

Embedded Systems Design with FPGAs

Peter Athanas • Dionisios Pnevmatikatos
Nicolas Sklavos
Editors

Embedded Systems Design
with FPGAs

123

Editors
Peter Athanas
Bradley Department of Electrical

and Computer Engineering
Virginia Tech
BLACKSBURG, Virgin Islands
USA

Nicolas Sklavos
KNOSSOSnet Research Group
Informatics & MM Department
Technological Educational Institute

of Patras, Greece

Dionisios Pnevmatikatos
Technical University of Crete
Crete, Greece

ISBN 978-1-4614-1361-5 ISBN 978-1-4614-1362-2 (eBook)
DOI 10.1007/978-1-4614-1362-2
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012951421

© Springer Science+Business Media, LLC 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

This book presents methodologies for embedded systems design, using field
programmable gate array (FPGA) devices, for the most modern applications. This
manuscript covers state-of-the-art research from academia and industry on a wide
range of topics, including applications, advanced electronic design automation
(EDA), novel system architectures, embedded processors, arithmetic, and dynamic
reconfiguration.

The book organization is based on 11 chapters, which cover different issues and
deal with alternative scientific issues and industrial areas. The description of each
chapter in a more analytical manner is as follows:

Chapter 1 presents a lightweight extension to statically scheduled microarchitec-
tures for speculative execution: PreCoRe. Its judicious use of an efficient dynamic
token model allows to predict, commit, and replay speculation events. Even if the
speculation fails continuously, no additional execution cycles are required over the
original static schedule. PreCoRe relies on MARC II, a high-performance multi-port
memory system based on application-specific coherency mechanisms for distributed
caches, and on RAP, a technique to efficiently resolve memory dependencies for
speculatively reordered accesses.

The field which Chap. 2 deals with is decimal arithmetic. The importance of
decimal for computer arithmetic has been further and definitely recognized by its
inclusion in the recent revision of the IEEE-754 2008 standard for floating-point
arithmetic. The authors propose a new iterative decimal divider. The divider uses
the Newton–Raphson iterative method, with an initial piecewise approximation
calculated with a minimax polynomial, and is able to take full advantage of
the embedded binary multipliers available in today’s FPGA technologies. The
comparisons of the implementation results indicate that the proposed divider is very
competitive in terms of area and latency and better in terms of throughput when
compared to decimal dividers based on digit-recurrence algorithms.

Chapter 3 presents the design and mapping of a low-cost logic-level aging
sensor for FPGA-based designs. The mapping of this sensor is designed to provide
controlled sensitivity, ranging from a warning sensor to a late transition detector. It
provides also a selection scheme to determine the most aging-critical paths at which

v

vi Preface

the sensor should be placed. Area, delay, and power overhead of a set of sensors
mapped for most aging-critical paths of representative designs are very modest.

Chapter 4 is devoted to complex event processing (CEP), which extracts mean-
ingful information from a sequence of events in real-time application domains. This
chapter presents an efficient CEP framework, designed to process a large number
of sequential events on FPGAs. Key to the success of this work is logic automation
generated with our C-based event language. With this language, both higher event-
processing performance and higher flexibility for application designs than those
with SQL-based CEP systems have been achieved.

Chapter 5 outlines an approach to model the DPR datapath early in the design
cycle using queueing networks. The authors describe a method of modeling the
reconfiguration process using well-established tools from queueing theory. By mod-
eling the reconfiguration datapath using queueing theory, performance measures
can be estimated early in the design cycle for a wide variety of architectures with
nondeterministic elements. This modeling approach is essential for experimenting
with system parameters and for providing statistical insight into the effectiveness of
candidate architectures. A case study is provided to demonstrate the usefulness and
flexibility of the modeling scheme.

Chapter 6 is dedicated to switch design for soft interconnection networks. The
authors first present and compare the traditional implementations that are based
on separate allocator and crossbar modules, and then they expand the design
space by presenting new soft macros that can handle allocation and multiplexing
concurrently. With the new macros, switch allocation and switch traversal can
be performed simultaneously in the same cycle, while still offering energy-delay
efficient implementations.

Chapter 7 presents advanced techniques, methods, and tool flows that enable
embedded systems implemented on FPGAs to start up under tight timing con-
straints. Meeting the application deadline is achieved by exploiting the FPGA
programmability in order to implement a two-stage system start-up approach, as
well as a suitable memory hierarchy. This reduces the FPGA configuration time as
well as the start-up time of the embedded software. An automotive case study is used
to demonstrate the feasibility and quantify the benefits of the proposed approach.

Chapter 8 looks at the structure of a scalable architecture where the number of
processing elements might be adapted at run-time, by means of exploiting a run-time
variable parallelism throughout the dynamic and partial reconfiguration feature of
modern FPGAs. Based on this proposal, a scalable deblocking filter core, compliant
with the H.264/AVC and SVC standards, has been designed. This scalable core
allows run-time addition or removal of computational units working in parallel.

Chapter 9 introduces a new domain-specific language (DSL) suited to the imple-
mentation of stream-processing applications on FPGAs. Applications are described
as networks of purely dataflow actors exchanging tokens through unidirectional
channels. The behavior of each actor is defined as a set of transition rules using
pattern matching. The suite of tools currently comprises a reference interpreter and
a compiler producing both SystemC and synthesizable VHDL code.

Preface vii

In Chap. 10, two compact hardware structures for the computation of the
CLEFIA encryption algorithm are presented, one structure based on the existing
state of the art and another a novel structure with a more compact organization.
The implementation of the 128-bit input key scheduling in hardware is also herein
presented. This chapter shows that, with the use of the existing embedded FPGA
components and a careful scheduling, throughputs above 1 Gbit/s can be achieved
with a resource usage as low as 238 LUTs and 3 BRAMs on a Virtex-4 FPGA.

Last but not least, Chap. 11 proposes a systematic method to evaluate and
compare the performance of physical unclonable functions (PUFs). The need for
such a method is justified by the fact that various types of PUFs have been proposed
so far. However, there is no common method that can fairly compare them in
terms of their performances. The authors propose three generic dimensions of PUF
measurements and define several parameters to quantify the performance of a PUF
along these dimensions. They also analyze existing parameters proposed by other
researchers.

Throughout the above chapters of the book the reader has a deep point of view
in detailed aspects of technology and science, with state-of-the-art references to the
following topics like:

• A variety of methodologies for modern embedded systems design
• Implementation methodologies presented on FPGAs
• A wide variety of applications for reconfigurable embedded systems, including

communications and networking, application acceleration, medical solutions,
experiments for high energy, cryptographic hardware, inspired systems, and
computational fluid dynamics

The editors of the Embedded Systems Design with FPGAs book would like to thank
all the authors for their high-quality contributions. Special thanks must be given to
the anonymous reviewers, for their valuable and useful comments on the included
chapters.

Last but not least, special thanks to Charles Glaser and his team in Springer for
the best work they all did regarding this publication.

We hope that this publication will be a reference of great value for the scientists
and researchers to move forward with added value, in the areas of embedded
systems, FPGAs technology, and hardware system designs.

Blacksburg, VA, USA Peter Athanas
Chania, Crete, Greece Dionisios Pnevmatikatos
Pyrgos, Greece Nicolas Sklavos

Contents

Widening the Memory Bottleneck by Automatically-Compiled
Application-Specific Speculation Mechanisms . 1
Benjamin Thielmann, Jens Huthmann, Thorsten Wink,

Decimal Division Using the Newton–Raphson Method
. 31

Mário P. Véstias and Horácio C. Neto

Lifetime Reliability Sensing in Modern FPGAs . 55
Abdulazim Amouri and Mehdi Tahoori

Hardware Design for C-Based Complex Event Processing 79
Hiroaki Inoue, Takashi Takenaka, and Masato Motomura

Model-based Performance Evaluation of Dynamic Partial
Reconfigurable Datapaths for FPGA-based Systems . 101
Rehan Ahmed and Peter Hallschmid

Switch Design for Soft Interconnection Networks . 125
Giorgos Dimitrakopoulos, Christoforos Kachris, and Emmanouil
Kalligeros

Embedded Systems Start-Up Under Timing Constraints
. 149

Joachim Meyer, Juanjo Noguera, Michael Hübner, Rodney
Stewart, and Jürgen Becker

Run-Time Scalable Architecture for Deblocking Filtering
. 173

Andrés Otero, Teresa Cervero, Eduardo de la Torre, Sebastián
López, Gustavo M. Callicó, Teresa Riesgo, and Roberto Sarmiento

ix

and Andreas Koch

and Radix-1000 Arithmetic

on Modern FPGAs

in H.264/AVC and SVC Video Codecs

x Contents

CAPH: A Language for Implementing Stream-Processing
Applications on FPGAs . 201
Jocelyn Sérot, François Berry, and Sameer Ahmed

Compact CLEFIA Implementation on FPGAs . 225
Ricardo Chaves

A Systematic Method to Evaluate and Compare
. 245

Abhranil Maiti, Vikash Gunreddy, and Patrick Schaumont

Index . 269

the Performance of Physical Unclonable Functions

Widening the Memory Bottleneck by
Automatically-Compiled Application-Specific
Speculation Mechanisms

Benjamin Thielmann, Jens Huthmann, Thorsten Wink, and Andreas Koch

1 Introduction

The rate of improvement in the single-thread performance of conventional central
processing units (CPUs) has decreased significantly over the last decade. This
is mainly due to the difficulties in obtaining higher clock frequencies. As a
consequence, the focus of development has shifted to multi-threaded execution
models and multi-core CPU designs instead. Unfortunately, there are still many
important algorithms and applications that cannot easily be rewritten to take
advantage of this new computing paradigm. Thus, the performance gap between
parallelizable algorithms and those depending on single-thread performance has
widened significantly. Application-specific hardware accelerators with optimized
pipelines are able to provide improved single-thread performance but have only
limited flexibility and require high development effort compared to programming
software-programmable processors (SPPs).

Adaptive computing systems (ACSs) combine the high flexibility of SPPs with
the computational power of a reconfigurable hardware accelerator (e.g., using
field-programmable gate arrays, FPGA). While ACSs offer a promising alternative
compute platform, the compute-intense parts of the applications, the so-called
kernels, need to be transformed to hardware implementations, which can then be
executed on the reconfigurable compute unit (RCU). Not only performance but also
better usability are key drivers for a broad user acceptance and thus crucial for the
practical success of ACSs. To this end, research for the past decade has focused not
only on ACS architecture but also on the development of appropriate tools which

B. Thielmann (�) • J. Huthmann • T. Wink • A. Koch
Embedded Systems and Applications Group, Technische Universität Darmstadt,
FB20 (Informatik), FG ESA, Hochschulstr. 10, 64289 Darmstadt, Germany
e-mail: thielmann@esa.cs.tu-darmstadt.de; huthmann@esa.cs.tu-darmstadt.de;
wink@esa.cs.tu-darmstadt.de; koch@esa.cs.tu-darmstadt.de

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2 1, © Springer Science+Business Media, LLC 2013

1

2 B. Thielmann et al.

enhance the usability of adaptive computers. The aim of many of these projects
is to create hardware descriptions for application-specific hardware accelerators
automatically from HLL such as C.

To achieve high performance, the parallelism inherent to the application needs
to be extracted and mapped to parallel hardware structures. Since the extraction
of coarse-grain parallelism (task/thread-level) from sequential programs is still
a largely unsolved problem, most practical approaches concentrate on exploiting
instruction-level parallelism (ILP). However, ILP-based speedups are often limited
by the memory bottleneck. Commonly, only 20 % of the instructions of a program
are memory accesses, but they require up to 100x the execution time of the register-
based operations [12]. Furthermore, memory data dependencies also limit the degree
of ILP from tens to (at the most) hundreds of instructions, even if support for
unlimited ILP in hardware is assumed [9].

For this reason, memory accesses need to be issued and processed and depen-
dencies resolved as quickly as possible. Many proposed architectures for RCUs rely
on local low-latency high-bandwidth on-chip memories to achieve this. While these
local memories have become more common in modern FPGA devices, their total
capacity is still insufficient for many applications, and low-latency access to large
off-chip memory remains necessary for many applications.

As another measure to widen the memory bottleneck for higher ILP, speculative
memory accesses can be employed [6]. We use the general term “speculative” to
encompass uncertain values (has the correct value been delivered?), control flow
(has the correct branch of a conditional been selected and is the access needed
in this branch?), and data dependency speculation (have data dependencies been
resolved?). To efficiently deal with these uncertainties (e.g., by keeping track of
speculative data and resolving data dependencies as they occur), hardware support
in the compute units is required. We will describe an approach that efficiently
generates these hardware support structures in an application-specific manner from
a high-level description (C program), instead of attempting to extend the RCU with
a general-purpose speculation block. To this end, we will present the speculation-
handling microarchitecture PreCoRe, the HLL hardware compile flow Nymble, and
the back-end memory system MARC II, which was tuned to support the speculation
mechanisms.

2 Overview

The development of a compiler and an appropriate architecture is a highly
interdependent task. Most of the HLL to hardware compilers developed so far
use static scheduling for their generated hardware datapaths. A major drawback of
this approach is its handling of variable-latency operators, which forces a statically
scheduled datapath to completely stall all operations on the accelerator until the
delayed operation completes. Such a scenario is likely to occur when accessing
cached memories and the requested data cannot be delivered immediately. Dynamic

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 3

scheduling can overcome this issue but has drawbacks such as its complex execution
model, which results in considerable hardware overhead and lower clock rates.
Furthermore, in itself, it does not address the memory bottleneck imposed by the
high latencies and low bandwidth of external memory accesses.

Due to these limitations, RCUs are becoming affected by the processor/memory
performance gap that has been plaguing CPUs for years [9]. But since RCU
performance depends heavily on exploiting parallelism with hundreds of parallel
operators, RCUs suffer a more severe performance degradation than CPUs, which
generally have only few parallel execution units in a single core.

The quest for high parallelism in ACSs further emphasizes this issue. Control
flow parallelism allows to simultaneously execute alternative precluding branches,
such as those in an if/else construct, even before the respective control condition
has been resolved. However, such an exploitation of parallel control flows may
cause additional memory traffic. In the end, this can even slow down execution over
simpler less parallel approaches.

A direct attempt to address the negative effect of long memory access latencies
and insufficient memory bandwidth is the development of a sophisticated multi-
port memory access system with distributed caches, possibly supported by multiple
parallel channels to main memory [16]. Such a system performs best if many
independent memory accesses are present in the program. Otherwise, the associated
coherency traffic would become a new bottleneck. Even though this approach helps
to benefit from the available memory bandwidth and often reduces access latencies,
stalling is still required whenever a memory access cannot be served directly from
one of the distributed caches.

Load value speculation is a well-studied but rarely used technique to reduce the
impact of the memory bottleneck [18]. Mock et al. were able to prove by means
of a modified C compiler, which forced data speculation on an Intel Itanium 2
CPU architecture where possible, that performance increases due to load value
speculation [21] of up to 10 % were achievable. On the other hand, the Itanium 2
rollback mechanism, which is based on the advanced load address table (ALAT),
a dedicated hardware structure that usually needs to be explicitly controlled by
the programmer [19], produces performance losses of up to 5 % under adverse
conditions with frequent misspeculations.

Research on data speculation methods and their accuracy has produced a broad
variety of data predictors. History-based predictors select one of the previously
loaded values as the next value, solely based on their occurrence probability.
Stride predictors do not store absolute values, but determine the offset between the
successive loaded values. Here, instead of an absolute value, the most likely offset
is selected. In this manner, sequences with constant offset between elements can
be predicted accurately. Both techniques have proven to be beneficial and do not
require long learning time, but both fail to provide good results for complex data
sequences. Thus, more advanced techniques, such as context-based value predictors,
predict values or strides as the function of a previously observed data sequence [23].
Performance gains are achievable if the successful prediction rate is high, or if the
penalty to recover from misspeculations is very low.

4 B. Thielmann et al.

The load value speculation technique is especially beneficial for statically
scheduled hardware units, since now even the variable-latency cached read opera-
tions give the appearance of completing in constant time (by returning a speculated
value on cache misses). This allows subsequent operations to continue to compute
speculatively, instead of stalling non-productively. As the predicted values may
turn out to be incorrect, the microarchitecture must be extended to re-execute the
affected parts of the computation with correct operands (replayed), and commit only
those results computed from values that were either correctly speculated or actually
retrieved from memory. In this approach, memory reads are the sole source of
speculative data, but intermediate computations may be affected by multiple reads.
Even a correct speculation might be poisoned by a later incorrectly speculated read
value. Ideally, only those computations actually affected by the misspeculated value
need to be replayed. While this could be handled at the granularity of individual
operators, it would require complex control logic similar to that of dynamically
scheduled hardware units. As an alternative, our proposed approach will manage
speculation on groups of operators organized as Stages, which are similar to the
start cycles in a static schedule.

It is important to note that by continuing execution speculatively, an increased
number of memory read accesses are issued and then possibly replayed once
or several times, increasing the pressure on the memory system even more.
Additionally, data dependency violations are likely to occur in such an out-of-order
execution of accesses and also need to be managed. We propose prioritization and
data dependency resolution schemes to address these issues at run-time.

The speculation support mechanisms, collectively named PreCoRe, are
lightweight extensions to a statically scheduled datapath; they do not require the
full flexibility (and corresponding overhead) of datapaths dynamically scheduled
at the level of individual operators. PreCoRe focuses on avoiding slow-downs
of the computation compared to a nonspeculative version (by not requiring
additional clock cycles due to speculation overhead), even if all speculations would
fail continuously. The PreCoRe microarchitecture extensions are automatically
generated in an application-specific manner using the Nymble C-to-hardware
compiler. At run-time, they rely on the MARC II memory subsystem to support
parallel memory accesses and handle coherency issues. Together, these components
provide an integrated solution to enable efficient speculative execution in ACS.

3 The PreCoRe Speculation Framework

PreCoRe (predict, commit, replay) is a new execution paradigm for introducing load
value speculation into statically scheduled data paths: Load values are predicted
on cache misses to hide the access latency on each memory read request. Once
the true value has actually been retrieved from the memory, one of two operations
must happen: If the previous speculatively issued value matches the actual memory

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 5

data, PreCoRe commits all dependent computations which have been performed
using the speculative value in the meantime as being correct. Otherwise, PreCoRe
reverts those computations by eliminating speculatively generated data and issuing
a replay of the affected operations with corrected values. To implement the PreCoRe
operations, three key mechanisms are required. First, a load value speculation
unit is needed to generate speculative data for each memory read access within
a single clock cycle. Second, all computations are tagged with tokens indicating
their speculation state. The token mechanism is also used to commit correct or to
eliminate speculative computations. Third, specialized queues are required to buffer
intermediate values, both before they are being processed and to keep them available
for eventual replays. All three key mechanism will be introduced and discussed in
this section.

3.1 Load Value Speculation

Evidently the benefit achieved by speculation is highly dependent on the accuracy
of the load value prediction. Fortunately, data speculation techniques have been well
explored in the context of conventional processors [3, 27].

It is not possible in the spatial computing paradigm (with many distributed loads
and stores) to efficiently realize a predictor with a global perspective of the execution
context. This is the opposite of processor-centric approaches, which generally have
very few load store units (LSU) that are easily considered globally. On an RCU,
the value predictors have a purely local (per-port) view of the load value streams.
This limited scope will have both detrimental and beneficial effects: On one hand,
a predictor requires more training to accumulate enough experience from its own
local data stream to make accurate prediction. On the other hand, predictors will
be more resilient against irregular data patterns (which would lead to deteriorated
accuracy) flowing through other memory ports.

Using value speculation raises the question of how to train the predictors,
specifically, when the underlying pattern database (on which future predictions are
based) should be updated: Solely if a speculation has already been determined
as being correct/incorrect? Since this could entail actually waiting for the read of
main memory, it might take considerable time. Or should the speculated values be
assumed to be correct (and entered into the pattern database) until proven incorrect
later? The latter option was chosen for the PreCoRe, because a single inaccurate
prediction will always lead to the re-execution of all later read operations, now
with pattern databases updated with the correct values. The difference to the former
approach is that the predictor hardware needs to be able to rollback the entire pattern
database (and not just individual entries) to the last completely correct state once a
speculation has proven to be incorrect. One of the overarching goals of PreCoRe
remains to support these operations without slowing down the datapaths over their
non-speculative versions (see Sect. 6).

6 B. Thielmann et al.

I2

...

In

I1

I0

I'2

...

I'n

I'1

I'0

LR
U

()

...
D

m
D

1
D

0

M
ul

tip
le

xe
r Value

History
Table

VHP

C0 ... CmC1

+ Weight

max()

sel()

D
at

a
Le

ar
n

P
re

di
ct

ed
D

at
a

D
at

a
R

eq
ue

st

Value History
Pattern

Master Shadow

Cm Probability of value Dm

Dm Stored values

In Last confirmed value index

I'n Last speculative value index

m Number of stored values

n Length of stored value sequence

c Number of bits for storing probability

->

(2n×ld(m) × m×c)

Fig. 1 Local history-based load value predictor

3.1.1 Predictor Architecture

The value predictors (shown in Fig. 1) follow a two-level finite-context scheme,
an approach that was initially used in branch prediction. The predictions exploit a
correlation of a stored history of prior data values to derive future values [27]. The
precise nature of the correlation is flexibly parametrized: The same base architecture
is used to realize both last-value prediction (which predicts a future value by
selecting it from a set of previously observed values, e.g., 23-7-42-23-7-42) and
stride prediction (which extrapolates a new value from a sequence of previously
known strides, e.g., from the strides 4-4-8-4, the sequence 0-4-8-16-20-24-28-36-
40 is predicted). A PreCoRe value prediction unit operates parallel last-value and
stride sub-predictors in tournament mode, where a sub-predictor is trusted until it
mispredicts, leading to a switch to the other sub-predictor. Since both sub-predictors
use the same micro-architecture (with exception of the correlation computation), we
will focus the discussion on just one mode, namely the value-speculation.

The predictor not only keeps track of the last m different values D1, . . . ,Dm in a
least recently used fashion in its pattern database D but also maintains the n-element
sequence I1, . . . , In in which these values occurred (the value history pattern, VHP).
Each of the n elements of I is an �log2 m� bit wide field holding an index reference
to an actual value stored in D. I is used in its entirety to index the value history table
(VHT) to determine the most likely of the currently known values: Each entry in
the VHT expresses the likelihood for all of the known values Di as a c-bit unsigned
counter Ci, with the highest counter indicating the most likely value (on ties, the
smallest i wins). The VHT is thus accessed by a n · �log2 m�-bit wide address and
stores m ·c-bit-wide words. On start-up, each VHT counter is initialized to the value
2c−1, indicating a value probability of ≈ 50 %.

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 7

To handle mispredictions, we keep two copies of the VHP as I and I′: I is
the master VHP, which stores only values that were already confirmed as being
correct by the memory system. However, the stored values may be outdated with
respect to the actual execution (since it might take awhile for the memory system
to confirm/refute the correctness of a value). The shadow VHP I′ (shown with
gray background in the figure) additionally includes speculated values of unknown
correctness. It accurately reflects the current progress of the execution. Values will
be predicted based on the shadow VHP until a misprediction is discovered. The
computation in the datapath will then be replayed using the last values not already
proven incorrect. A similar effect is achieved in the predictor by copying the master
VHP I (holding correct values) to the shadow VHP I′ (basing the next predictions
on the corrected values). [24] explains the predictor in greater detail and shows a
step-by-step example of its operations.

The predictor is characterized by the two parameters n and m. The first is the
maximum length of the context sequence, the second the maximum number of
different values tracked. The state size of VHT and VHP (and thus the learning time
before accurate predictions can be made) grows linearly in n and logarithmically in
m. Note that in a later refinement, optimum values for n and m could be derived by
the compiler using profile-guided optimization methods.

3.2 Token Handling Mechanisms

The PreCoRe mechanisms are inserted into the datapath and controller of a statically
scheduled hardware unit. They are intended to be automatically created in an
application-specific manner by the hardware compiler. With the extensions, cache-
misses on reads no longer halt execution due to violated static latency expectations,
but allow the computation to proceed using speculated values. Variable-latency
reads thus give the appearance of being fixed-latency operators that always pro-
duce/accept data after a single cycle (as in cache-hit case).

In this manner, predicted or speculatively computed values propagate in the
datapath. However, only reversible (side effect-free) operations may be performed
speculatively to allow replay in case of a misprediction. In our system, write
operations thus form a speculation boundary: A write may only execute with
operand values that have been confirmed as being correct. If such a confirmation
is still absent, the write will stall until the confirmation arrives. Should the memory
system refute the speculated values, the entire computation leading up to the write
will be replayed with the correct data.

This is outlined in the example of Fig. 2a. Here, the system has to ensure that the
data to be written has been correctly predicted in its originating READ node (the sole
source of speculated data in the current PreCoRe prototype) before the WRITE node
is allowed to execute. This is achieved for the READ by comparing the predicted read
result, which is retained for this purpose in an output queue in the READ node, with

8 B. Thielmann et al.

Stage 1

Stage 2

Stage 3

Stage 5

data flow token flow

commit token c fail token f

validation speculative queue q

Stage 4

Token
Logic

f c c c

f

Stage 1

Stage 2

Stage 3

Stage 5

D
el

ay

Stage 4

CiBiAi Ai Bi CiREAD

a b

SUB SUB

NOP MUL

NOP ADD

WRITE

SUB SUB

MULNOP

NOP ADD

WRITE
qq

q q q
READ

q

Fig. 2 Datapath and speculation token processing

the actual value received later from the memory system. Until the comparison has
established the correctness of the predicted value, the data to be written (which was
computed depending on the predicted read value) is held in an input queue at the
WRITE node. This queue also gives the WRITE node the appearance of a single-cycle
operation, even on a cache-miss.

Figure 2b sketches the extension of the initial statically scheduled datapath with
PreCoRe: Explicit tokens track the speculativity of values and their confirma-
tion/refutation events. This is indicated by additional edges that show the flow of
tokens and validation signals.

As an example, if the READ node has confirmed a match between predicted and
actual data values, it indicates this by sending a commit-token (shown as C in the
figure) to the token logic. However, to reduce the hardware complexity, this token
is not directly forwarded to the WRITE node waiting for this confirmation, as would
be done in operator-level speculation. Instead, the speculativity is tracked per data
path stage (corresponding to the operators starting in the same clock cycle in a static
schedule). Only if all operators in a stage confirm their outputs as being correct is the
C-token actually forwarded to the WRITE operator acting as speculation boundary,
confirming as correct the oldest WRITE operand with uncertain speculation status.
Speculated values and their corresponding C- and F-tokens (indicating failed specu-
lation) always remain in order. Thus, no additional administrative information, such
as transaction IDs or similar, is required. Tokens are allowed to temporarily overtake
their associated data values up to the next synchronization point (see Sect. 3.3)
by skipping stages that lack speculative operators (READ nodes). The speculation
output status of a stage depends on that of its inputs: It will be non-speculative, if

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 9

no speculative values were input, and speculative, if even a single input to the stage
was speculative. In the example, stages 2–4 do not contain READs, the C-token can
thus be directly forwarded to the WRITE in stage 5, where it will be held in a token
queue until the correctly speculated value arrives and allows the WRITE to proceed.
In parallel to this, pipelining will have led to the generation of more speculative
values in the READ, which continue to flow into the subsequent stages.

If the initial speculation in the READ node failed (the output value was discovered
to be mispredicted), all data values which depended on the misspeculated value
have to be deleted, and the affected computations have to be replayed with the
correct no-longer speculative result of the READ. This is achieved by the token
logic recognizing that the misspeculated READ belonged to stage 1, and thus the
entire stage is considered to have misspeculated. All stages relying on operands
from stage 1 will be replayed. The F-token does not take effect immediately (as the
C-token did), but is delayed by the number of stages between the the speculated
READ and the WRITE at the speculation boundary. In the example, the F-token
will be delayed by three stages, equivalent to three clock cycles of the datapath
actually computing. If the datapath were stalled (e.g., all speculative values have
reached speculation boundaries but could not be confirmed yet by memory accesses
because the memory system was busy), these stall cycles would not count towards
the required F-token delay cycles. Delaying the effect of the F-token ensures that
the intermediate values computed using the misspeculated value in stages 2–4
have actually arrived in the input queues of the WRITE operation in stage 5 and
will be held there since no corresponding C- or F-token for them was received
earlier. At this time, the delayed F-token arrives at the WRITE and deletes three
sets (corresponding to the three intermediate stages) of potentially incorrect input
operands from the WRITE input queues and thus prevents it from executing. The
replay of the intermediate computation starts immediately once the last attempt has
been discovered to have used misspeculated values. Together with the correct value
from the READ (retrieved from memory), the other nodes in stage 1 re-output their
last results (which may still be speculative themselves!) from their output queues
and perform the computations in stages 2–4 again. A more detailed example of
token handling is given in [25].

3.3 Queue Management for Speculation

First introduced in the previous section, operator output queues (re)supply the
data to allow replay operations and are thus essential components of the PreCoRe
architecture. Note that some or all of the supplied values may be speculative. Data
values are retained until all outputs of a stage have been confirmed and a replay using
these values will no longer be required. Internally, each queue consists of separate
sub-queues for data values and tokens, with the individual values and tokens being
associated by remaining strictly in order: Even though tokens may overtake data

10 B. Thielmann et al.

forwarded
values

available
values

SpecRead ReadWrite

Outgoing

Over write Index

replay region

forward
fail token

speculative
values

confirmed
values

Incoming

commit

fail

remove

replay
d

c

e

f

a

b

Fig. 3 Value regions in speculative queue

values between stages, their sequence will not be changed. In our initial description,
we will concentrate on the more complex output queues. Input queues are simpler
and will be discussed afterwards.

Figure 3 gives an overview of an output queue, looking at it from the incoming
(left side) and outgoing (right side) perspectives.

On the incoming side, values are separated into two regions: speculative values
(a) and confirmed values (b). Since all data values are committed sequentially and
no more committed data may arrive once the first speculative data entered the queue,
these regions are contiguous. Similarly, outgoing values are in different contiguous
regions depending on their state: (d) is the region of values that have already been
forwarded as operands to a consumer node and are just retained for possible replays
and (c) is the values that are available for forwarding. Conventional queue behavior
is realized using the Write pointer to insert newly incoming speculative data at the
start of region (a) and the Read pointer to remove a value from the end of region
(d) after the entire stage has been confirmed. Two additional pointers are required
to implement the extra regions: Looking into the queue from the outgoing end,
SpecRead determines the first value which has not been forwarded yet at the end
of region (c), and OverwriteIndex points to the last confirmed value at the beginning
of region (b).

On misspeculation in a predecessor stage (indicated by an incoming F-token),
the speculative values making up region (a) are discarded by setting Write back to
OverwriteIndex. If the queue does not hold confirmed values (regions (c) and (d) are
empty), the F-token is passed on (f) through the output queue into subsequent stages.

Confirmed values are forwarded to the consumer nodes but retained in the
queue for replays (moving from region (c) into region (d) by manipulation of the
SpecRead pointer). If operators in the same stage request a replay, SpecRead is reset
to Read, making all of the already forwarded but retained values available again

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 11

for re-execution of subsequent stages, with (f) now acting as a replay region (e).
Retained values are removed from the queue only if all operators in the stage have
confirmed their execution (and thus ruled out the need for a future replay). This final
removal is achieved using the Read pointer. For a detailed example of the output
queue operation, please refer to [25].

Input queues have a similar behavior but do not need to confirm speculative data
(that was handled in their predecessor’s output queue).

3.4 Dynamic Resolution of RAW Dependencies

The speculative PreCoRe execution scheme enables the prefetching of memory
reads: A read which might originally be scheduled after a write is allowed to execute
speculatively before the write has finished. This reordering potentially violates a
read-after-write (RAW) memory data dependency. Thus, all of the memory read
accesses potentially depending on the write must remain in speculative state until
the memory write access itself has been committed. Static points-to/alias analysis
in the compiler can remove some of the potential dependencies and guarantee that
reads and writes will be to non-overlapping memory regions (allowing out-of-order
prefetching). However, in most realistic cases, such guarantees cannot be assured
at compile time. Instead, dynamic detection and correction of dependency violation
due to speculatively prefetched reads must be employed to handle the general case.
PreCoRe supports two such mechanisms.

Universal Replay: This approach is a straightforward, low-area, but suboptimal ex-
tension of the existing PreCoRe commit/replay mechanisms: All RAW dependency-
speculated reads re-execute as soon as all writes have completed, regardless of
whether an address overlap occurred. The number of affected reads is only limited
by the PreCoRe speculation depth, which is the number of potentially incorrectly
speculated intermediate results that can be rolled back. In PreCoRe, the speculation
depth is determined by the length of speculation value queues on the stages between
the possibly dependent read and write nodes.

In practice, universal replay is less inefficient as it appears at first glance:
Assuming that the data written by all write operations is still present in the cache,
the replays will be very quick. Also, in the scheme, all writes are initially assumed
to induce a RAW violation. If a write is only conditionally executed, the potentially
dependent reads can be informed if the evaluation of the control condition prevents
the write from executing at all. This is communicated from each write to the reads
using a Skip signal (see Fig. 4a). If all writes have been skipped, there no longer
is a risk of a RAW violation and the data retrieved by the reads will be correct
(and can be confirmed as such). On the other hand the replays in this scheme can
become expensive if the write data has been displaced from the cache or if the
replayed computation itself is very complex. Thus, it is worthwhile to examine a
better dependency resolution scheme.

12 B. Thielmann et al.

CacheCacheCacheCache

READ 3READ 2WRITE READ 1

CacheCacheCacheCache

READ 3READ 2WRITE READ 1
R

X
C

R
X

C

R
X

C

re-execute/skip signal MARC II coherency bus RXC Re-execution CAM

MARC II

a b

MARC II

Fig. 4 Resolution schemes for RAW memory dependencies

Selective Replay: This more refined technique avoids unnecessary replays by
actually detecting individual read/write address overlaps on a per-port basis and
replays only those RAW-speculated reads that were actually affected by writes. To
this end, read ports in the memory subsystem are extended with dedicated hardware
structures (RXC, see Sect. 5.3) to detect and signal RAW violations. Combined with
the Skip signal to ignore writes skipped due to control flow, replays are only started
for specific read nodes if RAW violations did actually occur.

3.5 Access Prioritization

PreCoRe fully exploits the spatial computing paradigm by managing operations on
the independent parallel memory ports supplied by the MARC II memory subsystem
(see Sect. 5). However, internally to MARC II, time-multiplexed access to shared
resources, such as buses or the external memory itself, becomes necessary. By
carefully prioritizing different kinds of accesses, the negative performance impact
of such time multiplexing can be reduced. PreCoRe influences these priorities not
only to best use the available bandwidth on the shared resources for useful accesses,
but also to employ spare bandwidth to perform prefetching. A number of techniques
are used to manage access priorities.

The simplest approach consists of statically allocating the priorities at compile
time. In PreCoRe, the write port always executes with the highest priority, since
it will only be fed with nonspeculative data and will thus always be useful. Read

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 13

Stage 1

Stage 2

Stage 3

Stage n

Stage 1

Stage 2

Stage 3

Stage 4

Stage 1

Stage 2

Stage 3

Stage 4

Static Priority Value-Speculation Priority

Queue-Balancing Priority Control-Speculation Priority

select

Ai

a b

c d

Bi Ci

DiREAD 1
q

READ 1
q

q
READ 1

q

GAg

NOP NOPSUB

SUB

SUB

CMP

MUX

MUL READ 2
q

READ 2
q

q
READ 2

GAg

q

WRITE

WRITEWRITE

Ai

Bi

Stage 1

Stage 2

Stage 3

Stage 4

Ai Ai

Ci

Ci
Bi Bi

READ 1 READ 2

Fig. 5 Scenarios for priority-based shared resource arbitration

operations placed early in the static schedule will be assigned a higher priority than
read operations scheduled later, so their data will already be available when later
stages execute. In Fig. 5a, READ1 thus executes with higher priority than READ2.

Figure 5b shows a scenario where the address of READ2 is dependent on the
result of READ1. In PreCoRe, READ1 will provide a value-speculated result after a
single clock cycle, which READ2 will use as address for prefetching. However, in
doing so, it will hog the shared MARC II resources performing a potentially useless
access (if READ1 misspeculated). These resources would have been better used to
execute the non-address speculated READ1 of the next loop iteration, which is an
access that will always be useful. Value-speculation priority dynamically lowers
the priority of accesses operating on speculated addresses and/or data values, thus
giving preferential treatment to accesses using known-correct operands.

14 B. Thielmann et al.

In some situations, the simple static per-port priority can even lead to a loss
of performance. This occurs specifically if the outputs of multiple reads at the
same stage converge at a later operator. An example for this is shown in Fig. 5c.
Here, the static priority would always prefer the read assigned to the lowest port
number over another one in the same stage. Assuming READ1 had the lower port
number, it would continue executing until its output queue was full. Only then
would READ2 be allowed to fetch a single datum. A better solution is to dynamically
lower the priority of reads already having a higher fill-level of non-speculated values
(=actually fetched from memory) in their output queues.

As described above, performance gains may be achieved by allowing read
operators to immediately reply with a speculated data value on a cache miss.
Orthogonal to this data speculation approach is speculating on whether to execute
the read operator at all. Such control-speculation is performed on SPP using branch
prediction techniques. While this approach is not directly applicable in the spatially
distributed computation domain of the RCU (all ready operators execute in parallel),
it does have advantages when dealing with shared singleton resources such as main
memory/buses: For software, branch prediction would execute only the most likely
used read in a conditional, while the RCU would attempt to execute the reads on all
branches of the conditional in parallel, leading to heavy competition for the shared
resources and potentially slowing down the overall execution (on multiple parallel
cache misses).

To alleviate the problem, we track which branch of a parallel conditional actually
performed useful computations by recording the evaluated control condition. The
read operators in that branch will receive higher priorities, thus preventing reads in
less frequently taken branches from hogging shared resources. To this end, we use
decision tracking mechanisms well established in branch prediction, specifically the
GAg scheme [29], but add these to the individual read operators of the parallel
conditional branches (see Fig. 5d). The trackers are connected to the controlling
condition for each branch (see [16] for details) and can thus attempt to predict which
branch of the past branching history will be useful next, prioritizing its read oper-
ators. In case of a misprediction, all mistakenly started read operations are quickly
aborted to make the shared resources available for the actually required reads.

To exploit the advantages of the different schemes, they are all combined into a
general dynamic priority computation:

Pdyn(r) = (Wq ·Pq(r)+(1−Wq) ·Phist(r)) ·2−(Wspec·IsSpec(r)).

The dynamic priority Pdyn(r) for each read operator r is thus computed from
the queue-balancing priority Pq(r), the control-speculation priority Phist(r) based
on its GAg predictor, and its speculative predicate IsSpec(r), which is = 1 if r
is dynamically speculative for any reason (input address speculated and not yet
confirmed, control condition not yet evaluated, still outstanding writes for RAW
dependency checks), and = 0 otherwise. This predicate will be used to penalize
the priority of speculative accesses. Wx are static weights that can be set on a per-
application basis, potentially even automatically by sufficiently advanced analysis
in the compiler. Wq is used to trade-off between queue balancing and control history

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 15

prediction, while Wspec determines the priority penalty for speculative accesses. See
[26] for a more detailed discussion and an evaluation of the performance impact of
these parameters.

4 The Nymble C-to-Hardware Compiler

To discuss the integration of PreCoRe into the Nymble compile flow, we will first
give an overview of the initial C-to-hardware compilation process. It relies on
classical high-level synthesis techniques to create synthesizable RTL descriptions
of the resulting statically scheduled hardware units.

4.1 Control-Data Flow Graph Generation

We use a simple program computing the factorial function (Listing 1) as running
example for the compilation flow.

The Nymble front end relies on traditional compiler techniques (specifically,
those of the Scale framework [7, 28]) to lex and parse the input source code and
perform machine-independent optimizations, finally representing the program as
control flow graph (CFG) in static single assignment (SSA) form [1]. Figure 6
shows the SSA-CFG of our sample program. SSA-CFGs are a commonly used
intermediate representation in modern software compilers and well suited for the
actual hardware compilation.

In SSA form, each variable is written only once, but may be read multiple times.
Multiple assignments to the same variable create new value instances (versions of
the variable, often indicated by subscripts). A Φ function selects the current value
instance when multiple value instances converge at a CFG node. This happens, e.g.,
for conditionals for the true and false branches or for the entering and back edge of
a loop.

Listing 1 Sample program for hardware compilation

i n t f a c t o r i a l (i n t n) {
i n t a = 1 ;
i n t i ;

for (i =1; i<n ; ++ i }
a = a ∗ i ;

return a ;
}

16 B. Thielmann et al.

a2=a1*i 1

i2=i1+1
return a1

a0= 1
i0= 1

a1= Φ(a0,a2)
i1= Φ(i0,i2)

false true

i1< n

Fig. 6 SSA-CFG of sample
program

Given the abundance of flip-flops on most current reconfigurable devices, the
value instances of the SSA form could be mapped directly to hardware registers
(but also see comment below). To build the computations between the registers, the
data flow from source variables through operators to destination variables has to be
extracted. This is easily achievable in SSA form, since a value can originate only
from one specific assignment. The flow of values is expressed as a data flow graph
(DFG), shown in Fig. 7 for the example.

While it would suffice for the synthesis of the datapath of the hardware unit
(by mapping the operators to compute nodes and the edges to appropriate wiring),
the control flow (e.g., the loop termination condition) must still be considered
when synthesizing the controller. This is achieved by extending the DFG with
control edges (shown as dotted lines in Fig. 8, labeled on which boolean value of
the controlling condition they activate). Control edges carry the boolean results
of conditions to either activate specific nodes (e.g., the end node indicating the
completion of hardware execution) or select which value instance to pass through
the multiplexers representing the Φ functions. For the loops shown here, the Φ
functions at the loop heads are controlled by a dedicated init node that outputs true
on its control edge if loops are being entered for the first time and false otherwise..

As a refinement of mapping SSA value instances to registers, it is possible to
remove purely intermediate variables and replace them by simple wiring to their
computing operator in the DFG, instead of allocating a hardware register to hold the
intermediate result.

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 17

a0

a1

a2

i0

i1

i2

0 0

*

Φ(…) Φ(…)

+

1

return

<

n

Fig. 7 Data flow graph
(DFG) of sample program

a0

a1

a2

i0

i1

i2

0

*

0

+

1

return

<

n

end

init

Φ(…) Φ(…)

true

false
true

false
true

Fig. 8 Control data flow
graph (CDFG) of sample
program

4.2 Operation Scheduling

An acyclic CDFG could be mapped directly to a purely combinational datapath,
evaluating the entire computation in a single clock cycle. However, this approach
would lead to slow clock frequencies and not allow the execution of loops. Thus,
the conventional solution is to distribute the computation over multiple clock cycles,
leading to both faster clocks and allowing cycles (with inserted registers). In a
simple implementation of this approach, hardware registers could be inserted after

18 B. Thielmann et al.

each operation. Note that further optimizations from high-level hardware synthesis
might deviate from this scheme (e.g., packing multiple operators into a clock cycle
by operator chaining [20]).

After realizing the computation in sequential logic, the question remains on how
to control its execution (e.g., when to assert the registers’ load inputs to accept newly
computed values). This decision is called scheduling and can be performed both
statically (at compile time) or dynamically (at execution time).

Dynamic scheduling does have numerous advantages: It can easily handle
variable-latency operators, such as cached memory accesses, as the decision to store
the read value is made only when the read port has indicated that the datum is
available. Similarly, conditionals with differing computation times in their true and
false branches can also consider the specific path taken at execution time to load
the newly computed values at the correct time. Due to these advantages, dynamic
scheduling has been used in a number of hardware compilers, such as COMRADE
[5], CHiMPS [22], or CASH [2].

On the other hand, the additional logic required to make scheduling decisions at
run-time potentially carries a large area overhead, especially when complex control
flows have to implemented. In static scheduling, the times when to load newly
computed values into registers and when to start new operations are determined
at compile time. This is easy for fixed-latency operators, and the case of imbalanced
conditional paths can be addressed by padding the shorter path with additional
registers to the length of the longer path, equalizing the lengths. However, variable-
latency operators pose a significant problem. In practice, they are assumed to
execute in a fixed expected latency (e.g., single cycle on a cache hit). Dedicated
logic detects at execution time when this assumption does not hold (e.g., on a cache
miss), and halts (stalls) the entire datapath until the outstanding datum is actually
available. Only then is execution allowed to proceed, giving the rest of the datapath
the impression that variable-latency operators always provide their results within a
fixed time. As an advantage, the control logic for orchestrating the execution of
a statically scheduled hardware unit can be implemented in a compact and fast
fashion (often just using multi-tapped shift registers). Hardware compilers using
static scheduling include GarpCC [4], ROCCC [8], and the base microarchitecture
in the Nymble flow.

4.3 Hardware Synthesis in Nymble

With the fundamentals of the hardware synthesis now established, this section
will consider some of the details of the Nymble compilation process in greater
detail. Nymble actually partitions the SSA-CFG into a hierarchical CDFG, with
each loop appearing as a single variable-latency node in the parent CDFG. In this
manner, arbitrarily nested loop structures are supported. This is shown in Fig. 9: The
top-level CDFG is the entire factorial function, which accepts a parameter n from
software. At this level, the loop has been encapsulated as a single operation. When

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 19

Top-Level Level 0

0

*

0

Φ (…) Φ (…)

+

1

return a

<

n

end

Loop 1 Level 1

HW → SW IO

SW → HW IO

init

false
true true

false

true

Fig. 9 Hierarchically scheduled CDFG for sample program

it detects the loop termination condition, it signals the end of hardware execution to
the hardware/software interface layer [15] and passes back the computed factorial
from hardware to software.

Since we compile for the ACS target to a fully spatial hardware implementation
with no operator reuse, we can employ a variant of the classical as-soon-as-possible
(ASAP) static scheduling algorithm [20], adding just minor extensions to obey
explicit constraints (discussed in Sect. 4.4).

Start times of operations are computed from the start times and expected latencies
of their predecessor operations. Outer loops are stalled until nested inner loops
explicitly signal their completion to the outer loop.

The hardware controller, sketched in Fig. 10, consists of a simple sequencer Reg
0–Reg 2 that just asserts the start signals (if required) of operators scheduled in
the same cycle (called a stage in PreCoRe terminology) and loads the intermediate
results of each operator into registers the expected latency number of cycles later.
To support pipelining, the sequencer allows multiple stages to be active at the
same time. This is limited by backward data dependencies in the DFG, though,
which will lead to a longer initiation interval (II) between datapath starts. As a
second function beyond the sequencing, a stall controller also detects violations of
expected latency for variable-latency operators and stops the sequencing of all other
operations until the variable-latency operator has actually completed. In the base

20 B. Thielmann et al.

INITOR

S
ta

g
e

II
S

ta
g

e
0

S
ta

g
e

I
Reg 2

Reg 1

Reg 0

Start

WRITE

SUB

Ai READ
Stall Controller

(State Machine)

Enable
Access
Finish

Fig. 10 Synthesized controller for a non-speculative datapath

version of Nymble, this applies to nested loops (treated as single operators) and
cached memory accesses. The latter will be handled differently with the PreCoRe
mechanisms described in the next section.

4.4 Compiling for the PreCoRe Microarchitecture

PreCoRe requires the extension of the pure statically scheduled execution model
of the base version of Nymble to a semi-statically scheduled version that makes
more scheduling decisions at execution time, but far fewer than would be made
in fully dynamic scheduling. In this section, we will discuss the changes required
to the Nymble controller microarchitecture to integrate PreCoRe token handling
(Sect. 3.2) and speculative queues (Sect. 3.3).

The stage-based nature of PreCoRe speculation has an impact on the static
scheduling of multi-cycle operators in Nymble. In general, such multi-cycle opera-
tors will not support a partial replay, especially if they are obtained as third-party IP
blocks (e.g., floating-point cores), and will lack the required functionality (injection
of preserved state data into the internals of the operator on a replay). Thus, all such
operators are constrained in Nymble to be ASAP-scheduled either completely before
or after any reads (which initiate replays on a misprediction).

Some parts of the controller actually are simplified by using PreCoRe. Since
memory reads now become single-cycle operations due to value speculation, the
stall controller on a read cache miss is no longer required. However, the need
to support replays adds extra complexity. The microarchitecture of a controller
supporting PreCoRe is sketched in Fig. 11; the key changes will be discussed next.

The simple sequencing registers in the original statically scheduled controller are
replaced by so-called Flow Control nodes in the PreCoRe controller. During normal
execution (no mispredicts), their behavior corresponds to those of the simple shift
register controller–the Start signal is delayed by a single clock cycle and passed to

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 21

READ

S
ta

g
e

II
S

ta
g

e
0

S
ta

g
e

I

Flow Control 00

Flow Control 10

Flow Control 2

q

AND

OR INIT
q

q

Ready for
Data

Start

Token &
Validation

q

Speculation
Queue

SUB

Ai
q

WRITE
q q

Fig. 11 Synthesized controller for PreCoRe-speculative datapath

the subsequent stage. However, special logic is required to handle replays and to
halt further computations in the operation pipeline as soon as a read is discovered to
have mispredicted.

The easier of the extensions deals with the management of the input queues in
read and write operators: Execution sequencing is only allowed to proceed if all
input queues in the entire datapath have space (indicated by asserting their Ready
for Data signal) for the operands that would be incoming in the next cycle. Lacking
such space, sequencing at the datapath level is stopped, but all memory operators
are allowed to proceed internally, draining their input queues. Once queue space has
become available once more, datapath sequencing continues.

Flow control nodes of stages holding speculative operators (such as memory
reads) have another extension over the simple sequencing registers: They have
internal queues to buffer incoming start tokens. If their corresponding datapath stage
requests a replay (a read discovered it mispredicted), the start tokens are reissued
from the flow control token queue to restart the subsequent stages. If multiple
mispredictions occur, the re-issue rate of the replayed start tokens is throttled to
match the original Initiation Interval, thus keeping the static parts of the schedule
valid. Only once a stage is confirmed in its entirety (precluding the need for a future
replay) is the start token removed from the flow control token queue. Analogously
to the capacity check for input queues in the datapath, execution in the controller is
only allowed to proceed if all flow control nodes with queues have space available
for incoming tokens. Otherwise, the controller is stopped, but the speculative reads
continue to execute and will (at some point in time) output and confirm the correct
data, removing a token from the flow control node responsible for their stage, and
thus freeing up queue space. Please see [24] for further details.

Additional hardware (queues, token transition logic) will be inserted by Nymble
into the statically scheduled controller only at the places required by the current
application. This selective approach avoids the high overhead of relying on a
general-purpose speculation support unit.

22 B. Thielmann et al.

Now that we have discussed the PreCoRe microarchitecture and its automatic
generation during hardware compilation, we can proceed to the last component
of the solution, namely the multi-port memory system specialized to support
speculative execution.

5 The MARC II Memory System

The multi-port cached memory system MARC II, initially presented in [16], has
since been extended to support efficient operation of the PreCoRe mechanisms.
PreCoRe relies on the memory subsystem to quickly satisfy the increased number
of accesses due to execution replays. Note that MARC II deals strictly with
nonspeculative data; all value speculation occurs in PreCoRe itself. Furthermore,
even though PreCoRe gives the appearance of single-cycle memory reads (due to
the value speculation), the scheme depends on low-latency replies from MARC II to
quickly determine whether to commit a computation on confirmed values or replay
it due to a discovered misprediction.

5.1 Overview

The use of the spatially distributed computing paradigm on the adaptive computer
also requires an appropriate parallel memory system. While some approaches rely
purely on local on-chip memories (BlockRAMs), their limited size and lack of
coherency protocols for shared accesses limit the scalability of the technique.
Instead, we propose to use a shared memory system that gives the appearance
of independent memory ports by providing each port with a distributed cache.
Internal coherency mechanisms ensure a consistent view of all ports on the shared
memory. Implementation-wise, we combine parallel on-chip BlockRAMs to realize
fast caches, but still access the external off-chip main memory (shared with the SPP
on the ACS) for bulk data.

The MARC line of memory systems has always aimed to provide multi-port
operation supported by a dedicated cache infrastructure. In contrast, other ACS
architectures often have at most a single port to external memory which is then
explicitly allocated during scheduling to single memory operations. If they can
actually serve multiple ports, they often have only very limited buffers (e.g., holding
a DRAM row) as port-local storage. In contrast, MARC I [14] already gave multiple
independent memory ports a coherent view of a shared multi-bank multi-port cache,
allowing up to four parallel accesses. While the central shared cache avoided all
coherency issues, it did not scale to larger numbers of ports and also limited the
available clock frequency due to its fully associative organization.

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 23

Datapath-Modules

Memory
Read

Memory
Write

TechMod

CachePort
(Read)

Arbiter

Victim
Cache

Arbiter

Datapath

MARC II

Priority Signals Memory Bus

Memory
Read

Coherency Bus

CachePort
(Read)

CachePort
(Write)

External
Memory

CPU

Fig. 12 Overview of the MARC II cache system

To lift both restrictions, MARC II (shown in Fig. 12) instead relies on distributed
per-port caches with a simpler but faster direct-mapped organization in on-chip
BlockRAM. Since each MARC II per-port-cache is larger than the MARC I central
cache, the lower cache hit rates due to the direct mapped organization do not
lead to slow downs. Since all of the caches operate independently, a large number
of memory accesses can be served in parallel. Interport coherency is managed
explicitly by a dedicated coherency bus (CB, described in the next section). As
MARC I, MARC II is designed to isolate the hardware-independent core of the
system from the device-dependent memory controllers (QDR2-SSRAM, DDR2/3-
SDRAM, etc.), which are implemented as so-called TechMods. This allows the easy
retargeting of MARC II-based accelerators to different ACS platforms.

24 B. Thielmann et al.

5.2 Cache System and Coherency Protocol

Ensuring coherency between distributed caches is a difficult problem that has been
the subject of much research, leading to protocols such as MSI, MESI, and MOESI.
However, by tailoring the MARC II coherency mechanisms to the requirements of
PreCoRe, we can employ a much simpler, low-overhead solution.

PreCoRe relies on load value speculation and does not support speculative writes.
Thus, a single Write port suffices in the memory system. All memory writes (being
non-speculative) will have to be serialized through that port in program order (to
avoid violating WAW dependencies). This limitation is less severe than it appears,
since conventional programs execute 3x–6x as many loads as stores (measured in
[10] for SPEC CPU 2006).

With the restriction to a single write port, we can employ a lightweight coherency
protocol. Cache lines in a read port are either valid or invalid. In the write port, they
are either invalid (the cache line is not present), shared (the cache line is present
and also present in at least one other read port cache) or exclusive (the cache line is
present and no other cache has it). Note that the explicit modified state, common to
general-purpose coherency protocols, is not required here, since the write port cache
only holds modified lines.

Figure 13 sketches how requests from the datapath are handled by MARC II
caches on memory reads (a) and memory writes (b).

Whenever a read request is executed, it is checked first whether it is a cache hit. If
so, data can be provided in a single cycle from the read port cache without having to
interact with any other shared resource. Thus, cache hits can be served completely
independent of the actions of other ports. If the requested data is not available from
its cache (local cache miss), the request is forwarded to all other caches connected
to the CB by broadcast. Only if the request cannot be served by any of the other
caches (remote cache miss) must the external memory be accessed.

The behavior for writes is slightly more complex. Again, the port first determines
whether the necessary cache line is present. If so, the new data is inserted into the
cache. If the modified line was shared with other read ports, coherency must be
ensured. This can happen in one of two user-selectable modes: In invalidate mode,
the write port tells the read ports holding an affected shared cache line to invalidate
it. If the read ports later require the cache line again, it will be requested over the CB
from the write port (which now holds the only copy). In update mode, the write port
immediately transmits its modified cache line over the CB to all read ports holding
the shared old versions (here, multiple copies of the line exist). If the write is a local
cache miss, the read port caches are accessed via the CB. On a remote hit, the line
is then marked as shared in the write port. Only if no port cache holds the data is the
external memory accessed.

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 25

Cache-Hit?

no

CB-Hit?

Get cache line from
external memory

no

Get cache line from
other cache,

mark as shared

yes

Write data to cache

Update other
caches

yes

Shared cache
line?

invalidate

Cache-Hit?

no

CB-Hit?

Get cache line from
external memory

no

Get cache line from
other cacheyes

Deliver data to
readportyes

Write request

a b

Read request

Invalidate other
caches

no yes

Coherence
schemeupdate

Fig. 13 Processing an access in a read port (a) and a Write Port (b)

5.3 MARC II Support for PreCoRe Operations

Obviously, the paradigm of spatially distributing computation can only be main-
tained in the MARC II front-end. The rest of the infrastructure consists of time-
multiplexed shared resources (coherency bus, memory bus, TechMod, the actual
external memory). The ports compete for access to these resources: In case of a
local cache miss, the shared coherency bus must be accessed. On a remote cache
miss, the request is forwarded to the shared external memory bus. If the external
memory is in use (e.g., by the CPU), the access will have to wait until the memory
becomes available for the RCU.

MARC II allows the accelerator to provide additional information on the priority
of each access on a per-port basis: Each cache-port has its own priority-input, and
an arbitration mechanism considers the given priorities of all pending requests when
arbitrating the use of shared MARC II resources. This feature is used to apply the
dynamic priority PreCoRe computes for each access (see Sect. 3.5) to influence the
processing order of requests.

The displacement of cache lines in the distributed caches does not affect other
caches, and thus is a less severe issue compared to cache line displacement in
a single shared cache. However, the direct-mapped cache organization may cause
frequent, undesirable cache displacements for some address sequences. In this case,

26 B. Thielmann et al.

the memory bus must be requested repeatedly to transfer the data from the external
memory. Given the frequent memory accesses in PreCoRe, such displaced lines
would lead to significantly longer replay times. By adding a small, fully associative
victim cache, these drawbacks can be reduced. The impact of a victim cache on
performance and where it should be placed (L2 or L1) has been studied in detail
for conventional processors [11]. In context of MARC II, the victim cache can
be integrated seamlessly by attaching it to the coherency bus, where it just acts
as another remote cache. This avoids the need for yet another communication
network and also keeps the access latency low by maintaining a single level of cache
hierarchy.

MARC II also provides special support for the selective replay RAW dependency
resolution mechanism introduced in Sect. 3.4. Each read port has a (relatively small)
re-execution CAM (RXC, see Fig. 4b) that holds the last n read addresses, where n
is the PreCoRe speculation depth. The write port broadcasts the write addresses
over the coherency bus (see Sect. 5.2) to all read ports. If a RAW-speculated read
was performed for an address overlapping a write address (as determined by a RXC
lookup), a RAW violation is detected and signaled to the datapath in order initiate
a replay.

6 Experimental Results

The ACS infrastructure proposed in this work has been implemented on the Xilinx
ML507 development board using the Verilog hardware description language. Its
core is a Virtex-5 FX FPGA, which is connected to various peripheral components,
with a DDR2-SDRAM bank acting as external main memory. The reconfigurable
fabric on the FPGA is used as RCU and the embedded PowerPC 440 as SPP. All
benchmarks were compiled from C using the Nymble C-to-hardware compiler. The
resulting RTL description was then synthesized using Synopsys Synplify Premier
DP 9.6.2 and placed and routed with Xilinx ISE 11.1.

For evaluating the different components of the system, we used selected ap-
plication benchmarks from well-known benchmark suites (e.g., MediaBench [17],
Honeywell ACS Suite [13]). The samples include the gf multiply kernel from
the Pegwit elliptic curve cryptography application, the quantization and wavelet
transformation of the Versatility image compression application, and a luminance
median filter. While the application benchmarks provide a good overview on the
performance of the overall system, we also used synthetic hardware kernels to test
specific features and characteristics of the system. The following paragraphs just
summarize the actual results, please see [24–26] for the detailed measurements.

Each kernel was compiled twice, once with PreCoRe enabled and once with the
original purely statically scheduled datapath. As previously discussed in Sect. 4.2, in
the static version, a single cache miss stalls the entire datapath. Thus, all differences
in performance are due to making better use of the hardware operators that are
already present in the datapath.

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 27

Depending on the regularity of the input data, performance gains of up to 23 %
have been observed by employing load value speculation alone. Although successful
speculation effectively hides the memory access latency of its particular access, even
unsuccessful speculation may result in an improved execution time: The latency of
later accesses may potentially be hidden by allowing them to execute earlier (instead
of being stalled with the rest of the datapath). If the access executed early used a non-
speculative read address, the data will be prefetched into the cache for use not only
by the specific read port executing the early access, but also by all other ports that
can retrieve it using the coherency bus (instead of accessing main memory again).

The dynamic priority computation discussed in Sect. 3.5 can lead to speed-
ups 2–25.5 %. However, the best choice of weights for the computation is highly
application dependent. Compiler support for selecting appropriate parameters auto-
matically would be highly desirable here.

Despite being only a secondary effect of the actual read value speculation, the
impact of prefetching should not be underestimated. As an experiment, we disabled
the value predictor, forcing it to always mispredict. Even in this crippled form,
PreCoRe still executes reads as single-cycle operations and avoids datapath-wide
stalls, thus allowing prefetching to be performed. This prefetching-only version
of PreCoRe yields a speed-up of 1.43x. Re-enabling the value predictor reduces
the execution time further to a total speed-up of 1.58x over the original statically
scheduled version. For this specific benchmark, the prefetching made possible by
the non-stalling mispredicting reads, and not the successful speculation, is actually
responsible for most of the performance gain.

These benchmarks were constructed so that no RAW dependencies existed
between accesses. If such dependencies cannot be ruled out (e.g., by using the C
restrict keyword), the dynamic resolution mechanisms described in Sect. 3.4 need
to be employed. For a synthetic benchmark that has a third of all speculative
accesses violating RAW dependencies, the selective resolution method (detecting
overlapping addresses) requires up to 4 % fewer clock cycles than the universal
resolution (that assumes all executed writes interfere with all reads). Adding a victim
cache (Sect. 5.3) to speed up replays further gains up to another 9 % of clock cycles.

Combining the various features of PreCoRe, it was possible to achieve wall-clock
improvements of up to 2.59x in our examples, without incurring any slow downs.
This is a significant improvement over prior work such as [21] discussed in Sect. 1.

However, enabling PreCoRe has both an area and a clock frequency cost. The
latter is not relevant for our experiments, since the maximum clock slowdown we
observed (11 % over the non-speculative versions) was either more than compen-
sated by the PreCoRe speed-ups, or lead to a clock frequency that still exceeded the
100 MHz limit of the ML507 reference design. Since most of the critical path lies
inside of the MARC II memory system, the achievable maximum clock frequency
is almost independent of whether a speculative or nonspeculative execution model
is chosen.

In contrast to the negligible clock slowdown, PreCoRe carries a significant area
overhead (in our benchmarks: 1.45x–3.22x, counting slices). Much of this is due to
the current Nymble hardware back-end not exploiting the sharing of queues across

28 B. Thielmann et al.

multiple operators in a stage and the pipeline balancing registers automatically
inserted by the compiler not being recognized as mappable to FPGA shift-register
primitives by the logic synthesis tool. Both of these issues could be addressed by
adding the appropriate low-level optimization passes to Nymble.

7 Conclusion

We have presented a comprehensive approach to widening the memory bottleneck
that is also starting to affect reconfigurable computing. It encompasses the microar-
chitectural mechanisms of the PreCoRe value speculation framework, the automatic
generation of application-specific controllers implementing these techniques from
C programs by the Nymble hardware compiler, and the run-time support for parallel
memory accesses and quick execution replays provided by the MARC II memory
system.

Our approach embraces the paradigm of spatially distributed computation,
preferring to expend reconfigurable silicon area on application-specific computation
support structures such as PreCoRe, instead of on general-purpose support mecha-
nisms with diminishing efficiency, such as classical caches. With the ongoing trend
towards ever larger reconfigurable devices, continued research in this area seems
very promising.

Acknowledgements This work was supported by the German national research foundation DFG
and by Xilinx Inc.

References

1. Aho AV, Lam MS et al (2006) Compilers: principles, techniques, and tools, 2nd edn. Prentice
Hall, New Jersey

2. Budiu M, Goldstein SC (2003) Optimizing memory accesses for spatial computation. In:
Proceedings of the international symposium on code generation and optimization: feedback-
directed and runtime optimization, CGO ’03, IEEE Computer Society, Silver Spring, MD,
pp 216–227

3. Burtscher M, Zorn BG et al (2002) Hybrid load-value predictors. IEEE Trans Comput
51:759–774

4. Callahan TJ, Hauser JR et al (2000) The Garp architecture and C compiler. IEEE Comput
33(4):62–69

5. Gädke-Lütjens H (2011) Dynamic scheduling in high-level compilation for adaptive comput-
ers. Ph.D. thesis, Technical University Braunschweig

6. González J, González A (1999) Limits of instruction level parallelism with data value
speculation. In: International conference on vector and parallel processing. VECPAR ’98,
Springer, London, UK, pp 452–465

7. Scale Compiler Group (2006) Scale. A scalable compiler for analytical experiments. Depart-
ment of Computer Science University of Massachusetts, http://www.cs.utexas.edu/users/cart/
Scale/

8. Guo Z, Najjar W et al (2008) Efficient hardware code generation for FPGAs. ACM Trans. on
Architecture and Code Optimization (TACO) 5(1):1–26

http://www.cs.utexas.edu/users/cart/Scale/
http://www.cs.utexas.edu/users/cart/Scale/

Improved Memory Access by Automatically-Compiled Speculation Mechanisms 29

9. Hennessy JL, Patterson DA (2003) Computer architecture: a quantitative approach, 3rd edn.
Morgan Kaufmann Publishers, San Francisco, CA, USA

10. Isen C, John LK et al (2009) A tale of two processors: revisiting the RISC-CISC debate. In:
Proceedings of SPEC Benchmark Workshop, pp 57–76

11. Jouppi NP (1990) Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers. In: Proceedings of the 17th annual international
symposium on computer architecture, ISCA ’90, ACM, New York, NY, USA, pp 364–373

12. Kaeli D, Yew P-C (2005) Speculative execution in high performance computer architectures.
CRC Press, Boca Raton, FL

13. Kumar S, Pires L et al (2000) A benchmark suite for evaluating configurable computing
systems—status, reflections, and future directions. In: FPGA, ACM, New York, NY, USA,
pp 126–134

14. Lange H, Koch A (2007) An execution model for hardware/software compilation and
its system-level realization. In: International conference on field programmable logic and
applications (FPL), 2007, pp 285–292

15. Lange H, Koch A (2010) Architectures and execution models for hardware/software compila-
tion and their system-level realization. IEEE Trans Comput 59(10):1363–1377

16. Lange H, Wink T et al (2011) MARC II: A parametrized speculative multi-ported memory
subsystem for reconfigurable computers. In: 2011 Conference on design, automation & test in
Europe (DATE)

17. Lee C, Potkonjak M et al (1997) MediaBench: a tool for evaluating and synthesizing multi-
media and communications systems. In: Proceedings of 30th annual IEEE/ACM international
symposium on microarchitecture, 1997, pp 330–335

18. Lipasti MH, Wilkerson CB et al (1996) Value locality and load value prediction. ACM, New
York, NY, USA, 31(9):138–147

19. McNairy C, Soltis D (2003) Itanium 2 processor microarchitecture. IEEE Micro 23:44–55
20. Micheli GD (1994) Synthesis and optimization of digital circuits, 1st edn. McGraw-Hill Higher

Education, New York, USA
21. Mock M, Villamarin R et al (2005) An empirical study of data speculation use on the intel

itanium 2 processor. In: Proceedings of workshop on interaction between compilers and
computer architectures, IEEE Computer Society, Washington, DC, USA, pp 22–33

22. Putnam A, Bennett D et al (2008) CHiMPS: A C-level compilation flow for hybrid CPU-FPGA
architectures. In: 2008 international conference on field programmable logic and applications
(FPL), pp 173–178

23. Sazeides Y, Smith JE (1997) The predictability of data values. In: Proceedings of international
symposium on microarchitecture, MICRO 30. IEEE Computer Society, Washington, DC, USA,
pp 248–258

24. Thielmann B, Huthmann J et al (2011) Evaluation of speculative execution techniques for
high-level language to hardware compilation. In: 6th international workshop on reconfigurable
communication-centric systems-on-chip (ReCoSoC) 2011, pp 1–8

25. Thielmann B, Huthmann J et al (2011) Precore—a token-based speculation architecture
for high-level language to hardware compilation. In: 2011 international conference on field
programmable logic and applications (FPL), pp 123–129

26. Thielmann B, Wink T et al (2011) RAP: More efficient memory access in highly speculative
execution on reconfigurable adaptive computers. In: 2011 international conference on recon-
figurable computing and FPGAs (ReConFig)

27. Wang K, Franklin M (1997) Highly accurate data value prediction using hybrid predictors.
In: Proceedings 30th annual IEEE/ACM international symposium on microarchitecture, 1997,
pp 281–290

28. Weaver G, Cahoon B et al (1997) Common language encoding form (clef) design document.
Technical report, Department of Computer Science, University of Massachusetts

29. Yeh T-Y, Patt YN (1992) Alternative implementations of two-level adaptive branch prediction.
In: Proceedings of the 19th annual international symposium on computer architecture,
pp 124–134

Decimal Division Using the Newton–Raphson
Method and Radix-1000 Arithmetic

Mário P. Véstias and Horácio C. Neto

1 Introduction

Computer arithmetic is predominantly performed using binary arithmetic because
the hardware implementations of the operations are simpler than those for decimal
computation. However, many decimal fractions cannot be represented exactly as
binary fractions with a finite number of bits. The value 0.1, for example, can only
be represented as an infinitely recurring binary number. If a binary approximation
is used instead of the exact decimal fraction, the results will not be exact even if the
arithmetic is exact. Therefore, many applications, such as financial and commercial,
where the results must be exact, matching those obtained by human calculations,
must be performed using decimal arithmetic. Until very recently, the adopted
solution was to implement decimal operations using software algorithms based on
binary arithmetic. However, these software solutions are typically three or four
orders of magnitude slower than binary arithmetic implemented in hardware [4].
To speed up the execution of decimal arithmetic, a few processors, such as the
IBM Power6 [1], already include dedicated hardware for decimal floating-point
operations.

Decimal division is one of the fundamental operations for hardware-based
decimal arithmetic. Division techniques based on digit-recurrence algorithms are
the most used in (binary) hardware dividers, and have also been considered in most
decimal division proposals. Nikmehr et al. [14] proposed a decimal floating-point
division algorithm based on high-radix SRT division. Lang and Nannarelli [10]
have also implemented a decimal division unit based on the digit-recurrence

M.P. Véstias (�)
INESC-ID/ISEL/IPL, Lisbon, Portugal
e-mail: mvestias@deetc.isel.ipl.pt

H.C. Neto
INESC-ID/IST/UTL, Lisbon, Portugal
e-mail: hcn@inesc-id.pt

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2 2, © Springer Science+Business Media, LLC 2013

31

32 M.P. Véstias and H.C. Neto

algorithm. Their work was compared to a division unit based on the Newton–
Raphson (NR) iterative method concluding that the implemented digit-recurrence
seemed advantageous in terms of latency compared to the NR method. Vázquez
et al. [19] proposed an algorithm based on the SRT digit-recurrence method and
the corresponding architecture for decimal division. Their implementation has a
comparable delay to that from [10] using lower hardware complexity. Wang et al.
[23] proposed an arithmetic algorithm and hardware design for decimal floating-
point division using an initial piecewise linear Taylor series approximation followed
by modified Newton–Raphson iterations.

Digit-recurrence algorithms have been the primary choice for decimal division
mainly because of the complexity of the decimal multipliers required to implement
the NR iterations. However, digit recurrence algorithms only produce one decimal
digit at each iteration, while the NR method ensures quadratic convergence.
Also, dividers based on the NR algorithm can take advantage of existing decimal
multiplier hardware.

The performance and the area of a divider based on the NR method depend
mainly on the efficiency of the decimal multipliers. Two main lines have been
considered in the design of the multipliers: iterative and parallel. In the iterative
approach, the multiplicand is iteratively multiplied by one digit of the multiplier
to generate a partial product. Partial products are then added to produce the final
decimal result. A few decimal multipliers have been proposed based on iterative
units, such as [7, 8, 18]. Parallel decimal multipliers have also been recently
proposed in [5, 9, 20, 21]. While parallel decimal multipliers are faster, they
require much more hardware resources than iterative ones.

In this work, a new iterative decimal hardware divider is proposed. The division
algorithm used is based on the calculation of the reciprocal of the divisor using the
Newton–Raphson method, followed by a final multiplication by the dividend to ob-
tain the quotient. The NR algorithm is implemented with two major optimizations,
a new initial approximation and a new iterative decimal multiplier. Instead of using
the Taylor series expansion, as in [23], the initial approximation of the reciprocal
is calculated using piecewise minimax polynomials. This allows to reduce the
number of NR iterations and therefore the size and the latency of the multipliers and
consequently of the divider. All multiplications are done using very efficient iterative
radix-1000 arithmetic. The partial multiplications of the radix-1000 multipliers are
directly implemented using the available binary multipliers, therefore significantly
improving the overall performance. Further, the use of an internal radix-1000
representation significantly simplifies the binary to/from decimal conversions.

This chapter is organized as follows. Section 2 describes the algorithm used to
compute the reciprocal of a decimal number and the error analysis of the method.
Section 3 describes the design of the decimal divider. Section 4 provides results with
and without embedded multipliers and presents a comparison with a state-of-the-art
iterative divider.

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic 33

2 Reciprocal Computation

The reciprocal of the divisor, 1
x , is calculated using the Newton–Raphson iterative

method. The first iteration uses an initial seed, herein obtained using a piece-
wise linear approximation based on minimax polynomials. The method converges
quadratically, that is, the error of the approximation decreases quadratically with the
number of iterations.

2.1 Initial Polynomial Approximation

The minimax polynomial is the approximating polynomial which has the smallest
maximum error from the given function. According to the Chebyshev alternation
theorem [17], the minimax degree-1 approximation to a given function in a specific
interval is the 1st order polynomial that has maximum error at the interval extremes
and, with alternate sign, in one interior point.

The 1st order minimax polynomial

p(1)(x) = b+m(x−X0) (1)

that approximates the function 1
x in the interval [X0,X1] can be obtained in direct

form [12], and its coefficients are

b =
1

2 X0
− 1

2 X1
+

1√
X0 X1

(2)

m =− 1

X0 X1
(3)

and its maximum error is

∣
∣Ep1

∣
∣=

1
2 X0

+
1

2 X1
− 1√

X0 X1
.x (4)

2.2 Newton–Raphson Iterations

Given the divisor x, the Newton–Raphson calculates its reciprocal 1
x by finding the

zero of the equation f (y) = 1
y − x using an iterative process. The NR iterations to

obtain 1
x are given by

y(i+1) = y(i) (2− y(i) x), (5)

34 M.P. Véstias and H.C. Neto

Table 1 Maximum
approximation errors for
different interval sizes

Interval size max(Ep1) max(ENR1) max(ENR2)

10−2 0.11×10−1 0.13×10−4 0.19×10−10

10−3 0.13×10−3 0.16×10−8 0.24×10−18

10−4 0.13×10−5 0.16×10−12 0.25×10−26

where the initial value y(0) is the initial approximation to 1
x , herein computed by (1).

If the error E(i)
NR (theoretical error without truncation) at iteration i is given by

E(i)
NR =

1
x
− y(i)

then the error E(i)
NR at iteration i+ 1 is given by

E(i+1)
NR = x (E(i)

NR)
2 (6)

[15].
As, for each piecewise approximation, x is a number in the interval [X0,X1[then

x < X1, and the NR iteration errors (in this case, the first two iterations) are upper-
bounded by

E(1)
NR < X1 (Ep1)

2 (7)

E(2)
NR < X12 (Ep1)

4. (8)

Table 1 shows the upper bounds for the reciprocal approximation errors con-
sidering that the normalized divisor interval [0.1,1[is divided into subintervals of
size 10−1.

As shown, the use of subintervals of size 10−3 is sufficient to provide an error
lower than 10−8 after one NR iteration, and an error lower than 10−18 after two NR
iterations.

2.3 Truncation Errors

In practice and to reduce the size of the lookup table and of the multipliers, the
arithmetic operators are implemented with less than full precision. In this case (1)
becomes

p(1)(x) = b+ εT0 +(m+ εT1)((x−X0)+ εT2), (9)

where εT 0, εT 1, and εT 2 are the truncation errors of b, m, and (x−X0), respectively.
Given the input subinterval [X0,X1[, the maximum truncation error of the first-

order polynomial approximation becomes therefore upper bounded by

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic 35

Table 2 Number of
fractional digits used for each
operand

1st order polynomial b = 5 m = 2 (x−X0) = 7

1st NR iteration y(0) = 5 x = 11 y(0)x = 10
2nd NR iteration y(1) = 9 x = 16 y(1)x = 19

Table 3 Upper-bounds for
maximum reciprocal errors

Divisor digits NR iterations Error upper-bound

8 1 0.34×10−8

16 2 0.42×10−17

εT < εT 0 +(X1−X0) εT 1 +
εT 2

X1X0
+ εT1εT 2. (10)

If the operand size is reduced in the computation of the NR iterations (5), the
iteration error ENR becomes

E(i+1)
NR = x (E(i)

NR + εTY)
2 + y(i) εT P− (y(i))2 εT X , (11)

where εTY , εT X , and εT P are the truncation errors of the operands y(i), x, and of the
product y(i) x, respectively.

The iteration error can therefore be upper bounded by

E(i+1)
NR ≤max

(

X1 (E(i)
NR + εTY)

2 +
1

X0
εT P,

1
X02 εTY

)

. (12)

Tables 2 and 3 show the number of fractional digits used for each operand
to ensure faithful rounding after the final reciprocal computation. The resulting
precision for the reciprocal, according to the error upper bounds provided by (12),
is also indicated. The reciprocal result will be a number in the interval [1,10] and,
therefore, will have seven fractional digits, in the case of the 8-digit result, and
15 fractional digits, in the case of the 16-digit result. Faithful rounding guarantees
that the computed result is one of the two floating-point neighbors of the exact
result [11, 16].

3 Implementation of the Divider

Two dividers have been implemented, one divider for 8-digit operands and another
for 16-digit operands. In both cases, the quotient q = z

x is obtained by calculating
the reciprocal 1

x using the method described in Sect. 2, and then multiplying it by z.
The piecewise first-order minimax polynomial approximation of the reciprocal,

y(0), calculated according to (1), as

y(0) = p(1)(x) = b+m× (x−X0)

36 M.P. Véstias and H.C. Neto

x

z

X z/xMinimax
Aproximation

8-Digit
NR Iteration

B10002BCD

B10002BCD 1/x

Fig. 1 Iterative 8-digit decimal divider

x

z

XMinimax
Aproximation

16-Digit
1st NR Iteration

z/xB10002BCD

B10002BCD 1/x

16-Digit
2nd NR Iteration

Fig. 2 Iterative 16-digit decimal divider

is the starting point of the iterative NR method for both the 8-and the 16-digit
dividers. The coefficients, b and m, of the approximation polynomial are stored in a
ROM and then used to calculate the initial linear approximation.

The calculation of the reciprocal requires a single iteration of the NR method, for
the 8-digit division, and two iterations for the 16-digit division. This guarantees the
required precision as indicated by the error upper bounds shown in Table 3.

The block diagrams for the 8-and 16-digit dividers using an initial minimax
approximation and the NR method are illustrated in Figs. 1 and 2.

The outputs of both dividers are the reciprocal of the divisor and the quotient.
The outputs of the NR iterations and of the last multiplier used to calculate 1

x × z
are numbers represented in radix-1000. Therefore, a final radix-1000 to decimal
conversion is used to obtain the reciprocal and the final division result in binary-
coded decimal (BCD).

A radix-1000 number, r, is represented with radix-1000 digits, r = rnrn−1 . . . r1r0,
where each ri digit is a decimal number from 0 to 999. Therefore a radix-1000
number has the following decimal value:

r = rn× 103×n+ rn−1× 103×(n−1)+ . . .+ r1× 103×1+ r0.

This radix has some important characteristics. A radix-1000 number can be
easily converted from/to a BCD number and radix-1000 arithmetic can be efficiently
implemented using binary arithmetic. Also, radix-1000 (base 103) is close to 210, an
important characteristic whenever binary from/to radix-1000 conversion has to be
done, as will be explained in the following sections.

In the following sections, all blocks are described in detail.

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic 37

ROM
1Kx33

b

m
x

Xb

+r

BCD2DPD

13

y0

M0

A0

10

BCD2BIN
14

14
BIN2B1000

1.512 (x-1x-2x-3)

16 (x-4x-5x-6x-7)

20(r1.r0)

14(r1.r0)

20(r1.r0)

Fig. 3 Block diagram of minimax approximation unit

3.1 Minimax Approximation

To determine the initial approximation of the reciprocal, approximation intervals
of size 10−3 have been chosen (Table 1). For each interval, the pair of coefficients
(b, m) of the minimax polynomial is stored in a ROM. So, given a x ∈ [0,1[in
the form 0.x−1x−2x−3x−4x−5x−6x−7x−8, whose reciprocal is to be calculated, its
three most significant digits, x−1x−2x−3, are used to address the ROM to retrieve
the coefficients b and m to be used in the polynomial calculation as follows
(see Fig. 3):

y(0) = p(1)(x) = b+m× (x−X0),

where X0 is x truncated to three fractional digits (0.x−1x−2x−3).
A direct implementation of the method would require a ROM with size 23×4×k,

where k is the number of bits needed to represent the pair of coefficients (b, m). With
six digits for b and four digits for m, the ROM would have a size of 212× 40. To
reduce the size of the ROM, the three input digits of X0 are first converted to a 10-
bit densely packed decimal (DPD) representation [3], to be detailed in the following
section.

The operands of the multiplication in the minimax approximation are as follows

m× (x−X0) = m× (x− 0.x−1x−2x−3) = m× (0.000x−4x−5x−6x−7x−8).

One of the multiplier operands, the m coefficient, is stored in the ROM with four
digits (two digits for the integer part and two digits for the fractional part). The
other operand, (x−X0), is truncated to seven fractional digits, 0.000x−4x−5x−6x−7,
enough to guarantee the required precision of the initial approximation (see Table 2).

So, the product will have the format 0.0u−2u−3u−4u−5u−6u−7u−8u−9, which is
then truncated to 0.0u−2u−3u−4u−5 (the least four significant digits are ignored).

To implement this multiplication, we ignore the fractional points and multiply
the decimal digits with an integer decimal multiplier. In this case, we need a 4× 4
multiplier whose result is truncated to four digits. The final four digits are the digits
u−2u−3u−4u−5 of the minimax multiplication.

38 M.P. Véstias and H.C. Neto

The proposed design uses a binary multiplier to implement this multiplication.
Therefore, the four digits of x used in the multiplication, x−4, x−5, x−6, x−7, must be
converted to binary (BCD2BIN component) while the m operand is retrieved from
the ROM already in binary format.

The result of the multiplication is then added to the coefficient b, which is
represented with one digit for the integer part and five digits for the fractional part.
A radix-1000 adder is used, since the NR iterations use radix-1000 multipliers.
Therefore, the b coefficient is stored in the ROM in radix-1000 format. However,
the output from the binary multiplier is a binary number, and therefore, it must be
converted to radix-1000 and truncated as stated above.

To optimize the binary to radix-1000 conversion of the output of the multiplier,
followed by the truncation of the least four significant digits, the four digits of the m
operand are first multiplied by a constant. The constant is determined as explained
next. Given two decimal operands, op1 and op2, with four digits each, the four digits
truncation of op1× op2 is given by

op1× op2
104

which can be rewritten as

op1× 213

104 × op2
213 = mc× op2

213 , (13)

where mc = op1× 213

104 .
While the original coefficient m (op1) is representable with 14 bits, the coefficient

mc needs only 13 bits. So, mc is stored instead of m. Besides, the 27-bits at the
multiplier output are simply shifted 13 bits to do the four digits truncation. The
remaining 14 bits from the multiplier output are then converted to radix-1000
(BIN2B1000 component) and added to b.

Considering these optimizations, the size of the ROM is reduced to 210× 33.

3.1.1 BCD to DPD Conversion

The DPD encoding [3] is a specific format to compress three decimal digits into
10 bits, instead of the 12 bits required using simple BCD (one digit in 4 bits). The
DPD encoding has been developed such that the compression can be implemented
using only very simple boolean operations.

The DPD converter transforms a group of three BCD digits (D2D1D0, where
D2 = abcd, D1 = e f gh and D0 = i jkm) into 10-bit numbers of the form “pqr stu v
wx y” according to logic equations (14) (as proposed in [3]). All the required logic
functions have five or less variables, and therefore each function can be implemented
using at most a single 6-input LUT (e.g., in Virtex6 FPGA) or two 4-input LUTs and
a multiplexer (e.g., in Virtex4 FPGA).

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic 39

d3 d2
d1 d0

+ +

+ +

<<6 <<5 <<2

+

b

<<3
<<1

<<3
<<1

Fig. 4 Block diagram of the
decimal to binary converter

p = b+ a · j+ a · f · i
q = c+ a · k+ a ·g · i
r = d

s = f ·a+ f · i+ a · e · j+ e · i
t = g ·a+ g · i+ a · e · k+ a · i
u = h

v = a · e · i
w = a+ e · i+ j · e
x = e+ a · i+ k ·a
y = m. (14)

3.1.2 BCD to Binary Converter: BCD2BIN

The conversion of a 4-digit decimal, d = d3d2d1d0, to binary, b, is done using binary
arithmetic according to

b = (d310+ d2)102 + d110+ d0 (15)

which is implemented with only adders and shifts by factoring the constants as
powers of two, as

b = (d3× 8+ d3× 2+ d2)(64+ 32+ 4)+ d1× 8+ d1× 2+ d0. (16)

The final implementation requires five adders, as shown in Fig. 4 (in this figure,
<<sh represents a left shift of sh bits).

40 M.P. Véstias and H.C. Neto

b(2) (14 bits)

(13..10)

24 x + y 11 bits

(9..0)

+

r0r1

11

+24

MUX

10
10

1 0

(11)

‘0’

104

Fig. 5 14-bit binary to
radix-1000 converter

3.1.3 Binary to Radix-1000 Converter

The binary to radix-1000 converter (BIN2B1000 block in Fig. 3) is based on the
architecture proposed in [13] to convert a 20-bit binary number to a two-digit
radix-1000 number. The BIN2B1000 converter used in the minimax polynomial
calculation only needs to convert a 14-bit binary number (see Fig. 5).

The circuit converts a binary number b ∈ [0,9999] to one decimal digit plus a
digit base-1000 number r, that is

b = r1 ·103 + r0 = r.

Considering that

b = b1 ·210 + b0

it follows that

b = b1 ·1024+ b0 b1 ≤ 10 = 9999
1024

= b1 ·1000+ b1 ·24+ b0
︸ ︷︷ ︸

c

b0 ≤ 1023, (17)

where

c = b1 ·24+ b0 c≤ 1215← 11 bits. (18)

From Eqs. (17) and (18), b is given by

b = (b1) ·1000+ c (19)

and a first approximation for the two digits is:

r̂1 = b1 ≤ 9 ← 4 bits (20)

r̂0 = c≤ 1215 ← 11 bits. (21)

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic 41

R0

+ +

24

MUX
(10)

R0

+

h1
g1 h0

g0

k1 k0

Fig. 6 Adder radix-1000 for
numbers with two radix-1000
digits

From these, the final step is to test if r̂0 is higher than 999, that is, if r̂0 + 24 is
higher then 1023. If yes, r̂1 must be incremented by one and r̂0 must be increased
by 24 to adjust the result. Otherwise, the result is already correct.

3.1.4 Adder Radix-1000

A radix-1000 adder sums two radix-1000 numbers, g = g2g1g0 and h= h2h1h0. The
result, k = k2k1k0 = g+ h, is calculated as follows:

k
′
0 = g0 + h0

k
′
1 = g1 + h1 +Cy0

k
′
2 = g2 + h2 +Cy1

km = k
′
m, Cym = 0, if k

′
m < 1000

= k
′
m + 24, Cym = 1, otherwise. (22)

The radix-1000 adder in the circuit for minimax polynomial calculation adds two
operands with two radix-1000 digits each. In this particular case, the result can also
be represented with only two radix-1000 digits. Therefore, the more general case
given in Eq. (22) simplifies into Eq. (23).

k
′
0 = g0 + h0

k
′
1 = g1 + h1 +Cy0

k0 = k
′
0, Cy0 = 0, if k

′
0 < 1000

= k
′
0 + 24, Cy0 = 1, otherwise

k1 = k
′
1. (23)

A block diagram of the implementation is sketched in Fig. 6. As shown, to verify
if the addition of the lowest digits, k

′
0, is lower than 1000, k

′
0 is added with 24 and the

most significant bit of the result is checked. If it is ’0’ it means that result is lower
than 1024 and so k

′
0 is lower than 1000. This avoids the utilization of a comparator.

42 M.P. Véstias and H.C. Neto

2' XXy0

x

M1

M2

C0

1.5

0.8

1.10 1.10 1.9

8-Digit - first NR Iteration

BCD2B1000

1/x
20(r1.r0)

30(r2.r1.r0)

40(r3.r2.r1.r0) 40(r3.r2.r1.r0) 40(r3.r2.r1.r0)

Fig. 7 NR iteration unit for the 8-digit reciprocal

2' XXy0

y1

x

x

M1

M2

C0

1.5

0.12

1.10 1.10 1.10

16-Digit - first NR Iteration

y1

BCD2B1000

2' XX

M3

M4

C1

1.10

0.16

1.18 1.18 1.18

16-Digit - second NR Iteration

BCD2B1000

1/x

20(r1.r0)

40(r3.r2.r1.r0)

40(r3.r2.r1.r0)

60(r5.r4.r3.r2.r1.r0)

70(r6.....r0) 70(r6.....r0) 70(r3.....r0)

40(r3.r2.r1.r0) 40(r3.r2.r1.r0) 40(r3.r2.r1.r0)

Fig. 8 First and second NR iteration units for the 16-digit reciprocal

3.2 NR Iterations

The 8-digit reciprocal is calculated with a single NR iteration:

1
x
= y(0)× (2− x× y(0))

while the 16-digit reciprocal calculation requires two NR iterations:

y(1) = y(0)× (2− x× y(0))

1
x
= y(1)× (2− x× y(1)).

Each NR iteration needs two multipliers and a circuit to calculate (2−w). How-
ever, the precision (number of digits) considered at each intermediate calculation is
different for each case (see Figs. 7 and 8).

The inputs of the NR iteration unit, for the 8-digit reciprocal, are the output of
the minimax approximation unit and the eight fractional digits of x in radix-1000.
The block BCD2B1000 converts the decimal number, x, to three radix-1000 digits.

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic 43

The first multiplication, M1, must keep ten fractional digits plus an integer one (11
digits), and therefore four radix-1000 digits (4× 3 decimal digits) are kept at the
output of the multiplier. Next, the block 2’ implements 2− x× y(0) and maintains
the same precision. Finally, the operands of the last multiplier, M2, are two radix-
1000 numbers with two and four radix-1000 digits, respectively, and four radix-
1000 digits are kept at the output to guarantee a result with one integer and nine
fractional digits.

For the 16-digit reciprocal case, the number of fractional digits of x used in the
first multiplication increases from eight to twelve, and the final result of the first
iteration unit must keep ten fractional digits instead of nine. The output of the second
iteration unit keeps one integer digit and 18 fractional digits.

In all implementations, the multiplications are done with iterative radix-1000
multipliers. The dimensions of the multipliers in terms of radix-1000 operands are
as follows:

Divider M1 M2 M3 M4

8-Digit 2×3 2×4 – –
16-Digit 2×4 2×4 4×6 4×7

The following sections describe the implementation of the iterative radix-1000
multipliers, the decimal to radix-1000 converter, and the (2−w) block.

Radix-1000 Multiplier

The radix-1000 multiplications of the divider are implemented with iterative
multipliers. As referred, using parallel multipliers would turn the solution very
expensive in terms of resources.

In each iteration of the multiplication, two radix-1000 digits are multiplied and
the result is accumulated. This allows the utilization of a binary multiplier since
a radix-1000 digit is in binary format. The results published in [22] suggest that
this method is very efficient as long as binary to decimal conversions of large
numbers are avoided since the size of binary to decimal converters increases more
than linearly [21] with the size of the operands.

Formally, given two radix-1000 numbers, g and h, in the form

g = gn−1gn−2 . . .g2g1g0

h = hn−1hn−2 . . .h2h1h0

or

g =
n−1

∑
i=0

gi103×i, h =
n−1

∑
i=0

hi103×i

44 M.P. Véstias and H.C. Neto

g
n_1 gn_1 hn_1 hn_2 h0gn_2 g0hn_1 hn_2 h0

g h

Multiplexorsel1 Multiplexor sel2

Binary multiplier

BIN2B1000

Adder radix_1000 Shift radix-1000 shift

selOut

0

gxh

10 10

20

10 10 10+k

10+k
10

Multiplexorsel3 Multiplexor sel4

Binary multiplier

10 10

20

Binary adder

2nd datapath
g h

0g
n_2 g

0

Fig. 9 Iterative radix-1000 multiplier using binary arithmetic

the iterative multiplication is given by

g× h =
n−1

∑
i=0

n−1

∑
j=0

gi× h j103×(i+ j). (24)

The architecture of the iterative multiplier is illustrated in Fig. 9.
At each step, a pair of radix-1000 digits is selected at the input multiplexers

and multiplied. The result of the multiplication is a 20-bit binary number that is
converted to two radix-1000 digits, which are then accumulated also in radix-1000
with the previous result. Working with radix-1000 reduces the division by 1000 to a
shift of a digit radix-1000.

The shifts take place according to the multiplication algorithm. According to
Eq. (24), the first shift happens after one accumulation (g0h0), the second shift after
two accumulations (g0h1+g1h0), until a maximum of n accumulations, followed by
n− 1, n− 2 accumulations, and so on.

To reduce the number of iterations, a second internal path for the parallel
calculation of partial products may be used. This second path is only used in the
second NR iteration, as explained later.

The following sections describe the implementation of the binary to radix-1000
converter (BIN2B1000 component) and the radix-1000 adder with accumulation.

Binary to Radix-1000 Converter

In the single path multiplier, the input of the binary to radix-1000 converter is 20
bits large, and in the double path multiplier is 21 bits large.

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic 45

The input of the 20 bit converter is a binary number b∈ [0,999999] and the output
is a two radix-1000 digits number, r1,r0, that is

b = r1 ·103 + r0 = r.

Considering that

b = b1 ·210 + b0

it follows that

b = b1 ·1024+ b0 b1 ≤ 974 = 999×999
1024

= b1 ·1000+ b1 ·24+ b0
︸ ︷︷ ︸

c

b0 ≤ 1023, (25)

where
c = b1 ·24+ b0 c≤ 24399 ← 15 bits
c = c1 ·1024+ c0

= c1 ·1000 c1 ≤ 23 ← 5 bits
+ c1 ·24 c1× 24≤ 23× 24
+ c0 c0 ≤ 1023 ← 10 bits.

(26)

From equations (25) and (26), b is given by:

b = (b1 + c1) ·1000+ c1 ·24+ c0 (27)

and a first approximation for the two digits is

r̂1 = b1 + c1 ≤ 997 ← 10 bits (28)

r̂0 = c1 ·24+ c0≤ 1585 ← 11 bits, (29)

where

r̂1 ∈ [r1− 1,r1]

r̂0 ∈ [0,1575].

From these, the final step is to test if r̂0 is higher than 999, that is, if r̂0 +24 is higher
than 1023. If yes, r̂1 must be incremented by one and r̂0 must be increased by 24 to
adjust the result. Otherwise, the result is already correct.

The converter consists of a set of adders and a ROM to convert a k×210 number
to radix-1000, as shown in Fig. 10.

The input of the 21-bit converter is a binary number b ∈ [0, 2× 999× 999], and
the outputs are a two radix-1000 digits number, r1r0, and a carry out (Cout). The
converter is similar to the case with 20 bits, except that an extra step is needed to
extract the carry out from the second digit (see Fig. 11).

46 M.P. Véstias and H.C. Neto

b(2) (20 bits)

(19..10)

24 x + y

(9..0)

+

r0r1

11
+24

MUX

10

1 0
10(11)

1010

ROM – Kx210

15

105

+
105

Fig. 10 20-bit binary to
radix-1000 converter

b(2)(21 bits)

(20..10)

24 x + y

(9..0)

+

r0

Cout

11

+24

MUX

10

1 0
10(11)

1011

ROM – Kx210

16

106

+
106

r1

11
+24

MUX

10

10

1 0

(11)

10

Fig. 11 21-bit binary to
radix-1000 converter

3.2.1 Radix-1000 Accumulator

The radix-1000 accumulator adds radix-1000 digits in the interval [0, 999× 999]
for the single datapath and in [0,2× 999× 999] for the double datapath multiplier.
Considering an m× n radix-1000 multiplier, max(n,m) accumulations can occur
before a shift takes place. The biggest multiplier used to implement the divider is

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic 47

R0

+

c

+

24

MUX
(10)

R0

+

c

+

24

MUX
(10)

R0

+ +

24

MUX
(10)

g2

k2 k1 k0

g1 g0

Fig. 12 Radix-1000 accumulator

a 6× 7 multiplier. Therefore, a three radix-1000 digits accumulator is enough to
implement any of the iterative multipliers utilized to implement the divider.

Given two radix-1000 numbers, g = g2g1g0 and h = h2h1h0 the addition k =
k2k1k0 = g+ h, is calculated as follows:

k
′
0 = g0 + h0

k
′
1 = g1 + h1 +Cy0

k
′
2 = g2 + h2 +Cy1

km = k
′
m, Cym = 0, if k

′
m < 1000

= k
′
m + 24, Cym = 1, otherwise.

(30)

According to the block diagram of the iterative decimal multiplier (Fig. 9), the
radix-1000 number obtained after conversion of the result from the binary multiplier
is added to the previous accumulation. A direct implementation of the algorithm
would have a high carry propagation delay. To improve the performance, we have
implemented a carry save adder and used a similar scheme to test if the number is
higher than 999.

The final implementation is shown in Fig. 12. Each input digit is added to both the
previously accumulated digit of the same arithmetic weight and with 24. The results
from both adders are multiplexed according to the most significant bit of the plus 24
adder. The result and the carry out are registered to implement carry save addition. In
the case of a single datapath multiplier, g2 = “0”. For a double datapath, g2 =Cout,
where Cout comes from the binary to radix-1000 converter.

3.2.2 Decimal to Radix-1000 Converter

Decimal to radix-1000 conversion is straightforward. Each radix-1000 results from
the conversion of three decimal digits to binary. Formally, given a decimal number

48 M.P. Véstias and H.C. Neto

dn−1dn−2 . . .d1d0, the radix-1000 equivalent, rn−1rn−2 . . . r1r0, is determined as
follows:

ri = DEC2BIN(d2+3×id1+3×id0+3×i), i = 0,1,2, . . . (31)

The decimal to binary conversion of three digits is obtained, using binary
arithmetic, as

b = d2102 + d110+ d0 (32)

whose implementation is straightforward.

3.2.3 Two’s Complement of a Radix-1000 Number

Each iteration of the NR has a multiplicative factor of the form (2−w), where w =
wn−1wn−2 . . .w1w0 is the output of the first multiplier of the iterative unit represented
in radix-1000. w has one integer digit equal to 0 or 1. Given a number in radix-
1000 with n digits, w, and knowing that the most significant digit is only 0 or 1,
(2−w) = c = cn−1cn−2 . . .c1c0 is calculated as follows:

c
′
0 = 1000−w0

c0 = 0, Cy0 = 1, i f c
′
0 = 1000

= c
′
0, Cy0 = 0, otherwise

c
′
1 = 999−w1+Cy0

c1 = 0, Cy1 = 1, i f c
′
1 = 1000

= c
′
1, Cy1 = 0, otherwise

. . . = . . .

cn−1 = 1−wn−1+Cyn−2. (33)

3.3 Binary to BCD Converter

The BCD converter transforms a 10-bit binary number, b, into a BCD number
with three digits, d2, d1, and d0. Binary to decimal conversion is fundamentally
the calculation of the following polynomial, using decimal arithmetic:

b = bn−1 ·2n−1 + bn−2 ·2n−2 + . . .+ b0 ·20 (34)

or

b = (((bn−1 ·2)+ bn−2) ·2+ bn−3) ·2+ . . .+ b0. (35)

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic 49

If (>4) Add-3

‘0’

If (>4) Add-3

If (>4) Add-3

If (>4) Add-3

If (>4) Add-3

If (>4) Add-3

‘0’

If (>4) Add-3

b5 b4 b3 b2 b1 b0b6b7b8b9

d2 d1 d0
dc

If (>4) Add-3If (>4) Add-3

If (>4) Add-3If (>4) Add-3If (>4) Add-3

‘0’

Fig. 13 Add-3 and shift
algorithm for a 10-bit binary
number

Multiplication by two is achieved with a shift towards the most significant bit.
However, since the operations are in decimal whenever a bit shifts across a boundary
of a digit, the digit must be corrected by adding three before the shift takes place [2]
(or six after the shift). The three-digit binary to decimal converter (see Fig. 13) was
implemented using this algorithm, which is usually known as the add-3 and shift
algorithm .

In the converter used in the divider, the binary number to be converted is always
less than 1000. Whenever this is the case, the left bottom block of the converter
(dashed block in Fig. 13) can be removed since dc is zero.

3.4 Improving the Performance of the Divider

The performance of the decimal divider depends mainly on the efficiency of
the iterative multipliers. The maximum operating frequency of the multiplier is
constrained by the initial datapath (multiplexer, binary multiplier and binary to
radix-1000 converter) that calculates the partial products, which are successively
accumulated. To improve its performance, and consequently the performance of
the divider, the multiplier datapath is pipelined such that each stage is optimally
balanced with the internal loop longest path. Consequently, the maximum frequency
becomes constrained by the internal loop consisting of the radix-1000 accumulator.

Also, a multiplier in the datapath of the complete divider can start calculating as
soon as the first partial product of the previous operation is available. Therefore, the
execution of the multipliers can overlap in time. A more detailed accounting of the
number of cycles is provided in the following section.

50 M.P. Véstias and H.C. Neto

ROM
1Kx33

x

Xb

+r
BCD2DPD

20

13
M0

A0

12 10

BCD2BIN
16 14

14
14

BIN2B1000

20 M1

M2

C0

30

40 z/x

BCD2B1000

X 2' X
40

X
40 30

1/x
M3

z
30

BCD2B1000

B10002BCD

B10002BCD

Fig. 14 Final architecture of the 8-digit divider

ROM
1Kx33

x

Xb

+r

BCD2DPD

20

13
M0

A0

12 10

DEC2BIN
16 14

14
14

BIN2B1000

20
M1

M2

C0

40

40

DEC2B1000

X 2' X
40

X
70 60

M5

z
60

DEC2B1000

40
M3

M4

C1
70

X 2' X
70

60

z/x

1/x

B10002BCD

B10002BCD

Fig. 15 Final architecture of the 16-digit divider

The complete divider architecture comprises the minimax approximation block,
the NR iterations components, the final multiplier (1

x × z), and the radix-1000 to
decimal converters, as shown in Figs. 14 and 15.

The dividers provide as output results both the reciprocal and the quotient.

4 Results

The architectures of the dividers for operands of size 8 and 16 were specified in
VHDL. The circuits were synthesized, placed, and routed with Xilinx ISE13.1 and
implemented in a Virtex-4 SX35-12 FPGA and in a Virtex-6 VLX75T. The results
were compared with an SRT-like divider from [6], which proposed a nonrestoring
algorithm (alg1) and an SRT-like algorithm (alg2), both implemented in a Virtex-4
FPGA.

Two different architectures were considered for the 8-digit divider, A8Single and
A8Double, with the following characteristics:

• A8Single—All multipliers use a single datapath
• A8Double—The final multiplier uses a double datapath

Three different architectures were considered for the 16-digit divider, A16Single,
A16Double and A16OneDouble, with the following characteristics:

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic 51

Table 4 Results for the 8-digit divider in a Virtex-4 (times in ns)

Exec Throughput
A/B FF LUT BRAMs DSPs Cycles Tclk (cycles×Tclk) # CBD (Mdiv/s)

A8Single 1371 2016 2 0 51 3.4 173 14 21
A8Single 1101 1605 2 5 51 3.4 173 14 21
A8Double 1489 2224 2 0 47 3.4 160 12 24.5
A8Double 1267 1783 2 5 47 3.4 160 12 24.5
alg1[6] 151 2008 0 0 10 20.5 205 10 4.9
alg2[6] 231 2612 0 0 10 16.4 164 10 6.1

Table 5 Results for the 16-digit divider in a Virtex-4 (times in ns)

A/B FF LUT BRAMs DSPs Cycles Tclk

Exec
(cycles×Tclk) # CBD

Throughput
(Mdiv/s)

A16Single 2098 2756 2 0 118 3.4 401 43 6.8
A16Single 1820 2091 2 7 118 3.4 401 43 6.8
A16Double 2361 3768 2 0 96 3.4 326 25 11.7
A16Double 2172 2718 2 10 96 3.4 326 25 11.7
alg1[6] 246 2974 0 0 18 21 386 18 2.6
alg2[6] 342 3799 0 0 18 16.6 300 18 3.3

Table 6 Results for the 8-digit divider in a Virtex-6 (times in ns)

A/B FF LUT BRAMs DSPs Cycles Tclk

Exec
(cycles×Tclk) # CBD

Throughput
(Mdiv/s)

A8Single 1355 1549 1 0 51 2.6 135 14 27
A8Single 1009 987 1 4 51 2.6 135 14 27
A8Double 1427 1737 1 0 47 2.6 122 12 32
A8Double 1182 1166 1 4 47 2.6 122 12 32

• A16Single—All multipliers use a single datapath
• A16Double—Multipliers in the second NR iteration and the final multiplier use

a double datapath
• A16OneDouble—Only the final multiplier uses a double datapath

Also, for each architecture, implementations with different performance/area
tradeoffs were considered, including implementations utilizing dedicated DSPs of
the FPGA. The results obtained (after place and route) are summarized in Tables 4
and 5, for the Virtex-4, and in Tables 6 and 7, for the Virtex-6 FPGA.

The throughput indicated in the tables is based on the number of cycles after
which a new division can start (# CBD).

The total number of cycles depends not only on the number of cycles of each
block but also on the overlap of execution times of each multiplier, as shown in
Figs. 16 and 17. The figures indicate the execution and the starting times (in clock
cycles) of each hardware block in the datapath. Since the execution of the last
multiplier overlaps only with the previous block, it is important to speed up its
execution. This is the reason why the A16OneDouble architecture, where only the

52 M.P. Véstias and H.C. Neto

Table 7 Results for the 16-digit divider in a Virtex-6 (times in ns)

A/B FF LUT BRAMs DSPs Cycles Tclk

Exec
(cycles×Tclk) # CBD

Throughput
(Mdiv/s)

A16Single 2545 2517 1 0 118 2.7 321 43 8.6
A16Single 2637 2822 1 0 118 2.6 309 43 8.9
A16Single 2213 1771 1 6 118 2.7 321 43 8.6
A16Double 2875 3156 1 0 96 2.7 262 25 14,8
A16Double 2934 3452 1 0 96 2.6 252 25 15,4
A16Double 2390 2026 1 9 96 2.7 262 25 14,8
A16OneDouble 2801 3020 1 0 108 2.7 294 30 12.3
A16OneDouble 2603 2720 1 0 108 2.6 283 30 12.8
A16OneDouble 2376 2235 1 7 108 2.7 294 30 12.3

0

Minimax (9)

M1+C0 (13)

M2 (15)

M3 (20)

9 19 22 31 34 51

8-Digit Divider

time (ns)

Conv

52

Fig. 16 Temporal diagram of
the execution of the 8-digit
divider

0

Minimax (9)

M1+C0 (13)

M2 (15)

9 21 24 33 36 63

16-Digit Divider – A16Single

time (ns)

ConvM3+C1 (33)

M4 (44)

M5 (45)

49 8473 118 119

0

Minimax (9)

M1+C0 (13)

M2 (15)

9 21 24 33 36 53

16-Digit Divider – A16Double

time (ns)

ConvM3+C1 (33)

M4 (44)

M5 (45)

47 8064 96 97

0

Minimax (9)

M1+C0 (13)

M2 (15)

9 21 24 33 36 63

16-Digit Divider – A16OneDouble

time (ns)

ConvM3+C1 (33)

M4 (44)

M5 (45)

49 8476 108 109

Fig. 17 Temporal diagram of the execution of the 16-digit divider for the three different
architectures

last multiplier uses a double datapath, achieves almost 50 % (10 ns) of the total
performance improvement (22 ns) achieved with the architecture A16Double, where
both multipliers of the second NR iteration and the last multiplier have a double
datapath.

Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic 53

From the tables, we observe and conclude the following:

• The proposed 8× 8 decimal divider without DSPs utilizes about the same area
of Alg1 with a 16 % reduction in execution time. The solution using a double
datapath in the final multiplier achieves an 8 % improvement in the execution
time, with a 10 % increase in area.

• The solutions with DSPs have a 10 % better execution time than the implementa-
tions without DSPs and save around 20 % of LUTs.

• The throughput of the proposed 8× 8 decimal divider is 4 to 5 times better
compared to those obtained with alg1 and alg2.

• For the 16×16 divider, the area and execution time of both solutions are similar.
In terms of throughput, the proposed divider is almost four times better.

• The execution time in Alg1 and Alg2 increases linearly with the number of
digits. However, it increases more than linearly in the proposed divider. On the
other hand, the area increases linearly in Alg1 and more than linearly in our
proposal and in Alg2. So, for larger operands, the efficiency of the NR method
will decrease compared to Alg1 and Alg2.

• Similar conclusions can be taken for the Virtex-6 implementations. These utilize
less LUTs since we are dealing with 6-input LUTs instead of 4-input LUTs of
Virtex-4 FPGAs. Also, the execution time is from 25 % to 30 % better compared
to the implementation using a Virtex-4 FPGA.

5 Conclusions

Iterative dividers of sizes 8 × 8 and 16 × 16 based on the Newton–Raphson
method with an initial minimax approximation were proposed and implemented in
reconfigurable hardware.

The NR-based method for division has the advantage of producing the reciprocal
that can be used for successive divisions by the same number. However, the
remainder is not available.

The results show that the division based on the NR iterative method is compet-
itive with SRT-based solutions, achieving significantly higher throughputs, as long
as it uses a good initial approximation and efficient multipliers. Our approach, using
the minimax polynomial for initial approximation, needs one less iteration than the
Taylor-based approximation to achieve the precision required.

Also, the proposed decimal multipliers use binary multipliers. This is specially
attractive when the target technology includes embedded binary multipliers, such as
FPGAs.

Acknowledgements This work was supported by FCT (INESC-ID multiannual funding) through
the PIDDAC Program funds.

54 M.P. Véstias and H.C. Neto

References

1. POWER6 Decimal Floating Point (DFP) (2009). URL http://www.ibm.com/developerworks/
wikis/display/WikiPtype/Decimal+Floating+Point

2. Alfke P, New B (1997) Serial code conversion between BCD and binary. In: Xilinx application
note XAPP 029

3. Cowlishaw M (2002) Densely packed decimal encoding. IEE Proc Comput Digit Tech
149(3):102–104. DOI 10.1049/ip-cdt:20020407

4. Cowlishaw MF (2003) Decimal floating-point: algorism for computers. In: Proceedings IEEE
6th IEEE international symposium on computer arithmetic, pp 104–111

5. Dadda L, Nannarelli A (2008) A variant of a radix-10 combinational multiplier. In: Proceedings
IEEE international symposium on circuits and systems (ISCAS), pp 3370–3373

6. Deschamps JP, Sutter G (2010) Decimal division: Algorithms and FPGA implementations.
In: Proceedings IEEE southern conference on programmable logic, pp 67–72

7. Erle MA, Schulte MJ (2003) Decimal multiplication via carry-save addition. In: Proceedings
IEEE 14th IEEE international conference on application specific systems, pp 348–358

8. Kenney RD, Schulte MJ, Erle MA (2004) High-frequency decimal multiplier. In: Proceedings
IEEE international conference on computer design: VLSI in computers and processors,
pp 26–29

9. Lang T, Nannarelli A (2006) A radix-10 combinational multiplier. In: Proceedings IEEE 40th
international asilomar conference on signals, systems, and computers, pp 313–317

10. Lang T, Nannarelli A (2007) A radix-10 digit-recurrence division unit: algorithm and architec-
ture. IEEE Transactions on Computers, 56(6):1–13

11. Louvet N, Muller JM, Panhaleux A (2010) Newton–Raphson algorithms for floating-point
division using an FMA. In: Proceedings IEEE 20th international conference on application-
specific systems architectures and processors, pp 200–207

12. Muller JM (2006) Elementary functions—algorithms and implementation. Birkhauser, Basel
13. Neto HC, Véstias MP (2008) Decimal multiplier on fpga using embedded binary multipliers.

In: Proceedings IEEE 20th international conference on field programmable logic and applica-
tions, pp 197–202

14. Nikmehr H, Phillips B, Lim CC (2006) Fast decimal floating-point division. IEEE Trans VLSI
Syst 14(9):951–961

15. Parhami B (2000) Computer arithmetic—algorithms and hardware designs. Oxford University
Press, Oxford

16. Rump SM, Ogita T, Oishi S (2008) Accurate floating-point summation part i: faithful rounding.
SIAM J Sci Comput 31:189–224. DOI http://dx.doi.org/10.1137/050645671. URL http://dx.
doi.org/10.1137/050645671

17. Suetin PK (2001) Chebyshev polynomials, Encyclopedia of mathematics edition. Springer,
Berlin

18. Sutter G, Todorovich E, Bioul G, Vazquez M, Deschamps JP (2009) FPGA implementations of
BCD multipliers. In: Proceedings IEEE international conference on reconfigurable computing
and FPGAs, pp 36–41

19. Vázquez A, Antelo E, Montuschi O (2007) A radix-10 SRT divider based on alternative BCD
codings. In: Proceedings IEEE international conference on computer design, pp 280–287

20. Vázquez A, Antelo E, Montushi P (2007) A new family of high-performance parallel decimal
multipliers. In: Proceedings IEEE 18th symposium on computer arithmetic, pp 195–204

21. Véstias MP, Neto HC (2010) Parallel decimal multipliers using binary multipliers.
In: Proceedings IEEE southern conference on programmable logic, pp 73–78

22. Véstias MP, Neto HC (2011) Iterative decimal multiplication using binary arithmetic.
In: Proceedings IEEE southern conference on programmable logic, pp 257–262

23. Wang LK, Schulte M (2004) Decimal floating-point division using newton-raphson iteration.
In: Proceedings IEEE international conference on application-specific systems, Architectures
and processors, pp 84–95

http://www.ibm.com/developerworks/wikis/display/WikiPtype/Decimal+Floating+Point
http://www.ibm.com/developerworks/wikis/display/WikiPtype/Decimal+Floating+Point
http://dx.doi.org/10.1137/050645671
http://dx.doi.org/10.1137/050645671

Lifetime Reliability Sensing in Modern FPGAs

Abdulazim Amouri and Mehdi Tahoori

1 Introduction

The need for high performance has been the main motivation toward more
down-scaling of complementary metal oxide semiconductor (CMOS) devices [1].
This down scaling enables the integration of billions of transistors on a single
die [2, 3]. FPGAs are in the front line to exploit the latest advancements in
CMOS technology, because their high volume, regularity, and scalability, to
cope with highest performance demands for digital and some mixed-mode analog
applications. Unfortunately, this downscaling does not come cost-free. Some of
the challenges include manufacturing variability, sub-threshold leakage, power
dissipation, increased circuit noise sensitivity, and reliability concerns due to
transient (e.g., radiation-induced soft errors) and permanent (e.g., transistor aging)
failures [4,5]. Transistor aging is one of the most important reliability challenges at
nanoscale CMOS technology. Two important causes are bias-temperature instability
(BTI) and hot carrier injection (HCI) [6]. The BTI consists of two independent
phenomena: negative BTI (NBTI) that affects the PMOS transistors and positive
BTI (PBTI) that affects the NMOS transistors. The NBTI/PBTI occurs when the
PMOS/NMOS transistor is negatively/positively biased at elevated temperature.
The HCI on the other side happens due to carrier trapping in the interface region
between the channel and the gate dielectric. The major effect of the BTI and HCI is
that they increase the magnitude of the transistor’s threshold voltage and reduce the
effective carrier mobility over time. That leads to a reduction in the switching speed
of the transistor [7].

A. Amouri (�) • M. Tahoori
Chair of Dependable Nano Computing (CDNC), Karlsruhe Institute of Technology (KIT),
Haid-und-Neu-Str. 7, D-76131 Karlsruhe, Germany
e-mail: abdulazim.amouri@kit.edu; mehdi.tahoori@kit.edu

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2 3, © Springer Science+Business Media, LLC 2013

55

56 A. Amouri and M. Tahoori

This means it causes time-increasing path delay faults in the circuit. Once the
delay of critical paths exceed the clock period, the correct functionality of the circuit
is affected. Furthermore, the accumulated effects of NBTI and HCI push toward the
wear-out phase, so the transistor is aged at a faster rate [8].

As FPGAs use the latest trends in CMOS technology, it is important to address
nanoscale reliability concerns for FPGAs and have counter-measures against them.
In this chapter, we present a logic-level circuitry for detection of late transitions
that happen due to transistor aging in modern FPGAs. We take advantage of the
resources available in FPGAs to design and implement low-cost and highly accurate
online aging sensors. We also provide a scheme to select which paths are to
be monitored (the most aging-vulnerable paths) in the circuit using the available
FPGA tools in order to have a high-efficient monitoring.

By using our sensor mapping techniques, the sensitivity of the sensor can
selectively be adjusted to the range from a warning sensor to a late transition detector
with a desired window. When used as a warning sensor, it can signal aging when
the transitions happen in the timing guards, to be able to detect and mitigate aging
of critical paths before it causes erroneous captures.

Unlike most of previous work which are based on ring oscillators and counters
to measure variation and aging across the FPGA chip [9,10], our proposed sensor is
application dependent, that is it monitors the correct functionality of critical paths
in the FPGA-mapped design. To the best of our knowledge, we present the first
approach for design and mapping of a logic-level aging sensor for FPGA-based
designs.

The rest of the chapter is organized as follows. In Sect. 2, the term of transistor
aging is explained, then in Sect. 3, the related work is reviewed. Section 4 presents
the main idea of the proposed aging sensor. FPGA mappings of the sensor is
discussed in Sect. 5. Section 6 contains the experimental results and analysis of the
aging sensors. Finally, Sect. 7 concludes this paper.

2 Transistor Aging

Aging is one of the most important reliability issues facing the VLSI devices at
nano-scale. It happens gradually on a long time scale, in which the performance
of the device decays slowly until reaching a critical limit that causes failures in
the circuit. There are several reasons for device aging; two of the most important
ones are BTI [11, 12] and HCI [7, 8]. These two phenomena cause the delay of
the transistors to increase, which in turn increase the total delay of the paths in the
circuit, and once the critical path delay exceeds the timing (defined by the running
frequency), the chip starts to fail, and ultimately, the lifetime will be reduced.

Lifetime Reliability Sensing in Modern FPGAs 57

100 102 104 106 108
0

20

40

60

80

100

120

140

Stress Time (s)

PBTI for 32nm node
NBTI for 32nm node
PBTI for High-K 32nm
NBTI for High-K 32nm

|Δ
V

th
| (

m
V

)

Fig. 1 Vth shift induced by
NBTI and PBTI [12]

2.1 Bias Temperature Instability

The BTI phenomenon causes the magnitude of the threshold voltage of transistors to
increase [13]. Hence, the switching delay of the transistor increases, and as a result,
once the delay of functional paths exceeds the timing requirements, the circuit starts
to fail. This can greatly reduce the operational lifetime of FPGA chips.

BTI consists of two different phenomena: NBTI, which has an effect on PMOS
transistors, and PBTI, affecting NMOS transistors. Since in previous technology
nodes and fabrication schemes, the PBTI effect was negligible in comparison to
NBTI, it was mostly ignored. However, since the introduction of high-κ /metal gates
transistors in sub 45 nm technology, the PBTI effect becomes comparable to the
NBTI one [12, 14, 15] (see Fig. 1). Consequently, both effects should be considered
in new technologies. NBTI (PBTI) has two phases:

• Stress phase: at which the gate-source voltage is reversely (positively) biased
(Vgs =−(+)Vdd).

• Relaxation phase: (Vgs = 0).

During the stress phase (i.e., when the transistor is on: Vgs = −VDD for PMOS
under NBTI and Vgs = VDD for NMOS under PBTI), some interface traps are
generated at the interface of channel and gate oxide. The generated interface traps
cause the magnitude of threshold voltage (Vth) to increase. On the other hand, during
the relaxation phase (Vgs ≈ 0), some of the interface traps are removed, and as a
result, the magnitude of Vth of the transistor decreases [16]. However, it should be
noted that this recovery cannot completely compensate the effect of stress phase.
Consequently, the overall effect of BTI is an increase in the magnitude of threshold
voltage over the time (see Fig. 2).

58 A. Amouri and M. Tahoori

Stress Recovery

Time

ΔV
th Stress Recovery

Overall NBTI

Fig. 2 BTI induced Vth change during stress and recovery

2.2 Hot Carrier Injection

Similar to the BTI, the HCI phenomenon, causes also the threshold voltage of
the transistors to increase, which in turn leads to similar consequences, like BTI,
increasing the delay of the functional paths and reducing the lifetime of the
FPGA chips.

HCI happens when a high voltage is applied at the drain (VD > VG) causing the
channel carriers (electrons for NMOS and holes for PMOS) to be accelerated into
the depletion region of the drain. These accelerated carriers will get collided with the
silicon atoms. The effect is that some of them will gain a little more energy than the
average, which makes them able to overcome the electric potential barrier between
the silicon substrate and the gate oxide, and will get injected into the gate oxide
layer where they are sometimes trapped. The worst case is when VD = 2VG [17]

Over the time, these trapped carriers will eventually build up electric charge
within the dielectric layer, which will increase the threshold voltage needed to turn
the transistor on. This mechanism is called drain avalanche hot carrier (DAHC)
injection (see Fig. 3). In fact, there are other three mechanisms in which HCI is
encountered [18]. However, DAHC is the worst among them.

3 Related Work

For delay fault testing in FPGAs, a Built-In Self-Test (BIST)-based approach has
been presented in [19], which stimulates several paths with a same length, then
compares their output to detect faults. However, this method targets mainly manu-
facturing delay faults. In [7], a method is developed for measuring and monitoring
degradation in an FPGA, based on measuring the difference on transitions at inputs
and outputs and their probabilities for a single path, but it is used offline to find at

Lifetime Reliability Sensing in Modern FPGAs 59

N+N+

P substrate

Gate (VG) Drain (VD)Source (VD)

Depletion region

+ ++ ++ +

- - - -- -

NMOS

Dielectric
layer

Trapped
carriers

Fig. 3 HCI–DAHC mechanism [17]

which frequency the circuit starts to fail. This chapter also estimates the effects of
the aging phenomena based on an NBTI model. The authors in [9] present a multiuse
sensor implemented in reconfigurable logic in order to help estimating variation in
delay, static and dynamic power, and temperature. The sensor is based on a ring
oscillator and a residue-number-system ring counter, where an array of such sensors
are arranged among the FPGA chip in order to measure the needed variation. Each
sensor occupies 8 LUT of a Virtex-5 FPGA. The relation between the frequency
of the ring oscillator and the desired parameter variation is used to estimate that
variation. In [20], a delay measurement method based on transition probabilities
(TPs) is presented. A set of test vectors are used to test the desired paths in the
circuit, and to calculate the TPs at the output of each path, then based on the TPs,
the delay of the paths are determined.

In the scope of reliability analysis for FPGAs, a dynamic thermal-aware reliabil-
ity management framework has been presented in [10] which estimates the lifetime
reliability of FPGAs, based on estimation of several phenomenas and hard errors
like time-dependant-dielectric-breakdown (TDDB) and electron migration (EM), in
addition to NBTI impacts. The proposed framework uses some tools and simulators
to calculate the temperature variation across the chip, the switching activity of the
design, and the static probability of the signals, to do the estimation of TDDB,
EM, and NBTI. Performance degradation of FPGAs due to HCI and TDDB has
been analyzed in [21], and some load balancing and alternate routing techniques
have been proposed to improve the reliability (mean time to failure) of the FPGA
chip. The first proposed technique is to use controlled input vectors to optimize
the active leakage power of logic blocks and hence reduce the TDDB effect. The
second technique is to balance the load on the circuit and hence mitigating the
HCI impact. Another technique of using a selective alternate routing is used to
reduce the EM impact. In [22], accelerated life tests are performed on FPGAs,
to study the effects of the degradation, and three degradation-mitigation strategies

60 A. Amouri and M. Tahoori

Stage
FF

Shadow
Latch

Meta
Detector

From
Current
Stage

To Next Stage
D

Q

SQ

Error

Clk

Fig. 4 Razor I technique [25]

are also discussed. The first strategy is relocating the logic functions to unused
LUTs, the second strategy is to reroute signals to unused interconnects, and the
third strategy is to exploit the unused regions of LUTs with spare inputs.

Logic-based sensors for application specific integrated circuit (ASIC) designs to
measure delay degradation in the circuit due to transistor aging are presented in [23]
and [24]. In [23], the sensor is based on two ring oscillators, one as a reference and
one under stressed conditions. The outputs of both oscillators are passed to a phase
comparator to determine the difference. The difference between their frequencies is
used to measure the delay. In [24], the sensor composed of a simple inverter and two
tri-state buffers to measure the instability in the output of the critical path during a
specific period. The sensor is to be placed at the output of the critical path, if the
output is unstable within the desired period, due to aging, the output of the two
tristate buffers will be the same, and thus an error can be reported.

Techniques for eliminating the design margins in processor pipelines are pre-
sented in [25–29]. Although these techniques are intended to be used to detect
violation in design margins caused by power saving techniques, or process variation,
they can be used, in principle, for aging detection as well. However, the applicability
for FPGA designs is not certain, because they require either non-logic type of
resources or delay elements, which have relatively large area impact when ported
to FPGA. RAZOR [25, 28], for example (Fig. 4), is a simple and good technique
to detect delay faults in ASIC designs. However, mapping it to FPGA resources
is difficult, as the placement of its shadow latch and the XOR comparator should
be very accurate in order to catch the delayed transitions correctly. Given the
constraints in type of available logic resources and routing path delay on current
FPGAs, such precise timing cannot be met. Hence such sensors cannot be directly
mapped to current FPGAs. In addition to these approaches, there are a large set of
sensors and techniques for delay detection in ASIC designs that use resources not
available on FPGAs.

The main difference of our work with existing techniques is that it exploits
the native resources available on FPGA to design a low-cost aging sensor with
adjustable sensitivity. Additionally, we provide a scheme to select the places where
the sensor should be placed to have a more reliable monitoring.

Lifetime Reliability Sensing in Modern FPGAs 61

4 Aging Sensor: Main Idea

4.1 Critical Path and Aging

The maximum operational frequency of a circuit is determined according to the
delay of the longest combinational path (critical path). A guard period is also
added to this delay to define the minimum clock period (Tcritical) to ensure correct
functionality. This guard period is used to allow the signal to be stable before the
flip-flop setup time (Fig. 5) and also to consider process variation. Due to transistor
aging, gate delays and in turn path delays are increased, causing transitions to arrive
later, and ultimately, an incorrect value can be latched in the flip-flops (as illustrated
in Fig. 5).

It should be noted that, in the presence of aging, the critical paths may change
over time, that is some noncritical paths at the beginning of FPGA lifetime (t0) may
become critical after aging (tn). More details are discussed in Sect. 5.4, where a
selection scheme to determine the highly vulnerable paths to aging (aging-critical
paths) is presented.

Two main concepts should be considered when designing a sensor to detect these
late transitions due to aging or delay faults:

• Warnability: The sensor/detector should be able to generate a warning signal
when the output of the critical path gets very close to the clock edge before

Q

Input FF

Q

Output FF

CLKCLK

CLK

(Aged Circuit)

Stable

Stable

Unstable Stable

Unstable Stable

Transition to stable
before clock edge

Late transition due
to aged circuit

D DCritical Path

Dout

Dout

Dout

Tcritical

Fig. 5 Description of the effect of the aged circuit

62 A. Amouri and M. Tahoori

Q

CLR

Input FF Output FF

CLK

DoutD D

Aging
Sensor

CLK

CLK

Aging
Notification

Signal

Critical Path Q

Fig. 6 The placement of the aging sensor on the critical path

Q
S

CLR

Q

D

DClk

Critical path
output (Dout)

Aging
Notification

Signal

Fig. 7 Schematic diagram of the proposed aging sensor

exceeding it, which is the case of the aging phenomena that happens gradually.
Thus, a suitable action can be taken to mitigate aging (e.g., reducing the operating
frequency).

• Detectability: When the output of the critical path exceeds the clock edge, a delay
fault happens. The sensor/detector should be able to detect this fault and generate
an error signal.

4.2 The Proposed Sensor

The proposed sensor is to be placed in parallel with the aging-critical path output
(Dout), meaning the path that has most (initial delay+aging-induced delay increase),
to detect whether the circuit generates late transitions after the clock edge or too
close before it, as shown in Fig. 6. The schematic of the sensor is depicted in Fig. 7.
The idea is to use the signal on the critical path output itself as a clock input to two
different edge-triggered D flip-flops. Assuming that the original design works with
the positive-edge transition of the clock, the proposed circuit detects both positive

Lifetime Reliability Sensing in Modern FPGAs 63

CLK

input

Dout

Dout

(Aged circuit)

Aging
Notification

Path delay more
delay
due to
aging

(Fresh circuit)

Tcritical

Fig. 8 Example to show the sensor functionality when the aging happens in the circuit

and negative transitions on the critical path, which happen during the first half
(assuming a 50 % duty cycle for the clock) of the next clock cycle (i.e., when the
clock level is high). That is why the system clock is fed to the inputs of the D flip-
flops. The use of two flip-flops is done because one latches rising transitions and the
other one detects falling transitions. When the end point of the critical path makes
a transition at the positive level (i.e., the first half) of the (next) clock, it means that
the path is aged and makes a late transition.

One can argue that the nonaged (fault-free) path can also make the early transi-
tions during the first half of the clock cycle. This may invalidate the functionality
of the sensor as outlined above and cause it to wrongly raise the error signal.
Modifications to the sensor to deal with such issues are discussed in Sect. 5, where
a narrower detection window is generated and used instead of the clock to reduce
the detection period, and avoid the false detection of the early transitions that may
happen (Fig. 10).

To illustrate the sensor functionality, a chain of odd number of inverters is
considered as a basic example for a critical path. The timing diagram in Fig. 8 shows
two cases, namely the fault-free (nonaged) circuit (its output is Dout), and the aged
circuit (with delay fault). In the non-aged case, the input to the inverter chain causes
a transition at the output lies in the second half of the clock cycle (clk = 0), and
will cause the sensor (Fig. 7) to latch the current state of the clock, that is, “0”,
which means no notification of aging. In the second case, the circuit is aged, and
the transition in the critical path happens after the clock edge, in the first half of the
next clock cycle (clk = 1). This transition causes the sensor to latch the current state
of the clock, that is, “1”, and the sensor raises the error signal.

64 A. Amouri and M. Tahoori

Clk

Dout

Tss

Transitions
undetectable

Transitions
detectable

Fig. 9 The sensitivity of the
sensor (Tss), negative to the
left of the clock edge, and
positive to the right

Q

Output FF

CLK

Dout
D

Aging
Notification

Signal

Critical Path

Aging Sensor

Ddw

QSET

CLR

Q

D

D
Detection
window

D
cp

Fig. 10 The relative delays of the sensor inputs

4.3 Sensor Sensitivity Analysis

The sensitivity of the sensor, Tss, is defined as the time period from the latching
edge of the clock to the earliest time that the path makes a transition after the clock
edge and the sensor is able to raise an aging notification signal. In other words, if
the clock period is Tclk, the delay of the critical path must be at least Tclk +Tss to be
detected by the aging sensor. This means that any aging delay less than Tss would
not be detected by the sensor. In case of a warning sensor, Tss is negative, thus the
detection can happen before the clock edge (see Fig. 9).

The amount of Tss can be controlled according to the design requirements. To
explain how this can be achieved, let’s consider Fig. 10 that shows the sensor’s flip-
flops and the routing delays for its inputs.

The flip-flop requires the transition on its input to be stable before the clock edge,
at least in an amount equal to its setup time (Tset), to latch the input successfully.
Another fact that should be considered is that the timing at which the sensor detects

Lifetime Reliability Sensing in Modern FPGAs 65

must be relative to the timing of the output flip-flop (at which the actual data is
latched). Now, if we consider there is no skew between the inputs of the sensor’s
flip-flops and the inputs of the output flip-flop (Fig. 10), then the sensitivity can be
calculated as follows.

Tss = TSensor set−TOutput set, (1)

where TSensor set and TOutput set are the setup times of the sensor’s flip-flops and the
output flip-flop, respectively. If no process variation is considered, the flip-flops will
have equal setup times, and as a result, Tss will be simply zero.

In the real case, there are routing delays that lead to variable amounts of skew.
If the two delays are different, the signals will reach the sensor at different timing
with respect to the output flip-flop (Fig. 11). Considering these delays, the sensitivity
equation (Eq. 1) will become:

Tss = (TSensor set−TOutput set)+ (Ddw−Dcp), (2)

where Ddw and Dcp are the path delays of the sensor inputs (from the detection
window and the critical path) relative to the inputs of the output flip-flop.

Since the setup times cannot be altered, the term (Ddw−Dcp) is used to control
the amount of the required sensitivity. For an ideal late transition detector, the
sensitivity is zero, which means that the late transitions can be detected as soon
as they exceed the clock edge. This can be achieved when both terms (TSensor set−
TOutput set) and (Ddw−Dcp) are equal to zero, or when (TSensor set− TOutput set) =
−(Ddw−Dcp).

To obtain a negative sensitivity (warning sensor), the term (Ddw−Dcp) must be
negative. That means the amount of the delay from the output of the critical path is
larger than that of the clock (Fig. 11).

5 Sensor Mapping

We use Xilinx Virtex-6, as one of the state-of-the-art FPGA platforms, for the
mapping. As presented in Sect. 4, the sensor uses two different edge-triggered D
flip-flops to latch the actual state of the clock. It would be much useful if double-
edge-triggered D flip-flops are available on the FPGA, because then, using one
flip-flop would be enough to detect both negative and positive transitions, and there
will be no need for the OR gate shown in Fig. 7 any more. Unfortunately, double-
edge triggered flip-flops are not available on the Virtex-6 series, however, there
are similar components that can be used instead, namely, double-data rate output
registers (ODDR). The ODDR exists near the general purpose input/output pins,
and one ODDR is enough to implement the functionality of the proposed sensor.
However, because the aging notification signal has to be sent to one of the output
pins outside the FPGA, this may cause problems since it might be necessary to

66 A. Amouri and M. Tahoori

Clk

Dout

Dout

Dout

1) Ddw = Dcp
(Aging Sensor)

2) Ddw < Dcp
(Warning Sensor)

3) Ddw > Dcp
(Invalid case)

Detection
Window

Detection
Window

Detection
Window

Fig. 11 Different relative values of input delays and the effects of how the sensor sees the inputs

handle and use this signal inside the FPGA. Furthermore, the ODDRs exist only in
certain places on the FPGA; so the output of the critical path has to be routed there,
which could be very long (through multiple switch matrices and buffers), depending
on the original placement of the critical path.

5.1 Mapping to Logic Slices

The other option to map the proposed aging sensor is the normal logic slices that are
distributed over the FPGA area. The fact that in each slice of the Virtex-6 FPGA,
only one type of clock edge can be defined implies the need to use two different
slices to implement the aging sensor: one for the positive-edge D flip-flop and the
other one for the negative edge. Although the sensor occupies two slices, it uses the
D flip-flops and one LUT, leaving the rest of resources in these slices available for
mapping other circuit components.

The basic aging sensor (Fig. 7) can detect any transition happens during the
positive level (first half) of the clock cycle. This can generate false notification
if an early transition happens in this period in the fault-free operation of the
circuit. To alleviate this problem, it is necessary to reduce the window in which the
sensor latches the transition. In the basic sensor implementation, this window was
generated by the positive level of the clock. Since the clock typically has a 50 % duty
cycle, this latching window is 50 % of the clock period. This is an issue for many

Lifetime Reliability Sensing in Modern FPGAs 67

MMCM

LUT1

LUT2

Clkin

Functional

Clk

Detection
Window

Fig. 12 The generation of the detection window using the MMCM

functional paths as they make early transitions during the clock cycle. However, if
this latching window is reduced such that the monitored path in the nonaged state
does not make any transition during this latching window, no false notification can
happen.

The Mixed-Mode Clock Managers (MMCM) component in Virtex-6 allows the
generation of a controlled-duty-cycle clock. This option fits the need for a flexible
aging sensor. By generating a smaller duty cycle period, the latching window can
be reduced proportionally. In this case, it is enough to use the controlled duty
cycle clock in place of the functional clock in the sensor. However, the MMCM is
unable of generating a small duty cycle signal when the functional clock frequency
is relatively high (300–600 MHz). This makes this method unsuitable for high-
frequency designs. A suitable method for high-frequency designs is introduced in
the next section.

5.2 Detection Window Generation

Using the MMCM, a phase shift version of the clock can be generated, which can be
then combined with the original clock using an AND gate to generate the required
detection window (Fig. 12). The amount of the phase shift can specify the width of
the detection window. It should be noted that the width of the detection window
cannot be less than the allowed minimum signal width of the FPGA as described in
Sect. 5.3, otherwise, the detection window will be absorbed by the internal buffers
and will not reach the flip-flops.

This combination (the original clock with the phase shifted one) must be done
before passing the two generated clocks (the functional clock and the generated
detection window) to global clock buffers, in order to assure minimum skew.
Furthermore, the two clock paths must be balanced using the same amount of
components to avoid large delay differences between them. That is the reason why
there is a NOT gate on the functional clock path in Fig. 12, so that the two clocks
have nearly the same propagation delay of one LUT each.

68 A. Amouri and M. Tahoori

Table 1 Minimum allowed
pulse widths in different
FPGAs Simulated device

Minimum allowed
pulse width (ps)

Spartan-6 LX45 240
Virtex-5 LX110t 369
Virtex-6 LX75t 450

5.3 Glitches in FPGA

As the proposed sensor uses the data path as a clock source, it may face too many
transitions, and hence, the power consumption of the sensor maybe high. Before
going further with the analysis of these information, an interesting point must be
highlighted. In modern FPGAs, special types of buffers are used for the clocks and
the inputs of the flip-flops inside the slices. These buffers allow only pulses with
a width greater than a certain amount to be further propagated. Thus, glitches that
are very small are internally absorbed by the buffer [30]. Our timing simulations
prove that fact as well. Table 1 shows different simulated FPGAs, with the minimum
pulse-width that can be propagated through the buffers.

The values in Table 1 are actually defined in the generated post-place-and-route
simulation models, under “PATHPULSE => xxx ps” constraint. The possible
generated small glitches cannot reach the output flip-flop (the monitored flip-flop,
where these glitches are supposed to be latched and cause errors) as they will be
absorbed by the buffers, also these glitches cannot reach the sensor’s flip-flop.
Actually, this is the idea, because the sensor is supposed to generate errors only
if the latched data is incorrect; so as long as the output flip-flop does not see these
glitches, the sensor would not see them as well. Furthermore, as the possible number
of glitches that can reach the sensor clock input within one clock cycle is minimum,
its power consumption would be minimum as the results show in Sect. 6.

5.4 Aging Sensor Placement and Calibration

Choosing the appropriate place (CLB slices) for mapping the sensor with respect
to the placement of the aging-critical paths (the paths that have the highest post-
aging delay) to be monitored, and the number of the sensors for the entire circuit are
important issues to be addressed.

5.4.1 Selection Scheme of the Paths to be Monitored

The correct choice of where to place the sensors in the circuit plays an important
role for achieving a highly reliable monitoring.

To select the paths with the highest post-aging delays, we first need to consider
two major aging models, NBTI and HCI, in more details.

Lifetime Reliability Sensing in Modern FPGAs 69

The model of the NBTI effect on PMOS transistor’s switching delay (d) can be
estimated and simplified as follows [31, 32]:

Δd = ANBTI×Yn× tn× d0, (3)

where d0 is the pre-aging delay, ANBTI is a technology dependent factor, t is the time
(FPGA age), and Y is the ratio of the stress time to the total time (duty cycle). n can
be 1/6 or 1/4 depending on the fabrication process.

HCI on the other side affects mainly the NMOS transistors. The effect on
NMOS transistor’s switching delay (d) is empirically found and can be simplified
as follows [8, 33]:

Δd = AHCI×α× f × t0.5× d0, (4)

where d0 is the pre-aging delay, AHCI is a technology dependent factor, t is the time,
α is the activity factor of the transistor, and f is the frequency.

It can be seen from Eq. 4 that the activity factor and the frequency have a
direct effect on the NMOS transistor’s switching delay change (Δd), and from
Eq. 3 the effect of the duty cycle (Y) on the PMOS transistor’s switching delay
change. Temperature (T) has also exponential effect on the NBTI-induced Δd and a
piecewise linear effect on the HCI-induced Δd [8]. The temperature dependency is
implicit in both AHCI and ANBTI.

As the transistor level implementation of the FPGA is not available, the models
in Eqs. 3 and 4 cannot be directly used, and a higher level model is necessary. To
obtain a system-level estimation for both HCI and NBTI, the information provided
by the FPGA design kit is used. Both the FPGA timing and the power tools provide
information at node level (a single node can represent a LUT, a path through
different switch matrices, an internal signal inside a CLB, etc). In our approach,
it is assumed that all the transistors in a single node have the same parameters as
the node itself (i.e., same switching activity, same duty cycle, etc). In this way,
the models in Eqs. 3 and 4 can be used to calculate the delay change for the entire
node Δd. For the NBTI model, d0 will represent pre-aging delay of the path inside
the node at t0 and can be obtained from the timing report for each node. Y is the duty
cycle at node inputs, which is estimated by 1−SP, where SP is the signal probability
and can be obtained using statistical logic simulations for the entire circuit with
random inputs. For HCI, α will represent the path activity (number of activation in
one cycle), and f is the operational frequency of the node. The multiplication α× f
represents the signal rate and can be obtained from the power report for each node.
The selection scheme, for determining the most aging-critical paths in the circuit,
can be summarized in the following steps:

1. Using the timing analyzer tool, sort the paths based on their timing slacks in the
decreasing order. This way, the critical and near-critical paths are determined.

2. Select top N paths from the list (or all paths that have at most s % time slack,
e.g. 5 %).

3. Each path Pi has a delay di
0 and contains nodes gi

1 to gi
N .

70 A. Amouri and M. Tahoori

• For each node gi
j, find the activity ratio (signal rate) Ri

j from the power report.
• For each node gi

j, find the duty cycle Y i
j = 1− SPi

j using random logic
simulations.

4. For each path Pi, obtain:

• Average activity ratio of its nodes Ri
avg.

• Average duty cycle of its nodes Y i
avg.

5. Re-sort the paths based on post-aging delay di
0 +Δdi:

• For HCI, find the path Pj with maximum d j
0×R j

avg.

• Assuming x% maximum HCI delay increase, obtain KHCI from KHCI× d j
0×

R j
avg = x%× d j

0.
• Re-sort the paths based on di

0 +KHCI× di
0×Ri

avg .
• For NBTI, find the path Pk with maximum dk

0× (Y k
avg)

n.
• Assuming y% maximum NBTI delay increase, obtain KNBTI from KNBTI×

dk
0× (Y k

avg)
n = y%× dk

0.
• Re-sort the paths based on di

0 +KNBTI× di
0× (Y i

avg)
n.

6. As the sensor is to be placed at the output of the path, if several paths share
the same output node gi

j, keep the one with highest post-aging delay remove the
others.

7. Depending on the criticality of the application, and the available space left on the
FPGA chip; the number of the paths to be monitored can be determined.

8. Place the sensor circuits at the outputs of selected paths.
9. A calibration to the sensors should then be done to set their sensitivity (negative

for warning, and near-zero positive for late transition detector) as detailed below.

5.4.2 Sensor Calibration

As mentioned in Sect. 4.3, the sensitivity can be calibrated using the delays at the
inputs of the sensor. An option to use programmable delay elements would consume
too many resources. Therefore, our proposed approach is to control the routing to
specify the amount of the delay in a simple way.

The first knob to calibrate sensitivity is the delay on the detection window
path, which can be controlled using a relative location constraint. The locations of
the AND and the NOT gates (the LUT to which they are mapped in Fig. 12) can
be chosen such that one of them is farther than the other one, with respect to the
clock buffers. Thus specifying one of them affects the relative delay of the other
one, accordingly. For example, suppose that the names of the two LUTs in Fig. 12
are MMCM/Detection_window and MMCM/Functional_clock, the relative
location constraints for them can then be written as

INST "MMCM/Detection_window" U_set="clock_0";
INST "MMCM/Functional_clock" U_set="clock_0";

Lifetime Reliability Sensing in Modern FPGAs 71

INST "MMCM/Detection_window" RLOC = X0Y0;
INST "MMCM/Functional_clock" RLOC = X10Y0;

which means that the LUT from which the functional clock is passing, is 10 slices
farther than the other, with respect to the clock buffers of both, and hence the
detection window advances the functional clock. Modifying this distance changes
the amount of delay between the two clocks.

The second knob is the relative delay from the critical path output to the
sensor. Again, the relative location constraints can be used to determine the place
of the sensor relative to the place of the output flip-flop, and thus increasing or
decreasing the delay difference between the output flip-flop inputs and the sensor
inputs. For example, suppose that the name of the output register in Fig. 10 is
Output_reg, and the names of the sensor’s FFs are sensor0/pos_edge and
sensor0/neg_edge, the relative location constraints can then be written as

INST "Output_reg" U_set="sensor0";
INST "sensor0/pos_edge" U_set="sensor0";
INST "sensor0/neg_edge" U_set="sensor0";

INST "Output_reg" RLOC=X0Y0;
INST "sensor0/pos_edge" RLOC=X0Y1;
INST "sensor0/neg_edge" RLOC=X1Y1;

By controlling these two knobs, the sensor sensitivity can easily be calibrated
using Eq. 2.

5.4.3 Pre-used FPGAs

In reconfigurable applications, some other configurations may have been loaded in
the FPGA and because of that, the FPGA device is aged based on that usage. When
the new configuration is loaded in the FPGA, the effect of pre-aging due to previous
configurations need to be considered (in which some FPGA resources are aged with
different rates). To handle such cases in our approach, instead of considering d0, as
the path delay of “fresh FPGA”, one can use du

0 as the delay of that path in the “used
FPGA” (see Eq. 5).

du
0 = d0 +Δd0, (5)

where Δd0 is the aging of the path so far. In other words, d0 is updated with the
delay increase so far, and the delta delay in future, and hence the post-aging path
delay d becomes d = du

0 +Δd.

72 A. Amouri and M. Tahoori

6 Experimental Results

In order to evaluate, validate, and analyze the proposed aging sensor, we have
performed experimental analysis for representative high-frequency FPGA designs.

6.1 FPGA Design Tool Experiments (Simulation Results)

The simulations are done using Xilinx ISE 12.2, together with Modelsim SE 6.5c
for Xilinx Virtex-6 FPGA devices. Post-place-and-route simulation model from
ISE is generated for the simulation of each experiment and used together with the
generated Standard Delay Format (SDF) file in Modelsim. The maximum delay
values for all components were always considered in the following results to reflect
the worst-case results. Virtex-6 series FPGAs are chosen for the simulated device
since they are one of state-of-the-art FPGA devices from Xilinx fabricated using a
40 nm copper CMOS process technology.

To have a fair analysis of the sensor, we have firstly chosen three circuits with
typical operational frequency to reflect real usage of the FPGA. The first circuit
is a pipelined 32-bit square root circuit [34]. It contains five pipelined stages and
operates at a frequency of about 320 MHz. The second circuit is a pipelined AES
encoder [35] that contains 30 stages, and operates at a frequency of about 550 MHz.
The third circuit is a self-built typical 8-bit FIR filter with 32 stages, has LUT-based
implementation, and operates at a frequency of about 275 MHz. In addition, we have
tested the sensor on a set of several circuits from the ITC’99 testbench with different
sizes and frequencies.

To assign the sensors to the critical paths in the circuits, a logic-level im-
plementation is necessary, because the behavioral description contains internally
generated paths which may not easily be extracted to be monitored. The logic-
level descriptions for the circuits were generated using Xilinx ISE synthesis tool.
Different number of sensors are placed to the top aging-critical paths of the circuit
as described in Sect. 5.4. The sensors are then calibrated as warning sensors. The
suitable device size to efficiently fit the requirements of most of the tested circuits
is chosen to be XC6VLX75T-FF484. For the AES encoder circuit, XC6VLX240T-
FF784 is chosen. To simulate the aging phenomena, the frequency of the circuit is
increased gradually and the outputs of critical paths is reported together with the
sensors behavior. The sensors were calibrated to work with a sensitivity of almost
−50 ps. When the critical path transitions fall within 50 ps prior to the clock edge,
the sensors generate the aging notification signal. By using the detection window
adjustment technique presented in Sect. 5.2, no false notifications happened for the
inserted sensors.

The area overhead of the sensors for the tested circuits is reported in Table 2.
The area is chosen as an optimization goal in the synthesis phase to have a fair
comparison. For power and performance overhead reported in Table 3 the speed

Lifetime Reliability Sensing in Modern FPGAs 73

Table 2 Area overhead for different number of sensors

Tested circuit Resource type Original With 5 sensors With 10 sensors With 20 sensors

b04 Slice registers 62 77 (24.19 %) 90 (45.16 %) 110 (77.41 %)
Slice LUTs 108 111 (2.77 %) 113 (4.62 %) 116 (7.41 %)

b05 Slice registers 44 54 (22.72 %) 64 (45.45 %) 84 (90.90 %)
Slice LUTs 132 135 (2.27 %) 138 (4.55 %) 141 (6.82 %)

b12 Slice registers 126 136 (7.94 %) 146 (15.87 %) 166 (31.75 %)
Slice LUTs 240 243 (1.25 %) 245 (2.08 %) 248 (3.33 %)

b14 Slice registers 165 175 (6.06 %) 185 (12.12 %) 205 (24.24 %)
Slice LUTs 782 785 (0.38 %) 787 (0.64 %) 790 (1.02 %)

b17 Slice registers 1,334 1,344 (0.75 %) 1,354 (1.50 %) 1,374 (3.00 %)
Slice LUTs 5,643 5,650 (0.12 %) 5,652 (0.16 %) 5,651 (0.14 %)

Square root Slice registers 924 934 (1.08 %) 944 (2.16 %) 964 (4.33 %)
Slice LUTs 997 1,009 (1.20 %) 1,007 (1.00 %) 1,014 (1.70 %)

AES encoder Slice registers 7,748 7,758 (0.13 %) 7,768 (0.26 %) 7,788 (0.52 %)
Slice LUTs 9,698 9,754 (0.58 %) 9,697 (-0.01 %) 9,657 (-0.42 %)

FIR filter Slice registers 499 509 (2.00 %) 519 (4.01 %) 540 (8.22 %)
Slice LUTs 962 966 (0.42 %) 968 (0.62 %) 971 (0.94 %)

is chosen as an optimization goal. The area overhead of the sensor is very small,
as each sensor needs only 2 flip-flops and 1 LUT. The performance overhead is
also very small. The power overhead is mainly caused by using the MMCM to
generate the detection window. This can be seen from the results in Table 3 where
adding extra sensors does not scale the power linearly. Actually, the power can be
further reduced by selectively activating the sensors from time to time. The MMCM
element is used in all circuits, the original circuits (i.e., without sensors) and with-
sensors circuits, to generate the 200+ MHz clock frequency, therefore, the MMCM
is not considered in the area comparison. The negative values of area overhead in
Table 2 are related to LUTs which have been optimized; however, the area overhead
of the registers is always positive.

It needs to be noted that the transistor aging happens at a very large time scale.
Therefore, the critical path is not required to be monitored all the time: a periodic
(e.g., once every week or month) monitoring of the critical path is enough. Given the
runtime reconfigurability of FPGAs, it is possible to turn off the sensor most of the
time and only activate it at very infrequent rates. Alternatively, a control signal can
be easily asserted to the sensor to enable/disable it. The clock enable (CE) ports of
the D flip-flop in the sensor can be used for that purpose. Since the sensor circuitry
would be used (switched) much less frequently than the functional path, the aging
rate of the sensor circuitry would be multiple times less than the original circuit.
Therefore, the aging of the sensor circuitry can be neglected compared to the aging
of the original circuit. This periodic activation of the sensor can also reduce the
power associated with the sensor circuitry considerably.

74 A. Amouri and M. Tahoori

T
ab

le
3

Po
w

er
an

d
pe

rf
or

m
an

ce
ov

er
he

ad
fo

r
di

ff
er

en
t

nu
m

be
r

of
se

ns
or

s

Te
st

ed
ci

rc
ui

t
Po

w
er

/P
er

fo
rm

an
ce

O
ri

gi
na

l
W

it
h

5
se

ns
or

s
W

it
h

10
se

ns
or

s
W

it
h

20
se

ns
or

s

b0
4

Po
w

er
at

22
9

M
H

z
0.

79
5

W
0.

84
5

W
(6

.2
9

%
)

0.
87

1
W

(9
.5

6
%

)
0.

87
6

W
(1

0.
19

%
)

Pe
rf

or
m

an
ce

4.
33

2
ns

(2
30

M
H

z)
4.

34
7

ns
(0

.3
5

%
)

(2
30

M
H

z)
4.

35
0

ns
(0

.4
2

%
)

(2
30

M
H

z)
4.

36
5

ns
(0

.7
6

%
)

(2
29

M
H

z)

b0
5

Po
w

er
at

33
8

M
H

z
0.

80
7

W
0.

82
8

W
(2

.6
0

%
)

0.
83

7
W

(3
.7

2
%

)
0.

85
0

W
(5

.3
3

%
)

Pe
rf

or
m

an
ce

2.
87

7
ns

(3
47

M
H

z)
2.

94
2

ns
(2

.2
6

%
)

(3
40

M
H

z)
2.

91
2

ns
(1

.2
2

%
)

(3
43

M
H

z)
2.

95
6

ns
(2

.7
5

%
)

(3
38

M
H

z)

b1
2

Po
w

er
at

40
0

M
H

z
0.

81
2

W
0.

83
8

W
(3

.2
0

%
)

0.
84

6
W

(4
.1

9
%

)
0.

86
8

W
(6

.7
0

%
)

Pe
rf

or
m

an
ce

2.
45

8
ns

(4
06

M
H

z)
2.

49
1

ns
(1

.3
4

%
)

(4
01

M
H

z)
2.

48
4

ns
(1

.0
5

%
)

(4
02

M
H

z)
2.

49
9

ns
(1

.6
7

%
)

(4
00

M
H

z)

b1
4

Po
w

er
at

14
6

M
H

z
0.

80
0

W
0.

80
7

W
(0

.8
8

%
)

0.
80

7
W

(0
.8

8
%

)
0.

81
1

W
(1

.3
8

%
)

Pe
rf

or
m

an
ce

6.
58

8
ns

(1
51

M
H

z)
6.

83
5

ns
(3

.7
5

%
)

(1
46

M
H

z)
6.

81
0

ns
(3

.3
7

%
)

(1
46

M
H

z)
6.

82
5

ns
(3

.6
0

%
)

(1
46

M
H

z)

b1
7

Po
w

er
at

18
0

M
H

z
0.

81
9

W
0.

82
2

W
(0

.3
7

%
)

0.
82

9
W

(1
.2

2
%

)
0.

82
9

W
(1

.2
2

%
)

Pe
rf

or
m

an
ce

5.
51

3
ns

(1
81

M
H

z)
5.

52
7

ns
(0

.2
5

%
)

(1
80

M
H

z)
5.

50
1

ns
(−

0.
21

%
)

18
1

M
H

z)
5.

51
1

ns
(−

0.
04

%
)

(1
81

M
H

z)

Sq
ua

re
ro

ot
Po

w
er

at
31

0
M

H
z

0.
95

1
W

0.
97

8
W

(2
.8

4
%

)
0.

97
6

W
(2

.6
2

%
)

0.
98

5
W

(3
.5

8
%

)
Pe

rf
or

m
an

ce
3.

13
0

ns
(3

19
M

H
z)

3.
14

4
ns

(0
.4

4
%

)
(3

18
M

H
z)

3.
17

3
ns

(1
.3

7
%

)
(3

15
M

H
z)

3.
18

4
ns

(1
.7

3
%

)
(3

14
M

H
z)

A
E

S
en

co
de

r
Po

w
er

at
50

0
M

H
z

3.
90

1
W

3.
90

0
W

(−
0.

03
%

)
3.

92
8

W
(0

.6
9

%
)

3.
97

7
W

(1
.9

5
%

)
Pe

rf
or

m
an

ce
1.

85
6

ns
(5

38
M

H
z)

1.
85

7
ns

(0
.0

5
%

)
(5

38
M

H
z)

1.
89

6
ns

(2
.1

6
%

)
(5

27
M

H
z)

1.
86

5
ns

(0
.4

8
%

)
(5

36
M

H
z)

FI
R

fil
te

r
Po

w
er

at
27

0
M

H
z

1.
56

6
W

1.
58

1
W

(0
.9

6
%

)
1.

58
4

W
(1

.1
5

%
)

1.
59

7
W

(1
.9

8
%

)
Pe

rf
or

m
an

ce
3.

61
9

ns
(2

76
M

H
z)

3.
62

0
ns

(0
.0

3
%

)
(2

76
M

H
z)

3.
66

2
ns

(1
.1

9
%

)
(2

73
M

H
z)

3.
63

3
ns

(0
.3

9
%

)
(2

75
M

H
z)

Lifetime Reliability Sensing in Modern FPGAs 75

6.2 FPGA Board Experiment (Emulation Results)

To validate the sensor functionality in real-time environment, an XUP-5 board
equipped with a Virtex5-LX110t is used. The square root circuit with five attached
sensors is tested. The maximum frequency for the mapped circuit is reported as
340 MHz. For the generation of the detection window, two digital clock managers
(DCMs) are used, because the MMCM element is not available in Virtex-5. The
outputs of the sensors are passed to an OR gate and connected to a LED.

Two input clock frequencies were tested: (1) under the maximum frequency
(325 MHz) to test the sensor in normal circuit operation mode, and (2) above the
maximum frequency (400 MHz) in order to emulate the aged circuit case. The LED
was OFF during the first case, which means that no late transitions were detected,
and ON during the second case, which proves that a late transition has been detected.

7 Conclusions

Aggressive device downscaling at nanoscale in CMOS technology is one of the
main drives for the continuation of Moore’s law. State-of-the-art FPGA circuits
have taken advantage of most recent CMOS technologies to meet high-performance
demands. However, this aggressive downscaling comes at the expense of reduced
device predictability, increased parametric variations, and reliability threats. One of
the major reliability issues for scaled CMOS technology is transistor aging, mainly
due to NBTI and HCI, resulting in performance degradation and delay faults over
time.

In this chapter, we have presented the design and mapping of a low-cost logic-
level aging sensor for FPGA-based designs. We have taken advantage of FPGA
resources to design an efficient aging sensor (controlled to be warning or late-
transitions detector) which not only detects transistor aging but can detect erroneous
glitches due to intermittent and transient faults. The implementation of such sensors
for representative designs shows very low area , performance, and power overhead
(≈1.3 % area, ≈1.6 % performance, and ≈1.5 % power overhead when 10 sensors
are placed)

Acknowledgements The authors would like to thank both Saman Kiamehr, and Fabian Oboril,
from Karlsruhe Institute of Technology (KIT), for the very helpful discussions regarding the
selection schemes of the paths to be monitored.

76 A. Amouri and M. Tahoori

References

1. Iwai H (2009) Technology roadmap for 22 nm and beyond. In: Electron devices and
semiconductor technology, 2nd international workshop on 2009. IEDST ’09, pp 1–4

2. Borkar S (2007) Thousand core chips: a technology perspective, In: DAC ’07: Proceedings of
the 44th annual design automation conference. ACM, New York, NY, USA, pp 746–749

3. Borkar S (2009) Design perspectives on 22 nm cmos and beyond. In: DAC ’09: Proceedings of
the 46th annual design automation conference. ACM, New York, NY, USA, pp 93–94

4. Borkar S (2006) Tackling variability and reliability challenges. IEEE Des Test Comput 23:520
5. Park SP, Kang K, Roy K (2009) Reliability implications of bias-temperature instability in

digital ics. IEEE Des Test 26(6):8–17
6. Bernstein K, Frank DJ, Gattiker AE, Haensch W, Ji BL, Nassif SR, Nowak EJ, Pearson DJ,

Rohrer NJ (2006) High-performance CMOS variability in the 65-nm regime and beyond. IBM
J Res Dev Adv Silicon Tech 50:433–449

7. Stott EA, Wong JS, Sedcole P, Cheung PY (2010) Degradation in fpgas: measurement
and modelling. In: FPGA ’10: Proceedings of the 18th annual ACM/SIGDA international
symposium on field programmable gate arrays. ACM, New York, NY, USA, pp 229–238

8. Tiwari A, Torrellas J (2008) Facelift: Hiding and slowing down aging in multicores. In: 2008
41st IEEE/ACM international symposium on microarchitecture, 2008. MICRO-41, pp 129–140

9. Zick KM, Hayes JP (2010) On-line sensing for healthier fpga systems. In: FPGA ’10:
Proceedings of the 18th annual ACM/SIGDA international symposium on field programmable
gate arrays. ACM, New York, NY, USA, pp 239–248

10. Mangalagiri P, Bae S, Krishnan R, Xie Y, Narayanan V (2008) Thermal-aware reliability
analysis for platform fpgas. In: ICCAD ’08: Proceedings of the 2008 IEEE/ACM international
conference on computer-aided design. IEEE Press, Piscataway, NJ, USA, pp 722–727

11. Wang W, Reddy V, Krishnan A, Vattikonda R, Krishnan S, Cao Y (2007) Compact modeling
and simulation of circuit reliability for 65-nm cmos technology. IEEE Trans Device Mater
Reliab 7(4):509–517

12. Zafar S, Kim Y, Narayanan V, Cabral C, Paruchuri V, Doris B, Stathis J, Callegari A, Chudzik
M (2006) A comparative study of nbti and pbti (charge trapping) in sio2/hfo2 stacks with fusi,
tin, re gates. In: 2006 symposium on VLSI technology, 2006. Digest of technical papers. IEEE,
New York, pp 23–25

13. Bhardwaj S, Wang W, Vattikonda R, Cao Y, Vrudhula S (2006) Predictive modeling of the
nbti effect for reliable design. In: Custom integrated circuits conference, CICC’06. IEEE,
New York, pp 189–192

14. Kim J, Rao R, Mukhopadhyay S, Chuang C (2008) Ring oscillator circuit structures for
measurement of isolated nbti/pbti effects. In: IEEE international conference on integrated
circuit design and technology and tutorial, ICICDT. IEEE, New York, pp 163–166

15. Stathis JH, Wang M, Zhao K (2010) Reliability of advanced high-k/metal-gate n-FET devices.
Microelectronics Reliability, Elsevier, 50(9–11):1199–1202

16. Wang W, Yang S, Bhardwaj S, Vrudhula S, Liu F, Cao Y (2010) The impact of nbti
effect on combinational circuit: modeling, simulation, and analysis. IEEE Trans VLSI Syst
18(2):173–183

17. Renesas (2008) Semiconductor reliability handbook. Renesas Electronics Corporation, Japan
18. Rittman D (2005) Nanometer reliability. http://www.tayden.com/publications/Nanometer

%20Reliability.pdf
19. Abramovici M, Stroud CE (2003) Bist-based delay-fault testing in fpgas. J Electron Test

19(5):549–558
20. Wong J, Cheung P (2011) Improved delay measurement method in fpga based on transition

probability. In: Proceedings of the 19th ACM/SIGDA international symposium on field
programmable gate arrays. ACM, New York, pp 163–172

21. Srinivasan S, Mangalagiri P, Xie Y, Vijaykrishnan N, Sarpatwari K (2006) Flaw: Fpga lifetime
awareness. In: DAC ’06: Proceedings of the 43rd annual design automation conference. ACM,
New York, pp 630–635

http://www.tayden.com/publications/Nanometer%20Reliability.pdf
http://www.tayden.com/publications/Nanometer%20Reliability.pdf

Lifetime Reliability Sensing in Modern FPGAs 77

22. Stott E, Wong J, Cheung P (2010) Degradation analysis and mitigation in fpgas. In: 2010
international conference on field programmable logic and applications (FPL), pp 428–433

23. Keane J, Kim T, Wang X, Kim CH (2010) On-chip reliability monitors for measuring circuit
degradation. Microelectronics Reliability, Elsevier, 50(8):1039–1053

24. Omana M, Rossi D, Bosio N, Metra C (2010) Novel low-cost aging sensor. In: CF
’10: Proceedings of the 7th ACM international conference on Computing frontiers. ACM,
New York, pp 93–94

25. Ernst D, Kim NS, Das S, Pant S, Rao R, Pham T, Ziesler C, Blaauw D, Austin T, Flautner
K, and others (2003) Razor: A low-power pipeline based on circuit-level timing speculation.
Microarchitecture, 2003, MICRO-36. Proceedings 36th Annual IEEE/ACM International
Symposium on, IEEE, pp 7–18

26. Sato T, Kunitake Y (2007) A simple flip-flop circuit for typical-case designs for DFM. Quality
Electronic Design, 2007. ISQED’07. 8th International Symposium on, IEEE, pp 539–544

27. Eireiner M, Henzler S, Georgakos G, Berthold J, Schmitt D-Landsiedel (2007) In-situ delay
characterization and local supply voltage adjustment for compensation of local parametric
variations. IEEE J Solid State Circ 42(7):1583–1592

28. Das S, Tokunaga C, Pant S, Ma W-H, Kalaiselvan S, Lai K, Bull D, Blaauw D (2009)
Razorii: in situ error detection and correction for pvt and ser tolerance. IEEE J Solid State
Circ 44(1):32–48

29. Bowman K, Tschanz J, Kim NS, Lee J, Wilkerson C, Lu S-L, Karnik T, De V (2009)
Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance.
IEEE J Solid State Circ 44(1):49–63

30. Xilinx synthesis and simulation design guide. http://www.xilinx.com
31. Noda M, Kajihara S, Sato Y, Miyase K, Wen X, Miura Y (2010) On estimation of nbti-induced

delay degradation. In: 2010 15th IEEE European Test Symposium (ETS), pp 107–111
32. Wang W, Yang S, Bhardwaj S, Vrudhula S, Liu F, Cao Y (2010) The impact of nbti

effect on combinational circuit: modeling, simulation, and analysis. IEEE Trans VLSI Syst
18(2):173–183

33. Takeda E, Suzuki N (1983) An empirical model for device degradation due to hot-carrier
injection. IEEE Electron Device Lett 4(4):111–113

34. Angermeier J, Amouri A, Teich J (2009) General methodology for mapping iterative approx-
imation algorithms to adaptive dynamically partially reconfigurable systems. In: International
conference on field programmable logic and applications, FPL 2009, pp 302–307

35. Opencores. http://opencores.org. Accessed 2011

http://www.xilinx.com
http://opencores.org

Hardware Design for C-Based Complex Event
Processing

Hiroaki Inoue, Takashi Takenaka, and Masato Motomura

1 Introduction

Recent trends in real-time application domains, such as financial trading, smart city,
fraud detection for credit cards, and healthcare, require processing high volumes
of time-series events in order to extemporarily extract meaningful information.
Complex event processing (CEP) is a new computing paradigm that responds to
such application requirements. By definition, CEP generates complex events (i.e.,
useful information) from a sequence of real-time events and allows events to be both
filtered with user-defined patterns and transformed into new data so that applications
will be able to quickly and easily handle the events and data. For example, CEP is
capable of detecting items which have been shoplifted, and it could raise an alert if
a patient had taken an overdose of antibiotics in the past 4 hrs [1].

Many software-based CEP (stream) systems support new event languages as
extensions of the structured query language (SQL) used in data-base management
systems (DBMSs) [2–11]. SQL is a domain-specific, declarative language widely
used in DBMSs, and it enables applications to handle a large volume of data items
so as to be efficiently implemented with simple operators. In such systems, an event

H. Inoue (�)
Green Platform Research Laboratories, NEC Corporation, 1753, Shimonumabe,
Nakahara-ku, Kawasaki 211–8666, Japan
e-mail: h-inoue@ce.jp.nec.com

T. Takenaka
Green Platforms Research Laboratories, NEC Corporation, Nakahara, Kawasaki,
Kanagawa 211-8666, Japan
e-mail: takenaka@aj.jp.nec.com

M. Motomura
Graduate School of Information Science and Technology, Hokkaido University,
Kita-ku, Sapporo 060-0815, Japan
e-mail: motomura@ist.hokudai.ac.jp

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2 4, © Springer Science+Business Media, LLC 2013

79

80 H. Inoue et al.

Fig. 1 Example of a SASE+ CEP query [1]

is defined as data with multiple fields (a tuple). The basic functions of an event
language include: (1) arithmetic/boolean operations; (2) projection, which discards
specified fields from a tuple; (3) selection, which selects tuples whose fields contain
at least one match; (4) union, which merges multiple streams into a single stream;
(5) partitioning, which classifies a stream contents in terms of fields; (6) windowing,
which specifies a range (window) of processed tuples; (7) concatenation, which
converts multiple fields into a single tuple; and (8) aggregation, which performs
a function (e.g., sum or average) that inputs specified fields of tuples.

The two most powerful functions that such CEP event languages support are (1)
regular expressions with Kleene closure (e.g., ∗ or + in regular expressions) and (2)
user-defined aggregation functions. A regular expression provides a concise, flexible
means for matching sequential events. In particular, Kleene closure enables a finite
yet unbounded number of time-series events to be efficiently handled. In addition,
user-defined aggregation functions help achieve high throughput with algorithm-
oriented applications, such as change-point analysis and cryptography. For example,
IBM SPADE [7] is used to allow user-defined aggregation functions written in C++
or Java to be executed with its SQL built-in operators. Thus, the functions enable
CEP systems to be widely used in many application domains.

Figure 1 depicts an example of a SQL-based CEP query written in a well-known
CEP event language, called SASE+ [8]. This query retrieves the total trading volume
of NEC stocks in the 4 h period after some bad news occurred [1].

According to [8], the PATTERN, WHERE and WITHIN clauses form a pattern
matching block. The PATTERN clause specifies the structure of a pattern to be
matched along a SEQ construct that specifies an event sequence in a regular
expression. In this example, event Stock b repeatedly occurs after event News
a occurs. Here, an array variable b[] is declared for each Kleene closure Stock
component. The WHERE clause imposes value-based constraints on the events
addressed by the pattern. The WITHIN clause further specifies a sliding window
over the entire pattern. The evaluation of PATTERN, WHERE, and WITHIN
clauses results in a stream of pattern matches; each consists of a unique sequence
of events used to match the pattern. The HAVING clause further filters each pattern
match by applying predicates on the constituent events. Finally, the RETURN
clause transforms each pattern match into a result event for output. In this example,
the RETURN clause quickly outputs the sum of stock volumes with user-defined
aggregation function parallel sum(), which executes a multi-threaded version of
aggregation function sum().

Hardware Design for C-Based Complex Event Processing 81

Fig. 2 Example of a complex event detection query [15]

However, existing software-based CEP systems, which achieve sophisticated
event processing with SQL-based declarative languages, suffer from poor event pro-
cessing performance (at most, 500 Kevents/s) [12]. For example, in financial trading
markets, the Options price reporting authority (OPRA) has, in fact, announced that
event traffic will reach 6.537 Mevents/s (1.57 Gbps) by July, 2012 [13]. Typically,
events are sent in small user datagram packet (UDP) packets in order to reduce the
latency required for event processing. Once the arrival rate of the events exceeds
a certain threshold, the systems are unable to sustain their event processing since
UDP packets begin to be dropped [14].

One promising approach would seem to be use of reconfigurable hardware,
such as field-programmable gate arrays (FPGAs), in order to accelerate event
processing. The authors of [15] have proposed an epoch-making, FPGA-based CEP
system that employs an in-house SQL compiler and have achieved 1 Gbps event
processing performance. The FPGA-based CEP system supports regular expression-
based complex event detection, unlike traditional CEP languages. Figure 2 depicts
an example of a complex event detection query. According to [15], the New York
marathon is taken as an example. The runners need to pass an electronic checkpoint
in each of the five boroughs: Staten Island (A), Brooklyn (B), Queens (C), the Bronx
(D) and Manhattan (E). While there is nothing wrong with a runner passing any
single of the checkpoints, an incorrect order of passing them may indicate cheating.
This query is used to describe the complex event where a runner reached one of
the checkpoints C, D, or E (from start point A), but has not passed the respective
predecessor B, C, or D.

This query consists of the PATTERN clause and the DEFINE clause. In the
PATTERN clause, the complex event is specified using predicate-based regular
expressions with Kleene closure. The predicates are defined in the subsequent DE-
FINE clause. Observe that the absence of checkpoint readings (e.g., as (A|C|D|E)∗)
can be described in a more readable way by using negation (i.e., NOTB, NOTC,
and NOTD). While the FPGA-based CEP system achieves efficient hardware
acceleration for complex event detection, it restricts the language specifications of
SASE+ only to the PATTERN and WHERE clauses (i.e., regular expressions with
Kleene closure) without any aggregation functions due to the language’s complexity
required for building hardware.

82 H. Inoue et al.

In this chapter, we report our hardware-accelerated CEP system, which uses a
novel hardware-friendly C-based event language [16]. This C-based approach offers
two major benefits: (1) high-throughput regular expressions with Kleene closure
and (2) support of various aggregation functions. This is possible because recent
advances in high-level synthesis industry tools [17, 18] allow source codes written
in C to be directly converted to fully-optimized hardware description language
(HDL) source codes. In addition, on the basis of the hardware-friendly C-based
event language, we make it possible to support SQL interfaces in the same flexibility
as software-based CEP systems since the C-based event language itself has a high
descriptive ability to implement other SQL functions.

Major contributions of our work include achievement of the following design
objectives:

• A novel hardware-friendly C-based event language: We have newly defined
a C-based event language which includes new regular expression syntax with
Kleene closure in addition to traditional C syntax, using typical SQL-based
event languages for reference [8, 19], in order to help detect matched events in
chronological order. The resulting event language is able to support a variety of
aggregation functions, including those required for our financial trading example
(see Sect. 2).

• An efficient logic construction method: We have designed a pipelined method
which enables both regular expression syntax with Kleene closure and (user-
defined) aggregation functions to be efficiently mapped to hardware. The method
newly adds data paths required for aggregation functions to control paths used
for regular expressions with Kleene closure as an extension of a traditional
logic construction method, known as the Sidhu and Prasanna method [20] (see
Sect. 3.2).

• Remarkable speed-ups over CPU software: We have confirmed that our FPGA-
based CEP system is applicable to an actual 20 Gbps FPGA-based network
interface card (NIC) by applying it to an example of financial trading (see
Sect. 2). On the FPGA NIC, we have achieved 12.3 times better performance
than does CPU software in the example of financial trading.

The remainder of this chapter is structured as follows: Sect. 2 depicts our motivating
example, Sect. 3 introduces our C-based framework, Sect. 4 describes our CEP
system, Sect. 5 presents the results of our evaluation, Sect. 6 illustrates related work
and Sect. 7 summarizes our work.

2 Motivating Example

One of our target applications is financial trading, which requires real-time process-
ing with respect to various stock prices obtained from stock exchanges. Figure 3
shows a simple stock price analysis. Here, we use the opening prices of NEC

Hardware Design for C-Based Complex Event Processing 83

P
ric

e
(Y

en
)

215
220
225
230
235
240
245
250
255
260
265

Ja
n.

 4
 M

Ja
n.

 4
 A

Ja
n.

 5
 M

Ja
n.

 5
 A

Ja
n.

 6
 M

Ja
n.

 6
 A

Ja
n.

 7
 M

Ja
n.

 7
 A

Ja
n.

 1
1

M
Ja

n.
 1

1
A

Ja
n.

 1
2

M
Ja

n.
 1

2
A

Ja
n.

 1
3

M
Ja

n.
 1

3
A

Ja
n.

 1
4

M
Ja

n.
 1

4
A

Ja
n.

 1
7

M
Ja

n.
 1

7
A

Ja
n.

 1
8

M
Ja

n.
 1

8
A

Ja
n.

 1
9

M
Ja

n.
 1

9
A

Ja
n.

 2
0

M
Ja

n.
 2

0
A

Ja
n.

 2
1

M
Ja

n.
 2

1
A

Ja
n.

 2
4

M
Ja

n.
 2

4
A

Ja
n.

 2
5

M
Ja

n.
 2

5
A

Ja
n.

 2
6

M
Ja

n.
 2

6
A

Ja
n.

 2
7

M
Ja

n.
 2

7
A

Ja
n.

 2
8

M
Ja

n.
 2

8
A

Ja
n.

 3
1

M
Ja

n.
 3

1
A

2. Change-point analysis1. Smoothing

NEC Japan stock price
Jan. 04 –31, 2011

(Tokyo Stock Exchange)

P
ric

e
(Y

en
)

P
ric

e
(Y

en
)

215
220
225
230
235
240
245
250
255
260
265

Ja
n.

 4
 M

Ja
n.

 4
 A

Ja
n.

 5
 M

Ja
n.

 5
 A

Ja
n.

 6
 M

Ja
n.

 6
 A

Ja
n.

 7
 M

Ja
n.

 7
 A

Ja
n.

 1
1

M
Ja

n.
 1

1
A

Ja
n.

 1
2

M
Ja

n.
 1

2
A

Ja
n.

 1
3

M
Ja

n.
 1

3
A

Ja
n.

 1
4

M
Ja

n.
 1

4
A

Ja
n.

 1
7

M
Ja

n.
 1

7
A

Ja
n.

 1
8

M
Ja

n.
 1

8
A

Ja
n.

 1
9

M
Ja

n.
 1

9
A

Ja
n.

 2
0

M
Ja

n.
 2

0
A

Ja
n.

 2
1

M
Ja

n.
 2

1
A

Ja
n.

 2
4

M
Ja

n.
 2

4
A

Ja
n.

 2
5

M
Ja

n.
 2

5
A

Ja
n.

 2
6

M
Ja

n.
 2

6
A

Ja
n.

 2
7

M
Ja

n.
 2

7
A

Ja
n.

 2
8

M
Ja

n.
 2

8
A

Ja
n.

 3
1

M
Ja

n.
 3

1
A

original data

215
220
225
230
235
240
245
250
255
260
265

Ja
n.

 4
 M

Ja
n.

 4
 A

Ja
n.

 5
 M

Ja
n.

 5
 A

Ja
n.

 6
 M

Ja
n.

 6
 A

Ja
n.

 7
 M

Ja
n.

 7
 A

Ja
n.

 1
1

M
Ja

n.
 1

1
A

Ja
n.

 1
2

M
Ja

n.
 1

2
A

Ja
n.

 1
3

M
Ja

n.
 1

3
A

Ja
n.

 1
4

M
Ja

n.
 1

4
A

Ja
n.

 1
7

M
Ja

n.
 1

7
A

Ja
n.

 1
8

M
Ja

n.
 1

8
A

Ja
n.

 1
9

M
Ja

n.
 1

9
A

Ja
n.

 2
0

M
Ja

n.
 2

0
A

Ja
n.

 2
1

M
Ja

n.
 2

1
A

Ja
n.

 2
4

M
Ja

n.
 2

4
A

Ja
n.

 2
5

M
Ja

n.
 2

5
A

Ja
n.

 2
6

M
Ja

n.
 2

6
A

Ja
n.

 2
7

M
Ja

n.
 2

7
A

Ja
n.

 2
8

M

smoothed data

Fig. 3 Motivating example—stock price analysis

Japan stock in the morning and afternoon sessions from January 4th (the beginning
of this year’s trading) to 31st in 2011; full real-time stock movements for each
day were unavailable. As the authors of [21] have shown, however, market prices
exhibit a fractal structure (i.e., tend to exhibit the same behavior) regardless of the
measurement time-scale. This suggests that our analysis, while non-real-time, is
sufficiently significant for our purposes.

When using data such as that shown in the figure, a smoothing operation,
such as finite-impulse-response (FIR) filtering, is often first conducted in order to
eliminate fluctuations in stock prices. After that, a change-point analysis, such as
data mining, is often performed to the smoothed line in order to extract useful
information in an algorithmic way. The extracted information can be used to conduct
an advanced analysis. In this example, we have used a moving average of four stock
prices as a smoothing operation and have used detection of local maximums and
minimums as a change-point analysis. This change-point analysis requires a regular
expression with Kleene closure. In addition, both operations clearly require user-
defined aggregation functions. This means that we need to use procedural languages,
such as C or Java, for application to CEP systems.

84 H. Inoue et al.

3 C-Based CEP Language

This section describes our CEP framework, which is based on the use of a C-based
event language. The idea behind our language is the use of regular expressions.
Then, each element of a regular expression is a function written in C. Concepts
behind the PATTERN clause of SASE+ [1, 8] and the MATCH-RECOGNIZE
clause of the current ANSI draft [19] served as references in the development of this
idea. As a result, our C-based CEP framework supports the two most difficult CEP
functions: regular expressions with Kleene closure and (user-defined) aggregation
functions. In addition, in order to maintain compatibility with software-based CEP
systems, our CEP framework allows SQL interfaces to be implemented on the
event language because its descriptive ability has high affinity with SQL-based
frameworks.

3.1 Language Overview

Figure 4 presents an overview of our C-based event language. The language has
three user-defined data structures: evin t, evout t, and evarg t. While structure
evin t contains tuples of an input event, structure evout t contains tuples of an event
that is output when a specified regular expression matches a sequence of events.
Structure evarg t contains data shared among functions. Since arrays can be used in
structure evarg t, it can use array elements to store values contained in individual
streams, for the purpose of stream partitioning.

Fig. 4 C-based event language

Hardware Design for C-Based Complex Event Processing 85

ee4e3e2e1e0 e e e... ...

&

DataMatch

Return
values

Input events

h(e4, &arg)

g(e3, &arg)

g(e2, &arg)

g(e1, &arg)

f(e0, &arg)

Fig. 5 Operation overview of our CEP

A user simply writes an EVENT RULE macro that has four arguments:
< rname >, < rule >, < initial > and < final >. < rname > indicates the name
of the event rule. < initial > is an initial statement that sets initial values in an
argument used in the first function used (a variable evarg of structure evarg t).
< final > is a final statement that outputs the results obtained in the last function
used (a variable evarg of structure evarg t) as an output event (a variable evout of
evout t). < rule > describes a regular expression to be used for event processing
(i.e., the PATTERN clause). Like traditional regular expression syntaxes, ours has
four basic rules: grouping (), sequence r1r2, choice r1|r2, and (Kleene) closure
r+. Here, zero ore more repetitions of r, known as r∗, can be expressed with a
combination of a choice and a closure (e.g., ab∗ = a|ab+).

The elements of regular expressions are C-based functions, referred to as
< fname >, whose return values are Boolean (i.e., predicates for the WHERE and
HAVING clauses). Each function has two arguments: an input event (ev) and a
pointer to shared data (arg). It uses the two to return true when a specified condition
is a match. An input event is given to all functions at the same time. When all return
values of functions invoked along a regular expression are true, the entire regular
expression is a match. The most important point here is that changed arg values
will propagate along a specified regular expression, with each function (starting
with the second function) in the chain receiving values that have been modified by
the previous function (i.e., for the HAVING clause and aggregation functions).

Figure 5 shows an example operation of a regular expression whose elements are
three functions: f(), g(), and h().In this example, the regular expression is defined
as f()g()+h(). As shown in the figure, input events are sequentially given to each
function. Here, if all return values of functions (e.g., f()g()g() g()h()) are true, the

86 H. Inoue et al.

Fig. 6 Example source code in smoothing

regular expression is a match. Then, the final data (arg) are obtained from values
modified along the function sequence f()g()g()g()h(). Although, for simplicity, we
explain here only single-argument functions, multiple-arguments functions may be
used in the same way.

Figure 6 shows an example source code in a smoothing operation. In this
example, input event ev, output event evout, and argument arg each contain two
data items: time and price. Here, we use a moving average of four stock prices as a
smoothing operation. Function F0 stores the time and price of the current event in
argument arg, function F1 adds the price of the current event to that of the previous
event, and function F2 calculates a moving average, dividing the sum of the prices
of the current event and the previous event by four. Here, function F1 is used twice.

Figure 7 shows an example source code in a change-point analysis operation. In
this example, input event ev and output event evout each contain two data items:
time and price. Argument arg contains three data items: trend (for the direction
of the smoothed polygonal line), last time, and last price (i.e., time and price data
for the previous event). Here, we use detection of local maximums and minimums
for our change-point analysis. Function C0 stores the current event to argument
arg when the price of the event is equal or greater than that of the previous event.
Function C1 does the same operation when the price of the current event is equal
or less than that of the previous event. The closure of either function C0 or C1 will
result in repeated invoking of corresponding functions. Function C2 either outputs
a local maximum, when the price of a current event is less than that of the previous
event after function C0 has been invoked, or outputs a local minimum, when the
price of a current event is greater than that of the previous event after function C1
has been invoked.

Hardware Design for C-Based Complex Event Processing 87

Fig. 7 Example source code in change-point analysis

3.2 Logic Construction

Our novel method makes it possible for the event processing logic described in our
event language to be systematically constructed with four rules (see Fig. 8). The idea
behind it is the logic synthesis of regular expressions with data paths. In other words,
while our method constructs a non-deterministic finite automaton (NFA) structure
for return values of defined functions by using methods based on those in [20] (in
addition to [22–29]), it correctly connects arguments among defined functions on the

88 H. Inoue et al.

ci

di

ci

co

co

do

co

do

do

di

ci

ci co

c1

c1

d1

c2

d2 c2
do

di

di

ret(out)
<f>

ar
g(

in
) arg(out)ev(in)

Function: <f>

r1

r1

r2

r2
c

d

event
Sequence: r1r2

Choice: r1|r2 Closure: r+

r
0

1

c

d

a b

c d

Fig. 8 Logic construction method

NFA structure in a pipelined way. Grouping requires no construction rules since it
changes only the operator bindings. It should be noted that it is difficult to implement
high-throughput regular expressions used for events with a simple C library (i.e.,
without our logic construction method) because of its algorithm complexity.

Function < f > (see Fig. 8a) is simply replaced by a synthesizable function used
in a behavioral description language. A logical AND operation is performed on the
return value of function< f > and the value ci of the previous control path, yielding,
via a flip-flop, the value co for the next control path. Function < f > inputs an event
and the value di of the previous data path, and outputs, via a flip-flop, calculated
data as the value do for the next data path. For simplicity, we here explain the
construction rule for only one-cycle operations. We have supported pipelined multi-
cycle operations with two extensions: valid signals which indicate that control and
data path signals are valid at a cycle, and event queues, each of which is associated
with a function in order to both store input events and provide an input event to
the function when a valid signal associated with the previous control and data path
signals is asserted.

Sequence r1r2 (see Fig. 8b) simply connects (1) the values ci and di of the
previous control and data paths to the corresponding input values of rule r1, (2)
two output values c and d of rule r1 to the corresponding input values of rule r2, and
(3) the two output values of rule r2 to the values co and do for the next control and
data paths. This construction rule is equivalent to an assignment statement in C.

Choice r1|r2 (see Fig. 8c) connects the values ci and di of the previous control
and data paths to the corresponding input values in rules r1 and r2. A logical OR

Hardware Design for C-Based Complex Event Processing 89

evarg.price=0;
evarg.time=0;

evarg.last_price=0;
evarg.last_time=0;

1

evin{price,time}

evout.price =
evarg.price;

evout.time =
evarg.time;

evin{price,time}

evout.price =
evarg.last_price;

evout.time =
evarg.last_time;

Change-point
analysis

Smoothing
ci

ci di

doco

di

doco

Match

evout
{price,time}

<initial>
<final>

<final>

<initial>

Fig. 9 Logic overview of smoothing and change-point analysis

operation on the value c1 of the control path of rule r1 and the value c2 of the control
path of rule r2 is performed, yielding the value co for the next control path. The value
do for the next data path is selected from either d1 or d2 on the basis of values c1 or
c2 of the control paths of rules r1 and r2. Although the number of selection options
is considerable, our current option is as follows: if c2 is true, do is d2. Otherwise, do

is d1. This construction rule is equivalent to an if statement in C.
Closure r+ (see Fig. 8d) connects two output values of rule r to the values co and

do for the next control and data paths. Although the number of repetition options
is considerable, our repetition option employs the longest-match rule: if co is true,
the input values c and d of rule r are connected to the values co and do for the
next control and data paths. Otherwise, they are connected to the values ci and di of
the previous control and data paths. This construction rule is equivalent to a while
statement in C.

Figure 9 shows the system overview of smoothing and change-point analysis
operations in accord with the EVENT RULE macros shown in Figs. 7 and 8. In
the smoothing operation, the input value ci of the control path is 1. Then, the output
value co of the control path is directly connected to the input value ci of the control
path in the change-point analysis operation. The input values di of the data paths
in both operations are obtained from the initial statements < initial > described
in Figs. 7 and 8. The output value do of the data path in the smooth operation is
given to the change-point analysis operation as an input event obtained through the
final statement < final > described in Fig. 6. Finally, in the change-point analysis
operation, the output value co of the control path indicates a match, and the output
value do of the data path is a local maximum/minimum as an output event obtained

90 H. Inoue et al.

F1 F1 F2F0

ci co

do

co

do

ci

di

di

event

Smoothing

a

b

C0

event

C1

c0
C2

0
1

Change-point analysis

c1

(C0|C1)(C0|C1)+

Fig. 10 Logic examples for smoothing and change-point analysis

through the final statement < final > described in Fig. 7. In this way, two operations
are subsequently invoked.

Figure 10 illustrates the synthesized logic of smoothing and change-point anal-
ysis operations in accord with the source codes shown in Figs. 6 and 7. In the
smoothing operation (see Fig. 10a), functions F0, F1 and F2 are simply connected in
series, using the sequence construction rule. In the change-point analysis operation
(see Fig. 10b), functions C0, C1 and C2 are connected with the sequence, choice,
and closure construction rules. In both examples, the initial value ci of the control
path is always true, and the initial value di of the data path is assigned by initial
statement < initial >. Moreover, when co is true, the final value do of the data path
is assigned to an output event evout by final statement < final >. In this way, our
new construction method allows regular expressions written in our C-based event
language for efficiently mapping to hardware.

3.3 Design Flow

In our framework, C functions themselves are directly converted by high-level
synthesis industry tools. Recent advance in high-level synthesis puts synthesizable
C codes into a practical use. In order to synthesize C functions, we have used NEC
CyberWorkBench [17,18] that supports both extended American national standards

Hardware Design for C-Based Complex Event Processing 91

Modem

IrDA

NOR-F

Remote

USB OTG
Transceiver

32KHz Clock

NAND-F

Ether

LED, etc.

Debug Console,
BT,GPS,Felica

CPU/DSP
Debugger

DDR

Main
Camera

12MHz OSC

Power
supply IC, etc.

LCD

Voice/Audio
ARM926EJ-S

ARM926EJ-S

ARM926EJ-S
SPXK602

(DSP)

INT
Controller

Timer
General:4

Watch Dog:4
2D/3D

Graphics

Rotator

Image Pro.

Mobile
Security
Engine

DMA Controller

RAM
640KB

SIO

UART:4

GPIO
& INT

SRAM
I/F

USB
OTG

SIO Debugger I/F

SD/MS-I/F

PCM:3

SDRAMC
& FIFO

SPI

System/Power
Control

I2CI2C device

NTSC/PAL
enc

CAMOFDM/
SPI-s

Digital TV receiver TV

Remote

Back
LCD

CCP(2)

Sub
Camera

LVDSNTSC/PAL

µWIRE

Power

& FIFO

Sound Source

Wireless
LAN

M-CMADS

LCDC
SPI

Bus

MSSD

CWB

RTL
(reused or IPs)

Fig. 11 Design example of NEC CyberWorkBench

institute (ANSI) C and SystemC. High-level synthesis tools have been practically
used for many commercial products. Figure 11 shows NEC 3G mobile phone appli-
cation chip [30], called MP211, as a design example of NEC CyberWorkBench. In
the figure, the gray boxes are designed with NEC CyberWorkBench.

CyberWorkBench supports almost all control structures (e.g., bounded-
/unbounded-loops, conditionals, break/continue, and functions), and many
data types (e.g., multi-dimensional arrays, pointers, struct, classes, templates,
static variables, and typedefs). In addition, CyberWorkBench has three types
of extensions to describe realistic hardware description. The first type of
extensions includes hardware-specific descriptions, such as input/output port
declarations, bit-widths of variables, fixed point arithmetic, synchronization
with a special wait function, clocking with clock-boundary symbols, and
interrupt/trap operations with always construct meaning statements. The second
type of extensions includes hardware-oriented operations, such as bit slice,
reduction and/or, and structural components (e.g., multiplexers). The third type
of extensions includes optimization descriptions (pragmas), such as register/wire
assignments for variables, memory/register file assignments for arrays, and
data-transfer type assignments (e.g., wire, registers, latches, or tri-state gates),
synchronous/asynchronous sets of initial register values, specifications of gated
clocked registers, data initiation interval for pipelined loops, partial-loop-unrolling
numbers, and manual binding indicators. Behavioral IP libraries, called Cyberware,
such as encryption, decryption, and floating point arithmetic are also included.
CyberWorkBench, however, has some restrictions on the ANSI-C language.
Dynamic behaviors, such as dynamic allocation, and recursion, are currently
unsupported.

92 H. Inoue et al.

CyberWork
Bench

New tool

EVENT_RULE
macro C functions

Connection
HDL

Function
HDLs

CEP HDL

CEP C code
Fig. 12 Overview of our
C-based CEP design flow

We have designed a new tool which incorporates our logic construction method
(see Sect. 3.2) in order to convert EVENT RULE macros to HDL codes. The new
tool will be integrated into a high-level synthesis tool, such as CyberWorkBench.
Figure 12 summarizes the overview of our C-based CEP design flow. A customer
first writes a CEP query in our C-based event language. As described in Sect. 3.1,
this query includes both an EVENT RULE macro and C functions. A high-level
synthesis tool enables C functions themselves, such as functions F0, F1, F2, C0,
C1, and C2 in Figs. 7 and 8, to be directly translated into HDL codes. On the
other hand, the new tool converts the EVENT RULE macro to HDL codes. Finally,
the customer obtains the whole CEP HDL codes, combining the HDL codes of C
functions and the one of an EVENT RULE macro (i.e., connection along a regular
expression).

4 Hardware-Accelerated CEP System

This section describes our hardware-accelerated CEP system. In the system, we use
FPGA-based NICs in order to execute CEP queries generated by our new design
methodology (see Sect. 3) on them.

4.1 System Overview

Figure 13 presents an overview of our hardware-accelerated CEP system, which pro-
cesses events in two steps: (1) pre-processing a large number of sequential events on
an FPGA-based NIC, and (2) main-processing a small amount of useful information

Hardware Design for C-Based Complex Event Processing 93

Core
router

OS

AP

CEP Software

AP
AP

...

CPU CPU

Chipset

Internet

...

Information sources

Edge
router

FPGA

NIC

Pre-processing

O
ffl

oa
d

Server

Fig. 13 Overview of hardware-accelerated CEP system; AP stands for application

on CEP software. A server executes real-time applications with conventional CEP
software. This software configures an FPGA-based NIC of the server in accord with
application demands in order to receive a small amount of useful information. When
a large number of events generated by a wide variety of information sources reach
the server via core and edge routers, the NIC conducts configured event processing
(i.e., executes queries) on them. If a matched condition is satisfied, the NIC sends an
output event to the CEP software. The CEP software then performs main-processing
on the basis of the filtered events. In this way, our CEP system makes possible both
a high level of real-time application throughput and a large number of real-time
applications to be executed on it since pre-processing on the NIC hardware makes
it possible to avoid heavy CPU loads.

4.2 FPGA-Based NIC

Figure 14 presents a design overview of our event processing adapter in an FPGA-
based NIC. This NIC allows packets to be processed via Atlantic interface [31], a
high-performance standard interface suitable for packet processing. The interface
provides (1) (for packet sending) five control signals, 128 (16 byte) data signals,
and four byte-enable signals, and (2) (for packet receiving) six control signals, 128
(16 byte) data signals, and four byte-enable signals. This means that a packet will
be fragmented into data chunks of 16 bytes, and the adapter will receive and/or send
up to 16 bytes every cycle.

The current design of our event processing adapter consists of five modules: the
first, second, and third header checkers, event processing logic, and an event sender.

94 H. Inoue et al.

1st header checker

2nd header checker

3rd header checker

Event processing logic

Event sender

PCI express
(server)

MAC
(network)

Match

Match

Match

Match

Match
N

o m
atch

Atlantic I/F
(16B/128b)

iii iv v vi vii viii ix x

Packet format

Ethernet frame:
1. Dst. MAC addr.
2. Src. MAC addr.
3. Type

1 2 3 i ii

x a b c d Payload ...

i Version and IHL
ii Differentiated

services
iii Total length
iv Identification
v Flags &

Fragment offset

vi TTL
vii Protocol
viii Checksum
ix Src. IP addr.
x Dst. IP addr.

UDP header:
a. Src. port
b. Dst. port
c. Length
d. Checksum

1st header (16B):

2nd header (16B):

3rd header (16B):

IP header:

Atlantic I/F
(16B/128b)

Fig. 14 Inside our FPGA-based NIC

For simplicity, each UDP packet in our CEP system includes only a single event
(i.e., there is no packet fragmentation). This means that the sum of an input event
size and the IP/UDP header sizes needs to be less than the maximum transmission
unit (MTU) size.

The three header checkers check corresponding header fields of a received packet
(e.g., the black boxes in Fig. 14) via Atlantic interface. The first header checker
checks whether the type field of an Ethernet frame is 0x0800 (IPv4) and whether
the version and internet header length (IHL) fields of an IP header are, respectively,
0x4 and 0x5 (IPv4 and 20-byte header). Next, the second header checker checks
at the next cycle whether the total length and protocol fields of the IP header are,
respectively, the sum of IP/UDP header sizes (28 bytes) and an input event size,
and 0x11 (UDP). This checker may confirm whether the flags field of the IP header
indicates “Don’t fragment”. The third header checker then checks at the next cycle
whether the destination port and length fields of a UDP packet are, respectively, the
port used by our CEP system and the sum of the UDP header size (8 bytes) and
an input event size. When any of the three checkers detects an unmatched field, the
packet is simply forwarded to a server.

The event processing logic constructed from our event language inputs the entire
payload of a UDP packet as one event. It may connect multiple operations in
series or in parallel (e.g., serial connection of smoothing and change-point analysis
operations in our motivating example). If the logic detects that a specified regular
expression has been matched, an event sender sends a server a UDP packet that
includes an output event, calculating a new IP checksum for the packet. In this way,
our event processing adapter effectively handles events wrapped in UDP packets.

Hardware Design for C-Based Complex Event Processing 95

5 Evaluation

Figure 15 shows our target 20 Gbps FPGA-based NIC; Table 1 summarizes its
specifications. To the best of our knowledge, this is the first report of an over-
10 Gbps evaluation environment. We use an in-house compiler that converts codes
written in our event language to synthesizable C codes, which we then compile to
HDL codes with NEC CyberWorkBench [17, 18].

5.1 Implementation

We have implemented both smoothing and change-point analysis operations with
our event processing adapter on our target NIC. For verification, we have used
the NEC Japan stock information (see Sect. 2) as events. The date of each event
is replaced by a sequence number in order to continuously input events at the cycle

Fig. 15 Target 20 Gbps FPGA-based NIC

Table 1 Target NIC
specifications

Item Features

FPGA Xilinx XC5VLX330T-2
(156 MHz)

I/O XFP 10 Gbps × 2, PCI
Express Gen.1 × 8

CAD NEC CyberWorkBench
5.11/Xilinx ISE 11.4

96 H. Inoue et al.

6 10 13 15 31

Smoothing &
Change-point analysis

P
ric

e
(Y

en
)

220
225
230
235
240
245
250
255
260
265

smoothed data

215
time

Fig. 16 Implementation of our motivating example

Table 2 Logic usage in our
motivating example

Item Available Increase

Number of slice
registers

207,360 +2,492 (1.2 %)

Number of slice LUTs 207,360 +4,290 (2.1 %)
Number of occupied

slices
51,840 +1,378 (2.7 %)

level. As shown in Fig. 16, the logic successfully detects five change points, and
it achieves 20 Gbps peak event processing performance; the clock frequency is
156 MHz and the data width is 128 bits (i.e., 156MHz× 128bit = 19,968Mbps).
It should be noted that we have properly received five packets corresponding to the
change points on a server although a waveform is shown in the figure.

5.2 Logic Usage

We have evaluated how much the above implementation increases slice logic
utilization of our NIC FPGA. Since the number of occupied slices increases only
2.7 % (see Table 2), the entire logic, including our event processing adapter, can be
efficiently implemented.

Hardware Design for C-Based Complex Event Processing 97

Table 3 Performance speed-ups over software

Item Software (ns/event) Our work (ns/event) Speed-up

Motivating example 78.9 6.4 12.3×
VWAP 46.2 6.4 7.2×

5.3 Performance Speed-Up

We have evaluated how much our FPGA framework makes it possible to achieve
better performance than does CPU software in our motivating example. In order to
measure the CPU software performance, we have newly implemented a C source
code which directly executes the operations of our motivating example without
any CEP systems. This slightly gives an advantage to CPU software because the
code eliminates CEP-based performance overheads. In addition, for reference, we
have evaluated a simple, famous trading benchmark, referred to as volume-weighted
average price (VWAP), which means the ratio of the price traded to the total volume
traded over a particular time [32]. This benchmark simply requires an aggregation
function without any regular expressions.

Table 3 shows performance comparison results. Here, we have used an Intel Xeon
CPU running at 3.3 GHz with a 12 MB cache, and the CPU software performance
is an average of ten measurements due to its variability. In the table, compared
with CPU software, our work achieves both 12.3 times better performance with
respect to our motivating example and 7.2 times better one with respect to the
VWAP benchmark. These speed-ups come from the facts that our C-based event
language enables the two applications to be efficiently described and our logic
construction method allows both regular expressions with Kleene closure and
aggregation functions to be directly mapped to hardware in a pipelined way. In
addition, the reason why our motivating example significantly shows a better speed-
up than does the VWAP benchmark is because our motivating example requires
the execution of both regular expressions with Kleene closure and aggregation
functions. Thus, the results imply that our work is potentially suitable for achieving
higher performance than does CPU software with respect to many CEP application
domains that require both regular expressions with Kleene closure and aggregation
functions.

6 Related Work

Our research differs in a number of respects from the current body of research
on CEP. Our event language is designed to achieve both high-throughput regular
expressions with Kleene closure and support of various aggregation functions in
order to obtain useful information from event sequences along a specified regular
expression. Table 4 summarizes related work discussed in Sect. 1.

98 H. Inoue et al.

Table 4 Related work

Item Software CEP [12] Hardware CEP
Previous work [15] Our work

Language SQL SQL C
Regular expression Yes Yes Yes
Aggregation Yes No Yes
Peak throughput 0.12 Gbps 1 Gbps 20 Gbps

Much work has been conducted on high-speed logic construction from regular
expressions [20,22–29]. While Kennedy et al. [27] have achieved over-40 Gbps deep
packet inspection, they support no aggregation functions required for CEP. Sadoghi
et al. [33] have proposed an interesting financial trading platform. While they
implement an event matching mechanism, they support no aggregation functions.
Jiang and Gokhale [34] have presented a machine learning platform for up to
80 Gbps network traffic. They, however, only classify data without any event
matching mechanisms. Thus, existing work supports either control flow operations
based on regular expressions or data flow operations which use normal functions.

We focus on efficiently constructing single-stream CEP queries on FPGAs, as
shown in the above sections. In order to support multi-stream CEP queries on
FPGAs, our event language needs to incorporate multi-stream functions; such as
partitioning (i.e., group by), which classifies a stream contents in terms of fields, and
join, which merges multiple streams into a single stream by using a common value,
operators in SQL; in it. For this purpose, Woods et al. [15] have proposed a stream
partitioning technique that enables query circuits to be mostly shared. In addition,
Teubner and Mueller [35] have presented a handshake join technique that leverages
hardware parallelism. Since the techniques have high degree of compatibility with
SQL, the SQL interfaces implemented on our C-based event language will simply
support similar operators. Alternatively, we will implement such interesting ideas as
C libraries. Moreover, our language differs substantially from such C-based stream
languages as Brook [36] and StreamIt [37] in having its control flow based on
regular expressions.

7 Conclusion

The requirements for fast CEP will necessitate hardware acceleration which uses
reconfigurable devices. Unlike conventional SQL-based approaches, our approach
features logic automation constructed with a new C-based event language that
supports regular expressions on the basis of C functions, so that a wide variety of
event-processing applications can be efficiently mapped to FPGAs. In a financial
trading application, we have, in fact, achieved 12.3 times better event processing
performance on an FPGA-based NIC than does CPU software. In future work, we
intend both to support SQL interfaces on our C-based event language and to employ
partial reconfiguration for run-time function replacement.

Hardware Design for C-Based Complex Event Processing 99

Acknowledgments We thank O. Arakawa, T. Iihoshi, K. Ichino, K. Imamura, O. Itoku,
S. Kamiya, S. Karino, S. Morioka, A. Motoki, S. Nakadai, Y. Nakamura, N. Nishi, M. Nishihara,
M. Petersen, H. Tagato, M. Tani, A. Tsuji, K. Wakabayashi, and N. Yamagaki for their great
contributions.

References

1. SASE+ http://avid.cs.umass.edu/sase/index.php?page=navigation menus
2. Abadi DJ, Carney D, Cetintemel U, Cherniack M, Convey C, Lee S, Stonebraker M, Tatbul N,

Zdonik S (2003) Aurora: a new model and architecture for data stream management. Int J Very
Large Data Bases 12(2):120–139

3. Anicic D, Ahmad Y, Balazinska M, Cetintemel U, Cherniack M, Hwang J-H, Linder W,
Maskey AS, Rasin A, Ryvkina E, Tatbul N, Xing Y, Zdonik S (2005) The design of the borelias
stream processing engine. In: Biennial conference on innovative data systems research. Very
Large Data Base Endowment Inc. Franklin County, Ohio, USA, pp 277–289

4. Anicic D, Fodor P, Rudolph S, Stuehmer R, Stojanovic N, Studer R (2010) A rule-based
language for complex event processing and reasoning. In: International conference on web
reasoning and rule systems. Springer, Berlin, (Lecture Notes in Computer Science series),
pp 42–57

5. Chandrasekaran S, Cooper O, Deshpande A, Franklin MJ, Hellerstein JM, Hong W, Krish-
namurthy S, Madden S, Raman V, Reiss F, Shah M (2003) TelegraphCQ: continuous dataflow
processing for an uncertain world. In: Biennial conference on innovative data systems research.
Very Large Data Base Endowment Inc. Franklin County, Ohio, USA, pp 269–280

6. Demers A, Gehrke J, Panda B, Riedewald M, Sharma V, White W (2007) Cayuga: a general
purpose event monitoring system. In: Biennial conference on innovative data systems research.
Very Large Data Base Endowment Inc. Franklin County, Ohio, USA, pp 412–422

7. Gedik B, Andrade H, Wu K-L, Yu PS, Doo MC (2008) SPADE: the system s declarative
stream processing engine. In: ACM international conference on management of data. ACM,
New York, USA, pp 1123–1134

8. Gyllstrom D, Agrawal J, Diao Y, Immerman N (2008) On supporting Kleene closure over
event streams. In: International conference on data engineering. IEEE Computer Society,
Washington, DC, USA, pp 1391–1393

9. Kraemer J, Seeger B (2004) PIPES-a public infrastructure for processing and exploring
streams. In: ACM international conference on management of data. ACM, New York, USA, pp
925–926

10. Naughton J, Chen J, Kang J, Prakash N, Shanmugasundaram J, Ramamurthy R, Chen R,
DeWitt D, Galanis L, Luo Q, Tian F, Zhang C, Jackson B, Gupta A, Maier D, Tufte K (2001)
The Niagara internet query system. IEEE Data Eng Bulletin 24(1):27–33

11. The STREAM Group (2003) STREAM: the stanford stream data manager. IEEE Data Eng
Bulletin 26(1):19–26

12. Mendes MR, Bizarro P, Marques P (2009) A performance study of event processing systems.
Performance Evaluation and Benchmarking, vol 5895, pp 221–236

13. OPRA Updated traffic projections 2011 & 2012. http://www.opradata.com/specs/upd traffic
proj 11 12.pdf

14. Mueller R, Teubner J, Alonso G (2009) Streams over wires – a query compiler for FPGAs. Int
Conf Very Large Data Bases 2(1):229–240

15. Woods L, Teubner J, Alonso G (2010) Complex event detection at wire speed with FPGAs. Int
Conf Very Large Data Bases 3(1–2):660–669

16. Inoue H, Takenaka T, Motomura M (2011) 20Gbps C-based complex event processing.
IEEE international conference on field programmable logic and applications. IEEE Computer
Society, Washington, DC, USA, pp 97–102

http://avid.cs.umass.edu/sase/index.php?page=navigation{_}menus
http://www. opradata.com/specs/ upd{_}traffic{_}proj{_}11{_}12.pdf
http://www. opradata.com/specs/ upd{_}traffic{_}proj{_}11{_}12.pdf

100 H. Inoue et al.

17. NEC CyberWorkBench. http://www.nec.com/global/prod/cwb/
18. Wakabayashi K, Schafer BC (2008) All-in-C: behavioral synthesis and verification with

CyberWorkBench. High-Level synthesis. Springer, Berlin, pp 113–127
19. Zemke F, Witkowski A, Cherniak M (2007) Pattern matching in sequences of rows. ANSI

Standard Proposal
20. Sidhu R, Prasanna V (2001) Fast regular expression matching using FPGAs. In: IEEE

symposium on field-programmable custom computing machines. IEEE Computer Society,
Washington, DC, USA, pp 227–238

21. Mandelbrot RB, Hudson RL (2006) The (mis)behavior of markets – a fractal view of risk, ruin,
and reward. Basic Books

22. Baker ZK, Prasanna VK (2004) A methodology for the synthesis of efficient intrusion detectoin
systems on FPGAs. In: IEEE symposium on field programmable custom computing machine.
IEEE Computer Society, Washington, DC, USA, pp 135–144

23. Bruschi F, Paolieri M, Rana V (2010) A reconfigurable system based on a parallel and
pipelined solution for regular expression matching. In: IEEE international conference on
field-programmable logic and applications. IEEE Computer Society, Washington, DC, USA,
pp 44–49

24. Cho YH, Navab S, WHM-Smith (2002) Specialized hardware for deep network packet filtering.
In: International conference on field programmable logic and applications. Springer-Verlag,
London, UK, pp 452–461

25. Clark CR, Schimmel DE (2003) Efficient reconfigurable logic circuits for matching complex
network intrustion detection patterns. In: International conference on field programmable logic
and applications. Springer, Berlin, (Lecture Notes in Computer Science series), pp 956–959

26. Hutchings BL, Franklin R, Carver D (2002) Assisting network intrusion detection with
reconfigurable hardware. In: IEEE symposium on field-programmable custom computing
machine. IEEE Computer Society, Washington, DC, USA, pp 111–120

27. Kennedy A, Wang X, Liu Z, Liu B (2010) Ultra-high throughput string matching for deep
packet inspection. In: ACM/IEEE design, automation & test in Europe. European Design and
Automation Association 3001 Leuven, Belgium, pp 399–404

28. Lin C-H, Huang C-T, Jiang C-P, Chang S-C (2007) Optimization of pattern matching circuits
for regular expression on FPGA. IEEE Trans Very Large Scale Integration Syst 15(12):
1303–1310

29. Yamagaki N, Sidhu R, Kamiya S (2008) High-speed regular expressin matching engine
using multi-character NFA.In: IEEE international conference on field programmable logic and
applications. IEEE Computer Society, Washington, DC, USA, pp 131–136

30. Torii S, Suzuki S, Tomonaga H, Tokue T, Sakai J, Suzuki N, Murakami K, Hiraga T,
Shigemoto K, Tatebe Y, Obuchi E, Kayama N, Edahiro M, Kusano T, Nishi N (2005) A
600MIPS 120mW 70uA leakage triple-CPU mobile application processor chip. In: IEEE
International Solid-State Circuits Conference. IEEE Piscataway, NJ, USA, pp 136–137

31. Altera (2002) Atlantic interface specification ver 3.0
32. VWAP http://en.wikipedia.org/wiki/VWAP
33. Sadoghi M, Labrecque M, Singh H, Shum W, Jacobsen H-A (2010) Efficient event processing

through reconfigurable hardware for algorithmic trading. Int Conf Very Large Data Bases
3(1–2):1525–1528

34. Jiang W, Gokhale M (2010) Real-time classification of multimedia traffic using FPGA. In:
IEEE international conference on field programmable logic and applications. IEEE Computer
Society, Washington, DC, USA pp 56–63

35. Teubner J, Mueller R (2011) How soccer players would do stream joins. In: ACM International
conference on management of data. ACM, New York, USA, pp 625–6s

36. Brook spec. v0.2 (2003) http://merrimac.stanford.edu/brook/brookspec-v0.2.pdf
37. StreamIt language specification version 2.1 (2006) http://groups.csail.mit.edu/cag/streamit/

papers/streamit-lang-spec.pdf

http://www.nec.com/global/prod/cwb/
http://en.wikipedia.org/wiki/VWAP
http://merrimac.stanford.edu/ brook/brookspec-v0.2.pdf
http://groups.csail.mit.edu/cag/ streamit/papers/streamit-lang-spec. pdf
http://groups.csail.mit.edu/cag/ streamit/papers/streamit-lang-spec. pdf

Model-based Performance Evaluation
of Dynamic Partial Reconfigurable Datapaths
for FPGA-based Systems

Rehan Ahmed and Peter Hallschmid

1 Introduction

One approach to reducing the unit cost of FPGAs is to time-multiplex functionality,
thus reducing the required size of the FPGA. This is accomplished via dynamic
partial reconfiguration (DPR) in which partial configuration bitstreams are loaded
into FPGA configuration memory at run-time. In addition to saving area, this
technique can also be used to dynamically optimize the system for different phases
of execution to improve speed and power efficiency.

A dynamic reconfiguration is achieved by transferring partial configuration
bitstreams from external memory to FPGA configuration memory via the DPR
datapath. The performance of this datapath can have a significant impact on overall
system performance and should be considered early in the design cycle. This is
especially true for systems in which partial reconfigurations occur on the critical
path and for fine-grained architectures in which programming bitstreams are longer.
Unfortunately, predicting reconfiguration performance early is difficult, in part, due
to non-deterministic factors such as the sharing of the bus structures with traffic not
related to the reconfiguration process. This type of traffic, which we call non-PR
traffic, is typically due to memory accesses initiated by on-chip processors or other
peripherals attached to the bus. This traffic is correlated with the unknown run-time
behavior of the software which we assume to be a stochastic process.

In this chapter, we describe a method of modeling the reconfiguration process
using well-established tools from queueing theory. By modeling the reconfiguration
datapath using queueing theory, performance measures can be estimated early
in the design cycle for a wide variety of architectures with non-deterministic
elements. This approach has many advantages over current approaches in which
hardware measurements are made after the system has been built. Reconfiguration

R. Ahmed (�) • P. Hallschmid
School of Engineering, The University of British Columbia, Canada
e-mail: rehan.ahmed@ubc.ca; peter.hallschmid@ubc.ca

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2 5, © Springer Science+Business Media, LLC 2013

101

102 R. Ahmed and P. Hallschmid

performance is heavily dependent on the detailed characteristics of the datapath and
on the particular workload imposed on the system during measurement and thus
can only be used to make projections for systems similar to that used for initial
measurements. A flexible modeling method that works for a wide range of DPR
architectures allows us to explore a large design space early in the design flow
ultimately leading to better implementation.

A set of guidelines is proposed for mapping any reconfiguration datapath to a
multi-class queueing network such that the various phases of the reconfiguration
traffic (PR traffic) and non-PR traffic can be modeled simultaneously using multiple
classes of traffic. Thus, each class can be assigned different queueing and routing
properties thus allowing for the correct modeling of shared bus resources. Once
defined, this model can then be used to generate performance estimates such as
the reconfiguration throughput, resource utilization, and memory requirements. This
can be accomplished by solving the network using either an analytical or simulation-
based approach, each of which has its advantages and disadvantages.

Performance estimates generated from the model can be used in the design
process in several ways: bottlenecks can be identified, performance trends can be
generated to relate system performance to hardware parameters, and the effects of
non-PR traffic on PR traffic and vice-versa can be quantified. The advantage of using
queueing networks over other modeling techniques is that queueing theory has a
wealth of analytical and simulation-based approaches for solving a wide variety of
modeling features.

The remainder of the chapter is organized as follows: Sects. 2 and 3 discuss
relevant reconfiguration metrics and techniques used to make performance mea-
surements and predictions, respectively. Section 4 describes how queueing theory
can be used to model reconfiguration datapaths and provides a scheme for mapping
them to queueing networks. Finally, Sect. 5 provides a case study of a two-phase
DPR system with a custom controller in the presence of non deterministic non-PR
traffic.

2 DPR Performance Metrics

Industrially available FPGAs such as Xilinx’s Virtex-II, -IV, and -V devices support
DPR. In addition to the programmable array, Xilinx-based systems often include
either Microblaze soft processor cores or PowerPC (PPC) hard cores both of which
can either be connected directly to the processor local bus (PLB) or to the slower on-
chip peripheral bus (OPB) via a bridge. Modules implemented in the programmable
array can be attached to the processor and can then serve as peripherals. Both the
PLB and the OPB are shared resources that can be used for PR and non-PR traffic
depending on the configuration of the datapath.

Model-based Performance Evaluation of Dynamic Partial Reconfigurable . . . 103

Fig. 1 A typical
Xilinx-based reconfigurable
system

The configuration memory of Xilinx-based FPGAs such as that shown in Fig. 1
can be accessed via the internal configuration access port (ICAP). The size of an
ICAP can range from 8-bits in width for the Virtex-II Pro to 32 bits in the Virtex-
IV and Virtex-V families. Xilinx provides soft IP cores and software libraries to
facilitate the loading of bitstream data into configuration memory via the ICAP.
In this configuration, the processor acts as the reconfiguration controller. For a more
optimal solution, a custom IP can be created to interface with the ICAP and to act as
a bus master such that it loads the bitstream via DMA [4]. An example system with
a custom ICAP controller interfaced with the PLB bus is shown in Fig. 1. Results
have shown that a custom-based solution provides a 58× increase in reconfiguration
speed [4].

The most important performance metric for a reconfiguration datapath is the
reconfiguration time which is generally considered to be the time needed to transfer
a partial bitstream from off-chip memory to the internal FPGA configuration
memory. In the early stages of system development, it is not only important to
predict the reconfiguration time of the system but also its variability, especially
for safety-critical systems. The primary source of variability comes from non-
deterministic components involved in the reconfiguration process. Examples of
non-deterministic components include the ICAP port and buses shared with non-
deterministic non-PR traffic.

In addition to reconfiguration time, another important metric includes the recon-
figuration throughput of a particular stage, or phase, of the datapath. The inverse of
this is the estimated time spent in a phase—the sum of all phases corresponds to the
time spent per byte to transfer a bitstream from external memory to configuration
memory. Memory utilization is also important because it directly corresponds to
the expected size requirements of memory. Further, utilization of various hardware
components can be useful for identifying the bottlenecks of the system.

104 R. Ahmed and P. Hallschmid

There are several factors that influence the aforementioned metrics in a hardware
implementation. These include the speed and type of external memory, the speed of
the memory controller, the type of ICAP controller and the way it is interfaced with
the bus. Depending on these choices, reconfiguration time can vary significantly
across implementations.

3 The Landscape of DPR Performance Estimation

Several methods have been developed for evaluating and estimating DPR perfor-
mance metrics. Papadimitrou et al. [10] provide an extensive survey of recent works
that measure reconfiguration time for “real-world” platforms. This survey compares
the reconfiguration time of several platforms as a function of the type of bitstream
storage (i.e., BRAM, SRAM, DDR, or DDR2 to name a few), the ICAP width and
operating frequency, the bitstream size, and the type of controller, whether it be
vendor provided or custom built. The expected reconfiguration time is calculated
based on the time spent in the different phases of the reconfiguration process. The
limitations of this approach were explored by Gries et al. [6] and Galdino et al. [5]
who showed that such predictions can be in error by one to two orders of magnitude.
Perhaps the most important disadvantage to these approaches is the fact that these
systems must be built first before they can be measured. This is counter to the
motivation of this work which is to predict performance trends early in the design
cycle and without the need to implement the system.

Claus et al. [4] provide a set of equations to calculate the expected reconfiguration
time and throughput. These equations are based on a value called the busy-factor
of the ICAP, which is the percentage time that the ICAP is busy and not able to
receive new bitstream data. Unfortunately, calculating the busy factor requires that
the system be built first. Further, this approach only works well for datapaths in
which the ICAP is the bottleneck. An additional limitation of the approach is that it
does not account for the effects of non-PR traffic on PR performance.

The reconfiguration cost model proposed by Papadimitriou et al. [10] is the first
cost model based on a theoretical analysis of the different phases, of dynamic PR.
The PR process is divided into phases and the total reconfiguration time is calculated
by adding together the time spent in each phase. Because software time stamps
are used to make measurements, additional contributions to the measurement
beyond that of the bus transfer are not included such as the time spent by the PR
controller to initiate the transfer and the impact of non-PR traffic. Because these
additional contributions can be significant and are implementation specific, phase
measurements are only suitable for use with systems that are incrementally different
from the measured system. In this chapter we construct our model using hardware
specifications rather than from measured values from software stamps. Further, we
model non-PR traffic as a separate factor from the phases of PR traffic.

Hsiung et al. [8] developed a SystemC model of a simple system consisting of
a processor, bus, memory, and reconfigurable region and used it to evaluate system

Model-based Performance Evaluation of Dynamic Partial Reconfigurable . . . 105

performance and to identify bottlenecks. This work was restricted by the limited
availability of SystemC functions to model the PR process and considered only an
oversimplified form of the PR datapath.

The modeling approach proposed in this chapter accounts for the stochastic
behavior of non-deterministic components in the system such as the ICAP port and
buses shared with non-PR traffic. In addition, it models the PR datapath at a detailed
level and accounts for factors such as burst size, memory speed, and the degree of
pipelining. Most significantly, our model does not require that systems be built to
evaluate their performance.

4 Modeling DPR with Queueing Networks

In the following sections, we describe the approach we take to model the recon-
figuration datapath using queueing networks. First, we list the datapath features
we model thus defining the inclusivity of the model. Second, we outline which
principles from queueing theory are used in the proposed modeling approach. Third,
we provide a set of guidelines for mapping datapaths to queueing networks.

4.1 DPR Features Modeled

We consider a generalized datapath as shown in Fig. 2 in which a partial re-
configuration consists of the transfer of partial bitstreams from external memory
to FPGA configuration memory through a series of zero or more intermediate
memories. Transfers between memories can occur over dedicated interconnect or
over buses shared with other, non-PR, traffic. We refer to the transfer between any
two intermediate memories as a phase.

Fig. 2 A generalized datapath for the dynamic partial reconfiguration of an FPGA-based system

106 R. Ahmed and P. Hallschmid

Assuming this generalized datapath, a number of datapath components and
features must be modeled. The following is a list of these components and features
with a brief description:

Architecture Components

• Processor: In a typical dynamically reconfigurable system, software running on
a processor core initiates the reconfiguration process. The processor may be
involved in one more phases of the reconfiguration by controlling the transfer
of bitstream data on a word-by-word basic or via a DMA transfer. If, at any
point, control is handed over to a custom controller, this controller ends the
reconfiguration by informing the processor with an interrupt. To model the
effectiveness of the reconfiguration datapath, we need only consider the time at
which the first packet of bitstream data enters the first phase until the last packet
of bitstream data exits the final phase. We need not consider the time spent by
the processor initiating the reconfiguration.

• Bus: The bus is a shared resource that is used to perform DPRs and by other
peripherals for inter-chip communications. From the perspective of the reconfig-
uration process, the processor’s use of the bus is a source of nondeterminism.
Reconfiguration time is directly affected by bus access patterns initiated by the
processor.

• Memory: Memories are broadly divided into off-chip and on-chip memories. PR
traffic (partial bitstream) is typically stored in off-chip memory, the type of which
varies from compact flash (CF) card to DDR memory. On-chip memory in the
form of block RAM (BRAM) is used to cache PR traffic before it is transferred
to configuration memory.

• Configuration Port: The configuration port acts as a gateway through which
partial bitstreams are transferred to FPGA configuration memory. The width and
operating frequency of the port vary from vendor to vendor and from device to
device.

Operating Features

• Reconfiguration Phases: The reconfiguration process typically has more than one
phase. We define a phase as a transfer of bitstream data across a dedicated or
shared routing resource ending at a memory. Phases can be sequential such that
an entire block of data must complete a phase before the subsequent phase begins,
or phases can be pipelined such that a phase can simultaneously operate on the
same block of data as the previous phase. This is accomplished using a FIFO.

• Size of Transfers: PR traffic through the bus can either be transferred word-by-
word or in bursts.

• Bus Arbitration: Bus arbitration should be modeled to enforce fairness in the use
of a shared bus. Typically, a round-robin schedule is used.

Model-based Performance Evaluation of Dynamic Partial Reconfigurable . . . 107

Non-determinism

• Non-PR Traffic: There can be random events in the system such as traffic coming
from different intellectual property (IP) blocks with nondeterministic start times
and end times. This traffic competes for shared resources such as the bus with PR
traffic.

• Configuration Port: The configuration port for Xilinx devices is known as ICAP
port. The transfers across the ICAP can only be initiated when ICAP busy signal
is not active. The behavior of this signal is stochastic in nature.

4.2 Application of Queueing Networks to DPR Modeling

We propose the use of queueing theory to model the generalized datapath described
in the previous section. A brief introduction to queueing networks is provided in
the appendix with several concepts discussed such as balance equations, marginal
probabilities, joint-probabilities, and Jackson networks. Jackson networks provide a
way to express the probability of an aggregate state of the network as the product of
its single-node state probabilities. Another way to express this is to say that the
joint probability pn is equal to the product of its marginal-probabilities qn over
all nodes. This is also known as a product-form solution. In its product form, the
joint-probability can be calculated easily and can then be used to calculate various
performance estimates.

Unfortunately, Jackson networks are not suitable for modeling dynamic recon-
figuration because all customer traffic (i.e., packets of PR and non-PR traffic) in
such networks belong to a single class and therefore have the same routing, arrival-
rate, and service-rate characteristics. BCMP networks are an extension of Jackson
networks but with the additional feature that several classes of traffic can co-exist
in the network each with their own statistical characteristics [1]. To correctly model
the various phases and types of traffic in the system, BCMP networks are used.

For BCMP networks, it is required that all network nodes belong to one of the
following four types:

1. Type-1: First-come-first-serve (FCFS) node. All classes must have the same
service time.

2. Type-2: Processor-sharing (PS) node. Classes can have different services times
but order is not maintained. Instead, customers are processed in time slices
weighted by their total service time.

3. Type-3: Infinite-server (IS) node. An infinite number of servers allow all cus-
tomers to be serviced immediately.

4. Type-4: Last-come-first-serve (LCFS) node with preemptive resume. Preempted
customers are resumed without loss.

As will be discussed later in the chapter, this restriction is a problem only when
we solve the network analytically.

108 R. Ahmed and P. Hallschmid

Assuming there are N nodes and C classes in the queueing network, the joint
probability for the BCMP queueing network is given as

p[S = (y1,y2, . . . ,yN)] =
1
G

d(S)
N

∏
i=1

Fi(yi) (1)

where,

• S = (y1,y2, . . . ,yN) is the aggregated state of an N node network with yi denoting
the state of the ith node. yi = (yi,1,yi,2, . . . ,yi,C) is a vector of length C with yi, j

representing the number of class- j customers at node i.
• G is a normalization constant that insures the sum of probabilities is equal to 1.
• d(S) is a function of all queue arrival times. All networks used in this chapter are

closed chains and thus this function becomes 1.
• Fi(yi) is a function to each node type.

A more detailed description of Eq. 1 can be found in [1].
In order to model different types of traffic in the DPR datapath, as explained in

Sect. 4.1, the BCMP network type-1 node has to support different queue service
time per customer class. This feature is needed to model the various types of
traffic passing through a shared resource, where each arriving customer has different
service times depending on its class. Further, to accurately model bus level transfers
and different phases of the system, a fork–join pair is required. The purpose of fork
nodes is to divide incoming queueing customers into one or more sub-customers. All
sub-customers generated by a fork must be routed downstream into a corresponding
join node. Therefore, all sub-customers must wait until all “sibling” sub-customers
have arrived, after which they recombine into the original customer.

To correctly model the datapath, two of the above-mentioned features are
required which are incompatible with the BCMP theorem. Thus, they no longer
have a product-form expression for the joint-probability and are thus not easily
solved analytically. The first incompatibility is that fork–join nodes are used to
model the word-by-word transfers of data across the bus. The second is in the use of
noncompliant type-1 queueing nodes for which each arriving customer has different
service times depending on its class.

One solution for solving a non-product-form network is to use approximation
methods. The disadvantage of this is that it cannot be used to model multi-class
networks and it is very difficult to find approximations methods that work with
both fork–join nodes and non-compliant type-1 nodes simultaneously. A second
approach is to reduce the accuracy of the model through the introduction of
assumptions such that the network becomes simpler and therefore BCMP compliant
which can be solved analytically. The third approach is to use a simulation-
based approach and to collect performance statistics rather than to calculate them
analytically.

The primary advantage of simulation-based solutions is that all queueing features
are supported. This includes fork–join pairs, phase barriers, and FCRs. Additional
benefits to a simulation-based approach include the availability of transient analysis

Model-based Performance Evaluation of Dynamic Partial Reconfigurable . . . 109

Fig. 3 Mapping of PR features to queueing primitives

and what-if analysis techniques. The disadvantage to simulation-based network
solvers is poor run-time complexity; however, this is not an issue due to the relatively
small sizes of the networks needed for modeling DPR datapaths. While simulations
can provide a solution in cases where an analytical solution is not possible, there
are situations in which an analytical solution is required. One such situation is
when an analytical solution is required in order to be incorporated into optimization
algorithms.

In this section we provide mapping guidelines for both simulation- and
analytical-based approaches. The choice of modeling scheme depends on the
complexity of the network and intended use of the result. Section 4.3 presents the
mapping scheme for simulation-based solutions followed by the mapping scheme
for analytical-based solutions in Sect. 4.4.

4.3 Mapping Scheme for Simulation-Based Solutions

Regardless of whether the network is solved analytically or by simulation, a
mapping scheme is required to map features between the PR datapath being modeled
and the queueing network. This mapping is achieved through various queueing
primitives, as shown in Fig. 3, which are used to model different datapath features.
Buses and memories used for the reconfiguration process are modeled with single-
node queues. The partial bitstream is represented by queueing customers that
pass through a sequence of single-node queues that together represent the PR
datapath. The partial bitstream is divided into smaller byte or word-sized blocks
(i.e., sub-customers) depending on the nature of the transfer. Single-node queues
are connected with directed edges that dictate the flow of bitstream data through
hardware resources thus defining the reconfiguration datapath. Customers are
categorized into classes to model different types of traffic whether they be different
phases of the PR process or traffic not directly related to the PR process such as

110 R. Ahmed and P. Hallschmid

the fetching of instructions by the processor core (i.e., non-PR traffic). By using
customer classes, we can assign different service rates and different routing policies
for each type of traffic passing through shared resources.

4.3.1 Separation of Concerns

To capture the behavior of a PR datapath for analysis and the calculation of
performance measures, aspects of the overall reconfigurable system not related
to the reconfiguration process are not included in the queueing model. The first
application of this principle relates to the time frame considered when modeling a
PR. We model the beginning of a PR process at the point when bitstream data is
first transferred out of external memory to the FPGA. All other activities driving
this process such as the initiation of the transfer by the processor are not considered.
We model the end of the PR process when the last byte of the partial bitstream has
been transferred to configuration memory. The queueing network models only the
transfer of bitstream data between these start and end points. Closed networks are
used as a convenient way to model the assumption that new transfers start only when
old transfers are finished.

All aspects of the architecture not directly relevant to the PR process are removed
from the model. The only exception to this is the inclusion of all non-PR traffic that
shares bus resources with PR traffic. The set of generalized rules for mapping any
reconfigurable datapath to queueing network is described below.

4.3.2 Modeling Non-deterministic Resources

Components of the PR process that are nondeterministic in nature are modeled as
single-node queues as shown in the mapping table provided in Fig. 3. Depending
on the nature of the hardware components of the datapath being modeled, this can
include shared buses, the configuration port (i.e., ICAP port), the source nodes for
PR and non-PR traffic, memories, and custom IP cores. In this chapter, we assume
that the arrival of PR and non-PR traffic is nondeterministic in addition to the ICAP
port and the arbitration of the shared bus. The ICAP port is modeled as a queue with
exponential service distribution and with an average service time corresponding to
the measured speed of the ICAP as reported in [3]. With respect to the shared bus,
the service time is different for each class of customer (i.e., each type of PR and/or
non-PR traffic) and is dependent on the number of words per transfer and the speeds
of the devices involved in the transfer. Arrivals to the bus are dictated by source
queues used for each type of traffic; in the case of PR traffic, this is provided by the
queue representing external memory.

Although other distributions are possible, all queues are modeled in this chapter
using an exponential service time distribution which is the most commonly used
in queueing theory. It corresponds to a process by which the arrival times (service
times) are uniformly random and the number of arrivals that occur per interval of
equal width is identically distributed.

Model-based Performance Evaluation of Dynamic Partial Reconfigurable . . . 111

4.3.3 Modeling Bus Traffic

The transfer of a block of the configuration bitstream from one memory to another
corresponds to a PR phase. As shown in Fig. 3, bus transfers are modeled using
fork–join pairs with a forking degree of D ≥ 1 and a capacity N ≥ 0. D represents
the degree to which a block is divided for the transfer. If, for example, a 2048-byte
block is to be transferred over a bus in 32-bit words, a 512-way fork is needed.
After passing through the bus, the 32-bit words are reassembled to form the 2048-
byte block via a corresponding join node. By breaking blocks into words as such,
we can accurately model the interlaced flow of traffic through the bus.

To model bus arbitration, a finite-capacity region (FCR) is used as listed in Fig. 3.
The number of customers, N, allowed into an FCR is limited to a maximum, 1 ≤
N ≤ Nmax. When a queue representing a shared bus is placed in the FCR, customers
of different classes are allowed into the queue by a round-robin arbitration. This is
required to prevent a large number of customers spawned from a fork from filling
the queue thus preventing customers of a different class from having interleaved
access to the bus.

For block transfers, it may be required that a new PR phase not start until the
entire block has completed the previous phase. Join nodes inherently solve this
problem by enforcing a synchronization mechanism in which all sub-customers
generated from a single fork must arrive at the join node before the join is completed.
If this behavior is not needed, then the join node must be placed after the ICAP node
when the complete transfer is finished.

Phases may be composed of more than one “sub-phase”. For some datapaths, it
may be required that the number of blocks that can be “processed” by a series of
phases is limited. To model this, the phase barrier shown in Fig. 3 is used which is
a fork–join pair with a forking degree of D = 1 and a finite capacity of 0≤ N ≤ 1.

4.3.4 Modeling Pipelining

Phase pipelining is modeled by populating the queueing network with more than
one customer such that each customer represents a portion of the bitstream. The
number of customers in the system represents the number of bitstream blocks that
can be processed by different phases of the pipeline at the same time. The maximum
number of customers in the system is limited by the maximum number of phases in
the pipeline.

4.4 Mapping Scheme for Analytical-Based Solutions

The philosophy behind the analytical solution method is to represent the system
using mathematical equation or set of equations from which certain measures can
be deduced. The solution of these equations can be a closed-form solution or can
be obtained through appropriate algorithms from numerical analysis techniques.

112 R. Ahmed and P. Hallschmid

The closed-form solution is bounded by basic-operations which make the solution
computationally less complex and hence faster to calculate. In many situations
where it’s not possible to obtain a closed-form solution formula, the solution is often
approximated using numerical methods which usually have higher computational
complexity.

In the work discussed in this chapter, we focus on analytical models with
closed-form solutions. To achieve this, we model the reconfigurable system using a
queueing network which can be solved using the BCMP theorem, as explained in
the appendix, thus yielding a closed-form solution.

In Sect. 4.3, we introduced a generalized mapping scheme for simulation-based
solutions. In doing so, we introduced the use of several modeling features such as
fork–join pairs in order to accurately model bus traffic. Some of these queueing
features are not compatible with product-form theorems such as BCMP, and
consequently approximation methods must be used. If, on the other hand, a closed-
form solution is required then the only option is to simplify the network by removing
features incompatible with BCMP. Because the network serves as a model of the
datapath, a network with fewer modeling features can only be used as a “force-fit”
if we assume a simplified view of datapath behavior. As a result, the model loses
the ability to capture the real-world behavior of the system, and hence, a difference
might exist between the simulation-based and analytical-based results.

To fit the proposed modeling scheme to BCMP, we make the following
simplifications:

1. We eliminate the use of fork–join nodes. Thus, we no longer model word-level
bus interactions by splitting partial bitstreams into words. Instead, we model the
transfer of large blocks across the bus by increasing their queue service time.
This can potentially skew the results when one type of traffic uses burst mode
transfers. Another implication of removing fork–join pairs is that the interaction
between sequential phases cannot be modeled well. In addition to fork–join pairs
being useful to break reconfiguration bitstreams into smaller parts, it is also
useful for synchronizing packets. All sub-packets created by a fork get blocked at
the corresponding join until all sibling sub-packets arrive; this provides a useful
way of differentiating between two sequential phases such that a set of packets
are transferred to memory in the first phase and, upon completion, the subsequent
phase begins.

2. We eliminate the use of finite-capacity constructs which are used to limit
the number of queueing customers allowed within a set of one or more queues.
These regions are used for our simulation-based approach in two ways. First, we
use finite-capacity fork–join pairs to limit the number of packets that can enter a
sequence of phases and to then synchronize them. Second, we limit the number
of packets allowed to queue at a bus thus enforcing bus arbitration.

3. For BCMP type-1 nodes, all classes sharing a queue must have the same service
time. The implication is that we will not be able to assign different service times
for different traffic types on a shared resource such as a bus. In order to assign
different service times to PR and non-PR traffic at a bus node, we assume that
bus nodes use a processor sharing service strategy (i.e, BCMP type-2 node).

Model-based Performance Evaluation of Dynamic Partial Reconfigurable . . . 113

5 Modeling DPR System: A Case Study

In the following section, we discuss the example reconfigurable datapath shown
in Fig. 4a. The architecture used in this example is typically used to lower
reconfiguration overhead through the use of a custom reconfiguration port controller
implemented using standard FPGA resources. Additionally, the two data-fetching
phases of the datapath are pipelined, thus further improving throughput. Below we
explain the experimental setup and results achieved through actual measurements
and using model-based estimates.

5.1 Experimental Setup

In the example system in Fig. 4a, the partial bitstream is transferred from external
DDR memory to configuration memory in two distinct but overlapped phases. The
only involvement of the PPC processor core during these phases is to initiate the
transfer, while the rest of the transfer is handled by the custom ICAP port controller.
We call this system a “two-phase datapath with custom ICAP port controller.”

The two phases of the reconfiguration process for this platform are as follows:

• First phase: A 128-byte block is transferred from DDR memory to BRAM via
the PLB in burst mode.

• Second phase: Data is transferred byte-by-byte from BRAM to configuration
memory via the ICAP port in 8-bit packets.

a

b

Fig. 4 (a) Example PR system and the corresponding (b) queueing network model

114 R. Ahmed and P. Hallschmid

Phases-1 and -2 are pipelined such that when the bitstream is being written
into the FPGA configuration memory, new bitstream data is fetched from external
memory and placed after the previously read data in BRAM. This process is
controlled by a custom ICAP controller which transfers partial bitstream data from
external DDR memory to the FPGAs configuration memory using DMA transfers.
The system is implemented on a Xilinx Virtex-II Pro device thus allowing us to
validate the estimated results with measured results.

5.2 Mapping to a Queueing Network

In order to obtain estimates of the various performance metrics for the example
system in Fig. 4a, we map its datapath to a corresponding queueing network model
as prescribed by the guidelines provided in Sect. 4.3. Figure 4b is an illustration of
the corresponding queueing network model.

There are five queues in the queueing network representing the shared PLB, the
ICAP port, BRAM, and source nodes for both PR and non-PR traffic. The source
node for PR traffic represents DDR memory in hardware, and its service rate models
the initiation of transfers as dictated by the PR controller. The source node for non-
PR traffic models sources for all traffic not related to PR such as memory reads
and writes involving the PPC, PPC memory, and other IPs attached to the bus. Both
phases are bounded by memory transfer primitives (i.e., fork–join nodes) to convert
128-byte blocks to words and words to bytes, respectively.

Customers are divided into three classes, namely, phase-1 customers, phase-2
customers and non-PR traffic customers. Customers belonging to class phase-1 and
phase-2 represent the PR traffic. Phase-1 customers originate from external memory
node and reach the BRAM via the bus maintaining the same class. After BRAM,
phase-1 customers switch to another class indicating they are now in phase-2 after
which they are transferred to the ICAP. The non-PR traffic customers originate from
the non-PR source node and transferred to the bus. The bus is shared between PR
and non-PR traffic in an interlaced fashion thus modeling the impact of non-PR
traffic on PR traffic.

Table 1 provides a mapping between hardware specifications of the example
system to calculated queue service times for the network model. The service time
of external memory is set to zero as the station acts as a source that immediately
provides bitstream blocks once the previous block has exited the system. Given that
the operating frequency of the PLB bus is 100 Mhz and it takes 30 bus clock cycles
to read 16 (64-bit) words from DDR memory, the service time for PR traffic at the
bus is 0.3μ s. We assume that non-PR traffic for this system is generated by the PPC
and takes one bus cycle per transfer. We assume that the PPC operates at 300 Mhz,
has 30 % memory operations, and has a 10 % miss rate for both instruction and data
caches. Thus, the service rate for the non-PR queue is 0.0256μ s. The ICAP is 8 bits

Model-based Performance Evaluation of Dynamic Partial Reconfigurable . . . 115

Table 1 Different traffic types present at different hardware (H/W) nodes and the corre-
sponding queue service times

Traffic type at node H/W node specs.
Service
time (u sec)

PR (phase-1) at Bus bus freq/width: 100 Mhz/64 bits 0.3
Mem cycles: 30 Bus cycles/128 bytes

Non-PR (phase-2) at Bus Bus freq/width: 100 Mhz/64 bits 0.01
Processing: 1 bus cycle/8 bytes

PR (phase-1) at ICAP ICAP freq/width: 100 Mhz/8 bits 0.01099
No of cycles/byte: 1.099

Non-PR (Phase-2) at PPC PPC freq: 300 Mhz 0.0256
30 % memory operations 0.1 miss rate

in width and operates at a frequency of 100 Mhz. Due to the stochastic nature of the
ICAP-BUSY signal, it is assumed that a single byte takes 1.099 cycles, which is a
less-than-ideal transfer rate. Thus, the service time for the ICAP queue is 91.6μ s.

5.3 Model-Based Simulation Results

Simulations were conducted using a modified version of the JMT network sim-
ulator [2]. In particular, JMT was modified to include multi-class switching.
Simulations were conducted on a 2.2 GHz Intel Core2 Duo T7500 with a typical
run-time of 2 min.

In the following sections, the ICAP width and external memory speed were
varied thus representing a set of candidate architectures. In both cases, utilization
and throughput results are provided.

5.3.1 Effects of Varying ICAP Width

Results were generated for the expected utilization and throughput of queues in
the network and are shown in Fig. 5. In this plot, the x-axis represents ICAP width
in bits, the right y-axis represents the utilization, and the left y-axis represents the
throughput in bytes/s of the various queues in the network model.

As the size of the ICAP port is increased from 2 bits to 128 bits, the utilization of
the ICAP due to PR traffic drops from 99.8 % to 28.1 %. As the width of the ICAP
increases, it can transfer more data per unit time thus reducing its utilization. The
reverse trend could be observed for the utilization of the shared bus due to PR traffic
which increased from 5.3 % to 95.1 % over the same range. This demonstrates that
improvements in ICAP speed places increased pressure on the bus thus making the

116 R. Ahmed and P. Hallschmid

ICAP Width vs Throughput and Utilization

ICAP Width (Bits)

0
2 4 8 16 32 64 128

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

TP PR

Util PR@Bus

TP Non-PR

Util Non-PR @Bus Util Bus

Util ICAP

4.50E+08
4.00E+08
3.50E+08
3.00E+08
2.50E+08
2.00E+08
1.50E+08
1.00E+08
5.00E+07
0.00E+07T

h
ro

u
g

h
p

u
t

(B
yt

es
/s

ec
)

U
ti

liz
at

io
n

 (
P

er
ce

n
ta

g
e)

Fig. 5 The effect of ICAP width on utilization and throughput

bus the new bottleneck thus affecting overall throughput. As shown in Fig. 5, overall
PR throughput increasingly improved with increased ICAP width until 32 bits after
which it began to saturate due to the high utilization of the bus.

For small ICAP widths, utilization of the bus was roughly equal for both PR and
non-PR traffic. As PR traffic was increased due to larger ICAP widths, PR requests
for the bus increased thus reducing the availability of the bus for non-PR traffic.
As a consequence, the utilization of the bus due to non-PR traffic reduced from
27.2 % to 3.5 %, and its throughput correspondingly suffered. These results clearly
demonstrate the relationship between PR and non-PR traffic in a system with shared
resources and supports the need to consider non-PR traffic early when designing
such a system.

5.3.2 Effects of Varying External Memory Speed

Results were generated for the expected utilization and throughput of the ICAP and
the bus as a function of external memory speed as shown in Fig. 6. In this plot,
the x-axis represents the number of external memory access cycles, the right y-axis
represents queue utilization, and the left y-axis represents throughput in bytes/s.

Memory speed was varied by changing the number of bus cycles needed to
perform a memory read over the PLB. The default number of bus cycles was 30
which corresponds to DDR memory. Experiments were conducted over the range
of 10 to 70 cycles representing a broad range of memory speeds for an ICAP
width of 32 bits. As the number of bus cycles was increased, thus representing
slower memories, the utilization of the bus due to PR traffic increased from 39.5 %
to 87.8 %. At the same time, the utilization of the bus due to non-PR traffic was
reduced. Longer PR transfers due to slower memory resulted in higher utilization of
the bus due to PR traffic, and thus, non-PR had less utilization of the bus. Longer

Model-based Performance Evaluation of Dynamic Partial Reconfigurable . . . 117

External Mem. Access (Cycles)
10 20 30 40 50 60 70

TP PR

Util PR@Bus

TP Non-PR

Util Non-PR @Bus Util Bus

Util ICAP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
12.00E+08

1.80E+08
1.60E+08
1.40E+08
1.20E+08
8.00E+07
6.00E+07
4.00E+07
2.00E+07
0.00E+07T

h
ro

u
g

h
p

u
t

(B
yt

es
/s

ec
)

U
ti

liz
at

io
n

 (
P

er
ce

n
ta

g
e)

Fig. 6 The effect of external memory speed on utilization and throughput

2 4 8 16 32 64 128
ICAP Width (Bits)

ICAP. Ctrl BRAM

5.00E+03

4.00E+03

3.00E+03

2.00E+03

1.00E+03

0.00E+03N
o

. o
f

C
u

st
o

m
er

s
in

 t
h

e
IC

A
P

 Q
u

eu
e

BRAM Requirements

Fig. 7 The effect of ICAP width on the expected BRAM size requirements

bus transfers also resulted in fewer transfers of PR traffic across the ICAP, and thus,
its utilization went down. Overall, the throughput of both PR and non-PR were
negatively affected by slower external memory.

5.3.3 Expected BRAM Requirements

The average number of customers (bytes) for the ICAP queue is shown in Fig. 7
which provides insight into the BRAM needs of the system. As the size of the ICAP
was varied from 2 bits to 128 bits, the average number of customers followed an
exponential decay from 3860.67 bytes to 1.65 bytes. These results predict that a
BRAM size of 512 bytes would be more than sufficient for the 8-bit port. Results of
this type demonstrate how the proposed model could be used to determine memory
requirements of a system before it is built.

118 R. Ahmed and P. Hallschmid

Fig. 8 Queueing network model of the example datapath

5.4 Model-Based Analytical Results

In this section, we present results for an analytical solution to the example datapath.
Because this platform is relatively simple, it is well suited to be “force-fit” to a
BMCP network. This is true because it has only two simple phases for PR traffic.
The difference in transfer time of the two phases can be approximated using queue
service times.

To illustrate the analytical approach, we map a simplified version of the datapath
shown in Fig. 4a, following the mapping guidelines provided in Sect. 4.4. The
resultant BCMP queueing network is shown in Fig. 8. This model consists of four
nodes and two job classes. One job class is used for PR traffic and the second for
non-PR traffic. All queues use FCFS queue service strategies.

This network of queues can be solved analytically using the BCMP theorem,
which states that the probability of a particular steady network state is given
by Eq. 1, which represents the closed-form solution. Upon solving, different
performance measures such as throughput and utilization of different nodes in the
queueing network can be deduced.

For the network shown in Fig. 8 which is a closed network, the term d(S) in
Eq. 1 equates to one and G represents the normalization constant. The calculation of
this normalization constant, G, requires that all states of the network be considered.
A more tractable approach makes use of an iterative algorithm that does not need
to consider the states of the queueing network when computing the normalization
constant. A commonly used algorithm of this type is the mean value analysis
(MVA) which gives the mean values of the performance measures directly without
computing the normalization constant [11].

5.4.1 Effects of ICAP Width

We apply the MVA algorithm along with Eq. 1 to determine PR and non-PR traffic
throughput and utilization. Figure 9 shows the obtained analytical results compared
with the simulation-based solutions for varying ICAP-width from 8 bits to 128
bits. The solid lines represent the ICAP utilization while the dashed lines represent
the throughput for the (A)nalytical and (S)imulation-based results. It is evident

Model-based Performance Evaluation of Dynamic Partial Reconfigurable . . . 119

ICAP-Width (Bits)
8 16 32 64 128

0

0.2

0.4

0.6

0.8

1

1.2

U
ti

liz
at

io
n

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

TP PR ICAP(A)

TP PR ICAP(S)

Util ICAP(A)

Util ICAP(S)

Comparison of Analytic and Simulation Results
(ICAP-Width vs Throughput and Utilization)

4.50E+08
4.00E+08
3.50E+08
3.00E+08
2.50E+08
2.00E+08
1.50E+08
1.00E+08
5.00E+07
0.00E+00

Fig. 9 A comparison of analytical and simulation-based utilization and throughput results as a
function of ICAP width

Table 2 Comparison of
measured, estimated, and
analytical results for an ICAP
width of 8 bits

Measured Estimated Analytical

TP-PR (MB/s) 90 89.7 91
RT (ms) 1.66 1.67 1.64

(BS Size:150 KB)

from the graph that the results found through an analytical approach closely match
that generated using a simulation-based approach. Thus, the assumptions made for
the analytical mapping scheme for our example system did not adversely affect
estimation accuracy.

5.4.2 Model Validation

In Table 2, physical measurements were compared against those estimated using
both the simulation-based and analytical-based approaches for a bitstream of size
150 KB. Results showed that both approaches were able to predict throughput
with 0.3 % error. This result helps to validate that the proposed model provides
a reasonable estimate of PR throughput compared to hardware. A more detailed
calibration of the model based on hardware measurements for a wider variety of
platforms will be the subject of future work.

6 Summary

In this chapter, we described a method for modeling the DPR of FPGA-based
systems using multiclass queueing networks. We provided a generalized scheme
for mapping hardware components of the reconfiguration datapath to queueing

120 R. Ahmed and P. Hallschmid

primitives. We provided an example system which we modeled and solved using
simulation- and analytical-based approaches. Results were provided for system
throughput and utilization as a function of ICAP width and external memory speed.
These results were used to identify bottlenecks and optimize the system for both
reconfiguration time and cost in the presence of non-PR traffic.

The proposed modeling approach is a promising tool for the design and
evaluation of dynamically reconfigurable systems. It helps system designers to make
informed decisions early in the design process thus avoiding the time and costs
associated with building candidate systems. Further, the ease at which candidate
architectures can be evaluated allows for a broader exploration of the design space
and results in a faster and lower-risk design process.

Appendix

Queues are formed whenever there is competition for limited resources. Often this
happens in real-world systems when there is more demand for service than there is
capacity for service. Due to this discrepancy, the customers for a service entering
the system form queues. Queueing theory provides a set a tools for analyzing such
systems to predict system performance under varying circumstances. In its simplest
form, a queueing model consists of a single service facility containing both a queue
and a server. Customers arriving at the input of the service facility can be served
immediately or must wait in the queue until the server is free. After being served,
customers leave the service facility. This type of arrangement is also known as a
“single-node” system, as shown in Fig. 10a. The arrival rate, λ , and service rate, μ,
of the queue are nondeterministic and are therefore modeled as stochastic processes.

Queueing theory includes mechanisms for calculating several useful measures
including the average wait time in the queue (Wq) and the system (W), the expected
number of customers in the queue (Lq) and the system (L), and the response time of a
queue, its utilization, and system throughput. Suppose that the number of customers
in the system at time t is N (t), then the probability of having n customers in the
system is pn (t) = Pr{N (t) = n}, and pn = Pr{N = n} in steady state. For a system

a b

Fig. 10 (a) Single-node queueing system, (b) birth-death process

Model-based Performance Evaluation of Dynamic Partial Reconfigurable . . . 121

with up to c queues, the expected value of the mean number of customers in the
system and in the queue is

L = E [N] =
∞

∑
n=0

npn, (2)

and

L = E [Nq] =
∞

∑
n=c+1

(n− c) pn, (3)

respectively. Little’s formulas [7] relates these estimates for both the queue and the
system using

L = λW (4)

and

Lq = λWq. (5)

A system can be represented by a set of states with state transitions for which states
are defined by the number of customers in the system. The system can occupy only
one state at any given time and will evolve by moving from state to state with some
probability. The set of all states defines the state space of the system. If the future
evolution of the system depends only its current state and not on its past history,
then the system is said to be memoryless. Such a system is said to have the markov
property and can be represented by a Markov chain. The state space corresponding
to the single-node system in Fig. 10a can be represented by the Markov chain shown
in Fig. 2b.

The Markov chain shown in Fig. 10b is a birth-death process for which an arrival
at a node increases the number in the queue by one and a departure decreases it by
one. A first-come-first-serve queue dictated by a birth-death process with a Poisson
arrival rate and an exponential service-time distribution is called an M/M/1 queue.

Once the state space model of a system has been specified, a set of flow balance
equations can be determined based on the balance of flow of incoming and outgoing
customers for each state of the system. The flow balance equation corresponding to
the state space shown in Fig. 10b is as follows:

(λn +μn)ρn = λn−1μn−1 +μn+1ρn+1,(n ≥ 1) (6)

and

λ0 p0 = μ0 p1. (7)

where λn and ρn are the arrival and departure rates in state n, respectively.
The flow-balance equations can be used to solve for the probability of the system

being in a state, pn. pn can then be used to calculate Eqs. 2 and 3.

122 R. Ahmed and P. Hallschmid

Fig. 11 An example of a queueing network

In order to capture the behavior of the real-world problems, queueing models
can consist of multiple queueing nodes connected in a networked fashion, as shown
in Fig. 11. This arrangement of nodes, where customers require service at more than
one service station, is referred to as a queueing network or a multiple-node system.
A queueing network is called open when customers can enter the network from the
outside and can similarly exit the network. Customers can arrive from outside the
network to any node and depart from the network from any node. In contrast, a
queueing network is said to be closed when customers can neither enter nor leave
the network. The number of customers in a closed network is constant. There are
many other variations of networks, the details of which are not discussed here in
the interest of space.

An important measure of queueing networks is the joint probability pn1,n2,...,nk ,
which is the probability that a network of k nodes is in the state {n1,n2, . . . ,nk}.
As the complexity of a network increases, the ease at which this probability can
be solved grows correspondingly. Jackson showed that the joint probability can be
expressed as the product of its single-node station marginal probabilities [9]:

pn1,n2,...,nk =
1
G

ρn1
1 ρn2

2 · · ·ρnk
k , (8)

where

G = ∑
n1+n2+···+nk=N

ρn1
1 ρn2

2 · · ·ρnk
k , (9)

is a normalizing constant equal to 1 representing the sum of all possible joint
probabilities. From this, equations similar to Eqs. 2 and 3 can be used to calculate
performance numbers for the entire system.

One limitation of Jackson networks is that all customers belong to the single class
and therefore have the same routing, arrival-rate, and service-rate characteristics.
This is often a limiting factor when modeling real-life systems for which customers
have different behaviors. BCMP networks are an extension of Jackson networks
such that several classes of customer can exist in the system each with their own
statistical characteristics [1]. As discussed in Sect. 4, BCMP networks are used
in the proposed modeling approach to model the partial reconfiguration process
for FPGAs.

Model-based Performance Evaluation of Dynamic Partial Reconfigurable . . . 123

References

1. Baskett F, Chandy KM, Muntz RR, Palacios FG (1975) Open, closed, and mixed networks of
queues with different classes of customers. J ACM 22:248–260. URL DOI http://doi.acm.org/
10.1145/321879.321887. URL http://doi.acm.org/10.1145/321879.321887

2. Bertoli M, Casale G, Serazzi G (2009) Jmt: performance engineering tools for system
modeling. SIGMETRICS Perform Eval Rev 36(4):10–15. DOI http://doi.acm.org/10.1145/
1530873.1530877

3. Claus C, Ahmed R, Altenried F, Stechele W (2010) Towards rapid dynamic partial reconfigu-
ration in video-based driver assistance systems. In: ARC, pp 55–67

4. Claus C, Zhang B, Stechele W, Braun L, Hübner M, Becker J (2008) A multi-platform
controller allowing for maximum dynamic partial reconfiguration throughput. In: FPL,
pp 535–538

5. Galindo J, Peskin E, Larson B, Roylance G (2008) Leveraging firmware in multichip systems
to maximize fpga resources: an application of self-partial reconfiguration. In: Proceedings of
the 2008 international conference on reconfigurable computing and FPGAs, pp 139–144. IEEE
Computer Society, Washington, DC, USA DOI 10.1109/ReConFig.2008.81. URL http://portal.
acm.org/citation.cfm?id=1494647.1495194

6. Griese B, Vonnahme E, Porrmann M, Rückert U (2004) Hardware support for dynamic
reconfiguration in reconfigurable soc architectures. In: FPL, pp 842–846

7. Gross D, Harris CM (1985) Fundamentals of queueing theory, 2nd edn. Wiley, New York
8. Hsiung PA, Lin CS, Liao CF (2008) Perfecto: a systemc-based design-space exploration

framework for dynamically reconfigurable architectures. ACM Trans Reconfigurable Technol
Syst 1:17:1–17:30

9. Jackson JR (1957) Networks of waiting lines. Oper Res 5(4):518–521. URL http://www.jstor.
org/stable/167249

10. Papadimitriou K, Dollas A, Hauck S (2011) Performance of partial reconfiguration in FPGA
systems: A survey and a cost model. ACM Trans Reconfigurable Technol Syst 4:36:1–36:24.
New York, NY, USA. URL http://doi.acm.org/10.1145/2068716.2068722

11. Pattipati KR, Kostreva MM, Teele JL (1990) Approximate mean value analysis algorithms for
queuing networks: existence, uniqueness, and convergence results. J ACM 37:643–673. DOI
http://doi.acm.org/10.1145/79147.214074. URL http://doi.acm.org/10.1145/79147.214074

http://doi.acm.org/10.1145/321879.321887
http://portal.acm.org/citation.cfm?id=1494647.1495194
http://portal.acm.org/citation.cfm?id=1494647.1495194
http://www.jstor.org/stable/167249
http://www.jstor.org/stable/167249
http://doi.acm.org/10.1145/2068716.2068722
http://doi.acm.org/10.1145/79147.214074

Switch Design for Soft Interconnection Networks

Giorgos Dimitrakopoulos, Christoforos Kachris, and Emmanouil Kalligeros

1 Introduction

Many-core chip multiprocessors integrate many processing cores that need a
modular communication infrastructure in order to show their full potential. Scalable
interconnection networks that use a network of switches connected with point-
to-point links can parallelize the communication between these modules and
improve performance significantly [7]. Such on-chip interconnection networks are
already a mainstream technology for ASICs, while they gain significant importance
in FPGA-based systems-on-chip (SOCs) [1]. The first on-chip interconnection
networks mimicked the designs that were architected for large, high-performance
multiprocessors. However, as interconnects migrate to the on-chip environment,
constraints and trade-offs shift, and they should be appropriately adapted to the
characteristics of the implementation fabric [2].

An FPGA can host two forms of interconnection networks: the soft (or overlay)
interconnection networks that are statically mapped on the configurable logic of
the FPGA using LUTs, registers, and RAMs, as any other ordinary circuit [5],
and the dynamically reconfigurable interconnection networks that exploit the
reconfigurable nature of the FPGA and allow the design of customized alternatives

G. Dimitrakopoulos (�)
Electrical and Computer Engineering Department, Democritus University of Thrace (DUTH),
Kimmeria Campus B(1.11), Xanthi, GR 67100, Greece
e-mail: dimitrak@ee.duth.gr

C. Kachris
Athens Information Technology (AIT), Athens, Greece
e-mail: kachris@ait.edu.gr

E. Kalligeros
Information and Communication Systems Engineering Department,
University of the Aegean, Samos, Greece
e-mail: kalliger@aegean.gr

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2 6, © Springer Science+Business Media, LLC 2013

125

126 G. Dimitrakopoulos et al.

Fig. 1 Basic building blocks
of a switch

that can be adapted at runtime using both the available logic blocks and even the
reconfiguration network itself [25]. In the first case, the FPGA fabric acts as an
ASIC replacement that hosts a complex multiprocessor system on chip. The system
consists of general-purpose soft processors, application-specific accelerators, as
well as memory and I/O controllers communicating via the soft interconnection
network that transfers the software-generated messages. In the second case, the
system is customized for a specific set of tasks, and any application change requires
its dynamic reconfiguration at the logic level [27]. The performance of the system
depends on how often a reconfiguration is required and how much gain can be
earned by the customization of both the processing elements and the interconnection
network.

Soft interconnection networks are more generic and can support various switch-
ing technologies ranging from statically scheduled circuit-switched operation, with
predetermined and prescheduled routes that avoid contention, to fully dynamic
packet switching that favors statistical multiplexing on the network’s links [15].
In this chapter, we focus on the dynamic approach, assuming wormhole or virtual-
cut-through networks with single- or multiple-word packets. When such networks
are mapped on the FPGA, a critical factor to overall system’s efficiency is (a) the
selection of the appropriate network topology that would reduce the communication
distance and utilize efficiently the on-chip wiring resources and (b) the selection
of the appropriate switch architecture that fits better to the LUT-based nature of
the FPGA and offers area-delay efficient designs [16, 24]. Both factors are closely
interrelated, since the reduction of the communication distance between any two
nodes increases the radix (number of input and output ports) of the switches and
makes their design more difficult. Concentration or the addition of express channels
further increases the radix of the corresponding switches [8].

The switches of the network follow roughly the architecture depicted in Fig. 1.
Incoming packets are stored in input buffers and possibly in output buffers after
crossing the crossbar. Routing logic unwraps incoming packets’ header and deter-
mines their output destination. The inputs that are allowed to send their data over
the crossbar are determined by the switch allocator. The switch allocator accepts

Switch Design for Soft Interconnection Networks 127

the requests from each input and decides which one to grant in order to produce
a valid connection pattern for the crossbar. In cases that we want to differentiate
between separate traffic classes, i.e., request/reply packets, and to offer deadlock-
free adaptive routing, we can allow the sharing of network’s channels by virtual
channels (VCs) [6]. The assignment of a valid VC to a packet, before it leaves the
switch, is a responsibility of the VC allocator.

While routing computation can be performed in parallel to the rest operations
by employing lookahead routing [11], and VC allocation can operate in parallel
to switch allocation using speculation [22], switch allocation and traversal remain
closely interrelated, with switch allocation always preceding and guiding switch
traversal. In fact, several designs already proved that switch allocation and traversal
determine the critical path of the switch and limit any potential speed improve-
ments [17]. So far, any innovation regarding the removal of this speed bottleneck
relied mostly to architecture-level solutions that took for granted the characteristics
of the allocators and the crossbar and, without any further modifications, tried to
reorganize them in a more efficient way. Examples of this approach are the pipelined
switch allocation and traversal units that increased the latency of the switches
or prediction-based switches [18, 21]. Although such pure high-level design has
produced highly efficient switches, the question on how better the switch would
be if better building blocks were available remains to be investigated.

In this chapter, we try to answer this question for the case of the switch allocators
and the crossbar that constitute a large part of the switch and determine the delay
of the implementation. Our study will first present and compare the traditional
implementations that are based on separate allocator and crossbar modules, and
then will expand the design space by presenting new soft macros that can handle
allocation and multiplexing concurrently. With the new macros, switch allocation
and switch traversal can be performed simultaneously in the same cycle, while still
offering energy-delay efficient implementations.

The rest of the chapter is organized as follows: Introductory material regarding
the switch allocator alternatives at the architectural and the logic level is given in
Sect. 2. Then, a review of the state-of-the-art separate arbiters and multiplexers
that are used to build the switch allocator and the crossbar is presented in
Sect. 3. Section 4 introduces the new merged arbiter and multiplexer module, while
its efficiency relative to state-of-the-art is investigated experimentally in Sect. 5.
Finally, conclusions are drawn in the last section.

2 Switch Allocation and Traversal

Each input of the switch can hold packets (or flits for wormhole switching) for
multiple outputs. Therefore, it can request one or more outputs every cycle. For a
VC-less switch that has a single FIFO queue per input, only one request per input is
possible. In that case, as shown in Fig. 2, the switch allocator is constructed using a

128 G. Dimitrakopoulos et al.

Fig. 2 Single arbiter per
output for switches with one
FIFO per input

single arbiter per output of the switch, which decides independently which input to
serve. The grant signals of each arbiter drive the corresponding output multiplexer,
and they are given back to the inputs to acknowledge the achieved connection.

In the case of switches with VCs, the input buffers are organized in multiple-
independent queues, one for each VC. Each input can send multiple requests per
clock cycle. This feature complicates significantly the design of the switch allocator
relative to a VC-less switch. In that case, switch allocation is organized in two
phases since both per-input and per-output arbitrations are needed.1 Even though
the per-input and per-output arbiters operate independently, their eventual outcomes
in switch allocation are very much dependent, each one affecting the aggregate
matching quality of the switch [3, 20].

The two possible switch allocators for an N-input switch with V virtual channels
are shown in Fig. 3. In this figure, the output port requested by each VC is denoted
by an N-bit wide one-hot coded bit vector. In the first case (Fig. 3a), each input is
allowed to send to the outputs only one request. To decide which request to send,
each input arbitrates locally among the requests of each VC. On the contrary, in the
case of output-first allocation, all VCs are free to forward their requests to the output
arbiters (Fig. 3b). In this way, it is possible that two or more VCs of the same input
will receive a grant from different outputs. However, only one of them is allowed to
pass its data to the crossbar. Therefore, a local arbitration needs to take place again
that will resolve the conflict.

The grant signals produced by the input arbiters of an input-first switch allocator
can drive the input local multiplexers in parallel to output arbitration. Therefore,
when switch allocation and crossbar traversal are performed in the same cycle, this
feature of input-first allocation allows some overlap in time between arbitration and

1An alternative to separable allocation is a centralized allocator like the wavefront allocator [26].
The main drawback of this design is the delay that grows linearly with the number of requests,
while the cyclic combinational paths that are inherent to its structure cannot be handled by static
timing analysis tools. The latter constraint can be removed by doubling the already aggravated
delay [13].

Switch Design for Soft Interconnection Networks 129

N
VC 1

VC V

Port

V:1
Arbiter

Input 1
OR

N

N

Gather requests
for the same output

N

N

N:1
Arbiter

Output 1

N:1
Arbiter

N:1
Arbiter

Output 1

Output N

N:1
Arbiter

Output N

Per output arbiters

Gather grants
for the same input

N

N

N

At least
one grant

V

V
1

Mask
V

Input 1
a

b

OR

OR
Enable

Granted VC Grants
for input 1

Requests from
other inputs

Grants to
other inputs

N
VC 1

VC V

Port

OR

N

Active
Port Grants?

Mask

Mask

N

V:1
Arbiter

OR
N

V

OR

V

To Crossbar
from input 1

Enable
Granted VC

Input 1

Grants
for input 1

Input 1
N

Gather requests
for the same output

N

N

Per output arbiters

Gather grants
for the same input

N

N

N

Grants to
other inputs

Requests from
other inputs

Fig. 3 Separable switch allocation for VC-based switch: (a) input-first allocation, (b) output-first
allocation

130 G. Dimitrakopoulos et al.

a b

Fig. 4 Multiplexer implementations: (a) AND-OR structure and (b) tree of smaller multiplexers

multiplexing that reduces the delay of the combined operation. Such an overlap is
not possible to output-first allocation, where both stages of arbitration should be first
completed before driving the multiplexers.

In every case, the kernel of switch allocation and traversal involves arbiter and
multiplexer pairs that need to be carefully co-optimized in order to achieve an
overall efficient implementation. For example, the encoding selected for the grant
signals directly affects the design of the multiplexers. In the first case, shown in
Fig. 4a, the grant decision is encoded in one-hot form, where only a single bit is set,
and the multiplexer is implemented using an AND-OR structure. On the contrary,
in Fig. 4b, the multiplexer is implemented as a tree of smaller multiplexers. In this
case, the select lines that configure the paths of each level of the tree are encoded
using weighted binary representation.

The LUT mapping of either form of multiplexers is well explored, and several
optimizations have been presented in open literature. Briefly, the optimizations
presented so far for the implementation of wide multiplexers on an FPGA fabric
involve either the best possible packing of the multiplexer inputs and select signals
in LUTs [4,19] or the engagement of the multiplexers participating in the dedicated
carry logic [28], as well as the mapping of the multiplexers on the embedded
multipliers of the FPGA [14].

Even if the design choices for the multiplexer are practically limited to the
alternatives shown in Fig. 4, the design space for the arbiter is larger. The arbiter,
apart from resolving any conflicting requests for the same resource, it should
guarantee that this resource is allocated fairly to the contenders, granting first the
input with the highest priority. Therefore, for a fair allocation of the resources, we
should be able to change dynamically the priority of the inputs [12]. A generic
dynamic priority arbiter (DPA), as shown in Fig. 5, consists of two parts: the
arbitration logic that decides which request to grant based on the current state of the
priorities and the priority update logic that decides, according to the current grant
vector, which inputs to promote. The priority state associated with each input may
be one or more bits, depending on the complexity of the priority selection policy.

Switch Design for Soft Interconnection Networks 131

Requests Grants

AG

Priority
Update

Arbitration
Logic

Priority
State

Enable

Fig. 5 Dynamic priority
arbiter

For example, a single priority bit per input suffices for round-robin policy, while for
more complex weight-based policies such as first come first served (FCFS), multibit
priority quantities are needed [23].

Therefore, the combined mapping of the arbiter–multiplexer pair to the pro-
grammable logic and the interconnect of the FPGA needs further exploration
for unveiling the area-delay characteristics of traditional arbiter and multiplexer
structures borrowed from the ASIC domain and for quantifying the potential benefits
of new proposals.

3 Separate Arbiter and Multiplexer Design Choices

The simplest form of arbitration, called fixed-priority arbitration or priority encod-
ing, assumes that the priorities of the inputs are statically allocated and only the
relative order of the inputs’ connections determines the outcome of the arbiter.
In this case, the request of position 0 (rightmost) has the highest priority and the
request of position N − 1 the lowest. For example, when an 8-port fixed-priority
arbiter receives the request vector (R7 . . .R0) = 01100100, it would grant input 2
since it has the rightmost active request. Two versions of an 8-port priority encoder
driving a multiplexer are shown in Fig. 6. The first one involves a slow ripple-carry
alternative, while the second is based on a fast parallel prefix structure.

In the case of fixed priorities, the combined operation of arbitration and
multiplexing can be performed using only multiplexers. Such a structure is shown in
Fig. 7. The fixed-priority order of assignment is implicitly implemented by the linear
connection of the multiplexers, and thus the use of an arbiter is avoided. Despite its
simplicity, the structure of Fig. 7 is only rarely used, mostly due to its increased
delay.

Fixed priority is not an efficient policy, and hence it is not used in practice.
On the contrary, round-robin arbitration is the most commonly used technique.
Round-robin arbitration logic scans the input requests in a cyclic manner, beginning
from the position that has the highest priority, and grants the first active request.

132 G. Dimitrakopoulos et al.

Fig. 6 Fixed-priority arbiter driving an AND-OR multiplexer

R3

M
U

X

M
U

X

M
U

XM
U

X

R2
R1

R0

Dout

D0

D1

D2

D3

Fig. 7 A linear multiplexer
implicitly implementing fixed
priority

For the next arbitration cycle, the priority vector points to the position next to the
granted input. In this way, the granted input receives the lowest priority in the next
arbitration cycle. An example of the operation of a round-robin arbiter for four
consecutive cycles is shown in Fig. 8 (the boxes labeled with a letter correspond
to the active requests).

In the following, we will present three alternatives for the design of round-robin
arbiters that are based on multiple priority encoders and on a customized carry-
lookahead (CLA) structure. We focus on the implementation of the arbitration logic
that scans the input requests in a cyclic manner. The design of the update logic is
only briefly described since it consists of very simple modules that do not cause
any timing violations. Besides, in a single cycle switch allocation and traversal, the
delay of the pointer update logic is hidden, since it operates in parallel to the crossbar
multiplexers.

Switch Design for Soft Interconnection Networks 133

search
order

position with the
highest priority

Granted
Input

t=0

A A A A

CCCC

C A C D

D

t=1 t=2 t=3

Fig. 8 Steps of round-robin arbitration on consecutive cycles

Upper
Grant

Lower
Grant

Final Grant Signals

.

Requests (R)
Thermometer Coded
Priority Bit Vector (P)

. . .
AG

Priority Encoder Priority Encoder

Fig. 9 PE-based round-robin
arbiter

3.1 Priority Encoding-Based Round-Robin Arbiters

The design of a priority encoding (PE)-based round-robin arbiter [12] that searches
for the winning request in a circular manner beginning from the position with the
highest priority involves two priority encoders, as shown in Fig. 9. In order to
declare which input has the highest priority, the priority vector P of the arbiter
is thermometer-coded. For example, when P = 11111000 for an 8-input arbiter,
position 3 has the highest priority. The upper PE of Fig. 9 is used to search for a
winning request from the highest-priority position indexed by vector P (hereafter,
we will refer to this position as Ppos), up to position N−1. It does not cycle back to
input 0, even if it could not find a request among the inputs Ppos . . .N− 1. In order
to restrain the upper PE to search only in positions Ppos . . .N− 1, the requests it
receives are masked with the thermometer-coded priority vector P. On the contrary,
the lower PE is driven by the original request lines and searches for a winning
request among all positions.

134 G. Dimitrakopoulos et al.

The two arbitration phases work in parallel, and only one of them has computed
the correct grant vector. The selection between the two outputs is performed by
employing a simple rule. If there are no requests in the range Ppos . . .N − 1, the
correct output is the same as the output of a lower PE. If there is a request in the
range Ppos . . .N− 1, then the correct output is given by the output of the upper PE.
Differentiating between the two cases is performed by using the AG signal of the
upper PE (AG is asserted if any input has been granted). In the following, we will
refer to this architecture as the dual-path PE arbiter.

In the dual-path PE arbiter, the grant vectors follow the one-hot encoding, while
the priority vector is thermometer-coded. Therefore, in order to implement correctly
the round-robin pointer update policy, the grant signals should be transformed to
their equivalent thermometer code. This transformation is performed inside the
pointer update logic of the arbiter.

3.2 LZC-Based Round-Robin Arbiters

Priority encoding identifies the position of the rightmost 1 on the request vector and
keeps it alive at the output. At the same time, the remaining requests are killed, and
the grant vector contains a single 1. Similarly, the process of leading-zero counting
(or detection) counts the number of zeros that appear before the leftmost 1 of a
word. If a transposed request vector is given to the leading-zero counter (LZC), then
priority encoding and leading-zero counting are equivalent, since they both try to
encode the position of the rightmost 1 in a digital word. The difference between
the two methods is the encoding used to denote the selected position. In the case of
priority encoding the grant vector is in one-hot form, while in the case of leading-
zero counting, the output vector follows the weighted binary representation.

A round-robin arbiter that is based on LZCs can be designed by following again
the dual-path approach presented in Fig. 9. The priority encoders are replaced by
the corresponding LZCs that receive the requests transposed. In this case, the grant
vector is composed of log2 N bits that encode the position of the winning request,
and it is connected directly to a tree of multiplexers that switch to the output the
winning data, as shown in Fig. 10 (note that AZ is the All Zero signal of an LZC
and is essentially the complement of the AG signal of a typical arbiter).

The most efficient LZC is presented in [10], where, for the first time, compact
closed-form relations have been presented for the bits of the LZC. The iterative
leading-zero counting equations can be fed directly to a logic synthesis tool and
derive efficient LUT mappings. The employed LZC works in log2 N stages, equal
to the bits required for the weighted binary representation of the winning position.
At each stage, the LZC computes one bit of the output by deciding, via the same
operator, if the number of the leading zeros of the requests is odd or even. The first
stage involves all the requests, while the following stages assume a reduced request
vector. At each stage, the reduced request vector is produced by combining with an

Switch Design for Soft Interconnection Networks 135

Fig. 10 An LZC-based round-robin arbiter driving a multiplexer

OR relation the nonconsecutive pairs of bits of the previous request vector. This OR
reduction is equivalent to a binary tree of OR gates.

3.3 Carry-Lookahead-Based Round-Robin Arbiters

Alternatively, a round-robin arbiter can be built using CLA structures. In this case,
the highest priority is declared using a priority vector P that is encoded in one-hot
form. The main characteristic of the CLA-based arbiters is that they do not require
multiple copies of the same circuit, since they inherently handle the circular nature
of priority propagation [9]. In this case, the priority transfer to the ith position is
modeled recursively via a priority transfer signal named Xi. The ith request gets the
highest priority, i.e., Xi = 1, when either bit Pi of the priority vector is set or when
the previous position i−1 does not have an active request (Ri−1 = 0). Transforming
this rule to a boolean relation we get that

Xi = Pi +Ri−1 ·Xi−1 (1)

When Xi = 1 it means that the ith request has the highest priority to win a grant.
Therefore, the grant signal Gi is asserted when both Xi and Ri are equal to 1:

Gi = Ri ·Xi (2)

136 G. Dimitrakopoulos et al.

P3 R2 P2 R1 P1 R0 P0 R3

R3

G3

AG

G2 G1 G0

R2 R1 R0

Fig. 11 The logic-level
structure of a CLA-based
round-robin arbiter

The search for the winning position should be performed in a circular manner
after all positions are examined. Therefore, in order to guarantee the cyclic transfer
of the priority, signal XN−1 out of the most significant position should be fed back
as a carry input to position 0, i.e., X−1 = XN−1. Of course, we cannot connect XN−1

directly to position 0 since this creates a combinational loop. In [9], an alternative
fast circuit has been proposed that avoids the combinational loop and computes all
X bits in parallel using the butterfly-like CLA structure shown in Fig. 11. Similar
circuits can be derived after mapping on the FPGA the simplified and fully unrolled
equations that describe the computation of the priority transfer signal Xi:

Xi = Pi +
n−2

∑
j=0

(
n−1

∏
k= j+1

R|k+1|N

)

P|i+ j+1|N , (3)

where |y|N = y mod N. Finally, since both the grant vector and the priority vector
are encoded in one-hot form, no extra translation circuit is required in the pointer
update unit of this round-robin arbiter.

4 Merged Arbiter and Multiplexer

In this section, we present new soft macros that can handle concurrently arbitration
and multiplexing. In this way, switch allocation and traversal can be performed
efficiently in the same cycle, while still offering energy-delay efficient imple-
mentations. The design of these new efficient macros is based on an algorithmic
transformation of round-robin arbitration to an equivalent sorting-like problem.

Similar to the PE-based round-robin arbiter of Sect. 3.1, the merged round
robin arbiter and multiplexer utilizes an N-bit priority vector P that follows the
thermometer code. As shown in the example of Fig. 12, the priority vector splits

Switch Design for Soft Interconnection Networks 137

HP segment LP segment

Search order

1

Position

Requests

Priority 1 1 0 0 0

4 3 2 1 0

1 0 1 0

1 1 1

7 6 5

1 0 0

3 1 1 3 1 2 2 0Symbols

Fig. 12 The separation of input requests to HP and LP segments according to the contents of the
priority vector and the transformation of the priority and the request vectors to arithmetic symbols

the input requests in two segments. The high-priority (HP) segment consists of the
requests that belong to high-priority positions where Pi = 1, while the requests,
which are placed in positions with Pi = 0, belong to the low-priority (LP) segment.
The operation of the arbiter is to give a grant to the first (rightmost) active request of
the HP segment and, if not finding any, to give a grant to the first (rightmost) active
request of the LP segment. According to the already known solutions, this operation
involves, either implicitly or explicitly, a cyclic search of the requests, starting from
the HP segment and continuing to the LP segment.

Either at the HP or the LP segment, the pairs of bits (Ri,Pi) can assume any
value. We are interested in giving an arithmetic meaning to these pairs. Therefore,
we treat the bits RiPi as a 2-bit unsigned quantity with a value equal to 2Ri +Pi.
For example, in the case of an 8-input arbiter, the arithmetic symbols we get for a
randomly selected request and priority vector are shown in Fig. 12. From the four
possible arithmetic symbols, i.e., 3, 2, 1, 0, the symbols that represent an active
request are either 3 (from the HP segment) or 2 (from the LP segment). On the
contrary, the symbols 1 and 0 denote an inactive request that belongs to the HP and
the LP segment, respectively.

According to the described arbitration policy and the example priority vector
of Fig. 12, the arbiter should start looking for an active request from position 3,
moving upwards to positions 4, 5, 6, 7, and then to 0, 1, 2 until it finds the first
active request. The request that should be granted lies in position 4, which is the
first (rightmost) request of the HP segment. Since this request belongs to the HP
segment, its corresponding arithmetic symbol is equal to 3. Therefore, granting
the first (rightmost) request of the HP segment is equivalent to giving a grant to
the first maximum symbol that we find when searching from right to left. This
general principle also holds for the case that the HP segment does not contain any
active request. Then, all arithmetic symbols of the HP segment would be equal to
1, and any active request of the LP segment would be mapped to a larger number
(arithmetic symbol 2).

138 G. Dimitrakopoulos et al.

Therefore, by treating the request and the priority bits as arithmetic symbols, we
can transform the round-robin cyclic search to the equivalent operation of selecting
the maximum arithmetic symbol that lies in the rightmost position. Searching for the
maximum symbol and reporting at the output only its first (rightmost) appearance,
implicitly implements the cyclic transfer of the priority from the HP to the LP
segment, without requiring any true cycle in the circuit. In principle, any maximum
selector does not contain any cycle paths and is built using a tree or a linear
comparison structure. The proposed arbiter is built using a set of small comparison
nodes. Each node receives two arithmetic symbols, one coming from the left and one
from the right side. The maximum of the two symbols under comparison appears at
the output of each node. Also, each node generates one additional control flag that
denotes if the left or the right symbol has won, i.e., it was the largest. In case of a tie,
when equal symbols are compared, this flag always points to the right. In this way,
the first (rightmost) symbol is propagated to the output as dictated by the operation
of the arbiter.

In every case, the winning path is clearly defined by the direction flags produced
by the comparison nodes. Thus, if we use these flags to switch the data words that are
associated with the corresponding arithmetic symbols, we can route at the output the
data word that is associated with the winning request. This combined operation can
be implemented by adding a 2-to-1 multiplexer next to each comparison node and
connecting the direction flag to the select line of the multiplexer. The structure of
both a binary tree and a linear merged arbiter multiplexer with 8 inputs, along with
a running example of their operation, is shown in Fig. 13. Following the example,
we observe that the first, in a round-robin order, data word A4 is correctly routed at
the output.

Although the tree-structured merged arbiter multiplexer has smaller delay than
the linear-structured one, the latter can take advantage of the dedicated mux-carry
logic of the FPGA.

4.1 Computation of the Grant Signals

The merged arbiter multiplexer, besides transferring at the output the data word of
the granted input, should also return in a useful format the position of the winning
request (or equivalently the grant index). The proposed maximum-selection tree,
shown in Fig. 13a, that replaces the traditional round-robin arbiter can be enhanced
to facilitate the simultaneous generation of the corresponding grant signals via the
flag bits of the CMP nodes.

At first, we deal with the case that the grants are encoded in weighted binary
representation. In this case, we can observe that, by construction, the weighted
binary encoding of the winning request is formed by putting together the flag bits
of the CMP nodes that lie in the path from the winning input to the root of the tree
(see Fig. 14a). Consequently, the generation of the grant signals in weighted binary
representation is done by combining at each level of tree the winning flag bits of

Switch Design for Soft Interconnection Networks 139

A7

A6 A4

A4

A7 A6 A5 A4 A3 A2 A1 A0

A0A1A1A1A4A4A4

A4

A1

A2 A1

A6 A5 A4 A3 A2 A1 A0

A3

1

Data
a

b

Requests
Priority

Symbols

0

1

A7

1

A6

1

1

3 1

1

0

A5 A4

1

1

3 1

1

0

A2

0

2 2

0

1

A1 A0

0

0

0

A
4

CMPCMPCMP CMPCMPCMP

3

3 3

3

2 2

2

1 3 1 3 1 2 2 0

CMP

CMP

CMP CMP CMP

CMP

CMP

1 0221331

CMP CMP2 022333

Fig. 13 The merged arbiter multiplexer: (a) Tree and (b) linear comparison structure

the previous levels with the flags of the current level. This is achieved by means
of some additional multiplexers, as shown in Fig. 14a, for the case of a tree-based
merged arbiter multiplexer.

For the one-hot encoding, we need a different implementation. Initially, i.e., at
the inputs of the one-hot grant generation circuit, we assume that every position
has a grant signal equal to 1. At the following levels, some of these grant signals
are transformed to 0s if their associated symbols are not the winning ones at the
corresponding CMP nodes. Thus, at the output, only a single 1 will remain and the
rest would be nullified. The circuit that generates the corresponding grant signals
in one-hot form, for 4 input symbols, is shown in Fig. 14b. Keeping and nullifying
the grant signals is performed by the AND gates that mask, at each level of the

140 G. Dimitrakopoulos et al.

a

b

c

Fig. 14 The grant generation
circuits that run in parallel to
the CMP nodes for a tree
organization of the merged
arbiter multiplexer

tree, the intermediate grant vector of the previous level with the associated direction
flags. The inversions are needed to keep alive the grant signals that correspond
to a winning symbol of the right subtrees. Observe that, if we replace the invert-
AND gates of Fig. 14b with OR gates, the outcome would be a thermometer-coded
grant vector instead of the one-hot code. The resulting circuit is shown in Fig. 14c.

Switch Design for Soft Interconnection Networks 141

3

0

1

0

0

1
1

1

1
1

1
0

0

0

1

1
1

Symbols

C
M

P

C
M

P

C
M

P

C
M

P

0
0

3
3

20

2

3
3

1

Fig. 15 The one-hot grant
generation circuit for the
linear organization of the
merged arbiter multiplexer

In this way, with minimum cost, we are able to fully cover all possible useful grant
encodings, thus alleviating the need for additional translation circuits.

When the linear comparison structure is selected for the organization of the
merged arbiter multiplexer, we can design the grant generation circuits following
a similar procedure. A one-hot grant generation circuit for the case of a 4-input
merged arbiter multiplexer is shown in Fig. 15. The AND gates at each comparison
stage are driven by the direction flags of the CMP nodes and a constant 1 that allows
us to simplify the invert-AND gates to inverters. Again, if the invert-AND gates are
replaced by OR gates, a thermometer code word can be derived for the grant signals.

As for the weighted binary grant generation circuit, we can use the same linear
structure of Fig. 13b, replacing the data words that drive the multiplexers with the
various position indices in weighted binary format (i.e., in Fig. 13b, A0 is replaced
by 000, A1 by 001, etc.). This means that, in this case, two multiplexers are needed
at each stage of the linear structure, one for switching the data and another for
switching the weighted binary indices.

When there is no active request, the arbiter should deassert the AG signal. This
case is identified by observing the symbol at the output of the comparison structure.
When it is equal to either 0 or 1, it means that no active request exists in either
priority segment.

4.2 Switches with Merged Arbiter-Multiplexer Structures

The design of switches that use the proposed round-robin merged arbiter multiplex-
ers (MARX) is straightforward. Figure 16a depicts the design of a VC-less switch
using the proposed macros. This is the simplest case, where the arbiter-multiplexer
pairs that existed at each output are directly replaced by the proposed units. As in
any switch, the data placed on the input registers or the head of the input queues
should not be changed or dequeued until the corresponding input is granted access
to the requested output port.

142 G. Dimitrakopoulos et al.

In#1

a

b

N:1
MARX

N:1
MARX

V:1
MARX

V:1
MARX

N:1
MARX

N:1
MARX

Out#1

Out#N

Out#1

Per-OutputPer-Input

D
E

M
U

X
D

E
M

U
X

#V VCs

Out#N

In#1

In#N

Switch with VCs

VC-less Switch

In#N

Fig. 16 Switches built with MARX units: (a) VC-less wormhole switch and (b) VC-based switch

In the case of switches with VCs, the design is more complicated due to the per-
input and per-output stages of arbitration and multiplexing. The proposed macros fit
better in the case of input-first allocation. This organization is shown in Fig. 16b. The
per-input MARX units select locally an eligible VC among the V available and carry
along its corresponding flit. The VCs selected from each input compete for gaining
access to their requested outputs via the per-output MARX units that simultaneously
resolve any conflicts and give at the output the flit of the winning VC.

5 Experimental Results

In this section, we explore the implementation characteristics of the presented
designs. The analysis that follows aims to identify the fastest and/or the most area-
efficient alternative by varying the number of ports of the arbiter and multiplexer and
the data width of each port. For attaining our comparison data, we first generated
the equivalent VHDL descriptions of all designs under comparison. After extensive
simulations that verified the correctness of each description, each design was
synthesized and mapped to a Virtex-5 XC5VLX330 FPGA chip. For the synthesis,
mapping, and placement and routing of the designs, we used the ISE 12.2 toolset

Switch Design for Soft Interconnection Networks 143

100
8 16 32

150

200

250

300

350

400
Data width: 8 bits

Data width: 16 bits

Number of Ports

8 16 32

Number of Ports

C
lo

ck
 (

M
H

z)
C

lo
ck

 (
M

H
z)

100

150

200

250

300

350

400

CLA
PE based
MARX
LZC

CLA
PE based
MARX
LZC

Fig. 17 The delay of arbiters
and multiplexers varying the
number of ports for 8 and 16
bits port width

of Xilinx. Please note that the reported results involve only the optimizations
performed by the CAD tools alone, without any manual intervention that would
further optimize the circuits under comparison. In this way, the presented results can
be reproduced by every designer by just following the same automated design flow.

At first, we compare the presented design alternatives in terms of delay. Delay
is critically affected by the number of ports that the circuit is designed to serve, as
well as the width of the corresponding data words that increases the loading of the
multiplexers’ control signals. The best delays achieved for each circuit after varying
the number of inputs and keeping constant the data width to 8 and 16 bits are shown
in Fig. 17. From the presented results that were measured after place and route, we
can draw several conclusions. The merged arbiter multiplexer (we refer to the tree-
structured implementation) is, in all cases, the fastest, and the delay savings are
more than 20 % on average. This trend is followed irrespective of the number of
bits used per multiplexer port. The observed delay convergence, when the number
of ports increases, is attributed to the aggravated effect of routing interconnect
delay that constitutes more than 80 % of the total path delay. This is a sign that
such wide multiplexers of single-stage switching systems should be avoided, and

144 G. Dimitrakopoulos et al.

150
200
250
300
350
400
450

0
50

100
150
200
250
300
350
400
450

8 16 32

8 16 32

A
re

a
(S

lic
e

L
U

T
s)

A
re

a
(S

lic
e

L
U

T
s)

CLA
PE-based
MARX
LZC

150

200

250

300

350

400
CLA
PEbased
MARX
LZC

0

50

100

150

200

250

300

350

400

Number of Ports

Data width: 8 bits
a

b

Data width: (bits)

Number of ports: 8

CLA
PE-based
MARX
LZC

Fig. 18 The area of the
arbiters and multiplexers
when varying (a) the number
of ports at a constant port
width of 8 bits and (b) the
width of each port of an
8-input circuit

the communication among multiple modules should be organized as a network of
switches. Observe though that, even for such extreme multiplexer widths, the delay
advantage of MARX is considerable.

The area of the examined designs is reported in Fig. 18. Specifically, Fig. 18a
reports the area occupied by the compared designs assuming 8 bits per port and
varying the number of ports. On the other hand, Fig. 18b shows the area of all
the designs for an 8-input arbiter and multiplexer when varying the width of each
port. The most clear conclusion derived from both figures is that the LZC-based
arbiter and multiplexer is the most area-efficient solution requiring roughly 30 %
less area on average. On the contrary, the fastest design, i.e., the merged arbiter and
multiplexer, although it behaves similarly to the other designs for small port widths,
requires significantly more area when the bits per port are increased to 16 and 32
bits. This behavior though enables the designer to explore the area-delay trade-off;
the MARX allows for very fast implementations with the overhead of extra area for
increased data widths, whereas the LZC-based design offers low implementation
cost with fairly small delays.

Switch Design for Soft Interconnection Networks 145

Fig. 19 The application of bit slicing to arbiter and multiplexer pairs

5.1 Bit Slicing

The multiplexer can be sliced to smaller multiplexers with the same number of
input ports but of smaller data width. This operation is equivalent to spreading parts
of input words to multiple smaller multiplexers, where each multiplexer is driven
by a dedicated arbiter. As shown in Fig. 19, the control logic of the independent
multiplexers remains unified, and each submultiplexer receives the same grant
decisions. This happens since all arbiters work in sync, receiving the same requests
and updating, in the same way, the priority of each position. Bit slicing partially
alleviates the high-fanout problem of the grant signals and may offer higher-speed
solutions. In reality, the fanout taken from the grant signals is given to the request
lines that now need to be broadcasted to more arbiters.

In the following, we investigate the delay benefits of bit slicing and try to identify
which slicing factor is the best for the designs under comparison. We applied bit
slicing on an 8-input and a 16-input arbiter and multiplexer carrying data of 32
bits. We used all power-of-two slicing factors SF between the two extremes: SF = 1
that corresponds to no slicing and SF = 32 that corresponds to full slicing, where
each bit has its own arbiter. In the general case, bit slicing by a factor SF means
that we implement SF multiplexer and arbiter pairs, with each multiplexer carrying
32/SF bits. The obtained results that clearly depict an optimum slicing factor for
each design are shown in Fig. 20.

6 Summary and Conclusions

In this chapter we presented and compared various alternatives for the design of an
arbiter and a multiplexer in an FPGA. The design space includes traditional separate
arbiter and multiplexer pairs, as well as recently introduced merged arbiter and
multiplexer macros that handle arbitration and multiplexing concurrently. Although
the mapping of multiplexers in LUT logic has received a lot of attention in the

146 G. Dimitrakopoulos et al.

200
220
240
260
280
300
320
340
360
380

1 2 4 8 16

CLA
PE-based
MARX
LZC

100

150

200

250

300

350

1 2 4 8 16

C
lo

ck
 (

M
H

z)
Bit slicing factor

Number of ports:16, width 32

Bit slicingf actor

C
lo

ck
 (

M
H

z)

Number of ports:8, width 32

CLA
PE-based
MARX
LZC

Fig. 20 The delay of all
8-input and 16-input circuits
for all power-of-two bit
slicing factors

previous years, the combined implementation of an arbiter and a multiplexer was
partially unexplored. This work covers this gap and extends, at the same time, the
design space with new efficient solutions that simplify the design of high-radix soft
switches.

References

1. Altera (2011) Applying the benefits of network on a chip architecture to FPGA system design.
Tech. Rep., Jan 2011

2. Azimi M, Dai D, Mejia A, Park D, Saharoy R, Vaidya AS (2009) Flexible and adaptive on-chip
interconnect for terascale architectures. Intel Tech J 13(4):62–77

3. Becker DU, Dally WJ (2009) Allocator implementations for network-on-chip routers. In:
Proceedings of the ACM/IEEEE international supercomputing conference, 2009

4. Bhatti NK, Shingal N (2009) LUT based multiplexers. US Patent 7,486,110, Feb 2009
5. Brebner G, Levi D (2003) Networking on chip with platform FPGAs. In: Proceedings of the

IEEE international conference on field-programmable technology, Dec 2003, pp 13–20
6. Dally WJ (1990) Virtual-channel flow control. In: Proceedings of the 17th annual international

symposium computer architecture (ISCA), May 1990, pp 60–68
7. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In:

Proceedings of the 38th design automation conference (DAC), June 2001, pp 684–689
8. Dally WJ, Towles B (2004) Principles and practices of interconnection networks. Morgan

Kauffman, San Francisco

Switch Design for Soft Interconnection Networks 147

9. Dimitrakopoulos G, Chrysos N, Galanopoulos C (2008) Fast arbiters for on-chip network
switches. In: IEEE international conference on computer design (ICCD), 2008, pp 664–670

10. Dimitrakopoulos G, Galanopoulos K, Mavrokefalidis C, Nikolos D (2008) Low-power leading-
zero counting and anticipation logic for high-speed floating point units. IEEE Transactions on
very large scale integration (VLSI) Systems (16)7:837–850

11. Galles M (1997) Spider: a high-speed network interconnect. IEEE Micro 17(1):34–39
12. Gupta P, McKeown N (1999) Designing and implementing a fast crossbar scheduler. IEEE

Micro 19(1):20–28
13. Hurt J, May A, Zhu X, Lin B (1999) Design and implementation of high-speed symmetric

crossbar schedulers. In: IEEE international conference on communications (ICC), June 1999,
pp 253–258

14. Jamieson P, Rose J (2005) Mapping multiplexers onto hard multipliers in FPGAs. In:
Proceedings of IEEE NewCAS conference, June 2005, pp 323–326

15. Kapre N, Mehta N, Delorimier M, Rubin R, Barnor H, Wilson MJ, Wrighton M, Dehon A
(2006) Packet-switched vs. time-multiplexed FPGA overlay networks. In: Proceedings of the
IEEE symposium on field-programmable custom computing machines, 2006, pp 205–215

16. Lee J, Shannon L (2010) Predicting the performance of application specific NoCs implemented
on FPGAs. In: Proceedings of the 18th annual ACM/SIGDA international symposium on field
programmable gate arrays - FPGA 10. ACM Press, New York, 2010, pp 23–32

17. Lu Y, McCanny J, Sezer S (2011) Generic low-latency NoC router architecture for FPGA
computing systems, fpl, In: 21st international conference on field programmable logic and
applications, 2011, pp 82–89

18. Matsutani H, Koibuchi M, Amano H, Yoshinaga T (2009) Prediction router: yet another low
latency on-chip router architecture. In: Proceedings of the 15th IEEE international symposium
on high-performance computer architecture (HPCA), Feb. 2009, pp 367–378

19. Metzgen P, Nancekievill D (2005) Multiplexer restructuring for FPGA implementation cost
reduction. In: Proceedings of the 42nd design automation conference, 2005, pp 421–426

20. Mukherjee SS, Silla F, Bannon P, Emer JS, Lang S, Webb D (2002) A comparative study
of arbitration algorithms for the Alpha 21364 pipelined router. In: Proceedings of the 10th
international conference on architectural support for programming languages and operating
systems (ASPLOS-X), 2002, pp 223–234

21. Mullins RD, West AF, Moore SW (2004) Low-latency virtual-channel routers for on-chip
networks. In: Proceedings of the 31st annual international symposium on computer architecture
(ISCA), 2004, pp 188–197

22. Peh L.-S, Dally WJ (2001) A delay model and speculative architecture for pipelined routers.
In: Proceedings of the 7th international symposium on high-performance computer architecture
(HPCA-7), 2001

23. Pirvu M, Bhuyan L, Ni N (1999) The impact of link arbitration on switch performance. In:
Proceedings of the 5th high-performance computer architecture (HPCA), 1999, pp 228–235

24. Saldana M, Shannon L, Craig J, Chow P (2007) Routability of network topologies in FPGAs.
IEEE Transactions on very large scale integration (VLSI) Systems 15(8):948–951

25. Shelburne M, Patterson C, Athanas P, Jones M, Martin B, Fong R (2008) MetaWire: using
FPGA configuration circuitry to emulate a network-on-chip. In: Proceedings of the 2008
international conference on field programmable logic and applications, Sept 2008, pp 257–262

26. Tamir Y, Chi H.-C (1993) Symmetric crossbar arbiters for VLSI communication switches.
IEEE Trans Parallel Distr Syst 4(1):13–27

27. Vassiliadis S, Sourdis I (2007) FLUX interconnection networks on demand. J Syst Architect
53(10):777–793

28. Wittig RD, Mohan S (2003) Method for implementing large multiplexers with FPGA lookup
tables. US Patent 6,505,337 B1, Jan 2003

Embedded Systems Start-Up Under Timing
Constraints on Modern FPGAs

Joachim Meyer, Juanjo Noguera, Michael Hübner, Rodney Stewart,
and Jürgen Becker

1 Introduction

The continuous improvements in field-programmable gate arrays (FPGA) have
made possible their increasing deployment in modern embedded systems [9].
The trend is to combine microprocessors with reconfigurable hardware, either on
one printed circuit board basis or even on a chip basis in Zynq devices [21]. This
enables a designer to partition an application into control flow dominant parts,
suitable for a microprocessor and data flow dominant parts, suitable for a dedicated
hardware implementation. This hardware/software co-design is an enormous help
to meet performance, cost, and reliability goals.

Whenever there is no hard-coded microprocessor available inside an FPGA, but
an additional microprocessor is too expensive, you can use soft-core microproces-
sors like the MicroBlaze [20]. Even with small FPGAs, it is possible to integrate
in the same device hardware accelerators with such microprocessors, running
full operating systems (e.g., Linux). On the other hand, many embedded systems
nowadays have to meet extremely tight start-up timing specifications, that is, time
the electronic system has to be operative after power-up. Examples of electronic
systems with a start-up timing specification are PCI Express systems or CAN-based
electronic control units (ECU) in automotive applications. In both examples, the
electronic system has to be up and running within 100 ms after system power-up.

J. Meyer (�) • M. Hübner • J. Becker
Karlsruhe Institute of Technology, Engesserstraße 5, 76131 Karlsruhe, Germany
e-mail: Joachim.Meyer@KIT.edu; Michael.Huebner@KIT.edu; Becker@KIT.edu

J. Noguera
Xilinx Inc., Dublin, Ireland
e-mail: Juanjo.Noguera@Xilinx.com

R. Stewart
Xilinx Inc., Killarney, Ireland
e-mail: Rodney.Stewart@Xilinx.com

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2 7, © Springer Science+Business Media, LLC 2013

149

150 J. Meyer et al.

Table 1 Maximal bitstream sizes of different Xilinx FPGA families

FPGA Release Biggest Maximum bitstream
family yeara device size

Virtex II Pro (X) 2002 XC2VP100 4,0 MB
Virtex 4 2004 XC4VLX200 6.1 MB
Virtex 5 2006 XC5VLX330T 9.8 MB
Virtex 6 2009 XC6VLX760 22 MB
Virtex 7 2011 XC7V2000T 53 MB
aInitial release of documentation

1

10

100

1000

10000

100000

LX4 LX9 LX16 LX25T LX45T LX75T LX100T LX150T

SPI x1 ‐ cclk 2MHz

SPI x1 ‐ cclk 40MHz

SPI x4 ‐ cclk 2MHz

SPI x4 ‐ cclk 40MHzLo
g

sc
al

e
[m

s]

Fig. 1 Calculated worst case configuration times for Spartan-6 devices

Otherwise, in the case of PCI Express, the system will not be recognized by the root
complex [10], or the system might miss important communication messages in the
case of CAN-based automotive ECUs.

The start-up process of an embedded system on a FPGA can be divided in two
steps: (1) an FPGA configuration and (2) an embedded software boot process.
Due to a continuously increasing amount of FPGA resources, the bitstream size
of FPGAs and thus the configuration time grow as well; see Table 1. Therefore,
even with medium-sized FPGAs, it is not possible to meet the start-up timing
specification using low-cost configuration solutions. Figure 1 shows the calculated
worst case configuration time for different Spartan-6 FPGAs using the low-cost
SPI/Quad-SPI configuration interface. Even when using a fast configuration solution
(i.e., Quad-SPI at 40 MHz clock), only the small FPGAs could meet the 100 ms
start-up timing specification.

But optimizing the configuration process with concepts like [6] is just one half
of the job. Especially for FPGA-based systems it is also very important to use an
efficient software boot process in order to deal with the additional configuration
time. Therefore, if an embedded system is implemented on a medium-/large-sized
FPGA and it requires complex software (e.g., footprint size), it becomes extremely
challenging to meet start-up timing requirements, like 100 ms, by using traditional
system start-up concepts, methods and tool flows.

The following pages present novel concepts, methods, and tool flows for embed-
ded systems start-up on modern FPGAs under tight timing constraints. A two-stage
embedded system start-up concept is introduced. In this approach, the system starts
up first with a minimal subsystem. While this approach enables a fast configuration

Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs 151

of timing-critical hardware, it furthermore enables several significant optimizations
in the concept of the software boot process, so the embedded system meets the
hard deadline. After this initial subsystem is up and running, the non-timing-critical
hardware and software components are loaded.

The content of this chapter can be summarized as follows:

• Techniques, methods, and tool flows that enable an FPGA-based embedded
system to start up under hard timing constraints

• A software partitioning mechanism, enabling an efficient exploitation of different
memory architectures on the FPGA-based system, in order to optimize the boot
process

• Implementation of an application case study in the automotive domain im-
plemented on leading-edge FPGAs (i.e., Spartan-6), which demonstrate the
improvements over traditional methods and techniques

This chapter is structured in four additional sections. Next section provides an
overview of the related work. Section 3 introduces the novel methods and techniques
to reduce FPGA configuration time as well as software start-up time. Section 4
presents the results obtained when implementing an automotive case study on a
Spartan-6 device. Finally, Sect. 5 gives the conclusion.

2 Related Work

Several research groups have proposed new approaches to analyze and reduce the
start-up time of embedded systems based on flash memory. Since the bottleneck is
usually given by the relative slow access to the flash memory, the common strategy
here is to minimize or speed up any access to this memory during the start-up of
the system.

A recent research activity dealing with boot time for flash-based systems is,
for example, [14] which describes an approach to provide time-predictable system
initialization for flash-memory embedded systems. In addition, a method to mount
a file system from flash memory instantly is presented in [22].

For complex operating systems like Linux, there are many parameters you can
optimize. The work introduced in [2] attempts to analyze the start-up time of the
boot loader and Linux kernel and to compare the performance of several root file
systems.

Another possibility to speed up the boot time is to split and run the software
from different memory levels [1]. For example, reading the read-only data directly
out of flash memory instead of copying it to a random access memory saves time in
copying data by the boot loader.

However, none of the previously mentioned efforts considered start-up re-
quirements for FPGA-based systems. For such systems, the configuration time of
SRAM-based FPGAs is usually a major part of the system start-up, especially for
modern FPGAs with millions of resources. While techniques like configuration
caching [4, 8] and configuration prefetching [5] can be used to optimize the

152 J. Meyer et al.

reconfiguration overhead of an FPGA only, a technique which is actually able
to speed up the initial configuration and thus the start-up time of an FPGA is
the compression of the configuration data [3, 7, 13]. In this approach several
compression algorithms have been analyzed and successfully used in order to reduce
the amount of configuration data which has to be transferred into the reconfiguration
fabric of the FPGA.

Also, for FPGA-based embedded systems, hibernating concepts have been used
to reduce the long initialization time of complex operating systems [11]. Although
this is very helpful for complex operating systems, for small and simple operating
systems, the major part of the start-up time is due to moving the software code from
the slow nonvolatile storage to the fast but volatile random access memory, not to
mention the additional FPGA configuration time.

In [16] dynamic partial reconfiguration together with bitstream compression was
used in order to significantly reduce configuration time and to meet the timing
deadline for PCIe. While for the targeted scenario the design meets the deadline,
the approach still includes an initial configuration of all FPGA resources. Although
using compression, this is a redundant overhead which grows with the size of the
FPGA device.

The work proposed in this chapter concentrates on exploiting the FPGA flexi-
bility (i.e., run-time programmability) to meet the hard deadline of an embedded
system. The flexibility of FPGAs allows adapting the hardware to the requirement
of the software in order to meet the deadline (e.g., implement the most appropriate
memory hierarchy). This FPGA programmability offers new challenges and oppor-
tunities, not available in non-reconfigurableembedded systems, which are addressed
in this paper.

3 Embedded Systems Start-Up Under Timing Constraints
on FPGAs

The start-up process of an embedded system on a FPGA can be divided into two
parts: (1) the hardware start-up time and (2) the embedded software start-up time.
While for non-reconfigurable systems the hardware start-up time is rather negligible,
for FPGAs this can easily become the major part due to the additional time required
to configure the design on the FPGA.

This FPGA configuration time highly depends on two parameters, namely
the FPGA size and therefore the size of the configuration bitstream and the type
of the configuration interface which is used to load the configuration bitstream into
the FPGA. Modern FPGAs support several types of configuration interfaces (e.g.,
low-cost serial interfaces or high-performance parallel interface). Those interfaces
differ not only in bus width but also in the maximum configuration clock frequency.

Once the FPGA is configured, the next step is to start up the embedded software
running on the processor implemented in the FPGA. The time which is needed in
order to start the software is composed by the time to get the software in the right

Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs 153

Hardware Configuration Software Boot

Reconfigurable System Startup Time

DeadlinePower-up
Time

Software Boot

Time

Non-Reconfigurable System Start-Up Time

Fig. 2 Due to the additional configuration time, reconfigurable systems often fail to boot their
software in time to meet tight deadlines

status to be executed (e.g., move it to main memory) and the time the software needs
to initialize the system. Depending on the complexity (i.e., size) of this embedded
software, even if the hardware configuration meets the application deadline, the
system start-up time might exceed it, as shown in Fig. 2.

3.1 Reducing FPGA Configuration Time

Traditional configuration mechanisms for FPGAs initially configure the complete
FPGA device at power-up. If fast FPGA configuration is needed, it is possible to
use high-speed parallel interfaces for accessing the configuration data. Since those
options are expensive, they are not acceptable in many price-sensitive embedded
applications, like automotive. In these low-cost scenarios, an external SPI serial
flash memory is used.

The FPGA configuration time highly depends on the amount of FPGA config-
uration data (i.e., configuration bitstream size). The larger the FPGA, the more
time it will take to configure the device. To address this issue, a new configuration
technique named fast FPGA configuration is proposed to reduce the initial FPGA
configuration time. The key concept is to initially configure only a small region of
the FPGA at power-up. That is, the FPGA device is not completely configured at
power-up, which is the traditional case. This small FPGA region should include all
timing-critical hardware components which should meet the hard start-up deadline.
After this initial small configuration is finished, the design is fully operational
and running on the FPGA. Afterwards, dynamic partial reconfiguration is used in
order to configure the remaining region of the FPGA, which was not configured
at power-up. These additional non-timing-critical hardware components provide
additional functionality that will be required during application operation mode.

154 J. Meyer et al.

Blank FPGA

a b

Blank FPGA

Timing
critical HW
components

Non timing critical
HW components

Timing
critical HW
components

Initial partial
configuration

Second partial
configuration

Blank FPGA

Unused
resources

Initial full
configuration

Second partial
configuration

Static
design

Partial
module

Static
design

Fig. 3 Comparison of the concept for fast FPGA configuration (a) and the traditional dynamic
partial reconfiguration concept (b)

Although dynamic partial reconfiguration is exploited by the fast FPGA config-
uration, there are differences between the traditional usage of the dynamic partial
reconfiguration; see Fig. 3b and the concept of the fast FPGA configuration; see
Fig. 3a. While the concept of dynamic partial reconfiguration intends a full design
to be used as initial configuration which can be modified during run time, the fast
configuration technique already uses a partial bitstream in order to only configure
those parts of the full FPGA design, which have a high priority to be up and running
quickly.

Obviously, in order to get a small configuration time, it is key to have a
small timing-critical design. Therefore, this initial system should only contain the
hardware components which are absolutely necessary to run an embedded processor
subsystem (i.e., meet the start-up deadline).

Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs 155

initial
design

initial
design

second
design

initial
design

second
design

Remove redundant
configuration frames

Use different based
bitgen option

Full Bitstreams: Partial Bitstreams:

Fig. 4 Basic approach to create the partial bitstreams for fast start-up

In order to implement the two-step configuration of this fast FPGA configuration
technique the following steps have to be done:

• Partition the complete FPGA design into a timing-critical part and a non-timing-
critical part.

• Create a special partial bitstream for the initial timing-critical configuration.
• Create a partial bitstream for dynamic partial reconfiguration.

How to partition a full design into timing-critical and non-timing-critical compo-
nents depends on the specific application. While for most components it is obvious if
you need them in your initial design or not, Sect. 3.2 will analyze different memory
architecture options in order to help getting the best option for the fast configuration
technique.

Since there is no support for Spartan-6 by any of the available partial reconfigura-
tion tool flows, but the Spartan family is the preferred FPGA family from Xilinx for
embedded systems due to the low costs and low energy consumption, the creation
processes of the partial bitstream for the timing-critical partition as well as for the
non-timing-critical partitions afford nonstandard procedures. The basic concept of
the flow to create such bitstreams for Spartan 6 can be seen in Fig. 4. In order to get
a partial initial bitfile which is holding the initial design configuration, we create a
full bitstream of the initial design first. This full bitstream is edited on a binary level
to remove the configuration data which is not required and to get the partial initial
bitstream.

In order to create the partial bitstream for the dynamic partial reconfigu-
ration of the second design, it is possible to use the BitGen option “-r” for

156 J. Meyer et al.

difference-based partial reconfiguration which is still available for Spartan-6.
Applied on a full design, using the full bitstream of the initial design as reference,
this option produces a partial bitstream containing only the configuration data of the
second design.

3.1.1 Generation of the Initial Partial Bitstream

As mentioned before, in order to get the initial partial bitstream, all redundant
configuration data of a full bitstream has to be removed. This affords a deep
knowledge of the configuration memory structure and the bitstream composition.
The following low-level information about bitstream composition and configuration
procedure is based on configuration user guides like [18] or [15].

The configuration of a Xilinx FPGA is organized in several configuration rows,
each consisting of multiple columns of resource elements like, for example, the
configuration logic blocks (CLBs). Such a configuration column can be broken
down into several configuration frames which are the smallest addressable segments
of the configuration memory space, and therefore an operation always affects a
whole frame. A configuration frame can be thought of as a one-bit-wide column
which spans a whole configuration column. Thus one frame holds only little
configuration data of one specific resource element, but therefore it holds this
information for all the resources in the corresponding configuration column.

In order to reduce the configuration bitstream size, the compress option of the
Xilinx BitGen tool can be used. This option avoids writing similar frames multiple
times into the FPGA. Instead, it writes this frame one time into the FDRI, and
afterwards the combination of updating the frame address register (FAR) with one
of the corresponding addresses for the frame and triggering a multiple frame write
(MFW) follows. A MFW is a special configuration command which uses the current
frame inside the FDRI to configure the configuration memory addressed by the
current value of the FAR. After some no-operation commands, the procedure of
updating the address and triggering an MFW is repeated until all addresses for the
frame are written.

Using the compress option, it is possible to replace multiple similar frames
of an ordinary bitstream with such a sequence of MFWs. An ordinary Spartan-6
frame usually contains 65 configuration words; an MFW sequence for one frame
is about 4–5 configuration words. The efficiency of the compress option therefore
obviously depends on the amount of similar frames in a design. For Xilinx FPGAs,
the configuration data for unused resources consists of zeros only, such frames are
called zero frames. Thus an FPGA design which only uses a small amount of logic
of the FPGA contains a lot of such zero frames, and therefore using compress with
such a design will decrease the configuration bitstream size significantly.

However, all the memory addresses, the MFW commands and the no-operation
command words are still inside the bitstream. But for zero frames, this is redundant
information because after the house cleaning process, all configuration memory
should be initialized with zero anyway. While for an ordinary configuration

Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs 157

bitstream, it is quiet complex to remove the configuration data of unused resources
and add the necessary address updates by hand, this is much easier for a compressed
bitstream. This is because the compressed bitstream structure already separates the
zero frames by putting them into MFWs. Therefore, the zero frames can be removed
easily from the bitstream by removing all MFWs of zero frames. A comparable
approach was used in [12] to decrease the amount of nonvolatile memory for an
initial configuration bitstream using Virtex 4.

The removal of zero frames of a compressed bitstream results in a valid partial
bitstream which can be used for initial configuration. To get a full tool flow we
automated these modifications in a small custom software which does not only
remove the frames but also recalculates the cyclic redundancy check value of the
bitstream.

3.1.2 Placement of Timing-Critical Hardware

In order to bring up all timing-critical modules as fast as possible, you have to
choose the area in the FPGA for these modules with care. Of course all modules
should be placed in one contiguous area as small as possible but still providing
all necessary resources. Utilizing resources outside these areas is possible but will
add additional frames to the initial bitstream, because even a single net through
an unused region prevents several zero frames which could have been removed.
Therefore, a region has to be found which holds as much special resources of your
timing-critical modules as possible. It often makes sense to place the region near the
ICAP primitive.

Furthermore it is useful to align the horizontal boundaries of the area for timing-
critical components with the border of configuration frames like in Fig. 5 on the
right-hand side. By this you support that frames are either used completely or
not at all. This is helping to create as much zero frames as possible.

3.1.3 Dynamic Partial Reconfiguration for Spartan-6

While it is possible for Virtex architectures to use a standard partial reconfiguration
tool flow in order to create the partial bitstream for the second configuration,
Spartan-6 is not supported by Xilinx for partial reconfiguration. Nevertheless, with
the right combination of standard implementation techniques and the BitGen option
for difference-based partial reconfiguration, it is possible to create partial bitstreams
which were successfully used for dynamic partial reconfiguration. As mentioned
before and shown in Fig. 4, the difference-based BitGen option can be used to extract
the difference of the full design and the initial design. Therefore, the key element of
the flow is to create those two designs in a way which ensures the initial design part
doesn’t change. This makes sure the partial bitstream for the second configuration
only contains information of the second design part.

158 J. Meyer et al.

Fig. 5 Basic approach to create the partial bitstreams for fast start-up

Keeping the initial design part from changing during the two implementations
can be achieved by design preservation using partitions [17]. Those partitions
create logical boundaries between hierarchical modules and thus make it possible
to reuse the implementation information of partitions already implemented in a
previous design. To preserve the complete routing of the initial design, all IO buffers
which are driven by signals from this design part should be instantiated inside the
corresponding hierarchical sub-module.

For nets which leave a logical module of the initial design part in order to build
a connection to the second design part, the strategy is to route them through an
interface logic which is placed outside of the area of the initial design part but
belonging logically to the initial design part module and thus to the preserved
partition. This can be used to make sure no frames in the area with the first design
part are reconfigured when the dynamic partial reconfiguration adds the second
design and the connection to the mentioned interface logic. This logic should also
provide an enabled signal which makes it possible to disable the connection. This
is used to avoid glitches, resulting from the configuration of the second design, to
reach the first design part. In order to avoid the nets from the second partition to
get routed through the area of the first design part, the “contained route” constraint
should be used for the partition of the second design.

3.2 Memory Architectures for Fast Start-Up

FPGAs do offer design-time and run-time programmability, which we exploit in
order to meet the application’s start-up requirements. The timing-critical hardware

Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs 159

SPI
Flash

Processor

Tx/Rx

DDR3
controller

ICAP

B
R

A
M

m

em
or

y

SPI
contr.

DDR3
memory

Timing critical
parts

Fig. 6 Different memory architectures for the timing critical design

components configured at FPGA power-up are application dependent, but in
general, we can find the following components: (1) an embedded soft-core micro-
processor (e.g., MicroBlaze from Xilinx); (2) a communication interface (e.g., CAN
block), to interface with the rest of the system; (3) a volatile memory hierarchy, used
for software execution; (4) a block to interface to non-volatile external storage (e.g.,
SPI flash, which stores FPGA configuration data for non-timing critical blocks); and
(5) an internal configuration access port (ICAP), used for FPGA configuration of the
non-timing-critical components.

The flexibility of FPGA’s allows us to customize these timing-critical com-
ponents in many different ways. For example, we can configure the embedded
microprocessor to include only the required features (e.g., size of cache mem-
ories). However, we exploit FPGA’s flexibility to implement different memory
architectures, which have a significant impact on the embedded system start-up
time. Different memory architectures differ in used FPGA resources as well as in
performance.

One memory architecture is based only on on-chip FPGA resources. For current
Xilinx FPGAs, those resources (i.e., Block RAM) are able to store up to 36 Kbits
each. The memory subsystem is directly connected to the embedded processor,
providing an optimal performance. A block diagram of this memory architecture is
shown in Fig. 6. However, the amount of memory that can be implemented using this
approach is limited. Not only the limited amount of BRAMs per FPGA is critical
but also the requirement that those BRAMs have to be located inside the area of
the timing-critical hardware components. Accessing more of those resources than
available in this area would increase the area and thus increase the bitstream size
(i.e., FPGA configuration time). Therefore, this architecture is only viable whenever
the footprint of the software is very small.

160 J. Meyer et al.

Processor

Tx/RxICAP

B
R

A
M

m
em

or
y

DDR3
memory

SPI
Flash

SPI
contr.

DDR3
controller

Timing
critical parts

Fig. 7 Different memory architectures for the timing critical design

The second memory architecture integrates an external memory controller in the
timing-critical design (e.g., DDR3 SDRAM memory controller), which removes
almost any limitations on software footprint. Figure 7 shows this architecture.
However, implementing such a memory controller adds significant amounts of
FPGA resources to the timing-critical system, even when using the dedicated
Spartan-6 hard memory controller. Hence, when compared to the previous memory
architecture, the timing-critical FPGA configuration time will increase for this
option.

Before the software can be executed by the processor, it has to be moved
from the slow external non-volatile memory to the main memory of the processor
subsystem. This is achieved differently depending on the used memory hierarchy.
For the memory architecture based on on-chip memory (i.e., BRAM) only, this
task is done very efficiently by the configuration logic of the FPGA. The software
is included in the initial FPGA configuration, as part of the FPGA bitstream,
to initialize the BRAM resources with the correct software. In a traditional full
configuration technique this does not increase the configuration time since all
the configuration memory of the FPGA is written anyway. However, our fast FPGA
configuration technique avoids writing BRAM resources which are not used by the
timing-critical blocks. Therefore, the more software is included in the timing-critical
bitstream, the bigger the footprint will get which of course increases the FPGA
start-up time.

Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs 161

Timing critical
configuration

Timing critical
software boot

Start-up Time for timing critical parts

DeadlinePower-up
time

Non timing critical
Hardware

configuration

Non timing critical
software boot

Fig. 8 With the optimized start-up process, timing-critical tasks can meet tight deadlines

In the case of using external memory, moving the data from the flash memory
into the DDR3 SDRAM memory requires a boot loader. This very small piece
of code usually runs out of BRAM memory. Therefore, even when using external
memory, a small amount of internal BRAM memory is always required. The major
disadvantage of this architecture is the inefficiency of the software-based boot loader
compared to a hardware-based solution (e.g., use FPGA configuration logic to
initialize BRAM contents). Using a dedicated DMA controller to move the software
executable from flash to the external memory is not the most efficient option, since it
is a FPGA resource-intensive component, and it therefore would increase the initial
(i.e., timing-critical) FPGA configuration time.

3.3 Software Architecture and Start-Up

The fast FPGA configuration technique comes along with some constraints on the
software architecture and boot process. For example, the software architecture has
to (1) consider the FPGA configuration of the non-timing-critical components and
only when that second FPGA configuration has finished (2) start the software tasks
associated to these non-timing-critical hardware components (i.e., it will not work
to start a software task for a hardware component that still has not been configured
on the FPGA).

To address these two issues, our approach is based on dividing the software in
two different parts (i.e., two-stage software start-up process): (1) timing-critical
software, which has to meet the start-up deadline and (2) non-timing-critical
software, which is started after the second FPGA configuration has finished. At the
moment it is the job of the system architect to decide which parts of the software
belong to the timing-critical part and which will go into the non-timing-critical part.
We plan to automate this decision in successive work. Figure 8 shows the concept
of a fully optimized start-up process.

This two-stage software start-up process can also be exploited by the boot loader
when copying the executable from SPI flash to external DDR SDRAM memory.
That is, there is no benefit in moving the complete software to external memory at

162 J. Meyer et al.

time

O
S

 S
ta

rt
up

Non timing
critical SW

Timing
critical SW

Non timing critical
software can be started

Boot timing critical
software can be started

Non timing critical
configuration finished

Communication task

2nd config

Load 2nd SW

Task A

Task B

Task C

Fig. 9 Software architecture and boot sequence

power-up, since there will be sections of code that the processor will not execute at
start-up (i.e., the non-timing-critical tasks). Only the timing-critical tasks are moved
initially by the boot loader, hence reducing the start-up time.

Figure 9 shows a more detailed view of the software architecture and start-up
sequence, after the timing-critical FPGA configuration has finished.

This two-stage software start-up concept becomes optimal when the timing-
critical software tasks are executed from on-chip memory, and the non-timing-
critical tasks are executed from external memory. This solution has two key benefits:
(1) the resource-expensive memory controller is not present in the initial FPGA
configuration (i.e., reduced FPGA configuration time) and (2) avoid a software-
based boot loader process to copy data from SPI flash to external memory for the
timing-critical tasks (i.e., this is hardware based since it is carried out during the
FPGA configuration).

This optimized start-up process is shown in Fig. 10, where we can observe
three key steps: (1) during the initial configuration phase, the FPGA is configured
with the timing-critical hardware components (no external memory controller), and
timing-critical software tasks execute out of on-chip memory; (2) while the time-
critical application is running, one task is to get a second FPGA configuration
out of the external flash memory in order to configure the non-timing-critical
hardware components; and (3) the non-timing-critical software tasks are copied
from external flash memory to external memory, where they are executed from.
All three components, the timing-critical configuration bitstream, the non-timing-
critical configuration bitstream, as well as the non-timing-critical software, can be
stored in one low-cost SPI flash memory.

Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs 163

Processor

Tx/RxICAP
B

R
A

M
m

em
or

y

DDR3
memory

Non Timing
Critical HW

Timing
Critical HW

Non Timing
Critical SW

Critical SW

Critical
SW

Non Timing
Critical SW

SPI
Flash

SPI
contr.

DDR3
controller

Time critical config.

Non timing critical config.
Loading non timing
critical SW

Configuration Steps:

1

2

1

2

3

3

3

2

1

Fig. 10 Start-up process with memory controller in the non-timing-critical hardware design

3.4 Implementing Two-Stage Software Boot

This section explains how to implement the two-stage software start-up process
using a small-footprint operating system (i.e., microkernel), which is the one
traditionally used in our target embedded applications. Given the hard timing con-
straints we are considering, in the order of milliseconds, these real-time operating
systems are tightly integrated with the application tasks, creating a single monolithic
software executable.

In order to implement the two-stage software start-up technique, the single
software binary has to be split in two software segments (i.e., timing-critical and
non-timing-critical), which have to be located at different memory addresses of the
processor’s memory map. This is achieved in two main steps, as shown in Fig. 11:

• First, by separating the sections of each software segment in the linker script. This
is applicable to almost every section type, like .text, .rodata and .data. However,
other sections should not be separated, like small sections (e.g., .sdata, .sbss) or
the .bss section, since the CRT (C run time) assumes that the .bss section resides
in a contiguous memory block. Therefore, those sections are not separated but
kept in the memory address range of the timing-critical software (i.e., on-chip
memory).

164 J. Meyer et al.

Li
nk

er

Source code Executable

script.ld

C
om

pi
le

r

Modules

ob
jc

op
y

Splitted
binaries

Timing-
Critical

Non-Timing
-Critical

Timing-
Critical

Non-Timing
-Critical

Fig. 11 Flow for the two-stage software boot

• Second, by using the objcopy tool from the GNU binary utilities, which is used
to copy specific sections of an executable file to a new file. This tool creates two
independent binaries, from a single executable, that can be loaded independently
at run time.

4 Experiments and Results

4.1 Case Study: Automotive ECU Start-Up

To analyze the different concepts and architectures proposed in this chapter, we used
as case study the implementation of an automotive electronic control unit (ECU)
on a Xilinx Spartan-6 FPGA. The CAN bus is traditionally used in automotive
embedded applications, and it has a start-up requirement of 100 ms (i.e., the ECU
should reply to CAN messages from power-up in 100 ms). If a CAN node is not able
to boot within 100 ms, it might miss critical messages which cannot be tolerated for
automotive systems.

The timing-critical processor subsystem includes a CAN controller for com-
munication purposes, a SPI controller to access the configuration bitstreams and
the software binaries, an ICAP controller to have access to the configuration
memory of the FPGA and some main memory. The non-timing-critical hardware
components include an Ethernet MAC block, a UART, and a timer. The design was
implemented in two different ways, depending on the location of the DDR3 memory
controller (i.e., timing-critical vs non timing-critical). The first design included a
DDR3 memory controller in the timing-critical design, but therefore only 8 KB of
memory was implemented using BRAMs. This implementation will be referred to as
DDR3 design. In a second implementation the on-chip memory implemented using
BRAMs was increased to 32 KB, but the DDR3 memory controller was moved to the
non-timing-critical hardware design. This one will be referred to as BRAM design.
A block diagram for these two implementations is shown in Fig. 12.

Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs 165

M
U
X

SPI4x
Flash

Memory

DDR
Memory

Microblaze
(with Cache)

CANCore
(V3)

DDR3
Controller

(MCB)

SPI
controller

T
X

R
X

Soft
Reg

ICAP

CAN
PHY

BRAM
8KB - 32KB

CLK
Generator

clk
can
clk

IRQ
Cntr.

7

clocks for P2
design

16 1

Ethernet
MAC

UART

Timer

PLB to
PLB

BridgeP
L

B
(3

2
b

it
)

Non timing critical
design: Timing critical design:

MDM

PLB(32bit)

16

DDR
Memory

DDR3
Controller

(MCB)

cl
k

en
nstb

Fig. 12 Overview of the design. The DDR3 controller is located either in the timing-critical or
non-timing-critical design

Figure 13 shows the FPGA Editor view of the DDR3 design. The picture on
the left-hand side shows the timing-critical design only. The area location for the
timing-critical design was chosen on the left side of the device because we used
the hardened memory controller of the left side. Since a lot of nets route to this
primitive this was the best location for the DDR3 design. Please note the rectangular
configuration frame aligned shape of the major area as well as nets leaving the area
to access clock resources, IOs or the ICAP primitive (right bottom of the device).
On the right-hand side of Fig. 13 you can see the full DDR3 design.

The BRAM design is illustrated in Fig. 14. We moved the area for the timing-
critical part of the FPGA design to the right bottom. There, we had enough BRAMs
for the initial memory as well as the ICAP primitive. In this design the DDR3
controller was implemented in the second part (red nets) of the design. This is why
the noncritical (red) part of the BRAM design looks bigger than the noncritical (red)
part of the DDR3 design.

The software for the designs was built on the embedded operating system
OSEK, which is a simple real-time operating system commonly used in automotive
ECU’s. RTA OSEK was ported to run on Xilinx MicroBlaze embedded processor.
Different software tasks to initialize the hardware, to handle CAN communications,
to perform the configuration of the non-timing-critical design, to communicate
over the UART and to implement several networking protocols were implemented.

166 J. Meyer et al.

Fig. 13 FPGA editor view of the timing-critical only (left side) and the full (right side) FPGA
design

If required, there was also a task implementing the boot loader for the non-timing-
critical part of the software. Software executables were built using the methodology
and tools described in Sect. 3.4.

4.2 Experimental Setup

The start-up time for this case study was measured using a demonstrator we set up
in our labs. This demonstrator integrates a PC, a CAN traffic generator, a CAN PHY
board, and a SP605 Spartan-6 development board with a XC6S45LXT device; see
Fig. 15. The CAN PHY board is able to power-up the SP605 whenever it detects any
traffic on the CAN bus. The CAN traffic generator is able to send and receive CAN
messages, as well as measure the time between a message was sent and the message
getting acknowledged. This is the time the FPGA needs to configure and start the

Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs 167

Fig. 14 FPGA editor view of the BRAM design. Timing-critical components only (left side) and
the full (right side) FPGA design

PC
Traffic

Generator

SP605
Prototyping

Platform

CAN
PHY

1Mb/s CAN
RS232

12 V

12 V

Ethernet

Fig. 15 Overview of the measurement setup

timing-critical software. The SP605 was used to implement the designs introduced
in the previous sections and is connected to the PC using an Ethernet connection.
All designs used the Quad-SPI FPGA configuration interface with a configuration
rate of 26 to carry out the timing-critical FPGA configuration.

We now briefly explain the methodology used to measure the start-up time on
our experimental setup. The SP605 is powered off; the traffic generator sends a

168 J. Meyer et al.

Fig. 16 Picture of the experimental setup

CAN message and triggers a hardware timer used to measure the SP605 start-up
time. Whenever the CAN PHY board detects a message on the CAN bus, it powers
up the SP605, and the Spartan-6 starts its configuration using the timing-critical
bitstream stored on the SPI flash. When this is finished, the timing-critical software
CAN task starts to run on the embedded processor and acknowledges the message
of the traffic generator. When the traffic generator detects this acknowledgment it
stops the hardware timer (i.e., measured time includes FPGA configuration time and
software start-up time). Figure 16 shows a photograph of the experimental setup.
Please note that the following subsections report measured start-up time of fully
working applications on the prototyping platform.

4.3 Memory Hierarchy Analysis

This section summarizes the impact on start-up time of the two memory archi-
tectures introduced in Sect. 3.2 (i.e., timing-critical hardware with/without external
memory controller). We measured the start-up times for both designs using three
different concepts: (1) with a traditional full FPGA configuration technique, (2)
a compressed version of the timing-critical components only as in [16], and (3)
the proposed fast FPGA configuration technique. In this example, one of the non-
timing-critical software tasks was to simply answer ping commands over Ethernet
(i.e., small software footprint that fits in the 32KB on-chip memory). Tables 2 and 3
show the results.

Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs 169

Table 2 DDR3 design
memory architecture

Boot time Traditional Compressed Fast start-up

Critical HW 1,450 KB 715 KB 323 KB
Full SW 23 KB 23 KB 23 KB
Start-up time 129 ms 85 ms 66 ms

Table 3 BRAM design
memory architecture

Boot time Traditional Compressed Fast start-up

Critical HW 1,450 KB 637 KB 263 KB
Full SW 23 KB 23 KB 23 KB
Start-up time 118 ms 69 ms 46 ms

Table 4 Resources for
timing-critical designs

Memory Resource type

architecture Flip flops LUTs Slices BRAMs

BRAM 2,573 3,249 1,051 24
DDR3 3,509 4,198 1,453 16

The results demonstrate the significant benefit of the fast FPGA configuration
technique when compared with a traditional full FPGA configuration. Please note
that with larger FPGAs, this speed-up would be even higher since the timing-
critical design configuration is constant. Additionally, we can observe the start-up
time reduction when using on-chip memory only (i.e., BRAMs) in the timing-
critical design and moving the resource-expensive external memory controller to
the non-timing-critical design (compare Tables 2–4). Although there is additional
configuration data needed to initialize the BRAM contents, not including the DDR3
memory controller in the timing-critical hardware components significantly reduces
the initial FPGA configuration.

4.4 Software Scalability Results

The main goal of this section is to demonstrate the scalability, in terms of software
size/footprint, of the optimized start-up approach, where the timing-critical software
tasks are executed from on-chip BRAM memory, and the non-timing-critical tasks
are executed from external memory.

The results presented in Table 5 show the start-up time when running a non-
timing-critical software task able to process UDP packets. This increased the
software size to 48 KB, which did not fit into the 32 KB on-chip BRAM memory.
On the other hand, the results shown in Table 6 were obtained when running a
webserver with a software size of 284 KB.

In both examples, using traditional start-up techniques does not achieve the hard
start-up deadline (i.e., 100 ms) when using DDR memory controller in the initial
configuration; or it is not possible to implement both applications because there is
not enough on-chip memory. However, when using the proposed two-stage start-up

170 J. Meyer et al.

Table 5 Measured start-up
time; UDP task

Boot Traditional start-up Optimized start-up

time DDR3 BRAM DDR3 Mixed

Critical HW 1,450 KB – 323 KB 263 KB
Critical SW 48 KB – 16 KB 16 KB
Non critical SW – – 32 KB 32 KB
Start-up time 155 ms – 60 ms 46 ms

Table 6 Measured start-up
time; webserver task

Boot Traditional startup Optimized startup

times DDR3 BRAM DDR3 Mixed

Critical HW 1,450 KB – 323 KB 263 KB
Critical SW 284 KB – 16 KB 16 KB
Non critical SW – – 269 KB 269 KB
Start-up time 334 ms – 60 ms 46 ms

technique, we always meet the required hard deadline with the mixed BRAM+DDR
implementation providing the minimum start-up time. Please note that the start-up
time is now constant and independent of the complete application software size.

5 Conclusion

The presented techniques, methods, and tool flows enable the implementation of
embedded systems achieving tight start-up timing constraints using modern FPGAs.
FPGAs run-time flexibility (i.e., programmability) is used as the basis for a two-
stage embedded system start-up, where both the FPGA configuration and embedded
software start-up times are reduced.

With the enormous growth of the FPGA size the need for fast-boot techniques
grows similarly in order to be able to compete against non-reconfigurable systems.
The fast FPGA configuration technique does not only improve the configuration
time for timing-critical components of an embedded system; it makes the configu-
ration time for those parts independent from the device size. If a design is able to
meet, timing constraints is no longer dependent from the FPGA but from the amount
of resources which are timing-critical. This enables to move your design to bigger
or smaller FPGAs with almost no influence on the start-up time.

The same is valid for the software part of the start-up time. With the separation
into partitions with different priority for start-up, it becomes possible to avoid
time-expensive transfers of software between memory hierarchies during start-up.
Furthermore this technique enables the start-up from BRAM primitives as main
memory for the critical software, even if the overall system software exceeds BRAM
limitations.

The proposed techniques for FPGA-based system start-up consider and optimize
hardware as well as software start-up and therefore cover and optimize for the first
time the complete boot time of such a system. The memory hierarchy analyses

Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs 171

shows that the right choice on how to implement the main memory of the embedded
system has a significant influence on the start-up time. Due to the constantly growing
amount of modern FPGA resources, the fast start-up technique is even more valuable
for next-generation Xilinx FPGA devices, like 7 series [19] and Zynq [21], which do
not provide a hardware-based solution to meet the PCI Express start-up requirement.

All techniques were used to implement an automotive embedded system on a
Spartan-6 FPGA in order to show the feasibility and quantify the benefits of the
proposed approach. The results demonstrate that the start-up time for the timing-
critical components of the design are nearly independent from the complexity and
thus from the start-up time of the complete system.

References

1. Benavides T, Treon J, Hulbert J, Chang W (2007) The implementation of a hybrid-execute-in-
place architecture to reduce the embedded system memory footprint and minimize boot time.
In: Information reuse and integration, 2007. IRI 2007. IEEE international conference on, pp
473–479, DOI 10.1109/IRI.2007.4296665

2. Chung KH, Choi MS, Ahn KS (2007) A study on the packaging for fast boot-up time in the em-
bedded linux. In: Embedded and real-time computing systems and applications, 2007. RTCSA
2007. 13th IEEE international conference on, pp 89–94, DOI 10.1109/RTCSA.2007.13

3. Dandalis A, Prasanna V (2005) Configuration compression for fpga-based embedded systems.
IEEE Transactions on very large scale integration (VLSI) Systems 13(12):1394–1398. DOI
10.1109/TVLSI.2005.862721

4. Deshpande D, Somani AK, Tyagi A (1999) Configuration caching vs data caching for striped
fpgas. In: Proceedings of the 1999 ACM/SIGDA seventh international symposium on field
programmable gate arrays, ACM, New York, NY, USA, FPGA ’99, pp 206–214, http://doi.
acm.org/10.1145/296399.296461, http://doi.acm.org/10.1145/296399.296461

5. Hauck S (1998) Configuration prefetch for single context reconfigurable coprocessors. In:
Proceedings of the 1998 ACM/SIGDA sixth international symposium on field programmable
gate arrays, ACM, New York, NY, USA, FPGA ’98, pp 65–74, http://doi.acm.org/10.1145/
275107.275121, http://doi.acm.org/10.1145/275107.275121

6. Huebner M, Meyer J, Sander O, Braun L, Becker J, Noguera J, Stewart R (2010) Fast sequential
fpga startup based on partial and dynamic reconfiguration. In: VLSI (ISVLSI), 2010. IEEE
computer society annual symposium on, pp 190–194, DOI 10.1109/ISVLSI.2010.19

7. Li Z, Hauck S (2001) Configuration compression for virtex fpgas. In: Field-programmable
custom computing machines, 2001. FCCM ’01. The 9th annual IEEE symposium on,
pp 147–159, DOI 10.1109/FPGM.2001.184258

8. Li Z, Compton K, Hauck S (2000) Configuration caching management techniques for recon-
figurable computing. In: Proceedings of the 2000 IEEE symposium on field-programmable
custom computing machines, IEEE computer society, Washington, DC, USA, FCCM ’00,
pp 22 http://portal.acm.org/citation.cfm?id=795659.795918

9. Patel P (2006) Embedded systems design using fpga. In: VLSI design, 2006. Held jointly with
5th international conference on embedded systems and design, 19th international conference
on, p 1 DOI 10.1109/VLSID.2006.83

10. PCI-SIG (2005) PCI Express base specification, REV. 1.1. PCI-SIG
11. Schiefer A, Kebschull U (2005) Optimization of start-up time and quiescent power consump-

tion of fpgas. In: Field programmable logic and applications, 2005. International conference
on, pp 551–554, DOI 10.1109/FPL.2005.1515783

http://doi.acm.org/10.1145/296399.296461
http://doi.acm.org/10.1145/296399.296461
http://doi.acm.org/10.1145/296399.296461
http://doi.acm.org/10.1145/275107.275121
http://doi.acm.org/10.1145/275107.275121
http://doi.acm.org/10.1145/275107.275121
http://portal.acm.org/citation.cfm?id=795659.795918

172 J. Meyer et al.

12. Sellers B, Heiner J, Wirthlin M, Kalb J (2009) Bitstream compression through frame removal
and partial reconfiguration. In: Field programmable logic and applications, 2009. FPL 2009.
International conference on, pp 476–480, DOI 10.1109/FPL.2009.5272502

13. Stefan R, Cotofana S (2008) Bitstream compression techniques for virtex 4 fpgas. In:
Field programmable logic and applications, 2008. FPL 2008. International conference on,
pp 323–328, DOI 10.1109/FPL.2008.4629952

14. Wu CH (2008) A time-predictable system initialization design for huge-capacity flash-memory
storage systems. In: Proceedings of the 6th IEEE/ACM/IFIP international conference on Hard-
ware/Software codesign and system synthesis, ACM, New York, NY, USA, CODES+ISSS ’08,
pp 13–18, http://doi.acm.org/10.1145/1450135.1450140, http://doi.acm.org/10.1145/1450135.
1450140

15. Xilinx (2009) Virtex-5 FPGA configuration user guide, UG191, v3.8. Available at http://www.
xilinx.com

16. Xilinx (2010a) Fast configuration of PCI express technology through partial reconfiguration,
XAPP883, v1.0. Available at http://www.xilinx.com

17. Xilinx (2010b) Hierarchical design methodology guide, UG748, v12.1
18. Xilinx (2010c) Spartan-6 FPGA configuration user guide, UG380, v2.1. Available at http://

www.xilinx.com
19. Xilinx (2011a) 7 Series FPGAs overview, DS180, v1.5. Available at http://www.xilinx.com
20. Xilinx (2011b) MicroBlaze processor reference guide, UG081, v13.3. Available at http://www.

xilinx.com
21. Xilinx (2011c) Zynq-7000 Extensible processing platform product brief. Available at http://

www.xilinx.com
22. Yim KS, Kim J, Koh K (2005) A fast start-up technique for flash memory based computing

systems. In: Proceedings of the 2005 ACM symposium on applied computing, ACM, New
York, NY, USA, SAC ’05, pp 843–849, http://doi.acm.org/10.1145/1066677.1066871, http://
doi.acm.org/10.1145/1066677.1066871

http://doi.acm.org/10.1145/1450135.1450140
http://doi.acm.org/10.1145/1450135.1450140
http://doi.acm.org/10.1145/1450135.1450140
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://doi.acm.org/10.1145/1066677.1066871
http://doi.acm.org/10.1145/1066677.1066871
http://doi.acm.org/10.1145/1066677.1066871

Run-Time Scalable Architecture for Deblocking
Filtering in H.264/AVC and SVC Video Codecs

Andrés Otero, Teresa Cervero, Eduardo de la Torre, Sebastián López,
Gustavo M. Callicó, Teresa Riesgo, and Roberto Sarmiento

1 Introduction

Benefits of flexible applications force developers and also the industry to design
new techniques, methodologies, and tools. The target of this effort is to develop
more flexible systems capable of adapting their performance dynamically, saving
hardware resources and power consumption but maximizing their performance.
However, achieving an optimal design remains a challenge since most real task
workloads are dependent on run-time system conditions [14] and environmental
issues. In this sense, there are two basic aspects that facilitate reaching a comprising
solution. The first one goes through improving the level of parallelism of the system.
The second issue requires exploiting the dynamic and partial reconfiguration (DPR)
benefits that SRAM-based FPGAs offer, mostly Xilinx ones [2, 23]. DPR allows
designing IP cores with run-time adaptable parallelism and achieving a flexible
assignment of resources. This chapter presents a hardware, modular, and scalable
deblocking filter (DF) architecture that is capable of modifying its number of
modules in one or two dimensions, following a highly modular and regular matrix
template of functional units, which was previously presented in [17]. Within
the set of features that characterize this architecture, stand out the regularity of
communication patterns proposed through the array, since they reduce the number
of distributed external memory accesses.

A. Otero (�) • E. de la Torre • T. Riesgo
CEI, Universidad Politécnica de Madrid, E.T.S.I.Industriales. José Guitérrez Abascal 2,
28006 Madrid, Spain
e-mail: joseandres.otero@upm.es; eduardo.delatorre@upm.es; teresa.riesgo@upm.es

T. Cervero • S. López • G.M. Callicó • R. Sarmiento
IUMA, Universidad de Las Palmas de Gran Canaria, Spain
e-mail: tcervero@iuma.ulpgc.es; seblopez@iuma.ulpgc.es; gustavo@iuma.ulpgc.es;
roberto@iuma.ulpgc.es

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2 8, © Springer Science+Business Media, LLC 2013

173

174 A. Otero et al.

On the other side, the latest video standards, like the scalable video coding (SVC)
[10, 22], support different levels of scalability and profiles [16, 26], incorporating
a higher degree of flexibility. The disadvantage of such flexibility is an increase
of the design and implementation costs to deal with the bunch of possibilities
offered by these standards. In this context, those costs can be reduced by breaking
the video encoder up into flexible hardware modules in which size can be easily
changed independently. Moreover, if this modification is carried out at run time,
as it is proposed in this chapter, a highly adaptable scenario can be envisaged. It
might be composed of different blocks in charge of video decoding tasks, with the
capability of dynamically adapting its size, and accordingly, its performance, to the
type and levels of scalability selected by the users, or other run-time environmental
conditions.

Going further in the profiling of the SVC decoding process, the deblocking
filter is not only one of the most computationally intensive tasks of the standard,
but it is also highly dependent on the selected video profile [12]. In addition, a
parallelization scheme is proposed that performs the scaling process consistent with
the data locality restriction imposed by the architecture. Furthermore, the proposed
architecture has been designed to be reused and flexible, such that its general
framework might be adapted to process different kinds of applications in which
there exist certain kinds of data dependencies.

The rest of this chapter is organized as follows. In Sect. 2, a review of the state
of the art on parallel and scalable architectures is shown. Then, the role of the
deblocking filter within the H.264/AVC and the SVC video standards is described in
Sect. 3. In Sect. 4, the possibilities of parallelizing the DF are discussed. Section 5
describes all the modules belonging to the proposed approach, which as a whole will
form a DF. Section 6 focuses on different implementation issues. Section 7 shows
details about how the proposed scalable DF is integrated as part of an embedded
system, while in Sect. 8, dynamic reconfiguration details are presented. In turn,
Sect. 9 generalizes the proposed approach to solve different kinds of problems.
In Sect. 10 implementation results are presented. Finally, in Sect. 11, the main
conclusions achieved in this chapter are highlighted.

2 Related Work

There exists a significant research interest in developing applications able to reach
a good trade-off between flexibility and real-time performance. In this sense,
numerous works have been focused on addressing the challenges introduced by
parallel and distributed computing applications. This has led to develop a diverse
number of solutions, in terms of tools, methodologies, and architectures. The key
target is to reduce the complexity of design and implementation stages of these
resource demanding applications but maximizing the final reachable performance.
In any of these cases, the solution goes throughout increasing the level of parallelism
of the processing cores, independently of whether these cores are software or
hardware based.

Run-Time Scalable Architecture for Deblocking Filtering 175

Some existing approaches explore scheduling and optimal parallelism selection
issues rather than considering architectural challenges. An example of this kind of
approach is PARLGRAN [1], a framework that deals with mapping and scheduling
aspects derived from using dynamic parallelism selection. The purpose of this
solution is to maximize the performance of an application task chain by selecting an
appropriated parallelism granularity for each task. Different levels of granularity are
achieved by instantiating several copies of the same task, allowing that all of them
work concurrently. As a consequence, the task workload is shared equitably among
the instances, which means that the execution time is reduced proportionally to the
number of instances. The disadvantage of this solution is that it only considers tasks
without dependencies between disjoint data blocks, which restrict its applicability to
many data-parallel tasks, such as the DF. Like et al. [14] tackle a similar problem, but
in this case, the solution considers dynamically reconfigurable adaptive accelerators.
The authors propose balancing area and execution time while unrolling application
loops, dependent on the inputs and tasks running concurrently in the reconfigurable
area. The more the loop is unrolled, the higher the parallelism.

Since this chapter is focused on the accelerator selection, no architectural novel-
ties on how different accelerators are built are provided. Recently, Salih et al. have
proposed in [21] a scalable embedded multiprocessor architecture implemented
on an FPGA. Despite that this architecture is implemented on an FPGA in order
to reduce the time to market, it does not exploit the flexibility of this hardware
device as much as it could. The architecture is based on a core processor, which
controls, synchronizes, and manages the whole system and the memory accesses,
and several processing modules working in parallel. These modules are imple-
mented as a scalable embedded concurrent computer (ECC) architecture, where
one or several modules might work simultaneously. Once again, this architecture
is conceived using software techniques, and the scalability is referred to parallelize
different kinds of independent tasks, with no data dependencies among them. As a
consequence, this solution is not well suited to accelerate algorithms like the DF.
Following the same tendency, other examples of architectures that provide scalable
characteristics are [8, 13]. Both of them have been developed for supporting real-
time multimedia applications. The authors in [8] introduce a new framework, P2G,
formed by a CPU and several GPUs, that is, execution nodes. The topology between
the CPU and the nodes is flexible, since it can change at run time accordingly to
the dynamic addition or removal of nodes. The workload is distributed following
two scheduling approaches; one of them distributes data throughout the nodes (task
parallelism), while the other is responsible for maximizing the performance locally
in each node (data parallelism). This approach presents an interesting concept of
dynamic adaptability, though this idea is again based on software concepts. On the
other hand, in [13], a parallel processor for real-time image processing is presented.
This solution, named MX-2 Core, is composed by a small processor and a parallel
processing unit (PPU). The design of the PPU is based on 2048 4-bit processing
elements (PE) combined with SRAM cells. The scalability of this approach is
explored into the PPU, since the number of enabled PEs might vary in numbers
of 256, in accordance with the task that it has to process. However, the modification

176 A. Otero et al.

into the number of PEs is programmed statically, which means that it is designed
depending on the specific task that is going to perform. As an alternative to these
scalable software-based approaches, hardware solutions provide higher levels of
flexibility and adaptability by exploiting the DPR capabilities of some FPGAs.

Achieving scalability by means of DPR allows reusing free configurable areas
for other cores within the reconfigurable logic. However, most existing scalability-
related works are oriented to adapt core functionality or operation quality rather than
to set area-performance trade-offs. For instance, the scalable FIR filter provided
in [5] offers the capability of adapting the number of taps to adjust the filter
order, offering a compromise between filtering quality and required resources.
Furthermore, a scalable DCT implementation in [11] allows varying the number
of DCT coefficients that are calculated by the core in order to adapt the number
of coefficients that will be subsequently quantified and therefore adjust the video
coding quality.

Regarding the DF implementations, a scalable DF architecture is proposed in
[12]. This approach exploits the properties of the DPR. This chapter explores
a block-level parallelism implementation, where the variation of the number of
processing units working in parallel impacts on the execution time of a single MB,
without dealing with MB dependencies. This approach, while still being interesting
for flexibility purposes, is limited by the maximum number of 4×4 blocks that
can be processed simultaneously in one MB, with no further scalability levels. In
addition, the designed floor planning does not allow for an easy reuse of the area
released when shrinking the filter, so real area-performance trade-offs cannot be
easily achieved.

3 H.264/AVC and SVC Deblocking Filter

The DF algorithm is part of the H.264/AVC and the SVC video standards, and
it is responsible for improving the visual perception of a reconstructed image by
smoothing the blocking artifacts generated by previous tasks within the encoding
and decoding loops. Those artifacts are mainly due to the division of each video
frame into disjoint sets of pixels called macroblocks (MBs), which are processed
independently.

DF is a highly adaptive algorithm, where the filtering operations performed on
all the MBs belonging to a decoded image highly vary depending on the image
content and the encoding decisions made during the encoding process. An MB is
organized into a matrix of 16× 16 pixels of luminance and two matrixes of 8×8
pixels of chrominance (blue and red), when using the coding format 4:2:0, as it is
the case of almost all the consumer video encoders. These pixels are organized into
units of 4× 4 pixels named blocks or into 4 lines of pixels (LOPs). Every block
is enumerated from zero to 23, where 16 belong to the luminance, 4 to the blue
chrominance, and the other 4 to the red chrominance.

Run-Time Scalable Architecture for Deblocking Filtering 177

Fig. 1 DF behavior constraints. (a) Data distribution into an MB (b) Filtering order

The DF data processing is mainly executed by two blocks: the boundary strength
and the filter block. The former one calculates the filtering mode, which is a value
between zero and four. The difference among these values, or strengths, is the
number of pixels that might be manipulated during the filtering process. The latter
one is responsible of filtering data, modifying the current data and its neighbors.
List et al. in [15] describe more in detail the operations performed by the DF. In
addition, the aforementioned standards constrain the DF behavior, specifying how
the data of an MB must be processed depending on the filter strength, as well as the
order in which these data have to be filtered, as Fig. 1 represents.

As Fig. 1a shows, an MB is split into vertical and horizontal edges by considering
the edges of its blocks. Thus, the vertical edges (Vi; 0≤ i≤ 7) are determined by the
left borders of a column of blocks. Similarly, the horizontal edges (Hi; 0 ≤ i ≤ 7)
are the top boundary of a row of blocks. As a result, the filtering of a vertical edge
between two blocks corresponds to a horizontal filtering, whereas the filtering of
a horizontal edge implies a vertical filtering. According to the H.264/AVC and the
SVC standards, to consider an MB completely processed, all its blocks have to be
filtered (firstly, horizontally (from left to right), and afterwards, vertically (from top
to down)). Figure 1b depicts how the pixels of a LOP are processed, starting from
the pixel closest to the edge and moving away from it. In this figure, q0, q1, q2, and
q3 represent the pixels of the block that is being filtered, while p0, p1, p2, and p3

represent its neighbor pixels.

4 Strategies of DF Algorithm Parallelization

The level of parallelism of the DF is directly dependent on the data granularity
implemented (LOPs, blocks, or MBs). In this sense, a fine-grain architecture is
focused on processing LOPs, whereas a medium-grain one works at block level,

178 A. Otero et al.

MBcycle

2 Intial MB cycles

1HV 2HV 3HV 4HV 5HV

[4HV][3HV][2HV]

[6HV] [7HV] [8HV]

[11HV]

[1HV]

6HV 7HV 8HV 9HV

1H

6H 7H 8H

11H 11V 12V 13H

16H 17H16V 17V

13V12H

6V 7V 8V 9V9H

2H 3H 4H 4V 5H 5V3V2V1V

MBcycle MBcycle MBcycle MBcycle MBcycle MBcycle MBcycle

Fig. 2 Data dependencies between MBs for a 6-MB-width video frame

and a coarse-grain one at MB-level. In the two first granularity levels, the maximum
level of parallelism is limited to a full MB, which means that only one MB might
be processed concurrently even when it is separated into the smallest units. This
fact obligates to process all the MBs sequentially one by one, following a raster-
scan pattern. This pattern implies a strict order, starting from the top left corner
of an image, and moving to the right, repeating the process row by row until
image completion. This is the strategy followed by all the fine- and medium-grain
approaches, understanding the granularity from a data perspective, independently
of the device characteristics. Moreover, static architectures are also constrained to
follow this kind of strategy. However, in order to overcome this limitation and to be
able to process several MBs in parallel, it is necessary to explore new techniques.
It is in this scenario when the wavefront strategy comes up. A wavefront pattern is
characterized by allowing processing of several MBs simultaneously out of order,
but not randomly, fulfilling with the data dependencies. Further details about the
general wavefront approach are offered in Sect. 9, while existing dependencies in
the case of the DF algorithm are discussed below.

4.1 MB-Level DF Parallelization Strategies

As follows from the DF algorithm description, horizontal filtering must precede
vertical filtering, and in both cases, it is necessary information of the data that
is being currently filtered and its neighbors. These constraints limit the level of
parallelism of the DF.

The specific dependencies between MBs are depicted in Fig. 2. In this figure,
MBH refers to an MB once it has been filtered horizontally, and MBHV represents the
MB after it has been filtered both horizontally and vertically. An MB is completely
processed when MBHV is filtered again, during the horizontal filtering of its right
neighbor (after this process, the MB is represented as [MBHV]), and vertically
during the filtering of the bottom neighbor.

Run-Time Scalable Architecture for Deblocking Filtering 179

1 Intial MB cycles

1HV 1HV

1HV 2HV

6HV

3HV

7HV

11HV

4HV

8HV

2H 2HV 3H 3HV 4H 4HV 5H 5HV

6H 6HV 7H 7HV 8H 8HV 9H 9HV

1H 1V 2H

6H

2V

6V 7H

11H

7V

11V 12H 13H12V

16H 16V 17H 17V

13V

8H 8V 9H 9V

3H 3V 4H 4V 5H 5V

MBcycle MBcycle MBcycle MBcycle MBcycle

Fig. 3 Proposed wavefront strategy for a 6-MB-width video frame

Following the example shown in Fig. 2, MB7 needs MB6HV information for
being filtered horizontally. Subsequently, it requires both MB7H and [MB2HV] for
being filtered vertically. [MB2HV] is ready once the MB3 has finished its horizontal
filtering. Finally, MB7 will be completely processed once MB8 and MB12 have
been filtered horizontally and vertically, respectively.

A possible solution to exploit MB-level parallelism might entail using a wave-
front order in the same way as the state-of-the-art multiprocessing solutions [24], as
can be observed in Fig. 2. Nevertheless, this approach needs to wait twice as many
clock cycles for filtering a full MB (MBcycle), that is, until [MBHV] is available,
before the subsequent core starts processing. To overcome this limitation, an
optimized wavefront strategy has been proposed by the authors in [3], in which
horizontal and vertical filtering are separated in sequential stages. Thus, the top
MB horizontal filtering has already finished when the MB vertical filtering begins,
assuming [MBHV] is available. As a result, one MBcycle is saved with respect to
previous approaches, as Fig. 3 shows.

Larger architectures that want to process more MBs at a time require its
parallelization strategy to be scalable itself in order to obtain consistent results.
Actually, an adaptable MB-level parallelism is mandatory to respect the data
dependencies between MBs, no matter the size of the architecture in terms of
processing units.

Compared with previously reported architectures, in this chapter, we propose a
dynamically scalable DF that exploits a coarser granularity than the mentioned state-
of-the-art approaches. This architecture works at MB level, and it allows reusing
the released area in order to balance area-performance trade-offs. The scalable DF
follows a strategy of parallelism fully compatible with the scaling process of the
architecture, where the data dependencies between MBs are respected in all cases.
The level of scalability varies from just one functional unit (FU) up to the maximum
number of resources available in the reconfigurable logic area.

180 A. Otero et al.

5 Global Architecture

The core of the proposed architecture is a coarse-grain homogeneous array of
processing elements, called functional units (FU), as depicted in Fig. 4. Each unit
is able to carry out a complete filtering operation on an MB, such that the full array
can process in parallel a region of the image. A more detailed description of each
FU can be found in [4]. The main strengths of the proposed structure are its inherent
parallelism, regular connections, and data processing capabilities. The purpose of
the rest of the modules included in the architecture, as described below, is to feed
each FU with the required MB as well as to synchronize the array.

A mechanism responsible of the generation of the valid sequence of MB
addresses has been included in a hardware module called input controller (IC)
in order to respect the processing order defined by the proposed parallelization
pattern. This module receives the corresponding sequence of MBs from the external
memory and sends them to the array of FUs. In addition, other modules named
input memories (IM) have been included at the top of each column of the processing
array in order to parallelize data provision to the FUs. Main components of these
blocks are FIFO memories that distribute the suitable MBs vertically across each
column. With the purpose of capturing the MB associated with the corresponding
units, a module called router has been attached to each FU. Once all the FUs
capture their corresponding unfiltered MBs, these data blocks are processed in
parallel. Once these blocks have been processed, the routers send them back to the
output memories (OM). These modules are based on FIFO memories that store the
MBs received from the vertical connection and transmit them again in sequential
order to the output controller (OC). This OC sends back the processed MBs to the
external memory. Data sending, processing, and results transmission stages have
been pipelined and overlapped.

STATIC
CONTROL

IC

R

R

FU11 FU21

FU12 FU22

R

R

IM1 IM2

OM1 OM2
OC

F
IL

T
E

R
E

D
 M

B
s

U
N

F
IL

T
E

R
E

D
 M

B
s

RECONFIGURABLE ARRAY

Fig. 4 Processing array structure

Run-Time Scalable Architecture for Deblocking Filtering 181

All the mentioned modules of the architecture include distributed control logic
in order to manage data transmission, while allowing architecture scalability. Thus,
different modules automatically communicate only with their neighbors using
shared signals, without having to implement a centralized control, which would
reduce scalability due to the fact that the control structure should be designed ad
hoc for each possible size of the array.

5.1 MB to FU Allocation Policy

Once the architecture has been described, the policy defining which MB is processed
in each FU of the array is discussed, considering the data locality of the algorithm
and the regularity of the architecture.

Since horizontal and vertical processes for each MB have to share data cor-
responding to the full MB, both are carried out in the same FU to minimize
communication costs. In addition, according to existing dependencies, semifiltered
data (MBHV and [MBHV] according to the nomenclature in Fig. 2) have to be shared
between the FU filtering an MB and the FUs in charge of their top and left neighbors.
To reduce this overhead, an MB will always be filtered in the same unit as its left
neighbor, and its top neighbor will be filtered in the unit below the MB. As explained
in the implementation section, specific connections between FUs have been created
to allow the exchange of this semifiltered information, without involving routers.
The final allocation sequence for filtering all MBs within a frame is dependent on
the total number of FUs of the architectural array and also on the number of MBs of
the height image frame. Thus, each FU filters all MBs contained in a particular row
of the frame while always respecting data dependencies. However, if the number
of FUs is smaller than the height of the MBs in a frame, the filtering process is
modified. The frame will be processed by stripes with the same height than the
number of FUs in the array. This proposal not only reduces the amount of transferred
information among FUs, but also, unlike state-of-the-art proposals, only the current
MB must be requested from the external memory for each filtering process, as
the information related with the neighboring MBs is received during horizontal
and vertical filtering stages from other FUs, as explained above. Consequently,
data transferred between the external memory and the DF is largely reduced. This
allocation strategy is shown in depth in Fig. 9a, included in Sect. 9, where the
generalization of the architecture is addressed.

6 DF Implementation Details

In this section, details regarding the implementation of the architecture are
described, focusing on the issues related with its run-time scalability, including
methodological aspects.

182 A. Otero et al.

6.1 Architectural Design for Run-Time Scalability

One of the main advantages of using this kind of highly modular and parallel
architectures, when considering the use of DPR, is the straightforward nature
of generating the design partitioning following the modular design flow [28].
Thus, each different module (IM, OM, and FU) is treated as a reconfigurable
element on its own. The VHDL description of each module is synthesized, mapped,
placed, and routed independently. As a result, three separated partial configuration
bitstreams are generated. Following this methodology, since every instantiation of
any component in the architecture is equal, a unique version of each one will have
to be generated, and afterwards it can be reused in different positions of the array.

The adaptation of the proposed architecture to be dynamically scalable implies
the addition of bus macros (BMs) [27], as well as the design of an independent
floor planning for each module. According to the traditional reconfigurable design
flows, the BMs must be placed as part of the interface between the static design
and the reconfigurable one. Furthermore, due to the scalability property of this
DF architecture, all the reconfigurable modules (IM, FU, and OM) require BMs
at their input and output ports. The latest Xilinx dynamic reconfiguration design
flow, from the v12 release onward, avoids the use of these fixed macros to guarantee
the correctness of communications across modules frontiers [19]. Instead of BMs,
elements called partition pins are automatically inserted by the tool in all frontier
pins corresponding to all reconfigurable module types to grant communication
validity. Even though it reduces DPR overhead, this approach does not allow module
relocation in different positions of the FPGA, as this is unsuitable for this kind of
scalable architecture because of module replication.

As will be shown, each module has been designed to occupy more area than
a static design. This extra area allows routing all the internal signals within
the reconfigurable region. Thus, despite the fact that not all the logic resources
within the reconfigurable region are occupied, the entire region is necessary to
come up with a fully routed design. Values related to the area usage for each
module directly impact onto the size of the corresponding configuration bitstream
and consequently on the DF reconfiguration time itself. The regularity of this
architecture, and throughout the exploitation of the DPR, permits that only eight
different configuration bitstreams are necessary for configuring any m×n size. The
scaling of the DF might be done by replicating and relocating the configuration
bitstreams of different modules in other positions in the FPGA. As an example, in
the case of the addition of an extra row in a DF with two columns, five modules have
to be configured (two corresponding to the new FU row, plus the shift of the two
OMs, and the OC in their new positions), while the others will remain unchanged.

Run-Time Scalable Architecture for Deblocking Filtering 183

Fig. 5 Router and FU design

6.2 Implementation of the DF Modules

In the following subsections, design issues corresponding to each module, as well
as main floor planning decisions taken to achieve scalability, will be described.

Router and Functional Unit (FU) Since each FU is always attached to its router,
both router and FU have been implemented inside a single reconfigurable module.
As mentioned before, the role of the router is to capture the first MB received
from the IM in each processing stage and then transmit it without changing the
subsequent MBs to the FUs below. All these transactions are repeated periodically
with each new MB cycle. Both, data and control vertical connections among routers
and the IM/OM, have been included in the module border, as shown in Fig. 5.
Additionally, specific point-to-point connections with the bottom FU have been
created to exchange semifiltered information, as described in the previous section.
In the case of the last FU of the column, the next FU is located at the top of the next
column. To tackle with this issue, bypass logic has been included both in the OM
and the FU blocks to send it upward. In the case of the FU, the bypass connection is
highlighted in Fig. 5.

184 A. Otero et al.

Fig. 6 IM floor planning
design

North and south connections of the module are completely symmetric, since both
use BMs in the same positions. Consequently, FU and router modules design can
be stacked in vertically aligned positions inside the FPGA. It cannot be replicated
horizontally because BRAM columns are located in different positions within each
right and left side of a region. To overcome this limitation a different module
compatible with the FPGA area to each side has been created, including the
same local behavior, but with a different floor planning design. Consequently, two
different versions of the FU exist. This is shown in Fig. 7, which represents the full
architecture.

Input Memory (IM) Unfiltered MBs come from the external video frames
memory, and they are transmitted across the IM FIFOs. During this process, all
the IMs hold the MBs that will be processed by the column of FUs immediately
below them. Consequently, the memory size of the IM limits the maximum vertical
size of the architecture. In the final implementation, due to the physical restrictions
of the FPGA, the architecture was limited to a 2-column × 3-row size. Once this
memory has been filled, the IM distributes the MBs in the vertical direction to the
FUs of the same column. Consequently, both horizontal and vertical BMs have been
included, as shown in Fig. 6.

Lines to transmit semifiltered MBs have been included for the worst case
scenario, as it was explained before. Consequently, the IM receives semifiltered data
from the FU bypass output and sends it to the IM on the right side. In addition, this
module sends semifiltered data from the left IM to the first unit of the column below.
Furthermore, in the case of the last column, a special communication module has
been implemented to send this data back to the IC. To make this feasible, a special
horizontal semifiltered bypass has been included through the IM.

Output Memory (OM) This module includes the logic in charge of receiving the
completely filtered MBs from the FU column above, as well as transmitting data to
the output controller. It also includes inputs and outputs for transmitting semifiltered

Run-Time Scalable Architecture for Deblocking Filtering 185

Fig. 7 Complete architecture
design

MBs. Specifically, it bypasses data coming from the semifiltered MB output of the
FU immediately above to its semifiltered bypass input, so it can be transmitted to
the next column.

Input Controller (IC) The IC is the input module of the architecture, and it is
the communication point with the static part of the system. This module is not
dynamically reconfigured when the DF is scaled. However, certain kinds of its
registers are configured from the external embedded processor in order to indicate
the current dimensions of the DF and the size of the video frame. With these
dimensions, the IC generates the correct MB reading address sequence for any size
of the architecture. Bus macros corresponding to the MB data and control signals
have been included to communicate with its adjacent IM.

Output Controller (OC) The OC is also part of the static design. It receives
data from OMs and sends it back to the video memory. Consequently, MBs have
to be located across the static-reconfigurable borders to allow for different size

186 A. Otero et al.

architectures. However, future work will be carried out to communicate OC outputs
with IMs to have a unique communication module with the static area.

The scalability of the full architecture is shown in Fig. 7. Since the columns are
different, eight independent bitstreams have been generated, two per each FU, IM,
and OM, as well as two for the communication modules that have been included
to close open connections. Both the IC and the OC belong to the static side of the
system so that no partial bitstream is generated for those modules.

Thus, the maximum size achieved is 2×3, using the right half of a medium-size
Virtex-5 FPGA (xc5vlx110t).

7 Embedded System Integration

The purpose of this chapter is to integrate a full H.264/AVC video decoder, together
with the DF, as an autonomous embedded system. In this scenario, the DF has been
implemented according with the hardware architecture explained along the previous
sections, and the rest of the decoder is executed in software by an embedded mi-
croprocessor (Microblaze). To guarantee the autonomy of the system, the interface
selected to access the configuration memory is the internal configuration access port
(ICAP). This port is embedded in the very same configurable logic of the FPGA so
that the system is able to modify its own configuration. Thus, the final integrated
embedded system is composed of a microprocessor, the reconfiguration manager
that controls the ICAP, the reconfigurable region (where the DF is implemented),
the PLB buses [20] to connect the different blocks among them, as well as two
input/output embedded buffers. Therefore, it is necessary to solve the integration
issues related to the unfiltered MBs supply from the external memories to the DF
core, as well as the transmission of filtered MBs to a specific buffer.

Two isolated buffers have been included into the system to simplify the trans-
mission of MBs between the DF and the rest of the system. One of these dedicated
buffers is responsible for storing and loading unfiltered MBs, whereas the other
one handles filtered MBs. The former corresponds with the input buffer of the DF,
and it is written using a PLB bus interface by other modules of the embedded
decoder, and it can be directly read from inside of the DF. The latter buffer is
an output buffer that is written by the DF and read by other modules through
the PLB interface. The interconnections between the DF and those buffers have
been implemented using a direct memory access (DMA) approach. This fact avoids
introducing more overheads in the PLB bus, shared with other blocks of the system,
something that would reduce the performance of every module, including the DF
itself. Furthermore, by incorporating the DMA, any word belonging to an MB might
be read in one clock cycle from the memory. Therefore, the DMA is able to supply
data fast enough to support the highest data rate demanded by the system, even
when the DF core is scaled up to its maximum size. This circumstance could not be
guaranteed by using a bus approach, since it would not be able to scale its bandwidth
according to the data rate necessary to feed different DF sizes. In addition, the DMA

Run-Time Scalable Architecture for Deblocking Filtering 187

can be directly accessed by the IC of the DF core, without requiring an extra logic.
As it was aforementioned, the IC generates the number of required MB, which is
equivalent to its address in the input buffer.

In spite of receiving and sending all the data using the DMA interface, the DF
has been also connected to the PLB interface in order to receive configuration values
and commands. The required values define the dimensions of both the processing
array (M×N) and the image (W×H), whereas the configuration commands signal
the beginning and the end of each video frame.

8 DF Dynamic Reconfiguration Management

In this section, some design aspects related to the DPR controller block, which
accelerates the scaling process of the DF at run time, are introduced.

The process of scaling the architecture dynamically is carried out by the
customized ICAP controller, or reconfiguration engine (RE), proposed by the
authors in [18]. Its main task is to control low-level details of the reconfiguration
port, including the relocation of configuration bitstreams.

Some features of the reconfiguration engine that are described in this section,
together with the regularity and modularity of the DF proposed in this chapter,
facilitate a faster scaling process of the DF architecture. On one hand, specific details
corresponding to the relocation engine are provided, such as its implementation in
hardware for speed, as well as its readback, relocation, and writeback capabilities.
Moreover, this RE has been developed to work at 250 MHz. This frequency includes
online relocation, beyond the maximum theoretical throughput of the Virtex-5
reconfiguration port, which according to information reported by the manufacturer
is up to 100 MHz.

In addition, the configuration bitstreams corresponding to the basic modules
of the scalable DF architecture are simplified versions in comparison with the
traditional bitstreams generated by vendor tools. In this case, the bitstreams do not
include configuration commands. That is, only the body of the logic configuration
is stored, while both the header and the tail are obviated. Thus, the final position of
any reconfigurable module is not fixed in a determined location in the FPGA. At the
end, the complete partial bitstream is composed at run time, as shown in [18], by
means of adding the header and the tail information, as well as the specific frame
addresses, which are not included either. This strategy provides two advantages:

1. Reducing the bitstream size. Consequently, time required to transfer data from
the external memory decreases, and memory storage is minimized.

2. Accelerating and increasing the relocation feasibility.

This relocation technique is much faster than previous proposals in the state of
the art. For example, approaches like [6] are based on bitstream parsers, instead of
a run-time composition of the bitstream.

188 A. Otero et al.

Moreover, the reconfiguration engine incorporates a direct and dedicated data
link to be communicated with the external DDR2 memory, which acts as a
bitstream repository, by using the native port interface (NPI). Through this link the
reconfiguration port gets new configuration information, fast enough to perform the
reconfiguration process, without introducing stall times.

On the other hand, taking advantage of specific features of modular and regular
architectures, it is possible to accelerate even more the dynamic reconfiguration. In
most cases the scaling process implies the replication of the same element, which
means relocating the element in different positions in the architecture. Under these
conditions, the possibility of pasting the same reconfigurable module in different
positions of the architecture, without having to read its configuration bitstream
many times from the external memory, gains in relevance. Moreover, this module
might already be configured in other positions of the device. Consequently, also
internal memories have been included to allow this readback/reallocation/writeback
approach of full modules of the architecture. This approach eliminates the overhead
of reading the configuration information from the external memory, sharply reduc-
ing the reconfiguration overhead.

RE includes a software application programming interface (API) that simplifies
the reconfiguration process. Further information about this API can be found in [18].

9 Scalable Wavefront Architecture Generalization

The benefits of the architecture proposed in this chapter go further than the hardware
implementation of the H.264 DF algorithm. The whole system might be reused
to implement several and diverse scalable applications and algorithms following
the same parallelization pattern, the wavefront approach. This pattern appears in
scientific applications such as [9, 25], as well as in several video processing tasks
[24], among others. This section analyzes and brings up general considerations that
should be taken into account in order to reuse the proposed architecture and to adapt
its modules to cope with other problems.

9.1 General Wavefront Pattern and Dependencies
Characterization

The wavefront template is based on the arrangement of data in multidimensional
grids so that the elements located in certain positions are fully independent. Hence,
these independent data, called data front, can be processed simultaneously. The data
dependencies among operations in all the applications determine the data-front
shape and, consequently, the processing order of all the elements. In any case,
whenever the data front respects the given reading order, the whole array is

Run-Time Scalable Architecture for Deblocking Filtering 189

a b c

d e f

Fig. 8 Possible wavefront dependence schemes

parallelized while respecting data dependencies among the elements through the
entire array. A popular example of the wavefront pattern is the diagonal model,
where computation starts at the top, left corner of an array of data, and then the
data front is propagated diagonally until the right bottom corner is reached. This
is the pattern followed, for instance, in the modified DF proposed in this chapter.
The same pattern shows up every time when the computation of each data element
depends on its upper and right neighbors. In this particular scenario, all the elements
that belong to the antidiagonal can be processed in parallel. However, the wavefront
pattern is not limited to this diagonal shape. Some of those examples are shown at
Fig. 8, including also horizontal data fronts, with each element depending on two or
three cells simultaneously.

Each of those patterns shown in Fig. 8 corresponds to several problems, where the
data dependencies have been evaluated to parallelize their execution by following
the wavefront pattern, as shown in [7].

According to the schemes of dependencies described in Fig. 8, each case differs
on the shape of the data front or the order in which the data fronts are explored.
It is always possible to process all the elements located in these fronts at the same
time, by means of assigning each element to a different FU in the processing array.
Moreover, the rule established in the case of the DF algorithm to arrange the data
among the FUs can be kept without losing generality. This means that the first
element in the data front must be always processed in the first FU of the array and the
rest of elements are distributed throughout subsequent FUs of the architecture. The
number of elements which can be processed in parallel coincides with the maximum
number of FUs implemented in the array.

190 A. Otero et al.

a b
FU11

FU12

FU21

FU22

FU11

FU11 FU12 FU21 FU22

FU12

FU21

FU22

c d e f

Fig. 9 Possible wavefront patterns

Regarding the characterization of the architecture, for each neighboring element
of which a given one depends, a vector with two components is defined. The first
component (Dt) describes the distance, in terms of processing cycles, when both the
current and the referenced blocks are processed. Regarding the second one (DFU), it
defines the distance between the FUs in charge of processing both blocks:

D = (Dt,DFU). (1)

Thus, Dt is an integer greater than one, and DFU is an integer which can take both
positive and negative values, depending on whether the FU in charge of processing
the neighboring block occupies an upper or lower position in the array, respectively.

For instance, in the case of the Fig. 8a, each element (except those located in
the borders) depends on its left and upper-right neighbors. Considering both the
parallelization and the FU allocation diagrams shown in Fig. 9, the vector defining
the dependence with respect to the left neighbor is D1 = (1,0), since it is processed
always in the same FU, but during the previous processing cycle. Regarding the
upper-right neighbor, the vector is D2 = (1,1), since it is always processed in the
previous functional unit, during the previous cycle. The same vectors can be drawn
in the case (b) in spite of having different data dependencies. For the other cases,
existing relationships are described below.

For (c): D1 = (1,0), corresponding to the upper neighbor and D2 = (1,−1),
corresponding to the upper-right neighbor

For (d): D1 = (1,0), corresponding to the upper neighbor, and D2 = (1,1),
corresponding to the upper-left neighbor

For (e): D1 = (1,1), corresponding to the upper-left neighbor, D2 = (1,0),
corresponding to the upper neighbor, and D3 = (1,−1), corresponding to the upper-
right neighbor

For (f): D1 = (1,0), corresponding to the upper neighbor, D2 = (1,1), correspond-
ing to the upper-left neighbor, and D3 = (1,2), corresponding to the upper-left-left
neighbor

Regardless the specific dependence pattern, the data mesh is always processed in
independent disjoint blocks, corresponding to the dashed box shown in Fig. 9.

Run-Time Scalable Architecture for Deblocking Filtering 191

9.2 Architecture Customization

As it was explained above, the proposed architecture might be generalized to tackle
different kinds of problems, such as those characterized by data fronts offered in
Fig. 9, by reusing and adapting its structure. This section explains the main changes
that should introduce into all the set of modules belonging to the architecture, as well
as in its management principles, in order to adapt their behavior and functionality to
the new conditions.

Functional Unit These modules are the processing cores of the architecture, and
it is compulsory to adapt them in order to address different processing problems.
In the same manner the specific design of the processing units for the DF is out of
the scope of this chapter, the design of the specific units for other problems will not
be offered in this section, and they can even be reused from existing nonparallel
implementations. Therefore, this chapter provides a general scalable framework
suited to parallelize the hardware execution of these tasks.

In addition of changing FUs behavior, it is necessary to adapt their internal mem-
ories to rearrange data blocks according to the application demands. Considering
that each independent memory is able to store a basic data unit, the number and
type of the required memories will be a consequence of the dependence vectors
described in the previous section. Thus, two kinds of memories called Mp and Mq

are defined. On the one hand, Mp memories store the required data blocks received
from the upper and lower FUs, in previous processing cycles, using the FU to TU
direct connections. That is, those memories store data blocks with a dependence
vector with DFU �= 0. On the other hand, Mq memories store both the current block
and previous blocks processed in the same unit. That is, dependencies with DFU = 0.
The general sequence of operations that has to be done in each functional unit are

Mq
0 = DataIN

DataTemp= FU(Mp
0,. . . , Mp

pmax ,Mq
0,. . . ,Mq

qmax)
Mq

i+1 = Mq
i, ∀ i in (1,qmax-1)

Mp
i+1 = Mp

i, ∀ i in (0,pmax-1)
Mq

1 = DataTemp
Mp

0 = DataInVertical

DataOut and DataOutVertical might be equal to DataTemp, to DataIn, or even
partial results of the processing task. In addition, the processing stage might be
divided into subsequent phases, carrying out data sharing in between, like in the
case of the deblocking filter algorithm (H and V phases). In those cases, temporal
memories have to be included in the architecture. With respect to DataInVertical
and DataOutVertical, whether more than one dependence would exist with a fixed
Dt and | DFU |> 0, several DataInVertical and DataOutVertical channels will exist.

Data Reading Order The main purpose of the IC is to read unprocessed data
from the external memory. Before reading these data, it is necessary to generate the
sequence of addresses that defines the order in which these data will be requested
from the external memory. Due to the fact that the data dependencies vary with

192 A. Otero et al.

a b c d e f

Fig. 10 Possible wavefront processing structures

any new data front, the reading addresses have to be adapted to fulfill with the data
parallelization scheme. This change can be performed by modifying the internal
rules that defines the address generation process inside the IC. However, the general
structure of the address generation can remain unaltered.

Data Block Allocation and Distribution The allocation strategy of unprocessed
data blocks inside the architecture might be kept independently of the wavefront
processing problem. Whether the data reading sequence is modified according to
the previous section, the data distribution rule across the array can be kept as well.
Thus, each IM will hold the N first input data, being N the number of vertical FUs,
and will transmit the subsequent ones to the subsequent FUs. Regarding the routers,
each one will keep the first data, transmitting the rest to the following FUs. This
approach guarantees that each unit is fed with the required data. Once the data have
been processed, they are transmitted to the external memory without carrying out
further modifications to the current architecture. In the proposed architecture, all the
FUs will work in a synchronous way, that is, all the units will be in the same state
during each time period. Therefore, null data blocks have to be used in order to deal
with dead times, as is shown in gray in Fig. 10.

Semiprocessed Data Sharing As depicted in Fig. 9, different data reuse require-
ments arise from every pattern of data dependencies. One of the main features of the
proposed architecture is that it is able of tackling diverse kinds of data dependencies
by exploiting local point-to-point connections, without requiring accesses to the
external memory. The term semiprocessed refers to those data that will be used
again after being processed in order to process other data. The number of times
and the order in which these semiprocessed data are required depend on the data
dependencies. In the case of the DF, to process each MB, the left neighbor is
stored in the same FU, while the upper one is received from the upper FU. This
strategy can be modified if it is necessary to include data dependencies with the
element processed in the FU below [for instance, required in the example (e)], as
well as changing the number of cells depending in each direction, north, south, or
horizontal.

Considering the description vectors introduced in previous sections, the number
of vertical connections is equal to the number of dependencies with a fixed Dt and |
DFU | > 0. In case DFU > 0, those dependencies pass through the array from north
to south, and, in case DFU < 0, from south to north. Together with the channels

Run-Time Scalable Architecture for Deblocking Filtering 193

through the FUs, a different number of specific resources have to be included in
the IC to store temporal data, belonging to different disjoint set of blocks. Mainly,
it is necessary to include a FIFO memory and an FSM for controlling the process,
corresponding to each vertical line implemented in the scalable architecture.

9.3 H.264/SVC Generalization

The MB wavefront parallelization pattern existing into the DF is not exclusive of
this algorithm. Many functional blocks of the H.264 video coding standard, except
for the entropy decoder, might be adapted to follow the same pattern [24]. In
the case of the DF, the pattern of dependence is the one shown in the Fig. 8 a).
Therefore, considering the dependence vectors, both one Mp and one Mq memories
are required. In addition, another Mq is used to store the current MB, and an extra
memory is also required to store temporal semifiltered data between the H and
V filtering phases. In addition, the FU provides two results. The basic operations
carried out in each functional unit are described below, following the general
template described in the previous sections.

Mq
0 = DataIN

(DataTemp1,DataTemp2) = FU(Mq
0,Mq

1)
DataOutVertical= DataTemp2
Mp

0 = DataInVertical
(DataTemp1,DataTemp2)= FU(DataTemp1, Mp

0)
DataOut = DataTemp1
Mq

1 = DataTemp2

In the general case of H.264, possible dependencies at a MB-level are described
in [24]. In this general case, the dependence scheme can include, in addition of the
elements required in the DF, the upper-right and the upper-left macroblock. Those
elements are used in certain modes of the intra prediction and the motion vector.
Therefore, the dependence vectors are

– D1 = (1,0), corresponding to the left neighbor
– D2 = (1,1), corresponding to the upper-right neighbor
– D2 = (2,1), corresponding to the upper neighbor
– D2 = (3,1), corresponding to the upper-left neighbor

In consequence, two Mq memories are required to implement those blocks, one
for the current MB and the other for the upper neighbor, with dependence vector
(1,0). With respect to Mp memories, 3 units are required, as well as a single
descendent communication channel.

194 A. Otero et al.

10 Implementation Details and Results

This section collects some implementation results obtained after the synthesis and
the implementation stages, considering both the modular architecture itself and the
DPR issues.

10.1 Architectural Details

Within the reconfigurable stage of this architecture, the array might be formed by
a different number of FUs. In this section, the architecture has been implemented
without considering DPR issues, that is, different sizes are achieved after a new
synthesis process of the full architecture. The amount of these units varies according
to the performance or the environment constraints on demand. Depending on how
the FUs are distributed into the processing array (M×N), different configurations
are obtained, in which M and N are the width and height of the array. For a specific
amount of FUs there exist several configurations, characterized by having the same
computational performance, but different HW resources demands and different data
transfers delays. More in detail, the resource occupancy of each basic block of the
proposed architecture is shown in Table 1.

Regarding to synthesis results, the FU limits the maximum operation frequency
of the whole architecture up to 124 MHz. On the other hand, performance variations
are shown in Table 2. These data mean the minimum operation frequency that is
necessary for processing different video formats at 30 frames per second (fps) with
real-time constraint. Each column is referred to a determined number of FUs, while
each row expresses frequency values for a specific video format (W×H), where W
and H are its width and height in pixels, respectively.

Using many FUs is not efficient for processing the smallest video formats since
some units will keep idle during filtering execution. The maximum number of FUs
is determined by the height of the frame expressed in pixels (H). As an example,
SQCIF and QCIF formats are 96 and 144 in height respectively; as a consequence,
configurations with more than 6 or 9 FUs are not appropriated for these formats.
Otherwise, using a low number of FUs is not possible to process the highest
multimedia formats, like UHDTV, since its associated configurations need more
than 200 MHz for real-time performance, whereas the maximum frequency of this
architecture is 124 MHz.

Table 1 Resources occupancy

Synthesis results using V5LX110T

IC OC IM OM RouterFU

Slices reg. 357 116 172 124 2004
Slices LUTs 444 108 134 226 2386
BlockRAM/FIFO (36 kb) 1 0 2 2 8

Run-Time Scalable Architecture for Deblocking Filtering 195

Table 2 Maximum frequency for real time (30 FPS)

Maximum frequency (KHz)

Format @30 fps (W×H) 1 FU 2 FUs 3 FUs 4 FUs 8 FUs 16 FUs

SQCIF (128×96) 346 180 130 122 NA NA
QCIF (176×144) 713 396 252 238 158 NA
CIF (352×288) 2,851 1,432 964 799 482 324
4CIF (704×576) 11,400 5,709 3,816 2,556 1,936 972
16 CIF (1408×1152) 45,619 22,816 15,220 11,426 5,752 3,218
HDTV (1920×1072) 58,320 29,383 19,879 14,709 7,797 4,341
UHDTV (7680×4320) 933,120 466,567 311,054 235,010 117,540 58,845

Table 3 Resources impact of
designing for dynamic
scalability

Elements of the architecture

Logical resources IM RouterFU OM

Slices LUTs 2080 4160 2080
Slices registers 2080 4160 2080
Block RAM/FIFO (36 kb) 4 8 4

Table 4 Resources occupancy of the full reconfigurable array

Size

Logical resources 1×2 1×3 2×1 2×2 2×3

Slices LUTs 12480 16640 16640 24960 33280
Slices registers 12480 16640 16640 24960 33280
Block RAM/FIFO (36 kb) 24 32 32 48 64

10.2 Dynamic Reconfiguration Details

In this section, details regarding to the reconfigurability of the architecture are
explained. Adapting the architecture to be dynamically scalable implies the addition
of BMs, as well as the design of an independent floor planing for each module. As
it is shown in the previous section, each module has been designed occupying extra
area in order to be able to route all internal signals within the reconfigurable region.
Thus, even though not all logical resources within the region are occupied, the entire
region is necessary to come up with a fully routed design. Consequently, resource
occupancy is increased, as it can be seen in Table 3, regarding each element, and
in Table 4, regarding different sizes of the full core. Information in Table 3 can be
compared with Table 1 to see the overhead of designing the architecture to DPR.
Thus, the area of the IM is increased about 15 times, the OM about 9 times, as well
as 1.7 times for the case of the functional unit.

Values of area occupancy for each element directly entail the size of the
corresponding bitstreams and, consequently, the DF reconfiguration time itself.
These aspects are evaluated in the following section.

196 A. Otero et al.

Table 5 Reconfiguration time

Size

1×2 1×3 2×1 2×2 2×3

Reconfiguration time (us) 620 832 834 1249 1663

10.3 Reconfiguration Time

The DF reconfiguration time is a consequence of the area occupied by each
module of the architecture. More specifically, it depends on the type of configurable
resources used by its modules, since the number of frames, the basic reconfigurable
units within an FPGA, is different for BRAMS, DSPs, or CLBs columns.

Reconfiguration times are offered in Table 5 for the case of creating each
architecture from the scratch. The operating frequency of the reconfiguration engine
is 200 MHz.

Values shown in Table 5 already include the latency due to the software API
of the reconfiguration engine, which depend on the number of reconfiguration
operations that have to be carried out.

Reconfiguration time is about one or two orders of magnitude above processing
time for each video frame. This fact has to be taken into account when implementing
the policy inside the decoder, deciding when to modify the size of the architecture.

10.4 Performance Limits

The main constraint on the size of the architecture has to do with the relationship
between the time each unit requires to process a single data unit (Tp) and the time
required to transmit input data to the FUs. Thus, only if Tp < Tload × N, being N the
number of FUs in each column of the processing array, no overhead is introduced
in the performance of the core. To fulfill this condition, input/output data channels
have to be dimensioned according to the block data size.

In the case of the DF, the size of the data unit, including all the information
required to process each MB, is 108 words of 32 bits. Therefore, 64-bit-width data
connections have been included horizontally, between IMs and OMs, and vertically,
between routers, to allow enabling up to three rows of functional units without
compromising the DF performance.

11 Conclusions and Future Work

This chapter addresses the design of spatially scalable architectures which are
able to adjust their size at run time, in terms of the number of elements that are
implemented onto the FPGA, by means of the DPR feature of commercial FPGAs.

Run-Time Scalable Architecture for Deblocking Filtering 197

The exploitation of this feature allows achieving a variable data level parallelism
that adjusts its properties to the performance fluctuations demanded by the running
application. Thus, the area-performance trade-off can be balanced at run time. This
chapter takes advantage of these benefits by developing a dynamically scalable
deblocking filter architecture, where its number of computation units (FUs) might be
adapted online to fulfill the variable requirements of different profiles and scalability
levels of H.264/AVC and SVC video coding standards.

Given a frame size as well as certain DF dimensions, each FU will always process
the same MBs. This strategy simplifies DF control, but a new video frame cannot be
processed until the previous one has been completely filtered, introducing an extra
overhead. In addition, memory consumption and its distribution within the FU will
be also optimized, reducing the area of each FU module. This improvement will
also impact results of designing for DPR, since routing inside each module will
be simplified. Accordingly, FUs will be floorplanned in narrower regions, looking
for the homogeneity of both FU columns. Furthermore, results from the output
controller will be sent upward to the input controller instead of being transmitted
to the static region. Thus, DF will have a unique communication point with the rest
of the system.

Acknowledgements This chapter is supported by the Spanish Ministry of Science and Innovation
and European Union (FEDER funds) in the context of Dynamic Reconfigurability for Scalability
in Multimedia Oriented Networks (DR. SIMON) project, under contract TEC2008-065846-C02.
On the other hand, the development of the reconfiguration engine was supported by the Artemis
program under the project SMART (Secure, Mobile Visual Sensor Networks Architecture) with
number ARTEMIS-2008-100032.

References

1. Banerjee S, Bozorgzadeh E, Dutt N (2009) Exploiting application data-parallelism on
dynamically reconfigurable architectures: placement and architectural considerations. IEEE
Transactions on very large scale integration (VLSI) systems 17(2):234–247

2. Becker J, Hubner M, Hettich G, Constapel R, Eisenmann J, Luka J (2007) Dynamic and partial
FPGA exploitation. Proceedings of the IEEE, 95(2):438–452

3. Cervero T, Otero A, Lpez S, De La Torre E, Callic G, Sarmiento R, Riesgo T (2011) A novel
scalable deblocking filter architecture for H.264/AVC and SVC video codecs. In: Proceedings
of the 2011 IEEE international conference on multimedia and expo (ICME) 2011

4. Cervero T, Otero A, De la Torre E, Lpez S, Callic G, Riesgo T, Sarmiento R (2011) Scalable 2D
architecture for H.264 SVC deblocking filter with reconfiguration capabilities for on-demand
adaptation. Proceedings of the SPIE, vol 8067, April 2011 (in press)

5. Chang-Seok Choi, Hanho Lee (2006) An reconfigurable FIR filter design on a partial
reconfiguration platform. In: 1st international conference on communications and electronics.
ICCE ’06., pp 352–355, 10–11 October 2006

6. Corbetta S, Morandi M, Novati M, Santambrogio MD, Sciuto D, Spoletini P (2009) Internal
and external bitstream relocation for partial dynamic reconfiguration. IEEE Transactions on
very large scale integration (VLSI) systems, I, 17(11):1650–1654

198 A. Otero et al.

7. Dios A, Asenjo R, Navarro A, Corbera F, Zapata EL (2011) Wavefront template for the
task-based programming model. In: The 24th international workshop on languages and
compilers for parallel computing (LCPC 2011), Colorado State University, Fort Collins,
Colorado, Sept 8–10 2011

8. Espeland H, Beskow PB, Stensland HK, Olsen PN, Kristofferson S, Griwodz C, Halvorsen
P (2011) P2G. A framework for distributed real-time processing of multimedia data. In:
Conference on parallel processing workshop, pp 416–426

9. Marc Snir (20xx) Wavefront patter (Dynamic Programming). In: Resources on Parallel
Patterns, Pattern collection. Available at: http://www.cs.uiuc.edu/homes/snir/PPP/patterns/
wavefront.pdf. Accessed 2011

10. ITU-T Rec. H.264, ISO/IEC 14496–10. H.264/AVC extension (Scalable Video Coding - SVC).
Advanced Video Coding for Generic Audiovisual Services, Version 8: 2007/Version 10: 2009

11. Jian Huang, Jooheung Lee (2009) A self-reconfigurable platform for scalable DCT computa-
tion using compressed partial bitstreams and BlockRAM prefetching. IEEE Trans Circ Syst
Video Tech 19(11):1623–1632

12. Khraisha R, Jooheung Lee, (2010) A scalable H.264/AVC deblocking filter architecture using
dynamic partial reconfiguration. In: IEEE international conference on acoustics speech and
signal processing (ICASSP), pp 1566–1569, 14–19 Mar 2010

13. Kurafuji T, Haraguchi M, Nakajima M, Nishijima T, Tanizaki T, Yamasaki H, Sugimura T,
Imai Y, Ishizaki M, Kumaki T, Murata K, Yoshida K, Shimomura E, Noda H, Okuno Y, Kamijo
S, Koide T, Mattausch HJ, Arimoto K (2011) A scalable massively parallel processor for real-
time image processing. IEEE Journal of solid-state circuits 46(10):2363–2373

14. Like Y, Yuan W, Tianzhou C (2010) Input-driven reconfiguration for area and performance
adaption of reconfigurable accelerators. In: IEEE 13th international conference on computa-
tional science and engineering (CSE), 11–13 December 2010, pp 237–244

15. List P, Joch A, Lainema J, Bjontegaard G, Karczewicz M (2003) Adaptive deblocking filter.
IEEE Trans Circ Syst Video Tech 13(7):614–619

16. Ostermann J, Bormans J, List P, Marpe D, Narroschke M, Pereira F, Stockhammer T, Wedi T
(2004) Video coding with H.264/AVC: tools, performance, and complexity. IEEE Circ Syst
Mag 4(1):7–28

17. Otero A, de la Torre E, Riesgo T, Krasteva YE (2010) Run-time scalable systolic coprocessors
for flexible multimedia SoPCs. In: International conference on field programmable logic and
applications (FPL), pp 70–76, Aug 31, 2010–Sept 2, 2010

18. Otero A, Morales-Cas, A, Portilla J, de la Torre E, Riesgo T (2010) A modular peripheral to
support self-reconfiguration in SoCs. In: 13th Euromicro conference on digital system design:
architectures, methods and tools (DSD), pp 88–95, 1–3 September 2010

19. Xilinx, Inc (2011) Partial Reconfiguration User Guide V12.1. In: Product Support and Doc-
umentation. Available at: http://www.xilinx.com/support/documentation\swmanuals/xilinx12.
1/ug702.pdf. Accessed 2011

20. Xilinx, Inc (2011) Processor Local Bus description. In: CoreConnect Architecture.
Available at: http://www.xilinx.com/ipcenter/processorcentral/coreconnect/\coreconnectplb.
htm. Accessed 2011

21. Salih MH, Arshad MR (2010) Design and implementation of embedded multiprocessor
architecture using FPGA. IEEE simposium on industrial and applications, pp 579–584

22. Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of
the H.264/AVC Standard. IEEE Trans Circ Syst Video Tech 17(9):1103–1120

23. Sedcole P, Blodget B, Becker T, Anderson J, Lysaght P (2006) Modular dynamic reconfigura-
tion in virtex FPGAs. Computers and digital techniques, IEE Proceedings, 153(3):157–164

24. Van der Tol, Erik B.; Jaspers, Egbert G (2003) Mapping of H.264 decoding on a multiprocessor
architecture, In: Proceedings SPIE 5022:707–718 (Image and Video Communications and
Processing 2003)

http://www.cs.uiuc.edu/homes/snir/PPP/patterns/wavefront.pdf.
http://www.cs.uiuc.edu/homes/snir/PPP/patterns/wavefront.pdf.
http://www.xilinx.com/support/documentationsw manuals/xilinx12.1/ug702.pdf.
http://www.xilinx.com/support/documentationsw manuals/xilinx12.1/ug702.pdf.
http://www.xilinx.com/ipcenter/processor central/coreconnect/coreconnect plb.htm.
http://www.xilinx.com/ipcenter/processor central/coreconnect/coreconnect plb.htm.

Run-Time Scalable Architecture for Deblocking Filtering 199

25. Weiguo Liu, Schmidt B (2003) Parallel design pattern for computational biology and
scientific computing applications. In: Proceedings of IEEE international conference on cluster
computing, 2003

26. Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video
coding standard. IEEE Trans Circ Syst Video Tech 13(7):560–576

27. Xilinx, Inc (2011) Bus Macros description. Application Note [Online] Available
at: http://www.xilinx.com/itp/xilinx7/books/data/docs/dev/dev//0038 8.html#wp1103560 Ac-
cessed 2011

28. Xilinx, Inc (2011) Module-Based Partial Reconfiguration. Application Note [Online]. Avail-
able at: http://www.xilinx.com/itp/xilinx7/books/data/docs/dev/dev//0038 8.html. Accessed
2011

http://www.xilinx.com/itp/xilinx7/books/data/docs/dev/dev//0038_8.html#wp1103560
http://www.xilinx.com/itp/xilinx7/books/data/docs/dev/dev//0038_8.html

CAPH: A Language for Implementing
Stream-Processing Applications on FPGAs

Jocelyn Sérot, François Berry, and Sameer Ahmed

1 Introduction

Stream-processing applications—i.e., applications operating on the fly on continu-
ous streams of data—generally require a high computing power. This is especially
true for real-time image processing, for instance, in which this computing power is
in the range of billions of operations per second, often still beyond the capacity
of general-purpose processors (GPPs). Most of the computationally demanding
tasks in these applications exhibit parallelism, making them good candidates for
implementation on reconfigurable logic such as field programmable gate arrays
(FPGAs).

But, in the current state of the art, programming FPGAs essentially remains a
hardware-oriented activity, relying on dedicated hardware description languages
(such as VHDL or Verilog). Using these languages requires expertise in digital
design, and this practically limits the applicability of FPGA-based solutions.

As a response, a lot of work has been devoted in the past decade to the design
and development of high-level languages and tools, aiming at allowing FPGAs to
be used by programmers who are not experts in digital design. Fueled by new
behavioral synthesis techniques and ever-increasing FPGA capacities, significant
advances have been made in this area. But there is still a gap between what can
be described with a general-purpose, Turing-complete, language and what can
be efficiently and automatically implemented on an FPGA. In this context, we
believe that a domain-specific language (DSL) can provide a pragmatic solution
to this problem.

J. Sérot (�) • F. Berry • S. Ahmed
Universite Blaise Pascal, Institut Pascal, UMR 6602 CNRS/UBP,
24 Avenue des Landais, F-63171 AUBIERE cedex 1, France
e-mail: Jocelyn.Serot@univ-bpclermont.fr; Francois.Berry@univ-bpclermont.fr;
Sameer.Ahmed@univ-bpclermont.fr

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2 9, © Springer Science+Business Media, LLC 2013

201

202 J. Sérot et al.

In this chapter, we introduce such a DSL, CAPH.1 By adopting a specific (purely
dataflow) model of computation, CAPH aims at reducing the gap between the
programming model (as viewed by the programmer) and the execution model (as
implemented on the target hardware) and hence obtaining an acceptable trade-off
between abstraction and efficiency requirements.

The remainder of this chapter is organized as follows: In Sect. 2, we recall the
issues raised by FPGA programming, make a brief survey of some existing solutions
and explain why they are not satisfactory. Section 3 presents the general dataflow-
/actor-oriented model of computation as a possible solution to the aforementioned
issues. Section 4 introduces the CAPH language as a specific incarnation of
the general dataflow approach. Section 5 is an overview of the suite of tools
supporting the CAPH language. Sections 6–8 give a short and basic account on
how the compiler works in order to generate efficient VHDL and SystemC code.
Preliminary experimental results are presented in Sect. 9. Related work is described
and discussed in Sect. 10. Finally, conclusions are drawn in Sect. 11.

2 High-Level Languages for FPGA

Hardware description languages (HDLs), such as VHDL or Verilog, are still widely
used for programming FPGAs because they provide flexible and powerful ways
to generate efficient logic. But these languages were designed specifically for
hardware designers, which makes them unfamiliar for programmers outside this
field. To circumvent this problem, a number of tools have been proposed—both
from the academic community and the industry—aiming at offering a higher-level
programming model for reconfigurable devices.

Many of these tools propose a direct conversion of C code into (V)HDL. These
include Handle-C [8], Stream-C [3], SA-C [14], SPARK [6] and Impulse-C [9].
These approaches suffer from several drawbacks. First, C programs sometimes
(often) rely on features which are difficult, if not impossible, to implement
in hardware (dynamic memory allocation, for instance). This means that code
frequently has to be rewritten to be accepted by the compilers. Practically, this
rewriting cannot be carried out without understanding why certain constructs have
to be avoided and how to replace them by “hardware-compatible” equivalents. So,
a minimum knowledge of hardware design principles is actually required. Second,
C is intrinsically sequential whereas hardware is truly parallel. So, the compiler has
to first identify parallelism in the sequential code and then map it onto the target
hardware. In the current state of the art, this cannot be done in a fully automatic
way, and the programmer is required to put annotations (pragmas) in the code to help
the compiler, which adds to the burden. Finally, the code generally has to undergo

1CAPH is a recursive acronym for Caph just Aint Plain Hdl. It is also the name of the second
brightest star in the constellation of Cassiopeia.

CAPH: A Language for Implementing Stream-Processing Applications on FPGAs 203

various optimizations and transformations before the actual HDL generation. These
optimizations and transformations vary from high-level parallelization techniques
to low-level scheduling. The low-level optimizations can be beneficial to any
algorithm, but the high-level optimizations are specifically suggested in the context
of one field and would not give performance gains in other domains [20]. Moreover,
with most of the existing tools (Handle-C, Impulse-C, Catapult-C), transformations
and optimizations require inputs from the programmer [21], who therefore must
have a rather good knowledge in digital design.

3 Dataflow-/Actor-Oriented Paradigm

We claim that the solution to the problems raised by C-like approaches to FPGA
programming requires a shift in programming paradigm. In particular, it seems
crucial to reduce the gap between the programming model (as viewed by the
programmer) and the execution model (as implemented on the target hardware).
The dataflow/actor paradigm offers a way to achieve this goal. This section recalls
the key features of this paradigm and why it is naturally suitable for FPGA or
reconfigurable devices.

The common and basic underlying concept is that applications are described as
a collection of computing units (often called actors) exchanging streams of tokens
through unidirectional channels (typically FIFOs). Execution occurs as tokens flow
through channels, into and out of actors, according to a set of firing rules. In the
classical, strict, dataflow model, the firing rules specify that an actor becomes active
whenever tokens are available on all of its input channels, and token(s) can be
written on its output channel(s). When this occurs, input tokens are consumed;
result(s) are computed and produced on the output channel(s). This strict firing
model has been latter extended to accommodate more complex and sophisticated
scheduling strategies (see Sect. 10).

The basic dataflow model is illustrated in Fig. 1 with a very simple example,
involving four basic actors. Actor inc (resp. dec) adds (resp. subtracts) 1 to each
element of its input stream. Actor mul performs point-wise multiplication of two
streams. Actor dup duplicates its input stream.2 Now, if we connect these four
actors to build the network depicted in Fig. 2, this network computes f (x) = (x+ 1)
×(x− 1) for each element x of its input stream. That is, if the input stream i is
1,2,3,..., then the output stream o will be 0,3,8,....

The advantages of the dataflow model are well known. First, it basically relies
on a representation of applications in the form of dataflow graphs (DFGs), which

2In Fig. 1, streams are denoted (ordered) from right to left; for example, the actor ADD first
processes the token 1, then the token 2, etc. Since streams are potentially infinite, their end is
denoted “...”. However, when describing actors textually, streams will be denoted from left to
right; for example, ADD:1,2,...= 2,3,...

204 J. Sérot et al.

inc...,2,1 ...,3,2 dec...,2,1 ...,1,0

mul
...,2,1

...,8,3
...,4,3

dup...,2,1
...,2,1

...,2,1

Fig. 1 Four basic actors

dup

inc

mul

dec

oi

Fig. 2 A dataflow process network

is intuitive, well understood by programmers (esp. in the field of digital signal
processing) and amenable to graphical representation and manipulation. Second,
since the behavior of each actor is defined independently of what occurs in the
other ones, all parallel operations may be executed concurrently, without the risk
of side effects. This allows a full exploitation of intrinsic data and control-level
parallelism. Third, since several tokens are allowed to reside simultaneously on a
channel (by implementing it using a FIFO typically), execution pipelining may be
increased, each actor being able to produce one output token before the previous
one has actually been consumed.

4 CAPH Language

The dataflow model of computation introduced in the previous section is indeed a
very general one, from which many specific instances can be drawn, depending, in
particular, on the kind of behavior that can be assigned to actors, the exact nature
of tokens exchanged by actors and the way DFGs (networks) are described. In the
sequel, we describe the design choices made for the CAPH language regarding these
issues. For the sake of brevity and conciseness, the related sections only give an
informal description of the main features of the language. The complete language
definition, including concrete and abstract syntax and formal semantics, can be
found in the language reference manual [15].

CAPH: A Language for Implementing Stream-Processing Applications on FPGAs 205

actor switch ()
in (i1:int)
in (i2:int)
out (o:int)
var s : (left,right) = left
rules (s,i1,i2) -> (o,s)
| (left, v, _) -> (v, right)
| (right, _, v) -> (v, left)

I/O declarations

Local variables
declarations

Rule format
Rules

5
4
9
8

i1 i2

o

.
.
.

6
4
8

.
.
.

4
5
9

.
.
.

Fig. 3 An example of actor description in CAPH

4.1 Describing Actors

In CAPH the behavior of actors is specified using a set of transition rules. Each
rule consists of a set of patterns, involving inputs and/or local variables and a set of
expressions, describing modifications of outputs and/or local variables. The choice
of the rule to be fired is done by pattern matching.

Consider, for example, the actor switch described in Fig. 3. This actor merges
two data streams by alternately copying its first and second input to its output
(as depicted on the right). Its behavior description in CAPH is given on the left. It
has no parameter, two inputs and one output (of type int). For this, it uses a local
variable (s), which can take only two values (left or right). The general format
of the rule set is defined in the line starting with the rules keyword. Here, each
rule pattern is a triplet made of the values of the local variable and the two inputs,
respectively; when a rule is fired (selected) it updates the variable s and produces
a value on the output o. The first (resp. second) rule says: If s is ’left’ (resp.
’right’) and a value v is available on input i1 (resp. i2) then read3 this value,
write it to output o, and set s to ’right’ (resp. ’left’). The ’ ’ symbol used
in the pattern means that the corresponding input is not used.4

3Pop the value from the connected FIFO.
4The ’ ’ symbol can also be used in the right-hand side of a rule; it then means that no value is
produced on the corresponding output.

206 J. Sérot et al.

10 30 55 90

33 53 60 12
99 56 23 11

11 82 45 11

<<1O 30 55 90> <33 53 60 12> <99 56 23 11> <11 82 45 11>>

A 4x4 image

Its stream-based representation :

Fig. 4 The structured stream representation of a 4×4 image

4.2 Data Representation

A key property for a programming model is its ability to represent arbitrarily
structured data. For stream-processing applications, this structuring can be achieved
by dividing the tokens, circulating on channels and manipulated by actors, into two
broad categories: data tokens (carrying actual values) and control tokens (acting
as structuring delimiters). In fact, only two control tokens are required: one for
denoting the start of a structure (list, line, frame, etc.), which will be denoted SoS or
’<’, and another for the end of the structure, denoted EoS or ’>’. For example, an
image can be described as a list of lines, as depicted on Fig. 4, whereas the stream

<<<41 120> 44><<12 73> 58><<52 211> 7>>

may represent, for example, a list of points of interest, each inner pair consisting
of its coordinates along with an attribute value.
This structured representation of data nicely fits the stream-processing programming
and execution models. Since the structure of the data is explicitly contained in the
token stream, no global control and/or synchronization is needed; this has strong
and positive consequences both at the programming level (it justifies a posteriori
the style of description we introduced in the previous subsection for actors) and
the execution level (it will greatly ease the production of HDL code). Moreover, it
naturally supports a pipelined execution scheme; processing of a line by an actor,
for example, can begin as soon as the first pixel is read without having to wait for
the entire structure to be received; this feature, which effectively allows concurrent
circulation of successive “waves” of tokens through the network of actors, is of
course crucial for on-the-fly processing (like in real-time image processing).

Figures 5 and 6 give two examples of actor descriptions based on this data
representation.

The actor described in Fig. 5 performs binarization of a structured stream of
pixels (an image, for instance). The threshold value is passed as parameter t.
Pattern-matching is used to discriminate between control and data tokens. The rules
can be read as follows: if input is a control token (’< or ’>), then write the same
token on output; if input is a data token, then write 0 or 1 on output depending
on whether the associated value is greater than the threshold parameter or not. The
quote (’) symbol is used to distinguish structured values (control or data) from

CAPH: A Language for Implementing Stream-Processing Applications on FPGAs 207

actor thr (t:unsigned<8>)
in (a:unsigned<8> dc)
out (c:unsigned<8> dc)
rules a -> c
| ’< -> ’<
| ’> -> ’>
| ’v -> if v > t then ’1 else ’0

Fig. 5 An actor performing
binarization on structured
streams

actor suml ()
in (a: signed<8> dc)
out (c: signed<16>)
var st: S0,S1 =S0
var s : signed<16>
rules (st,a,s)-> (st,c,s)
(S0, ’<, _) -> (S1, _, 0)

| (S1, ’v, s) -> (S1, _, s+v)
| (S1, ’>, s) -> (S0, s, _)

{ }

Fig. 6 An actor computing
the sum of values along lists

unstructured (raw) values (like in the previous switch example). This distinction
is reflected in the type of the input and output: unsigned<8> dc, where dc is the
type constructor for structured values. Hence, the last rule of the thr actor should
be read, precisely, as follows: if a value is available on input a and this value is a
data token carrying value v, then produce a data token on output carrying value 0
or 1 depending on whether v>t or not.

The actor described in Fig. 6 computes the sum of a list of values. Given the input
stream <1 2 3> <4 5 6>, for example, it will produce the values 6, 15. For
this, it uses two local variables: an accumulator s and a state variable st. The latter
indicates whether the actor is actually processing a list or waiting for a new one to
start. In the first state, the accumulator keeps track of the running sum. The first rule
can be read as follows: When waiting for a list (st=S0) and reading the start of a
new one (a=’<), then reset accumulator (s:=0) and start processing (st: =S1).
The second rule says: When processing (st=S1) and reading a data value (a=’v),
then update accumulator (s:=s+v). The last rule is fired at the end of the list
(a=’>); the final value of the accumulator is written on output c.

4.3 Describing Networks

A conspicuous feature of CAPH, compared to existing similarly based systems—
such as those described in Sect. 10 in particular—lies in the formalism used to
describe the way individual actors are instantiated and wired to form networks.
This is done in an implicit manner, using a set of functional equations. In fact,
CAPH embeds a small, purely functional language for describing data flow graphs

208 J. Sérot et al.

called functional graph notation (FGN). The syntax and semantics of this language
have been described in detail in [16], so this section is a minimal description of its
possibilities.

The basic idea is that the network of actors is actually a DFG and that a DFG can
be described by means of purely functional expressions. For example, the network
depicted in Fig. 2—in which i denotes an input stream and o an output stream—can
be described with the following equations:

net (x,y) = dup i
net o = mul (inc x, dec y)

where f x denotes application of function f to argument x, (x,y) denotes a pair
of values and the net keyword serves to introduce bindings.

Compared to other textual or graphical network languages, this notation offers a
significantly higher level of abstraction. In particular it saves the programmer from
having to explicitly describe the wiring of channels between actors, a tedious and
error-prone task. Moreover, ill-formed networks and inconsistent use of actors can
be readily detected using a classical Hindley-Milner polymorphic type-checking
phase.

Another advantage of “encoding” dataflow networks in a functional language is
the ability to define reusable, polymorphic graph patterns in the form of higher-
order functions, which offer an easy and safe compositional approach for building
larger applications from smaller ones. For example, the network of Fig. 2 could
also have been described with the following declarations, in which the diamond
function encapsulates the diamond-shaped graph pattern exemplified here:

net diamond (left,top,bottom,right) x =
let (x1,x2) = left x in
right (top x1, bottom x2);

net o = diamond (dup,inc,dec,mul) i;

The diamond function is called a “wiring function” in the CAPH network
language. From a functional perspective, this is a higher-order function, i.e., a
function taking other function(s) as argument(s). Once defined, such a function can
be reused to freely instantiate graph patterns. For example, the network depicted in
Fig. 7, in which the “diamond” pattern is instantiated at two different hierarchical
levels, can be simply described with the following declaration:

net o = diamond (dup, inc, diamond (dup,inc,dec,mul), mul) i;

4.4 Programs

A CAPH program will in general comprise at least three sections (see Sect. 9 for
a complete example): one section containing the definition of the actors, another
one describing the network description and a last defining the input and output
streams. An optional section (not discussed further here) is available to define global
constants or functions.

CAPH: A Language for Implementing Stream-Processing Applications on FPGAs 209

DUP

INC

MUL oi

DUP

INC

MUL

DEC

Fig. 7 A hierarchical network

5 The CAPH Toolset

The current tool chain supporting the CAPH language is sketched on Fig. 8.
It comprises a graph visualizer, a reference interpreter and compiler producing both
SystemC and synthetizable VHDL code.5

The graph visualizer produces representations of the actor network in the .dot
format for visualization with the GRAPHVIZ suite of tools [4]. An example is given
Fig. 14.

The reference interpreter is based on the fully formalized semantics of the
language [15], written in axiomatic style. Its role is to provide reference results
to check the correctness of the generated SystemC and VHDL code. It can also be
used to test and debug programs, during the first steps of application development
(in this case, input/output streams are read from/written to files). Several tracing and
monitoring facilities are provided. For example, it is possible to compute statistics
on channel occupation or on rule activation.

The compiler is the core of the system. It relies on an elaboration phase, turning
the AST into a target-independent intermediate representation, and a set of dedicated
back-ends. The intermediate representation (IR) is basically a process network in
which each process is represented as a finite-state machine (FSM) and channels as
unbounded FIFOs. Two back ends are provided: the first produces cycle-accurate
SystemC code for simulation and profiling, the second VHDL code for hardware
synthesis. Execution of the SystemC code provides informations which are used
to refine the VHDL implementation (e.g., the actual size of the FIFOs used to
implement channels).

The graph visualizer, the reference interpreter and the compiler all operate on
an abstract syntax tree (AST) produced by the front-end after parsing and type
checking. The type system is fully polymorphic. Built-in types include signed and
unsigned sized integers, enumerated types and mono- and bidimensional arrays.

5Synthesis of the generated VHDL code is carried using third-party tools; we currently use the
ALTERA Quartus II environment.

210 J. Sérot et al.

Source
Code

Front-end (Parsing,
 type checking)

Abstract
Syntax Tree

Elaboration

SystemC
Back-end

VHDL
Back-end

.cpp, .h .vhd

C++ Compiler

executable

Synthesis

Bit Stream

Intermediate
Representation

B
ac

k
A

nn
ot

at
io

ns
(F

if
o

si
ze

)

FPGA

Graph
Visualizer

Reference
interpreter

Compiler

Fig. 8 The CAPH toolchain

6 Elaboration

Elaboration generates a language and target-independent representation of the
program from the high-level dataflow description. This involves two steps: first
generating a structural representation of the actor network and then generating a
behavioral description of each actor involved in the network.

6.1 Network Generation

Generating the structural representation of the actor network involves instantiating
each actor—viewed as a black box at this level—and “wiring” the resulting
instances according to the dependencies expressed by the functional definitions.
The CAPH compiler uses a technique known as abstract interpretation, described

CAPH: A Language for Implementing Stream-Processing Applications on FPGAs 211

actor b
 in (...)
 out (...)
match
 pats_1 -> exps_1
| ...
| pats_i -> exps_i
| ...
| pats_n -> exps_n
;

Rdy

.
.
.

C[1]/A[1]

C[n]/A[n]

Fig. 9 Translation of a box into a FSM

in [16], to perform this. The basic idea is that the definitions of the program are
“evaluated” and each evaluation of a function bound to an actor creates an instance
of this actor in the graph.6 Each wire is then instantiated as a FIFO channel.

6.2 Behavioral Description

Generating the behavioral description of an instantiated actor (box) essentially
consists in turning the set of pattern-matching rules of the corresponding actor
into a finite-state machine with operations (FSMD level). This process is depicted
in Fig. 9.

At each rule ri, consisting of a list of patterns patsi and a list of expressions
expsi, we associate a set of conditions C�ri� and a set of actions A�ri�. The set C�ri�
denotes the firing conditions for rule ri, i.e., the conditions on the involved inputs,
outputs and local variables that must be verified for the corresponding rule to be
selected. The set A�ri� denotes the firing actions for rule ri, i.e., the read operations
and write operations that must be performed on the involved inputs, outputs and
variables when the corresponding rule is selected.

There are three possible firing conditions:

• Availr(i), meaning that input i is ready for reading (the connected FIFO is not
empty)

• Matchi(i, pat) (resp.Matchv(v, pat)), meaning that input i (resp. variable v)
matches pattern pat

• Availw(o), meaning that output o is ready for writing (the connected FIFO is not
full)

and four possible firing actions:

• Read(i), meaning “read input i (pop the corresponding from the connected
FIFO)”, ignoring the read value

6In the sequel, an instantiated actor will be called a box.

212 J. Sérot et al.

Table 1 Rules for computing the C and A sets for actor rules

C�pat1 , . . . , patm→ exp1 , . . .,expn� =Cr�pat1, . . . , patm� ∪ Cw�exp1 , . . .,expn�

A�pat1 , . . ., patm→ exp1, . . . ,expn� = Ar�pat1, . . . , patm� ∪ Aw�exp1 , . . . ,expn�

Cr�pat1, . . . , patm� =
⋃m

j=1 C′r�pat j ,ρl(j)�Cw�exp1 , . . .,expn� =
⋃n

j=1 C′w�exp j ,ρr(j)�
C′r� , In i� = /0 C′r� ,Var v� = /0
C′r�pat, In i� = {Availr(i),Matchi(i, pat)}C′r�pat,Var v� = {Matchv(v, pat)}
C′w� ,Out o� = {Availw(o)}
C′w�exp,Out o� = {Availw(o)} C′w�exp,Var v� = /0
Ar�pat1 , . . ., patm� =

⋃m
j=1 A′r�pat j ,ρl(j)�Aw�exp1 , . . . ,expn� =

⋃n
j=1 A′w�exp j ,ρr(j)�

A′r� , In i� = /0 A′r� ,Var v� = /0
A′r�const, In i� = {Read(i)} A′r�const,Var v� = /0}

A′r�var v,Var v� = /0
A′r�pat, In i� = {Bindi(i, pat)} A′r�pat,Var v� = {Bindv(v, pat)}
A′w� ,Out o� = /0 A′w� ,Var v� = /0

A′w�var v,Var v� = /0
A′w�exp,Out o� = {W riteo(o,exp)} A′w�exp,Var v� = {W ritev(v,exp)}

• Bindi(i, pat), meaning “read input i (pop the corresponding from the connected
FIFO) and match the corresponding value against pattern pat”, binding the
variable(s) occurring in the pattern to the corresponding value(s)

• Bindv(v, pat), meaning “match variable v against pattern pat”
• W riteo(o,exp) (resp. Writev(v,exp)), meaning “evaluate7 expression exp and

write the resulting value on output o” (pushing the value on the connected FIFO)
or in variable v.

Table 1 summarizes the rules for computing the sets C�r� and A�r� from the
patterns and expressions composing a box rule. In these rules

• denotes the “empty” pattern (resp. expression) (see Sect. 4.1 and note 4), const
a constant pattern and var a variable pattern.

• ρl (resp. ρr) is a “qualifying” function: it returns In i or Var v (resp. Out o or
Var v) depending on whether its argument i (resp. o) is an input (resp. output) or
a variable.8

The intermediate representation for the suml actor introduced in Sect. 4.2 is
given in Fig. 10. The small number appearing beside each transition is the index of
the corresponding rule.

Since we are targeting a RT-level description, all transitions will be triggered
by a global clock signal. This means that all boxes will actually change state
simultaneously. The scheduling algorithm can then be written as follows:

7This evaluation takes place in an environment augmented with the bindings resulting from the
corresponding firing action; for the sake of readability, environments have been left implicit here.
8It operates by inspecting the general rule format of the actor.

CAPH: A Language for Implementing Stream-Processing Applications on FPGAs 213

Rdy

Match(st,S1), Avail(a), Match(a,Datav)

Write(st,S1), Bind(a,Data v), Write(s,s+v)
2

Match(st,S0),
Avail(a),

Match(a,SoS)

Read(a),
Write(st,S1),
Write(s,0)

1

Match(st,S1),
Avail(a),

Match(a,EoS),
Avail(c)
Read(a),

Write(st,S0),
Write(c,s)

3

Fig. 10 Translation of the suml actor of Fig. 6 into a FSM

At each clock cycle
For each box b, in parallel, do
if a fireable rule r can be found in b.rules then

read inputs for rule r;
bind variables appearing in pattern matching
compute expressions appearing in the rule right-hand side
write outputs and variables

end if
end for

7 Translation to VHDL

The transcription in VHDL of the network derived in Sect. 6.1 boils down to
instantiating the boxes forming this network and the FIFOs implementing the
connexions between these boxes and wiring them together. The width (in bits)
of each FIFO is deduced from the type of the conveyed data. Assigning a depth
(in places) to each FIFO is a more challenging issue. A pragmatic approach consists
in estimating this value using the code generated by the SystemC back end. For this,
an instrumented version of the SystemC code is run, which monitors the run-time
occupation of each FIFO and dumps a summary of the corresponding values. This
approach is symbolized by the small arrow labeled “back annotations” in Fig. 8.
If no back-annotation data is available, a default value9 can be used.

The complete CAPH program is turned into a VHDL component. The inputs and
outputs of this component correspond to the I/O streams declared in this program.
This makes it possible to automatically generate a test bench for the resulting design,
in which the original input (resp. output) data streams are provided (resp. displayed)
by specific VHDL processes.

Converting the intermediate representation of boxes into VHDL requires a
transformation of the corresponding FSM. First, read (resp. write) operations on

9Which is part of the compiler options.

214 J. Sérot et al.

Rdy Rdy Ri

I[i].rd=0
O[o].wr=0

Avail(i)
Avail(o)
Bind(i,x)

Read(i)
Bind(i,x)
Write(o,y)

clk^
~I[i].empty
~O[o].full

x := I[i].dataout
O[o].datain = y

I[i].rd=1
O[o].wr=1

clk^

Fig. 11 Transformation of the FSM to generate the rd and wr signals

inputs (resp. outputs) are converted into signals controlling the FIFOs connected to
these inputs/outputs. There are three signals for each input: dataout, empty and
rd, and three signals for each output: datain, full and wr. The signals empty
(resp. full) tell whether the FIFO is empty (resp. full), i.e., ready for reading (resp.
writing). The Avail condition on an input (resp. output) is reflected directly into the
value of the full (resp. empty) signal connected to this input (resp. output). The
rd (resp. wr) signals trigger the read (resp. write) operation, i.e., actually pops (resp.
pushes) the data from (resp. into) the FIFO. But, because asserting these signals is
done synchronously, an extra state must be added for each rule. This transformation
is illustrated in Fig. 11 on a simple, single-rule, example. Here, clkˆ denotes the
occurrence of the synchronizing clock signal, logical negation is denoted with the
˜ prefix operator and I[i] (resp. O[o]) denotes the FIFO connected to input i
(resp. output o).

The conversion of the expressions appearing in the right-hand side of the rules is
handled using a very simple syntax-directed mechanism.

The resulting code for the suml actor introduced in Sect. 4.2 and whose
intermediate representation has been given in Fig. 10 is given in Appendix 1.
In this code, the functionsis sos, is eos, is data and data from are part of
a package providing operations on structured values. They respectively tell whether
their argument is a control value—’< (Start of Structure) or ’> (End of Structure)—
or a data value and, in the latter case, extract this value. Physically, the distinction
between control and data values is encoded with two extra bits.10

8 Translation to SystemC

Transcription of the intermediate representation in SystemC basically follows
the same principles and techniques than those described in Sect. 7. Boxes are
implemented as SystemC modules and box interconnexions as FIFO channels. As
stated in the previous section, these FIFO channels can be generated with an option

10Hence, pixels are actually encoded on 8 bits (+2 for control) and sums on 16 bits in this example.

CAPH: A Language for Implementing Stream-Processing Applications on FPGAs 215

to monitor their run-time occupation in order to provide back annotations for the
VHDL back end. Similarly to the VHDL back end, the complete CAPH program
is turned into a SystemC module, whose inputs and outputs correspond to the I/O
streams declared in the program, making it possible to automatically generate a test
bench for the resulting design.

The resulting SystemC code for the suml actor is given in Appendix 2.

9 Experimental Results

We have experimented with a prototype version of the compiler using a very simple
application as a test bench. The goal is to validate the overall methodology before
moving to more complex algorithms and to identify key issues. The application is
a simple motion detector operating in real time on a digital video stream. Moving
objects are detected by spatio-temporal changes in the grey-level representation of
the successive frames, and a rectangular window is drawn around them.

The algorithm involves (1) computing the difference image between two con-
secutive frames, (2) thresholding this difference to obtain a binary image, (3)
computing the horizontal projection (row-wise sum) of this image, (4) thresholding
this projection to extract horizontal bands where moving objects are likely to be
found, (5) computing the vertical projection (column-wise sum) on each band, and
(6) applying a peak detector to the projections to define the position of each moving
object in the band (Fig. 12).

The encoding of this algorithm in CAPH appears in Fig. 13. It consists of five
sections. The first section is used for defining type abbreviations. The second section
defines global constants (global functions can also be defined here). In the third
section, the behavior of all the actors involved in the network is defined. Here, due
to space limitations (and because several examples have already been given), the
text of the descriptions has been omitted. The fourth section is where network input
and output streams are defined. In this particular case, the input stream is read from
a camera and the output stream is written to a display.11 Finally, the last section
gives the functional equations defining the network.

The code involves eight different actors. The asub actor computes the absolute
value of the difference between two frames. The d1f is a frame delay operator.
The thr actor has been described in Sect. 4.2. The hproj actor computes the
horizontal projection of an image. The vwin actor extracts a horizontal band from
an image according to the profile of the thresholded horizontal projection. The
vproj computes the vertical projection of an image (the band is represented exactly
as an image). The peaks actor analyzes the vertical projection and computes a list

11Dedicated VHDL processes, transparent to the programmer, handle the insertion (resp. removal)
of control tokens after (resp. before) the image date is read from (resp. written to) camera (resp.
display).

216 J. Sérot et al.

Fig. 12 Motion detection algorithm. Top: two consecutive frames of a sequence. Middle and
bottom left: thresholded difference image. Middle right: horizontal projection. Bottom left: vertical
projection of the detected band. Bottom right: final result

of pairs, each pair giving the position of two consecutive peaks. Finally, the win
actor uses the positions computed by the vwin and peaks actors to display a frame
around the detected objects.

The corresponding DFG, obtained with the graph visualizer, is depicted in Fig. 14
(square boxes represent actors, triangles input and output and edges are labeled with
the type of corresponding channel).

CAPH: A Language for Implementing Stream-Processing Applications on FPGAs 217

Fig. 13 Source code for the
motion detection application
(excerpt)

VHDL Implementation. Our current target platform is a smart camera integrating
an FPGA board, an image-sensing device and communication board. It is fully
described in [1]. The FPGA board consists of one FPGA (a Stratix EP1S60),
five 1MB SRAM banks, and one 64MB SDRAM block. Two dedicated VHDL
processes provide interfacing of the generated actor network to the physical I/O
devices (camera and display). The VHDL code produced by the CAPH compiler
is compiled and downloaded to the FPGA using the Altera Quartus toolset. Small
FIFOs are implemented using logic elements. Midsized ones (e.g., for line delays)
use the on-chip SRAM memory banks of the FPGA. Frame delay FIFOs (such as
the one required by the d1f operator) use the SDRAM. As stated in Sect. 7, the
size of each FIFO is currently estimated using the SystemC back end, by running an
instrumented version of the generated code in which the occupation of the FIFOs is
monitored at run-time. In this particular example, four-place FIFOs are sufficient on
all channels except on wire W7 (see Fig. 14), where a FIFO with a depth of at least

218 J. Sérot et al.

2:o

1:i

4:asub

w3:byte dc 3:d1f

w1:byte dc

11:win

w11:byte dc

5:thr(30)

w4:byte dc

w2:byte dc

6:hproj

w5:bit dc

8:vwin

w7:bit dc

7:thr(120)

w8:bit dc

w6:byte dc

9:vproj

w9:bit dc

10:peaks(90)

w10:byte dc

w13:byte dc

w12:bit dc

Fig. 14 Dataflow graph for
the motion detection
application

one line must be inserted (because the value of the horizontal projection for a given
line is only available at the end of this line), and on wire W11, where a FIFO with a
depth of one frame must be inserted (because the positions of the bounding frames
for one frame are only known at the end of this frame).12

Table 2 reports the number of lines of code (LOC) both for the CAPH source
code and the generated VHDL. The tenfold factor observed between the volume
of the CAPH source code and the VHDL code (automatically) generated by
the compiler gives an idea of the gain in productivity offered by our approach.

After synthesis, the whole application uses 3,550 logic elements (6 %), 17 kbits
of SRAM and 512 kB of SDRAM. It operates on the fly on video streams of 512 ×
512 × 8 bit images at 15 FPS, with a clock frequency of 150 MHz.

12It is possible to get rid of this FIFO by inserting a s1f (skip one frame) operator on the
corresponding wire. In this case, the bounding boxes computed on frame number i are actually
displayed on frame i+1, which is acceptable if the objects do not move too quickly.

CAPH: A Language for Implementing Stream-Processing Applications on FPGAs 219

Table 2 Line of code (LOC)
for the motion detection
application

Actor CAPH
Generated
VHDL

asub 7 78
d1f 15 124
thr 7 68
hproj 11 91
vproj 18 136
peaks 17 134
win 17 134
vwin 20 190
Network, decls 13 285

Total 125 1240

10 Related Work

The approach followed in CAPH bears similarities with that adopted by other
stream-processing and/or actor-based languages such as CAL [12] and Canals [2].
All of them share the idea of a network of computational units exchanging data
through unidirectional channels following the basic dataflow model of computation.
Computational units are called actors in CAL and kernels in Canals. The differences
with CAPH mainly come from the scheduling of execution in actors on the one hand
and the syntax and semantics of the network language on the other hand.

Both CAL and Canals allow complex execution scheduling to be specified for
actors. For example, CAL provides constructs for expressing guards, priorities or
even finite-state machine-based scheduling within each actor. Canals comes with
a sub-language to define scheduling of kernels within the network. By contrast,
scheduling is kept much simpler in CAPH since it is entirely specified by the pattern-
matching rule-based mechanism. This has been made possible by allowing control
tokens (namely, the ‘<’ and ‘>’ tokens) within the streams exchanged between
actors. This approach in turn greatly simplifies the generation of HDL code, which
basically boils downs to finite-state machines, easily encoded in VHDL.

Both CAL and Canals use a dedicated network language (NL) to describe the
network of actors. The abstraction level of these languages is low: The programmer
must manually “wire” the network by explicitly listing all the actors and their
connexions, a tedious and error-prone task. The network language embedded in
CAPH allows implicit description of network by means of functional expression
and naturally supports higher-order constructs.

The concept of match-based transitions used in CAPH for describing actor
behavior has been borrowed from the Hume [7] language, in which it is used to
describe the behavior of asynchronous boxes connected by wires. But the semantics
of Hume and CAPH are different. In Hume, boxes are stateless, wires provide
memorization for a single token, and the execution model is based on the concept
of global cycles.

220 J. Sérot et al.

From a more historical perspective, it can be noted that the idea of describing an
application as a graph of dataflow operators and then physically mapping this graph
on a network on data-driven processing elements (DDPs) is definitely not new. It has
been exploited, for example, in [10,17–19]. But in these projects, the architecture of
both the DDPs and the network was fixed.13 Moreover, the ASIC technology in the
1990s did not allow the integration of large networks of complex elements.14 The
current FPGA technology brings a truly new dimension to this old idea, by allowing
very large networks to be embedded in only one chip of a COTS board. This is
possible because each actor is now implemented using the exact amount of required
resources instead of consuming a pre-implemented DDP.

11 Conclusion

We have introduced CAPH, a DSL for programming stream-processing applications
on FPGAs. The presentation adopted here is deliberately informal. Its goal is to
give an idea of the motivations, basic principles and capabilities of the language.
Moreover, many features of the languages have not been presented. These include,
for example, the tracing and debug facilities offered by the interpreter, the foreign
functions interfacing mechanism for the VHDL and SystemC back ends, the support
for 1D and 2D arrays at the actor level, etc. More detailed informations, including
the full syntax and formal semantics and examples, can be obtained from the CAPH
web site [15].

Preliminary examples, such as the one described in this chapter, show that
efficient implementations of reasonably complex applications can be obtained with
a language whose abstraction level is significantly higher than that of traditional
HDL languages such as VHDL or Verilog.

Work is currently undergoing in three directions.
First is assessing our tools on larger and more complex applications – such as

H264 video decoding, for example – for which VHDL implementations, either
hand-crafted or obtained with some of the tools cited in Sect. 10, are available for
comparison.

Second is improving the compiler and optimizing the generated VHDL code. A
limitation, deriving from the current elaboration process, is that the expressions on
the right-hand side of the rules are evaluated in one clock cycle. This is not a problem
for “simple” actors such as the ones used in the application described here, but we
anticipate that for actors involving more complex computations, this approach could
result in unacceptable critical paths. In this case, the programmer would have to

13Programming these “dataflow computers” then meant writing the code of each DDP and
configuring the network interconnections.
14The dataflow computer described in [17] embedded 1024 DDPs, but it was a dedicated machine,
not easily replicated.

CAPH: A Language for Implementing Stream-Processing Applications on FPGAs 221

“break” complex actors into small-enough actors to reach a given clock frequency.
Because CAPH is fully formalized, we think that it should be possible to develop
some kind of “actor calculus”—in the vein of the “box calculus” introduced by Grov
and Michaelson in [5] for the Hume language—to assist the programmer in carrying
out this transformation.

Third is to apply static analysis techniques to actor behaviors in order to statically
estimate the size of FIFO channels. As stated in Sect. 9, these sizes are currently
estimated by running an instrumented version of the code generated by the SystemC
back end (which monitors FIFO usage at run-time). An exact prediction of these
sizes at compile time is only possible in the context of a pure synchronous dataflow
model of computation [11], where the rate at which tokens are produced by actors
does not depend on the value of these tokens, which is not the case for CAPH
in general. Nevertheless, we think that in most of cases, it should be possible
to statically compute an upper bound for the FIFO sizes, by using some results
described in [13] in the context of synchronous languages, for example.

Appendix 1: Code Generated by the VHDL Back End for the
suml Actor

entity suml_act is
port (
a_empty: in std_logic;
a: in std_logic_vector(9 downto 0);
a_rd: out std_logic;
c_full: in std_logic;
c: out std_logic_vector(15 downto 0);
c_wr: out std_logic;
clock: in std_logic;
reset: in std_logic
);

end suml_act;

architecture FSM of suml_act is
type t_state is (R0,R1,R2,R3);
type t_enum1 is (S0,S1);
signal state: t_state;
signal s : std_logic_vector(15 downto 0);
signal st : t_enum1;

begin
process(clock, reset)
variable p_v : std_logic_vector(7 downto 0);
variable s_v : std_logic_vector(15 downto 0);

begin
if (reset=’0’) then

state <= R0;
st <= S0;
a_rd <= ’0’;

222 J. Sérot et al.

c_wr <= ’0’;
elsif rising_edge(clock) then

case state is
when R0 =>
if a_empty=’0’ and is_sos(a) and st=S0 then

a_rd <= ’1’;
st <= S1;
s <= "0000000000000000";
state <= R1;

elsif a_empty=’0’ and is_data(a) and st=S1 then
s_v := s;
p_v := data_from(a);
a_rd <= ’1’;
st <= S1;
s <= s_v + p_v;
state <= R2;

elsif a_empty=’0’ and is_eos(a) and st=S1 and
c_full=’0’ then
s_v := s;
a_rd <= ’1’;
st <= S0;
c <= s_v;
c_wr <= ’1’;
state <= R3;

end if;
when R1 =>

a_rd <= ’0’;
state <= R0;

when R2 =>
a_rd <= ’0’;
state <= R0;

when R3 =>
a_rd <= ’0’;
c_wr <= ’0’;
state <= R0;

end case;
end if;

end process;
end FSM;

Appendix 2: Code Generated by the SystemC Back End for
the suml Actor

#include "dc.h"
#include <systemc.h>
#include "fifo.h"

SC_MODULE(suml_act) {
sc_in<bool> clk;
sc_port<fifo_in_if<DC<sc_int<8> > > > a;

CAPH: A Language for Implementing Stream-Processing Applications on FPGAs 223

sc_port<fifo_out_if<sc_uint<16> > > c;
typedef enum {S0,S1} _enum1;
void main(void);
SC_HAS_PROCESS(suml_act);
suml_act(sc_module_name name_, bool trace_=false) :
modname(name_), sc_module(name_), trace(trace_)
{ SC_THREAD(main);

sensitive << clk.pos(); }
˜suml_act() { }
private:
bool trace;
sc_module_name modname;
sc_uint<8> s;
_enum1 st;
sc_int<8> p_v;
sc_uint<16> s_v;

};

void suml_act::main(void) {
st = S0;
while (1) {

wait(); // clk
if (a->rd_rdy() && a->peek().is_sos() && st==S0) {

a->read();
st = S1;
s = 0;
}

else if (a->rd_rdy() && a->peek().is_data() && st==S1) {
s_v = s;
p_v = a->read().data();
st = S1;
s = s_v+p_v;
}

else if (a->rd_rdy() && a->peek().is_eos() && st==S1 &&
c->wr_rdy()) {

s_v = s;
a->read();
st = S0;
c->write(s_v);
}

}
}

References

1. Chalimbaud P, Berry F (2007) Embedded active vision system based on an FPGA architecture.
EURASIP J Embedded Syst 2007:26–26. URL http://dx.doi.org/10.1155/2007/35010

2. Dahlin A, Ersfolk J, Yang G, Habli H, Lilius J (2009) The Canals language and its compiler.
In: Proceedings of th 12th international workshop on software and compilers for embedded
systems, SCOPES ’09, pp 43–52. ACM, New York, NY, USA. URL http://dl.acm.org/citation.
cfm?id=1543820.1543829

http://dx.doi.org/10.1155/2007/35010
http://dl.acm.org/citation.cfm?id=1543820.1543829
http://dl.acm.org/citation.cfm?id=1543820.1543829

224 J. Sérot et al.

3. Frigo J, Gokhale M, Lavenier D (2001) Evaluation of the Streams-C C-to-FPGA compiler:
an applications perspective. In: Proceedings of the 2001 ACM/SIGDA ninth international
symposium on Field programmable gate arrays, FPGA ’01, pp 134–140. ACM, New York,
NY, USA. URL http://doi.acm.org/10.1145/360276.360326

4. Graph visualisation software. URL http://www.graphviz.org
5. Grov G, Michaelson G (2010) Hume box calculus: robust system development through

software transformation. High Order Symbol Comput 23:191–226. URL http://dx.doi.org/10.
1007/s10990-011-9067-y

6. Gupta S, Dutt N, Gupta R, Nicolau A (2003) Spark: A high-level synthesis framework
for applying parallelizing compiler transformations. In: In international conference on VLSI
design, pp 461–466

7. Hammond K, Michaelson G (2003) Hume: a domain-specific language for real-time embedded
systems. In: Proceedings of the 2nd international conference on Generative programming and
component engineering, GPCE ’03, pp 37–56. Springer, New York, Inc., New York, NY, USA.
URL http://dl.acm.org/citation.cfm?id=954186.954189

8. Handel-c language reference manual (2009) URL http://www.agilityds.com/literature/
HandelC Language Reference Manual.pdf

9. Impulse accelerated technologies. URL http://www.impulsec.com
10. Koren I, Mendelsom B, Peled I, Silberman GM (1988) A data-driven vlsi array for arbitrary

algorithms. Computer 21:30–43. DOI 10.1109/2.7055. URL http://dl.acm.org/citation.cfm?id=
50810.50813

11. Lee E, Messerschmitt D (1987) Synchronous data flow. Proc IEEE 75(9):1235–1245
12. Lucarz C, Mattavelli M, Wipliez M, Roquier G, Raulet M, Janneck J, Miller I, Parlour D

(2008) Dataflow/Actor-Oriented language for the design of complex signal processing systems.
In: Proceedings of the 2008 conference on design and architectures for signal and image
processing, DASIP 2008, pp 168–175

13. Mandel L, Plateau F, Pouzet M (2010) Lucy-n: a n-synchronous extension of Lustre. In:
Tenth International conference on mathematics of program construction (MPC 2010). Québec,
Canada. URL MandelPlateauPouzet-MPC-2010.pdf

14. Najjar WA, Boehm W, Draper BA, Hammes J, Rinker R, Beveridge JR, Chawathe M, Ross
C (2003) High-level language abstraction for reconfigurable computing. Computer 36:63–69.
DOI http://doi.ieeecomputersociety.org/10.1109/MC.2003.1220583

15. Sérot J Caph language reference manual. URL http://wwwlasmea.univ-bpclermont.fr/
Personnel/Jocelyn.Serot/caph.html

16. Sérot J (2008) The semantics of a purely functional graph notation system. In: Trends in func-
tional programming. Madrid, Spain. URL http://wwwlasmea.univ-bpclermont.fr/Personnel/
Jocelyn.Serot/fgn.html

17. Sérot J, Quénot GM, Zavidovique B (1993) Functional programming on a data-flow architec-
ture: Applications in real time image processing. Int J Mach Vision Appl 7(1):44–56

18. Sérot J, Quénot GM, Zavidovique B (1995) A visual dataflow programming environment for a
real-time parallel vision machine. J Vis Lang Comput 6:327–347

19. Vasell J, Vasell J (1992) The function processor: a data-driven processor array for irregular
computations. Future Gener Comput Syst 8, 321–335. DOI 10.1016/0167-739X(92)90066-K.
URL http://dl.acm.org/citation.cfm?id=140466.140484

20. Yankova YD, Bertels K, Vassiliadis S, Kuzmanov G, Chaves R (2006) HLL-to-HDL genera-
tion: Results and challenges. In: Proceeding of ProRisc 2006

21. Yankova YD, Kuzmanov G, Bertels K, Gaydadjiev GN, Lu Y, Vassiliadis S (2007) Dwarv:
Delftworkbench automated reconfigurable vhdl generator. In: Proceedings of the 17th Interna-
tional conference on field programmable logic and applications (FPL07), pp 697–701

http://doi.acm.org/10.1145/360276.360326
http://www.graphviz.org
http://dx.doi.org/10.1007/s10990-011-9067-y
http://dx.doi.org/10.1007/s10990-011-9067-y
http://dl.acm.org/citation.cfm?id=954186.954189
http://www.agilityds.com/literature/HandelC_Language_Reference_Manual.pdf
http://www.agilityds.com/literature/HandelC_Language_Reference_Manual.pdf
http://www.impulsec.com
http://dl.acm.org/citation.cfm?id=50810.50813
http://dl.acm.org/citation.cfm?id=50810.50813
MandelPlateauPouzet-MPC-2010.pdf
http://wwwlasmea.univ-bpclermont.fr/Personnel/Jocelyn.Serot/caph.html
http://wwwlasmea.univ-bpclermont.fr/Personnel/Jocelyn.Serot/caph.html
http://wwwlasmea.univ-bpclermont.fr/Personnel/Jocelyn.Serot/fgn.html
http://wwwlasmea.univ-bpclermont.fr/Personnel/Jocelyn.Serot/fgn.html
http://dl.acm.org/citation.cfm?id=140466.140484

Compact CLEFIA Implementation on FPGAs

Ricardo Chaves

1 Introduction

Cryptography is a key service in the current digital communication world, with the
digital data being constantly transmitted through public open channels, whether it
is an internet network access or through the air, such as in wireless and mobile
phone networks. In order to have confidentiality and access management to that
same data, ciphering mechanisms need to be employed when sending sensitive
information through these public media. Ciphering algorithms have been in use for
a long time, but the growing processing capabilities of digital equipment and the
growing bandwidth for digital communication channels impose the need for more
dedicated and secure algorithms. These algorithms can be divided in two classes,
asymmetric and symmetric. While the first ones are based on complex mathematical
problems, thus having long processing times, the second ones are implemented
using operations, such as byte substitution, bit permutation, and basic arithmetic
operations, and can process large amounts of data in small amounts of time.

One of such algorithms is the CLEFIA encryption algorithm, a novel symmetrical
block ciphering algorithm proposed and developed by SONY Corporation focused
on digital rights management (DRM) purposes [8]. This algorithm improves the
security of encryption with the use of techniques such as diffusion switch mecha-
nisms, consisting of multiple diffusion matrices in a predetermined order, to ensure
immunity against differential and linear attacks [1, 7, 12], and the use of whitening
keys, combining data with portions of the key before the first round and after the
last round. In this chapter, FPGAs were selected as the target technology given their
advantages in terms of computation adaptability, time to market, development costs,
and deployment time for dedicated solutions [2, 5].

R. Chaves (�)
INESC-ID, IST-TULisbon, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
e-mail: ricardo.chaves@inesc-id.pt

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2 10, © Springer Science+Business Media, LLC 2013

225

226 R. Chaves

Two structures for the computation of the CLEFIA symmetrical encryption
algorithm are presented in this chapter. These structures use the FPGA’s embedded
memories (BRAMs) allowing for a more compact and high-throughput hardware
implementation. The first structure computes one CLEFIA round per clock cycle
and is based on the topology presented in [11] for an ASIC technology and adapted
in this chapter to FPGA technologies. The second structure, herein presented, further
optimizes the area resources by exploring the symmetries of the round computation
in this algorithm. This second structure allows to obtain a more compact topology
by reusing hardware components, while achieving similar throughputs due to the
addition of a pipeline stage. Both the presented structures allow for the computation
of the CLEFIA algorithm with all the key sizes defined in the standard [8]. The
related CLEFIA state of the art on FPGAs presented in [4] is also considered. This
structure performs the CLEFIA computation on a fully unrolled topology, achieving
higher throughputs at the expense of area resources and lower flexibility. In order
to analyse the gains and costs of performing the key scheduling with dedicated
hardware, a structure is also herein presented for the expansion of 128-bit input
keys.

While few papers proposing the CLEFIA implementation have been published,
and mainly for ASIC technologies, the presented structures are compared with the
existing related art. The present analysis suggests improvements in the throughput
per slice efficiency metric of 1.75–2.25 times on several FPGA technologies.
Hardware resource reductions up to 60 %, at the expense of a throughput reduction
of 15 % on a Virtex 4 FPGA, are suggested by the experimental results. Considering
the fully unrolled structure proposed in [4], area gains of 40 times can be achieved
at a cost of a throughput reduction of 20 times. The structures herein presented are
able to achieve throughputs above 1 Gbit/s with a low FPGA resource occupation.
Experimental results also suggest that the key scheduling does not significantly
affect the ciphering performance; however, it increases the needed area resources
by up to 100 %.

This chapter is organized as follows. Section 2 presents a brief description of the
CLEFIA algorithm. Section 3 describes the proposed structures for the ciphering
and key scheduling computation. Evaluation of the obtained implementation results
and comparison with the related state of the art are presented in Sect. 4. Concluding
remarks are presented in Sect. 5.

2 CLEFIA Encryption Algorithm

The CLEFIA algorithm is a 128 bit block symmetrical ciphering algorithm with a
key size of 128, 192, or 256 bits. As in most current block ciphers, it consists of a
key scheduling phase and an input data block transformation phase computed over
multiple rounds, employing a relatively homogeneous algorithm. This regularity
facilitates the development of compact structures, allowing it to be easily deployed
in platforms with limited resources [6].

Compact CLEFIA Implementation on FPGAs 227

Fig. 1 CLEFIA datapath

State-of-the-art design techniques, present in recent ciphering algorithms, are
also found in the CLEFIA algorithm, namely, (1) whitening keys, a technique
used to improve security of iterated block ciphers, consisting in steps to combine
data with portions of the key, before the first round and after the last round; (2)
Feistel structures, which are the most widely used and the best studied structures
for the design of block ciphers, initially proposed by H. Feistel in the early 1970s
and adopted by the well-known block cipher DES; and (3) a diffusion switch
mechanism, consisting in the usage of multiple diffusion matrices organized in a
predetermined order, to ensure immunity against differential and linear attacks [7,9].

The data path of CLEFIA is composed of a four-branch Feistel structure
computed for several rounds, defined as GFN4,n. This Feistel structure is an
extended version of the traditional two-branch Feistel structure, which uses two
different F-functions per round. Each F-function has a 32 bit input/output data
path, as depicted in Fig. 1. F-functions F0 and F1 have different diffusion matrices,
providing CLEFIA with a diffusion switch mechanism. Additional robustness was
added to this algorithm with the addition of four whitening keys (WK), two added
before the main computation round and the other two added at the end of the
round operations. The different input key sizes that can be used in CLEFIA (128,
192, or 256 bits) directly influence the number of computed rounds, 18, 22, or 26,
respectively [8].

228 R. Chaves

Fig. 2 CLEFIA: F-functions

As in most ciphering algorithms, operations on data consist of byte swapping,
byte substitution, and arithmetic operations. The following describes the main
operations performed in the CLEFIA algorithm.

2.1 F-Functions

Two different F-functions (F0 and F1) are employed in each round and used for data
confusion. These F-functions consist of additions over GF(28) between the round
data and the round keys (RK); substitution boxes (S0 and S1); and diffusion matrices
(M0 and M1), one for each F-function, as depicted in Fig. 2.

CLEFIA employs two different types of 8-bit S-Boxes, S0 and S1. S0 is based
on four 4-bit S-Boxes, and S1 is based on the inverse function over GF(28) [8].
S0 is generated by combining four 4-bit S-Boxes obtained with operations over
GF(24). S1 is obtained as the inverse function performed over GF(28) defined by
the primitive polynomial z8 + z4 + z3 + z2 + 1.

Two different diffusion matrices, M0 and M1 defined in (1), are an integral part
of the diffusion mechanism present in CLEFIA, improving the resistance of the
algorithm to differential attacks. Each one of the four bytes (output of the S-Boxes)
are multiplied, by the values in each line of the matrix, and added over GF(28).
The constant values used on these matrices suggest some simplifications of the
operations needed in these diffusion matrices, as suggested in [11].

M0 =

⎛

⎜
⎜
⎝

0×01 0×02 0×04 0×06
0×02 0×01 0×06 0×04
0×04 0×06 0×01 0×02
0×06 0×04 0×02 0×01

⎞

⎟
⎟
⎠
, M1 =

⎛

⎜
⎜
⎝

0×01 0×08 0×02 0×0a
0×08 0×01 0×0a 0×02
0×02 0×0a 0×01 0×08
0×0a 0×02 0×08 0×01

⎞

⎟
⎟
⎠
. (1)

Compact CLEFIA Implementation on FPGAs 229

Algorithm 1 - GFN4,n(RK,X)

Input : X, RK
T0 | T1 | T2 | T3← X0 | X1 | X2 | X3;
for i = 0 to n−1 do

T1 = T1⊕F0(RK2i,T0), T3 = T3⊕F1(RK2i+1,T2);
T0 | T1 | T2 | T3← T1 | T2 | T3 | T0;

end for
Y0 | Y1 | Y2 | Y3← T0 | T1 | T2 | T3;
Output : Y

2.2 Data Processing

The encryption process in CLEFIA mostly consists of the GFN4,n Feistel network,
where n represents the number of rounds to be computed. In each round the data is
mixed and added with the round keys using bitwise XOR additions, the mentioned
F-functions, and bit permutations. The GFN4,n network [8] can be defined by the
function Y=GFN4,n(RK,X), computed as depicted in Algorithm 1.

The input X and the output Y are 128-bit values, while RK are the 2n×32-bit
round keys. A full 128-bit block CLEFIA encryption also requires de addition of
four 32-bit whitening keys (WKi). Two 32-bit whitening keys are added before
the GFN4,n computation, and two more are added after all the GFN4,n rounds are
computed, as depicted in Fig. 1. Given the Feistel network-based structure of this
algorithm the decryption process is identical to the encryption one, using the same
computational units, only differing in the order that the operations are performed,
as depicted in the rightmost side of Fig. 1. This inverse computation is achieved by
feeding the round and whitening keys in the inverse order, allowing for the same
computational structure to be used [8].

Two 32 bit round keys are employed in each round. These round keys are
obtained from the original key, as are the whitening keys. The generation of these
values is discussed in the following section.

2.3 Key Scheduling

As stated above, the CLEFIA algorithm supports inputs keys of 128, 192, and
256. However, the ciphering process itself requires several 32-bit rounds keys and
whitening keys. This means that the input key needs to be expanded into the 36,
44, or 52 round keys, respectively, and the four whitening keys. This expansion is
realized by the key scheduling part of the CLEFIA algorithm [8].

The calculation of the round keys is performed by feeding the initial key value
through a processing network (GFN) as when ciphering data. The difference lays
in the fact that the input key is used rather that an input data block. This GFN
network can be a four-branch structure, similar to the one depicted in Fig. 1, used

230 R. Chaves

Algorithm 2 - Expansion of K128 and L
Input : L, K
for i = 0 to 8 do

T = L⊕ (CON128
24+4i |CON128

24+4i+1 |CON128
24+4i+2 |CON128

24+4i+3)
L = Σ (L)
if i is odd then T = T ⊕K end if
RK4i | RK4i+1 | RK4i+2 | RK4i+3← T

end for
Output : RK

for a 128-bit input key, or an eight-branch GFN, used for the 192 and 256 bit input
key sizes [8]. After the GFN calculation is completed, the result is expanded using a
Double Swap function (a simple bitwise permutation) and additional constants are
added. The resulting values are the needed round keys, used in the ciphering data
path.
Key Scheduling for a 128-Bit Input Key: For an input key of 128 bits the four
32-bit whitening keys are obtained directly from the input key, by

WK0 |WK1 |WK2 |WK3← K. (2)

To obtain the round keys, a more complex computation is needed. This computa-
tion is divided in two steps. In the first step, a value L is calculated, being a function
of the 128-bit input key. In the second step, this L value is further manipulated
in order to obtain the several round keys. A total of 60×32-bit constant values
(CON128) are used. These constant values are precomputed [10] and depend on the
size of the input key (128, 192, or 256 bits).

For the computation of the 128-bit L value the GFN4,12 function is used. In this
case the input values are the 128 bits of the input key (instead of a 128-bit block of
data to be ciphered as in the case of the ciphering process) and 24 input constants
(instead of the 24 round keys), thus obtaining

L = GFN4,n(CON128
0:23, K). (3)

Followed by the computation of the L value the resulting 36 round keys can be
obtained by Algorithm 2.

In order to have the above algorithm fully specified DoubleSwap function (Σ)
has to be defined. This function swaps several bits of the 128-bit input and returns
another 128-bit value, as specified by [10]:

Y ← Σ(X) = X [7− 63] | X [121− 127] | X [0− 6] | X [64− 120]. (4)

Key Scheduling for a 192-Bit Input Key: For an input key of 192 bits, the four
32-bit of the whitening keys are no longer obtained directly. The input key is
transformed into KL and KR (two 128-bit values) and the bitwise XOR operation

Compact CLEFIA Implementation on FPGAs 231

is applied, resulting in the 128 bits of the whitening keys, as detailed in (7).

KL← K0 | K1 | K2 | K3, (5)

KR← K4 | K5 | K0 | K1, (6)

WK = KL⊕KR. (7)

The main difference in the round key expansion for a 192-bit input key lays in the
generation of the L value. In this case a GFN network with an eight-branch structure
must be used (GFN8,n). In this network, four 32-bit round keys are used per round.
For the 192-bit input key, the GFN network is composed of ten rounds, requiring
40×32-bit constant values (CON192). Note that a GFN8,n network receives an input
block of 256 bits, which in this case corresponds to the concatenation of KL with
KR, and outputs another 256-bit value, as described by

LL | LR = GFN8,10(CON192
0:40, KL | KR). (8)

The second step in the calculation of the 44 round keys is the processing of the
L and K values and the addition of the remaining 44 constants. This calculation can
be described as

Algorithm 3 - Expansion of K192 and L
Input : LL | LR, KL | KR

for i = 0 to 10 do
if i mod 4 = (0 or 1) then

T = LL⊕ (CON192
40+4i |CON192

40+4i+1 |CON192
40+4i+2 |CON(192)

40+4i+3)
LL = Σ (LL)
if i is odd then T = T ⊕KR end if

else
T = LR⊕ (CON192

40+4i |CON192
40+4i+1 |CON192

40+4i+2 |CON192
40+4i+3)

LR = Σ (LR)
if i is odd then T = T ⊕KL end if

end if
RK4i | RK4i+1 | RK4i+2 | RK4i+3← T

end for
Output : RK

Key Scheduling for a 256-Bit Input Key: The key expansion process for a 256-bit
input key is very similar to the one described for a 196-bit key. The differences are
in the computation of the KL and KR values, the constants used (CON256), and in
the loop length of Algorithm 3.

The KL and KR values are obtained from the 256 bits of the input key as

KL← K0 | K1 | K2 | K3, (9)

KR← K4 | K5 | K6 | K7. (10)

232 R. Chaves

The loop length of Algorithm 3 is of 13 (i = 0 to 12) resulting in the 52×32-bit
round keys needed for the CLEFIA ciphering process with 256-bit input keys.

3 CLEFIA Hardware Structures

Herein, a compact hardware CLEFIA structure is presented, which is still being
able to achieve competitive throughput and performance metrics, even on low-cost
devices. Two hardware structures are herein presented, one being the derivation of
the structure proposed in [11] for ASIC technologies and a second one that further
optimizes the data path. Both structures allow for the ciphering and deciphering
computations with all three key sizes specified for this algorithm.

As described above, the CLEFIA algorithm computation is divided into the key
scheduling computation and the ciphering computation itself. While the ciphering
computation needs to be performed for every 128-bit data block, the key scheduling
computation only needs to be computed once for the same input key. This is an
important factor when deciding to add or not dedicated hardware to perform the
key expansion. The main flow of this chapter considers that the key scheduling
computation is performed in software and that the resulting round keys are trans-
ferred to the hardware core during the initialization procedure. Besides receiving
and storing the expanded keys, the hardware core is also responsible for the transfer
and computation of the data to be encrypted or decrypted. Nevertheless, in order
to properly evaluate the cost of having a dedicated hardware structure for the key
scheduling, a structure capable of performing this computation for 128-bit input
keys is also proposed.

3.1 CLEFIA Data Ciphering Structures

Regarding the optimization of the computational structure, and as suggested in [9]
and validated by the structures proposed in [4, 11], faster implementation of
the CLEFIA algorithm can be achieved with the usage of T-Boxes. T-Boxes merge
the computation of the S-Box and part of the diffusion matrices operations with the
linear transformation layers, compressing the resulting structure into a lookup table,
also resulting on a reduction of the critical path [3].

In the CLEFIAs F-functions operation, T-Boxes can be used to replace S0, S1,
M0, and M1, by the lookup operations depicted by (11), followed by the bitwise
XOR operations (additions over GF(28)) [11]:

Compact CLEFIA Implementation on FPGAs 233

T00 = (S0,02×S0,04×S0,06×S0)

T01 = (02×S1,S1,06×S1,04×S1)

T02 = (04×S0,06×S0,S0,02×S0)

T03 = (06×S1,04×S1,02×S1,S1)

T10 = (S1,08×S1,02×S1,0A×S1)

T11 = (08×S0,S0,0A×S0,02×S0)

T12 = (02×S1,0A×S1,S1,08×S1)

T13 = (0A×S0,02×S0,08×S0,S0)

(11)

The resulting T-Boxes have an 8 bit input bus and a 32-bit data output. These
lookup tables can be implemented in two ways: (1) using logic gates (or LUT in
FPGAs) [4]; (2) or using dedicated memory blocks. Given that most of the current
reconfigurable devices, in particular FPGAs, have dedicated embedded memory
blocks designated as BRAMs, the T-Box implementation can be efficiently realized
with these components. This allows to achieve faster and less LUT demanding
solutions [5]. Further optimizations can be accomplished in terms of resource
requirements taking into account that these tables perform identical calculations.
Actually, T00 and T02, presented in (11), perform the exact same lookup operation,
given the same input, only differing in a 16-bit shift of the output. The same applies
to T01/T03, T10/T12, and T11/T13. Given this characteristic and due to the existence
of dual port BRAMs in most FPGA devices, two of these lookup operations
can be realized in a single BRAM component. The additional shift operations
can be implemented by hardwired routing, without additional area overhead. The
remaining hardware required to perform the round computations is composed by
a tree of bitwise XOR operations (additions over GF(28)) [11]. Apart from the
round computation, the addition of the four 32-bit whitening keys also needs to
be performed, two at the beginning and two more at the end of the final round
computation. The resulting structure, depicted in Fig. 3, is similar to the one
proposed in [11] and herein designated as type I CLEFIA structure.

In order to obtain an even more compact structure for the CLEFIA implementa-
tion, the symmetry between the F0 and F1 functions is further explored. The main
difference between F0 and F1 resides in the M0 and M1 tables, as depicted in Fig. 2.
A more compact structure can be derived by merging the computation of these two
tables into a single lookup table. Combining the resulting table for both M0 and M1

and taking into consideration the computation structures of the F-functions, a single
merged structure, able to compute both F0 and F1, can be derived.

The resulting merged T-Boxes, capable of computing both the F0 and F1, use
a 9-bit input divided in two parts, 8 bits for the data and one other bit for the F-
function selection. As in the type I CLEFIA structure, a 32-bit value is outputted by
this T-Box. However, for the implementation of these T-Boxes, the BRAMs need to
store twice the data. While in type I the T-Box blocks require 256×32 bits=8 kbits,

234 R. Chaves

Fig. 3 Type I CLEFIA structure

in the type II structure, the memory block needs 512×32 bits=16 kbits to store the
lookup values. Most FPGA devices have 18 kbit BRAMs units, meaning that for
these FPGAs, the resulting T-Box blocks for the type II structure will occupy the
entire BRAM unit but will not require any more BRAMs. For the type I structure,
only half of each used BRAM is occupied.

In the T-Box of the type II structure, the selection of which function is to be
computed within the T-Box is performed by a single bit value at the most significant
bit of the address bus of the BRAM, as depicted in Fig. 4 by the T0/T1 selector in
the BRAM.

Being able to perform the lookup operation of the F-functions within a single
component, an additional level of folding can be applied, performing the computa-
tion of F0 and F1 in the same hardware structure. With this technique, approximately
half of the hardware resources are needed, apart from the additional selection logic.
Consequently the computation of each round will now require two clock cycles,
twice as much as in the type I structure.

Note that, even though a data dependency exists between the data of each round,
with a careful scheduling of the round operations and data storage, round i+1 can
start its computation before round i has completely finished its computation. With
this in mind a pipeline stage can be added to type II CLEFIA structure dividing the
computation into two stages. Table 1 depicts the proposed computation scheduling,

Compact CLEFIA Implementation on FPGAs 235

Fig. 4 Type II CLEFIA structure

where P0 refers to 32 bits of the 128-bit input and i refers to the respective round
being computed. Note that this computation scheduling represents the GFN4,n along
with the addition of the whitening keys.

In this improved structure the computation of each round is performed in two
clock cycles. In the first stage, one of the F-functions is computed by the T-Box
structures. In the second stage, the remaining data and round key additions are
performed. With the proposed schedule, and considering the resulting hardware
structure within the FPGA fabric, a pipeline stage can be placed in such a way that
stage one and stage two are relatively balanced. The real gain in this structure comes
from the fact that while one stage computes one-half of the CLEFIA algorithm,
the other stage computes the other half of the CLEFIA algorithm. The resulting
computational structure is depicted in Fig. 4.

Note that the computation in each round can now be performed in approximately
half of the time as in the type I structure. Thus, it is expected that an approximate
ciphering throughput can be achieved, given that no pipeline stalling exists. In order
to optimize the data path to the used FPGA technology, the pipeline stage register,
depicted in dark in Fig. 4, can be placed in different parts of the data path. Several

236 R. Chaves

Table 1 Type II structure pipeline scheduling

i First stage Second stage Output

1 T0(P0
0 +RK0) – –

2 T1(P0
2 +RK1) (T00 +T01 +T02 +T03)+WK0 +P0

1 P1
0

3 T0(P1
0 +RK2) (T10 +T11 +T12 +T13)+W K1 +P0

3 P1
2

4 T1(P1
2 +RK3) (T00 +T01 +T02 +T03)+P1

1 P2
0

5 T0(P2
0 +RK4) (T10 +T11 +T12 +T13)+P1

3 P2
2

6 T1(P2
2 +RK5) (T00 +T01 +T02 +T03)+P2

1 P3
0

7 T0(P3
0 +RK6) (T10 +T11 +T12 +T13)+P3

3 P3
2

.

2×n−2 T1(P
n−2
2 +RK2n−4) (T00 +T01 +T02 +T03)+Pn−2

1 Pn−1
0 =C0

2×n−1 T0(P
n−2
0 +RK2n−3) (T10 +T11 +T12 +T13)+Pn−2

3 Pn−1
2 =C2

2×n T1(P
n−1
2 +RK2n−2) (T00 +T01 +T02 +T03)+Pn−1

1 +WK2 Pn−1
1 =C1

2×n+1 – (T10 +T11 +T12 +T13)+Pn−1
3 +WK3 Pn−1

3 =C3

realized implementations suggested that, in the considered devices, this register is
best placed at the output of the BRAMs. In all the families of the considered FPGAs,
a register is intrinsically located at the beginning of the BRAMs, which cannot be
removed, thus defining the frontier of the second pipeline stage.

On the left side of the resulting structure, a set of registers can be observed.
These registers are used to store the temporary round values, needed by the proposed
schedule (see Table 1).

3.2 CLEFIA Key Scheduling Structure

In order to adequately decide whether or not to allocate dedicated hardware to the
key scheduling process, this section presents a possible structure to perform this
computation for 128-bit input keys.

The expansion of the input key into the several rounds keys uses the already
described GFN function. However, only the 128-bit calculation shares the same
GFN4,n function with the CLEFIA ciphering calculation. The expansion of the 192-
and 256-bit input keys require the use of a GFN network with an eight-branch
structure (GFN8,n). This means that the hardware structure described above for the
CLEFIA ciphering computation cannot be use for these last two key sizes. This
is the main reason why only 128-bit input key scheduling structures are proposed
in the related art [4, 11]. As explained in Sect. 2.3, the key scheduling process is
divided into two steps. In the first step, the 128-bit L value is computed using the
same GFN structure as the ciphering calculation (L = GFN4,n(CON128

0:23,K)). Given
that this calculation only differs from the ciphering process in the input values and
the nonexistence of the whitening keys, the structure type II (depicted in Fig. 4) can
be used. For this re-usage the round keys (RKi) input must be feed with the needed
constant values (CON128

0:23), the whitening keys (WKi) set to zero, and the data input

Compact CLEFIA Implementation on FPGAs 237

Algorithm 4 - Generation of RKi for 128-bit input Keys
Input : L0,0 |L1,0 |L2,0 |L3,0← L, K0 |K1 |K2 |K3← K
for i = 0 to 8 do

for j = 0 to 3 do
T = Li, j⊕ (CON128

24+4i+ j)
if i is odd then T = T ⊕Kj end if
RK4i+ j ← T

end for
Li+1 = Σ (Li)

end for
Output : RK

Fig. 5 CLEFIA 128-bit key expansion structure

block (P0:3) must be the 128-bit input key (K). In the second step the 40 round keys
are generated using the L and K values. In order to obtain a more compact structure
for this computation, Algorithm 2 can be rewritten as depicted in Algorithm 4.

From Algorithm 2, a compact 32-bit data flow can be obtained, resulting in the
structure depicted in Fig. 5. Both the needed constant values (CON128) and the
generated round keys (RKi) are stored in the same BRAM. This BRAM operates
both as a RAM, storing and reading the round keys from the lower part of this
memory, and as a ROM, where the constant values are initialized in the upper part
of this memory. Note that the address input of the RKi output can be either the round
key, when data is being ciphered, or the constant address, when the GFN hardware
is being used to generate the L value.

In the leftmost side of the structure depicted in Fig. 5, the L value is loaded and
the DoubleSwap function (Σ ()) is processed. Rather than directly loading the entire
128-bit L value from the GFN computation, this value is read from the internal
points 2 and 3 depicted in Fig. 4. Given that these values are registered and not in
the critical path nor directly feed to the ciphered data output, routing and fanout
problems are mitigated. For the calculation of the round keys, the L value is read
during rounds 2n to 2n+2 of scheduling depicted in Table 1.

238 R. Chaves

Fig. 6 Whitening keys multiplexing

For the 128-bit input key, the whitening keys are directly obtained from the input
key as depicted in (2). The difference in the encryption and decryption processed
is only in the order that the round keys and the whitening keys are feed into the
computation. For the round keys this order inversion is accomplished by addressing
the depicted BRAM in the reverse order. However, the whitening keys are not in the
memory and need to multiplexed according to the ciphering mode. Additionally, the
whitening keys added before the GFN computation, depicted in Fig. 4 as Wk0 and
Wk1, also need to be zeroed when performing the key scheduling computation. The
resulting modification to the addition of the whitening keys at the input is depicted
in Fig. 6.

4 Evaluation and Related Art Comparison

In this section, experimental results for the proposed structures, on two distinct
Xilinx FPGAs technologies, are presented and compared with the work in the
existing related art [4,11]. In the first part of this analysis, only the main computation
structure is considered, without the key scheduling computation. In order to evaluate
the presented CLEFIA structures on low-cost FPGA devices, the Xilinx Spartan
3E technology was selected. For higher end devices, the Virtex 4 technology was
selected.

4.1 CLEFIA Data Ciphering Analysis

The implementation results on the Spartan device, presented in Table 2, suggest that,
on Spartan 3E devices, throughputs in the order of 700 Mbit/s can be achieved for
both structures at a resource cost of 624 LUT and 5 BRAMs for type I structure
and 323 LUT and 3 BRAMs for the more compact type II structure. Note that in all
implementations of the proposed structures without key scheduling, an extra BRAM
storing the round keys is added. This BRAM is used to store the already expanded
round keys used in the CLEFIA computation.

Compact CLEFIA Implementation on FPGAs 239

Table 2 Summary of obtained performance results

Key Clock Throughput Efficiency
size cycles (Mbps) (Mbps/Slice)

Spartan 3E Type-I 128 18 768 1.2
192 22 628 1.0
256 26 531 0.9

Type-II 128 36 690 2.1
192 44 564 1.8
256 52 477 1.5
128 18 1273 2.0

Virtex 4 Type-I 192 22 1042 1.7
256 26 881 1.4

Type-II 128 36 1077 4.5
192 44 851 3.9
256 52 720 3.0

Results on a higher end device were also obtained, namely, for the Virtex 4
technology. In these FPGAs throughputs in the order of 1.0 Gbit/s can be achieved
with a relatively low resource cost for both structure types. For the type II structure
a resource occupation of 238 LUTs and 3 BRAMs is achieved. Throughput/Slice
efficiency metrics up to 4.5 (Mbps/Slice) are achieved for the proposed type II
structure. Table 2 presents the obtained throughputs for the two presented CLEFIA
structures according to the key size. As expected when longer ciphering keys are
used the performance efficiency of the ciphering computation decreases.

Considering the related art, the presented structures implemented on FPGAs
cannot be directly compared with the ones proposed in [11], since these authors
focused their work on ASIC technology. Nevertheless, as mentioned above, the
presented type I structure is similar to the type A structure proposed in [11],
which suggests the best throughput/area efficiency metric. With this, comparing the
presented type I structure with the proposed type II structure allows us to evaluate
the improvements of the proposed modification to the computation structure.
Experimental results suggest an area reduction between 48 % and 61 %, at the
expense of a throughput reduction between 10 % and 15 %, for the Spartan 3E and
Virtex 4 technologies, respectively. These values suggest an improvement of the
throughput/slice efficiency metric of 1.75 times on the Spartan 3E technology and
more significantly of 2.25 times for the Virtex 4 technology.

This significant efficiency improvement is due to the component reutilization
accomplished by the pipeline and data path rescheduling. Even though the number
of cycles needed to cipher a data block doubles, the operating frequency also
increases (194 MHz instead of 108 MHz for the Spartan 3E), given that the
computational data path is evenly divided in two.

Note that, while the original structure (type A) proposed in [11] performs the
key scheduling, the above analysis was performed between the two structures,

240 R. Chaves

Table 3 Hardware performance comparison of CLEFIA implementations

Takeshi Ours Ours Ours Ours Kryjak
[11] Type-I Type-II Type-I Type-II [4]

Device ASIC XC3S1200-4 XC4LX200-11
Slices 21a 624 323 625 238 9896
BRAMs n.a. 4+1 2+1 4+1 2+1 0
Frequency (MHz) 746 108 194 179 303 167
Latency (cycles) 18 18 36 18 36 18
Throughput (Mbps) 5306 768 690 1273 1077 21376
Throughput/Slice (Mbps/S) n.a. 1.2 2.1 2.0 4.5 2.1
aKgates not Slices

without the key expansion hardware. The analysis considering the structures with
key scheduling is performed at the end of this section.

Considering the implementation of the described T-Boxes using LUTs, a total of
185 slices would be needed for each T-Box, using a Spartan 3E device. Thus 1,480
slices would be needed to implement the eight required T-Boxes in type I structure.
Also, the delay imposed by this kind of implementation, would lead to a longer
critical path and consequently lower frequencies and throughputs.

In [4] a fully unfolded structure is proposed, justifying the extremely high
throughput obtained (21 Gbit/s). However, this throughput comes at the expense
of an excessively high area resource usage, as depicted in Table 3. Moreover, this
structure does not allow for the use of encryption modes other than ECB or an
input key different than a 128-bit one. On a Virtex 4 FPGA, a throughput/slice
efficiency metric of 2.1 is obtained for [4] in comparison with a throughput/slice
of 4.5 for the proposed type II structure. The comparison between the two
implementations suggests a 2.14 times better throughput/slice metric on Virtex 4
devices. Throughputs significantly above 1 Gbit/s were not usually a target, since
most FPGA applications do not require such high-throughput values.

In the above discussion the BRAMs needed by the proposed structures were not
considered. However, the number of used slices is within the percentage of used
BRAMs that are available in the FPGA, either we use them or not. In the structure
propose in [4], no BRAMs are used.

4.2 CLEFIA Key Scheduling Analysis

The above discussion only considered the hardware implementation of the CLEFIA
ciphering, without the key scheduling computation. However, when no auxiliary
processing units exists to perform this computation or when the key scheduling
needs to be accelerated, a ciphering core with key scheduling capability must be
deployed.

Compact CLEFIA Implementation on FPGAs 241

Table 4 Hardware performance of the 128-bit input key scheduling

Key expansion CLEFIA with CLEFIA without
structure key expansion key expansion

Device XC3 XC4 XC3 XC4 XC3 XC4
Slices 218 171 574 481 323 238
BRAMs 1 3 1
Frequency (MHz) 193 285 184 287 194 303
Latency (cycles) 60 36 36
Throughput (Mbps) 412 608 654 1020 690 1077
Throughput/Slice (Mbps/S) n.a. n.a. 1,1 2,1 2,1 4,5

Table 4 presents the obtained results for the key expansion structure presented
in Fig. 5 and the resulting CLEFIA ciphering core with 128-bit key scheduling. The
obtained experimental results suggest that the resulting CLEFIA structure with 128-
bit key scheduling requires between 78 % and 100 % more area resources regarding
the CLEFIA structure without key scheduling. Regarding the maximum achievable
operating frequency, a degradation of about 5 % can be observed. This degradation
may be justified by a more demanding routing caused by the additional logic added
by the key expansion logic.

In conclusion, the 128-bit key scheduling can be added to the CLEFIA ciphering,
while maintaining approximately the same ciphering throughput, but with signifi-
cant area usage increase. Nevertheless, with this dedicated hardware structure, a key
scheduling of up to 4.75 million 128-bit input keys per second can be performed on
a Virtex 4 device.

5 Conclusion

This chapter presents two compact CLEFIA structures and analyses the existing
related art. The presented structures were designed having in mind reconfigurable
technologies, in particular FPGA with BRAMs, but can be easily targeted to other
technologies such as ASIC. The main focus of this work is given to the computation
of the CLEFIA ciphering without key scheduling. Nevertheless, the implementation
of the key scheduling for 128-bit input keys is also considered and analysed.

Herein, three approaches are studied: one using a fully unrolled approach [4];
one folded structure computing one cipher round per clock cycle, similar to the
one presented in [11]; and finally, one which collapses the round computation by
carefully scheduling the operations with the use of an additional pipeline stage.
The result analysis suggests that with the collapsing of the computation, as realized
in the presented type II structure, significant gains in the resource usage can be
achieved while maintaining identical ciphering throughput metrics. Experimental
results suggest that efficiency improvements of 2.25 times can be achieved as well
as a reduction in the required area resources by up to 60 % at a performance cost of at

242 R. Chaves

most 15 %. When comparing the fully folded structure with the fully unfolded one,
a clear difference in throughput and area is obtained. The fully unfolded structure is
able to achieve throughputs up to 21 Gbit/s but at an extremely high area cost and
lack of flexibility. In terms of throughput/slice, the fully folded structure is able to
achieve 2.14 times better efficiency results.

Regarding the key scheduling in hardware, experimental results suggest that no
significant impact is imposed in the operating frequency. However, area resource
usage significantly increases. Due to its cost, key scheduling should only be
performed in dedicated hardware structures when truly necessary.

In conclusion, compact structures for the implementation of the CLEFIA encryp-
tion algorithm can be developed and throughputs near 1 Gbit/s can be achieved with
low resource usage, even on low-cost FPGA devices.

Acknowledgements This work was supported by the Portuguese Foundation for Science and for
Technology (INESC-ID multi-annual funding) through the PIDDAC Program funds and by the
QREN Program under contract No 3487.

References

1. Chen H, Wu W, Feng D (2007) Differential fault analysis on CLEFIA. Information and com-
munications security, pp 284–295 http://direct.bl.uk/bld/PlaceOrder.do?UIN=221532696&
ETOC=RN&from=searchengine

2. Elbirt A, Yip W, Chetwynd B, Paar C (2001) An FPGA-based performance evaluation of
the AES block cipher candidate algorithm finalists. IEEE Trans Very Large Scale In-
tegration (VLSI) Syst 9(4):545–557 http://direct.bl.uk/bld/PlaceOrder.do?UIN=098438233&
ETOC=RN&from=searchengine

3. Good T, Benaissa M (2005) AES on FPGA from the fastest to the smallest. Cryptographic
hardware and embedded systems–CHES 2005, pp 427–440 http://direct.bl.uk/bld/PlaceOrder.
do?UIN=173568703&ETOC=RN&from=searchengine

4. Kryjak T, Gorgon M (2009) Pipeline implementation of the 128-bit block cipher CLEFIA in
FPGA. In: International conference on field programmable logic and applications, FPL 2009,
pp 373–378. IEEE

5. Rodriquez-Henriquez F, Saqib N, Dı́az-Pérez A, Koc C (2006) Cryptographic algorithms on
reconfigurable hardware, vol 978. Springer, New York

6. Shirai T, Mizuno A (2007) A compact and high-speed cipher suitable for limited resource
environment. In: Third ETSI security workshop presentation. Sophia-Antipolis, France

7. Shirai T, Shibutani K (2006) On Feistel structures using a diffusion switching mechanism. In:
Fast software encryption, pp 41–56. Springer, New York

8. Shirai T, Shibutani K, Akishita T, Moriai S, Iwata T (2007) The 128-bit blockcipher CLEFIA.
In: Fast software encryption, pp 181–195. Springer, New York

9. SONYCorporation (2007) The 128-bit block cipher CLEFIA security and performance evalu-
ations. URL http://www.sony.net/Products/cryptography/clefia/technical/data/clefia-eval-1.0.
pdf. Cited 3 December

10. SONYCorporation (2007) The 128-bit blockcipher CLEFIA - algorithm specification. URL
http://www.sony.net/Products/cryptography/clefia/technical/data/clefia-spec-1.0.pdf. Cited 3
December

http://direct.bl.uk/bld/PlaceOrder.do?UIN=221532696&ETOC=RN&from=searchengine
http://direct.bl.uk/bld/PlaceOrder.do?UIN=221532696&ETOC=RN&from=searchengine
http://direct.bl.uk/bld/PlaceOrder.do?UIN=098438233&ETOC=RN&from=searchengine
http://direct.bl.uk/bld/PlaceOrder.do?UIN=098438233&ETOC=RN&from=searchengine
http://direct.bl.uk/bld/PlaceOrder.do?UIN=173568703&ETOC=RN&from=searchengine
http://direct.bl.uk/bld/PlaceOrder.do?UIN=173568703&ETOC=RN&from=searchengine
http://www.sony.net/Products/cryptography/clefia/technical/data/clefia-eval-1.0.pdf
http://www.sony.net/Products/cryptography/clefia/technical/data/clefia-eval-1.0.pdf
http://www.sony.net/Products/cryptography/clefia/technical/data/clefia-spec-1.0.pdf

Compact CLEFIA Implementation on FPGAs 243

11. Sugawara T, Homma N, Aoki T, Satoh A (2008) High-performance ASIC implementations of
the 128-bit block cipher CLEFIA. In: IEEE international symposium on circuits and systems,
ISCAS 2008, pp 2925–2928. IEEE

12. Tsunoo Y, Tsujihara E, Shigeri M, Suzaki T, Kawabata T (2008) Cryptanalysis of CLEFIA
using multiple impossible differentials. In: International symposium on information theory
and its applications, ISITA 2008, pp 1–6. IEEE

A Systematic Method to Evaluate and
Compare the Performance of Physical
Unclonable Functions

Abhranil Maiti, Vikash Gunreddy, and Patrick Schaumont

1 Introduction

An on-chip physical unclonable function (PUF) is a chip-unique challenge-response
mechanism exploiting manufacturing process variation inside integrated circuits
(ICs). The relation between a challenge and the corresponding response is deter-
mined by complex, statistical variation in logic and interconnect in an IC. A PUF
has several applications in the field of hardware-oriented security. For example,
it can be used in device authentication and secret key-generation [20]. Guajardo
et al. discussed the use of PUFs for intellectual property (IP) protection, remote
service activation, and secret-key storage [6]. A PUF-based RFID tag has also been
proposed to prevent product counterfeiting [2, 3].

Since the inception of the idea of PUFs, different types of PUFs have been
proposed so far. For example, Lim et al. proposed Arbiter PUF that exploits the
delay mismatch between a pair of identically laid-out delay paths [11]. A PUF which
is based on random start-up values of SRAM cells was proposed by Guajardo et al.
[5]. A PUF based on an array of identically laid-out ring oscillators has also been
proposed [20]. There are several other PUFs which are either enhanced versions of
a previously proposed PUF or introduce new methods of generating PUF challenge-
response pairs (CRPs).

The availability of several different PUFs gives us choices to select a particular
one suitable for an application. However, it also raises few practical questions: how
do we know if a PUF is efficient or not? How do we compare one PUF with another?
Currently, there is no readily available method to fairly compare one PUF with
another. A concrete as well as easy-to-use evaluation–comparison method will be
useful for a designer who may want to employ a PUF in her design. Armknecht et
al. expressed the same view in their work on formalizing the security features of

A. Maiti (�) • V. Gunreddy • P. Schaumont
Virginia Tech, 1185 Perry Street, Blacksburg, VA 24061, USA
e-mail: abhranil@vt.edu; gvikash7@vt.edu; schaum@vt.edu

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2 11, © Springer Science+Business Media, LLC 2013

245

246 A. Maiti et al.

PUFs [1]. We propose a systematic method to evaluate the performance of PUFs
and to make a fair comparison among them. As part of this work, we have identified
the following goals:

First, we need to clearly define parameters that will quantify the performance of
a PUF in a concrete manner. In order to do that, we not only propose our own PUF
parameters but also explore several other parameters defined by other researchers.
No analysis has been carried out so far to compare these parameters in order to
estimate how effective they are in evaluating performance of a PUF. It might also be
possible that many of these parameters are similar in nature or redundant. We aim
to find any such cases to define a compact set of PUF parameters while removing
redundancy.

Second, we aim to make the comparison method independent of the underlying
PUF technique. For example, it should be able to compare a delay-based PUF like
the RO PUF [20] with a memory-based PUF such as the SRAM PUF [5]. Therefore,
we focus on the statistical properties of the binary PUF responses. This is possible
because every PUF produces binary responses, or responses can be converted to
binary form irrespective of the underlying technique.

Third, we aim to make our experiments repeatable not only by proposing PUF
performance evaluation parameters but also by providing access to the raw data of
our measurements. The measurements have been done on PUFs implemented in a
low-cost, off-the-shelf reconfigurable device, Spartan 3E FPGA. We believe that the
PUF research community may benefit from access to such data.

With these goals in mind, we present the following contributions:

• We first propose three measurement dimensions of a PUF. They are device,
time, and space. The PUF performance parameters will be defined along these
dimensions. We explain the significance of these dimensions in detail and show
how several PUF parameters can be defined based on them.

• We propose that a set of m parameters be used to evaluate and compare the
performance of different PUFs while each PUF may have different number of
challenge and response bits. This is possible as the proposed parameters purely
rely on the statistical properties of the binary PUF responses. A simple view
of the idea is presented in Fig. 1. As a preliminary effort, we propose seven
parameters as part of the method: uniqueness, reliability, randomness, steadiness,
bit-aliasing, diffuseness, and probability of misidentification (PMSID). We have
defined some of these parameters while rests have been selected from the works
done by other researchers. We explain in detail why these parameters are useful
in evaluating the performance of PUFs.

• We compare two different PUFs: the RO PUF and the APUF using the above-
mentioned parameters. We used measured PUF data for this comparison. A
detailed comparison result is presented to validate the proposed method.

• Finally, we present an online database that holds the results of our experiments.
We present measurements in 193 FPGAs under standard operating conditions
and in five FPGAs under varying operating conditions. The database is scripted
and enables a user to easily formulate queries to extract specific record sets.

A Systematic Method to Evaluate and Compare the Performance. . . 247

Comparison
Results

PUF1

PUF2

PUFn

Parameter1
Parameter2
Parameter3

.

.
Parameterm

.

.

Challenge
M1bits

Challenge
M2bits

Challenge
Mnbits

Response
L1 bits

Response
L2 bits

Response
Ln bits

.

.

.
Evaluation&Comparison

Fig. 1 Basic idea of a PUF evaluation and comparison method

The PUF parameters proposed in this book chapter were developed using the
measurements of this database.

The rest of this chapter is organized as follows. Section 2 gives an overview of
different PUFs proposed so far in the research community. It also discusses several
works related to the evaluation and comparison of performance of different PUFs.
Section 3 introduces the dimensions of PUF measurements, defines four PUF
parameters, and analyzes few PUF parameters from the literature. Based on our
analysis, we propose a final set of parameters as the main building blocks of the
evaluation–comparison method. Section 4 presents an analysis to compare the RO
PUF with the APUF. In Sect. 5, we describe our online PUF database. Finally, we
present some concluding remarks in Sect. 5.

2 Background

In this section, we briefly discuss the history of the PUF technology since it was
introduced. We also discuss several research contributions that are related to PUF
performance evaluation.

2.1 Chronology of PUFs

One of the seminal works in the area of PUF is that of Lofstrom et al. in 2000.
It exploited mismatch in silicon devices for identification of ICs [12]. Though
the authors did not call it a PUF, the objective of their work was very similar

248 A. Maiti et al.

Table 1 Different types
of PUFs 2000 IC identification using device mismatch [12]

2001 Physical one-way function [18]
2002 Physical random function [4]
2004 Arbiter PUF [11]
2006 Coating PUF [22]
2007 Ring oscillator PUF [20], SRAM PUF [5]
2008 Butterfly PUF [10]
2009 PUF using power distribution system of an IC [7]
2010 Glitch PUF [21]
2011 Mecca PUF [9]

to that of a PUF. In 2001, Pappu et al. presented the concept of physical one-
way function which led to the idea of PUF [18]. After that, many different types
of PUFs have been proposed. Almost every year, at least one new PUF circuit
was proposed. Table 1 shows a year-wise list of different PUFs starting from
the year 2000. Though this list is not exhaustive, it shows us a picture about how
the researchers tried to build different PUFs. For more information, one may refer
to the work by Maes et al. which presents a comprehensive discussion on different
PUFs proposed so far [14].

Variety of PUFs does support the need to build a systematic method to evaluate
and compare their performance. Despite the existence of multiple PUF techniques,
not many of them have been actually integrated in a system so far. An evaluation–
comparison method may make it easier for a system designer to select a PUF that
suits the best for a particular application leading to more utilization of the PUF
technology.

2.2 Related Work

We discuss related research on the performance measurement of PUFs. Majzoobi
et al. proposed several parameters to test the security of PUFs [16]. They tested three
security properties of a PUF: predictability, sensitivity to component accuracy, and
susceptibility to reverse engineering. Two variants of the Arbiter PUF, linear and
feed-forward, were tested. However, no comparison of different PUFs were made.

In another work, Armknecht et al. formalized three properties of a PUF:
robustness, unclonability, and unpredictability [1]. The analysis result presented in
this work is based on the SRAM-based PUF proposed by Gujardo et al. [5]. No
comparison between multiple types of PUFs was presented in this work.

Van der Leest et al. tested the performance of D flip-flop-based PUF (DFF-
based PUF) implemented in ASIC using several parameters [23]. This PUF was
originally proposed by Maes et al. using flip-flops in FPGAs [13]. This work applied
Hamming weight test, inter-chip uniqueness test, and NIST randomness test on PUF
responses. This work presented a comparison between the SRAM-based PUF, the

A Systematic Method to Evaluate and Compare the Performance. . . 249

Butterfly PUF [10], and the DFF-based PUF. However, this comparison did not use
the statistical properties of the PUF responses except the entropy. Apart from the
entropy, the comparison was made based on the number of gates used to implement
the PUF, the platform used (ASIC/FPGA), and the spread on a die.

A comprehensive performance evaluation of the APUF has been done by Hori
et al. [8]. In this work, several PUF parameters were defined systematically and
were validated based on a large set of PUF data. The PUF parameters proposed by
this work are uniqueness, randomness, correctness, steadiness, and diffuseness. We
have studied this work as a part of the PUF comparison effort in this work. We will
discuss this work in detail in the subsequent sections. However, this work also did
not present any comparison analysis on different types of PUFs.

The work by Maes et al. presented a detailed comparative analysis between
several PUFs [14]. One of the comparisons presented in this work was made
using several parameters of PUFs such as evaluability, uniqueness, reproducibility,
physical unclonability, mathematical unclonability, unpredictability, one-way-ness,
and tamper evidence. Another comparison analysis, presented in this work, includes
randomness, challenge-response mechanism, CRP space, implementation platform,
average inter-chip and average intra-chip variation in PUF responses, entropy,
tamper evidence, and model building as the comparison metrics. The results
presented for the CRP space, the entropy, and the inter- and intra-chip variation
were quantitative while the others were qualitative.

Our contribution in this work is different in many ways from the related work
discussed. First, we define a basis for the PUF performance measurement/eval-
uation. We propose three measurement dimensions for this purpose. The PUF
measurement dimensions have not been formally defined before. We explain how
these dimensions capture useful information in order to evaluate the performance
of PUFs. We, then, define few parameters using the proposed dimensions to
evaluate the statistical property of the PUF responses. Hori et al. defined their
PUF parameters using a similar approach, but they did not explicitly define the
dimensions [8]. Second, we analyze several PUF evaluation parameters to point out
any redundancy that may exist among them. Based on our analysis, we propose a
compact set of parameters for PUF evaluation as well as comparison. We did not find
any work in the literature that has made a similar effort. Finally, we compare two
different PUFs: the RO PUF and the APUF. Unlike previous efforts, our comparison
is done entirely quantitatively using the parameters we proposed.

3 PUF Evaluation and Comparison Method

In this section, we first introduce the PUF measurement dimensions. Then we define
four PUF parameters to quantify several important quality factors of a PUF. Next,
we analyze few parameters defined by other researchers. We compare them with the
parameters we defined. Finally, we propose a set of parameters as the components
of the evaluation–comparison method.

250 A. Maiti et al.

Device

Time

Space

ri,l,t

ri,l,t= t- th sample of the l-th
response bit of the i-th device

1 i k,1 l n,1 t m

23 1k

m

n

Fig. 2 Dimensions of PUF measurement

3.1 PUF Measurement Dimensions

Figure 2 shows three different dimensions of PUF measurement along three axes:
device, space, and time. The inter-chip variation in PUF responses is captured using
the device axis. The two other axes are used to capture the intra-chip variation.

The device axis represents the population dimension of PUF measurements.
A PUF not only needs to generate random responses for a chip, the generated
responses also need to uniquely identify the chip among several other chips of
the same type. To estimate this property, one needs to measure a set of PUF
instantiations in several chips/devices. Hence, we included the device axis. A set
of k devices have been shown in Fig. 2 to represent a population.

The space axis stands for the location of a single-bit response, r in an n-bit
response string, R. The rationale behind naming it the space axis is that the PUF
response bits are generated at different physical locations on a chip. For example,
in an SRAM PUF, the SRAM cell that produces a response i has an on-chip
location that is different from that of another SRAM cell that produces a response j.
For Arbiter PUF, the location of the Arbiter that produces the response is fixed.
However, the locations of the stimulated delay paths change depending on the
challenge (whether straight connections or crisscross connections through a switch).
To estimate the randomness of a PUF, we examine multiple response bits from a
PUF. Hence, the space dimension becomes useful.

Finally, the time-dependent properties of a PUF are captured along the time axis.
A critical attribute of a PUF is the reliability of the responses. It estimates how
consistently the responses can be generated against varying operating conditions
such as variable ambient temperature and fluctuating supply voltage. To estimate the
reliability, we take multiple samples of the responses at different instances of time.
Samples of PUF responses are also useful in estimating the circuit aging effect on
PUFs.

A Systematic Method to Evaluate and Compare the Performance. . . 251

Device

Time

Space
23 1k

Fig. 3 PUF uniqueness
evaluation

3.2 Defining PUF Parameters

Now, we will define four PUF parameters based on the measurement dimen-
sions introduced. These parameters are uniqueness, reliability, uniformity, and
bit-aliasing. We formalized these parameters in one of our previous works on PUF
characterization [15]. Each of these parameters quantifies an essential quality factor
of a PUF as we will explain them in detail.

3.2.1 Uniqueness

Uniqueness represents the ability of a PUF to uniquely distinguish a particular chip
among a set of chips of the same type. We use Hamming distance (HD) between
a pair of PUF identifiers to evaluate uniqueness. If two chips, i and j (i �= j), have
n-bit responses, Ri and R j, respectively, for the challenge C, the average inter-chip
HD among k chips is defined as

Uniqueness =
2

k(k− 1)

k−1

∑
i=1

k

∑
j=i+1

HD(Ri,R j)

n
× 100%. (1)

It is an estimate of the inter-chip variation in terms of the PUF responses and not the
actual probability of the inter-chip process variation. In Fig. 3, it is shown that the
inter-chip HD is estimated along the device axis. One comparison is shown in dark
gray between the device 3 and the device k. Another comparison is shown in light
gray between the device 1 and the device 3.

3.2.2 Reliability

PUF reliability captures how efficient a PUF is in reproducing the response bits. We
employ intra-chip HD among several samples of PUF response bits to evaluate it.
To estimate the intra-chip HD, we extract an n-bit reference response (Ri) from the
chip i at normal operating condition (at room temperature using the normal supply

252 A. Maiti et al.

Device

Time

Space
23 1n

Fig. 4 PUF reliability
evaluation

voltage). The same n-bit response is extracted at a different operating condition
(different ambient temperature or different supply voltage) with a value R′i. m
samples of R′i are collected. For the chip i, the average intra-chip HD is estimated as
follows:

HDINTRA =
1
m

m

∑
t=1

HD(Ri,R′i,t)
n

× 100% (2)

where R′i,t is the tth sample of R′i. HDINTRA indicates the average number of
unreliable/noisy PUF response bits. In other words, the reliability of a PUF can
be defined as

Reliability = 100%−HDINTRA. (3)

Figure 4 shows how the reliability of a PUF is evaluated using the time dimension of
PUF measurement. The two intra-chip Hamming distance measurements are shown
along the time axis for the device 3 and the device k with light gray and dark gray,
respectively.

3.2.3 Uniformity

Uniformity of a PUF estimates how uniform the proportion of ‘0’s and ‘1’s is in the
response bits of a PUF. For truly random PUF responses, this proportion must be
50 %. We define uniformity of an n-bit PUF identifier as its percentage Hamming
weight (HW):

(Uniformity)i =
1
n

n

∑
l=1

ri,l× 100%

where ri,l is the lth binary bit of an n−bit response from a chip i. (4)

In Fig. 5, the uniformity of the device k and the device 3 is evaluated along the space
axis (marked in dark gray and light gray respectively).

A Systematic Method to Evaluate and Compare the Performance. . . 253

Device

Time

Space
23 1k

Fig. 5 PUF uniformity
evaluation

Device

Time

Space23 1k

Fig. 6 PUF bit-aliasing
evaluation

3.2.4 Bit-Aliasing

If bit-aliasing happens, different chips may produce nearly identical PUF responses,
which is an undesirable effect. We estimate bit-aliasing of the lth bit in the PUF
identifier as the percentage Hamming weight (HW) of the lth bit of the identifier
across k devices:

(Bit− aliasing)l =
1
k

k

∑
i=1

ri,l× 100%

where ri,l is the lth binary bit of an n−bit response from a chip i. (5)

In Fig. 6, the bit-aliasing is evaluated along the device axis for two different bit
locations (marked in dark gray and light gray).

3.3 Analysis of PUF Parameters Defined by Other Researchers

In this section, we explore different PUF parameters defined by other researchers in
the community. We also try to find out if there is any redundancy among these
parameters. Table 2 shows few examples of different PUF parameters proposed
by several research groups. In this work, we will be presenting an analysis of the
parameters proposed by Hori et al. in [8] with a comparison of the parameters

254 A. Maiti et al.

Table 2 Different PUF
parameters

Hori et al. [8] Randomness
Steadiness
Correctness
Diffuseness
Uniqueness

Maiti et al. [15] Uniformity
Bit-aliasing
Uniqueness
Reliability

Su et al. [19] Probability of misidentification

Majzoobi et al. [16] Single-bit probability
Conditional probability

Yamamoto et al. [25] Variety

introduced in Sect. 3.1. The reason we chose this work for analysis is that it has a
similar effort to define PUF parameters like ours. Moreover, the authors of this work
made a large PUF dataset, based on APUF, available for analysis. This motivated
us to use the APUF dataset in carrying out a detailed comparison analysis with
a similarly large dataset that we generated using the RO PUF. We also analyze
the parameter “probability of misidentification” proposed by Su et al. [19]. This
parameter estimates the rate of false positives in chip identification for a given
number of noisy bits in the PUF responses.

There are several other parameters existing in the literature. For example,
Majzoobi et al. defined parameters such as single-bit probability and conditional
probability [16]. A parameter called variety has been proposed by Yamamoto et al.
[25].1 As part of the future effort, we plan to analyze many of these parameters to
enhance the evaluation–comparison method.

At first, we introduce few notations that will be used to describe the parameters.
The notations are:

N = total number of chips
n = index of a chip (1≤ n≤ N)
K = total number of identifiers(IDs) generated per chip
k = index of an ID in a chip (1≤ k ≤ K)
T = total number of samples measured per ID
t = index of a sample (1≤ t ≤ T)
L = total number of response bits in an ID
l = index of a response bit (1 ≤ l ≤ L)
M = total number of ring oscillators
m = index of an oscillator (1≤ m≤M)

1This term was introduced in the slides for the presentation of the paper [25] by the authors in
CHES, 2011 [24].

A Systematic Method to Evaluate and Compare the Performance. . . 255

Randomness
Correctness
Uniqueness

Bit-aliasingReliability
Diffuseness
Steadiness

Maiti et al.Hori et al.

Fig. 7 Relation between
parameters defined by Hori
et al. and this work

The above notations, apart from m and M for the ring oscillators, have been proposed
by Hori et al. [8]. We decide to keep these notations to define any PUF parameters
except the fact that we use r in place of b (used in [8]) to denote a single response
bit from a PUF. We notice that the parameters in Sect. 3.1 used k as the total number
of chips, n as the total number of response bits from a PUF, and m as the number of
samples of the response bits. While we compare the parameters defined by the two
groups, we will express all the PUF parameters using the notations above.

We have proposed four parameters as described in Sect. 3.1. They are uniqueness,
reliability, bit-aliasing, and uniformity. The five parameters proposed by Hori et al.
are uniqueness, randomness, correctness, steadiness, and diffuseness. Upon ana-
lyzing these parameters, we have found that there are similarities among these
parameters. Figure 7 shows the relation between these parameters. There are three
parameters from each group that are similar in definition while others are different.
We explain all these parameters in detail.

3.3.1 Randomness Versus Uniformity

The randomness by Hori et al. is defined below:

− log2 max(pn,1− pn) (6)

where

pn =
1

K.T.L

K

∑
k=1

T

∑
t=1

L

∑
l=1

rn,k,t,l (7)

256 A. Maiti et al.

On the other hand, the uniformity parameter by us has been defined as follows:

1
K.L

K

∑
k=1

L

∑
l=1

rn,k,l (8)

It can be noticed that the randomness includes T samples of the response bits while
the uniformity does not include the samples and is based on the reference/correct
bits only. Also, the randomness is expressed in the min-entropy form. Otherwise,
the two definitions are very similar in nature. Both of them estimate the ratio of ‘1’
vs. ‘0’ across all the response bits generated by a PUF.

3.3.2 Correctness Versus Reliability

The correctness parameter is defined as follows:

1− 2
K.T.L

K

∑
k=1

T

∑
t=1

L

∑
l=1

(rn,k,l⊕ rn,k,t,l). (9)

On the other hand, the reliability is defined as below:

1− 1
K.T.L

K

∑
k=1

T

∑
t=1

L

∑
l=1

(rn,k,l⊕ rn,k,t,l). (10)

The reliability parameter is different from the correctness only in terms of the factor
by which it is normalized. The reliability is calculated based on the average value of
the intra-chip HD, whereas the correctness is normalized by the maximum value of
the fractional Hamming distance between the correct ID (the ID which is considered
as the reference) and the sample IDs. There are few points that are not clearly
mentioned in the definition of the correctness parameter proposed in [8].

It is defined using the sum of Hamming distances (SHD) normalized by T , K and
L. A parameter cn,k,l has been defined as the SHD between the correct bit rn,k,l and
the generated bit rn,k,t,l through T tests:

cn,k,l =
T

∑
t=1

rn,k,l⊕ rn,k,t,l . (11)

However, it is not clear from the definition what the time instances of the
measurements are. Since it is used to capture the effect of device defect, or aging, it
can be assumed that the correct bit rn,k,l is measured before the aging or defect
whereas rn,k,t,l is measured after the aging effect. If that is the case, then the
following inequality (mentioned in [8]) does not necessarily hold good:

0≤ cn,k,l =
T

∑
t=1

rn,k,l ⊕ rn,k,t,l ≤ T
2
. (12)

This is because there might be a case when the aging or device defect might flip a
correct bit in such a way that the subsequent T samples produce a complementary

A Systematic Method to Evaluate and Compare the Performance. . . 257

value for more than T/2 samples. This inequality holds good always only if both
rn,k,l and rn,k,t,l are measured during the same sampling instance which contradicts
the definition of correctness.

3.3.3 Uniqueness by Hori et al. Versus Uniqueness by Maiti et al.

The uniqueness is defined by Hori et al. as

1
K.L

4
N2

K

∑
k=1

L

∑
l=1

N−1

∑
i=1

N

∑
j=i+1

(ri,k,l ⊕ r j,k,l) (13)

The uniqueness is defined by us as

1
K.L

2
N(N− 1)

K

∑
k=1

L

∑
l=1

N−1

∑
i=1

N

∑
j=i+1

(ri,k,l ⊕ r j,k,l). (14)

In the case of the uniqueness, two definitions differ from each other with respect to
the normalization factor. Hori et al. used the SHD of all the possible combinations
of the PUF identifiers as the normalization factor. For a set of n chips, the value of
that factor is K.L.N2/4. On the other hand, we used the total number of all possible
pairwise combinations of response bits as the normalizing factor whose value is
K.L.N.(N − 1)/2. For a large value of N, the normalization factor used by us is
approximately two times bigger than that used by Hori et al.

3.3.4 Parameters Uniquely Defined by Both the Groups

The term bit-aliasing is uniquely defined by us. On the other hand, the steadiness
and the diffuseness are uniquely defined by Hori et al. The diffuseness is same as the
uniqueness except the fact that the diffuseness is defined inside a single chip among
several different IDs while the uniqueness is measured across several chips.

Steadiness

The steadiness measures the degree of bias of a response bit towards ‘0’ or ‘1’ over
T samples. It is defined as

Sn = 1+
1

K.L

K

∑
k=1

L

∑
l=1

log2 max(pn,k,l ,1− pn,k,l) (15)

where

pn,k,l =
1
T

T

∑
t=1

rn,k,t,l . (16)

258 A. Maiti et al.

This parameter is somewhat similar to the correctness parameter. A lower value
of steadiness will produce a lower correctness. In this case also, the time stamps of
the sample measurements are important. This is because the steadiness of a PUF
may change when operating conditions change. However, Hori et al. did not discuss
the effect of time on the steadiness parameter [8].

Diffuseness

The diffuseness is defined as

1
L

4
K2

L

∑
l=1

K−1

∑
i=1

K

∑
j=i+1

(rn,i,l⊕ rn, j,l). (17)

One question arises regarding the diffuseness parameter. Since the diffuseness is
estimated among K signatures (L bits each) generated in a chip, its value might
change depending on how we create a group of bits to produce an ID. For example,
there are a total of K×L binary bits in K L-bit signatures. These K×L bits can be
divided in many possible K groups with L bits each. Therefore, the same set of K×L
bits can lead to different values of diffuseness based on the combination we select.
Since the PUF challenges are selected by a software program [8], the diffuseness
can be controlled deterministically.

Bit-Aliasing

The bit-aliasing parameter is defined as

(Bit− aliasing)k,l =
1
N

N

∑
n=1

rn,k,l . (18)

(This parameter has been defined once in Sect. 3.2. We express it again here in terms
of the common notations that have been introduced in the beginning of this section.)

3.3.5 Probability of Misidentification

Here, we introduce another parameter, PMSID, defined by Su et al. [19]. It is a
useful parameter to estimate the probability of a chip being falsely identified as
another chip due to noise in the response bits.

Suppose a chip X has a reference PUF identifier RX with L bits. At some other
point in time, it produces an identifier R′X . Therefore, the number of unreliable bits in
that PUF is HD(RX ,R′X). Now, if there exists another chip Y such that HD(RY ,R′X)≤
HD(RX ,R′X), there will be a misidentification. For a PUF identifier with L response

A Systematic Method to Evaluate and Compare the Performance. . . 259

Device

Time

Space

Uniqueness
Bit-aliasing
Probability of

Misidentification Reliability
Steadiness

Uniformity
Diffuseness
Uniformity
Diffuseness

Fig. 8 Final parameters mapped on the PUF measurement dimension

bits, if p is the fraction of the unreliable bits (fractional intra-chip HD) and h is the
value of HD between the L-bit identifier of the chip and that of another chip (h≤ L),
the PMSID is defined as [19]

L

∑
h=0

[(
L
h

)

0.5h(1− 0.5)L−h.
h

∑
h/2

(
h

h/2

)

ph/2(1− p)h−h/2

]

. (19)

3.4 Final Set of PUF Parameters

We have discussed several parameters that quantify the quality/performance of a
PUF. As a conclusion, we suggest a set of parameters with some modifications
as the components of the PUF evaluation–comparison method. It includes seven
parameters: uniformity, reliability, steadiness, uniqueness, diffuseness, bit-aliasing,
and PMSID. Basically, we excluded the redundant parameters while analyzing the
parameters proposed by Hori et al., Su et al., and us. This set of parameters will serve
as the starting point of the evaluation–comparison method. However, we believe
that this set is subject to further modification and enhancement. Figure 8 shows
these seven parameters mapped along the proposed PUF measurement dimensions.
We briefly discuss why we included these parameters as the components of the
evaluation–comparison method.

1. Uniformity As the analysis shows, uniformity does not include samples of
response bits unlike randomness does. If samples are included, it becomes
dependent on time. Since we want to evaluate the ratio of ‘1’s and ‘0’s on
an average, i.e., based on the reference response bits, uniformity is a good fit.

260 A. Maiti et al.

Moreover, to estimate the time dependency of a PUF response, we have other
parameters such as reliability and steadiness.

2. Reliability Our analysis showed that both the correctness and the reliability
are defined in a similar way. However, the time reference is not defined well
in case of the correctness. Moreover, the inequality (12) that determines the
normalization factor for the correctness has been shown to be not valid always.
Hence, we propose to include the reliability parameter defined in Eq. (10).

3. Steadiness Even though the steadiness parameters seem to be closely related to
the reliability/correctness parameter, it represents the bias of individual response
bits on an average. Therefore, we suggest to include this parameter as well.
However, this parameter needs to be defined based on time stamps, i.e., a chip
may have different steadiness values depending on the time when it is measured.

4. Uniqueness For the uniqueness parameter, both Hori et al. and us employ
average inter-chip HD of the PUF identifier except the normalization factor. The
normalization factor used by Hori et al. represents the upper bound of the SHDs
among all possible IDs which is a useful information about a PUF. Hence, we
suggest to include the uniqueness defined by Hori et al.

5. Diffuseness The diffuseness, as discussed earlier, is very similar to the unique-
ness. This parameter becomes useful when a PUF has a large CRP space like
APUF, and several identifiers can be produced from a single chip. Therefore, we
suggest to use the diffuseness parameter when the PUF has a large CRP space.

6. Bit-aliasing The bit-aliasing parameter is very useful in estimating the bias of a
particular response bit across several chips. It may also give us information about
any systematic, spatial effect across devices.

7. Probability of misidentification Finally, we also propose to include the PMSID to
estimate the rate of error in identification by a PUF. This parameter shows how
chip identification may be affected by noise in the response bits.

4 Comparison of the RO PUF with the Arbiter PUF:
A Test Case

In this section, we compare the RO PUF with the APUF using the parameters
defined by Hori et al. and us as well as the PMSID. We used two datasets for
this purpose: (a) one dataset consists of RO PUF responses from 193 FPGAs
measured by us and (b) the other dataset consists of APUF responses from 45
FPGAs measured by Hori et al. First, we briefly describe the two PUFs: the RO
PUF and the APUF.

An RO PUF has m identically laid-out ROs and was proposed by Suh et al. [20].
A pair of frequencies, fa and fb (a �= b), out of m RO outputs are selected as a
challenge. Due to random process variation, fa and fb tend to differ from each other
randomly. A response bit rab is produced by a simple comparison method:

A Systematic Method to Evaluate and Compare the Performance. . . 261

Counter1

Counter2

- 0Challenge
(C)

Response
(R)

Fig. 9 Ring-oscillator-based PUF

Arbiter

C3C2C1 Cn-2 Cn-1 Cn

Response
(0/1)

Switch
Component

Challenge

Fig. 10 Arbiter PUF

rab =

{

1 if fa > fb

0 otherwise
. (20)

Since the variability in frequency is random, the response bits produce random
binary values. Figure 9 shows a ring-oscillator-based PUF (RO PUF).

On the other hand, an APUF, proposed by Lim et al., exploits the delay mismatch
between a pair of identically routed paths to generate a response bit [11]. Depending
on which of the delay path is faster, the Arbiter flip-flop produces a ‘0’ or ‘1’ as a
PUF response. Due to random variation in delay paths, this response bit is random.
Several pairs of delay paths can be configured by setting the inputs of the switch
components (shown in Fig. 10) used as challenge inputs.

Table 3 describes both the datasets that have been used for the analysis. It also
includes the device technology used for the respective FPGA implementations. We
measured the RO PUF at normal operating conditions. Since Hori et al. did not
mention any variation in the operating condition during their measurement, we
assume the APUF dataset is also measured under normal operating condition.

We first evaluate the parameters defined by Hori et al. using the RO PUF dataset
and compare them with the results from APUF reported in [8]. Since the RO PUF
we implemented produces only one 511-bit identifier (K=1), the diffuseness is not
calculated for the RO PUF dataset. After that, we evaluate the parameters defined by

262 A. Maiti et al.

Table 3 Detail of the
datasets used APUF RO PUF

N 45 193
T 1024 100
K 1024 1
L 128 511
M – 512
Device technology 65 nm (Virtex 5) 90 nm (Spartan 3E)

Table 4 Comparison of RO PUF and APUF using parameters defined by
Hori et al.

APUF (%) RO PUF (%) Ideal value (%)

Average randomness 84.69 96.81 100
Average probability 55.61 49.82 50
Average steadiness 98.48 98.51 100
Average correctness 98.28 98.29 100
Average uniqueness 36.75 94.07 100

us using the APUF dataset and compare them with the results based on the RO PUF
dataset. We also compare both the datasets using the PMSID. Finally, we summarize
the comparison based on the set of seven parameters we selected.

4.1 Comparison Using Parameters Defined by Hori et al.

Table 4 shows the parameters defined by Hori et al. evaluated on both the datasets.
The parameter values based on the APUF dataset have been taken from [8]. It can
be noticed that the RO PUF shows better randomness compared to the APUF. This
is supported by the fact that the average bit probability of RO PUF is close to 0.5,
i.e., the RO PUF responses are more equally likely between ‘0’ and ‘1’. Normally it
is expected that a Virtex 5 FPGA on a 65-nm technology will have more variability
(hence more randomness in PUF responses) than a Spartan 3E FPGA on 90-nm
technology. However, this result shows that the RO PUF has better randomness
than the APUF. This indicates that individual PUF technique may have significant
influence on extracting the variability information. Another significant difference
can be observed in the value of the uniqueness. The uniqueness of the RO PUF
is distinctly much higher than that of the APUF. Lower value of the randomness
in APUF is one of the reasons why the uniqueness is lower in it. In the next
section, we will evaluate the bit-aliasing parameter that may explain this contrast
in the uniqueness more. Apart from that, both the PUFs show similar values of the
steadiness and the correctness. It implies that the two PUFs are in general highly
tolerant to noise at normal operating condition.

Table 5 shows the confidence interval (CI) proposed by Hori et al. for a
confidence level of 95 % for both the datasets. It can be noticed that the RO

A Systematic Method to Evaluate and Compare the Performance. . . 263

Table 5 Confidence interval comparison results with 95 % confidence level

APUF RO PUF

Confidence interval Width Confidence interval Width

Randomness [0.8388, 0.8546] 0.01586 [0.9892, 0.9990] 0.00986
Bit probability [0.5530, 0.5591] 0.00611 [0.4962, 0.5003] 0.00407
Steadiness [0.9626, 1.0000] 0.04134 [0.9846, 0.9857] 0.00110
Correctness [0.9579, 1.0000] 0.04206 [0.9822, 0.9834] 0.00121
Uniqueness [0.2127, 0.5222] 0.30950 [0.9334, 0.9481] 0.02940

Table 6 Comparison of RO
PUF and APUF using
parameters defined by Maiti
et al.

APUF (%) RO PUF (%) Ideal value (%)

Uniformity 55.69 50.56 50
Bit-aliasing 19.57 50.56 50
Uniqueness 7.20 47.24 50
Reliability 99.76 99.14 100

PUF dataset shows significantly narrower CI compared to the APUF dataset. This
indicates that the size of the PUF dataset (RO PUF having a larger dataset compared
to APUF) has substantial impact on determining the confidence interval of the
parameters.

4.2 Comparison Using Parameters Defined by Maiti et al.

Table 6 shows the average values of the parameters defined by us for both the
datasets. We considered 511 response bits for the RO PUF, whereas 1024×128 =
131,072 response bits were considered for the APUF.

The uniformity result resembles with the average probability reported in Table 4.
For the bit-aliasing, the average in the RO PUF is close to the ideal value of 50 %
while the average in the APUF deviates significantly from 50 %. Moreover, we
found that the minimum value of bit-aliasing is 0 % in case of APUF. This shows
that there are bit positions that produce a value of 0 for all the 45 chips. In fact, we
found 21,314 out of 131,072 bit positions (nearly 16 %) produced a value of 0 %.
These bits do not contain any useful information. This is consistent with a very low
value of the uniqueness in APUF reported in Table 4. One reason for this may be
the difficulty in ensuring routing symmetry in an APUF implemented in an FPGA
[17]. The sharp difference in the value of the uniqueness is visible in this case also.
The reliability values are comparable for both the datasets indicating that both the
RO PUF and the APUF are equally reliable.

264 A. Maiti et al.

Table 7 Comparison of
probability of
misidentification

Minimum Maximum Average

RO PUF 2.81×10−71 4.42×10−39 1.18×10−40

APUF 3.03×10−13 3.91×10−12 1.50×10−12

Table 8 Summary of comparison between the RO PUF and the APUF

APUF (%) RO PUF (%) Ideal value (%)

Uniformity 55.69 50.56 50
Reliability 99.76 99.14 100
Steadiness 98.48 98.51 100
Uniqueness 36.75 94.07 100
Diffuseness 98.39 – 100
Bit-aliasing 19.57 50.56 50
PMSID 1.50×10−12 1.18×10−40 0

4.3 Comparison Using the Probability of Misidentification

Table 7 shows the value of PMSID for the two datasets. The RO PUF dataset shows
a much lower value compared to the APUF dataset. However, this is due to the
fact that the length of the identifier for the RO PUF is 511, whereas it is 128 for
the APUF. In any case, even the Arbiter PUF shows a very low PMSID. This is
consistent with the fact that both the PUFs showed a very high value of reliability
indicating that the proportion of the noisy bits in both the PUFs is low.

4.4 Summary of Comparison Between the RO PUF
and the APUF

Table 8 shows the summary of the comparison between the APUF and the RO PUF
in terms of the seven parameters we selected as part of the proposed evaluation–
comparison method. The two PUFs exhibit comparable performance in terms of
the uniformity, the reliability, and the steadiness. However, the RO PUF shows
much better performance compared to the APUF in terms of the uniqueness, the
bit-aliasing, and the PMSID. The diffuseness parameter could not be evaluated for
the RO PUF.

5 Online Database

In our research, we frequently observed the need for larger datasets for use in the
PUF research community. Indeed, the large-scale characteristics of a PUF circuit
can only be studied indirectly, through the dataset of a large population. Earlier, we
have published our measurements as a batch download [15].

A Systematic Method to Evaluate and Compare the Performance. . . 265

Fig. 11 Web interface to access the PUF database

These measurements are for an RO PUF with 512 ring oscillators configured
in a Spartan 3E FPGA. For each ring oscillator, we have taken 100 successive
measurements. As each ring oscillator measurements maps into a single record, the
database of 193 FPGAs holds almost ten million records. The use of a reconfigurable
device such as the Spartan 3E FPGA made this large collection of data significantly
easier in terms of shorter time as well as lower cost of on-chip PUF implementation
compared to a custom-designed circuit.

In order to provide a more fine-grained access to the data, we ported the dataset
to a MySQL database and developed a website interface to access it. The website
can be reached through www.rijndael.ece.vt.edu/puf. Figure 11 illustrates our web
interface. Each ring oscillator frequency is stored as a tuple of two integers, one
representing a cycle count for the ring oscillator and a second representing the cycle
count for a 50 MHz reference frequency. The ratio of these two integers captures the
ring oscillator frequency.

Each record in the database contains the board (i.e., FPGA chip) serial number,
the oscillator number with the FPGA, the measurement number, and the two
oscillator counters that represent the ring oscillation frequency. Specific records in
the table can be queried through the search fields on top of the table. For example,
it is possible to quickly extract the frequency of the 25th ring oscillator across all
boards and across all measurements, by filling out ‘25’ in the oscillator number
search field.

We plan to further extend the database to accommodate other types of PUFs as
well as other types of PUF parameters, such as area and performance.

www.rijndael.ece.vt.edu/puf

266 A. Maiti et al.

6 Conclusions

In this work, we aimed at defining a method to evaluate as well as compare the
performance of several PUFs irrespective of the underlying PUF techniques. Our
approach relies on the statistical properties of the binary response bits of a PUF.
We first proposed three dimensions of PUF measurement. Based on our analysis
on parameters defined by us as well as by others, we proposed a set of seven PUF
parameters as the primary building block of the evaluation–comparison method.
Subsequently, we compared two different PUFs, namely the RO PUF and the APUF,
using these parameters based on measured PUF data. The RO PUF shows better
performance than the APUF in terms of the uniqueness, the bit-aliasing, and the
PMSID while other parameters yielded comparable results from both the PUFs.

Acknowledgements This work was supported by the National Science Foundation by grant no.
0964680 and grant no. 0855095. A special credit goes to Michael Cantrell for his contribution in
developing the PUF database as well as the web interface to access it.

References

1. Armknecht F, Maes R, Sadeghi A-R, Standaert F-X, Wachsmann C (2011) A formal foundation
for the security features of physical functions. IEEE Security and Privacy 2011(1):16

2. Bolotnyy L, Robins G (2007) Physically unclonable function-based security and privacy in
rfid systems. In: Fifth annual IEEE international conference on pervasive computing and
communications, PerCom 2007, pp 211–220, March 2007

3. Devadas S, Suh E, Paral S, Sowell R, Ziola T, Khandelwal V (2008) Design and implemen-
tation of puf-based “unclonable” rfid ics for anti-counterfeiting and security applications. In:
IEEE international conference on RFID 2008, pp 58–64, April 2008

4. Gassend B, Clarke D, van Dijk M, Devadas S (2002) Silicon physical random functions. In:
Proceedings of the 9th ACM conference on computer and communications security, CCS 2002.
ACM, New York, NY, USA, pp 148–160

5. Guajardo J, Kumar S, Schrijen G-J, Tuyls P (2007) Fpga intrinsic pufs and their use for ip
protection. In: Proceedings of the 9th international workshop on cryptographic hardware and
embedded systems, CHES 2007. Springer, Berlin, Heidelberg, pp 63–80

6. Guajardo J, Kumar S, Schrijen G-J, Tuyls P (2008) Brand and ip protection with physical
unclonable functions. In: IEEE international symposium on circuits and systems, ISCAS 2008,
pp 3186–3189, May 2008

7. Helinski R, Acharyya D, Plusquellic J (2009) A physical unclonable function defined using
power distribution system equivalent resistance variations. In: Proceedings of the 46th annual
design automation conference, DAC. ACM, New York, NY, USA pp 676–681

8. Hori Y, Yoshida T, Katashita T, Satoh A (2010) Quantitative and statistical performance
evaluation of arbiter physical unclonable functions on fpgas. In: International conference on
reconfigurable computing and FPGAs (ReConFig) 2010, pp 298–303, Dec 2010

9. Krishna AR, Narasimhan S, Wang X, Wang X Mecca: a robust low-overhead puf using em-
bedded memory array. In: Proceedings of the 13th international conference on Cryptographic
hardware and embedded systems, CHES 2011. Springer, Berlin, Heidelberg, pp 407–420

A Systematic Method to Evaluate and Compare the Performance. . . 267

10. Kumar S, Guajardo J, Maes R, Schrijen G-J, Tuyls P (2008) Extended abstract: The butterfly
puf protecting ip on every fpga. In: IEEE international workshop on Hardware-oriented
security and trust, HOST 2008, pp 67–70

11. Lim D, Lee J, Gassend B, Suh G, van Dijk M, Devadas S (2005) Extracting secret keys from
integrated circuits. IEEE Trans Very Large Scale Integration Syst 13(10):1200–1205

12. Lofstrom K, Daasch W, Taylor D (2000) Ic identification circuit using device mismatch. In:
IEEE international Solid-state circuits conference. Digest of Technical Papers. ISSCC 2000,
pp 372–373

13. Maes R, Tuyls P, Verbauwhede I (2008) Intrinsic pufs from flip-flops on reconfigurable devices.
In: 3rd Benelux workshop on information and system security (WISSec 2008). Eindhoven, NL,
p 17

14. Maes R, Verbauwhede I (2010) Physically unclonable functions: A study on the state of the art
andfuture research directions. In: Towards hardware-intrinsic security. Springer, New York

15. Maiti A, Casarona J, McHale L, Schaumont P (2010) A large scale characterization of ro-
puf. In: IEEE international symposium on hardware-oriented security and trust (HOST) 2010,
pp 94–99

16. Majzoobi M, Koushanfar F, Potkonjak M (2008) Testing techniques for hardware security. In:
IEEE international test conference, ITC 2008, pp 1–10

17. Morozov S, Maiti A, Schaumont P (2010) An analysis of delay based puf implementations
on fpga. In: Sirisuk P, Morgan F, El-Ghazawi T, Amano H (eds) Reconfigurable computing:
architectures, tools and applications of lecture notes in computer science, vol 5992. Springer,
Berlin, pp 382–387

18. Pappu RS, Recht B, Taylor J, Gershenfeld N (2002) Physical one-way functions. Science
297:2026–2030

19. Su Y, Holleman J, Otis B (2008) A digital 1.6 pj/bit chip identification circuit using process
variations. IEEE J Solid-State Circ 43(1):69–77

20. Suh GE, Devadas S (2007) Physical unclonable functions for device authentication and secret
key generation. In: Proceedings of the 44th annual design automation conference, DAC 2007.
ACM, New York, NY, USA, pp 9–14

21. Suzuki D, Shimizu K (2010) The glitch puf: a new delay-puf architecture exploiting glitch
shapes. In: Proceedings of the 12th international conference on Cryptographic hardware and
embedded systems, CHES 2010. Springer, Berlin, Heidelberg, pp 366–382

22. Tuyls P, Schrijen G-J, Škorić B, van Geloven J, Verhaegh N, Wolters R (2006) Read-
proof hardware from protective coatings. In: Cryptographic hardware and embedded systems
workshop of LNCS, vol 4249. Springer, New York, pp 369–383

23. van der Leest V, Schrijen G-J, Handschuh H, Tuyls P (2010) Hardware intrinsic security from
d flip-flops. In: Proceedings of the fifth ACM workshop on Scalable trusted computing, STC
2010. ACM, New York, NY, USA, pp 53–62

24. Yamamoto D, Sakiyama K, Iwamoto M, Ohta K, Ochiai T, Takenaka M, Itoh K Variety en-
hancement of puf responses based on the locations of random outputting rs latches. http://www.
iacr.org/workshops/ches/ches2011/presentations/Session%208/CHES2011 Session8 3.pdf

25. Yamamoto D, Sakiyama K, Iwamoto M, Ohta K, Ochiai T, Takenaka M, Itoh K (2011)
Uniqueness enhancement of puf responses based on the locations of random outputting rs
latches. In: Proceedings of the 13th international conference on Cryptographic hardware and
embedded systems, CHES 2011. Springer, Berlin, Heidelberg, pp 390–406

http://www.iacr.org/workshops/ches/ches2011/presentations/Session%208/CHES2011_Session8_3.pdf
http://www.iacr.org/workshops/ches/ches2011/presentations/Session%208/CHES2011_Session8_3.pdf

Index

A
Abstract syntax tree (AST), 209
ACSs. See Adaptive computing systems

(ACSs)
Actors

classification, 215–216
dataflow, 203–204
description, 205
ill-formed networks, 208
in networks, 207–208
tokens exchange, 206

Adaptive computing systems (ACSs)
application-specific hardware

accelerators, 1
benchmark suites, 26
coarse-grain parallelism, 2
coherency traffic, 3
compiler support, 27
context-based value predictors, 3
control flow parallelism, 3
CPUs, 1
data dependency violations, 4
dynamic scheduling, 2–3
hardware support structures, 2
kernels, 1
load value speculation, 3, 4
MARC II (see Multi-port cached (MARC

II) memory system)
memory accesses, 2
ML507 reference design, 27
Nymble C-to-hardware compiler (see

High-level language to hardware
compilation)

PreCoRe (see Predict, commit, replay
(PreCoRe))

RAW dependencies, 27

RCUs and CPUs, 3
re-enabling, value predictors, 27
speculations, 27
Synopsys Synplify Premier DP 9.6.2, 26
variable-latency operators, 2
Verilog hardware description language, 26

Aging-critical paths
description, aged circuit effect, 61
detectability, 62
warnability, 61–62

Aging sensor
and critical path (see Aging-critical paths)
edge-triggered D flip-flops, 62–63
placement, critical path, 62
proposed aging sensor, 62
relative delays, inputs, 63, 64
sensor functionality, 63
sensor sensitivity analysis (see Sensor

sensitivity analysis)
Analytical-based solutions, queueing theory

closed-form, 112
numerical analysis techniques, 111
simplifications, BCMP theorem, 112

Application specific integrated circuit (ASIC)
delay degradation, 60
FPGAs, 60
Razor I technique, 60

Arbiters
bit slicing, 145
merged (see Merged arbiter and

multiplexer)
separate (see Separate arbiter and

multiplexer designs)
switch allocation and traversal, 127–131

ASIC. See Application specific integrated
circuit (ASIC)

P. Athanas et al. (eds.), Embedded Systems Design with FPGAs,
DOI 10.1007/978-1-4614-1362-2, © Springer Science+Business Media, LLC 2013

269

270 Index

As-soon-as-possible (ASAP) static scheduling
algorithm, 19, 20

AST. See Abstract syntax tree (AST)

B
Bias temperature instability (BTI)

induced Vth change, stress and recovery, 57,
58

shift induced, NBTI and PBTI, 57
threshold voltage of transistors, 57

Bit slicing
application, arbiter and multiplexer pairs,

145
8-input and 16-input circuits delay, 145,

146
multiplexers, 145
power-of-two slicing factors SF, 145

BTI. See Bias temperature instability (BTI)
Built-in self-test (BIST)-based approach, 58

C
Cache coherency

PreCoRe, 24
protocols, 24
read port and write port processing, 24, 25

CAPH
AST, 209
compiler, 209
data representation, 206–207
definition, 205
description, networks, 207–209
DFGs, 204
graph visualizer, 209
manual language reference, 204
programs, 208
reference interpreter, 209
toolchain, 209, 210

C-based CEP language
arguments, EVENT RULE macro, 85
change-point analysis, example source

code, 86, 87
choice r1|r02, 88–89
closure r+, 89
Cyberware, 91
description, 82
design flow, 92
dynamic behaviors, 91
fname clause, 85
function f, 88
hardware-oriented operations, 91
logic construction method, 87, 88
NEC CyberWorkBench, 90–91
NFA structure, 87–88

operation overview, 85–86
optimization descriptions, 91
regular expressions, 84
sequence r1r2, 88
smoothing and change-point analysis, logic

examples, 89–90
source code, smoothing, 86
user-defined data structures, 84

CDFG. See Control data flow graph (CDFG)
Central processing units (CPUs)

architecture, 3
external memory, 25
multi-threaded execution models and

multi-core, 1
CEP. See Complex event processing (CEP)
CLEFIA

BRAMs, 226
cryptography, 225
data ciphering (see Data ciphering

structures)
description, 225
encryption algorithm (see Encryption

algorithm, CLEFIA)
FPGAs, 225
key scheduling (see Key scheduling

structures, CLEFIA)
Virtex 4 FPGA, 226

Clock enable (CE) port, 73
Complex event processing (CEP)

C-based (see C-based CEP language)
clauses, 80
description, 79
design objectives, 82
electronic checkpoints, boroughs, 81
example, detection query, 81
financial trading platform, 98
FIR filtering, 83
hardware-accelerated (see Hardware-

accelerated CEP system)
implementation, 95–96
Kleene closure, 80
language functions, 79–80
logic usage, motivating example, 96
motivating example—stock price analysis,

82, 83
multi-stream functions, FPGAs, 98
OPRA, 81
performance speed-up, 97
procedural languages, 83
real-time application domains, 79
related work, 97, 98
SASE+ CEP query, 80
SQLs, 79
target 20 Gbps FPGA-based NIC, 95

Index 271

target NIC specifications, 95
user-defined aggregation functions, 80

Control data flow graph (CDFG)
hierarchy, 19
sample program, 17
SSA-CFG, 18

Controlled sensitivity. See Sensor sensitivity
analysis

CPUs. See Central processing units (CPUs)
Customized carry lookahead (CLA)-based

round-robin arbiters, 135–136
Cyberware, behavioral IP libraries, 91

D
Data ciphering structures

bitwise XOR operations, 232–233
BRAMs and FPGA, 233
description, 232
F0 and F1, 233
F-functions, 235
hardware performance comparison, 240
performance results, 238, 239
T-Box, 233–234
type II structure pipeline, 234–236, 239
type I structures, 234, 239

Data-driven processing elements (DDPs), 220
Data flow graphs (DFGs)

data dependencies, 19
functional expressions, 208
graphical representation and manipulation,

203–204
graph visualizer, 216
motion detection application, 216, 218
sample program, 16, 17

DCMs. See Digital clock managers (DCMs)
DDPs. See Data-driven processing elements

(DDPs)
Deblocking filter (DF)

description, 177–178
dynamic reconfiguration management,

187–188
FU (see Functional unit (FU))
IC, 185
IM, 184
MB-level DF parallelization strategies, 178
MB-parallelization strategies, 178–179
OC (see Output controller (OC))
OM (see Output memories (OM))
raster scan pattern, 178
run-time scalability, 182, 183
wavefront strategy, 178

Decimal arithmetic. See Decimal division
Decimal division

binary to BCD converter, 48–49
block diagram, minimax approximation

unit, 36–37
characteristics, dividers, 50
definition, 31
description, 36
8-digit divider, Virtex-4 and Virtex-6, 51,

53
16-digit divider, Virtex-4 and Virtex-6,

51–53
digit-recurrence algorithms, 31, 32
IBM Power6, 31
iterations, NR (see Newton–Raphson (NR)

iterations)
iterative 8-digit and 16-digit decimal

divider, 35, 36
minimax approximation (see Minimax

approximation, decimal division)
operations, software algorithms, 31
parallel and iterative multipliers, 32
performance of divider, 49–50
piecewise minimax polynomials, 32
reciprocal computation (see Reciprocal

computation)
temporal diagrams, 8-digit and 16-digit

divider, 51, 52
DF. See Deblocking filter (DF)
DFGs. See Data flow graphs (DFGs)
Digital clock managers (DCMs), 75
Division. See Decimal division
Domain-specific languages (DSL)

CAPH (see CAPH)
pragmatic solution, 201

Double-data rate output registers (ODDRs),
65–66

DPA. See Dynamic priority arbiter (DPA)
DPR. See Dynamic partial reconfiguration

(DPR)
DSL. See Domain-specific languages (DSL)
Dynamic partial reconfiguration (DPR)

characteristics, datapath and workload,
101–102

customers, 122
description, 101
estimation, performance (see Performance

evaluation)
example, queueing network, 122
flexibility and adaptability, 176
flexible modeling method, 102
flow balance equations, 121
IP cores, 173
joint probabilities, 122
Markov chain, 121
measurements, 120

272 Index

Dynamic partial reconfiguration (DPR) (cont.)
modeling, queueing networks (see

Queueing theory)
non-deterministic elements, 101
non-PR traffic, 101
performance metrics (see Performance

metrics, DPR)
reconfigurable datapath (see Reconfigurable

datapath)
single-node queueing system and

birth-death process, 120
Dynamic priority arbiter (DPA), 130

E
Electron migration (EM), 59
EM. See Electron migration (EM)
Embedded systems

automotive ECU start-up
DDR3 controller, 164, 165
FPGA editor view, 165, 166
OSEK, 165
timing-critical processor, 164
Xilinx Spartan-6 FPGA, 164

dynamic partial reconfiguration, 152
flash-based system, 151
FPGA division, 150
hardware/software co-design, 149
hardware timer, 168
maximal bitstream sizes, 150
measurement setup, 166, 167
memory hierarchy analysis, 168–169
Quad-SPI FPGA configuration, 167
software scalability results, 169–170
SP605, 167–168
Spartan-6 devices calculation, 150
SRAM-based FPGAs, 151
start-up timing specifications, 149
timing constraints (see Timing constraints)
timing-critical hardware, 150–151

Encryption algorithm, CLEFIA
128-bit input key, 230
192-bit input key, 230–231
256-bit input key, 231–232
datapath, 227
data processing, 229
description, 226
Feistel structure, 227
F-functions, 228–229
GFN, 229
state-of-the-art design techniques, 227

F
FCFS. See First come first served (FCFS)
Feistel structure, 227

Field-programmable gate arrays (FPGAs).
See also CLEFIA; Dynamic partial
reconfiguration (DPR); Reliability
sensing, FPGAs

CEP system, 81, 82
comparison, fast FPGA configuration, 154
configuration technique, 155
description, 153
8-digit and 16-digit dividers, 51
dynamic partial reconfiguration, Spartan-6,

157–158
embedded processor subsystem, 154
FPGA-based NIC, 93–94
generation, initial partial bitstream,

156–157
high-level languages, 202–203
non-timing-critical hardware, 153
on-chip SRAM memory banks, 217
partial bitstreams, 155
reconfigurable hardware, 81
Spartan-6, 155–156
start-up (see Start-up)
target NIC specifications, 95
timing-critical hardware, 157
Virtex4 and Virtex6, 38, 50

Finite-impulse-response (FIR) filtering, 83
First come first served (FCFS), 131
FPGA. See Field-programmable gate arrays

(FPGAs)
FPGA-based NIC

design overview, 93, 94
header checkers, 94
interfaces, 93
modules, event processing adapter, 93–94
UDP packets, 94

FPGA reliability
area overhead, number of sensors, 72, 73
clock frequencies, 75
DCMs, 75
logic-level implementation, 72
operational frequencies, 72
ports, CE, 73
power and performance overhead, number

of sensors, 73, 74
Virtex-6 series, 72

FPGAs. See Field-programmable gate arrays
(FPGAs)

FU. See Functional unit (FU)
Functional unit (FU)

coarse-grain homogeneous array, 181
dataout and dataoutvertical, 191
memories, 191
nonparallel implementations, 191

Index 273

reconfigurable logic area, 179
and router, 183–184

G
General-purpose processors (GPPs), 201
Global architecture

array structure, 180
FU, 180
IM and IC, 180
MB to FU allocation policy, 181
OM and OC, 180
scalability, 181

GPPs. See General-purpose processors (GPPs)
Grant signals computation

generation circuits, 138, 140
one-hot grant generation circuits, 141
OR and AND gates, 139–140
tree comparison structure, 138, 139
weighted binary, 141

H
Hardware-accelerated CEP system

description, 93
FPGA-based NIC (see FPGA-based NIC)
overview, 92, 93

Hardware description languages (HDLs)
C code, 202
optimizations and transformations, 203
VHDL/Verilog, 202

H.264/AVC. See also Scalable architecture
autonomous embedded system, 186
and SVC DF, 176–177

HCI. See Hot carrier injection (HCI)
HDLs. See Hardware description languages

(HDLs)
High-level language to hardware compilation

control-data flow graph generation
CDFG and DFG, sample programs, 16,

17
multiple assignments, 15
SSA-CFG of sample program, 15, 16

hardware synthesis, Nymble
ASAP static scheduling algorithm, 19
hierarchically scheduled CDFG, 18, 19
synthesized controller, non-speculative

datapath, 19, 20
microarchitecture, PreCoRe

description, 20
execution sequencing, 21

flow control nodes, 21
hardware compilation, 22
multi-cycle operators, 20

synthesized controller, 20, 21
operation scheduling

acyclic CDFG, 17
compilers, hardware, 18
description, 18
hardware registers, 17–18
static and dynamic, 18

Hot carrier injection (HCI)
channel carriers, 58
HCI–DAHC mechanism, 58, 59
threshold voltage of transistors, 58

I
IC. See Input controller (IC)
ICAP. See Internal configuration access port

(ICAP)
IM. See Input memories (IM)
Input controller (IC)

communication module, 184
description, 185
parallelization pattern, 180

Input memories (IM)
floor planning design, 184
IM FIFOs, 184
parallelize data, 180
semifiltered MBs, 184

Internal configuration access port (ICAP)
busy-factor, 104
effects, varying width, 115–116, 118–119
non-deterministic components, 105, 110
queueing network, 114
typical Xilinx-based reconfigurable system,

103

K
Key scheduling structures, CLEFIA

128-bit key expansion structure, 237
GFN function, 236
whitening keys, 238

L
Late transitions detection

aging sensor placement, critical path, 62
detectability, 62
logic-level circuitry, FPGAs, 56
sensor calibration, 70
sensor sensitivity, 64
warnability, 61–62

Leading-zero counter (LZC) encoding-based
round-robin arbiters, 134–135

274 Index

Load value-prediction
conventional processors, 5
local history-based, 6
non-speculative versions, 5
parallel last-value and stride

sub-predictors, 6
parameters, 7
processor-centric approaches, 5
VHP, 7
VHT, 6

M
Mapping

arbiter–multiplexer pairing, 131
arithmetic symbols, HP segment, 137
forms, FPGA, 125
logic-level structure, CLA-based

round-robin arbiter, 136
LUT, 130, 134
Virtex-5 FPGA chip XC5VLX330, 142

MB-level parallelism, 179
Memory access-dependency resolution

cache and replayed computation, 11
data dependency violations, 4

Merged arbiter and multiplexer
arithmetic symbols, 138
computation, grant signals (see Grant

signals computation)
input requests, HP and LP segments,

136–137
switches, 141–142
tree and linear comparison structure, 138,

139
Minimax approximation, decimal division

adder Radix-1000, 41
BCD2BIN, 39
BCD to DPD conversion, 38–39
binary multiplier, 38
binary to Radix-1000 converter, 40–41
description, 37
optimizations, 38
ROM, 37
unit, 37

Multi-port cached (MARC II) memory system
BlockRAMs, 22
cache system and coherency protocol (see

Cache coherency)
definition, 22
infrastructure, cache, 22
per-port caches distribution, 23
PreCoRe operations, 25–26
TechMods, 23

N
NBTI. See Negative bias temperature

instability (NBTI)
NEC CyberWorkBench

design example, 91
high-level synthesis tool, 92
MP211, 91
realistic hardware description, 91
synthesis, C functions, 90–91

Negative bias temperature instability (NBTI)
phases, 57
TDDB and EM, 59
transistors, PMOS and NMOS, 55
Vth shift induced, 57

Network language (NL), 219
Networks-on-FPGAs. See Soft interconnection

networks
Newton–Raphson (NR) iterations

accumulator, Radix-1000, 46–47
binary to Radix-1000 converter, 44–46
decimal to Radix-1000 converter, 47–48
description, 33–34
8-digit and 16-digit reciprocal calculation,

42
digits, Radix-1000, 42–43
dimensions, multipliers, 43
maximum approximation errors, 34
multiplier, Radix-1000, 43–44
number, Radix-1000, 48
subintervals, 34

NL. See Network language (NL)
Non-deterministic finite automaton (NFA)

structure, 87–88

O
OC. See Output controller (OC)
ODDRs. See Double-data rate output registers

(ODDRs)
OM. See Output memories (OM)
OPRA. See Options price reporting authority

(OPRA)
Options price reporting authority (OPRA), 81
Output controller (OC)

communication modules, 186
FIFO memories, 180
video memory, 185

Output memories (OM)
IM, 183
semifiltered MB, 184–185

P
Parallel processing unit (PPU), 175
Partial reconfiguration

Index 275

bitstream compression, 152
fast FPGA, 154

PBTI. See Positive BTI (PBTI)
Performance evaluation

busy-factor, ICAP, 104
design cycle, 104
ICAP port and buses, 105
PR process, 104
reconfiguration time, platforms, 104
SystemC model, 104–105

Performance metrics, DPR
FPGAs, 102
hardware implementation, 104
memory utilization, 103
non-deterministic components, 103
PowerPC (PPC) hard cores, 102
PR and non-PR traffic, 102
reconfiguration time, 103
Xilinx-based reconfigurable system, 103

Performance modeling. See Dynamic partial
reconfiguration (DPR)

Positive BTI (PBTI)
transistors, PMOS, 55, 57
Vth shift induced, 57

PPU. See Parallel processing unit (PPU)
PreCoRe. See Predict, commit, replay

(PreCoRe)
Predict, commit, replay (PreCoRe)

access prioritization
advantages, 14
description, 12
dynamic, 14–15
nonspeculative data, 12
operations, 25–26
priority-based shared resource

arbitration, 12, 13
SPP, branch prediction techniques, 14
trackers, 14

definition, 4
mechanisms, 5
microarchitecture (see High-level language

to hardware compilation)
operations, 4–5
queue management for speculation

confirmed and retained values, 10–11
data values, 9
misspeculation, predecessor stage, 10
value regions, speculative queue, 10

RAW dependencies
resolution schemes, 11, 12
selective replay, 12
static points-to/alias analysis, 11
universal replay, 11

speculation, load value (see Load
value-prediction)

token handling mechanisms
datapath and speculation, 7–9
scheduled hardware unit, 7
variable-latency, 7

Priority encoding (PE)-based round-robin
arbiters

AG signal, 134
definition, 133
thermometer-coded, 134

Q
Queueing theory

advantages and disadvantages, 108–109
analytical-based solutions, 111–112
architecture components, 106
balance equations and probabilities, 107
BCMP networks, 107–108
datapath components and features, 106
dynamic reconfiguration, 107
fork–join and noncompliant type-1

queueing nodes, 108
generalized datapath, FPGA-based system,

105
non-determinism, 107
operating features, 106
product-form solution, 107
“sibling” sub-customers, 108
simulation-based solutions, 109–111

R
Radix-1000 arithmetic

accumulator, 46–47
adder, 41–42
binary to Radix-1000 converter, 40–41,

44–46
decimal to Radix-1000 converter, 47–48
multiplier, 43–44
number, 48

Reciprocal computation
description, 33
initial polynomial approximation, 33
Newton–Raphson iterations, 33–34
truncation errors (see Truncation errors)

Reconfigurable architecture, 195
Reconfigurable computing, 28
Reconfigurable datapath. See also Dynamic

partial reconfiguration (DPR)
effects of ICAP width, 118–119
expected BRAM requirements, 117
experimental setup, 113–114

276 Index

Reconfigurable datapath. See also Dynamic
partial reconfiguration (DPR) (cont.)

mapping, queueing network, 114–115
model validation, 119
PR system and queueing network model,

113
queueing network model, 118
varying external memory speed effects,

116–117
varying ICAP width effects, 115–116

Reliability sensing, FPGAs
aging sensor (see Aging sensor)
ASIC designs, 60
BIST-based approach, 58
CMOS devices, 55
delay of critical paths, 56
description, 55
design tool experiments, FPGA, 72–75
FPGA board experiment, 75
FPGAs analysis, 59
low-cost aging sensor, sensitivity, 60
NBTI/PBTI, 55
Razor I technique, 60
ring oscillator and residue-number-system

ring counter, 59
sensor mapping (see Sensor mapping)
TPs, 59
transistor aging (see Transistor aging)
transistor’s threshold voltage and carrier

mobility, 55
unused regions, LUTs, 60

S
Scalable architecture

algorithm parallelization, DF (see
Deblocking filter (DF))

CPU and GPU, 175
description, 173
DPR and DCT, 173, 176
dynamic reconfiguration management,

187–188, 195
embedded system integration, 186–187
execution nodes, 175
flexibility and real-time performance, 174
FPGA, 175
generalization, H.264/SVC, 193
global architecture, 175
H.264/AVC, SVC and DF, 176–177
maximum frequency, real time, 194, 195
PARLGRAN, 175
performance limits, 196
PPU, 175
reconfiguration time, 196
resources occupancy, 194

synthesis results, 194
wavefront (see Wavefront)

Scalable video coding (SVC). See Scalable
architecture

Sensor mapping
aging-critical paths, 69–70
calibration, 67, 70–71
glitches, FPGA, 68, 69
logic slices, 66–67
NMOS transistors, 69
ODDR, 65–66
pre-used FPGAs, 71
temperature dependency, 69
window generation detection, 67
Xilinx Virtex-6, 65

Sensor sensitivity analysis
definition, 64
flip-flop transition, 64–65
late transition detectors, 65
relative delays, sensor inputs, 64
relative values and effects, 65, 66

Separate arbiter and multiplexer designs
CLA-based round-robin arbiters, 135–136
description, 131
fixed-priority arbiter driving, AND-OR

multiplexer, 131, 132
linear fixed priority, 131, 132
LZC encoding-based round-robin arbiters,

134–135
PE-based round-robin arbiters, 133–134
round-robin arbitration logic, 131–132

Simulation-based solutions, queueing theory
bus traffic modeling, 111
classification, customers, 109–110
concerns, separation, 110
mapping, PR features to queueing

primitives, 109
modeling non-deterministic resources, 110
phase pipelining modeling, 111

Soft interconnection networks
area of arbiters and multiplexers, 144
assignments, VC, 127
bit slicing (see Bit slicing)
building blocks, switch, 126
core chip multiprocessors, 125
delay of arbiters and multiplexers, 143
dynamic packet switching, 126
FPGA, 125
ISE 12.2 toolset, Xilinx, 142–143
LZC-based design, 144
memory and I/O controllers, 126
merged arbiter and multiplexer, 136–142
separate arbiter and multiplexer designs,

131–136

Index 277

single-stage switching systems, 143–144
speed improvements, 127
switch allocation (see Switch allocation)
traditional implementations, 127
transversal, switch (see Switch transversal)
VHDL descriptions, 142

Software boot
description, 163
software segments, 163
two-stage flow, 163, 164

Start-up
automotive ECU start-up, 164–166
memory architectures

DDR3 SDRAM memory, 161
description, 158–159
flexibility, FPGA’s, 159

FPGA configuration technique, 160
second memory architecture, 160
timing critical design, 159–160
Xilinx FPGAs, 159

and software architecture
and boot sequence, 162
fast FPGA configuration technique, 161
memory controller, 162, 163
optimized start-up process, 161
two-stage software, 161–162

Stream-processing applications
abstraction and efficiency requirements,

202
actor rules, 212
algorithm, 215
asub and hproj actor, 215
asynchronous boxes, 219
box rule, 212
CAPH language (see CAPH)
computational units, 219
dataflow/actor-oriented paradigm (see

Actors)
DDPs, 220
description, 201
DFG, motion detection, 216, 218
DSL, 201–202
firing conditions, 211–212
FPGAs (see Field-programmable gate

arrays (FPGAs))
FSMD level, 211
GPPs, 201
HDL code, 219
high-level languages, FPGA (see

Field-programmable gate arrays
(FPGAs))

implementation, 217–219
motion detection algorithm, 215, 216
network generation, 210–211

NL, 219
source code, motion detection algorithm,

215, 217
spatio-temporal changes, 215
SystemC translation, 214–215
and tools, 201
toolset, CAPH, 209, 210
translation, suml actor, 212, 213
translation, VHDL, 213–214

Switch allocation
arbitration and multiplexing, 128, 130
area-delay characteristics, 131
DPA, 130, 131
FCFS, 131
input-first allocation, 128, 129
LUT mapping, 130
multiplexer implementations, 130
output-first allocation, 128, 129
single arbiter vs. FIFO per input, 127–128
VCs, 128

Switch transversal
arbitration and multiplexing, 128, 130
area-delay characteristics, 131
DPA, 130, 131
FCFS, 131
input-first allocation, 128, 129
LUT mapping, 130
multiplexer implementations, 130
output-first allocation, 128, 129
single arbiter vs. FIFO per input, 127–128
VCs, 128

Symmetrical encryption, 226
SystemC modules

suml Actor, 222–223
translation, 214–215

T
TDDB. See Time-dependant-dielectric-

breakdown (TDDB)
Time-dependant-dielectric-breakdown

(TDDB), 59
Timing constraints

additional configuration time, 153
description, 152–153
FPGA configuration time reduction (see

Field-programmable gate arrays
(FPGAs))

initial partial bitstream, 156–157
memory architectures for fast start-up (see

Start-up)
software boot (see Software boot)
Spartan-6, 157–158

278 Index

Timing constraints (cont.)
start-up and software architecture (see

Start-up)
timing-critical hardware, 157
types, configuration, 152

TPs. See Transition probabilities (TPs)
Transistor aging

BTI (see Bias temperature instability)
definition, 56
HCI (see Hot carrier injection (HCI))

Transition probabilities (TPs), 59
Truncation errors

description, 34
fractional digits, 35
upper-bounds, maximum reciprocal, 35

U
User datagram packet (UDP) packets

CEP system, 94
event processing, 81

User-defined data structures, 84

V
Value history pattern (VHP), 6, 7
Verilog

hardware description language, 26

HDLs, 202, 220
VHP. See Value history pattern (VHP)

W
Warning sensor

calibration, 72
mapping techniques, 56
sensitivity, 64
signal aging, 56

Wavefront
data block allocation and distribution, 192
data reading order, 191–192
dependencies, 189–190
description, 188
FU, 191
patterns, 188–189
semiprocessed data sharing, 192–193

X
Xilinx Virtex-6 FPGA device, 65, 72

Z
Zero frames

configuration memory, 156
defined, 156
MFWs, 157

	Embedded Systems Design with FPGAs
	Preface
	Contents
	Widening the Memory Bottleneck by Automatically-Compiled Application-Specific Speculation Mechanisms
	Decimal Division Using the Newton–Raphson Method and Radix-1000 Arithmetic
	Lifetime Reliability Sensing in Modern FPGAs
	Hardware Design for C-Based Complex Event Processing
	Model-based Performance Evaluation of Dynamic Partial Reconfigurable Datapaths for FPGA-based Systems
	Switch Design for Soft Interconnection Networks
	Embedded Systems Start-Up Under Timing Constraints on Modern FPGAs
	Run-Time Scalable Architecture for Deblocking Filtering in H.264/AVC and SVC Video Codecs
	CAPH: A Language for Implementing Stream-Processing Applications on FPGAs
	Compact CLEFIA Implementation on FPGAs
	A Systematic Method to Evaluate and Compare the Performance of Physical Unclonable Functions
	Index

