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MATHEMATISCHE SECTIE 

Convex transformations: A new approach to skewness and 
kurtosis •) 

by W. R. von Zwet ••) UDC 519.2 

Samenvatting 

In dit artikel worden een tweetal orde-relaties voor waarschijnlijkheidsverde­
lingen voorgeste/d, die - beter dan de klassieke maten gebaseerd op derde en 
vierde momenten - aangeven wanneer een verdeling een grotere scheefheid of 
kurtosis bezit dan een andere verdeling. Voorts wordt een aantal karakterise­
ringen en toepassingen van deze orde-relaties behande/d. Bewijzen worden in dit 
artikel niet gegeven; deze zijn te vinden in een meer uitgebreide, aan dit onder­
werp gewijde studie [5]. 

1. Introduction 

Every statistician will have at least an intuitive idea of what is meant by the 
concepts of ,skewness" and ,.kurtosis" of a probability distribution and he 
will be aware of the fact that these should play an important role in applications. 
He will also probably feel vaguely dissatisfied with the existing measures for 
these concepts, i.e. the standardized third and fourth central moments, and 
indeed there are at least two perfectly good reasons for this uneasy feeling. 

The first one is that, according to these measures, any pair of probability 
distributions that possess finite fourth moments may be compared as to skewness 
and kurtosis, whereas one feels that pairs of such distributions exist that are 
quite incomparable in these respects. The second reason is that, to the author's 
knowledge, very few interesting applications of any generality exist. It is fairly 
obvious that both disadvantages are closely related: the reason for the apparent 
lack of applications is precisely the fact that comparison of probability distri­
butions on the basis of these measures is so often meaningless. 

From the above it will be clear that at the root of the trouble lies the fact that 
these measures impose a simple ordering - i.e. an ordering where every pair of 
elements are comparable - on too large a class of probability distributions. 
Rather than restricting ourselves to considering smaller classes of distributions 
we shall try and find a more satisfactory approach by considering partial 
orderings - i.e. orderings where not every pair of distributions are necessarily 
comparable - to replace the classical measures. 
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It will be shown in this paper that two partial order relations exist that seem 
to cover our intuitive ideas about skewness and kurtosis. These order relations 
will not only be seen to imply the ordering according to the classical measures, but 
also to be so much stronger than the classical orderings as to permit meaningful 
applications. No proofs will be given in this paper; they may be found in [5], 
where a more extensive study of the subject is made. Part of the material 
presented here and in (5] was previously discussed in [4]. 

2. Notation 

Let ~ be a non-degenerate real-valued random variable 1) and let I be the 
smallest interval for which P (~el) = 1. We define the distribution function 

Fof~ by 
F(x) = l;P(~ < x) + !P(~ <x) 

and the expectation and central moments of ~ by 

~~ = f x dF(x), 
I 

a 2 (~) = p2 (~) = J (x - 8~)2 dF (x), and 

I . 

J.lk (~) = J (x- ~~)k dF(x), k = 3,4, ... , 

I 

where the right-hand sides denote STIELTJES integrals. We shall say that these 
expectations exist only if they are finite. The distribution given by F is said to 
be symmetrical about x 0 e I if 

F(x0 - x) + F(x0 + x) = I for all real x. 

Let ~l:n < ~2 :n < ... < ~n:n denote an ordered sample of size n from the 
distribution F; ~i:n is called the i- th order statistic of a sample of size n 
from F. In the greater part of this paper we shall confine our attention to the 
class !F of distribution functions F satisfying 

(a) F is twice continuously differentiable on I; 
(b) F' (x) > 0 on I; 
(c) There exist integers i and n, 1 < i < n, such that ~~i:n exists. 

For Fe .17 the inverse function G is uniquely defined on (0,1) by 2) 

GF(x) = x for x e I. 

1) We denote random variables by underlining their symbols. 
2) We shall usually not use brackets to denote composite functions and write GF and GF(x) 

rather than G(F(.)) and G(F(x)). 
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We shall also be concerned with the subclass !I ( ~ of symmetric distribu­
tions in~. 

When we consider simultaneously two random variables, ~ and ~·, with 
distribution functions F and F*, we shall adopt similar conventions and nota­
tions with regard to~· and F* , and write : 1*, ~·i : n and G*. 

A real-valued function cp defined on I is said to be convex on I if for all 
x 1, x2 e I and 0 < .A <. I 

rp (.Axt + (1 - .A) X2) <. .Acp (xl) + (1 - .A) rp (x2), 

i.e. the graph of cp lies below any chord. We note that this definition implies 
continuity of rp on I, except perhaps at its endpoints, if these exist. A real-valued 
function cp on I is said to be anti-~ymmetrical and concave-convex on I about 
x0 e I, if for all x 0 - x e I, x6 + x e I, 

cp (x0 - x) + cp (x0 + x) = 2cp (x0), 

and if rp is concave for x < x 0 and convex for x > x 0 , x e I; x 0 will be called 
a central point of cp. 

3. Convex and concave-convex transformations 

Suppose that cp is non-decreasing and convex on I and consider the random 
variables ~ and rp (~). Apart from an overall linear change of scale such a 
transformation of the random variable ~ to the random variable cp (~) effects 
a contraction of the lower part of the scale of measurement and an extension 
of the upper part. As, moreover, this deformation increases towards both ends 
of the scale, the transformation from ~ to rp {~) produces what one intuitively · 
feels to be an increased skewness to the right. The following theorem holds : · 

Theorem 3.1 

If cp is a non-decreasing convex function on /, which is not constant on I, and 
if p,2k+I (~) and p,2 k+I (rp (~))exist, then 

1'2k+l (~) .,;::: 1'2k+I,_(rp_(~_)) l' k 2 
~ , lOr = I, ' .... 

a2k+l (~) a2k+l (cp (~)) 

It is intuitively equally appealing that a non-decreasing, antisymmetric and 
concave-convex transformation of a symmetrically distributed random variable 
should lead to an increased kurtosis of the distribution. We have: 

Theorem 3.2 

Let cp be a non-decreasing, antisymmetrical, concave-convex function on /, 
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which is not constant on /, and let the distribution given by F be symmetrical 
about x0, where x0 denotes a central point of q;. Then, if tlq;2 k (~)exists, 

l'u (~) .;;;:: Pu (q; (~)) 
2 " ( ) ...._, 2 k ( ( - ,for k = 2,3, .... 

a ~ a q; ~)) 

4. Two weakoo0rder relations 

In the remaining part of this paper we shall confine our attention to distribu­
tion functions Fe g;; part of the results, however, remain valid without this 
restriction. 

Returning to the theorems of section 3 we remark that they obviously con­
tinue to hold if one replaces q; (~) by any other random variable with the same 
distribution, i.e. they hold for any ~· with distribution function F* ~ati~fying 

F*q; (x) = P (~* < f[J" (x)) = P (q; (~) < q; (x)) = P (~ < x) = F (x), 

or q: (x) = G*F(x) on I. 

We therefore define the following order relations on §" and 9' respectively: 

Definition 4.1 

If F,'F* e g;, then F < F* (or equivalently F* > F) if and only if G* F is 
convex on I. c c 

Definition 4.2 

If F, F* e 9', then F < F* (or equivalently F* > F) if and only if G* F is 
s s 

convex for x > x0, x e I, where x0 denotes the point of symmetry of F. 

We shall say in this case that F c-precedes or s-precedes F*, or that F* 
c-follows or s-follows F, and that the two are c-comparable or s-comparable. 
We shall also speak of c-ordering, s-ordering, c-comparison, s-comparison, etc., 
where the letters c and s stand for convex and symmetrical. According to the 
above the meaning of these definitions is clear: F < F* if and only if a random 

c 

variable with distribution F may be transformed into one with distribution F* 
by an increasing and convex transformation; for symmetrical distributions, 
F < F* if and only if this can be done by an increasing, antisymmetrical, 

s 
concave-convex transformation. From the theorems of the preceding section 
the implications are also obvious: we have every right to say that F < F* 

c 

implies that F* has greater skewness to the right than F, whereas for symmetrical 
distributions F < F* implies that F* has greater kurtosis than F. 

s 
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Since it is easily seen that both order relations are reflexive (F -< F) and 
transitive (F-< F*, F* -< F** implies F-< F**) they are weak orderings. If 
one defines an equivalence relation - by 

Definition 4.3 
If F, F*e !F, then F- F* if and only ifF (x) = F* (ax + h) for some con­

stants a > 0 and h, 

it is also easy to show that F - F* if and only if F < F* and F* < F; for F, 
c c 

F* e fJ' one finds that F - F* if and only ifF< F* and F• < F. Hence by passing 
s s 

to the collections !F and fJ' of equivalence classes one may define partial 
- -

orderings (F-< F*, F* -< F implies F = F*) on !F and fJ' by ordering equiva-
lence classes according to the c- and s-ordering of their representatives. 

In statistical parlance the above asserts that c- and s-ordering are both inde-

pendent of location and scale parameters. The classes !F and 9' are the classes 
of types of laws belonging to 91' and f/. We may consequently restrict our 
attention to c- and s-comparison of standardized distribution functions. 

Here we give only two examples of c- and s-ordering. The gamma distribu­
tions may be shown to be c-following one another with decreasing values of 
the parameter, whereas the symmetric beta distributions s-follow one another 
with increasing values of the parameter. Further examples may be found in [5]. 

5. Characterization theorems 
In this section we give two theorems that provide a number of characteriza­

tions of the order relations < and < in terms of inequalities for expected 
c s 

values and odd moments of order statistics. 

Theorem 5.1 
Let R be a dense subset of (0,1). Then for F, F*e 91' the following statements 

are equivalent: 

(l) F < F*; 
c 

(2) F(tf~i:n) < F* (tS'~*i:n) for all n = 1,2, ... and i = 1,2, ... , n, for which 
tS'~a:n and tl~*i : n exist; 

f.'2k+l (~i ; n) l-'2k+l (~* i;n) 
(3) 2k+l ) < 2k+l • for an k = 1,2, ... 'n = 1,2, ... ' and 

(J (~i:n (J (~ i:n) 

i = 1,2, ... , n, for which p2 k+l (~i:n) and p2 k+1 (~*i:n) exist; 
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i 
(4) If i and n tend to infinitv in such a way that lim- = r, r e R, then 

• n 

i 
(5) If i and n tend to infinity in such a way that lim - = r, r E R, then for at 

n least one value of k = 1,2, .. .. 

limy'- (P2k+1 (~* i: n) _ P2k+l (~i ; n)) > O. 
(}2 k+l (x*. ) a2 k+l (x . ) 

- 1;n -1 :n 

Two remarks should be made about this theorem. The first one is that for 
a given distribution F convexity would seem to be a rather heavy requirement 
to prove the inequalities of theorem 3.1. The equivalence of statements (I) and 
(5) of theorem 5.1 shows, however, that if these inequalities are to hold even 
for a single value of k and for the class of distributions of large sample order 
statistics from a given distribution, then convexity is necessary as well as 
sufficient. The second remark is that the equivalence of statements (2) and ( 4) 
and of (3) and (5) enable us to derive small sample inequalities from their large 
sample counterparts. 

Theorem 5.2 

Let R be a dense subset of(!, 1). Then for F, F*t f/ the following statements 
are equivalent: 

(1) F < F*; 
s 

(2) F(t!~i : n> < F*(t!~*i : n) for all n = 1,2, ... and n +2 -~ < i < n, for which 
.(1! • • 
(!;)~ i:n exists; 

i 
(3) If i and n tend to infinity in such a way that lim - = r, r e R, then 

n 

. i 
(4) If i and n tend to infinity in such a way that lim - = r, ! < r < 1, then 

for all k = 1,2, . . . n 

I. _ 1-(,U2k+t (z*i :n) P2k+l (~i:n)) ......__ O· trn v n - -- ~ 
a2 k+l (x* . . ) a2 k+l (x .. ) ' 

- t ,n - t .n 

(5) Statement (4) is valid for all r e Rand at least one value of k = 1,2, ... 
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We note that small sample inequalities concerning odd moments are lacking; 

the corresponding large sample result is given in statement (4). Fori < n + 1, 
2 

0 < r < ! and R dense in (O,t}, the inequalities of theorem 5.2 are of course 
reversed. 

For large classes of distributions Fe f/' small sample inequalities between 
i-r:J. 

F(S:!"i·n)andquantitiesofthetype ·--- may be obtained by s-compari-
. n + l-2oc 

son with a class of distribution functions for which the inverse functions G are 
incomplete beta functions. For these results we refer to [5], where one may 
also find still another characterization of the order relations < and < in terms 
of a measure of skewness based on the median. c s 

6. Applications 

Although it has been made clear that the relations< and < may be taken 
c s 

to indicate increasing skewness and kurtosis, we still have to demonstrate that 
these relations meet with more success in applications than the classical measures 
based on third and fourth moments. To this end three examples of comparison 
of distributions will be considered where skewness or kurtosis obviously play 
an important role. 

The first example is taken from a paper by J. L. HODGES jr. and E. L. LEH· 
MANN [2]. They discuss the relative asymptotic efficiency ew:N (F) of WILCOXON's 

two sample test Wto the normal scores test N, for the case where the underlying 
distribution is of type F. Numerical evidence leads them to suppose that ew:N 

will increase as the tails of the underlying distribution grow heavier. Application 
of the relation < to a formula for ew:N (F) given in [2] immediately yields 
the desired result: s 

Under certain regularity conditions, F, F*ef/' and F < F* implies ew:N (F) < 
< cw:N (F*). s 

The second example concerns a paper by H. HoTELLING [3] where the behav­
iour of STUDENT's test under non-standard conditions is studied. Let :!"1, 

:!"2, ••• , :!"n be a random sample from a distribution Fe~. for which either 
p, = 8:!" exists, or Fe f/'; in the latter case we define p, by F(p,) = t· Furthermore 
Jet 

~-p ~ 
~n=--y"n, 

s 

n 1 n 
where ~ = - L :!"i and s2 = -- L (:!"i- .f)2• 

n;=t n-1;=t 
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The probability that ln will exceed a constant value t will be denoted by 

P (In > t I F) and we define p t F 
Rn (F) = lim Cn > t I \ 

1-+00 P <tn > I I f/>} 

where f/> denotes the normal distribution function. 
Suppose that, assuming the underlying distribution to be normal, one carries 

out STUDENT's right-sided test for the hypothesis p, < p,0, whereas in fact F is 
not normal at ail. Then obviously Rn (F) denotes the limit of the ratio of the 
actual size and the assumed size of the test as both these sizes tend to zero. It 
may therefore serve to provide a rough idea of what to expect when the assump­
tion of normality is violated. 

For n = 3 numerical values found by HoTELLING for some symmetrical 
distributions seem to indicate - paradoxicaiiy enough at first sight- that Rn (F) 
decreases as the tails of F become heavier. Making use of an expression 
for Rn (F) given in (3] one easily shows this idea to be correct for s-ordered 
symmetric distributions, whereas a similar result may be proved for c-ordered 
distributions. In fact we have: 

lf F, F*e '·and if either~~. tt~• exist and F < F*, or F, F*e f/ and F < F*, 
then Rn (F) > Rn (F*) for n = 2,3, . . . . c s 

Finally we discuss the relative efficiency of sample median to sample mean 
in estimating the point of symmetry of a symmetric distribution. Let ~1• ;f2, ••• , 

~n denote a random sample from a distribution Fe f/ with finite variance 
rr (~). and suppose one wishes to estimate tf~. Two unbiased estimates that are 
generally used are the sample median 

and the sample mean 

~n+l 
-2-:n 

1 n 
.&n =- L ~t• 

n 1=1 

where we have supposed n to be odd. The choice between them should depend 
on the ratio of their (small sample) efficiencies 

elf(~n;l:n) al(~) 
r (F) = = -~-----;:-

n eff(gn) nal(~n;l :n) 
The following result is easily obtained: 

For distributions F, F*e f/ having finite variances, F < F* implies rn (F)< 
<: r n (F*) for n = 1, 3, 5,. . . . s 
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This result supports the statement by G. W. BROWN and J. W. TUKEY [1] 
that ,it is probable that the relative efficiencies of mean and median are greatly 
affected by the length of the tail". 
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