippocampus during encoding. (Right) During slow wave sleep, lower levels of ACh allow 
stronger synaptic transmission at these connections. This results in a dominant infl uence of hip-
pocampus on neocortex that could be appropriate for consolidation of previously encoded memo-
ries (Hasselmo  1999 )          
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 This framework describes how the transitions between different levels of acetyl-
choline during waking and sleep can regulate the transition between encoding and 
consolidation. But this leaves the question of how more rapid transitions between 
encoding and retrieval could be regulated. Muscarinic presynaptic inhibition cannot 
change rapidly, as shown by studies in which 100 ms pressure pulse applications of 
acetylcholine cause changes in presynaptic inhibition that persist for 10–20 s 
(Hasselmo and Fehlau  2001 ). In contrast, rapid transitions between encoding and 
retrieval could be mediated by the change in dynamics during individual cycles of 
the theta rhythm oscillations in hippocampus (Hasselmo et al.  2002 ). These dynam-
ical changes could be regulated by postsynaptic GABAA inhibition (Toth et al. 
 1997 ) and presynaptic GABAB inhibition (Molyneaux and Hasselmo  2002 ). 
Encoding could take place when entorhinal synaptic input is strongest at the trough 
of the EEG recorded at the hippocampal fi ssure (Hasselmo et al.  2002 ), and retrieval 
could be dominant when region CA3 input is strongest at the peak of fi ssure theta. 
The change in relative strength of synaptic input is supported by studies showing 
phasic changes in strength of evoked synaptic transmission on different pathways at 
different phases of the theta rhythm oscillation (Wyble et al.  2000 ; Villarreal et al. 
 2007 ). Consistent with the theorized role of these different phases in encoding and 
retrieval, the human EEG shows reset to different phases of theta rhythm during 
encoding versus during  retrieval (Rizzuto et al.  2006 ), and spiking appears on 
 different phases of hippocampal theta during match and nonmatch stimuli (Manns 
et al.  2007 ).  

    Hippocampus 

 In addition to these studies on associative memory in the piriform cortex, the early 
days of the Computational Neuroscience also included presentations of hippocam-
pal models that have had a signifi cant impact on subsequent research. These 
included papers on hippocampal models by Burgess, O’Keefe, and Recce; Idiart 
and Abbott; Redish and Touretzky; Holmes and Levy; Blum and Abbott; and Mehta 
and McNaughton. Modeling of the hippocampus has been very successful in guid-
ing experimental work in this area. A number of experimental studies have tested 
specifi c predictions of computational models. 

 The phenomenon later described as spike-timing dependent plasticity was ini-
tially discovered by William B. “Chip” Levy (Levy and Steward  1983 ) and modeled 
extensively by Holmes and Levy ( 1990 ). The temporal asymmetry of synaptic mod-
ifi cation modeled by Holmes and Levy was incorporated in a circuit model by 
Abbott and Blum (Abbott and Blum  1996 ; Blum and Abbott  1996 ). This model 
predicted that the potentiation of excitatory connections should cause a backward 
expansion of hippocampal place fi elds. An experimental test of the model was per-
formed by Mayank Mehta in Bruce McNaughton’s laboratory (Mehta and 
McNaughton  1997 ). They presented the experimental data from this test at the 
Computational Neuroscience meeting, showing the predicted backward expansion 
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of the size of place fi elds of hippocampal place cells (Mehta et al.  1997 ; Mehta and 
McNaughton  1997 ). This phenomenon has been replicated extensively in subse-
quent studies (Mehta et al.  2000 ,  2002 ). 

 Some of the theories of hippocampal function had a slower time constant for 
their infl uence on experimental work in the fi eld. For example, the early paper by 
Marr ( 1971 ) is extensively credited with proposing the principle of pattern comple-
tion on excitatory recurrent connections in region CA3 of hippocampus. Marr also 
proposed that interference between patterns stored in CA3 could be reduced by the 
process of pattern separation (orthogonalization) in the dentate gyrus (the codon 
hypothesis of Marr). Several papers in the late 1980s and early 1990s reviewed 
these basic ideas of pattern separation in the dentate gyrus (McNaughton and Morris 
 1987 ; McNaughton  1991 ; O’Reilly and McClelland  1994 ; Hasselmo and Wyble 
 1997 ) and pattern completion by autoassociative memory function in hippocampal 
region CA3 (McNaughton and Morris  1987 ; Treves and Rolls  1994 ; Hasselmo et al. 
 1995 ). These principles were also combined together in a simulation of the role of 
the hippocampus in human episodic memory function presented at the Computational 
Neuroscience meeting (Hasselmo and Wyble  1997 ; Wyble and Hasselmo  1997 ). 

 The basic principles proposed by Marr had an impact on experimental work over 
20 years later. Selective genetic manipulations in mice allowed selective knockout 
of the NMDA receptor in hippocampal region CA3, and these mice showed an 
impairment of pattern completion based on learning a spatial response in an envi-
ronment with multiple cues and being tested for their response in an environment 
with a single cue (Nakazawa et al.  2002 ). Similarly, selective expression of tetanus 
toxin in mouse region CA3 to block synaptic transmission from these neurons also 
impairs pattern completion in that task (Nakashiba et al.  2008 ). In contrast, selective 
knockout of NMDA receptors in the dentate gyrus caused impairment of responses 
that required distinguishing two separate but similar contextual environments 
(McHugh et al.  2007 ). In addition, selective lesions of the dentate gyrus impair the 
capacity of rats to encode and selectively respond to spatial locations that are close 
to each other (Gilbert et al.  2001 ). 

 Unit recording studies have also analyzed the response properties of the dentate 
gyrus versus other hippocampal subregions. Neurons in the dentate gyrus show 
sparser coding of the environment, with fewer responsive cells and smaller response 
fi elds for dentate place cells (Barnes et al.  1990 ). Minimal changes in the spatial 
environment can cause distinct responses of dentate gyrus granule cells (Leutgeb 
et al.  2007 ). Other unit recording studies have tested for the effect of partial shifts in 
the environment on neural responses in region CA3. In one study, the partial shift 
caused less change of neural response in CA3 compared to CA1 suggesting pattern 
completion (Lee et al.  2004 ), whereas in another study, region CA3 responded with 
distinct representations to partial changes in the environment (Leutgeb et al.  2004 ). 
These apparently confl icting results were unifi ed by demonstration of a nonlinear 
transformation in region CA3 (Vazdarjanova and Guzowski  2004 ). Input patterns 
that are somewhat similar to each other induce very similar response patterns, 
whereas input patterns that are more different evoke more strongly differentiated 
patterns of neural activity (Guzowski et al.  2004 ; Vazdarjanova and Guzowski  2004 ).  
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    Theta Rhythm, Theta Phase Precession, and Grid Cells 

 Another important body of modeling research has focused on the role of oscillations 
in cortical function. Here I will focus on models of the role of theta rhythm in hip-
pocampal function. An early paper presented at the Computational Neuroscience 
meeting presented a model of goal-directed behavior in the hippocampus that used 
the phenomenon of theta phase precession to provide a more accurate spatial code 
(   Burgess et al.  1994 ). 

 Theta phase precession was fi rst discovered by O’Keefe and Recce ( 1993 ) and 
then replicated extensively in other studies (Skaggs et al.  1996 ; Huxter et al.  2003 ). 
In theta phase precession, the spiking response of hippocampal place cells changes 
relative to theta rhythm oscillations recorded simultaneously in the hippocampal 
EEG. When a rat fi rst enters the place fi eld of an individual place cell, the spikes 
occur predominantly at a relatively late phase of the theta rhythm. The spikes shift 
to progressively earlier phases as the rat traverses the fi eld. In the original paper 
describing theta phase precession, the phenomenon was proposed to arise from a 
progressive phase shift between the network EEG oscillation frequency and the 
intrinsic spiking frequency of the neuron which was shown to have a higher fre-
quency based on the autocorrelation of spiking activity (O’Keefe and Recce  1993 ). 
That paper presents a simple fi gure showing how the interaction of two oscillations 
of slightly different frequency will cause a precession of the summed oscillation 
relative to the lower frequency oscillation. This model makes an interesting addi-
tional prediction that there should be multiple fi ring fi elds, each showing the same 
precession. Since most place cells had a single fi ring fi eld, this was perceived as a 
problem of the model, and later implementations kept the oscillations out of phase 
with each other until one was shifted to a higher frequency in the fi ring fi eld (Lengyel 
et al.  2003 ). However, the later discovery of grid cells casts a different light on the 
original model, fulfi lling the prediction of the model for multiple fi ring fi elds that 
was initially perceived as a problem of the model. Thus, the model by O’Keefe and 
Recce essentially predicted the existence of grid cells. 

 A number of other models have also simulated theta phase precession. For exam-
ple, the oscillatory interference model has been presented in a variant involving 
inhibitory infl uences on pyramidal cells (Bose et al.  2000 ; Bose and Recce  2001 ). 
In another class of models, the replication of phase precession in the McNaughton 
laboratory was accompanied by a model of phase precession based on slow retrieval 
of a learned sequence of spatial locations during each theta cycle (Tsodyks et al. 
 1996 ). A similar sequence read-out model was presented that year by Jensen and 
Lisman ( 1996a ). In the Jensen and Lisman model, the phase precession during 
encoding arose from a working memory buffer in which afterdepolarization allowed 
neurons to be played out in a sequence on each theta cycle (Jensen and Lisman 
 1996b ). Both of these models required relatively slow read-out of the sequence 
across the full theta cycle, at a rate slower than the time constants of glutamatergic 
AMPA conductances. The following year a different model was presented 
(Wallenstein and Hasselmo  1997 ) in which read-out had the faster time course of 
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AMPA conductances, but the length of the read-out would shift across the theta 
cycle based on the level of presynaptic inhibition or the level of postsynaptic depo-
larization. This model was extended later to include the context-dependent retrieval 
of sequences, accounting for the reappearance of theta phase precession over initial 
trials on each new day (Hasselmo and Eichenbaum  2005 ). 

 Another class of models proposed that phase precession arose from progressive 
shifts in the postsynaptic depolarization of neurons, causing spikes to occur at dif-
ferent phases relative to network inhibitory oscillations (Kamondi et al.  1998 ; 
Magee  2001 ; Mehta et al.  2002 ). These different models have motivated a number 
of different experimental studies. The sequence retrieval models were supported by 
an initial study showing that reset of theta phase oscillations did not shift phase, 
spiking after reset would commence at the same phase as before the reset (Zugaro 
et al.  2005 ). However, a more recent study strongly supported the oscillatory inter-
ference model by showing that intracellularly recorded oscillations in membrane 
potential also show phase precession relative to network oscillations (Harvey et al. 
 2009 ), an effect not predicted by the sequence read-out model. The postsynaptic 
depolarization model did not predict this shift in phase of intracellular oscillations 
(Kamondi et al.  1998 ). In addition, the postsynaptic depolarization models pre-
dicted an asymmetrical sawtooth waveform for a depolarizing shift in the place 
fi eld, whereas the data showed a symmetrical depolarization in the place fi eld 
(Harvey et al.  2009 ). 

 As noted above, the original presentation of the oscillatory interference model of 
theta phase precession predicted the existence of neurons with multiple, regularly 
spaced fi ring fi elds (O’Keefe and Recce  1993 ). Though the authors initially saw this 
as a problem for the model, the generation of multiple fi ring fi elds by the model is 
explicitly shown in Fig. 10 of the O’Keefe and Recce ( 1993 ) paper. This initially 
undesired prediction of the model was validated by the later discovery of grid cells 
in the medial entorhinal cortex in the Moser laboratory. In the data from the Moser 
lab, the existence of repeating fi ring fi elds was fi rst noted in the dorsal portion of 
medial entorhinal cortex (Fyhn et al.  2004 ), and subsequently the regular hexagonal 
arrangement of fi ring fi elds was noted and found to extend to more ventral regions 
of medial entorhinal cortex with larger spacing between the fi ring fi elds (Hafting 
et al.  2005 ). The systematic increase in spacing between fi ring fi elds for neurons in 
more ventral locations has been shown in great detail in subsequent papers (Sargolini 
et al.  2006 ), including very large and widely spaced fi ring fi elds in more ventral 
medial entorhinal cortex (Brun et al.  2008 ). 

 When the fi rst paper on grid cells appeared, O’Keefe and Burgess immediately 
recognized the signifi cance of the repeating nature of grid cell fi ring, as this had 
been a strong feature of the theta phase precession model. They rapidly pointed out 
how oscillatory interference could underlie the properties of grid cell fi ring (O’Keefe 
and Burgess  2005 ). In the Computational Cognitive Neuroscience meeting in 
Washington in 2005, Neil Burgess presented a poster with a detailed model using 
velocity modulation of fi ring frequency to generate realistic grid cell fi ring fi elds 
(Burgess et al.  2005 ). The oscillatory interference model of grid cells immediately 
generated a prediction about the mechanism for the difference in spacing of grid 
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cells along the dorsal to ventral axis of medial entorhinal cortex (O’Keefe and 
Burgess  2005 ). To quote that paper directly: “The increasing spatial scale of the 
grid-like fi ring as you move from the postrhinal border of the medial entorhinal 
cortex would result from a gradually decreasing intrinsic frequency …” I saw Neil 
Burgess’s poster in Washington and with graduate student Lisa Giocomo set out to 
test this explicit prediction of the model. Neil kindly sent us a copy of his poster 
with the model that he presented later in a full paper (Burgess et al.  2007 ). 

 To test the prediction, Lisa performed intracellular whole cell patch recording 
from stellate cells in slice preparations of medial entorhinal cortex (Giocomo et al. 
 2007 ). She used horizontal slices of entorhinal cortex and kept track of the dorsal to 
ventral position of the individual horizontal slices, so she could plot differences in 
intrinsic properties relative to anatomical position. We found a clear difference in 
the resonant frequency and the frequency of subthreshold membrane potential oscil-
lations (Giocomo et al.  2007 ), with a gradual decrease in these intrinsic frequencies 
for slices more ventral relative to the postrhinal border. Thus, the prediction of the 
model was clearly supported by the data. The data on frequency membrane poten-
tial oscillations and resonance has been replicated by other groups (Boehlen et al. 
 2010 ) and by other researchers working in my laboratory (Heys et al.  2010 ). 

 In our initial presentation of the data on differences in intrinsic frequency 
(Giocomo et al.  2007 ), we illustrated the functional signifi cance of the data by 
incorporating the difference in intrinsic frequency into the oscillatory interference 
model by Burgess (Fig.  10.4 ). Using a multiplicative version of the model, we 
showed that higher intrinsic frequency in dorsal cells could generate the narrower 
spacing between fi ring fi elds of grid cells recording in dorsal entorhinal cortex and 
the lower frequency in ventral cells could generate the wider spacing in more ven-
tral cells. In a later paper, we showed that the data was more consistent with an 
additive model that could account for very wide spacings by having a shallower 
slope of change in frequency with velocity (Giocomo and Hasselmo  2008a ).

   The dorsal to ventral difference in intrinsic frequency was accompanied by a 
gradual slowing of the time constant of the depolarizing sag in stellate cells caused 
by hyperpolarizing current injections activating the H current and causing a depo-
larizing rebound (Giocomo et al.  2007 ). This suggested a role for H current in the 
dorsal to ventral difference in intrinsic frequency, which was supported by voltage 
clamp data suggesting a difference in the time constant of the H current as well as a 
trend toward differences in the magnitude of the H current (Giocomo and Hasselmo 
 2008b ). Testing of intrinsic frequencies in mice with knockout of the H current 
showed a fl attening of the gradients of intrinsic frequencies (Giocomo and Hasselmo 
 2009 ). These results were consistent with recordings in oocytes showing that homo-
meric H current channels using just HCN1 subunit had faster time constant than 
homomeric HCN2 channels, with an intermediate time constant for heteromeric 
channels combining HCN1 and HCN2 subunits (Chen et al.  2001 ). Thus, this model 
provided an exciting link between molecular and cellular properties of neurons in 
medial entorhinal cortex, and the functional coding of space by the grid cell fi ring 
properties of these neurons. This was beyond anything that I had dreamed of accom-
plishing when the Computational Neuroscience meeting started in the early 1990s. 
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 After we published the Science paper, I felt that the next step would be simple. 
The model in the Science paper used interference of cosine functions. The next step 
would be to implement the model within a compartmental simulation of an entorhi-
nal stellate cell as implemented in GENESIS by Fransén et al. ( 2004 ). I believed we 
could simulate subthreshold oscillations on different dendrites within a compart-
mental simulation (Hasselmo et al.  2007 ). However, in simulations run by Jim Heys 
in my laboratory, subthreshold oscillations on different dendrites tended to synchro-
nize. The same result was obtained in work by Michiel Remme with Boris Gutkin 
and Mate Lengyel in extensive simulations and computational analysis (Remme 
et al.  2009 ,  2010 ). In addition, analysis of the variability of oscillation period 
showed that the membrane potential oscillations were too noisy to allow stable cod-
ing of location by phase (Giocomo and Hasselmo  2008a ; Zilli et al.  2009 ). These 
points argued against a single cell implementation of the model and argued for a 
network implementation. 

 The effect of single cell resonance on spike timing is a topic of ongoing research. 
It is clear that resonance does not result in rhythmic spiking only at the resonant 
frequency, but allows a range of frequencies with only a small defl ection at the reso-
nant frequency (Giocomo and Hasselmo  2008a ). In contrast, recordings of intrinsic 
persistent spiking mechanisms in medial entorhinal pyramidal cells show that cells 
tend to spike rhythmically at steady frequencies around theta rhythm (Egorov et al. 
 2002 ; Fransén et al.  2006 ; Tahvildari et al.  2007 ). Therefore, I developed a model of 

  Fig. 10.4    ( a ) Anatomical location of grid cells with different spacing. ( b ) Dorsal cells near the 
postrhinal border have spacing between fi ring fi elds of about 40 cm ( top ). Cells recorded about 
1.5 mm more ventral from the postrhinal border have spacing between fi ring fi elds of about 80 cm 
( bottom ) (from Hafting et al.  2005 ). ( c ) The oscillatory interference model of grid cells can repli-
cate these spacing properties based on a steeper slope of oscillation frequency to velocity in dorsal 
compared to ventral cells (Burgess et al.  2007 ; Hasselmo et al.  2007 ). ( d ) The prediction of the 
model for different intrinsic oscillation frequencies during depolarization is supported by whole 
cell patch recordings of stellate cells in slice preparations of medial entorhinal cortex from dorsal 
( top ) versus ventral ( bottom ) anatomical locations (Giocomo et al.  2007 )       
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grid cells based on persistent spiking cells that could hold a steady baseline 
 frequency. Cells with stable baseline frequencies have been shown in deep layers of 
medial entorhinal cortex (Egorov et al.  2002 ; Fransén et al.  2006 ; Tahvildari et al. 
 2007 ), in layer III of lateral entorhinal cortex (Tahvildari et al.  2007 ), and in the 
postsubiculum (Yoshida and Hasselmo  2009 ). These neurons tend to fi re at the same 
stable baseline frequency regardless of the duration of the stimulation causing per-
sistent spiking (Yoshida and Hasselmo  2009 ). A computational model of grid cells 
based on persistent spiking was developed using grid cells responding to the con-
vergent input from different groups of persistent spiking cells that receive input 
from different sets of head direction cells (Hasselmo  2008 ). This effectively simu-
lated grid cells based on shifts in the frequency of persistent spiking input (Hasselmo 
 2008 ), and as shown in Fig.  10.5 , simulates theta phase precession in grid cells 
(Hasselmo  2008 ) consistent with experimental data showing theta phase precession 
in grid cells (Hafting et al.  2008 ).

   Persistent spiking also shows variability in fi ring frequency that could interfere 
with the stability of phase coding. However, network level dynamics may overcome 
this variability, allowing cells that are intrinsically noisy and irregular in their fi ring 
to still participate in a network oscillation with frequency and phase suffi ciently 
stable to generate grid cell fi ring (Zilli and Hasselmo  2010 ). This model can respond 
with different frequencies for different depolarizing inputs depending on the mag-
nitude of the H current in individual neurons, though it is diffi cult to maintain a 
linear relationship between depolarizing input and magnitude of frequency change. 

  Fig. 10.5    Theta phase precession using the persistent spiking neuron model. ( a ) Simulation of 
neuron in dorsal entorhinal cortex with higher persistent fi ring frequency for a given velocity. 
 Black dots  show phase of spiking versus location during multiple passes through fi ring fi elds.  Blue 
trace  shows simulated EEG with  dashes  indicating spike times. ( b ) Ventral entorhinal cortex neu-
ron with lower persistent spiking frequency for a given velocity, showing slower shift in phase with 
position in a larger grid cell fi ring fi eld (Hasselmo  2008 )       
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This model indicates the ongoing validity of the oscillatory interference model as a 
theory of the generation of grid cell fi ring responses and provides a framework for 
explaining the relationship between intrinsic resonance and the spacing of grid cell 
fi ring fi elds. 

 A number of alternate mechanisms have been proposed for the generation of grid 
cell fi ring properties, including attractor dynamics due to structured excitatory 
recurrent connectivity (Fuhs and Touretzky  2006 ; McNaughton et al.  2006 ; Burak 
and Fiete  2009 ) and self-organization of afferent input (Kropff and Treves  2008 ). 
The attractor dynamics models do not account for some data as well as oscillatory 
interference models, but they are better at accounting for the consistent orientation 
and spacing of grid cells within local regions of the medial entorhinal cortex 
(Hafting et al.  2005 ) and the apparent quantal transitions in the spacing between 
fi ring fi elds (Barry et al.  2007 ). However, most attractor dynamic models do not 
utilize theta frequency oscillations in spiking activity and do not account for theta 
phase precession. However, a recent model used attractor dynamics and simulated 
grid cell theta phase precession, while generating differences in spacing based on 
the time course of medium afterhyperpolarization (Navratilova et al.  2012 ). The 
importance of theta rhythm oscillations for grid cell generation has been demon-
strated by local infusions into the medial septum that block network theta rhythm 
oscillations in the entorhinal cortex. Grid cell fi ring patterns do not appear during 
pharmacological blockade of theta rhythm oscillations (Brandon et al.  2011 ), 
whereas head direction responses are spared. 

 As described here, the discovery of grid cells and their relationship to the intrin-
sic resonance properties of entorhinal neurons provides fascinating clues to the 
function of the entorhinal cortex and hippocampus in human episodic memory. 
A theoretical framework based on the oscillatory interference model can perform 
the encoding and retrieval of complex trajectories as episodic memories. The data 
have not yet converged on a fi nal model of the mechanism for generation of grid 
cells, but the ongoing interaction of computational modeling guiding experimental 
neurophysiology has provided insights beyond any that I imagined 20 years ago at 
the Computational Neuroscience meeting.      
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    Abstract     Beginning in 1994, Gilles Laurent and colleagues published a series of 
studies describing odor-induced fi eld potential oscillations in the locust olfactory sys-
tem. While fi eld oscillations had been described in the olfactory system previously—
beginning with the work of Lord Adrian in the 1940s and including the extensive 
studies performed by Walter Freeman and colleagues and the later work of Gelperin 
and colleagues—the Laurent laboratory’s work emerged at a time in which oscilla-
tions and spike synchronization in the visual system were attracting substantial 
attention, such that the emergence of this work triggered a renewed interest in the 
temporal properties of olfactory system activation and what it implied for the repre-
sentation of odor stimuli.  

        Introduction 

 Beginning in 1994, Gilles Laurent and colleagues published a series of studies 
describing odor-induced fi eld potential oscillations in the locust olfactory system 
(Laurent  1996a ,  b ; Laurent and Davidowitz  1994 ; Laurent and Naraghi  1994 ; 
Laurent et al.  1996 ). While fi eld oscillations had been described in the olfactory 

    Chapter 11   
 Spatiotemporal Coding in the Olfactory 
System 

             Christiane     Linster      and     Thomas     A.     Cleland   

        C.   Linster      (*) 
  Department of Neurobiology and Behavior, Computational Physiology Laboratory , 
 Cornell University ,   1 Mudd Hall ,  Ithaca ,  NY   14853 ,  USA   
 e-mail: CL243@cornell.edu   

    T.  A.   Cleland    
  Department of Psychology, Computational Physiology Laboratory ,  Cornell University , 
  Ithaca ,  NY ,  USA    



230

system previously—beginning with the work of Lord Adrian in the 1940s (Adrian 
 1942 ,  1950 ,  1957 ) and including the extensive studies performed by Walter Freeman 
and colleagues (Di Prisco and Freeman  1985 ; Freeman  1978 ,  1979a ,  b ; Freeman 
and Schneider  1982 ; Freeman and Skarda  1985 ), and the later work of Gelperin and 
colleagues (Delaney et al.  1994 ; Gelperin et al.  1993 ; Gelperin and Tank  1990 ; 
Kleinfeld et al.  1994 )—the Laurent laboratory’s work emerged at a time in which 
oscillations and spike synchronization in the visual system were attracting substan-
tial attention (Engel et al.  1990 ; Gray et al.  1990 ,  1992 ), such that the emergence of 
this work triggered a renewed interest in the temporal properties of olfactory system 
activation and what it implied for the representation of odor stimuli. 

 The work of Freeman and colleagues showed that odor stimulation triggers odor- 
specifi c patterns of oscillatory activity in the olfactory bulb and piriform cortex of 
rabbits. These evoked patterns refl ected the identity (or quality) of the odorant and 
also were modulated by (1) the behavioral relevance of the odor to the animal, (2) 
the activity of neuromodulatory and feedback inputs arising from other brain areas, 
and (3) olfactory learning (Di Prisco and Freeman  1985 ; Freeman and Grajski  1987 ; 
Grajski and Freeman  1989 ; Gray et al.  1986 ,  1987 ). Interestingly, these results 
directly coincided with similar conclusions reached by other laboratories based on 
the odor-specifi c activation of characteristic populations of neurons; these odor- 
specifi c spatial patterns comprised  identity codes  in that odor quality was repre-
sented by the identities of activated neurons (Kauer  1988 ; Kauer et al.  1987 ; Lancet 
et al.  1982 ; Stewart et al.  1979 ). These identity codes also were found to be modu-
lated by (1) the behavioral relevance of the odor to the animal, (2) the activity of 
neuromodulatory inputs to olfactory regions, and (3) olfactory learning (Coopersmith 
et al.  1986 ; Coopersmith and Leon  1986 ; Salcedo et al.  2005 ; Sullivan and Leon 
 1986 ; Sullivan et al.  1988 ). While continued exploration of both the identity-code 
(“spatial”) and temporal approaches revealed substantial complexities and mecha-
nisms of regulation, no clear division of labor between the two became apparent. 

 Given that both spatial and temporal activity patterns in the olfactory system 
exhibit specifi city for odors as well as dependence on learning, experience, and 
behavioral state, researchers in the fi eld have sought to determine the relationship 
between the two as well as the relative importance of each. Recent years have seen 
a substantial increase in research focusing on the relationship between dynamics, 
spatial activity patterns, and odor perception. A parallel line of research, mostly 
theoretical, has emphasized study of the cellular and network mechanisms underly-
ing fi eld oscillations in the olfactory system. We here review the function and mech-
anisms of the olfactory bulb as it is understood today, emphasizing both spatial and 
dynamical odor representations and the behavioral evidence pertaining to each; for 
reasons of space, we omit discussion of the equally important work on piriform 
cortex conducted by Haberly, Bower, Hasselmo, D. Wilson, and others. We con-
clude by reviewing recent research illustrating how dynamical and spatial activity 
patterns build upon one another to establish an informative and fl exible code.  
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    Olfactory Bulb Circuitry 

 The main olfactory bulb in rodents has been extensively described in a number of 
review articles (Cleland  2010 ; Linster and Cleland  2009 ) which we reiterate here 
briefl y. Distributed patterns of activity evoked in primary olfactory sensory neurons 
(OSNs) by volatile chemical stimuli (odorants) are transmitted to the olfactory bulb 
via OSN axons. The axons of OSNs that express the same receptors, and hence 
exhibit the same chemoreceptive fi elds, converge together to form the glomeruli of 
the olfactory bulb input layer (Fig.  11.1a ); hence, each glomerulus effectively inher-
its the chemoreceptive fi eld of the OSN population that converges upon it. The 
olfactory bulb is believed to both fi lter and actively transform these incoming sen-
sory data, performing operations such as normalization, contrast enhancement, 
signal-to-noise regulation, and other state-dependent operations before conveying 
the processed olfactory information to multiple secondary olfactory structures via 
the axons of mitral cells. These transformations are performed by the interaction of 
OSN arbors and mitral cells with multiple classes of local interneurons, notably 
including the periglomerular cells, external tufted cells, and superfi cial short-axon 
cells of the glomerular layer as well as the more deeply positioned granule cells, 
which reciprocally interact with the lateral dendrites of mitral cells (Fig.  11.1a ). The 
olfactory bulb also receives extensive ascending inputs from other brain areas, 
including piriform cortex, and noradrenergic, serotonergic, and cholinergic nuclei.

       Bulbar Processing of Spatial Activation Patterns 

 Spatially distributed neuronal activity patterns specifi c to individual odorants were 
described as early as the 1970s and are present in all species that have been investi-
gated. Each olfactory stimulus activates a specifi c subset of olfactory receptor types, 
and hence glomeruli, that is uniquely defi ned by stimulus quality and concentration 
and can be presented as an activity map of the olfactory bulb surface (Fig.  11.1b ). 
These bulbar activity maps have been thoroughly analyzed by Michael Leon and 
colleagues, who have measured the glomerular activation responses to hundreds of 
different odor stimuli in rats and mice and shown not only that each evokes a char-
acteristic pattern of activity, but also that these patterns, under certain circumstances, 
are predictive of perceptual qualities (Cleland et al.  2002 ,  2007 ; Johnson and Leon 
 2007 ; Leon and Johnson  2003 ,  2006 ; Linster et al.  2001 ; Youngentob et al.  2006 ) 
(Fig.  11.1c ). Similar results have been obtained by other groups using different 
methods or species (Carlsson et al.  2002 ; Galizia and Menzel  2000 ; Guerrieri et al. 
 2005 ; Laska and Galizia  2001 ; Rubin and Katz  2001 ). 

 The spatial activation patterns measured in the glomerular layer are thought to 
represent the average afferent activity conveyed to the glomeruli by OSNs and 
hence to heavily infl uence the activation of the postsynaptic mitral cells and glo-
merular interneurons that innervate each glomerulus. Any computations performed 
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  Fig. 11.1    Olfactory bulb processing. ( a ) Schematic diagram of olfactory bulb circuitry. Olfactory 
sensory neurons (OSNs), each exhibiting a specifi c receptive fi eld for odorant stimuli, project to 
the olfactory bulb glomerular layer where they form excitatory synapses with mitral (Mi), external 
tufted (ET), and a subclass of periglomerular (PG) cells. Within the glomerular layer of the olfac-
tory bulb, local interneurons (PG, ET, and superfi cial short-axon cells (SA)) interact with one 
another and with the principal output cells (Mi) to construct odor representations that are conveyed 
to the deeper layers of the olfactory bulb by Mi activity patterns. In the deeper bulb, Mi cells inter-
act via their widespread lateral dendrites with another major class of local interneurons known as 
granule cells (Gr). The olfactory bulb also receives extensive inputs from other brain areas such as 
piriform cortex and noradrenergic, serotonergic, and cholinergic nuclei. ( b )  Top panel.  Schematic 
depiction of an odor-evoked spatial activation pattern on the surface of olfactory bulb. Various 
methods of neuronal activity mapping, both histological (e.g., 2-deoxyglucose, c- fos ,  Zif268 ) and 
physiological (e.g., calcium imaging), enable visualization of the odor-specifi c spatial activity pat-
terns conveyed to olfactory bulb by incoming OSNs.  Bottom panel.  Schematic illustration of odor- 
evoked fi eld oscillations measured in different physical locations across olfactory bulb. The 
distribution of oscillatory amplitudes refl ects odor quality and concentration. ( c ) Spatial activation 
patterns measured in the olfactory bulb glomerular layer are predictive of the perceptual similarity 
of odorants. Adapted from Cleland et al. ( 2002 ). ( d ) The relatively concentration-invariant repre-
sentations of mitral cells are believed to be generated by computations in the OB glomerular layer 
that normalize incoming activation patterns (Cleland et al.  2007 ); other glomerular circuits per-
form contrast enhancement functions to decorrelate similar odor representations (Cleland and 
Sethupathy  2006 ). The fi gures represent odor-evoked spatial activation patterns at two different 
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on these spatial patterns would alter the relative activation levels of mitral cells and 
consequently alter the pattern of activity that is conveyed to the piriform cortex and 
other postbulbar structures. Indeed, the spatial activation pattern across OB mitral 
cells changes in response to different types of learning and has been shown to 
depend on the behavioral relevance of the odor stimulation (Coopersmith et al. 
 1986 ; Coopersmith and Leon  1986 ; Faber et al.  1999 ; Fernandez et al.  2009 ; Salcedo 
et al.  2005 ; Sullivan and Leon  1986 ; Sullivan et al.  1988 ). Mechanistically, a num-
ber of transformations have been proposed to be performed on these spatial activa-
tion patterns in the glomerular layer, including contrast enhancement and 
concentration invariance functions. These functions rely on interactions between 
mitral cells and local interneurons and, despite differences in detail, are thought to 
be substantially similar across species. 

  Concentration invariance , or normalization, of odor representations is clearly 
observable in the concentration profi les of mitral cells. That is, while activity in 
mitral cells is altered by changes in odor concentration, it does not monotonically 
increase with concentration as does activity in OSNs (Wellis et al.  1989 ) (Fig.  11.1d ); 
indeed, on average, higher odor concentrations probably evoke slightly lower total 
activity levels across the mitral cell population. The network mechanism underlying 
this partial implementation of concentration invariance is not confi rmed, though it 
has been proposed (Cleland et al.  2007 ) to rely on the deep glomerular networks of 
external tufted cells, superfi cial short-axon cells, and periglomerular cells fi rst 
described by Shipley and colleagues (Aungst et al.  2003 ), and also likely involves 
feedback inhibition of OSN presynaptic arbors (McGann et al.  2005 ; Wachowiak 
et al.  2002 ). Notably, behavioral data collected in rats demonstrate that glomerular 
activation patterns normalized with respect to mean bulbar activity levels are better 
predictors of odor perception than raw patterns (Fig.  11.1e ), as would be predicted 
if mitral cell activation levels were comparably normalized across the bulbar popu-
lation (Cleland et al.  2007 ). A recent experimental study proposed a similar compu-
tational scheme in the  Drosophila  antennal lobe, concluding that relative 
concentration invariance is implemented in this structure as well (Olsen et al.  2010 ). 

  Contrast enhancement  is a common property of sensory systems that narrows 
(sharpens) sensory representations by specifi cally inhibiting neurons on the periph-
ery of the representation, thus enhancing the contrast between signal and 

Fig. 11.1 (continued) concentrations; hot colors correspond to higher activation levels. Raw, nor-
malized, and contrast- enhanced patterns are represented. The details of these functions and their 
underlying neural mechanisms have been previously reviewed (Cleland  2010 ; Cleland and Linster 
 2005 ; Linster and Cleland  2009 ). ( e ) Normalized activity patterns across OB are better predictors 
of odorant perceptual similarity than are raw activity patterns. The graph illustrates the pairwise 
perceptual dissimilarity between two different concentrations of the same odor compared to the 
dissimilarity between that odor and a second odor presented at the same concentration ( Behavior ), 
compared to the dissimilarities predicted from calculations of the overlap between their raw ( Raw ) 
and normalized ( Normalized ) glomerular activation patterns. The important feature is that the 
slopes of the  Behavior  and  Normalized  plots are both positive, in contrast to the  Raw  plot. Adapted 
from Cleland et al. ( 2007 )       
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background (Fig.  11.1d ). Contrast enhancement of spatial odor representations in 
the olfactory bulb is thought to be mediated by inhibitory interneurons both in the 
glomerular layer ( periglomerular cells , Cleland and Sethupathy  2006 ; Linster and 
Cleland  2004 ,  2009 ; Linster and Gervais  1996 ; Linster and Hasselmo  1997 ; Linster 
et al.  2005 )) and in the granule cell layer/external plexiform layer ( granule cells , 
Arevian et al.  2008 ; Urban  2002 ; Urban and Arevian  2009 )). A number of compu-
tational models have proposed solutions for this important function in the mamma-
lian OB and insect antennal lobe, including lateral interactions between glomeruli 
(Linster and Gervais  1996 ; Linster and Hasselmo  1997 ), computations local to each 
glomerulus (Cleland and Sethupathy  2006 ; Cleland  2010  #50), and local and lateral 
interactions between mitral and granule cells (Urban and Arevian  2009 ).  

    Field Oscillations and Temporal Activity 
Patterns in Olfactory Bulb 

 In the deeper layers of the olfactory bulb, or among global interneurons in the antennal 
lobe, the modulation of mitral cell  spike timing and synchronization  rather than the 
modulation of absolute response magnitude (numbers of action potentials) is 
thought to be the dominant means by which interneuronal interactions affect the 
content of odor representations (Fig.  11.1b ,  lower panel ). Degrees of synchroniza-
tion among OB or antennal lobe outputs were proposed to contribute to odor pro-
cessing and learning by Laurent and colleagues in a long series of studies in locust 
and honeybee (MacLeod et al.  1998 ; Stopfer et al.  2003 ; Stopfer and Laurent  1999 ; 
Wehr and Laurent  1999 ). These studies showed that the patterns of synchronization 
among principal neuron activation patterns, rather than the gross patterns of all 
odor-responsive cells, best identifi ed specifi c odorants (Fig.  11.2a ) and that these 
patterns of synchronization changed as a function of experience (Stopfer et al. 
 2003 ). Earlier studies in rabbits also had shown the odor-specifi city and sensitivity 
to learning of dynamical activity patterns in olfactory bulb (Freeman and Schneider 
 1982 ; Gray et al.  1986 ), fi rst demonstrating a potential functional role for bulbar 
dynamics. More recent studies have shown that olfactory bulb dynamics are modu-
lated by behavioral demands and that behavioral performance in olfactory percep-
tual tasks is correlated with these dynamics (Beshel et al.  2007 ; Kay  2003 ; Kay 
et al.  2009 ; Nusser et al.  2001 ; Rojas-Libano and Kay  2008 ). For example, Nusser 
and colleagues showed, using genetically modifi ed mice in which fast OB fi eld 
oscillations in the gamma range were stronger than in their wild-type littermates, a 
robust relationship between oscillatory power and odor discrimination perfor-
mance (Nusser et al.  2001 ). Data from Ravel and colleagues have shown that oscil-
lations in the beta band are modulated during a behavioral experiment, strongly 
correlating with the animal’s task performance (Martin et al.  2004a ,  b ,  2006 ; Ravel 
et al.  2003 ). In these experiments, strong oscillations in the beta band (15–30 Hz) 
appeared in the OB fi eld potential while the animal was fi rst learning to discrimi-
nate between a rewarded and a non-rewarded odorant; during this same epoch, 
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oscillations in the faster gamma band (40–80 Hz) were reduced in power. The 
occurrence of this phenomenon depended strongly on intact ascending projections 
to the olfactory bulb from other brain areas (Martin et al.  2006 ).

Odor 1
time
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PNs

Odor 2
time
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PNs
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b c

  Fig. 11.2    Temporal processing of OB activation patterns. ( A ) In locusts and honeybees, patterns 
of synchronized spikes, rather than coarse fi ring rates, have been proposed to represent odor qual-
ity (Cleland  2010 ; Laurent and Davidowitz  1994 ; Wehr and Laurent  1999 ). In this schematic 
depiction, a stimulus-evoked oscillation is present in the fi eld potential recording ( EFP ) while 
several projection neurons ( PNs ) fi re action potentials in response to odorant presentation. While 
the overall PN fi ring rate does not enable discrimination of Odor 1 ( left panel ) and Odor 2 ( right 
panel ), the temporal organization of the action potentials and their synchronization patterns do 
enable discrimination of the two odors. ( B ) Contrast enhancement using synchronization proper-
ties. The neural responses to three odor stimuli C, S, and D are schematically depicted. Stimuli C 
and S evoke highly overlapping responses when coarse fi ring rates are used to determine their 
similarity (enclosed in  dotted boxes ), whereas stimuli C and D evoke very different response pat-
terns under the same conditions. In contrast, if only synchronized action potentials are considered 
relevant (enclosed in  solid boxes ), the patterns evoked by stimuli C and S become nearly nonover-
lapping and hence easily differentiated. While odorant D is affected in the same way, nothing is 
gained by the consideration of temporal information because the spatial patterns alone were 
already entirely nonoverlapping. ( C ) Regulation of the temporal precision of action potentials by 
inhibitory dendritic inputs. ( a ) Distribution of mitral cell interstimulus intervals (ISIs) under base-
line conditions in the absence of incoming inhibitory postsynaptic currents (IPSCs) on the lateral 
dendrites. ( b – d ) Distribution of ISIs when shunting inhibitory currents were opened 5, 15, or 
25 ms after a mitral cell spike. Inhibitory inputs on the lateral dendrites increased the temporal 
precision of mitral spiking. Adapted from David et al. ( 2009 )       
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   Evidence that fi eld oscillations and spike synchronization patterns play a role in 
odor perception had previously been gathered in honeybees in a study showing that 
bees in which oscillatory dynamics and synchronization patterns were pharmaco-
logically impaired were more prone to confuse chemically similar odorants (Stopfer 
et al.  1997 ). This study drew a lot of attention to the importance of synchronization 
for odor representations but said little regarding the role of spatial activation pat-
terns. Nevertheless, by the late 1990s, the role of dynamical patterning in the olfac-
tory bulb and antennal lobe had been widely accepted. Many laboratories began 
working on related questions, notably on the underlying mechanisms by which 
these fi eld oscillations were generated. Presently, OB fi eld oscillations are usually 
ascribed to the feedback loop between principal neurons and inhibitory interneurons 
(Bathellier et al.  2008 ; David et al.  2009 ; Davison et al.  2003 ; Lagier et al.  2004 ; Li 
and Hopfi eld  1989 ) or to intrinsic oscillatory properties of principal neurons syn-
chronized by common inhibitory inputs (Brea et al.  2009 ; Ermentrout et al.  2007 ; 
Galan et al.  2006 ). Interestingly, to date little more has been learned about the func-
tion of these dynamical processes beyond their suggested role in further sharpening 
odor representations so as to improve olfactory discrimination. 

  Contrast enhancement by synchronization . Given that the regulation of fi eld oscil-
lations and mitral cell spike synchronization by dynamical interactions in the deep 
bulb affects perception, how might these subtle modifi cations of neuronal activity 
be interpreted by downstream structures? Theoretical models have established some 
mechanisms by which patterns of neuronal synchronization can be regulated by 
bulbar circuitry to effect arbitrary patterns of contrast enhancement and subse-
quently interpreted by postbulbar neurons (Cleland and Linster  2002 ; Linster and 
Cleland  2001 ,  2010 ). Interestingly, such models suggest that only spikes that are 
relatively synchronized with others are read out by downstream neurons, with asyn-
chronously fi ring neurons effectively becoming excluded from the odor representa-
tion. This could be an important coding principle for systems in which principal 
neurons exhibit substantial input-independent baseline activity, as mitral cells do. 
Among synchronized neurons, the degree of contrast can be manipulated by chang-
ing synchronization properties (Fig.  11.2b ), e.g., by changes in neuromodulatory 
input activity mediating attentive processes or changes in stimulus salience. 
Computational models using this approach have been able to explain behavioral 
results demonstrating that changes in synchronization properties correspond to 
changes in the perceptual discrimination of odors (Cleland and Linster  2002 ). 

  Signal-to-noise ratio . Muscarinic cholinergic neuromodulation, the receptors for 
which are expressed in the deeper layers of the OB, enhances response precision in 
granule and mitral cells in OB slices (Pressler et al.  2007 ). Simulations of mitral–
granule cell interactions, in conjunction with experimental data, show that inhibi-
tory inputs along the secondary dendrites affect spike timing in mitral cells and 
enhance the temporal precision of spikes occurring in response to odor stimuli 
(David et al.  2009 ) (Fig.  11.2c ). While more thorough study is necessary to explore 
the implications, these data in conjunction suggest a role in signal-to-noise modula-
tion for the deeper layers of bulbar processing.  
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    Spatiotemporal Activity Patterns and Odor Perception 

 As reviewed above, the evidence to date clearly demonstrates that both spatial and 
temporal activation patterns refl ect odor identity, predict perceptual qualities to a 
certain degree, and are modifi ed by learning. Combined experiments in honeyebees 
(Stopfer et al.  1997 ) and rats (Beshel et al.  2007 ) have begun to explain their rela-
tionship to one another. In the honeybee antennal lobe, odor stimulation evokes 
stimulus-locked oscillations in the 15–30 Hz frequency range that are accompanied 
by synchronization of action potentials among output neurons (Stopfer et al.  1997 ) 
(Fig.  11.2a ). Blocking fast GABAergic transmission in the antennal lobe abolished 
the stimulus-evoked fi eld oscillations without evoking clearly observable changes 
in the odor response properties of output neurons (MacLeod and Laurent  1996 ). 
According to the Laurent group, only the synchronization properties of these neu-
rons changed, and not their individual responses to odors. In a parallel honeybee 
behavioral experiment, blockade of GABAergic transmission was shown (1) to have 
no effect on the acquisition of an odor-reward association, (2) to have no effect on 
the discrimination of a chemically dissimilar odorant from the conditioned odorant, 
but (3) to impair the discrimination of chemically and perceptually  similar  odorants 
from the conditioned odorant (Stopfer et al.  1997 ). Subsequent calcium imaging 
experiments established that these chemically similar odorants evoked highly over-
lapping spatial patterns in the antennal lobe (Sachse and Galizia  2002 ). It is clear 
from these data that spike synchronization in olfaction becomes functionally impor-
tant specifi cally when structurally similar odorants must be discriminated, since the 
perceptual discrimination of dissimilar odorants was not affected by the impairment 
of synchronization (Fig.  11.3 ).

   In related work in rats, Kay and colleagues (Beshel et al.  2007 ) have shown that 
oscillatory synchrony in the olfactory bulb is systematically affected by the diffi -
culty of an odor discrimination task. Specifi cally, when discriminating between 
highly similar odorants in a forced-choice task, the power of OB gamma oscilla-
tions was signifi cantly increased in comparison to the oscillatory power recorded 
when the same rats were discriminating dissimilar odorants. These results strongly 
suggest that oscillatory dynamics are functionally utilized during odor discrimina-
tion in proportion to task diffi culty and that behavioral demands can regulate oscil-
latory dynamics (Fig.  11.3 ). As in the honeybee experiments described above, prior 
knowledge and understanding of the role of odor-specifi c spatial activity patterns 
was crucial to the success of these experiments. 

 Together, these two data sets demonstrate that temporal dynamics and spatial 
activation patterns both play important roles in odor perception. Specifi cally, tem-
poral properties appear to serve a secondary role, modulating and fi ne-tuning the 
basic spatial activation patterns evoked by odor stimuli in response to behavioral 
demands and neuromodulatory state. While much remains to be studied, the inte-
gration to date of these sophisticated mechanisms of perception has helped support 
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a substantial revival in computational olfaction over the last 2 decades, facilitating 
increasingly comprehensive analyses of both spatial and temporal processing 
capabilities.     
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    Abstract     I have been asked to review the progress that computational neuroscience 
has made over the past 20 years in understanding how vision works. In refl ecting on 
this question, I come to the conclusion that perhaps the most important advance we 
have made is in gaining a deeper appreciation of the magnitude of the problem 
before us. While there has been steady progress in our understanding—and I will 
review some highlights here—we are still confronted with profound mysteries 
about how visual systems work. These are not just mysteries about biology, but also 
about the  general principles  that enable vision in any system whether it be biologi-
cal or machine. I devote much of this chapter to examining these open questions, as 
they are crucial in guiding and motivating current efforts. Finally, I shall argue that 
the biggest mysteries are likely to be ones we are not currently aware of, and that 
bearing this in mind is important as it encourages a more exploratory, as opposed to 
strictly hypothesis-driven, approach.  

        Introduction 

 I am both honored and delighted to speak at this symposium. The CNS meetings 
were pivotal to my own coming of age as a scientist in the early 1990s, and today 
they continue to constitute an important part of my scientifi c community. Now that 
20 years have passed since the fi rst meeting, we are here today to ask, what have we 
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learned? I have been tasked with addressing the topic of vision, which is of course 
a huge fi eld, and so before answering I should disclose my own biases and the 
 particular lens through which I view things: I began as an engineer wanting to build 
robotic vision systems inspired by biology, and I evolved into a neuroscientist trying 
to understand how brains work inspired by principles from mathematics and engi-
neering. Along the way, I was fortunate to have worked and trained with some of the 
most creative and pioneering scientists of our fi eld: Pentti Kanerva, David Van 
Essen, Charlie Anderson, Mike Lewicki, David Field, and Charlie Gray. Their own 
way of thinking about computation and the brain has shaped much of my own out-
look, and the opinions expressed below stem in large part from their infl uence. I also 
benefi ted enormously from my fellow students in the Computation and Neural 
Systems program at Caltech in the early 1990s and the interdisciplinary culture that 
fl ourished there. They impressed upon me that the principles of vision are not owned 
by biology, nor by engineering—they are universals that transcend discipline, and 
they will be discovered by thinking outside the box. 

 Now to begin our journey into the past 20 years, let us fi rst gain some perspective 
by looking back nearly half a century, to a time when it was thought that vision 
would be a fairly straightforward problem. In 1966, the MIT AI Lab assigned their 
summer students the task of building an artifi cial vision system (Papert  1966 ). This 
effort came on the heels of some early successes in artifi cial intelligence in which it 
was shown that computers could solve simple puzzles and prove elementary theo-
rems. There was a sense of optimism among AI researchers at the time that they 
were conquering the foundations of intelligence (Dreyfus and Dreyfus  1988 ). Vision 
it seemed would be a matter of feeding the output of a camera to the computer, 
extracting edges, and performing a series of logical operations. They were soon to 
realize however that the problem is orders of magnitude more diffi cult. David Marr 
summarized the situation as follows:

  …in the 1960s almost no one realized that machine vision was diffi cult. The fi eld had to go 
through the same experience as the machine translation fi eld did in its fi ascoes of the 1950s 
before it was at last realized that here were some problems that had to be taken seriously. …
the idea that extracting edges and lines from images might be at all diffi cult simply did not 
occur to those who had not tried to do it. It turned out to be an elusive problem. Edges that 
are of critical importance from a three-dimensional point of view often cannot be found at 
all by looking at the intensity changes in an image. Any kind of textured image gives a 
multitude of noisy edge segments; variations in refl ectance and illumination cause no end 
of trouble; and even if an edge has a clear existence at one point, it is as likely as not to fade 
out quite soon, appearing only in patches along its length in the image. The common and 
almost despairing feeling of the early investigators like B.K.P. Horn and T.O. Binford was 
that practically anything could happen in an image and furthermore that practically every-
thing did. (Marr  1982 ) 

   The important lesson from these early efforts is that it was from  trying to solve the 
problem  that these early researchers learned what were the diffi cult computational 
problems of vision, and thus what were the important questions to ask. This is still true 
today: Reasoning from fi rst principles and introspection, while immensely valuable, 
can only go so far in forming hypotheses that guide our study of the visual system. 
 We will learn what questions to ask by trying to solve the problems of vision.  Indeed, 
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this is one of the most important contributions that computational  neuroscience can 
make to the study of vision. 

 A decade after the AI Lab effort, David Marr began asking very basic questions 
about information processing in the visual system that had not yet been asked. He 
sought to develop a computational theory of biological vision, and he stressed the 
importance of  representation  and the different types of information that need to be 
extracted from images. Marr envisioned the problem being broken up into a series 
of processing stages: a primal sketch in which features and tokens are extracted 
from the image, a 2.5D sketch that begins to make explicit aspects of depth and 
surface structure, and fi nally an object-centered, 3D model representation of objects 
(Marr  1982 ). He attempted to specify the types of computations involved in each of 
these steps as well as their neural implementations. 

 One issue that appears to have escaped Marr at the time is the importance of 
 inferential computations  in perception. Marr’s framework centered around a mostly 
feedforward chain of processing in which features are extracted from the image 
and progressively built up into representations of objects through a logical chain of 
computations in which information fl ows from one stage to the next. After decades 
of research following Marr’s early proposals, it is now widely recognized (though 
still not universally agreed upon) by those in the computational vision community 
that the features of the  world  (not images) that we care about can almost never be 
computed in a purely bottom-up manner. Rather, they require inferential computa-
tion in which data is combined with prior knowledge in order to estimate the 
underlying causes of a scene (Mumford  1994 ; Knill and Richards  1996 ; Rao et al. 
 2002 ; Kersten et al.  2004 ). This is due to the fact that natural images are full of 
ambiguity. The causal properties of images—illumination, surface geometry, 
refl ectance (material properties), and so forth—are entangled in complex relation-
ships among pixel values. In order to tease these apart, aspects of scene structure 
must be estimated simultaneously, and the inference of one variable affects the 
other. This area of research is still in its infancy and models for solving these types 
of problems are just beginning to emerge (Tappen et al.  2005 ; Barron and Malik 
 2012 ; Cadieu and Olshausen  2012 ). As they do, they prompt us to ask new ques-
tions about how visual systems work. 

 To give a concrete example, consider the simple image of a block painted in 
two shades of gray, as shown in Fig.  12.1  (Adelson  2000 ). The edges in this 

  Fig. 12.1    Image of a block painted in two shades of  gray  (from Adelson  2000 ). The edges in 
this image are easy to extract, but understanding what they mean is far more diffi cult       
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image are easy to extract, but understanding what they mean is far more diffi cult. 
Note that there are three different types of edges: (1) those due to a change in 
refl ectance (the boundary between  q  and  r ), (2) those due to a change in object 
shape (the boundary between  p  and  q ), and (3) those due to the boundary between 
the object and background. Obviously it is impossible for any computation based 
on purely local image analysis to tell these edges apart. It is the context that 
informs us what these different edges mean, but how exactly? More importantly, 
 how are these different edges represented in the visual system and at what stage 
of processing do they become distinct? 

   As one begins asking these questions, an even more troubling question arises: 
How can we not have the answers after a half century of intensive investigation of 
the visual system? By now there are literally mounds of papers examining how 
neurons in the retina, LGN, and V1 respond to test stimuli such as isolated spots, 
white noise patterns, gratings, and gratings surrounded by other gratings. We know 
much—perhaps too much—about the orientation tuning of V1 neurons. Yet we 
remain ignorant of how this very basic and fundamental aspect of scene structure is 
represented in the system. The reason for our ignorance is not that many have looked 
and the answer proved to be too elusive. Surprisingly, upon examining the literature 
one fi nds that, other than a handful of studies (Rossi et al.  1996 ; Lee et al.  2002 ; 
Boyaci et al.  2007 ), no one has bothered to ask the question. 

 Vision, though a seemingly simple act, presents us with profound computational 
problems. Even stating what these problems are has proven to be a challenge. One 
might hope that we could gain insight from studying biological vision systems, but 
this approach is plagued with its own problems: Nervous systems are composed of 
many tiny, interacting devices that are diffi cult to penetrate. The closer one looks, 
the more complexity one is confronted with. The solutions nature has devised will 
not reveal themselves easily, but as we shall see the situation is not hopeless. 

 Here I begin by reviewing some of the areas where our fi eld has made remark-
able progress over the past 20 years. I then turn to the open problems that lie ahead, 
where I believe we have the most to learn over the next several decades. Undoubtedly 
though there are other problems lurking that we are not even aware of, questions 
that have not yet been asked. I conclude by asking how we can best increase our 
awareness of these questions, as these will drive the future paths of investigation.  

    Questions Answered 

 Since few questions in biology can be answered with certainty, I cannot truly claim 
that we have fully answered any of the questions below. Nevertheless these are areas 
where our fi eld has made concrete progress over the past 20 years, both in terms of 
theory and in terms of empirical fi ndings that have changed the theoretical 
landscape. 
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    Tiling in the Retina 

 A long-standing challenge facing computational neuroscience, especially at the 
 systems level, is that the data one is constrained to work with are often sparse or 
incomplete. Recordings from one or a few units out of a population of thousands of 
interconnected neurons, while suggestive, cannot help but leave one unsatisfi ed 
when attempting to test or form hypotheses about what the system is doing as a 
whole. In recent years, however, a number of advances have made it possible to 
break through this barrier in the retina. 

 The retina contains an array of photoreceptors of different types, and the output 
of the retina is conveyed by an array of ganglion cells which come in even more 
varieties. How these different cell types tile the retina—that is, how a complete 
population of cells of each type cover the two-dimensional image through the spa-
tial arrangement of their receptive fi elds—has until recently evaded direct observa-
tion. As the result of advances in adaptive optics and multielectrode recording 
arrays, we now have a more complete and detailed picture of tiling in the retina 
which illuminates our understanding of the fi rst steps in visual processing. 

 Adaptive optics corrects for optical aberrations of the eye by measuring and 
compensating for wavefront distortions (Roorda  2011 ). With this technology, it is 
now possible to resolve individual cones within the living human eye, producing 
breathtakingly detailed pictures of how L, M, and S cones tile the retina (Fig.  12.2a ) 
(Roorda and Williams  1999 ). Surprisingly, L and M cones appear to be spatially 
clustered beyond what one would expect from a strictly stochastic positioning 
according to density (Hofer et al.  2005 ). New insights into the mechanism of color 

  Fig. 12.2    Tiling in the retina. ( a ) Tiling of L, M, S cones; scale bar = 5 arcmin (from Roorda and 
Williams  1999 ). ( b ) Tiling of parasol retinal ganglion cell receptive fi elds;  A , on cells;  B , off cells 
(from Gauthier et al.  2009a ,  b )       
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perception have been obtained by stimulating individual cones and looking at how 
subjects report the corresponding color (Hofer and Williams  2005 ). Through com-
putational modeling studies, one can show that an individual cone’s response is 
interpreted according to a Bayesian estimator that is attempting to infer the actual 
color present in the scene in the face of subsampling by the cone mosaic, not simply 
the cone’s “best color” (Brainard et al.  2008 ). It is also possible to map out receptive 
fi elds of LGN neurons cone by cone, providing a more direct picture of how these 
neurons integrate across space and wavelength (Sincich et al.  2009 ).

   Another important question that can be addressed with adaptive optics is the 
effect of fi xational drifts and microsaccades on perception. It is now possible to 
track movements of the retina in real-time with single-cone precision, allowing one 
to completely stabilize retinal images or even introduce artifi cially generated drifts 
(Vogel et al.  2006 ; Arathorn et al.  2007 ). These studies strongly suggest the pres-
ence of internal mechanisms that compensate for drifts during fi xation to produce 
stable percepts (Austin Roorda, personal communication). 

 At the level of retinal ganglion cells, large-scale neural recording arrays have 
enabled the simultaneous mapping of receptive fi elds over an entire local population 
(Litke et al.  2004 ). These studies reveal a beautifully ordered arrangement not only 
in how receptive fi elds are positioned but also in how they are shaped so as to obtain 
optimal coverage of the image for each of the four major cell types (i.e., each of the 
different combinations of on/off and midget/parasol) (Gauthier et al.  2009a ,  b ). 
Although the position of receptive fi elds can be somewhat irregular, the shape of 
each receptive fi eld is morphed so as to fi ll any gaps in coverage, as shown in 
Fig.  12.2b . Remarkably, despite the irregular spacing, the receptive fi eld overlap 
with nearest neighbors is fairly constant, which is a further testament to the degree 
of precision that is present in retinal image encoding. 

 Together, these developments provide a solid picture of retinal organization and 
resolve questions regarding the completeness of coverage that were unresolved just 
a decade ago. Importantly, these developments also open a new door in allowing us 
to ask more detailed questions about the link between neural mechanisms and 
perception.  

    The Relation Between Natural Image Statistics 
and Neural Coding 

 Twenty years ago, most people (myself included) thought of neurons at early stages 
of the visual system in terms of feature detection. For example, Marr had proposed 
that retinal ganglion cells function as edge detectors by computing zero crossings of 
the Laplacian operator (which indicates extrema in the fi rst derivative) and this 
became a fairly popular idea. Similarly, the oriented receptive fi elds of V1 neurons 
were thought to operate as oriented edge detectors that encode the boundaries or 
geometric shape of objects. However, in the early 1990s it became clear there is 
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another way to think about what these neurons are doing in terms of  effi cient coding 
principles . Here the goal is to consider how information about the image can be 
encoded and represented in a complete manner that is adapted to the input statistics. 
In contrast to detection, which is typically a lossy process designed for a specifi c 
purpose, the goal of effi cient coding is to form a generic representation that could 
be used for myriad tasks, but which nevertheless exploits and makes explicit the 
structure contained in natural images. 

 Although the effi cient coding hypothesis was fi rst proposed by Barlow more than 
50 years ago (Barlow  1961 ), it was not until decades later that investigators such as 
Laughlin and Srinivasan began making serious quantitative connections between 
the statistics of natural scenes and neural coding (Srinivasan et al.  1982 ). David 
Field subsequently showed that the power spectrum of natural images follows a 
characteristic 1/ f    2  power law, and he pointed out how the scale-invariant structure 
of cortical receptive fi elds is well matched to encode this structure (Field  1987 ). 
Atick and Redlich formulated the whitening theory of retinal coding, which pro-
posed that the purpose of the circularly symmetric, center-surround receptive fi elds 
of retinal ganglion cells is not to detect edges as Marr claimed, but rather to remove 
redundancies in natural images so as to make maximal use of channel capacity in 
the optic nerve (Atick and Redlich  1992 ). Subsequent neurophysiological experi-
ments in the LGN seemed to support this assertion (Dan et al.  1996 ). Around the 
same time, David Field and I showed through computer simulation that the local-
ized, oriented, and multiscale receptive fi elds of V1 neurons could be accounted for 
in terms of a sparse coding strategy adapted to natural images (Olshausen and Field 
 1996 ). These theories and fi ndings have drawn considerable interest because they 
offer an intimate, quantitative link between theories of neural coding and experi-
mental data. Moreover it is not just a theory of vision, but a general theory of sen-
sory coding that could be applied to other modalities or subsequent levels of 
representation, and indeed there has been much work investigating these directions 
(Geisler et al.  2001 ; Hyvarinen and Hoyer  2001 ; Schwartz and Simoncelli  2001 ; 
Karklin and Lewicki  2003 ,  2005 ,  2009 ; Hyvarinen et al.  2005 ; Smith and Lewicki 
 2006 ). 

 A related theoretical framework that has been used to make connections between 
natural scene statistics and neural representation is that of  Bayesian inference . Here 
the goal is to go beyond coding to consider how the properties of scenes are inferred 
from image data. As mentioned above, making inferences about the world depends 
upon strong prior knowledge. Often this knowledge is probabilistic in nature. For 
example, in the simple scene of Fig.  12.1 , we could choose to interpret it either as a 
fl at scene created entirely by paint (which it is), as a scene created entirely by struc-
tured light, or as a three-dimensional object in two shades of paint (Adelson  2000 ). 
All three are valid interpretations when judged purely in terms of the image data. 
Our visual system chooses the latter interpretation because it is the most parsimoni-
ous or  probable  interpretation that is consistent not only with the data but also with 
our experience in interacting with the world. A goal of many modeling efforts over 
the past 20 years has been to show how probabilistic information about the world 
can be learned from visual experience and how inferential computations can be 
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performed in neural systems (Dayan et al.  1995 ; Rao et al.  2002 ; Ma et al.  2006 ). 
Some of these models make predictions about higher level visual representations 
beyond V1, in addition to providing a possible account for the role of feedback con-
nections from higher areas to lower areas (Lee and Mumford  2003 ; Karklin and 
Lewicki  2005 ; Cadieu and Olshausen  2012 ). An important property of these models 
is the manner in which different hypotheses compete to explain the data—termed 
“explaining away” (Pearl  1988 )—which provides an account for the nonlinear, 
 suppressive effects of context upon the responses of visual neurons (Vinje and 
Gallant  2000 ; Murray et al.  2002 ; Zhu and Rozell  2011 ).  

    The Nature of Intermediate-Level Vision 

 For many years intermediate-level vision was the  terra incognita  of our fi eld. It is 
the murkiest territory because unlike low-level vision its neural substrates cannot be 
directly identifi ed or characterized, and unlike high-level phenomena such as object 
recognition and attention we have no well-established terms or conceptual frame-
works for what goes on at this stage. In fact, it is diffi cult even to defi ne what 
“intermediate-level vision” means. Processes such as grouping or segmentation are 
often ascribed to this stage, but the range of other things that could be going on is so 
broad and ill-defi ned that it is semi-seriously referred to as “everything between 
low-level and high-level vision.” Over the past 20 years however this area has 
become progressively less murky through insightful and penetrating psychophysi-
cal experiments. 

 In particular, Nakayama and colleagues have provided compelling evidence that 
intermediate-level representations are organized around  surfaces  in the 3D environ-
ment, and that these representations serve as a basis for high-level processes such as 
visual search and attention (Nakayama et al.  1995 ). This view stands in contrast to 
previous theories postulating 2D features such as orientation and motion energy as 
the basis of perceptual grouping that underlies texture segmentation, search, and 
attention (Treisman and Gelade  1980 ; Julesz  1981 ). Nakayama’s experiments sug-
gest that representations of 3D surface structure are formed prior to this stage, and 
that perceptual grouping operates primarily on surface representations rather than 
2D features. For example, when colored items are arranged on surfaces in different 
depth planes, detection of an odd-colored target is facilitated when pre-cued to the 
depth plane containing the target; but if the items are arranged so as to appear 
attached to a common surface receding in depth, then pre-cueing to a specifi c depth 
has little effect. Thus, it would appear that attention spreads within surfaces in 3D 
coordinates in the environment, not within 2D proximity or a simple disparity 
measure. 

 Another contribution of Nakayama’s work is in pointing out the importance of 
 occlusion  in determining how features group within a scene. Once again, they show 
that simple grouping rules based on 2D proximity or similarity do not suffi ce. This 
should not be surprising, because under natural viewing conditions the 2D image 
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arises from the projection of 3D surfaces in the environment. When these surfaces 
overlap in the projection, the one nearest the observer “overwrites” or occludes the 
other. Thus, a proper grouping of features would need to take this aspect of scene 
composition into account in determining what goes together with what, as shown in 
Fig.  12.3 . By manipulating disparity cues so as to reverse fi gure–ground relation-
ships in a scene, they show that the visual system groups features in a way that 
obeys the rules of 3D scene composition. Features are grouped within surfaces, even 
when parts of the surface are not visible, but not beyond the boundary of a surface. 
Thus, the neural machinery mediating this grouping would seem to require an 
explicit representation of border ownership, such as described by von der Heydt 
(Zhou et al.  2000 ; Qiu and von der Heydt  2005 ), or some other variable that 
expresses the boundaries and ordinal relationship of surfaces.

   Nakayama’s work is not the only in this realm, there are many others (Adelson 
 1993 ; Mamassian et al.  1998 ; Knill and Saunders  2003 ). It is a body of work that 
suggests what to look for at the neural level. Much as color psychophysics preceded 
the discovery of its neural mechanisms, these psychophysical experiments suggest 
the existence of certain neural representations at the intermediate level of vision.  

    Functional Organization of Human Visual Cortex 

 In 1991, Felleman and Van Essen published their now famous diagram of connec-
tions between visual cortical areas in the macaque monkey (Felleman and Van Essen 
 1991 ). This diagram and the detailed information about laminar patterns of connec-
tions that went alongside it shed new light on the hierarchical organization and divi-
sion of labor in visual cortex. In the years since, we have seen an almost equally 
detailed picture of the functional organization of human visual cortex emerge from 
fMRI studies (Wandell et al.  2007 ). The signifi cance of having these areas mapped 

  Fig. 12.3    Occlusion and border ownership. When image regions corresponding to different sur-
faces meet in the projection of a scene, the region corresponding to the surface in front “owns” the 
border between them. A region that does not own a border is essentially unbounded and can group 
together with other unbounded regions. Here, surface  x  owns the borders  λ   xy   and  λ   xz  . Thus, regions 
 y  and  z  are unbounded at these borders and they are free to group with each other, but not with 
region  x  because it owns these borders and is therefore bounded by them (adapted from Nakayama 
et al.  1995 )       
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out in humans is that it enables a more direct connection to perception, since one can 
tie the amount of activity in a given brain area to variations in both stimulus space 
and psychophysical performance (Heeger  1999 ; Grill-Spector et al.  2000 ; Ress and 
Heeger  2003 ). This has made it possible to identify areas involved in the representa-
tion of three-dimensional form, such as the lateral occipital complex (Kourtzi and 
Kanwisher  2001 ). It has also enabled us for the fi rst time to see evidence of “explain-
ing away,” in which top-down signals originating from high-level areas appear to 
decrease the activity in lower level areas when subjects perceive an entire 3D object 
or scene layout as opposed to its individual parts (Murray et al.  2002 ). 

 Some visual areas and neurons exhibit a striking degree of specifi city, such as 
those responsive to faces. Tsao and Livingston used fMRI to localize areas in 
macaque cortex that are selectively activated by faces and then subsequently 
recorded in those areas with microelectrodes to characterize responses of individual 
neurons (Tsao et al.  2006 ). These studies have revealed a complex of areas that 
appear to specialize for different aspects of faces such as identity vs. pose (Freiwald 
et al.  2009 ). There is now evidence for corresponding areal specializations in 
humans (Tsao et al.  2008 ). In addition, Izhak Fried’s recordings from the medial 
temporal lobes in humans have revealed neurons that appear every bit as selective as 
“grandmother cells,” an idea which for years was the subject of theoretical specula-
tion but usually regarded with great skepticism (Quiroga et al.  2005 ). 

 Another method that is providing new insights about cortical organization in 
humans is  neural decoding . In contrast to traditional approaches that attempt to 
characterize which class of stimuli a neuron or cortical region responds to, here the 
goal is to fi nd out what those neurons tell you about the stimulus. When applied to 
BOLD signals measured over a wide swath of human visual cortex in response to 
natural images, one fi nds that lower level areas do a reasonable job at reconstructing 
image properties such as color and texture, whereas higher level areas reconstruct 
information about the semantic content of the scene (Naselaris et al.  2009 ,  2011 ; 
Nishimoto et al.  2011 ). While these particular fi ndings are not surprising given our 
current understanding of visual cortex, they are nevertheless a testament to the rich, 
multidimensional information provided by fMRI. Rather than testing specifi c 
hypotheses about selected regions of interest, this approach treats the entire 3D 
volume of BOLD signals as a multielectrode recording array and lets the data speak 
for itself. Importantly, these studies are most informative when the visual system is 
presented with complex natural scenes or movies, since these stimuli contain the 
rich, multidimensional forms of information that are most likely to evoke patterns 
of activity revealing the functional signifi cance of different brain regions.  
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    How to Infer Scene Geometry from Multiple Views 

 In parallel with these achievements in neuroscience and psychophysics, the fi eld of 
computer vision has undergone a number of dramatic advances. Chief among these 
is the ability to infer three-dimensional scene structure from multiple views, termed 
 multiple-view geometry  (Hartley and Zisserman  2003 ). This has been enabled in 
part by the discovery of stable and unique keypoint detectors and invariant feature 
descriptors which allow for solving the correspondence problem effi ciently (Lowe 
 2004 ). It is now possible, given an unordered set of images of the same three- 
dimensional scene taken from different viewpoints, to simultaneously recover a rep-
resentation of the 3D scene structure as well as the positions in the scene from 
which the images were taken (Brown and Lowe  2005 ). This technology has enabled 
commercial products such as  Photosynth  which assimilate information from the 
many thousands of photographs stored on repositories such as Flickr into a unifi ed 
scene model (Snavely et al.  2006 ). 

 While many computer vision algorithms are divorced from biology, there has 
long been a productive interchange of ideas between the fi elds of computer vision 
and biological vision. I believe the advances in multiple-view geometry tell us 
something important about vision, and that they open the door to a new area of 
investigation in visual neuroscience—namely, how do animals assimilate the many 
views they obtain of their environment into a unifi ed representation of the 3D scene? 
The ability to navigate one’s surroundings, to remember where food is, and how to 
get home is fundamental to the survival of nearly all animals. It would seem to 
demand an allocentric representation of the 3D environment. However, there has 
been considerable debate among cognitive psychologists as to whether humans or 
other animals actually build 3D models as opposed to simply storing 2D views. It is 
often tacitly assumed that storing 2D views is the simpler, cheaper strategy. But 
from the standpoint of effi cient coding it actually makes the most sense to combine 
the images acquired while moving through the environment into a single 3D repre-
sentation, since that is the lowest entropy explanation of the incoming data stream. 
Now the mathematics and algorithms of multiple-view geometry show us that the 
computations needed to do this are really quite feasible. In fact these algorithms can 
run in real-time from video camera input (Newcombe and Davison  2010 ). The chal-
lenge for theorists and modelers now is to fi gure out how these computations can be 
performed in a more holistic manner (drawing upon all the data rather than just 
keypoints), how to exploit the continuity in images over time, and in what format 
3D scene information should be represented.   
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    Questions Unanswered 

 There is little doubt that we are closer to understanding how visual systems work 
than we were 20 years ago. But how much remains to be understood? Here I shall 
review areas in which there are still gaping holes in our knowledge. As we shall see, 
the scope of our ignorance is vast. It is not simply a matter of fi lling in holes here 
and there; rather we are missing something fundamental. 

    How Is Sophisticated Vision Possible in Tiny Nervous Systems? 

 Much effort in neuroscience is expended to understand how neural circuits in the 
visual cortex of cats and monkeys enable their perceptual abilities. An often unstated 
assumption behind these studies is that mammalian cortex is uniquely suited for 
gaining insight into the neural mechanisms of perception. But one must begin ques-
tioning this assumption when confronted with the highly sophisticated visual capa-
bilities found in nervous systems that are smaller by several orders of magnitude. 

 Consider for example the jumping spider (Fig.  12.4 ). Unlike other spiders that 
use a web to extend their sensory space, this animal relies entirely upon vision to 
localize prey, identify potential mates, and navigate complex terrain. It does so 

  Fig. 12.4    ( a ) Jumping spider ( Habronattus ). ( b ) Jumping spider visual system showing antero- 
median, antero-lateral, and posterior-lateral eyes. ( c ,  d ) Orienting behavior of a 1-day-old jumping 
spider ( lower right ) during prey capture. ( a ,  b ) From Wayne Maddison’s   Tree of Life    ; ( c ,  d ) video 
frames fi lmed by Bruno Olshausen and Wyeth Bair in the Bower lab (Caltech 1991)       
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using a highly elaborate visual system comprising four pairs of eyes: one pair of 
frontal facing principal eyes (antero-median eyes) provide a high-resolution image 
over a narrow fi eld of view, while the other three pairs provide lower resolution 
images over a wide fi eld of view and are mounted on different parts of the head so 
as to provide 360° coverage of the entire visual fi eld (Land  1985 ). Interestingly, the 
retinae of the antero-median eyes are highly elongated in the vertical direction so as 
to essentially form a one-dimensional array of photoreceptors. These retinae move 
from side to side within the head in a smooth (approximately 1 Hz) scanning motion 
to perform pattern analysis (Land  1969 ). The jumping spider uses its low resolution 
system to detect targets or objects of interest, and then orients its body to position 
the target within the fi eld of view of the high-resolution antero-median eyes for 
more detailed spatial analysis via scanning (Land  1971 ).

   The jumping spider exhibits a number of striking visual behaviors. 
Figure  12.4c, d  illustrates the tracking and pursuit behavior involved in hunting. 
The spider initially follows the target (in this case, a fruit fl y) with its eye and head 
movements. It then stalks the fl y in a crouching motion before pouncing on it. 
Mediating this behavior demands the ability to maintain attention on a target, to 
track the target via appropriate motor commands, and to perform distance estima-
tion. In this case the spider happens to be only 1 day old, so these abilities are 
largely innate. Another striking visual behavior of the jumping spider is exhibited 
during courtship, in which the male performs an elaborate dance for the female. 
During these dances the female visually inspects and attends to the male. Complex 
pattern recognition via scanning is utilized by both parties during this interaction. 
Courtship dances may be elicited by presenting a video image of a female (Clark 
and Uetz  1990 ), or even a line drawing depicting a jumping spider, to the male 
(Drees  1952 ), which further testifi es to the role of vision in mediating this behavior. 
Vision also plays an important role in 3D path planning and navigation. One par-
ticular species,  Portia fi mbriata , appears to use its visual system to survey the 3D 
visual environment before embarking on a path that requires a complex detour to 
obtain a prey item beyond jumping range (Tarsitano and Jackson  1997 ; Tarsitano 
and Andrew  1999 ). 

 Thus it would seem that the jumping spider performs complex pattern recogni-
tion, visual attention, motion analysis and tracking, distance estimation via stereop-
sis, and 3D path planning. These are all abilities that most would consider the 
hallmark of visual cortical function, yet in the jumping spider they are being carried 
out by a visual system that is no larger than a single hypercolumn of V1, and requir-
ing little or no visual experience during development. There seems to be a huge 
explanatory gap here between our conventional wisdom and reality. 

 Another small animal that challenges our conventional wisdom is the sand wasp, 
 Philanthus triangulum . The navigational abilities of this animal were intensely 
studied and described by Tinbergen ( 1974 ). He demonstrated that the wasp fi nds its 
nest, consisting of a small burrow in the sand, by memorizing the spatial arrange-
ment of debris that happen to immediately surround the nest such as twigs, rocks, or 
other items. If these items are displaced by a meter or so while the wasp is away 
hunting, keeping the relative spatial positions of the items intact, it returns to a point 
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in the center of this new arrangement rather than the actual location of its nest. 
Initially stunned, the animal eventually fi nds its nest. However, when it next emerges 
to go out hunting it makes an extra set of circular fl ights over its nest, as though 
recommitting to memory the pattern of landmarks surrounding the nest. What is 
perhaps most astonishing here is that the sand wasp does all of this utilizing only a 
compound eye, which has very low spatial-resolution. Thus, the complex spatial 
layout of the environment must somehow be accumulated over time from the 
dynamic pattern of activity coming from the ommatidia during fl ight. 

 It is often tempting to explain away these abilities as the result of simple but 
clever tricks. To those who try I challenge them to prove such strategies are actually 
viable by building an autonomous system by these rules that exhibits the same 
degree of robust, visually guided behavior. Such systems do not exist, and I contend 
they are still far away from being realized because  we do not understand the funda-
mental principles governing robust, autonomous behavior in complex environments . 
Evolution has discovered these principles and they are embodied in the nervous 
systems of insects and spiders. There are valuable lessons to be learned from study-
ing them. 

 The fact that sophisticated visual abilities are present in simpler animals also 
raises a disturbing question:  If so much can be done with a tiny brain, what more can 
be done with a large brain?  Perhaps the vast cortical circuits of mammals are carry-
ing out a more complex set of functions than we are currently considering. Perhaps 
we lack the intellectual maturity needed to ask the right questions about what cortex 
is doing. 

 I do not suggest that we must fully understand invertebrate vision as a prerequisite 
to studying vision in mammals. But I do think that our fi eld is guilty of taking a cor-
tico-centric approach, and that simpler animals have been prematurely dismissed and 
unjustly neglected in the quest to understand intelligent behavior. One often hears the 
argument that invertebrates are likely to utilize highly specialized or idiosyncratic 
neural processing strategies that will not generalize to mammals. But biology is 
teeming with examples of molecular and cellular mechanisms that are recapitulated 
across the animal kingdom. Those who study fl y genetics are not just interested in 
fl ies, they want to know how genes work. At this point there are astonishingly few 
examples of computations in the nervous system that anyone truly understands. Thus, 
gaining a solid understanding of neural computation as it occurs in  any  animal would 
give us much needed insight into the space of possible solutions.  

    How Do Cortical Microcircuits Contribute to Vision? 

 Not long after the discovery of orientation selectivity and columnar structure in 
visual cortex, the view began to emerge that V1 operates as a fi lter bank in which 
the image is analyzed in terms of oriented features at different spatial scales 
(Blakemore and Campbell  1969 ; De Valois et al.  1982 ), now often modeled with 
Gabor functions (Marcelja  1980 ; Daugman  1985 ). Others further elaborated on this 
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idea by building hierarchical models composed of successive stages of feature 
detection and spatial pooling (Fukushima  1980 ), inspired by Hubel and Wiesel’s 
early proposals (Hubel and Wiesel  1962 ,  1965 ). In the ensuing decades, this con-
ceptual framework has come to dominate the theoretical landscape. It has had a 
profound impact in shaping how neuroscientists form and test hypotheses regarding 
visual cortical function, and it has infl uenced the development of computer vision 
algorithms. It is even referred to as the “standard model” (Riesenhuber and Poggio 
 2004 ), and theories that strongly deviate from this framework are often dismissed as 
biologically implausible. However, this view begins to clash with reality as one 
takes a closer look at the detailed structure of cortical circuits. 

 As all students of neuroanatomy know, mammalian neocortex is a layered struc-
ture. By convention it has been subdivided into six laminar zones according to vari-
ous histological criteria such as cell density and morphology. Underlying this overt 
structure is a detailed microcircuit that connects neurons in a specifi c way according 
to the layer they reside in (Douglas et al.  1989 ; Thomson and Bannister  2003 ; 
Douglas and Martin  2004 ). Inputs from thalamus terminate principally on neurons 
in layer 4. These neurons in turn project to neurons in layers 2 and 3, which then 
project back down to layers 5 and 6. Neurons within each layer are recurrently con-
nected by horizontal fi bers, with the most extensive of these networks found in lay-
ers 2 and 3. Inhibitory interneurons have their own specialized cell types and 
circuits, and some are interconnected by gap junctions and exhibit synchronous, 
high gamma oscillations (Mancilla et al.  2007 ). Layer 1 is mostly composed of the 
distal tufts of pyramidal cell apical dendrites and the axonal fi bers of neurons in 
other layers. On top of all this, we are beginning to appreciate the “deep molecular 
diversity” of cortical synapses, which increases the potential complexity of synaptic 
transmission and plasticity (O’Rourke et al.  2012 ). 

 To those who subscribe to the Gabor fi lter model of V1 I ask, where are these 
fi lters? In which layers do they reside, and why do you need such a complex circuit 
to assemble them? In 1 mm 2  of macaque V1 there are 100,000 neurons, yet the 
number of LGN afferents innervating this same amount of cortex amounts to the 
equivalent of only a 14 × 14 sample node array within the retinal image (Van Essen 
and Anderson  1995 ). Why so many neurons for such a small patch of image? To 
complicate matters further, each neuron is a highly nonlinear device with inputs 
combining in a multiplicative or “and-like” manner within local compartments of 
the dendritic tree (Poirazi et al.  2003 ; Polsky et al.  2004 ). Such nonlinearities are 
notably absent from the L-N cascade models commonly utilized within the neural 
coding community. What are the consequences of these nonlinearities when large 
numbers of such devices are densely interconnected with one another in a recurrent 
circuit? It is well known that recurrent networks composed of perceptron-type neu-
rons (linear sum followed by point-wise nonlinearity) can have attractor dynamics, 
but what are the consequences of dendritic nonlinearities? Is such complexity com-
patible with the simple notion of a fi lter or a receptive fi eld? Moreover, why have 
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different layers of processing, and how do the computations and formatting of visual 
information differ between these layers? 

 There are numerous hand-wavy explanations and ad hoc models that can be (and 
have been) constructed to account for all of these things. At the end of the day we 
are faced with this simple truth:  No one has yet spelled out a detailed model of V1 
that incorporates its true biophysical complexity and exploits this complexity to 
process visual information in a meaningful or useful way . The problem is not just 
that we lack the proper data, but that we don’t even have the right conceptual frame-
work for thinking about what is happening. 

 In light of the strong nonlinearities and other complexities of neocortical circuits, 
one should view the existing evidence for fi lters or other simple forms of feature 
extraction in V1 with great skepticism. The vast majority of experiments that claim 
to measure and characterize “receptive fi elds” were conducted assuming a linear 
systems identifi cation framework. We are now discovering that for many V1 neu-
rons these receptive fi eld models perform poorly in predicting responses to complex, 
time-varying natural images (David et al.  2004 ; Frégnac et al.  2005 ; Khosrowshahi 
et al.  2007 ). Some argue that with the right amount of tweaking and by including 
proper gain control mechanisms and other forms of contextual modulation that you 
can get these models to work (Carandini et al.  2005 ; Rust and Movshon  2005 ). My 
own view is that the standard model is not just in need of revision,  it is the wrong 
starting point and needs to be discarded altogether.  What is needed in its place is a 
model that embraces the true biophysical complexity and structure of cortical micro-
circuits, especially dendritic nonlinearities. The ultimate test of such a model will be 
in how well it accounts for neural population activity in response to dynamic natural 
scenes (as opposed to simple test stimuli), and the extent to which it can begin to 
account for our robust perceptual abilities.  

    How Does Feedback Contribute to Vision? 

 At nearly every stage of processing in the visual system, one fi nds feedback loops 
in which information fl ows from one set of neurons to another and then back again. 
At the very fi rst stage, photoreceptors provide input to a network of horizontal cells 
which in turn provide negative feedback onto photoreceptors. Hence a photorecep-
tor does not report a veridical measurement of the amount of light falling upon it, 
but rather a signal that is modifi ed by context. At later stages, LGN relay neurons 
provide input to the reticular nucleus which in turn provides negative feedback to 
LGN relay neurons; LGN projects to V1 and V1 projects back to LGN; V1 projects 
to V2 which projects back to V1, and so on. What are these feedback loops doing 
and how do they help us see? 

 In some cases, such as horizontal cells in the retina, we have fairly good models 
to suggest what feedback is doing and what it might be good for (i.e., mediating 
lateral inhibition among photoreceptors to reduce redundancy and increase dynamic 
range). But in other cases, such as in the thalamo-cortical loop or cortico-cortical 
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loops, there has yet to emerge a clear conceptual model, supported by the data, that 
tells us what function is being served. There have been numerous experimental 
attempts to uncover what feedback is doing, for example, by cooling or disabling 
the neurons in a higher area that feedback onto a lower area and characterizing how 
response properties in the lower area change (Hupé et al.  2001 ; Angelucci and 
Bullier  2003 ; Andolina et al.  2007 ). One sees a variety of modulatory effects, but so 
far there has not emerged a clear consensus or framework for how to incorporate 
these fi ndings into a larger theory. Indeed there is considerable doubt among neuro-
scientists as to whether feedback plays any role in dynamically shaping information 
processing (Lennie  1998 ). 

 Perhaps the most striking sign of our conceptual ignorance here is the fact that 
modern computer vision systems are still largely based on feedforward processing 
pipelines: image data is preprocessed, features are extracted and then pooled and 
fed to another layer of processing, or histogrammed and fed to a classifi er. One does 
not typically see algorithms that use the outputs of a higher stage of processing to 
modify the input coming from a lower stage (though see Arathorn  2005  for a nota-
ble exception). In other areas of engineering, such as in the design of control sys-
tems or electronic amplifi ers, the advantages of feedback are well understood and it 
is exploited to build robust, stable systems that work in practice. But currently, other 
than automatic gain control or other early forms of preprocessing, researchers have 
not discovered how to exploit feedback for more advanced forms of processing that 
support recognition or other perceptual tasks. 

 One rationale that is offered in support of feedforward models is that visual rec-
ognition occurs so exceedingly fast that there is little time for the iterative type of 
processing that feedback loops would entail (Thorpe and Imbert  1989 ). EEG signals 
correlated with visual recognition in humans arise 150 ms after stimulus onset 
(Thorpe et al.  1996 ). In macaque monkey cortex, the earliest neural signals in 
inferotemporal cortical areas that are discriminative for objects occur ca. 125 ms 
after stimulus onset (Oram and Perrett  1992 ; Hung et al.  2005 ). Given the number 
of stages of processing and axonal and synaptic delays, it is argued, there is precious 
little time for any feedback loops to play a signifi cant role in supporting these sig-
nals. But this reasoning is based upon overly simplistic and dour assumptions about 
how feedback works. The conduction velocities of feedforward and feedback axons 
between V1 and V2 are on the order of 2–4 ms (Angelucci and Bullier  2003 ). Even 
between thalamus and V1 the round trip travel time can be as short as 9 ms (Briggs 
and Usrey  2007 ). Most importantly though, vision does not work in terms of static 
snapshots but rather as a dynamical system operating on a continuous, time-varying 
input stream. Axonal and synaptic delays simply mean that sensory information 
arriving at the present moment is processed in the context of past information that 
has gone through a higher level of processing. 

 Given the space and resource constraints faced by the brain, it seems unlikely 
that such vast amounts of white matter would be devoted to feedback pathways 
unless they were serving a useful purpose in shaping information processing. Over 
the past decade two promising theoretical ideas have been advanced. One is based 
on the idea of  predictive coding , in which higher levels send their predictions to 
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lower levels where they are compared, and the residual or degree of mismatch is 
sent forward (Rao and Ballard  1999 ). Such a coding scheme would be useful to 
reduce redundancy and detect novelty. The other is based on  perceptual inference  
(or Bayesian inference, as described above) (Lee and Mumford  2003 ). Here, higher 
levels also send their predictions to lower levels, but rather than computing differ-
ences, the parts where the predictions agree are amplifi ed and the parts where they 
disagree are suppressed. This type of processing is most useful when lower levels of 
representation are ambiguous (such as the aperture problem in the computation of 
motion). Higher level knowledge and context are used to adjudicate between differ-
ent interpretations and resolve ambiguity. Formally this may be cast in terms of 
probabilistic inference in graphical models or “belief propagation.” To validate 
either of these hypotheses one would need to investigate the effects of feedback dur-
ing the viewing of natural images or other complex, structured images where pre-
diction can play a role, or the need for disambiguation arises. Indeed this may 
explain why the fi ndings of previous experiments using simplifi ed test stimuli have 
been rather inconclusive.  

    What Is the Role of Neuronal Oscillations in Visual Processing? 

 Since Hans Berger’s fi rst EEG measurements in the 1920s it has been known that 
the brain oscillates. Early investigators ascribed the terms  alpha ,  beta , and  gamma  
to oscillations occurring in different frequency bands, and they attempted to relate 
these oscillations to various states of arousal, perception, cognition, or clinical 
pathologies. Later, when neurophysiologists such as Barlow, Kuffl er, Hubel, and 
Wiesel began achieving success with single-unit recordings, attention turned to the 
activity of individual neurons. Interest in oscillations dissipated, and the focus 
instead shifted to studying how the  stimulus-driven  fi ring rate of neurons encodes 
features of the visual world. Against this backdrop in 1989, Gray and Singer showed 
that the activity of single neurons in V1 is phase-locked to gamma oscillations in the 
local fi eld potential (LFP), and furthermore that the degree of synchrony between 
neurons depends on whether the features they encode belong to a common object 
(Gray and Singer  1989 ). This fi nding reignited interest in oscillations, especially 
among theorists who speculated that they may serve as a mechanism for feature 
binding and attention, or even consciousness. Experimentalists argued among them-
selves as to whether oscillations or synchrony were actually present. Sides were 
taken and debates were staged (e.g., at the Society for Neuroscience 1993 annual 
meeting), and each side argued passionately for their point of view. 

 Now almost 20 years later the debate has mostly subsided. Few doubt the exis-
tence of oscillations—they have withstood the test of time and have been shown to 
be a ubiquitous property of sensory systems, from the locust olfactory system to the 
mammalian retina and visual cortex. One senses that the fi eld has settled into taking 
a more dispassionate approach to investigate what causes these oscillations, under 
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what conditions they arise, and how they relate to perception. However, there is still 
little concrete evidence that suggests what they are doing and how they help us see. 

 One recent fi nding that I believe points to an important role for oscillations in 
vision comes from recordings from cat LGN neurons in Judith Hirsch’s laboratory 
(Koepsell et al.  2009 ). These data reveal that the spiking activity of some neurons in 
the LGN is phase-locked to the 50 Hz oscillations arising from the retina. These 
oscillations are readily apparent in the electro-retinogram and have been observed 
in recordings from retinal neurons, but their effect on downstream processing was 
previously unknown. Koepsell et al. showed that when the phase of these ongoing 
oscillations is taken into account, the apparent variability in the response latency of 
LGN neurons—commonly attributed to “noise”—is vastly reduced (Fig.  12.5 ). In 
other words, LGN neurons exhibit a much higher degree of temporal precision—
and hence information carrying capacity—when the phase of ongoing oscillations 
is included in reading out their activity (as opposed to considering the stimulus-
driven component only). What could this extra information be used for? Koepsell 
and Sommer propose that oscillations propagating through distributed networks in 
the retina could be used to compute “graph cuts,” an effective method of image 
segmentation that is widely used in computer vision (Koepsell et al.  2010 ). In their 
model, the fi ring rate of a neuron encodes contrast and the phase of oscillation 
encodes region membership. While highly speculative, the theory nevertheless 
demonstrates how oscillations could be leveraged in a profound and elegant way to 
carry out computations requiring the rapid and global spread of information across 
an image to solve a diffi cult problem in vision.

   When considering oscillation-based theories it is important to bear in mind that 
the prevailing rate-based, stimulus-driven view of neural function, while often por-
trayed as fact, is itself a theory. Though there are countless examples where fi ring 
rate correlates with perceptual variables, this in itself does not demonstrate that 
information is actually encoded and read out this way. So little is known at this point 

  Fig. 12.5    LGN neurons synchronize to 50 Hz retinal oscillations. ( a ) PSTH and spike rasters in 
response to repeated presentations of a stimulus. Note the apparent variability in the latency of the 
LGN neuron’s response. ( b ) When the LGN spikes are realigned to the instantaneous phase of reti-
nal oscillations extracted from the EPSPs for each trial, the variability in response latency is vastly 
reduced (from Koepsell et al.  2009 )       
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that there is much room for alternative theories. But if one accepts that neural activ-
ity is an information-bearing signal in the brain, then oscillations and other forms of 
ongoing activity must be included in a full account of neural function.  

    How to Build Robust, Autonomous Vision Systems? 

 In 1973 Sir James Lighthill issued a report to the British Parliament that condemned 
AI for failing to achieve its grandiose objectives and recommended that its funding 
be cut off (the recommendation was subsequently adopted, killing AI research in the 
UK for nearly a decade). At the center of his argument was that robotic systems 
were only capable of operating in restricted domains, and that scaling up to general 
purpose intelligence that could deal with real world conditions would require a 
combinatorial explosion in computational resources. The idea that we might some-
day build general purpose robots, he claimed, was a “mirage.” A debate was held 
between Lighthill and three leading AI researchers, Donald Michie, John McCarthy, 
and Richard Gregory, who defended their aims and work as realistic and worthwhile 
(BBC  1973 ). State-of-the-art robots of the day such as SRI’s  Shakey  and Edinburgh’s 
 Freddy  took center stage to illustrate the promising achievements of AI. These 
robots could perceive the world through cameras that extracted the outlines of 
objects and could guide an actuator to grasp or manipulate the objects. They could 
execute complex tasks, such as assembling a toy car from parts randomly arranged 
on a table, in a completely autonomous manner without human intervention. 

 Now almost 40 years later, with all of the participants of that debate gone, it is 
almost too painful to ask this, but … was Lighthill right? Consider that over this 
span of time Moore’s law has brought us an increase of  six orders of magnitude  in 
available computational resources. Can we claim that robots have similarly advanced 
compared to their predecessors in the early 1970s?  Stanley , the robot that won 
DARPA’s Grand Challenge desert road race in 2005, is heralded as a triumph of AI. 
But upon closer examination it would seem to exemplify exactly the sort of domain- 
specifi c limitations that Lighthill railed against—it was preprogrammed with a map 
of the entire route and 3000 GPS waypoints, and it followed a road with few major 
obstacles on a bright sunny day. As such, it was primarily a test of high-speed road 
fi nding, obstacle detection, and avoidance in desert terrain (Thrun et al.  2006 ). Its 
success in navigating the course was mainly the result of clever engineering—
Kalman fi lters to compute robust, optimal estimates of position, and combining 
LIDAR and image data to fi nd drivable terrain and stay in the center of the road. 
These are notable achievements, but it is diffi cult to imagine that this is the level of 
visual intelligence that Michie, McCarthy, and Gregory would have hoped to see 
emerge by the early twenty-fi rst century. 

 Now consider these robots in comparison to the jumping spider or sand wasp. To 
survive they must navigate unfamiliar, complex terrain that is fi lled with obstacles, 
variable illumination from shadows, and potentially unstable surfaces. They have no 
GPS way points or roads to provide guidance. Rather, they must acquire and store 
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information about the environment as they go so as to remember where they have 
been, where the food is, and how to get home. They must detect, localize, track, and 
successfully capture prey, even when seen against complex backgrounds. They 
must deal with unforeseen events such as getting knocked off course by wind or 
debris. They must continue to function 24/7 in the face of the elements such as rain 
or dust or changes in lighting conditions. And they do all of this while consuming 
only minuscule amounts of power in comparison to their robotic counterparts. 

 While  Stanley  unquestionably represents an advance over  Shakey , both of these 
systems would seem equally far removed from the jumping spider or sand wasp, 
let alone humans, when measured in terms of the level of robust, autonomous 
behavior they exhibit (Fig.  12.6 ). That we stand at this impasse after 40 years I 
believe tells us something important. It suggests that the problem we face is not just 
technological but rather due to a scientifi c gap in our knowledge.  We are missing 
something fundamental about the principles of vision and how it enables autono-
mous behavior.  Computing optic fl ow or building a depth map of a scene, while 
useful, is not suffi cient to robustly navigate, interact with, and survive in the natural 
three-dimensional environment. What exactly  is  needed is of course diffi cult to 
say—that is the problem we are up against. But I would point to two things. One is 
a richer representation of surface layout in the surrounding environment that 
expresses not only its 3D geometry but also its  affordances —that is, the actions that 
are possible (Gibson  1986 ). The other is to move beyond the Turing machine, proce-
dural framework that today’s robots are trapped in—that is, an infi nite loop of 
“acquire data,” “make decisions,” and “execute actions.” What is needed is a more 
fl uid, dynamic interaction between perception and action. Theories for how to do this 
are now beginning to emerge but it is a fi eld still in its infancy (Gordon et al.  2011 ).

        Questions Not Yet Asked 

 The answers we get from experiments are only as useful as the questions we ask. 
The key is to ask the right questions to begin with. But how do we know what these 
are? Most of the questions described in the preceding section are ones that scientists 

  Fig. 12.6    When measured in terms of visual intelligence, there is still a wide gulf separating 
robots such as Shakey and Stanley from biological visual systems       
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are already keenly aware of and which drive current research efforts. Undoubtedly 
though there are other important questions that no one working in the fi eld today has 
even thought to ask yet, just as computer vision researchers in the 1960s never 
thought to ask how you fi nd the edges of an object in a scene. This points to the 
importance of another process of discovery beyond answering questions—that is, 
discovering the questions that need to be asked. 

 Here I will suggest two ways that we can accelerate the process of discovering 
what these questions are. One is to take an  exploratory approach  that casts a wide 
net and seeks to reveal interesting phenomena. The other is to educate ourselves 
about the problems of vision by attempting to  build  neuromorphic visual systems 
that enable autonomous behavior. 

    The Need for Exploratory Approaches 

 Scientists by their nature are eager to test hypotheses or to tell a story about how a 
given set of facts or fi ndings fi t together and explain perceptual phenomena. But as 
we have seen, vision presents us with deep computational problems, and nervous 
systems confront us with stunning complexity. Most of the hypotheses we test and the 
stories we tell are far too simple minded by comparison, and ultimately they turn out 
to be wrong. Worse yet, they can be misleading and stifl ing because they encourage 
one to look at the data through a narrow lens. When one carefully designs a set of 
experiments to test a specifi c set of hypotheses, the data obtained are often of little 
value for looking at other issues. In some cases this may be warranted, but when the 
hypothesis landscape is not well formed to begin with it may be more worthwhile to 
take an exploratory approach. 

 The exploratory approach is more observational in nature. The goal is to docu-
ment how the system works in its natural state—for example, what are the distribu-
tions of fi ring rates among neurons in different layers, and in different cortical areas, 
during natural vision? Such experiments do not test any particular hypothesis, and 
the outcome may simply be a large table of numbers. But such data would be of 
immense value in helping us to understand what kind of a system we are dealing 
with, and they are of pivotal importance in shaping theories. 

 Another goal of the exploratory approach is discover new phenomena that sur-
prise us and defy conventional wisdom. These can then provide clues about what we 
 should  be looking for. A notable example is the discovery of orientation selectivity. 
The idea that visual neurons might be selective to lines or edges at different orienta-
tions did not occur to Hubel and Wiesel a priori. Rather, they were probing the 
visual cortex with spots of light using a slide projector, and in the process of moving 
slides in and out of the projector they noticed that the edge of the slide moving over 
the receptive fi eld happened to elicit a robust neural response (Hubel  1982 ). This 
observation in turn led to a revolution in visual neuroscience. Tinkering is often 
frowned upon in scientifi c circles, especially by study sections and review panels of 
the major scientifi c funding bodies. But when one is mostly in the dark to begin 
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with—as I would argue we are in our understanding of the visual cortex—a certain 
amount of tinkering seems warranted. 

 I do not advocate that we abandon the hypothesis-based approach—it has formed 
the bedrock of modern science because in many cases it has been a fruitful and 
productive path to knowledge. But we should recognize when this approach is 
appropriate and when it is not. Storytelling makes science interesting, and it often 
makes a fi nding seem more compelling, but it can also lead to a false sense of com-
placency, a feeling that we have understood something when in fact the real story is 
orders of magnitude more complicated. We should be more inclined to take these 
stories with a grain of salt and instead be on the lookout for something deeper lurk-
ing beneath the surface. And no one should feel ashamed to report a complete, 
unfi ltered set of fi ndings without a story to envelop them. After all, one person’s 
untidy fi nding may provide the missing piece in another person’s theory.  

    Learning About Vision by Building Autonomous Systems 

 There is very little that neuroscience per se has taught us about the principles of 
vision. That we know there is a ventral and dorsal stream, a hierarchy of visual 
areas, and neurons that selectively respond to certain visual features in these areas 
does not tell us  what  problems are being solved and  how . They provide strong hints 
and tantalizing clues to be sure, but trying to build a functional vision system by 
directly mimicking these attributes in a computer chip is like trying to build a fl ying 
machine out of fl apping wings and feathers. 

 By contrast, the failures of robot vision in the 1960s were a transformative learn-
ing experience in the study of vision. They set the stage for people like David Marr 
to intensely study the computational problems of vision and to theorize how bio-
logical vision systems work. The fi eld thus made an advance by trying to solve an 
important and unsolved problem, the depth of which was previously unappreciated. 
I believe this will continue to be the case in the future—we will learn the most about 
the principles of vision by attempting to build autonomous vision systems, learning 
what works and what does not, and then drawing upon these insights in studying the 
visual systems of humans and other animals. 

 To some extent this is a role that computer vision already plays. However, main-
stream computer vision is focused on solving a prescribed set of problems that have 
been defi ned by computer scientists and engineers. Algorithms for shape from shad-
ing, optic fl ow, and stereo are judged by how well they perform on standard bench-
marks, where the correct representation is assumed to be known. Object recognition 
is distilled down to a problem of classifi cation, one of converting pixels to labels, 
again with benchmark datasets for judging performance. If we wish to gain insight 
into the principles of biological vision, or autonomous visual behavior in general, it 
will require a different approach. 

 What is needed is an approach that, like computer vision, attempts to solve prob-
lems, but where more attention is paid to how we defi ne those problems, and the 
computational architectures we draw upon to solve them. The choice of problems 
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should be guided by animal behavior and psychophysics: What are the tasks that 
animals need to solve in order to survive in the natural environment? What are the 
performance characteristics of human or other animal observers in these tasks? In 
addition, it is important to take into account and exploit the unique computational 
properties of neural systems, what Carver Mead called “neuromorphic engineer-
ing.” The only functional vision systems we know of today are built out of nonlinear 
recurrent networks, they compute with analog values, and they run in continuous 
time. They are not Turing machines. Thus, in considering the space of solutions to 
visual problems this needs to be taken into account. 

 Finally, it is important to bear in mind that vision did not evolve as a stand-alone 
function, but rather as part of the perception–action cycle. As philosopher Robert 
Cummins put it, “Why don’t plants have eyes?” We have much to gain by building 
vision systems with tight sensorimotor loops and learning what problems need to be 
overcome in doing so. This area remains vastly under investigated, and is likely to 
uncover to many questions that have yet to be asked.      
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Abstract  Although much ignored in some intellectual circles today, behaviorism 
and its models from the early to mid parts of the twentieth century provided the 
basis for some of the first computational accounts of reward learning. The best 
expression of this work emerged in the early 1970s with the Rescorla–Wagner 
model of Pavlovian conditioning. This model accounted for a range of behavioral 
data about how animals learn about cues that predict rewarding outcomes. The step 
forward in this account was that learning was depicted as being driven by failed 
predictions—that is, some system collected information, formed expectations about 
how much reward to expect (associated with “conditioned stimuli” or cs), and gen-
erated learning updates that were proportional to the size and sign of the error. 
While successful in describing a large body of data, the Rescorla–Wagner model 
failed at one critical aspect of simple learning—the capacity to “chain” important 
cues together into a trajectory of learned associations—a feature called secondary 
conditioning: “A predicts B predicts food,” for example.

Although much ignored in some intellectual circles today, behaviorism and its mod-
els from the early to mid parts of the twentieth century provided the basis for some 
of the first computational accounts of reward learning. The best expression of this 
work emerged in the early 1970s with the Rescorla–Wagner model of Pavlovian 
conditioning (Rescorla and Wagner 1972). This model accounted for a range of 
behavioral data about how animals learn about cues that predict rewarding 
outcomes. The step forward in this account was that learning was depicted as being 
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driven by failed predictions—that is, some system collected information, formed 
expectations about how much reward to expect (associated with “conditioned stimuli” 
or cs), and generated learning updates that were proportional to the size and sign of 
the error. While successful in describing a large body of data, the Rescorla–Wagner 
model failed at one critical aspect of simple learning—the capacity to “chain” 
important cues together into a trajectory of learned associations—a feature called 
secondary conditioning: “A predicts B predicts food,” for example.

	
V V r Vi i i

i
new old

US
old= + −





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(13.1)

Here, we have written the Rescorla–Wagner rule in a form that relates to more 
modern “rewardese.” The V’s represent the predicted value of each conditioned 
stimulus and the designation “old” and “new” refer, respectively, to previous values 
and updated values for the V’s. This expression remains agnostic to the timescale 
over which such changes take place. λ is a learning rate that scales the difference 
between the reward r and the summed predictions of this reward contributed by all 
the conditioned stimuli in a learning trial. The main point is that learning was framed 
as a problem of prediction and the signals for learning to occur were the errors in 
those predictions.

Over roughly the same time period, there was developing an independent line of 
research in the area of optimal control where the central problems shared many 
features of learning studied in animal experiments by a more psychologically 
minded community. This literature was large then and is even larger now and so no 
attempt will be made to summarize it here. We focus here on a family of computa-
tional methods that solve sequential decision problems (Bellman 1957). In these 
problems, there is a learning agent situated in some state space and this agent has 
available to it (a) the ability to emit actions and thus transition from one state to 
another and (b) a signal to criticize the value to the agent of the transition, but with 
the proviso that this criticism might be delayed. This latter feature distinguishes 
reinforcement learning (RL) approaches from other forms of machine learning.

One of the first fruitful fusions of this optimal control arena and psychological 
learning theory was proposed by Sutton and Barto (1990; see Sutton and Barto 1998 
for summary and history and Barto et al. 1983). They proposed a new model of 
Pavlovian conditioning called temporal difference (TD) learning. Imagine an agent 
transitioning from one state to the next and observing rewards received in each state. 
Starting in state s(0), the agent’s experience into the future would look like:

	 r r r r r k( ) ( ) ( ) ( ) ( )0 1 2 3       … … 	

The integer indices indicate the labels of states and do not imply a particular 
timescale. Temporal difference learning prescribes how the value V of each state 
should be updated based on this experience:
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	 V s V s r V s V snew old old old( ( )) ( ( )) [ ( ) ( ( )) ( ( ))]0 0 0 1 0= + + −l g  	 (13.2)

Here the learning rule is put in the form of updates without any specification of 
timescale, but one can see the relation of the Rescorla–Wagner rule in (13.1). 
Temporal difference learning updates values according to changes in its predictions 
V and immediate reward r(0).

�Diffuse Neuromodulatory Systems

This background sets the stage for the early 1990s where Dayan, Montague, and 
Sejnowski proposed that this general approach to agent-based learning prob-
lems was likely to be implemented by diffuse neuromodulatory systems in the 
brains of biological organisms (Quartz et al. 1993; Montague et al. 1993). More 
specifically, a range of single-unit recordings from putative dopamine neurons 
in the midbrains of monkeys gave rise to the computational hypothesis that 
these neurons computed reward prediction error signals in the form of temporal 
difference errors and encoded such computations in modulations of their spik-
ing activity (Montague et al. 1995, 1996). This model provided an explanation 
for many confusing features of the electrophysiology recorded from these neu-
rons during reward learning tasks carried out in alert monkeys. The seminal 
experimental results in this area were generated by Wolfram Schultz and  
colleagues (e.g., Romo and Schultz 1990; Ljungberg et al. 1992). This group 
recorded activity in dopamine neurons using a range of passive and active  
conditioning tasks. The neurons’ behavior during these tasks and during the 
behavioral learning that occurs was complex and difficult to interpret. For 
example, in Schultz et al. (1993), the researchers concluded in their abstract:

… The lack of sustained activity suggests that dopamine neurons do not encode representa-
tional processes, such as working memory, expectation of external stimuli or reward, or 
preparation of movement.

Ironically, errors in expectation of reward are exactly what the TD model of pha-
sic dopaminergic activity posited (Montague et al. 1996). This claim is consistent 
with the results shown in Fig. 13.1, which is a replotting of data from Hollerman 
and Schultz (1998). Here cues predict the occurrence of reward at particular times 
and the plot shows what happens to phasic spiking activity when these times are 
changed at various points during learning.

The success of this application of reinforcement learning models to real-world 
dopamine neuron recording provides a computationally principled starting point for 
work in the area because of the importance of dopamine in motivated learning, 
addiction, and a range of mental diseases.
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�Application of Reinforcement Learning Models to Addiction

In general, reinforcement learning (RL) models of addiction depict the addicted 
state as a valuation disease resulting in part from skewed reward prediction error 
signals encoded by dopamine transients and engendered by drug-taking episodes 
(Redish 2004). The temporal difference model of reinforcement learning (TDRL) 
associates these experiential prediction errors with phasic dopaminergic activity (in 
the 80–150 ms range) that tracks ongoing differences between expected and experi-
enced rewards (O’Doherty et al. 2003; McClure et al. 2003; for reviews, see Schultz 
et al. 1997; Montague et al. 2004; Daw and Doya 2006). Within this RL framework, 
transient increases in dopamine induced by addictive drugs (e.g., Koob and Le Moal 
1997; Pidoplichko et al. 1997) should report positive unanticipated reward predic-
tion errors to dopaminoceptive target structures, thus exaggerating the apparent 
value of drug-induced states, reinforcing drug-seeking behavior, and generally 
causing the system to overvalue drug-related cues (Redish 2004).

This view of addiction and the role of dopamine systems has unleashed a torrent 
of neuroimaging studies where dopaminergic target structures are monitored using 
blood oxygenation level-dependent (BOLD) recordings in humans during tasks 
designed to test the TD model and its extensions to the addicted state. In 2003, 

Fig. 13.1  Phasic dopamine activity encodes positive and negative reward prediction errors. Cues 
appear (far left) and the animal pushes a lever after which reward is delivered at a fixed time later. 
This is data from a single dopamine neuron. Time traces show spike times (dots) aligned on the 
level press. The reward times are indicated by a vertical bar. Moving reward times (“move R later” 
or “move R earlier”)
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O’Doherty and colleagues and McClure and colleagues (O’Doherty et  al. 2003; 
McClure et  al. 2003) published analogous approaches to this issue using simple 
conditioning tasks in human subjects. Both groups arrived at the same conclusion—
BOLD responses in striatal regions were consistent with the projecting dopamine 
systems emitting a reward prediction error, and in this case, having it show up 
encoded in a composite proxy (the BOLD measure) for neural activity in a known 
downstream structure.

However, it is well known that dopamine increase during drug use is not suffi-
cient for addiction (Volkow et  al. 2002; also see Dani and Montague 2007). So 
while the overvaluation model proposed by Redish is a convenient starting point for 
understanding the addicted state in computational terms, it is just a piece of the 
story. The value in this case derives from the fact that the model itself suggests new 
experimental directions and can deliver quantitative predictions ahead of time to 
help structure the design of the experiments.

Another key characteristic of addicted individuals is that they pursue and con-
sume subjective rewards even in the clear presence of outcomes that “might” occur 
(APA 2000). Such data suggest strongly that addicts have an impaired capacity to 
use possible future outcomes to intervene on their habitual drug-taking. One work-
ing hypothesis is that chronic drug-taking diminishes the capacity of the nervous 
system to compute appropriate control signals that guide behavior. Specifically, 
error signals for outcomes “that might happen” may no longer be produced in the 
brains of addicts. An alternative, but related hypothesis is that an addicted brain 
continues to produce error signals related to fictive outcomes, but the influence of 
these signals on actual behavioral choice is significantly diminished. Just such an 
experiment was carried out by Chiu et al. (2008) in nicotine addicts where a tempo-
ral difference error signal and a fictive error signal (e.g., see Lohrenz et al. 2007; 
Hayden et al. 2009) were tracked concurrently. Using a sequential investment task 
in nicotine addicts, the fictive error signal was present encoded in BOLD responses 
in human brains, but apparently had no impact on their behavioral responses. This 
neural signature was equally strong in sated smokers, unsated smokers, and non-
smoking controls, but only showed a behavioral impact in the nonsmoking control 
group (Chiu et  al. 2008). So in smokers, one consistent explanation is that their 
brains compute fictive errors but for some reason there is a kind of decoupling 
between these signals and behaviors that (should) could be guided by them.

�RL Models Guide New Electrophysiology Experiments 
Important for Addiction

Reinforcement learning models of dopaminergic activity have clearly been helpful 
in explaining extant electrophysiological data (Schultz et  al. 1997; Tobler et  al. 
2005; Bayer and Glimcher 2005); however, they also point to gaps in our under-
standing of the physical substrates of all the information that we know is encoded in 
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the dopaminergic output. For example, during trials where a reward is missing or 
parametrically diminished, dopaminergic responses should be diminished or miss-
ing altogether. This is a prediction of the model and was seen in early experiments; 
however, the neural source of this information has until recently remained for the 
most part unknown. The habenular nuclei and their interactions with the ventral 
tegmental area and substantia nigra have recently been proposed as sites where 
negative rewards—literally the absence of expected rewards or directly aversive 
events—are processed. Through reciprocal inhibitory connections with ventral teg-
mental area and substantia nigra, the lateral habenula communicates information 
about the timing and likelihood of negative rewards as described just above. This 
work was guided by the reward prediction error model for dopamine neurons and 
has aided Hikosaka and colleagues in their pursuit of a deeper understanding of the 
underlying neural circuitry underwriting this important prediction system.

�Open Questions Motivated by RL Models

RL models now form a large family of approaches to motivated learning and pathol-
ogies that disturb motivated learning (e.g., depression) or some of the primary play-
ers in RL-described neural subsystems (e.g., like the Parkinsonism that results from 
loss of dopamine neurons). However, many important questions remain, and the 
most interesting works lie in the future. For example, dopaminergic systems are low 
bandwidth systems with roughly 25,000–35,000 neurons on each side of the brain-
stem, which provide large segments of the cortical mantle and of course the striatum 
with dopamine. The capacity for predicting near-term reward suggests that there 
must be some kind of arbitration system that allows the dopaminergic modulation to 
be “shared” amongst competing systems that need to use or broadcast their near-
term prediction error using dopamine. The biological “answer” to this need is com-
pletely unknown.

The importance of dopamine in a vast range of pathologies makes extending, 
breaking, and bending the model paramount, but with a model in hand prediction 
can be generated and this has been the value of this simple approach to dopaminer-
gic systems.
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