
Chapter 2
Noise and Stochastic Processes

2.1 Noise

This section is aimed at familiarizing the reader with most common noise models
in hysteretic systems, emphasizing disruptive and constructive effects of noise on
system behavior. It also addresses the main numerical techniques used for noise
simulation.

2.1.1 Introduction

Everybody hates noise while the world tends to become even noisier. There is an
increasing amount of evidence regarding the negative effects of noise on human
health and environment while the measures taken against noise pollution proved to
be inefficient. For example, World Health Organization (WHO) recommends an
average bellow 35 dB for continuous background noise in hospitals but most of the
measurements presented by numerous scientific articles have indicated average
noise levels between 50 and 70 dB featuring generally flat spectra over the
60–2000 Hz band. A relevant survey on this topic is provided by Busch-Vishniac
and his colleagues from Johns Hopkins University in Ref. [1] indicating a trend of
increasing noise level in hospitals over the last half a century in spite of WHO
recommendations and the implementations of modern noise reduction techniques.
While the general public is much more aware of and concerned about this acoustic
noise, scientists and engineers are most commonly challenged by electromagnetic
noise, from the cosmic microwave background radiation generated by Big Bang to
the electronic noise generated by all electronic circuits.

One of the first areas that addressed noise problem systematically was commu-
nication. It is well-known that transmitted signal can be significantly altered by the
noise existent in a communication channel due to the thermal agitation of molecules,
the interference with other signals moving simultaneously through the same channel
or neighboring ones, defects of the material structure, etc. Various techniques are
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used to reduce these disruptive effects of noise added to the signal such as filtering
the noise out, using redundant coding routines of the transmitted signal, controlling
the transmission environment, or additional processing of the received signal [2, 3].

The interest in noise analysis has significantly expanded during the last years
with the advancement in nanoscience and nanotechnology. Noise is playing a major
role in the behavior of nanoscale systems and its effects are increasingly pronounced
with the decrease in system size. Let us consider the case of magnetic recording
nanotechnology, where thermal noise poses fundamental limits for further
improvements in magnetic data storage density. As predicted theoretically by
Néel-Arrhenius theory [4] and proved experimentally by Wernsdorfer and his
collaborators [5, 6], the switching fields of magnetic nanoparticles decrease with the
increase in the temperature up to some blocking temperature when magnetization
becomes completely unstable. For a 3 nm cubo-octahedral Co nanoparticle con-
sidered in the experiments, the blocking temperature is about 14 K, and, in general,
for nanoparticles with diameters below 20 nm the blocking temperatures were
found to be below 200 K [6–8]. It is apparent that this superparamagnetic effect
found in magnetic nanoparticles and nanograins limits the advances in magnetic
data storage density under the current paradigm. On the other hand, thermal noise
may also play a positive role in achieving higher storage densities by using
the recently developed technology referred as thermally assisted magnetic record-
ing [9, 10]. While high anisotropy media are used in order to provide sufficiently
stable magnetic bits at room temperature, the data are recorded at high temperature
which reduces significantly the coercive field to values accessible by the current
recording heads (see Fig. 2.1). It is foreseen that this recording nanotechnology will

Fig. 2.1 Schematic representation of a heat assisted magnetic recording system. The laser is
heating the memory cell in order to generate fast thermal induced switching of the magnetization
at magnetic fields accessible to the recording head (formed by a current source and a yoke which
amplifies the field in the air-gape)
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be the key for exceeding 1 Tb/in2 storage density. In conclusion, the thermal noise
in nanoscale devices might jeopardize the future development of several nano-
technologies, such as magnetic data recording, but it could also provide the keys for
solving the challenges encountered by such technologies.

Since noise can have only negative effects in linear systems, its potential
benefits seem rather counterintuitive and have been overlooked by researchers for
a long period of time [11]. However, the recent studies on stochastically driven
nonlinear systems proved that such phenomena are quite common and their
applications range from signal processing (dithering effect) and nanotechnology
(thermal assisted magnetic recording; noise enhanced characteristics of nanotube
transistors) to neuroscience (neuron models) and climate models (possible
explanations of ice age) [11–15]. These constructive aspects of noise in hysteretic
systems will be addressed in Chap. 6.

2.1.2 Wiener Process

Almost two centuries ago, Scottish botanist Robert Brown was the first to sys-
tematically analyze the perpetual irregular motion of small pollen grains sus-
pended in water. In general, this random drifting, known today as Brownian
motion, was observed for any small particles suspended in a fluid. A pertinent
explanation of these phenomena did not come until the beginning of twentieth
century, when Albert Einstein published his first paper on Brownian motion that
contains the key ideas for developing a stochastic analysis. Wiener construction
can be seen as the limiting case of the particle Brownian motion as the number of
particles and collision rates go to infinity. In addition to its practical applications in
the various areas such as physics, biology and finance, Wiener process plays a vital
role in stochastic analysis being the foundation for defining more complicated
stochastic processes.

The transition probability function of the Wiener process satisfies the following
Fokker-Planck equation (FPE) [16]:

o

ot
p x; tjx0; t0ð Þ ¼ 1

2
o2

ox2
p x; tjx0; t0ð Þ; ð2:1Þ

with the initial condition p x; t0jx0; t0ð Þ ¼ d x� x0ð Þ. By applying Fourier trans-
formation with respect to x variable, ~p s; tjx0; t0ð Þ ¼

R1
�1 p x; tjx0; t0ð Þeisxdx, Eq.

(2.1) becomes:

o

ot
~p s; tjx0; t0ð Þ ¼ � 1

2
s2~p s; tjx0; t0ð Þ; ð2:2Þ

subject to initial condition ~p s; t0jx0; t0ð Þ ¼ eisx0 , which can be simply solved by
separation of variables leading to the following solution:
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~p s; tjx0; t0ð Þ ¼ eisx0�1
2s2ðt�t0Þ ð2:3Þ

By Fourier inversion, the solution of Eq. (2.1) can be obtained as follows:

p x; tjx0; t0ð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðt � t0Þ

p e�
ðx�x0Þ2
2ðt�t0Þ ð2:4Þ

As a result, the transition probability for the Wiener process has a Gaussian
shape with the center in x0 and variance (t-t0). Thus the initial d – distribution is
spread in time (see Fig. 2.2) and the variance becomes infinite as t ? ? indi-
cating a high irregularity of the sample paths, as it is illustrated in Fig. 2.3a.

Although Wiener process has continuous paths, they are almost everywhere not
differentiable and have unbounded variation on any finite time interval [17]. If we
return to the physical origins of the Wiener process, this indicates an infinite speed
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Fig. 2.3 a Simulated sample paths of Wiener process with r = 1 starting at x0 = 0; b Power
spectral density of Wiener process with r = 1 starting at x0 = 0
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of the Brownian particle, which is obviously one of the drawbacks of Wiener
model. A more realistic model, but also more complex, of the Brownian motion is
Ornstein-Uhlenbeck process which will be analyzed in the Sect. 2.1.5.

Another important property of Wiener process is the autocorrelation which is
defined as follows:

Xðt1Þ � Xðt2Þjx0; t0h i ¼
ZZ

R2

x1x2p x1; t1; x2; t2jx0; t0ð Þdx1dx2 ð2:5Þ

By using the Markovian property of Wiener process and assuming that t2 [ t1,
the autocorrelation function can be written as follows:

Xðt2Þ � Xðt1Þjx0; t0h i ¼
ZZ

R2

x1p x2; t2jx1; t1ð Þp x1; t1jx0; t0ð Þdx1dx2 ð2:6Þ

By taking into account the expression for the first two moments of transition
probability density (2.4), one can simply derive the following:

Xðt2Þ � Xðt1Þjx0; t0h i ¼
Z

R

Xðt2Þjx1; t1h ix1p x1; t1jx0; t0ð Þdx1

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðt1 � t0Þ

p
Z

R

x2
1e�

ðx1�x0Þ2
2ðt1�t0Þ dx1

ð2:7Þ

As a result, the Wiener autocorrelation function is

Xðt2Þ � Xðt1Þjx0; t0h i ¼ ðt1 � t0Þ þ x2
0 ð2:8Þ

When t2 is smaller than t1, the Wiener autocorrelation is obtained by simply
replacing t1 with t2 in the final formula. Thus, the general expression can be written
as:

Xðt2Þ � Xðt1Þjx0; t0h i ¼ ðminft1; t2g � t0Þ þ x2
0 ð2:9Þ

It is apparent from formula (2.9) that the Wiener process is not stationary, and
consequently the power spectral density cannot be expressed in the classical terms
as Fourier transform of autocorrelation function. However, a time-dependent
spectrum can be defined according to the Wigner-Ville approach:

SWVðt;xÞ ¼
Z1

�1

x t þ s=2ð Þx� t � s=2ð Þe�isxds ð2:10Þ

where the equality is understood in the mean-square sense, x* denotes the complex
conjugate of x, and i ¼

ffiffiffiffiffiffiffi
�1
p

. For real valued processes only the real part of the
formula is considered. Applying this formula to the Wiener process with t0 = 0
and x0 = 0 it is found that:
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SWVðt;xÞ ¼ 2
sin�xt�

x

� �2

uðtÞ ð2:11Þ

where u(t) is the step function simply pointing out that t [ 0.
It is also customary to define the average spectrum over the certain interval of

length T:

SWVðxÞ ¼
1
T

ZT

0

SWVðt;xÞdt ð2:12Þ

In the case of the Wiener process, the average spectrum is inverse proportional
to x2 as suggested by the simulation presented in Fig. 2.3b.

By using the autocorrelation formula (2.9) and simple algebraic calculations it
can be proven that increments of the Wiener process, X(t)-X(s), are uncorrelated
and have variance (t-s). Since the difference of two Gaussian variables is also
Gaussian, we can conclude that the increments of Wiener process are independent
and identically distributed (i.i.d.) Gaussian random variables with zero mean and
variance (t-s). In addition to the relation with white noise and stochastic differ-
ential equations, this property is also useful for the numerical simulation of the
Wiener process. Thus a random number Z is generated at each time step according
to a standardized normal distribution N(0, 1) and the increments of the sample
paths are computed according to the formula

xðtnÞ � xðtn�1Þ ¼ Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtn � tn�1Þ

p
ð2:13Þ

Simulations of the sample paths using this procedure are presented in Fig. 2.3a.

2.1.3 Itô Stochastic Integral and Differential Equations

Stochastic calculus aimed at extending the benefits of deterministic calculus to the
area of stochastic processes. After several less successful approaches developed by
Wiener and his collaborators, the Japanese mathematician Kyosi Itô introduced a
kind of Riemann-Stieljes integral having Wiener process as integrand and proved
the convergence of the integral sums. For the introduction of Itô’s construction let
us denote Wiener process by W(t) and consider a left-continuous function of time
denoted by G(t), which can be either deterministic or stochastic. The stochastic
integral

R t
t0

Gðt0ÞdWðt0Þ is defined by using Riemann-Stieljes approach as limit of

the integral sums:

Sn ¼
Xn

i¼1

Gðti�1Þ WðtiÞ �Wðti�1Þ½ � ð2:14Þ

over all possible partitions (t0 B t1 B t2 B ��� B tn-1 B tn = t) of the interval
[t0,t], with n approaching infinity. The limit is considered in the mean square sense
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over the probability space X, i.e. lim
n!1

R
X SnðxÞ � SðxÞ½ �2 pðxÞdx ¼ 0. The

convergence of Itô’s integral sums is rather counterintuitive knowing that W(t) is
almost nowhere differentiable and have unbounded variation on any finite time
interval. However, let us note that the choice of the intermediate points is restricted
to be the left limits of the partition intervals which is essential in obtaining the
convergence of the stochastic integral sums.

The construction of a stochastic integral opens the way towards defining and
characterizing more complex stochastic processes via stochastic differential
equations. Thus, a stochastic process X(t) is considered a solution of Itô’s sto-
chastic differential equation (SDE) written as:

dXðtÞ ¼ b XðtÞ; t½ �dt þ r XðtÞ; t½ �dWðtÞ ð2:15Þ

if for all t and t0,

XðtÞ ¼ Xðt0Þ þ
Z t

t0

b Xðt0Þ; t0½ �dt0 þ
Z t

t0

r Xðt0Þ; t0½ �dWðt0Þ ð2:16Þ

where b is the drift coefficient and r is the diffusion coefficient.
The existence and uniqueness of the solution for this equation in a time interval

[t0, T] subject to a given initial condition can be proven [18] under the following
restrictions imposed on the equation coefficients:

• Lipschitz condition: a KL exists such that for all x and y, and all t in the interval
[t0, T],

bðx; tÞ � bðy; tÞj j þ rðx; tÞ � rðy; tÞj j �KL x� yj j; ð2:17Þ

• Growth condition : a KG exists such that for all x, and for all t in the interval [t0, T],

bðx; tÞj j2 þ rðx; tÞj j2�KG 1þ xj j2
� �

: ð2:18Þ

The Lipschitz condition is usually satisfied by the stochastic differential
equation used in practice, but the growth conditions is often violated. This does not
preclude the existence of a solution rather it indicates the solution is unbounded on
the given finite time interval.

In order to connect the two approaches introduced in this chapter to describe a
stochastic process, let us mention that the time evolution of the probability density
characterizing the stochastic process defined by (2.15) is the solution of FPE:

o

ot
p x; tjx0; t0ð Þ ¼ � o

ox
bðx; tÞp x; tjx0; t0ð Þ½ � þ 1

2
o2

ox2
r2ðx; tÞp x; tjx0; t0ð Þ
� �

ð2:19Þ

subject to a d-initial condition p x; t0jx0; t0ð Þ ¼ d x� x0ð Þ and given boundary
conditions.
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The generalization of SDE and FPE to multi-dimensional stochastic processes
XðtÞ is quite straightforward. Thus, multi-dimensional Itô’s SDE reads:

dXðtÞ ¼ b XðtÞ; t½ �dt þ r XðtÞ; t½ �dWðtÞ ð2:20Þ

where b is the drift vector function and r is the diffusion tensor function, while
WðtÞ is the standard multi-dimensional Wiener process. The associated FPE is:

o

ot
p x; tjx0; t0ð Þ ¼ �

Xn

i¼1

o

oxi
biðx; tÞp x; tjx0; t0ð Þ½ �

þ 1
2

Xn

i;j¼1

o2

oxioxj

Xn

k¼1

rikðx; tÞrkjðx; tÞ
 !

p x; tjx0; t0ð Þ
" #

ð2:21Þ

where bi and rij are elements of the drift vector and the diffusion tensor,
respectively.

2.1.4 White Noise

White noise is a stochastic process formed by uncorrelated random variables with
constant mean and nonzero variance. It is apparent that the autocorrelation of a
white noise is a delta function and consequently, its power spectral density is
constant. This explains its name drawn from ‘‘white light’’ which has a flat power
spectral density over the visible electromagnetic frequency band.

The definition of white noise places no restriction on the probability distribution
functions describing the random variables, except the constant mean and variance.
Usually, the notion of white noise is used in a stronger form when the component
random variables are i.i.d. The numerical implementation of white noise used in
this book is based on this idea but various probability density functions (p.d.f.) are
considered. Sample of white noise simulations obtained for Gaussian, uniform,
Cauchy, and Laplace distributions are shown in Fig. 2.4. Although there is an
infinite variety of white noises, the Gaussian type is the overwhelming common
noise model in science and engineering, so common that people use it by default
when refering to white noise. That is partially related to the central limit theorem
of the probability theory stating that the average of a large number of independent
random variables converges, under some conditions, to a random variable with
Gaussian distribution [19]. In addition, white Gaussian noise (WGN) is the formal
derivative of the Wiener process, so it plays a central role in the theory of sto-
chastic differential equation, as it is next discussed.

Let us now recall a definition of the generalized derivative for a deterministic
function. The generalized derivative of a function w integrable over a real domain
D exists and is denoted by dw/dt if the following equality is satisfied for all
infinitely differentiable functions g with compact support in D:
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Z

D

gðtÞ dw

dt
ðtÞdt ¼ �

Z

D

wðtÞ dg

dt
ðtÞdt ð2:22Þ

For differentiable functions the above formula is nothing else than the inte-
gration by parts, so the classical derivative is equal (almost everywhere) to the
generalized derivative. It is known that the Wiener process has continuous paths
but they are almost everywhere not differentiable in the classical sense. Never-
theless, the generalized derivatives exist and they are expected to be realizations of
a WGN since the derivative should involve increments of the Wiener process
which are known to be independent and Gaussian. As a result, the stochastic
differential Eq. (2.15) is often written in the following form, known as Langevin’s
equation:

dX

dt
ðtÞ ¼ b XðtÞ; t½ � þ r XðtÞ; t½ �nðtÞ ð2:23Þ

where nðtÞ is a WGN.
In the end of this section, let us mention that white noise bears a physical

inconsistency, namely it requires infinite energy. It is obvious that integrating the
constant power spectral density over an infinite frequency band would result an
infinite quantity. In practice, a random signal is considered ‘‘white noise’’ if it has
a flat spectrum over a definite bandwidth which is of interest for a specific
application (for example audio frequency band or radio frequency band).

The physical bandwidth of white noise is limited in practice by various factors
such as the mechanism of noise generation, the transmission medium and finite
observation capabilities. The finite spectral band implies some correlations
between the random variables of the noise process, which significantly increases
the mathematical complexity of the problem. A consistent example of finite-band
white noise is the Ornstein-Uhlenbeck process, which is addressed in the next
section.

2.1.5 Ornstein-Uhlenbeck Noise

The Ornstein-Uhlenbeck (OU) processes belong to a class of finite-band WGN,
whose spectral densities are constant in the small frequency region and decrease
to zero inversely proportional to the square frequency in the high frequency region.
More specifically, OU spectral density has a Lorentzian shape, Sðf Þ ¼ r2

	
ðb2 þ 4p2f 2Þ

where r and b are constants characteristic to the process and f is the frequency (see
Fig. 2.5). It is used in modeling various thermal relaxation processes as well as the
evolution of exchange rates, bank interest, or prices.

The mathematical description of the OU process can be simply obtained by
adding a linear drift term to the FPE characterizing the Wiener process. Thus, the
FPE for the transition probability function of the OU noise reads:
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o

ot
p x; tjx0; t0ð Þ ¼ o

ox
bðx� xsÞp x; tjx0; t0ð Þ½ � þ r2

2
o2

ox2
p x; tjx0; t0ð Þ; ð2:24Þ

where b, xs, and r are constants known as drift coefficient, stationary average and
diffusion coefficient, respectively. The solution is subject to the initial condition
p(x, t|x0, t0) = d(x - x0) and has to decay to zero as x goes to infinity. In physical
terms, OU process can be interpreted as a Brownian particle diffusing in a para-
bolic potential U(x) with derivative U’(x) = b(x - xs).

To find the solution of FPE (2.24) let us consider, by simple translation of
variables, t0 = 0 and xs = 0. By applying Fourier transformation with respect to
x variable, ~p s; tjx0; 0ð Þ ¼

R1
¼1 p x; tjx0; 0ð Þeisxdx, Eq. (2.24) becomes:

o

ot
~p s; tjx0; 0ð Þ þ bs

o

os
~p s; tjx0; 0ð Þ ¼ � r2

2
s2~p s; tjx0; 0ð Þ; ð2:25Þ

subject to initial condition ~p s; 0jx0; 0ð Þ ¼ eisx0 , which can be solved by the method
of characteristics. Thus, let us find the characteristic curve from the associated
Lagrange-Charpit equations:

dt

1
¼ ds

bs
¼ � 2d~p

r2s2~p
ð2:26Þ

By integrating the first equation in (2.26) using the separation of variables and
imposing initial condition s(0) = s0, the following solution is found:

sðtÞ ¼ s0ebt ð2:27Þ

By plugging this expression for s in the last term of the formula (2.26) and
solving the corresponding differential equation with respect to t subject to initial
condition eis0x0 , one can use separation of variables to obtain the following
solution:
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~pðs0; tjx0; 0Þ ¼ exp is0x0 þ
r2s2

0

4b
1� e2bt

 �

� �

ð2:28Þ

For the clarity of the previous formula, two notations were used for the expo-
nential function. By substituting s0 in (2.28) as a function of s and t obtained from
(2.27), one arrives at the following solution of the partial differential Eq. (2.25):

~pðs; tjx0; 0Þ ¼ exp ix0se�bt � r2s2

4b
1� e�2bt

 �

� �

ð2:29Þ

By performing Fourier inversion, a Gaussian distribution with mean x0e-bt and
variance (r2/2b) (1-e-2bt) is obtained. Taking into account the translation of
variable used at the beginning of this derivation, the solution of FPE (2.24) is
obtained. Thus, the transition probability function of the Ornstein-Uhlenbeck noise
are characterized by drift coefficient b, and diffusion coefficient. The average of the
stationary noise xs has the following expression:

p x; tjx0; t0ð Þ ¼ 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=bÞð1� e�2bðt�t0ÞÞ

p exp � bðx� xs � ðx0 � xsÞe�bðt�t0ÞÞ2

2r2ð1� e�2bðt�t0ÞÞ

" #

;

ð2:30Þ

When t goes to infinity the transition probability exponentially approaches the
stationary distribution, which is Gaussian with mean xs and variance r2/2b. Thus
the initial d-distribution is spread in time (see Fig. 2.6), as happened in the Wiener
process, but the standard deviation converges to a finite value when t ? ?. In
addition, the distribution center drifts away from the initial condition x0 to the
stationary average xs.

Let us now compute the autocorrelation function of the OU process by using
definition (2.5) and the transition probability function previously derived. Based
on the Markovian property of the OU process and assuming that t2 [ t1 [ t0, the
autocorrelation function can be rewritten as follows:
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Xðt2Þ � Xðt1Þjx0; t0h i ¼
ZZ

R2

x2x1p x2; t2jx1; t1ð Þp x1; t1jx0; t0ð Þdx1dx2

¼
Z

R

X t2ð Þjx1; t1h ix1p x1; t1jx0; t0ð Þdx1

ð2:31Þ

As it was previously derived, the expression for average at t2 of an OU process
initiated at (x1, t1) is ðx1 � xsÞe�bðt2�t1Þ, and consequently formula (2.31) becomes:

Xðt2Þ � Xðt1Þjx0; t0h i ¼ e�bðt2�t1Þ
Z

R

ðx1 � xsÞx1p x1; t1jx0; t0ð Þdx1

¼ e�bðt2�t1Þ X2ðt1Þjx0; t0
� 

� xs Xðt1Þjx0; t0h i
� �

ð2:32Þ

Since the second moment is the sum of the square average and variance, the
autocorrelation function of the OU process becomes:

Xðt2Þ � Xðt1Þjx0; t0h i ¼ e�bðt2�t1Þ r2

2b
� xsðx0 � xsÞe�bðt1�t0Þ þ ðx0 � xsÞ2 �

r2

2b

� �

e�2bðt1�t0Þ
� �

ð2:33Þ

Let us observe that the autocorrelation expression is significantly simplified
when the initial condition is the stationary average or is considered in the remote
past. Actually, the latter is of much more interest from a practical point of view
and is coined as the stationary correlation function, denoted by \X(t2)X(t1)[s. By
letting t0 ? -? in formula (2.33), one gets:

Xðt2Þ � Xðt1Þh is ¼
r2

2b
e�bjt2�t1j ð2:34Þ

where the absolute value was used in order to account for both t2 [ t1, as con-
sidered in the previous derivation, and t1 [ t2. The fact that the autocorrelation
function depends only on time difference is characteristic to stationary process. It
is natural to require for a stochastic process modeling the noise to be a stationary
memoryless (i.e. Markovian) process. If the Gaussian requirement for the distri-
bution function is added then the OU process is the only one that satisfies all these
three natural characteristics, as it is proven by the Doob theorem [20].

The power spectral density of the OU process can now be easily obtained as the
Fourier transform of the autocorrelation function (2.34) according to the Wiener-
Khinchine theorem [16]. Because we deal with an even correlation function, it is
enough to compute the Fourier integral on the positive axis. Thus,

SðxÞ ¼ 2Re
Z1

0

r2

2b
e�bse�jxsds

8
<

:

9
=

;
¼ r2

b
Re

1
bþ ix

� �

¼ r2

b2 þ x2
ð2:35Þ
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which proves the Lorentzian shape of the OU spectrum mentioned at the beginning
of this section and illustrated in Fig. 2.5.

Based on FPE (2.24) for OU processes, the associated Itô stochastic differential
equation can be simply written down as:

dX tð Þ ¼ �b X tð Þ � xs½ �dt þ r � dW tð Þ ð2:36Þ

where W(t) is the Wiener process, b and r are the drift and, respectively, diffusion
coefficients of X(t), while xs is the average of the stationary process. The process is
also subject to the initial condition X(0) = x0. While analytical calculations
involving the OU process performed in the book are mainly based on the FPE
approach, numerical simulations are using the Itô SDE description as it is next
discussed.

By using the finite difference technique and the fact that
W sþ tð Þ ¼ W sð Þ þ N 0; 1ð Þt1=2, where N 0; 1ð Þ is a random variable normally dis-
tributed with zero average and unit variance, one obtains the following approximate
updating formula:

x t þ Dtð Þ � x tð Þ � b x tð Þ � xs½ �Dt þ r � N 0; 1ð Þ Dtð Þ1=2 ð2:37Þ

Although Eq. (2.37) has often been used in the literature to generate OU pro-
cesses, it is reliable only when Dt is relatively small. An exact updating formula
has been derived in [21] by integrating (2.36) and by using the properties of
normal variables:

xðt þ DtÞ ¼ xðtÞe�bDt þ r2	
2b

� �
ð1� e�2bDtÞ

h i 1=2
Nð0; 1Þ ð2:38Þ

in which it is assumed that x0 ¼ xs ¼ 0.
As expected, this updating formula is reduced to (2.37) when Dt\\1=b. It is

noteworthy that Eq. (2.38) splits explicitly the random process into two terms: the
first one is the mean and the second one is proportional to the standard deviation of
x tð Þ. Since the time step Dt is usually constant, the factors in (2.38) can be
computed in advance and stored in order to increase the computational efficiency.
This latter approach has been used in our book to generate OU processes
numerically. Sample paths of OU are shown in Fig. 2.7.

2.1.6 Brownian Motion in a Double Well-Potential

In this section, the discussion is extended from the Brownian motion in one-well
potential reflected by Ornstein-Uhlenbeck process to the Brownian motion in
double-well potential which obeys the following Fokker-Planck equation:

78 2 Noise and Stochastic Processes



o

ot
p x; tjx0; t0ð Þ ¼ o

ox

dU

dx
ðxÞp x; tjx0; t0ð Þ

� �

þ r2

2
o2

ox2
p x; tjx0; t0ð Þ; ð2:39Þ

where U(x) denotes a function at least twice differentiable having two minima
inside the interval of interest for the problem, as illustrated in Fig. 2.8.
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Fig. 2.8 Plot of double-well
potential U(x) and the
stationary distribution ps(x)
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Fig. 2.7 Simulated sample paths of the Ornstein-Uhlenbeck process starting at x0 for different
values of b, r, xs
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Let us first find the stationary distribution, which is obtained by solving the
following differential equation:

0 ¼ d

dx

dU

dx
ðxÞps xð Þ

� �

þ r2

2
d2psðxÞ

dx2
ð2:40Þ

Since both the probability function and its derivatives have to approach zero
when x goes to infinity, the constant corresponding to the first integration is zero
and Eq. (2.40) is equivalent to the following:

dpsðxÞ
dx

¼ � 2
r2

dU

dx
ðxÞps xð Þ ð2:41Þ

which can be easily solved using separation of variables.
It is apparent from formula (2.41) that the minima for potential U(x) are

maxima for the stationary probability ps(x) representing metastable states (see also
Fig. 2.8). A natural problem to be discussed is the transition between the two
metastable states induced by noise. It is intuitively clear that the time needed to
pass from one metastable state to another is mostly spent by surmounting the
potential barrier between the states. The latter can be seen as the time needed for
the Brownian particle initially located in one minimum to escape from the cor-
responding half-bounded interval ending the maximum point. In order to compute
this exit time let us impose an absorbing boundary condition on Eq. (2.39) at the
maximum point M, i.e. p(M,t|x0, 0) = 0. The corresponding solution will provide
the probability that, at time t, the particle starting at x0 is still in the first potential
well, which will be denoted by G(x0, t) and has the following expression:

Gðx0; tÞ ¼
Z M

�1
p x; tjx0; 0ð Þdx ð2:42Þ

In other words, G(x0, t) represents the tail distribution of the first exit time from
the potential well and consequently, the mean first exit time, denoted by T(x0) can
be expressed as follows:

T x0ð Þ ¼ th i ¼
Z1

0

t
o

ot
ð1� Gðx0; tÞÞdt ¼

Z1

0

Gðx0; tÞdt ð2:43Þ

where the last equality is obtained using integration by parts.
By taking into account that the transition probability satisfies the backward

Fokker-Planck equation as function of initial condition x0 and time t, G(x0, t) obeys
the following equation:

o

ot
G x0; tð Þ ¼ dU

dx0
ðx0Þ

o

ox0
G x0; tð Þ þ r2

2
o2

ox2
0

G x0; tð Þ ð2:44Þ
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subject to the initial condition G(x0, 0) = 1 for all x0 smaller than M and boundary
condition G(M, t) = 0 and decays to zero as x0 goes to minus infinity for all t [ 0.
By integrating this equation over time from 0 to infinity, the equation for the mean
first exit time is obtained:

dU

dx0
ðx0Þ

d

dx0
T x0ð Þ þ

r2

2
d2

dx2
0

T x0ð Þ ¼ �1: ð2:45Þ

with the boundary conditions T(M) = 0 and decays to zero when x0 goes to minus
infinity. It is apparent that Eq. (2.45) is a linear first order differential equation in
terms of the derivative of T, so the analytical solution is readily available:

dT

dx0
x0ð Þ ¼ e

2Uðx0Þ
r2 � 2

r2

Zx0

�1

e�
2UðxÞ

r2 dxþ c

0

@

1

A ð2:46Þ

where c is an integration constant that is to be determined from the boundary
conditions on T. Let us mention that if instead of -? is considered a finite left
bound with reflective boundary condition, the derivative of T is equal to zero at
that point, so the constant c is also zero. By integrating (2.46) and taking into
account the boundary conditions T(M) = 0, the following closed form expression
is obtained for the mean first exit time:

T x0ð Þ ¼
2
r2

ZM

x0

e
2UðxÞ

r2

Zx

�1

e�
2UðyÞ

r2 dy

0

@

1

Adx ð2:47Þ

Once U(x) is explicitly given, the expression (2.47) can be further simplified by
computing the two integrals. Here, let us consider that diffusion strength r2 is
relatively small compared to the height of the potential barrier. On the one hand,
exp[2U(x)/r2] is sharply peaked at x = M so the main contribution to the first
integral comes from a close neighborhood of M, where U(x) can be approximated
by U(M)–b(x-M)2 with b a constant from Taylor approximation formula. On the
other hand, exp[-2U(x)/r2] is very small near x = M so the inner integral is very
slowly varying in the close neighborhood of M significant for the first integral. As
a result, the inner integral can be approximated by setting the integral limit
x = M and the resulting constant can be removed from inside the first integral.
Moreover, the main contribution to this integral comes from the neighborhood of
minimum m1, where U(x) can be approximated by U(m1) ? a(x-m1)2 with a a
constant that comes from the Taylor approximation formula. By taking into
consideration all these observations, the mean first exit time of a particle located at
metastable state m1 can be approximated by the following formula:
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T m1ð Þ � 2
r2

ZM

�1

e�
2½Uðm1Þþaðy�m1Þ2 �

r2 dy

ZM

m1

e
2½UðMÞ�bðx�MÞ2 �

r2 dx

� 2
r2

e
2ðUðMÞ�Uðm1ÞÞ

r2

Z1

�1

e�
2aðy�m1Þ2

r2 dy

ZM

�1

e�
2bðx�MÞ2

r2 dx

ð2:48Þ

It is relatively easy to show that the first integral gives r
ffiffiffiffiffiffiffiffiffiffi
p=2a

p
and the second

integral gives r
ffiffiffiffiffiffiffiffiffiffiffi
p=8b

p
. In conclusion, when noise strength is relatively small

compared to the potential barrier, the escape time can be approximated by the
following expression:

T að Þ � p

2
ffiffiffiffiffiffi
ab
p e

2ðUðbÞ�UðaÞÞ
r2 ð2:49Þ

This result is known as Arrhenius formula and has been frequently used in modeling
thermal relaxation phenomena, where the noise strength is proportional to the
absolute temperature of the system (r2/2 = kT, k is the Boltzmann’s constant).

The analytical solutions for the transition probability function of the Brownian
motion in double-well potential are much more difficult to find than in the case of
one-well potential where Fourier method was effective. These solutions can be
obtained in terms of eigenfunctions for FPE (2.39) with the eigenvalues determining
the rates of decay to the stationary state [16, 22]. Here, we focus on numerical
simulations of the process which are addressed by solving the associated SDE:

dX tð Þ ¼ � dU

dx
ðXðtÞÞdt þ r � dW tð Þ ð2:50Þ

By using the finite difference technique and W sþ tð Þ ¼ W sð Þ þ N 0; 1ð Þt1=2, where
N(0,1) is a random variable normally distributed with zero average and unit var-
iance, one obtains the following approximate updating formula:

x t þ Dtð Þ � x tð Þ � dU

dx
xðtÞð ÞDt þ r � N 0; 1ð Þ Dtð Þ1=2 ð2:51Þ

Simulated sample paths of Brownian motion in a Landau potential and variants
thereof are plotted in Fig. 2.9. The Landau potential is a standard case of double-
well potential with UðxÞ ¼ �ðb=2Þx2 þ dx4, where constants b and d are positive
constants.

2.1.7 Pink (1/f) Noise

Pink noise is a stochastic process with the power spectral density inverse pro-
portional to frequency, also known as ‘‘1/f noise’’. The name of ‘‘pink noise’’ is
often extended to any noise with a power spectral density of the form 1/f a where a
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is usually close to 1. Pink noise is considered an intermediate class of noise
between the white noise, obtained for a = 0, and the Wiener noise featuring a
spectrum with a = 2.
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Fig. 2.9 Simulated sample paths of Brownian motion in various potentials UðxÞ ¼ ðbxsÞx�
ðb=2Þx2 þ dx4 and the associated spectra for different values of b, xs and d
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The pink noise was first observed experimentally by Johnson in 1925 [23] when
was trying to measure the noise spectrum in triode vacuum tubes. In addition to the
white noise spectrum predicted by Schottky [24] he also observed an unexpected
1/f noise at low frequency. In the following years this strange noise appeared again
and again in many different electrical devices, as well as in systems from other
areas of science and technology, such as biology, astronomy, geophysics, psy-
chology and economics [25, 26]. Several examples are provided in Fig. 2.10.

Although these phenomena are widely spread in nature and their analysis led to
more than 1500 scientific publications [27], a unified explanation is still missing.
An early approach proposed by Johnson [23] and Shottky [24] was to consider the
superposition of various OU relaxation process with different relaxation rates. This
model was successful in explaining the pink noise in vacuum tubes but less suited
in other cases from the area of electronics. Another idea was to look for diffusion
processes as possible origins of pink noise. That was not very difficult from the
mathematical point of view but failed at giving consistent physical meaning to the
mathematical assumptions used to derive 1/f spectrum [28]. Following the Man-
delbrot’s work [29] on fractals, pink noise has often been associated to fractal
phenomena due to its scale invariance, i.e. it does not change if scales of frequency
or time are multiplied by a common factor. Moreover, since various nonlinear

Fig. 2.10 Examples of 1/f noises. Curves are illustrative based on data from the indicated
sources. Adjacent pairs of tick marks on the horizontal axis beneath each figure indicate one
decade of frequency. Reprinted with permission from [26]
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systems have fractal attractors, many researchers have looked for dynamical
systems with complex behavior mimicking a noise process. A pioneering work in
this direction has been performed by Bak, Tang and Wiesenfeld who introduced
the so-called self organized criticality as an explanation for 1/f noise [30, 31]. In
conclusion, numerous models have been designed to explain the origin of the pink
noise and generate its characteristics. Although no universal approach has been
developed, ad-hoc models were pretty successful in studying these ubiquitous
phenomena.

The simulations of pink noise used in this book are based on the generation of
white noise processes and Fourier transforms. If Wiener noise featuring an 1/f 2

spectrum can be interpreted as the integral of white noise then pink noise featuring
an 1/f spectrum could be seen as some kind of half-integral of white noise. Let us
consider that n(t) is a sample path of white noise and compute its Fourier trans-
form. Then, dividing the result by x1/2 and taking an inverse Fourier transform,
one obtaines a function of time, denoted by p(t), which defines a sample path of
pink noise. This procedure can be mathematically expressed as follows:

pðtÞ ¼ 1
2p

Z1

�1

Z1

�1

nð~tÞejx~td~t

0

@

1

Ax�1=2ejxtdx

¼
Z1

�1

nð~tÞ 1
2p

Z1

�1

x�1=2ejxð~t�tÞdx

0

@

1

A d~t

ð2:52Þ

This equality shows explicitly that pink noise can be constructed as a linear
convolution of white noise with a specific kernel (or Green’s function) and
explains the time correlations in the pink noise. Since there are various types of
white noise depending on its probability distribution, a given 1/f spectrum can also
be associated to a variety of pink noise processes including Gaussian and Laplace
noises (Fig. 2.11).

2.1.8 Other Classes of Colored Noise

In general, colored noise is the complementary notion of white noise including
noises with flat spectrum only on a finite frequency band and noises with non-flat
spectrum. In other words, colored noise spikes are correlated to each other. As it
was previously mentioned, white noise bears a physical inconsistency since it
requires infinite energy. So practically, all real noises are colored to some degree
and pure white noise is only used in theoretical analyses due to its simplicity.

Wiener process featuring 1/f 2 spectrum, pink noise characterized by 1/f spec-
trum, and Ornstein-Uhlenbeck noise with its Lorentzian spectrum are most com-
mon models of colored noise. However, from case to case there is a large variety
of colored noises, so modeling noise with arbitrary spectrum is desired.
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Our approach generalizes the technique used in the previous section for simulating
pink noise. Thus, let us consider an arbitrary positive frequency function f(x)
sought as the noise spectrum. One first generates numerically an IID process n(t) in
the time domain as it is done in the white noise case. This process is then con-
verted to the frequency domain by using standard FFT techniques. In order to
obtain the desired colored noise c(t) one has to multiply the flat spectrum of the
converted signal by the chosen function and convert the signal back to the time
domain. This procedure can be mathematically expressed as follows:

cðtÞ ¼ 1
2p

Z1

�1

Z1

�1

nð~tÞejx~td~t

0

@
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ejxtdx
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�1

nð~tÞ 1
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A d~t

ð2:53Þ
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Fig. 2.11 Simulated sample paths of pink noise (left) and the associated spectra (right) for
Gaussian and Laplacian distribution
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It should be noted that the computational cost for the generation of the colored
noise is relatively small and depends on n as O n log nð Þ where n is the length of the
signal.

In Fig. 2.12a sample paths of colored noise with a spectrum directly proportional
to f (represented in Fig. 2.12b) are generated from white Gaussian noise by using
the algorithm previously described. This type of noise is known as blue noise and is
often detected and used in image processing. Efficient algorithms for dithering were
developed by using blue noise. It was found that retina cells are arranged in blue-
noise-type pattern which generates a good visual resolution [32]. Simulated sample
paths of a colored noise with a spectrum directly proportional to f 2 are plotted in
Fig. 2.13a and the corresponding averaged spectrum is represented in Fig. 2.13b.
This is known as violet noise and can be seen as a derivative of white noise. It is
apparent that infinite-band blue of violet noise also require infinite energy, so such
noises can only exist on a finite band. Figure 2.14b shows a finite band spectrum
with triangular shape which has violet part and a Brown part. The sample paths
associated to this spectrum are represented on the left part of that figure.
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Fig. 2.13 Sample paths of violet noise (left) and the associated spectra (right)
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Fig. 2.12 Sample paths of blue noise (left) and the associated spectra (right)
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Many other classes of noise can be defined based on the characteristics of their
spectra but they are much less encountered in hysteretic systems and consequently,
they are not addressed in this book. However, they can be easily generated and
applied to specific applications by using the Noise Module of HysterSoft and by
following the procedure presenting above.

In conclusion, most common noise models in hysteretic systems have been
presented along with the main numerical techniques used in this book for noise
simulations. It has been emphasized that noise may also play a constructive role in
nonlinear systems in opposition to the general image of noise as nuisance.
Regardless of their positive or negative roles, it is clear that a physical system is
influenced by internal of external noise leading to a stochastic behavior of the
system output. The next part of the Chapter is devoted to the theory of stochastic
processes defined on graphs, which proved to be naturally suited to the stochastic
analysis of the hysteretic system outputs.

2.2 Stochastic Processes Defined on Graphs

This section is devoted to introducing the theory of stochastic processes defined on
graphs that was recently developed by Freidlin and Wentzell. Their papers [33, 34]
are used as a guide for presenting the basic concepts of this theory. First, several
definitions and general properties of stochastic processes are discussed, stressing
the relation between transition probabilities of Markov processes and semigroups
of contractions. This relation allows the characterization of diffusion processes
defined on a graph, which is addressed in the second part of this section and is later
applied to the analytical study of hysteretic systems with stochastic input. Readers
without a background in measure theory and functional analysis might find
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Fig. 2.14 Sample paths of colored noise (left) with finite-band triangular spectrum represented
on the (right) figure
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difficult to understand this theoretical construction so they can pass directly to the
Sect. 2.3.3 part where the theory is applied to the case of Orstein-Uhlenbeck
process defined on a graph.

2.2.1 General Properties of Diffusion Processes

Consider a probability space {X, F, P} where X is the set of outcomes known as
sample space, F is a collection of subsets of X which forms r-algebra, and P is the
probability measure returning the probability of a specific event in X. In addition,
let us consider two real intervals X (phase space) and T (time interval). Let us
remind that a stochastic process is a family of random variables {X(t)}, t e T,
defined on X with values in X. For each fixed x e X a function x:T ? X, is
obtained as x(t) = X(t)(x) and is known as the trajectory or sample path of the
process X(t). A stochastic process is called (right) continuous if ‘‘almost all’’ of its
trajectories are (right) continuous, where ‘‘almost all’’ means a property valid on a
subset of X which has measure 1.

The collection of probability distribution functions ft1t2...tr of random variables
(X(t1), X(t2), … X(tr)) for any natural number r and for any t1, t2, … tr e T is known
as the finite-dimensional family of distributions of process X(t). In general, the
finite-dimensional family of distributions is not uniquely defining a stochastic
process, but there is a large class of stochastic processes1 for which it determines
‘‘almost’’ unique a continuous stochastic process. All processes considered in this
section satisfy this property.

A homogeneous Markovian process with respect to a non-decreasing system of
r-algebras Nt � F, where t 2 T ¼ 0;1½ Þ, is by definition a couple formed by a
stochastic process X(t) and a collection of probability measures px, x 2 X, on {X,
F}, which satisfy the following conditions:

(1) for any t, random variable X(t) is measurable with respect to r-algebra Nt;
(2) for any t and any Borel set C � X, Pðt;CjxÞ ¼ PxðXðtÞ 2 CÞ is a Borel

function with respect to variable x;
(3) Pð0;XnfxgjxÞ ¼ 0;
(4) if t; u 2 T ; t� u; x 2 X; and C � X is a Borel set, then equality

PxfXðuÞ 2 CjNtg ¼ Pðu� t;CjxÞ

is satisfied almost certainly with respect to the measure Px, where PxfAjNtg
represents the conditional probability of the event in relation to r-algebra Nt;
(5) if u	 0 then for each x 2 X exists x0 2 X such that the equality

1 See Kolmogorov continuity theorem [34].
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Xðt þ uÞð Þðx0Þ ¼ XðtÞð ÞðxÞ

is satisfied for all t.

Intuitively, Markov processes can be interpreted as stochastic processes without
memory. The definition considered that the process X(t) is defined for any
t 2 ½0;1Þ. However it should be noted that many problems lead to processes
Xð�Þð ÞðxÞ that are defined only for a finite range ½0; nðxÞ�, where random variable

nðxÞ is called terminal time. Since no such processes are used in this book, we
have simplified to a certain extent this definition.

The notion of homogeneity for a Markov process is directly related to property
(5), which implies the invariance of the set of Markov process trajectories at the
translation of time. Function P(t,C|x) is called the transition probability function of
the Markov process and determines, to a certain degree of equivalence,2 the sto-
chastic process. Thus, the properties and proper analysis of Markov processes
are often reduced to the properties and analysis of transition probabilities. For the
rigorous foundation of this schematic presentation the reader may consult the
monographs by Dynkin [34] and Mandl [35].

A Markov process can be associated to a semigroup of contractions St acting on
the Banach space B of bounded and measurable functions on X endowed with the
supremum norm. It is defined by the formula:

ðStf ÞðxÞ ¼
Z

X
f ðyÞPðt; dyjxÞ ð2:54Þ

The infinitesimal generator A of this semigroup, and hence of the associated
Markov process, is defined by the following formula:

Af ¼ lim
t!0

Stf � f

t
ð2:55Þ

where convergence is considered the supremum norm. In general, A cannot be
defined for all elements of B. A special problem related to the definition of
infinitesimal generator is the boundary condition (x 2 FrfXg). Thus, different
types of behavior of Markov process at phase space boundary correspond to dif-
ferent boundary conditions for the functions f defining the domain D(A) of the
infinitesimal generator. For each function f 2 DA, the function utðxÞ ¼ Stf ðxÞ is
the unique (bounded) solution of the following Cauchy problem:

outðxÞ
ot
¼ AutðxÞ; lim

t!0
utðxÞ ¼ f ðxÞ ð2:56Þ

If the transition probability of stochastic process is continuous then the semigroup
St (and hence the infinitesimal generator A) uniquely determines this transition

2 See Theorem 3.2, page 85, Ref. [34].
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probability and all finite-dimensional family of distributions for the Markov
process.

An important class of Markov processes is composed of diffusion processes,
which requires some additional restrictions on the transition probability functions.
Let us consider that, for each x 2 X the following limits exist:

lim
t!0

t�1 1�
Z

X

Pðt; dyjxÞ

2

4

3

5 ¼ 0 ð2:57Þ

lim
t!0

t�1 1�
Z

X

ðy� xÞPðt; dyjxÞ

2

4

3

5 ¼ bðxÞ ð2:58Þ

lim
t!0

t�1 1�
Z

X

ðy� xÞ2Pðt; dyjxÞ

2

4

3

5 ¼ r2ðxÞ ð2:59Þ

where the function b(x) is known as the drift coefficient, while r(x) C 0 as diffu-
sion coefficient of the transition probability, and hence of the associated Markov
process. A Markov process satisfying these conditions is called diffusion process.
Note that the action on the class C2(X) functions of the infinitesimal generator
associated to a diffusion process is given by:

Af ¼ lim
t!0

t�1
Z

X

f ðyÞPðt; dyjxÞ � f ðxÞ

2

4

3

5 ¼ 1
2

r2ðxÞ d
2f

dx2
ðxÞ þ bðxÞ df

dx
ðxÞ ð2:60Þ

which clarifies to some extent, the conditions imposed to define diffusion pro-
cesses. This relationship also suggests a deep connection between the diffusion
processes and elliptical differential operators.

Differential operator G defined by the formula:

G ¼ 1
2
r2ðxÞ o2

ox2
þ bðxÞ o

ox
ð2:61Þ

is known as differential generator of the diffusion process. In some conditions of
weak regularity imposed on the drift and diffusion coefficients, the diffusion
process is uniquely determined by its differential generator, meaning that any two
processes with the same differential generator generate the same distribution in the
space of trajectories (sample paths).

If there is a positive real constant K such that for any x; y 2 X these coefficients
satisfy:

• Lipschitz condition : bðx; tÞ � bðy; tÞj j þ rðx; tÞ � rðy; tÞj j �K x� yj j;
• Growth condition : bðx; tÞj j2þ rðx; tÞj j2�K 1þ xj j2

� �
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then exits a unique fundamental solution, denoted by q(t, x, y), of equation
ou=ot ¼ Gu satisfying the appropriate initial and boundary conditions. This
solution is precisely the transition probability density associated to the given
diffusion process. Thus,

P t;Cjxð Þ ¼
Z

C

q t; yjxð Þdy ð2:64Þ

Equation oq=ot ¼ Gq is called backward Kolmogorov equation of the diffusion
process. In the end, let us note that a stochastic process is called conservative if
P t;Xjxð Þ ¼ 1 for any t and x.

2.2.2 Diffusion Processes Defined on Graphs

The theory of stochastic processes on a graph has been recently developed by
Freidlin and Wentzell [36]. This theory was first applied to the study of random
perturbations of Hamiltonian dynamical systems [33, 36]. Then, it has been
realized that this mathematical technique is naturally suitable for the analysis of
noise in hysteretic systems [37–41]. In this section, we give a short description of
diffusion processes on a graph based on the previously cited references and
adapted to the problems of interest in this book. In the end, the initial-boundary
value problem for the transition probability density of the diffusion process
Z(t) defined on a graph is derived.

Consider a connected graph Z with vertices V1,…, Vm and edges E1,…, En

(see an example in Fig. 2.15). On each edge Ej is taken a coordinate xj and the
distance between two points on the graph is the length of the shortest path con-
necting those two points measured using the coordinate xj. Note that the definition
of Markov processes given in the previous section can be generalized easily for the
case when phase space is considered to be the graph Z, by replacing the symbol X
representing a real interval with the symbol Z representing the convex graph.
Similarly a semigroup of contractions St and an infinitesimal operator A, is asso-
ciated to the Markov process.

Fig. 2.15 The graph on
which the diffusion process is
defined
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Several edges can meet at a vertex Vk; we will write Ej * Vk if the edge Ej has
the vertex Vk as its end. For a function f : Z ! R and a segment Ej * Vk,
ðdf=dxjÞðVkÞ denotes the derivative function f with respect to the coordinate xj

considered towards inside of the edge Ej. A diffusion process X j(t) is associated
with each edge Ej and is defined by the differential generator:

Gj ¼ bj xj


 � o

oxj
þ

r2
j xj


 �

2
o2

ox2
j

ð2:65Þ

where, bj and rj are continuous functions that satisfy Lipshitz condition (2.62) and
growth condition (2.63).

For any nonnegative constants ak and vkj, with ak þ
P

j:Ej 
Vk

vkj [ 0 for

k = 1,…,m, one can define an operator A as:

Af ðzÞ ¼ Gjf ðzÞ; pentru z 2 Ej ð2:66Þ

for all functions f from C(Z) that satisfy the following conditions:

1. f is twice continuously differentiable inside the edges Ej;
2. if Ej * Vk then lim

z!Vk ;z2Ej

Gjf zð Þ exists and is independent of j; this limit will be

denoted by Gf (Vk);
3. for each vertex Vk

akAf Vkð Þ ¼
X

j:Ej 
Vk

vkj
of

oxj
Vkð Þ; ð2:67Þ

these conditions at the vertices will be further called ‘‘gluing’’ conditions.
The following result has been proven by Freidlin and Wentzell in Ref. [36]:

Theorem The operator A defined above is the infinitesimal generator of a con-
tinuous semigroup of linear operators on C(Z) corresponding to a continuous
conservative Markov process Z(t) on the graph Z.

Conversely, let Z(t) be a continuous conservative Markov process defined on
the graph Z whose trajectories coincide, up to the exit from the edge Ej, with the
diffusion process generated by the operator Gj defined by formula (2.65) and
whose associated semigroup of linear operators leads C(Z) into itself. Then there
exist unique positive constants vkj and ak satisfying ak þ

P

j:Ej 
Vk

vkj [ 0 such that

the infinitesimal generator associated to the Markov process Z(t) is the operator A
defined above.

Intuitively, constants ak describe how much time the process spends in Vk and
constants vkj, are (roughly speaking) proportional to the probabilities that the
process will ‘‘move’’ from vertex Vk along the edges Ej.
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For the models used in the next chapters the following facts can be established:

• Since the process has no delay at the vertices, ak = 0 for all k.
• In each interior vertex of the graph there are connected three edges and there is

zero probability that the process will move from the vertex to one edge (so the
associated vkj coefficient is also zero) while random motion along the other two
are equally probable (so the associated vkj coefficients are equal to one).

The graphs shown in Fig. 2.16 represent typical vertex connections for the prob-
lems discussed in this book. For these graphs there is zero probability to move
from V1 along the edge E3 and equal probability to move from V1 along the edges
E1 and E2. Consequently, v13 = 0, v11 = 1, v12 = 1 and taking into account the
coordinates on each edges, the following gluing condition can be derived for
vertex V1:

dfE1

dx
x1ð Þ ¼

dfE2

dx
ðx1Þ ð2:68Þ

Similar assertions are valid for each interior vertex and analogous interface con-
ditions can be derived.

The next task is to specify the partial differential equations for the transition
probability density q t; zjz0; 0ð Þ corresponding to the Markov process Z(t). The
following notation for the transition probability density is used on each edge Ej:

q jð Þ t; xjz0; 0ð Þ ¼ q t; zjz0; 0ð Þjz2Ej
ð2:69Þ

According to the theory of Markovian processes, the following equality is valid
forq jð Þ:

Xk

j¼1

Z

Ej

f
oqðjÞ

ot
dx ¼

Xk

j¼1

Z

Ej

Gjf

 �

qðjÞdx ð2:70Þ

Integrating by parts in formula (2.70) and taking into account the interface
conditions presented above and the fact that f can be chosen arbitrary in the
domain of the infinitesimal operator AY, one finds that the transition probability
density q t; zjz0; 0ð Þ satisfies the following forward Kolmogorov equation:

Fig. 2.16 Typical graph configurations used in the analysis of hysteretic systems
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oqj x; tjz0; 0ð Þ
ot

þ Ljqj x; tjz0; 0ð Þ ¼ 0 on each edge Ej ð2:71Þ

where

L̂jq ¼ �
1
2

o2

ox2
r2

j xð Þq
� �

þ o

ox
bj xð Þq

 �

ð2:72Þ

and ‘‘vertex’’ type boundary conditions which express the continuity of the tran-
sition probability density at the transition between two edges (for example, edges
E1 and E2 from the graphs shown in Fig. 2.16) and zero boundary condition
imposed on the third edge connected at that vertex. On the other hand, the
probability current has to be conserved at each vertex. For vertex V1 from
Fig. 2.16, these conditions can be expressed analytically as follows:

q1 x1; tjz0; 0ð Þ ¼ q2 x1; tjz0; 0ð Þ ; q3 x1; tjz0; 0ð Þ ¼ 0 ;

oq2

ox
x1; tjz0; 0ð Þ þ oq3

ox
x1; tjz0; 0ð Þ ¼ oq1

ox
x1; tjz0; 0ð Þ :

ð2:73Þ

and the transition probability decays to zero at the external noise of the graphs.
In addition, the initial conditions is q z; 0jz0; 0ð Þ ¼ dzz0

.

2.2.3 Examples: Ornstein-Uhlenbeck Processes on Graphs

In this section, it is shown how the theory of stochastic processes on graphs can be
applied to specific problems. Examples of Ornstein-Uhlenbeck processes defined
on graphs are presented and the explicit forms of the initial-boundary value
problems for the associated transition probability function are derived and solved.

The corresponding transition probability function q t; zjz0; 0ð Þ can be expressed
by its four components qi t; xjx0; 0ð Þ corresponding to the four edges Ei of the graph
represented in Fig. 2.17 and defined on the following intervals:

Fig. 2.17 The graph on which the Ornstein-Uhlenbeck process is defined
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q1 t; xjx0; 0ð Þ is defined for x 2 �1; bð Þ
q2 t; xjx0; 0ð Þ is defined for x 2 b; að Þ
q3 t; xjx0; 0ð Þ is defined for x 2 b; að Þ
q4 t; xjx0; 0ð Þ is defined for x 2 a;1ð Þ

ð2:74Þ

Since qi t; xjx0; 0ð Þ are associated to Ornstein-Uhlenbeck processes (2.89) on these
intervals, they are the solutions of the corresponding Fokker–Planck equations
defined on the intervals given in formula (2.74):

o

ot
qi x; tjx0; 0ð Þ ¼ o

ox
bðx� xsÞqi x; tjx0; 0ð Þ½ � þ r2

2
o2

ox2
qi x; tjx0; 0ð Þ; ð2:75Þ

where xo is the coordinate of initial point zo located on the edge Ei0 . The solutions
of Eqs. (2.75) are subject to the initial condition qi x; t0jx0; t0ð Þ ¼ dii0dðx� x0Þ and
to the following ‘‘vertex’’ boundary conditions:

q1ðb�; tjx0; 0Þ ¼ q2ðbþ; tjx0; 0Þ
q3ðbþ; tjx0; 0Þ ¼ 0

q3ða�; tjx0; 0Þ ¼ q4ðaþ; tjx0; 0Þ
q2ða�; tjx0; 0Þ ¼ 0

ð2:76Þ

oq1

ox
ðb�; tjx0; 0Þ ¼

oq2

ox
ðbþ; tjx0; 0Þ þ

oq3

ox
ðbþ; tjx0; 0Þ

oq4

ox
ðaþ; tjx0; 0Þ ¼

oq2

ox
ða�; tjx0; 0Þ þ

oq3

ox
ða�; tjx0; 0Þ

while p1 x; tjx0; 0ð Þ and p4 x; tjx0; 0ð Þ have to decay to zero as x goes to minus
infinity and plus infinity, respectively.

In order to solve these initial boundary value problems let us observe that the
sum of these components q̂ x; tjx0; 0ð Þ defined in Eq. (2.77) satisfies Eq. (2.75) for
all real values of x except a and b, while vertex boundary conditions prove the
continuity and differentiability of this function at a and b and zero decays at �1.

q̂ x; tjx0; 0ð Þ ¼
q1 x; tjx0; 0ð Þ for x 2 �1; bð Þ

q2 x; tjx0; 0ð Þ þ q3 x; tjx0; 0ð Þ for x 2 b; að Þ
q4 x; tjx0; 0ð Þ for x 2 a;1ð Þ

8
><

>:
ð2:77Þ

By continuity extension, it is clear that q̂ x; tjx0; 0ð Þ satisfies Eq. (2.75) on the entire
real axes subject to initial condition dðx� x0Þ and zero decays at infinity as
boundary conditions. Consequently, q̂ x; tjx0; 0ð Þ is the standard time-dependent
transition probability function of the OU process, which was found in Sect. 1.1.5
to have expression (2.30). As a result,
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ffiffiffi
b
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr2ð1� e�2btÞ

p e
�bðx�xs�ðx0�xsÞe�bt Þ2

2r2ð1�e�2bt Þ ¼
q1 x; tjx0; 0ð Þ ; x 2 �1; bð Þ
q2 x; tjx0; 0ð Þ þ q3 x; tjx0; 0ð Þ ; x 2 b; að Þ
q4 x; tjx0; 0ð Þ ; x 2 a;1ð Þ

8
<

:

ð2:78Þ

The transition probability functions of the OU process is completely defined by
this formula on the edges E1 and E4 of the graph. In addition, the sum of the two
transition probability functions corresponding to edges E2 and E3 is determined, so
only one of them is left to be found in order to solve completely the problem. Let
us consider that i0 = 2 and choose q2 to be found, otherwise choose q3. Function
q2 is the solution of Eq. (2.75) on the interval b; að Þ subject to the initial condition
q2 x; 0jx0; 0ð Þ ¼ 0 and to the boundary conditions:

q2 b; tjx0; 0ð Þ ¼
ffiffiffi
b
p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� e�2btÞ

p e
� bðb�x0Þ2

2r2ð1�e�2bt Þ; q2 a; tjx0; 0ð Þ ¼ 0 ð2:79Þ

By using Laplace transformation ~q2ðx; sjx0; 0Þ ¼
R1

0 e�stq2ðx; tjx0; 0Þ dt Eq. (2.75)
becomes:

r2

2
o2~q2

ox2
x; sjx0; 0ð Þ þ bðx� xsÞ

o~q2

ox
x; sjx0; 0ð Þ þ ðb� sÞ~q2 x; sjx0; 0ð Þ ¼ 0 ð2:80Þ

which can be solved in terms of special mathematical functions. Hence by con-

sidering q
_

2ðx; sjx0; 0Þ ¼ ~q2ðx; sjx0; 0Þ expðbðx� xsÞ2
.

r2Þ, one obtains the fol-

lowing equation:

r2

2
o2q

_

2

ox2
x; sjx0; 0ð Þ � bðx� xsÞ2

2r2
þ s� b

2

" #

q
_

2 x; sjx0; 0ð Þ ¼ 0 ð2:81Þ

This equation has two linearly independent solutions, known as parabolic cylinder

functions U s
b� 1

2 ;
ffiffiffiffi
2b
p

r ðx� xsÞ
� �

and V s
b� 1

2 ;
ffiffiffiffi
2b
p

r ðx� xsÞ
� �

[42]. Consequently,

the solution can be expressed as linear combination of U and V with the coeffi-
cients, dependent of s, determined from the boundary conditions. In conclusion, a
closed form analytical expression for the transition probability q2 can be found in
terms of inverse Laplace transforms of the parabolic cylinder functions.

Much simpler analytical results can be found for the stationary distributions. By
taking t ? ? in expression (2.78), one obtains:

q̂st xð Þ ¼
ffiffiffi
b
p

r
ffiffiffi
p
p e�

bðx�xsÞ2

2r2 ¼
qst

1 xð Þ ; x 2 �1; bð Þ
qst

2 xð Þ þ qst
3 xð Þ ; x 2 b; að Þ

qst
4 xð Þ ; x 2 a;1ð Þ

8
<

:
ð2:82Þ
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while qst
2 has to satisfy the equation:

r2

2
o2

ox2
qst

2 xð Þ þ o

ox
bðx� xsÞqst

2 ðxÞ
� �

¼ 0 ð2:83Þ

and boundary conditions:

qst
2 bð Þ ¼

ffiffiffiffiffiffiffiffi
b

pr2

r

e�
bðb�xsÞ2

2r2 ; qst
2 að Þ ¼ 0 ð2:84Þ

It is known that the general solution of linear differential Eq. (2.83) has the
following form:

qst
2 xð Þ ¼ e�

bðx�xsÞ2

2r2 c

Za

x

e
bðy�xsÞ2

2r2 dyþ d

0

@

1

A ð2:85Þ

where c and d are constants that can be found from boundary conditions (2.84).
The null-condition at x ¼ a implies d = 0, while the condition at x ¼ b leads to:

c ¼
ffiffiffiffiffiffiffiffi

b

pr2

r Za

b

e
bðy�xsÞ2

2r2 dy

0

B
@

1

C
A

�1

ð2:86Þ

In conclusion, the stationary probability function of the Ornstein-Uhlenbeck pro-
cess defined on graph Z has the following expression, while a sample obtained for
a noise input characterized by b = 1, r = 1, and xs = -0.5, and vertex coordi-
nates b = -1 and a = 1 is plotted in Fig. 2.18:
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Fig. 2.18 Stationary
probability components for
an Ornstein-Uhlenbeck
process defined on graph Z
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ð2:87Þ

An approximation of the transition probability function defined by (2.75) and
(2.76) can be obtained by replacing the stationary distribution q̂st xð Þ of the
Orstein-Uhlenbeck process on the real line with the transition probability function
q̂ x; tjx0; 0ð Þ of the Orstein-Uhlenbeck process on the real line:

q1 x; tjx0; 0ð Þ ¼
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b
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr2ð1� e�2btÞ

p e
�bðx�xs�ðx0�xsÞe�bt Þ2

2r2ð1�e�2bt Þ ; x 2 �1; bð Þ
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p
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Samples of these transitions probability functions obtained for a noise input
characterized by b = 1, r = 1, xs = -0.5, x0 = 0 and vertex coordinates b = -1
and a = 1 are plotted in Fig. 2.19 at selected instants of time.

In the next chapters, it is proven that the stochastic analysis of various hys-
teretic systems driven by OU processes can be reduced to the analysis of OU
processes defined on graphs and the solutions derived here will be useful in
expressing the stochastic characteristics of the output.

In the second example, we consider the same graph Z represented in Fig. 2.17
but the Ornstein-Uhlenbeck processes XiðtÞ on each edge are governed by different
differential generators:

Gi ¼ �b x� xi
s


 � o

ox
þ r2 xð Þ

2
o2

ox2
ð2:89Þ
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where x1
s ¼ x2

s ¼ ~xs and x3
s ¼ x4

s ¼ xs. While on edges E1 and E2, the process can
be interpreted as a Brownian motion in a parabolic potential defined on ð�1; a�
reaching minimum at ~xs. On edges E3 and E4, the process can be interpreted as a
Brownian motion in a parabolic potential defined on ½b;1Þ reaching minimum at
xs. A graphic representation of these potentials is shown in Fig. 2.20, with con-
tinuous and dashed lines, respectively. The associated transitions probability
functions are the solutions of the following Fokker-Planck equations on the cor-
responding intervals:

o

ot
qi x; tjx0; 0ð Þ ¼ o

ox
bðx� xi

sÞqi x; tjx0; 0ð Þ
� �

þ r2

2
o2

ox2
qi x; tjx0; 0ð Þ; ð2:90Þ

and subject to the initial boundary conditions described in the previous example,
partially given in (2.76). A similar procedure using Laplace transformation can be
used to find closed form analytical expressions for these components of the
transition probability function in terms of inverse Laplace transforms of the par-
abolic cylinder functions. Much simpler analytical results can be found for the
stationary distributions. The components of the stationary distribution for the OU
process defined on graph Z are the solutions of the following equations:

Fig. 2.20 The potential
wells for the Brownian
motion representing the noise
characterization for edges E1

and E2 (continuous line) and
E3 and E4 (dashed line),
respectively
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Fig. 2.19 Evolution of the transition probability components for an Ornstein-Uhlenbeck process
defined on graph Z
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and are subject to the following boundary conditions:
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while pst
1 xð Þ and pst

4 xð Þ have to decay to zero as x goes to minus infinity and plus
infinity, respectively.

It is known that the general solutions of linear differential Eqs. (2.91) can be
written in the following forms:
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where ci and di are constants that will be found in our problem from boundary
conditions (2.92). The null-conditions qst

2 ða�Þ ¼ 0 and qst
3 ðbþÞ ¼ 0 implies

d2 = d3 = 0, while zero decay at minus infinity and plus infinity for pst
1 xð Þ and

pst
4 xð Þ, respectively, implies c1 = c4 = 0. Moreover, qst
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4 ðaþÞ leads to the relation
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b expðbðy� xsÞ=2r2Þdy. The boundary conditions for the derivatives in

(2.92) implies c2 = c3 that will be denoted by c. As a result,
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where c is determined from the normalization condition for the total stationary

probability function
R b
�1 qst

1 ðxÞdxþ
R a

b qst
2 ðxÞdxþ

R a
b qst

3 ðxÞdxþ
R1

a qst
4 ðxÞdx ¼ 1.

An example of the stationary distribution (2.94) obtained for a noise input char-
acterized by b = 1, r = 1, xs = -0.5, ~xs ¼ 0:5, and vertex coordinates b = -1
and a = 1 is plotted in Fig. 2.21.
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This example of OU process governed by different equations on each edge of
the graph is used in describing the stochastic behavior of bistable hysteretic sys-
tems where noise is state dependent. In Chap. 5 we will prove that coherence
resonance phenomena take place in such system driven by state dependent noise.
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