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A NOTE ON CONTIGUITY AND HELLINGER 
DISTANCE* 

by 

J. OOSTERHOFF (1), AND W. R. VAN ZWET (2) 

1. Introduction 

For n = 1, 2, . .. let (Xn 1, dn1), •.. , (Xnn• dnn) be arbitrary measurable spaces. 
Let Pni and Qni be probability measures defined on (Xni> dni), i = 1, ... , n; 

n n 

n = 1, 2, . . . , and let p~n) = n pni and Q~n) = n Qni (n = 1, 2, . . . ) denote the 
i= 1 i= 1 

product probability measures. For each i and n let Xni be the identity map from Xni 
onto Xni· Then Pni and Qni represent the two possible distributions of the random 
element Xni as well as the probability measures of the underlying probability space. 
Obviously Xn 1, ... , Xnn are independent under both P~"l and Q~"l (n = 1, 2, ... ). 

The sequence { Q~"l} is said to be contiguous with respect to the sequence { P~"l} 
if lim P~"l(An) = 0 implies lim Q~"l(An) = 0 for any sequence of measurable sets An. 

n-+ oo n-+ oo 

This one-sided contiguity notion is denoted by { Q~"l} <J {P~"l} (the notation is 
due to H. Witting & G. Nolle [7]). The sequences { P~"l} and { Q~"l} are said to be 
contiguous with respect to each other if both { Q~"l} <i { P~"l} and { P~"l}<J { Q~"l}. 
This two-sided contiguity concept we denote by { P~"l} <J c:> { Q~"l}. 

The main purpose of this note is to characterize contiguity of product probability 
measures in terms of their marginals. To this end we introduce the Hellinger distance 
H(P, Q) between two probability measures P and Q on the same a -field, defined by 

where p = dP/dJL, q = dQ/d~-t and 1-l is any a-finite measure dominating P + Q. 
This metric is independent of the choice of 1-l and satisfies 0 ~ H(P, Q) ~ 2112 • 
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Defining the total variation distance of P and Q by 

(1.2) liP - Qll = sup jP(A) - Q(A)I, 

where the supremum is taken over all measurable sets A, we have the following 
inequalities (Le Cam [ 4]) 

(1.3) 

The Hellinger distances of the product measures and of their marginals are connected 
by the relationship 

" 
(1.4) H2(P~">, Q~">) = 2- 2 fl {1 - -};H 2(P,;, Q,;)} . 

i= 1 

For further reference we first mention two easy results, viz. 

" 
(1 .5) IH2(P,;, Q,;) = o(l) for n-+ oo "'> {P~">} <lL>{Q~">}, 

i=1 

and 

n 

(1.6) {Q~")} <l {P~")} => IH2(P,;, Q,;) = 0(1) for n-+ oo. 
i= 1 

The proof of (1.5) is an immediate consequence of the string of implications 

" " I H 2(P,;, Q,;) = o(1) =>I log {1 - tH2(P,;. Q,;)} = o(l) 
i= 1 i= 1 

"'> H2(P~">, Q~">) = o(l) =>l i P~">- Q~" >ll = o(l) => {P~">} <l e> {Q~">}. 

To prove {1.6) suppose that limsup H(P~"l, Q~">) = 2112 . Then by (1.3) limsup liP~")-
n-too n-+ oo 

- Q~")l l = 1 in contradiction to { Q~"l} <l {P~">}. Thus limsup H2(P~">, Q~"l) < 
n-+ oo 

" " < 2, therefore liminf f1 { 1 - -!H2(P,;, Q,;)} > 0 and hence limsup I H2(P,; , Q,;) < 
n~oo i::::::l n-+oo i=l 

< oo and the proof is complete. 

It can be shown by counterexamples that in ( 1.5) the condition cannot be 
n 

weakened to I H 2(P,i, Q,;) = 0(1), and that in (1.6) the conclusion cannot be 
i= 1 " 

strengthened to I H 2(P,.i, Q,;) = o(l), for n -+ oo. Hence there remains a gap 
i=1 

between the sufficient condition and the necessary condition for contiguity in ( 1.5) 
and (1.6) respectively. In section 2 we obtain conditions which are both sufficient and 
necessary for contiguity of the product measures by adding another condition to 

n 

I H 2(P,,, Q,;) = 0{1). 
1=1 
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In many applications asymptotic normality of the log likelihood ratio statistic A, 
(see (3.1)) plays an important part. Since 

2( A, I P~"l) ~ w .¥( -1a2 ; a 2 ) implies { P~")} <1 1> { Q~")} 

(cf. Hajek & Sidak [1], Le Cam [2], [3], [4], Roussas [6]), we have to impose 
stronger conditions on the marginals P,; and Q,; to ensure the asymptotic normality 
of A,. Some sufficient (and almost necessary) conditions for the asymptotic normality 
of A,, which are clearly stronger than those in section 2, are given in section 3. 
These conditions are closely related to some earlier results of Le Cam [3], [ 4]. 

2. Contiguity of product measures 

We begin by noting the following useful implication: 

n n 

(2.1) { Q~"l} <1 {P~"l}::;. [lim I P,i(A,;) = 0::;. lim I Q,;(A,;) = OJ 
n-+oo i= 1 n_,.co i= 1 n 

for any collection of measurable sets A,;· For suppose lim I P,;(A,;) = 0. Then 
n n n-+oo i=l n 

limP~")( U A,;) = 0, hence by contiguity lim Q~"l( U A,;) = 1 - lim TI (1 - Q,;(A,;)) 
n-+co i=l n n-+oo i=l n-+co i=l 

= 0 and therefore lim I Q,;(A,;) = 0. 
n-+ooi=l 

Now let J-l,; be a a-finite measure on (fl",;, d,;) dominating P,; + Q,; and write 
p,; = dP,ddJ-l,; and q,; = dQ,ddJ-l,; (i = 1, ... , n; n = 1, 2, ... ). The main result of 
this section is 

n 

(2.2) lim sup I H 2(P,;, Q,;) < oo 
n->oo i=1 

and 

n 

(2.3) lim I Q,;(q,;(X,;)jp,;(X,;) ~ c,) = 0 whenever c, ~ oo. 
n-+ooi=l 

Proof. First assume that (2.2) and (2.3) are satisfied. Write 

n 

and consider TIL,;. It is easily shown ( cf. Le Cam [ 4], Roussas [ 6]) that { Q~">} <1 
i= 1 n 

<1 { P~"l} is equivalent to tightness of the sequence of distributions { 2( TI L,; I Q~">)~ 
i= 1 
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n = 1, 2, ... } . The tightness of this set of distributions can also be expressed in the 
more convenient form 

n 

(2.4) lim Q~nJ( f1 Lni ~ kn) = 0 whenever kn ~ ro . 
n-+oo i==l 

Hence we have to prove (2.4). Let 0 < kn ~ ro. Let 0 < en ~ ro be real numbers 
to be chosen in the sequel. If 1A denotes the indicator function of the set A, we have 
by (2.3) and Markov's inequality for n ~ ro 

n 

Q~n)( f1 Lni ~ kn) 
i= 1 

n n 

::£ Q~n)( f1 Lni ~ kn 1\ Lni < en for i = 1, ... , n) + Q~n)( U {Lni ~ en}) 
i=1 i= 1 

n n 

::£ Q~n)( TI L!{2 1(0,cn)(Lni) ~ k! 12 ) + L Qn;(Lni ~ en) 
i= 1 i= 1 

::£ k;1/2 .Q f q~{2p;//2 d.Uni + o(1). 
1 - 1 q,-d < CnPn i 

Since for all en ~ 1 

I 3/2 -1/2 d qni Pni .Uni 
qni <CnPni 

< f d f -1/2( 1/2 - 1/2) d = qni flni + qniPni qni Pni .Uni 
qni<CnPni qni<CnPni 

< 1 + f qlf2p-.1j2{q1f2 _ p1f2)2 du . + f ql f2(q1 f2 _ p1f2) du . 
= '" nr. nr. "' rnr- ra "' n1. rnl 

qni <CnPni qni <cnPni 

< 1 + e1/2 fcq1f2 - pl f2 )2 d . + 1 - fq1 f2pl /2 du . = n nl nt f-lnt nt. "' rnt 

_ f 112( 112 112) d < 1 ( 112 .1.) H 2lp Q ) qni qni - Pni .Uni = + en + 2 \ ni• ni , 
qni~CnPni 

it follows that 
n 

limsup Q~nl( f1 Lni ~ kn) 
n-+co i= l 

n 

::£ limsup k; 112 f1 {1 + (c!12 + ±) H 2(Pni• Qn;)} 
n-+oo i= 1 

n 

< 1. k-112 {( t 12 .1.)" Hz(P Q )} = lmSUp n exp en + 2 L., ni• ni · 
n-+oo i=l 
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Choosing en in such a way that en = o((log kn)2 ) for n ~ oo, (2.2) implies 
n 

Q~n)( fi Lni ~ kn) = o( 1) for n ~ oo and (2.4) is established. 
i= 1 

Conversely, suppose that { Q~n)} <J { P~n>}. Since (1.6) implies that (2.2) is satisfied, 
it remains to prove (2.3). Let 0 < en ~ oo and consider the inequality, valid for 
en~ 4, 

n n 

Since by (2.2) e;; 1/ 2 L H 2(Pni• Qn;) ~ 0 for n ~ oo, it follows that lim L Pn(Ln1 ~ 
i =1 n n-+ooi = 1 

~ en) = 0. Hence (2.1) implies that lim L Qn;(Lni ~ en) = 0 and the proof of the 
theorem is complete. D n ->oo i = 1 

Corollary 1. { p~n)} <J 1> { Q~n)} iff (2.2) and (2.3) are satisfied and 

n 

(2.5) lim L Pn;(p,.;(Xn;) fqnlXn;) ~ en) = 0 whenever en~ 00 • 
n-t-co i=l 

In connection with contiguity Hellinger distance seems to be a more appropriate 
metric than total variation distance. Note that from (1.3) and (1.6) we immediately 
obtain the implication 

n 

(2.6) { Q~n)} <J {P~n)} ::::> L IIPn; - Qni ll 2 = 0(1) for n ~ 00, 
i = 1 

where agam the order term cannot be strenghtened to o(l). However, 
n 

L 11Pn1 - Qnill 2 = 0(1) is too weak a condition to replace (2.2) in Theorem 1. On 
i= 1 n 

the other hand we cannot strengthen this condition to I 11Pn1 - Qn;ll' = 0(1) for 
i = 1 n 

some r < 2, since { Q~n)} <J { p~n)} does not necessarily imply I 11Pn1 - Qn1ll ' = 0( 1) 
i=1 

for any positive r < 2. The following example serves to illustrate these points. 
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Example. Let P.nt denote Lebesgue measure on (0,1), let p,.1 = 1<0 , 0 and let q,.; = 
= (1 + n- 112) 1(o,1 -,.-•f2) + n- 112 1r1 - 11-tt2,t)• i = 1, .. . , n; n = 1, 2, .. . . Then 

II 

L IIP,.1 - Q,.,l! 2 = (1 - n- 112) 2 ~ 1 and (2.3) is trivially satisfied since q,.1fp,. 1 
f = l II 

is uniformly bounded. But { Q~n)} <1 { p~n>} does not hold because L H2(P,." Q,.,) = 
i=l 

= 2n{l - Jq;{2 dp.,.i} = 2n{1 - (1 + n-112)112 (1 - n-1/2) - n-3/4} = nt/2(1 + 
+ o(l)) for n -+ oo. 

Taking q,., = (1 + n- 112) 1<0 , 112> + (1 - n- 112) 1[112 , 1> for all i and n, we have 
. n 

{Q~">} <1 {P~n>} since {2.3)is satisfied and L, H2(P,.1, Q,.i) = 2n{1- f{l + n- 112) 1' 2 -
i=l 

II 

- !(1 - n- 1' 2 ) 1' 2} = t + a(l) for n -+ oo. However, in this case L IIP,.i- Q,.dl' = 
l=l 

= n(!n-1' 2)'-+ oo for n-+ oo if r < 2. 

3. Asymptotic normality of A, 

Define 

n 

(3.1) A, = L log {q,.;(X,.i)fp,1(X,.1)}, n = 1, 2, .•.• 
i= 1 

Note that, with probability one, A,. js well-defined under P~">, although A, may 
assume the value - oo with positive probability under p~n>. 

In our search for necessary and sufficient conditions for the weak convergence 
.!l'(A, I p~n>) -+w %( -i<T2; <T2) in terms of the marginal distributions of the X,, we 
shall confine ourselves to the. case where the summands in (3.1) satisfy the traditional 
u.a.n. condition ( cf. Loeve [ 5]). 

Theorem 2. For any u ~ 0 . 

(3.2) 

and 

{3.3) 

for every s > 0 iff for every e > 0 

n 

(3.4) lim L H2(P,.;, Q,1) = iu2 , 
, ... 00 i= t . 
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" (3.5) lim I Q,i(q,;(X,i)jp,;(X,i) ~ 1 + ~>) = 0, 
n-+oo i= 1 

" (3.6) lim I P,lPnlXni)jq,;(X,i) ~ 1 + ~>) = 0, 
n_.co i= 1 

or equivalently, iff (3.4) holds and for every 1> > 0 

(3.7) 

Proof. To simplify the notation we write r,i = q,;/Pni· We first show that (3.5) and 
(3.6) are equivalent to (3.7). From 

.t f (q!{ 2 - P!{2)2 d.Uni 
l- 1 Jq,.t-Pnd~tPni 

we obtain the double inequality 

" {1 - (1 + ~>t1/2}2 I Q,;(r,;(X,i) ~ 1 + ~>) 
i= 1 

" + {1 - (1 - ~;) 1 12)2 I P,;(r~/(X,i) ~ (1 - ~>t 1) 
i=1 

< ~ f (q1!2 - p1!2)2 dtl . = i..J nl "' rn1 
i= 1 Jq,.;- Pnd ~tPni 

" " 
~ I Q,i(r,;(X,;) ~ 1 + ~>) + L P,;(r~"/(X,i) ~ (1 - ~>t 1 ) 

i= 1 i= 1 

and the equivalence of (3.5) and (3.6) to (3.7) is immediate. 

Next we note that both (3.2), (3.3) and (3.4), (3.5), (3.6) imply { P~">} <l t> { Q~">1 
( cf. Corollary 1 ). 

The remainder of the proof relies on the normal convergence theorem (cf. Loeve 
[5]). According to an equivalent form of this theorem (3.2) and (3.3) are equivalent to 

" 
(3.8) lim I P,i(ilog r,i(X,i)l ~ <5) = 0 for every c5 > 0 , 

11-+0J i=1 
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By the contiguity of { P~">} and { Q~">} and (2.1) the condition (3.8) is equivalent to 
(3.5) and (3.6) and hence to (3.7). Henceforth we assume (3.7), (3.8) and {P~">} <1 t> 

<1 t> { Q~">}. We still have to show that (3.4) is equivalent to (3.9) and (3.10). 

Let 0 < {> < 1. For !tog r,;j ~ 6 we have the expansion 

(3.11) log r,; = 2log {1 + (q~{2 - p~{2) p,;£ 112} 

=·2(q!{2 _ P!{2) p,;£112 _ (q!{2 _ P!{2)2 p,;£1(1 + Q,;o) 

with !e,;"l < 26. Thus 

Since by (3.7) 

lim {.± f (q~{ 2 - P!{2 ) 2 d11, , - t H 2(P,; , Q,;)} = 0 
n -+ oo •=1 J!ogrnd ~ ll • = 1 

and by (3.8), {P~">} <1 t> {Q~">} and (2.1) 

.t f (q,; - P,;) dJ1,i = - .t f (q,; - P,;) dJ1,;---+ 0 
•- 1 llogrnd ;::! <! •- 1 llogrnd >b 

for n ---+ oo, we have 

n 

~ lim limsup 26 I H 2(P,;, Q,;) = 0 , 
310 n-+oo i = 1 

where we have used (1.6). Similarly, 

lim limsup ,± { f (log r,;) dP,;}
2 

llLO n-+co •=1 poliirnd ~ ll 

(3.13) 

n 

~ lim limsup 6(2 + 26) I H 2(P,;, Q,;) = 0 . 
IILO n->oo i = 1 
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Finally (3.11) implies that for IIog rnil ~ (j < 1 

(log rm)z = 4(q~{z - p~{z)z p;;/ + i!nio(q~{z - p~{zy p;;/ 

with li!nilil < lOb. Hence, in view of (3.7) and (1.6), 

lim limsup 1.± I (log rn;) 2 dPni - 4 .I H 2(Pni> Qni) l = 0 . 
li!O n-+oo •=1 IJogrnd~li •=1 

(3.14) 

The equivalence of (3.4) to (3.9) and (3.10) is now an immediate consequence of 
(3.12), (3.13) and (3 .14). The theorem is proved. 0 

In the one sample case where, for each n, Xn 1, ... , Xnn are identically distributed, 
condition (3.3) is implied by (3.2) and Theorem 2 slightly simplifies. This remains 
true in the k sample case (k ~ 2) provided all sample sizes tend to infinity. 

The first part of the proof of Theorem 2 also shows that the conditions (2.3) and 
(2.5) in Corollary 1 may be replaced by the single condition 

1~ .t I ( q~{2 - p~{2)2 dflni = o whenever en ~ 00 • 
n 00 J- 1 fqni-Pn;J~CnPni 

The proof of Theorem 2 could also be given in a more roundabout way. Intro­
ducing the r .v.'s 

n 

one shows that .P( L wni I p~n)) ~w %( -la2 ; a2) iff .P(An I p~n)) ~w %( -!a2 ; a2), 
i= 1 

provided the respective u.a.n. conditions are satisfied. It is then not difficult to prove 
n 

that the weak convergence of L W,.i and the u.a.n. condition on the summands are 
i=1 

equivalent to (3.4) and (3.7). In this proof (3.7) appears as the Lindeberg condition 
n 

in the central limit theorem applied to I wni· 
i= 1 

The equivalence of both weak convergence results has first been proved 
by Le Cam ([3], [ 4]). The initial assumptions lim sup H 2(Pni• Qni) = 0 and 

n-+oo t,;;i,;;n 
limsup I I P~n) - Q~n) ll < 1 made by Le Cam are not restrictive since they are implied 

n-+oo 
by our condition (3.7) and the contiguity of {P~n)} and { Q~n>}, respectively. One part 
of this proof is also contained in Hajek & Sidak [ 1]. 
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