
Chapter 10
Predictor Selection

Walter et al. (2001) developed a model to identify older adults at high risk of death in
the first year after hospitalization, using data collected for 2,922 patients discharged
from two hospitals in Ohio. Potential predictors included demographics, activities
of daily living (ADLs), the APACHE-II illness-severity score, and information
about the index hospitalization. A “backward” selection procedure with a restrictive
inclusion criterion was used to choose a multipredictor model, using data from
one of the two hospitals. The model was then validated using data from the other
hospital. The goal was to select a model that best predicted future events, with a view
toward identifying patients in need of more intensive monitoring and intervention.

Grodstein et al. (2001) evaluated the efficacy of hormone therapy (HT) for
secondary prevention of CHD, using observational data for 2,489 women with a
history of heart attack or documented coronary artery disease in the Nurse’s Health
Study (NHS), a prospective cohort followed from 1976 forward. In addition to
measures of the use of HT, a set of known CHD risk factors were controlled for,
including age, BMI, smoking, hypertension, LDL cholesterol levels, parental heart
disease history, diet, and physical activity. The goal of predictor selection was to
obtain a minimally confounded estimate of the effect of HT on risk of CHD events.

The Heart and Estrogen/Progestin Replacement Study (HERS), a randomized
clinical trial addressing the same research question, was conducted among 2,763
postmenopausal women with clinically evident heart disease (Hulley et al. 1998). As
in the NHS, a wide range of predictors were measured at study entry. Yet in the pre-
specified analysis of the main HERS outcome, the only predictor was treatment
assignment. The goal was to obtain a valid test of the null hypothesis as well as an
unbiased estimate of the effectiveness of assignment to HT.

Orwoll et al. (1996) examined independent predictors of axial bone mass using
data from the Study of Osteoporotic Fractures (SOF). SOF was a large (n D 9;704)
observational cohort study designed to address multiple research questions about
osteoporosis and fractures among ambulatory women aged 65 and up. Predictors
considered by Orwoll had been identified in previous studies, and included weight,
use of medications such as HT and diuretics, smoking history, alcohol and caffeine
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use, calcium intake, physical activity, and various measures of physical function
and strength. All variables that were statistically significant at P < 0:05 in models
adjusting for age were included in the final multipredictor linear regression model.
The goal was to identify all important predictors of bone mass.

In each of these examples, many more potential predictor variables had
been measured than could reasonably be included in a multivariable regression
model. The difficult problem of how to select predictors was resolved differently, to
serve three distinct inferential goals:

(1) Prediction. Here, the primary issue is minimizing prediction error rather than
causal interpretation of the predictors in the model. The prediction error of the
model selected by Walter et al. (2001) was evaluated using an independent data
set from a second hospital.

(2) Evaluating a predictor of primary interest. In pursuing this inferential goal, a
central problem in observational data is confounding, which relatively inclusive
models are more likely to minimize. Predictors necessary for face validity
as well as those that behave like confounders should be included in the
model. Randomized experiments like HERS represent a special case where the
predictor of primary interest is the intervention; confounding is not usually an
issue, but covariates are sometimes included in the model for other reasons.

(3) Identifying the important independent predictors of an outcome. This is the
most difficult of the three inferential goals, and one in which both causal
interpretation and statistical inference are most problematic. Pitfalls include
false-positive associations, the potential complexity of causal pathways, and
the difficulty of identifying a single best model. We also endorse inclusive
models in this context, and recommend a selection procedure that affords
increased protection against false-positive results. Cautious interpretation of
weak associations is key to this approach.

In summary, predictor selection is the process of choosing appropriate predictors
for inclusion in a multipredictor regression model. A good model should be substan-
tively motivated, appropriate to the inferential goal and sample size, interpretable,
and persuasive.

10.1 Prediction

In selecting a good prediction model, candidate predictors should be considered in
terms of their contribution to reducing prediction error.

Definition: Prediction error (PE) measures how well the model is able to predict the
outcome for new observations not used in developing the prediction model.
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10.1.1 Bias–Variance Trade-off and Overfitting

Inclusive models that minimize confounding may not work as well for prediction as
models with smaller numbers of predictors. This can be understood in terms of the
bias–variance trade-off. Bias in predictions is often reduced when more variables
are included in the model, provided they are measured and modeled adequately.
Moreover, the coefficients are often nearly unbiased under the assumptions com-
monly made in these analyses. But as less important covariates are added to the
model, precision may start to erode, without commensurate decreases in bias. The
larger models may be overfitted to the idiosyncrasies of the data, and, thus, more
poorly predict new, independent observations. We can minimize PE by optimizing
the bias–variance trade-off.

10.1.2 Measures of Prediction Error

For continuous outcomes, R2 is a potential measure of PE. A function of the residual
sum of squares (RSS), R2 depends on the averaged squared distance between the
predictions, or fitted values, and the observed outcomes, and so is a natural metric
for PE.

For binary outcomes, the analogous Brier score, also given by the average of the
squared distances between the predicted and observed outcomes, is not commonly
used. A much more widely used PE measure is the area under the ROC curve, or
equivalently the C-statistic, introduced in Sect. 5.2.6. The analogous PE measure
for Cox models is the C-index. The C-statistic and C-index are both measures of
discrimination—that is, how effectively the model can distinguish between events
and nonevents, or correctly order the timing of two events.

Both the C-statistic and C-index are rank-based measures, and can be insensitive
to improvements in prediction as a result (Pencina et al. 2008). To see this, note
that in calculating the C-statistic, two correctly ranked event/nonevent pairs for
which the predictions differ by five and 95 percentage points would be treated alike,
although the model much more clearly distinguishes the second pair. Likewise, in
calculating the C-index, we ignore differences between failure times as well as
between fitted risks.

In addition to discrimination, measures of calibration for logistic and Cox
models assess the agreement between fitted and observed risks. The Hosmer–
Lemeshow statistic presented in Chap. 5 measures calibration of the logistic model,
comparing fitted and observed events within deciles (or other groupings) of the
fitted risks. Analogs have been proposed for the Cox model (Parzen and Lipsitz
1999; van Houwelingen 2000). One often-used measure of calibration for the Cox
model is to compare average fitted probabilities of an event within a fixed time
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period to observed probabilities nonparametrically estimated using Kaplan–Meier
curves. For example, Cook et al. (2006) compared fitted and observed ten-year risks
for cardiovascular events within two-point intervals of the model-based risk score.

10.1.3 Optimism-Corrected Estimates of Prediction Error

To select a model that minimizes prediction error, we need an accurate estimate of
the target PE measure that does not overstate the ability of the model to predict the
outcome for new, independent observations—in brief, one that is not optimistic.

10.1.3.1 Optimism of Naı̈ve Estimates of PE

To see why optimism is an issue, consider R2, the proportion of variance explained
by a linear regression model, and a potential measure of PE. It increases with each
additional covariate, even if the added predictor provides minimal information about
the outcome. At the extreme, R2 D 1 in a model with one predictor for each
observation. This happens because the same observations are used to estimate the
model and assess its predictiveness. Selecting predictors simply to maximize R2

would almost surely result in overfitted models.

10.1.3.2 Simple Alternatives to R2

An alternative less subject to optimism is adjusted R2, which is calculated by
penalizing R2 for the number of predictors in the model. Thus, when a variable
is added, adjusted R2 increases only if the increment in R2 is larger than the
increment in the penalty. The Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) are analogs which impose stiffer penalties for each
additional variable—specifically, penalties against minus twice the log-likelihood,
another potential measure of PE. With AIC, the penalty is 2p, where p is the number
of predictors in the model; with BIC, it is p log N , where N is the sample size.

The AIC criterion is relatively liberal, allowing for the inclusion of simple
continuous or binary predictors with P -values < 0.16. In contrast, the P -value
cutoff imposed by BIC for such predictors grows progressively stricter with sample
size, requiring P < 0:05 in samples of about 50, P < 0:01 in samples of 500,
and P < 0:009 in samples of 1,000, and, thus, leads to increasingly parsimonious
models, relative to AIC. Both measures depend on the number of additional
coefficients, and so set the bar higher for inclusion of restricted cubic splines or
multicategory predictors.

In Stata the regress command prints adjusted R2 by default, and AIC and BIC
can be obtained for linear, logistic, Cox, and other models using the postestimation
command estat ic. The best prediction model is taken to be the one that
maximizes adjusted R2, or minimizes AIC or BIC.
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10.1.3.3 Generalized Cross-Validation

In contrast to indirect, theoretically-based measures such as adjusted R2, AIC, and
BIC, more direct methods for obtaining nonoptimistic estimates of PE are based on
cross-validation, which uses distinct, independent sets of observations to estimate
the model and to evaluate PE.

10.1.3.4 Development and Validations Sets

The most straightforward example of cross-validation is the split-sample approach,
in which the parameter estimates are obtained from a so-called development set,
but then PE is evaluated in an independent validation set by comparing observed
outcomes to expected values calculated using development set parameter estimates
in combination with validation set covariate values.

In some implementations, the development and validation sets are obtained
by splitting a single data set, often with two-thirds of the observations randomly
assigned to the development set. Other implementations, as in Walter’s analysis
of posthospitalization mortality among high-risk older adults, use an independent
sample as the validation set. Precisely because the validation set is not sampled
under exactly the same circumstances, this procedure may do a better job of
forecasting the utility of the prediction model in practical use. Altman and Royston
(2000) discuss the merits of internal and external validation sets.

Splitting one data set into development and validation sets is less efficient than
the alternative discussed next, but also easier to implement, and commonly more
credible to nonstatisticians, in particular when the validation set is truly external.

10.1.3.5 h-Fold Cross-Validation

A more efficient alternative to splitting the data into development and validation
sets is h-fold cross-validation. With this method, the entire data set is used both for
development and validation of the model. The procedure works in five basic steps.

(1) The data are randomly divided into h mutually exclusive subsets of equal size.
(2) Each of the h subsets is set aside in turn, and the model is estimated using the

remaining observations.
(3) Using the parameter estimates from each of those h models, the statistics nec-

essary to calculate the target measure of PE are estimated for the corresponding
set-aside observations.

(4) A summary estimate of PE is then calculated using the statistics from all h

subsets.
(5) The h-fold procedure is repeated k times, using a new division of the data each

time, and then the k summary estimates of PE are averaged.

Values of h D 5�10 and k D 10�20 are reasonable.
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Table 10.1 Ten-fold cross-validation of the area under the ROC curve

. quietly logistic chd69 age chol sbp bmi smoke

. predict fitted, pr

. * Naive estimate of area under the ROC curve

. roctab chd69 fitted

ROC -Asymptotic Normal--
Obs Area Std. Err. [95% Conf. Interval]

--------------------------------------------------------
3142 0.7333 0.0156 0.70270 0.76395

. Step 1: divide data into 10 mutually exclusive subsets

. xtile group = uniform(), nq(10)

. gen cv_fitted = .

. forvalues i = 1/10 {
2.

. * Step 2: estimate model omitting each subset
qui logistic ytemp age chol sbp bmi smoke if group˜=‘i’

3. qui predict cv_fittedi, pr
4.

. * Step 3: save cross-validated statistic for each omitted subset

. qui replace cv_fitted = cv_fittedi if group==‘i’
5. qui drop cv_fittedi
6. }

.

. * Step 4: calculate cross-validated area under ROC curve

. roctab chd69 cv_fitted

ROC -Asymptotic Normal--
Obs Area Std. Err. [95% Conf. Interval]

--------------------------------------------------------
3142 0.7277 0.0158 0.69386 0.75566

Cross-validation is easy to implement in Stata. In Table 10.1, we first re-run
the logistic model for CHD risk shown in Table 5.6, save the fitted probabilities,
and calculate the naı̈ve estimate of the area under the ROC curve (ROC Area),
equivalent to the C-statistic. Then, the WCGS data are randomly divided into ten
mutually exclusive subsets, and the model is refitted ten times, omitting in turn each
of the ten subsets from the data used in estimation of the model. However, predicted
values are calculated for the entire data set; we also exploited this feature of Stata for
potential outcomes estimation in Table 9.6. The cross-validation fitted values for the
omitted subsets are collected in the new variable cv fitted, and in a final step, the
cross-validation estimate of the area under the ROC curve is calculated using these
fitted values and the observed outcomes. For clarity, we have omitted the fifth step
of repeating the procedure 10–20 times, but the additional programming is simple
enough.

As expected, the optimistic naı̈ve estimate of the area under the ROC curve
shown in Table 10.1 is larger than the cross-validated estimate. However, the
difference is small, suggesting that the simple logistic model for CHD events is
not badly overfitted.
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10.1.4 Minimizing Prediction Error Without Overfitting

A model that fits well, including all important predictors and accurately capturing
nonlinear effects as well as interactions, should provide better prediction than
a poorly specified model that excludes some important predictors, inaccurately
models the effects of others, and includes unimportant predictors.

Earlier chapters have shown how to ensure that nonlinear effects of continuous
predictors are adequately modeled, essentially by examining the relationship be-
tween predictor and outcome, using diagnostic plots or models including restricted
cubic splines or interactions. And later in this chapter, in discussing predictor
selection for the second inferential goal of evaluating the causal effect of a
primary predictor of interest, we recommend methods to ensure that all measured
confounders are included and adequately modeled, again by examining alternative
models for the outcome.

However, in this context, the danger is that examining relationships with the out-
come can easily lead to overfitting, resulting in a model that does not perform well
in external validation data. Overfitting can be minimized using four strategies:

(1) Pre-specify well-motivated predictors and how to model them
(2) Eliminate predictors without using the outcome
(3) Use the outcome, but cross-validate the target measure of PE
(4) Use the outcome, and shrink the coefficient estimates.

10.1.4.1 Pre-specifying Well-Motivated Predictors

One primary strategy for avoiding overfitting is to depend so far as possible on
a priori specification of well-motivated candidate predictors. In areas of clinical
research where prognostic factors have been thoroughly studied, expert opinion,
grounded in the literature, may provide considerable guidance, and meta-analyses
can be especially reliable measures of variable importance. This strategy would also
rely on the literature to determine how the effects of continuous covariates should
be modeled—that is, to select functional form—rather than using the data to guide
these decisions.

In some well-studied areas, this step may be sufficient to choose a good
prediction model, without the need for subsequent elimination of predictors driven
by the development data. Furthermore, while the bias–variance tradeoff may suggest
the need for parsimony, a wisely-chosen set of pre-specified predictors may often
work better in external validation data than a subset of those predictors chosen
by looking at their relationships with the outcome in the data used for model
development (Harrell 2005; Steyerberg 2009).
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10.1.4.2 Predictor Elimination Without Using the Outcome

A second-line strategy for avoiding overfitting is to eliminate candidates without
looking at predictor–outcome relationships, but taking account of the effective
sample size m, defined as the number of observations in linear regression, the
number of events in Cox regression, and the smaller of the numbers of observations
with or without the outcome in logistic models (Harrell 2005).

For example, summary variables can be chosen for predictor domains: LDL
and HDL cholesterol levels might be chosen on substantive grounds from among
the larger set of lipid measures including total cholesterol, triglycerides, and the
HDL/LDL ratio. Practical considerations may also be important. In particular,
expensive, invasive, risky, and relatively unreliable tests can be ruled out if more
practical alternatives are available. Predictors with fewer missing values in the
development data are also preferable, in particular, if missing values reflect the likely
difficulty of obtaining the measurement in practice.

Linearity would of course be a concern in modeling the effect of continuous
covariates such as LDL cholesterol. To address this issue, a related means of
outcome-free predictor elimination is to allocate spline knots based on prior
estimates of variable importance and m. Thus, if a predictor has been of primary
importance and had strongly nonlinear effects in earlier research, and m allows
it, a four- or five-knot spline may be pre-specified. In contrast, a less important
predictor or one known to have approximately linear effects can be treated more
simply. Smaller samples and fewer outcomes may also limit how flexibly we can
model continuous effects.

Principal components is a more complicated alternative for reducing the number
of parameters to be estimated without using the outcome, and has been shown to
work well in some studies (Harrell et al. 1984, 1996). This method summarizes a
large set of correlated continuous predictors by a much smaller set of uncorrelated
summary variables, or principal components, chosen to explain most of the variance
in the predictors. This simplification is achieved without reference to the outcome.

This approach does have some drawbacks. One is that the principal components
may not be substantively interpretable, which is desirable for face validity, although
not really needed for prediction. In addition, principal components capturing
the greatest variability in the predictors are not guaranteed to capture the most
variability in the outcome, although with well-chosen predictors this is likely.
Finally, this procedure does not reduce the number of underlying variables that need
to be measured, and so makes it more difficult to focus on easily-obtained predictors
with fewer missing values.

A widely used guideline suggests that at most m/10 or even m/20 candidate
predictors should be considered for inclusion in the prediction model. Note that each
component of a complicated predictor counts as an additional candidate, so that if
we pre-specify a restricted cubic spline with five knots to represent a continuous
predictor, the number of candidates increases by four, the required number of spline
basis variables. Motivated by simulation studies of the precision of predictions based
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on Cox models, this guideline is approximate, but does suggest that large samples
are necessary for developing valid prediction models, in particular, when variable
selection is required.

10.1.4.3 Model Selection Using the Outcome and Cross-Validation

In the common case where the combination of prespecification and outcome-free
predictor elimination does not adequately reduce the number of candidate predic-
tors, an effective strategy is to use exhaustive screening of all subsets of the re-
maining candidate predictors. Crucially, to avoid overfitting, this final screening step
must use cross-validation of a selected target measure of PE to help identify the most
predictive of these models. This is the approach used in most modern algorithms for
prediction model development, including the Deletion/Substitution/Addition (DSA)
algorithm (Molinaro and van der Laan 2004). In this procedure, implemented in R,
the candidate predictors, including polynomial terms and interactions, are efficiently
screened using h-fold cross-validation of a selected measure of PE.

Efficient screening is an important issue in this context. For example, even if
the number of candidate predictors has been reduced to a seemingly tractable eight,
the number of subsets of all sizes is 28 D 256. And even if an indirect optimism-
corrected measure of prediction error—adjusted R2, AIC, or BIC—is used in place
of cross-validation, this represents an onerous computing task without programs like
DSA that automate the screening.

However, screening can be made more practicable if some of the remaining
candidates are always to be included on a priori grounds. For example, if five of eight
candidate variables were to be included by default, then only 23 D 8 models must be
screened. But if many models have to be screened, programming of the procedure,
including any intermediate steps, will almost surely be required. We illustrate this
approach in Sect. 10.1.6 below.

While this screening procedure should help us find a good predictive model
without overfitting, it is important to note that the cross-validated estimate of PE
for the selected model will be at least slightly optimistic, not because we use the
same data to estimate model parameters and evaluate PE—the source of optimism
in naı̈ve PE estimators—but because of the selection.

10.1.4.4 Shrinking the Coefficient Estimates

Dropping variables, on a priori or practical grounds or on the basis of a cross-
validated PE measure, is equivalent to setting their coefficients equal to zero.
An alternative approach is to shrink them only part way to zero. So-called shrinkage
procedures can be motivated on the grounds that even the weaker candidate
predictors specified a priori have some predictive value, and so should not be
excluded outright from the model. However, because their coefficients may be less
precisely estimated, better prediction may be achieved by reducing their influence.
This approach is closely related to the shrinkage estimators introduced in Sect. 7.7.3.
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In general shrinkage procedures impose penalties against the log-likelihood
in model fitting, with the degree of penalization generally optimized using
cross-validation. Le Cessie and Van Houwelingen (1992) and Verweij and Van
Houwelingen (1994) discuss applications to logistic and Cox regression. These
methods derive from ridge regression (Hoerl and Kennard 1970), which provides
slightly biased but less variable estimates in linear models when the predictors are
highly correlated. In ridge regression, the penalty is proportional to the sum of
the squared values of the regression coefficients, with the proportionality factor
commonly optimized using cross-validation. Coefficients are shrunken roughly in
inverse proportion to the variance of the corresponding predictor, but no variables
are omitted outright.

In contrast, the penalty imposed by the Least Absolute Shrinkage and Selection
Operator (LASSO) (Tibshirani 1997) is proportional to the sum of the absolute
values of the regression coefficients. Surprisingly, the result is that the LASSO can
set the coefficients for the least important predictors to zero, effectively omitting
those variables from the model, while differentially shrinking others. Thus, it is
a selection as well as a shrinkage procedure. The LASSO has been implemented
only for linear models in the Stata lars package, as so-called least angle
regression. However, the penalized package in R extends both ridge regression
and the LASSO to GLMs and Cox models, and incorporates cross-validation for
selecting the penalty factor.

10.1.5 Point Scores

Unless a continuous predictor has strong threshold effects, we can generally achieve
better prediction by keeping it continuous, modeling any nonlinearity in its effects,
and avoiding dichotomization. However, one drawback, especially if splines are
used to capture nonlinear effects, is that the predictions almost always need to be
calculated using some electronic interface, or at least a nomogram. If the prediction
model is intended for everyday clinical use, easily calculated scores assigning points
to a small set of risk factors are more likely to be adopted.

For example, the Thrombosis in Myocardial Infarction (TIMI) risk score for
predicting event-free survival in heart disease patients is simply calculated by
counting up seven risk indications, including age� 65, having� 3 CAD risk factors,
coronary stenosis, ST-segment deviation, elevated serum cardiac markers, � 2
recent angina episodes, and aspirin use in the last week (Antman et al. 2000). Each
of the underlying predictors was dichotomized and assigned one point.

At some cost in complexity, more information can be retained by splitting
continuous variables into more than two categories, with nonreference levels
assigned different numbers of points. For example, D’Agostino et al. (2000) tabulate
points assigned to each level of several multicategory predictors, and provide an
additional table for translating the summed point scores into predicted risks.
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Point systems allowing differing weights are commonly derived by rounding the
regression coefficients for each binary indicator variable, after suitable rescaling so
that each factor is assigned at least one point. In some cases, risk scores of this type
may perform nearly as well as summary scores based on the underlying coefficients.
However, considerable increases in prediction error may sometimes result (Gordon
et al. 2010).

10.1.6 Example: Risk Stratification of Patients with Heart
Disease

The Heart and Soul Study follows a prospective cohort of 1,024 adults with
established CHD, recruited from several clinical centers in the San Francisco Bay
Area in 2000–2002 (Whooley et al. 2008). Over 5,745 person-years of follow-up by
the time of analysis, 272 outcome events, a composite defined by heart attack, heart
failure, stroke, or death from cardiovascular causes, had been observed among 916
of these participants with complete baseline test data.

Starting from a wide range of baseline predictors, we developed two Cox
models for risk stratification of this moderate-to-high risk patient population. One,
requiring computer implementation, includes three continuous predictors, two of
them represented by 3-knot restricted cubic splines. The second is a point score
model. We selected Harrell’s C-index as our target PE measure, and drove final
model selection mainly by minimizing cross-validated estimates of this target.

Based on the knowledge of the investigators, an initial set of 36 candidate
predictors was identified. On practical grounds and by choosing—without using the
outcomes—the best predictor in several domains, the number was reduced to 18,
under the m/10 upper bound of 27, but still exceeding the more conservative bound
of m/20. While cut-points for dichotomizing continuous predictors, as required for
the point score, were available from the literature, less information was available
on functional form. On practical grounds, the investigators specified that the point
score should include at most 7 predictors, and preferably 5 or 6, and were reluctant
to consider larger continuous models.

Because the number of possible models was very large even before considering
the functional form of continuous predictors, we used exploratory analysis to reduce
the scope of the cross-validation screening. Specifically, using backward selection
procedures, we decided that the four clearly most powerful predictors (age, left
ventricular ejection fraction (LVEF), B-natriuretic peptide levels (BNP), and urinary
creatinine/albumin ratios (UACR), would be included in any selected model, and
that we could safely omit the four weakest (hypertension, history of heart attack,
LDL, and HDL cholesterol). The remaining candidates for inclusion in the model
included gender, BMI, current smoking, diabetes, C-reactive protein (CRP), chronic
kidney disease (CKD), detectable troponin, congestive heart failure (CHF), physical
inactivity, and poor adherence to medication.
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Table 10.2 Top-scoring prediction models

Continuous Point score
Number of C-Index (%) GOF C-Index (%) GOF
Predictors CVa Naı̈ve P -valueb CV Naı̈ve P -value

5 76.2 76.6 0.90 73.1 74.0 0.002
6 76.2 76.9 0.50 73.9 74.5 0.07
7 76.2 76.8 0.72 73.0 74.8 0.03
a Cross-validation.
b Goodness of fit test due to Parzen and Lipsitz (1999).

In addition, we selected the functional form for continuous predictors by
comparing AIC values for alternatives, in models adjusting for other powerful
covariates. On this basis, we elected to treat age as linear, dichotomized LVEF at
the established cutpoint of 50%, and used 3-knot restricted cubic splines for UACR
and BNP as well as BMI and CRP. In additional exploratory analyses using four
or five-knot splines, the cross-validated C-index decreased substantially, reflecting
overfitting.

We then programmed algorithms in Stata to perform 10-fold cross-validation
of the C-index for each of several hundred candidate continuous and point score
models. For the point-score models, we used a simple automatic algorithm for
calculating the scores based on each of the ten cross-validation development sets.

Table 10.2 shows results for 5, 6, and 7-predictor continuous and point score
models with values of the cross-validated C-index at the observed maximum.
Several comments are in order:

• The continuous models consistently do better than the point score models.
The 2%–3% point improvements in the C-index are substantial and not easily
achieved. Note that the number of parameters estimated for the continuous
models is two greater than the number of predictors, because BNP and UACR
were modeled using 3-knot splines.

• The larger models have at most slightly higher cross-validated values of the
C-index. Moreover, continuous models with more than 7 predictors did not do
substantially better than the 7-predictor model.

• The naı̈ve and cross-validated C-index values are also very close, possibly
reflecting optimism of the cross-validated estimate due to selection.

• Holding the number of predictors or parameters fixed, the C-indices for the top
5–10 models barely differed (data not shown). This illustrates that in prediction,
models containing different sets of predictors may be quite competitive.

When different models are close in terms of the cross-validated target measure
of PE, additional criteria may be used to decide between them, including cali-
bration. Despite the evidence for poor fit of the point score models, model-based
and Kaplan–Meier estimates of risk were in reasonably good agreement for the
6-predictor models, as shown in Fig. 10.1, as well as for the 7-predictor and larger
models. Results are stratified by decile of predicted risk for the continuous model,
and by point scores for the point score model.
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Fig. 10.1 Calibration of prediction models

Face validity and clinical convenience were also top priorities for the
investigators. Current smoking and diabetes are accepted and reasonably strong
cardiovascular risk factors. The best 7-predictor continuous models included either
troponin or CRP, and so would have required an extra test, without improving
discrimination or calibration. Accordingly, the investigators selected the 6-predictor
model, including age, LVEF, BNP, UACR, current smoking, and diabetes.

10.2 Evaluating a Predictor of Primary Interest

In observational data, the main problem in evaluating a predictor of primary interest
is to rule out confounding of the association between this predictor and the outcome
as persuasively as possible. Potential confounders to be considered include factors
identified in previous studies or hypothesized to matter on substantive grounds, as
well as variables that behave like confounders by the statistical measures described
in Sect. 4.4. Three classes of covariates would not be considered for inclusion in the
model: covariates which are essentially alternative measures of either the outcome
or the predictor of interest, and those hypothesized to mediate its effect. A diagram
of the proposed causal model can be useful for clarifying hypotheses about these
relationships, which can be complex, and for selecting variables for consideration.

In contrast, mediation of one confounder by another would not affect the estimate
for the primary predictor nor its interpretation. Similarly, high correlation between
pairs of adjustment of confounding variables would not necessarily be a compelling
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reason for removing one of them, if both are seen as necessary on substantive or
statistical grounds; the reason is that collinearity between confounding variables
will not affect the estimate for the primary predictor or its precision. Covariates
which are in some sense alternative measures of the outcome are not always easy
to recognize, but should usually be excluded. For example, it would be problematic
to include diabetes in a model for glucose, because diabetes is largely defined by
elevated glucose. Another example is history of a potentially recurrent outcome
like falling in a model for subsequent incidence of the outcome. In both examples,
addition of the alternative outcome measure as a predictor to the model tends to
attenuate the estimates for other, more interpretable predictors.

10.2.1 Including Predictors for Face Validity

Some variables in the hypothesized causal model may be such well-established
causal antecedents of the outcome that it makes sense to include them, essentially
to establish the face validity of the model and without regard to the strength or
statistical significance of their associations with the primary predictor and outcome
in the current data set. The risk factors controlled for in the Nurse’s Health Study
analysis of the effects of HT on CHD risk are well understood and meet this
criterion.

10.2.2 Selecting Predictors on Statistical Grounds

In many areas of research, the potential confounders of a predictor of interest
may be less well established, so that in the common case where there are many
such potential confounders, a priori selection of a reasonable subset to adjust
for is not a realistic option. However, the inclusion of too many predictors may
unacceptably inflate the standard errors of the regression coefficients, especially
in smaller samples; in logistic and Cox models bias can also be induced when
too many parameters are estimated. We discuss collinearity and the numbers of
predictors that can safely be included in Sects. 10.4.1 and 10.4.2. Because of these
potential problems, we would like to eliminate variables that are effectively not
confounders, because they demonstrate little or no independent association with the
outcome after adjustment. Similarly, hypothesized interactions that turn out not to
be important on statistical grounds would be eliminated, almost always before either
of the interacting main effects are removed.

An easily implemented method for eliminating redundant predictors on statistical
grounds is so-called backward selection. In brief, backward selection begins
with full model including all pre-specified candidate predictors, then sequentially
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eliminates the weaker candidates, at each step removing the predictor with the
largest P -value. The advantages of backward over forward and stepwise procedures
are explained in Sect. 10.4.3.

If P -value driven selection is used, we recommend a liberal criterion, to rule
out confounding more effectively: in particular, only removing variables with P -
values� 0.2 (Maldonado and Greenland 1993). A comparably effective alternative
is to retain variables if removing them changes the coefficient for the predictor
of interest by more than 10% or 15% (Greenland 1989; Mickey and Greenland
1989). These liberal criteria are particularly important in small data sets, where even
important confounders may not meet the usual P < 0:05 criterion for statistical
significance.

10.2.3 Interactions With the Predictor of Primary Interest

A potentially important check on the validity of the selected model is to assess
interactions between the primary predictor and important covariates, in particular,
those that are biologically plausible. Especially for a novel or controversial main
finding, it can add credibility to show that the association is similar across
subgroups. There is no reason for concern if the association is statistically significant
in one subgroup but not in the complementary group, provided the subgroup-
specific estimates are similar. However, if a substantial and credible interaction is
found, particularly such that the association with the predictor of interest differs
qualitatively across subgroups, then the analysis would need to take account of
this complexity. For example, Kanaya et al. (2004) found an interaction between
change in obesity and HT in predicting CHD and mortality risk which substantively
changed the interpretation of the finding. However, since such exploratory analyses
are susceptible to false-positive findings, this unexpected and hard-to-explain
interaction was cautiously interpreted.

10.2.4 Example: Incontinence as a Risk Factor for Falling

Brown et al. (2000) examined urinary incontinence as a risk factor for falling among
6,049 ambulatory, community-dwelling women in the SOF cohort also studied
by Orwoll. The hypothesis was that incontinence might cause falling because of
hasty trips to the bathroom, especially at night. But it was important to rule out
confounding by physical decline, which is strongly associated with both aging and
incontinence. The final model included all predictors which were associated with the
outcome at P < 0:2 in univariable analysis and remained statistically significant at
that level after multivariable adjustment. Alternative and more inclusive models with
different sets of predictors were also assessed. After adjustment for 12 covariates
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(age; history of nonspine fracture and falling; living alone; physical activity; use
of a cane, walker, or crutch; history of stroke or diabetes; use of two classes of
drugs; a physical performance variable; and BMD) weekly or more frequent urge
incontinence was independently associated with a 34% increase in risk of falling
(95% CI 6%–69%, P D 0:01).

In this example, falling was defined as a binary outcome, discussed in Chap. 5. In
addition, because the outcome was observed over multiple time intervals for each
SOF participant, methods presented in Chap. 7 for longitudinal repeated measures
were used. A subsequent example in Sect. 10.4.2 uses a Cox proportional hazards
model, covered in Chap. 6. In using these varied examples, we underscore the fact
that predictor selection issues are essentially the same for all the regression models
covered in this book.

10.2.5 Directed Acyclic Graphs

So-called directed acyclic graphs (DAGs) (Pearl 1995), a type of causal diagram,
are potentially useful in determining which covariates need to be included in—and
excluded from—regression models used for the second inferential goal of evaluating
the effects of a predictor of primary interest. In the following example we briefly
review the terminology and some key ideas, show how a DAG could be used to
guide predictor selection for this inferential goal, and discuss some complications
that can arise.

10.2.5.1 Example: Vitamin Use and Birth Defects

Suppose we would like to assess the causal effect of vitamin use on prevention of
birth defects. The DAG in Fig. 10.2 identifies four common causes of vitamin use
and birth defects, all of them potential confounders: pre-natal care, socioeconomic
status (SES), difficulty conceiving, and maternal genetics. Vitamin use, birth
defects, and the potential confounders are represented as nodes of the DAG, while
the causal relationships between them are represented as arrows, or directed edges.
The DAG is acyclic in the sense that no ordered sequence of arrows or directed
edges leads back to the node from which the sequence began.

The DAG in Fig. 10.2 encodes several causal assumptions:

• Pre-natal care affects both vitamin use and risk of birth defects.
• A history of difficulty conceiving affects the likelihood that expectant mothers

seek pre-natal care.
• Maternal genetics is a common cause of difficulty conceiving and birth defects.
• SES affects access to pre-natal care as well as vitamin use.
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examining effects of vitamin
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The preceding discussion of predictor selection for the second inferential goal
suggests that we might want to control for all four hypothesized confounders of
vitamin use. But do we really need to control for all of them? Not having to ascertain
maternal genetics would save money and increase study participation, and a smaller
model would likely be more efficient statistically.

10.2.5.2 Backdoor Paths

The DAG in Fig. 10.2 can be used to identify a minimum set of covariates we need to
control for. To do this, we need to examine backdoor paths between vitamin use and
birth defects. Paths are sequences of edges connecting two nodes, without regard
to their direction. There are a total of five distinct paths connecting vitamin use
and birth defects. Only one of these begins with a directed edge from vitamin use,
specifically the path leading directly to birth defects, representing the hypothesized
causal effect of interest; this is not a backdoor path. The other four paths connecting
vitamin use and birth defects are backdoor paths, because they all include a directed
edge leading to vitamin use:

(1) Vitamin use pre-natal care! birth defects
(2) Vitamin use SES! pre-natal care! birth defects
(3) Vitamin use pre-natal care difficulty conceiving maternal genet-

ics! birth defects
(4) Vitamin use SES! pre-natal care difficulty conceiving maternal ge-

netics! birth defects

Note that this DAG includes no paths beginning with a directed edge from vitamin
use and passing through one or more nodes on the way to birth defects. Such indirect
paths via mediators would not be considered backdoor paths.
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10.2.5.3 Colliders

Pre-natal care is a so-called collider on the fourth backdoor path between vitamin
use and birth defects, because it is the common effect of SES and difficulty
conceiving. Note that pre-natal care is not a collider on any of the other three
backdoor paths; likewise none of the other covariates are colliders on any of the
four backdoor paths. Rules for determining what we need to control for treat
colliders differently from other covariates along backdoor paths between exposure
and outcome.

10.2.5.4 Blocking Backdoor Paths

Backdoor paths between exposure and outcome may be blocked or remain open.
If any of the four backdoor paths between vitamin use and birth defects remains
open, we would expect to find a statistical association between them, even if there
was no causal relationship; essentially, this is uncontrolled confounding. But if all
the backdoor paths are blocked, then we would only expect a statistical association
between vitamin use and birth defects if a causal relationship links them. Whether
any of the four backdoor paths remain open depends on whether it includes a
collider, and what we control for in the statistical model we use to estimate the
effect of vitamin use on birth defects. Specifically,

(1) A backdoor path is blocked, provided we control for at least one noncollider on
the path. Thus, we can efficiently block the first three backdoor paths between
vitamin use and birth defects by controlling for pre-natal care, because it is a
noncollider on all those paths.

(2) A backdoor path including a collider is blocked, provided we do not control for
the collider in the statistical model. Controlling for a collider induces a negative
correlation between its common causes, opening an additional backdoor path, as
shown in Fig. 10.3. To block this path, the model must control for a noncollider
on the newly opened path.

Thus, the DAGs in Figs. 10.2 and 10.3 imply that we could obtain an unbiased
estimate of the causal effect of vitamin use on birth defects using a statistical model
in which we parsimoniously controlled for pre-natal care as well as one of the other
three hypothesized confounders: SES, difficulty conceiving, or maternal genetics.

This pattern of confounding relationships, examined in a slightly simpler form
by Greenland et al. (1999), illustrates that controlling for one apparently sufficient
confounder may not be enough, if it is also a collider. Nonetheless, the solution is
simple: controlling for just one additional factor will block the new backdoor path
opened by controlling for the collider. Thus, the insight gained from the DAG might
still make it possible to increase the efficiency of our study, relative to the more
inclusive model selection strategy discussed earlier in this section.
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10.2.5.5 Vulnerability to Assumptions

This result may be vulnerable to several assumptions implicit in the DAG in
Fig. 10.2. Specifically, we may question whether

• SES affects birth defects only through its effects on pre-natal care and vitamin
use. An additional pathway may result from environmental exposures, which are
concentrated among the poor and minorities.

• Difficulty conceiving affects vitamin use only through uptake of pre-natal
care. An additional pathway could be opened by the huge market for over-
the-counter dietary supplements.

• There is no direct link between maternal genetics and SES. So-called population
stratification suggests that the prevalence of genetic factors causing birth defects
may differ by race/ethnicity. This opens a complicated causal pathway from
maternal genetics to SES, mediated by racial and class discrimination.

If these concerns are valid, then there are three additional backdoor paths we might
need to block, as shown in Fig. 10.4:

(1) Vitamin use SES! birth defects
(2) Vitamin use difficulty conceiving maternal genetics! birth defects
(3) Vitamin use SES maternal genetics! birth defects

Thus, we would need to control for pre-natal care and SES, as well as either
difficulty conceiving or maternal genetics.

10.2.5.6 Colliders We Should Not Adjust For

DAGs can also help us avoid adjusting in cases where this will induce bias. For
example, suppose we hypothesized the causal relationships in Fig. 10.5. In this
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DAG, maternal weight gain is not a confounder of vitamin use, and so does not need
to be adjusted for. As in Fig. 10.2, this depends on the absence of directed edges, in
this case from maternal weight gain to vitamin use and birth defects. Their absence
is based on substantive arguments: specifically, that most birth defects are caused
by genetics and/or toxic exposures, with no prior evidence for an independent effect
of weight gain; and that the perceptions of vitamin efficacy and inadequate diet, not
maternal weight gain, are the primary motivations for vitamin use.

However, maternal weight gain is a collider on a backdoor path involving
maternal behavioral and genetic factors, both unmeasured. Adjusting for maternal
weight gain would induce bias in this case, by opening the backdoor path; moreover,
we would be unable to block this path by adjusting for either of the two noncolliders,
because they are unmeasured. Assuming the DAG in Fig. 10.5 is correct, it could
prevent us from making this error, on the mistaken principle of adjusting for any
possible confounder, without more carefully considering causal relationships.
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Similarly, Fig. 10.6 shows stillbirths, potentially reduced by vitamin use and
increased by birth defects, as a common effect of exposure and outcome; in contrast,
a confounder is a common cause. As a collider on the backdoor path between
vitamin use and birth defects, stillbirths should not be adjusted for.

10.2.5.7 More About DAGs

The case of vitamin use and birth defects shows that using DAGs to identify
a minimum set of covariates that must be controlled for may rest on strong
assumptions that certain directed edges are absent from the DAG, assumptions that
may be easy to second-guess, especially in newer fields of research. In that case, the
safe course is to include the additional directed edges in the DAG and make sure that
the resulting backdoor paths are blocked, either by a collider that is not controlled
for in the statistical model, or by a noncollider that is.

At the same time, backdoor paths of the kind shown if Fig. 10.5 should be
interpreted with caution if evidence for the unmeasured factors is unconvincing,
or their effects are thought to be weak. In this case, leaving the backdoor path
unblocked may not induce substantial bias. Greenland (2003) shows that bias from
controlling for the common effects of exposure and outcome, as in Fig. 10.6, may
often be comparable in magnitude with bias from not controlling for a common
cause of exposure and disease. In contrast, biases from controlling for a collider as
shown in Fig. 10.5 may be smaller.

DAGs are also useful for determining whether to adjust for the baseline outcome
in analyses of pre-post change scores, as discussed in Sect. 7.3.1. Glymour et al.
(2005) use DAGs to show that if exposure affects outcome levels at baseline
(regardless of whether it affects subsequent changes), and the baseline outcome
is measured with error, then bias results from adjusting for baseline. Similarly,
so-called horse-racing bias arises if changes have already begun at baseline, and



416 10 Predictor Selection

unmeasured causes of change affect both the baseline and follow-up outcomes. In
both cases, the baseline outcome is a collider on a backdoor path from the primary
predictor to the observed change. Since the common cause of the baseline outcome
and change is by definition unmeasured, the resulting bias cannot be removed by
adjustment.

In contrast, it is legitimate to adjust for the baseline outcome in estimating the
effect of treatment on pre-post changes in a randomized trial, even though both
outcomes are measured with error (Crager 1987). In this case, the directed edge
from treatment to the baseline outcome is absent, so there is no backdoor path from
treatment to change, with the corollary that the baseline outcome is not a collider.

In addition, Herńan et al. (2004) show how DAGs can be used to analyze the
potential for selection bias. In particular, they show that restricting study entry
according to participant characteristics is equivalent to adjusting for a collider, if
common causes link the qualifying characteristics to both exposure and outcome.
This approach also explains why informative censoring or dropout in longitudinal
studies can induce bias. In contrast to the biases analyzed by Glymour et al. (2005),
these biases can potentially be avoided by measuring and adjusting for the common
causes linking exposure, outcome, and selection.

In summary, DAGs are a useful tool for thinking through what we need to
adjust for in analyses focusing on the effect of a primary predictor, as well as
what needs to be omitted, at least at the initial stages of an analysis. At the same
time, overcomplicated DAGs should not stop progress—small biases from residual
confounding or collider bias may not result in qualitatively mistaken inferences.

10.2.6 Randomized Experiments

In clinical trials and other randomized experiments, the intervention is the predictor
of primary interest. Other predictors are, in expectation, uncorrelated with the
intervention, by virtue of randomization. Thus, in the regression model used to
analyze an experiment, covariates do not usually need to be included to rule out
confounding of assignment to the intervention. However, there are several other
reasons for including covariates in the models used to analyze experiments.

• Making valid inferences in stratified designs. Design variables in stratified de-
signs need to be included to obtain correct standard errors, CIs, and P -values. At
issue is the potential for clustering of outcomes within strata, potentially violating
the assumption of independence (Chap. 7). Thus, analyses of multicenter clinical
trials now commonly take account of clinical center, even though random and
equal allocation to treatment within center ensures that treatment is in expectation
uncorrelated with this factor. Clustering within center can arise from differences
in the populations studied and in the implementation of the intervention.

• Increasing precision and power in experiments with continuous outcomes. Ad-
justing for important baseline predictors of a continuous outcome can increase
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the precision of the treatment effect estimate by reducing the residual error;
because the covariates are in expectation uncorrelated with treatment, the
variance inflation factor described in Sect. 4.2.2 is usually negligible. However,
Beach and Meier (1989) use simulations to suggest that adjustment may on
average increase squared error of the treatment effect estimate in smaller studies
or when the selected covariates are not strongly predictive of the outcome. They
also explore the difficulties in selecting a reasonable subset of the many baseline
covariates typically measured, and conclude that adjusting for covariates which
are both imbalanced and strongly predictive of the outcome has the largest
expected effect on the statistical significance of the treatment effect estimate. We
support adjustment for important prognostic covariates in trials with continuous
endpoints, but also endorse the stipulation of Hauck et al. (1998) that the
adjusted model should be pre-specified in the study protocol, to prevent post
hoc “shopping” for the set of covariates which gives the smallest treatment effect
P -value.

• “De-attenuating” the treatment effect estimate and increasing power in exper-
iments with binary or failure time outcomes. In contrast to linear models for
continuous outcomes, omission of important but balanced predictors, including
the stratification variables mentioned previously, from a logistic (Neuhaus and
Jewell 1993; Neuhaus 1998) or Cox model (Gail et al. 1984; Schmoor and
Schumacher 1997; Henderson and Oman 1999) used to analyze binary or
failure time outcomes attenuates the treatment effect estimate. Hypothesis tests
remain valid when the null hypothesis holds (Gail et al. 1988), but power is
lost in proportion to the importance of the omitted covariates (Lagakos and
Schoenfeld 1984; Begg and Lagakos 1993). Note, however, that adjustment for
imbalanced covariates can potentially move the treatment effect estimate away
from as well as toward the null value, and can decrease both precision and
power. In their review, Hauck et al. (1998) recommend adjustment for influential
covariates in trials analyzed using logistic and Cox models. Their rationale is not
only increased efficiency, but also that the adjusted or de-attenuated treatment
effect estimates are more nearly interpretable as subject specific—in contrast to
population averaged, a distinction that we explain in Sect. 7.5. We cautiously
endorse adjustment for important covariates in trials with binary and failure time
endpoints, but only if the adjusted model can be pre-specified and adjustment is
likely to make the results more, not less convincing to the intended audience.

• Adjusting for baseline imbalances. Adjusted analyses are often conducted when
there are apparent imbalances between groups, which can arise by chance,
especially in small studies, or because of problems in implementing the ran-
domization. The treatment effect estimate can be badly biased when strongly
predictive covariates are imbalanced, even if the imbalance is not statistically sig-
nificant. It is of course not possible to pre-specify such covariates, but adjustment
is commonly undertaken in secondary analyses to demonstrate that the inferences
about the treatment effect are not qualitatively affected by any apparent baseline
imbalance. Note that the precision and statistical significance of the treatment
effect estimate can be eroded by adjustment in this case, whether the endpoint
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is continuous, binary, or a failure time. However, a difficult problem can arise
when the selection of covariates to adjust for makes a substantive difference in
interpretation, as Beach and Meier (1989) show in a re-analysis of time-to-event
data from the Chicago Breast Cancer Surgery Study (Meier et al. 1985). In this
small trial (nD 112), where the unadjusted treatment effect estimate just misses
statistical significance (P D 0:1), different sets of covariates give qualitatively
different results, with some adjusted models showing a statistically significant
treatment effect and others weakening and even reversing the direction of the
estimate.

10.3 Identifying Multiple Important Predictors

When the focus is on evaluating a predictor of primary interest, covariates are
included in order to obtain a minimally confounded estimate of the association
of the main predictor with the outcome. A good model rules out confounding
of that association as persuasively as possible. However, broadening the focus to
multiple important predictors of an outcome can make selecting a single best model
considerably more difficult.

For example, inferences about most or all of the predictors retained in the
model are now of primary interest, so overfitting and false-positive results are more
problematic, particularly for novel associations not strongly motivated a priori.
Effect modification or interaction will usually be of interest, but systematically
assessing the large number of possible interactions can easily lead to false-positive
findings, some at least not easily rejected as implausible. It may also be difficult to
choose between alternative models that each include one variable from a collinear
pair or set. Mediation is also more difficult to handle, to the extent that the overall
effect of any predictor as well as its direct and indirect effects may be of interest.
In this case, multiple, nested models may be required, as outlined in Sect. 4.4.
Especially in the earlier stages of research, modeling these complex relationships
is difficult, prone to error, and likely to be an iterative process. In some cases, a
series of models, possibly including interactions, might be necessary to give a full
and interpretable picture.

10.3.1 Ruling Out Confounding Is Still Central

In exploratory analyses to identify the important predictors of an outcome, con-
founding remains a primary concern—in this case, for any of the independent
predictors of interest. Thus, some of the same strategies useful when a single
predictor is of primary interest are likely to be useful here. In particular, relatively
large models, including variables thought necessary for face validity, are preferable.
Ideally, the model can be specified a priori. However, as in the previous section,
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small sample size and high correlation between predictors may limit the number
of variables that can be included. In this case, we recommend using backward
selection with a liberal retention criterion. We discuss these issues in more detail
in Sects. 10.4.1 and 10.4.2.

Simplifying the problem by treating each of the candidate predictors in turn as a
predictor of primary interest, using the procedures from the previous section, is not
a particularly satisfactory solution in our view. This can result in as many different
models as there are predictors of interest, especially if covariates are retained
because removing them changes the coefficient of the predictor of interest. Such
a description of the data is uneconomical and hard to reconcile with an internally
consistent causal model. Furthermore, missing values can result in the different
models being fit to different subsets of the data.

10.3.2 Cautious Interpretation Is Also Key

What principally differs in this context is that any of the associations in the final
model may require substantive interpretation, not just the association with a primary
predictor. This may justify a more conservative approach to some minor aspects of
the model; for example, poorly motivated and implausible interactions might more
readily be excluded. In addition, well-motivated choices among any set of highly
correlated predictors would need to be made.

However, we do not recommend “parsimonious” models that only include
predictors that are statistically significant at P < 0:05 or even stricter criteria,
especially with small samples, because the potential for residual confounding in
such models is substantial. At the same time, we do not recommend explicit
correction for multiple comparisons, since in an exploratory analysis it is far from
clear how many comparisons to correct for, and by how much. This is in contrast
to analyses evaluating multiple outcomes of a single treatment, as discussed in
Sect. 13.4.1, where adjustment is almost certainly needed.

A better approach is to interpret the results of a larger model cautiously, espe-
cially novel, implausible, weak, and borderline statistically significant associations,
to report model selection procedures, including the complete list of covariates
considered, and to be aware of the potential inflation of type-I error, listing this
as a limitation in published descriptions.

A more radical alternative, briefly discussed in Sect. 10.6, is to use methods
for developing prediction models, based on minimizing prediction error, often via
cross-validation. For example, the LASSO, discussed in Sect. 10.1.4, drops the
least important variables and shrinks the less precisely estimated coefficients for
others that are retained. Some of these methods provide direct measures of so-called
variable importance, the implicit focus of this inferential goal. Drawbacks often
include the lack of P -values and CIs, and the difficulty of accounting for mediating
relationships and retaining variables for face validity.
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10.3.3 Example: Risk Factors for Coronary Heart Disease

Vittinghoff et al. (2003) used multipredictor Cox models to assess the associations
between risk factors and CHD events among 2,763 postmenopausal women with
established CHD. Because of the large number (n D 361) of outcome events, it
was possible to include all previously identified risk factors that were statistically
significant at P < 0:2 in unadjusted models and not judged redundant on substantive
grounds in the final multipredictor model. Among the 11 risk factors judged
to be important on both substantive and statistical grounds were six noted by
history (nonwhite ethnicity, lack of exercise, treated diabetes, angina, congestive
heart failure, � 2 previous heart attacks) and five that were measured (high blood
pressure, lipids including LDL, HDL, and Lp(a), and creatinine clearance).

For face validity and to rule out confounding, the final model also controlled
for other known or suspected CHD risk factors, including age, smoking, alcohol
use, and obesity, although these were not statistically significant in the adjusted
analysis. Mediation of obesity and diabetes, both shown to be associated with risk
in single-predictor models, was covered in the discussion section of the paper.
The model also controlled for a wide range of CHD-related medications, but
because these effects were not of direct interest and hard to interpret, estimates were
not presented. However, interactions between risk factors and relevant treatments
were examined, on the hypothesis that treatments might modify the association
between observed risk factor levels and future CHD risk; the final model included
interactions that were statistically significant at P < 0:2.

10.3.4 Allen–Cady Modified Backward Selection

Flexible predictor selection procedures, including conventional backward selection,
are known to increase the probability of making at least one type-I error. A backward
selection procedure (Allen and Cady 1982) based on a ranking of the candidate
variables by importance can be used to help avoid false-positive results, while still
reducing the number of covariates in the model. In this procedure, a set of variables
may be forced into the model, including predictors of primary interest, as well as
confounding variables thought important for face validity. The remaining candidate
variables would then be ranked in order of importance. Starting with an initial model
including all covariates in these two sets, variables in the second set would be
deleted in order of ascending importance until the first variable meeting a criterion
for retention is encountered. Then the selection procedure stops.

This procedure is special in that only the remaining variable hypothesized to
be least important is eligible for removal at each step, whereas in conventional
backward selection, any of the predictors not being forced into the model is eligible.
False-positive results are less likely because there is only one pre-specified sequence
of models, and selection stops when the first variable not meeting the criterion
for removal is encountered. In contrast, conventional stepwise procedures and
especially best subsets search over broader classes of models.
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10.4 Some Details

10.4.1 Collinearity

In Sect. 4.2, we saw that the variance of the regression coefficient estimate for
predictor xj , increases with rj , the multiple correlation between xj and the other
predictors in the model. When rj is large, the estimate of ˇj can become quite
imprecise. Consider the case where two predictors are fairly highly correlated
(r � 0:80). When both are included in the model, the precision of the estimated
coefficient for each can be severely degraded, even when both variables are
statistically significant predictors in simpler models that include one but not both.
In the model including both, an F -test for the joint effect of both variables may
be highly statistically significant, while the variable-specific t-tests are not. This
pattern indicates that the two variables jointly provide important information for
predicting the outcome, but that neither is necessary over and above the other.
With modern computers, problems in estimating the independent effects of highly
correlated predictors no longer arise from numeric inaccuracy in the computations.
Rather, the information is coming from both variables jointly, which makes them
both seem unimportant in t-tests evaluating their individual contributions.

Definition: Collinearity denotes correlation between predictors high enough to degrade
the precision of the regression coefficient estimates substantially for some or all of the
correlated predictors.

How we deal with collinear predictors depends in part on our inferential
goals. For a prediction model, inference on individual predictors is not of direct
interest. Rather, if inclusion of collinear variables decreases prediction error, then it
is legitimate to include them both. In this case, cross-validation of the target measure
of PE can be used to decide which of a collinear set of predictors to include.

Alternatively, suppose that one of two collinear variables is a predictor of primary
interest, and the other is a confounder that must be adjusted for on substantive
grounds. If the predictor of interest remains statistically significant after adjustment,
then the evidence for an independent effect is usually convincing. In small data
sets especially, it would be necessary to demonstrate that the finding is not the
result of a few influential points, and where the data do not precisely meet model
assumptions, to show that the inferences are robust, possibly using the bootstrap
methods introduced in Sect. 3.6. Alternatively, if the effects of the predictor of
interest are clearly confounded by the adjustment variable, we would also have
a clearcut result. However, in cases where neither is statistically significant after
adjustment, we may need to admit that the data are inadequate to disentangle their
effects.

In contrast, where the collinearity is between adjustment variables and does not
involve the predictor of primary interest, then inclusion of the collinear variables can
sometimes be justified. In this case, information about the underlying factor being
adjusted for may be increased, but the precision of the estimate for the predictor



422 10 Predictor Selection

of interest is unaffected. To see this, consider evaluating the effect of diabetes on
HDL, adjusting for BMI. In Sect. 4.7, we found that a quadratic term in BMI
added significantly to the model. However, BMI and its square are clearly collinear
(r D 0:99). If instead we first “center” BMI (i.e., subtract off its sample mean
before computing its square), the collinearity disappears (r D 0:46). However, the
estimate for diabetes and its standard error are unchanged whether or not we center
BMI before computing the quadratic term. In short, collinearity between adjustment
variables is unlikely to matter.

Finally, when we are attempting to identify multiple independent predictors, an
attractive solution is to choose on substantive grounds, such as plausibility as a
causal factor. Otherwise, it may make sense to choose the predictor that is measured
more accurately or has fewer missing values. As in the case of a predictor of
primary interest, the multivariable model may sometimes provide a clear indication
of relative importance, in that one of the collinear variables remains statistically
significant after adjustment, while the others appear to be unimportant. In this case,
the usual course would be to include the statistically significant variable and drop
the others.

10.4.2 Number of Predictors

The rationale for inclusive predictor selection rules, whether we are assessing
a predictor of primary interest or multiple important independent predictors, is
to obtain minimally confounded estimates. However, this can make regression
coefficient estimates less precise, especially for highly correlated predictors. At the
extreme, model performance can be severely degraded by the inclusion of too many
predictors.

Rules of thumb have been suggested for number of predictors that can be safely
included as a function of sample size or number of events. A commonly used guide-
line prescribes at least ten observations for each predictor; with binary or survival
outcomes the analogous guideline specifies ten events per predictor (Peduzzi et al.
1995, 1996; Concato et al. 1995). The rationale is to obtain adequately precise
estimates, and in the case of the logistic and Cox models (Chaps. 5 and 6), to ensure
that the models behave properly.

Such guidelines are useful as flags for potential problems, but need not be
inflexibly applied. Their primary limitation is that the precision of coefficient
estimates depends on other factors as well as the number of observations or events
per predictor (Vittinghoff and McCulloch 2007). In particular, recall from Sect. 4.2
that the variance of an estimated regression coefficient in a linear model depends on
the residual variance of the outcome, which is generally reduced by the inclusion of
important covariates. Precision also depends on the multiple correlation between a
predictor of interest and other variables in the model. Thus, addition of covariates
that are at most weakly correlated with the primary predictor but explain substantial
outcome variance can actually improve the precision of the estimate for the predictor
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Table 10.3 Cox models for DVT-PE

Predictor RH (95% Confidence interval) P -values
variable 11-Predictor model 5-Predictor models Wald LR

HT vs. placebo 2.7 (1.4–5.2) 2.7 (1.4–5.1) 0.002 0.001
� 53 at LMP 3.6 (2.0–6.4) 3.3 (1.8–5.8) < 0.001 < 0.001
Inpatient surgery 4.3 (2.1–8.7) 4.7 (2.3–9.5) < 0.001 < 0.001
Hospitalization 5.6 (2.9–11) 6.7 (3.6–13) < 0.001 < 0.001
Hip fracture 5.9 (0.8–46) 6.6 (0.9–51) 0.09 0.18
Leg fracture 17.3 (5.1–58) 14.1 (4.2–47) < 0.001 < 0.001
Cancer 4.1 (1.7–9.7) 3.5 (1.5–8.4) 0.002 0.006
Nonfatal MI 6.0 (2.3–16) 4.4 (1.7–11) < 0.001 0.002
Stroke/TIA 0.9 (0.1–6.5) 0.9 (0.1–6.4) 0.88 0.88
Aspirin use 0.4 (0.2–0.7) 0.4 (0.2–0.6) 0.003 0.004
Statin use 0.4 (0.2–0.9) 0.4 (0.2–0.7) 0.02 0.02

of interest. In contrast, addition of just one collinear predictor can degrade its
precision unacceptably. In addition, the allowable number of predictors depends on
effect size, with larger effects being more robust to multiple adjustment than smaller
ones.

Rather than applying such rules categorically, we recommend that problems
potentially stemming from the number of predictors be assessed by checking for
high levels of correlation between a predictor of interest and other covariates,
and for large increases in the standard error of its estimated regression coefficient
when additional variables are included. For logistic and Cox models, consistency
between Wald and LR test results is another useful measure of whether there
are enough events to support the number of predictors in the model. Additional
validation of a relatively inclusive final model is provided if a more parsimonious
model with fewer predictors gives consistent results, in particular for the predictor
of interest. If problems do become apparent, a first step would be to make the
criterion for retention in backward selection more conservative, possibly P < 0.15
or P < 0.10. It would also make sense to consider omitting variables included for
face validity which do not appear to confound a predictor of primary interest.

An analysis of risk factors for deep-vein thrombosis and pulmonary em-
bolism (DVT-PE) among postmenopausal women in the HERS cohort (Grady
et al. 2000) is an example of stable results despite violation of the rule of
thumb that the number of events per predictor should be at least 10. In this
survival analysis of 47 DVT-PE events, 11 predictors were retained in the final
model, so that there were only 4.3 events per predictor. However, the largest
pairwise correlation between the selected risk factors was only 0.16 and most
were below 0.02. As shown in Table 10.3, estimates from the 11-predictor model
were consistent with those given by 5-predictor models, in accord with the
rule of thumb, which omitted the less important predictors. Although CIs were
wide for the strongest and least common risk factors, this was also true for the
5-predictor models. Finally, P -values for the Wald and LR tests based on the larger
model were highly consistent.
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10.4.3 Alternatives to Backward Selection

Some alternatives to backward selection include best subsets; sequential
(so-called greedy) procedures, including forward and stepwise selection; and
bivariate screening.

• Best subsets screens models including all possible subsets of the candidate
predictors in a user-specified range of model sizes, using a summary measure
such as adjusted R2 to compare models. This computer-intensive procedure is
implemented in SAS for some models, but not in Stata. It was also the underlying
approach of the cross-validation screening described in Sect. 10.1.6, but did
require prior simplification to reduce the computational burden.

• Forward selection begins with the null model with only the intercept, then adds
variables sequentially, at each step adding the variable that promises to make the
biggest additional contribution to the current model.

• Stepwise methods augment the forward procedure by allowing variables to be
removed if they no longer meet an inclusion criterion after other variables have
been added. Stata similarly augments backward selection by allowing variables
to re-enter after removal. As compared to best subsets, these three sequential
procedures are more vulnerable to missing good alternative models that happen
not to lie on the sequential path. This implies that plausible alternatives to models
selected by stepwise procedures should be examined.

• In bivariate screening, candidate predictors are evaluated one at a time in single-
predictor models. In some cases, all predictors that meet the screening criterion
are included in the final model; in other cases, screening is used as a first step
to reduce the number of predictors then considered in a backward, forward,
stepwise, or best subsets selection procedure. Orwoll et al. (1996) used a variant
of this procedure, including all variables statistically significant at P < 0:05 in
two-predictor models adjusting for age.

Note that only observations with complete data on all variables under consideration
are used in automated selection procedures. The resulting subset can be substantially
smaller than the data set used in the final model, and unrepresentative. When
implemented by hand, different subsets are commonly used at different steps, for
the same reason, and this can also affect results. Findings which depend on the
inclusion or exclusion of subsets of observations should be carefully checked.

10.4.3.1 Why We Prefer Backward Selection

The principal advantage of backward selection is that negatively confounded sets
of variables are less likely to be omitted from the model (Sun et al. 1999), since
the complete set is included in the initial model. Best subsets shares this advantage.
In contrast, forward and stepwise selection procedures will only include such sets
if at least one member meets the inclusion criterion in the absence of the others.
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Univariate screening will only include the complete set if all of them individually
meet the screening criterion; moreover, this difficulty is made worse if a relatively
conservative criterion is used to reduce the number of false-positive findings in an
exploratory analysis.

A disadvantage of backward selection is that initial deletions may be badly deter-
mined if the list of candidate predictors is too large for the number of observations
or events. In this case, bivariate screening with a liberal criterion can be used to
eliminate the weakest predictors; in addition, the Stata stepwise procedure allowing
variables to re-enter affords some protection against this problem. More generally,
sensitivity analyses using forward and/or stepwise in addition to backward selection
are useful for showing whether results are robust to the model selection procedure
used

10.4.4 Model Selection and Checking

Section 4.7 focused on methods for checking the linear model which make use of the
residuals from a multipredictor model rather than examining bivariate relationships.
There, we took as a given that the predictors had already been selected. However,
transformation of the outcome or of continuous predictors can affect the apparent
importance of predictors. For example, in Sect. 4.6.4 we saw that the need for
an interaction between treatment with HT and the baseline value of the outcome
LDL was eliminated by analyzing treatment effects on percent rather absolute
change from baseline. Alternatively, detection of important nonlinearities in the
model checking step can uncover associations that were masked by an initial
linear specification. As a consequence, predictor selection should be revisited after
changes of this kind are made. And then, of course, the fit of the modified model
would need to be rechecked.

10.4.5 Model Selection Complicates Inference

Underlying the CIs and P -values which play a central role in interpreting re-
gression results is the assumption that the predictors to be included in the model
were determined a priori without reference to the data at hand. In confirmatory
analyses in well-developed areas of research, including phase-III clinical trials,
prior determination of the model is feasible and important. In contrast, at earlier
stages of research, data-driven predictor selection and checking are reasonable,
often necessary, and certainly widely used. However, some of the issues raised for
inference include the following.

• The chance of at least one type-I error can greatly exceed the nominal level used
to test each term, leading to false-positive results with too-small P -values and
too-narrow CIs.
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• In small data sets, precision and power are often poor, so important predictors
may well be omitted from the model, especially if a restrictive inclusion criterion
is used. Conversely, in large data sets unimportant predictors are commonly
included, reinforcing the need for cautious interpretation of novel, implausible,
weak, and borderline statistically significant findings.

• Parameter estimates can be biased away from the null, owing to selection of
estimates that are large by chance, sometimes called testimation bias (Steyerberg
2009). This bias is greater for relatively weak predictors.

• Choices between predictors can be poorly motivated, especially between
collinear variables. Univariate screening provides no guidance for this problem.
Moreover, predictor selection is potentially sensitive to addition or deletion of a
few observations, especially when the predictors are highly correlated. Altman
and Andersen (1989) propose bootstrap methods for assessing this sensitivity.

Predictor selection driven by P -values is subject to these pitfalls whether it is
automated or implemented by hand. How seriously do these problems affect
inference for our three inferential goals?

• Prediction. In many modern prediction methods, potentially large sets of can-
didate predictors are aggressively screened, but P -values are not used as the
criterion. We implemented one such procedure in Sect. 10.1.6, and Breiman
(2001) briefly reviews other modern methods which even more aggressively
search over candidate models. However, use of GCV measures of prediction error
as a criterion for predictor selection effectively protects against both overfitting
and invalid inferences. In short, predictor selection does not adversely affect
modern procedures for this inferential goal.

• Evaluating a predictor of primary interest. Iterative model checking and selection
should likewise have relatively small effects on inference about a predictor
of primary interest, since it is included by default in all candidate models. In
fact, iterative checking and predictor selection should result in better control of
confounding, a primary aim for this inferential goal. However, when the primary
predictor is of borderline statistical significance, the issue of P -value shopping
raised in Sect. 10.2.6 needs to be conscientiously handled, and sensitivity of
results to predictor selection reported.

• Identifying multiple important predictors. Model selection most clearly compli-
cates inference for this inferential goal, since CIs and P -values for any of the
predictors are potentially of direct interest. Note that inclusion of variables for
face validity, use of a loose inclusion criterion (P < 0:2), and the Allen–Cady
procedure all reduce the potential impact of predictor selection on inference.
Nonetheless, selection procedures should only be used with prior consideration
of hypothesized relationships, careful examination of alternative models with
other sets of predictors, checks on model fit and robustness, skeptical review of
the findings for plausibility, and cautious interpretation of the results, especially
novel, borderline statistically significant, and weak associations.
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10.5 Summary

We have identified three inferential goals, and recommend predictor selection
procedures appropriate to each of them.

For prediction, we recommend identifying candidate predictors and appropriate
transformations well-supported by prior research. But in the common case where
expert opinion and the literature do not provide sufficient guidance, we recommend
exhaustive screening of candidate models to find the few models that minimize a
generalized cross-validation measure of prediction error.

For evaluating a predictor of primary interest, we recommend using DAGs
to specify hypothesized relationships between the primary predictor, potential
confounders and mediators, and the outcome; caution should be used in eliminating
variables based on any DAG that omits plausible but unestablished causal pathways.
The selected model should include all generally accepted confounders required
to ensure its face validity. Other potential confounders that turn out not to be
important on statistical grounds can optionally be removed from the model using a
backward selection procedure, but with a liberal inclusion criterion to minimize the
potential for confounding. Especially in smaller data sets, care must be taken with
the inclusion of covariates highly correlated with the predictor of interest, since
these can unduly inflate the standard errors of the estimate of its effect. Negative
findings for the primary predictor should be carefully interpreted in terms of the
point estimate and CI, as described in Sect. 3.7.

For identifying multiple important predictors of an outcome, we recommend a
procedure similar to that used for a single predictor of primary interest. A DAG
mapping out hypothesized relationships between variables can be particularly
useful. Strongly motivated covariates may be included by default to ensure the
face validity of the model. The Allen–Cady modification of the backward selection
procedure is useful for selecting from among the remaining candidate variables
while limiting false-positive results. Negative, weak, and/or borderline statistically
significant associations retained in the final model as much to control confounding
of other associations as for their intrinsic plausibility and importance should be
interpreted with particular caution.

10.6 Further Notes and References

Predictor selection is among the most controversial subjects covered in this book.
Book-length treatments include Miller (1990) and Linhart and Zucchini (1986),
while regression texts including Weisberg (1985) and Hosmer and Lemeshow
(2000) address predictor selection issues at least briefly. The central place we
ascribe to ruling out confounding in the second and third inferential goals owes
much to Rothman and Greenland (1998), a standard reference in epidemiology
that describes how substantive considerations can be brought to bear on predictor
selection.
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One promising method for ensuring adequate control of confounding is more
or less exhaustive screening of candidate models with different covariate sets,
some including interactions between covariates and/or restricted cubic splines
for continuous confounders. As described in Sect. 10.1.4, these procedures use
cross-validated prediction error as a model selection criterion to avoid overfitting,
and avoid some pitfalls of P -value driven selection procedures, as discussed in
Sect. 10.4.5. However, these methods can be difficult to implement, and are a focus
of ongoing statistical research.

Both the theory and application of causal diagrams and models have been
advanced substantially in recent years (Pearl 1995; Greenland et al. 1999) and
give additional insights into situations where confounding can be ruled out a priori.
However, these more advanced methods appear to be most useful in problems where
causal pathways are more clearly understood than is our usual experience. Jewell
(2004) and Greenland and Brumback (2002) explore the connections between causal
diagrams, potential outcomes, and some model selection issues.

Chatfield (1995) reviews work on the influence of predictor selection on infer-
ence, while Buckland et al. (1997) propose using weighted averages of the results
from alternative models as a way of incorporating the extra variability introduced
by predictor selection in computing CIs. These would be particularly applicable to
the second inferential goal of evaluating a predictor of central interest.

For a sobering view of the difficulty of validly modeling causal pathways using
the procedures covered in this book and particularly this chapter, see Breiman
(2001). From this point of view, computer-intensive methods validated strictly in
terms of prediction error not only give better predictions but may also be more
reliable guides to “variable importance”—another term for our third inferential goal
of identifying important predictors, and with obvious implications for assessing a
predictor of central interest.

10.7 Problems

Problem 10.1. Characterize the following contexts for predictor selection as
prediction, evaluation of a primary predictor of interest, or identifying the important
predictors of an outcome:

• examining the effect of treatment on a secondary endpoint in an RCT
• determining which newborns should be admitted to the neonatal intensive care

unit (NICU)
• comparing a measure of treatment success between two surgical procedures for

stress incontinence using data from a large longitudinal cohort study
• identifying risk factors for incident hantavirus infection.

Problem 10.2. Consulting Stata documentation, describe how the sw: command
prefix with the lockterm1, hier, and pr() options can be used to implement
the Allen–Cady procedure.
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Problem 10.3. Think of an outcome under preliminary investigation in the area of
your expertise. Following Allen and Cady’s prescriptions, try to rank predictors of
this outcome in order of importance. Are there any variables that you would include
by default? Why?

Problem 10.4. Do any of the variables you have selected in the previous problem
potentially mediate the effects of others in your list? If so, how would this affect
your decision about what to include in the initial model? What series of models
could you use to examine mediation? (See Sect. 4.5.)

Problem 10.5. Suppose you included an indicator for diabetes in a multivariable
model estimating the independent effect of exercise on glucose. How would you
interpret the estimate for exercise? Would you want to consider interactions between
exercise and diabetes in this model? How would you deal with use of insulin and
oral hypoglycemics?

Problem 10.6. Why are univariate screening and forward selection more likely to
miss negatively confounded variables than backward deletion and best subsets?

Problem 10.7. Give an example of a “biologically plausible” relationship that has
turned out to be false. Give an example of a biologically implausible relationship
that has turned out to be true.

Problem 10.8. Suppose you were using a logistic model to examine the association
between a predictor and outcome of interest, and to rule out confounding you needed
to include one or two more predictors than would be allowed by the rule of 10 events
per variable. In comparing models with and without the two extra predictors, what
might signal that you were asking the bigger model to do too much? How would the
correlation between the extra variables and the predictor of interest influence your
thinking?

10.8 Learning Objectives

(1) Describe and implement strategies for predictor selection for

• prediction
• evaluation of a primary predictor
• identifying multiple important predictors.

(2) Use a DAG to define hypothetical relationships among confounders, mediators,
and the outcome.

(3) Be familiar with the drawbacks of predictor selection procedures.
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