Chapter 11
Missing Data

Missing data are a fact of life in medical research. Subjects refuse to answer
sensitive questions (e.g., questions about income or drug use), are unable to
complete an MRI exam because of metallic implants, or drop out of studies
and do not contribute further data. In each of these cases, data are “missing” or
not complete. How should this be accommodated in a data analysis? Statistical
computing packages will typically drop from the analysis all observations that are
missing any of the variables (outcomes or predictors). So, for example, a linear
regression predicting a patient’s number of emergency room visits from their age,
gender, race, income, and current drug use will drop any observation missing even
one of those variables. Analysis of data using this strategy is called complete case
analysis because it requires that the data be complete for all variables before that
observation can be used in the analysis.

Complete case analysis is simple and the default for statistical analysis pack-
ages. But it can be inefficient and lead to biased estimates. Imagine a situation
in which the first 20% of the sample is missing age information, the second 20%
is missing gender information and so on, with the last 20% missing drug use
information. Even though, in a sense, 80% of the predictor data is present, there
will be no observations left for a complete case analysis.

Further, data are often missing for a reason related to the outcome under study.
As examples, sicker patients may not show up for follow-up visits, leading to overly
optimistic estimates based on the data present. Or those patients staying in the
hospital longer may be the sicker ones (with the better-off patients having been
discharged). This might lead us to the erroneous conclusion that longer stays in
the hospital produce poorer outcomes, so why check-in in the first place? A basic
message is that we need to think carefully about why the data are missing. This may
influence how we will handle it and guide us to ways we can avoid biased estimates.

How can these drawbacks be overcome? If we could intelligently fill in the
missing data to obtain a complete dataset then we could use standard methods
without concern. Of course, we would need to account for the fact that the missing
data are estimated and not actual measured quantities in our sample. This is the
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basic idea behind multiple imputation, which we discuss in Sect. 11.5. Or perhaps,
we could use members in the sample with complete data to represent those with
missing data. For example, suppose heavy drug users tended to drop out of a study
at twice the rate of other participants. Then we could “double-count” the heavy
drug users who did not drop out of the study by weighting their contributions to the
analysis more heavily. This is the basic idea behind inverse probability weighting
(IPW) which we cover in Sect. 11.9.3. In either case, the key is to use the data on
hand, along with anything we might know about why the data are missing in order
to infer the missing data. Not surprisingly, this strategy will only work if the values
of the missing data are, to some extent, predictable from the observed data.

We begin this chapter with some simple illustrations of what can go wrong
when there is missing data. This naturally leads to consideration of why the data
are missing and some more formal classifications of the missing data process
in Sect. 11.2. We discuss some simple strategies that have been used in the
past to accommodate missing data. We then consider common missing data
scenarios: missing predictor values (with at least some of the associated outcomes
being measured) and complete (or nearly complete) predictor values, but missing
outcomes. For this latter situation, we consider three different ways in which the
data came to be missing. The two strategies mentioned above—multiple imputation
and inverse probability weighting—are then considered in more detail as principled
approaches to missing data. In Sect. 11.9.1, we also describe situations with missing
outcome data in longitudinal studies that can be addressed by using maximum-
likelihood methods like mixed models. These “automatically” infer the missing data
with the advantage of not requiring explicit modeling. Our focus throughout this
chapter is on the effect that missing data has on estimation of regression coefficients,
but missing data can also cause predictions to be biased.

11.1 Why Missing Data Can Be a Problem

To more clearly demonstrate why missing data can be a problem, we consider two
examples using the HERS study (see Sect. 3.1). In the first, we consider linear
regression of SBP on glucose level, BMI, and whether the person was Caucasian
or not using only the data from the fourth visit. For that visit 443 of the 1,871
observations had missing data for glucose. The second considers a longitudinal data
setting in which SBP is measured over two visits with the second one potentially
missing, as would happen with participants dropping out of a study.

11.1.1 Missing Predictor in Linear Regression

Standard regression of SBP on blood glucose level (glucose), whether a person is
Caucasian or not (white), and their BMI (bmi) using the 1,871 participants with
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Table 11.1 Regression of SBP using a complete case analysis
regress sbp glucose white bmi

Source | sS af MS Number of obs = 1385
————————————— hm e F( 3, 1381) = 2.69
Model | 2855.36663 3 951.788878 Prob > F = 0.0450
Residual | 488496.255 1381 353.72647 R-squared = 0.0058
————————————— B T it Adj R-squared = 0.0037
Total | 491351.622 1384 355.022848 Root MSE 18.808
sbp | Coef std. Err t P>|t| [95% Conf. Interval]
_____________ o o o oo _____
glucose | .0294818 .0126344 2.33 0.020 .0046972 .0542665
white | -1.537906 1.689423 -0.91 0.363 -4.852019 1.776207
bmi | .0644021 .0934208 0.69 0.491 -.11886 .2476641
cons | 132.716 3.29506 40.28 0.000 126.2521 139.1799

Table 11.2 Regression of systolic blood pressure using imputed glucose values

regress sbp imp_glucose white bmi

Source | sS daf MS Number of obs = 1750
————————————— m e F( 3, 1746) = 5.34
Model | 5766.65623 3 1922.21874 Prob > F = 0.0012
Residual | 628318.844 1746 359.861881 R-squared = 0.0091
————————————— B T it Adj R-squared = 0.0074
Total | 634085.5 1749 362.541738 Root MSE 18.97
sbp | Coef std. Err t P>|t| [95% Conf. Interval]
_____________ o o f oo _____
imp_glucose | .0338782 .0122595 2.76 0.006 .0098333 .057923
white | -2.209204 1.49944 -1.47 0.141 -5.150092 .7316834
bmi | .1364681 .083551 1.63 0.103 -.0274025 .3003388
cons | 130.385 2.937854 44 .38 0.000 124.6229 136.1471

data for visit 4 in HERS gives the output in Table 11.1. We can see that only 1,385
subjects are used in the complete case analysis. This is because, in addition to the
443 participants missing data on glucose, there are 85 missing values for SBP, 110
missing values for BMI, and 3 missing values for white (and some overlap in the
missing data). We will concentrate on the missing glucose values to introduce the
main ideas.

Glucose values are fairly strongly related to the other predictors, so there is some
hope in filling in the missing values relatively accurately; a regression of glucose on
SBP, BMI, white, current smoking status, and whether or not a woman develops
diabetes has an R? of 0.44. We could use this regression to generate predicted
values for 372 of the 443 of the missing glucose values—we cannot fill them all
in because there is missing data for BMI, white, and diabetes. Using the predicted
values in place of the missing glucose values, we can now use more of the data.
Table 11.2 gives the regression results, where imp_glucose is equal to the actual
value of glucose when it is available and the predicted (imputed) value of glucose
when it is missing. Some of the regression coefficients are noticeably different,
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Table 11.3 Regression of systolic blood pressure using multiply imputed glucose values

. mi estimate: regress sbp glucose white bmi

Multiple-imputation estimates Imputations = 5
Linear regression Number of obs = 1750
Average RVI = 0.0106

Complete DF = 1746

DF adjustment: Small sample DF: min = 1046.77
avg = 1557.86

max = 1743.23

Model F test: Equal FMI F( 3, 1644.5) = 4.57
Within VCE type: OLS Prob > F = 0.0034
sbp | Coef std. Err t P>|t| [95% Conf. Interval]
_____________ o o o e e e eeemm oo
glucose | .0269531 .0116979 2.30 0.021 .0039991 .049907
white | -2.199165 1.500637 -1.47 0.143 -5.142402 . 7440727

bmi | .1467563 .0836029 1.76 0.079 -.0172179 .3107305

cons | 130.8553 2.930445 44 .65 0.000 125.1077 136.6029

for example, the BMI coefficient has approximately doubled in size, has a smaller
standard error, and has a smaller p-value. All the standard errors are smaller. This
is an illustration of what is called single imputation, because we have filled in or
imputed the missing data a single time.

But this is not quite legitimate. In this analysis, the software does not distinguish
between the imputed glucose values and the actual measured values. So the
information content of the dataset is overestimated and standard errors may be
falsely small. A solution to this is to impute the glucose values but properly account
for the actual amount of information available. One way to do this is to use multiple
imputation which we describe in more detail in Sect. 11.5. Table 11.3 gives the
results of such an analysis.

The results are very similar to the singly imputed analysis. Because we have not
imputed a large portion of the data, the standard errors are only slightly increased
in the multiply imputed approach compared to the singly imputed. Notably, the
standard errors remain smaller than those from the complete case analysis.

Using imputation to handle the missing data for this example has had two
benefits: it may have slightly reduced a bias in the original coefficients and we have
been able to successfully utilize more of the data, thereby reducing the standard
errors. Multiple imputation is a flexible methodology and can be used to impute not
only the predictor, but also the outcomes.

11.1.2 Missing Outcome in Longitudinal Data

To illustrate the potential problems with drop out in longitudinal data, we used
the HERS study, for which there is actually very little drop out. We consider the
outcome of SBP using data only from baseline and year 1. In the complete dataset,
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Table 11.4 Analysis of HERS data using complete data and generalized estimating equations

. xtgee sbp visit bmi baseline dm, i(pptid) corr(exch) robust

GEE population-averaged model Number of obs = 5368
Group variable: pptid Number of groups = 2761
Link: identity Obs per group: min = 1
Family: Gaussian avg = 1.9
Correlation: exchangeable max = 2

Wald chi2(3) = 67.85
Scale parameter: 357.8178 Prob > chi2 = 0.0000

(std. Err. adjusted for clustering on pptid)

| Semirobust
sbp | Coef. std. Err. z P>|z| [95% Conf. Interval]
_____________ o o f e ____
visit | .2836451 .3388382 0.84 0.403 -.3804657 .9477558
bmi | .1385708 .0598246 2.32 0.021 .0213167 .255825
baseline_dm | 5.511153 .7814551 7.05 0.000 3.97953 7.042777
_cons | 129.66 1.723401 75.23 0.000 126.2822 133.0379

the average SBP at baseline was 135.1 and at year 1 was 135.2, so very little change
from baseline to year 1.

To quantify the change from baseline to visit 1, we used regression analyses of
SBP on visit (baseline, coded as 0, or the year 1 visit, coded as 1), BMI and whether
the participant had diabetes at baseline (yes/no). Since we have repeated measures,
we could use either GEEs (via xtgee) or mixed models (via xtmixed) to analyze
the data. Tables 11.4 and 11.5 give the results using the complete data.

The two analyses give virtually the same results. Focussing on the visit term,
there is a small and nonstatistically significant increase from baseline to year 1
(estimated to be about 0.28), consistent with the raw data.

We next simulated drop out at year 1 on the basis of either the baseline SBP or the
year 1 SBP, but keeping all the data for the baseline visit. In either case, those with
higher SBP were dropped at higher rates than those with lower SBP. In the situation
where drop out depended on baseline SBP, we “dropped” 1,461 participants at year
1 and “retained” 1,302. Those retained had average SBP at year 1 of 127.5 (range
85-196) and those dropped had average SBP 143.9 (range 93-220). So there is a
distinct difference between those dropped and retained, but there is also considerable
overlap. Importantly, in the incomplete data, the average SBP drops from 135.1 at
baseline to 127.5 at year 1, quite different from the complete data.

We, therefore, anticipate trouble with the analysis using the incomplete data since
the average SBP drops between baseline and the year 1 visit. Ideally, a technique that
handles missing data well will give results similar to the analysis of the complete
data (e.g., Table 11.4). Table 11.6 gives the regression coefficient tables for the
situation where drop out depends on SBP at baseline.

Now we see a completely different story. The generalized estimating equations
(GEEs) approach incorrectly estimates a highly statistically significant drop in SBP
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Table 11.5 Analysis of HERS data using complete data and maximum likelihood

. xtmixed sbp visit bmi baseline dm || pptid:
Mixed-effects REML regression Number of obs = 5368
Group variable: pptid Number of groups = 2761
Obs per group: min = 1
avg = 1.9
max = 2
Wald chi2(3) = 73.13
Log restricted-likelihood = -22872.471 Prob > chi2 = 0.0000
sbp | Coef std. Err z P>|z| [95% Conf. Interval]
_____________ b m o o e e e e
visit | .2843892 .338578 0.84 0.401 -.3792114 .9479898
bmi | .1392584 .0587622 2.37 0.018 .0240865 .2544302
baseline_dm | 5.507891 .7583126 7.26 0.000 4.021625 6.994156
_cons | 129.6413 1.677004 77.31 0.000 126.3544 132.9282
Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
_____________________________ e o

pptid: Identity |

sd(_cons) | 14.40895 .2784187 13.87346 14.9651
_____________________________ B m o o e e e
sd (Residual) | 12.28843 .1702939 11.95916 12.62678

LR test vs. linear regression: chibar2(01)= 1055.76 Prob >= chibar2 = 0.0000

of 1.32 from baseline to year 1. Interestingly, the mixed model approach (which
uses maximum likelihood, or ML, to fit the model) gives estimates similar to the
complete data analysis with a small estimated increase which is not statistically
significant. For the other coefficients, the two analyses give similar results, both to
one another and to the complete data analyses.

Finally, we also simulated a dataset where drop out at year 1 depended on year
1 SBP in a fashion similar to that described above. This differs from the previous
case in that whether or not a participant was included in the dataset depended on
unobserved quantities. Table 11.7 gives the results with drop out that depends on
SBP at year 1. Now both the analyses give very severely biased estimates of the
visit effect, though other coefficients are little affected.

There are several important messages from this example. When drop out is
dependent on previous, observed values, some analysis methods such as GEEs can
give badly biased estimates whereas others such as mixed model methods, based
on maximum likelihood, are less affected. The situation when drop out depends
on unobserved values is much more serious and leads to severe bias using either
method.
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Table 11.6 Analysis of HERS data with drop out depending on baseline outcome using GEEs
and ML

xtgee sbp visit bmi baseline dm if miss_mar==0, i(pptid) corr (exch) robust

| Semirobust

sbp | Coef. std. Err. z P>|z| [95% Conf. Interval]
_____________ oo ______________
visit | -1.320828 .431427 -3.06 0.002 -2.166409 -.4752463

bmi | .1041894 .0622733 1.67 0.094 -.0178641 .2262428
baseline dm | 5.787856 .813257 7.12 0.000 4.193901 7.38181
_cons | 130.5635 1.790897 72.90 0.000 127.0534 134.0736

xtmixed sbp nvisit bmi baseline dm if miss mar==0 || pptid:

sbp | Coef std. Err z P>|z| [95% Conf. Interval]
_____________ o o f e ____
visit | .5912612 .4179003 1.41 0.157 -.2278083 1.410331

bmi | .1084238 .0625694 1.73 0.083 -.0142101 .2310576
baseline_dm | 5.894762 .801877 7.35 0.000 4.323111 7.466412
_cons | 130.4142 1.779439 73.29 0.000 126.9266 133.9019

Table 11.7 Analysis of HERS data with drop out depending on unobserved outcome using GEEs
and ML

xtgee sbp visit bmi baseline dm if miss_nmar==0, i(pptid)corr(exch) robust

| Semirobust

sbp | Coef. std. Err. z P>|z| [95% Conf. Interval]
_____________ o o f e ____
visit | -9.889191  .3840043 -25.75 0.000 -10.64183  -9.136557

bmi |  .0962627  .0574965 1.67 0.094 -.0164284 .2089539
baseline_dm | 4.985786 .7507309 6.64 0.000 3.514381 6.457192
_cons | 131.0006 1.656733 79.07 0.000 127.7534 134.2477

xtmixed sbp visit bmi baseline_dm if miss_nmar==0 || pptid:

sbp | Coef. std. Err. z P>|z| [95% Conf. Interval]
_____________ o o o f oo _____
visit |  -8.35655  .4240134 -19.71  0.000 -9.187601  -7.525499

bmi | .1043524 .0573602 1.82 0.069 -.0080715 .2167762
baseline dm | 5.027966 .73204 6.87 0.000 3.593194 6.462738
_cons | 130.7572 1.630634 80.19 0.000 127.5613 133.9532

11.2 Classifications of Missing Data

The previous example has shown that the mechanism that causes the data to be
missing can be very important. It is, therefore, useful to develop categorizations of
missing data mechanisms that either are or are not likely to cause misleading results.
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To motivate some of the considerations, we use the Steroids for Corneal Ulcer
Trial (SCUT). SCUT was a randomized clinical trial to gauge the effectiveness of
a steroid treatment (steroid eye drop versus a placebo) on visual acuity (VA) in
people with bacterial corneal ulcers. The primary outcome of VA for SCUT was
measured on a scale called logmar, which is short for logarithm (base 10) of the
minimum angle of resolution. A logmar of 0 corresponds to 20/20 vision, a logmar
of 1 to 20/200 vision, and, in general, a logmar of x corresponds to a vision of
20/(20x 10%) on an eye chart. Follow-up measures were taken at 3 weeks, 3 months,
and 12 months. The predictors, all measured at the enrollment visit, are baseline VA,
ulcer location (whether it covered the center of the eye), ulcer size (in square mm),
and the type of infecting organism (gram positive versus gram negative). It is easy
to envision what the full or “complete” data would consist of for this example: all
participants have all their predictors measured at baseline and outcome information
at baseline and each of the three follow-up times.

For regression analyses, a key distinction with regard to missing information is
whether or not we have a considerable percentage of observations for which the
predictors are missing but we have a measured outcome. This is important because,
in regression analyses we typically model the distribution of the outcome variable
and treat the predictor variables as fixed (see Sect. 3.3.3). If the predictor variables
are missing for some observations (e.g., glucose values in the HERS example) then
we need a method for inferring those missing values and assumptions will have to
be made with respect to their distribution.

In the HERS example above, we used multiple imputation to build a model, tem-
porarily treating glucose as an outcome variable in a linear regression model. That
model assumes that glucose follows a normal distribution (for fixed values of the
predictors of that model). That is, we have to make a distributional assumption about
a variable that was a predictor in the original model (a regression of blood pressure
on glucose), something we did not have to do before.

In more complicated examples, with multiple missing predictors, we would have
to account for not only the distribution of each missing predictor by itself but also
the joint distribution, including aspects such as correlations between predictors. In
the not uncommon situation where the predictors with missing values consist of
nominal, ordinal, and skewed variable types, specifying a distribution for how they
are all jointly associated is a daunting task.

A simpler situation to handle is when there is little or no missing information
on the predictors and missing data are mainly in the outcome, or both outcome and
predictors are missing (as when a participant drops out of a study). In such cases,
we can focus on the outcome variable, for which we are already hypothesizing a
distribution, and categorize the missing data mechanisms relatively succinctly.

11.2.1 Mechanisms for Missing Data

Because we will want to describe the way in which the data came to be missing, it
is worthwhile to consider a formal statistical model and develop some notation.
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In that spirit, we envision a “complete” dataset, where all the data are present.
We will think of this in the context of a longitudinal cohort study with regularly
scheduled observation times, but the ideas apply more generally. Our complete
dataset would be one with all outcome and all predictors measured on each person
for each visit. Next, consider one of the variables that actually has missing data.

Let R;; be 1 if the ith participant has a measured value of the variable with
missing data at visit time ¢ and zero if it has “become” missing. So R is a binary
indicator of whether a data value is present or not. For each variable that has missing
data, we can now classify various missing data mechanisms by how they relate to
the probability that R;; = 1. If factors are unrelated to this probability, then they
have no bearing on the missing data process.

A common practice with missing data in a longitudinal study is to look at baseline
characteristics of participants who had missing data later in the study. If variables
differ significantly between those with and those without missing data (e.g., their
age, gender, or baseline value of the outcome) then we can begin to understand
what is related to R;; = 1. For example, Splieth et al. (2005) obtained a baseline
oral health assessment of all first- and second-grade schoolchildren in a city in
Germany. They compared the oral health of children whose parents did and did not
allow them to participate in a cavity prevention program and longitudinal follow-
up. They found that the children not participating were older and had poorer dental
health compared to the participants. Failure to recognize this selective participation
would result in biased estimates of average values. The formal classification scheme
we consider next takes the idea of relating missing data to baseline covariates a step
further.

11.2.1.1 Missing Completely at Random (MCAR)

There are three common classifications of the missing data process. Data are said
to be missing completely at random (MCAR) if P(R;; = 1) does not depend on
any of the variables. For SCUT this would mean, for example, that the probability
a logmar value at 3 months was missing was unrelated to the previous, current or
future logmar values and also unrelated to visual acuity, ulcer location, ulcer size, or
type of infecting organism. If we observed, for example, that participants with very
poor logmar values at baseline were less likely to return then we would know that
the MCAR scenario would not apply.

With X representing all the predictors and Y representing all the outcomes, this
can be formally stated as

P(Ri; = 1]Y.X) = P(R;, = 1), (11.1)
i.e., the probability of the data being missing is not associated with any part of the

data. Another way to interpret this is that knowing the values of the outcomes and
predictors would not change our estimate of the likelihood that a particular data
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value is missing. While a useful conceptual “baseline” definition, MCAR is often
not a reasonable assumption. For example, in longitudinal studies where there is
missing data, there is almost invariably more missing data later in the study. So, at
the very least, the predictor time or visit would be associated with the probability
that an observation is missing.

11.2.1.2 Covariate-Dependent Missing Completely at Random
(CD-MCAR)

A minor, but important, variation of this definition is covariate-dependent missing
completely at random (CD-MCAR), which is mainly applicable to missing outcome
data. In this situation, the probability of the outcome being missing can depend on
the predictors which are part of the statistical model but does not depend on the
other outcomes. With X°® representing all the observed information for predictors
which will be included in our model, we would formally write this as

P(R; = 1]Y,X) = P(R; = I|X*). (11.2)

For SCUT this would mean, for example, that the probability a logmar value
was missing was unrelated to the 3 weeks, 3 months, or 12 months logmar values
but could be related to visit, VA, ulcer location, ulcer size, or type of infecting
organism. If we observed, after accounting for differences due to the predictors, that
participants with very poor logmar values at 3 weeks were more likely to return at
3 months then we would know that the covariate-dependent MCAR scenario would

not apply.

11.2.1.3 Missing at Random (MAR)

A yet more flexible specification is that data are missing at random (MAR). This
assumption handles a variety of more plausible scenarios. In MAR, the probability
of missing data may depend not only on the covariates in the model but also on
observed outcomes.

With Y% representing all the observed outcome information, formally this
would be written as

P(R;; = 1|Y,X) = P(R; = I|]Y°*,X). (11.3)

In the SCUT example, the MAR scenario would allow for people with worse VA
at 3weeks or 3 months to be missing more frequently at 12 months and also to
depend on visit, baseline logmar, VA, ulcer location, ulcer size, or type of infecting
organism. In the HERS example, in Table 11.6, we artificially created data that
was MAR.
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11.2.1.4 Missing Not at Random (MNAR)

Finally, it may be that the probability a data value is missing depends on unobserved
quantities, for example, the outcome we would have measured were it not missing.
For instance, consider SCUT patients with identical baseline and 3 week visual
acuities. Suppose the ones whose VA did not improve are more likely to make the 3
month visit (to get checked by the doctors). Then the fact that the data are missing
would depend on the unobserved 3-month outcome. This scenario is called missing
not at random or MNAR. In the HERS example, in Table 11.7, we artificially created
data that was MNAR.

More formally, simplification of the model for P(R;;, = 1|Y, X) would not be
possible as we did in, for example, (11.2). Unfortunately, but perhaps not surprising
and because MNAR depends on unobserved quantities, we cannot verify or rule out
a MNAR process from the observed data alone. Instead, if we suspect the data are
MNAR the best we can do is conduct sensitivity analyses. One way to do so is via
multiple imputation, described in Sect. 11.5.

Why are these characterizations important? Their utility is that we can now
describe more carefully when standard types of analyses can be expected to give
answers free of bias due to the missing data. We give more details and caveats
beginning in Sect. 11.5 but in essence:

* When the data are MCAR, any method of analysis will give unbiased answers.

¢ When the outcome data are CD-MCAR, and those covariates are included in
the statistical model, any method of analysis will give unbiased answers for
regression coefficients and predicted values. Care still needs to be taken with
calculations that average over values of the covariates (e.g., an average of the
predicted values, or estimation of marginal effects) because those may not have
the same distribution of covariate values as in the complete data.

* When the outcome data are MAR, correctly specified, likelihood-based analysis
methods (e.g., mixed models) will give unbiased answers, but other methods
(e.g., GEEs) may not.

* When the data are MNAR, any standard method of analysis may be biased.

Moving from MCAR to CD-MCAR accommodates the common situation in
which missing data depend on measured covariates. Going from CD-MCAR to
MAR allows even more elaborate dependence of the missing data—on measured
covariates and outcomes—and will therefore include missing data mechanisms
that have a higher chance of being applicable in practice. This makes likelihood-
based methods especially attractive because they can continue to give unbiased
answers even if the data are MAR. To reflect this fact, data which are MAR (or
the more stringent requirements of MCAR or CD-MCAR) are sometimes called
“ignorable”. Notably, although we postulate the MAR condition in terms of (11.3),
if we are using likelihood-based methods, we need not specify a explicit statistical
model for it, no matter how complicated the dependence might be. Instead, we can
focus on developing a model for the complete data. This avoids being distracted by
modeling a missingness mechanism which is likely to be imperfectly understood.
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11.3 Simple Approaches to Handling Missing Data

We begin our discussion of methods of addressing missing data with a number
of simple (and sometimes simplistic) methods that have been used previously. We
return to the context of the HERS and SCUT trials.

11.3.1 Include a Missing Data Category

A simple approach to completing a dataset with missing values in a categorical
predictor is to define a separate category for the missing values. In Sect. 4.3, we note
that women in the HERS cohort responded to a question about how physically active
they considered themselves compared to other women of their age. The five-level
response ranged from “much less active” to “much more active”, and was coded in
order from 1 to 5. A solution to missing data for this predictor is to define a category
designated as “missing”. Physical activity is then analyzed as a categorical variable
with six categories with all observations in the sample having a defined value for
this variable. This is appealing because it avoids imputing values to incomplete
observations but allows all observations to be used in the analysis.

Unfortunately, this can create biased estimates for other regression coefficients in
the model, even when the data are MCAR. The reason for this is that, for the subset
coded as missing, we are not adjusting for the value of physical activity, whereas
for the rest of the data we are. So regression coefficients (for predictors other than
physical activity) that are estimated from the model using the six category version
of physical activity are a blend of the coefficient before and after adjustment for
physical activity. Bias is introduced when the unadjusted and adjusted coefficients
differ and there is a sizeable percentage of observations in the missing data category.
On the other hand, if the adjusted and unadjusted coefficients are similar and the
percentage of observations in the missing data category is small, little bias will be
introduced.

11.3.2 Last Observation or Baseline Carried Forward

In SCUT, vision tends to improve rapidly in the first month as the infection is treated
and has usually stabilized by 3 months. As patients feel better, they are less likely to
return to the clinic for follow-up appointments and nearly 30% of 12 month visual
measurements are missing due to loss to follow-up.

One approach to handling a missing 12-month outcome value in the SCUT trial
is to use (or “carry forward”) a patient’s 3 month VA measure. If the 3-month value
is not available the 3-week (or, if that is missing, the baseline value) value would
be used. This approach is called last observation carried forward (LOCF) because
missing values are filled in with the last available value from the same person. This
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approach can be used with either outcomes or predictors. The LOCF approach has
the appeal of using the most proximate available VA measure to complete the data.
It has been argued that this is a conservative method because it assumes no change
in measured values for the missing data.

The method has substantial disadvantages. In SCUT, for instance, visual acuity
improves substantially from 3 weeks to 3 months. Hence, LOCF would be implau-
sible for such data and almost certainly underestimate VA if values are carried
forward, potentially leading to biased estimates. Second, a single value is substituted
for the missing value. As with single imputation, if a standard analysis is then
applied to the completed data set, this uncertain, filled-in value is treated as if it
were an actual measurement and leads to falsely precise analyses. This is a concern
whether or not carrying forward values is approximately correct, on average.

Consider a study of people initiating an experimental treatment to reduce
hypertension with repeated measures of their blood pressure, subject to missing
values. If the missing values are due to study dropout and the participants must
discontinue the experimental treatment, then we might reasonably expect that the
blood pressure values would return to pretreatment levels. This would be captured
by using the baseline value (rather than the last value prior to dropout) to fill in
missing values. This approach is termed baseline value carried forward (BCF) and
it is very similar in spirit and execution to LOCF except that a baseline value is
used to replace the missing value. While imputing using the baseline value might be
reasonable for the above example, the immediate return to baseline assumption may
not be plausible in other contexts. BCF, like LOCF, under-accounts for the variation
due to the single imputed value.

11.3.2.1 Other Single Imputation Approaches

Other approaches use information from the remainder of the data set to infer a
single value. Suppose values of a variable like income are missing in a sample.
A typical value, such as the mean or median of observed values, could be used.
While this can generate a reasonable value for a continuous value, like income, mean
values would produce an implausible value for a categorical value, like race. For
categorical variables, the method could be adapted to impute the race as the most
common answer (e.g., white) if the variable is categorical. The main advantage
of all of these “single imputation” approaches is their simplicity in generating the
imputation (substituting means, modes, or previously measured values). However,
this simplicity may reflect a lack of critical thinking about the relationship of
missing data to observed data. In the SCUT trial for example, a better imputation
for a missing 3 month VA measure might be to use the 3-week value augmented by
the expected change in VA from 3 weeks to 3 months.

With a variable such as income, it is highly possible that the value to be measured
contributes to the chance that it will not be observed, which might lead to data that
are MNAR. A better approach to imputation might use values of other covariates
such as zip code, age, and/or education to predict the missing values of income. If
those covariates were able to account for the dependence of missingness on income,
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then the data would be MAR. Thus, superior imputations will need to be informed
by a model for the data and for the mechanism which underlies the missing values.
Methods such as LOCF or BCF skip this crucial step of model development.

Furthermore, any single imputation approach that applies standard analysis
methods to the completed data set can seriously underestimate the variation in the
data set, giving standard errors that are too small and CIs which are too narrow.
These deficiencies can be corrected by applying the method of multiple imputation
which we discuss in Sect. 11.5.

11.4 Methods for Handling Missing Data

We now return to more general approaches for handling missing data. The rec-
ommended methods depend on both the pattern of missing data (drop out from
the study, missing predictors only, etc.) and the missing data mechanism. A key
distinction is whether there is missing data for the predictor variables with at least
some of those instances having observed values of the outcome. In such a case, we
recommend using multiple imputation, described in more detail in Sect. 11.5.

For situations in which the predictors are mostly complete and the issue
is data missing in the outcome variable, we divide our presentation and rec-
ommendations by the mechanism of the missing data: missing completely at
random (MCAR—Sect. 11.7), covariate- dependent missing completely at random
(CD-MCAR—Sect. 11.8) or missing at random (MAR—for hierarchical analyses
only and in Sect. 11.9). When the data are MCAR or CD-MCAR, relatively
simple approaches may suffice. For data that are MAR, several approaches are
possible.

11.5 Missing Data in the Predictors and Multiple Imputation

The first distinction in recommended analysis strategies is whether there is missing
data in the predictors (even if there is also missing data in the outcomes) and
the missing data can be assumed to be MAR. With missing predictor data, we
recommend the approach of multiple imputation, which we introduced briefly
in Sect. 11.1.2. The basic idea is not only to fill in a reasonable value for the
missing data but also to incorporate some random error. While it may seem
counterproductive to add in random error, it is a convenient device for properly
reflecting the degree of uncertainty due to the missing data. By doing it a number
of times (hence the adjective multiple in multiple imputation), we can get valid
estimates of standard errors (and hence CIs and p-values), and by averaging the
results, not have them unduly affected by the random error. It turns out, perhaps
surprisingly, that the process does not need to be repeated very many times. A typical
number is five or ten.
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Table 11.8 Regression model for imputing glucose

. regress glucose bmi csmker white sbp diabetes

Source | sS af MS Number of obs = 1355
————————————— oo oo oo oo — oo oo oo ——-oo F( 5, 1349) = 213.11
Model | 1019590.52 5 203918.103 Prob > F = 0.0000
Residual | 1290806.09 1349 956.861448 R-squared = 0.4413
————————————— B T it Adj R-squared = 0.4392
Total | 2310396.61 1354 1706.34905 Root MSE = 30.933
glucose | Coef. std. Err. t P>|t| [95% Conf. Interval]
_____________ o o o o ool
bmi | .4921757 .1568229 3.14 0.002 .1845325 .7998189

csmker | 1.183684 2.603247 0.45 0.649 -3.923168 6.290536

white | 9.180278 2.863755 3.21 0.001 3.562382 14.79817

sbp | .0342977 .0447849 0.77 0.444 -.0535579 .1221532

diabetes | 60.45312 1.977712 30.57 0.000 56.57339 64.33285
_cons | 69.66885 8.108395 8.59 0.000 53.76242 85.57528

The steps in multiple imputation are essentially as follows:

(1) Specify a probabilistic model for how to fill in the missing data.

(2) Using the model, fill in (impute) the missing data with random error.

(3) Repeat the imputation a small number of times (e.g., five) so you end up with
multiple versions of the data set, each with somewhat different values of the
imputed variable(s).

(4) For each of the imputed data sets, calculate the quantities of interest (e.g., the
regression coefficients).

(5) Average the quantity of interest across the imputed data sets.

(6) Calculate a standard error based on the average of the model-based variation
plus the variation in the calculated quantities of interest across the imputed data
sets.

The first step, of specifying the imputation model, is the most difficult and involves
building a regression model for the variable with missing data; the subject of
this entire book! The remaining steps are relatively automatic and are handled by
statistical software.

For the HERS example of Sect. 11.1.2, the variable we imputed was glucose.
Our probabilistic model was a linear regression model for glucose with predictors
of SBP, BMI, being white, current smoking status, and development of diabetes. The
standard assumption of a linear regression model is that the error terms are normally
distributed. Table 11.8 gives the output from fitting that regression equation.

Given values of BMI, current smoking status, being white, SBP, and devel-
opment of diabetes, we can use the regression equation to generate a predicted
glucose value for those with missing values. But in multiple imputation we do more.
The regression output from the table also gives the value of the root mean square
error, 30.933, which quantifies the degree of uncertainty (i.e., the error term) in the
regression equation. Under the assumptions of the linear regression model, those
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Table 11.9 Stata code for imputing glucose

mi set wide

mi register imputed glucose

mi impute reg glucose bmi csmker white sbp diabetes, add(5) rseed(271828) ///
> force

mi estimate: regress sbp glucose white bmi

errors are normally distributed, with means zero and standard deviation 30.933. So
to impute the missing values of glucose, we calculate the predicted value of glucose
and then add a normally distributed error term with standard deviation 30.933.

As an example, one of the HERS participants who had a missing glucose
measurement had a BMI of 24.68, was not a current smoker, was white, had a
SBP of 130, and was not diabetic. Using the coefficients from Table 11.8, her
predicted glucose value is 95.45. To impute a value for her, we would add a normally
distributed error term with mean zero and standard deviation 30.933. Using the
rnormal (0,30.9333) command twice in Stata to generate random normal
variables with the correct mean and standard deviation gave the values 42.98 and
—13.34. So her imputed glucose value for the first imputed data set would be
95.45 +42.98 = 138.43 and would be 95.45 — 13.34 = 82.11 for the second. This
process is repeated for each of the missing glucose values and each imputed
data set.

Next, for each imputed dataset, we perform the regression of SBP on glucose,
BMI, and white. Suppose our interest lies in understanding the relationship between
SBP and BMI. We would have five estimates of the regression coefficient, each
slightly different due to the different imputed values. Averaging those five estimates
gives us our multiple imputation estimate and the standard error is calculated both
from the model-based standard errors and the variation in the coefficients from
imputed data set to imputed data set, which measures the amount of uncertainty
due to imputing the values of glucose.

Across the five imputations, the values of the coefficient for BMI were 0.145,
0.149, 0.138, 0.150, and 0.152 with an average of 0.147. The model-based standard
errors were 0.083, 0.083, 0.084, 0.083, and 0.084 with an average of 0.083. So the
estimated coefficient for BMI from the multiple imputation is 0.147 and the standard
error is slightly higher than the average of the model-based standard errors (due to
the imputation to imputation variability) and is equal to 0.084.

While no one step in the multiple imputation process is difficult, conducting the
multiple imputations and analyses and assembling the results is tedious and could
be error-prone if done manually. So programs like Stata automate the process. The
results reported in Table 11.3 were generated with the Stata code given in Table 11.9.

11.5.1 Remarks About Using Multiple Imputation

In the HERS example, we used the outcome of the original analysis (SBP) to impute
glucose. And then we turned around and used the imputed glucose value in the
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regression of SBP on glucose and the other predictors. This may seem like cheating
but is actually needed to obtain unbiased estimates (Little 1992). In fact, multiple
imputation does not distinguish the roles of outcome and predictor, but instead
regards all the variables on an equal footing. So, whenever variables are associated
with one another, it becomes important to utilize that information in the imputation
model. And it is usually the case that we include predictors (e.g., glucose) in our
modeling precisely because we expect them to be associated with the outcome. So
if those predictors are missing, it is important to use the original outcome variable
in the imputation modeling.

Multiple imputation has a long history of use in sample surveys. Many surveys
(like NHANES, the National Health and Nutrition Examination Survey) are ex-
tremely comprehensive and are released for public use. In this case, it is difficult to
predict which analyses will be undertaken, which variables will be used in analyses,
and which will be treated as outcome variables. Because multiple imputation does
not distinguish outcomes from predictors, users need not worry about the distinction
with regards how the data were imputed. Contrast this with a method like creating
a missing data category, which only works for categorical predictors. Furthermore,
the imputation algorithms may be quite complicated and difficult to implement, but
the analysis of the data is straightforward using routines like those available in Stata.
So once a multiple imputation is produced, it can be used in a variety of situations.

Because of the potential for using a multiply imputed data set for many purposes,
when imputing missing data it is important to err on the side of flexibility rather than
parsimony. If the model for imputation is overly simplistic, those assumptions will
be built into the portion of the data that has been imputed. For example in HERS,
if the relationship between glucose and BMI were non-linear, but the imputation
model assumed it to be linear, then predictions might be biased. Or if we assumed
there was no interaction between BMI and race in imputing glucose and if a later
analysis searched for interactions, interaction effects would be attenuated.

11.5.2 Approaches to Multiple Imputation

In practice, the pattern of missing data across variables can be quite different. In
the HERS example, BMI and current smoking status (yes/no) had missing data
in addition to glucose, whereas race (white versus other) had very little missing
data. With multiple missing variables, a number of complications arise. First, how
should we handle variables with distributions other than normal such as current
smoking status, which is binary? Second, if we want to impute glucose using
SBP, BMI, race, and current smoking status, what do we do about the missing
data for BMI and current smoking status? Third, once the data are filled in, how
should we update the parameter estimates? There are three main approaches for
dealing with multiple imputation across a number of variables: iterative chained
imputation, multivariate normal (MVN) imputation, and Monte Carlo Markov
chain. We describe in more detail the first two.
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11.5.2.1 Iterative Chained Equations Imputation

Using iterative chained equations (ICEs) imputation, we build regression models for
each of the variables with missing data, in turn treating them as outcome variables
and using the rest of the variables as possible predictors. For the HERS example,
in addition to the model we have already built for glucose, we would need models
for BMI and current smoking status. Because current smoking status is a binary
variable, a logical imputation model would be to use a logistic regression with
predictors of SBP, BMI, race, and glucose. From the logistic regression model,
we would get a predicted probability of being a current smoker. We would then
generate a random binary outcome with the predicted probability (which could be
done using the rbinomial command in Stata). Once the value of current smoking
was imputed, this could be used as a predictor in a regression model to impute BMI.
These regression equations are used to fill in each of the variables in turn. The whole
process is repeated a number of times to reach a “steady state” so that the results do
not depend on the order in which the variables are imputed.

An important advantage of this approach is the ability to tailor the model for
imputing each variable, both with respect to its distribution (e.g., normal, binary,
or multiple categories) as well as the inclusion of predictors, possibly with non-
linear terms and/or interactions. Currently, Stata allows regression models of the
following types via its mi impute chained command: linear regression (reg-
ular, truncated, and interval), logistic (binary, ordinal, and multinomial), Poisson,
and negative binomial. This is also its most important disadvantage: a regression
model has to be constructed for each of the variables for which there is a significant
percentage of missing data. With, say, 20 variables with missing data, the regression
modeling effort increases 20-fold, even though this may not be the scientific focus
of the analysis. These regression models need to be built with care so as not to
introduce out of range or implausible imputed values.

11.5.2.2 Multivariate Normal Imputation

A simpler to use method available in many statistical software packages is to impute
the missing data assuming all the variables follow a joint, normal distribution. While
this is invariably an incorrect assumption when there are a number of variables with
missing data, it has often been found to perform well in practice. This is because,
even though the distributional assumptions may be suspect, imputation assuming
a MVN distribution still retains the proper average values and correlations among
the variables. When the later analysis depends only on such quantities (as when the
ultimate analysis is a linear regression) this method may suffice.

For example, in Sect. 11.5.3 we wish to impute the binary predictor variable race,
which is coded as 1 for white and 0 otherwise. Recall that when a variable is coded as
0 and 1, its mean is equal to proportion of observations falling in the category coded
as 1. When imputing such a variable, MVN imputation will generate a continuous
variable in its place, but one which will have the proper mean (in the sense that the
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mean will properly reflect the proportion falling in category 1). Of course, care must
be taken when using such a variable in an analysis: since it is no longer categorical
it cannot be treated as such in a prediction equation. Software packages such as SAS
allow the user to round off to 0 or 1 to recover this aspect of the data.

Although MVN imputation often gives sensible answers, in some cases it may
be important to retain more detailed aspects of the distribution (e.g., the proportion
exceeding a threshold), and MVN imputation may lead to suspect conclusions.
Another situation in which the multivariate normal assumption is not satisfactory
is when one or more variable is a nominal categorical variable, e.g., marital status
(single and never married, married, divorced).

If most of the variables to be imputed are approximately normally distributed
and there are no nominal categorical variables, then it is probably safe to use MVN
imputation, which is often easier to implement in practice. However, if there are
nominal categorical variables, or the predictors are highly nonnormally distributed,
then iterative chained imputation is the recommended approach.

11.5.3 Multiple Imputation for HERS

We demonstrate the use of ICEs imputation and MVN imputation using the HERS
dataset and two regression analyses: regression of SBP on glucose, BMI, and race
(white or not), which has missing data on two continuous predictors (glucose and
BMI) and the regression of SBP on glucose, current smoking status (yes/no), and
race, which has missing data on a continuous predictor (glucose) and a binary
predictor (smoking status).

Using the ICE methodology, we built linear regression models for glucose and
BMI and a logistic regression model for current smoking status. We considered two
approaches to modeling: parsimonious and flexible. In the parsimonious approach,
we included the other variables in the imputation model as is. So, for example, the
parsimonious imputation model for BMI was a linear regression with predictors
of SBP, glucose, race, and current smoking status. In the flexible approach, we
included all two way interactions and quadratic versions of numerical predictors.
So, for example, the flexible imputation model for current smoking status was a
logistic regression with predictors of glucose, BMI, and SBP, the squared versions
of each of those, race and all the two way interactions such as race by BMI, race by
SBP, BMI times SBP, etc.

We compared this to the MVN approach, which assumes that SBP, glucose,
BMI, and current smoking status are MVN and imputes the values under that
assumption. Table 11.10 lists the sample sizes, regression coefficients, and p-values
for a complete case analysis and the three approaches to multiple imputation.
Similarly, Table 11.11 lists the values for a regression of SBP on glucose, race,
and current smoking status. We might expect the MVN approach to do more poorly
for this model since current smoking status is a binary variable.
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Table 11.10 HERS model fit comparisons with different multiple imputation strate-
gies: regression of SBP on glucose, race, and BMI

Parameter estimates p-values
MI method N Glucose Race BMI Glucose Race BMI
Complete case 1385  0.030 —1.54 0.06 0.02 036 049
ICE parsimony 1871  0.029 —-252  0.13 0.02 0.09 0.11
ICE flexible 1871  0.028 —2.53  0.14 0.02 0.09  0.09
MVN 1871  0.030 —2.44  0.14 0.02 0.10  0.10

Table 11.11 HERS model fit comparisons with different multiple imputation strate-
gies: regression of SBP on glucose, race, and current smoking status

Parameter estimates p-values
MI method N Glucose Race Smoke Glucose Race Smoke
Complete case 1370 0.028 —2.04 —1.55 0.02 0.23 032
ICE parsimony 1871  0.032 =275 —0.96 0.007 0.06 0.49
ICE flexible 1871  0.032 =277 —0.94 0.006 0.06  0.49
MVN 1871  0.033 —2.68 —1.01 0.005 0.07 0.46

The imputation analyses differ from the complete case analyses in several

important aspects:

The imputation methods are based on imputed versions of the complete data set
with 1,871 observations.

For a number of the coefficients, the imputations give materially different
estimates of the coefficients compared to the complete case analysis, e.g., the
coefficient for race.

The imputations, which use all the observed data, often have smaller p-values
than the complete case analysis.

Turning to comparisons among the various imputation methods, we observe that

The flexible and parsimonious approaches to ICE gave virtually the same
answers.

The MVN approach gave somewhat different answers than the two ICE ap-
proaches, but all three imputation approaches gave answers similar to one another
and somewhat different than the complete case analysis.

The MVN approach seemed to do a creditable job even when imputing the binary
variable, race.

The example serves to illustrate both the advantages and disadvantages of

multiple imputation. It uses all the observed data while properly reflecting the fact
some of the data are missing. It may have reduced the bias in some of the regression
coefficients. It properly reflects the fact some of the data are missing but allows for
reduced standard errors and generally smaller p-values. But it came at the cost of
either having to construct a model for each of the original predictor variables (for
ICE) or hypothesize a MVN model for all the predictor variables that had substantial
missing data and led to a somewhat more complicated overall analysis.
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11.6 Deciding Which Missing Data Mechanism
May Be Applicable

The key to using multiple imputation is to build regression models to fill in
predictors or outcomes that have missing data. When the predictors have missing
data, the outcome variables will usually be part of the imputation models. In the
next few sections, we consider situations where the main missing data are outcome
data. Our recommended strategies depend on which missing data mechanism is to
be assumed so we give some guidance here as to how to choose.

As noted above, e.g., (11.2), the different missing data mechanisms are distin-
guished by dependence of the probability of the data being missing on different
quantities. In CD-MCAR dependence is on covariates and, in MAR, dependence is
on the outcome and possibly also on covariates. Distinguishing between these cases
can be done in a descriptive manner or using a more formal statistical model.

For example, in the SCUT trial and considering missing outcome (visual acuity)
data at the 3-month visit, we would calculate descriptive statistics for those with
and without missing data. If the average ulcer size, the proportion with the ulcer in
the center of the eye, or the proportion of gram positive infections (all measured at
baseline) differed between those with a missing VA measurement at 3 months and
those with it present, then we would know the data could not be considered MCAR,
but instead would be at least CD-MCAR. We could formally test the association by
conducting a t-test for ulcer size or y? tests for whether the ulcer is in the center of
the eye or type of infection across the missingness groups.

Alternatively, we could define an indicator variable R;, equal to 1 if the 3-month
measurement was present and zero otherwise, and conduct a logistic regression to
assess the association of missingness with the covariates. If we found that any of the
covariates is associated with missingness, it would establish that the data could not
be MCAR.

By further considering previously measured outcomes (e.g., the value of VA at 3
weeks), we can check to see if the CD-MCAR assumption is inadequate. If the VA at
3 weeks differed between the groups with 3 month VA data present and absent that
would suggest the missing data mechanism to be at least MAR. More rigorously,
if VA at 3 weeks was predictive of missing VA at 3 months in a logistic regression
model that also contained the covariates that were related to missingness then we
would know that the assumption of CD-MCAR was inadequate.

With substantial amounts of missing data, it is invariably good practice to
conduct descriptive analyses to understand to what extent the missing data are
associated with measured variables. As noted above this can help rule out simpler
mechanism such as MCAR (which rarely holds in practice) and CD-MCAR. As
noted earlier, because MNAR depends on unobserved quantities, we cannot verify
or rule out a MNAR process from the observed data alone.
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11.7 Missing Outcomes, Missing Completely at Random

We now consider datasets for which there is missing data in the outcomes but where
any missing data in the predictor variables is negligible or occurs along with missing
data in the outcome (as when a participant drops out of a study). The easiest case
to deal with is when the data are MCAR, i.e., the missing data are totally unrelated
to either the other outcomes or the predictors. In this case, ignoring the missing
data does not cause bias and simply leaving the missing data out of the analysis
properly reflects the amount of information available. In this case, complete case
analysis using any of the usual statistical analysis strategies (e.g., linear regression
or logistic regression) is the recommended strategy. It will automatically be adopted
by any of the usual statistical packages, including Stata, if you conduct the usual
analysis in the presence of missing data.

We again return to the HERS dataset and we fit a model to predict systolic
blood pressure (SBP) from BMI, race (white or not), whether the participant was
on medication to control their blood pressure (yes/no) and the interaction of BMI
and blood pressure medication. From that model, the coefficient of BMI in the on-
medication group was 0.24, with a standard error of 0.06. So with each increase in
BMI of one unit, there is an associated increase in SBP of about 0.24. However, in
the off-medication group, the coefficient is 0.52 with a standard error of 0.11. This is
not surprising as we would expect those on medication to have their blood pressure
better controlled and less associated with BMI.

We again artificially create missing data to illustrate the consequences. Using
a random mechanism, we dropped 75% of the data and refit the above model, so
the missing data mechanism is MCAR. The on-medication BMI coefficient was
0.19 with a standard error of 0.10 and the off-medication coefficient was 0.56 with
a standard error of 0.21. So, even though we have dropped 75% of the data, the
two coefficients are similar to those obtained from the full dataset, as expected.
Using GEEs gave virtually the same results, with coefficients of 0.18 and 0.56,
respectively.

11.8 Missing Outcomes, Covariate-Dependent Missing
Completely at Random

The next level of missing data occurs with data where missingness may depend on
a covariate that is in the analysis model as a predictor, but does not depend on other
variables (either other outcomes or variables not in the model), that is, covariate-
dependent missing completely at random (CD-MCAR). Under CD-MCAR, a
complete case analysis yields unbiased estimates of regression coefficients and
predictions for given values of the covariates using any of the regression methods
we have described. However, quantities that require averaging over members of the
sample may not be correct.
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Using the HERS data, as in the previous section, we again randomly dropped
75% of the data, but this time all the dropped data was from the on-medication
subgroup, which makes up about 80% of the full dataset. This missing data
mechanism would be CD-MCAR because it depends on whether the participant is
on hypertension medication or not, but not on other variables. We fit the same model
as described in the previous section and obtained an on-medication coefficient for
BMI of 0.23 with a standard error of 0.16 and an off-medication coefficient of 0.59
with a standard error of 0.12, with the coefficients again quite similar to the full
dataset.

But suppose we were interested in the average increase in SBP associated
with a one unit increase in BMI. Since the no-medication participants make up
about 80% of the cohort, the average increase is a weighted average of the two
coefficients: 0.30 = 0.8(0.24) + 0.2(0.52). Being more careful with the calculations,
the exact value is actually 0.29. But in the CD-MCAR scenario, the proportion of
on-medication participants is only about 24%. And so the average increase will
be misestimated as 0.51, because the off-medication participants are weighted too
heavily.

The correctly blended average can be calculated using Stata’s margins com-
mand as shown in Table 11.12. In that table, bmi_ctr is the centered value
of BMI (i.e., it has mean zero) and sbp_cdmcar is SBP with values missing
due to the CD-MCAR mechanism. The margins command estimates the value of
SBP at the mean value of BMI and at one unit above the mean. Using just the
estimation sample gives an associated increase in SBP of about 0.51(=135.1076 —
134.6008). However, using the noesample option generates an estimate for
the entire sample, recovering the proper weighting of the on- and off-medication
subgroups, and gives an estimate of about 0.30( = 133.2468 — 132.9490), quite
close to the full data estimate.

As in the MAR scenario, for CD-MCAR the particular analysis method makes
little difference. Using GEEs gave virtually the same answers as the mixed-model
approaches reported above.

11.9 Missing Outcomes for Longitudinal Studies,
Missing at Random

Longitudinal studies with a planned observation schedule invariably have at least
some missing data. Although attempts are usually made to have participants return
for every scheduled visit (e.g., yearly), some drop out of the study, either voluntarily
or involuntarily (e.g., death), or miss visits. A consequence is that all data that would
have been collected at that visit (either outcomes or predictors) will be missing.
So use of analysis strategies to minimize bias due to missing data are essential.
For example, the Osteoarthritis Initiative, a well-conducted cohort study, enrolled
4,796 individuals, attempting to collect data yearly. After 1 year, 94% were still
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Table 11.12 Using the margins command with CD-MCAR missing data

xtmixed sbp cdmcar c.bmi ctr white htnmeds htnmeds#c.bmi ctr || pptid:
Mixed-effects REML regression Number of obs = 2291
Group variable: pptid Number of groups = 972
Obs per group: min = 1
avg = 2.4
max = 6
Wald chi2(4) = 30.08
Log restricted-likelihood = -9527.0924 Prob > chi2 = 0.0000
sbp_cdmcar | Coef. Std. Err. 4 [95% Conf. Interval]
bmi_ctr | .5946715 .1249834 4.76 0.000 .3497085 .8396344
white | .6615583 2.262646 0.29 0.770 -3.773146 5.096263
htnmeds | -2.858138 .9904139 -2.89 0.004 -4.799314 -.9169625
|
htnmeds# |
c.bmi_ctr |
1 | -.3666237 .1957226 -1.87 0.061 -.750233 .0169856
|
cons | 134.6577 2.258123 59.63 0.000 130.2318 139.0835
Random-effects parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ m o o e e
pptid: Identity |
sd (_cons) | 14.58279 .4669968 13.69562 15.52742
_____________________________ o o .
sd (Residual) | 11.41371 .2233941 10.98415 11.86006

LR test versus linear regression: chibar2(01)=736.07 Prob >= chibar2= 0.0000

margins, at (bmi_ctr=0) at (bmi_ctr=1)

Predictive margins Number of obs = 2291
Expression : Linear prediction, fixed portion, predict ()

1. _at : bmi_ctr = 0

2. _at : bmi_ctr = 1

| Delta-method

| Margin  Std. Err. z  P>|z] [95% Conf. Interval]

_____________ oo ___
_at |

1 | 134.6008 .5746835 234.22 0.000 133.4745 135.7272

2 | 135.1076 .5946754 227.20 0.000 133.9421 136.2732

margins, at (bmi_ctr=0) at (bmi_ctr=1) noesample

Predictive margins Number of obs = 9157
Expression : Linear prediction, fixed portion, predict ()

1. _at : bmi_ctr = 0

2. _at : bmi_ctr = 1

| Delta-method

| Margin  Std. Err. z  P>|z] [95% Conf. Interval]

_____________ o f o ____
_at |

1 | 132.9490 .6731565 197.50 0.000 131.6297 134.2684

2 | 133.2468 .6880263 193.67 0.000 131.8983 134.5953
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being followed, with 6% dead or lost to follow-up and, after 2 years, 90% were still
being followed. If the data are MCAR or CD-MCAR then the analysis strategies
suggested above will work for longitudinal data. But in a longitudinal study, it
is quite possible that missingness is related to previously measured outcomes,
making the data MAR. For example, in the OAI, a patient with an MRI (magnetic
resonance image) showing advanced osteoarthritis at one visit may be less likely
to come in for the next visit, since it would entail lengthy data collection and
another MRI.

The situation of MAR represents a reasonable one for a wide variety of
missing data problems. This is a middle ground between MCAR and MNAR
for which the choice of analysis strategy can make a difference. Three general
approaches have been suggested for dealing with MAR data in longitudinal
studies: use maximum-likelihood based methods, use inverse weighting methods,
or use multiple imputation.

11.9.1 ML and MAR

In Sect. 11.1.2, we contrasted the use of generalized estimating equations and
linear mixed models in a particular example. Under a MAR situation we showed
that the generalized estimating equations approach gave biased results whereas the
linear mixed-model analysis did not. This result generalizes to the wider class of
models fit by maximum likelihood (see Sect. 5.6 for the definition of maximum
likelihood). Namely that a simple strategy for dealing with MAR data is to use
approaches wherein the models are fit by the method of maximum likelihood, such
as the random effects models described in Sect. 7.5. As long as the model is correct
in both its fixed and random components, this fitting technique leads to methods that
are not biased. A more detailed explanation as to why maximum likelihood avoids
bias with MAR data is given below in Sect. 11.10.

Commonly used approaches which use maximum likelihood include linear
mixed-model analyses (Stata xtmixed or xt reg [with the mle option]; SAS Proc
MIXED; SPSS linear mixed model routines) and random effects logistic or Poisson
regression models (Stata xt logit, xtmelogit, xtpoisson, xtmepoisson,
and others; SAS Proc NLMIXED). The primary method for longitudinal data which
does not use maximum likelihood is GEEs (see Sect. 7.4), which is therefore subject
to bias under MAR data.

When maximum-likelihood methods are a natural analysis strategy, we generally
recommend them since they obviate the need to model the missingness mecha-
nism. And for studies that are not on a regularly scheduled visit time, it is not
clear what data should be imputed. When following a maximum-likelihood analysis
strategy and for cases where there is a significant portion of missing outcome
data, care should be taken on model diagnostics (e.g., checking for interactions
and correct specification of the variance—covariance structure). This is because the
ability of maximum likelihood to adjust for missingness depends on specifying a
correct or nearly correct model.
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11.9.2 Multiple Imputation

In a longitudinal study with MAR missing data, maximum-likelihood methods au-
tomatically correct for missing data without having to specify a model for the miss-
ingness. But multiple imputation is also a viable method, building a model to impute
the missing outcomes based on the covariates and previously measured outcomes.

There are, however, circumstances in which multiple imputation is to be rec-
ommended over maximum likelihood. If the preferred analysis strategy is GEEs
(or another, non-likelihood-based method) then multiple imputation is an attractive
strategy to deal with missing data. This is because it can reduce the bias associated
with the use of non-likelihood-based methods under MAR missing data.

So far we have assumed that, when missingness is dependent on the predictors,
these are predictors that can be included in the analysis model. This will not always
be the case, for example, if drop out in a longitudinal study depends on a mediator. In
SCUT, for example, suppose that individuals whose ulcers have cleared by three
weeks are less likely to return at 3 months since it is not as urgent for them to visit
the clinic. To properly account for missingness in an ML analysis, we would need
to include presence of an ulcer at 3 months in the model. But this will also adjust
away some of the treatment effect, which we do not wish to do. This would be an
example of a situation in which a variable (presence of an ulcer at 3 weeks) is needed
to make the MAR assumption plausible but is not useful for the analysis model.
This is another situation in which multiple imputation is an attractive approach: we
can use the mediator in the imputation model, but leave it out of the analysis
model.

11.9.3 Inverse Probability Weighting

Another family of methods which use the MAR assumption are those based on
inverse probability weighting. The basic idea is to use complete observations
to represent incomplete observations, just as we did for potential outcomes in
Subsect. 9.1.8. For instance, in the SCUT example, suppose that we could make
the assumption that the probability of missing visual acuity (VA) at the second
(3 month) visit depended only on the distance the patient lives from the clinic and
their VA at enrollment.
In that case, for patient i at visit 2

P(Riz» = 11Y,X) = P(R;z = 1]X) (11.4)

or more specifically it is equal to P(R;» = 1|xj;, x2;), where x); is the distance
patient i lives from the clinic and x,; is his or her VA at baseline. This sim-
plification means that we postulate covariate-dependent MCAR for the missing
outcomes.
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Suppose, for specific values of clinic distance and VA, the probability of
observing the visit 2 outcome (11.4) is equal to 1/2. Then only about half of the
patients with these values of x;; and xp; will have VA data at the second visit
and it would be reasonable to “double-count” their values to represent the missing
values. Similarly, if the probability were 1/3, we would observe only about 1/3 of the
outcomes and it would be reasonable to “triple-count” the participants for whom we
observed the outcome. In general, we would up-weight observed outcomes by one
divided by the probability of being measured, hence the name, inverse probability
weighting. This is the spirit that underlies inverse weighting methods.

Many statistical packages allow the incorporation of weights, but care must be
taken. Often, for example the _-weight statement in SAS, a weight of 2 would
represent 2 actual measured observations with the same value. This is distinct from
our situation in which a weight of 2 would mean we are using a single measured
value to represent itself and an unmeasured value. The weights that are needed for
inverse weighting estimation are sometimes called probability or sampling weights
and are implemented for many of the commands in Stata using the pweight
option. Using the more standard weighting as in SAS gives the correct estimate, but
incorrectly implies there is more actual measured data and hence will give standard
errors and p-values that are too small and CIs that are too narrow. For some routines,
this can be corrected by using robust standard errors.

11.9.3.1 Comments on Inverse Probability Weighting

Inverse probability estimates require that we specify or estimate the probability
of observing an outcome at 3 months. We might do this by developing a re-
gression model, like logistic regression, for the probability of a measured value
in terms of observed data (much like the propensity score method discussed in
Sect. 9.4.3). Other methods discussed in this chapter based on the MAR assumption
rely on postulating a correct model for the outcomes. For example, in the SCUT
trial, we might postulate a linear mixed-effects model for the VA measures. These
approaches use MI- or ML- based estimation and are able to avoid specifying
a model for the missing data mechanism but depend on the correctness of the
outcome model to adjust for missing data. In contrast, inverse weighting adjusts
for missing data through the weighting scheme and does not depend as strongly
on the correctness of the outcome model. Inverse weighting has been suggested in
situations using analyses such as generalized estimating equations.

We have several concerns about the use of inverse probability methods and
cannot recommend them in general. In many situations, the probability of a
measured value can be small, leading to large inverse weights. The large weight
given to a few observations means that these values significantly influence the
results, leading to unstable estimates and loss of efficiency.

If IPW is used, weights should be carefully monitored. And even if weights are
not large, inverse weighting can be notably less efficient than an analysis based on
a carefully chosen model for the complete data. In many, if not most, situations,
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a plausible model for missingness is poorly understood. It is, therefore, often
more natural to build a model for the complete data and apply methods based on
maximum likelihood.

11.10 Technical Details About Maximum Likelihood
and Data Which are Missing at Random

We have stated earlier that methods of fitting models using maximum likelihood
give valid estimates even when the data are MAR. In this section, we give some
explanation as to why that is so and contrast maximum-likelihood with multiple
imputation. The comparison rests on a particular way in which maximum likelihood
estimates can be calculated, called the Expectation—-Maximization Algorithm, or
EM algorithm for short, an approach that has often been of utility in missing data
problems. The EM algorithm operates by starting with a guess as to the values
of the estimates and improves them using an expectation calculation and then
a maximization calculation. The expectation and maximization calculations are
repeated until the estimates stabilize. This gives the same answer as directly finding
the maximum of the likelihood of the observed data.

11.10.1 An Example of the EM Algorithm

Suppose we wanted to estimate the average number of emergency room visits per
person in a year for the population of people served by a particular emergency room.
But suppose we only had emergency-room (ER) data and did not know the size of
the population who might use that emergency room. If we had data for everyone,
we would just calculate the average value. But we have a problem since we do not
have a record of those who did not visit the emergency room that year, that is, those
whose outcome is equal to 0. And clearly calculating the average among those who
were seen in the emergency room will drastically overestimate the average.

If we had a preliminary estimate of the average and a probabilistic model for
how often people visit the emergency room, we could predict how many we would
expect to have a zero value. One such model is the Poisson distribution, for which
the probability of an individual visiting the ER exactly x times during the year,
P(x), is given by the formula

Axe—k

P(x)=—71

(11.5)

where A is the average number of visits per year and x! is “x-factorial”, e.g., 6! =
6 x5x4x3x2x1 = 720, and, by convention, 0! = 1. Plugging a 0 in for x
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in (11.5), the probability of a person not visiting the ER in a year is »)8,_1 =e
So, if the average is 0.1 visits per year, the probability of no visits is el =0.905,
and we would predict about 90.5% of the people in the population will have no
visits.

Suppose our data consist of 1,232 separate people who visited the ER. Of those
people, 1,171 visited 1 time, 57 visited twice, and 4 visited 3 times. So there
was a total of 1,1714+2 x 57 + 3 x 4 =1,297 visits. We are certain that there
many people who visited O times, but how many? The EM algorithm works by
“filling in” the missing data (the number who visited O times) making the problem a
simple one.

Suppose we start with an initial guess of 0.25 visits per person per year. Then the
probability of zero visits would be e 72> = 0.779 and the probability of at least one
visit would be 1 — 0.779 = 0.221. That is, there should be 0.779/0.221 or 3.52 as
many people we did not see compared to how many we did see visit the ER. So we
would expect that there are 3.52x1,232= 4,337 people with zero visits. This is the
expectation step of the EM algorithm.

Next we use our data to find the maximum-likelihood estimate of the average
simply by calculating the arithmetic average using the filled in data. The total
number of visits was 1,297 and we expect there were 4,337+1,232 = 5,569 people,
for an average of 1,297/5,569 = 0.233. This is the maximization step. So we can
see that our initial guess was too high and the average rate has tended lower.

With our new estimate of the average, we can calculate an updated probability
of not visiting: e=%23* = 0.792. And now we expect that there are 0.792/0.208 or
about 3.81 times as many zero visit people as those we actually saw in the ER for a
expected number of 3.81x1,232 = 4,698. So we can further update our estimate of
the average as 1,297/(4,698 + 1,232) = 0.219. Repeating this process many times,
the estimate converges to 0.104. This can easily be calculated using a spreadsheet
program such as Excel.

The maximum-likelihood estimate can also be calculated directly. It corresponds
to finding the value of A that maximizes the quantity!

log L = 1297log A — 12324 — 1232 log(1 — e*). (11.6)

Numerically calculating the maximum of (11.6) also gives the value 0.104. It is
also possible to find the maximum-likelihood estimate graphically using the Stata
commands given in Table 11.13. The resulting plot is shown in Fig. 11.1.

IRecall that the likelihood is the probability of observing the data. The probability of a specific

. os . . . x,—A
count for a Poisson model, conditional on being 1 or greater is given by P(x) = ,A ~<—-. The
x!(l1—e™*)
. . . Zx; ,—nk . .
product over the entire sample is given by L = m, where n is the sample size,

and x; is the count for individual i. It is equivalent and easier to maximize the logarithm of
L. We can also ignore the factorial term which does not depend on A, giving log L = Xx; log
A —nA —nlog(l —e?).
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Table 11.13 Stata commands for plotting the log likelihood

clear

set obs 100

gen lambda=_n/10000+.1

gen logL=1297+1n(lambda)-1232%lambda-1232+1n(l-exp (-lambda))

twoway line logL lambda, ytitle("log(likelihood)") xtitle ({&lambda})

-211.75
1

log(likelihood)
-211.8

-211.85

Fig. 11.1 Plot of log-likelihood versus the average rate, A

11.10.2 The EM Algorithm Imputes the Missing Data

The example above illustrates a typical feature of the EM algorithm: using the
observed data and the probability model, the EM algorithm fills in the missing
data. The analysis of the data then proceeds using the “complete” dataset. The same
algorithm can be applied to longitudinal data with missing outcomes. In that case,
maximum likelihood is equivalent to filling in the data not observed due to, e.g.,
drop out or missed visits, using the longitudinal data mixed model. The parameter
estimates are then calculated using the complete dataset. As long as the missing data
can be reliably predicted from the observed data (which is the case if the longitudinal
data model is correct and the MAR assumption holds), the analysis based on the
complete dataset is free of bias due to missing data.

Using maximum-likelihood methods with modern computers does not appear
to explicitly handle missing data (it just requires the push of a button on a
computer). However, when viewed through the lens of the EM algorithm, it is
implicitly filling in the missing data based on the assumed probability model being
used to fit the data.
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11.10.3 ML Versus MI with Missing Outcomes

Maximum likelihood via the EM algorithm may appear to be virtually the same
as multiple imputation. Although there are similarities there are also important
differences. Perhaps the primary one is that, under MAR, maximum likelihood im-
plicitly selects the right model for filling in the missing data—no model specification
is necessary as it is in multiple imputation.

However, because maximum likelihood implicitly assumes a model for “impu-
tation” it cannot be varied. Multiple imputation gives the analyst more options. For
example, nonignorable missing data models can be used to check sensitivity to the
assumption of MAR. Or violations of the model assumptions can be checked, e.g.,
what if the assumption of a Poisson distribution was incorrect in the example above?
MI also allows the use of techniques other than ML to obtain parameter estimates
after the data are imputed.

However, if (a) the model being used for multiple imputation is the same as the
one implicitly used by ML, (b) the imputation was performed so many times that
the imputation error was negligible, and (c) once imputed, maximum likelihood was
used to find parameter estimates, then MI and ML would give the same answers.

11.11 Methods for Data that are Missing Not at Random

We have mentioned previously that standard analysis methods can be biased when
the data are MNAR. And, since it is impossible to figure out if the data are MNAR
from the observed data, the main strategies to assess the potential impact of MNAR
data are sensitivity analyses. Sensitivity analyses proceed by positing a spectrum
of MNAR models with checks as to the seriousness of the violation of the MCAR
or MAR assumptions required to qualitatively overturn the results of an analysis.
If “small” departures from MCAR or MAR lead to different conclusions then
the results are taken as tenuous. If “large” departures are required to change the
results, then more confidence can be placed in the conclusions. To be convincing,
the posited MNAR models and degree of departure from MCAR or MAR need to
be defensible in context, which tends to be highly problem specific and so it is
difficult to recommend generally applicable strategies. We describe briefly three ap-
proaches to MNAR data: pattern mixture models, multiple imputation, and selection
models.

11.11.1 Pattern Mixture Models

Consider a study of cognitive decline in which the participants who dropped out
had much higher rates of depression at baseline than those with complete data.
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We would be concerned that the data was MAR or MNAR and, especially if the
rates of decline were quite different, that we might be obtaining biased estimates.
What about more detailed comparisons of those with different degrees of missing
data?

Our approach to missing data to this point has been what is called a selection
model approach. We have thought of the observed data as arising from a two-step
process. In the first step, the complete data are generated. In the second step (via a
process we have described as MCAR, CD-MCAR, MAR, or MNAR), certain of the
data are selected for us to observe; the rest is missing.

A very different approach uses what is called a pattern mixture model. In this
approach, the data are divided into categories according to the pattern of missing
data, akin to dividing subjects into those with complete and incomplete data. For
example, consider a cohort study where everyone has a baseline observation and
there are four planned follow-up visits. Further, suppose the only missing data are
because of dropout from the study. Then there are five possible data patterns with
regard to presence or absence of data: complete data, missing only visit 5 (i.e.,
dropout after visit 4), missing visits 4 and 5 (dropout after visit 3), missing visits
3,4, and 5, and missing visits 2, 3, 4, and 5.

We can now think about dividing up the data according to the missing data
pattern and analyzing the data from each pattern separately. The advantage of this
approach is that we do not need to think about the missing data mechanism (e.g.,
MCAR versus MAR). We immediately run in to a problem, however. Returning
to the cognitive decline example, what are we to assume about the rate of decline
for the participants for whom we only have baseline data? Because we only have a
single time point, this group contains no information about the decline over time.
If we wish to proceed, we have to make certain assumptions. For example, if we
believe the rates of decline are linear over the course of the five year study, we
might assume that the rate is the same as that for the group with data for visits 1 and
2 (for which we can estimate a linear decline). Or we might assume it is the same
as the subgroup with complete data.

If it is reasonable to make simplifying assumptions then the pattern mixture
approach is very attractive. Simply by including a categorical predictor for missing
data pattern and allowing interactions of key components with that predictor allows
the use of standard software packages to accommodate missing data. In the absence
of interaction, the analysis gives estimates of the (assumed) common effect. In the
presence of interaction, weighted estimates (weighted by the proportion in each
missing data pattern) give an estimate of the overall effect.

Unfortunately, it is often the case that there is little guidance in the data as to what
models are appropriate and strong assumptions must be made with little opportunity
to check them. Further, there are often a multitude of different missing data patterns
(it is rarely as simple as described above) which must be grouped subjectively into
a manageable, smaller number of categories, each with reasonable sample sizes.
These considerations limit the use of pattern mixture models as robust data analysis
methods. However, they can still be useful as sensitivity analyses: by varying
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the assumptions needed to fit such models, a variety of MNAR missing data
mechanisms can be accommodated. See Little (1993, 1995), and Verbeke and
Molenberghs (2000) for more in-depth discussion.

11.11.2 Multiple Imputation Under MNAR

Another possible approach to assess sensitivity of results to MNAR missingness
is to use multiple imputation but hypothesize an imputation model that allows
dependence between the probability that data are missing and the value that would
be observed if R = 1. Subak et al. (2009) give an example of a trial to encourage
weight loss in women with incontinence problems. Their primary analysis imputed
end of study values by assuming that women who dropped out of the study, on
average, lost no weight, a MNAR mechanism.

11.11.3 Joint Modeling of Outcomes and the Dropout Process

A third strategy is to directly hypothesize a joint model for the complete data and
the missing data process and use the observed data to simultaneously estimate the
parameters of both models (e.g., Diggle and Kenward 1994). Not surprisingly, it is
difficult to estimate such a model from observed data and they are highly sensitive
to the assumed form of the model, something which is not easily checked from the
observed data.

11.12 Summary

Missing data are common and many of the simple methods of handling missing
data, such as a complete case analysis (the default for most statistical analysis
programs), can give misleading results. If it is the predictor variables that are missing
in a dataset, we recommend the strategy of multiple imputation. When the main
issue is dealing with missing outcomes in a longitudinal study, maximum-likelihood
methods are often a good choice. When they are properly specified, they will give
valid inference when the data are MAR, whereas generalized estimating equation
methods may not. When the analyst needs to exclude important predictors of
missingness, in particular mediators, from the outcome model, multiple imputation,
and IPW can be useful strategies. Finally, when data are MNAR, pattern mixture
models and sensitivity analyses using multiple imputation are recommended.

All techniques for handling missing data require assumptions about how the
missing data relate to the observed data. Because the data are missing, these
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assumptions cannot be empirically verified. The assumptions are clear in mul-
tiple imputation (where we model the missing data), IPW (where we model
the probability of missingness), and pattern mixture modeling (where we must
make assumptions about covariate effects across missing data patterns). When
using maximum-likelihood-based techniques to handle missing-at-random data, the
assumptions are inherent and revolve around correct specification of the model,
including the variances and correlations in longitudinal data. Because assumptions
cannot be verified from the data on hand, it is always a good idea to try a number of
techniques of handling missing data to check sensitivity of the conclusions (Hogan
et al. 2004).

11.13 Further Notes and References

An attraction of approaching missing data through inverse probability weighting is
that it adjusts for missing data through the weighting scheme and does not depend
as strongly on the correctness of the outcome model. However, we have noted that
it can lead to unstable weights and inefficient analyses. This is an ongoing area
of research, with investigations into ways to stabilize the weights, for example,
using what is called “robit” regression instead of logistic regression to estimate the
probabilities of missingness (Kang and Schafer 2007). Another promising avenue
of research is to hedge bets between having to get the outcome or weighting models
correct, by using what are known as doubly robust methods (Kang and Schafer
2007). These can correct for missing data when either the model for the inverse
weights is correct or the regression model is correct.

The forms of multiple imputation we have illustrated are based on regression
models, but there are other alternatives. Scheuren (2005) gives a historical survey of
multiple imputation and describes other methods such as “hot deck imputation” (the
name comes from a deck of paper “cards” on which data were stored in the early
days of the Census Bureau).

Of course, missing data can also occur in situations requiring more complex
analyses. For example, there could be missing predictor information in a setting
with clustering by facility, physician, and patient. In such a case, just as described
in Chap. 7, hierarchical, repeated measures or longitudinal data models must be
used to properly impute missing values. Survival analysis is another situation for
which imputation of missing predictor information might be required. For survival
analysis, the “outcome” consists not only of follow-up time, but also whether
censoring has occurred. Both sources of information should be used for imputation,
but it is not always clear how to do so. For example, the suggestion to include
both the log of the follow-up time and the censoring indicator as predictors in
the imputation model can be too simplistic and lead to bias (White and Royston
2009).
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11.14 Problems

Problem 11.1. Give an example of a data sampling regime in your research area
that is likely to be MAR but not MCAR or CD-MCAR. Briefly explain why.

Problem 11.2. Perform a single imputation for the HERS visit 4 data and verify
the results of Table 11.2. Regress glucose on SBP, BMI, ethnicity (white/not white),
current smoking status, and diabetes status. Obtain the predicted values for glucose.
Create an imputed glucose variable which is equal to the actual glucose value if it is
not missing and equal to the predicted value if it is. Using this imputed glucose
variable, reproduce the regression of SBP on glucose, white, and BMI given in
Table 11.2.

Problem 11.3. How far off are the results when a poor imputation model is
used? Singly impute the glucose values (as in Problem 11.2) but using a regression
model that contains only current smoking status. How good is this imputation
model? Next, compare the estimated effect of glucose on SBP and its statistical
significance using this imputation model to the results in Tables 11.1 and 11.2.

Problem 11.4. With the HERS visit 4 data, use the code in Table 11.9 to impute the
glucose values. Calculate the SD among the imputed values in glucose to verify that
the SD is about 30.9. Hints: the Stata command egen sd_glu_imp=rowsd (_?_
glucose) will calculate the standard deviation of the glucose values across the
imputed datasets. Summarize those for which the original glucose measurement
was missing.

Problem 11.5. What kind of imputation model would you use to impute missing
physical activity data in the HERS study? Recall that that variable was a response to
a question about how physically active the women considered themselves compared
to other women of their age. The five-level response ranged from “much less active”
to “much more active,” and was coded in order from 1 to 5. Briefly explain why.

Problems 11.6-11.9 use the data sets bpmisslong and bpmisswide. The
data are based on measurements of SBP in the HERS study. The data set allows us
to compare methods of analysis with complete data and under simulated missing
data. In the data sets are missing data indicators (miss_mar for bpmisslong
and miss_marl for bpmisswide) which have value 1 to flag SBP values which
should be dropped to simulate data which displays MAR missingness. In particular,
year 1 values from patients with higher baseline SBP are flagged more frequently
and hence will be simulated as missing. You can consult the course website for the
data sets and more complete documentation and details on Stata code.

Problem 11.6. Using bpmisswide,

(a) Calculate and compare the year 1 SBP (yearl_sbp) for the complete data and
for patients who in the simulated missingness setting would have an available
year 1 SBP (i.e., miss_year equal to 0).
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(b) Calculate and compare the change in SBP (yearl_sbp - base_sbp). What
is the mean change in the full sample? What is the mean change restricted
among those with available year 1 values in the simulated missingness setting
(miss_year equal to 0)?

(c) Based on (a) and (b) above, how has the simulated missing data mechanism
affected estimates of mean of year 1 SBP values and change in SBP from
baseline to year 1?

Problem 11.7. Using bpmisslong, fit a GEE model with SBP as the outcome
and visit (visit) as the predictor. In Stata, the command would be xtgee sbp
visit, 1i(pptid) corr (exch).Compare a GEE model which uses the full
data to one restricted to nonmissing data (miss_year equal to 0). What do you
conclude about GEE with MAR missingness?

Problem 11.8. Using bpmisslong, fit a mixed linear regression model with SBP
as the outcome and visit (visit) as the predictor. In Stata, the command would
be xtmixed sbp visit || pptid:.Compare the mixed model which uses
the full data to one restricted to nonmissing data (miss_mar equals 0). Compare
the results with the GEE results in Problem 11.7. How do you explain the difference
in results between the GEE and a linear mixed model with MAR missing data?

Problem 11.9. Using bpmisswide,

(a) Attempt to mimic the effects of multiple imputation by performing imputation
to fill in SBP values flagged as missing in the simulated scenario. You may
choose the imputation model but it should include baseline SBP, BMI at
baseline and year 1 as well as diabetes. In Stata, it will be simplest to perform
multivariate normal-based imputations.

(b) Fit a GEE model (as in Problem 11.7) with multiple imputation. How do the
results compare to the results in Problem 11.7? Note, to fit the GEE model you
will need to convert the data from a wide to long format. In Stata, this can be
done with the mi convert command.

(c) Fit a mixed model (as in Problem 11.8) with multiple imputation. How do the
results compare to the results in Problem 11.8?

Problem 11.10. The data set multivisitsbp extends the HERS SBP data to
a series of up to six visits and borrows the set-up used in Problems 11.6-11.9 to
simulate missing data through a missing data indicator miss_mar.

(a) To mimic an analysis on complete data, examine a series of models (ignoring
the missing data indicators). Fit a GEE model with terms for time (visit)
and BMI (bmi). Then, fit a series of mixed models with fixed effects terms for
time and BMI but with varying variance/covariance structures. You might try a
random slopes model along with first-, second-, and third-order autoregressive
(AR1-AR3). Do you reach similar conclusions about changes in SBP over time
(given by the coefficient for visit) in these models?
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Note: For this data, you can specify the covariance in xtmixed with
the options || pptid: visit, cov(un) for random slopes and | |
pptid:, residuals(ar 1, t(visit)) for the ARl model, with
AR?2 and AR3 defined similarly.

(b) Repeat the model fits in (a) restricted to available data (miss_mar equal
to 0) under simulated missingness. Do you reach similar conclusions about
changes in SBP over time across these models? How do they compare to the
corresponding complete data results in Problem 11.10? Discuss how this might
affect choice of variance—covariance structure for mixed models with missing
data. Would you prefer a more parsimonious structure (like random intercepts)
or a richer one (like third-order autoregressive)? Explain.

11.15 Learning Objectives

(1) Define the different types of missing data mechanisms (MCAR, CD-MCAR,
MAR, MNAR).

(2) Explain why complete case analysis may lead to biased and/or inefficient
analyses.

(3) Explain the drawbacks of LOCF as an imputation method.

(4) Identify situations in which ICEs multiple imputation is to be preferred over
MVN multiple imputation.

(5) Use ICEs multiple imputation and MVN multiple imputation to analyze datasets
with missing predictor information.

(6) Explain why maximum-likelihood methods for longitudinal data can be consid-
ered methods for handling missing data.

(7) Explain how multiple imputation can be used as a sensitivity analysis when data
are MNAR.

(8) Use pattern mixture models to analyze datasets with missing outcome data.
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