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Preface to the Series

Springer’s Selected Works in Probability and Statistics series offers scientists and 
scholars the opportunity of assembling and commenting upon major classical works in 
probability and statistics, and honors the work of distinguished scholars in probability and 
statistics. Each volume contains the original papers, original commentary by experts 
on the subject’s papers, and relevant biographies and bibliographies. 

Springer is committed to maintaining the volumes in the series with free access 
on SpringerLink, as well as to the distribution of print volumes. The full text of the 
volumes is available on SpringerLink with the exception of a small number of articles 
for which links to their original publisher is included instead. These publishers have 
graciously agreed to make the articles freely available on their websites. The goal is 
maximum dissemination of this material. 

The subjects of the volumes have been selected by an editorial board consisting 
of Anirban DasGupta, Peter Hall, Jim Pitman, Michael Sörensen, and Jon Wellner.
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 Preface         

 With this collections volume, some of the important works of Willem van Zwet are 
moved to the front layers of modern statistics. We have made a selection based on dis-
cussions with Willem, and aiming at a representative sample. The result is a collection 
of papers that the new generations of statisticians should not be denied. They are here 
to stay, to enjoy and to form the basis for further research. 

We have grouped the papers into six themes. The first three papers give an impres-
sion of the broad scope of statistics. One of its core business is as in all mathematics:
classification, characterization, and unification. The third paper here discusses M- and 
Z-estimators, which have their modern face nowadays in non- and semi-parametric 
models.

The next theme concerns asymptotic theory. We cite Lucien Le Cam ([1]) “If you 
need to use asymptotic arguments, don’t forget to let your number of observations tend 
to infinity”. Asymptotic statistics is indeed a subtle area involving much more than 
only pointwise limit theorems. The papers in this volume cover nonparametric tests 
as well as semi-parametric estimation, putting down the fundamentals for asymptotic 
efficiency in such models.

A very important, but sometimes notoriously technical topic, is second order 
approximations. With his co-authors, Willem deals with this topic in an impressingly 
elegant way. The beauty of concepts in this area is evolving further, for example by 
the formalization of the distance of distributions to the normal distribution. Within this 
theme, this volume contains the original contribution of Sergey Bobkov, Gennadiy 
Chistyakov and Friedrich Götze exposing the limits of near-normality.

Willem was very much intrigued by the bootstrap. It is often used without worrying 
about its validity, whereas Willem’s intuition said its all round applicability is very 
questionable. This turned out to be a mind twisting and exciting issue: see the papers 
in this theme.

There is the modeling, the analysis of the model, and the statistical estimation. In 
the applications theme, we see all three aspects together. It shows that even though 
there are many sophisticated probabilistic models around, one still may have to start 
from scratch when looking at a particular real life problem. This is difficult hard work, 
but the final result is complete and beautiful.

Although statistics is not often associated with mathematical conjectures, it actually 
generates many. These are often questions in theoretical probability. The challenge to 
prove or disprove conjectures deserves its prominent place in statistics, and gives rise 
to fascinating storytelling.



xx Preface

This volume serves as basic reference for fundamental statistical theory, and at the 
same time reveals some of its history. We hope the unique mix will show the adventur-
ous aspects of our profession, and that it will be an inspiration to all! 

 Zürich,   Sara van de Geer
June 2011 Marten Wegkamp
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       Biography of Willem van Zwet       

     Marten   Wegkamp                            

 Willem R. van Zwet was born in Leiden, the Netherlands, in 1934. He obtained a 
Masters degree in Mathematics at the University of Leiden in 1959. After his military 
service, Willem decided to continue his studies in statistics. The Mathematics Centre 
in Amsterdam was at that time the only place in the Netherlands with a proper statistics 
program. This centre had been founded after the war, in 1946. The first head of the 
Statistics Department was the mathematician David van Dantzig. His successor, Jan 
Hemelrijk, appointed Willem as sous-chef of the department in 1961. During daytime, 
Willem taught classes and did consulting work at the Centre. During the late hours, he 
worked on his thesis. With Jan Hemelrijk as advisor, Willem graduated in 1964 with a 
Ph.D. in Mathematics at the University of Amsterdam. 

 In 1965, he was appointed Associate Professor of Statistics at the University of 
Leiden. He spent the first semester as Associate Professor at the University of Oregon. 
Willem was promoted to Full Professor in 1968 and he remained in Leiden until his 
retirement in 1999. During 1990–1996, he visited the University of North Carolina at 
Chapel Hill on a regular basis as the William Newman Professor. He was a frequent 
visitor, and Miller Professor in 1997, of the University of California at Berkeley. 

 Willem is known for his pertinent contributions in various areas of mathematical 
statistics. This book is an homage to his scientific work. But Willem is also known 
as a talented and tireless organizer. The interview in Beran and Fisher (2009) paints 
an excellent picture of his academic life, and filled with many humorous anecdotes, 
makes for a recommended read. Statistics was still in its infancy in the early seventies 
in Europe and his service for the statistics community in his native Netherlands and 
worldwide are truly remarkable. 

 For instance, Willem served as member and chair of the European Regional 
Committee of the Institute of Mathematical Statistics (1969–1980) that organized 
the European Meetings of Statisticians. In 1972, he organized the first Lunteren 
Stochastics conference and he remained, until 1999, an organizer of this successful 
meeting, that continues to be held each Fall in Lunteren, the Netherlands. He was 
president of the Institute of Mathematical Statistics (1991–1992) and the Bernoulli 
Society for Mathematical Statistics and Probability (1987–1989), and vice-president 
(1985–1989) and president (1997–1999) of the International Statistical Institute. 
Willem was Associate Editor (1972–1980) and Editor (1986–1988) of the Annals 

Department of Mathematics and Department of Statistical Science
Cornell University, Ithaca, NY 
e-mail: marten.wegkamp@cornell.edu
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of Statistics and Editor-in-Chief of Bernoulli (2000–2003). He was the director of 
the Thomas Stieltjes Institute of Mathematics in the Netherlands (1992–1999), and 
founding director of the European research institute EURANDOM (1997–2000). 
Other activities included Dean of the School of Mathematics and Natural Sciences 
of the University of Leiden (1982–1984), chair of the scientific council and member 
of the board of the Mathematics Centre at Amsterdam (1983–1996) and the Leiden 
University Fund (1993–2005), member of the Board of Directors of the American 
Statistical Association (1993–1995) and member of the Corporation and the Board of 
NISS (1993–2002). 

 Fortunately, Willem’s many scientific and organizational efforts are well recognized. 
He is a Fellow of the Institute of Mathematical Statistics (1972) and the American 
Statistical Association (1988), Honorary Fellow Royal Statistical Society (1978) and 
Honorary member of the International Statistical Institute (1999) and Netherlands 
Statistical Society (2000). He presented the Hotelling Lectures at the University of 
North Carolina (1988), the Wald Memorial Lectures (1992), and the Bahadur Lectures 
at the University of Chicago (2005). He is a member of the Royal Netherlands 
Academy of Sciences (1979) and the Academia Europaea (1990), and an honorary 
doctor of Charles University at Prague (1997). He received the Van Dantzig Medal of 
the Netherlands Society for Statistics and Operations Research (1970), the Bernoulli 
Medal (Tashkent, 1986), the Peace Medal of Charles University (1988), the Médaille 
de la Ville de Paris (1989), the Adolphe Quételet Medal of the International Statistical 
Institute (1993), the Certificate of Appreciation of the American Statistical Association 
(1995), the AKZO-Nobel Award (1996), and the Alexander von Humboldt Research 
Prize (2006). Perhaps the most prominent recognition happened in 1996, when Queen 
Beatrix of the Netherlands made him a Knight in the Order of the Netherlands Lion.     

  Reference 
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87–115, 2009.
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MATHEMATISCHE SECTIE 

Convex transformations: A new approach to skewness and 
kurtosis •) 

by W. R. von Zwet ••) UDC 519.2 

Samenvatting 

In dit artikel worden een tweetal orde-relaties voor waarschijnlijkheidsverde
lingen voorgeste/d, die - beter dan de klassieke maten gebaseerd op derde en 
vierde momenten - aangeven wanneer een verdeling een grotere scheefheid of 
kurtosis bezit dan een andere verdeling. Voorts wordt een aantal karakterise
ringen en toepassingen van deze orde-relaties behande/d. Bewijzen worden in dit 
artikel niet gegeven; deze zijn te vinden in een meer uitgebreide, aan dit onder
werp gewijde studie [5]. 

1. Introduction 

Every statistician will have at least an intuitive idea of what is meant by the 
concepts of ,skewness" and ,.kurtosis" of a probability distribution and he 
will be aware of the fact that these should play an important role in applications. 
He will also probably feel vaguely dissatisfied with the existing measures for 
these concepts, i.e. the standardized third and fourth central moments, and 
indeed there are at least two perfectly good reasons for this uneasy feeling. 

The first one is that, according to these measures, any pair of probability 
distributions that possess finite fourth moments may be compared as to skewness 
and kurtosis, whereas one feels that pairs of such distributions exist that are 
quite incomparable in these respects. The second reason is that, to the author's 
knowledge, very few interesting applications of any generality exist. It is fairly 
obvious that both disadvantages are closely related: the reason for the apparent 
lack of applications is precisely the fact that comparison of probability distri
butions on the basis of these measures is so often meaningless. 

From the above it will be clear that at the root of the trouble lies the fact that 
these measures impose a simple ordering - i.e. an ordering where every pair of 
elements are comparable - on too large a class of probability distributions. 
Rather than restricting ourselves to considering smaller classes of distributions 
we shall try and find a more satisfactory approach by considering partial 
orderings - i.e. orderings where not every pair of distributions are necessarily 
comparable - to replace the classical measures. 

*) RapportS 328 van de afdeling Mathematische Statistiek van het Mathematisch Centrum 
te Amsterdam; Lezing gehouden op de Statistische Dag 1964. 

**) Sous-chef voor mathematische statistiek van het Mathematisch Centrum te Amsterdam. 
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It will be shown in this paper that two partial order relations exist that seem 
to cover our intuitive ideas about skewness and kurtosis. These order relations 
will not only be seen to imply the ordering according to the classical measures, but 
also to be so much stronger than the classical orderings as to permit meaningful 
applications. No proofs will be given in this paper; they may be found in [5], 
where a more extensive study of the subject is made. Part of the material 
presented here and in (5] was previously discussed in [4]. 

2. Notation 

Let ~ be a non-degenerate real-valued random variable 1) and let I be the 
smallest interval for which P (~el) = 1. We define the distribution function 

Fof~ by 
F(x) = l;P(~ < x) + !P(~ <x) 

and the expectation and central moments of ~ by 

~~ = f x dF(x), 
I 

a 2 (~) = p2 (~) = J (x - 8~)2 dF (x), and 

I . 

J.lk (~) = J (x- ~~)k dF(x), k = 3,4, ... , 

I 

where the right-hand sides denote STIELTJES integrals. We shall say that these 
expectations exist only if they are finite. The distribution given by F is said to 
be symmetrical about x 0 e I if 

F(x0 - x) + F(x0 + x) = I for all real x. 

Let ~l:n < ~2 :n < ... < ~n:n denote an ordered sample of size n from the 
distribution F; ~i:n is called the i- th order statistic of a sample of size n 
from F. In the greater part of this paper we shall confine our attention to the 
class !F of distribution functions F satisfying 

(a) F is twice continuously differentiable on I; 
(b) F' (x) > 0 on I; 
(c) There exist integers i and n, 1 < i < n, such that ~~i:n exists. 

For Fe .17 the inverse function G is uniquely defined on (0,1) by 2) 

GF(x) = x for x e I. 

1) We denote random variables by underlining their symbols. 
2) We shall usually not use brackets to denote composite functions and write GF and GF(x) 

rather than G(F(.)) and G(F(x)). 
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We shall also be concerned with the subclass !I ( ~ of symmetric distribu
tions in~. 

When we consider simultaneously two random variables, ~ and ~·, with 
distribution functions F and F*, we shall adopt similar conventions and nota
tions with regard to~· and F* , and write : 1*, ~·i : n and G*. 

A real-valued function cp defined on I is said to be convex on I if for all 
x 1, x2 e I and 0 < .A <. I 

rp (.Axt + (1 - .A) X2) <. .Acp (xl) + (1 - .A) rp (x2), 

i.e. the graph of cp lies below any chord. We note that this definition implies 
continuity of rp on I, except perhaps at its endpoints, if these exist. A real-valued 
function cp on I is said to be anti-~ymmetrical and concave-convex on I about 
x0 e I, if for all x 0 - x e I, x6 + x e I, 

cp (x0 - x) + cp (x0 + x) = 2cp (x0), 

and if rp is concave for x < x 0 and convex for x > x 0 , x e I; x 0 will be called 
a central point of cp. 

3. Convex and concave-convex transformations 

Suppose that cp is non-decreasing and convex on I and consider the random 
variables ~ and rp (~). Apart from an overall linear change of scale such a 
transformation of the random variable ~ to the random variable cp (~) effects 
a contraction of the lower part of the scale of measurement and an extension 
of the upper part. As, moreover, this deformation increases towards both ends 
of the scale, the transformation from ~ to rp {~) produces what one intuitively · 
feels to be an increased skewness to the right. The following theorem holds : · 

Theorem 3.1 

If cp is a non-decreasing convex function on /, which is not constant on I, and 
if p,2k+I (~) and p,2 k+I (rp (~))exist, then 

1'2k+l (~) .,;::: 1'2k+I,_(rp_(~_)) l' k 2 
~ , lOr = I, ' .... 

a2k+l (~) a2k+l (cp (~)) 

It is intuitively equally appealing that a non-decreasing, antisymmetric and 
concave-convex transformation of a symmetrically distributed random variable 
should lead to an increased kurtosis of the distribution. We have: 

Theorem 3.2 

Let cp be a non-decreasing, antisymmetrical, concave-convex function on /, 
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which is not constant on /, and let the distribution given by F be symmetrical 
about x0, where x0 denotes a central point of q;. Then, if tlq;2 k (~)exists, 

l'u (~) .;;;:: Pu (q; (~)) 
2 " ( ) ...._, 2 k ( ( - ,for k = 2,3, .... 

a ~ a q; ~)) 

4. Two weakoo0rder relations 

In the remaining part of this paper we shall confine our attention to distribu
tion functions Fe g;; part of the results, however, remain valid without this 
restriction. 

Returning to the theorems of section 3 we remark that they obviously con
tinue to hold if one replaces q; (~) by any other random variable with the same 
distribution, i.e. they hold for any ~· with distribution function F* ~ati~fying 

F*q; (x) = P (~* < f[J" (x)) = P (q; (~) < q; (x)) = P (~ < x) = F (x), 

or q: (x) = G*F(x) on I. 

We therefore define the following order relations on §" and 9' respectively: 

Definition 4.1 

If F,'F* e g;, then F < F* (or equivalently F* > F) if and only if G* F is 
convex on I. c c 

Definition 4.2 

If F, F* e 9', then F < F* (or equivalently F* > F) if and only if G* F is 
s s 

convex for x > x0, x e I, where x0 denotes the point of symmetry of F. 

We shall say in this case that F c-precedes or s-precedes F*, or that F* 
c-follows or s-follows F, and that the two are c-comparable or s-comparable. 
We shall also speak of c-ordering, s-ordering, c-comparison, s-comparison, etc., 
where the letters c and s stand for convex and symmetrical. According to the 
above the meaning of these definitions is clear: F < F* if and only if a random 

c 

variable with distribution F may be transformed into one with distribution F* 
by an increasing and convex transformation; for symmetrical distributions, 
F < F* if and only if this can be done by an increasing, antisymmetrical, 

s 
concave-convex transformation. From the theorems of the preceding section 
the implications are also obvious: we have every right to say that F < F* 

c 

implies that F* has greater skewness to the right than F, whereas for symmetrical 
distributions F < F* implies that F* has greater kurtosis than F. 

s 
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Since it is easily seen that both order relations are reflexive (F -< F) and 
transitive (F-< F*, F* -< F** implies F-< F**) they are weak orderings. If 
one defines an equivalence relation - by 

Definition 4.3 
If F, F*e !F, then F- F* if and only ifF (x) = F* (ax + h) for some con

stants a > 0 and h, 

it is also easy to show that F - F* if and only if F < F* and F* < F; for F, 
c c 

F* e fJ' one finds that F - F* if and only ifF< F* and F• < F. Hence by passing 
s s 

to the collections !F and fJ' of equivalence classes one may define partial 
- -

orderings (F-< F*, F* -< F implies F = F*) on !F and fJ' by ordering equiva-
lence classes according to the c- and s-ordering of their representatives. 

In statistical parlance the above asserts that c- and s-ordering are both inde-

pendent of location and scale parameters. The classes !F and 9' are the classes 
of types of laws belonging to 91' and f/. We may consequently restrict our 
attention to c- and s-comparison of standardized distribution functions. 

Here we give only two examples of c- and s-ordering. The gamma distribu
tions may be shown to be c-following one another with decreasing values of 
the parameter, whereas the symmetric beta distributions s-follow one another 
with increasing values of the parameter. Further examples may be found in [5]. 

5. Characterization theorems 
In this section we give two theorems that provide a number of characteriza

tions of the order relations < and < in terms of inequalities for expected 
c s 

values and odd moments of order statistics. 

Theorem 5.1 
Let R be a dense subset of (0,1). Then for F, F*e 91' the following statements 

are equivalent: 

(l) F < F*; 
c 

(2) F(tf~i:n) < F* (tS'~*i:n) for all n = 1,2, ... and i = 1,2, ... , n, for which 
tS'~a:n and tl~*i : n exist; 

f.'2k+l (~i ; n) l-'2k+l (~* i;n) 
(3) 2k+l ) < 2k+l • for an k = 1,2, ... 'n = 1,2, ... ' and 

(J (~i:n (J (~ i:n) 

i = 1,2, ... , n, for which p2 k+l (~i:n) and p2 k+1 (~*i:n) exist; 
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i 
(4) If i and n tend to infinitv in such a way that lim- = r, r e R, then 

• n 

i 
(5) If i and n tend to infinity in such a way that lim - = r, r E R, then for at 

n least one value of k = 1,2, .. .. 

limy'- (P2k+1 (~* i: n) _ P2k+l (~i ; n)) > O. 
(}2 k+l (x*. ) a2 k+l (x . ) 

- 1;n -1 :n 

Two remarks should be made about this theorem. The first one is that for 
a given distribution F convexity would seem to be a rather heavy requirement 
to prove the inequalities of theorem 3.1. The equivalence of statements (I) and 
(5) of theorem 5.1 shows, however, that if these inequalities are to hold even 
for a single value of k and for the class of distributions of large sample order 
statistics from a given distribution, then convexity is necessary as well as 
sufficient. The second remark is that the equivalence of statements (2) and ( 4) 
and of (3) and (5) enable us to derive small sample inequalities from their large 
sample counterparts. 

Theorem 5.2 

Let R be a dense subset of(!, 1). Then for F, F*t f/ the following statements 
are equivalent: 

(1) F < F*; 
s 

(2) F(t!~i : n> < F*(t!~*i : n) for all n = 1,2, ... and n +2 -~ < i < n, for which 
.(1! • • 
(!;)~ i:n exists; 

i 
(3) If i and n tend to infinity in such a way that lim - = r, r e R, then 

n 

. i 
(4) If i and n tend to infinity in such a way that lim - = r, ! < r < 1, then 

for all k = 1,2, . . . n 

I. _ 1-(,U2k+t (z*i :n) P2k+l (~i:n)) ......__ O· trn v n - -- ~ 
a2 k+l (x* . . ) a2 k+l (x .. ) ' 

- t ,n - t .n 

(5) Statement (4) is valid for all r e Rand at least one value of k = 1,2, ... 
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We note that small sample inequalities concerning odd moments are lacking; 

the corresponding large sample result is given in statement (4). Fori < n + 1, 
2 

0 < r < ! and R dense in (O,t}, the inequalities of theorem 5.2 are of course 
reversed. 

For large classes of distributions Fe f/' small sample inequalities between 
i-r:J. 

F(S:!"i·n)andquantitiesofthetype ·--- may be obtained by s-compari-
. n + l-2oc 

son with a class of distribution functions for which the inverse functions G are 
incomplete beta functions. For these results we refer to [5], where one may 
also find still another characterization of the order relations < and < in terms 
of a measure of skewness based on the median. c s 

6. Applications 

Although it has been made clear that the relations< and < may be taken 
c s 

to indicate increasing skewness and kurtosis, we still have to demonstrate that 
these relations meet with more success in applications than the classical measures 
based on third and fourth moments. To this end three examples of comparison 
of distributions will be considered where skewness or kurtosis obviously play 
an important role. 

The first example is taken from a paper by J. L. HODGES jr. and E. L. LEH· 
MANN [2]. They discuss the relative asymptotic efficiency ew:N (F) of WILCOXON's 

two sample test Wto the normal scores test N, for the case where the underlying 
distribution is of type F. Numerical evidence leads them to suppose that ew:N 

will increase as the tails of the underlying distribution grow heavier. Application 
of the relation < to a formula for ew:N (F) given in [2] immediately yields 
the desired result: s 

Under certain regularity conditions, F, F*ef/' and F < F* implies ew:N (F) < 
< cw:N (F*). s 

The second example concerns a paper by H. HoTELLING [3] where the behav
iour of STUDENT's test under non-standard conditions is studied. Let :!"1, 

:!"2, ••• , :!"n be a random sample from a distribution Fe~. for which either 
p, = 8:!" exists, or Fe f/'; in the latter case we define p, by F(p,) = t· Furthermore 
Jet 

~-p ~ 
~n=--y"n, 

s 

n 1 n 
where ~ = - L :!"i and s2 = -- L (:!"i- .f)2• 

n;=t n-1;=t 
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The probability that ln will exceed a constant value t will be denoted by 

P (In > t I F) and we define p t F 
Rn (F) = lim Cn > t I \ 

1-+00 P <tn > I I f/>} 

where f/> denotes the normal distribution function. 
Suppose that, assuming the underlying distribution to be normal, one carries 

out STUDENT's right-sided test for the hypothesis p, < p,0, whereas in fact F is 
not normal at ail. Then obviously Rn (F) denotes the limit of the ratio of the 
actual size and the assumed size of the test as both these sizes tend to zero. It 
may therefore serve to provide a rough idea of what to expect when the assump
tion of normality is violated. 

For n = 3 numerical values found by HoTELLING for some symmetrical 
distributions seem to indicate - paradoxicaiiy enough at first sight- that Rn (F) 
decreases as the tails of F become heavier. Making use of an expression 
for Rn (F) given in (3] one easily shows this idea to be correct for s-ordered 
symmetric distributions, whereas a similar result may be proved for c-ordered 
distributions. In fact we have: 

lf F, F*e '·and if either~~. tt~• exist and F < F*, or F, F*e f/ and F < F*, 
then Rn (F) > Rn (F*) for n = 2,3, . . . . c s 

Finally we discuss the relative efficiency of sample median to sample mean 
in estimating the point of symmetry of a symmetric distribution. Let ~1• ;f2, ••• , 

~n denote a random sample from a distribution Fe f/ with finite variance 
rr (~). and suppose one wishes to estimate tf~. Two unbiased estimates that are 
generally used are the sample median 

and the sample mean 

~n+l 
-2-:n 

1 n 
.&n =- L ~t• 

n 1=1 

where we have supposed n to be odd. The choice between them should depend 
on the ratio of their (small sample) efficiencies 

elf(~n;l:n) al(~) 
r (F) = = -~-----;:-

n eff(gn) nal(~n;l :n) 
The following result is easily obtained: 

For distributions F, F*e f/ having finite variances, F < F* implies rn (F)< 
<: r n (F*) for n = 1, 3, 5,. . . . s 
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This result supports the statement by G. W. BROWN and J. W. TUKEY [1] 
that ,it is probable that the relative efficiencies of mean and median are greatly 
affected by the length of the tail". 
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SOME REMARKS ON THE TWO-ARMED BANDIT1 

BY J. FABIUS AND W. R. VAN ZWET 

University of Leiden and M athematisch Centrum 

1. Introduction and summary. In this paper we consider the following situation: 
An experimenter has to perform a total of N trials on two Bernoulli-type experi
ments E 1 and E2 with success probabilities oc and p respectively, where both 
oc and P are unknown to him. The trials are to be carried out sequentially and 
independently, except that for each trial the experimenter may choose between E1 

and E2 , using the information obtained in all previous trials. The decisions on 
the part of the experimenter to use E1 or E2 in the successive trials may be 
randomized, i.e. for any trial he may use a chance mechanism in order to choose 
E 1 or E2 with probabilities lJ and 1-/J respectively, where lJ may depend on the 
decisions taken and the results obtained in the previous trials. A strategy A. will 
be a set of such /J's, completely describing the experimenters behavior in every 
conceivable situation. 

We assume the experimenter wants to maximize the number of successes. More 
precisely, we assume that he incurs a loss 

(1.1) L(oc,p,s) = Nmax(oc,p)-s 

if he scores a total of s successes. If he uses a strategy 11, his expected loss is then 
given by the risk function 

(1.2) R(oc,p, A.)= N max(oc, P)-E(S I oc, p,A.), 

where S denotes the random number of successes obtained. Thus the risk of a 
strategy A. equals the expected amount by which the number of successes the 
experimenter will obtain using A. falls short of the number of successes he would 
score if he were clairvoyant and would use the more favorable experiment through
out theN trials. It is easy to see that R(oc, p, 11) also equals loc- PI times the expected 
number of trials in which the less favorable experiment is performed under 11. 

We say that state (m, k; n, I) is reached during the series of trials if in the first 
m+n trials E1 is performed m times, yielding k successes, and E2 is performed n 
times, yielding I successes. Clearly, under a strategy A., the probability that this 
will happen is of the form 

(1.3) 1ta,p,t.,(m, k; n, I)= p4.(m, k; n, l)rxk(1-oc)m-kp 1(1- p.)"- 1 , 

where pt.,(m, k; n, I) depends on the state (m, k; n, I) and the strategy A., but not 
on rx and p. It is easy to show (e.g. by induction on N) that the class of all strategies 
is convex in the sense that there exists, for every pair of strategies 11 1 and 112 and 
for every A.e [0, 1], a strategy A. such that 

(1.4) pt.,(m, k; n, I)= A.p4.,(m, k; n, 1)+(1-A.)p4.2(m, k; n, I) 

Received November I, 1968; revised September 3, 1969. 
1 Report S-399, Mathematisch Centrum, Amsterdam. 
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for every state (m, k; n, 1). Moreover, this strategy ll can always be taken to be 
such, that according to it the experimenter should base all his decisions exclusively 
on the numbers of successes and failures observed with E 1 and E2 , irrespective of 
the order in which these data became available. Denoting the class of all such 
strategies by fl) and remarking that R(IX, p, ll) can be expressed in terms of the 
nrr..P ,A(m, k; n, I), we may conclude that fl) is an essentially complete class of 
strategies. We denote the probabilities ~ constituting any strategy in fl) by 
~(m, k; n, I): the probability with which the experimenter, having completed the 
first m+n trials and thereby having reached state (m, k; n, I), chooses E1 for the 
next trial. 

We note that if PA(m, k; n, I)= 0 for a state (m, k; n, 1), then ~(m, k; n, I) does 
not play any role in the description of ll and may be assigned an arbitrary value 
without affecting the strategy. We shall say that any strategy ll' such that 
PA·(m, k; n, I)= pim, k; n, I) for all states (m, k; n, I) constitutes a version of ll. 

Since we are considering a symmetric problem in the sense that it remains 
invariant when IX and Pare interchanged, it seems reasonable to consider strategies 
with a similar symmetry. Thus we are led to define the class fi' of all symmetric 
strategies: ll E fi' iff ll E fl) and ~(m, k; n, I) = 1-~(n, I; m, k) for all states 
(m, k; n, I) with p A.Cm, k; n, I) #: 0. Clearly, for ll E fi', 

(1.5) ~(m, k; m, k) = t if PA(m, k; m, k) 6; 0, and 

(1.6) pim, k; n, I)= pin, I; m, k) for all states (m, k; n, 1). 

It follows that, for lle2 and all (IX, p), 

(1.7) R(IX, p, ll) = R(p, IX, ll). 

Among the contributions to the two-armed bandit problem the work of W. Vogel 
deserves special mention. Considering the same set-up we do, he discussed a certain 
subclass of the class fi' in [4], and obtained asymptotic bounds for the minimax 
risk for N ~ oo in [5]. Since we shall not be concerned with asymptotics in this 
paper, we state the following result without a formal proof: The lower bound for 
the asymptotic minimax risk for N-+ oo obtained by Vogel in [5] may be raised 
by a factor 2±. This is proved by applying the same method that was used in [5] 
to the optimal symmetric strategy for IX+ P = 1 that was discussed in [4]. Combining 
this lower bound with the upper bound given in [5] we find that the asymptotic 
minimax risk must be between 0.265 N~ and 0.376 Nt. 

In Section 2 we study the Bayes strategies in fl). By means of a certain recurrence 
relation we arrive at a complete characterization of these strategies, thus generaliz
ing D. Feldman's well-known result in [3] for the case where the experimenter 
knows the values of IX and p except for their order. In addition we obtain 
expressions for the Bayes risk of any prior distribution. Using these results we 
proceed to derive in Section 3 certain monotonicity properties of ~(m, k; n, I) for 
any admissible strategy ll in ff). Though these relations may seem intuitively 
evident, one does well to remember that the two-armed bandit problem has been 
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shown to defy intuition in many aspects ( cf. [2]). In Section 4 we prove the existence 
of an admissible symmetric minimax-risk strategy having the monotonicity 
properties just mentioned. This fact to some degree facilitates the search for 
minimax-risk strategies, but even so, the algebra involved becomes progressively 
more complicated with increasing N and seems to remain prohibitive already for 
N as small as 5. 

2. Bayes strategies. For 11e!?2 we consider the expected number of successes 
E(S I oc, {J, 11) as a function of the b(m, k; n, /). Clearly, the dependence on each 
b(m,k;n, I) is linear. We denote the coefficient of b(m,k;n, I) in E(Sioc,{J,11) 
(and hence also in -R(oc, {J, 11)) by PA(m, k; n, l)c:r,tJ,im, k; n, /).If all b(m, k; n, I) 
are strictly between 0 and 1, then all PA(m, k; n, I) are positive and as a result all 
ca,/J,A(m, k; n, I) are uniquely determined. Otherwise the ca,tJ,im, k; n, I) are 
defined by continuity. 

THEOREM 1. For any strategy 11 in !?2 the functions ca,tJ,im, k; n, I) satisfy the 
following relations 

(2.1) c,.,11,im, k; 11, I) = (oc-{J)ock(1- oc)m-kp1 (1-{J)"-' 

ifm+n = N-1, 

(2.2) ca,/J,A(m, k; n, I)= c5(m+ 1, k+ 1; n, l)ca,fl,im + 1, k+ 1; n, I) 

ifm+n ;;a N-2. 

+b(m+ 1, k; n, l)ca,tJ,im+ 1, k; n, I) 

+ [1-b(m, k; n + 1, I+ 1)]ca,tJ,im, k; n + 1, I+ 1) 

+ [1-b(m, k; n + 1, l)]ca,/J,Il.(m, k; n+ 1, I) 

PRooF. By continuity it is obviously sufficient to consider the case where all 
b(m, k; n, /) as well as oc and fJ are strictly between 0 and 1. This ensures that 
expression (1.3) is positive for all states (m, k; n, /). Hence the conditional 
expectation ea,tJ,im, k; n, I) of the total number of successes Sunder oc, fJ and 11 
given that the state (m, k; n, I) is reached, exists. It is clearly a linear function of 
b(m, k; n, I) and may thus be written in the form 

(2.3) e~~.,p,im, k; n, /) = aa,tJ,im, k; n, /)c5(m, k; n, /) + ba,/J,im, k; n, 1). 

It follows that 

(2.4) c,.,p,im, k; n, I)= aa,tJ,im, k; n, I) ock(l-oc)m-k p1(1- {J)"- 1• 

Dropping the subscripts oc, fJ and 11, we obtain, from the definition of e(m, k; n, /), 

(2.5) e(m, k; n, /) = c5(m, k; n, l)[oce(m + 1, k + 1; n, I)+ (1-oc) e(m + 1. k; n, /)] 

+ [1-c5(m, k; n, l)][{Je(m, k; n + 1, I+ 1) 

+(I- fJ) e(m, k; n + 1, 1)], 
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and consequently 

a(m, k; n, I)= O!e{m+ 1, k+ 1; n,/)+{1-0!)e{m + 1, k; n, I) 
(2.6) 

-Pe(m, k; n+ 1, I+ 1)-(1-p)e(m, k; n+ 1, I), 

(2.7) b(m, k; n, I)= pe(m, k;n + 1, I+ 1)+(1-P)e(m, k; n + 1, 1). 

If m + n = N -1, then (2.6) becomes a(m, k; n, I) = 0!- p, and hence (2.1) follows 
from (2.4). On the other hand, rewriting (2.6) by means of (2.3) leads to 

a(m, k; n, I)= O!D(m+ 1, k+ 1; n, l)a(m+ 1, k+ 1; n, I) 

+(1-0!)<5(m + 1, k; n, l)a(m + 1, k; n, I) 

+P[1-D(m, k; n+ 1, I+ 1)]a(m, k; n+ 1, I+ 1) 

+(1- p)[1-<5(m, k; n+ 1, l)]a(m, k; n + 1, /) 

+ [O!b(m+ 1, k+ 1; n, 1)+(1-0!)b(m + 1, k; n, I) 

-Pb(m,k;n+1,1+1) 

-(1-p)b(m,k; n+ 1, 1)- pa(m, k; n+ 1, I+ 1) 

-(1- fJ)a(m, k; n + 1, /)], 

where for m + n = N- 2 the last expression between square brackets vanishes as 
one easily verifies using (2.6) and (2.7). This result, combined with (2.4), gives (2.2). 

Let Jl be a prior distribution on the closed unit square. For a strategy ll.e~, 

(2.8) p(Jl, ll.) = J R(O!, p, ll.) dJl(O!, p) 

denotes the average risk of ll. against Jl· If we define 

(2.9) Y11 ,t.(m, k; n, I)= J ca,p,t.(m, k; n, I) dJl(O!, fJ), then 

-p11(m, k; n, I)Yp.,im, k; n, I) is the coefficient of <5(m, k; n, I) in p(Jl, ll.). It follows 
that any strategy ll. that has <5(m, k; n, I)= 1 whenever 'Yp.,t.(m, k; n, I)> 0 and 
<5(m, k; n, I) = 0 whenever y p.,11(m, k; n, I) < 0, minimizes p(Jl, ll.) for fixed Jl and 
is therefore a Bayes strategy against Jl· This may be seen by successively finding the 
optimal <5(m, k; n, I) for m+n = N-1, N-2, · · ·, 0, and noting that for m+n = v 
these optimal values do not depend on the values of <5(m, k; n, I) for m+n < v. 
Conversely, every Bayes strategy against Jl has a version with <5(m, k; n, I)= I 
(or 0) whenever "/p.,im, k; n, I)> 0 (or < 0). 

THEOREM 2. Let Jl be a prior distribution on the closed unit square and let 
Yim, k; n, I) be defined by 

(2.10) Yim,k;n,l) = J(O!-p)ri'{l-O!)m-kpr(l-P)"-1 dJl(O!,fJ) 

ifm+n=N-1, 

Yim, k; n, I)= y11 +(m+ 1, k+ 1; n, l)+y11 +(m+ 1, k; n, I) 
(2.11) 

-y11 -(m, k; n+ 1, I+ 1)-y11 -(m,k; n+ 1, I) 
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for m+n ~ N-2, where x+ and x- denote max(O, x) andmax(O, -x) respectively. 
Then !!.. e !» is a Bayes strategy against J.l if and only if it has a version with 
b(m, k; n, I)= 1 whenever yp(m, k; n, I)> 0 and b(m, k; n, I)= 0 whenever 
yp(m, k; n, I)< 0. 

PRooF. According to the remarks preceding the theorem, !!.. is Bayes against J.l 
iff it has a version for which b(m, k; n, I)= 1 (or 0) ify",A(m, k; n, I)> 0 (or< 0). 
Integrating (2.1) and (2.2) with respect to J.l and substituting the values of the 
b(m, k; n, I) we find that for this version of!!.., "/p,A(m, k; n, I) equals yp(m, k; n, I) 
as defined by (2.10) and (2.11) for all states. 

We note that D. Feldman's characterization of the Bayes strategies in!» against 
a prior distribution J.l, which puts mass ~ and 1- ~ at points ((1;0 , Po) and (p0 , (1;0) 

respectively ( cf. [3]), may be formulated as follows: !!.. in !» is Bayes against J.l iff it 
has a version for which b(m, k; n, I)= 1 whenever Yfp(m, k; n, I)> 0 and 
b(m, k; n, I)= 0 whenever Yfp{m, k; n, I) <0 where 

Yfp{m, k; n, I)= ~(J;ok(1-(J;o)m-kpo 1(1- Po)n-l -(1- ~)(Xo 1(1-(Xo)n-l Pok(l- Po)m-k 

for all states (m, k; n, /). It follows that sgnYfp(m, k; n, I)= sgnyp(m, k; n, I) for 
all states (m, k; n, /) and all J.l of the type considered by Feldman. This fact may 
also be verified by a direct, though somewhat tedious argument. 

To conclude this section we consider the Bayes risk p(J.l) of an arbitrary prior 
distribution J.l· This is defined as the average risk p(J.l, !!..) of any Bayes strategy !!.. 
against J.l, or equivalently, p(J.l) = inf11 e ~ p(J.l, !!..). 

THEOREM 3. For any prior distribution J.l, 

fi(X-PI N-lN-m-1 m n (m;n)(~)G) . 
P(J.l)=N -2-djl((J;,p)-m~O n~O k~Ol~O 2m+n+1 lyp(m,k,n,l)l 

= N J((X-p)+ dJ.l((l;,p)- "f.~,;{'f.~ =o(~)y" +(0,0; n, /) 

= N J((X-p)- dJ.t((l;,p)- "f.~:~"f.za=o(~)y" -(m,k;O,O). 

PROOF. Let !!.. e !» be Bayes against IL· Without loss of generality we may restrict 
attention to a version of !!.. which has the property described in Theorem 2. For 
any such version and any state (m, k; n, I) with m+n ~ N -1 we have 

"/p,A(m,k;n,l) = yp(m,k;n,l), 

(b(m, k; n, 1)-!)yp(m, k; n, I)= t!yp(m, k; n, 1)1, 

b(m, k; n, l)yp(m, k; n, I)= y" +(m, k; n, /), 

-(1-b(m, k; n, l))yp(m, k; n, I)= y" -(m, k; n, /). 

Consequently for any state (m, k; n, I) with m+n ~ N-1 we obtain the following 
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equalities, using (2.5) and the fact that Yp.,A(m, k; n, I) and hence y""(m, k; n, I) 
equals the coefficient of o(m, k; n; I) in the first member: 

J rl(l -rx)m-kp1(I- p)n-l ea,p,im, k; n, I) dp.(rx, {J) 

= tiY""(m, k; n, /)I 

+t J rxk+ 1(1-rx)m-kp1(I-p)n-l ea,p,im+ I, k+ I; n, l)dp.(rx,p) 

+t J rxk(I -rx)m-k+ 1{31(1-Pt- 1 ea,p,im +I, k; n, l)dp.(rx, {J) 

+t J rxk(I-rx)m-kpl + 1(1-{J)n-l ea,p,im, k; n +I, I+ I) dp.(rx, P) 

+t J rxk(I -rx)m-kp1 (I-Pt- 1 + 1 ea,p,im, k; n +I, l)dp..(rx,{J) 

(2.12) = y/(m, k; n, I) 

+ J rxk(I-rx)m-kpl + 1(1-Pt- 1 ea,p,A(m, k; n +I, I+ I) dp.(rx, {J) 

+ J rxk(l-rx)m-kp1(1- p)n-1 + 1 ea,p,im, k; n +I, l)dp.(rx,{J) 

= y"" -(m, k; n, I) 

+ J rxk+ 1(I-rx)'"-k{J1(I-{J)n-l ea,p,A(m+ I, k+ I; n, l)dp.(rx,{J) 

+ J ~(I -rx)m-k+ 1{31(1- /lt- 1 ea,p,im +I, k; n, I) dp.(rx, p). 

Observing that by definition E(S I rx, p, A)= ea,p,iO, 0; 0, 0) and ea,p,A(m, k; n, I)= 
k +I for any state (m, k; n, I) with m + n = N, we arrive at the three desired ex
pressions by repeated application of the corresponding versions of (2.I2). 

3. Admissible strategies. For the type of problem considered in this paper every 
admissible strategy is also a Bayes strategy. In the sequel we shall, however, need 
a slightly stronger result. We shall say that a prior distribution is nonmarginal if, 
for some e > 0, it assigns probability I to the set 

(3.I) Qe = {(rx,fJ)IIrx-Pirx(I-rx){J(1-{J) ~ e,O < rx < 1, 0 < P < 1}. 

THEOREM 4. Every admissible strategy A E ~ is Bayes against a nonmarginal prior 
distribution. 

PROOF. Let A be any strategy which is not Bayes against any nonmarginal prior. 
It is sufficient to show that A is not admissible. 

For any sufficiently small e1 > 0, consider the restricted problem where the 
parameter space is reduced to the set A1 = Qe, as defined by (3.1). Since A1 is 
compact, the assertion that every admissible strategy is Bayes remains true for the 
restricted problem. By our assumption A is not Bayes, and therefore not admissible 
in the new problem. It follows that there exists a strategy A1 that is Bayes against a 
prior distribution p.1 on A 1 and for which R(rx, p, A1) ;;a R(rx, p, A) for all (rx, {J)eA1• 

By a standard procedure we may select a sequence e1 \;. 0 and corresponding p.1 and 
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!ii such that the strategies !ii converge to a strategy !10 in the sense that bi(m, k; n, I) 
converges to b0(m, k; n, I) for every state (m, k; n, 1). Obviously 

R(a, /3, !10) ~ R(a, /3, !1) for all a, f3 e [0, 1] 

since the inequality must hold on every Ai and both functions are continuous. 
Since !ii converges to !10 there exists a positive integer j for which !11 has the 

following properties: 

(a) For all states with 1J0(m, k; n, I)= 0, bim, k; n, I)::/:: 1; 
(b) For all states with 1J0(m, k; n, I)= 1, 1J1(m, k; n, I)::/:: 0; 
(c) For all states with 0 < 1J0(m, k; n, I)< 1, 0 < bim, k; n, I)< 1. 

This implies that 1J0(m, k; n, I) = 1J im, k; n, I) for every state with 1J im, k; n, I)= 0 
or 1. Recalling that !11 is Bayes against Jli and noting that this property can 
not be destroyed by changing only those bim, k; n, I) that are strictly between 0 
and 1, we find that !10 is Bayes against the prior distribution Jl 1 on A 1. As !1 is not 
Bayes against 111 by our assumption, the inequality R(r:t., /3, !10) ~ R(a, f3, !1) on the 
closed unit square must be strict for at least one point (r:t., f3) and the inadmis
sibility of !1 follows. 

We are now in a position to prove a theorem that provides some insight in the 
structure of admissible strategies. 

THEOREM 5. If 11 is a nonmarginal prior distribution and m + n ~ N- 2, then 

(3.2) yp(m,k; n+ 1, I+ 1) < y,.(m+ 1, k+ 1; n, I) 

(3.3) y,.(m + 1, k; n, I)< /'p(m, k; n + 1, I) 

PROOF. For m+n = N-2, (2.10) yields 

yp(m+ 1,k+1; n, 1)-yp(m,k; n+ 1, I +1) 

= J<a- f3) 2ti'(1-a)m-kpl (1- /3)"- 1 dJl (a, /3), 

which is strictly positive since Jl is nonmarginal. In the same way one shows that 
(3.3) is satisfied for m+n = N-2. 

Next we suppose that the theorem is valid for m+n = v, where 0 < v ~ N-2, 
and we assume m+n = v-1. By (2.11) we have then 

yp(m+ 1, k+ 1; n, 1)-yp(m, k; n+ 1, I+ 1) 

= [yll +(m+2, k+2; n, 1)-yll +(m+ 1, k+ 1; n+ 1, I+ 1)] 

+ [yll +(m+2, k+ 1; n, 1)-yll +(m+1, k; n+ 1, I+ 1)] 

+[yll -(m, k; n+2, I +2)-yll -(m+ 1, k+ 1; n+ 1, I+ 1)] 

+ [Y.u -(m, k; n+2, I+ 1)-y~' -(m+ 1, k+ l, n+ 1, I)]~ 0 

since by hypothesis each of these four expressions is nonnegative. Equality can 
occur only if all four expressions vanish. However, the first and the third one can 
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vanish only if yim+ 1, k+ 1; n+ 1, I+ 1) < 0 and ~ 0 respectively, and hence 
inequality e3.2) is strict. 

Similarly e3.3) follows from 

y,Jm, k; n + 1, 1)-yp(m + 1, k; n, I) 

= [y"' +em+ 1, k+ 1; n+ 1, 1)-y"' +em +2, k+ 1; n, I)] 

+[y"' +em+ 1, k; n+ 1, 1)-y"' +em +2, k;n, I)] 

+[y"' -em+ 1, k; n+ 1, I+ 1)-y"' -em, k; n+2, I+ 1)] 

+[y/J -em+ 1, k; n+ 1, 1)-y/J -em, k; n+2, /)] ~ 0 

and the fact that the first expression in square brackets can vanish only if 

y"'em+2, k+ 1; n, I)< 0 and the third one only if yim+ 1, k; n+ 1, I+ 1) ~ 0, 

which would imply yim+2, k+ 1; n, I)> 0. 

CoROLLARY 1. Every admissible strategy !l. e ~ has a version for which 

(3.4) 

e3.5) 

c5em, k; n + 1, I+ 1) ~ c5em + 1, k+ 1; n, I) 

c5em + 1, k; n, I)~ c5em, k; n + 1, /) 

for all m + n ~ N- 2, where in each of these inequalities at least one member equals 

0 or 1. 

PRooF. By Theorem 4, !l. is Bayes against a nonmarginal prior J.l, and as a result 

the theorem is proved by applying Theorem 5 and Theorem 2. 

CoROLLARY 2. Every admissible strategy !l. e ~ has a version for which 

e3.6) c>em, k; n, 1)[1-<>em + 1, k+ 1; n, /)][1-bem + 1, k; n, /)] = 0 

e3.7) [1-bem, k; n, I)] c5em, k; n+ 1, I+ 1)c5(m, k; n + 1, /) = 0 

for all m+n ~ N-2. 

PRooF. As before, we let J.l denote the nonmarginal prior of Theorem 4 and 

consider the version of !l. having c5em, k; n, I)= 1 (or 0) whenever y"'(m, k; n, I)> 0 

(or < 0). If (3.6) were false for this version, then yim, k; n, I);?; 0, y/m+ 1, 

k+ 1; n, I)~ 0 and y/m+ 1, k; n, I)~ 0. The second of these inequalities 

implies y im, k; n + 1, I + 1) < 0 by Theorem 5, and hence (2.11) shows that 

Yim, k; n, I) < 0, which contradicts the first inequality. 
Similarly, if (3.7) were false, then y"'(m, k; n, I)~ 0, Yim, k; n+ 1, I+ 1) ~ 0 

and Yim, k; n+ 1, I)~ 0. The second inequality implies Yim+ 1, k+ 1; n, I)> 0 

by Theorem 5, and hence y im, k; n, I) > 0 by (2.11 ), which contradicts the first 

inequality. 
Intuitively one might expect some further monotonicity relations, like e.g. (i): 

b(m, k; n, I)~ b(m+ 1, k+ 1; n, /) and (ii): b(m, k; n, I)~ b(m, k+ 1; n, I), for 

any reasonable strategy in ~. However, (i) is nothing but another version of Bradt, 

Johnson and Karlin's principle of staying on a winner ecf. [2]), which they showed 
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not to be generally true for all Bayes strategies in~. In fact, (i) and (ii) do not even 
hold for all admissible strategies in~ as one can see from the example given in [2]: 
The Bayes strategies in ~ for the case N = 2 against the prior distribution J.l, which 
puts mass .8 in (.1, 0) and mass .2 in (.9, 1), are precisely those strategies in~ for 
which <5(0, 0; 0, 0) = 1, <5(1, 1; 0, 0) = 0, and <5(1, 0; 0, 0) = 1. Thus there is an 
essentially unique and hence admissible Bayes strategy against J.l, which violates 
(i) and (ii). 

For admissible strategies, which are also symmetric, Corollary 1 takes the 
following more explicit form. 

COROLLARY 3. Every admissible strategy !1 e !l' has a version for which 

(3.8) b(m,k;n,l) = 1, b(n,l;m,k)=O 

whenever m + n ~ N- 1, k ~ 1, m- k ~ n -I and (m, k; n, I) =F (n, I; m, k). 

PRooF. For the version of !1 that satisfies Corollary 1 we find by repeated 
application of (3.4) and (3.5) b(m, k; n, I)~ b(m-k+l, I; n+k-1, k) ~ b(n, I; 
m, k) where at least one of the extreme members must be 0 or 1. Since their sum 
equals 1 if Pt.(m, k; n, I) =F 0, (3.8) will hold in this case. If ptJm, k; n, I)= 0, then 
by (1.6) we also have ptJn, I; m, k) = 0 and choosing b(m, k; n, I)= 1 and 
b(n, I; m, k) = 0 merely leads to another version of !1. 

We conclude this section by remarking that Corollaries 1, 2 and 3 obviously 
continue to hold if, instead of admissibility, we require that !1 be Bayes against a 
nonmarginal prior. 

4. Symmetric minimax-risk strategies. 

THEOREM 6. There is a minimax-risk strategy which is admissible and belongs to !l'. 

PRooF. The class ~. with the topology induced by the notion of convergence 

introduced in the proof of Theorem 4, is compact. The existence of a minimax-risk 
strategy in ~ is a well-known consequence of this. Moreover, the class~* of all 
minimax-risk strategies in ~ is easily seen to be closed. Thus, if v denotes Lebesgue 
measure on the unit square, there is a strategy !11 e~* such that p(v, !11) = 
min4 e~•p(v, !1). This follows from the continuity of p(v, ·).Let l12 e!» be defined 
by b2(m, k; n, I)= 1-b1(n, I; m, k) for all states (m, k; n, 1). Thenp4 /m, k; n, I)= 
p41(n, I; m, k) for all states, and hence R(!'l., p, !12) = R(P, !'1., !11) for all (!'I., P), so 
that !12 e!»*. By convexity we now may construct a strategy ll.e!» satisfying (1.4) 
with A.= t. It follows that R(!'l., p, !1) = tR(!'I., p, l11)+!R(!'I., p, !12) for all (!'1., P), 
and hence !1 e !» *. Finally we define !1 * e !l' by 

b*(m, k; n, I)= tb(m, k; n, l)+t[l-o(n, I; m, k)] 

for all states. The construction of !1 implies thatp4.(m, k; n, I)= p4(m, k; n, I) for 
all states, and hence !1 * e !» * n!l'. 

In order to show that !1 * is also admissible, we first remark that any strategy 
outside !» * has at some point ( !'1., P) strictly larger risk than !1 *, because !1 * has 
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minimax-risk. On the other hand, going through the steps leading to the con
struction of Ll * once more, one easily verifies that p(v, Ll 1) = p(v, Ll2) = p(v, Ll) = 
p(v,d*), so that p(v,Ll*)~p(v,Ll') for any d'e~*. But because of the 
continuity of R( ·, ·, Ll), this implies that also within ~· there is no strategy 
improving on Ll *, and thus the proof is complete. 

The above proof really consists of two separate arguments mixed together. The 
first one is quite standard (cf. e.g. Theorem 8.6.4. in [1] and shows the existence of 
a symmetric minimax-risk strategy. The second argument, yielding admissibility, 
exploits an idea of Wald ([6] page 102). By the same argument, replacing ~* by 
the class of all Bayes strategies against any given prior distribution J.t, one can prove 
the existence of an admissible Bayes strategy against fi· 

Theorem 6 together with Corollaries 1, 2 and 3 yields 

COROLLARY 4. There is an admissible symmetric minimax-risk strategy which 
obeys (3.4) through (3.8). 

For N = 1 or 2, (1.5) and (3.8) uniquely determine a symmetric strategy. It 
follows from Corollary 4 and Corollary 3 that this strategy has minimax risk and 
is in fact the only admissible strategy in .P. For N ~ 3 the situation rapidly becomes 
more complicated. In order to find a symmetric minimax-risk strategy Ll0 satisfying 
(3.4) through (3.8) one first has to find a general expression for the risk function 
R(a., p, d) of an arbitrary symmetric strategy A satisfying (3.8). Then, with the aid 
of (3.4) through (3.7), one has to solve the remaining C5(m, k; n, I) directly using 
the minimax property. 

To accomplish the first step of computing R(a., p, d) for an arbitrary symmetric 
strategy, one may proceed recursively. This is especially useful if one wants to find 
R(a., p, A) for a number of values of N. If X"= 1- Y" = 1 or 0 according to whether 
£ 1 or E2 is carried out on the vth trial (v = 1, 2, · · ·, N), then R(a., p, A), being 
equal to Ia.- Pl . multiplied by the expected number of times the experimenter uses 
the less favorable experiment, is given by 

(4.1) R(a.,p,d) = tNia.-PI-t<a.-p) 2::=1 E(X"- r" 1 a.,p,A). 

Remembering the definition of n~~.,p,t.(m, k; n, /), we have 

(4.2) E(X"- Y" I a.,p, d)= ~)~~..11,t.(m, k; n, /)[2C5{m, k; n, /)-1], 

where the summation is extended over all states (m, k; n, /) with m+n = v-1, 
and where the n~~.,p,t.(m, k; n, /)can be computed recursively by means of 

(4.3) n~~.,p,t.(m, k; n, /) = a.C5(m -1, k-1; n, l)n~~.,p,t.(m -1, k-1; n, /) 

starting from 

(4.4) 

+(1-a.)<5(m-1, k; n, l)rc~~.,f/,A(m -1, k; n, I) 

+P[1-C5{m, k; n-1, /-1)] 1ta,p,t.(m, k; n-1, 1-1) 

+ (1- p)[1-C5(m, k; n-1, I)] n~~.,p,t.(m, k; n-1, I) 

n~~..11.t.CO, k; 0, I) = 1 

=0 

if k =I= 0; 

otherwise. 
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The work involved may be reduced somewhat by means of the relation 

(4.5) n«,P,tJ.(m, k; n, I)= n«,fi,,Jn, I; m, k), 

which is a consequence of (1.3) and (1.6). 
For N = 3, only b(2, 1; 0, 0) remains undetermined by the requirement that ~ 

be symmetric and must satisfy (3.8), and one finds 

R(a,p,~) = fla-Pj-t(a-P)2{1 +<5(2, 1 ;0,0)+ [1-b(2, 1 ;0, O)](a+ P)}. 

After a little algebra one sees that ~0 must have b(2, 1; 0, 0) = 1 and that R(a, p, ~0) 
attains its maximum M(~0) = 196 when ja- PI = i. 

For N = 4 only b(2, 1 ; 0, 0), b(3, 1 ; 0, 0) and ~(3, 2; 0, 0) are to be determined 
and 

R(a, p, ~) = 2ja-Pj-!(a-{J)2{(a2 + P2 +3a{3-a-fJ+3)-b(2, 1; O,O)ap 

-c5(3, 2; 0,0)[1 +C>(2, 1; 0, O)](a2 + P2 +IY.P -a- p) 

+c5(3, 1 ;0, O)c5(2, 1; O,O)(a2 + P2 +aP-2a-2P+ 1)}. 

Using (3.6), one finds after lengthy calculations that ~0 must have b(2, I ; 0, 0) = -!, 
b(3, 1 ; 0, 0) = t and b(3, 2; 0, 0) = I, so that the risk function of ~0 is given by 

R(a,{J,~0) = 2ja-Pj-H(cx-fJ)2 +-t(a-p)4 

and attains its maximum M(~0) = .617 when ja-PI = .654. For larger values of 
N the number of b(m, k; n, 1) that have to be determined increases rapidly, and 
consequently the algebra involved becomes distressingly complicated. 
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VAN DE HULST ON ROBUST STATISTICS: A IDSTORICAL NOTE 

by W.R. van Zwet 

Abstract This paper provides a discussion of an unpublished set of notes written in 1942 by the Dutch 
astronomer H.C. VAN DE HULST. In these notes VAN DE HULST derives the asymptotic variances of M
estimators as well as trinuned means and concludes that the asymptotic variance of what is now called 
HUBER's estimator is the same as that of a trimmed mean. This conclusion is usually ascribed to BICKEL 
(1965). A letter written by D. VAN DANTZIG in 1943 providing a critical evaluation of. VAN DE HULST's 
results, adds interest to this suprisingly early contribution to the theory of robust statistics. 

Key words: Robust estimation, estimation of location, trimmed mean, M-estimator, history of statistics. 

1 Introduction 

It is generally agreed that the history of modem mathematical statistics in the 
Netherlands begins with the work of VAN DANTZIG. Originally a pure mathemati
cian, VAN DANTZIG turned to statistics and probability during the second world 
war. After the war, he did outstanding work in these areas and almost single
handedly educated an entire generation of mathematical statisticians and probabil
ists. He was a tireless promoter of applied mathematics and one of the founders of 
the Mathematisch Centrum at Amsterdam. Those who didn't know this rather for
midable man, should read HEMELRIJK's ( 1959) obituary as well as some of VAN 
DANTZIG's papers listed there. 

Though mathematical statistics was more or less unknown territory for Dutch 
mathematicians at the time VAN DANTZIG entered the field, this was certainly not 
the case for Dutch physicists and astronomers. It is the purpose of this historical 
note to show that, in fact, they knew quite a bit about the subject at a very early 
date. In particular, I shall discuss an unpublished set of notes on what is now 
called robust statistics, written in 1942 by VAN DE HuLST, then an astronomy stu
dent at Utrecht and presently professor emeritus of theoretical astronomy at 
Leiden. Almost as fascinating as the notes themselves is the correspondence about 
the results between VAN DE HULST and VAN DANTZIG, and the remarks that VAN 
DANTZIG pencilled in the margins of the notebook. Asked for his opinion, VAN 
DANTZIG complained at great length about the lack of mathematical rigor, but 
finally relented somewhat and tried to encourage VAN DE. HULST to continue work
ing on statistical problems. But things turned out differently. In 1944 VAN DE 

HuLST predicted the 21 em radio spectral line of hydrogen, which eventually led to 
the birth of radio astronomy. From there, he went on to a brilliant career in 
theoretical astronomy and never bothered to publish his investigation of robust 
statistics. I'm endebted to professor VAN DE HULST for mentioning his work to me 
and for making the notebook and the ensuing correspondence available. Thanks 
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also go to Professor S.M. STIGLER for drawing my attention to the work of 
DANIELL ( 1920). 

2 A problem of Hertzsprung 
In the issue of May 20, 1942, of the Bulletin of the Astronomical Institutes of the 
Netherlands, E. HERTZSPRUNG, director of the Observatory at Leiden, describes a 
sampling experiment to determine the variance of the trimmed mean. In connec
tion with the determination of relative proper motions of stars in the Pleiades, 
HERTZSPRUNG discusses how one should assign weights to the observed values to 
account for differences in quality of the observations. He writes : 
"The simplest way to deal with exorbitant observations is to reject them. In order 
to avoid special rules for onesided rejection the easy way of symmetrical rejection 
of the largest deviations to each side may be considered. The first question is then: 
How much is, in the case of Gaussian distribution of errors, the weight of the result 
diminished by a priori symmetrical rejection of outstanding observations? As the 
mathematical treatment of this question appears to be laborious beyond the needs 
mentioned above I gave preference to an empirical answer. On each of 12534 slips 
of paper was written with two decimals a deviation from zero in units of the mean 
error, in such a way that these deviations showed a Gaussian distribution. Thus 50 
slips were marked with .00, 50 with + .01, 50 with -.01 etc.. Of these slips some
what more than 1000 times 24 were picked out arbitrarily. Such 24 slips were in 
each case arranged according to the size of the deviation and mean squares of the 
sums of 24-x deviations calculated after symmetrical rejection of x = 0,2,4, ... , 22 
extreme values." 

This paragraph should warm a statistician's heart, except that he may feel 
slightly uneasy about "somewhat more than 1000" replications. And he has reason 
to feel uneasy: "Of all these samples of 24 exactly 1000 were picked out in such a 
way that the sum of all 24 deviations (x =0) fairly well showed a Gaussian distri
bution with a mean square of 24." 

From a theoretical point of view, this ruins a perfectly good sampling experi
ment, as VAN DANTZIG was quick to point out, especially since no further informa
tion is supplied. There is no way of assessing the accuracy of the estimated vari
ances any more. On the other hand, if we assume that this data cleaning was done 
sensibly, there seems to be no reason, a priori, why the estimates should be much 
worse than they would have been otherwise. 

We need some notation. X 1,X2, .• ,Xn will denote independent and identically 
distributed random variables with mean zero, finite variance and a common density 
f, which is symmetric about zero. The standard normal density will be denoted by 
$ . Let Xt :n<Xz:n< .. . <Xn:n be the ordered sample and define the trimmed 
means and their variances by 

_ 1 n-k 
X k = ~ X n, -2k ~ , ;n 

n ; =k + 1 
(I) 
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o~.k = E~.k· (2) 

For f=lf>, n =24 and k =0, 1,2, ... , 11, Hertzsprung estimates the quantities 
no~.k =o~.k/o~.o by the corresponding ratios of the sampling variances of 1000 
replications. His results are given in Table 1. 

Table I. HERTZSPRUNG's estimates of na~.k for f=tf>, n =24, k =0, I, ... , II. 

k 2 I 2 Sn,k Sn, 0 k 2 I 2 Sn,k Sn,O k 2 I 2 Sn,k Sn, 0 

0 1.000 4 1.095 8 1.283 
1 1.013 5 1.139 9 1.345 
2 1.037 6 1.184 10 1.407 
3 1.069 7 1.232 11 1.489 

Commenting on these numbers, HERTZSPRUNG writes : "While the cancelling of 
two arbitrary observations out of 24 diminishes the weight from 24 to 22 the sym
metrical rejection of the two largest deviations leaves a weight of nearly 23.7 for the 
mean of the rest. Hence there is not much reason for hesitation to do so, while the 
question is still left open as to how false the assigned weights must be in order to 
obtain an increase of ~eight by the procedure considered." The word "weight" is 
used for the reciprocal of the variance and what we have here is a plea for the 5% -
trimmed mean! 

Finally, HERTZSPRUNG notes that the formula 

no~.k = 1 +.53(2kln)312 (3) 

fits the data in Table l quite well. Since the median has asymptotic variance 7T/(2n) 
in the normal case, he proposes to replace .53 in (3) by 7T/2-1 = .57.The entire 
paper doesn't take more than one page. 

3M-estimators 
After attending a talk given by HERTZSPRUNG about his sampling experiment, VAN 

DE HULsT decided to try and treat the problem of finding o~.k mathematically. In 
letters to HERTZSPRUNG of April 15 and June 10, 1942, he computes values of 
o~4• 11 and o~4• 1 • Since these computations also occur in his notes, I shall return to 
them later. In the weeks that followed, he apparently made quick progress and he 
wrote down his results in a notebook dated July 1942; there is a supplement dated 
October 1942. The notes are written in Dutch and are entitled "Over een probleem 
uit de waarschijnlijkheidsrekening" (On a problem in probability theory). In dis
cussing these notes and other writings, I shall change the notation and terminology 
to one that is more common in statistics nowadays. Whenever direct quotes occur, 
the translation is mine. 

Since the stated purpose of the notes is to compute the variance of the trimmed 
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mean, it is surprising that the author should start with the asymptotic variance of 
an M-estimator: 

"Theorem. 

If n observations X; (n very large) are distributed according to the symmetric pro
bability (density) f, and one determines the number M by 

n 

~~(X; -M) = 0, 
i=l 

where 1/; is some odd function, then 

J ~2 (x)j(x)dx 

n{jf(x)do/(x)}2 

(4) 

" (5) 

VAN DE HULST calls this result well known and refers to page 470 .If of F. 
ZERNIKE's (1928) chapter on Probability Theory and Mathematical Statistics in 
Volume III of the Handbuch der Physik. The amazing implication is that the con
cept of an M-estimator as well as the expression for its asymptotic variance were 
known to physicists as early as 1928 and it seems worthwhile to take a look at this 
reference. 

The fact that ZERNIKE, a Dutch physicist and a Nobel laureate a quarter of a 
century later, was asked to write on probability and statistics for the Handbuch, 
shows that he was considered an authority in this field by his colleagues, and 
indeed he did give a very interesting and up-to-date account of the area. His treat
ment of M-estimators starts with assuming a large number of observations and a 
symmetric error density f because (translating his German text) "for a skew error 
density a sharp distinction between systematic and random errors is not possible" 
and continues: "The commonly used best (summaryl_value of n observations is the 
arithmetic mean, determined by the equation ~(X;- X)=O. One considers the gen
eralization of this equation ~I/;( X;- M) = 0, where 1/; is an odd function of the argu
ment (x- M). This equation can be interpreted as follows : M is the mean of the 
X-values computed with weights 1/;/(X- M), i.e. with a symmetric weight function. 
If the number of X-values in every interval would be exactly equal to the (theoreti
cal frequencies) calculated from the error law, then one would find M = m (the 
expectation of X). From the statistical deviations of these numbers, one calculates 
for the deviation of M 

2 j 1/;2(x )j (x )dx 
a-(M) = , 

n{jf(x)dlf;(x)}2 
(6) 

and for special choices of the function 1/; this formula leads easily to the following 
results: 
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Arithmetic mean 

Median 

Best determination 

1/l(x) = x u2 = n -lu2(x) 
1/;{x) = sgn(x) u2 ~ (4n/(0))- 1 

1/l(x) = f'(x)lj(x) u2 ~ (nj(f'(x)flj(x)dx)- 1." 

ZERNIK.E then goes on to provide the variances of these three estimators for four 
selected error densities. There is no further proof and regularity conditions are not 
mentioned. He does point out that for the median, the function 1/1 is not continuous 
and that the integral in the denominator of (6) should be interpreted as a Stieltjes 
integral. The interpretation of an M-estimator as a weighted mean with random 
weights is still part of the folklore in this field ( cf. HUBER ( 1981 ), p. 44 ). The origi
nal of the result (6) is not clear as ZERNIKE doesn't provide any references but 
doesn't claim the result as his own either. What is clear, is that up-to-date 
knowledge of statistics did exist in the Nether lands in 1928. 

But let us return to the notes of VAN DE HULST. Since there is no proof of the 
theorem in ZERNIKE's review paper, VAN DE HULST gives one. He prefaces his 
proof by the remark that the won't be bothered with details, and perhaps this is 
just as well. It doesn't make much sense to discuss regularity conditions if it isn't 
even clear what the conclusion of the theorem ought to be. As it stands, it is a 
statement about the limit of the variance of n 112M, as opposed to the variance of 
the limit distribution of n 112M. I doubt that, at the time, many people knew there 
was a difference between the two, and it certainly wasn't a distinction that was 
commonly made. We now realize, however, that the former type of result is usually 
harder to prove, but also less relevant than the latter, because asymptotic theory 
and small sample approximations concern distributions rather than moments. 

Let us then ignore this distinction and look at VAN DE HULST's proof. He starts 
with the one-term Taylor expansion 

(7) 

and rewrites it as 

(8) 

From here on one could argue that n - 112 ~1/I(X;) is asymptotically normal with 
mean zero and variance jl/12! and that n- 1 ~1/I'(X;) converges in probability to 

J !/; 'f if both integrals are finite. It follows by Slutsky's theorem that (8) implies that 
n 112M is asymptotically normal with mean zero and variance given by (5). The con
vergence of the variance of n 1' 2 M would take a bit more work. 

Instead, VAN DE HULST follows a more devious route that was much travelled 
in those days. He discretizes the X's by partitioning the real line into a large 
number of small intervals. If N1 of the X's fall in the j-th interval and 1/;1 and 1/1) 
are values which if and 1/1' assume somewhere in this interval, then approximately 

~NJ!f;J 
M = (9) 

~NJ!f;J 
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Another Taylor expansion with respect to the N1 around EN1, followed by the com
putation of variances and covariances for the multinomial distribution and a pas
sage to the limit, produces. (5). 

Of course it is not important how one proceeds from (8) on. The main problem 
is what happened to the remainder term in (7). To VAN DE HULST this might be a 
detail not to be worried about, but for VAN DANTZIG it was too much to swallow. 
In his letter of February 19, 1943, he writes: "It is really a pity that your discussion 
is so inexact, as this takes away much of the value of the several nice ideas that it 
contains. For instance, in the "proof' on page 3, I can understand the passage to 
O='L!f;(X;- M)='LI/;(X;)- M'LI/;'(X;) only if (1) lf;(x) is differentiable and (2) M is 
small, whereas 1/;"(x) remains bounded (even then I don't see how one can know in 
advance that the term involving M 2 can be neglected, since it is the calculation of 
M 2 we are concerned with)." 

VAN DANTZIG is clearly right in pointing out that this kind of proof will work 
only for smooth functions lj; and I'm sure that VAN DE HULST readily agreed. It is 
interesting, however, that VAN DANTZIG had difficulty seeing how one shows that 
M is small, i.e. that M is a consistent estimator. If, in addition to its smoothness, 
one simply assumes o/ to be nondecreasing and strictly increasing on a set of posi
tive probability under f, then n -I 'Ll/I(X;- m) is a continuous and nonincreasing 

function of m and j!fi(x -m)j(x)dx is strictly decreasing in min a neighborhood 

of zero. The consistency of M now follows from the law of large numbers in the 
same way as in CRAMER's ( 1945) proof of the consistency of the maximum likeli
hood estimator. Of course CRAMER's book had not yet appeared, and apparently 
this argument was not yet generally known. 

Having completed his proof, VAN DE HULST mentions the special cases of the 
mean and the median discussed by ZERNIKE, but again VAN DANTZIG is not 
impressed: "But under no circumstances can I understand how this proof can be 
applied to o/(x)=sgn(x). What is the meaning of M='LI/;(X;)I'LI/J'(X;) here? There
fore, these considerations don't prove anything for the case of the median." 

Let us put these mathematical objections aside for a moment and take stock of 
what has been archieved so far. An expression has been derived for the asymptotic 
variance of an M-estimator of location. The proof is rather shaky, but we know 
today that the expression does indeed hold in great generality, including the case of 
the sample median. The reason is, that it is the smoothness of A.(m)=ElJ;(X -m) 

which is important rather than the smoothness of 1/J. However, the original purpose 
was to find the asymptotic variance of the trimmed mean. Of course the two 
extreme cases of the trimmed· mean, the sample median and the untrimmed mean, 
are also M-estimators but their asymptotic variances were already known. VAN DE 
HULST writes: "One wonders whether the intermediate cases (of the trimmed mean) 
... can also be written in the form 'Lo/(X;- M)=O by choosing an appropriate func
tion 1/1. However, this is not the case and the result obtained above can not he used 
directly. Nevertheless it turns out that with a minor modification in the above 
proof, this case can also be treated." 
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4 Trimmed means 

As before, let X 1, .•• , Xn be independent and identically distributed with mean 
zero, finite variance and a common density f, which is symmetric about zero. The 
distribution function corresponding to f is denoted by F. Consider the trimmed 
mean Xn,k and its variance a~.k defined by ( 1) and (2). Denote the trimming frac
tion on each side by a and let a be the upper a-point of F, thus 

k . 
a=-, F(a) = 1-a. (10) 

n 

Define the function 1/lo by 

x<-a, 

-a~x~a, {
-a if 

1/lo(x) = xa if 
if x>a. 

VAN DE HULST shows that if n~oo and a remains bounded away from+. then 

na~,k - (1-2a)- 2 J 1/lfi(x)f(x)dx, 

(11) 

( 12) 

where ,..., denotes asymptotic equality. I shall try to give a simplified version of VAN 
DE HULST's argument which, I hope, still retains the original flavor. An entirely 
different proof of (12) was given earlier in DANIELL (1920), but this paper seems to 
have gone completely unnoticed (cf. STIGLER (1973)). 

Define the interval I=(Xk :n,Xn-k :n and let Fn be the empirical distribution 
function. We can write 

Xn,k = (1- 2a)- 1 J xdF11 (x). 
I 

Neglecting lower order terms, we have 

a-F11(-a) = F11 (Xk:n)-Fn(-a)"' (Xk:n+a)j(a), 

1-a-F11 (a) = F11 (X11 -k:n)- Fn(a) "'(Xn -k :n -a)j(a). 

(13) 

(14) 

This is intuitively clear, but not entirely trivial to prove rigorously. It is called the 
BAHADUR representation after BAHADUR ( 1966), who proved that the remainder 
term is O(n- 314 logn) almost surely. Similarly, 

a 

jxdF11(X)- jxdF11 (X)"' (Xk:n+Xn-k: 11 )af(a). (15) 
I -a 

Combining (13), (14), (15) and (11), we find 

Xn,k- (1-2a)- 1 jl/lo(x)dF,(x) = (l-2a)- 1 n- 1 ~1/lo(XJ, (16) 

and with a little bit of luck this implies (12). 
Since J fd1[!0 = (1- 2a), a comparison of ( 6) and ( 12) shows that the asymptotic 
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variances of the a-trimmed mean and theM-estimator with o/=o/o (which is known 
as HUBER's estimator) coincide. Of course VAN DE HULST is pleased to note this 
and it confirms his intuition that M-estirnators would have something to do with 
the problem. On the other hand, however, he finds the agreement of the two vari
ances rather fortuitous. 

Photograph 1. Part of a page in VAN DE HULST's notebook where he concludes that the trimmed mean 
has the same asymptotic variance as HuBER's estimator. Note the drawing of the influence curve of 
these two estimators, which is almost a symbol of robust statistics. The scribbled line at the bottom is 

VAN DANTZIG's. 

o~~· ~urw>~ 
hrcA.. vu-~ lJ"ln.o+. ~ ~ a,.bl 

~~~~J..L-

~-~+&~ 
~(M.3J V1-~~ 

-oo ~ -too 

k:&-... . . ,;....t;,~'l .. { 

-- -~-
. ' 

A closer inspection of his argument, however, shows that the agreement goes 
much further than he may have realized. As I remarked below (8), we have 
n -I ~o/ '(Xj) ,....., J o/ 'f and hence 

};o/(_X;) 
M - -----------

n jo/'(x)j(x)dx 
(17) 
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Choosing 1/;=o/0 , we find for HUBER's estimator H, 

H "' (1- 2a)- 1 n -l ~o/o(X;), 

89 

(18) 

and together, (16) and (18) imply that n 112(Xn,k- H) tends to zero in probability. 
Thus HUBER's estimator and the a-trimmed mean are asymptotically equivalent 
estimators and the equality of the asymptotic variances is merely a consequence of 
this. 

There is an interesting discussion connected with this result. When robust esti
mators began to be investigated, it was felt by some, that throwing away observa
tions, as one does when computing a trimmed mean, is perhaps overdoing things a 
little. Wouldn't it be better to move these observations towards the center of the 
sample and replace them by Xk + I :n and Xn -k :n rather than deleting them outright? 
This led to the introduction of the so-called Winsorized mean 

Wn,k = - ~ X;:n+k(Xk+l :n+ Xn-k :n) · . 1 [ n -k l 
n i=k +I 

(19) 

Later, after HUBER's estimator had been introduced and found to perform well, 
representation (18) and the shape of 1/;0 as given by (11) seemed to suggest that the 
same thing is going on here: the X; are replaced by o/o(X;), which moves the outly
ing observations towards the center. On the strength of this, it was assumed that 
the Winsorized mean would mimic HUBER's estimator and share its good perfor
mance to a greater extent than the trimmed mean. This argument is not really very 
convincing because, in view of the symmetry off, the effect of moving observations 
towards the center depends very much on the exact number of observations moved 
and the exact positions they are moved to. Nevertheless, this idea was rather gen
erallyaccepted until BICKEL (1965) proved that the asymptotic distribution of the 
trimmed mean is the same as that of HUBER's estimator. In HUBER's words (cf. 
HUBER (1981), p. 59): "This exemplifies how unreliable our intuition can be; we 
know now ... that the trimmed mean does not throw away all of the information 
sitting in the discarded observations, but that it does exactly what the Winsorized 
mean was supposed to do." Of course one can agree with this sentiment in general, 
but after seeing VAN DE HULST's notes, one is inclined to add that this depends 
very much on whose intuition one is talking about! 

For f=rp, (12) reduces to 

no~.k "'(1-2a)-2{(1-2a)-2arp(a)+2aa2 } (20) 

and for n =24, these values are given in Table 2. 
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Table 2. Asymptotic values of na~. k for j=q,. n =24, k =0, I, ... , II. 

k no~,k k no~.k k no~.k 

0 1.000 4 1.114 8 1.294 
1 1.021 5 1.153 9 1.352 
2 1.048 6 1.195 10 1.417 
3 1.079 7 1.242 11 1.483 

These figures seem to agree reasonably well with HERTZSPRUNG's empirical data 
in Table 1. Commenting on VAN DE HuLsT's further efforts to improve the asymp
totic approximations, VAN DANTZIG writes: "On the whole, I don't think it makes 
sense to try to explain the small deviations between your calculations and 
HERTZSPRUNG's results; in my opinion, the agreement is too good to be true." He 
argues that, since HERTZSPRUNG's data have been "doctored", one certainly can't 
attach "any value to the third, and perhaps even to the second decimal of the 
empirical data". 

In view of the agreement which is "too good to be true", it is perhaps not 
surprising that VAN DANTZIG also feels that (20) is "almost certainly incorrect". 
The reason for his doubts is interesting. Apart from the argument for (12) and (20) 
that we have just sketched, VAN DE HuLST also provides a second proof of (20), 
which is precisely the proof that one would give today: Given Xk :n and Xn -k + l:n' 

the trimmed mean is distributed as an ordinary sample mean and the conditional 
second moment is easily calculated. Taking the expectation with respect to the 
bivariate normal limit distribution (Xk :n +a) and (Xn -k + 1 :n -a), one obtains (20). 
VAN DANTZIG argues, mistakenly, that second order terms of this bivariate distri
bution should also play a role and give rise to additional terms in the final result. 
The fact that the two proofs produce the same result, merely leads him to conclude 
that the first proof is probably incorrect too. 

Van Dantzig's letter from which I have quoted repeatedly, was typical for the 
person I believe he was. His criticism was very much to the point and mathemati
cally correct, except for his doubts about the validity of (20). It was offered in a 
matter-of-fact way and it probably didn't occur to him at first, that it might have a 
rather devastating effect on the receiver of the letter. He was genuinely trying to 
help and felt hat the best way to do this, was to explain his views as clearly as pos
sible. 
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Photograph 2. End of VAN DANTZIG's Jetter to VAN DE HULST. 

I imagine that it was when rereading the letter, that he felt that perhaps he had 
been a bit too severe. He was basically a kind person and he could certainly recog
nize talent when he saw it. He added: "On second thought I find that my final 
opinion has turned out undeservedly unfavorable and that it doesn't do justice to 
the indubitable merit of your work . ... I do hope that you won't be discouraged by 
this result and that you'll first finish this problem ... and then tum to other prob
lems in this area. You definitely have talents in this direction and in principle you 
have the righ! way of looking at such problems." Of course this praise was inter
spersed with admonitions to work more rigorously! 

5 Other problems 
~s was mentioned in section 3, VAN DE HULST started out by studying the median 
Xn , which he defined in the usual way as 

X+(n+I):n =Xn.+(n-I) if n is odd, -
Xn =I 

= Xn.+n-I if 
(21) 

1(X+n:n +X+n +I :n) n is even. 
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It was known that for f=~. the asymptotic variance of n 112 X11 equals 17T. VAN DE 

HuLST tried to calculate a correction term of order n- 1• After several unsuccessful 
attempts, both for odd an even n, the finally found a series expansion for odd n 

andf=~. 

(22) 

Unfortunately this result can't be used for n = 24, and the expansion for even n is 
harder to obtain. 

He also tried to improve the approximation for a~. 1• Writing 
I 

Mn =2(XI:n+Xn:n) (23) 

for the midrange, V~N DE HULST ~rives an exact relation between the variances of 
the trimmed mean X11• 1, the mean Xn.o and the midrange M11 , for the case f=cp, 

a~ 1 4 [EM~ l 
a~:o -I = (n -2i a~. o -I · (24) 

By numerical methods he found a1(M11 )1a~.o =3.22 for n =24 and f=~. and this 
yields na~. 1 = 1.018. He concludes that this is probably a better estimate than the 
value 1.013 found by HERTZSPRUNG, especially since the estimate of ti(M,)Ia~.o 
from HERTZSPRUNG's sampling data equals 3.212. 

So far for VAN DE HULST's work on HERTZSPRUNG's problem. However, the 
final insight was still to come. On December 21, 1943, more than a year later, he 
writes to HERTZSPRUNG: "And now a few words about the calculation of the means 
of the proper motions of the Pleiades. You found empirically that the variance of 
the trimmed mean of 24 observations with a Gaussian distribution depends on 
a=kln according to curve (a) (an increasing function of a is shown). I later found 
practically the same result by computation. In connection with the things you 
showed me on December 1 last, I discovered yet another possibility. It is possible 
to apply my formula (Formula ( 12) not to a Gaussian distribution, but to the true 
distribution of the measurement errors, including the so-called outliers. In a ficti
tious example I obtained curve (b) (a function of a which first decreases rapidly, 
and then increases more slowly, is shown). On this curve one can read off precisely 
how much the variance of the mean decreases, if one rejects one or more observa-. 
tions symmetrically. The location of the minimum in this example indicates, that it 
is best to reject about 25% of the observations, that is 3 on both sides out of 24!" 
He then proposes to estimate the distribution of the errors in HERTZSPRUNG's sam
pling experiment and find the optimal trimming percentage. 

Presumably things never got to that point, but the computation to which VAN 
DE HuLST refers is attached to the notebook. It concerns an error distribution with 
a range from -4.24 to + 4.24 and his conclusion is that about 10% should be 
trimmed on both sides. Here he is definitely on the road that TUKEY would take in 
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1949! 

6 Can we do better now? 
It may be of interest to consider briefly how we would deal with this problem 
today and ask whether we could do essentially better. I believe the answer is: not 
very much. Of course we can now prove these results rigorously and in great gen
erality. Also, we have sufficient computing power at our disposal to compute the 
required quantities exactly, if need be. It is a good thing that VAN DE HULST 
didn't have that possibility, because he wouldn't have discovered anything if he 
had. 

The first thing we can do is to compute the asymptotic variance of 
HERTZSPRUNG's estimator of na~.b 

~ {X!?o }2 

(25) 

j=I 

where ~)0 and X,;,~, j = l, ... , N, denote the means and trimmed 
N= 1000 samples of size n =24. For f=cp we have, as n, N--H.IJ, 

means of the 

[ 
s2 l 4na2 1 1 ~ ;·k = Nn.k (na~.k-1)+0(-N +-2 ), 
Sn,O n N 

(26) 

where we may replace na~.k by the right-hand side of (20). Of course, one could 
also use ns~.k as an estimate for na~.k• and then we find, for f =cp, 

2n 1a4 ] I 
a2(ns2 ) = n,k + 0(- +- ). 

n.k N Nn N2 
(27) 

This confirms what was already intuitively obvious, that HERTZSPRUNG's estimator 
is better than ns~.k> especially for small values of a= kIn, when na~.k is close to I. 

Another thing we can do is to calculate a second order approximation for na~.k. 
Such approximations, including a term of order n- 1, can be found in HELMERS 
( 1982) for general linear combinations of order statistics. However, use of these 
general formulas involves very lengthy computations and in this simple case, it is 
easier to start from scratch. In the notation of Section 4 we find, for f=cp and a 

I 
bounded away from 2, 

na~.k = 1 
2 [(l-2a)-2acp(a)+2aa 2 +n- 1{-2a(l-a)-.-a-

(I - 2a) cp(a) 

l "(28) 
+2a2(1-a)(-a-)2 +a2(1-2a) 1 

2 } +0(n - 2 ). 
cp(a) (cp(a)) 
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For easy comparison Table 3 provides HERTZSPRUNG's estimates of no~.k taken 
from Table 1, the asymptotic standard deviation of these estimates computed from 
(26) and (20), the first order approximation of na~.k taken from Table 2 and finally 
the second order approximation of na~.k computed from (28). 

Table 3. HERTZSPRUNG's estimate, its standard deviation and approximate 
values of na~.k for f=cp, n =24, k =0, I, ... , II. 

k 2 I 2 Sn,k Sn,O o(s~.k Is~. o) 2 nan,k 2 nan,k 
first order second order 

0 1.000 0 1.000 1.000 
1 1.013 .009 1.021 1.017 
2 1.037 .014 1.048 1.043 
3 1.069 .019 1.079 1.073 
4 1.095 .023 1.114 1.106 
5 1.139 .027 1.153 1.143 
6 1.184 .031 1.195 1.185 
7 1.232 .035 1.242 1.230 
8 1.283 .039 1.294 1.280 
9 1.345 .044 1.352 1.335 

10 1.407 .049 1.417 1.397 
II 1.489 .054 1.483 1.459 

Inspection of this table shows that the agreement between HERTZSPRUNG's esti~ 
mates and the asymptotic values is closer than one would expect; the difference 
never exceeds the standard deviation of the estimate and is considerably smaller in 
most cases. Perhaps HERTZSPRUNG's data cleaning worked rather well! 

The second order approximation looks somewhat better than the first order 
approximation, except at the bottom of the table. This is as it should be. The first 
order result (20) is valid for all values of a=k In, but the second order result (28) 
holds only if a is bounded away from 112 as n tends to infinity. For values of a 
close to 112, it can therefore be expected to give a bad approximation. For k = 11, 
it would be better to use the second order approximation for the median for even 
sample size, which VAN DE HULST was unable to find. For even nand f=<J>, it is 

m?(Xn) = ; {1- 6-.;,'17' )+0(n-2), (29) 

and for n =24, this yields 1.477 . 
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Chapter4 
Discussion of three statistics papers 
by Willem van Zwet 

Jon A. Wellner 

Abstract I discuss three statistics papers of Willem van Zwet: [12], [5], and [15]. 

4.1 Introduction 

I first met Willem at the 2nd conference on Statistical decision theory and related 
topics, held at Purdue University in May 1976. After a brief discussion over din
ner on the topic of my dissertation (concerning certain limit theorems for linear 
combinations of order statistics), Willem tactfully pointed out that perhaps I had 
missed some interesting problems of a somewhat more fundamental nature con
cerning strong Jaws for such linear combinations. This brief conversation lead to 
[16]. Willem himself beautifully improved my results in [14] as discussed by David 
Mason elsewhere in this volume. 

Beyond giving good advice, Willem is well-known to many for his story-telling 
abilities, both in his papers and over a beer in a corner at Oberwolfach. The three 
papers discussed here provide ample evidence of the former (with hints of the latter, 
especially in [15]). The reader interested in more of the latter should consult [1]. 

4.2 Paper 1. 

The first of these three papers, Convex transformations: a new approach to skewness 
and kurtosis, is based on [13]. It gives a wonderfully clear exposition of partial 
orderings for distribution functions (or their associated random variables) which 

Jon A. Wellner 
Department of Statistics, University of Washington, Seattle, WA 98195-4322 e-mail: 
jaw@stat.washington.edu Supported in part by NSF Grant DMS-0804587, and by NI-AID grant 
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11 

mailto:jaw@stat.washington.edu


42

12 Jon A. Wellner 

"cover our intuitive ideas about skewness and kurtosis", and have a variety of further 
statistical applications. 

Briefly, for distribution functions F, F* which are twice continuously differen-
c 

tiable on some interval I with F' (x) > 0 on I, F < F* if and only if G* F is convex 
on I where G* is the inverse function ofF* defined by G* F*(x) = x. Similarly, for 
the subclass of all distribution functions as above which are symmetric about some 

s 
pointxo, F < F* if and only if G* F is convex for x 2:: xo, x E I, where xo is the (com-
mon) point of symmetry. It is easily seen from the forward and inverse probability 
integral transformations that if X has distribution function F, then X*= G* F(X) has 

c c 
distribution function F*, and hence it is natural to write X <X* whenever F < F*. 

For X"' F and a positive integer k let 

_ _ E(X - EX?k+l 
Y2k+1 (F)= Y2k+1 (X)= a 2k+l (F) , 

_ _ E(X - EX)2k 
Y2k(F) = Y2k(X) = a 2k(F) , where 

a 2(F) = a 2 (X) = E(X- EX)2, 

assuming that the expectations exist. Thus y1 (F) is the classical skewness ofF and 
Y2(F) is the kurtosis of F. The paper [12] starts with the basic results 

Y2k+l (X) :::; Y2k+1 ( q>(X)) for any convex function q>, and 

Y2k(X) :::; Y2k( q>(X)) for any convex, odd about xo, function q> 

if X rv F symmetric about Xo. 

c 
These results are discussed heuristically and used to motivate the definitions ofF < 

s 
F* and F < F*. A natural choice of q> is exactly G* F. 

Willem himself writes about this paper: 

This is a short summary of my dissertation. Over the years, the Centrum voor Wiskunde en 
Informatica (Center for Mathematics and Computer Science) at Amsterdam has sold 800 
copies. The reason is that the topic is revisited every ten years or so. Among other things, 
the thesis deals with a partial ordering of one-dimensional probability distributions that 
produces an increasing skewness to the right, and discusses a few simple consequences of 
this ordering. Nowadays I would formulate this as an ordering in terms of the fatness of the 
tail rather than in terms of skewness. The subject will doubtless enjoy yet another lifetime 
due to the current interest in heavy tails by queuing theory folks, financial mathematics 
people, etcetera. The thesis is now out of print, but it should be available in the libraries of 
some statistics departments. 

Despite the recent comprehensive book [10], Willem's paper and his thesis [13] 
remain gems of the stochastic orderings literature. 

s 
Here is a conjecture related to van Zwet's < ordering: 



43

4 Three statistics papers 13 

Conjecture: Let X have Chernoff's distribution as described in [6]; this distribution 
arises as the limit distribution in a variety of problems involving monotone non
parametric function estimation. Let Z be a random variable with a standard normal 
distribution (with mean zero, variance 1). Both X and Z have distributions symmet-

s 
ric about 0. I conjecture that X < (JZ and that fx (t) = h(t )q>(t / (J)/ (J with h-log-
concave if (J 2 .52. 

4.3 Paper 2. 

The "two-armed bandit problem", apparently introduced in [8], is as follows: you 
are presented with a slot machine with two arms. One arm yields a payoff of $1 
with probability a and the other arm yields a payoff of $1 with probability f3. The 
rub is that you do not know which arm is connected with these probabilities, and 
you also don't know the values of a and /3. The goal is to maximize your expected 
winnings in N successive pulls of one or the other of the two arms. Alternatively, 
if you are very patient and have lots of time to play the machine, you may have 
the goal of maximizing your limiting average expected winnings as N is allowed to 
become large. It has been known since [8] that there exist strategies achieving the 
latter goal: if xk denotes the winnings from play k, then there is decision rule or 
strategy for choosing one or the other of the two arms so that 

1 N 
- L, Xk ---+ max {a, f3} as N ---+ oo 

N k= l 

with probability one; see e.g. [7] and [4]. Finding optimal strategies for finite N is 
somewhat more difficult, but perhaps more important for a variety of real problems. 
If you have played both arms by step m < N, then playing the arm which has yielded 
the smaller winnings so far results in sub-optimal winnings in the next step, but a 
strategy involving always "playing the winner" can also be sub-optimal, as was 
shown by [3]. The results of these authors prompt Fabius and van Zwet to write: 

Though these relations may seem intuitively evident, one does well to remember that the 
two-armed bandit problem has been shown to defy intuition in many aspects (cf. [3]). 

Fabius and van Zwet formulate the two-armed bandit problem in a general de
cision theoretic setting allowing randomized decision rules and an arbitrary prior 
distribution for (a ,/3) on [0, 1]2. They proceed by characterizing the class of all 
Bayes rules, and show (Theorem 4) that every admissible strategy is Bayes agains a 
"non-marginal prior distribution" 1r:. They give an explicit example showing that" ... 
there is an essentially unique and hence admissible Bayes strategy against n which 
violates (the monotonicity requirements) (i) and (ii) (of "play the winner" rules) ... 
", thereby reconfirming the results of [3]. Fabius and van Zwet go on to provide 
wonderfully explicit calculations of minimax symmetric rules and risk for N = 3 
andN=4. 
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For further development of these problems and themes, see [4], [9], and the sur
vey by [7]. 

4.4 Paper 3. 

In this delightful historical article Will em reviews the work of the Dutch astronomer 
Van de Hulst on the behavior of trimmed means, and the wonderful interactions 
between Van de Hulst and the imminent Dutch mathematician and statistician D. 
van Dantzig. 

In connection with this paper Willem writes: 

At some time during the early 1980s I gave a talk for a general sciences audience. As many 
scientists routinely remove outliers from their data, I thought it might be useful to speak 
about trimmed means and what happens if you use them. In the talk I showed them the 
derivation of the asymptotic variance of the trimmed mean. There was a spirited discussion 
afterwards. To my utter surprise, Van de Hulst - a world-famous astronomer from Leiden 
-shows up in my office a few days later carrying a small notebook written in 1942 that 
contained precisely this asymptotic result. From a mathematical point of view, the proof 
left something to be desired, but the right ideas were all there. In 1942 he apparently knew 
all about M-estimators too, and this knowledge goes back to Nobel laureate Zernike in 1928. 
In his 1942 notes Van de Hulst also showed that what is now known as Huber's estimator 
has the same asymptotic variance as the trimmed mean. After Huber's estimator had been 
introduced, statisticians first believed that its asymptotic variance would coincide with that 
of the Winsorized mean until Bickel proved Van de Hulst's result in 1965 ([2]). Van de Hulst 
is justifiably pleased by the recognition provided in this paper and has shown it to all of his 
astronomy friends!. 

Willem's article sketches the theory of "M-estimators" that was apparently well
known in the Dutch astronomy community in the 1930's and 1940's and that was 
used as a starting point by Van de Hulst in his investigations. A proof of the theo
rem concerning the asymptotic variance of an "M-estimator" was not given in the 
known reference, so Van de Hulst provided one. But van Dantzig felt that Van de 
Hulst's proof was not "rigorous". Willem provides a fascinating commentary on 
the interactions between the two scientists, with a very readable introduction to the 
theory (translated into modern notation and terminology), including connections be
tween "M -estimators" (or "Z- estimators" as they are renamed slightly in [ 11]) and 
trimmed means via Bahadur's representation theorem for quantiles. In the last sec
tion of the paper Willem's intimate familiarity with second order expansions and 
correction terms comes into play in an elegant and subtle re-analysis of the results 
of Van de Hulst and empirical data concerning trimmed means from Hertzsprung. 

I commend the article to the reader as a superb example of Willem at his story
telling best! 
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ASYMPTOTIC NORMALITY OF NONPARAMETRIC TESTS 
FOR INDEPENDENCE' 

Bv F . H. RuYMGAART, G . R . SHORACK 2 AND W . R . VAN ZwET 

Mathematisch Centrum, Amsterdam and Unil•ersity of Leiden 

Asymptotic normality of linear rank statistics for testing the hypo
thesis of independence is established under fixed alternatives. A generali
zation of a result of Bhuchongkul [I) is obtained both with respect to the 
conditions concerning the orders of magnitude of the score functions and 
with respect to the smoothness conditions on these functions. 

1. Introduction. For each n let (X~> Y1), • •• , (X,., Y,.) be a random sample from 
a continuous bivariate distribution function (df) H(x, y) having marginal dfs 
F(x) and G(y). The bivariate empirical df based on this sample is denoted by 
H,. . With respect to then random variables (rvs) X;( Y;) corresponding to the 
first (second) coordinates, the empirical df is denoted by F,.(G,.), the ith order 
statistic by X;,.( Y;,.) and the rank of X;( Y;) by R;(Q;)· All samples are defined 
on a single probability space (Q, S/'; P). 

The rank statistics most commonly used to test the independence hypothesis 
H = F.G, are of the linear type 

T.,. = n- 1 ~ i= 1 a,.(R;)b,.(Q;) , 

where a,.(i), b,.(i) are real numbers for i = I, .. . , n (see Hajek and Sidak [6]). 
A suitably standardized version of T,. will be (see also Bhuchongkul [I]) 

( 1.1) 

here 

( 1.2) J,.(s) = a,.(i) , K,.(s) = b,.(i) , 

for (i - I )/n < s ;£ ifn and i = I, . · ·, n, and 

( 1.3) f1 = SS J(F)K(G) dH, 

for some functions J and K on (0, I) that can be thought of as limits of the score 
functions J,. and K,. . 

In order to summarize the main results of this paper let us introduce the 
function 

(1.4) r = [/(1 - l)J-' on (0, 1), 

where I is the identity function on the unit interval. Under the hypothesis and 
under contiguous alternatives, asymptotic normality of (1.1) may be proved for 
score functions J and K of order r!- o for some o > 0 (see Hajek and Sidak [6]). 
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Jogdeo [7] establishes asymptotic normality under the hypothesis of a statistic 
more general than T, ; the growth condition on his score functions in the case 
ofT, is r!- o. By an approach analogous to that of Chernoff and Savage [3] for 
the two-sample problem, Bhuchongkul [I] proves asymptotic normality under 
fixed alternatives provided the score functions are of the order log r(seeSection 2). 
The main purpose of this paper is to relax these conditions to ri- o in general 
and ,~- iJ for a special class of dfs H. 

In Theorem 2.I the asymptotic normality of ( l.I) is established for rather 
smooth score functions with orders of magnitude not exceeding ra and rb, where 
the numbers a and b satisfy the relations a = (! - o)jp0 and b = (! - o)fq0 for 
some 0 < o < ! and some p0, q0 > I with p 0- 1 + q0- 1 = I. No condition other 
than continuity is imposed on the df H. The theore~ is stronger than Theorem 1 

of Bhuchongkul [1]. The proof is based on Holder's inequality in the form 

(1.5) ~ ~ lszS<F)¢(G)I dH ~ [~ lszSIP dfJI' pn l¢1q dfJI' q, 

where ¢ and ¢ are funct ions on (0, I) , dl denotes Lebesgue measure restricted 
to the unit interval and p, q > 1 satisfy p-1 + q-1 = I . 

Theorem 2.2 gives asymptotic normality of ( 1. 1) under much weaker condi
tions on the score functions . Here these functions are allowed to be of order 
ra and rb, where a= b = ! - o for some 0 < o < ! · The price for this is a 
condition on the df H, keeping it in some sense similar to the null hypothesis. 
This condition is 

( 1.6) dH ~ C[r(F)r(G)] i! i2 dFdG, 

with fixed constants C ~ 1 and 0 < o < !· Mathematically, ( 1.6) allows a direct 
factorization of the left-hand integral in (1.5) which is more efficient than 
Holder's inequality. Intuitively, this condition prevents the large (small) X's 
from occurring in the same pair as large (small) Y's with too high a probability . 
Condition (1.6) trivially holds under the null hypothesis. More generally it is 
also satisfied if H can be written as a polynomial in its marginals F and G. This 
class of distributions was introduced by Lehmann [9] and the special case where 
H = FG[l +a( I - F)(1 - G)] for -1 ~ a ~ 1 was considered by Gumbel [5]. 
Finally ( 1.6) holds for all bivariate normal distributions with a sufficiently small 
correlation coefficient (use Lemma 2 on page I66 of Feller [4] to see that (1.6) 
holds for a correlation coefficient between -o/(2- o) and of(2 - o)). 

2. Statement of the theorems. Each of the theorems below establishes the 
asymptotic normality 

(2.I) as n --)o oo , 

of ( 1. I); here p and a 2 are finite and are given by ( l. 3) and ( 3. 1 0) respectively. 
Let ,,::;r denote the class of all continuous bivariate dfs H , and let J'C"co denote 

the subclass that satisfies ( 1 .6) for fixed C ~ I and 0 < o < !· 
To prove (2.I) for general H in P'C' we require a strong boundedness condition 

on the score functions. 
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AssuMPTION 2.1. The functions J and K are continuous on (0, 1 ); each is 

differentiable except at an at most finite number of points, and in the open in

tervals between these points the derivatives are continuous. The functions Jn, 

K n, J, K satisfy [Jn[ ~ Dra, [Kn[ ~ Drb and 

for i = 0, 1 , 

where defined on (0, 1 ). Here D is a positive constant and a and b satisfy 

(2.2) a = (t - i5)/Po, b = (i - i5)Jqo 

for some 0 < i5 < t and some p0 , q0 > 1 with p 0- 1 + q0- 1 = 1. 
In proving (2 . 1) for the more restrictive class ,'?2'/c,J we only require a weak 
boundedness condition on the score functions. 

AssuMPTION 2.2. Assumption 2.1 holds with 

(2.3) 

for some 0 < i5 < t· 
We also need a condition on the convergence of Jn, Kn to J, K. Define 

(2.4) 

(2.5) 

where 

(2.6) 

(2.7) Gn * = [nj(n + 1)]Gn , 

AssuMPTION 2.3. Either (a) Bon ----> v 0 as n----> =, or (b) Btn ---->v 0 as n ----> = · 
This assumption is very general, but may occasionally be difficult to verify. 

However, most examples are special cases of Remarks 2.1 and 2.2 below . 

REMARK 2.1. If the scores of (1.2) satisfy an(i) = J(ij(n + 1)) and bn(i) = 
K(ij(n + 1)) for 1 ~ i ~ n for some functions J and K, then Assumption 2.3 (b) 

holds uniformly for H in ~?c. ~ (In this case B0*n = 0 for all n.) 

REMARK 2.2 . Suppose that J and K are increasing and twice differentiable on 
(0, 1 ), and that [J1il[ ~ Dra+i and [K1i l[ ~ Drb+i for i = 0, 1, 2 where D > 0 and 

a and b satisfy (2.2). Let the scores an(i) and bn(i) of (1.2) be the expectations 
of the ith order statistics of samples of size n from populations whose dfs are 

the inverse functions of J and K respectively. Then Assumption 2.1 holds and 

Assumption 2.3 (a) holds uniformly for all H in ,')/'. (This statement generalizes 

Theorem 2 of [1] and the proof may be given in the same way. It relies mainly 

on the fact that L:; f,;/ [an(i) - J(ijn)[ = O(na) and L: i~11 [bn(i) - K(ijn)[ = O(nb), 

which follows from formulas (7 .14) and (7 .24) of [3] with a = a and a = b 

respectively.) 

THEOREM 2.1 . If His in ,-')[ and if Assumptions 2.1 and 2.3 are satisfied, then 

the asymptotic normality (2.1) holds. Given any subclass ,/l ' of ,')~· such that As-
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sumption 2.3 holds uniformly for H in .. /;; ·· 1 and such that a 2 = a 2(H) is bounded 

away from 0 on ,')t.?l, the convergence in (2 . 1) is uniform for H in ,'){: ·1 • 

Note that (2.2) is satisfied if a = b = t - c for some 0 < c < t (take p0 = 
q0 = 2 and o = 2c). Thus Theorem 2.I allows a rate of growth r*- ' for the score 
functions J and K and r h for their derivatives. In Theorem 1 of [I] these rates 

are r il-' and r respectively; in fact the latter condition reduces the rate for J and 
K to log r. Moreover in [ 1] the score functions are assumed to be twice dif
ferentiable throughout the unit interval. 

THEOREM 2.2. Fix C ~ I and 0 < o < t· If His in ,/2~,, and if Assumptions 

2.2 and 2. 3 are satisfied, then the asymptotic normality (2. I) holds. Given any sub

class /)c'(:6 of ,?,;?'.?ca such that Assumption 2.3 holds uniformly for H in ./2 ~a and 

such that a 2 = a 2( H) is bounded away from 0 on ,/C'(: 6 , the convergence in (2.1) is 

uniform for H in ,/c;~, . 

3. Proof of the theorems: Asymptotic normality ofthe leading terms. Let F- 1(s) = 
inf {x: F(x) ~ s} and G- 1(t) = inf {y: G(y) ~ t}; these definitions imply F(F- 1) = 
G(G- 1) = /. The random functions F,.(F- 1 ) and G,.(G-1) are with probability 1 
the empirical dfs of the sets of independent uniform (0, I) rvs F(X1), ••• , F(X,.) 
and G( Y1), • · ., G( Y,. ) respectively . Define the empirical processes U,. = 
n~ [F"(F- 1 ) - /] and V,. = n~ [G,.(G- 1 ) - /] on [0, 1 ]. With probability 1 these 
processes satisfy U,.(F) == n~(F,. - F) and V,.(G) = nl(G,. - G) on ( - oo , oo). All 
of the above remarks follow from the fact that 

(3.1) P(0 0) = P({ill: F,.(F- 1(F)) = F,. , G,.(G- 1(G)) = G,. 

for all x,y and n}) = 1. 

Without loss of generality we shall prove Theorems 2.1 and 2.2 in the case 
where both J and K fail to have a derivative at just one point, say at s1 and t1 

respective! y. For small positive r define the sets 

(3 .2) s ,l = [F-l(r ), F - l(sl - r)] u [F- l(sl + r ), F - l(J - r )]. 

s ,2 = [G- 1(r), G-~u~- r )] u [G- 1(t1 + r), G- 1(1 - r)], 

(3.3) Q rn = {ill: sup 1£,. - Fl < r/2, sup IG,. - Gl < r/2}. 

Let Sr = Sr1 X Sr2 be the product set in the plane and let x(O r,. ) denote the 
indicator function of Q rn · For m in 0 0 n Q r" the mean value theorem gives 

for all X in ~n l n s r l' In the above formula the function <I>,. is defined by <I>,. = 
F + ()(Fn - F), where () = ()(ill, x, n) is a number between 0 and I. Thus with 
probability I (using Assumption 2.3 (a)) 

(3.4) n~ (T,. - f.l) = I; ~= l A ;,. + I; f= o B;,. + I; I=a Brin + Bsn + C,. , 

where B0,. is defined in (2.4) and where 
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A1,. = n! ~ ~ J(F)K(G)d(H,.- H), 

A2,. = ~ ~ U,.(F)J'(F)K(G) dH, A3,. = ~ ~ V,(G)J(F)K'(G) dH, 

B1,. = n! ~ ~~,.c J,.(F,.)K,.(G,.) dH,, B2,. = -n! ~ ~~,.c J(F)K(G) dH,.., 

B73,. = x(O~,){n! ~ ~~ .. [J(F,.) - J(F)]K(G)dH,. - A2,.} , 

Br4n = x(07n)n! ~ ~~,.n src [J(F,.) - J(F)]K(G) dH", 

Br5n = x(Qrn) ~ ~~" nsr U,.(F)[J'(<I>n)- J'(F)]K(G) dHn, 

Br6n = x(Or,) ~ ~~,.nsr U,.(F)J'(F)K(G)d(H,. - H) , 

Br7n = -x(Qr,.) \ S~,,c u sr" Un(F)J'(F)K(G) dH, 

Ban= n! S ~~" J(F)[K(Gn) - K(G)]dH" - A3,., 

C,. = n! ~ \~,. [J(Fn)- J(F)][K(Gn)- K(G)] dH" . 

Let us note that 

which is symmetric to Ban· For this reason Ban will not be treated in the sequel. 
We now proceed to prove the asymptotic normality of the A-terms. Let us 

start with the very useful remark that if a and b satisfy (2.2), then for i = 1 
and 2 we can find numbers pi, q; > 1 satisfying p; -l + q; - I = 1 and 

(3.5) (a+~+ of2)pl < 1 ' 

As to the first pair of inequalities, we have a + t + of2 + b = 1 - of2 and con
sequently a + t + of2 < 1 - of2 (the numbers a and b are strictly positive). 
Now choosep1 =(a+ t + 3of4)-1 and letq1 = (1- p1- 1)-1 • Then (a+ t+of2)p~< 1 
and bq1 = (! - a - o)/(! - a - 3of4) < 1. The second pair of inequalities can 
be obtained in the same way . 

The rv A1n can be written in the form 

(3 .6) 

where Ali,. = J(F(X;))K(G( Y;)) - f.1- are independent and identically distributed 
(i.i.d.) with mean zero. Under Assumption 2.1 application of (1.5) with p =Po 
and q = q0 shows that the rv Alin has a finite absolute moment of order 2 + o0 

for some o0 > 0. The same conclusion holds under Assumption 2.2 for H in ,)Yt"'ca 
as may be seen by applying (1.6). Moreover this moment will be uniformly 
bounded above for H within d'C"(fft"'ca )· 

Because 

where 

(3 .7) </>x .(x) = 0 if x < X; 
' 

and </>x .(x) = 1 if x ~ X ; , 
t 

we have 

(3.8) 
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where the A2; " = ~ ~ (rpx; - F)J'(F)K(G) dH are i. i.d. with mean zero. Under 
Assumptions 2. 1 or 2.2 we have 

IAzinl ;£ D 2 r!- oi4(F(X;)) ~ ~ r•+!+ui4(F)rb(G) dH. 

For some o, > 0 the random part of this upper bound possesses an absolute 
moment of order 2 + o, which is uniformly bounded above for H in ,/ZC. Under 
Assumption 2.1 the nonrandom integral is seen to be uniform! y bounded above 
for H in .-/2'' by application of(1.5) with p = p1 and q = q1 as in (3.5). Uniform 
boundedness of this integral for H in ,;;z;_.0 holds under Assumption 2.2, as may 
be shown by application of ( 1.6 ). 

Analogously we can write 

(3.9) A - - ! " " A 3n - n L..J i= l 3i n ' 

where A3; ,. = ~ S (¢v; - G)J(F)K'(G) dH are i.i.d. with mean zero. Again for 
o1 > 0 this rv has a finite absolute moment of order 2 + o, which is uniformly 
bounded for H in ,/2'(,':/.(~70 ) . This time use ( 1.5) with p = p2 and q = q2 as in 
(3.5) . 

Combining (3.6), (3.8) and (3.9) we get l: t= , A;n -"d N(O, a 2) as n--" oo. The 
variance a 2 is given by (see [I]) 

(3.10) a 2 = Var [J(F(X))K(G( Y)) + ~ ~ (¢ x - F)J'(F)K(G) dH 

+ ~ ~ (¢v - G)J(F)K'(G) dH] , 

with ¢defined in (3.7). 
Since we have shown that an absolute moment of order larger than 2 exists 

and is uniformly bounded on ,/z ( ,/c ~:o), and because the variance is uniformly 
bounded away from zero on ,/c .,(,/2 ~" ),the established convergence in distribu
tion is uniform for H in ,;;,:-· '(,-/c~") by Esseen's theorem (see e.g. [3], Section 4) . 

4. Some lemmas. We start with a number of lemmas to be used in the proofs 
of both Theorem 2.1 and Theorem 2.2. 

LEMMA 4.1. For any ( ~ 0 the function r' is symmetric about !, decreasing on 
(0, !] and has the property that for each f3 in (0, 1) there exists a constant M = M~ 

such that r~ (ps) ;£ Mr' (s) for 0 < s ;£!and r' (l - {3(1 - s)) ;£ Mr' (s) for!< 

s < 1. 

PROOF. On (0, !] we have r' (ps) = (f3st ' (l - f3st ~ ;£ p-CrC(s). A similar 
argument applies to the interval(!, 1). D 

LEMMA 4. 2. For each (J) let <i> n = <i> nw and w n = w nw be functions on Ll,.l = Ll,. lw 

and Ll"2 = Ll ,.2w respectively (see (2 .6)), satisfying min (F, F,. ) ;£ <i>,. ;£ max (F, F,. ) 
and min (G, G,.) ;£ W,. ;£max (G, G,.) where defined. Then uniformly for n = 1, 
2, · · · and HE //Z:": 

(i) supa,.1 r ' (<!>,.)r-C(F) = OP(1) for each ( ~ 0; 
(ii) supa,. 2 r ''(W,.),- r, (G) = OP(1) for each r; ~ 0 ; 

(iii) sup1_""·""> jU,.(F)Ir~- '(F) = 0/1) for each r > 0. 
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PROOF. (i) From formula (3.1) and e.g. from [11], Lemma A.3 it follows 
that for each c > 0 there exists a constant (3 = (3, in (0, 1) such that 

(4.1) P(Qn) = P({(3F ~ Fn ~ 1- (3(1- F) on lln1}) >I- c, 

for all nand uniformly in all continuous F. Because of the definition of <D" we 
have (3F ~ <D n ~ 1 - (3( 1 - F) on lln1• By Lemma 4. 1 this implies that for some 
constant M ,, we have r'(<Dn) ~ M,,r' (F) for x in ll n1 on the set Qn. 

(ii) This is analogous to (i). 
(iii) This follows immediately from Lemma 2.2 of Pyke and Shorack [ IO]. D 
For each positive integer k we define a function lk on [0, I] by 

(4.2) /k(O) = 0, /k(s) = (i - 1 )/k for (i- I )jk < s ~ ijk, 

i=I, ... ,k, 

LEMMA 4.3. Ask, n ~ oo, sup,- oo ,oo) IUn(Ik(F)) - Un(F)[ ~P 0 uniformly in all 
continuous F. 

PROOF. Note thatsup_oo<x<oo IUn(/k(F))- Un(F) [ = SUPo:>s:;>I[Un(/k)- Un[, which 
is no longer dependent on F. The Un-processes converge weakly to a tied-down 
Wiener process U0 (see e.g. Billingsley [2]). In Pyke and Shorack [IO] these Un

and U0-processes are replaced by On- and 0 0-processes defined on a single new 
probability space (0, ~W.-P) and having the same finite dimensional distributions 
as the original processes (see also Skorokhod [ 12]). These new processes satisfy 

sup [0,.- 0 0 [ ~a . s . 0 and hence also sup [On(Ik)- 0 0(lk) [->a.s. 0 uniformly in 
k, as n ~ oo. Now sup [On(Ik)- On[ ~sup [On- 00[ +sup [00 - 00(/k)[ + 
sup [ 00(/k) - 0,.(/k)[. For almost every w the function 00 is uniformly con
tinuous on [0 , 1] so that sup [00 - 00(/k)[ ~a.s . 0 ask~ oo. This proves that 
sup [ 0,.(/k) - On [ ~u . s . 0 fork, n ~ oo. This last result implies the convergence 
in probability of the lemma. D 

Let ).i and A be the random indices 1 ~ !.i( w ), A( w) ~ n such that 

(4.3) X" = X,.,. and Y.< = Y,.,.. 

LEMMA 4.4. Asn~ oo, P({an ~ F(X") ~I- a,.} n {a,.~ G(Y") ~ 1- an})~1 

uniformly for H in ,yt:? provided only an= o(n-1). 

PROOF. The probability of the complementary event is bounded above by 
2an" + 2[1- (I- a,.)"]~ 0 as n~ oo, independently of H in //c. D 

We conclude this section with some lemmas needed for Theorem 2.2. 

LEMMA 4.5. As n ~ oo, P({ Y" = Y,.,.}) -> 0 uniformly for H in JCco · 

PROOF. P({ Y" = Y,.,.}) = P(U7=1 {(X;, Y;) =(X,.,., Yn,.)}) = n ~ ~ H"-1 dH. Note 
that for all x, y we have H(x, y) ~ F(x) and H(x, y) ~ G(y). Letting n0 = (n- 1 )/2 

and applying (1.6) we obtain 

n ~ ~ H"- 1(x, y) dH(x, y) ~ n ~ ~ F"o(x)G"o(y) dH(x, y) 

~ Cn[ ~U"or0/2 d/] 2 

= Cn[f(n0 - of2 + 1 )f( 1 - of2)jf(n0 - o + 2)J2 

~ Clnnoo-2 = O(n"-1) ~ 0 
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as n ~ oo, because 0 < o < i· Here C1 is a constant depending on Cando only; 
hence the convergence is uniform for H in ///'~ 8 • D 

LEMMA 4.6. Asn ~ oo , P({r ,. ;;;; G(Y.);;;; I- r ,.}) ~ I uniformlyforH in ,?'C'ca 

provided r n ;;;; an-o for some positive constant a. 

PROOF. This probability equals I- P({G(Y.) < r ,. }) - P({G(Y.) >I- r ,.}) 
for n larger than (2a)1 ' 8 • Because of the independence of the sample elements, 
application of ( 1.6) gives 

P({G(Y. ) < r,.}) = nP([ni ,:nF(Xi );;;; F(X,.)}] n {G(Y,.) < r,.}) 
= n ( = (u- Irr,.> p n-I(x) dH(x Y) 

J - co J - oo n 1P n 

;;;; Cn[~~ ["- lro/2 dl][~ 6n r o/2 dl] 

= C1 n[f(n- oj2)jr(n + I -.o)]n-"+"2' 2 

as n ~ oo , because -o/2 + o2j2 < 0 for 0 < o < i· Here C1 and C2 are constants 
depending on C, o and a only; hence the convergence is uniform for H in 

:;z'ca · D 

5. Proof of the theorems: Asymptotic negligibility of the remainder terms under 

Assumption 2. 3(a). Let us start with a further decomposition of C,., which can 
be seen to be the sum of 

Crln = x(D~,.)n~ ~~ a,. [J(F,.)- J(F)][K(G,.)- K(G)] dH,., 

Crzn = x(Dr,.)nt ~ ~ a,. n s,c [J(F,.)- J(F)]K(G,.) dH,. , 

c r3n = -x(Qrn)n ~ ~ L ,. rt src [J(F,. )- J(F)]K(G) dH,. , 

Cr4n = X(Q r,.) ~ ~ 8 ,. ,, sr U,.(F)J'(<D,.)[K(G,.) - K(G)] dH,.. 

From this we see that Br4,. and C73,. cancel out. The asymptotic negligibility 

of the other B- and C-terms will be given as corollaries to the lemmas of the 

previous section. 

CoROLLARY 5.1. As n ~ oo , B1,. ~P 0 uniformly for H in ,/c/·( ,?2~6 ). 

PROOF. The rv 8 1,. is bounded by .L: ~= I B1i n where 

B11 ,. = n~ IJ,.(l) l ~~ ! x,. ,. lx a ,.2 IK,.(G,. (y))l dH,.(x,y), 

B12,. = n~ IJ,.(1)K,.(1) 1 ~ ~ !rx ,. ,..v,.,. ll dH,.(x, y), 

8 13,. = n~ IK,. (1 )I ~~ a x{ v l ll ,.(F,.(x))l dH,.(x, y). 
n l n n 

Under the assumptions of Theorem 2.1 we have at once that the sum of these 
terms is of order O(n- Ha+b) = O(n-") ~ 0 as n ~ oo, uniformly for H in ,7?. 

Under the assumptions of Theorem 2.2 first consider B11 ,.. By Assumption 2.2, 

IK,.(G,.(y))l ;;;; Drb(G,.(y)). Application of Lemma 4.2 (ii) with W,. = G,. and r; = b 

gives the existence of a constant M such that D1,. = {rb(G,.) ;;;; Mrb(G) on ~ ,.2} has 

probability larger than 1 - c: uniformly for n = 1, 2, ... and all continuous H . 

Also 



57

1130 F. H. RUYMGAART, G. R. SHORACK AND W . R. VAN ZWET 

x(Oin)Bnn ;£ DMn-!IJn(l) lrb(G( Y.)), 

where J.i is defined by (4.3). Set ln = n-! IJn(l) l and note that by (1.2) and As
sumption 2.2 we have ln ;£ D1 n- 8 for some constant D1 ~D. Let 0 2n = {Jn ;£ 
G( Y,) ;£ 1 - J n}· Then 

as n ~ oo. Applying Lemma 4.6 we see that P(n;=1 O;n) > 1 - 2$ for n large 
enough, uniformly for H in ,'/Z-"ca · A symmetric argument can be given for B13n. 

For the rv B12n use Lemma 4.5 to see that the set on which this rv may assume 
a nonzero value has probability converging to zero as n ~ oo, uniformly for H 

in ,?C'ca. D 

COROLLARY 5.2. As n ~ oo, B2n ~P 0 uniformly for H in d""C"(Yt"'ca)· 

PROOF. The rv B2n is bounded by .L:;=I B2;n where 

B21 n = D 2n-! ra(F(X,))rb(G( Y,)), 

B22 n = D 2n-!ra(F(X"))rb(G( Y")), 

with ).1 and}. defined by (4.3). 
Under the assumptions of Theorem 2.1 consider 0 1" ={an;£ F(X,) ;£ 1- an} n 

{an ;£ G( Y,) ;£ 1 - an}, with an = na+" - 1. Note that nan~ 0. Then 

X(Q )B < D2n- !a -a-b( 1 - a )-a-b 
l n 21n = n n 

= D2(nan)l-a-b(J - an)-a-b ~ 0 

as n ~ oo. Lemma 4.4 gives that P(01,) ~ 1 as n ~ oo, uniformly for H in //27• 

The same argument applies for the rv B22,.. 

Under the assumptions of Theorem 2.2 consider 

Qzn = {.Bn ;£ F(X, ) ;£ 1 - .Bn} n {J n ;£ G( YJ ;£ 1 - J n} , 

with .Bn = (n log n)- 1 and ln = n-" . Then by (2.3) 

x(Ozn)Bzln ;£ D2n- 1,Bn-aln-b(1 - .Bnta(l - rntb ~ 0 

as n ~ oo . By Lemmas 4.4 and 4.6 we see that P(02n) ~ 1 as n ~ oo, uniformly 
for H in ,~/~a· The rv B22,. can be treated in the same way. D 

COROLLARY 5.3. For fixed J, Br3n ~p 0 and crln ~p 0 as n ~ oo, uniformly for 
H in ,;:>z~·. 

PROOF. P(Q~n) ~ 0 uniformly for H in c-:>C' by the Glivenko-Cantelli theorem 
and because the distribution of sup IFn - Fl does not depend on H in c?Z'. D 

COROLLARY 5.4. For fixed r. Br5n ~p 0 and cr4n ~p 0 as n ~ oo, uniformly for 

H in ,')ff'. 

PROOF. According to Lemma 4.2 (iii) with r = !, for given$ > 0 there exists 
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a constant M such that n .. = {sup 1 U .. (F)I ;;;: M} has probability larger than 1 - c: 
for all n and H in :YC'. Also 

x(Dn)IBronl ;;;: M sup~n1nsn IJ'(<D .. ) - J'(F)I SUPsr21K(G)I . 

The function K(G) is bounded on Sr2 and the bound does not depend on H in 
,/C'. The function J' is uniformly continuous on [rf2, S1 - r/2] U [s1 + rf2, 
1 - r/2]. Since !<D .. - Fl ;;;: IF .. - Fl where <I>n is defined, the Glivenko-Cantelli 
theorem yields sup~" 1 nsn IJ'(<Dn) - J'(F)I---+P 0 uniformly for H in c?'C'. A similar 
argument may be used for cr<n• 0 

COROLLARY 5.5. For fixed r, Bran ---+p 0 as n----+ oo, uniformly for H in /)Z/ . 

PROOF. For arbitrary k we have (see (4.2)) 1Br6nl ;£ .l:I=1 BrBikn' where 

Br6Ikn = s s~ .. nsr IUn(F)J'(F)K(G) - U .. (lk(F))J'(fk'(F))K(Ik(G))I dHn' 

Br62kn = I ( s~ ns Un(lk(F))J'(lk(F))K(lk(G)) d(Hn - H)l ' l n r 

Br63kn = s s~n ns r IUn(F)J'(F)K(G) - Un(lk(F))J'(lk(F))K(lk(G))i dH. 

Let us first consider Br6Ikn and Br63 kn' which are both bounded by the supremum 
of the integrand over the set Sr. Let an arbitrary c: > 0 be given. Application 
of Lemma 4.3 gives the existence of constants r;kn -• 0 as k, n----+ oo, such that 
Qkn = {sup IUn(F)- Un(lk(F))i ;£ r;k,.} has probability larger than l - c: for all 
k, nand all H in 7C'. Note that on ([r, S1 - r] u [s1 + r, l - r]) x ([r, t1- r] u 
[t1 + r, l - r]) the function J'(s)K(t) is bounded, say by a constant Mr, and 
uniformly continuous. By Lemma 4.2 (iii) with r = !, there exists a constant 
M such that n .. = {sup IU,.(F)I ;;;: M} has probability larger than l - c. Let us 
finally write (kr = max8 r IJ'(F)K(G)- J'(lk(F))K(lk(G))i, which tends to zero as 
k----+ oo, uniformly for H in c?Z-"'. Hence for i = l, 3 

x(Dkn n Q")Br6ikn;:;:;; YJknMr + M(kr----+ 0 

ask, n----+ oo for fixed r. Because P(Qkn n Q") > 1 - 2c: uniformly for H in c?'c 
we may conclude that Br61 kn ---+P 0 and Br63 kn ---+P 0 uniformly for H in c?C', as 
k, n----+ oo. 

Let us next consider Br62 kn for a fixed value k. For each win 0,. the integrand 
in the expression for this rv is a simple step function assuming a value aiikn(w) 
on the rectangle 

Riikn = (F- 1((i- 1 )/k), F- 1(ifk)] X (G- 1((j- 1 )/k), G-1(j/k)] n Sr n ~ .. , 
for i = 1, · · ·, k and j = 1, · · ·, k. Because laiiknl ;£ M(Mr + (kr) on D,., we 
have 

x(D .. )Br62kn = I L: ~=1 L: ;=1 aijkn s s nwn d( Hn - H)l 

;£ 4k2M(Mr + (kr) sup IHn - HI---+P 0 

as n----+ oo, uniformly for H in ~·. Here Theorem 1-m of Kiefer [8] is used. 
The conclusion of the corollary follows by straightforward combination of these 
results. 0 
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CoROLLARY 5.6. As r l 0 and n ~co, Br7n ~p 0 and cr2n ~p 0, uniformly for 

H in 7c(d'C'co )· 

PROOF. Let e > 0 be given and let us first consider B r7n. By Lemma 4.2 (iii), 

taking r = oj4, there exists a constant M1 such that Q1" ={I U"(F)J ~ M1 rH 8 i 4(F)} 

has probability larger than 1 - c: for all n and H in ,?c. From Assumption 2.1 

(Assumption 2.2) it may be seen that 

(5 .1) 

Next consider Cr 2n. By Assumption 2.1 (Assumption 2.2) we have JK(Gn)J ~ 

Drb(Gn) on a,2 and application of Lemma 4.2 (ii) with W" = G" and r; = b gives 
the existence of a constant M 2 such that Q2" = {rb( Gn) ~ M 2 rb( G) on a"2} has 
probability larger than 1 - c: for all n and H in ,/c . . Take an arbitrary w in Q 

and let US first consider those values of X in ani for which the open random 

interval between the points F(x) and Fn(x) does not contain sl" Then by continuity 

of Jon the closed and differentiability on the open interval, the mean value 
theorem can be applied; it follows from Assumption 2.1 (Assumption 2.2) that 

For those values of X in a,! for which the open random interval between the 
points F(x) and F,(x) does contain sl' the mean value theorem can be applied 
stepwise, since J is continuous on the closed interval and differentiable on the 

two open intervals between F(x), Fn(x) and s1 • We thus get the estimate 

by Assumption 2.1 (Assumption 2.2). Where defined on ani' both <f>0• and <f> 1" , 

<1>2" lie between F and F,. By Lemma 4.2 (i), taking ( = a + 1, there exists a 

constant M3 such that Q3n = {maxi=O,l,2 ra+l(<f>;n) ~ M3 ra+I(F) where defined on 
anr} has probability larger than 1 - c: for all nand H in /¥-'. Combining these 
results we have 

(5.2) E(x(n;=r Q;n)JCr2nJ) ~ 2D2M 1 M 2 M 3 ~ ~sr c raH+" 14(F)rb(G) dH. 

From (5.1) and (5.2) it is clear that the corollary is proved if we show that 
the integral on the right in (5.1) converges to zero as r l 0 and n ~co, uniformly 
for H in 7c(,~co )· For this purpose we start with the integral 

(5.3) ~ ~ s c ra+Hof4(F)rb(G) dH, 
r 

and notethatS/ c (S~ 1 x (-co, co)) U ((-co, co) x S~2). Under Assumption 
2.1, by application of ( 1. 5) with p = p1 and q = q1 as in (3.5), we find that (5. 3) 
is bounded uniformly for H in J'c,· by 

(5.4) 

Since by (3.5) both exponents of the function rare smaller than 1, the dominated 
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convergence theorem implies convergence of (5.4) to zero as r l 0. Under As
sumption 2.2 and for H in 7C"c , by an application of (1.6) we see that (5.3) is 
bounded uniformly for H in c5>C"c• by 

(5 .5) C[~ ( O , r lU(s 1 -r .s 1 + rl U( l-r , l l rl- iJ/ 4 df][~ r~-o/ 2 df] 

+ C[S ri-a/ 4 d/][S ,o,r)U(t1- r,t1+ rl U( I - r ,I l r!- ii/ 2 dl]' 

which by the dominated convergence theorem converges to zero as r l 0. Hence 
under the assumptions of Theorem 2.1 (Theorem 2.2) a value j' of r can be chosen 
such that (5.3) is smaller than s for all Hin 7C"(..-5>C"c• ) provided r;;;; f. For this 
j' there exists an index fl = fl ; such that P({.:ln ::::J S; }) > 1 - s uniformly for H 

in 7C", provided n ~ fl . It follows that under the assumptions of Theorem 2.1 
(Theorem 2.2) the integral on the right in (5.1) is smaller than s with probability 

larger than 1 - s uniformly for H in 7C"(7C"c•) for a'll r ;£ j' and all n ~ fl. 0 
In order to show how the results of these corollaries can be combined to 

complete the proof of Theorems 2.1 and 2.2, let an arbitrary s > 0 be given . 

First use Corollary 5. 6 to choose a fixed r and an index n1 to ensure P( {/ B,7n/, 
JC,2n/ ;£ s}) > 1- s foralln > n1• NextuseAssumption2.3(a)andCorollaries 
5.1-5.5 to choose for the above fixed r an index n2 = n2, > n1 such that P({ /BinJ , 
JBrin /, /Crkn / ;£ s fori= 0, 1, 2; j = 3, 5, 6; k = 1, 4}) > 1 - s for n > n2• This 
implies that the probability that the sum of all these second order terms does 

not exceed lOs is larger than 1 - 2s uniformly for H in c7C"(7C"c• ), as n > n2 • 

6. Replacing Assumption 2.3(a) by Assumption 2.3(b). We shall now suppose 
that Assumption 2.3 (b) holds. Again the theorems will be considered only in 
the case where J and K fail to have a derivative at one point, s1 and 11 respectively. 
The proof is based on an analogue of (3.4). We shall need both the empirical 
processes and the processes Un *(F)= n~(Fn * -F), Vn *(G)= n!(Gn * -G). Instead 

of the set O,n we shall use Oin = {w: sup JFn *- F/ < rf2, sup JGn * - GJ < r/2}. 
The role of .:ln will be taken over by its closure Lin = Lin1 X Lin2 = [ X1n, Xnn] X 

[ Y1n, Ynn ]. Because integration over Lin with respect to dHn is the same as in
tegration over the entire plane, we now have the simpler decomposition 

(6 . 1) n!(Tn - p) = I; ~=l Ain + B'dn + I; ~= l Biin + B:n + Cn * , 

with probability 1. Here B'dn is defined in (2.5), the A-terms are as given in 
Section 3 and 

Bi~n = x(Oi;){n! S S [J(Fn *) - J(F)]K(G) dHn - A2n} , 

Bi2n = x(Oin)n! S ~ s,c [J(Fn *) - J(F)]K(G) dHn , 

Bi3n = x(Oin) ~ ~ s, Ua *(F)[J'(<I>n *) - J'(F)]K(G) dHn , 

B';4n = x(Oin) S ~ ~n n s, Un *(F)J'(F)K(G) d(Hn - H) , 

Bio'll = x(OinHS S;;n ns, u n *(F)J'(F)K(G) dH - A2n } ' 

B:n = n! ~ S J(F)[K(Gn *)- K(G)] dHn - A3n , 

Cn * = n! ~ S [J(Fn *)- J(F)][K(Gn *)- K(G)] dHn . 
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The function <I>,.* arises from application of the mean value theorem and lies 

strictly between F and F,. * where defined. The analogues of B1,. and B2• are 

missing in this decomposition; this essentially simplifies the proof of the theorems. 

However, if one tries to prove the validity of Assumption 2.3 (b) when Assump

tion 2.3 (a) is given to hold, problems similar to those connected with B1,. and 

B2,. recur. 
Only the second order terms differ from those in (3.4). For their asymptotic 

negligibility we need the following modifications of Lemma 4.2. 

LEMMA 6.1. For each (J) let d>,. * = d>:'" and W" * = "W:"' be functions on Li,.1 = Li,.1"' 

and Li,.2 = Li,.2"' respectively, satisfying min (F, F,. *) ~ d>,. * ~ max (F, F,. *) and 

min (G, G,. *) ~ W,. * ~ max (G, G,. *)where defined. Then, uniformly for n = 1, 

2, .. ·and HE :YC': 

(i) sup;;;,.1 r'(~,. *)r' (F) = OP(1) for each ( ~ 0; 
(ii) sup;;;,2 r~(W,. * )r ~(G) = OP(1) for each r; ~ 0. 

PROOF. It suffices to prove (i). Let us first show that for each c > 0 there 

exists a f3 = {3, in (0, 1) such that P( {f3 F ~ F,. * ~ 1 - {3( 1 - F) on Li,.1}) > 1 - c, 

for all nand uniformly in all continuous F: By ( 4.1) and because~~ nj(n + 1) ~ 1, 

we only have to prove that P({nj(n + 1) ~ 1 - {3 [1 - F(X,.,.)]}) > 1 - c for f3 

small enough. Because the F(X;) are independent uniform (0, 1) rvs, this proba

bility equals 1 - {1 - 1 /[ f3(n + 1 )]}" > 1 - c for all n and uniformly in all 

continuous F, provided f3 = {3, is chosen sufficiently small. The proof can be 

concluded in the same way as that of Lemma 4.2. 0 

LEMMA 6.2 . Uniformly in all continuous F we have: 

(i) sup;;;,1 I U,. *(F)- U,.(F)Irh'(F) ~P 0 as n ~ oo, for each p > 0; 

( ii) sup;;;,.1 \U,. * (F)Ir~-r(F) = 0 P( 1) uniformly for n = 1, 2, · · ·, for each r > 0. 

PROOF. (i) Note that I U,. *(F) - U,. (F) I r~- P(F) < n-~r~- P(F) and that for any 

fixed f3 E (0, 1) we have r~- P( f3/n) = r' - ~'(1 - f3 /n) = O(n!- P). Because the F(X;) 

are independent uniform rvs, given an arbitrary e: > 0 we can choose a f3 = {3 , 

in (0, 1) such that P({{3jn ~ F(X1,.) ~ F(X,.,.) ~ 1 - N n}) > 1 - e: for all nand 

uniformly for all continuous F. Part (i) follows from a combination of these 

results . (ii) follows from (i) and Lemma 4.2 (iii). 0 
The proof that the sum of the B*- and C*-terms converges in probability to 

zero can be given by a method quite similar to that of Section 5, by using Lemmas 

6.1, 6.2 instead of Lemma 4.2. 
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A NOTE ON CONTIGUITY AND HELLINGER 
DISTANCE* 

by 

J. OOSTERHOFF (1), AND W. R. VAN ZWET (2) 

1. Introduction 

For n = 1, 2, . .. let (Xn 1, dn1), •.. , (Xnn• dnn) be arbitrary measurable spaces. 
Let Pni and Qni be probability measures defined on (Xni> dni), i = 1, ... , n; 

n n 

n = 1, 2, . . . , and let p~n) = n pni and Q~n) = n Qni (n = 1, 2, . . . ) denote the 
i= 1 i= 1 

product probability measures. For each i and n let Xni be the identity map from Xni 
onto Xni· Then Pni and Qni represent the two possible distributions of the random 
element Xni as well as the probability measures of the underlying probability space. 
Obviously Xn 1, ... , Xnn are independent under both P~"l and Q~"l (n = 1, 2, ... ). 

The sequence { Q~"l} is said to be contiguous with respect to the sequence { P~"l} 
if lim P~"l(An) = 0 implies lim Q~"l(An) = 0 for any sequence of measurable sets An. 

n-+ oo n-+ oo 

This one-sided contiguity notion is denoted by { Q~"l} <J {P~"l} (the notation is 
due to H. Witting & G. Nolle [7]). The sequences { P~"l} and { Q~"l} are said to be 
contiguous with respect to each other if both { Q~"l} <i { P~"l} and { P~"l}<J { Q~"l}. 
This two-sided contiguity concept we denote by { P~"l} <J c:> { Q~"l}. 

The main purpose of this note is to characterize contiguity of product probability 
measures in terms of their marginals. To this end we introduce the Hellinger distance 
H(P, Q) between two probability measures P and Q on the same a -field, defined by 

where p = dP/dJL, q = dQ/d~-t and 1-l is any a-finite measure dominating P + Q. 
This metric is independent of the choice of 1-l and satisfies 0 ~ H(P, Q) ~ 2112 • 

* Report SW 36/ 75 Mathematisch Centrum, Amsterdam 

AMS (MOS) subject classification scheme (1970): 62E20 

KEY WORDS & PHRASES: asymptotic normality, contiguity, Hellinger diftance, log likelihood 
ratio. 
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Defining the total variation distance of P and Q by 

(1.2) liP - Qll = sup jP(A) - Q(A)I, 

where the supremum is taken over all measurable sets A, we have the following 
inequalities (Le Cam [ 4]) 

(1.3) 

The Hellinger distances of the product measures and of their marginals are connected 
by the relationship 

" 
(1.4) H2(P~">, Q~">) = 2- 2 fl {1 - -};H 2(P,;, Q,;)} . 

i= 1 

For further reference we first mention two easy results, viz. 

" 
(1 .5) IH2(P,;, Q,;) = o(l) for n-+ oo "'> {P~">} <lL>{Q~">}, 

i=1 

and 

n 

(1.6) {Q~")} <l {P~")} => IH2(P,;, Q,;) = 0(1) for n-+ oo. 
i= 1 

The proof of (1.5) is an immediate consequence of the string of implications 

" " I H 2(P,;, Q,;) = o(1) =>I log {1 - tH2(P,;. Q,;)} = o(l) 
i= 1 i= 1 

"'> H2(P~">, Q~">) = o(l) =>l i P~">- Q~" >ll = o(l) => {P~">} <l e> {Q~">}. 

To prove {1.6) suppose that limsup H(P~"l, Q~">) = 2112 . Then by (1.3) limsup liP~")-
n-too n-+ oo 

- Q~")l l = 1 in contradiction to { Q~"l} <l {P~">}. Thus limsup H2(P~">, Q~"l) < 
n-+ oo 

" " < 2, therefore liminf f1 { 1 - -!H2(P,;, Q,;)} > 0 and hence limsup I H2(P,; , Q,;) < 
n~oo i::::::l n-+oo i=l 

< oo and the proof is complete. 

It can be shown by counterexamples that in ( 1.5) the condition cannot be 
n 

weakened to I H 2(P,i, Q,;) = 0(1), and that in (1.6) the conclusion cannot be 
i= 1 " 

strengthened to I H 2(P,.i, Q,;) = o(l), for n -+ oo. Hence there remains a gap 
i=1 

between the sufficient condition and the necessary condition for contiguity in ( 1.5) 
and (1.6) respectively. In section 2 we obtain conditions which are both sufficient and 
necessary for contiguity of the product measures by adding another condition to 

n 

I H 2(P,,, Q,;) = 0{1). 
1=1 
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In many applications asymptotic normality of the log likelihood ratio statistic A, 
(see (3.1)) plays an important part. Since 

2( A, I P~"l) ~ w .¥( -1a2 ; a 2 ) implies { P~")} <1 1> { Q~")} 

(cf. Hajek & Sidak [1], Le Cam [2], [3], [4], Roussas [6]), we have to impose 
stronger conditions on the marginals P,; and Q,; to ensure the asymptotic normality 
of A,. Some sufficient (and almost necessary) conditions for the asymptotic normality 
of A,, which are clearly stronger than those in section 2, are given in section 3. 
These conditions are closely related to some earlier results of Le Cam [3], [ 4]. 

2. Contiguity of product measures 

We begin by noting the following useful implication: 

n n 

(2.1) { Q~"l} <1 {P~"l}::;. [lim I P,i(A,;) = 0::;. lim I Q,;(A,;) = OJ 
n-+oo i= 1 n_,.co i= 1 n 

for any collection of measurable sets A,;· For suppose lim I P,;(A,;) = 0. Then 
n n n-+oo i=l n 

limP~")( U A,;) = 0, hence by contiguity lim Q~"l( U A,;) = 1 - lim TI (1 - Q,;(A,;)) 
n-+co i=l n n-+oo i=l n-+co i=l 

= 0 and therefore lim I Q,;(A,;) = 0. 
n-+ooi=l 

Now let J-l,; be a a-finite measure on (fl",;, d,;) dominating P,; + Q,; and write 
p,; = dP,ddJ-l,; and q,; = dQ,ddJ-l,; (i = 1, ... , n; n = 1, 2, ... ). The main result of 
this section is 

n 

(2.2) lim sup I H 2(P,;, Q,;) < oo 
n->oo i=1 

and 

n 

(2.3) lim I Q,;(q,;(X,;)jp,;(X,;) ~ c,) = 0 whenever c, ~ oo. 
n-+ooi=l 

Proof. First assume that (2.2) and (2.3) are satisfied. Write 

n 

and consider TIL,;. It is easily shown ( cf. Le Cam [ 4], Roussas [ 6]) that { Q~">} <1 
i= 1 n 

<1 { P~"l} is equivalent to tightness of the sequence of distributions { 2( TI L,; I Q~">)~ 
i= 1 



66

160 J. OOSTERHOFF AND W. R. VAN ZWET 

n = 1, 2, ... } . The tightness of this set of distributions can also be expressed in the 
more convenient form 

n 

(2.4) lim Q~nJ( f1 Lni ~ kn) = 0 whenever kn ~ ro . 
n-+oo i==l 

Hence we have to prove (2.4). Let 0 < kn ~ ro. Let 0 < en ~ ro be real numbers 
to be chosen in the sequel. If 1A denotes the indicator function of the set A, we have 
by (2.3) and Markov's inequality for n ~ ro 

n 

Q~n)( f1 Lni ~ kn) 
i= 1 

n n 

::£ Q~n)( f1 Lni ~ kn 1\ Lni < en for i = 1, ... , n) + Q~n)( U {Lni ~ en}) 
i=1 i= 1 

n n 

::£ Q~n)( TI L!{2 1(0,cn)(Lni) ~ k! 12 ) + L Qn;(Lni ~ en) 
i= 1 i= 1 

::£ k;1/2 .Q f q~{2p;//2 d.Uni + o(1). 
1 - 1 q,-d < CnPn i 

Since for all en ~ 1 

I 3/2 -1/2 d qni Pni .Uni 
qni <CnPni 

< f d f -1/2( 1/2 - 1/2) d = qni flni + qniPni qni Pni .Uni 
qni<CnPni qni<CnPni 

< 1 + f qlf2p-.1j2{q1f2 _ p1f2)2 du . + f ql f2(q1 f2 _ p1f2) du . 
= '" nr. nr. "' rnr- ra "' n1. rnl 

qni <CnPni qni <cnPni 

< 1 + e1/2 fcq1f2 - pl f2 )2 d . + 1 - fq1 f2pl /2 du . = n nl nt f-lnt nt. "' rnt 

_ f 112( 112 112) d < 1 ( 112 .1.) H 2lp Q ) qni qni - Pni .Uni = + en + 2 \ ni• ni , 
qni~CnPni 

it follows that 
n 

limsup Q~nl( f1 Lni ~ kn) 
n-+co i= l 

n 

::£ limsup k; 112 f1 {1 + (c!12 + ±) H 2(Pni• Qn;)} 
n-+oo i= 1 

n 

< 1. k-112 {( t 12 .1.)" Hz(P Q )} = lmSUp n exp en + 2 L., ni• ni · 
n-+oo i=l 
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Choosing en in such a way that en = o((log kn)2 ) for n ~ oo, (2.2) implies 
n 

Q~n)( fi Lni ~ kn) = o( 1) for n ~ oo and (2.4) is established. 
i= 1 

Conversely, suppose that { Q~n)} <J { P~n>}. Since (1.6) implies that (2.2) is satisfied, 
it remains to prove (2.3). Let 0 < en ~ oo and consider the inequality, valid for 
en~ 4, 

n n 

Since by (2.2) e;; 1/ 2 L H 2(Pni• Qn;) ~ 0 for n ~ oo, it follows that lim L Pn(Ln1 ~ 
i =1 n n-+ooi = 1 

~ en) = 0. Hence (2.1) implies that lim L Qn;(Lni ~ en) = 0 and the proof of the 
theorem is complete. D n ->oo i = 1 

Corollary 1. { p~n)} <J 1> { Q~n)} iff (2.2) and (2.3) are satisfied and 

n 

(2.5) lim L Pn;(p,.;(Xn;) fqnlXn;) ~ en) = 0 whenever en~ 00 • 
n-t-co i=l 

In connection with contiguity Hellinger distance seems to be a more appropriate 
metric than total variation distance. Note that from (1.3) and (1.6) we immediately 
obtain the implication 

n 

(2.6) { Q~n)} <J {P~n)} ::::> L IIPn; - Qni ll 2 = 0(1) for n ~ 00, 
i = 1 

where agam the order term cannot be strenghtened to o(l). However, 
n 

L 11Pn1 - Qnill 2 = 0(1) is too weak a condition to replace (2.2) in Theorem 1. On 
i= 1 n 

the other hand we cannot strengthen this condition to I 11Pn1 - Qn;ll' = 0(1) for 
i = 1 n 

some r < 2, since { Q~n)} <J { p~n)} does not necessarily imply I 11Pn1 - Qn1ll ' = 0( 1) 
i=1 

for any positive r < 2. The following example serves to illustrate these points. 
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Example. Let P.nt denote Lebesgue measure on (0,1), let p,.1 = 1<0 , 0 and let q,.; = 
= (1 + n- 112) 1(o,1 -,.-•f2) + n- 112 1r1 - 11-tt2,t)• i = 1, .. . , n; n = 1, 2, .. . . Then 

II 

L IIP,.1 - Q,.,l! 2 = (1 - n- 112) 2 ~ 1 and (2.3) is trivially satisfied since q,.1fp,. 1 
f = l II 

is uniformly bounded. But { Q~n)} <1 { p~n>} does not hold because L H2(P,." Q,.,) = 
i=l 

= 2n{l - Jq;{2 dp.,.i} = 2n{1 - (1 + n-112)112 (1 - n-1/2) - n-3/4} = nt/2(1 + 
+ o(l)) for n -+ oo. 

Taking q,., = (1 + n- 112) 1<0 , 112> + (1 - n- 112) 1[112 , 1> for all i and n, we have 
. n 

{Q~">} <1 {P~n>} since {2.3)is satisfied and L, H2(P,.1, Q,.i) = 2n{1- f{l + n- 112) 1' 2 -
i=l 

II 

- !(1 - n- 1' 2 ) 1' 2} = t + a(l) for n -+ oo. However, in this case L IIP,.i- Q,.dl' = 
l=l 

= n(!n-1' 2)'-+ oo for n-+ oo if r < 2. 

3. Asymptotic normality of A, 

Define 

n 

(3.1) A, = L log {q,.;(X,.i)fp,1(X,.1)}, n = 1, 2, .•.• 
i= 1 

Note that, with probability one, A,. js well-defined under P~">, although A, may 
assume the value - oo with positive probability under p~n>. 

In our search for necessary and sufficient conditions for the weak convergence 
.!l'(A, I p~n>) -+w %( -i<T2; <T2) in terms of the marginal distributions of the X,, we 
shall confine ourselves to the. case where the summands in (3.1) satisfy the traditional 
u.a.n. condition ( cf. Loeve [ 5]). 

Theorem 2. For any u ~ 0 . 

(3.2) 

and 

{3.3) 

for every s > 0 iff for every e > 0 

n 

(3.4) lim L H2(P,.;, Q,1) = iu2 , 
, ... 00 i= t . 
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" (3.5) lim I Q,i(q,;(X,i)jp,;(X,i) ~ 1 + ~>) = 0, 
n-+oo i= 1 

" (3.6) lim I P,lPnlXni)jq,;(X,i) ~ 1 + ~>) = 0, 
n_.co i= 1 

or equivalently, iff (3.4) holds and for every 1> > 0 

(3.7) 

Proof. To simplify the notation we write r,i = q,;/Pni· We first show that (3.5) and 
(3.6) are equivalent to (3.7). From 

.t f (q!{ 2 - P!{2)2 d.Uni 
l- 1 Jq,.t-Pnd~tPni 

we obtain the double inequality 

" {1 - (1 + ~>t1/2}2 I Q,;(r,;(X,i) ~ 1 + ~>) 
i= 1 

" + {1 - (1 - ~;) 1 12)2 I P,;(r~/(X,i) ~ (1 - ~>t 1) 
i=1 

< ~ f (q1!2 - p1!2)2 dtl . = i..J nl "' rn1 
i= 1 Jq,.;- Pnd ~tPni 

" " 
~ I Q,i(r,;(X,;) ~ 1 + ~>) + L P,;(r~"/(X,i) ~ (1 - ~>t 1 ) 

i= 1 i= 1 

and the equivalence of (3.5) and (3.6) to (3.7) is immediate. 

Next we note that both (3.2), (3.3) and (3.4), (3.5), (3.6) imply { P~">} <l t> { Q~">1 
( cf. Corollary 1 ). 

The remainder of the proof relies on the normal convergence theorem (cf. Loeve 
[5]). According to an equivalent form of this theorem (3.2) and (3.3) are equivalent to 

" 
(3.8) lim I P,i(ilog r,i(X,i)l ~ <5) = 0 for every c5 > 0 , 

11-+0J i=1 
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By the contiguity of { P~">} and { Q~">} and (2.1) the condition (3.8) is equivalent to 
(3.5) and (3.6) and hence to (3.7). Henceforth we assume (3.7), (3.8) and {P~">} <1 t> 

<1 t> { Q~">}. We still have to show that (3.4) is equivalent to (3.9) and (3.10). 

Let 0 < {> < 1. For !tog r,;j ~ 6 we have the expansion 

(3.11) log r,; = 2log {1 + (q~{2 - p~{2) p,;£ 112} 

=·2(q!{2 _ P!{2) p,;£112 _ (q!{2 _ P!{2)2 p,;£1(1 + Q,;o) 

with !e,;"l < 26. Thus 

Since by (3.7) 

lim {.± f (q~{ 2 - P!{2 ) 2 d11, , - t H 2(P,; , Q,;)} = 0 
n -+ oo •=1 J!ogrnd ~ ll • = 1 

and by (3.8), {P~">} <1 t> {Q~">} and (2.1) 

.t f (q,; - P,;) dJ1,i = - .t f (q,; - P,;) dJ1,;---+ 0 
•- 1 llogrnd ;::! <! •- 1 llogrnd >b 

for n ---+ oo, we have 

n 

~ lim limsup 26 I H 2(P,;, Q,;) = 0 , 
310 n-+oo i = 1 

where we have used (1.6). Similarly, 

lim limsup ,± { f (log r,;) dP,;}
2 

llLO n-+co •=1 poliirnd ~ ll 

(3.13) 

n 

~ lim limsup 6(2 + 26) I H 2(P,;, Q,;) = 0 . 
IILO n->oo i = 1 
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Finally (3.11) implies that for IIog rnil ~ (j < 1 

(log rm)z = 4(q~{z - p~{z)z p;;/ + i!nio(q~{z - p~{zy p;;/ 

with li!nilil < lOb. Hence, in view of (3.7) and (1.6), 

lim limsup 1.± I (log rn;) 2 dPni - 4 .I H 2(Pni> Qni) l = 0 . 
li!O n-+oo •=1 IJogrnd~li •=1 

(3.14) 

The equivalence of (3.4) to (3.9) and (3.10) is now an immediate consequence of 
(3.12), (3.13) and (3 .14). The theorem is proved. 0 

In the one sample case where, for each n, Xn 1, ... , Xnn are identically distributed, 
condition (3.3) is implied by (3.2) and Theorem 2 slightly simplifies. This remains 
true in the k sample case (k ~ 2) provided all sample sizes tend to infinity. 

The first part of the proof of Theorem 2 also shows that the conditions (2.3) and 
(2.5) in Corollary 1 may be replaced by the single condition 

1~ .t I ( q~{2 - p~{2)2 dflni = o whenever en ~ 00 • 
n 00 J- 1 fqni-Pn;J~CnPni 

The proof of Theorem 2 could also be given in a more roundabout way. Intro
ducing the r .v.'s 

n 

one shows that .P( L wni I p~n)) ~w %( -la2 ; a2) iff .P(An I p~n)) ~w %( -!a2 ; a2), 
i= 1 

provided the respective u.a.n. conditions are satisfied. It is then not difficult to prove 
n 

that the weak convergence of L W,.i and the u.a.n. condition on the summands are 
i=1 

equivalent to (3.4) and (3.7). In this proof (3.7) appears as the Lindeberg condition 
n 

in the central limit theorem applied to I wni· 
i= 1 

The equivalence of both weak convergence results has first been proved 
by Le Cam ([3], [ 4]). The initial assumptions lim sup H 2(Pni• Qni) = 0 and 

n-+oo t,;;i,;;n 
limsup I I P~n) - Q~n) ll < 1 made by Le Cam are not restrictive since they are implied 

n-+oo 
by our condition (3.7) and the contiguity of {P~n)} and { Q~n>}, respectively. One part 
of this proof is also contained in Hajek & Sidak [ 1]. 
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ABSTRACT: We consider the problem of estimating a real-valued param
eter 8 in the presence of an abstract nuisance parameter n, such as 
an unknown distributional shape. Attention is restricted to the case 
in which the score functions for 8 and n are orthogonal, so that fully 
asymptotically efficient estimation is not a priori impossible. For 
fixed sample size, we provide a bound of Cramer-Rao type. The bound 
dif fers from the classical one for known n by a term involving the 
integrated mean square error of an estimator of a multiple of the 
score function for 8 for the case where 8 is known. This implies that 
an estimator of 8 can only perform well over a class of shapes n if it 
is possible to e stimate the score function for 8 accurately over this 
cla ss. 
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1. AN INEQUALITY OF CRAMER-RAO TYPE 

Let xl, ... , XN be independent and identically distributed (i.i.d.) 

random variables with a common density f(•; n, e) with respect to a 

a-finite measure~ on~. The parameter of interest e belongs to an 

open subset 8 of~, and the nuisance parameter n ranges over an 

arbitrary set H. For unknown n and e, it is required to estimate e, 
which is done by means of an estimator TN= TN(X 1 , ••• , XN) for some 

measurable function TN :~N 7~. We are interested in the v~riance of 

TN under f(•; n. e). We shall write Pne , Ene • and 0~8 for probabili

ties, expectations, and variances under this model. The indicator 

function of a set B will be denoted by 18 • 

Throughout, we shall make the following regularity assumptions 

on the model and on the estimators to be considered. The first set of 

assumptions concerns differenti~bility in quadratic mean of the square 

root of the density with respect to e. We assume that for every (n, 8) 

there exists a function T(•; n, e) such that 

Pne ,(f(X 1 ; n, e) = 0) 
lim ---------------------
8 '-+ 6 ce'- e)2 

0, 

0. 

Clearly this defines T(•; n, e) a.e. [Pne ] and ensures that 

E ne T 2 (X1 ; n, e) < oo, We complete the definition of T by requiring 

arbitrarily that 

T (x; n, e) = 0 if f(x; n, e) = 0. 

Note that an equivalent formulation of (1.1)-(1. 3) is 

fp2(x; n, e)d~(x) > 0, 

lim f[ f!(x; n. e') - i!(x; n, e) 1 n, e)] 2dJJ(x) 0, 
e ' .... e ce, - e) 2p(x; 

where p is of the form 

( 1. 1) 

( 1. 2) 

( 1. 3) 

( 1. 4) 

( 1. 5) 

( 1. 6) 
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p(x; n. 8) = T(x; n. G )f~(x; n, e), (1. 7) 

i.e., p = 0 iff= 0. 

For fixed n, the function T(•; n, e) is called the score function 

f or e, and if f is di fferentiable in the ordinary sense, it coincides 

with 3 log f(•; n, e)/38 a.e. [P~e ]. For known n , the Fisher informa

tion concerning 8 that is contained in a single observation X1 is 

define d by 

I~ (8 ) = E~8 T 2 (X 1 ; n, e) = f p2 (x ; n, e) d ).l(x ) E (0, oo). (1.8) 

Our second set of assumptions concerns the estimator TN . We 

assume that for every (n , e) 

E~e TN = x (n, e) E (-oo , oo) ( 1. 9) 

and t ha t if E~8 T; < oo for a certa in (n, e), then T~ is uniformly 

integrable with respect to P~8 ,, for all e' in a neighborhood of e. 
Thus, for some E > 0, 

l im 
C+"' 

sup E . T 2 1 = 0. le, - e I < E ~o , N { I TN I;;, c} ( 1. 1 0) 

Unde r the assumptions made so far, the Crame r-Ra o inequality f or 

known n is valid for TN, so 

(1.11 ) 

where X(n, e)= 3X(ll, e ) /3e . Define t he f unction J (•; n, e) by 

J (x ; n, e ) 
xcn, 8 ) 

I ( e) T(x ; n, 8 ) 
~ 

( 1. 12) 

and l et 

(1.13) 

We note that (1.11) is a consequence of the orthogona lity of SN (n , e) 

and TN - SN ( n , e), which y i elds 

O~e (TN ) = o~8 (SN ( n , e)) + O~e (TN - SN (n, e)) 

{;~Cn , e) } 2 
+ 0~8 ( TN - SN ( n , e)). (1.1 4) 

NI~ ( e ) 
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But this implies, in addition, that o~8 (TN) can come close to the 

Cramer-Rao bound (1.11) only if TN - x<n. 8) is close to SN (n , 8) 

under Pne · However, if His a large set in some function space, say, 

then TN - x(n, 8) can obviously not mimic SN(n, 8) arbitrarily well 

for all n EH, and consequently, o~8 (TN) cannot come arbitrarily close 

to the Cramer-Rao bound for all n E H simultaneously. Since we are 

considering the case in which n E H is unknown, it should be possible 

to improve on (1.11). 

Let us turn this argument around for a moment. If TN performs 

well as an estimator of 8--or rather of x(n, 8), whi ch may include a 

bias term--for all n E H, then TN - X(n, 8) must resemble SN (n, 8) 

under Pne for every n E H and 8 E 0 . It woul d seem therefore that 

TN - x(n, 8) must contain information about the unknown function 

J(•; n, 8). Let us try to extract this information. For every fixed 

8 E 0 , let ~(X 1 ; 8) be a sufficient statistic for X1 with respect to 

the remaining parameter n E H. According to the factorization theorem 

this means that 

f(x; n. 8) g(~(x; 8); n. 8) • h(x; 8) a . e. [\.I] (1.15) 

for appropriately chosen g and h. Suppose, moreover, that for all 

(n, 8), 

Then, fori= 1, ... , N, we have 

Ene (SN(n, 8) I ~ (Xj ; 8) for j ~ i; xi = x) 

- En8 (SN (n, 8 )j ~ (Xj ; 8) for j ~ i ; 1/J (Xi ; 8) 
1 

= N J (x; n, 8) a. e . [Pne ]. 

( 1. 16) 

~ (x ; 8)) 

(1.17) 

Since TN - x(n, 8) resembles SN(n, 8) under Pne , we can hope that 

NE n8 (TN I~(Xj ; 8) for j ~ i; Xi = x)- NEn8 (TN /lfJ (Xj ; 8) for j ~ i ; 

1/J (Xi ; 8) = 1/J(x; 8)) or rather its symmetrized version 

N 

JN (x; 8 ) ~ {Ene (TNil/JCX j ; 8) for j ~ i ; Xi = x) 
i =l 

- E n8 (TNI1/J(Xj ; 8) for j ~ &; 1/J (Xi ; 8) 

= ljJ (x ; 8))} ( 1. 18) 
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can serve as an estimator of J(x; n, 8). Note that since for each j, 

~(Xj; 8) is sufficient for Xj for fixed 8 , JN is indeed independent of 

n. For known 8 it is therefore a legitimate estimator. 

We shall prove the following result. 

Theorem 1.1: Suppose that for every (n, 8 ) assumptions (1.1)-(1.3), 

(1.9), and (1.10) are sati sfied. For every fixed 8, let ~(X1 ; 8) be 

sufficient for X1 with respect ton and let (1.16) ho ld for all (n , 8). 

Then, for every (n, 8), 

0 2 (T) >-txcn, 8)} 2 

ne N "" Nin ( 8 ) 

+ ~ Ene f { JN (x; 8) - J(x; n, 8)} 2f (x ; n, 8)d]J(x). (1.19) 

The theorem asserts that the Cramer-Rao bound may be improved by add

ing N- 1 times the integrated mean square error (MSE) of the estimator 

JN of the function J, which is an unknown multiple of the score 

function T . It is unsatisfactory that the right-hand side of (1.19) 

depends on the choice of TN. However, one can rephrase the theorem 

to assert only the exi stence of an estimator JN such that (1.19) holds. 

The message of the theorem is then clear: The accuracy with which one 

can estimate 8 for unknown n is delimited by how well one can do for 

known n on the one hand and how well one can estimate J( •; n, 8) for 

known 8 on the other. Clearly, the latter depends strongly on the 

class H. If T( •; n, 8) runs through a l a rge c lass of score f unctions 

as n ranges over H, then t he i ntegrated MSE of any estimator of J can 

be quite large, especially for some particularly irregular choices of 

T . If T is restricted to a smaller class of nicely behaved score f unc

tions a s n EH, then the integrated MSE can be much smaller. Finally, 

if n is known, so that H consists of a single element , then J(•; n, 8) 

can se rve as an e stimator of itself , and (1.19) reduces to the Cramer

Rae inequality. 

In a s ense, the result of Theorem 1.1 is not at all surprising . 

Adaptive estimators of a parameter for an unknown distributiona l shape 

are a lways based on some kind o f preliminary estimate of the unknown 

s core f unction followed by a good estimate of 8 fo r the distributional 

shape correspondi ng to the estimated score f unction . For such 
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estimators it is to be expected that a bound on their accuracy should 

involve both the accuracy of estimating e for known n and that of 

estimating n for known 8 . The novel aspect of Theorem 1.1, however, 

is that it is not assumed that the estimator TN is based on a prelimi

nary estimate of the score function, but that an estimate of J for 

known 8 is derived from TN. In e f fect we are saying that any success

ful adaptive estimation procedure must involve, either explicitly or 

implicitly, the estimation of the score function (or rather of J ) and 

that because of this, the accuracy of estimating J enters into the 

lower bound for the variance of the adaptive estimator. 

Though Theorem 1.1 is purely a finite sample result, it obviously 

has asymptotic implications. As an example, it clearly provides a 

finite sample analogue of a conjecture of Bickel (1982) which states, 

loosely speaking, that asymptotically fully efficient adaptive esti

mation is possible only if a consistent estimator of the s core function 

exists. 

In this connection the role of assumption (1.16) is of interest. 

It is well known [cf. Stein (1956), Bickel (1982), and Begun, Hall, 

Huang, and Wellner (1983)] that a necessary condition for asymptoti

cally fully efficient adaptive estimation to be possible is that the 

two estimation problems--that of e for known n and that of n for known 

8--are, in a sense, asymptotically orthogonal. Since ~(X1 ; 8) is suf

ficient with respect to n for known 8 , and T(X1 ; n, 8) contains the 

information about e locally for known n. assumption (1.16) is indeed 

an asymptotic orthogonality condition of this kind. In making this 

assumption, we are therefore restricting attention to the case in 

which fully asymptotically efficient estimation is not a priori impos

sible. In a way, this restriction is a rea sonable one because without 

it, the Cramer-Rao inequality (1.11) is no longer a logical point of 

departure. In a companion paper, we intend to discuss the more general 

situation in which orthogonality is not necessarily present. 

Even though it serves the same purpose, assumption (1.16) looks a 

bit different from the orthogonality conditions employed by other 

authors. Stein (1956) and Begun et al. (1983) define a class of score 

functions for n as the class of all limits, in the ordinary sense or in 
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L 2 , of the form 

or 

lim 
v -+ 00 

log f(·; nv' 8) - log f(·; n. 8) 

dCnv , n) 

2 lim 
t 1C·; nv' 8) - t! c·; n. 8) 

d C n v, n) t! C • ; n, 8) 
v -+oo 

where d denotes an appropriately chosen distance, and lim d(nv' n) 0. 

For all such "score f unctions" o (•; n, 8) of the form 

(1. 20) 

Bickel (1982) considers all "score functions" o( •; n, 8) of the form 

f(·; n1 • 8) - f< ·; n. 8 ) 
f< ·; n, 8) 

for n 1 E H and again requires ( 1. 20) , which now reduces to 

(1.21) 

Under an addit i onal completeness assumption on the sufficient 

statistic ~ (X1 ; 8) , condition (1.16) in Theorem 1.1 can be r ep laced 

by a condition of the form (1.20) for an appropriate class of "score 

functions" o . Since we are not concerned with asymptotics, in which 

only local properties count, there seems to be no need to introduce 

differentiation with respect to n to define our score functions. 

Bickel's de f inition, however , has the drawback that the expectation 

in (1.21) need not exist. To remedy this we consider all score func

tions of the form 

t' ( 0 ; n I > 8) - r' ( 0 ; n > 8) 

r'c.; n' 8 ) 

for n 1 E H and require (1. 20), which reduces to 

J T(x ; n, 8)f1 (x ; n, 8)f!(x; n 1 , 8) d)J (x) = 0 

foralln 1 EH. 

Of course we have to tailor the completeness assumption on 

~(X1 ; 8) t o this particular choice o f score functions. Def ine 

densit ies 

(1. 22) 
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for all n' in the set Hne where 

A- 1 (n, n', 8 ) = Jl<x; n. 8)f!(x; n', 8)dJl(x) > o. 

We shall write Pnn'e and E 1111 , 8 for probabilities and expectations under 

this model. For every fixed n and 8 we assume that ~(X 1 ; 8) is com

plete with respect to n'E Hne under this model; i.e., if for some 

(n, 8) and for some measurable function m, Enn ' em(~(X 1 ; 8)) = 0 for all 

n' E H 118 , then P1111 , 8 (m(~(X1 ; 8)) = 0) = 1 for all n' E H 118 • 

Theorem 1.2: Suppose that for every (n, 8 ) assumptions (1.1)-(1.3), 

(1.9), and (1.10) are satisfied. For every fixed 8 , let ~(X 1 ; 8) be 

sufficient for X1 with respect ton; for every fixed (n, 8), let 

~(X1 ; 8) be complete with respect to n' under the model P1111 , 8 • Suppose , 

finally, that (1.22) holds for all (n, n', 8). Then, for every (n, 8), 

inequality (1.19) holds. 

In Section 2 we shall provide the proofs of Theorems 1.1 and 1.2. 

The most obvious example, i.e., the estimation of location for an 

unknown symmetric density, is briefly discussed in Section 3. 

2. PROOF OF THE THEOREMS 

Let 
N 

fN (x; n, 8) = n f(x i ; n, 8 ) 
i :l 

denote the density of X= (X1 , ••• , XN) with respect to theN-fold 

product measure ]lN taken at the point x = (x 1 , ••• , xN) . Since N is 

fixed, a standard argument shows that (1.6) and (1.7)--or equivalently 

(1.2) and (1.3)--imply 

~t,!(x· n. 8 ') - f}<x; n, 8 ) 1 ] 2 

lim f _N __ '------'-'----- 2pN(x; n, 8) d]l N(x) 
e ·~ e (8'- 8 ) 

where 

pN (x; n. 8) 
N 

f}<x; n. 8 ) L T(xi; n. 8 ). 
i =l 

0, (2.1) 

(2.2) 
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2 Suppose that Ene TN < 00 for a certain (n, 8). Take E > 0 as in 

(1.10) and 181 - 81 <E. In view of (1.9) and (2.1), 

xcn, 8 1) - :z;Cn, 8 ) 
=!TN (x) • 

f} (x; n, 8 I) - t! (x; n, 8 ) 

( 8 I - 8 ) ( 8 I - 8 ) 

• {fJ Cx; n, 8 1) + f} (x; n, 8)}dJJ N(x) 

=!TN (x){tPN (x ; n, 8) + !JN (x ; n, 8 , 8 1)} 

• { t! C x ; n , 8 1 ) + tJcx; n, 8)}d)JN(x) 

with 

lim fo 2 (x; e I _,. e N n, 8 , 8 1 )dJJN(x ) = o. 

Because of (1. 10)' Ene 'T~ is bounded for I 8 I - 8 I < E and by the 

Cauchy-Schwarz inequality 

e 1 _,. e 

(2 . 3) 

(2.4) 

limfTN(x) tJ N(x ; n, 8 , 8 1 ) 

• {f} Cx; n, 8 1) + f} Cx ; n, 8)}dJJN (x ) = o. (2.5) 

By another application of the Cauchy-Schwarz inequality combined with 

(1.6), (2 . 1), and (1.10), 

lim (TN (x) PN (x ; n, 8) e ~ _,. e} 1 

• {fA~ (x ; n, 8 1)- f} (x ; n, 8)} d JJ N(x ) = 0. (2.6) 

Together, (2.3), (2 . 5), (2 . 6), and (2.2) imply the existence of 

xCn, 8) as well as 

N 

xCn, 8 ) = EneTN L T (Xi ; n. 8). 
i =l 

Repe ating this argument with both TN and X replaced by 1, we find 

Combining (2.7) and (2.8) we arrive at the decomposition (1.14). 

(2. 7) 

(2 . 8) 

To prove Theorem l.l it remains to study o~8 (TN - SN (n, 8)) for 

SN(n, 8) as de f ined by (1.12) and (1.13). We begin by noting that 

0 ~e ( TN - S N ( n , 8) ) 

(2. 9) 
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Consider the conditional distribution of X= (X1 , ••• , XN) given 

~(X1 ; 8), ... , ~(XN; 8). Under this conditional probability model, 

X1 , ••• , XN are still i.i.d., and an application of Hajek's projection 

lemma [cf. Hajek (1968)] to this conditional setup yields 

... ' 
N 

~ L: a ~e { E rre (TN - S N ( n , 8) I ~ ( X J ; 8) f or j f. i ; Xi ) 
i=l 

It follows from (2.9), (2.10), and the inequality 

that 
N 

a~8 (TN- SN(ll, 8)) ~ L Erre {Erre (TN- SN ( ll , 8)~~(Xj ; 8) for j f. i ; Xi ) 
i=l 

- E rre (TN - S N ( n , 8) I ~ ( X 1 ; 8 ) , . • . , ~ ( X N ; 8 )) }2 

it~Errs f{Erre (TN- SN ( Y) , 8) I~(Xj ; 8) f or j f. i ; x i = x ) 

- Erre (TN - SN(n, 8) I~ (Xj ; 8) for j f. -z., ; ~(Xi ; 8 ) = ~(x ; 8 )) } 2 

• f (x ; n, 8 ) d~(x) 

;;, N- ' Ena J {,t, [E co (T, - s, (n, 8) IW<X; ; 8) for j I i ; x, ~ x) 

- E 06 (T, - s, (n, 8) lw<x; ; 8 ) for j ; i ; ,p(x, ; 8 ) ~ ,P (x; 8)) f 
• f (x ; n, 8 ) d~(x). (2 . 11) 

But since (1.16) i mplie s (1.17), and in view of de finition (1.18), we 

can write (2.11) as 

8 ) - J (x ; Y) , 8 ) }2f(x ; Y) , 8 ) d~ (x). ( 2 . 12) 

Theorem 1.1 now fol lows f rom (1.14) and (2.12). 

To prove Theorem 1.2, we note that the f actorization theorem, cf. 

(1.15), ensures that for fixed (n, 8), ~ (X1 ; 8) is sufficient for X1 
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with respect to n' E Hne under the model Pnn 'e' It follows that 

is independent of n ' E Hne . However, according to ( 1. 22), 

(2.14) 

for all n' E Hne , and the completeness assumption implies that the 

conditional expectation in (2.13) vanishes a.s. under Pnn 'e for every 

n ' E Hne . Since (2.13) is independent of n', we can taken' n, and 

(1.16) follows. Theorem 1.2 is now a consequence of Theorem 1.1. 

3. ESTIMATING LOCATION UNDER SYMMETRY 

Let H be the class of probability densities n with respect to Lebesgue 

measure onm, which are symmetric about 0 and absolutely continuous 

with derivative n ' and which possess a finite Fisher information 

I n = f {~,(~~) r n(x) dx < oo , (3. 1) 

Let X1 , ••• , XN be i.i.d. with a common density f(•; n, 8) = n(•- 8), 

where n E H and 8 Em are both unknown. Under this model it is rea

sonable to estimate 8 by a location equivariant estimator TN = TN(X 1 , 

.. . ' XN), i.e., an estimator satis f ying 

for all x = (x 1 , ••• , xN ) E m N and a Em. If we assume that 
2 

Ene TN < oo , then 

¢ ( n ) + 8 , 

so that x <n. 8) = l. 

(3. 2) 

(3.3) 

It is easy to see that f or this model the regularity conditions 

(1.5)-(1.7), or equivalently (1.1)-(1 . 3), a re satisfied with 

T = - n '(·- 8)/n(·- 8). Clearly, assumptions (1.9) and (1.10) on TN 

also hold. Choosing 

\jJ (x ; 8) = lx - 8 I, (3 . 4) 

we see that for fixed 8 , \jJ (X1 ; 8) is sufficient for X1 with respect to 
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n E H. Since n'/n is an odd function and n is symmetric, we have 

a.s. (3. 5) 

in view of (3.1). Hence the assumptions of Theorem 1.1 are satisfied, 

and 

where 

J(x; n, 8) = -I~ 1 ~'/: _- 8~) , (3. 7) 

N 
JN (x; 8) L: {Ens<TN II Xj - Gl 

i=l 

for j # i ; xi = x) 

- Ens ( TN I I X j - 8 I for j # i; 1xi - el = lx- el)} 
N 

= t .L: {Ens (TN IIXj - el for j i i; xi- e = X- 8) 
'Z-=1 

-Ens (TN IIXj - 8j for j f -z_ ; Xi - 8 = -(x - 8))}. (3.8) 

Obviously, neither side of (3.6) depends on 8 . We can therefore sim

plify (3.6) to 

( 3. 9) 

where 

J(x·, n) = -rl n'(x) 
'I n n(x) ' (3.10) 

This result is given in Klaassen (1981), which also contains a dis

cussion of the implications of inequality (3.9). 
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ON ESTIMATING A PARAMETER AND ITS SCORE FUNCTION, II 

C. A. J. KLAASSEN, A. W. VANDER VAART AND W. R. VAN ZWET 

Department of Mathematics 
University of Leiden 
Leiden, Netherlands 

1. INTRODUCTION 

A bound of Cramer-Rao type is provided for an estimator of a real-valued 
parameter 0 in the presence of an abstract nuisance parameter TJ, such as an 
unknown distributional shape, on the basis of N i.i.d. observations. The bound 
consists of the reciprocal of the effective Fisher information in the sample, plus 
a term involving the integrated mean squared error of an estimator of a multiple 
of the so-called conditional score function for 0, for the case where 0 is known. 
This implies that an estimator of 0 can only perform well over a class of shapes 
TJ if it is possible to estimate the conditional score function for 0 accurately over 
this class. For the special case where fully adaptive estimation may be possible, 
this result was given in a companion paper (Klaassen and van Zwet (1985)). 

2. AN INEQUALITY OF CRAMER-RAO TYPE 

Let Xr, ... , XN be independent and identically distributed (i.i.d.) random 
variables taking values in some measurable space (X, A), with a common density 
f( ·; 17, 0) with respect to a a-finite measure J.L on (X, A). The parameter of 
interest 0 belongs to an open subset e of R and the nuisance parameter TJ 

ranges over an arbitrary set H. For unknown TJ and 0, it is required to estimate 
9 and this is done by means of an estimator TN = TN(XI> ... , XN) for some 
measurable function TN: X N --+ IR. We are interested in finding a lower bound 
for the variance of TN under f( ·; TJ, 0). We shall write P11 o, E 11 o and a~ 8 for 
probabilities, expectations and variances under this model. 

For every fixed 0 E e and j = 1, ... ,N, let tj;(Xj; 0) be a sufficient statistic 
for Xj with respect to TJ E H. According to the factorization theorem this is 
equivalent to assuming that 

f(x; TJ, 0) = g(tf;(x; 0); TJ,O)h(x; 0) a.e. [J.L], (2.1) 

where g(·;TJ,O) may be chosen to be the density of t/;(X1;0) with respect to a 
u-finite measure vo. 

We shall assume that jt is differentiable in quadratic mean with respect 

281 
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to 0 with a derivative which is not essentially zero, thus for every (TJ, 0) 

J 11 1 1 1 2 
lim [(0'-o)- {f2(x;7],0 1)-f2(x;TJ,0)}--r(x;TJ,O)f2(x;TJ,0)] dJL(x) =0, 
~-8 2 

(2.2) 

(2.3) 

Obviously (2.2) implies that I(TJ, 0) < oo. Note that r(·; 7], 0) is simply an 

£2-version of the classical score function for 0, a log f(x; TJ' 0) I ao; I(TJ, 0) is the 
Fisher information concerning 0 which is contained in a single observation X1 
and measures how well 0 can be estimated when TJ is known. However, since 7J is 
unknown, one expects the information concerning 0 to be smaller. As discussed 
in Begun, Hall, Huang and Wellner (1983), the information loss results from a 

reduction of the score function. 
First we define score functions in the 7]-direction. We shall say that f3(·; 7], B) 

is an 7]-score function if there exists a sequence TJ k E H such that 

lim J[k{ft (x; TJk. 0)- jt (x; 7], 0)}- ~f3(x; 7], O)ft (x; 7], 0)] 2 dJL(x) = 0. (2.4) 
k-oo 2 

It is easy to see that, in view of (2.1), (2.4) implies that 

f3(x; 7], 0) = b(tj~(x; 0); TJ, 0) a.e. [P17 o], (2.5) 

where b satisfies . J 1 I 1 1 2 hm [k{g2 (v; TJk, 0)- g2 (v; TJ, 0)}- -b(v; 7], O)g2 (v; 7], 0)] dvo(v) = 0, (2.6) 
k-oo 2 

so that b is an 7]-score function for the model {g(· ;TJ,O): TJ E H,O E 0}. Let 
B(TJ, 0) denote the set of all 7]-score functions for the original model - i.e. 
functions f3 for which (2.4)-(2.5) hold for an appropriate sequence TJk E H -

and let B ( 7J, 0) be the closure in L 2 of the linear span of B ( TJ, 0). 
The effective score function TE for 0 in the presence of the nuisance param

eter 7J, is defined as 

rE(x; 7], 0) = r(x; 7], 0) - bE(tJ1(x; 0); 7], 0), 

where bE ( t/1 ( x; 0); 7J, 0) is the £ 2-projection of r on B ( TJ, 0), thus 

IE(TJ,O) = E 11 o{r(X1;7J,O)- bE(tJ1(Xl;O);TJ,0)} 2 

IIJ.in E 11 o{r(X1 ;TJ,0)- f3(XI)} 2 • 

/3EB(17,8) 

(2.7) 

(2.8) 

IE(TJ, 0) is the effective Fisher information, which measures how well 0 can be 
estimated when 7J is unknown (cf. Begun et al. (1983), but note that we do not 

assume that B ( 7J, 0) itself is a linear space). 
Let C(TJ, 0) denote the set of all square-integrable functions b(tj~(x; 0)) with 

E118 b(tj~(X1 ;0)) = 0. In the special case where B(TJ,O) = C(TJ,O), bE(v;7J,B) 
equals the conditional expectation E 11 o ( r(X1; TJ, 0) lt/I{Xl; 0) = v) andrE and IE 
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reduce to 

rc(x;1J,O) = r(x;1J,O)- E 71 e(r(XI;1J,O)I1/J(XI;O) = 1/J(x;O)), 

lc(1J,O) = E 71 er6(XI;1J,O), 

(2.9) 

(2.10) 

which are called the conditional score function and the conditional Fisher infor
mation for 0. In general, however, B(17,0) may be a proper subset of C(17,0), 
and hence 

as is clear from figure 1. Of course, we still have rc = TE and Ic = IE if 
E71 e(r(XI;1J,O)i1P(XI;O) = 1/1(·;0)) happens to be in B(17,0). 

(2.11) 

So far we have discussed various aspects of the model. Concerning the 
estimator TN, we assume that, whenever E 71 e T'fv < oo for a certain (17,8), then 

for some c: > 0, where 

sup E 71 •e• T'fv < oo 
( 71 1 ,8') EAe 

Ae: = {(11',0'): J if(x;1J',O')- f(x;1],0)idJ.t(x) < c:} 

(2.12) 

(2.13) 

consists of parameter values "close" to ( 17, 0). For simplicity we shall also assume 
that TN is an unbiased estimator of 0, i.e. for all ( 1], 0), 

(2.14) 

C(n,e) 

Figure 1. 
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The role of assumption (2.12)-(2.13) is to ensure that (2 .14) implies that 

N 

E 11 eTN L r(Xj; 1}, 0) = 1, 
j=l 

N 

E 11 eTN L (3(Xj) = 0 
j=l 

for all (3 E B ( 1J, 0), 

and hence in particular 
N 

E 11 eTN L rE(Xj; 1}, 0) = 1 
j=l 

in view of (2.7)-(2.8). If we define 

1 N 

SN(1J,O) = NI ( 0) LTE(Xj;'T],O) 
E 1}, j=l 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

then (2.17) asserts that SN(1J, 0) and TN- SN(1J, 0) are uncorrelated under P11 e. 
As a consequence 

u~ 8 (TN) = u~ 8 (SN(1J,0)) + u~ 8(TN- SN(1J,0)) (2.19) 

and hence 

(2.20) 

which is the form the Cramer-Rao inequality takes for unbiased estimation of 0 
in the presence of the nuisance parameter 1]. Note that this is the fixed sample 
size version of the corresponding asymptotic results in Begun et al. (1983). 

However, (2.19) contains essentially more information than inequality (2.20). 
It implies that u~ 8 (TN) can only come close to the Cramer-Rao bound (2.20) if 

(TN- 0) is close to SN(1J, 0) under P11 e. It follows that if TN performs well as 
an estimator of 0 for all'T} E H, then (TN- 0) must resemble SN(1J,O) under 
P11 e for all'T} E H and 0 E 0. It would seem therefore that (TN - 0) contains 
information about the unknown function TE ( · ; 1}, 0). Let us try to extract this 

information. 
For SN(1J,0) as defined in (2.18) we have 

E 11 e(SN (1J, 0) 11/i(Xj; 0) for j =/= i; Xi = x) (2.21) 
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1 
N I ( fJ) rc(x; TJ, fJ) 

E T], 

in view of (2.7) and (2.9). If (TN- fJ) resembles SN(TJ,fJ) under P.,e, we may 
hope that 

N 

JN(x;fJ) = L{E.,e(TNit/I(Xj;fJ) for j I i;Xi = x) (2.22) 
i=l 

can serve as an estimator of 

(2.23) 

Note that since for each j, 1/I(Xj; fJ) is sufficient for Xj with respect to TJ E H 
for fixed f) E e' J N is indeed independent of TJ. For known f)' it is therefore a 
legitimate estimator of J. 

We shall prove the following result. 

Theorem 2.1. Suppose that assumptions (2.1)-(2.3) and (2.12)-(2.14) are sat
isfied for every ( TJ, fJ). Then, for every ( TJ, fJ), 

1 1 J 2 a~o(TN) 2: N lE(TJfJ) + NE.,e {JN(x;fJ)-J(x;TJ,fJ)} f(x;TJ,fJ)dJi-(x). (2.24) 

The theorem asserts that the Cramer-Rao bound (2.20) may be improved by 
adding N-1 times the integrated mean squared error (MSE) of the estimator 
J N of the function J, which is an unknown multiple of the conditional score 
function rc. For practical purposes it is unsatisfactory that the right-hand side 
of (2.24) depends on the choice of TN. However, one may obviously rephrase 
the theorem to assert only the existence of an estimator JN such that (2.24) 
holds. The message of the theorem is then clear: the accuracy with which one 
can estimate f) for unknown TJ is delimited by the effective Fisher information 
on the one hand and by how well one can estimate J(·; T], fJ) for known 0 on 
the other. Clearly the latter depends heavily on the class H. If J ( · ; TJ, 0) runs 
through a large class of functions as TJ ranges over H, then the integrated MSE 
of any estimator of J may be quite large, especially for particularly irregular 
choices of J. If J is restricted to a smaller class of nicely behaved functions as 
'rJ E H, then the integrated MSE may be much smaller. Finally, if TJ is known 
so that H consists of a single element, then J ( · ; TJ, 0) can serve as an estimator 
of itself and (2.24) reduces to the Cramer-Rao inequality (2.20). 

In a sense, the result of the theorem is not surprising. Estimation of a 
parameter 0 for an unknown distributional shape is based typically on a pre
liminary estimate of an unknown score function followed by a good estimate 
of f) for the distributional shape corresponding to the estimated score function. 
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For such estimators a result like (2.24) is to be expected. The interesting as
pect of the theorem, however, is that it is not assumed that the estimator TN 
is based on a preliminary estimate of a score function, but that an estimate 

of J for known 0 is derived from TN. In effect we are saying that a successful 

estimation procedure for 0 must involve - either explicitly or implicitly - the 

estimation of J and that because of this, the accuracy of estimating J enters 

into the lower bound for the variance of the estimator of 0. 
Although the theorem is purely a finite sample result, it obviously has 

asymptotic implications. An asymptotic analogue would imply that effective 

estimation of e' i.e. 
1 D 

{N IE(fJ, B)} 2 (TN -B) ---t N(O, 1), (2.25) 

is possible only if the function J can be estimated consistently with respect to 

integrated MSE for known B. In this context it is unsatisfactory that J involves 

the conditional score function rc rather than the effective score function TE 

and, indeed, Klaassen (1987) has shown that a somewhat stronger version of 

(2.25) does entail consistent estimation of rEI IE(Tl, B). 
Of course this discrepancy disappears if rc = TE, i.e. if the function 

E 11 o(r(XtirJ,O)!?/J(X1 ;B) = 7/J(x;O)) is an element of B(rJ,B). This situation is 
rather common and examples, including non-i.i.d. models, are given by van der 

Vaart (1986), who also explicitly constructs an effective estimator of B based 

on a preliminary consistent estimator of rc for such models. 

An even more special case occurs if rc = r, so that IE = I and J = 
r I I. Now (2.24) provides a finite sample analogue of the statement that fully 
adaptive estimation of B is possible only if r I I can be estimated consistently. 

This situation was discussed in the companion paper Klaassen and van Zwet 

(1985). 

3. PROOF OF THE THEOREM 

The proof resembles that of theorem 1.1 in Klaassen and van Zwet (1985). 

Let 
N 

!N(x) =IT f(xj;rJ,B) 
j=l 

denote the density of X = (X11 ••• , XN) with respect to the N-fold product 

measure J.LN taken at the point x = (x 1 , ... , XN) and write 
1 1 

f"J;(x; rJ, O')- f"J;(x; fJ, B) = ~ ( . O) + ~ ( . B B') (3.1) 
(B'- B) 2PN x, fJ, N x, fJ, ' ' 
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with 
N 

PN(x; 17, 0) = f~(x; 17, 0) L r(xi; 17, 0). 
i=l 

Since N is fixed, a standard argument shows that (2.2) implies 

lim J Ll~(x;17,0,0')dJ.LN(x) = 0. 
(}'--.(} 

In view of (2.14) we have 
1 1 

(3.2) 

(3.3) 

J ( )JJ(x;11,0')-f"J(x;11,0){ !.( ') !.( )} () ( ) 
1 = TN x (O'-O) flv x;17,0 +fl. x;17,0 dJ.LN x 3.4 

= J TN(x){ ~PN(x; 17, 0) + LlN(x; 17, 0, O')}{f~(x; 17, O') + f~(x; 17, O)}dJ.LN(x). 

If E11 (JTJ., = oo, there is nothing to prove. Suppose therefore that E 11 fJTJ., < oo. 
Since (2.2) ensures that 

lim J if(x; 17, O')- f(x; 17, 0) idJ.L(x) = 0, 
(}'--.(} 

(2.12) and (2.13) yield 

lim sup E 11 fJ'TJ., < oo. (3.5) 
(}'--.(} 

Together, (3.3), (3.5) and the Cauchy-Schwarz inequality show that 

J 1 1 

lim TN(x)LlN(x; 17, 0, O'){J"J(x; 17, 0') + f"J(x; 17, O)}dJ.LN(x) = 0, 
(}'--.(} 

(3.6) 

I J TN(x)pN(x;17,0){f~(x;11,0')- f~(x;17,0)}dJ.LN(x)l 

::; {C2 J {J~(x;17,0')- f~(x;11,0)}2dJ.LN(x) J p~(x;17,0)dJ.LN(x)}t (3.7) 

+{! Tj,(x){f~(x; 17, O')- f~ (x; 17, 0)} 2 dJ.LN(x) { p~(x; 17, O)dJ.LN(x)} t 
j{ITNI>C} 

for every C > 0. As O' tends to 0, the first term on the right tends to zero 

for every C in view of (2.2). Since E11 fJTJ., < oo and E 118 r2 (X1 ;17,0) < oo, the 
second term converges to zero as C -+ oo. It follows that the left-hand side of 

(3.7) converges to zero, and together with (3.4) and (3.6) this proves (2.15). A 

similar argument produces (2.16) and (2.19) follows. 
It remains to show that 

a~ 8 (TN- SN(11, 0)) ~ ~E11 (} J {JN(x; 0)- J(x; 17, 0)} 2 f(x; 17, O)dJ.L(x). (3.8) 

To see this, we copy the argument leading from (2.9) to (2.11) in Klaassen and 
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van Zwet (1985), even though SN (rJ, 0) is defined differently in that paper. We 
find 

a~ 8 (TN- SN(rJ, 0)) (3.9) 

N 

~ N- 1 E11 e J (2=[E11 e(TN - SN(rJ, 0)11/J(Xi; 0) for J ::/= i; Xi = x) 
i=l 

- E 11 e(TN- SN(rJ,O)It/l(Xj;O) for J ::/= i;t/l(Xi;O) = 1/J(x;0))]}2 f(x;rJ,O)dJ.t(x). 

In view of (2.21)-(2.23), (3.9) is identical to (3.8) and the proof complete. 
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In this paper we re-examine two auxiliary results in Putter and van Zwet [7]. Viewed in a 
new light these results provide some insight in two related phenomena, to wit consistency of 
estimators and local asymptotic equivariance. Though technically quite different, our conclusions 
will be similar to those in Beran [I] and LeCam and Yang [5]. 

Key words: non-parametric models, consistency, local asymptotic equivariance, convolution 
theorem, sets of the first category. 
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1. Introduction 
Let (X, A) be a measurable space and P a collection of probability measures on 

(X, A). Let IT be a topology on P, so that (P, IT) is a topological space. Finally, 
let X 1, X2,. . . denote a sequence of i.i.d. random variables with values in X and 
(unknown) common distribution PEP. 

For N = 1,2, ... , we consider a map TN: (P,ll)-+ (n,p), where ('R,p) is a 
metric space . Both spaces (P, II) and (n, p) are equipped with the u-algebras of 
Borel sets B(P, IT) and B(n, p ), which are generated by the open sets in (P, IT) and 
(n, p) respectively. Probability distributions on these spaces are probability mea
sures on the Borel sets, and are induced by measurable maps from (X00 , A00 , P 00 ) 

to (P,B(P, IT)) or ('R,B('R,p)). We assume throughout that each TN is measurable. 
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Having observed the i.i.d. sample X1, ... ,XN with common distribution pEP, 
our aim is to estimate the somewhat abstract 'R.-valued "parameter" rN(P). For a 
measurable map tN: XN---+ 'R., let TN= tN(Xl, . .. , XN) be an estimator of rN(P) 
based on X1, ... , XN . We shall say that TN is a consistent estimator of rN(P) for 
PEP if 

(1.1) for every PEP, 

where ...,...P indicates convergence in probability under P as N .- oo. The more 
formally inclined reader should view this expression as shorthand for the correct 
but laborious statement that the sequence {TN }]V= 1 is a consistent sequence of 
estimators of the sequence { TN(P)}]V=1 . If we wish to stress the role of the metric 
pin (1.1) we call TN p-consistent. 

In many applications the topology II on P will be metrized by the Hellinger 
metric H, so that (P, H) is a metric space. Recall that for P, Q E P with densities 
f and g with respect to a common £T-finite measure J.L on (X,A), the Hellinger 
distance H of P and Q is defined as 

(1.2) 

Many results in asymptotic statistics do not hold for all underlying distributions 
PEP., but only for P E P \ D, where the exceptional set D is in some sense small 
compared toP. For a finite-dimensional parametric family P = {Ps: fJ E 8} with 
e c JR:~' we may identify p with e, and the exceptional subset of e will typically 
be small in the sense that it has Lebesgue measure zero. On the more general 
topological spaces of distributions (P, II) that we consider in this paper, there is 
no obvious analogue for Lebesgue measure for which "small" sets can naturally 
be described as sets of measure zero. It is therefore hardly surprising that in the 
present set-up, the exceptional set D will be small in a topological sense: D will be 
a set of the first category in (P, II) . We recall that a set of the first category is a 
countable union of nowhere dense sets, and that a set is nowhere dense in (P, IT) if 
its closure does not contain an open set in (P, II). 

When thinking of exceptional sets D C P of the first category as "small", a word 
of caution may not be amiss. Even for parametric families P = {Ps: () E 8} with 
6 C JRk, such sets D may correspond to subsets of the parameter space of positive 
Lebesgue measure and one has to impose regularity conditions to make sure that 
this phenomenon does not occur. By allowing exceptional sets of the first category, 
one is - in a sense - sweeping some technical difficulties under the rug in exchange 
for cleaner statements of results. Of course one also has the added generality of 
dealing with arbitrary P rather than parametric families, but again this comes at 
a price. With increasing complexity of the space P, the concept of a set of the 
first category gradually looses its significance. For instance, as long as (P, II) is 
topologically complete, we know that the complement of a set of the first category 
is everywhere dense, but in incomplete spaces a set of the first category may equal 
the entire space. This gradual loss of significance corresponds precisely to what one 
would expect: as the complexity of the model P increases, many results will hold 
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in decreasing generality. All in all, we feel that exceptional sets of the first category 
may well be the proper concept in much of asymptotic statistical theory. 

The framework introduced so far was used to discuss consistency of bootstrap 
estimators in Putter and van Zwet [7]. Two of the auxiliary results obtained in 
that paper are re-examined in the present note from a somewhat different point of 
view, to wit consistency of estimators in general and the related subject of local 
asymptotic equivariance. Though technically quite different, our conclusions will 
be similar in spirit to those in Beran [1] and LeCam and Yang [5]. 

2. Consistency 
The parameter sequence { TN(P)} will be called locally asymptotically constant 

(LAC) at PEP if for every C > 0, 

(2.1) lim sup p(TN(Q), TN(P)) = 0. 
N-oo {QEP: H(P,Q)~CN-1/2} 

If TN converges to a limit T pointwise in (n, p) , then the LAC property is obviously 
equivalent to the statement that the limit of TN ( PN) is the same for any sequence 
PN contained in shrinking Hellinger balls of radii of order N-112 and centered at 
P. The following proposition is simply a re-statement of Lemma 5.3 in Putter and 
van Zwet [7]. 

Proposition 2.1. Let the topology II on P be metrized by Hellinger metric H 
and suppose that . 

(i) For every N = 1, 2, .. . , the map TN : (P , II) -r (n, p) is continuous; 
(ii) There exists a p-consistent estimator TN= tN(X1, . .. ,XN) ofTN(P) . 
Then there exists a set D of the first category in (P,II) such that {7N(P)} 2s 

LAC at every PEP\ D . 

Let pN and QN denote the joint distribution of X 1 , .. . , XN under the models 
P and Q respectively. We have 

(2.2) 

and hence, if P and Q are at Hellinger distance of order N-112 , theN-dimensional 
distributions pN and QN are at Hellinger distance of order 1. This is the case 
where the two models are contiguous and, for large N, the joint distributions of 
X 1, ... , XN are essentially different under P and Q. Yet, in order to be continuous 
and estimable, the parameter 1'N(P) has to be essentially the same under both 
models for large N and "most" P. Hence, if, e.g., rN(P) = B(PN) is a parameter 
of the distribution pN which varies non-trivially with its argument pN, then one 
must expect that rN(P) will not be estimable. 

A case of particular interest is as follows. Consider a sequence of random vari
ables YN = YN(Xl, ... , XN; P), where YN is a measurable map from XN x P to 
a separable metric space (Y, 17). Let n be the space of all probability dist ribu
tions on (Y, T}) equipped with Prohorov's metric p which is defined for distributions 
R1,R2 en by 

(2.3) p(R1, R2) = inf{c > 0: R1(A) ~ R2(A£) + c, for all A E B(Y, 17)}, 
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where Ac is an c:-neighborhood of A. Since (Y, TJ) is separable, p metrizes weak 
convergence of probability measures inn (c.f. Dudley [3), Section 11.3). Note that 
the separability of (Y, T}) also implies that (n, p) is separable (Billingsley [2], p. 239). 
The parameter to be estimated is 

(2.4) 

the probability distribution ofYN under P. Obviously TN maps (P, H) into (R,p). 
This is the estimation problem that the bootstrap is designed to solve. 

We shall say that YN is locally asymptotically distributionfree (LAD) if its dis
tribution TN satisfies (2.1) with p taken to be the Prohorov metric. Obviously, the 
conclusion of Proposition 2.1 may now be interpreted to assert that YN is LAD. 

At first sight the dependence of Y N = YN (X 1, ... , X N; P) on P may seem some
what unusual. It is introduced to allow us to standardize the statistic of interest and 
t.his standardization may depend on P. If (Y, 77) is a Euclidean space JRk, one may 

·instance wish to study an estimator ZN = ZN(Xl, . . . , XN) of a k-dimensional 
rameter ((P) and in this case the distribution TN(P) of YN = aN(ZN- ((P)) is 
~ distribution of interest for some normalizing sequence of constants aN . Perhaps 

1 even more compelling reason for allowing YN to depend on P is that otherwise 
GS distribution will typically not be estimable in cases of interest. 

To see this, suppose that YN = YN(Xl, ... ,XN) does not depend on P. In 
the first place this ensures continuity of each TN in view of (2.2) and because 
p(rN(Q),TN(P)) will tend to zero if H(QN , pN) does. Hence assumption (i) of 
Proposition 2.1 is automatically satisfied and we obtain 

Corollary 2.1. Let TN(P) be the law ofYN = YN(Xl, ... ,XN), where YN does 
not depend on P. If there exists a Prohorov-consistent estimator of TN(P), then 
there exists a set D of the first category in (P, H) such that YN is LAD at every 
PEP\D. 

In other words, the distribution TN(P) of YN = YN(Xl, ... , XN) can only 
be estimated Prohorov-consistently on the basis of X 1 , ... , X N if Y N is LAD at 
"most" P. But we already noted that if P and Q are at Hellinger distance of order 
N- 112 , then pN and QN will be essentially different N -dimensional distributions. 
Hence the LAD property of YN at a given Po indicates that the distribution of 
YN = YN(Xl, ... , XN) is insensitive to significant changes of the distribution pN 
ofthe random vector (Xl, . . . ,XN) in all possible directions around Pf. Such a 
statistic is not of much interest since no statistical procedure based on it will enable 
us to distinguish between significantly different contiguous models. 

Let us therefore return to the case where YN = YN(X1 , . • . , XN; P) does indeed 
depend on P. If rN(P) is to be continuous as well as estimable, then clearly the role 
of this dependence of Y N on P must be to offset the change in the distribution of the 
statistic that would otherwise occur for changes in the underlying distribution P 
of Hellinger distance of order N- 112• To arrive at the proper dependence of YN 
on P that will ensure the LAD property which is necessary for the estimability 
of TN(P), one starts with the statistic of interest ZN = ZN(Xl , . .. , XN) and asks 
what the influence of a contiguous change in the distribution of the X1 will be on 
the distribution of Z N. This is often relatively easy as the statist.ic is supposedly 
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constructed for some purpose related to distinguishing between the different models 
P E 'P and the effect of contiguous changes of P on its distribution in usually known 
to first order. The second step is to construct a dependence on P that will destroy 
this first order change. This step is basically intelligent guesswork. 

Another approach to this problem is to propose a particular dependence of YN 
on P and then try to find out in which cases this produces the desired result of 
making the distribution 'T'N(P) of YN continuous and LAC by checking (2.1). The 
prime example of this was alluded to above: if (Y, ry) is a Euclidean space JRk and 
the k-vector ZN is a consistent estimator of a k-dimensional parameter ((P), then 
we may choose 

(2.5) 

This transformation will certainly remove at least part of the first order effect of 
the change in P on the distribution of the statistic ZN. Moreover, the distribution 
rN(P) of YN is clearly of much interest for statistical purposes. To make sure that 
the normalization in (2 .5) makes sense we assume that 

(2 .6) the sequence {TN( P)} is tight for every P E 'P . 

The problem of estimating this distribution rN(P) was studied by Efron [4] who 
proposed the so-called naive bootstrap as an estimator. 

Let us assume that ( is continuous. Then the continuity of each individual TN 
is also guaranteed. We saw earlier that for every fixed N the distribution of ZN is 
continuous and this continues to hold for the distribution of N 112 ZN . Similarly the 
continuity of ( implies the continuity of N 112( for fixed N. Hence assumption (i) 
of Proposition 2.1 may be replaced by the requirement that (: ('P, H) -+ JR.k is 
continuous. 

In the present case where YN is given by (2.5), the LAC property of rN(P)- or 
equivalently the LAD property of YN- is usually expressed by saying that ZN is a 
regular estimator of ((P) or that ZN is locally asymptotically equivariant (LAE). 
This terminology is usually reserved for the case where the distribution rN(P) of 
YN converges weakly to a limit distribution, but we shall adopt this terminology 
also in the slightly weaker case where (2.6) holds. Proposition 2.1 now reduces to 

Corollary 2.2. Let (Y, ry) = JRk, let (: ('P, H) -+IRk, let Z N and YN as defined 
in (2.5) be random variables with values in JRk and suppose that (2.3), (2.4) and 
(2.6) hold. If ( is continuous and there exists a Prohorov-consistent estimator of 
rN(P) , then there exists a set D of the first category in ('P,H) such that ZN is 
LAE at every P E 'P \D. 

Interest in LAE estimators is motivated by the convolution theorem. In the 
present setting we shall use slight modification of the version of this theorem given 
in van der Vaart [8]. First of all a path in 'P through a fixed point P E 'P is a map 
t -+ Pt from some interval (0, e) into 'P such that 

(2.7) as t L 0 
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for some g E L2(P). The collection of all such functions g constitutes the tangent 
cone T(P) at the point P. Second, we shall assume that the functional (: (P, H) -
JRk is differentiable in the sense that there exists a vector-valued function (p E 
L 2(P)k such that for every path Pt through P 

(2 .8) t- 1 (((Pt)- ((P)) - J (pgdP. 

With these definitions we have a version of the 

Convolution Theorem. In the set-up of Corollary 2.2 with (2.3), (2.4) and 
(2.6) being satisfied, suppose that ( is differentiable and ZN is LAE. Then for every 
P for which the tangent cone T(P) contains a point in the interior of its linear span, 

(2.9) lim sup p(rN(Q), MN(P) * N(O, E((, P))) = 0. 
N-+oo {QE1' : H(P,Q)~CN-1/~} 

Here {MN(P)} denotes a tight and LAE sequence of probability distributions 
on JRk which only depends on P, *denotes convolution and N(O, E((, P)) denotes 
the k-variate normal distribution with mean 0 and the Cramer-Rao bound E((, P) 
for estimating ( as the covariance matrix. 

Combining Corollary 2.2 and the convolution theorem we find 

Corollary 2.3. Consider the set-up of Corollary 2.2 with (2.3), (2.4) and (2.6) 
being satisfied. Suppose that ( is differentiable and that there exists a Prohorov
consistent estimator of rN(P) . Then there exists a set D of the first category in 
(P, H) such that (2.9) holds for all P E P \ D for which the tangent cone T(P) 
contains an interior point of its linear span. 

Now let us step back for a moment and examine what we have shown. In a large 
non-parametric model P, the tangent cone T( P) will contain an interior point of its 
linear span for many points PEP. In fact, T(P) may well be a linear space for all 
interior points P E P. In such cases we find roughly speaking that if we estimate a 
differentiable functional ((P) at rate N- 112 by a statistic ZN = ZN(X1, ... , XN ), 
then at "most" points P E Pit is not possible to estimate the distribution TN(P) of 
YN = N 112 (ZN-((P)) consistently, unless this distribution behaves asymptotically 
like MN(P) * N(O, E((, P)) under all sequences of underlying distributions inside 
Hellinger balls of radius N-1/ 2 around P . 

Let us compare Corollary 2.3 with the results obtained in Beran [1] . Theorem 2.1 
in Beran [1] deals with the parametric case where P = {Po: () E 8} with 8 C JRk 
under the assumption that rN(P) converges to a limit distribution, the support 
of which satisfies a technical condition. Otherwise, the conditions are more or 
less similar to ours: a LAN assumption and Frechet-differentiability of (. Among 
other things this theorem asserts that if the parametric bootstrap estimates TN(P) 
Prohorov-consistently, then (2.9) will hold for all() E 8. There is no exceptional set 
where the conclusion does not hold. The important differences with Corollary 2.3 
in the present paper are that we do not assume convergence but only tightness of 
TN(P), but that we do have an exceptional set of the first category. Incidentally 
this set of the first category corresponds to a set of Lebesgue measure zero in 
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the parameter space (cf. Putter [6], Theorem 2.6.1). The fact that we discuss 
estimability of TN(P) as opposed to consistency of a particular estimator - the 
parametric bootstrap -is a minor matter. 

Theorem 2.2 in Beran [1] deals with general non-parametric families P. This is 
achieved by replacing the class P of all possible distributions on (X, A) by the class 
Po of all discrete distributions with finite support, which is dense in P. This reduces 
the problem to a finite-dimensional one which can be treated as before. Instead of 
an exceptional set of the first category, the exceptional set is now P \ P0 • Again the 
main difference with Corollary 2.3 above is the requirement of weak convergence of 
TN(P) instead of tightness. We shall return to this matter in Section 3. 

There is also an interesting connection with van Zwet [9]. One of the conclusions 
of that paper is that, roughly speaking, the naive bootstrap can only be consistent if 
Y N is either asymptotically normal or asymptotically distributionfree (or of course 
a sum of variables of both types). This seems to come very close to Corollary 2.3. 

3. Local Asymptotic Constancy 

In this section we do not assume throughout that the topological space (P, II) is 
metrizable. We shall say that the sequence TN: (P, II) -+ (n, p) is equicontinuous 
at P E P if for every c: > 0 there exists a neighborhood U€ of P such that Q E U€ 
implies that 

(3 .1) sup p(TN(Q), TN(P))::; C:. 
N 

The following proposition is a re-statement of Lemma 4.2 in Putter and van Zwet [7]. 

Proposition 3.1. Suppose that 

(i) For every N = 1, 2, ... , the map TN: (P, II)-+ (n, p) is continuous; 

(ii) TN converges pointwise to a limit T. 

Then there exists a set D of the first category in (P, IT) such that the sequence 
TN is equicontinuous at every PEP\ D. 

A comparison with the results in Section 2 shows that the convergence TN(P)-+ 
T(P) for all P E P makes a great deal of difference for the estimability of TN(P). 
Obviously, equicontinuity of TN on P \ D implies that if we can find a consistent 
estimator PN of P, then TN(P) can be estimated consistently for all P E P\D. But 
a comparison with Proposition 2.1 also shows that if TN -+ T, we no longer need 
the estimability of TN(P) to conclude that { TN(P)} is LAC at every P E P \D. 
In fact, we now have more because if II is metrized by the Hellinger metric, (3.1) 
ensures that for any ON ! 0, 

(3.2) lim sup p(TN(Q), TN(P)) = 0, 
N_.oc {Q€1': H(P,Q)!!(,6N} 

which is much stronger than (2 .1). 
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Chapter 10 

Finite samples and asymptotics 

Chris A.J. Klaassen 

Abstract Willem van Zwet is a scientist and a scholar with a broad spectrum of 
research interests. This is reflected by the five papers in this section, which study 
very different fundamental problems and which have four of his PhD students and 
his youngest son as coauthor. 

10.1 Introduction 

Willem van Zwet is a scientist and a scholar with a broad spectrum of research 
interests within statistics and probability theory with the stress on statistics. This is 
clear from his list of publications. This breadth is obvious also from the selection 
of papers we discuss in this section: asymptotic normality of rank test statistics, 
Hellinger distance and contiguity, estimation of parameters and score functions , and 
consistency and asymptotic equivariance. Willem has tried to instill this attitude of 
broad interest towards research also into his PhD students. 

As a thesis advisor Willem van Zwet has been unparalleled. He didn't suggest 
standard problems to his students, but he has boosted their careers by tackling inter
esting, fundamental, relevant problems. Most of his PhD students have become full 
professor in statistics (12 out of 16, so far) . Actually the five papers in this section 
all have been written with scientific children, i.e. PhD students, as coauthors, except 
for the most recent one, which has been written in collaboration with his youngest 
biological son Erik. 

One of the distinctions between these five papers is that three of them belong 
to the realm of asymptotic statistics, whereas the other two are of the finite sam
ple type. Research in mathematical statistics is or should be motivated mainly by 

Chris A.J. Klaassen 
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real life problems where data have to be interpreted. Since data always come in fi
nite amounts, the core business of mathematical statistics should be finite sample 
statistics. Typically however, finite sample problems are difficult to handle mathe
matically. That is why one resorts to approximations, which are obtained typically 
by letting the sample size tend to infinity. This results in asymptotic statistics. This 
approach is applied quite often; actually, to such an extent that asymptotic statistics 
has become the norm, or at least the benchmark at which different techniques are 
compared. 

10.2 Asymptotic Normality of Nonparametric Tests for 
Independence 

David van Dantzig (1900-1959) is one of the initiators of the Mathematical Cen
tre in Amsterdam. It was founded in February 1947 as a non-profit institute aim
ing at the promotion of pure mathematics and its applications. The topologist Van 
Dantzig intended to contribute to the reconstruction of Dutch society after the sec
ond world war by stimulating the study and application of mathematical statistics. 
In his philosophy the statistician should choose for his data a statistical model with 
the weakest of possible assumptions. Therefore, a main theme at the Mathematical 
Centre, the cradle of much of Dutch mathematical statistics, has been the study of 
nonparametric and rank procedures during the first decades of its existence. These 
methods had developed strongly, also internationally, with the monograph of Hajek 
and Sidak (1967) as a milestone. The present paper fits perfectly well in this tra
dition. It presents conditions for asymptotic normality for a class of rank statistics 
used for testing independence, and it seems to be one of the last ones in a series of 
papers that present weaker and weaker conditions for asymptotic normality to hold. 
We mention Wald and Wolfowitz (1944), Noether (1949), Hoeffding (1951), Hajek 
(1961), and Bhuchongkul (1964). 

Let (X1 , Y,) , .. . , (Xn , Yn) be independent and identically distributed random vec
tors with continuous distribution function H (-, ·) on IR2 and marginal distribution 
functions F ( ·) and G( ·) . Locally most powerful rank tests of the null hypothesis of 
independence H ( ·, ·) = F ( ·) G( ·) are of the type 

1 n ( Ri) ( Qi ) 1 n Tn = ;:; ~In -;; Kn ---;; =;:;~In (Fn(Xi))Kn (Gn(li)) 

= J J In (Fn(x))Kn (Gn(Y))dHn(x,y) , (10.1) 

where Ri is the rank of Xi among X1 , . . . , Xn , where Qi is the rank of Yi among 
Y1 , ... , Yn, and where Fn(·) , Gn(·) , andHn(· , ·)are the empirical versions ofF(·) , G(· ), 
and H ( ·, ·) , respectively. Assuming existence of functions I ( ·) and K ( ·) on the unit 
interval such that 
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J J [In (Fn(x)) Kn ( Gn(Y))- J (Fn(x)) K ( Gn(Y))] dHn(x,y) = op ( ~) (10.2) 

holds and with the notation 

f.l = j j J(F(x))K(G(y))dH(x ,y) 

we note heuristically that 

Tn-f.l= j JJ(Fn(x))K(Gn(Y))dHn(x ,y) 

- j jJ(F(x))K(G(y))dH(x,y)+op(~) 

= j j {J(Fn(x)) -J(F(x))}K(Gn(Y))dHn(x,y) 

(10.3) 

+ j j J(F(x)){K(Gn(Y)) - K(G(y))}dHn(x,y) (10.4) 

+ j j J(F(x))K(G(y))d{Hn(x,y) - H(x,y)} + op ( ~) 

= j j {Fn(x) - F(x)}J' (F(x)) K(G(y))dH(x,y) 

+ j j {Gn(y) - G(y)}J(F(x))K'(G(y))dH(x,y) 

+ j JJ(F(x))K(G(y))d{Hn(x, y) - H(x,y)} + op(~) 

holds. Consequently, it is intuitively clear that asymptotic normality of Vfi(Tn - f.l) 
holds with limit variance as in (3 .10) of the paper, and that this asymptotic nor
mality will hold uniformly over appropriate classes of distribution functions H(-, ·) . 
However, the technical difficulties are many, especially since the authors have been 
aiming at minimal conditions. Actually they have replaced (10.4) above by an ex
pression with 13 terms, 10 of which had to be shown to be asymptotically negligible. 

Since H(-, ·) is not necessarily equal to F(-)G(·) , the asymptotic normality is 
shown under so-called fixed alternatives to the hypothesis of independence. A 
well-known example is the Van der Waerden normal scores rank correlation co
efficient with J(u) = K(u) = cp- l (u) ~ J -2log[u(1- u)] and J'(u) = K'(u) = 

1/ cf>( cp-I (u)) ~ v'2n [u(l- u)t 1, 0 < u < 1. Clearly conditions are needed on the 
behavior of J( u) and K ( u) as u comes close to 0 or 1, in order for ( 10.4) to be valid 
and for the asymptotic normality to hold. Ruymgaart, Shorack, and Van Zwet im
prove on the conditions of Bhuchongkul (1964), and for the case J(-) = K(-) they 
need that IJ(u) l [u(1 - u)F14- o and IJ'(u) l [u(1 - u)j514- o are bounded for some 
positive 8, thus incorporating the Van der Waerden normal scores rank correlation 
coefficient. 

Frits Ruymgaart, Willem's third PhD student, has generalized these results in 
Ruymgaart (1974) and in his PhD thesis, Ruymgaart (1973), to the case where the 
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score functions J ( ·) and K ( ·) may have discontinuities. It is very likely that this is the 
reason why Ruymgaart (1974) has gotten many more citations in the literature than 
the article under discussion. In any case, these papers are still being cited because 
of their relevance to the study of semiparametric copula models. For example the 
Van der Waerden normal scores rank correlation coefficient is semiparametrically 
efficient in the normal copula model; see Klaassen and Wellner (1997). In the normal 
copula model one assumes that if all components of a random vector are transformed 
into normal random variables, then the resulting random vector has a multivariate 
normal distribution. It was noted by Li (2000) that this normal copula model was 
in use for the pricing of credit default swaps. This practice has been blamed for the 
global financial crisis of 2007-2009. Motivated by risk management problems, the 
study of copula models has led to research on a generalization of Tn from (1 0.1 ), 
namely 

1 n (Ri Qi) 1 n Tn =- 2J - , - =- 2J(Fn(Xi),Gn(li)) ; 
n i= 1 n n n i= l 

(10.5) 

see e.g. Fermanian, Radulovic, and Wegkamp (2004) and Schmidt and Stadtmiiller 
(2006). We may conclude that Ruymgaart, Shorack, and Van Zwet have added a 
technically complicated, but thorough and useful result to the statistical literature, 
which is a milestone in a long development. 

10.3 A Note on Contiguity and Hellinger Distance 

Consider two sequences of probability measures (P11 ) and (Qn) defined on a com
mon sequence of measurable spaces (Xn,dn). The sequence of probability mea
sures (Qn) is called contiguous with respect to the sequence ( Pn), if for every se
quence (An), An E dn, the convergence P11 (A 11 )---+ 0 implies Q11 (An)---+ 0, notation 
(Qn) <J (Pn)· The two-sided version ofthis fundamental concept has been introduced 
by Le Cam (1960), and advertised and applied by Roussas (1972). Jaroslav Hajek 
visited Lucien Le Cam in Berkeley and popularized the concept in Hajek and Sidak 
(1967) calling the most important results Le Cam's first, second, and third lemma. 

Willem van Zwet and his first PhD student, his contemporary Kobus Oosterhoff, 
were the first to geometrize contiguity for product measures, and they chose the 
Hellinger distance as a natural metric for this. Their results have been published as 
Oosterhoff and Van Zwet (1979) in the Hajek Memorial Volume, which is just the 
proper place for this paper, given Hajek's interest in the topic. 

(n) (n) nn (n ) nn Let Pn = Pn be the product measure Pn = i= 1 Pni and Qn = Qn = i= 1 Qni 
with (Xn ,dn) the product space of (X ni,dni), i = 1, ... ,n. Let Jlni be a a-finite 
measure on ( ~i , dni) dominating both Pni and Qni. Denote the densities of Pni and 
Qni by Pni and qni, respectively, and write H(Pni, Qni) for the Hellinger distance of 
Pni and Qni, 
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I ( 1/2 1/2) 2 
H(Pni , Qni) = Pni - qni dJ.lni· 

It is easy to see, as Oosterhoff and Van Zwet (1979) show, that 

n 
· " 2( ) ( (n)) ( (n) ) hm £.... H Pni, Qni = 0 ====? Qn <J Pn 

n --too i= l 

n 

====? limsup LH2 (Pni ,Qni) < oo 

n-+= i= l 

29 

(10.6) 

(10.7) 

holds. As the one-sided contiguity is an 'asymmetric' property and the Hellinger 
distance is symmetric, the gap between the contiguity in the middle term and the left 
hand or the right hand side of (10.7) can be closed only by an asymmetric condition. 
Indeed, with the additional notation 

(10.8) 

the main result of Oosterhoff and Van Zwet (1979) may be formulated as follows, 

(10.9) 

The second result from this paper is related to the First Lemma of Le Cam. Let 
An be the loglikelihood ratio 

n 

An= L log (qni(Xni) / Pni(Xni)) · 
i= l 

The First Lemma of Le Cam implies 

(10.10) 

(10.11) 

Oosterhoff and Van Zwet succeeded in formulating necessary and sufficient con
ditions for this convergence to normality of the loglikelihood ratio in terms of 
Hellinger distances as follows. For any a 2: 0 we have 

{ 
limn-+= 2.7= 1 H2 ( Pni , Qni) = i a 2 , 

(10.12) 

lime.l-0 lim SUPn--t= 2.7=1 Hi(Pni , Qni) = 0. 
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In order to stress the relation to the Hellinger distance we have chosen to formulate 
(2.3) of Theorem 1 and the uniform asymptotic negligibility condition (3.3) of The
orem 2 of Oosterhoff and Van Zwet (1979) in terms of Hc(Pni, Qni) from (10.8); cf. 
(3.7) of ibid. To see the equivalence of (2.3) of Theorem 1 with the second condition 
at the right hand side of (10.9), we note that for c > 2 

(1- c- 112) - 2H'j: (Pni , Qni) ::::; Qni (qni(Xni) ~ c Pni(Xni)) 

::::; (1-c- l) - 2H'j:(Pni ,Qni) (10.13) 

holds. To derive the equivalence of the uniform asymptotic negligibility condition 
(3.3) of Theorem 2 with the second condition at the left hand side of (1 0.12) we note 
that for£ > 0 

( v'l+£- 1 )2 Pni (I qni(Xni)- Pni(Xni) I ~ £ Pni(Xni)) 

::::; H'f(Pni, Qni) 

::::; Pni (I qni(Xni)- Pni(Xni) I ~ £ Pni(Xni)) 

+Qni (I qni(Xni)- Pni(Xni) I ~ £ Pni(Xni)) 

(10.14) 

holds, and we use (10.11) to obtain that the uniform asymptotic negligibility condi
tion 

(10.15) 

implies 

(10.16) 

It is well known that contiguity holds in regular parametric models for i.i .d. ran
dom variables. Let { P( e) : e E e} , e c JR.k, be a collection of distributions that 
have densities p( e) with respect to some a-finite measure J..L. The most important 
condition for regularity is the existence of a score function £(e) E L~(P(e)) such 
that the map e r---+ p 112 (e) is continuously Frechet differentiable in~ (J.L) as follows, 

with the map e r---+ £(e)p 112(e) from e to L~(P(e)) continuous. In these regular 
models Local Asymptotic Normality holds and via (10.11) this yields the contiguity 

(10.18) 

as n --7 oo, en --7 e' and tn --7 t for fixed e and t' and hence the corresponding mutual 
contiguity; see e.g. Section 2.1 of Bickel et al. (1993). To circumvent the cum
bersome proof of Local Asymptotic Normality, one might use the characterization 
(10.9) of contiguity in order to prove (10.18) as follows. By (a) from the proof of 
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Lemma A.9 .5 of Bickel et al. (1993) we see that (1 0.17) holds uniformly for f) in 
compacts. Consequently, 

holds as n--+ = , en --+ f), and tn --+ t for fixed f) and t. It follows that the first condi
tion at the right hand side of (10.9) is satisfied. To prove that the second condition 
at the right hand side of (10.9) is satisfied as well, we first note that for c 2: 1 

r (pl f2(fJ+h)-pl f2(e)) 2 df.l 
}p(fJ+h)?cp(fJ ) 

:::;3 { (pl f2 (fJ+h)-pl f2(fJ)-~hTf(fJ)pl f2(fJ)) 2 dJ1 
}p(fJ + h)?c p(fJ ) 2 

+3 { (p1f2(f)- h)- p1f2(fJ) + ~hT f(fJ)p1f2(fJ)) 2 
dJ.1(10.21) 

}p(fJ+h )?_cp(fJ ) 2 

+3 r p(e)df.l J p( fJ+h)?_c p( fJ ) 

and 

r { (p112( f)+ h)- p112( e)) 2- (c112- 1)2 p( e)} dJ.l 2: 0 (10.21) J p( fJ+h )?_c p( fJ ) 

hold, and hence for sufficiently large values of c 

r (pl f2(fJ + h) - pl f2(e)) 2dJ1 
J p(fJ+h )?_c p(fJ ) 

:::; 3 [1-3(vc-1)- 2r 1 x oo.22) 

{ { (pl /2(fJ +h)_ pl f2(fJ) _ ~hT f(fJ)pl f2(fJ)) 2 
}p(fJ + h)?_c p(fJ ) 2 

+ (r112( e -h) - p112( e)+ ~hT £(e) p112 (e)) 2 } d 11.o o.23l 

To complete the proof of the contiguity in (10.18), we note that the second condition 
at the right hand side of ( 1 0.9) follows from ( 1 0.19) and ( 1 0.22) by the substitutions 
f)= en and h = n- 112tn. 

One of the simplest examples of nonregular parametric models for i.i.d. random 
variables where contiguity may be determined easily via (10.9), is the location fam
ily for the exponential distribution. With J.lni Lebesgue measure on (JR, Pll) and 

t 
qni(x) = Pni(x-- ) , X E lR, 

n 
(10.24) 
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some computation shows 

n 

lim sup LH2(Pni,Qni) =It I (10.25) 
n-+oo i= l 

and 
n 

lim lim sup LH;(Pni , Qni) =It l l[r<O], 
c-+oo n-+oo i= 1 

(10.26) 

which by (10.9), i.e. Theorem 1 of Oosterhoff and Van Zwet (1979), implies the 
one-sided contiguity from the left hand side of (10.9), but only fort positive. 

More tedious computations are necessary in case of triangular densities 

Pni(x) = (1- lx l) VO, 
() 

qni(x)=(1- lx- ynrogn i ) VO, 
nlogn 

xE R (10.27) 

In my master thesis, Klaassen (1974), written under supervision of Kobus Ooster
hoff, the conditions at the right hand side of (l 0.12) have been checked, and hence 
Theorem 2 of Oosterhoff and Van Zwet (1979) is applicable here. 

The main result, Theorem 1 of ibid., is called by Jacod and Shiryaev (1987, p. 
576) 'the first general contiguity result'. It has been generalized to nonindependent 
and continuous time cases, and it has been one of the roots of Jacod and Shiryaev 
(1987). 

Furthermore, the paper is cited in several publications as a reference for con
tiguity. We mention Strasser (1985), Bickel, Klaassen, Ritov, and Wellner (1993), 
Cabana and Cabana ( 1997) and Bose, Gangopadhyay, and Goswami (2007). The re
sults are explicitly used in e.g. Khmaladze (1988), Eubank (2000), Pfanzagl (2000), 
Putter and Young (2001), and Ferger (2001). 

We conclude that Oosterhoff and Van Zwet (1979) is a fundamental paper, which 
presents useful tools for verifying contiguity. 

10.4 On Estimating a Parameter and its Score Function 
On Estimating a Parameter and its Score Function, II 

In the early seventies several semiparametrically efficient estimators for the sym
metric location model have been constructed. These estimators were called adaptive 
because they adapt to the unknown underlying symmetric density f( ·) of the errors 
in the observations in such a way that they attain the asymptotic variance bound of 
1/ I (f) with I (f) the Fisher information for location. After a chat with Peter Huber 
about these estimators, Willem van Zwet suggested me, his PhD student, to study 
these estimators and to show that there is some loss somewhere. This has been a 
very stimulating research program and it resulted in my thesis Klaassen (1981). The 
articles under discussion are generalizations to much more general models of the 
inequality in Theorem 3.2.1 of ibid. for the symmetric location case. These inequal-
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ities improve the Cramer-Rao lower bound for unbiased estimators of the parameter 
of interest by adding a multiple of the integrated mean squared error of an estimator, 
given the parameter of interest, of the efficient influence function. In this way they 
state that the parameter of interest can be estimated accurately only if, given the 
parameter of interest, the efficient influence function can be estimated accurately as 
well . So, if the parameter of interest is the only unknown parameter, this additional 
term vanishes and the inequality reduces to the ordinary Cramer-Rao inequality. 

The charm of these inequalities is that they are finite sample results. They have 
been proved for i.i.d. situations where, given the parameter of interest, there exists 
a sufficient statistic with respect to the nuisance parameter. All these inequalities 
are based on a conditional version of Projection Lemma 4.1 of Hajek (1968). An 
asymptotic version of these results does not need these sufficient statistics and it 
states that asymptotically efficient estimation of the parameter of interest is possible 
if and only if the efficient influence function can be estimated consistently; for a 
generalization of this, see Klaassen (1987). 

The first paper is applicable in situations where adaptive estimation should be 
possible, i.e. where the semiparametrically efficient influence function is the same 
as the efficient influence function for the case that the nuisance parameter is known. 
The second paper studies the general semiparametric situation. Still another PhD 
student of Willem is a coauthor here, namely Aad van der Vaart. In chapter 5 of his 
PhD thesis Vander Vaart (1988), he continues research on models of the above type. 
There he constructs asymptotically efficient estimators for semiparametric models 
with a sufficient statistic with respect to the nuisance parameter. 

10.5 A Remark on Consistent Estimation 

A fundamental rule of thumb in statistics states that 'substituting unknown parame
ters in statistical procedures by estimators of them, yields appropriate procedures.' 
Consequently, if one is simulating the distribution of a statistic and the distribution 
of the underlying random variables is unknown, one may replace the latter distribu
tion by an estimator of it, like the empirical. The resulting bootstrap was introduced 
by Efron (1979). Clearly, an important question is :'When does the bootstrap work 
and when it doesn't?' For some important classes of situations the validity of the 
bootstrap was proved by Bickel and Freedman (1981 ), who also presented some 
counter-examples. 

He in Putter, writing his doctoral thesis Putter (1994) under supervision of Will em 
van Zwet, has studied the question in the setting of a general substitution estimator. 
In Putter and Van Zwet (1996) they write 'This is commonly called a "plug-in esti
mator," but this expression is of the same sad grammatical level as "see-through 
clothes.'" However, more importantly in the context of the paper under discus
sion they prove that substitution estimators work under all underlying distributions, 
except for a 'small' subset within the set of underlying distributions metrized by 
Hellinger distance, namely for a subset of the first category. 
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Under local asymptotic normality Beran (1997) has proved that the bootstrap 
fails in estimating the distribution of an estimator consistently, precisely at those 
parameter values at which the bootstrapped estimator is not locally asymptotically 
equivariant. He also has shown that the set of these parameter values has Lebesgue 
measure 0. At the points where an estimator is locally asymptotically equivariant or 
regular, the Hajek-LeCam convolution theorem holds; Hajek (1970). 

Willem van Zwet and his second son Erik have used results from Putter and 
Van Zwet (1996) in order to prove within a very general framework that, if the 
distribution of an estimator can be estimated consistently in the Prohorov metric, 
then there exists a subset of the first category within the set of underlying distribu
tions metrized by Hellinger distance, such that the estimator is locally asymptoti
cally equivariant outside this subset of the first category. In Van Zwet and Van Zwet 
( 1999) they prove under somewhat stricter conditions, but still within the same very 
general framework, that for the same subset of the first category as above the distri
bution of the estimator has a locally asymptotically uniform convolution structure. 
We conclude that Willem and Erik van Zwet have generalized the connection be
tween validness of the bootstrap and local asymptotic equivariance and convolution 
structure as noted by Beran (1997), to the general i.i.d. case in an elegant way. 
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Asymptotic expansions are established for the power of distribution
free tests in the two-sample problem. These expansions are then used to 
obtain deficiencies in the sense of Hodges and Lehmann for distribution
free tests with respect to their parametric competitors and for the esti
mators of shift associated with these tests. 

1. Introduction. Let xl' x2, ... , XN, N = m + n, be independent random 
variables such that xl' ... , xm are identically distributed with common distri
bution function F and density f and xm+l' ... , XN are identically distributed 
with distribution function G and density g. For N = 2, 3, .. . and 0 < e ~ 

m jN ~ 1 - c < I, consider the problem of testing the hypothesis F = G against 
a sequence of alternatives that is contiguous to the hypothesis. The level a of 
the sequence of tests is fixed in (0, 1 ). Standard tests for this two-sample problem 
are linear rank tests and permutation tests and expressions for the limiting powers 
of such tests are well known. In this paper we shall establish asymptotic expan
sions to order N- 1 for the powers rr,v of such tests, i.e., expressions of the form 
rrN = C0 + c 1 N- > + C2,N N- 1 + o(N- 1). Of course this involves finding similar 
expansions for the distribution function of the test statistic under the hypothesis 
as well as under contiguous alternatives. For simplicity we shall eventually 
limit our discussion to contiguous location alternatives. Extension of the results 
to general contiguous alternatives is straightforward but messy . 

A number of authors have computed formal expansions for the distributions 
of various two-sample rank statistics without proof of their validity. Their pur
pose was to obtain better numerical approximations for the critical value of the 
test statistic and the power of the test than can be provided by the usual normal 
approximation. For an account of this work we refer to a review paper of Bickel 
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(1974), which incidentally also contains a short preview of the present paper 
including a brief description of the expansion of the distribution function of the 
two-sample linear rank statistic under the hypothesis (cf. Corollary 2.1 in the 
present paper). This result was also proved independently by Robinson ( 1977) . 
An earlier proof by Rogers ( 1971) for the special case of the two-sample Wilcoxon 
statistic under the hypothesis unfortunately appears to contain a nontrivial error. 

We shall not discuss the numerical aspects of the expansions we obtain but 
we shall concentrate on a rather delicate type of asymptotic comparison of the 
power functions of various parametric and nonparametric tests . Consider two 
sequences of tests {TN} and {T/} for the same hypothesis at the same fixed 
level a. Let n.v(8 .v) and n.,'(8 N) denote the powers of these tests against the same 
sequence of contiguous alternatives parametrized by a parameter 8. If TN is 
more powerful than T/ we search for a number k .v = N + d.v such that 
nN(8 .v) = n~N(8 .v )· Here k .v and d v are treated as continuous variables, the power 
-:r.v' being defined for real N by linear interpolation between consecutive integers. 
The quantity d.v was named the deficiency of {T/} with respect to TN by Hodges 
and Lehmann ( 1970), who introduced this concept and initiated its study. Of 
course , in many cases of interest d.v is analytically intractable and one can only 
study its asymptotic behavior as N tends to infinity. 

Suppose that for N ~co, the ratio NfkN tends to a limit e, the asymptotic 
relative efficiency of {T.v'} with respect to {T.v}· If 0 < e < 1, we have d.v ,.._, 
(e - 1 - 1 )Nand further asymptotic information about d.v is not particularly reveal
ing. On the other hand, if e = l, the asymptotic behavior of d.v (which may 
now be anything from o( 1) to o (N)) does provide important additional infor
mation. Of special interest is the case where d.v tends to a finite limit. 

Asymptotic expansions for the power of the type we discussed above are pre
cisely what is needed for an asymptotic evaluation of d.v · With the aid of such 
expansions we arrive at the following results. L'!t F be a distribution function 
with density f, let b be a positive real number and define () N = bN- ~ . Consider 
the problem of testing the hypothesis (F, F) against the sequence of simple 
alternatives (F(. + f:::. .v 8.v), F(. - (1 - I:::. N)8N)) at level a . Let dN denote the 
deficiency of the locally most powerful rank test with respect to the most power
ful test for this problem. For the rank test the power is independent of !:::. N but 
for the most powerful test it is not and ' we choose f:::. .v in such a way that the 
power of the most powerful test is minimal. Under certain regularity conditions 
on F we establish an expansion for d v with remainder o ( 1 ). To indicate the 
qualitative behavior of d.v it suffices to note that the expansion is of the form 

( 1. 1) 

where 1¥1 = f'(F - 1)/f(F - 1), a 2 indicates a variance, U j:N denotes the jth order 
statistic of a sample of size N from a uniform distribution on (0, 1) and 
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dN,o = 0(1). Alternatively we may write 

(1.2) 1 i 1-_N- 1 (W'(t))2t(1- t)dt + d + o(1) 
~1IJ'l2(t)dt)Nl 1 N,O 

+ O(N-~ ~~--"i- 1 (W/(t))2{t(1- t)}~dt), 

where W/ is the derivative of 1¥1• If we replace the exact scores -EW1(Ui:N) in 
the locally most powerful rank test by the corresponding approximate scores 
-W1(j/(N + 1)), then (1.1) changes to 

(1.3) dN = ~ w)(t)dt I:f=l E{Wl(Uj:N)- Wl(j/(N + 1))Y + dN,O + o(1) 

and ( 1.2) continues to hold. Thus the asymptotic behavior of dN is governed 
by that of the first term in these expansions and under the conditions imposed, 
all we can say is that it is o(Nt) but not o(1). Typically, however, it will be 
0(1) or only slightly larger than that. By taking F to be a normal distribution 
we find that the deficiency of both the normal scores test and van der Waerden's 
test with respect to the test based on the difference of the sample means for 
contiguous normal location alternatives is asymptotic to log log N. For logistic 
shift alternatives the deficiency of Wilcoxon's test with respect to the most 
powerful parametric test tends to a finite limit. Turning to distributionfree 
tests other than rank tests , we find that for contiguous normal location alter
natives the deficiency of the permutation test based on the sample means with 
respect to Student's test tends to zero for N ~ =. 

If the locally most powerful rank test for shift has nondecreasing scores, 
then there exists a corresponding Hodges-Lehmann estimator of shift in the 
two-sample problem (cf. Hodges and Lehmann (1963)). There is a similar cor
respondence between the locally most powerful parametric test for shift and the 
maximum likelihood estimator of shift in the two-sample problem. We shall 
exploit this correspondence to obtain asymptotic expansions for the distribution 
functions of these estimators. We shall show that, when suitably defined, the 
deficiency of the Hodges-Lehmann estimator associated with the locally most 
powerful rank test with respect to the maximum likelihood estimator is asymp
totically equivalent to the deficiency of ,the parent tests for a = !· 

This paper is thus the natural counterpart of Albers, Bickel and van Zwet 
( ABZ) ( 1976) where exactly the same programme is carried out for the one
sample problem. Without exception the results are also qualitatively the same but 
contrary to what one might think at first sight, this in itself is rather surprising. 
Of course there is a strong similarity between the one- and two-sample cases 
but there is also one major difference. In the nonparametric one-sample loca
tion problem the underlying distribution is always symmetric both under the 
hypothesis and under the alternative. Because of this symmetry, the power 
expansions for contiguous location alternatives do not contain a term of order 



120

940 P. J. BICKEL AND W. R. VAN ZWET 

N-'- for any of the parametric or nonparametric tests considered. Since atten

tion is restricted to sequences of tests {TN} and {T.v'} with asymptotic relative 
efficiency I, the leading terms of the power expansions coincide and these 

expansions must therefore be of the form rrs = c0 + c2 ,NN- 1 + o(N- 1) and 
rr / = c0 + c~ ,N N- 1 + o (N- 1). In the comparison of rank tests T,v' with parametric 

tests TN it is found that the deficiency dN is of the order of N(rrN - rr/) = 

(c 2 ,N - c; ,N) + o(l) = o(N1). In the two-sample problem, however, the under
lying distributions are not required to be symmetric and as a result the power 

expansions do in general contain a term of order N-'-. It is not clear a priori 

that this term should be the same in each expansion and because dN is again of 

the order of N(rrN- rr / ), one should expect dN to be of the order N!. It turns 
out, however, that for the most powerful test, the locally most powerful test, 

the locally most powerful rank test and its approximate scores analogue, the 

term of order N-'- in the power expansion for contiguous location alternatives is 
in fact the same for each of these four tests. Borrowing a phrase from Pfanzagl 

( 1977) who noted the same phenomenon for the (asymmetric) parametric one

sample problem, first order efficiency apparently implies second order efficiency 

in these cases. It follows that again dN is of the order of ( c2 ,.v - c~ .N ) and since 
c2,N and c;, N exhibit precisely the same asymptotic behavior as in the one-sample 
case, our deficiency results are qualitatively the same as in ABZ ( 1976). The 

reader should note that Pfazagl's concept of second order efficiency ~hich in 

general implies d.v = o(N'- ), is different from Rao's concept of second order 
efficiency as discussed in Efron (1975), which is more in the nature of dN = o(l). 

This difference in terminology is not as illogical as it may seem because Rao's 

concept is related to the asymptotic performance of an estimator M N as measured 

by the asymptotic variance of N'-M.v and expansions for this quantity are typically 
in powers of N-1 rather than N-!. 

Throughout this paper we shall draw heavily on the techniques developed 

for the one-sample case in ABZ ( 1976) but several new difficulties appear that 

make the two-sample case essentially more complicated. The main source of 
trouble is the occurrence of terms of order N-! in our expansions. Not only 

do they make the actual computation of the expansions much more laborious, 

but their presence also poses a number of technical problems that are hard to 

handle under the conditions imposed, which are comparable to those in ABZ 

( 1976). Another complicating factor is that the distribution theory for the two

sample rank statistic is more involved than for its one-sample counterpart. In 

the one-sample case a conditioning argument reduces the rank statistic to a 

weighted sum of independent Bernoulli random variables. A similar argument 

in the two-sample case leads to the much less manageable random variable 

indicated below. 

In Section 2 we point out that for arbitrary F and G, the conditional distri

bution of the two-sample linear rank statistic given the order statistics of the 

combined sample is the same as the distribution of the sample sum in a rejective 
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sampling scheme. We establish an expansion for the distribution function of 
such a sample sum which may be of interest in its own right. As a corollary 
we obtain an expansion for the distribution function of the rank statistic under 
the hypothesis. In Section 3 we return to general F and G and obtain an un
conditional expansion for the distribution function of the rank statistic. We 
specialize to contiguous location alternatives in Section 4 and derive an expan
sion for the power of the rank test. In Section 5 we deal with the important 
case where the scores are exact or approximate scores generated by a smooth 
function. The permutation test based on the sample means is discussed in Sec
tion 6. The results on deficiencies of distributionfree tests are contained in 
Section 7. Section 8 is devoted to estimators. Some technical results are dealt 
with in the appendix. 

2. An expansion for the conditional distribution of two-sample rank statistics 
and its application to rejective sampling. Let xl' x2, ... , XN, N = m + n, be 
independent random variables (rv's) such that xi' ... , xm are identically distri
buted (i.d.) with common distribution function (df) F and density f and 
xm+l' ... , XN are i.d. with common df G and density g. Let zl < z2 < ... < ZN 
denote the order statistics of Xi> .. · , X N ' define the anti ranks Dl' D 2, ••• , D N 

by XDj = zj and let 

(2.1) if m + 1 ~ Di ~ N 

otherwise. 

For a specified vector of scores a = (aP a2, . ··,aN) define a two-sample rank 
statistic by 

(2.2) 

Our aim is to obtain an asymptotic expansion as N ---+ oo for the distribution of 
T for suitable sequences of pairs of df's (FN, GN), arrays of scores {ai, N}, 1 ~ 
j ~ N, and sample sizes (mN, nN). As in Albers, Bickel and van Zwet (ABZ) 
( 1976) we shall suppress dependence on N whenever possible and formally present 
our results in terms of error bounds for fixed, but arbitrary, values of N. 

Under the null-hypothesis that F = Cf, 

for any vector (v1, ••• , v N) with m coordinates equal to 0 and n coordinates equal 
to I. In general, conditional on Z = (Zi' ... , Z N), 

where 

(2.4) 
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n 
.:1 = - , 

N 

c(P) = 2:: IIf=l pjwi(1 - Pi)l-wj' 

and the summation is over all vectors (w1 , ••. , wN) consisting of m zeros and n 
ones. 

Let wl, w2, ... , WNbeindependentrv'swithP(Wj = 1)= 1-P(Wi=O)=Pi• 
1 ;£ j ;£ N. Suppose that 

(2.7) Pi = 0 for at most m indices j 

for at most n indices j Pi= 1 

and consider the conditional distribution of 2:: aiWJ given that 2:: Wi = n. Note 

that if we replace p = (p1 , • • ·, pN) by P = (P~' · · ·, PN), then this is the distri
bution of T given Z. For general p this distribution is of interest in its own 

right since 2:: ai WJ given L: WJ = n is the sample sum we obtain when we use 
a rejective sampling scheme with parameters p~' · . ·, PN in selecting a sample of 

size n from the sampling frame {a~' a2, ••• , aN} (see Hajek (1964) for details). 
Define 

(2.8) p(t, p) = E(exp{itN-! L: f=l ai(Wj- Pi)} I L:f=l wi = n)' 

(2.9) R(x,p) = P(N-t l: f=1 ai(Wi- Pi);£ xl l: f=1 Wi = n). 

Our program for obtaining an Edgeworth expansion for the df ofT parallels in 
part that of ABZ ( 1976). We obtain a formula for p. From this formula we 

obtain an expansion for p which we can rigorously translate into an Edgeworth 

expansion for R. Because of the connection with rejective sampling we isolate 

this result as the only theorem in this section. In the next section we proceed 
with our main program and obtain an expansion for the df ofT by replacing p 

by P and taking the expectation of the resulting expression. We begin with 

LEMMA 2.1. Define 

(2.10) 

(2. 11) 

(2.12) 

cf;(s, t, p) = exp{isN- ! I: /=1 (pi-.:1)} IIf= 1 [Pi exp{iN-!(1-pJ)(s+a/)} 

+ (1- PJ)exp{-iN-!pi(s + ait)}], 

~J(t, p) = \':.~t t cf;(s, t, p) ds, 

c(p) = 2:: II f='IPiwi(l - Pi)l-wj, 

where the last summation is over all vectors (w 1, • • ·, wN) consisting of m zeros and n 
ones. Then, if (2. 7) is satisfied, 

(2 . 13) p(t, p) = __ I - \ ::.~ tt cf;(s, t, p) ds = ~J(t, p) 
2rrc(p)N' ~J(O, p) 

PROOF. Begin with the identity 

E(exp{iN-![s 2:: (Wi - Pi)+ t 2:: ai(Wj- Pi)]}) 

= L:t'=o E(exp{itN-! 2:: ai(Wi- Pi)} I 2:: wi = k) 

x P(L: Wi = k) exp{isN-!(k- I: Pi)}. 
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Because the system {(2rrN!)- 1 exp (iksN-7): k = 0, ±I, ... } is orthonormal on 

[ -rrN!, rrN!] this implies 

p(t, p) = (2rrN!P(L, Wi = n))-1 ~~~~ exp{isN-! I; (Pi- A)} 

X E(exp{iN-! I: (s + ait)(Wi- pi)})ds. 

Elementary considerations now yield (2.13). D 

Note that if Pi = A for all j (which corresponds to the null-hypothesis in the 

two-sample problem) our formula agrees with that of Erdos and Renyi for ran

dom sampling without replacement (cf. Renyi (1970), page 462). In fact their 

result motivated our approach. 
In our asymptotic study of ¢, l.l and p we shall repeatedly come across the 

following functions of p. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2. 18) 

(2. 19) 

w(p) = N-! ,L:f=1 (Pi - A), 

(J\p) = N-1 l:f=1 Pi( I -Pi)' 

ii(p) = l:f=1 Pi( I - Pi)a),L:f=1 Pi( I -Pi),. 

r:2(P) = N-1 l:f=1 Pi( I - Pi)(ai - ii(p))2 

= N-1 ,L:f=1 Pi( I - Pi)a/- (J2(p)ii2(p)' 

K3,i(p) = N-1 I;f=1 p;(l- Pi)(l- 2pi)(ai- ii(p))i, i = 0, I, 2, 3, 

K4,i(p) = N-1 I;f=1 Pi( I - Pi)(l - 6pi + 6p/)(ai - ii(p))i, 

i = 0, I, ... , 4. 

In this notation we shall suppress the dependence on p when this is convenient. 

Let l denote Lebesgue measure on R 1 and define 

(2.20) r(s, (, p) = l{x: 3j jx- aij < (, s ~Pi~ I - s}. 

LEMMA 2.2. Suppose that positive numbers c, C, o and s exist such that 

(2.21) 

(2.22) 

r:2(p) ~ c, ~ ,L:f=1 a/ ~ C, 

r(s, (, p) ~ oN( for some ( ~ N-! log N. 

Then there exist positive numbers b, Band~ depending only on c, C, o and s such that 

(2.23) jcp(s, t, p)j ~ BN-PiogN 

for all pairs (s, t) such that jsj ~ rrNiz, jtj ~ bN! and either jsj ~ log (N + 1) or 

jtj ~ log (N + 1). 

PROOF. 

(2.24) 

l¢(s, t,p)j = I1f= 1 [1- 2pi(l- Pi){l- cos(N-!(s + ait))}]! 

~ exp {-I: f= 1 pi( I -pi)[ ~N-1( s + ai t)2 - -i4 N- 2(s + ai t)4]} 

~ exp {- t[ r: 2t2 + (] 2( s + iit)2] 

+ l~N-1[N- 1 .L:f=1 (ai - ii)4t4 + (s + iit)4]}. 
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Now (2.21) ensures that 

(2.25) 

(2.26) 

a2(p) ~ Nr4(p)J'EJ=l a/ ~ C- 1c2 , 

lii(p) l ~ [ N-1 I: ~'= 1 a/]t ;az(p) ~ c-zC i , 

and by (2.21), (2.24), (2.25) and (2.26) we conclude that there exist positive bj! 

Band p depending only on c and C such that for lsi ~ b 1 N ~ and it i ~ b1 Nl 

(2.27) 

Next note that (2.25) and (2.21) imply that the number of indices j for which 

Pi( I -pi)~ ~C2/C is at least 2Nc2fC and the number of j for which !ai l ~ (Cfc)' 
is at least N- Nc 2 jC. Hence the number of indices j for which !ail ~ (Cfc)' 

and pi( I - pJ ~ ~c2fC is at least Nc 2fC. Put b2 = ~b1(cjC) ~ and we see that if 

b1 N ' ~ lsi ~ rr:N' and it i ~ b2 N\ then for at least Nc 2jC indices j 

[1- 2pi(I- pi){l- cos(N- ~ (s + ai t))}] ~I- c2C-1 {1- cos(~~)}. 

Combining this with (2.27) we see that it only remains to be shown that positive 

numbers b, B and f3 exist depending only on c, C, o and e and such that (2.23) 

holds for lsi ~ rr:N' and (b1 1\ b2)N' ~ it! ~ bNt . For this we can appeal to the 
corresponding part of the proof of Lemma 2.2 in ABZ ( 1976) with only minor 

modifications. 0 

Define functions flk(p), 1 ~ k ~ 6, and Ak(p), 0 ~ k ~ 6, by 

(2.28) 

(2.29) 

w 1 w 2 3w w 3 

fll = - , !12 = - - - , f13 = - - - , 
a 2 a2 a• a4 a6 

3 6w 2 w• 
f1 4 = 4 - -6 + -~ , 

a a a 

_ 15w 10w3 + (J} 
/15 - - 6- - -8- 1o , 

a a a 

N-' N-1 2 

Ao = 1 + - 6- "3,o f13 + n(3K4,0 f14 - /C3, of16), 

N-' N- 1 

Al = - - 2- "3, !!12 + --u- (2K4,J!13 - K3,0/C3,lf15), 

N-! N- 1 2 

A2 = - - 2- K3 ,2fl! + ~ { -6K4,2f12 + (2K3,0 /C3,2 + 3K3, l)f14}, 

N -1 N-l 
A3 = - 6- "3 ,3 + 36 { -6K4,3 fl l + (K3, oK3 ,3 + 9K3,1K3 ,2)f13}, 

N-l 
As= -- "~ 3, 72 ' 
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where we have suppressed the dependence on p. We shall show that 

(2 .30) _ (2rr)l { wz(p) r 2(p)t'j } l.i(t,p) = -- exp - - -- - - iw(p)ii(p)t L; %= 0 A.(p)(it)k 
a(p) 2a2(p) 2 

is an asymptotic expansion for l.i(t, p) . 

LEMMA 2.3. Suppose that positive numbers c, C, o and o exist such that (2.21) 
and (2.22) are satisfied. Then there exist positive numbers b, B and (3 depending 
only on c, C, o and o such that for It! ~ bN~ , 

(2.31) !v(t,p)- D(t,p) ! ~ B [(N-~ + N -li t i5) exp { _c~2 } + N- fi logx] . 

PROOF. In this proof b, b;. Bi, Pi and N0 denote appropriately chosen positive 
numbers depending only on c, C, o and s. 

Arguing as in the proof of Theorem 2.1 in ABZ (1976) we find by Taylor 
expansion of log ¢ that if Is + a1 t! ~ !rrN! for all j, then 

(2.32) 

where 

¢(s, t, p) 

N- 2 } + - - 'L. PP - p1)(1 - 6p1 + 6p/ )(s + a1 t)' + M1(s, t , p) , 
24 

!M 1(s, t,p) ! ~ C 1 N-l I: Is + a1 t!5 

~ 16C1(N- !W I:: !a1 -iii"+ N - l! s + iit !" ) 

for some absolute constant C1• Now (2.21) and (2 .26) imply that N - 1 I: Ja1 - ilJ3, 
N- 1 I: !a1 - ii j4 , N-i max !a1! and N-l I:: !a1 - iW are bounded. Using (2 .21) 
and (2.25) we find that for all lsi ~ b1 N ! and it! ~ b1 Nt 

N -i N -2 - 2t2 + a2(s + aty _ 6_ I: Is + a1 W + 24 I:: (s + a1 t)' + !M 1(s , t,p) ! ~ ~ -- -4 - - . 

Hence further expansion of part of the exponential in (2. 32) shows that 

(2.33) ¢ (s, t, p) = 1}(s, t, p) + M 2(s, t, p) 

(2.34) - 2pi )(s + ai ry 

+ ~~2 L; pAl- Pi )( I- 6pi + 6p/ )(s + a1 t)' 
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(2.35) 

and M3 is a polynomial in t and (s + iit) of fixed degree with coefficients 
depending only on c and C. Therefore, for ltl ~ b1 Nt, 

(2.36) ~ _ { ct2 } ~~i~N~ I<P(s, t , p)- ¢(s, t , p) l ds ~ B1(N-i + N- l ltl 5) exp - 8 . 

Next we show that for ltl ~ b1 N t , 

(2 . 37) 

(2 .38) 

~ b ~ N~;;; I s i :SrrN! 1</'(s, t,p) l ds ~ B2N-P2 JogN' 

~ l s i <;;& J N! I¢J(s, t, P)l ds ~ B3N-P3 JogN . 

For N ~ N 0 , (2. 37) is a consequence of Lemma 2.2 and since I <P I ~ 1 we can 
choose B2 so that (2. 37) holds for all N. Because for all sand t 

(2 .39) 

where M4 is a polynomial depending only on c and C, (2.38) follows. Combining 
(2 . 11), (2.36), (2.37) and (2.38) we see that for ltl ~ b1 N t 

(2.40) ll.i(t,p)- ~ '::=¢(s, t,p)dsl 

~ B4 [(N -~ + N - lw) exp { _ c~ 2 } + N -P4 togN J. 
A direct application of Lemma 2.2, the fact that I <PI ~ I and (2. 39) show that 
we can choose B4 and {34 so that (2.40) continues to hold for b1 N t ~ ltl ~ bN! 

with bas in Lemma 2.2. 
It remains to be shown that for all s and t 

(2.41) 0(t, p) = ~ '::= ¢(s, t, p) ds. 

This follows by straightforward but tedious computation using the fact that 

for even k 

for odd k . D 
We now turn to our asymptotic expansion for rejective sampling. For 

1 ~ k ~ 6, define functions Qk(p) by 

(2.42) 

Qk = Ak, k = 4, 5, 6 . 
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Let <I> and <P denote the standard normal df and its density and let Hk denote 

the Hermite polynomial of degree k, thus 

(2.43) H0(x) = 1 , H1(x) = x, H2(x) = x2 - 1 , H3(x) = x 3 - 3x, 

H 0(x) = x5 - 10x3 + 15x. 

We shall show that expansions for (2.8) and (2.9) are given by 

(2.44) p(t, p) = exp {- r 2(~)!2 - iw(p)a(p)t} [1 + 2:;~= 1 Qk(p)(it)k], 

(2.45) R(x, p) = <I> ( x + w(p)a(p)) _ <P ( x + w(p)a(p)) 2:1= 1 Qk(p) 
r(p) r(p) (r(p))k 

X H _ ( x + w(p)ii(p)) . 
k 1 r(p) 

Note that pis the Fourier-Stieltjes transform of R, i.e., p(t, p) = ~ eitx dR(x, p). 

THEOREM 2.1. Suppose that positive numbers c, C, D, o and o: exist such that 
(2 .21) and (2.22) are satisfied and 

(2.46) Jw(p)J ;£ D. 

Then there exist positive numbers N0 and B depending only on c, C, D, o and o: such 
that for N f;: N0 , R(x, p) is well defined and 

(2.47) supz JR(x, p) - R(x, p)J ;£ BN-t . 

PROOF. In this proof b, B0 [3, r; and N 0 denote appropriately chosen positive 

numbers depending only on c, C, D, o and o:. 

By (2.21 ), (2.25), (2.26), (2.46) and Lemma 2.3 we have for N ~ N 0 , 

(2.48) Jii(O, p)J f;: r; , Jt;(O, p) - ii(O, p)J ;£ ~ , 

so that Jt;(O, p)J f;: r;/2 > 0. In the first place it follows that for N f;: N0 , c(p) > 0 

and hence (2. 7) is satisfied and R(x, p) is properly defined. We assume that 

N f;: N 0 and we shall show that, with bas in Lemma 2.3, 

(2.49) 

By Esseen's smoothing lemma (Esseen (1945)) this suffices to prove the theorem 

because R( -=, p) = 0, R(=, p) = 1 and the derivative of R with respect to x 
is bounded. 

By (2.21), (2.25), (2.26) and (2.46), p has a bounded derivative with respect 

to t. Also 

\dp~; p)\ ;£ N-'E(J.L; a1(W1 - p1)JJ2: W1 = n) ;£ N-t 2:; Ja1J ~ CiNt. 

Since p(O, p) = p(O, t) = 1, it follows that 

(2.50) ~~;:.21 p(t, p) ~ p(t, p) I dt;;::;; B2N-i. 
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Next we note that (2.21), (2.25) and (2.26) ensure that for all t 

(2. 51) { ct2} Jii(t, p)l ~ B3 exp - 4 . 

Together with (2 . 13), (2.48) and Lemma 2. 3 this implies that for Jtl ~ bN! 

(2.52) l
p(t, p) - ~(t, p) I ~~ Jv(t, p)- ii(t, p)l + ~ Jii(t, p) Jiv(O, p)- ii(O, p) J 

v(O,p) r; r;2 

~ B 4 [ (N-1 + N- lJ tJ 5) exp {- e~2 } + N-PiogN J. 
Again with the aid of (2 .2I), (2.25) (2.26) and (2.46) one can easily check that, 
for I ~ k ~ 6, Qk is obtained from Akf A0 by expanding the denominator and 
discarding all terms of order N-! , i.e . , that IQk - Akf Aol ~ B5 N-( It follows that 

(2.53) l
p(t, p)- ~(t, p) I~ B6N-1 exp {-et2} 

v(O, p) 4 

and combined with (2 . 52) this yields 

(2.54) ~ r2~l t l ~ b N! I p(t, p) ~ p(t, p) I dt ~ B7(N-! log N + N- l) ~ B6 N- l . 

Together with (2 . 50) this proves (2.49) and the theorem. 0 

Two remarks should be made with regard to Theorem 2.I. The first one 
concerns condition (2.46) that does not occur in the preceding lemmas. The 
meaning of this condition is perhaps obscured by the fact that we make it do 
some odd jobs in the proof for which it is not really needed. We use it to show 
that (2 . 7) is satisfied for N ~ N0, but (2.25) ensures that the number of indices j 
with Pi = 0 (or Pi = I) cannot exceed m - c-1e2N + Jw(p)JNi (or n - C- 1eW + 
Jw(p)JNt) so that Jw(p)l ~ C-1eW ~ already implies (2 . 7) for all N. Condition 
(2.46) is also used to obtain (2 .50), but in (2.50) we may replace N- 2 by an 
arbitrarily high power of N- 1 without doing any damage to the proof, and then 
the trivial bound Jw(p)l ~ N~ suffices. Finally we note that since 

(2.55) 

(2.46) forces A to be bounded away frorri 0 and I for large N, which is obviously 
important although it does not show up explicitly in the proof. However, here 
Jw(p)l ~ !C-1eW t would be sufficient. 

The basic function of assumption (2.46), however, is to avoid a large (or 
intermediate) deviation situation that the condition ~ W1 = n would get us into 
if w(p) = N - !(E L: Wi - n) would not be bounded. Technically speaking this 
is reflected in the proof at the point where (2.46) is used to show that v(O, p) is 
bounded away from zero. Also (2.46) ensures that (2.45) provides an expansion 
in powers of N - t to the required order. 

To see what happens when condition (2.46) is relaxed, we prefer not to try to 
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adapt the proof of Theorem 2. 1 but to answer this question more directly by 
remarking that the conditional distribution of I; aJWJ given I; W J = n remains 

unchanged if we replace p by p where PJ/(1 - PJ) = ~PJ/(1 - PJ) 1 ~ j ~ N, 
for some 0 ~ ~ ~ oo . If (2. 7) is satisfied there exists a unique ~ for which 
I; pi = NJ. . Since w(p) = 0 it follows that if (2.21) and (2 .22) are satisfied with 
p replaced by p, then (2.47) holds with R(x, p) instead of R(x, p) . Of course the 
snag is that in general p can only be expressed analytically in terms of p as an 
infinite series. However, if w(p) = O(Na ) for some a<!, then a finite number 
of terms of this series will yield the required degree of accuracy and an explicit 
expansion for R(x, p) can be obtained. If a = 0 this is expansion (2.45) but for 
0 < a < ! more terms have to be included. 

The second remark concerns the remainder O(N- i ) of our expansion. It is 
clear that by requiring that I; [al ~ CN in Theorem 2. 1 one obtains [R - R[ ~ 
BN- ~ log (N + 1). Of course the " natural" order of the remainder is O(N-;) 
and the factor log (N + 1) is due only to technical difficulties in finding the 
conditional expectation of I: aj w j given I: w j = n. 

The special case PJ = )., 1 ~ j ~ N, which is random sampling without 
replacement, is worth singling out because it corresponds to the null-hypothesis 
in the two-sample problem. Let ) denote the vector (J., . . . , J.). For p = ), 
(2.45) simplifies to 

R(x, J.) =<I>(~)- ¢(xjr())) [ J.(1 - J.) HI(~) 
r(J.) 2( I - 2) 2N r(J.) 

(2.56) 

where 

(2.57) - 2( 1 - 2) 
<2(2) = " .v_ (a . - a )2 N LJ 3-1 3 • , 

(2.58) -( 1) I I: .Y a = a A = ~ ._1 a . . • N 3 - 3 

Define, with I denoting Lebesgue measure on R1, 

(2.59) r(() = l{x: 3 j [x - a j l < q . 
For p = J., Theorem 2. 1 yields 

COROLLARY 2.1. Suppose that positive numbers c, C, o and c: exist such that 

(2 .60) 

(2 .61) 



130

950 P. J. BICKEL AND W . R. VAN ZWET 

(2.62) r(() ~oN( for some ( ~ N-1 log N . 

Then there exists B > 0 depending only on c, C, o and e such that 

supx IR(x, l) - R(x, 1)1 ;£ BN-i . 

Note that there is considerable further simplification in (2.56) if we either 
have almost equal sample sizes, i.e . , ,( = t + O(N-i ), or antisymmetric scores, 
i.e . , ai + aN-i+l is constant for all j . The latter happens for the locally most 
powerful rank test against shift alternatives when the underlying distribution 
is symmetric. In either case the H 2 and H 5 terms disappear so that the correc
tion to the leading normal term is of order N- 1 only and is due solely to a cor
rection to the variance, the H 1 term , and a kurtosis correction corresponding 
to H3 • 

3. An unconditional expansion. We encounter several difficulties on the way 
to a usable unconditional expansion: 

(i) the distribution of Z is awkward to handle analytically; 
(ii) as in ABZ ( 1976), the random variables obtained by substituting P for 

p in p or R are generally not summable; 
(iii) again as in ABZ ( 1976), final simplification is not possible with our 

present techniques unless we assume that the sequence of alternatives is con
tiguous to the hypothesis as N --> oo . 

In this section we shall deal with the first two difficulties . Although we do 
not assume contiguity we shall be governed in the form of our expansion, which 
will involve polynomials in (Pi - .(), in the number of terms that we calculate 
and in what we relegate to the remainder by the consideration that we expect 
Pi = ,( + Op(N-2) and ~(Pi - .() = Op(l). 

Recall that we assumed that Xp . . . ' XN are independent, Xp . .. 'xm having 
common density I and xm+l> . .. ' XN having density g . We shall write p for 
probabilities and E for expectations calculated under this model. In addition 
we need to consider an auxiliary model where Xl> . .. , XN are i.i .d. with com
mon density h = (1 - .()/ + ,(g and df H = (1 - .()F + .(G. We shall write PH 
for probabilities, EH for expectations and a H 2 for variances calculated under 
this second model. 

To simplify our notation we assume from this point on that 

(3 . 1) ~f= 1 ai = 0. 

Since T = ~ (ai - a.) Vi + na. it is obvious how all expansions need to be 
modified if (3.1) does not hold. 

We meet difficulty (i) through 

LEMMA 3.1. 

(3.2) 
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where 
BN,n{J.) = (~)J-"(1 - J.)N-n. 

PROOF. Under our original model the density of Z at the point z = (z1 , • • ·, zN) 

with Z1 < Z2 < · · · < zN is given by 

I: ITi=rf(zi) llf=m+I g(zi), 

where the sum ranges over all permutations i 1 , • ··,iN of 1, · · ·, N. Under our 
second model this density is 

N! IIf=r [(1 - J.)f(zi) + J.g(zi)]. 

By the Radon-Nikodym theorem and Lemma 2.1, 

E exp {irN-~T} = E :~~·, ~ exp {irN-~ I; aj Pi} 

= E _2J(t, P) ex {irN-~ "'a P.} "' rrm f(Zij2 IIN g(Zij) _1 
H )..!(0, P) p LJ 3 3 LJ ; = I h(Zi .) J=m +I h(Zi .) N! 

) J 

= [B , (J.))-1 E )..!( t' P) exp {UN-~ "' a . P}c(P) 
/1 ·" H )..!(0, P) LJ ) ) ' 

where cis defined by (2.6) or (2.12). The lemma follows from (2.11) and (2.13). 0 

Lemma 3.1 shows that we are concerned with D rather than p, but since D as 
a function of Pis no more summable than p, we still have to face difficulty (ii). 
We do this by showing that D may be replaced by a summable function )..!* out
side a set that will later be seen to have sufficiently small probability. Define 

where 

A *( ) - 1 + l ["' ( . _ J.)2 _ {"' ( . _ J.)}2 
0 p - 2J.(1 - J.)N LJ p, LJ p, 

- 1 -). + J-2 ] 
6 ' 

a [ 1 - 2}. J A/(p) = N-, I; aipi 1 - I; (Pi- J.) , 
J.(1 - J.) 

A2*(p) = (1 - 2A) "'a.2( . - ,J.)- I: a/ 
2N LJ ' p, 2N2 

X [(1 - 2J.) I; (pi - J.) - J.(1 - J.)] 

1 "' 2( J.)2 ( 1 - 2J.)2 {"' }2 
(3.4) - 2N LJ ai Pi- - 2J.(1 - J.)N2 LJ aipi ' 

Aa*(p) = N~} [J.(l- J-)(1- 2J.) I; a/+ (1- 6). + 6J.2) I; a/(Pi- J.) 

- ~ (1 - 2J.) 2 I; a/ L;aipi J, 
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A*( ) = A(I - A)(I - 6A + 6A2) ""a.4 _ A(l - A)(l - 2A) 2 {"" a.2}2 

4 p 24N2 w 3 8N3 w 3 

+ (l ;N:A)2 {L: a/(pj- AW' 

N-1 
A5*(p) = U A(l - A)(l - 2A)2 L; a/ L; a/(pj- A), 

A*( ) = A2(l - A) 2(l - 2A)2 {"" a.3}2. 
6 p 72Na w 3 

LEMMA 3.2. Suppose that (3.I) holds and positive numbers c, C and c: exist such 

that (2.21) is satisfied and 

(3.5) 

Then there exist positive numbers B and p depending only on c, C and c: such that 

(3.6) Jii(t, p) - J.i*(t, p) J ~ B exp{ - j3 t2}[{N- l + N-i JtJ}{l + N L; (pj - A)4} 

+ N- i {L; (pj _ A)4}] . 

PROOF. For simplicity we make use of order symbols in this proof and O(x) 
will denote a quantity that is bounded by B1 JxJ where B1 depends only on c, C 

and c:. 
Suppose first that Jw(p) J > l. Then (2.21) and (3.5) are easily seen to imply 

that Jl.l*(t, p) J = O(w2(p) exp{ -c:(l - c:)ct2J4}), whereas for ii(t, p) we have the 
bound (2.51). The right-hand side of (3.6), however, contains a term 

BN1w4(p) exp{ - j3 t2} so that the lemma is trivial for Jw(p) J > l. 
We therefore assume that Jw(p) J ~ l. Noting that (J2(p) is bounded away 

from zero (cf. (2.25)), we expand (J- 2, a, <2 and K, ,i about the point pj = A, 

l ~ j ~ N, using elementary inequalities to bound the remainders in terms of 

Nand 

We find 

l [ l _ (I - 2A) L: ( _ A) l L: ( _ A) 2] 

A(l - A) A(l - A)N pj + A(I - A)N pj 

+ O(M1 + M22) 

__ I_ + O(Ml + M) 
A( 1 - A) 1 2 ' 

ii(p) = (l- 2A) L: a .pj + O(M11) = O(M11), 
A( l - A)N 3 

~ 2(p) _- A(l - A) "" 2 + (l - 2A) "" 2( _ ') _ l "" 2( _ ') 2 ' N LJ aj N LJ aj pj A N LJ aj pj A 

- ( l - 2A)2 {"" a }2 O(M 1. ) 
A(l - A)N2 w jpj + 1 ' 
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K3 , 0(p) = A(l - A)(l - 2A) + O(M1! + M2), 

( ) 2A( 1 - A) " . . O(M l) 
"a.J p = N LJ a3p3 + I , 

( ) _ A(l- A)(l- 2A) " 2 O(M l) 
"a,2 P - N LJ a; + 1 , 

( ) _ A( 1 - A)( 1 - 2A) I; 3 ( 1 - 6A + 6A2) I; 3( ') 
K3 3 p - . a + a . p . - A · N 3 N 3 3 

_ 3(1 ~2 2A)2 I; a/ I; a;P; + O(N lM1l) ( = 0(1)), 

K 4 , 0(p) = A(l - A)(l - 6A + 6A2 ) + O(M1i) , 

Ku(P) = O(M1i ), 

( ) _ A( 1 - A)( 1 - 6A + 6A)2 I; 2 O(M i) 
"4 2 P - a + 1 , , N J 

K4 , 3(p) = 0(1), 

"4 ,4(p) = A(l - A)( I;; 6A + 6A2) I; a/+ O(NiMli ) ( = 0(1 )) . 

953 

To illustrate computations involved we present the argument for "3.3· By (2.21), 
the result for ii(p) and the fact that 0 ;£ M 1 ;£ 1, we have 

K3 ,3(p) = N- 1 I; P;(l - P; )(l - 2p;)a/ 

- 3N- 1ii(p) I; Pi(! -Pi )( I - 2p;)a/ + O(M1l) 

= N-1A(l - A)(l - 2A) I; a/+ N- 1(1 - 6A + 6A 2) I; a/(Pi - A) 

- 3N-2(1 - 2A)2 I: a/ I: ai pi 

+ O(Ml l + N-1 I; JajJa(P; - A)2 + N-1Mli I; a/I P; - AI). 

Holder's inequality and (2.21) imply that 

N-1M1l I; a/IP; - AI ;£ N-1M1i(I; Jai)l )l(NM1 )i = O(M1!), 

N-1 I; Jaj J3(pj - A)Z ;£ N- 1(CN)l I; a/ (Pi - A)Z ;£ CtN-1(NM1 I; a/)! 

= O(NtM ~ ). 

As ii(p) is bounded, K3 , 3(p) is obviously also 0( 1 ). Note that the atypical order 
of the remainder O(N iM1l) originates from the term O(N- 1 I: JaiJ 3(p i - A)2) 
where we have to sacrifice a factor O( N-l) in order to apply Holder's inequality 
and (2.21 ). The same thing occurs for K 4 ,4(p). 

For fliP) defined by (2.28) we find 

( ) - I " ( - A) + O(M l + V!M 2) 
f11 p - A(l - A)N~ w Pi 1 • 2 , 

fl z(P) = 1 + O(Ml l + Mz + NMzz), 
A( 1 - A) 



134

954 P. J. BICKEL AND W. R. VAN ZWET 

( ) - 3 " ( . - A) + O(M t + NM 2) 
f.13 P - A2( 1 _ A)Wt Ll PJ 1 2 , 

3 
f.14(p) = A2( 1 _ A) 2 + O(M1 t + M2 + NM/), 

f.1 5(p) = O(NiM2) , 

() 15 O(M' M NM 2) f.16 P = A3( I _ A) 3 + 1 + 2 + 2 • 

Straightforward but tedious calculation now yields 

L:~=O Ak(p)(it)k 

- [t (I-2A) "( .-A)-(I-A+A2
) ] 

- + 2A(I - A)N Ll PJ 12A(I - A)N 

+ L; aipi it - L; a/ [(1 - 2A) L; (p . - A) - A( 1 - A)](it)2 

N~ 2N2 J 

(3 .7) + 6~! [ A(l - A)(1 - 2A) L; a/+ (1 - 6A + 6A2) L; a/(Pi- A) 

- 3(1 - 2AY L: 2 L: J ('t)3 a. a .p. 1 N J J J 

+ A(~4~2A) [(1 - 6A + 6A2) L: a/- 3(1 ~ 2A)2 {I; a/P] (it)4 

+ A2(I - ~~~3- 2A)z {I; a/}2(it)6 + 0((\W + t4)[N-i + N-iMii] 

+ (1 + t 6 )[N- ~ + N-iM1i + N'M/]). 

Next we expand the remaining factor in (2. 30). Because both r 2(p) and its 
leading term A(l - A)N-1 L: a/ are bounded away from zero, there exists {3 > 0 
depending only on c, C and D, such that 

(2rr)i { w2(p) r2(p)t2 . _ } 
a(p) exp -i;;z(p)- -- i - - zw(p)a(p)t 

= [ 2rr ] ' exp { _ A( 1 - A) L: a .2t 2 } 

A(I - A) 2N J 

X [I- I . {(1- 2A) "[;.(Pi- A)- L: (Pi- A)2+ {I; (Pi- AW} 
2A(I - A)N 

- ( 1 - 2A) i L; (pi- A) L; aipi(it) + - 1 {(1 - 2A) L; a/(Pi- A) 
A(1 - A)N 2N 

- L: a/(Pi - A)2- i/1-=- 2A~~ {I; aipi}2} (it)2 

+ (1 ;N:A)2 {I; a/(Pi- A)l2(it)4] 

+ O(exp{- {3 t 2}[N-~ + NiM1 + N~M24]). 

Multiplication by (3. 7) yields (3.6). 0 
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Here is our first unconditional expansion. Define 

(3.8) p(t) = E exp{itN-l:T}, 

p*(t) = exp {- A(l2~ A) ~ a/t2 } En [ exp{itN-l: ~a; P1} 

(3.9) X { 1 + 2A(1 ~ A)N (~ (P; - A) 2 - {~ (P; - AW) 

+ ~%~rAk*(P)(it)k}l 

955 

LEMMA 3. 3. Suppose that (3.1) holds and that positive numbers c, C, o, o' and e 

exist with o' < min(!, oj2, c2C-1j4) and such that (2.62) is satisfied and 

(3.10) 

(3.11) 

_!_ " a .2 ~ c , N,[_j'_ _!_ " a.' ::::;; C , N,{_j,_ 

Then there exist positive numbers b, B, {3 1 and {32 depending only on c, C, o, o' and 

o: such that for lt l ~ bNi, 

(3.12) lp(t) - p*(t)l ~ B [ exp{ -{31 t2}(N-i + N-iltl) 

X { 1 + N2E ( g(Xr) - 1)4} + N-fi2logNJ. 
H h(Xl) 

PROOF. In this proof we again use 0 symbols that are uniform for fixed c, C, 

o, o' and o:. Note that En{g(X1)jh(X1)} = 1, so that (3.11) and Markov's inequality 

ensure that min (A, 1 - A) ~ e(1 - o'). 
Take a number 13" E (o', min (t, oj2, c2C-1/4) and define the event E by 

E = {o: ~ P; ~ 1 - o: for at least (1 - o")N indices j} 

= {o: ::::;; Ag(X;) ::::;; 1 - o: for at least (1 - o")N indices ;·} . 
- h(X1) -

Applying an exponential bound for binomial probabilities ( cf. Okamoto ( 1958)) 

we find that (3.11) implies 

(3 .13) 

Because A and (1 -A) are bounded away from 0, the same is true for Nl:BN,,.(A). 
Also, (2.10) and (2.11) imply that IJ..I(t, p)l ~ 2rrNl: for all t and p. Hence appli

cation of Lemma 3.1 shows that 

(3.14) (t) = EnJ..i(t, P) exp{itN-l: I; a1 P;}xe + O(ex {-N(o" _ o')2}) 
p 2rrN~BN,n(A) p , 

where Xe denotes the indicator of E. 
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Since o" < of2, (2.62) ensures the validity of (2.22) on the set E with o 
replaced by o - 2o". If .2:' denotes summation over those indices j for which 
P; fl [ c, 1 - c] and k denotes the number of these indices, then k ;£ o" N on E 

and as a result 

-r2(P) ~ c(1;; c) [.2: 1=1 (a; - ii(P))2- .2:' (a; - ii(P)Y] 

~ ~( 1 ;; c) [.2: )'=1 a,.Z + N{ii(P)Y- 2 I:' a,.Z- 2k{ii(P)P] 

~ c( 1;; c) [eN- 2{k I:' a/Jl] ~ c(1- c)[c- 2{o"C}!] > 0 

onE, because o" < min(!, c2C- 1f4). 
We have shown that on the set £, a and P satisfy the conditions on a and pin 

Lemmas 2.3 and 3.2. Combining (3.14), (2.31) and (3.6) we obtain 

p(t) = E,t'1.1*(t, P) exp {irN- ! .2: a; P;}XE 
2rcN!B,v,n(2) 

(3 .15) + O(N-~2togN + exp{- j91 t2}[{N- ~ + N-l iti} 

X {1 + NEH I: (Pj - 2)4 } + N- }EH{l: (P; - 2W]) 

for It! ;£ bNi, where b, j91 and {3 2 depend on c, C, o, o' and c only. 
Becauseof(3 .1 3) and the fact that 'V* (t,p) = O(N), (3.15) remains valid if 

we delete X£· Using 

2rcN'B. (2) = [ 2rr ]! (1 - 1 - 2 + 22 ) O(N- 2) 
N,n 2(1 - 2) 122(1 - 2)N + 

one easily verifies that in (3 . 15) the first term on the right may be replaced by 
p*(t) without changing the order of the remainder. Since 

E "(P. - 2)4 = E " (~g(XJ - 2)4 = 2•NE (J(XJ_ - 1)4 
H L.J J H L.J h(X;) H h(X1) ' 

EH{L: (P; _ 2)}4 = 24Eu {.2: (~f~:? - 1)r ;£ 324N2Ell (-~f~:?- 1)' , 

the proof of the lemma is complete. D 

Define 

(3.16) 

In the remaining part of this section we obtain a further expansion for p(t) and 
convert this expansion into one for the df ofT. Although we still do not assume 
contiguity, we shall be guided in what terms we include in the remainder by 
the fact that under contiguous alternatives we expect (P; - rr;) to behave roughly 
like OPH(N- 1) . Let 

(3.17) 
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where <I> and ¢ denote the standard normal df and its density, the Hermite poly

nomials Hk are given by (2.43) and 

(3.18) 

L;an. a - 1 1 

o - {A(l - A) I; a/PN ' 
al/ 2(I; ai Pi) - I; a/EH(Pi - A)2 + (1 - 2A) I; a/(ni - A) 

2A(1 - A) I; a/ 
_ (1- 2A)2{I; aini} 2 + _1_, 

2A2( 1 - A)W I; a/ 2N 

a 2 = ((A(l - A)(l - 2A) I; a/+ (1 - 6A + 6A 2) I; a/(ni- A) 

- 3(1- 2A)W- ' I; a/ I; aini])J(6{A(1- A) I; a/}!), 

a 3 = (A(1 - A)(1 - 6A + 6A2) I; a/- 3A(1 - A)(l - 2A)2N-'{I; a/} 2 

+ 3(1 - 2A)2{I; a/(ni- A)V)/(24{..{(1 - A) I; a/}2), 

a _ (1 - 2A)2 I; a/ I; a/(ni- A) 
4

- 12{..{(1 - A)} t{I; a/J! ' 
a _ (1 - 2A)2{I; a/Y 

5 - 72A(1 - A){I; a/P · 

THEOREM 3.1. Suppose that (3.1) holds and that positive numbers c, C, o and c: 

exist such that (3.10) and (2.62) are satisfied and 

(3.19) 

Then there exists B > 0 depending only on c, C, o and c: such that 

(3.20) 

PROOF. In this proof Bi and pi denote appropriately chosen positive numbers 
depending only on c, C, o and c:. We shall have to consider the rv 

(3.21) 

and we note that 

(3.22) EHIUI3 ;£ N-![L; iaii{EHIPi - nil 3}!)l 
;£ CiN- i[L; {EHIPi - nilapp. 

Since sup. (1 + IK(x)l) ;£ B,(l + EHU2 ) ;£ B,(2 + EHIVI 3) we may assume 
without loss of generality that EHIUI 3 ;£ 1, because otherwise (3.20) is satisfied 
trivially for B = 3B1 Ci. Hence sup. ( 1 + IK(x)l) ;;;; 3B, and similar bounds 

lakl ;£ Bi1 + EH U2) ;£ 3B2 and sup. IK'(x)l ;£ 3B3 hold for a0, • • ·, a5 and for 
the derivative K' of K. 

Take o' = min (t, oj4, C2C-'J8). In view of 1 + IKI ;;;; 3B, it is again no loss 
of generality to assume that EH(g(X,)Jh(X,)- lt;;;; o'c:4J16, because otherwise 
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(3.22) with B = 48B1j(o'c4) is trivially true. Hence by (3.19) and Markov's 
inequality 

p (.1c < J.g(X1) < 1 - 1c) > P (I g(X1) - 11 < lc) > 1 - o' 
H 2 = h( X!) = 2 = H h( X!) = 2 = ' 

so that the conditions of Lemma 3. 3 are satisfied and (3 .12) holds. 
The proof hinges on the expansion 

exp{irN-t I; a1 P1} = exp{irN-t I; a1 rr;J[l + itU + MitU) 2] + O(ltUI3) 

and its truncation to fewer terms. We apply this expansion to (3.9) and in the 
resulting expression we replace P by rr wherever this is possible without giving 
rise to remainder terms that would be awkward to handle at this point. Using 
elementary inequalities to separate out and bound those parts of the remainder 
that depend on the (P1 - J.) rather than on the (P1 - rr;), we arrive at 

(3.23) IP*(t)- p(t)l s B4ltl exp{-;33 t2} [ N-f + N'EH (g(X1) -1)4 + EH\UI3 

- h(X1) 

+ N- 1EH\U I; a/(P1 -rr1)1 +N- 2EH{I; a/(P1-rr;}PJ, 

(3.24) p(t) = exp {itN-t I; a;rr;- t2 J.(l2~ J.) I; a/} 

X [I+ I;~=I ak-J ( J.(l- ~I; a/yk (it)k]. 

Because max la11 ~ (CN)t we find by the same reasoning as in (3 .22), 

N- 1 EH IU I; a/(P1 - rr1)1 + N- 2EH{I; a/(P1 - rr1)p 

~ B5 N-l£H{I; la1(P1 - rr1)IJ2 
~ B5 N-l[l + Eu{L: la;(P1 - rr1)1YJ 
~ B5N-l + B6N-t[I; {EHIP;- rr;n~p. 

Together with (3.22) this shows that (3.23) may be reduced to 

(3.25) lp*(t)- p(t)l ~ B7ltl exp{ -;33 t2} { N-l + N!EH ( ~~~:~ - 1 y 
+ N- ![:6 {Eu iP;- rr;I 3PP} · 

As a 0,. · ·, a 5 are bounded and N-!l.i a1 rr 1 1 ~ CtN!, we have 1/i'(t)l ~ B8N; 
for all t. Since IP'(t) l ~ N-~EI TI ~ CtN! for all t and p(O) = p(O) = 1, 

(3.26) lp(t) - p(t) \ ~ B9 N!Itl for all t . 

Combining Lemma 3.3, (3.25) and (3.26) we find 

\~~~ lp(t) ~ p(t) \ dt 

I lp(Q - .0(01 (3.27) ~ B9 N - + ~r2 :; 1 1 1 :;bNI t dt 

s B10 {N-l + N'-Eu ( g(XJ_- 1)4 + N-![I; {EHIP; - rr113PJ£}. 
- h(X1) 
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Nowp(t)istheFourier-StieltjestransformofK({N'x- .L; ai 1!'i}{.2(1-.2) .L; a/}- ' ) 
as a function of x. This is a function of bounded variation assuming the values 
0 and 1 at- oo and+ oo and having a derivative that is bounded by 3B3c-'{c(l-o:)}-1 

in absolute value. It follows from the smoothing lemma (Esseen ( 1945)) that 

sup \P(N-' T::;; x)- K( N'x- .L: ai1ri )I 
x - {.2(1 - .2) .L: a/ P 

is bounded above by the right-hand side of (3.20). A change of scale completes 
the proof. 0 

Theorem 3.1 provides the basic expansion for the distribution of T under 
contiguous alternatives. Only first and second moments of functions of order 
statistics remain to be determined. In Section 4 we shall be concerned with a 
further simplification of the expansion and a precise evaluation of the order of 
the remainder. With regard to this remainder we are in a seemingly less favor
able position than we were at the same stage in the one-sample problem ( cf. 
ABZ (1976), Theorem 2.3), because the third remainder term in (3.20) is larger 
than the corresponding term in the one-sample case by a factor N t . This is due 
to the appearance of the remainder term N- 1EH[U .L; a/(P; - 1!';)[ that does not 
occur for the one-sample statistic. It will turn out, however, that we shall need 
only a slightly stronger condition than before to show that the remainder is still 
O(N-l ). 

The conditions of Theorem 3.1 concern only the sample ratio .2 and the scores 
a. There are no assumptions about the underlying densities J and g but this is 
merely a trick; obviously something like contiguity is needed to make the ex
pansion meaningful in the sense that the remainder is at all small. With regard 
to the conditions on the scores, (3.10) acts as a safeguard against too rapid growth 
and (2.62) ensures that the ai do not cluster too much around too few points, 
thus preventing a too pronounced lattice character of the distribution ofT, as 
was pointed out in ABZ (1976). It was also noted there that in the important 
case of exact scores ai = EJ(Uj:N), with U1,N < U2, N < · · · < UN:N order 
statistics from the uniform distribution on (0, I) , both (3.10) and (2.62) wiJI be 
satisfied for all N with fixed c, C and o if J is a continuously differentiable, non
constant function on (0, 1) with ~ J 4 < oo. The same is true for approximate 
scores ai = J(jj(N + 1 )) provided that J is monotone near 0 and 1. 

4. Contiguous location alternatives. The analysis in this section will be car
ried out for contiguous location alternatives rather than for contiguous alter
natives in general. The general case can be treated in much the same way as 
the location case, but the conditions as well as the results become more involved. 

We recall some assumptions and notation from Section 3 of ABZ (1976). Let 
F be a df with a density J that is positive on R 1 and four times differentiable 
with derivatives f'il , i = 1, ... , 4. Define 

( 4.1) i = 1, ... , 4 ' 
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and suppose that positive numbers e.' and C' exist such that for 

(4.2) 

i=1, ... ,4. 

So far, we have studied the distribution of T under the assumption that 

xp ... , X.v are independent, xp ... , xm having common df F and xm+l' ... , XN 

having df G. We now add the assumptions that 

(4.3) G(x) = F(x - 8) 

for all x and that 

(4.4) 0 ~ 8 ~ DN-! 

for some D > 0. Probabilities under this particular model will still be denoted 

by P. Note that (4.2), (4.3) and (4.4) together imply contiguity. 

In Section 3 we also introduced an auxiliary model where Xn ... , XN are 

supposed to be i.i.d. with common df H = (1 - J.)F + J.G. In view of (4.3) 
this common df now becomes H(x) = (1 - J.)F(x) + J.F(x- 8). Probabilities, 
expectations and variances under this model will be denoted by PH, EH and aH 2 

as before. Similarly, PF, EF and aF2 will indicate probabilities, expectations 
and variances under a third model where Xn ... , XN are i.i.d. with common 

df F. Note that for 8 = 0 these three models coincide. 
Define 

(4.5) 

where 

(4.6) 

a0 = i ( J.( 1 - A))! [3(1 - 2J.)82 I: ajEF¢2(ZJ- 6N- 18 I: ajEF<jJ1(Zj) 
I: a/ 

- 83 I; ajEF{(1- 3;{ + 3A2)</J3(Zj)- 6J.(1 - J.)<jJ1(Zj)</J2(Zj) 

+ 3J.(1 - J.)<f13(Zj)}], 

at= S ~a/ ( -4(1- 2A)8 I; a/EF<jJ1(Zj) + 2(1- 2A)282 I; a/EF<fiZj) 

- 4;{(1 - J.)82 L; a/EF</J12(Zj) + 4J.(1 - A)82aF2(I; aj</J1(Zj)) 

- 4(1 - 2J.)W- 182{I; ajEF¢1(ZjW 

+ J.(1 - A)(1 - 2J.)284{I; ajEF</JiZj)Y] + - 1-, 
2N 

a2 = 1 [2(1 - 2J.) ""a .3 - 2(1 - 6;{ + 6J.2) 

12{;{(1 - J.)}'(I: a/)! L..J 3 

X 8 L; a/EF</J1(Zj) + 6(1 - 2J.)W-18 I; a/ _L: ajEF<jJ1(Zj) 

- 3;{(1- A)(1- 2J.)283 _L: a/EF<jJ1(Zj) _L: ajEF<jJ2(Zj)], 

a3 = 1 {(1 - 6J. + 6J.2) L: a.4 + 3J.(1 - J.)(1 - 2J.)282 

24J.(1 - J.)(L: a/) 2 3 

X {_L: a/EF<jJ1(Zj)J2 + 2J.(1- J.)(1 - 2A)282 _L: a/ _L: ajEF<fiZj)] 

(1 - 2J.)2 

8J.(1 - J.)N ' 
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_(I - 2J.)28 I; a/ L; a/EF¢1(Z,) 
I2{A(I - J.)p(I; a/)' 

- (J.(I-J.))! r; _ - 8 I; a1 EFr.jJ1(Z1). 

.6 a/ 

96I 

We shall show that K(x- r;) is an expansion for the df of {).(I - J.) I; a/}-!T. 
The expansion will be established in Theorem 4.I and an evaluation of the order 
of the remainder will be given in Theorem 4.2. 

Let rr(F, 8) denote the power of the one-sided level a test based on T for the 
hypothesis F = G against the alternative G(x) = F(x - 8). Suppose that 

(4.8) ro" ;;;; a ;;;; I - ro" , 

for some ro" > 0. We shall prove that an expansion for rr(F, 8) is given by 

(4.9) it(F, 8) =I- <I>(ua- r;) + ¢(ua- r;) L;~=O~kHk(ua- r;), 

where ua = <I>-1(1 - a) is the upper a-point of the standard normal distribution 
and 

(4.10) 

(3- _ _ ( 1 - 2).) I; a/ ( 2 1) + 2- (2 3 5 ) Ua 
o- ao- 6{).(1 - J.)}l(L::; a/)~ ua - a5 ua - ua - 2N 

_ {(1 - 6). + 6J.2) I; a/ _ (1 - 2).)2 } (u 3 _ 3u) 
24).(1 - J.)(I; a/')2 8).(1 - J.)N a a ' 

(3--- -( 2 I)2 (l-2J.)Z 82" 3'\' E ''·(Z)( 2 1) 1 - al + a5 Ua - - 12(I; a/? .0::.... aj .0::.... aj F'/'2 j Ua - ' 

~2=ii'z-ii'4(ua2 -I), 

~3 = a3- 2a5(ua2- 1)' 

~k = ak for k = 4, 5 . 

THEOREM 4.1. Suppose that (3.1) and ( 4. 3) hold and that positive numbers c, C, 
C', D, o, c andro' exist such that (3.IO), (2.62), (3.19), (4.2) and (4.4) are satisfied. 
Define ' 

( 4.11) M = N-l + N -!83[L; {EFI¢1(Zj)- EF¢r(ZJ)I3}1P 

+ N -l83[L; {EF(¢z(ZJ) - EF¢z(ZJ))2p]~. 

Then there exists B > 0 depending only on c, C, C', D, o, c and ro' such that 

( 4.12) 

If, in addition, (4.8) is satisfied there exists B' > 0 depending only on c, C, C', D, 
i5, ro, ro' and ro" such that 

(4.13) lrr(F, 8) - it(F, 8)1 ;;;; B' M. 
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PROOF. The proof of (4.12) hinges on Taylor expansion with respect to 8 of 

the moments under PH of functions of P = (P1 , • • ·, PN) occurring in expansion 

(3.20). Since both Hand P depend on 8 the argument is highly technical and 

laborious and it is therefore given in the appendix. Theorem 3.1, Corollary 

A.l, (A.l2) and (A.l3) immediately yield (4.12). 

The one-sided level a test based on T rejects the hypothesis if 

T{A(l - .-1) I; a/}-!~ ~a with possible randomization if equality occurs. Using 

(4.12) for 8 = 0 (or Corollary 2.1), (3.10), (3.19) and (4.8) we easily show that 

(4.14) ~ _ + (1 - 2.-1) I; a/ ( 2 l) 2 - (2 3 5 ) Ua 
a- ua 6{A(l - ..1)P(.L:; a/)' ua - - a5 ua - ua + 2N 

{(1 - 6.-1 + 6-12) L;a/ (1 - vy } ( 3 3 ) O(N-l) 
+ 24..1(1 - ..1)(.L:; a/)2 - 8.-1(1 - ..1)N ua - ua + ' 

where, in this proof, O(x) denotes a quantity bounded by B1lxl with B1 depending 

only on c, C, C', D, o, c, c' and c". Because of (4.12), 

1r(F, 8) = 1 - K(~a- r;) + O(M). 

Using ( 4.14), ( 4.8) and the bounds provided by Corollary A.l, we now expand 

K(~a- r;) about the point (ua- r;) and arrive at (4.13). D 
Define 

( 4.15) W(t) = "·.(F-l(t)) = ji'>(F-l(t)) 
' 'f", f(F-l(t)) ' 

i = 1, ... '4. 

THEOREM 4.2. Let M be defined by (4.11) and suppose that positive numbers D, 

C and o exist such that (4.4) is satisfied and that 11¥/(t)l ~ C{t(l - r)}-l+O and 

!Wz'(t)l ~ C{t(l - t)}-1+0. Then there exist B > 0 depending only D, Cando such 

that 
M ~ BN-~. 

PROOF. The proof is similar to that of Corollary A2. 1 in ABZ ( 1976). To 

deal with the second term of M we take h = l¥1 and replace j by~ in the proof 

of that corollary. For the third term of M we take h = l¥2 , replace j by~. 

appeal to condition R 2 instead of R3 and otherwise proceed as in the proof of 

Corollary A2.1 of ABZ (1976). D 

5. Exact and approximate scores. A further simplification of the expansions 

in Section 4 may obtained if we make certain smoothness assumptions about the 

scores a;. Consider a continuous function Jon (0, 1) and let U1,N < U2,N < · · · 
< Vv:.v denote order statistics of a sample of size N from the uniform distribu

tion on (0, 1 ). For N = 1, 2, ... we define the exact scores generated by J by 

(5.1) a.= a. " = EJ(U .. N), 3 J ,. , :J. 
j= 1, ... ,N, 

and the approximate scores generated by J by 

(5.2) a. = a . v = J (--j ) , 
3 ,,. N + 1 

j= 1, ... ,N. 
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For exact scores and general J Theorem 5.1 will provide expansions for the df 
of T under contiguous location alternatives of type F and for the power of the 
rank test against these alternatives. In Theorem 5.2 we consider the special case 
J = - W~' with l¥1 as in (4.15), for exact as well as approximate scores. Note 
that the exact scores generated by - l¥1 define the locally most powerful rank 
test. 

As in Section 4 of ABZ (1976) it is now no longer feasible to keep the order 
of the remainder in our expansions down to O(N-1) and we shall be content 
with o(N~ 1). Also as in ABZ (1976) we shall formulate the results in this sec
tion for a fixed scores generating function J and a fixed df F, leaving the con
struction of uniformity classes to the reader. 

DEFINITION 5.1. cJ? is the class of functions Jon (0, 1) that are twice con
tinuously differentiable and non constant on (0, 1) and satisfy 

(5.3) 

(5.4) 

(5.5) 

~P(t)dt= o, 
limH, 1 {t(1 - t)}~J'(t) = 0, 

I'"( t) I lim supH 1 t(1 - t) -- < ~. 
, J'(t) 

5T is the class of df's F on R1 with positive and four times differentiable densi
ties f and such that, for ¢i = jli> ff, Wi = rpi(F- 1), m 1 = 6, m 2 = 3, m3 = j-, 
m4 = I, 

(5.6) 

(5.7) 

lim supy~o ~ ":'oo i<Pi(x + y)imif(x) dx < oo , 

lim supH 1 t(l - t) JW/'(t)j < ~. 
' W'(t) 

i = I, ... , 4, 

Note that one can argue as in the proof of Corollary A2.1 of ABZ ( 1976) to 
show that, in conjunction with (5.5), condition (5.4) is weaker than the assump

tion ~ J6(t) dt < oo. Define 

(5.8) 

a0 = t ( A( 1 - A) )~ [3(1 - V) NfP ~ J(t)W~(t) dt- 68 ~ J(t)l¥1(t) dt 
N ~ J2(t) dt 

- N8 3 ~ J(t){(1 - 3A + ,3A2)W3(t)- 6A(1 - A)W1(t)W2(t) 

+ 3A(1- A)W1V)}dt], 

a1 = 1 [ -4(1 - 2A)8 ~ J2(t)W1(t) dt 
8 ~ J2(t) dt 

+ 2(1 - 2A?82 ~ J2(t)W2(t) dt- 4A(1 - A)82 ~ J2(t)W12(t) dt 

+ 4A(1- A)82 ~~ J(s)J(t)W/(s)W/(t)[s 1\ t- st]dsdt 

- 4(1 - 2A?82{S J(t)W1(t) dt)2 

+ A(1 - A)(1 - 2A)2N84 {~ J(t)W2(t) dtY] + -1 , 
2N 
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a 2 = 1 [2(1 - 2A) ) P(t) dt 
12{,{(1 - A)N}'{) P(t) dt}! 

- 2(1- 6A + 6A2)fJ) J3(t)W1(t)dt 

+ 6(1 - 2A)2fJ) J2(t) dt) J(t)W1(t) dt 

- 3A(1 - A)(1 - 2A)2NfJ3 ) J2(t)W1(t) dt) J(t)Wit) dt], 

a3 = 1 [(1 - 6A + 6A2) ' J 4(t) dt 
24A( 1 - A)N{ l J2(t) df12 J 

+ 3A(1 - A)(1 - 2A)2NfJ2{l J2(t)W1(t) df12 

+ 2A(1 - A)(1 - 2A)2NfJ2 ) J3(t) dt l J(t)Wit) dt]- (1 - 2A)2 
, 

8A(1- A)N 

a _ _ (1 - 2A)2fJ ) J3(t) dt) J2(t)W1(t) dt 
4 - 12{,{( 1 - A)N}' {\ J2( t) dt}' 

a _ (1 - 2A)2 {l P(t) dt}2 

5 - 72A( 1 - A)N {l J2(t) dtp ' 

K1(x) = <D(x)- ¢(x{ L:%; 0 akHk(x) 

+ -21 ( A( 1 -A) )t fJ {2 2: 1s_ 1 Cov (J(U1·.v), W1(U1·- v)) 
N)J2(t)dt - ., "' 

_ l J(t)W1(t) dt '\' N_ a2(J(U. ))} ] 
~ J2(t) dt LJJ - 1 J.N ' 

K2(x) = <D(x) - ¢(x) [ L:%; 0 ak Hk(x) 

+ ! ( A( 1 -A) ) 1 fJ {2 ~~--~-r J'(t)W/(t)t(1 - t) dt 
N \ J2(t) dt . 

- \ ~<;~)(drdt ~~-_:i- 1 (J'(t)Yt(1 - t) dr} J, 

iJ = _ ( A~ 1,~t/~~r {} ~ J(t)W1(t) dt, 

where all integrals are over (0, 1) unless otherwise indicated. We shall show 

that K1(x- iJ) and Kix- i]) are expansions for the df of {A(1 -A) L: a/t~T 
for exact scores. Furthermore let 

!.i _ a _ ( 1 - 2A) l J3( t) dt (u 2 - 1) -1- 2a (2u 3 - 5u ) - ~ 
1-'o- 0 6{,{(1 - A)N}l: {\ J2(t) dt}~ " ' 5 " " 2N 

{(1- 6A + 6A2) l J4(t)dt (1- 2A)2 }< 3 3 ) 
- 24A(1 - A)N {) J2(t) dlp- 8A(1 - A)N u" - u" ' 

(5.12) !.i = a + a (u 2 _ 1}2 _ (1 - 2A) 2fJ 2 ) J3(t) dt) J(t)W2(t) dt (u 2 _ 1) 
~-' 1 1 5 " 12 n P( t) dry " ' 
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~2 = a2- a4(ua2 - 1)' 

~a= li3 - 2a5(Ua2 - 1), 

~k = ak for k = 4, 5 , 

iri(F, 0) = 1 - Ki(ua - i;) 

+ ¢(ua- iJ) L;~=o (~k- ak)Hk(ua- iJ), 

965 

i = 1, 2' 

i.e., ir;(F, 0) equals 1 - Ki(ua- i;) with ak replaced by ~k' k = 0, ... , 3. 

THEOREM 5.1. Let FE Y , JE / , aj = EJ(Uj: N)for j= 1, · ·· ,N, G(x) = 

F(x - 0) , 0 ;;:;; 0 ;;:;; DN-~, c ;;:;; A ;;:;; 1 - s and s' ;;:;; a ;;:;; 1 - s' for positive D, r:: 

and s'. Then, for every fixed F, J, D, s and s', there exist positive numbers B, 

1\, o2, · · · such that lim .v~oo oN = 0 and for every N 

(5.14) 

( 5 .15) 

( 5 .16) 

( 5 .17) 

supxi P( -{~-(1 _~I; a/}2 ~ x)- K1(x- i;)l ~ o.vN- 1
, 

supxl p(f~(C=-~~ a./F ;;:;; x)- K2(x- i;)l 

;;:;; o.\.N-l + BN- i ~~-.:~- l IJ'(t)I(IJ'(t)l + IW/(t)l){t(I - t)}' dt, 

ln-(F, 0)- ir1(F, 0)1;;:;; o.vN-1 , 

ln-(F, 0) - ir 2(F, 0)1 

;;:;; O.vN-l + BN-~ ~ ~-~i-l IJ'(t) I(IJ'(t)l + IW/(t)l){t(1 - t)p dt. 

PROOF. In the first part of the proof we shall not need requirement (5.4) but 

only the weaker assumption ~ J4( t) dt < oo. We proceed as in the proof of 

Theorem 4.1 in ABZ (1976), drawing heavily on the results in Appendix 2 of 

ABZ ( 1976). Note that these results remain valid in the present context even 

though the definition of the functions Wi is slightly different here. Throughout 

the proof we shall make use of 0 and o symbols that are uniform for fixed F, 

J, D, e and r::'. 

Because I; aj = N ~ J(t) dt = 0 and in view of the remark made at the end of 

Section 3, the assumptions of Theorem 4.1 are satisfied. The proof of Corollary 

A2. 1 of ABZ (1976) shows that (5.6) and (5.7) imply that 

(5.18) W/(t) = o({t(1 - t)}- i,) for t ~ 0, 1. 

Hence, because of (5.7), W/'(t) = o({t(1- t)}- 'l ) and W1(t) = o({t(1- t)} -t) 

for t ~ 0, I . Since f(F- 1) has a summable derivative W1 on (0, 1 ), f(F - 1) must 

have limits at 0 and 1; as J is positive on R1 , these limits must be equal to 0. 
It follows thatf(F- 1(t)) = o({t(1 - t)}i) fort~ 0, 1. Combining these facts with 

the identity W2'(t) = W/'(t)f(F- 1(t)) + 3W1(t)W/(t), we find that 

( 5 .19) for t ~ 0, I . 

Thus the assumptions of Theorem 4.2 are also satisfied and we can take the 

expansions of Section 4 as a starting point for proving Theorem 5.1. 
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In a0, • • ·, a5 , ~0 , • • ·, ~5 defined by ( 4.6) and ( 4.10) we may replace EF, a F 2 

and ¢i(Z;) byE, a 2 and ¢i(F-1(U;: N)) = Wi(U;:N) without changing anything. 
Next, arguing as in Corollary A2.2 of ABZ (1976), we see that for all sums of 
the form .L; a/ and .L; a/ Eh( U;:N) occurring in a0 , • • ·, a5 , ~0 , • • ·, ~5 we may 
write 

(5.20) 

(5.21) 

J_ .L; a/= \ Jk(t) dt + o(1), 
N 

~ .L; a/Eh(U;: N) = \ Jk(t)h(t) dt + o(1), 

and also 

(5.22) 

We note that a0 , • • ·, a5 , ~0 , • • ·, ~5 are obtained from a0 , • • ·, a5 , ~0 , • • ·, ~5 by 
replacing every expression of the form (5.20)-(5.22) by the corresponding in
tegral on the right in (5.20)-(5.22). Since \ P(t) dt > 0, we know that for 
those terms in a0 , • • ·, a5 , ~0 , • • ·, ~5 that are O(N-1), this substitution can only 
introduce errors that are o(N- 1). 

The first terms in a0, a1 and a2 as well as the second term in ~0 are generally 
not O(N-1) but only O(N-!), and here the substitution of integrals for sums gives 
rise to more complicated remainder terms. This creates problems we did not 
encounter in the one-sample case where certain symmetries prohibit the occur
rence of O(N-!) terms. We have 

~ .L; a/= \ J2(t) dt- ~ .L; a2(l(U;: N)), 

~ .L; a/= \ J3(t) dt- ~ .L; Cov (J(U;:N), J2(U;:N))- ~ .L; EJ(U;: N)a2(J(U;,N)), 

1 1 
N .L; a;EW2(U;:N) = \ l(t)W2(t) dt- N .L; Cov (l(U;: N), W2(U;: N)) 

~ .L; a/EW1(U;: N) = \ J2(t)W1(t)dt- ~ .L; Cov(J2(U;: N), W1(U;: N)) 

1 ' 
- N .L; EW1( uj,N )a2(J( uj:N)) . 

By (A2.22) in ABZ (1976), N-~ .L; a2(J(U;:N)) = o(N-1). It follows that for 
k = 0, .. ·, 5, 

(5.23) 

M1 = (1 - 2-\)N- ~ [ J .L; Cov (J(U;, N), J2(U;:N))J 

(5.24) + J.L: EJ(U1,N)a2(l(U1 ,N))J + j.L; Cov (l(U1 ,N), W2(U;:N)) J 

+ J.L; Cov (J2(U;,s), 1¥1(Uf:N))J + j.L; EW1(U;: N)a2(l(U;:N)) J]. 
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By (A2.17), (A2.22) and (A2.23) in ABZ (1976) we have 

r; = iJ + !(:\1J~t:~J~ 0[2 I; Cov(J(Uj: N), 1¥1(Uj:N)) 

(5.25) - ~ J(t)W1(t) dt I; a2(J(U .. ))] + o(N- 1) 

~ P(t) dt , .N 

= iJ + o(N-~). 
Hence, uniformly in x, 

K(x- r;) = <D(x- i;) - ¢(x- i;)[(r; - i;) + I:1=o akHk(x - i;)] 

+ o(N-1) + O(M1) 

= K1(x- i;) + o(N- 1) + O(M1), 

and similarly 

967 

It follows that, in order to prove (5 . 14) and (5 . 16), it suffices to show that 
M1 = o(N-1). Since (5 . 15) and (5.17) are immediate consequences of (5.14) and 
(5.16) on the one hand and (A2.22) and (A2.23) in ABZ (1976) on the other, 
the proof of the theorem will then be complete. 

At this point we finally need condition (5.4) rather than the weaker assump
tion ~ J4(t) dt < oo. Using (5.4), (5.18) and (5 . 19) and proceeding as in the 
proof of Corollary A2 . 1 in ABZ ( 1976), we find that each term of M 1 is 

(5.26) D 

REMARK. In the above we have stressed the fact that the only reason for 
requiring (5.4) rather than assuming ~ J'(t) dt < oo is tha.t we have to show that 
M 1 = o (N-1). However , there are special cases of interest where ~ J4(t) dt < oo 
suffices . If either A = !, or I is a symmetric density and J(t) is antisymmetric 
about t = !, then M1 = 0. Less trivially, since ~ J'(t) dt < oo and (5.5) imply 
that J'(t) = o({t(1 - t)}- l), we can follow the reasoning leading to (5.26) while 
retaining the factor ( 1 - 2A), to arrive at 

(5 .27) M 1 = o (11 - 2AIN-i ~ ~-_:~ - 1 {t( 1 - t)} - t dt) = o (11 - 2AIN- i) . 

Hence in the special cases where either A = ! + O(N-i), or I is a symmetric 
density and J is antisymmetric about the point!, the conclusions of Theorem 
5.1 will hold if condition (5.4) is replaced by the assumption ~ J4(t) dt < oo. 
Comparison with ABZ ( 1976) shows that in these special cases the conditions 
under which Theorem 5.1 holds are essentially the same as the conditions of 
the comparable Theorem 4.1 in ABZ (1976) for the one-sample problem. This 
is not surprising as one may think of the one-sample case under contiguous 
alternatives as a two-sample situation with A = ! + Op(N-~). 

We now turn to the special case J = -1¥1 • For F E .7 we obtain by partial 
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integration 

\ WI(t)Wit) dt = ! \ W13(t) dt, 

(5.28) \ W12(t)W2(t) dt = ~ \ l¥14(t) dt, 

\ W1(t)W3(t) dt = ~ \ W14(t) dt - \ W22(t) dt, 

\ \ W1(s) W1(t)W/(s)W/( t)[ sAt- st] ds dt = t \ W14(t) dt- tO W12(t) dt)2 • 

Substitution of J = - W1 and application of (5.28) considerably simplifies the 
expressions (5.8) and (5.12) for ak and Pk· Note that iJ defined by (5.11) re
duces to 

(5.29) 

The expressions for ak and pk simplify somewhat further if we express 8 in 
terms of r;* throughout. Finally we rearrange the terms in I; ak Hk(x - r;*) 
and I; pk Hiua - r;*) according to the integrals involved and substitute the 
explicit expressions (2.43) for the Hermite polynomials Hk. In this way we find 
after laborious but straightforward calculations that for J = - wl' 
(5 .30) <I>(x- iJ) - ¢(x- iJ) .L;%=o akHk(x- iJ) = L 0(x), 

1 - <I>(ua- iJ) + ¢(ua - i;) .L;1=oPkHk(ua - iJ) = 1ro*(F, 8)' 
where 

L0(x) = <I>(x - r;*) 

¢(x - r;*) [ 24(1 - 2,.() \ W13(t) dt 
288 {A(1 - A)Np 0 WI 2(t)dtJ ! 

{ 2( 2 1) 2 * * 2} 4 \ W 14
( t) dt 

X - X - - r; X + r; + ,.((1 - A)N 0 Wl2(t) dtJ2 

x {3(1- 6,.( + 6..(2)(x3- 3x + r;*(x2 -1))-3(1-5,.(+5A2)r;*2x 

+ 5(1 - 3,.( + 3..(2)r;*3} - 48 \ W22(t) dt 
..((1 - ..()N {\ W/(t)dt} 2 

(1 - 3,.( + 3..(2) *3 + (1 - 2..()2 {\ Wl3(t) dtJ2 
X r; ..((1 - ..()N 0 l¥12(t) dtJS 

X {4(x5 - 10x3 + 15x) + 4r;*(x4 - 6x2 + 3)- 8r;*2(x3- 3x) 

144x 36 
- 4r;* 3(x2 - 1) + 5r;Hx - r;*"} + -- + - ---

N ..((1 - ..()N 

x { - (1 - 2A)2(x3 - 3x + r;*x2) + r;* + (1- 5,.( + 5A2)r;*2x 

(5.31) + (1- 3,.( + 3,.(2)r;*3l ] , 

rr0*(F, 8) = 1 - <I>(ua - r;*) 

r;*¢(ua- r;*) [ 24(1 - 2,.() \ l¥13(!) dt ( _ 2u + *) 
+ 288 {A(1 - A)NJ' 0 W12(t) dt} ~ a r; 

+ 4 \ W14(t) dt {3( 1 _ 6,.( + 6,.(2)(u 2 _ 1) 
..((1 - A)N 0 l¥12(t) dtJ2 a 
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- 3( I - 5,{ + 5A2)r;* ua + 5( 1 - 3,{ + 3,{2)r;* 2} 

48 ~ W/ (t) dt (1 _ 3,{ + 3,{2) *2 
,{(1- .{)N 0 W12(t)dtJ2 1J 

+ (1 - 2,{)2 n W13(t)dW {-8(2u 2 - 1) 
,{(1 - ,{)N {~ W12(t) dtp a 

+ 4r;*(ua3 + 3ua) - 8}]* 2(ua2 - 1) + 5r;*3ua - r;* 4} 

+ 36 {- (1 - 2,{)2ua2 + 1 + (1- 5,{ + 5A2)}]*Ua 
,{(1 - ,{)N 

+ (1- 3,{ + 3).2)1*2} ] . 

Define 

L (x) = L (x) + r;*¢(x- r;*) " ·Y a 2(W (U. )) 
1 0 2N ~ W12(t) dt WJ=1 1 J : N ' 

L(x) = L(x) + r;*¢(x - }]*) r1-...:i-1(W'(t))2t(1- t)dt 
2 0 2N~ W12(t)dt ) .v 1 ' 

L (x) = L (x) + 1J 'f' x - 1J " .v E W ( U ) - W 1 *d-.( *) ( ( . ))2 
3 0 2N ~ W12(t) dt WJ=1 1 J N 1 N + 1 ' 

(5.32) 1r *(F ()) = 1r *(F, ()) - r; *ifJ(ua- r;*) " N_ a 2(W (U . )) 
1 ' 0 2N ~ W12(t) dt WJ-1 1 J. N ' 

1r *(F ()) = 1r *(F ())- r;*¢(ua - r;*) t 1:-!'-1 (W '(t))2t(1 - t) dt 
2 ' 0 ' 2N ~ W12(t) dt ) .\ 1 1 ' 

rr3*(F, ()) = rro*(F, ()) 

- 1J 'f' ua - 1J " 1 E W (U. ·)- W _ } __ *d-.( *) ( ( . ))2 
2N ~ W1 2(t) dt WJ=1 1 J; ,~ 1 N + 1 . 

Note that (5.9), (5.10), (5 . 11 ), (5.13), (5. 30) and (5. 31) imply that for J = - W1, 
Ki(x - iJ) = Li(x) and ir i(F, ()) = rr/ (F, ()) for i = 1, 2. The expansions L3 and 
rr 3* are connected only with approximate scores that were not considered so far. 

THEOREM 5.2. Let FE ..Y , J = - WP G(x) = F(x- ()), 0 ;S () ;S DN- '-, c ;S 
,{ ;S 1 - c and c' ~ a ~ 1 - c' for positive D, c and c'. Then, for every fixed F, 

D, c and c', there exist positive numbers B, o~' o2, • • • with lim.v_., o.v = 0 such that 

the following statements hold for every N. 

(i) For exact scores a1 = -EW1(U1 N) , 

(5.33) sup I P (--- __!__ ___ :::;; x) - L1(x) \:::;; oNN - 1 

" {A( 1 - ,{) ~ a/ P - - ' 

(5.34) 

(5.35) 

( 5. 36) 

sup, I p ( { ,{( 1 - ~ ~ a/f~- ;S x) - L2(x) I 
;S o.v N- 1 + BN-~ ~ :v-_:i - 1 (W/(t))2{t(1 - t)p dt, 

jrr(F, ()) - rr1*(F, ())j ~ o.v N - 1 , 

jrr(F, ())- rr2*(F, ()) j ;S o.v N- 1 + BN- ! ~ ~:-...:';- 1 (W/(t))2{t(1 - t)}'- dt; 
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(ii) For approximate scores aj = -W1(jf(N + 1 )), 

(5.37) su p L.J J < X - L X < 0 N- 1 I ( T-A"'a- ) I 
Px {A(l - A) I; a/P = 3( ) = N , 

(5.38) 

(5.39) 

and ( 5. 36) continues to hold. 

PROOF. For FE s--, W1 is not constant on (0, 1 ), ~ W1(t) dt = 0 and W16 is sum
mabie. In view of the remark following Definition 5 .l, this implies that J E J . 
We have already noted that Ki(x- r;) = Li(x) and iri(F, ()) = rc;*(F, ()) for i = 
1, 2, if J = -W1 • Part (i) of the theorem is therefore an immediate consequence 
of Theorem 5. 1. 

To prove part (ii) we retrace the proof of Theorem 5.1 for J = -W1 and ap
proximate scores a,. = - W1(jj(N + 1 )). The first difficulty we encounter is that 
in general I; aj =t= 0. However, Lemma A2.3 of ABZ (1976), (5.7) and (5.18) 
yield 

(5.40) 

and one easily verifies that the conditions of Theorem 4.1 hold for the reduced 
scores aj -a •. Since the assumptions of Theorem 4.2 are also satisfied, we have 

(5.41) lp( T-AL;aj ) K~( ~ ) ~ -0( - l ) sup" - - - - ---. - -- ~ x - X - r; - N , 
{A(l- A) I; (a,.- a.)2p -

where K and f; are obtained from K and r; by replacing aj by aj - a. throughout. 
Because, by (3 . 10) and (5.40), 

(5.42) I; (a,. - a.)2 = I; a/ (1 + o(N- i)), 

we can change the norming constant I; (a,. - a.)2 ofT in (5.41) back to I; a/ 
with impunity. As ~ W1(t) dt = 0, (5.42) also ensures that If; - r;l = o(N- l). 
Finally (A2. 16) of ABZ (1976) and (5.18) imply that aF2(I; aj¢1(Zj)) = O(N) 
for J = -W1 and, together with (5.42), (3.10), (5.6) and (5.40), this yields 
sup" IK(x) - K(x) l = o(N-l). Combining these results we find 

(5.43) sup IP(- T-AL;aj ~ x)-K(x-r;) I =O(N-l ) 
" {A( 1 - A) I; a/}! -

and similarly 

(5.44) lrc(F, ()) - ir(F, ())I = O(N- ~ ) . 

The remainder of the proof parallels that of Theorem 5.1 for the special case 
J = ·-W1 • We replace all sums as weii as a2(I; a,. W1(Up-)) by the appropriate 
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integrals. The reasoning of Corollary A2.2 of ABZ (1976) shows that for those 
terms in the expansions that are O(N-1) , this substitution will only lead to errors 
that are o(N-1) . For the O(N-~) terms the error committed is O(M1) + O(M2), 

where M1 is given by (5.24) with J = - W1 and M2 originates from the difference 
between exact and approximate scores. It was shown in the proof of Theorem 
5.1 that M1 = o(N-1). With regard to M2, (5.7), Lemma A2.3 of ABZ (1976), 
(5 . 18) and (5.19) imply that, uniformly inj, 

(5.45) 

I{EWI(Uj: NW- Wlk (N ~ 1 )I 
= O(N-1) + o (;'V-I {j(N - j + 1 )}-1-k/6) 

(N + 1)2 

IEWI(Uj:N)I = 0(1) + o (V<~N-1 ~2 1)r1
), 

IEWiUj,N )I = 0(1) + o (V<1~N-1 ~2 1)rt), 
where k = 1, 2, 3. It follows that M2 is of the form (5.26) and is therefore 
o(N-1). 

It remains to replacer; by r; * . Because of (5.7), (5.18) and Lemma A2.3 of 
ABZ (1976), N - 1 I: a2(W1(Uj:N)) = o(N-!), and in view of (5.45), 

~ I: WI (N ~ 1) EWI(Uj:N)- ) Wl2(t) dt 

= - ~ I: EW1(Uj,N) [ 1F1(Uj: N)- WI Cv ~ 1) J = o(N-!), 

I_" W2 ( j ) _ 1 1f2(t)dt = _J_ " [ £1Ji2(U .. ) _ 1Ji2 ( j )l 
N LJ I N + 1 J I N LJ I J. N I N + 1 _j 

= o(N-~). 

Hence, for J = -WI' 

(5.46) = * - r;* " E {w (U . ) - W ( j )}2 + o(N- ~ ) 
r; r; 2N) Wl2(t) dt LJ I J ' N I N + 1 

= r;* + o(N-i ), 

and a comparison with (5 .25) for J = -W1 show that (5 .37) and (5.39) will 
hold if L3 and rr3* can be obtained from L1 and rr1* by replacing I: a2(W1(Uj:;\.- )) 
by I: E{W1(Uj:N)- 1F1(jf(N + 1)W. Since this is true, (5.37) and (5.39) are 
proved. The validity of (5.38) and (5.36) for approximate scores is a con
sequence of(5.37), (5.39) and Corollary A2.2 of ABZ (1976). The proof of the 
theorem is complete. 0 

At this point it is appropriate to repeat some remarks made in ABZ ( 1976). 
The correspondence between expansions (5.34) and (5 .38) and the fact that 
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(5.36) holds for both exact and approximate scores seem to be typical for the 
case J = - W1 • In the general case where J -=F - W~' expansions (5.15) and (5 . 17) 
will not hold for approximate scores even if T is replaced by T - A. I; a i in 
(5.15). A second remark is that the growth conditions on J' and W/ implicit 
in our assumptions (viz. (5.4) and (5.18)) do not guarantee that the right-hand 
side in (5.15), (5.17), (5.34), (5.36) and (5.38) is indeed o(N- 1) as is our aim. 
For this we would need J'(t) = o({t(l - t)t1) and W/(t) = o({t(l - t)}-1). This 
may explain the presence of the remaining expansions in Theorems 5.1 and 5.2, 
which are less explicit but do have remainder o(N-1 ) under the conditions stated. 
Note that their presence in Theorem 5.2 also indicates that even for J = - W1 , 

expansions for exact and approximate scores are not necessarily identical to 
o(N-1). Finally we should point out that similar expansions with remainder 
o(N-1 ) might have been given in Theorem 4.2 of ABZ (1976) where they were 
unfortunately omitted. 

We conclude this section with a few examples of the power expansions in 
Theorems 5.1 and 5.2. First we consider the powers rrw(<I>, B) and rrw(A, B) of 
Wilcoxon's two-sample test ( W) against normal and logistic location alterna
tives (<D(x) , <I>(x - B)) and (A(x), A(x - B)) respectively, where A(x) = 
(1 + exp{ -x})-1 and()= O(N-'). We find 

rrw(<l>, B) = 1 - <l>(u" - iJ) + iJ¢(u~- iJ ) 

X [ _1. _ 3 7 - 21 7A + 21 7A2 (u 2 _ 1) 
2 20A.(l - A.) " 

(5.47) + 1 {~ + 67 - 437A + 437A2 } u -
A.( 1 - A.) 6 20 "r; 

- 1 {~ + _!!_ + 29- 2 19). + 219A.2 } - 2 

A.( 1 - A.) 6 36 20 r; 

+ ( 1 _ 6). + 6A.2) 6 arctan 2! {u 2 _ 1 _ 2u - + -2}] 
A.( 1 - A.) 1!' " " r; r; 

+ o(JV-1) ' 

where iJ = (3A.(l - A.)Njrr );B, and 

(5.48) 

r;*¢(u" - r;* ) rr w (A, B) = 1 - <I>( u" - r; * ) + --'---'----"---=--'--
N 

[ _ 1. _ 1 - A. + A.2 (u 2 _ l) + 1 - 5 A. + 5 A.2 * 
X 2 20A.(l - A. ) " 20A.(1 - A.) u" r; 

- 1 - 3). + 3).2 *2] + o(N- 1) 
20A.( 1 - A.) r; ' 

where r;* = (A( 1 - A.)NJ3 );(). 
As a second example we compute expansions for the powers rr:Vs(<l> , B) and 

rr Ns(A, B) of the two-sample normal scores test against the normal and logistic 
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location alternatives described above. One of the integrals occurring in this 
computation is 

(5.49) ~ 1-_~-1 t( 1 - t) dt = 2 ~ <I>-lo-.v-1) <l>(x)( 1 - <I>( x)) dx 
N {¢(<1>-l(t)W o ¢(x) 

and since its asymptotic evaluation is not entirely trivial, we provide some 
details. Let r denote Euler's constant 

(5.50) r = limk-oo { L:;=1 ~ - log k} = 0.577216 ... 

and note that (cf. Ryshikand Gradstein (1957), page 197) 

(5.51) 

(5.52) 

~~ru1ogudu= -r, 
~~¢(u)logudu= -!log2-!J. 

To evaluate (5.49) we begin by writing for z > 0 

(5.53) 
1 - <l>(x) r z dx = r z dx roo e-~ l y-x )l y+x ) dy = 1. roo du (2z+u e-2uv dv 

JO ¢(x) Jo J x 2 Jo Ju 

= ~~ _!_ rku2(1 - e-•u) du. 
u 

It follows from (5.53) and (5.51) that for z --7 oo, 

(5.54) 

1 - <P(x) _, 1 1 
~5 dx = ~5 '-(1- e-zu)du + ~;'-2-e-iu2 du + o(1) 

¢(x) u u 

= ~~i_!_(l- ru)du +! ~T2z ) _ 1 _!_rudu + o(1) 
u u 

= ! log z - ~g i e-u log u du + ! log (2z) 

+! ~;2.)-1 ru log u du + o(1) 

= log z + ~ log 2 + !r + o ( 1) . 

Similarly (5.53), (5.51) and (5.52) imply that 

( 1 - <l>(x))2 1 
~~ ¢(x) dx = ~~ ¢(x) dx ~~--;;- e-2u\1 - r"u) du 

1 ' 
(5.55) = ~~ _ {!e-iu2 - (1 - <l>(u))} du 

u 

= ~~log uf!ue-iu2 - ¢(u)} du 

= ! log 2 + ! ~~ e-" log x dx - ~~ ¢(u) log u du 

=!log 2. 

Since log <I>-1( 1 - N-1) = ! log log N + ! log 2 + o(1) for N --7 oo, (5.49), (5.54) 
and (5 .55) imply that 

(5.56) ~~-!;- 1 t( 1 - t) dt = loglogN + log2 + r + o(1). 
{ ¢( <I>-1( t)) }2 
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With the aid of (5 .56) we find 

(5.57) 7!'Ns(<D, 0) = 1 - <D(ua- r;*) + r;*¢(u;; r;*) [-!log log N 

- t log 2 - h + t - f(ua2 - 1 )] + o(N- 1), 

where now r;* = { ..<( 1 - ..<)NpO, and 

(5.58) 

7!'Ns(A, 0) = 1 - <D(ua- i;) + iJ¢(u~- i;) [ t log log N +!log 2 + !r 

- a- 1 - 3..< + 3..(2 (u 2- 1) 
2 12..((1 - A) a 

+ { 3~(1 - 2..<)2 _ _!!__ _ 4- 2U + 2U2} u • 
4..((1 -A) 6 12..((1 -A) a1J 

+ {6(1 - 5..< + 5..(2) arctan 2t- 3~(1 - 2..()2 
..<(1 - ..<) 4..<(1 - ..<) 

_ 117!'( 1 - 5..< + 5..<2) + 5 - 2U + 2U2} rt] 
6..<(1 - ..<) 12..<(1 - ..<) 

where now iJ = {..((1 - ..<)Nj7rp0. Note that Theorem 5.2 ensures that expansion 
(5.57) is also valid for van der Waerden's two-sample test which is based on 
the approximate scores aJ = <D- 1(jj(N + 1 )). 

It may be useful to remark here that an integral similar to (5.56) also occurs 
in ABZ (1976), formula (4.25) on page 130, where its asymptotic behavior is 
determined numerically . However, the numerically computed value is incorrect 
and in formulas (4.25) and (6.8) in ABZ (1976) the number t log 2 + 0.05832 ... 
should be replaced by h = 0.288608 ... (cf. the correction note in this issue). 

6. The permutation test based on the sample means. In ABZ ( 1976) two 
results were given for permutation tests in the one-sample problem. The first 
of these is an asymptotic expansion for the power of the locally most powerful 
permutation test against contiguous shift alternatives. Secondly it was shown 
that the difference between the powers o~ the permutation test based on the sum 
of transformed observations ~ j(X;) and Student's test applied to j(X1), ••• , j(XN) 
is o(N- 1 ) for a large class of alternatives. 

In the present paper we shall forego the two-sample analogue of the first 
mentioned result; the expansion can be obtained in a straightforward manner 
in much the same way as in the one-sample case but the computations will be 
extremely tedious. We shall concentrate on the comparison with Student's test. 
For simplicity we take j to be the identity, thus comparing the two-sample 
permutation test based on the sample means with Student's two-sample test. 
Also, we restrict attention to contiguous location alternatives. 
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As before, we assume that xl' ... 'XN are independent, Xl, ... 'xm having 
common df F and Xmw · .. , XN having common df G(x) = F(x - 8); Z = 
(Z1, • • ·, ZN) denotes the vector of order statistics of X 10 ••• , XN. We wish to 
test the hypothesis 8 = 0 against the alternative f) > 0 at a fixed level a E (0, I). 
We denote probabilities and expectations under the alternative by P and E, and 
under the hypothesis by PF and Er Note that we do not assume that F has a 
density, as we did in the previous sections . 

The permutation test rejects the hypothesis if 

(6.1) 

possibly with randomization if equality occurs. Here ~a(Z) is chosen in such a 
way that 

(6.2) 

with an obvious modification if there is randomization . IfF is known, Student' s 
test rejects the hypothesis if 

(6.3) 

where 

x.n> = __!__I::"=! xi' 
m 

Here ta depends on F, N, ;( and a and is chosen in such a way that the test has 
level a. Again there may be randomization. Let np.(F, 8) and n81(F, 8) denote 
the power against the alternative (F, F(. - fJ)) of the tests (6.1) and (6.3) 
respectively. 

THEOREM 6.1. Suppose that positive numbers c, C, D, c, e', o and r > 8 exist such 
that F-1 is differentiable on an interval of length at least o where 

(6.4) !!___ F - 1(t) ::::: c 
dt - ' 

and such that~ JxlrdF(x) ~ C, 0 ~ f) ~ D,N- ~, c ~ ;( ~ 1 - c ande' ~a ~ 1 - c' . 
Then there exist B > 0 depending only on c, C, D, c, e' and o, and f3 > 0 depending 
only on r such that 

(6.5) 

PROOF. We shall draw heavily on the proof of Theorem 5.2 in ABZ (1976). 
The only essentially new problem is caused again by the occurrence of a term 
of order N - 2 in the expansions. The 0 symbols in this proof are uniform for 
fixed c, C, D, c, c' and o. Since both tests are location invariant we may assume 
without loss of generality that ~ x dF(x) = 0. 
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We begin by collecting some results on moments that will be needed throughout 
the proof. Define 

(6.6) (3 . ( r- 8 1 ) = mln '4 ' 
2r + 8 

(6.7) 

and note that EXNk = E(X1 + O)k and that EX1 = 0. Proceeding as in the proof 
of Theorem 5.2 in ABZ (1976) we see that 

(6.8) 

and that, uniformly on a set of probability l - O(N-1- P) under P as well as 
under PF, 

(6.9) 

(6.10) 

(6.11) 

(6 . 12) 

~ ~f=1 (Xi - X.)k = ( l - ?. )EX/ + O(N - fi ) , 

~ ~ f=m+l (Xi - X .)k = ?.EX/ + O(N - P), 

k = l , ... , 4 ' 

k = l , ... ' 4 ' 

k = 2, .. ·, 4 ' 

k = 2, .. · , 4. 

Fork= l , (6 .9) and (6.10) are insufficient for our purposes. Arguing as in 
(5.13) in ABZ (1976) for r = N - i, we find 

(6 . 13) ~ ~r=l xi = O(N- 1), ~ ~f=m+ l xi = O(N-1) , 

uniformly with probability l - O(N- 1- P) under both P and PF" 
We shall also have to consider the quantity l{x: 3 i lx - Xil < q for some 

( ~ N -t log N , where l denotes Lebesgue measure. Borrowing from the proof 
of Theorem 5.2 in ABZ (1976) again, we find that for ( = N-~ log N, 

(6.14) 

with probability l - O(N - l- p) both under P and under PF. Let E1 be a set on 
which (6.9)- (6.14) hold uniformly, with P(E1) = l- O(N - 1- P) and PF(£ 1) = 
l - O(N - 1- P). 

Under the hypothesis PF and conditional on Z the df of 

N- ~(~ ;v=m+l Xi - I. ~J=1 Zi ) 

equals R(x, p) defined in (2.9) with P; = I. and ai = Z i for j = I , . .. , N . 
Hence Corollary 2.1 provides a n expansion for this conditiona l df that holds 
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uniformly on any set where the ai = Zi satisfy (2.61) and (2.62) for some fixed 
positive c, C and o, and in view of (6.8)-(6.14) such a set is contained in £ 1. 
Since c' ~a~ 1- c', this yields an expansion for ~a(Z). We find (cf. (4. 14)) 

(6 . 15) 

-----'~ a'-'---(Z) - A I; Zi _ 
[A(1 -A) I; (Zj- z_yp 

_ ( 1 - 2A) L: ( zj - z.)3 ( 2 1) 
- Ua + 6{,((1 - A)p[I; (Zi- Z.)2)' ua -

- (1 - 2A)2[I; (Zi - Z.)3]2 (2u 3- 5u) ~ 
36A(l - A)[L; (Zj - z_yp a a + 2N 

{ (1-6A+6A2)I;(Zj-Z.)4 (1-2A)2 }< 3 3 ) 
+ 24A(1 - A)[I; (Zi- Z.)2]2 - 8A(1 - A)N ua - ua 

+ O(N- l), 

uniformly on E1. 
Next we start to compute under the alternative P. We have P(E1 ) = 1 -

O(N-1- ft )and on £ 1 we can use (6.8), (6.11) and (6.12) to replace the random terms 
of order O(N-1) on the right in (6 . 15) by constants. In this way we arrive at 

(6.16) 

where the first remainder term depends on Z but may now be taken to be uni
formly O(N-1- ft ), and where 

(6.17) T* - _ _ .l: ;"'=m +1 Xi - A I; Zj 
- [A(1 -A) I; (Zj- z_yp' 

t: (1 - 2A)EX13 ( 2 1) 
"' a* = u" + 6{A( 1 - A)Np( EX12 ) ~ ua -

(6.18) ( 1 - 2A)2(£X13)2 (2 3 5 ) ua 
36A(l - A)N(EX12)3 ua - ua + 2N 

{ ( 1 - 6A + 6A2)EX14 ( 1 - 2A)2 } ( 3 3 ) 
+ 24A( 1 - A)N( EX12)2 - 8A( 1 - A)N ua - ua ' 

(6.19) U _ (1 - 2A)(ua2 - 1) { I; (Zi - Z.)3 _ N-tEX13} 

1 - 6{A( 1 - A)}! [,I; (Zi - Z.)2] ~ (EX12 ) ~ . 

The basic problem is now to show that the rv U1 originating from the O(N-~) 
term in (6.15), may be omitted in (6.16). Since U1 is a rv of order N-1, this 
problem is nontrivial. We shall show that because U1 depends only on Z and is 
approximately centered, a cancellation occurs which makes its contribution to 
(6.16) of negligible order. Several methods of proof are possible. We choose 
one that does not require any additional assumptions. 

In (6.16), P may be replaced by PF if Xi is replaced by Xi + 0 for i = 
m + 1, .. . , N, which transforms T* and U1 into T *(O) and U1(0), say. On the 
set EP (6 .8)-(6.13) ensure that we can expand T *(O) and U1(0) about T* and 
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U1 • Replacing rv's by their expected values if the difference is of negligible 
order, a simple calculation shows that under PF we have, uniformly on the set E~> 

(6.20) T*(8) = T* [ 1 - 3.<(1 - .<)N82 J - T*2 {A(l - ,()}~8 
2 L: (Z1 - Z.)2 [L:; (Z1 - Z.)2)! 

+ P(l - A)pN8 - {A(l - .<)}'N~83 + O(N-1-fi) 
[L:; (Z1 - Z.)2p 2(EX12)~ ' 

(6.21) U1(8) = U1 + O(N- 1-fi). 

Another easy calculation where we use (6.8)-(6 . 13) to bound the terms in 
(6 .20) and (6.21) and to replace rv's by their expected values whenever possible, 
and where we note that ~a* = ua + O(N-~), shows that uniformly on E1 , the 
inequality T*(8) ~ ~a* + U1(8) + O(N-1-fi) is equivalent toT* ~ ~a *(8)- U0 + 
U1 + O(N-1-fi), where 

(6.22) ~ *(8) = ~ * _ P(l - -<)Np8 + p(1 - -<)p8 u 2 _ -<(1 - .<)82 u 
a a (EX12)~ (NEX12)t a 2EX12 a' 

(6 23) U - {.<(I - .<)}~N8 { 1 _ 1 } 
• 0 - [I; (Z1 - Z.)2)! (NEX12 )~ • 

Since PF(E1 ) = I - O(N-1-fi), this implies 

(6.24) 1rpe(F, 8) = PF(T*(8) ~~a*+ U1(8) + O(N-1-fi)) + O(N-1-fi) 

= PF(T* ~~a *(8) - U0 + U1 + O(N-1-fi)) + O(N-1-fi), 

where the first remainder term in the last member depends on X~> ... , XN but is 
uniformly O(N-1-fi). 

Since U0 and U1 depends on XP ... , X N only through Z, we can compute 
PF(T* ~ ~a *(8) - U0 + U1 + O(N-1-fi)) by taking the expectation under PF of 
the conditional df ofT* given Z under PF evaluated at the point ~a *(8) - U0 + 
U1 + O(N-1-fi). Corollary 2.1 provides an expansion for the conditional df of 
T* given Z under PF that is valid uniformly on EJ> and PF(E1) = 1 - O(N-1-fi). 
Combining these facts and simplifying as much as possible with the aid of 
(6.8)-(6.13) (note that (6.8), (6.11) and (6.12) imply that U0 = O(N-fi) and 
U1 = O(N-2-fi)) we find 

(6.25) 

1rpe(F, 8) = 1- EF<l>(~a*(8) -·U0 + U1) + (l- 2-<) 
6{,((1 - .<)p 

x E [ L: (Z; - Z.)S "'(~ *(8) - U )H (~ *(8) - U )] 
F [ L: ( zj - Z.)2F 'f' a 0 2 a 0 

"'(~ *(8)) [ 1 ~ *(8) { ( 1 - 6.< + 6.<2
) EX/ . + 'f' a 2N a + 24.<(1 - .<)N (EX12)2 

(1 - 2A)2 } H * 8 (1 - 2.<)2 (EX13) 2 

- 8.<(1 - .<)N 3(~a ( )) + 72.<(1 - .<)N (EX12) 3 
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Thus we see that the contribution of U1 to the expansion for trp.(F, 8) is re
stricted to its contribution to -EF<t>(;a *(8) - U0 + U1) . On the set £ 1 we have 
U1 = 01 + M, where 

and 

N~M = o ({I: (Z;- z.)2 - 1 }2 + I I: (Z; - z.? - 11· 1 I: (Z; - z.)a - 11) 
NEX12 NEX12 NEX13 

uniformly on £ 1 ; also U0 = O(N-P) uniformly on £ 1• Let XE1 denote the indicator 
of E1. Then, because PF(E1) = 1 - O(N-1-P), 

EF<P(;a*(8)- Uo + U1) = EF<P(;a*(8)- UoXE1 + 01 + MxE) + O(N-1- P) 

= EF<P(;a *(8) - UoXE1) + EF¢(;a *(8) - UoXE)01 

+ O(N-1- P + EF{012 + \M\xE}) 

= EF<P(;a *(8) - U0) + ¢(;,/(8))£F 0 1 

+ O(N-1-P + EF{N-P\01\ + 01
2 + \M\xd). 

Noting that I; (Z; - Z.)k = I: (Xt- X.)k, EFXt = 0 and EF\Xtl' ~ C for some 
r > 8, one easily verifies that EF 0 1 = O(N-~), EF 012 = O(N-2) and EF\M \xE = 
O(N-i). It follows that 

(6.26) EF<P(;a *(8) - U0 + U1) = EF<P(;a *(8) - U0) + O(N-1- P), 

and hence U1 may be omitted in (6.25) because its contribution is of negligible 
order. Retracing our steps back to (6.16) we conclude that the same must be 
true there, so that 

(6.27) trp.(F, 8) = P(T* ~ ; a* + O(N-1-P)) + O(N-1- P). 

The remainder of the proof parallels that of Theorem 5.2 in ABZ (1976). Let 
1' be Student's statistic as defined in (6.3). The inequality T* ~a is algebra
ically equivalent to f ~ a{(N- 2)/(N- cf)p on the set where I: (Xi - XS * 0 
and provided that a2 < N. Since I: (Xi - X.? * 0 on £ 1 for sufficiently large 
Nand e' ~a ~ 1 - e', this implies that 

(6.28) 

In the same way as in the proof of Theorem 5.2 in ABZ (1976) we show that 

(6.29) sup1 P(t ~ f ~ t + O(N-1-P)) = O(N-1- P) 

and hence 

(6.30) 

Now ea * depends only on N, ,t, a and F but not on 8, and arguing as in the 
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proof of Theorem 5. 2 in ABZ ( 1976) we find that this together with rr p,(F, 0) = a 
ensures that 

(6.31) 

with ta defined as in (6.3). Combination of (6.29), (6 .30) and (6.31) completes 
the proof. D 

Although we have conducted the proof in such a way as to avoid actually 
establishing expansions for rr p,(F, 8) and rrst(F, 8), the excursion from (6.16) to 
(6.26) and back has, in fact , brought us rather close to obtaining such expan
sions. Suppose that the conditions of Theorem 6.1 are satisfied but drop the 
assumption ~ x dF(x) = 0 that was made in the proof merely for convenience. 
Define 

(6 .32) • _ {A( 1 - A)Np8 
r; - a(X1) ' 

(6.33) 

where all moments are computed under F since only X1 is involved. A relatively 
straightforward computation starting with (6.25) and (6 .26) yields 

rr (F 8) = 1 _ <D(u _ . ) + fJ¢ (ua - f;) [12(1- 2A)Ka(F) (. _ 2u ) 
Pe' a r; 72 {A(1-A)Np r; a 

+ (1- 2A)2Ka2(F) (- · 4 + 5u · a _ 8u 2• 2 + 4u a· + s ·2 
A(1-A)N r; aYJ aYJ a YJ r; 

(6.34) - 24uafJ + 20ua2 - 10) 

+ 3K4(F) { -(1 - 3.{ + 3.{2)(i;2 - 3) 
.{(1 - A)N 

+ 3( 1 - 5.{ + 5A2)uafJ - 3( 1 - 6.{ + 6A2)ua'} 

- 1~a2 J + O(N-1-P) ' 

where ~ is given by (6 .6) and the 0 symbol is uniform for fixed c, C, D, e:, e:' 
and a. Theorem 6. 1 ensures that the ~arne expansion is valid for rrst(F, 8). 

The case where F is normal is perhaps of most interest because both tests are 
then asymptotically efficient. Since <D satisfies the stronger regularity conditions 
needed to replace ~ by ! we find in this case 

(6 .35) 

ua2 r; *¢(ua - r; *) = 1 - <D(ua - r; *) - 4N + O(N-1), 

where r;* = {A( 1 - A)Np8. 

7. Deficiencies of distributionfree tests. In analogy to the one-sample case 
we want to compare the distributionfree tests discussed so far to the best parame
tric tests for the two-sample problem when the hypothesis and the alternative are 
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both simple. The situation is more complicated than in the one-sample case 
because of the shift invariance of the distributionfree tests involved. Let 
X 1 , • •• , XN be independent and let (F, G) denote the hypothesis that X1 , • ··,X,. 
have common df F and Xm+I> ... , X,v have common df G. For fixed F and 8 
and varying .:l E R1 , consider the simple hypothesis H F and the simple alternative 

KF, 0,6, where 

HF = (F, F)' KF,0,6 = (F(. + .:18), F(. - (1 - .:1)8)) 0 

The shift in variance of the distributionfree tests ensures that their power against 
KF,o,a is independent of .:l, so that it was sufficient to consider only alternatives 
with .:l = 0 in the preceding sections. Note that the form of the locally most 

powerful rank test against KF,o, 6 is also independent of .:l. However, the en
velope power rr +(F, 8, .:l), i.e., the power of the most powerful level a test of 
HF against KF, 8 ,6, does depend on .:l and the "right" .:l against which compari
sons should be made is thus the value .:10 that minimizes the envelope power. 
It is given to first order by .:1 0 - ..:1. For values of .:l whose asymptote is different 
there is not even an asymptotically efficient shift invariant test, so that the defi
ciency of a shift invariant test with respect to the best test is not of much interest 
in this case. Of course we shall have to provide a more precise asymptotic 
evaluation of .:1 0 because we are concerned with second order terms. 

Suppose that F is a fixed df with density f that is positive and five times dif
ferentiable on R 1 • The most powerful level a test for HF against KF,o, 6 rejects 
H F for large values of the statistic 

S = "m lo f(Xi + .:18) + "N lo /(Xi- (1 - .:1)8) . 
o,6 "-''=I g f(XJ .Ut=m+I g f(Xi) 

This statistic is a sum of independent rv's and we can therefore obtain an 

Edgeworth expansion for its df under HF and under KF,o, 6 and hence for the 
power rr+(F, 8, .:l) by proceeding in the classical manner and expanding the 
cumulants of the statistic. In this expansion for rr+(F, 8, .:l) we minimize with 
respect to .:l. We shall give each of these expansions but we omit the tedious 

computations. 
Define Wi by (4.15) fori= 1, ... , 5, and take 

fc+(F, 8, .:l) 

1 _ <P(ua _ i;) _ i;¢(ua- i;) [24 '1'3 S 1f13(t) dt ( _ 2u + _) 
288 N~ {r2 S W/(t) dt}! a r; 

(7 .1) + _i_ '4 S W8t)dt {-3(u 2- 1) + 3-u - 2-2} 
N{r2 Slf/(t)dtJ2 a YJa r; 

+ 12 r 4 S W/(t) dt _2 + _!__ h S W13(t) dt}2 

N {r2 S W1
2(t) dW r; N {r2 S W1

2(t) dtp 

X {8(2ua2 - 1) - 4i;(ua3 + 3ua) + f;2(8ua2 + 1) - 5f;3ua + f;4} 

- ~ :2~ ( -Ua2 + 1 + 1Ja)], 
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ij = [N{(l- A)Ll2 + A(l- Ll)2} ~ W1
2(t)dt)'O , 

rk = (l - A)Llk + A(Ll- l)k, k = 2, 3, 4. 

LEMMA 7.1. Let F satisfy (5.6) for mi = 5ji, i = l, · · ., 5, and suppose that 
positive numbers D, D', ~ and~' exist such that 0 ;;::; 0 ;;::; DN-!, lilOI ;;::; D'N-~ , 
~ ;;::; A ;;::; l - ~; and ~' ;;::; a ;;::; l - ~'. Then there exists B > 0 depending only on 
F, D, D', ~ and~' such that 

(7.4) 

PROOF. Under the conditions of the lemma we find that under HF = (F, F) 

pF ( So, a ; H2 
;;::; x) 

= <I>(x) _ ¢(x) [ 24 r 3 ~ W/(t) dt {2(x2 _ l) _ 3 -x + -2} 
288 N! {<2 ~ 1F12(t) dt} ~ r; r; 

+ _i_ ' 4 ~ W1\t) dt {3(x3 - 3x) - 6 -(x2 - l) + 5 -2x - 2 -3} 
N {r2 ~ Wl2(t) dW r; r; r; 

+ 12 <4 ~ 1F22(t) dt { _ -2x + -3} 
N { r 2 ~ W 12( t) dt}2 r; r; 

+ __!__ {r3 ~ w13(t) dlJ2 {4(r - l0x3 + l5x) - 12ij(x4 - 6x2 + 3) 
N {<2 ~ 1F1

2(t) dlp 

+ l3ij2(x3- 3x) - 6ij3(x2 - 1) + ij4x} 

+ 36' 4 { -(x3- 3x) + 2ij(x2 - 1)- 1)2x}J + O(N- ~), Nr22 

whereas under KF,o ,a• 

p ( So,a ; H 2 
;;::; x ) 

= <l>(x) _ ¢(x) [ 24 <3 ~ 1F13(t) dt {2(x2 _ 1) + 3 -x + -2} 
288 N! {r2 ~ 1F12(t) dt} ~ r; r; 

+ _i_ 7:4 ~ wl
4(t) dt {3(x3 - 3x) + 6 -(x2 - 1) + 5 -2x + 2 -3} 

N {<2 ~ 1F12(t) dW . r; r; r; 

+ 12 <4 ~ 1F22(t) dt { -2 -3} - - r; X- 1J 
N {<2 ~ 1F12(t) dt}2 

+ __!__ {r3 ~ Wl3(t) dt}' {4(r - 10x3 + l5x) + 12ij(x4 - 6x2 + 3) 
N {<2 ~ 1F12(t) dtp 

+ 131)2(x3 - 3x) + 61)3(x2 - 1) + ij4x} 

+ 36' 4 { - (x3 - 3x) - 2ij(x2 - 1) - 1)2x}J + O(N-i). 
Nr2l 

The remainder terms O(N-~) are uniform for fixed F, D, D ' ~and~'. Together 
these expansions yield (7 .4). 0 
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For large values of IM1N~I. both rc+(F, fJ, il) and fc+(F, fJ, il) will come close 
to 1 as N ~ oo. It follows that an asymptotic expansion for the value 110 that 
minimizes rc+( F, fJ, il) rna y be obtained by minimizing fc+( F, fJ, il) instead. This 
yields 

(7.5) il = A + {A(1 - A)p S W/(t) dt ( _ 2u + *) + O(N-1) 
o 4N~ {S W1

2(t) dt}~ " r; 

with r;* as in (5.29). Since the derivative of ij with respect toil vanishes at 
il = A, (7;5) is sufficient to determine ij and fc+ for il = 110 up to a remainder 
O(N-i). Noting that indeed 1110 81 = O(N-~), we substitute (7. 5) for il in (7 . 1 )
(7.3) and neglecting terms that are O(N-~). we find that fc+(F, fJ, 110) reduces to 

r;*¢(ua- r;*) fc+(F, 8) = 1 - <l>(ua- r;*) + 288 

[ 24(1 - 2A) s W13(t) dt ( 2 *) 
X {A(1 - A)N}t {S W/(t) dt}i - u" + 7J 

+ 4(1 - 3A + 3A2) s W14(t) dt 
A( 1 - A)N { S W1

2( t) dt}2 

(7.6) X {3(ua2 - 1) - 3r;*ua + 2r;*2} 

12(1 - 3A + 3A2) S W/(t) dt *2 9 {S 1F13(t) dtJ2 
A(1 - A)N {S W12(t) d!J2 7J - N {S W12(t) dtp 

X (2u - *)2 + (1 - 2A)2 {S W1a(t) dtJ2 { -8(2u 2- 1) 
" 7J A(1 - A)N {S W12(t) dtp " 

+ 4r;*( ua 3 + 3ua) - r;*2(8ua2 + 1) + 5r;* 3ua - r;* 4} 

+ 36(1 - 3A + 3A2
) {-(u 2 _ 1) + *u l] 

A( 1 - A)N a 7J a 

with r;* as in (5.29). Summarizing, we have 

LEMMA 7.2. Let F satisfy (5.6) for m; = 5fi, i = 1, · · ·, 5, and suppose that 

positive numbers D, <: and o:' exist such that 0 ~ (} ~ DN-~, <: ~ A ~ 1 - <: and 

o:' ~ a ~ 1 - o:'. Then there exists B > 0 depending only on F, D, <: and o:' such 

that 

(7.7) 

For the same testing problem Theorem 5.2 provides an expansion for the power 
rc(F, fJ) of the locally most powerful rank test. Together, Theorem 5.2 and Lemma 
7. 2 enable us to find an asymptotic expression for the deficiency d.v of the locally 
most powerful rank test with respect to the most powerful parametric test for 
HF against KF,o . ~o· To ensure that F satisfies the assumptions of both Theorem 
5.2 and Lemma 7.2, we require that FE §~, where 

DEFINITION 7 .1. Y-1 is the class of df's F on R1 with positivq' and five times 
differentiable densities f and such that (5.6) is satisfied for 5 = 1, ... , 5 with 
m1 = 6, m2 = 3, m3 = j, m4 = ~. m5 = 1, and such that (5.7) holds. 
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Furthermore, we define 

d _ 1 [4 \ W14(t) dt {3( 2 l) 2 * } 
.v.o - 48 0 W12(t) dW u" - - r; u" 

_ 4(1- 3A + 3A2) {\ W14(t)dt- 3\ W22(t)dt + 3} *z 
A(l - A) {\ W12(t) d!J2 r; 

_ 3{\ W13(t) dtV (2u _ *? _ 3(1 - 2A)2 {\ W13(t) dt}2 *2 

{\ W1
2(t) dtp " r; A(l - A) {\ W12(t) dtp r; 

(7.8) - 12{ua2 + 3 - 2r;*ua} l , 
_j 

dN,I = dN,O + \ w)(t)dt Ef=l a2(WI(Uj: N))' 

- - 1 1 y-1 

dN,2 = dN,O + \ W12(t) dt \ N-_:1 (W/(t))2t(l - t) dt, 

1 ( ' . ))2 
dN,3 = dN,O + \ wlz(t) dt Ef=l E WlUj: N)- WI (N ~ 1 ' 

where Wi and r;* are given by ( 4.15) and ( 5. 29) and UJ: N is the jth order statistic 
of a sample of size N from the uniform distribution on (0, 1 ). 

THEOREM 7. 1. Let dN be the deficiency of the locally most powerful rank test 
with respect to the most powerful test for testing H F against KF, o, 60 on the basis of 
XI' ... , XN and at level a. Suppose that FE ~' eN-~ ~ () ~ CN-!, <: ~ A ~ 
1 -<:and o:' ~ a ~ 1 - o:' for positive c, C, <:and o:'. Then, for every fixed F, c, 
C, <:and o:', there exist positive numbers B, 1\, o2, · · · with limN~oo oN= 0 such that 

(7.9) 

(7 .10) 

ldN - dN II :::;:; ON ' 

ldN - dN,zl ~ON+ BN- ! \~--~-I (W/(t))Z{t(l - t)P dt. 

If in the above the locally most powerful rank test is replaced by the rank test with 
the corresponding approximate scores ai = - W1(jf(N + 1 )) then 

(7 .11) 

and (7. 10) continues to hold. 

PROOF. Let us first consider the locally most powerful rank test and show 
that the expansions (5.35) and (7.7) yield (7.9). The conditions of the theorem 
ensure that r;*, {A(l- A)}- 1 and ua are bounded. As .57 ~ c ff, (5.18) holds 
and the reasoning leading up to (5.46) gives 

(7 .12) N-l Ef=l a2(WI(Uj:N)) ~ N-l L:;~".,l E {wi(Uj:N)- WI ( N ~ 1) r 
= o(N-3). 

In view of these remarks we find from (5.35), (5.32) and (5.31) that the power 
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n(F, ())of the locally most powerful rank test satisfies 

n(F, ()) = I - <D(u, - r;*) 

985 

(7. 13) r;*¢(u,. - r;* ) (I - 2.:1) ~ 1Ji'13(t) dt ( - 2u + *) 
+ 12 {A( I - .:l)N}! {~ 1Ji'12(t) dt} ~ " r; 

+ o(N -l ) . 

From Lemma 7.2 and (7 .6) it is clear that n+(F, (), ~0) also equals the right-hand 

side of (7 . 13). Since d 1 is obtained by replacing Nand r;* by (N + dN) and 

r;*(l + d , N - 1)! in n(F, 0) and equating the result to n+(F, 0, ~0), and since r;* 

is bounded away from zero, we find that d , = o(N!i ). 

Having obtained this crude bound ford, we study the effect of the substitu

tion of (N + d,.) and r; *( I + d , N - 1)! for N and r;* a bit more carefully. The 

effect on n0* (F, 0) as given in (5 .31) is obviously the addition of a term 

(7 .14) r;*¢ (ua - r;*) d , + o( N-l ); 
2N .\ 

to prove that this remains true for rr 1*(F, 0) in (5.32) it is clearly sufficient to 

show that 

(7.15) ~ I: ;'=1 a2(1F1(Ui v)) = N ~ 1 I: ;':/ a2(1F1(Ui •H1)) + o(N- l). 

Once this has been established, (5.35) and (7.7) imply that an expansion for dN 

may be obtained by equating (7.I4) to fr +(F, 0)- rr 1*(F, ()) + o(N - 1 ) and an 

easy computation yields (7. 9). 

To prove (7.I5), we let bj ,v denote the density of Ui •N and we note the well

known recurrence relation (N + I)bj,N = jbi+1,N +1 + (N- j + I)bj,N+1. We 

have 

a2(1JI'1(Uj:x)) = N ~ I E{W1(Uj+1:N+1)- EW1(Uj :NW 

+ N; ~ i I E{W1(Uj:.v+1) - EW1(Uj: NW 

N ~ I a2(1JI'1( UJ+1:N +t)) + N; ~ i I a2(1JI'1( Ui .Y+ 1)) 

+ j(N-J+I){E[W(U )-W(U )]}2 

(N + I)2 1 J+1: .Y+1 1 ,: .V +1 · 

Summation on j gives 

~ L: i'= 1 a2(W1(Uj N)) 

(7 .16) I '\'.Y+1 2(1JI'(U )) 
N + I LJi =l a 1 i •N+ 1 

+ '\' ·' j(N- j + I) {E[W (U. ) - W (U. , )]}2. 
Ln =1 N(N + I Y 1 J+ 1:N+ 1 1 ,: i\ +1 
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By Fubini's theorem and (5.I8), 

IE[WI(UJ+I N+I)- WI(Uj :N+I)]I ;£ E ~ g ~;t-J~~+ I IW/(t)l dt 

= ~~ IW/(t)IP(UJ :N+I ;£ t < Ui+I N+I) dt 

= (NJ I) ~~ IW/(t)lti(I - t)N+l-j dt 

<M( j ) (N+I)! 
= N + I {j(N + I - j)}" ' 

where M js a bounded function on (0, l) with limH,I M(t) = 0. Hence 

" N j(N- j + 1) {E[W (U. ) - W (U. )]}2 
Lu = I N(N + 1 )2 I 3+I :N+I I 3 : N +I 

= o(N-2 ~ :,;-!;-I {t(I - t)t! dt) = o(N -~). 

Together with (7.16), this proves (7.15) and establishes expansion (7.9). 
For the rank test based on the approximate scores the proof that (5.39) and 

(7. 7) yield expansion (7 .11) proceeds in the same way as above, the only dif
ference being that instead of (7. 15) we now show that 

(7.17) ~ I; ~v= IE(WI(Uj :N)- wi(N ~ 1)Y 
= I L; 3N;!} E(WI(U3-·N+I)- WI ( j ))2 + o(N- l). 

N + 1 . N + 2 . 

Using the recurrence relation for bj ,.v again, we find after some arithmetic 

(7 .18) 2 " N+I {w ( J ) _ J- I w ( J- 1 ) 
+ N + 1 w j=I I N + 2 N I N + 1 

N - j + 1 ( j ) } ( ( j )) - WI E WI(Uj:N+I)- WI 
N N+I N+2 

1 I; N+I {i-I(w( J )-w(i-1))2 

+ N + 1 j=I N I N + 2 I N + 1 

+ N - j + I (w ( j ) _ W ( j ))2} . 
N I N+2 I N+1 

Now (5.18) ensures that 

I W ( j ) _ W ( j- 1 )\ ~ M ( j ) (N- j + 2) {J(N- j + 2)}- i 
I N + 2 I N + 1 - N + 2 (N + 2)2 (N + 2)2 

for j = 2, ... , N + 1 , 

lw ( i ) _ w ( i )\ < i!( J ) J {J(N- J + 2)}- ; 
I N + 2 I N + 1 = N + 2 (N + 2)2 (N + 2)2 

for j = 1, . . · , N , 
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where M is a bounded function on (0, 1) with limH,1 M( t) = 0. Similarly, ( 5. 7), 
Lemma A2.3 in ABZ (1976) and (5.18) imply that 

\EW1(U;:N+l)- 1¥1 (N ~ 2 )1 
-::;;, M ( j ) N-1 {J(N- j + 2) } - ~ 
- 2 N + 2 (N + 2)2 

for j = 1, ... , N + 1 . 

It follows that both the second and third terms on the right in (7 .18) are 

o(N-2 ~~-..:i- 1 {t(1 - t)}-t dt) = o(N-~), 

which proves (7 .17) and therefore (7 . 11 ). 
Finally, the validity of expansion (7 .10) for exact as well as approximate scores 

is a simple consequence of (7. 9) and (7. 11) and the fact that Theorem 5. 2 clearly 
implies that both L: a2(1¥1(U;:N)) and L: E(W1(U;:N)- 1¥1(}/(N + 1)))2 equal 

~ ~--=i- 1 (W/(t))2t(l - t)dt + o(l) + O(N - ' ~~--~-1 (W/(t))2{t(l- t)pdt). 

This completes the proof of the theorem. 0 

Like Theorems 5.1 and 5.2, Theorem 7.1 presents us with a choice between 
an expansion with remainder o(l) and one which is more explicit but may have 
a remainder of larger order under the conditions of the theorem. If W/ (t) = 
o({t(l- r)} - 1) for t - 0 , 1, then dN = dN,2 + o(l) for exact as well as approxi
mate scores and expansion (7 .10) is obviously preferable. This appears to be 
the most common case. However, if W/(t) is of exact order {t(1 - t)}-I, then 
(7 .1 0) yields only 

d = ~~--~-1 (W/(t))2t(l - t) dt + 0(1) = O(lo N). 
N ~~1Jf12(t)dt g 

Finally, if W/(t),....., {t(1 - t)}_1_6 fort- 0, 1 and some 0 < o < -fr, then (7 . 10) 
reduces to dN = O(N26). 

In general, all we can say under the conditions of Theorem 7.1 is that 

(7.19) d = l: a 2(W1(U;:N)) + 0(1) = 00 1~-1 (W '(t))2t(l - t) dt) = o(Ni) 
N ~ 1Jf12(t)dt N 1 1 

for exact scores, and that 

(7.20) d = l: E(W1(U;: N)- 1F1(j/(N + 1)))2 + 0(1) 
N ~ 1Jf12(t) dt 

= 00 ~-_:i- 1 (W/(t))2t(1 - t) dt) = o(Ni) 

for approximate scores. Even this result, however, is rather surprising because 
one might have expected these deficiencies to be of the order N !. The reason 
that they are of smaller order than N! is of course that the power expansions 
for the rank tests in Theorem 5.2 and for the most powerful test in Lemma 7.2 
agree not only in their leading terms of order 1 but also in their second order terms 
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of order N-~. It is only in third order terms that differences begin to show up. 
Borrowing a phrase from Pfanzagl ( 1977), who noted the same phenomenon in 
the parametric one-sample problem, first order efficiency apparently implies 
second order efficiency in the cases considered. Note that results very similar 
to (7 .19) and (7 .20) were obtained for one-sample rank tests in ABZ ( 1976). In 
that case, however, there is no cause for surprise because certain symmetries that 
are present in the nonparametric one-sample problem ensure that there is no 
term of order N-~ in any of the power expansions. Finally we should perhaps 
point out that in the present two-sample case, the fact that we have evaluated 
the envelope power for ~0 as given in (7 .5) instead of for the conventional choice 
~ = A, is of no consequence for these considerations. For ~ = A the term in
volving (2ua- r;*Y should simply be omitted from (7.6) and (7.8) and this does 
not influence the qualitative behavior of fr+ or dN.i· 

To provide some examples of Theorem 7.1 we compute the expansion (7 .1 0) 
for the special case where F is the logistic df A(x) = (1 + e-"}-1 or the normal 
df <I>. The computations resemble those at the end of Section 5. Suppose that 
c ~ ON~ ~ C, c; ~ A ~ 1 - c; and c:' ~ a ~ 1 - c:' for positive c, C, c; and c:'. 

As both examples concern symmetric distributions for which ~ W13(t) dt = 0, 
the second order term in (7.5) vanishes so that we may take ~o = A in both 
cases. For F = A we are therefore concerned with the problem of testing the 
hypothesis (A, A) against the alternative (A(· + A8), A( • - (1 - A)8)) and dN 
denotes the deficiency of Wilcoxon's two-sample test with respect to the most 
powerful test for this problem. We find 

(7.21) d 1 [4 2 16 4 * 1 - 3A + 3A2 *2] + o(1) 
N = 21l ua + + r; ua + A( 1 - A) r; 

with r;* = {A(1 - A)Nf3}'8. In this example dN remains bounded as N ~ oo. 
In the second example we consider the testing problem (<I>, <I>) versus 

(<I>(. + A8), <I>(. - (1 - A)8)). Now dN is the deficiency of the two-sample nor
mal scores test (or van der Waerden's two-sample test) with respect to the most 
powerful test based on the difference of the sample means. We obtain 

(7.22) dN = loglogN + !{Ua2 - 3) + log2 + r + o(1), 

' where r denotes Euler's constant (cf. (5.50)). Now dN'""' log log N ~ oo as 
N ~ oo. Note that there is no dependence on 8 or A in this expansion. 

So far in this section we have compared distributionfree tests to the most 
powerful test for a simple hypothesis against a simple alternative. However, all 
distributionfree tests occurring in this paper-rank tests as well as the permu
taion test discussed in Section 6-are invariant under changes of location and 
scale. It would therefore be more realistic to compare these tests to the uni
formly most powerful location and scale invariant test, if such a test exists. For 
the two-sample normal location problem Student's test answers this description 
and its power would therefore be a more suitable basis for comparison than 
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the envelope power. For the problem of testing (<D, <D) against (<P( • + J.O), 
<D(. - (I - ..{)0)) the power of the most powerful test equals 1 - <D( ua - r;*) 
with r;* = {..{(1 - ..{)NJ!O. Assuming again that c ~ON;.~ C, c ~ ,{ ~ 1 - s 
and s' ~ a ~ I - s' for positive c, C, c and s', the power of Student's two-sample 

test is given by (6.35) and its deficiency with respect to the most powerful test 
is therefore equal to !ua2 + o(l). It follows from (7 .22) that the deficiency of 
the two-sample normal scores test (or van der Waerden's two-sample test) with 
respect to Student's two-sample test for the normal location problem is given by 

(7.23) d.v = log log N - ~ + log 2 + r + o (I) , 

where now the expansion does not even depend on a. Since both tests are loca

tion invariant, (7 .23) also denotes the deficiency for testing (<D, <D) against 

(<D, <D(. - 0)). 
We conclude this section by comparing the permutation test discussed in Sec

tion 6 to Student's test. Theorem 7.2 is an immediate consequence of Theorem 

6.1, expansion (6.34) and (6.8). 

THEOREM 7.2. Suppose that positive numbers c, c', C, D, s, s', o and r > 8 exist 

such that the conditions of Theorem 6. 1 are satisfied and that 0 ~ c'N-1;. Let dN 

denote the deficiency of the permutation test based on the sample means with respect 

to Student's two-sample test for testing (F, F) against (F, F(. - 0)) on the basis of 

Xl' · · ·, X N and at level a. Then there exist B > 0 depending only on c, c', C, D, s, 

s' and o, and (3 > 0 depending only on r such that 

(7 .24) 

The case F = <P is of course of most interest because then the theorem asserts 

that for the normal location problem there exists a distributionfree test whose 

deficiency with respect to the best location and scale invariant test tends to zero. 

We note that the remark at the end of Section 6 implies that in this case (7.24) 

may be replaced by dN ~ BN- ~t . For F =F <P the theorem merely shows how 

closely the permutation test resembles Student's test with the correct significance 
level for F. 

8. Expansions and deficiencies for related estimators. Let Xl' .. . , XN be 

independent and let (F, G) denote the hypothesis that X~> ... , Xm have common 

df F and xm+l ' ... 'X,v have common df G. Let T = T(Xl, ... 'XN) be the rank 
statistic given by (2.2) and suppose that the scores ai are nondecreasing in j = 
1, . .. ,JV. DefinethestatisticMby 

M(X!, ... ' X N) 

(8.1) = ! sup {t: T(Xll ... ' xm, xm+! - t, ... 'XN - t) > ,{ I; aJ 

+ ! inf {t: T(Xll ... 'xm, xm+! - t, ... 'XN - t) < ,{ I; aj} . 

Under the model (F, F( • - ,u)), M was proposed as an estimator of ,u by Hodges 
and Lehmann (1963). They showed that the normal approximation to the power 
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of the level ~ test based on T for contiguous location alternatives can be used to 

establish asymptotic normality of M. In the same way we shall show that a power 

expansion yields an expansion for the df of N~(M- p). Note that we do not 

make the assumption of Hodges and Lehmann ( I963) that the distribution ofT 

under (F, F) is symmetric about A I; aj, which occurs, e.g., when either A = ~ 
or the scores are antisymmetric. As a result the power expansion involved will 

be for the test based on Tat level a = ~ + O(N-!) rather than at level ~, but 

for our deficiency computations this will not make any difference. We shall 
restrict attention to the case where Tis the statistic of the locally most powerful 

rank test or its approximate scores analogue, so that the aj will be exact or 
approximate scores generated by the score function - W1, with W1 as in ( 4.15). 
To ensure that the scores are nondecreasing we require that the density f of F 

is strongly unimodal, i.e., that logf is concave. 
Let ._;;:- be given by Definition 5.1, let rr(a, F, 8) denote the power of the level 

a right-sided test based on T against the alternative (F, F( • - 8)) and define 

(8.2) 
a_ 1 (1- 2A) ~ W13(t)dt 

- 2 + 6{2nA(1- l.)Np n W12(t)dtJ1 

Furthermore define, with W; as in (4.I5), 

(8.3) 

L (x) = <D(x) _ ¢ (x) I 24(1 - 2A) ~ W13(t) dt (x2 + 2) 
o 288 Lp(1 - l.)NP n w12(t) dtJ' 

4 ~ W14(t)dt 
A(1 - l.)N {~ W12(t) dt} 2 

X {5(1 - 3A + 3A2)x3- 3(1 - 6..( + 6l.2)x} 

48(1 - 3). + 3l-2) ~ W/ (t) dt 3 

+ l.(I - l.)N n lf12(t) dt]Z x 

(I- 2A)2 n W/(t)dt}2 (x~- 4x3- 12x) 
+ A( I - A)N {~ W12(t) dtj3 

_ 36 {(I- 3A + 3A2)x3 + xJ], 
A(1 - A)N 

- -() x¢(x) " N 2(l¥(U )) 
L 1(x) = L 0 x - 2N ~ W12(t) dt £ ... d=1 a 1 j:N , 

L2(x) = L0(x) - x¢(x) ~~~i- 1 (W/(t))2t(I - t) dt, 
2N~ W 1

2(t)dt 

- - x¢(x) " N E (w (U ) w ( i ))2 

L3(x) = Lo(x) - 2N ~ lf12(t) dt £ ... d =1 1 j:N - 1 N + 1 . 

Probabilities under the model (F, F( • - p)) are denoted by PF ,p · 

THEOREM 8.1. Suppose that FE ./-, that f is strongly unimodal and that either 

aj = -EW1(Uj: N)for j = I, .. ·, N, or aj = - W(jj(N+ 1))for j = I,···, N. Let 

sand C be positive numbers and suppose that s ~ A ~ 1- s. Then there exist positive 
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numbers B , o1 , o2 , • •• , with limN~~ oN = 0, which depend only on F, c and C, such 
that 

and such that the following statements hold: 

(i) for exact scores a; = -EW,(U;:N), 

(8.5) sup(x ( ~C /PF,p({t\(1 - A)N ~ W,2(t) dtJ!(M- fl) ~ x)- L,(x)l ~ oNN -l , 

(8.6) sup( x(~C /PF,p({A(1 - A)N ~ W,2(t) dtp(M- f.l) ~ x )- L2(x)l 

~ oNN - 1 + BN-~ ~ ~-~i- 1 (W/(t))2{t(1 - t)}! dt; 

(ii) for approximate scores a; = - W,(jj(N + 1 )), 

(8. 7) sup 1x1::;c /PF,p({t\(1 - A)N ~ W/(t) dt}!(M- f.l) ~ x) - L3(x)/ ~ o1,;1V-' 

and (8 .6) continues to hold. 

PROOF. In view of (8.1) we have for fJ = -f;N-~, 

PF,iN~(M- f.l) ~ f;) = PF,o(M < 0), 

PF,o(T < A I; a;) ~ PF ,o(M ~ 0) ~ PF,o(T ~ A I; a;). 

For fJ = - t;N-! and c' ~ a ~ 1 - c', the conditions of Theorem 5.2 are satis
fied except, of course, that fJ < 0 if r; > 0. However, the theorem remains valid 
for /8/ ~ DN- ~ ; it was formulated for positive tJ merely because we were dis
cussing one-sided tests against one-sided alternatives at that point. It follows 
that PF ,o(T = }. I; a;) = o(N-') uniformly for If;/ ~ C, so that 

(8.8) PF, p(N!(M - f.l) ~ f;) = PF,o(T ~ }. I; a;)+ o( N-') 

= 1 - rr(a , F, -f;N - !) + o(N -'), 

where a is the level of the test that rejects if T > }. I; a;. Noting that 
I; a; = 0 for exact scores, we find from (5.33) and (5.37) for x = r;* = 0, that 
a = a + o(N-'). In view of (5.35) and (5 .39) this yields rr(a, F, -f;N- !) = 
rr(a, F, - f; N -!) + o(N - 1) uniformly for If;! ~ C and together with (8.8) this 
proves (8.4). The remainder of the theorem follows from (8.8) and expansions 
(5 .33), (5.34), (5.37) and (5.38) with x and r;* replaced by 0 and - x . 0 

The natural parametric competitor of Mas an estimator of f1 is of course the 
maximum likelihood estimator M'. Under the model KF,p, A = (F( • + l1 f1 ), 
F(. - ( 1 - l1)f1)), M' = M/ is the solution of 

(8.9) 11 I; ;"=, (A (Xi + 11M')- (I - 11) L:; ;v=m+l ¢ ,(Xi- (1 - 11)M') = 0 

with ¢ 1 = f'jfas in (4. 1) . Note that, in contrast toM, the estimator M/ as well 
as its distribution under KF,,,,A depend on /1 . 

The df of M/ under KF,,,, A is connected with the power of the locally most 
powerful test for HF = (F, F) against KF,o, A· For fJ > 0, this test rejects HF for 
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large values of the statistic 

(8 .1 0) 

Let rr(a , F, (},~)denote the power against KF .o, A of this right-sided test at level 
a. Suppose that F is a fixed df with density f that is positive and five times 
differentiable on R1 and define 

ft(a, F, (}, ~) 

= 1 _ <l>(u _ -) _ ijif;(ua - ij) [ 24 <3 S W/(t)dt (- 2u + _) 
a YJ 288 N'- {<2 S 1f12(t) dt} ~ a YJ 

(8.11) + _i_ '• s wl•(t)dt {-3(u 2- 1) + 3 -u -5-2} 
N {<2 S 1fl2(t) dt}2 a r; a r; 

+ 48 '4 s W/(t) dt -2 + __!_ {<3 s Wl3(t) dW 
N {<2 S W/(t) dtJ2 r; N {<2 S 1F12(t) dtp 

X {8(2ua2 - 1)- 4ij(Ua3 + 3ua) + 8ij2(Ua2 - 1)- 5ij3Ua + ij4} 

+ ~:: {(ua2 - 1)- ijua - ij2} ] , 

where ij and r k are given by (7.2) and (7.3). 

LEMMA 8.1. Let F satisfy (5 .6) for mi = 5fi, i = 1, · · · , 5, and suppose that 
positive numbers D, D' , c and c' exist such that 101 ~ DN-~, 1~0 1 ~ D'N- 1., c ~ ..< ~ 

1 - c and c' ~a ~ 1 - c'. Then there exists B > 0 depending only on F, D , D' , 
c and c' such that 

(8.12) lrr(a, F, 0, ~)- ft(a, F, 0, ~)I ~ BN - 1 . 

PROOF. The proof proceeds in the same manner as that of Lemma 7. 1 and 
again we omit the details . Under the conditions of the lemma we find that 
under KF. o. &• 

p CNT2 s !lll2(t) dt}' ~ X) 
= <l>(x - -) - ¢ (x - ij) [24 ' 3 S WI3(t) dt {2(x2 - 1) + 2 -x - if} 

r; 288 N '- {<2 S W12(t) dt} t r; 

(8.13) + _i_ ' 4 S Wl4(t)dt {3(x3 _ 3x) + 3 -(x2 - 1)- 3 -2x + 5 -3} 
N {<2 S W1

2(t) dtJ2 · r; r; r; 

- 48 ' 4 S W22(t) dt -3 + __!_ {<3 S W/ (t) dt}2 {4(x5- 10x3 + 15x) 
N {<2 S W12(t) dtJZ r; N {<2 S W12(t) dW 

+ 4ij(x4 - 6x' + 3) - 8ij2(x3- 3x) - 4ij3(x2 - 1) + 5ij4x - ij5} 

+ 36' • {- (x3- 3x ) - ij(x2 - 1) + ij2x + ij3}J + O(N- t) . 
Nr22 

The remainder term is uniformly O(N- !) for fixed F, D , D' , £ and £'. T his ex
pansion yields (8 .12). 0 

Note that the expansions (8.12) and (8.13) are valid also for negative values 
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of fJ, but that the right-sided test considered here is not locally most powerful 
against these alternatives. 

If the conditions of Lemma 8.1 are fulfilled and if, moreover, f is strongly 
unimodal so that ¢ 1 is nonincreasing, then we can establish the connection 
between rr(a, F, fJ, .:l) and the df of Ma' by arguing as in the proof of Theorem 
8.1. Writing PF , p.~ for probabilities under KF , p . ~ and taking (} = -~N- • we 
find that 

PF, o .~(S~ < 0) ~ PF, ,,. ~(Ni(Ma' - fl) ~ ~) ~ PF,o.~(S~ ~ 0). 

In view of (8.12) and (8.13) this implies that uniformly for In lxl ~ C, 

(8.14) PF. ,,.~(N'(Ma' - p) ~ ~) = I - rr(a, F, fJ, .:l) + O(N- 1), 

1 r 3 ~ W13(t) dt a=!- 6{2;.-;vp- {r2 ~ W12(t) dt} ~ ' 
(8.15) 

Pp, ,, .~({r 2 N ~ W12(t) dt} '(Ma'- p) ~ x) 

= <l>(x) - ¢(x) [ -~~ '3 ~ W13(t) dt (x2 + 2) 
288 Ni {r2 ~ W12(t) dt)1 

(8.16) _ ~ '• ~ W1•(t) dt (5x3 _ 3x) + 48 '• ~ W22(t) dt x 3 

N {rz ~ W12(t) dt} 2 N {rz ~ W/(t) dt} 2 

+ __!__ {r3 ~ W13(t) dtV (x5- 4x3- 12x) - 3N6rz. (x3 + x) l 
N h ~ W12(t) dtJl r2 _ 

+ O(N-~). 

We have already remarked that the df of (Ma' - fl) under KF. ,, .~ depends on .:1 
and thus the same problem arises that we encountered in Section 7, viz. to 
determine the "right" .:1 for which M and M' should be compared. It is easy to 
see from (8.16) that the value .:1 = .:1° that is least favorable forM' in the sense 
that it minimizes (maximizes) PF, ,,, ~({N.2(1 - .2) ~ W/(t) dtp(Ma'- fl) ~ x) for 
positive (negative) xis given by 

JlO = ..{ - {A( I - .2)P ~ W13(t) dt X 2 + 2 + O(N-1). 
4N' {~ Wl2(t) dt}~ X 

However, we shall not take .:1 = .:1° as a basis for comparing M and M' but we 
shall simply choose .:1 = ..{ instead . We advance three reasons for doing so. The 
reader who does not find these reasons sufficiently compelling should realize 
that we are merely granting the maximum likelihood estimator a slight additional 
advantage. 

(i) The second order term of .:1° depends on x just as the second order term 
of .:10 in (7 .5) depends on fJ. This did not deter us from choosing .:1 = .:1 0 as a 
basis for comparison in Section 7, but we feel the situation is slightly different 
there. In Section 7 we were comparing with envelope power and in general this 
means comparing with a different most powerful test for each alternative (fJ, .:l). 
This being so, there seems to be little reason not to choose the least favorable 
testing problem for each value of fJ, i.e., to take .:1 = 110 • All we are doing is 
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locating a curve (8, .:l0(8)) of least favorable alternatives in the set of all alter
natives (8, .:l) and comparing with envelope power on that curve only. 

Our attitude would have been different, however, if in Section 7 we had been 
comparing with the power of the locally most powerful test rather than with 
the envelope power. The locally most powerful test is of course independent 
of 8 (cf. (8.10)) and for every fixed .:l we would therefore be comparing with a 
single fixed test for all 8. In this case it would still be reasonable to choose 
.:l = A which is least favorable to first order, but if ~ W13(t) dt =1= 0, it would 
seem to be rather extreme to compute the power of the locally most powerful 
test at each 8 for .:l = .:l0 = .:l0(8) which is least favorable to second order in this 
case too. After all, for every fixed .:l there would be a single locally most power
ful test that does better than that for all values of 8 except the one for which 
.:l0(8) = .:l. It is precisely for such sets of alternatives (.:l fixed, 8 unknown) that 
the locally most powerful test is designed and it seems unrealistic to assess its 
performance only for a different one-parameter set of alternatives (8, .:l0(8)). 

The present problem for the maximum likelihood estimator is of course very 
similar to the one for the locally most powerful test. Again the choice .:l = .:l0 

depending on x appears to be rather extreme because for every .:l the df of the 
maximum likelihood estimator is more concentrated around f1 than this choice 
would indicate at all but at most two points. 

(ii) Even though, in general, the distribution of M/ under KF.p,& is not sym
metric about fl, most reasonable measures of dispersion are built around the 
distribution of JM/ - fll rather than (M/- fl)· It is clear from (8.16) that 
PF ,p, 6 ({NA(1 - A)~ W12(t) dt)'JM/- fll ~ x) is minimized by .:l = A + O(N-1); 

it is also obvious from (8.16) that it makes no difference for our asymptotic 
results if we take .:l =A instead (cf. the remark following (7.5)). Hence .:l =A is 
the "right" choice of .:l for our asymptotic comparison of M and M', provided 
that the comparison is made on the basis of the distributions of JM- fll and 

JM'- fll· 
(iii) Our final argument is the rather more pedestrain one that any choice of 

.:l other than .:l = A + o(N-~) would to a certain extent destroy the simplicity of 
the main results in this section. We shall elaborate points (ii) and (iii) after 
proving Theorem 8.3. 

We now substitute .:l = A in (8.14)-(8.16) and find that a reduces to a as 
defined in (8.2) and that the expansion on the right in (8.16) becomes 

(8 .17) 
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We have proved 

THEOREM 8.2. Suppose that F satisfies (5.6)for mi = 5ji, i = 1, . · ., 5 and that 
f is strongly unimodal. Let e and C be positive numbers and suppose that e ;;;; ,{ ;;;; 
1 - e. Then there exists B > 0 depending only on F, e and C, such that 

(8.18) 

(8.19) 

sup 1n~c IPF,p,;,(N~(M/- f.L) ;;;; ~)- {1- 7!'(a, F, -~N-~, -<)} 1 ;;;; BN- ~ , 

sup 1x 1:;;c IPF,p,;,({A(1- .<)N ~ W12(t) dt)2(M/- f.L);;;; x)- L*(x) l ;;;; BN-~. 

There is no unique natural measure to assess the performance of the estimators 
M and M/ on the basis of the expansions (8.5)-(8. 7) and (8.19) and con
sequently there is no unique natural definition of the deficiency of M with respect 
to M/ either. Let us, for a moment, indicate the dependence on the sample 
size N in our notation and write MN and M;, N forM and M/. For any real ~ 
we define the deficiency DN(~) of the sequence of estimators { MN} with respect 
to the estimator M;_ N by equating the df's of (MN+D N - f.L) under PF ,p,J. (or PF,p) 
and of (M;, N - f.L) under PF,p,J. at the point ~N-~, thus 

(8.20) PF,p(MN+DN- f.L;;;; ~N-~) = PF,p, ;, (M;, N - f.L;;;; ~N-!), 

with the usual convention that the probability on the left is defined by linear 
interpolation for nonintegral values of N + DN. Of course, one will normally 
not be inclined to judge the performance of { MN} with respect to M;_ N on the 
basis of DN(~) for one value of~ only, but rather on the behavior of DN(O as a 
function of~- In our asymptotic study this will not make any difference because 
the expansions for DN(~) will be found to be independent of~-

Turning to the corresponding tests, we let dN(o:, 8) denote the deficiency in the 
usual sense of the locally most powerful rank test (or its approximate scores 
version) with respect to the locally most powerful test for the problem of testing 
HF = (F, F) against KF,o, J. = (F( • + M), F( • - (1 - .<)8)) at level o:. Since we 
shall be concerned with negative as well as positive values of 8, we note that for 
positive (negative) 8 the tests involved reject HF for large (small) values of the 
statistics given in (2.2) and (8.10), where the scores in (2.2) are exact or approxi
mate scores generated by - w1. 

Let ~ be given by Definition 7.1 and define 

_1. ~ W14(t) dt _ .3., 1 '\' N a2(W (U. )) 
4 {~ W12(t) dtJ2 4 + ~ W12(t) dt ..: ... n=1 1 J'N , 

(8 0 21) _1. ~ W14(t)dt - .3. + 1 ~1--~-l(W'(t))zt(1- t)dt 
4 nw12(t)dtJ2 4 ~W12(t)dt N 1 ' 

_1_ ~ W14(t)dt _.a 
4 n wl2(t) dtJ2 4 

+ 1 '\' N E (w (U. ) - W ( j ))2 

~ W/(t)dt "-'J=l 1 J;N 1 N + 1 

THEOREM 8.3. Let dN(o:, 8) be the deficiency of the locally most powerful rank 
test with respect to the locally most powerful test for testing HF against KF,o,;, at 
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level a. Let DN(~) be the deficiency of the Hodges-Lehmann estimator associated 
with the locally most powerful rank test with respect to the maximum likelihood 

estimator for estimating f1 under K F,p., J..· Suppose that FE ~ and that f is strongly 
unimodal. Let c, C and e: be positive numbers and suppose that c ~ 1 ~1 ::;; C and 

c ~ A ~ 1 -c. Then there exist positive numbers B, 01, 02, ... ' with limN~oo ON= 0, 
which depend only on F, c, C and c, such that 

(8.22) 

(8.23) 

(8.24) 

I DN(~) - dN(~, -~N-t)l ~ ON' 

IDN{~) - DN,11 ~ ON' 

IDN(~)- DN,21 ~ON + BN-~ ~ ~-!i- 1 (W/(t))2{t(1 - t)}' dt. 

If in the locally most powerful rank test and in the associated estimator, the exact 

scores are replaced by the approximate scores aj = - W1(jf(N + 1)), then (8.22) 
and (8.24) remain valid and (8.23) is replaced by 

(8 .25) I DN(~)- DN, 31 ~ON. 

PROOF. Since ~ c Y , the conditions of Theorems 8.1 and 8.2 are satisfied 
and (8. 5)-(8. 7) and (8.19) provide expansions for the df's of the estimators con
sidered. Substituting the appropriate expansions in (8.20) and proceeding exactly 
as in the proof of Theorem 7.1, we arrive at (8.23) and (8.24) for the estimator 
associated with the locally most powerful rank test and at (8.24) and (8.25) for 
its approximate scores version. 

Turning to the corresponding tests, (8.4) and (8.18) clearly imply that for nega
tive values of~ the computation for obtaining an expansion for dN(a, -~N-~) 

is precisely the same as for DN(~). In view of (8.23) and (8 .25) this computation 
determines the deficiency up to o ( 1) and hence 

(8.26) for -C ~ ~ ~ -c. 

For positive~' dN(a, -~N-~) refers to testing for negative shift and therefore to 
the left-sided tests rather than the right-sided tests whose powers appear in (8.4) 
and (8.18). Since the powers of the left- and right-sided versions of a test sum 
to 1 if their significance levels do, we find 

(8.27) for c ~~~C. 

Note that (8 .26) and (8.27) hold for exact as well as approximate scores and that 
the remainder terms are uniformly o(1) for fixed F, c, C and c. 

It remains to show that a may be replaced by~ in (8.26) and (8.27). If we 
take A = A in the power expansion for the locally most powerful test in Lemma 
8.1 and compare the result with the power expansion for the most powerful test 
in Lemma 7.2, we see that the terms of orders 1 and N- ~ agree and that in the 
terms of order N- 1 only certain coefficients differ. Moreover, for A = A the 
conditions of Lemma 8.1 are identical with those of Lemma 7 .2. This means 
that if we replace the most powerful test by the locally most powerful test in 
Theorem 7.1, then the theorem will remain valid if some of the coefficients in 
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d v, o are changed. Thus, under the conditions of Theorem 7. 1 there exists, for 
exact as well as approximate scores, an expansion for dN(a, 8) with a bounded 
derivative with respect to a and a remainder term o(1). This statement remains 
correct for -CN- z ~ 8 ~ -eN- '- because the power expansions in Lemma 8. 1 
and Theorem 5.2 are valid for negative 8 too (cf. the remark in the proof of 
Theorem 8.1) so that the only change in the expansion for dN(a, 8) is a change 
of sign of u" to account for the switch from the right-sided to the left-sided tests. 
Noting that c ~ 1~1 ~ C and that a = ~ + O(N- !) we find that we may indeed 
replace a by ~ in (8 .26) and (8.27) without affecting the right-hand side and its 
uniformity for fixed F, c, C and c. This proves (8.22) and the theorem . 0 

A number of comments should be made at this point. First of all we recall 
remarks (ii) and (iii) in our discussion earlier in this section concerning the 
choice of 11 for which M and M' should be compared . Suppose we define defi
ciencies D/(~) by 

for that value of 11 that minimizes the right-hand side. In view of remark (ii), 
Theorem 8.3 implies that D/(~) is also asymptotically equivalent to the DN,i· 
Thus our results can be thought of as corresponding exactly to those of ABZ 
(1976) where deficiencies are defined in terms of a positive quantile of the sym
metrically distributed centered estimators in the one-sample problem. Since the 
deficiency is asymptotically independent of the value of~, we obtain the same 
answers for deficiencies based on reasonable functionals of the distributions of 
N'-IM- ,u l and N '-IM'- ,ul, such as the asymptotic second moment. This agrees 
with what was found in the one-sample case in Albers ( 1974). 

The choice 11 = A. is less obvious in equation (8.20) which defines DN(~). In 
remark (iii) we pointed out that if we would not choose 11 = A. + o(N-'-), then 
our results would become essentially more complicated. The first source of 
trouble is the difference of the significance levels a and a given by (8 .2) and 
(8.15) . Except in the trivial case where ~ W,3(t) dt = 0, we find that (a - a) is 
of the order of N- '- (11 - A.) and a change of the order of N-'-(11 - A.) in the level 
of significance of one of the two tests produces a change of the same order in 
its power. Unless 11 - A. = o(N- It ) such an effect is not negligible for our pur
poses and this means that it would no longer be true that the deficiency for the 
estimators is asymptotically equivalent in the sense of (8 .22) to the deficiency of 
the parent tests at the same level. In fact a correction term of the order of 
N t(l1 - A.) would have to be introduced in (8.22) to ensure its validity. Note 
that there is no contradiction here with the fact that in the proof of Theorem 
8.3 we could change a to ~ with impunity, because there we were concerned 
with the same change of level for both tests simultaneously. A second unpleasant 
consequence of choosing 11 = 11° (or even 11 = A.+ bN- '- with b independent of 
x) would be that the expansions for DA~) would no longer be independent of 
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.;. By taking~ = ~0 , we would therefore destroy at one stroke the two most 
striking features of Theorem 8.3. 

Next we note that upon formal substitution of a = t and () = 0 the expan
sions for dN in Theorem 7.1 reduce to the expansions for DN(.;) in Theorem 8.3. 
This shows that for every.; =F- 0, DN(.;) is nonnegative for sufficiently large N. 

In the proof of Theorem 8.3 we indicated how one can obtain expansions for 
the deficiency of the locally most powerful rank test or its approximate scores 
analogue with respect to the locally most powerful test. At that point there 
was no need to produce these expansions, but we shall do so now because they 
may be of independent interest. The simplest way to describe these results is 
the following. In the formulation of Theorem 7.1 change the words "most 
powerful test" to "locally most powerful test" and KF,O,do to K F, 0,, ; change d N,o 

in (7 .8) to 

(8.28) d = _1 [ 4 ~W8t)dt {3(u 2 - 1)- 2r>*U}- 12(u 2 + 3- 2r>* U )] . 
N,O 4 "8" {~ 1IJ"I2(t) dt}2 a "I a a "I a 

With these changes Theorem 7.1 holds. When comparing the expansions for 
dv in (7.8) with those based on (8.28) we see that the expansions in (7.8) consist 
of three parts. The term involving (2u"' - r;*)2 is due to the fact that compari
sons with the most powerful test were made for~ = ~o rather than ~ = A (cf. 
the discussion following Theorem 7.1 ). The other terms involving r;* 2 represent 
the deficiency of the locally most powerful test with respect to the most powerful 
test for ~ = A. The remaining terms are due to the transition from the locally 
most powerful test to the two rank tests. All four tests are efficient to second 
order, i.e., for each pair the deficiency is o(N! ), and the reason for this is that 
the terms of orders 1 and N-~ are the same in all four power expansions (cf. the 
discussion following Theorem 7 .I). 

We conclude with one example of Theorem 8.3. For estimating f1 in the 
normal location model (<l>( • + Af1), <I>(· - (1 - A)fl)), the deficiency of either 
one of the Hodges-Lehmann estimators associated with the normal scores test 
and with van der Waerden's test with respect to the difference of the sample 
means is given by 

(8.29) D N( .;) = log log N - ~ + log 2 + r + 0 ( 1) ' 

where r is Euler's constant as in (5.50). Note tha t this expansion is the same 
as expansion (7 . 23) for the deficiency of the normal scores test (or van der 
Waerden' s test) with respect to Student's test for any a . 

APPENDIX 

Expansions for the contiguous location case. In this appendix we provide the 
tools for deriving Theorem 4.1 from Theorem 3 .1. The quantities appearing in 
the expansion of Theorem 3.1 are expected values under PH of functions of 
P1, • • ·, P N and in the setup of Section 4 both H and PI' · · ·, P N depend on 8. 
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Our task is to provide Taylor expansions in 8 with error bounds for these quan
tities, thus reducing expectations EH to expectations EF while at the same time 
expanding the rv's involved. Since we are only concerned with the models PH 
and PF under the assumptions of Section 4, we suppose throughout that 
XI' · · ·, XN are i.i.d. with common density h under PH and f under PF, where 
h(x) = (I - J..)f(x) + J..f(x - 8) and f is positive and four times differentiable on 
R 1 • Define ~(x, t), p(x, t) and p(x, t) by 

(A. I) (1 - J..)F(~(x, t)) + J..F(~(x, t)- t) = F(x), 

(A.2) ( !) _ J..f(x - t) p x, - ----"--'----~---

(I - A.)f(x) + A.f(x - t) 

(A.3) p(x, t) = p(~(x, t), t). 

As in Appendix I of ABZ (1976), these functions are introduced because 
p(Zl' 8), · · ·, p(ZN, 8) under PF have the same joint distribution as PI' ... , PN 
under Pw Our main problem is therefore to expand p(x, t) as a function of t 

around t = 0. 
With cj;i = f 'i' If as in ( 4.1 ), we define for i = I, · · . , 4, 

(A.4) Xi(x, t) = lcJ;i(~(x, t))l + lcJ;i(~(x, t) - t)l 

and for any function q of two variables we write 

(Ji+iq(x, t) 
qi i(x, t) = . . . . ox'o(J 

Then elementary but tedious computations yield 

p(x, 0) = J.., 

Po.1(X, 0) = -J..(l - A.)cf; 1(x), 

(A.5) Po. 2(x, 0) = J..(l- A.)(l- 2J..)cf;ix), 

Po ,3(X, 0) =-A.( I- A.){(l- 3J.. + 3A.2)cp3(x)- 6J..(l- A.)cf;1(x)cf;2(x) 

+ 3J..( I - A.)cp13(x)} , 

IPo.II ~ bi X1 ' ' 
(A.6) IPo.2l ~ bh2 + X12)' 

IPo.al ~ ba(x3 + X2 1 + XI3) ' 

I Po,41 ~ b4(X4 + Xs~ + X22 + x/) ' 

where bl' · · · , b4 are positive constants. 
Define rr1 = EHPi as in (3 . 16). 

THEOREM A . I. Suppose that positive numbers C, C' and o:' exist such that 
I; a/~ CN, 0 ~ 8 ~ c:' and (4.2) is satisfied. Then there exists B > 0 depending 
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only on C, C' and<-' such that 

2:: alrri - 2) = 2(I - 2){ -fJ 2:: ai EF ¢ 1(Zi ) 

fJZ 
+ (I- 22)l 2:: ai EF ¢ 2(Zi) 

(A.7) - ~3 2:: ai EF[(I - 32 + 322)¢a(Zi) 

- 62(I- 2)¢ 1(Zi )¢ 2(Zi ) + 32(I- 2)¢ 13(Zi)]} + M~, 

I Mil ~ BN l fJ4 ; 

2:: a/ (rr i - 2) = 2(I - 2) { -fJ 2:: a/ EF ¢ 1(Zi ) 

()2 } 
(A.8) + (I - 22) z 2:: a/EF ¢ 2(Zi) + M 2 , 

(A.9) 

(A.IO) 

(A. II) 

(A.I2) 

(A.I3) 

IM21 ~ BNl (Jc ; 

2:: a/ (rr i - 2) = - 2(I - 2)fJ 2:: a/ EF ¢ 1(Zi ) + M 3 , 

!Mal ~ BNHfJ 2 ; 

2:: a/ EH(Pi - 2)2 = 22( I - 2YfJ 2 2:: a/ E pcp 1
2(Zi ) + M 4 , 

IM41 ~ BNl fJ3; 

aHz(L: aiP;) = J.2(I- J.)2fJ2a / (2: ai¢1(Zi )) + M5, 

IM5 1 ;£ B{N2fJ',' + N fJ 'i [EP IL: ai (¢ 1(Zi )- Ep¢1(Zi)) l3]l 

+ fJ3ap(2: ai¢1(Z;))aF(2: ai¢2(Zi )) + fJ4ap2(2: ai¢ 2(Z;))}; 

E (J.g(Xl) - 2)4 < BfJ4 . 
/{ h(X1) = ' 

[2:: {Eu lPi - rr ilaJlp ~ ()3[2:: {EFI¢l(Zi)- EF¢ i(Zi WJ!P + BNl fJ6. 

PROOF. Although the proof is very similar to that of Theorem A I.I and the 

relevant part of Corollary AI . I in ABZ ( I976), there are additional complications 

due to the fact that now Po, 2(x, 0) $. 0. We begin by noting that the distribution 

of ~(XI' t) under F is that of X 1 under J.F(x) + (I - 2)F(x- t), so that (4.2) and 
(A.6) imply the existence of B1 > 0 depending only on C' and such that 

(A.I4) i=I, ... , 4 , 

where m1 = 6, m2 = 3, m3 = %• m4 = I. 
Using Lemma AI. I of ABZ (I976) together with 2:: a/;£ CNand (A.14), we 

find that 

()4 
IM1I ~ 24 sup {2:: lailEF IPa .iZi, llfJ)I: 0 ~ li ~ I} 

(CN )t fJ4 B Cs 
~ ~4-- sup {NEF IPo,4(Xl' llfJ) I : 0 ;£ li ~ 1} ~ ; 4 Nl fJ4 , 
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JM2J ~ ~3 sup {I: a/EFJPo,3(Zi, vtJ)J: 0 ~ v ~ I} 

~ ~3 (I: a/)t sup {[NEFIPo.lXI' vB)J!)i: 0 ~ v ~ I} ~ ~~~~- NltJ3 , 

JM~J ~ ~2 sup {I: JaiJ 3EpJPo. 2(Zi, vB)J : 0 ~ v ~ 1} 

~ ~2 (I: JaiJ1)' (NBt)! ~ B~~Cl _ N HtJ2, 

JM4J ~ ~3 sup {I: a/EF[2JPo,3(Zj, v8)J + 6JPo)Zi, vtJ)PoAZi, v8) J]: 0 ~ v ~ 1} 

~ ~3 [2(.L: a/ )"(NB1)t + 6(.L: a/) !(NB1) ~ ] ~ (B1 l + B1l)ClNltJ3 , 

E11 c~~l) - )..y ~ B4 sup {EFP~ . 1(Xl' '.)tJ): 0 ~ v ~ I} ~ B1l84 , 

which proves (A. 7)- (A.IO) and (A.l2). To establish (A.l3) we note that 

Jp(Zi, tJ) - Epp(Zi, 8)J ~ BJPo,1(Zi, 0) - EF/'o.1(Zi, O)J 

+ ~2 ~6 2(I - v){ JP0 •2(Zi, vB)J + EFJPn.2(Zi, vB)J} dv. 

Hence 

E11 JPi- rrJ' ~ ~~ E1 .. JcJ'J(Zi) - £p~1(Zi)J 3 + 4tJ6 ~6 2(1 - v)EFJ Po.2(Zi, vtJW dv, 

I: {E11 JPi- rriJ 3}' ~ tJ l I: {Eplcf'J(Zi )- Ep¢1(ZiWJI + 2(B1 + 1)NtJ~, 
and (A. 13) follows. 

It remains to prove (A. I I) . We have 

p(x, t) - A + A( I - A)t¢1(x) - ~A( I - A)( I - 2A)t2¢ 2(x) 

= ~ ~ 6 2( I - v)(Po, 2(x, vt) - Po,2(x, 0)) dv = -~3 ~6 3( 1 - vYP0,a(x, vt) dv, 

and as a result 

(p(x, t) - A + A(! - A)t¢ 1(x )- ~A(I - J. )(I - 2J.)t2¢ 2(x))2 

I 2 I' I 3 I! ~ -~ ~ 6 2(1 - ~;)(Po,lx, vt) - p0,z{x, 0)) dv ' -~ ~ 6 3(1 - v)2p0 , 3(x, vt) dv 

~ JtP' {I t ~ 6 2( I - v)(Po. 2(x, vt) - Po.2(x, 0)) dvJ 3 

+ Ji- ~6 3(1 - v)2P0 , 3(X, vt) dvJ l} 

~ J t J 's' ~6 {JP0 •2(x, vtW + IPo. 2(X, OW + JP0 , 3(x, vt)Jl} dv. 

Similarly, 

Jp(x , t) - A + A( 1 - A)t¢ 1(x) - ~A( I - A)( 1 - 2A)t2¢ z(x)l! 

~ J t J~' ~6 {IPo,2(x , vtW + IPo,2(x, 0)1 3 + IPo,3(x, vtW} dv · 
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It follows that 

aF2(L; a;{p(Z;, 8) + A(1 - A)8cf\(Z;) - tA(1 - A)(1 - 2A)82cj;2(Z;)}) 

~ N L; a/EF(p(X1, 8)- A+ A(1 - A)8cf;1(X1)- tA(1 - A)(1 - 2A)82cf;2(X1))~ 
~ 3B1 CitN28\' , 

ICovF (I; aAp(Z;, 8) + A(1 - A)8¢1(Z;) 

- tA(1 - A)(1 - 2AW¢2(Z1)}, L; a;¢1(Z; ))I 

~ [EFI L; a;{p(Z;, 8) - A + A(1 - A)8¢1(Z;) 

- !A(1 - A)(1 - 2AWsb2(Z; )Jii]i[EFIL:: a;( sV1(Z;)- EF¢1(Z;))Il]* 

~ [(I; la/I)'NEFIP(X1, 8) - A + A(l - A)8¢1(X1) 

- tA(1 - A)(1 - 2A)82¢2(X1) i ~]i[EFII: a;(¢1(Z;)- EF¢1(Z;))I 3]t 
~ (3B1)iCiN8 k' [EFIL: a/¢1(Z;)- EF¢1(Z;))il]*, 

ICovF (I; a;{P(Z;, 8) + A(1 - A)8¢1(Z;) 

- tJ.(1 - A)(1 - 2A)82¢ 2(Z;)}, L; a;¢2(Z;))i 

~ (3B1)1t0N8k'aF(L; a;¢2(Z;)). 

These inequalities ensure that there exists B2 > 0 depending only on B1 and C 
such that 

laH2(L; a; P;)- a/(L:; a;{A(1- 2)8¢1(Z;)- tA(l- A)(l- 2A)82cj;2(Z;)})i 

~ B2{N28 's' + N(J t' [EFIL: a1(¢ 1(Z;) - EF ¢ 1(Z;))I 3]t + N8'i aF(L; a;¢2(Z; ))}. 

Since N()\'aF(L; a1 ¢ 2(Z;)) ~ N 28\' + 84a/(L:; a;¢iZ;)), (A.11) follows immedi
ately and the proof of the theorem is complete. 0 

COROLLARY A.l. Suppose that (3.1) and (4.3) hold and that positive numbers 
c, C, C', D, c: and c:' exist such that (3.10), (3.19), (4.2) and (4.4) are satisfied. 
Let K, ai, K, ai and r; be defined by (3 .17), (3 . 18), ( 4. 5), ( 4. 6) and ( 4. 7). Then there 
exists B > 0 depending only on c, C, C', D, c; and c:' such that 

(A.15) 

(A.16) 

(A.17) 

sup [K(x- L; a;rr; ) - K(x- n)l 
x {A(1 - A) L; a/P ., 

~ B{N-l + N - '83[L: {EFisbl(Z; ) - EF sbl(Z;)n'l~ 

+ N - t83[L; {EF(sV2(Z; ) - EF ¢2(Z; )YJiFJ, 

()21 L: a; EF¢2(Z; )/ < BN-1, 
(I; a/)' = , 

I L:;a/1 < BN- It 
(I; a/)! = , 

82 aF2(L;L;a~~;(Z;)) ~ B{N- 1 + N -i83[L; {EF/¢1(Z;)- EF¢l(Z;WPl~}, 

and all other terms occurring in a0, ••• , a5 are bounded in absolute value by BN - 1• 
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PROOF. In this proof O(x) will denote a quantity that is bounded by B1lxl 
with B1 depending only on c, C, C', D, 10 and 10'. 

We begin by noting that (A.16) and the last statement in Corollary A.1 are 
immediate consequences ofHo1der's inequality, (3.10), (4.2) and (4.4). Also 

fJ2aF2(L: a;¢1(Z;)) ~ 1 + 83a/(L: a;¢1(Z;)) 
(A.18) ~ 1 + 83EFI L: a;(¢1(Z;) - EF¢1(Z;)W 

~ 1 + 83[L: la; I{EFI¢1(Z;) - EF¢1(Z;)I3}i]3 
~ 1 + 83(L: a/)i[L: {EFI¢1(Z;) - EF¢1(Z;)I 3}tp, 

and in view of (3.10) and (4.4), this implies (A.17). For later use we note that 
similarly 

(A.19) 

It remains to prove (A.15). Since (A.15) is trivially satisfied for N < (D/10')2, 

wemayassumethatO ~ 8 ~ 10' so that Theorem A.1 applies. Because of(3.1), 
L: a; 1r 3 = L: a;(rr i - A). In view of the bounds obtained above, we can trun
cate expansions (A. 7) and (A.8) to 

L: a; rr; = A(1 - A) { -8 L: a; EF¢1(Z;) 

(A.20) + (1- 2A) ~ l: a;EF¢2(Z;)} + O(N83) 

= -A(1 - A)8 l: a3 EF¢1(Z3) + O(N82) = O(N8), 

(A.21) L: a/(rr3 - A)= -A(1 - A)8 L: a/EF¢1(Z3) + 0(1) = O(Nt). 

Using (A.8)-(A.ll), (A.20), (A.21), (3.10), (3.19) and (4.4) we expand 
a0 , • • ·, a 6 and find 

(A.22) 

where 

(A.23) 

(A.24) 

supx IK(x) - K(x) l = O(N- ~ + 8 k' [EFI L: a;(¢1(Z3) - EF¢1(Z3))13]l 

+ N-183aAL: a3 ¢1(Z3))aF(l: a3¢iZ3)) 

+ N-184aF2(L: a;¢iZ;)))' 

K(x) = <l>(x) - ¢(x) L:t=o akHk(x), 

ao = -(A(1 - A))t N - 18 L: a;EF¢1(Z;)' 
L: a/ 

&1 = a1 - 1 A(1 - A)(1 - 2A)284{l: a3 EF¢2(Z3)12, 
8 L: a/ 

a2 = a2 - {A( 1 - A)}t (1 - 2A)283 l: a/EF¢1(Z3) l: a3 EF¢2(Z3), 
4(L: a/)i 

1 (1 - 2A)282 L: a,- 3 l: a,.EF ¢ iZ,.), 
12(L: a/)2 

for k = 4, 5, 
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with ak as given by (4.6). By applying elementary inequalities (A.22) may be 
simplified to 

(A.25) supz JK(x) - K(x) J O(N- l + N-l(PEFJI: a;(cp1(Zi) - EF~\(Zi)W 

+ N- l(Pa/(I; aicp2(ZJ)). 

With the aid of (A. 7), (A.20) and the bounds obtained in the first part of the 
proof we now expand K(x- I; airri{A(l - J.) I; a/J- ~ ) about the point (x- r;) 
and obtain 

(A.26) supz [k(x- {).(I 5 ;;·~ a/P - K(x- r;) [ 

= O(N- l + N- 1&3a/(I; aicp1(Zi))) 

with K as given by (4.5). Combining (A.25), (A.26), (A.18) and (A.l9) we see 
that (A.15) and Corollary A . l are proved. D 
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Summary 

It has been noted by a number of authors that if two tests are asymptotically efficient for the same 
testing problem, then typically their powers will not only agree to first but also to second order. A general 
result of this type was given by Pfanzagl (1979) in a paper entitled 'First order efficiency implies second 
order efficiency'. Because of their technical nature, however, these contributions give little insight into 
the nature of this phenomenon. The purpose of the present paper is to provide an intuitive understanding 
of the phenomenon by proving a simple theorem of this kind under mild assumptions. 

Key words: Asymptotic efficiency of tests; Second order efficiency; Deficiency. 

Introduction 

For N = 1, 2, .. . , we consider an experiment with outcome XN taking values in an arbitrary 
sample space. Let PN,o and PN,1 be two possible distributions of XN, with densities PN, o and 
PN, 1 with respect to some dominating measure ,uN. We shall write EN,o and EN, 1 for expectations 
under P N, 0 and P N, 1 respectively. Define the logarithm of the likelihood ratio by 

A I PN,1(XN) 
N= og 

PN,o(XN) 

with the usual conventions for vanishingpN,o and/or PN,t · 
Now consider a sequence aN E (0, 1) and let ¢N(AN, aN) denote the test function of the 

most powerful level-aN test for P N, 0 against P N, 1 ; thus 

"' (A ) _ {0 for AN < cN(aN), 
'f'N N• aN - r A ( ) 1 !Or N > CN aN , 

with 

EN,o ¢~AN, aN) = aN, EN.t ¢N(AN, aN) = nZ(aN), 

where nZ( aN) is the maximum attainable power against P N, 1 at level aN. 
For N = 1, 2, ... , let ZN be a random variable depending only on the outcome XN of the 

Nth experiment and let lfiN(ZN, aN) denote the test function of the level-aN right-sided test 
based on the statistic ZN, i.e. 

for ZN < dN(aN), 
for ZN > dN(aN). 

1 Research supported by the U.S. Office of Naval Research, Contract N00014-80-C-0163, the National Science 
Foundation, Grant MC S76 10238 AOl , and by the Netherlands' Organization for Pure Scientific Research. 

2 Research supported by the Netherlands' Organization for Pure Scientific Research. 
l Research supported by the U.S. Office of Naval Research, Contract N00014-80-C-0163. 
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We have 

EN.o 'I'N(ZN, aN)= aN, EN,1 'I'N(ZN, aN)= nN(aN), 

where nN(aN) is the power of this test against PN, 1. 
For a sequence TN E (0, 1], we shall say that the sequence of level-aN tests 'I'N(Z N• aN) is 

TN-efficient if, for N--. oo, 

n:(aN)- nN(aN) = o(TN). 

In a more usual terminology first and second order efficiency correspond to TN-efficiency with 
TN= 1 and TN= N-1' 2 respectively. 

Finally, let us define for N = 1, 2, ... , 

~ -{0 if ZN= AN= ±oo, 
N- Z N - AN otherwise, 

and let us denote the indicator function of a set B by I B· 

Having established our notation, we now give an informal description of the phenomenon 
we wish to study. Let us think of N as denoting sample size, i.e. N is the number of independent 
random variables involved in the Nth testing problem. We are interested primarily in sequences 
of testing problems where aN;?: e and n:(aN) s; 1- e for some e > 0 and all N. Such sequences 
exist if it is impossible to discriminate perfectly between PN,o and PN, 1 even as N--. oo and this 
is true if P N, 0 and P N, 1 are contiguous. A sufficient condition for contiguity, and one which 
is often fulfilled in this case, is asymptotic normality of AN both under PN,o and PN, 1. But if 
AN is asymptotically normal, it will usually also be possible to obtain an Edgeworth expansion 
for its distribution function under P N, 0 and P N, 1 and this will yield a similar expansion for 
the power of the test based on AN, viz. 

(1.1) 

Typically the remainder term on the right in (1.1) will be O(N-1). 

Suppose that the sequence of tests 'I'N(ZN, aN) is asymptotically efficient to first order, or 
!-efficient in our terminology. For most statistical problems such !-efficient tests abound. 
They are usually based on statistics ZN that closely resemble AN. Typically ~N = ZN- AN 
tends to zero in probability both under PN,o and PN, 1 and in the situation we have described so 
far, this suffices to ensure !-efficiency. Of course, these !-efficient tests can also be based on 
statistics ZN which do not resemble AN at all, because the test statistic associated with a test 
is by no means unique. However, we shall not be concerned with such alternative represen
tations and suppose that ~N --. 0 in P N. 0- and in P N, cprobability. 

Recalling that N is the sample size, we note that one often finds that a sequence of random 
variables ~N tending to zero in probability does so at the rate of N- 112• Thus, for !-efficient 
tests, N 112 ~N will typically be bounded in probability both under P N, 0 and P N, 1• Hence, one 
may expect to be able to establish Edgeworth expansions for the distribution functions of 
ZN under PN,o and PN, 1, which differ from those for AN only in the term of order N-112 and 
in those of smaller order. This yields a similar expansion for the power of the test based on ZN, 

(1.2) 

where the remainder term on the right will typically be O(N-1) or of slightly larger order. The 
fact that the leading terms in expansions (1.1) amd (1.2) have the same value c0 reflects the 
!-efficiency of the sequence 'I'N(ZN, aN). There would seem to be no reason a priori to expect 
that also c 1 = ci, which would entail N-112-efficiency or efficiency of second order. 

However, in those cases where expansions (1.1) and (1.2) were explicitly computed, one 
does indeed find that c1 = ci and hence that the sequence 'I'N(ZN, aN) is N-112-efficient. This 
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phenomenon was noticed by Pfanzagl (1973), (1975) and Chibisov (1974) for a number of 
tests for the parametric one-sample problem and by Bickel & van Zwet (1978) for rank tests 
for the nonparametric two-sample problem. Some tests for the one-sample problem for the 
case where nuisance parameters are present were considered by Chibisov (1973) and Pfanzagl 
(1974) and also found to be N-112-efficient. Finally, it was shown by Pfanzagl (1979) that 
first-order efficiency forces second-order efficiency for a large class of one-sample tests in the 
presence of nuisance parameters. With an appropriate definition of efficiency a similar result 
was obtained for estimators. 

In each of these contributions, N- 112-efficiency is established by imposing the conditions 
needed to obtain expansions (1.1) and (1.2) and then checking that these expansions are in 
fact identical. This method of proof coupled with its extreme technicality makes an intuitive 
understanding of the phenomenon rather difficult. The purpose of the present paper is to provide 
such an intuitive understanding by proving a simple theorem of this kind under rather mild 
assumptions. Since our aim is to provide insight rather than generality, we shall only be 
concerned with the simple hypothesis testing problem described above and avoid the techni
calities inherent in the treatment of nuisance parameters and estimation problems, although 
extension to these situations is certainly possible. Having mentioned estimation, however, we 
should note that Rao's (1961, 1962) concept of second order efficiency of estimators as 
discussed by Efron (1975) and Ghosh, Sinha & Wieand (1980), refers to optimality up to 
o(N-1) and would therefore correspond to N-1-efficiency or third order efficiency in our 
terminology. This difference in terminology is not as illogical as it may seem because most 
results of these authors concern the performance of an estimator as measured by its risk relative 
to a symmetric loss function and expansions for this quantity typically do not contain a term of 
order N- 112, so that the term of order N-1 is indeed the second order term in this case. 

In section 2 we present our result, discuss its meaning and explain why it is true. A formal 
proof of the theorem is given in section 3. Though this proof is straightforward, the non
mathematically inclined may wish to skip it. 

2 Discussion of the result 

We adopt the notation and conventions introduced in the previous section. In particular we 
recall that TN is an arbitrary sequence in (0, 1] and that first and second order efficiency 
correspond to TN"efficiency with TN= I and TN= N- 112 respectively. 

THEOREM. Suppose that 

lim inf Ow > 0, 
N 

and that there exists A > 0 such that for every x 0 E IR, every y > 0 and N-+ oo, 

sup PN, 0(x- T]!2 ~AN~ x) = O(TJ:2), 
X :5X0 

EN,ol ~Nil<rrt'.A J (I ~NI) = o(TN), 

PN, o(~N ~A)= o(TN), 

PN,1(~N ~-A)= o(TN). 

Then the sequence of tests lfiN(ZN, aN) is TN-ej]icient. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Let us briefly discuss the conditions of this theorem. First, assumption (2.2) is clearly satisfied 
for any sequence TN if the distributions of AN under PN,o possess uniformly bounded densities. 
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More generally, (2.2) will hold if the distribution functions FN of AN under PN,o can be approxi
mated with a uniform error of order rf/2 by distribution functions GN with uniformly bounded 
densities, i.e. if sup iFN(x)- GN(x) l = O(rf/2). This is certainly the case when FN has a normal 
approximation or an Edgeworth expansion with the required error. 

If rN-> 0, assumption (2.2) clearly implies that the distributions of AN under PN,o do not 
tend to a degenerate limit. In view of this, conditions (2.3)-(2.4) serve to ensure that under 
P N, 0 , I L\NI is small compared to the variation of AN. Note that these conditions refer only to 
values of I L\NI which excede yrf/2 and that they are satisfied if the distribution of L\N under 
PN,o either assigns probability 1 to a set where IL\NI = o(rf/2), or has at most very small tails 
outside that range. Thus, roughly speaking, L\N is required to be o(rf/2) under PN,o; under 
PN,J condition (2.5) is even weaker, but this is to a certain extent artificial and is due to our 
efforts to replace conditions under P N,J as much as possible by conditions under P N, 0 which 
will usually be easier to verify. It follows that one cannot hope to say more about the differences 

between the distribution functions of AN and ZN under PN,o and PN,J than that they are o(rf/2). 

One would therefore expect to be able to prove that n;(o.N)- nN(o.N) = o(rf/2) but, somewhat 

surprisingly, the conclusion of the theorem is the stronger statement that nZ(o.N)- nN(o.N) = 
o(rN). The condition that roughly L\N is o(rf/2) under PN,o cannot essentially be improved. 

By taking L\N = .!\rf/2 where L\ is independent of AN for every N, one easily constructs examples 
where n*(o.N)- n(o.N) is of exact order rN. 

A formal proof of the theorem will be given in section 3. At this point we shall be content to 
provide an intuitive explanation of the result by sketching the proof for the special case where 
there exist numbers t5N such that for N = 1, 2, .. . , 

(2.6) 

We should perhaps stress that a boundedness assumption like (2.6) is not likely to be fulfilled 
in concrete examples. It is made here merely to avoid technicalities at this stage and bring 
out the essential simplicity of the proof. 

Let us write eN and dN for eN(o.N) and dN(o.N) respectively. Since the tests ¢N(AN, o.N) and 
'IIN(ZN, o.N) have the same level o.N, (2.6) clearly implies that we may assume that leN- dNI < t5N. 
Invoking (2.6) once more, we see that if AN~ eN and ZN s; dN, then dN- t5N s; AN s; dN + t5N; 
the same conclusion holds if AN s; eN and ZN ~ d~. It follows that on the set where ¢N(AN,o.N) i= 
'IIN(ZN, o.N) we have I AN- dNI s; t5N, and again because both tests have level o.N we find with 
the aid of (2.2), 

nZ( o.N) - nN( o.N) =EN) ¢N(AN, o.N) - 'IIN(ZN, o.N)} 
= EN.o(e'''N- ffN){¢N(AN, o.N)- 'IIN(ZN, o.N)} 
s; edN(/'N- 1) P N 0(1 AN- dNI s; t5N) 
= O(t5NrJ...[2) = o(rN). 

Note that we need to have dN bounded above, but this is an easy consequence of (2.1) and 
(2.6). The above sketch should make it clear that the essential thing which makes the theorem 
work is that not only do ¢N(AN, o.N) and 'IIN(ZN, o.N) resemble each other closely, but that also 
AN is almost constant on the set where they differ. 

Let us finally discuss the relevance of the theorem to the problem of first and second order 
efficiency. As was pointed out in section 1, first order efficiency of 'IIN(ZN, o.N) will typically 
imply that N 112 L\N is bounded in probability both under PN,o and PN,J· Also, EN, 01N 1' 2 L\NI' 
and EN) N 112 L\Ni r will usually be bounded for some r > 1 and this (or even uniform integrability 
of IN 112 L\NI under PN.o and PN, 1) is amply sufficient to ensure that assumptions (2.3)-(2.5) 
are satisfied for rN = N- 112• But then the theorem ensures that 'lfN(ZN, o.N) is efficient to second 
order under the very mild conditions (2.1) and (2.2) for rN = N-112• 
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An examination of our proof shows that if we replace (2.6) by 

(2.7) 

forM< oo and N = 1, 2, ... , then we obtain the conclusion 

(2.8} 

Taking TN= N-1 we conclude that if I N 112 ~NI is bounded and if, e.g., the distribution of AN 
under PN.o tends to normality at the rate of N-112, then n~(aN)- nN(aN) = O(N-1). This means 
that the tests based on ZN have a finite deficiency in the sense of Hodges & Lehmann (1970). 
That is, if we let aN= a E (0, I) for N = 1, 2, ... and define N' to be the smallest integer 
for which n:N,(a)?: n~(a) then lim sup(N'- N) < oo. 

Assumption (2.7) is of course not necessary to obtain (2.8) and N- 112-efficiency is frequently 
coupled with finite deficiency. However, the coupling is not inevitable. An example, in a nuisance 
parameter context, is provided by the normal scores test studied by Bickel & van Zwet (1978). 
Note that this bears out what we have said about the order of the remainder terms in (1.1} and 
(1.2}. 

3 Proof of the theorem 

Take a sequence aN E (0, 1) satisfying (2.1) and write eN= eN( aN) and dN = dN(aN). If dN = -oo 
for some N then 

1- nN(aN) sPN. 1(ZN= -oo) sPN, 1(AN= -oo) + PN, 1(~N= -oo) 
= PN,1(~N = -oo) = o(rN) 

because of (2.5}, and llfN(Z N• aN) is clearly rN-efficient. Take A as in (2.3}-(2.5). Then 

aN s PN, 0(ZN?: dN) s PN, 0(AN?::. dN-A)+ PN.o(~N?: A) 
s e-dN+A PN, 1(AN?: dN-A)+ o(rN) s e-dN+A + o(rN) 

because of (2.4). In view of (2.1) it is therefore no loss of generality to assume that for some 
D < oo and all N, 

-00 < dN sD. 

Define 

AN={odN- AN if AN< dN sZNor zN s dN <AN, 
otherwise. 

Obviously, 

where x+ = x V 0 and x- = (-x) V 0 denote the positive and negative parts of a number x. 
Let a;.. be such that dN = cN(aJ.,;). Then 

{n~(aN)- nN(aN)} + {n~(af.,;)- n~(aN)- edN(a;.,- aN)} 
= n~(aJ.,;)- nN(aN)- ffN(aJ.,;- aN) 
= EN.o{¢N(AN, aJ.,;}- llfN(ZN, aN)}(eAN- edN) 
= EN,oi¢N(AN, af.,;)- llfN(ZN> aN} I leAN- _EIN I 
S~"EN,o l e-ii• -1 1, 

(3.1) 

(3.2) 
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since {¢N(AN,a~)-1j!N(ZN,~N)} is nonnegative, or nonpositive, if (AN-dN) is positive, or 
negative, and equals zero if !:J.N = 0 and (AN- dN) i= 0. A similar argument yields 

n;(a~)- n;(aN)-et•(a~- aN)= EN.o{¢N(AN, a~)- ¢N(AN, aN)}(eA•- ed•) ~ 0 

and hence 

0 ::;; n;( aN) - nN( aN) ::;; et• EN, 01 e- t..- 11. 

By (2.3) there exists a sequence yN~ 0 such that 

EN,ole- 6• - Ill (y.rlf'.A)(I!:J.NI) = o(rN) 

for N--+ oo. In view of (3.2) this implies 

EN,ole-l:..•- 111 (Mlf',ooJ(I liNI)lro,A)(I !:J.NI) = o(rN). 

Also (3.1) and (2.2) with x0 = D + 1 yield 

EN,0Ie- X._ l l lro,Mif'J(iliNI) = O(yNrJ/2 PN, 0(0 < iliNi::;; yNrJ/2)) 

=o(rJ/2 PN.o(0< iAN-dNi ::;rJj2))=o(rN). 

If !:J.N ~ 0 then LiN ~ 0 and because of (2.4) 

EN.oie-l:..•- lllrA,ooJ(!:J.N)::;; PN, 0(!:J.N ~A)= o(rN). 

If !:J.N ::;; 0 then LiN :::; 0 and (2.5) ensures that 

et• EN,oi e-l:...- lllr-oo,-AJ(!:J.N):::; et• EN,oe-1:, 1 r-oo,-AJ(!:J.N)lr-oo,o)(liN) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

:::; EN,o ~· lr-oo,AJ(!:J.N) = PN,l(!:J.N::;; -A)= o(rN). (3. 7) 

Together (3.1) and (3.3)-(3.7) imply that n;(aN)- nJ.aN) = o(rN) and the proof is complete. 
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Resume 

Plusieurs auteurs ont remarque, que, si deux tests sont asymptotiquement efficients pour le meme probleme de test 
statistique, leurs puissances s'accorderont normalement non seulement du premier mais aussi du deuxieme ordre. 
Pfanzagl (1979) donna un resultat general de ce genre dans son article "First order efficiency implies second order 
efficiency". Cependant, a cause de leur structure technique, ces contributions ne donnent qu'une idee peu claire 
de Ia nature de ce phenomene. Le but de cet article-d est d'etablir une notion intuitive du phenomene en 
demontrant un theoreme simple de ce genre sous des conditions souples. 

[Paper received October 1980, revised January 1981] 
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P.O. Box 9512, 2300 RA Leiden, The Netherlands 

Summary. The rate of convergence of the distribution function of a sym
metric function of N independent and identically distributed random vari
ables to its normal limit is investigated. Under appropriate moment con
ditions the rate is shown to be (!)(N - +). This theorem generalizes many 
known results for special cases and two examples are given. Possible further 
extensions are indicated. 

1. Introduction 

During the past decade a good deal of effort has been devoted to extending the 
theory of Berry-Esseen bounds and Edgeworth expansions to more compli
cated sequences of random variables than normalized sums of independent and 
identically distributed (i.i.d.) random variables or vectors. From a statistical 
point of view, this study of higher order asymptotics for large classes of test 
statistics and estimators has proved extremely fruitful: it has yielded much that 
is significant for statistical theory as well as useful in practical applications. To 
the probabilist, however, most test statistics and estimators occurring in sta
tistical theory appear to be strange artefacts, which are neither particularly 
interesting objects for study in themselves nor very promising starting points 
for developing a general probabilistic theory. 

There is, perhaps, one exception which is the class of U-statistics in
troduced by Hoeffding (1948). Though it is usually studied for its statistical 
applications, it surely constitutes a large class of random variables which 
would seem to be a natural extension of sums of i.i.d. random variables. Let 
X 1,X2, .. . be i.i.d. random variables and let h: JR.k~JR. be a symmetric function 
of its k arguments. For N ?;, k, a U-statistic of degree k is defined as 

U= I I h(X1,,X12 , ... ,X1) 
12it<i2<··· < ik~N 

(1.1) 

* Research supported by the U.S. Office of Naval Research. Contract N 00014-80-C-0163 
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and the idea is to study its asymptotic behavior for a fixed h as N---. oo . For k 
= 1, we are back in the case of sums of i.i.d. random variables. As soon as 
k "?, 2, the degree doesn't play an important role any more except, of course, for 
the fact that it stays fixed as N---> oo. Many authors therefore discuss only the 
case of degree two, on the understanding that the case k > 2 is similar. Let us 
follow this tradition for a moment and take 

U= L L h(X; , X), (1.2) 
1 ~ i < j ~ N 

where h(x, y) = h(y, x). Assume that 

Eh(XpX2 )=0, Eh 2 (X1 ,X2 )< oo, (1.3) 
and define 

t/J(x, y)= h(x, y)- g(x)- g(y), (1.4) 

N 

0 =(N - 1) L g(X;), L1 = L L t/I(X; , X). (1.5) 
1 ~ i < j~N 

Clearly, E(t/J(X1 , X2)[X1)=0 a.s. so that the random variables g(X;) and 
t/J(X;, X) are pairwise uncorrelated and since U = 0 +A, 

a 2 (U)= o-2(0)+ 0"2 (L1)= N(N -1)2 Eg2(X1)+~ N(N -l)Et/1 2 (X1 , X 2). (1.6) 

If it is assumed that 
(1.7) 

then 0" 2(0) dominates the right-hand side of (1.6) and ua- 1 (U) is asymptoti
cally normal (cf. Hoeffding (1948)). 

The speed of convergence to normality was investigated by a number of 
authors who proved in increasing generality that 

(1.8) 

where if> denotes the standard normal distribution function (d.f.). Suppose that 
(1.3) and (1.7) are satisfied so that asymptotic normality is ensured. Bickel 
(1974) established the Berry-Esseen bound (1.8) under the additional assump
tion that h is bounded. Chan and Wierman (1977) and Callaert and Janssen 
(1978) successively reduced this assumption first to Eh4 (X1 , X2) < oo and then 
to E[h(X1 ,X 2W < oo . Helmers and Van Zwet (1982) showed that E[g(X1W < oo 
suffices. They also proved that the assumption Eh 2(X1,X2)< oo in (1.3) may be 
relaxed, provided a(U) is replaced by o-(0) in (1.8). This need not concern us 
here, however, since we shall concentrate on the case of finite variance in the 
present paper. 

Let us consider the more general case of a symmetric statistic. As before, 
let X1, .. . , XN be i.i.d. and let r: lR N ---.JR. be a symmetric function of its N 
arguments. 

Define 

and assume that 
T = r(X1 , ... ,XN) 

ET=O, ET 2 =1. 

(1.9) 

(1.10) 
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We wish to study the asymptotic behavior of T as N--+ oo . The difference with 
the previous problem is that then we were dealing with a kernel function h that 
remains fixed as N--+ oo, or perhaps with uniformity classes of such functions of 
a fixed degree k. Now the degree of the kernel r equals the sample size N and 
both tend to infinity together. 

Define 
N 

1j=E(TIX), tl = I 7], (1.11) 
i = 1 

then T1 and (T-T1) are again uncorreJated. It follows that if a2 (T),....,a2 (T1) as 
N--+ oo and the summands 1j satisfy the Linde berg condition, then Ta- 1 (T) is 
asymptotically normal. 

The aim of this paper is to prove the following theorem of Berry-Esseen 
type. 

Theorem 1.1. Suppose that (1.10) is satisfied and that positive numbers A and B 
exist such that 

EIE(TIX1W;£AN- t, (1.12) 

1 + E{E(TI X 1 , ... , xN - 2)} 2 - 2E{E(T IX 1 , . .. , xN_ 1)} 2 ;£BN- 3 . (1.13) 

Then 
sup IP(T ;£x) - <P(x) l ;£ C(A + B)N- t , (1.14) 

X 

where C denotes a universal constant. 

Note that although we have formulated the theorem as a uniform error 
bound for a fixed but arbitrary N and T, it is a purely asymptotic result 
because the constant C is not specified. It applies to sequences of symmetric 
statistics TN=rN(XN,t • ... ,XN.N) where, for every fixed N, XN,t• ... ,XN,N are i.i.d. 
with a common d.f. FN, provided (1.10), (1.12) and (1.13) are satisfied for every 
N and fixed values of A and B. 

The theorem will be proved in Sects. 2 and 3. In Sect. 2 we collect some 
facts concerning L2-projections and in Sect. 3 we provide a proof of the 
theorem based on these facts. Some examples and possible extensions are 
discussed in Sects. 4 and 5. 

2. L2-Projections 

L2-projections were introduced in statistics by Hoeffding (1948, 1961) and have 
been used effectively by many authors since then. Most recently Efron and 
Stein (1981) and Karlin and Rinott (1982) have used these orthogonal pro
jections to establish certain variance inequalities. To indicate decomposition by 
repeated orthogonal projection, these authors have introduced the descriptive 
term ANO VA-type decomposition, but we prefer to speak of Hoeffding's decom
position instead. What follows are some simple and well-known facts concern
ing L2-projections written down in an easy notation. 
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Let X1 , .. . ,XN be independent random variables and let T=t(X1, ... ,XN) 
have ET 2 <oo. Note that at this point we do not assume that X1 , ..• ,XN are 
identically distributed, that -r: is symmetric in its N arguments, or that ET = 0 
and ET2 =1. Define Q={1,2, ... ,N}. For any DcQ, let 

E(TID)=E(TIXi, iED) (2.1) 

denote the conditional expectation given all Xi with indices in D. Define 

Tv= I ( -1)\D\-\A\ E(TIA), (2.2) 
AcD 

where the summation is over all subsets A of D, including the empty set, and 
1·1 denotes the cardinality of a set Of course T<J>=E(Ti4>)=ET a.s. and for 
convenience we shall write 

1j=1(i1=E(TIXi)-ET, j=l, ... , N. (2.3) 

The basic property of Tv is that 

E(TviD')=O a.s. unless DcD'. (2.4) 

To see this, write C=DnD' and note that, if!DI-ICI=k>O, 

E(TviD')= I ( -1)1»1 - \AIE(TIA n C)= I E(T!B) I ( -1)\D\-\B\-i (~) =0 a.s .. 
A c: D Bee j=O } 

It follows in particular that ETv = 0 if D =l= 4> and that the random variables Tv, 
D c { 1, ... , N} are pairwise uncorrelated, i.e. 

(2.5) 

Since the order of the two operations in E(TviD') may be interchanged with 
impunity, we have E(TviD')=[E(TID')]v. Hence (2.4) also yields that if T 
depends only on Xi for iED', then 

1~ = 0 a.s. unless D c D'. (2.6) 

For m=O,l, . .. ,N, let fl!m denote the linear space of random variables with 
finite variance that is spanned by functions of at most m of the variables 
X1 , ... ,XN, thus 

£-'m={Z:Z= L L l/t;, .. .. ,im(X; 1 , • •• ,XiJ, EZ2 < co }. 
l~il < iz < . . . < im~N 

We define Tm to be the L2-projection of Ton fl!m if TmEfl!m and E(T- Tm)1 is 
minimal, or equivalently, if TmEfl!m and E(T - Tm)Z =0 for all ZE£-'m. We have 

N 

T0 =ET, T1 - T0 = L 1j, f;,,- Tm-1 = L Tv, (2.7) 
j = 1 JD\=m 
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To check this, note that fmE2'111 and that ETDZ =0 if IDI ~m+ 1 and ZE.Pm by 
(2.4). Hence we have Hoeffding's decomposition 

T= T0 +(T1 - T0 )+ ... +(TN- TN_ 1)= I TD 

and since all terms are pairwise uncorrelated, 

If we apply (2.8) to E(T I A) instead of T, (2.6) yields 

E(TIA)= I TD 
D e: A 

which is the inverse of relation (2.2). 
For m=O,l , ... ,N, let us write 

Ill 

T= I Tj+ W.n+Lfm . 
j~l 

m 

Dc:Q 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Clearly I Tj+ Wm is the best approximation of Tin L2 by a random variable 
j~l 

which depends on X 1 , •. . , X"' only through a sum of functions of each one of 
these variables separately. We shall need some information concerning the 
error Lim of this approximation. For r=O,l, .. . , N, define 

Q,= {1 , 2, ... , r}, Q~=Q-Q,= {r + 1, ... , N}. 

By (2.10) and (2.8), 

D c: .Q~ 

m N-m 

k= I 1=0 A c: Qm B c: Qfn 
k + L?;2 IAI=k IBI = L 

(2.13) 

(2.14) 

Now let us assume that X 10 ••• , XN are identically distributed, that T 
= -r(X1 , ... , XIV) is a symmetric function of these variables and that ET = 0, ET2 

= 1, so that we are back in the situation of Sect. 1. Then (2.15) and (2.5) imply 
that 

m=O, l , .. . ,N. (2.16) 

If D(EL1;,)=EL1;,+ 1 -ELJ;, and D•+1(EL1,;,)=DD•(£,!J;,), then (2.16) yields 

( -l)S+l Ds(EL12)= N~m (N- m- s) ET.2 20 
m L- Q,.- , s~l , 

r=2 r-s 
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(cf. Karlin and Rinott (1982) who show that EW;_m=l-(N-m)ET(-EA~-m 
is absolutely monotone). In particular, EL1;, is nondecreasing and concave for m 
=0,1, .. . ,N. Also 

0~ -D2 (EA~)=2EL1i -EA~ =2(1-ET/ -EW()-(1-2ET/- EW}) 

= 1 + E{E(TI xl, .. . ,XN_z)} 2 - 2E{E(T IXl, ... 'XN-1w (2.17) 

and under the conditions of Theorem 1.1 we therefore have 

(2.18) 

It follows that 

(2.19) 

(2.20) 

(2.21) 

because of the concavity of EA;, . 
So far we have implicitly assumed that the random variable T is real 

valued, but of course everything in this section goes through for complex 
valued T with appropriate modifications. In (2.5), ETv Tv., should be replaced 
by ETv T0 . , where Tv· denotes the complex conjugate of Tv·; furthermore, in all 
expectations of squares such as ET 2 , ET£, EW,; , EA;, etc., the squares should 
be replaced by their moduli EIT2 I, EIT£1, EIW,;I, EILI;,I etc. Thus in particular 
(2.9) becomes 

EIT21= I EII~I· (2.22) 
Den 

3. Proof of Theorem 1.1 

Let us agree to take C~3. For l~N~3B, we have C(A+B)N-± 
~CBN-±~cN±/3~1, so that (1.14) is trivially satisfied. We therefore 
assume that N > 3 B. 

In view of (2.12) and (2.20), 

(3.1) 

and hence, under the conditions of the theorem, 

(3 .2) 

Let 
y(t)=EeitT! (3.3) 

be the characteristic function of T1 . By (3.1) and (1.12), 
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(3.4) 

(3.5) 

Let 
1/!(t) = Eei t T (3.6) 

denote the characteristic function of T. According to Esseen's smoothing lem
ma (cf. Feller (1971), p. 538) 

supiP(T~x)-<P(x)l~ - J - dt+- . 1 H 11/!(t) e-W ~ 4 
X TC -fl t H 

Define h = min(2 N~, H) and let C1, C 2 , .. . denote universal constants through
out the proof. From (1.12), (3.1) and the proof of the classical Berry-Esseen 
theorem we conclude that 

Because of (3 .2) 

and combining these results we find 

sup/P(T~x)-<P(x)l~.!._ f 11/!(t)-yN(t)ldt 
x n _11 t 

+_!_ J 11/!(t)ldt+ C2 AN--i·. 
n h~ /ti~H t 

(3 .7) 

To analyze 1/!(t) for it I~ h, we employ decomposition (2.12) for m = N, i.e. T 
= T1 + L1 N, to obtain 

1/!(t)=Eeitf,(l + it.d N) + RN= yN(t) +it Ee;rf, L1 N+ RN, (3.8) 

Bt2 

'
R I ~1.t2 EL1 2 :::;;- (3.9) 

N -2 N-4N 

in view of (2.20). Similarly, 

ltEeitf, LlNI ~It I {ELl~} t ~(!B)t it i N -t. (3.10) 
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A more delicate analysis starts with noting that 

N 

Eeiti',.1N= L L Eeitf, TD 
k=2 IDI=k 

= ,t (~) yN-r(t)ET.a,.i~ eitT, 

= ,tz C) }'N - •(t)ET.a, ll (eitTj- y(t)) 

where the final step follows from (2.4). For 2 ;i,r ;£ N, 

(N)2 ;£ 6 (N- 2) (N + 2) 
r r-2 r+2 

and since 

repeated application of Schwarz's inequality yields 

W.R. van Zwet 

(3.11) 

\Eeitf, .1NI ;£6± ,tz (~~~r (ETJ_.)t. (~: ~rly2(t)lt(N - rl(l-l y2{t)l)t r 

;£ 1-~:2(t)l. Lt2 (~~~) ETJ.T. Lt2 (~:~) IY2(t)IN-r(l-ly2(t)l)'+ 2 r 
6't [ N (N- 2) ]t 

Sl-\y2 (t)l .~2 r- 2 ETJ', . . 

Invoking {2.18) and {3.5), we see that for It\;£ H 

ltEe;rf, .1 Nl ;£ (24B)±Itl- 1 N- t . (3.12) 

Combining (3.8), (3.9), {3.10) and (3.12) and then using {3.2), we arrive at 

L ll/t(t)~I'N(t)l dt;£(B+8B+)lv-t;£6(A+B)N-t. (3.13) 

It remains to consider t/l(t) for h ;£ ltl ;£ H in order to 
integral in (3 .7). For any fixed It\ in this interval we take 

-[3NlogN] 
m- z ' t 

bound the second 

(3.14) 

where [x] denotes the integer part of x. For ltl~h, we have 0;£m;£N, and 
using decomposition (2.12) for this value of m, we obtain 

l/t(t)=Eexp{it (t
1

1j+Wm)}·(l+itL1m)+Rm, (3.15) 

1 2 2 Bmt2 3B1og N 
IRml ;£2t E.1m;£ 2Nz :S 2N (3.16) 

because of (2.21). Since \tl ;£ H, (3.4) and (3.2) imply 
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IEexp{it (t1 7]+ wm) }i~jy(t) lm~exp{-;~} 

~exp{ -logN + 3t: }~N-1 exp { 121A2 }~2:. (3.17) 

Let us define the complex valued random variable Z = exp {it Wm} which 
depends on Xm+ t> ... , X N only. By (2.15) and two applications of (2.4), 

E exp {it Ct?i+ Wm)} Lim 

m N - m 

= I I L L Ym-k(t) · E[TAvB IT eitTjE(Z jB)] 
k=l 1=0 AcQm Bel]:>, jeA 
k + l~2 jAj =k IBI=I 
m N-m 

=I I 
k=l 1=0 
k+/~2 

L I ym - k(t)·E[TA vBIT(eitTj_y(t))ZnJ. 
Ac:Qm Bc:Q_th jeA 
jAj=k IBI =I 

It follows from (2.22) and (2.6) that 

I E I Z~I = EIZ2
1 = 1. 

BcQg, 

By Schwarz's inequality and (3.11), 

Ei TAvB n (eitTj- y(t)) z nl ~ (ETLn}~(l-ly 2(t)l)t iA I (E IZ~I}! 
jEA 

(3.18) 

(3.19) 

for every AcQ, and BcQ~. Another application of Schwarz's inequality to 
the terms in (3.18) with k=l and k~2 separately, followed by the use of (2.18) 
and (2.19) yields 

IE exp {it (t
1 
7]+ W,n)} Ll,) ~mly(t)im-l(1-iy2 (t)l)t 

· Ct~ B~f,ETJ,+ , rc~mB~f,EIZ~~r 
jB j=l IB I= l 

+[I Nfn L L k(k-l) ETLn]t 
k=2 l=O Acn.., BcQ:>,m(m-1) 

IAi=k IBI=I 

· [ I L m(m -l) IY 2 (t)lm- k(l -ly2 (t)l)k L EIZ~I] t 
k=2 A<=l?rn k(k-1) Bel]:>, 

jA j=k 

~mly(t)f111 - 1 (1- ly 2 (t)l)+ C~t: 1 (~ =~) Er~.r 

+ 6} Lt2 ( ~ ~ ~) ETJ,.r Lt2 (~: ~) I y2(t)[m - k(l -ly2(t)ll r 
~ H'" [~ [y(t)lm- 1 (1-lyz(t)l)t + 6t N - 3!2(1-[yz(t)[) - 1 J. (3.20) 
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Hence, by (3.4), (3.5), (3.14) and (3.2), 

ltE exp {it (~1 7}+ Wm)} Llml 

~(3B)± ( 2N- -t log N exp g~} + 2t N - -i-Jtl- 1 ] 

~5B± [N- -i logN +N- ±Jtl - 1] (3.21} 

for h ~ ltl ~H. Combining (3.15}-(3.17) and (3.21) and again using (3.2), we 
arrive at 

J 
1
1/J(t)ld <3B(logN)2 AlogN 5Bt(logN)2 5Bt < 7( -t 

< < t t = 4 N + N + 2Nf + N* = A+ B) N . 
h= iti=H (3.22) 

Together (3.7), (3.13) and (3.22) establish Theorem 1.1. D 

4. Examples 

In this section we apply Theorem 1.1 to two special cases - U-statistics and 
linear functions of order statistics - to see whether we can obtain results 
comparable to the best available ones for these well-studied special cases. 

Let X 1 , ... , X N be i.i.d. random variables and let h be a function of k( ~ N) 
variables satisfying 

Eh(X1> ... ,Xk)=O, Eh2 (X 1, .. . ,Xk)<oo. (4.1) 

Define the U-statistic U by (1.1), the function g by 

(4.2) 

and suppose that 

Eg2 (X 1)>0, Elg 1(Xt)l 3 <w. (4.3) 

We shall show that Theorem 1.1 implies 

Corollary 4.1. There exists a universal constant C such that 

whenever 1 ~ k ~ N and provided ( 4.1) and ( 4.3) are satisfied. 
For k = 2 this is the best result known for the case where 

E h2(X 1 , . .. , X k) < w , as was pointed out in section 1. Since the assumption of 
finite variance is a natural limitation of the results in this paper, we conclude 
that Theorem 1.1 performs as well as might be expected for this special case. 
This is not really surprising, as Theorem 1.1 and its proof are modeled after 
the earlier work on U-statistics. 

To prove the corollary, we begin by noting that (2.6) implies that 

Un=O if JDI~k+l. (4.4) 
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For r = 0, 1, ... , k, define 

g,(X 1• ... , X,)= (h(X 1, ... , XJ)n,. = L ( -l)r- IAI E(h(X 1 , .. ·, Xk)l A). (4.5) 
A c..Q,. 

In particular, g0 =0 and g 1 =gas defined in (4.2). It follows from (2.9) that 

(4.6) 

Obviously, for r = 0, 1, ... , k, 

(N -r·) Un,.= k-r g,(X1, ... ,XJ (4.7) 

and because of (2.7), (4.4) and (4.6) we have 

(N -1)2 
EU2 =NEU2 = N . Eg2(X) 1 1 ~ k - 1 1 , (4.8) 

(4.9) 

(4.10) 

Define T = Uja(U), so that ET2 = 1. Take 

( 4.11) 

By (4.8)- (4.10), 

(N -2)2 

N - 2 k-2 Eh2(X1, ... ,Xk) 
'"' (N. ) ET.2 ~--- ~ ~BN 3 (4.12) '--- - 2 n,. - EU2 -Y= 2 r I 1 

N ole that the results of these computations arc correct also for k = l. ln view 
of (2.17) and (2.18), it follows that assumptions (1.12) and (1.13) of Theorem 1.1 
are satisfied with A and B as in (4.11). The corollary follows. 
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We now turn to our second example. Let X 1,X2 , •• . ,XN be i.i.d. random 
variables with a common distribution function F, which is not assumed to be 
continuous. Let X< 1>~X<2>~ ... ;2;X<N> denote the corresponding order statistics. 
For real numbers c 1 , c 2 , ... , c N, we consider a normed linear function of order 
statistics 

Suppose that 

and let 

Theorem 1.1 implies 

N 

L=N- t L ciXUJ-EX(j)). 
j = 1 

max lc)=a, N max lci-ci_ 1 \=b. 
1;2j;2N 2;i,j;[,N 

Corollary 4.2. There exists a universal constant C such that 

whenever (4.14) and (4.15) are satisfied. 

(4.13) 

(4.14) 

(4.15) 

If a 2 (L) is bounded below and EIX 1\3 , a and b are bounded above as 
N ~ oo, then Corollary 4.2 provides a Berry~Esseen bound of order N-t . In 
view of (4.15) we are then dealing with the case of smooth weights c1 , .• . ,eN, 
but not necessarily smooth underlying distribution function F. For this case, 
the best result to date has been obtained by Helmers (1981; 1982) and this 
result is essentially equivalent to Corollary 4.2. Thus once again, Theorem 1.1 
appears to perform in a satisfactory manner. 

To prove corollary 4.2 we adopt some additional notation. For n ~ N, 
X 1,n;2;X 2 ,n;2; . .. ;2;Xn:n will denote the order statistics corresponding to 
X 1, X 2 , . .. ,Xn; we take Xo :n = - oo, Xn+ t :n= + oo. We shall find it convenient 
to introduce i.i.d. random variables U1, U2 , ••. , UN with a common uniform 
distribution on (0,1) and pretend that X;=F- 1(UJ for i=l, ... ,N. Clearly this 
does not affect the distribution of L. The rank of Vi among U1 , . .. . UN will be 
denoted by Ri, 

and we define 

N 

Ri= L l(O,U,](Uk), 
k= 1 

(4.16) 

where x 1\ y=min(x,y) and x v y=max(x,y). Furthermore we let bj, N be the 
beta density 

N! . 1 N . 
bj.N(y)=U-l)!(N-j)!y;- (1-y) -;, O<y<l, 
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and we define the functions G, H and M by 

X ~ X 

G(x)= J F(y)dy, H(x)= J (1-F(y))dy, M(x)= J F(y)(1-F(y))dy. (4.17) 
- CXl X - 00 

Obviously G, H and Mare monotone and by (4.14), M is bounded. Finally we 
introduce the random variable 

and note that 

Straightforward but somewhat tedious computations show that with proba
bility 1 

N t L 1 = N t E(LI U1 ) 

1 N I 

= N L cJ {1 10.u,)(y)-(1- y)} bi.N(y)dF- '(y), (4.20) 
j~l 0 

N-1 

Ntz= L (ci+ l -c)(M(Xj:N- 2)-M(Xi_1,N_z)) 
i~ I 

K, 

- L (cH 1 - c)(G(Xi:N)-G(Xi - l:N)) 
i ~ 1 

N 

+ L (ci-ci _ 1)(H(Xj+I:N)-H(Xi:N)). (4.21) 
j - K, 

By (4.15), L lcil bi,N(y);;i;aN and hence 

NtiL11~a{J' ydF-'(y)+ f (1-y)dF - '(y)} 
0 u, 

;;;; a{IF- '(U1)1 +! IF- '(y)l dy} = a { IX ,I+ EIX 11}. (4.22) 

Because of (4.15) and the monotonicity of M, G and H, 

IZI;;i;bN- i [M(oo)+G(XN_ 1 AXN)+H(XN-l v XN)]. (4.23) 

Define T = L / rr(L). Combining (4.14), (4.22) and (4.23) we find after elemen
tary calculations 

4a3 EIX 13 
E ITI 3 < 1 N -t ' - a3(L) , (4.24) 

EZ 2 25b 2 {E IX 1} 2 
- - < I N - 3 
a2 (L) = a2 (L) · 

(4.25) 

Corollary 4.2 follows from (4.19), (4.24), (4.25) and Theorem 1.1. 



206

438 W.R. van Zwet 

We should perhaps point out that (4.20) and (4.21) are valid under the sole 
assumption that EIX 11 < oo and can therefore be used to treat other cases than 
the one of smooth weights. Any set of assumptions ensuring that EJ7~J 3 

=@(N-t) and EZ2/~2(L)=@(N- 3) as N---"OO, will produce a Berry-Esseen 
bound of order N - t. Smoothness of the underlying distribution function F can 
clearly replace smoothness of the weights ci and intermediate versions are also 
possible. 

5. Possible Extensions 

Theorem 1.1 provides a Berry-Esseen bound for a symmetric function r of i.i.d. 
random variables X 1 , ... , X N under the relatively simple moment assumptions 
(1.12) and (1.13). For a particular case it may be laborious to check these 
assumptions, but the work involved is basically straightforward. The technical 
intricacies of the proof of a Berry-Esseen-type result have been dispensed with 
and what remains can be done by brute force. Of course this only makes sense 
up to a point: if too much brute force is needed, one may prefer to tackle the 
intricacies directly instead. 

It would seem that this might be the deciding factor in judging how far the 
present result can usefully be generalized. There doesn't seem to be a reason, a 
priori, why one should need the symmetry of r or the fact that X 1 , . • . , X N are 
identically distributed. Hoeffding's decomposition (2.9) works without these 
assumptions and it should be possible to adapt the remainder of the proof. In 
short, one should be able to generalize theorem 1.1 to arbitrary functions of 
independent random variables. Of course the assumptions needed to replace 
(1.12) and (1.13) will not look nearly as pleasant; worse still, they will probably 
be almost impossible to check in most nontrivial cases. 

One would guess, however, that there is one slight but significant general
ization that would still be feasible. This is the k-sample situation, where the 
independent random variables X 1 , . .. , X N are split into a fixed number (k) of 
groups. Within each group the variables are i.i.d. and r is a symmetric function 
of the variables in such a group. 

Another possible type of extension is to relax the moment assumptions 
ET2 < ro and EJNtT1J3 < ro by the following standard argument. Let T= T 
+ R. If we have a Berry-Esseen bound for f, 

sup IP(T~x)- <P(x)J ~cN-t (5.1) 
X 

and R satisfies 
(5.2) 

then we have a Berry-Esseen bound for T, 

sup JP(T~x)- <P(x)J ~(a+b+c) N - t.. (5.3) 
X 

In principle, no moments of R - and therefore of T - are needed, but we note 
that (5.2) is often established with the aid of a moment of low order and the 
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Markov inequality. We have not incorporated this idea in Theorem 1.1 be
cause it is well-known and may be applied ad hoc whenever needed. 

The above argument may be used for other purposes than merely to relax 
the moment assumptions. As we have noted before (cf. (2.17) and (2.18)), 
assumption (1.13) of Theorem 1.1 is equivalent to 

(5.4) 

However, if we require that for some positive integer N' ~ N, 

N (N) E(T-f.) 2 = '\' ET. 2 :::;,BN- t . N ~ ~- . 
r = N'+ 1 r 

(5.5) 

then 

and by (5.3) and (3.2) the conclusion of Theorem 1.1 will hold for T if it holds 
for TN' . But for TN' instead ofT, assumption (5.4) reduces to 

(5.6) 

because of (2.7), (2.6) and (2.4). It follows that (5.5) and (5.6) together may 
replace assumption (1.13) in Theorem 1.1. 

We may even go one step further and replace assumption (5.6) in its turn 
by the requirement that for some N" with 1~N"~N', 

N' N 1 
L ( - )ETJr~B(NiogN)- 2, 

r=N" + 1 r -1 
(5.7) 

(5.8) 

To see this, we go over the proof of Theorem 1.1 and find that the full force of 
assumption (5.4) (or (2.18)), as opposed to (2.19), is used only in (3.12) and 
(3.20). In both places, a strengthened version of (2.19), viz. 

N (N 1) L . ~1 ETJ,.~B(NlogN) - 2 
r = 2 I 

(5.9) 

would also have been sufficient. Alternatively, we could have required a mix
ture of (5.4) and (5.9), such as (5.8) combined with 

I (~ -1) ETJr~B(N log N)- 2 , 
r=N"+l 1-1 

(5.10) 

and the proof would still have gone through with minor modifications. Apply
ing (5.10) to TN. instead ofT, we obtain (5.7). 
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Thus we have shown that (5.5), (5.7) and (5.8) together may replace assump
tion (1.13) in Theorem 1.1. These conditions may be substantially weaker than 
(1.13 ), especially if N' and N" are taken to be of the order of Nt (log N)- 2 and 
(log N)2 respectively. In general, however, these assumptions will be hard to 
check. 
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THE EDGEWORTH EXPANSION FOR U-STATISTICS OF 
DEGREE TWO 

BY P. J. BICKEL/ F. GOTZE 2 AND W. R. VAN ZWET 2 

University of California, Berkeky, University of Biekfeld and 
University of Leiden 

An Edgeworth expansion with remainder o( N- 1) is established for a 
U-statistic with a kernel h of degree 2. The assumptions involved appear to 
be very mild; in particular, the common distribution of the summands 
h( X., Xj) is not assumed to be smooth. 

1. Introduction. Let xl, x2, ... ' XN be independent and identically dis
tributed (i.i.d.) random variables assuming values in a measurable space (_q[, !14) 
with a common distribution Px. Let h: _q[x _q[ ~ IR be measurable and symmet
ric in its two arguments, i.e., h(x, y) = h(y, x). For N:?: 2, a U-statistic of 
degree 2 is defined as 

N-1 N 

(1.1) UN= L L h(X;, XJ. 
i=l j =i + l 

Note that we do not follow the usual convention of dividing the sum in (1.1) by 
the number ( ~) of its terms. Since our results concern the standardized version 
of U, this does not make any difference. 

We assume throughout that 

(1 .2) 

and define 

t/;(x, y) = h(x, y)- g(x)- g(y), 

N 

(1.4) ON= (N- 1) L g(X;), 
i = l 

so that 

(1.5) 

Since E(!f(X1, X 2)IX1) = 0 almost surely (a.s.), the random variables g(X;) and 
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1/;(Xi, Xj), 1 ~ i <j ~ N, are pairwise uncorrelated and hence 

a~= a 2(UN) = a 2(UN) + a 2(dN) 
(1.6) 

= N(N- 1)2 Eg 2(X1) + tN(N- 1)El/;2(Xt> X2). 

If it is assumed that 

(1.7) 

then a 2(UN) dominates the right-hand side of (1.6) and a[:/UN is asymptotically 
normal as N ~ oo [cf. Hoeffding (1948), where U-statistics were introduced]. 

The speed of convergence to normality was investigated by Bickel (1974), 
Chan and Wierman (1977), Callaert and Janssen (1978) and Helmers and van 
Zwet (1982) who showed in increasing generality that 

(1.8) 
X 

where <I> denotes the standard normal distribution function (d.f.). If (1.2) and 
(1.7) are satisfied, so that asymptotic normality is ensured, then Ejg(X1)j 3 < oo 
suffices to establish (1.8). Moreover, the assumption Eh 2(X1, X2) < oo may be 
relaxed, provided aN is replaced by a(U N) in (1.8). 

The next step in the asymptotic analysis of a[/UN, is to obtain an Edgeworth 
expansion for its d.f., and for statistical purposes one typically needs such an 
expansion up to a remainder term which is o( N - 1 ). To be specific, let 

(1.9) K3 = (Jg- 3{Eg 3(X1) + 3Eg(XJg(X2)1/;(Xl> X2)}, 

K 4 = a_;- 4 { Eg 4 ( X 1 ) - 3a: + 12Eg2( X 1 )g( X2)1/;( Xt> X2) 

+12Eg(X1)g(X2)1/;(Xt> X3 )1/;(X2, X3 ) }. 

(1.10) 

Straightforward calculation shows that if Eh 4(X1, X 2 ) < oo-which we shall 
not generally require in this paper-then K 3N - 112 and K 4N - 1 are asymptotic 
expressions with error o(N- 1) for the third and fourth cumulants of a"N 1UN, 
respectively. Define 

(1.11) 

+ ;;N-1(x 5 - 10x 3 + 15x)}, 

where cp denotes the standard normal density. We wish to show that 

(1.12) 
X 

as N ~ oo. 
The validity of the Edgeworth expansion (1.11)-(1.12) was established by 

Janssen (1978) and by Callaert, Janssen and Veraverbeke (1980) under a com
plicated condition which these authors were able to verify only for certain cases 
where the distribution of h(X1, X2 ) possesses an absolutely continuous part. An 
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inspection of special cases, however, quickly reveals that the expansion may be 
valid even when h assumes only two values. In this respect the situation appears 
to be more favorable than it is for sums of Li.d. random variables, where the 
lattice case has to be excluded. The explanation of this phenomenon is simple: 
the left-hand side of (1.12) cannot be smaller than the largest jump of the d.f. of 
UN and in the lattice case the jumps are of the order N - 112 for sums, but N- 312 

for most U-statistics. An exception is, of course, the U-statistic {IJ .a( X;) }2 which 
is distributed like the square of a binomial random variable, so that the jumps 
are of the order N - 1/ 2• 

The aim of the present paper is to establish the Edgeworth expansion under 
very mild assumptions that are easy to verify and do not involve smoothness of 
the distribution of h(X1, X2 ). Suppose that there exist positive numbers 
8, l)P 82, 83, C and positive and continuous functions X} (0, oo) ~ (0, oo ), j = 1, 2, 
satisfying 

(1.13) 

(1.14) 

lim x1(t) = 0, 
t-> 00 

lim x2(t) ~ 81 > 0, 
t-> 00 

as well as a real number r such that 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

r ~ 2 + l) > 2, 

Eji/;(Xl> X2 )( s; C, 

Eg4(X1)1[t,oo)(jg(X1) j) s; X1(t) for all t > 0, 

1Eeitg(X1)1 s; 1- x2(t) < 1 for all t > 0. 

Let A1, A2 , ••• denote the eigenvalues of the kernel 1/; with respect to Px, ranked 
according to descending absolute values and with multiple eigenvalues repeated. 
Thus, for some orthonormal sequence of eigenfunctions w1, w2 , ••• , 

(1.19) 

Assume, in addition to (1.13)-(1.18), that there exists a natural number k such 
that 

(1.20) 

Finally, assumptions (1.15), (1.16) and (1.20) are linked by requiring that 

(1.21) (r- 2)(k- 4) ~ 8 + 83 > 8. 

We note that (1.18) implies the existence of a positive number 84 depending 
only on x 2 and such that 

(1.22) 

so that the conditions for asymptotic normality of a"N 1VN are satisfied. We shall 
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prove 

THEOREM 1.1. Suppose that positive numbers 8, 81, 82 , 83 , C and positive 
continuous functions x1 and x2 exist such that (1.13)-(1.21) are satisfied. Then 
there exists a sequence eN ~0 depending only on 8, 81, 82 , 83 , C, x1 and x2 such 
that for N = 2, 3, ... , 

(1.23) supjP(a,V 1UN :$; x)- FN(x)j :$; eNN- 1, 

X 

where a'J; and FN are given by (1.6) and (1.9)-(1.11). 

The laborious way in which we have phrased the assumptions as well as the 
conclusion of the theorem is caused by our insistence to define uniformity 
classes: for any class of pairs (h, Px) for which the assumptions are satisfied for 
fixed 8, 81, C and x1, (1.12) holds uniformly. It will therefore continue to hold if 
we let hand Px vary with N, provided (hN, Px N), N = 1, 2, ... , are all in such 
a class. If we do not insist on uniformity an'd simply consider .a fixed pair 
(h, Px), then the result is much easier to state: 

COROLLARY 1.1. Suppose that there exist a number r > 2 and an integer k 
such that (r- 2)(k - 4) > 8 and that the following assumptions are satisfied 

(1.24) 

(1.25) 

(1.26) 

Eilf'(Xl>X2)1r < oo, 

Elg(X1)1 4 < oo, 

limsup!Eeitg(Xtll < 1, 
It I-> 00 

(1.27) 1f' possesses k nonzero eigenvalues with respect to P x. 

Then (1.12) holds. 

In the theorem as well as in the corollary, the role of all but one 
of the conditions is immediately clear. Since Eg2(X1) > 0 [cf. (1.22)] and 
Elf'2(X1, X2) < oo, ON is the dominating term on the right in (1.5) and the 
conditions on g(X1) establish an Edgeworth expansion for ON. The moment 
assumption Eilf'(X1, X 2W < oo for some r > 2 allows us to correct the expan
sion for the remainder term fl N in (1.5). The existence of k nonzero eigenvalues 
of 1f', however, plays a much more subtle part which we shall discuss after the 
proof of the theorem has been given. We note that this kind of assumption first 
occurs in this context in Gotze (1979). 

If we are content to have an Edgeworth expansion with remainder o(N- 112) 
instead of o( N - 1 ), then we can do without the eigenvalue assumption. At the 
same time we may, of course, replace 4 by 3 in (1.17) and delete (1.14) so that 
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(1.18) becomes a nonlattice condition. Define 

(1.28) 

where K 3 is given by (1.9). 

THEOREM 1.2. Suppose that positive numbers 8, C and positive continuous 
functions x1 and x2 exist such that (1.13) and (1.15)-(1.18) are satisfied, withg 4 

replaced by jgj 3 in (1.17). Then there exists a sequence eN ~0 depending only on 
8, C, x1 and x2 such that for N = 2, 3, . .. , 

(1.29) supiP(o,V 1UN ~ x)- FN(x)l ~ eNN- 112 • 
X 

To prove Theorem 1.1 we shall have to study the characteristic function (c.f.) 
of o,V 1UN. This is done separately for small (and intermediate) and for large 
values of the argument in Sections 2 and 3, respectively. After the extensive 
previous work on the asymptotics of U-statistics, the arguments in the first part 
are almost standard; the essential difficulties arise in the second part. Combina
tion of the results of Sections 2 and 3 immediately yields Theorem 1.1. Theorem 
1.2 follows from an analysis closely resembling that of Section 2, the only 
difference being that the use of the fourth moment of g(X1) should now be 
avoided. The proof that this can be done is easy and we omit it. 

In Section 4 we discuss various aspects of assumption (1.20) and in Section 5 
we give an application of Theorem 1.1. Two technical results-a moment 
inequality and a concentration inequality-which are needed in Section 3 but 
which may be of wider interest, are dealt with in the Appendix. 

2. The c.f. for small values of the argument. Let <I>N denote the c.f. of 
-lu 0 N N• 

(2.1) 

and, for K 3 and K 4 as in (1.9)-(1.10), let 

(2.2) 

be the Fourier-Stieltjes transform f exp(itx) dFN(x) of FN in (1.11). By Esseen's 
smoothing lemma [cf. Feller (1971), page 538] we have proved (1.23) if we 
construct sequences {TN} and {eN} depending only on 8, 81, 82 , 83 , C, x1 and x2 

such that N- 1TN ~ oo, eN~ 0, and 

(2.3) 

We begin by studying <I>N(t) for small jtj and prove 
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LEMMA 2.1. Suppose that (1.13)-(1.18) are satisfied. Then there exists a 
sequence e'N ~ 0 depending only' on ~. ~ 1 , C, X1 and x 2 such that for 

(2.4) tN = N(r- 1)/ r(log N) - \ 

(2.5) JtN '.PN(t)- .P~(t) I dt.::; e'NN- 1. 
-tN t 

PROOF. To prevent the laborious formulation of our results from occurring 
throughout the proofs also, we shall make extensive use of o and 0 symbols 
rather than explicit error bounds. It will be tacitly understood that every 
statement involving o and 0 holds uniformly for all h and Px satisfying the 
assumptions of the lemma to be proved for a fixed choice of the ~. ~i' C and Xi 
involved, and also uniformly for the values of t being considered. 

Assume without loss of generality that ~ E (0, 1] and define 

~ 
(2.6) e = 3(2 + ~) E (0, 1/9]. 

Combining (2.1), (1.5) and 

. m (ix)" 2 
elx- L -- .s; - 1 lxlm+ll for every() E [0, 1], 

v=O v! m. 
(2.7) 

we can write 

(2.8) .PN(t) = Eexp{itaN 1UN}(1 + itaN 111N- tt2aN 2112N) + O(EitaN 111NI2+1l). 

Let 

YN(t) = Eexp{itaN 1(N- 1)g(X1)} 

denote the c.f. of aN 1(N- 1)g(X1). In view of (1.6), (1.22) and the fact that 
Ei11NI2+1l = O(N2+1l) [cf. Callaert and Janssen (1978)] we may rewrite (2.8) as 

<i>N( t) ~ yf:( t) + yf:- '(t)ito;;'( ~)E exp( ito;;'( N- 1) 1~/( X1)} ~(X,, X2 ) 

- irf:-'( t)t'o;;'( ~)E exp( ito;;'( N- I) i/( XJ} ~'(X,, X,) 

(2.9) - 3yf:-3( t)t'o;;'( ~)E exp( ito;;'( N- 1) i, g( X;)} 

Xl/;(Xt> X3 )1/;(X2 , X 3 ) 

- 3yf:-4 ( t)t'o;;'( ~) [ E exp( ito;;'( N- 1);~' g( X;)}~( X,, X,) r 
+ O(IN- 112tl2 +1l). 
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Next we expand the exponentials and find, e.g., 

E exp{ ito,V '( N- 1) j~/( X;)} o/( X,, X2 ) 

~ E [f-1, (exp{ ito,V '(N- 1)g( Xj)} - 1 - ito,V'( N- 1)g( X;)) 

+2itaJ;/(N- 1)(exp{itaN1(N- 1)g(X1)} 

- ~~~o {itaN 1(N- 1)g(X1)}"/v!)g(X2) 

-t2aN 2(N- 1)2g(X1)g(X2) 

-it3o,V 3(N- 1)3g 2(X,)g(X2 ) lop( X., X,) 

= -t2aN 2(N- 1)2 Eg(X1)g(X2)1/;(X1, X2) 

-it3aN 3(N- 1)3Eg2(X1)g(X2)1/;(Xl, X2) 

+O(N-2t4 + jN-l/2tj3<1+2•>), 

with e as in (2.6). To see this, use (2.7), (1.15)-(1.17), (1.22), (1.6) and 

Eg2( xl)g2( x2)11/J( X1, X2) 1 ~ Eg 4( X1) { El/12( X 11 X2)} 112, 

1469 

Elg( Xl) 12+6'lg( X2)1/;( xl, X2) I ~ [ Eg4( Xl)Eig( Xl) 1(2+S)/(l+S)r+8)/(2+S) 

X [ Ell/l(Xl, x2) 12+Sr/(2+S). 

The other exponentials in (2.9) may be expanded in a similar fashion and after 
some further simplification (2.9) reduces to 

cf>N(t) = y~(t) + y~- 2(t)(- tit3aN3N 4Eg(X1)g(X2)1/;(X1, X2) 

+ tt4aN 4N 5Eg2(X1)g(X2)1/;(X11 X2)- it2aN 2N 2EI/;2(X1, X2)) 

(2.10) + h~- 3(t)t 4aN 4N5Eg(X1 )g(X2 )1/;(X1 , X3)1/;(X2, X3) 

- h~-4 ( t)t6aN 6N 8 [ Eg( X1)g( X2)1/;( X 11 X2) ]2 

+ o(IYN(t) IN-4jtjP(jtj)N-l-3e + jN-l/2ti2+S), 

where P is a fixed polynomial. 
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Foro}= Eg 2(X1) as in (1.7), let 

y( t) = E exp{ itog- 1g( X1)} 

denote the c.f. of og-lg(X1). From the classical theory of Edgeworth expansions 
for sums of i.i.d. random variables we know that (1.17) and (1.22) imply that for 
sufficiently small e' > 0 and for ltl .::;;; e'N 112 , 

(2.11) 

where 

+o( N-11tle-t2/ 4) 

for ltl .::;;; e'N 112• Substitution of (2.11), (2.12) and (1.6) in (2.10) shows after some 
rearrangement that for ltl .::;;; e'N 112 , 

(2 .13) 4>N(t) = 4>'N(t) + o( N- 1lt1P(Itl)e-t2/ 4) + O(N_ 1_8; 21tl 2 + 8 ), 

where 1>'N is given by (2.2), (1.9) and (1.10) and P is a fixed polynomial. It follows 
that for e as given by (2.6), 

(2.14) !N'I4>N(t)- 4>'N(t) ldt= o(N- 1). 
-N' t 

Obviously, 

f 1
4>'N( t) I dt = o( N- 1) 

iti~N· t 

and it therefore remains to be shown that for tN as in (2.4), 

(2 .15) 

Define, form= 1, ... , N- 1, 

m N 

(2.16) ~N(m) = L L 1/1( X i, Xi). 
i ~ 1 j~ i+ 1 
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As EiLlN(mW = 0((mNY12) [cf. Callaert and Janssen (1978) for r = 3], we 
obtain 

(2.17) 

where [r] denotes the integer part of r. Since (N- 1)L:7'~ 1g(X;) are the only 
terms in (UN- LlN(m)) involving X1, ..• , Xm, we find that form~ 2v, 

(2.18) 
jEexp{itaN 1(UN- LlN(m))}Ll"N(m)i 

Also, for sufficiently small e > 0 and ltl ~ eN 112 , we have 

(2.19) 
t2 { t2 } 

lrN(t)l ~ 1- 3N ~ exp - 3N . 

First take N' ~ ltl ~ eN 112 and m = m(t) = [3rN log N j t 2 ] + 1. For suffi
ciently large N , we see that indeed 1 ~ m ~ N - 1 and (2.17)-(2.19) yield 

(2.20) ( ( log N) r/ 2) 
I<PN(t)l = 0 ~ 

for N• ~ ltl ~ eN 112 • 

Next we take eN 112 ~ ltl ~ tN. In view of (1.14), (1.18) and the continuity of 
x 2, there exists 1J > 0 such that for sufficiently large N, 

(2.21) I YN(t)l~1-1). 

Choose m = - r log N j log(1 - 1J ). For sufficiently large N, (2.17), (2.18) and 
(2.21) imply that 

(2.22) I<PN(t)l = o((logNr12N-riW) 

for eN 112 ~ ltl ~ tN. Since (2.20) and (2.22) hold uniformly not only for fixed 8, 
81' C, x1 and x2 but also for the values of t being considered, (2.15) follows and 
the proof of Lemma 2.1 is complete. D 

3. The c.f. for large values of the argument. In this section we prove 

LEMMA 3.1. Suppose that (1.13), (1.15)-(1.17) and (1.19)-(1.22) are satisfied. 
Then there exists a sequence eN' t 0 depending only on 8, 82 , 83 , 84 , C and x1 

such that for tN as in (2.4) and 

(3.1) TN= N log N, 

(3.2) 
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PROOF. We begin by noting that (1.21) implies that k ~ 5 and in view of 
(1.15) we may assume without loss of generality that 

8 + 83 
(3.3) 2 + 8 .:o::; r .:o::; 10 + 83 , 5 .:o::; k .:o::; 5 + - 8-. 

Though of course not essential, these restrictions make it easier to go from error 
bounds in terms of r and k to bounds in terms of 8 and 83 as required in the 
statement of the lemma. 

In Section 2, the proof that I<I>N(t)l is sufficiently small for N' .:o::; ltl .:o::; tN was 
based on the fact that for these values of t the behaviour of 1</>N( t)l is still 
determined to some extent by that of the c.f. of U N• and hence by the c.f. of 
g(X1 ). For larger values of ltl, however, the influence of the remainder term ~N 
may completely destroy that of UN. It seems that we have no more use for the 
g( X;) and we shall remove them by a conditioning argument. 

Define random variables Y1, ••• , YN such that X1, ••• , XN, ¥ 1 , ••• , YN are i.i.d. 
and let v; =(X;, Y;), i = 1, ... , N. Let n be an integer with 1 .:o::; n .:o::; (N- 1)/4. 
Then 

\<I>N(t)\ 2 .:o::; EiE(exp{ita,V 1UN}iX1 , ••• , X4n)l2 

(3.4) 

.:o::; E E (exp{itai/ 
1f_1 ~ h( X1, X1)} X1 , ••• , X 4n) 

2 

.J=ll=4n + l 

~ E exp( ito;; 'L~u~E.' ( h( Xi, X,) - h( Xi, Y,)) 

+ j-I .,_E., ( h( xi, x,) - h(lj. Y,)) ]) 

.:o::; E E(exp{ita,V 1 £ ~ (h(X1, X 1)- h(X1, Yi))} V4n+1 , ••• , VN) 
J=l l=4n+l 

= Eexp{ita,V 1 j~ll=E+l (h(X1, X1) 

-h(}j, X 1)- h(X1, Yi) + h(1j, Yi))} 

= E exp{ ita,V 1 j~l l=E+l ( 1/;( X1, Xz) 

-1/;(1), Xz) - 1/;( X1, Yi) + 1/;(1), Yi))} 

= E exp{ ita,V 1 r ~ '1'(~-, Vi)}, 
~ j=ll=4n+l 
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where for vj = (xj, y), j = 1, ... , N, we have defined 

Our next step is to truncate the random variables X1, ••• , X 2n, Y1, ••• , Y2 n, 

while losing half of them in the process. Consider a measurable set BE f!B with 

(3.6) a = P( V1 E B X B) = Pi (B). 

For every a E [0, 1], x E [0, 1] and p E (0, 1) we have 

(3.7) ( 
p )pj(l-p) 

ax + (1 - a) :$; xP v ~ , 

where (x v y) denotes the larger of x and y. It follows from (3.4)-(3.7) that 

i<f>N( t) 12 
:$; E [E(exp{itoj;/ ~ 'l'(V1 , V[)} V4n+t> •.. , VN)]

2
n 

l=4n+ 1 

(3.8) +(1- a) ]
2n 

+ (; rpn/(1-p) 

for every p _E (0, 1):. Ta_!<e p = J and define ~ = cxj, ~), j = 1, ... ' n, in such a 
way that X1, ••• , Xn, Y1, ••• , Yn are i.i.d. with common distribution 

(3.9) ( - ) (- ) Px(AnB) P X.EA =P Y.EA = --,..----:--
1 ; Px(B) 

and independent of ~n+l' ••• , VN. Then (3.8) may be rewritten as 

(3.10) 

[ ( { · - 1 } - - )] N-4n ( ) - 2n = E E exp ~toN z n I vl> ... ' vn + 2 a ' 
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where 
n 

zn = L it(~. VN) 
}=1 

(3.11) n 

= L [ 1/;( x,, XN) - 1/;(~. XN) - 1/;( x,, YN) + 1/;(~. YN)]. 
}=1 

It remains to choose the set B and we take 

(3.12) 

for a large but fixed T > 0 to be specified later. 
Let us now consider the conditional expectation in (3.10). Since lexp{ix} -

1 - ix + ~x 2 1 ~ x 2j6 + lxlr for r > 2, we have 

(3.13) 
( { . -1 } - - ) 1 2 - 2 ( 2 - - ) 0 ~ E exp ztaN Zn iVu ... , Vn :=:;; 1- ;/aN E ZniV1 , • •• , Vn 

+ IWaNrE(iZniT\~\ •. .. , Vn) . 
By (3.11) and (3.12) 

(3.14) E(it(V1 , VN)IV1 ) = E(it(V1 , VN)IVN) = 0 a.s., 

(3.15) 

It follows from Lemma A.1 in the Appendix together with (3.3) that for every 
integer m ~ 1 

E[E(iZnnV1 , ••• , Vn)]m = O(nrmf2). 

Taking m = 10kjl53 , we find by (3.3) and Markov's inequality that 

(3.16) P(E(iZnnV1 , ••• , Vn) ~ nrf2N8af(4k>) = O(N- 512). 

Next we turn to the quadratic term in (3.13). Let A1, A2 , ••• be the eigenvalues 
of I[; with respect to Px with IA 11 ~ IA 21 ~ · · • and let w1, w2,... be an 
orthonormal sequence of eigenfunctions corresponding to A1, A2 , ••• , i.e., (1.19) 
holds and for all v and v', 

(3.17) J w.(x) dPx(x) = 0, J w.(x )wAx) dPx(x) = 15 •• •' • 

where 8. •' = 0 or 1 according as v =I= v' or v = v'. Assume (1.20) is satisfied. We 
have ' 

k 

(3.18) 1/;(x , y) = L A.w.(x)w.(y) + R(x, y), 
•=1 

where R is a symmetric function of its two variables satisfying 

(3.19) jR(x, y)w.(y) dPx(Y) = 0 for v = 1, ... , k. 
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As a consequence we find 

E(Z;[V,, ... , V.) ~ 2 f[i, ( ,p( X1, y) - "'(~. y)} r dPx(Y) 

~ 2 J[i, L~, A,w,(y)(w,{X;}- w,{~}} 

+ R( X1, y) - R(~. y)) r dPx(Y) 

n n k k 

= 2 L L L L j[A,w,(y)(w,(xJ- w,(~)) 
j=l j'=l v= l v'=l 

(3.20) +R(Xj, y)- R(~, y)] 

x [A,,w,,(y)(w,,(xJ') - w,, (~,)) 

+R(XJ', y)- R(~,, y)] dPx(Y) 

~ 2 -~· A'·L~. ( w,{ X;)- w,{~)} r 
+2k 2 f[i, ( R( X1, y) - R(f;, y)} r dPx(Y) 

We shall have to investigate the covariance matrix L of the random vector 
(w 1(X1)- w/Y1), ••• , wk(X1)- wk(Y1)). First note that (1.16) and (1.20) imply 
that for v = 1, . . . , k 

(3.21) 

~ 82- rE{fl/!2(x1, y) dPx(Y)r/2 ~ 82- rc. 

Let o, , , = E(w,(X1)- w,(Y1))(w,,(X1)- w,,(Y1)), v, v' = 1, ... , k, denote the 
elements of L. For v 1= v', (3.21) and Holder's inequality ensure that 

Jo,,,,J ~1-a1 E(w,(X1)- w,(Y1))(w,,(X1)- w,,(Y1))1<BxBl"(X1 , Y1)1 
(3.22) 
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whereas for v = v' we find similarly 

(3.23) 

Now we may still choose T in (3.12) and since 

(3.24) 

by (3.12) and Markov's inequality, we can force a to be arbitrarily close to 1 by 
taking T large. In view of (3.22)-(3.24) and (3.3), we can choose T = T( 8, 82, 83 , C) 
in such a way that 

(3.25) 

(3.26) 

2a:e::e112 , 

Ia •. •' - 28 •.• ,I :::;; k- 1 for all v, v' = 1, ... , k. 

If p k denotes the smallest eigenvalue of ~. then (3.26) yields 

(3.27) { 
k k } l/2 

Pk:2::2- v~lv~l(a •.• , -28v,v')2 :2::1. 

. - - 2+ 8 -Also (3.21), (3.25) and (3.3) Imply that Eiw.(X1) - w.(¥1)1 , v - 1, ... , k, as 
well as k are bounded. It follows that we may apply Lemma A.2 in the Appendix 
to the right-hand side of (3.20) to obtain 

(3.28) 
( ( 2 - - ) 4/ k( ) - 6jk) P E ZniV10 ... , Vn :::;; nN- log N 

= o(N- 2(log N) - 3 + n - k!2). 

Let us now combine the results obtained in (3.10), (3.13), (3.16) and (3.28). 
First we note that (3.25) ensures that the term (2a) - 2n in (3.10) is O(e - n) and 
that a't. is of exact order N 3 by (1.16), (1.17) and (1.22). Take tN and TN as in 
(2.4) and (3.1), choose any t such that tN:::;; ltl :::;; TN and then define 

(3.29) [ 
a't.N(4/ k)- l(log N)2 +(6/ kl l 

n=n(t)= t 2 , 

where [x] denotes the integer part of x. As tN:::;; ltl :::;; TN, it follows from (2.4), 
(3.1) and (1.21) that 

(3.30) 
a't.N<41k> - 3(log N)6/ k - 1 :::;; n = o( N<4l k> +<2! r>(1og N)4+<6!k>) 

= o( Nl - .Sa!<kr>(log N)6), 

and in view of (3.3) this means that 1 :::;; n:::;; (N- 1)/4 for sufficiently large N, 
so that (3.29) is indeed a possible choice of n. Similarly, one easily checks that 
(3.29), (1.21) and (3.3) imply that for sufficiently large N, 

(3.31) 

Together (3.10), (3.13), (3.16), (3.28), (3.31), (3.29) and (3.30) show that for 
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sufficiently large N 

/<f>N(t)/2 ~ [1- ;\-t2naN2N- 4I k(1ogN)-6/k]N - 4n+ O(N- 2(logN)-3+ n - k!2) 

~ exp{- ;\-N- 1(N- 4n)(log N)2} + 0( N- 2(log N) - 3 + n - k12 ) 

= O(N- 2(logN)- 3), 

so that 

(3.32) 

uniformly for tN ~ Ill ~TN. This proves Lemma 3.1 and Theorem 1.1 at the 
same time. D 

4. The eigenvalue assumption. In Section 1 we noted that the meaning of 
assumption (1.20) concerning the eigenvalues of ![;, is not intuitively clear. From 
the analysis in Sections 2 and 3, however, we can at least see the part that it 
plays in the proof of Theorem 1.1. As we pointed out at the beginning of the 
proof of Lemma 3.1, the analysis of l<i>N(t)l for Ill ~ N<r-l)/ r(log N)- 1 proceeds 
by showing that up to that point, the properties of 0 N determine the behaviour 
of l<i>N(t)l, because the influence of ltlaN\~N is still small. For larger values of Ill, 
ON does not play a role any longer and we have to show that ltlaN 1~N is large 
enough to take over the task of making l<i>N(t)l small. Since, in general, sums of 
independent random variables can be unpleasantly close to zero with probabili
ties that are nonnegligible for our purposes, assumption (1.20) is there to prevent 
this. 

Still, we are unable to show that without assumption (1.20), the theorem 
would indeed fail. Our search for a counterexample, however, has convinced us 
that such an example would have to be extremely pathological. 

To compute the eigenvalues Ap ... , Ak of I[; can of course be laborious, but 
fortunately this is not necessary in order to verify assumption (1.20). Consider 
functions f1, ••• , fk with 

(4.1) j f/(x) dPx(x) ~ 1, j = 1, . .. , k, 

and define random variables 

(4.2) 

Let Lw denote the covariance matrix of the random vector W = (W1, •• • , Wk) 
and suppose that it has a smallest eigenvalue xk satisfying 

(4.3) xk ~ 82 > o. 

LEMMA 4.1. Suppose that in the set of conditions of Theorem 1.1 we replace 
(1.19)-(1.20) by the assumption that f1, ••• , h exist such that (4.1)- (4.3) are 
satisfied. Then the set of conditions obtained is equivalent to the original set. 
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PR0_9F. If (1.19)- (1.20) hold, we may choose fi = wi, Rj = ~\-wj(X1 ) and 
hence A.k = A.2k ~ 8i. Replacing 82 by 8V2 yields (4.3). 

Conversely, suppose that (4.1) and (4.3) hold for certain {1, ... , h· Let :F 
denote the linear space spanned by f 1> ••• , f k and define II f II and Tf by 

(Tf)(x) = ji/J(x, y)f(y)dPx(y). 

IITf 11 2 = E( t ci'"'J) 2 
= c'~wc ~ 82 ~ cJ, 

;=1 ;=1 

k k k 

II t 11 2 .:s; I: c] I: II tjll 2 .:s; k I: c] 
}=1 }=1 j=1 

in view of (4.2), (4.3) and (4.1). Together this yields 

82 
( 4.4) II Tf 11 2 ~ k II f 11 2 for every f E :F. 

On the other hand, ( 4.3) ensures that f 1> ••• , f k are linearly independent in 
L 2(Px) and hence :F must contain functions orthogonal to wl> w2 , ... , wk - l 

defined in (1.19). But this implies that 

(4 ) . f IITfll2 A_2 
.5 }~s-Tifll2 .:s; k' 

where A.l> A. 2 , ... , are given by (1.19). Combining (4.4) and (4.5) we find 

(4.6) IA.kl ~ ( ~) 11 2
• 

Because of (1.15) and (1.21) we may assume k to be bounded [cf. (3.3)] and the 
proof is complete. D 

Of course ( 4.3) will usually be easier to verify than (1.20). The situation is even 
simpler in Corollary 1.1 or, more generally, in all cases where 1/; is fixed. 
Assumption (1.27) may then be replaced by the nonsingularity of ~w, i.e., by the 
fact that W1, ••• , Wk are not almost surely linearly dependent. A simple suffi
cient condition for the existence of such W1, •.. , Wk is that there exist points 
y 1, ••• , Yk in the support of F such that the functions l{;( ·, y 1), ••• , 1/;( ·, Yk) are 
linearly independent. 

5. An example. Let X1, ••• , XN be i.i.d. random variables with a common 
continuous d.f. F on ~. Let 

(5.1) 
N 

Rt = L 1ux,l " IX,Il 
j=1 
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and let W~ denote Wilcoxon's one-sample signed rank statistic for testing the 
hypothesis that the distribution of X1 is symmetric about zero, thus 

(5.2) 
N 

W~ = L 1{x, ~ o}Rt. 
i= 1 

If we define 
uN = w~- EW~ 

= W~ - N(1- F(O)) 

- N( N - 1) 100 
( F( x) - F( - x)) dF( x), 

0 

(5.3) 

then UN is clearly a U-statistic. An easy computation yields 
N N N 

(5.4) UN= (N- 1) .E gN(XJ + .E .E o/(Xi, XJ, 

where 

(5.5) 

(5.6) 

i=1 i=1j=i+1 

g N (X) = 1 - F( -X) - j ( 1 - F( -X)) dF( X) 
1 

+ N _ 1 {1[0,ool(x)- 1 + F(O)}, 

o/(x, y) = l[O,oo)(x + y)- (1- F( -x))- (1- F( -y)) 

+ f ( 1 - F( -X)) dF( X) . 

Note that EgN(X1 ) = 0 and E( 1{;(X1, X 2 )IX1) = 0 a.s. 
Having decomposed UN in the manner of Section 1, we check the conditions of 

Theorem 1.1. Since both gN and 1{1 are bounded, (1.13) and (1.15)- (1.17) are 
satisfied for every r. Next, (1.14) and (1.18) will hold if the distribution of 
F(- X1) has an absolutely continuous component. It remains to verify (1.20) for 
some k ~ 5. In view of Lemma 4.1 and the fact that 1{1 does not depend on N it 
suffices to find functions f 1, ... , f k with f f/ dF ~ 1 such that the random 
variables, 

(5.7) j = 1, ... , k, 

are not almost surely linearly dependent. Take 

(5.8) fi(x)=Fi(x), j=1, ... ,k, 

so that 

(5.9) ""J = j ~ 1 {F( -X1)- pi+ 1(-X1)- j(F( -x)- pJ+l( -x)) dF(x)}. 

Then 
k k + 1 

(5.10) .E c)-l~ = .E aiFi( -X1), 

j= 1 i=O 
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k 

a0 = L c1j(F( -x)- Fi+ 1( -x)) dF(x), 
; = 1 

a . = 
I 

J 
for i = 2, . .. , k + 1. 

Since the distribution of F(- X 1) is supposed to have an absolutely continuous 
part, (5.10) can vanish almost surely only if a 0 = a 1 = · · · = ak +1 = 0 which 
implies c1 = · · · = ck = 0. It follows that assumption (1.20) holds every k. 

Thus we have established the validity of the Edgeworth expansion with 
remainder o( N - 1) for Wilcoxon's one-sample rank statistic under the assump
tions that F is continuous and that the distribution ofF(- X1) has an absolutely 
continuous component. We stress the fact that previous results on Edgeworth 
expansions for U-statistics would fail in this case because UN has a pure lattice 
distribution. Edgeworth expansions for one-sample rank statistics were obtained 
in Albers, Bickel and van Zwet (1976) by a completely different method. 

APPENDIX 

In this appendix we prove a moment inequality and a concentration in
equality which are needed in Section 3 of the present paper, but which may also 
be of independent interest. 

LEMMA A.l. Let P and Q be probability measures on arbitrary sample 
spaces f£ and t!!/ and let X 1, ••• , Xn be i.i.d. with common distribution P. Let 1/;: 
f£ X t!!! ~ IR satisfy jlf;(x, y) dP(x) = 0 for Q-almost all y E &, and 
jlf;(x, y) dQ(y) = 0 for P-almost all x E f£. Then, for every real p 2. 2 and 
integer k 2. 1, there exists a positive number A = A( p, k) which is bounded for 
bounded p and k and such that 

PROOF. If the expectation on the right equals + oo, then there is nothing to 
prove. Assume therefore that 

k 

C = E{jllf!(X1 , y)IP dQ(y)} < oo. 

Let Y1, •• • , Yk be i.i.d. with common distribution Q and independent of 
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p k p 

B ~ E( J!.t, .;,(x,, y) f dQ(y)} ~ E j)J/(x,, Y;) 

n 

=E L 

Let m 1, ••• , mr be integers 2: 2 with L~=lmv = k- l, l 2: 0, and let 
J(m1, ••• , mr) denote the collection of sequences i 1, ••• , ikE {1,2, ... , n} which 
contain (l + r) distinct values, out of which l occur with multiplicity 1 and r 
with multiplicities m1, • •• , mr, respectively. Define 

(A.1) 

and note that each term in this sum has the same distribution. There are at most 
nr different ways of choosing the indices with multiplicities mp ... , mr and at 
most k! different ways of permuting i 1, • • • , ik. It follows that 

l 

EiZ(m 17 • •• ,mr)IP~(k!nrtE 2:···2: 0¥-(Xi,}j) 
Is~ < ··· < ~ s n - ri=l 1 

ml mr 
p 

X 0 1/-(Xn- r+l• ~+j) X ... X n 1/-(Xn, ~+m,+ ... +mr_,+J 
;=! ; = 1 

(A.2) 

l 
p 

X E L ... L 0 "' (xi '1j) 
l s i 1 < ·· · < i1s n- ri=l 1 

where, for l = 1, 2, . .. , k and t = l, l + 1, ... , n, 

l 

~(t)= 2:· ··2: 0¥-(Xi ,}j) 
. 1 J 

1 s i, < i2 < ... < it s t J = 

and we define ~(/- 1) = 0 for l = 1, 2, . . . , k and li'o(t) = 1 for t = 0, 1, ... , n. 
For fixed !2: 1, ~(t), t = l- 1, !, ... , n, is a martingale with ~(l- 1) = 0. 

It follows from an inequality of Dharmadhikari, Fabian and Jogdeo (1968) that 
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for l ~ 1 and t = l, l + 1, ... , n 
t 

EllVi(t)IP.:::: a(p)(t -l + 1Y12 - 1 L EIWi(s)- Wi(s- 1)IP 
s=l 

t 

= a(p)(t -l + 1)P/2 - 1Eil/J(Xp Y1)IP L EIWi- l(s- 1)IP 
(A.3) s=l 

[ f 81 - 1 St - 1 - 1 

.:::; {a(p)tPI2- 1EilfJ(XpY1 )IP} L L ... L 1 
s 1 =l s 2 =l - 1 

.:::; {a(p)EilfJ(Xl> Y1)(}
1t1P12 

for a(p) = 22P2
• Clearly (A.3) will continue to hold for l = 0 and t = 0, ... , n 

provided we define 0° = 1. Combining this with (A.2) we find 

EIZ(ml> ... ' mr) lp.:::; (k!nr)PC(k - l)/kal(p )Cllknlp/2 

and as 2r + l.:::: k, 

The lemma is proved. D 

LEMMA A.2. Let Xl> ... , Xn be i.i.d. k-dimensional random vectors with 
comrrwn distribution P with a positive definite covariance matrix 2: with smallest 
eigenvalue p k• Define sn = n - l/2Ii= I xi. Then there exists a positive number B 
depending only on k and P such that for every e > 0 and n = 1, 2, ... , 

P(IISnll.:::; e).:::; B(ek + n - k/2). 

B is constant over any class of distributions with k bounded, Pk bounded away 
from zero and E11XII 2 + 8 bounded for a fixed 8 > 0. 

PROOF. Let P be the distribution of (X1 - X2 ) and fortE IRk let 

1/J(t) = E exp{ it'(X1 - EX1)}. 

It follows that 

ll/J(t)l2 = 1 eit'xdP(x) = 1 cos(t'x)dP(x), 
Rh Rk 

1-llfJ(t)l2 J 1-cos(t'x) _ 
---2 - ~ 2 dP(x) 

IIlii IIXII:5B- l IIlii 
for every () > 0. For IIlii .:::; 8, we have lt'xl .:::: 1 for 
1 - cos(t'x) ~ icos(1)(t'x)2• Hence for IIlii.:::: () we see that 

1 -ll/J(t)l 2 1 (t'x) 2 _ 
----:--2 - ~ -cos(1)j --2 dP(x) 

IIlii 2 llxii:5B- l lltll (A.4) 

1 f 2 -= -cos(1) ( T'X) dP(x ), 
2 IIXII :5 B- l 

llxll .:::: 8- 1 and 
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where 7' = t/lltll, so that 117'11 = L By the dominated convergence theorem we 
obtain 

lim (T'x) dP(x) = E{T'(X1 - X2)} = 2a (T'X1) ~ 2pk, 1 2 - 2 2 
8 ,J.O l!xl!sli - 1 

and hence for sufficiently small 80 > 0 and IIlii .$ 80 , we find 

(A.5) I o/ ( t) 12 .$ 1 - ~P kcos( 1 )lltll 2 .$ exp { - ~p kcos( 1 )lltll 2}. 

Let U = (U1, ... , Uk) be a random vector which is independent of X1, ... , XN 
and which has i.i.d. components Up ... , Uk with a common density g( u) = 
(1 - cos u)/( '1TU 2 ) and corresponding c.f. 

y(t) = Eeitu. = (1 -lti)1[0,1](1tl). 

Choose ak such that P(IU11 .$ ak) = 2- 1/k and e ~ akk 112j(80 n 11 2 ). It is clear 
that 

P(IISn + n - 1128o- 1UII.$ 2e) ~ P(IIVII.$ e8on112 )P(11Snll.$ e) 

~ P(IIUII .$ akk 112 )P(11Snll .$e) ~ ~P(IISnll .$e), 

and using (A.5) we arrive at 

P( IISnll .$ e) .$ 2P( IISn + n - 1128o- 1UII .$ 2e) 

.$ _; 1 n sin(2etJ I o/( n - 1/2t) Inn r( tj1/2) dt 
'1T !RkJ=I t1 J=I 80n 

(A.6) 

.$ 2(2e/'1T )k ~kexp{- ~pkcos(1)11tll 2} dt = 22k+ 1( '1Tcos(l)pk) -k12 ek 

for all lei~ akk 11 2j(80n11 2 ). For lei< akk 11 2j(80n11 2 ) (A.6) yields the trivial 
bound 

[ 
ka2 lk/2 < 22k+I k n-k/2 

- '1TCOS(1)pk()g . 

(A.7) 

Addition of (A.6) and (A.7) proves the lemma for fixed P. 
If we assume that EIIX111 2+8 .$ C, then this implies that for every () > 0 and 

IITII = 1, 

f ( T'x )2 dF(x) .$ J llxll 2 dF(x) .$ 2<2+8>C0 8. 
llxll>li - 1 llxll>li - 1 

Returning to (A.4)-(A.5) we now see that we can choose 

(A.8) ()o = 2- <2+8)/8(Pk/C)l/8 
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and ensure the validity of (A.5) for lltll ~ 00 . Substituting (A.8) in (A.7) and 
assuming in addition that k and p}; 1 are bounded, we conclude that B in 
Lemma A.2 is also bounded and the proof of the lemma is complete. D 

Acknowledgments. It is a pleasure to acknowledge the help of J. 
Bretagnolle which very much improved our proof of the concentration inequality 
of Lemma A.2. The authors are indebted to the Associate Editor and the referees 
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Chapter 15 

Entropic instability of Cramer's 
characterization of the normal law 

S.G. Bobkov and G.P. Chistyakov and F. Gotze 

Abstract We establish instability of the characterization of the normal law in 
Cramer's theorem with respect to the total variation norm and the entropic distance. 
Two constructions of counter-examples are provided. 

15.1 Introduction 

A well-known theorem of Cramer (1936, [Cr]) indicates that, if the sum X + Y of 
two independent random variables X and Y has a normal distribution, then neces
sarily both X andY are normal. Soon after Cramer had proved his theorem (which 
answered a question raised by P. Levy in 1931), P. Levy established stability ofthis 
characterization property of normal distributions. In a qualitative form it states that, 
for independent random variables X and Y, 

if X+ Y is nearly normal then both X and Y are nearly normal. 

Here "nearly" is understood in the sense of the topology of weak convergence of 
probability distributions on the real line. For example, with respect to the Levy 
distance, Levy's theorem is formulated as follows. Given E > 0 and distribution 
functions F1, F2, 
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for some a 1, az E R and a 1, az > 0, where 8£ only depends on £, and in a such way 
that 8£ ---t 0, as £ ---t 0. 

Here <Pa,u stands for the distribution functions of the normal law N(a, a 2) with 
mean a and variance a 2 , and we omit indices in the standard case a = 0, a = 1. As 
usual, F1 * F2 denotes the convolution of the distribution functions. 

In 1950s Linnik [L2] extended this result to arbitrary probability distributions on 
the real line: If the convolution F1 * Fz is close to F, then both F1 and Fz have to 
be close to the class of all components of F. Linnik noted as well that Cramer's 
theorem may be viewed as a particular case of Darmois-Skitovich 's theorem on the 
independence of independent linear statistics (cf. [Ll]). 

Another important issue which attracted many researchers is the problem of 
quantitative versions of the stability property of the normal law. This problem has 
been studied for a long time, starting with results by Sapogov in the 1950s [S 1-2] 
(who considered the Kolmogorov distance and was apparently unaware of the work 
of P. Levy) and ending with results by Chistyakov and Golinskii [C-G] in the 1990s, 
who found the correct asymptotics of the best possible error function £ ---t 8£ for the 
Levy distance. See also [Z], [Se]. 

In this note we address the following natural question in connection with Levy's 
theorem. Given independent random variables X and Y, assume that the distribution 
of X + Y is known to be nearly normal in a stronger sense. What does this imply 
for X andY in terms of closeness to the normal? When saying "stronger", we mean 
classical distances between distributions such as the total variation norm II F- Gil Tv, 
or the entropic distance D(X) from a given distribution F of X to the associated 
normal law. Thus, we wonder whether or not X and Y need to be nearly normal with 
respect to these distances. In case of the entropic distance, this question was raised 
in the mid 1960's by Kac and McKean ([MC], pp. 365-366; cf. also [C-S] for some 
related aspects of the problem). 

As it turns out, in general the answer is negative in both cases. 

Theorem 1. For any £ > 0, there exist independent random variables X and 
Y with absolutely continuous symmetric distributions F1. Fz, and with Var(X) = 
Var(Y) = 1, such that 

a) IIFI*Fz - <P*<PIITv<£; 
b) IIF1 - <Pa,u II TV > c and IIFz - <Pa,u I lTv > c, for all a E Rand a > 0, 

where c > 0 denotes an absolute constant. 

As we will see, Theorem 1 holds for any number c E (0, 1/2) . 
The statement of the theorem may be strengthened in terms of the entropic dis

tance. Recall that, if a random variable X with finite second moment has a density 
p(x), its entropy 
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1+00 
h(X) = - -oo p(x) log p(x) dx 

is well-defined and, what is classical, it is bounded from above by the entropy of the 
normal random variable Z, having the same variance cr2 = Var(Z) = Var(X) . The 
entropic distance to the normal is given by the formula 

D(X) = h(Z)- h(X) = j +oo p(x) log p(xl ) dx, -oo ((Ja,CJ X 

where ((Ja ,a stands for the density of the normal law N(a, cr2 ) with parameters a= 
lEX, cr2 = Var(X). Alternatively, it may be described as the shortest distance from 
the distribution F of X to the family of all normal laws on the line in the sense of 
the Kullback-Leibler distance. 

Similarly to the total variation, the quantity D(X) is homogeneous of order zero 
with respect to X, that is, D(A,X) = D(X), for all A > 0. In particular, it does not 
depend on the variance of X. The two distances are related by virtue of the Pinsker
Csiszar-Kullback inequality ([P], [Cs], [K]), which gives 

1 2 
D(X) 2: 211F - <Pa,aii TV· 

In this sense the en tropic distance is stronger than the total variation. Therefore, one 
may wonder whether or not the stability property in Cramer's theorem still holds 
when replacing the Levy distance with the entropic distance. If so, this could also 
be viewed as the inverse to the concavity of the entropy functional (or to the so
called entropy power inequality, cf. [D-C-T]), which implies that 

( ) D(X) + D(Y) 
DX+Y::; 2 , 

whenever X and Y are independent and have equal variances. 
It turns out however, this is not the case. 

Theorem 2. For any t: > 0, there exist independent random variables X and 
Y with absolutely continuous symmetric distributions F1, F2, and with Var(X) = 
Var(Y) = 1, such that 

a) D(X +Y) < t:; 

b) IIF1 - <Pa,a II TV > c and IIF2- <Pa,a I lTv > c, for all a E Rand <J > 0, 

where c > 0 denotes an absolute constant. In particular, both D(X) and D(Y) are 
separated from zero. 

In the next section we describe how such random variables may be constructed. 
In fact, our (counter-)examples for Theorem 1 still work for Theorem 2. We consider 
two constructions. The first one explicitly specifies densities for X and Y, while the 
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other one deals with their distribution functions, which are explicitly provided, as 
well. 

In Section 3 we show that the distributions of X and Y are separated from the 
normal law, thus proving claim b) of Theorem 1. Finally, in Section 4 we provide 
computations for the convolutions, which will justify claim a) of Theorem 1. 

15.2 Constructions of examples 

In this section we describe two types of the construction of random variables. 
We use the standard notations 

(x E R) 

for the density and the distribution function of the standard normal law. 

Construction I (by an explicit formula for densities). 
Given T > 0, let XT be a random variable with density function 

xER, 

where CT = 2/ (1- e- 2T2 ) is the normalizing constant. Introduce a further random 
variable, XzT, independent of XT, with density P2T· 

Clearly, XT has a symmetric distribution with 

Based on this choices, in the proof of Theorems 1-2 we consider 

x2T 
y = ----::== 

yfEXf; 
for large values of T. 

Note that we may rewrite our densities as 

CT 
PT(x) = 2 (cp(x)-cos(2Tx)q>(x)) . 

As another variant one may also consider densities of the form 

p(x) = q>(x) + sin(Tx) q>(x), 

which are somewhat simpler. However, they are not symmetric about the origin. 
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Construction II (by an explicit formula for distribution functions). 
Given T > 0, let XT be a random variable with the distribution function 

1 0 

FT(x) = <P(x) + 2T sm(Tx) cp(x) 1{1xi<T}· 

Their densities are given by 

1 ( X . ) PT(x) = cp(x) + 2 cos(Tx)- T sm(Tx) cp(x) 1{1xi < T}· 

5 

Clearly, PT(x) > 0 everywhere (perhaps except for lxl = T), so FT is increasing. 
Since also FT (-co) = 0, FT (+co) = 1, FT is indeed a distribution function. Note that 
PT is even, so the distribution of XT is symmetric about the origin. 

Again introduce a second independent random variable X2T with the distribution 
function F2T. 

To see that Var(XT) ----11, as T ----1 +oo, we may apply well-known identities which 
can be obtained by the successive differentiation of the identity J~:: cos(Tx) cp(x) dx = 
e- T 2 12 with respect to the variable T: 

1) J~::xsin(Tx)cp(x)dx= Te- T2/2, 

2) J~:: x2 cos(Tx) cp(x) dx = (1- T2) e- T2 / 2, 

3) J~:: x3 sin(Tx) cp(x) dx = (3T- T3 ) e- T2 / 2. 

Write 

lEXf = 1 + ~ jT x2 (cos(Tx)- x sin(Tx)) cp(x)dx. 
2 - T T 

By 2)-3), extending integration to the whole line, we get that 

lEXf = 1- e- T212- ~ r x2 (cos(Tx)- X sin(Tx)) cp(x)dx. 
2 J{ lxi>T} T 

Clearly, the last integral tends to zero. 
Based on this choices, for the proof of Theorems 1-2 one may similarly take 

for large values of T. 
Although seemingly more complicated, the second construction is more con

venient, when measuring the distance to the normal for metrics, such as Levy 
and Kantorovich-Rubinshtein, which explicitly involve distribution functions (rather 
than densities). 
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15.3 Separation from the normal 

The distributions Fy of Xy, constructed in the previous section, are close to the 
standard normal in the sense of the topology of weak convergence. To see this, let 
us look at the characteristic functions for the distributions from Construction I: 

jy(t) =lEeitXr = l~oo eitxpy(x)dx 

Cy 1+oo = 2 -oo cos(tx)(1- cos(2Tx)) <p(x)dx 

cy 1+oo ( ( ) cos((t+2T)x)+cos((t-2T)x)) ( )d 
= 2 -oo COS tX - 2 (/' X X 

= Cy ( _12 / 2 _ e-(t+2T)2 /2 + e-(t- 2T)2 /2) 
2 e 2 · 

Hence, for any fixed real t, 

1 ( 2 e-(t+2T)2 /2 + e-(t- 2T)2 /2) 2 
f (t) = e- t /2 _ --+ e- t /2 

T 1-e- 2T2 j2 2 ' 

and thus weakly in distribution 

Xy =? N(O, 1) , as T--+ +oo. 

By a compactness argument, it is easy to see that p(Fy, ci>)--+ 0, for any metric 
metrizing the weak convergence in the space of all probability distributions on the 
line. If the second moments of distributions are known to be bounded, one may use, 
for example, the Kantorovich-Rubinshtein distance, which in our case is given by 

1+00 
w,(Fy , C!>)= -00 IFT(x)-ci>(x) ldx. 

By the very definition of the distributions from Construction II, we obtain immedi
ately that W1 (FT , cp) < A. 

As a consequence, the normalized random variables X and Y are also close to the 
standard normal law for the Kantorovich-Rubinshtein metric. 

On the other hand, let us look at the total variation distance. One may apply the 
general elementary estimate 

suplf(t)-g(t) l:::; IIF-GII TV, 
t ER 

holding for arbitrary probability distributions F and G on the real line with charac
teristic functions f and g, respectively. In particular, for the distributions from the 
first construction (choosing t = 2T), we have 
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t2 /2 2T2 1 IIFr-ci> II TV 2:: sup lfr(t)-e - I 2:: lfr(2T)-e - I-+- , 
tER 2 

as T -t +=.Hence, 

1iminf IIFr- ci> IITv 2:: ~-
T -++oo 2 

This observation can be strengthened by considering the shortest total variation 
distance from Fr to the class of all normal laws on the line. 

Lemma 1. We have 

1 
liminf inf IIFr- ci>a,u ii TV 2:: -. 
T -++oo a ,G 2 

Proof. As was discussed above, we may use the bounds 

IIFr- ci>a,u II TV 2:: sup lfr (t)- eiat- u2t2 /21 
tER 

2:: sup ll!r (t) 1- e- uztz /21· 
tER 

It follows from the formula for fr (t) that uniformly over all t 2:: 0, 

lfr(t)- e- uztz /21;::: ~~ e-tz /2- ~ e- (t - 2T)2/21- e- uztz /21- o(T), 

as T ---+ +=, so 

Here and in the sequel, o(T) denotes a quantity which tends to zero, as T ---+ +=, 
uniformly over all t from the indicated range. 

To estimate the supremum on the right-hand side uniformly over all <Y > 0, fix a 
(large) number N. In case cr 2:: N jT, choose t = 2T, which gives 

II e - tz /2 - ~ e - (t - 2T )2 /21- e - u2t2 /21 = ~ - e - 2u2r2 + o(T) 2:: ~ - e - 2N2 + o(T). 

In case cr < N jT, choose t = 2VT, which gives 

~~e-t2 /2- ~ e- (t - 2Tjl /21- e- u2t2 /21 = e- 2u2T + o(T) 2:: e- 2N2 /T + o(T), 

where the right-hand side tends to 1, as T -t +=. Altogether this yields 
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Since the left-hand side does not depend on N, we may let N---+ +oo, and the lemma 
follows . 

As we mentioned in the previous section, the random variables X and Y in The
orems 1-2 are obtained from Xr and X2r by normalizing, so that Var(X) = Var(Y). 
Since the total variation norm is invariant under rescaling of the coordinates, Lemma 
1 also implies that, 

1 
liminf inf IIF- <I>a,a iiTv 2': -, 
T --++oo a,<Y 2 

1 
liminf inf II G- <I>a,a ii Tv 2': - , 
T --++oo a ,<Y 2 

where F and G denote distributions of X andY (which also depend on T). 
Recalling also Pinsker-Csiszar-Kullback's inequality, we may conclude the prop

erty b) in these theorems. 

Conclusion 1. For random variables X and Y from Construction I, we have 

IIF- <I>a,ai iTV > c, II G- <I>a,a ii TV > c, 

for all T large enough, where cis any prescribed number in (0, 1/ 2). In particular, 
D(X) > c2 / 4 and D(Y) > c2 / 4. 

A similar approach may be used to study the distributions Fr from the second 
construction. The corresponding characteristic functions are given by 

fr(t) = e- 1212 + ~ ;·T eilx (cos(Tx)- ~ sin(Tx)) q>(x)dx 
2 - T T 

2 e- (t+T )2 / 2+e-(t-T)2 / 2 
= e - 1 /2 + _______ _ 

4 11 . 1 JT . - - ettxcos(Tx)q>(x)dx - - e11xxsin(Tx)q>(x)dx. 
2 lxi>T 2T - T 

Clearly, the first integral is bounded in absolute value by 2(1 - <P(T)) < e - T212, 

while the absolute value of the second integral is smaller than J lx l q> (x) dx < 1. 
Hence, uniformly over all t E R 

as T ---+ +oo. Next one can repeat the line of arguments from the proof of Lemma 1. 

Conclusion 2. For the random variables X and Y of Construction II, Conclusion 
1 holds with level1 / 4 replacing 1/ 2 (for constants c). 
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15.4 Convolutions of distributions from Construction I 

Write the density of random variables XT from Construction I in the form 

CT 
PT(x) = 2 ( q>(x)- cos(2Tx) q>(x)), 

where CT = 2/(1- e- 2T2 ) is the normalizing constant. Note that "{ ---+ 1, as T---+ 
+co. 

Instead of the sum X+ Y (which is a bit more complicated), we consider the sum 
XT + X2T oftwo independent random variables, assuming thatXT has density PT and 
X2T has density P2T. The density of this sum represents the convolution PT * P2T. 

In analogy with notations for distribution functions, for integrable functions p(x) 
and q(x) we write (p * q)(x) = p(x) * q(x) = J!.:' p(x- y)q(y) dy. 

To simplify the computations, introduce 

qT(x) = q>(x) - cos(2Tx) q>(x) 

and write 

(qT*q2T)(x)-(q>*q>)(x) = -q>(x) * [(cos(2Tx)+cos(4Tx))q>(x)] 

+ [cos(2Tx) q>(x)] * [cos( 4Tx)) q>(x)]. 

Note that 

To compute convolutions, we need one simple relation. Given a complex variable 
a, consider the integral 

Changing the variable y = ~- .JI· we obtain (x-yr+i =~+~.and the integral 

becomes 

Therefore, 

l:oo q>(x-y)q>(y)eaYdy= (q>*q>)(x) eaxj2+a2 /4. 

Taking a = iT, we get 

l+oo 2 

AT = -oo q>(x- y) q>(y) cos(Ty) dy = ( q> * q>) (x) e-T 14 cos(Tx/2), 
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1~ 2 
BT = -oo cp(x-y)cp(y) sin(Ty)dy = (({)*({))(x)e- T 14 sin(Tx/ 2). 

Hence, the convolution cp(x) * [(cos(2Tx) +cos(4Tx)) cp(x)] is given by 

1+oo 
-oo cp(x-y)cp(y)(cos(2Ty)+cos(4Ty))dy = A2T+A4T· 

Similarly, the convolution [cos(2Tx) cp(x)] * [cos(4Tx)) cp(x) ] is 

J~: cp(x- y) cp(y) cos(2T(x- y)) cos( 4Ty)) dy 

= J~= cp(x _ y) cp(y) cos(2Tx- 6Ty)icos(2Tx+2Ty) dy 

= i (A6Tcos(2Tx) +A2Tcos(2Tx) +B6Tsin(2Tx) -B2Tsin(2Tx)). 

Collecting the two convolutions together, we obtain for (qT * q2T)(x) the repre
sentation 

Now, using the obvious bound IA2T I ::; (({)*({))(x)e- T2 and similarly for B2T. we 
arrive at 

But PT * P2T = (1 + £T) qT * q2T. where £T = i CTC2T- 1 --+ 0, as T --+ +oo, and 

moreover leT I ::; Ce-2T 2
, whenever T 2: 1. Hence, we get: 

Lemma 2. For all T 2: 1 and x E R, 

with some absolute constant C. 

This estimate is quite sufficient to see that 

and also for the Kullback-Leibler's distance 

1+oo (PT * P2T) (x) 
D(XT + XzTI IZ) = (PT*PzT)(x)log ( )() dx --+ 0, 

- oo (/) * (/) X 

as T--+ +oo, where Z "'N(O, 2). So the (closest) entropic distance to the normal 
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A similar property, D(X + Y) --+ 0, as T --+ +=, also holds for normalized random 
variables, since Var(XT) --+ 1, although this conclusion requires a certain justifica
tion. What is needed is the property 

where aT --+ 1. This may be done, for example, by a slight modification of the 
arguments used in the proof of Lemma 2. With this in mind Theorems 1-2 are 
proved. 

We leave it to the reader to check that the same conclusion is true for probability 
distributions from Construction II. 
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RESAMPLING: CONSISTENCY OF 
SUBSTITUTION ESTIMATORS1 

BY HEIN PUTTER AND WILLEM R. VAN ZWET 

University of Leiden and University of North Carolina, Chapel Hill 

On the basis of N i.i.d. random variables with a common unknown 
distribution P we wish to estimate a functional TN(P). An obvious and 
very general approach to this problem is to find an estimator PN of P 
first, and then construct a so-called substitution estimator TN(PN ) of 
TN(P). In this paper we investigate how to choose the estimator PN so 
that the substitution estimator TN(PN) will be consistent. 

Although our setup covers a broad class of estimation problems, the 
main substitution estimator we have in mind is a general version of the 
bootstrap where resampling is done from an estimated distribution PN. 
We do not focus in advance on a particular estimator PN , such as, for 
example, the empirical distribution, but try to indicate which resampling 
distribution should be used in a particular situation. The conclusion that 
we draw from the results and the examples in this paper is that the 
bootstrap is an exceptionally flexible method which comes into its own 
when full use is made of its flexibility. However, the choice of a good 
bootstrap method in a particular case requires rather precise information 
about the structure of the problem at hand. Unfortunately, this may not 
always be available. 

1. Substitution estimators. Let (2", .!¥') be a measurable space and let 
9' be a collection of probability measures on (2", .!¥'). Let II be a topology on 
9', so that (.9, II) is a topological space. Finally, let X1 , X2 , . • . denote a 
sequence of i.i.d. random variables with values in 2" and (unknown) common 
distribution P E .9. 

For N = 1, 2, ... , we consider a map TN: (.9, II) ~ (9f, r), where (9f, r) is 
a metric space. Both spaces (.9, ll) and (9f, r) are equipped with the 0'-alge
bra of Borel sets ~(.9, ll) and ~(9f, r), which are generated by the open 
sets in (.9, ll) and (9f, r) , respectively. Probability distributions on these 
spaces are probability measures on the Borel sets and are induced by 
measurable maps from (2""' ,..1¥' , , P "') to (.9, ~(.9, ll)) or (9f, ~(9f, r)). We 
assume throughout that each TN is measurable. 

Having observed the i.i.d. sample X 1 , ... , XN with common distribution 
P E .9, our aim is to estimate the somewhat abstract 9f-valued "parameter" 
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TN(P). For a measurable map tN : :Jl?N ___, gz, let TN = tN(X1, . .. ,XN ) be an 
estimator of TN(P) based on X 1 , ... , X N. We shall say that TN is a consistent 
estimator of TN(P) for P E .9 if 

(1.1) 

where ----" P indicates convergence in probability under P as N ----" oo. The 
more formally inclined reader should view this expression as shorthand for 
the correct but laborious statement that the sequence {TN}N= l is a consistent 
sequence of estimators of the sequence {TN(P)}N= t· If we wish to stress the 
role of the metric r in (1.1), we call TN r-consistent . 

In the absence of any special structural properties of TN(P), a popular 
estimator of TN(P) is the substitution estimator TNCPN ). (This is commonly 
called a "plug-in estimator," but this expression is of the same sad grammati
cal level as "see-through clothes.") It is obtained by first estimating P by 
PN = PN(Xv .. . , X N) for a measurable map p N : :Jl?N ----" .9 and then substitut
ing this estimator in TN. We shall call the estimator PN consistent with 
respect to the topology n (ll-consistent) if for every P E .9 and every neigh
borhood U of P, 

(1.2) 

In the particular applications we have in mind, the topology n on .9 will 
often be metrized by a metric p, so that the topological space (.9, ll) is a 
metric space (.9, p). Consistency of PN will then be p -consistency, defined by 

(1.3) P( PN , P) ---"p 0 for every P E .9. 

We shall study the consistency of TN(PN) as an estimator of TN(P), assuming 
that PN is a consistent estimator of P. 

The metric p in (1.3) will often be the Hellinger metric H on .9. Recall 
that for P, Q E .9 with densities f and g with respect to a common u-finite 
measure J.L on (:!l', J¥'), the Hellinger distance H of P and Q is defined by 

(1.4) 

Note that this definition does not depend on the choice of the dominating 
measure J.L and that H is indeed a metric on .9. If p = H, (1.3) becomes 
H(PN, P) ---" p 0 for every P E .9 and we say that PN is Hellinger-consistent. 
We call PN a IN -Hellinger-consistent estimator of P when 

(1.5) 

which means that for every P E .9 and £ > 0 there exists a C > 0 such that 
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Many results in asymptotic statistics do not hold for all underlying distri
butions P E 9Y, but only for P E g; \ D, where the exceptional set D is in 
some sense small compared to 9Y. For a finite dimensional parametric family 
g; = {P11 : 8 E 0} with 0 c iRk, we may identify g; with 0, and the exceptional 
subset of 0 will typically be small in the sense that it has Lebesgue measure 
zero. On the more general spaces of distributions g; that we consider in this 
paper, there is no obvious analogue of Lebesgue measure for which "small" 
sets can naturally be described as sets of measure zero. Moreover, our 
formulation of the consistency problem as well as our proofs of the results are 
largely topological rather than measure theoretic. It is therefore hardly 
surprising that the exceptional set D in our results will be small in a 
topological sense: D will be a set of the first category in (9Y, II). We recall 
that a set of the first category is a countable union of nowhere dense sets, and 
that a set is nowhere dense in (9Y, II) if its closure does not contain an open 
set in (9Y, II). 

We begin our study of the consistency of substitution estimators with an 
elementary observation. Suppose that the sequence TN : (9Y, II)~ (~, r) is 
equicontinuous on 9Y, that is, for every P E g; and s > 0 there exists a 
neighborhood Ue of p such that r(TN(P), TN(Q)) < £ for all Q E Ue and 
N = 1, 2, .... Then consistency of PN clearly implies consistency of TN(PN ), 
since for every P E g; and s > 0, 

as N ~ oo. Trivial though this observation may be, we shall dignify it by 
including it among the four theorems in this section. 

THEOREM 1.1. Suppose the following statements hold: 

(i) The sequence of maps TN: (9Y, II)~(~, r) is equicontinuous on 9Y. 
(ii) There exists an estimator PN = PN(X1 , •.• , XN) of P with values in 9Y, 

which is II-consistent for P E 9Y. 

Then TN(PN) is an r-consistent estimator of TN(P); thus, 

(1.7) 

We can push this argument a little bit further by assuming that g; = 
U; E 19Y; for an arbitrary index set I and disjoint measurable 9Y;, and that the 
assumptions of Theorem 1.1 hold on each 9Y; separately. If II; = {U n 9Y; : 
U E II} denotes the relative topology on 9Y; , we have the following corollary: 

COROLLARY 1.1. Suppose that g; = U i E 19Y; and that the following state
ments hold: 

(i) For each i E I, the sequence of maps TN: (9Y;, II)~(~, r) is equicon
tinuous on 9Y;. 
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(ii) There exists a ll-consistent estimator PN = PN(X1 , •.• , XN) of P E .9 
with the additional property that for each i E /, pN(pN E .9) ~ 1 for every 
p E .9;. 

Then TN(PN) is an r-consistent estimator of TN(P). 

This result also follows directly from Theorem 1.1 by replacing the topology 
n by the smallest topology containing ll; for all i E /. This has the effect of 
isolating the .9; from one another by making each .9; both open and closed. 
Note that assumption (ii) of Corollary 1.1 implies that PN can serve as a test 
statistic for testing the hypothesis P = P; versus P =Pi, whenever P; E .9; , 
Pi E g;i and i =I= j . This test is asymptotically perfect in the sense that both 
error probabilities tend to zero as N ~ oo. 

It is clear that the equicontinuity assumption for TN cannot be weakened 
much further unless one is willing to impose even more severe restrictions on 
the estimator PN. However, the equicontinuity of TN does merit further 
attention. It is often the case that TN converges pointwise to a function T: 
(.9, ll) ~ (9f, r), that is, 

(1.8) r(TN(P), T(P)) ~ 0 for every P E .9. 

We shall show that in this case continuity of each TN ensures equicontinuity 
of TN outside of a set of the first category. As a result we have the following 
theorem: 

THEOREM 1.2. Suppose the following statements hold: 

(i) For every N, the map TN: (.9, ll) ~ (9f, r) is continuous. 
(ii) For every P E .9, TN(P) converges to a limit T(P) in (9f, r). 

(iii) There exists an estimator PN = PN(X1 , •. • , X N) of P with values in .9, 
which is ll-consistent for P E .9. 

Then there exists a set D of the first category in (.9, ll) such that the sequence 
TN is equicontinuous at every point P E .9 \D, and hence 

(1.9) 

Since TN ~ T in Theorem 1.2, we have replaced TN(P) by T(P) in (1.9): 
consistent estimation of TN(P) and T(P) amounts to the same thing in this 
case. We do insist, however, that the substitution estimator be of the form 
TN(PN ), rather than T(PN ). This is because in applications such as the 
bootstrap one often has no way of knowing the functional form ofT. Neverthe
less, the reader should note that under the assumptions of Theorem 1.2, 
T(PN) is indeed a consistent estimator of T(P) for P E .9 \D, because 
equicontinuity of TN implies continuity ofT. 

Let us briefly discuss the results stated so far. Theorem 1.1 makes it clear 
that, as long as we make no assumptions about the speed of convergence of 
PN to P, the equicontinuity of the sequence TN is the key to consistency of 
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TN(PN ). Of course one can reduce the severity of the equicontinuity assump
tion somewhat by placing restrictions in probability on the possible values of 
PN. Corollary 1.1 is an example of this. If TN~ T, Theorem 1.2 provides a 
worst case scenario: the substitution estimator can only fail to be consistent 
on a set D of exceptional points, which is at most a set of the first category. 
Without further investigation, however, such a statement is of only limited 
practical value. Mter all, the true underlying distribution P may be one of 
the exceptional points. Also the convergence may of course be slow near these 
points. Thus Theorem 1.2 merely indicates the structure of the consistency 
problem rather than providing a complete solution. In any particular case one 
will have to investigate whether such exceptional points actually exist, and if 
so, where they are located. It often turns out that with a judicious choice of 
the topology nand the estimator PN , there are no exceptional points and the 
substitution estimator will be consistent for all P E .9. 

This last remark may need further clarification. In applications, the choice 
of the metric r on 92 will usually be determined in advance by the type of 
consistency that one would like the substitution estimator to possess. On the 
other hand, the choice of the topology n on .9, or of the metric p inducing it, 
is completely open to us. If n is a coarse topology, it will be relatively easy to 
find a consistent estimator PN of P, but relatively many sequences of maps 
TN will possess only limited continuity properties and the set of exceptional 
P for which TN(PN) is not consistent will be relatively large. Conversely, if n 
is a fine topology, there will be few, if any, consistent PN , but having found 
one, it will produce substitution estimators TN(PN ) which are consistent for 
relatively many sequences TN , except on relatively small sets of exceptional 
P. If the sequence TN is given in a particular application, the trick will be to 
find a topology which is fine enough to provide TN with sufficient continuity 
properties, yet coarse enough to admit a consistent estimate PN of P. In 
Section 3 we illustrate this search for an appropriate topology and for an 
estimator PN which is consistent in this topology by a number of examples. 

Another point worth noting concerns our interpretation of a set D of the 
first category as a "small" set. In a certain sense, this is indeed correct if 
(.9, ll) is topologically complete. In this case the category theorem asserts 
that .9\ D is at least dense in .9 [cf. Dudley (1989), page 44]. In more 
general cases, however, D may be quite large. In fact, the entire space .9 
may be of the first category in (.9, ll) and we may have D = .9, so that 
Theorem 1.2 is vacuous. We discuss an example of this phenomenon in 
Section 3. Fortunately it turns out that the pathological character of this 
example is due to an unfortunate choice of the topology n. A different choice 
of topology leads to an estimator PN for which the substitution estimator 
TN(FN) is consistent for all P E .9. 

In the preceding paragraphs we have stressed the constructive aspects of 
our results so far by explaining how these results may be used to arrive at an 
estimator PN which makes the substitution estimator TN(PN ) consistent. 
However, one may also approach the consistency problem from a different 
angle and investigate the existence of a consistent substitution estimator 
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without worrying about its construction. For a result of this type, a logical 
assumption is the existence of a consistent estimator TN= tN(X1 , .. • , X N) of 
TN(P). If no such estimator exists, there is no hope of finding a consistent 
substitution estimator. 

THEOREM 1.3. Suppose the following statements hold: 
(i) For every N, the map TN : (.9', ll) ~ (Bf, r) is measurable. 

(ii) The metric space (Bf, r) is separable. 
(iii) There exist an r-consistent estimator TN= tN(X1 , ..• , X N) of TN(P) for 

p E .9'. 

Then there exists an estimator PN = p N(X1 , . • • , X N) with values in .9' such 
that TN(PN) is an r-consistent estimator of TN(P) for every P E .9'. 

In the proof of Theorem 1.3 we construct the estimator P N explicitly on the 
basis of TN. Hence, if TN is not known to us, we cannot construct PN, and if it 
is known, it may not make much sense to construct PN and TN(PN) since we 
already have a consistent estimator TN of TN(P). Thus Theorem 1.3 should 
indeed be viewed purely as an existence statement to the effect that anything 
that can be estimated consistently at all, can be estimated consistently by a 
substitution estimator. The problem is of course to find an appropriate PN. 

The final result of this section allows us to construct a substitution 
estimator in some cases where TN is not known, but its existence is. We 
consider the case where (.9', ll) is a metric space (.9', H), the TN are assumed 
to be continuous but not necessarily convergent and PN is IN -Hellinger
consistent. If TN(P) can be estimated consistently at all, we show that 
r(TN(PN), TN(P)) ~ 0 for every sequence PN with H(PN, P) = & (N- 1 12 ) and 
for all P outside of a set of the first category. Substituting PN for PN we find 
the following theorem: 

THEOREM 1.4. Let the topology n be metrized by the Hellinger metric H 
and suppose the following statements hold: 

(i) For every N, the map TN: (.9', ll) ~ (Bf, r) is continuous. 
(ii) There exists an r-consistent estimator TN = tN(X1 , ••• , XN) of TN(P) 

for P E .9'. 
(iii) There exists an estimator PN = pN(X1 , ..• , X N) with values in .9', 

which is IN -Hellinger-consistent for P E .9'. 

Then there exists a set D ofthe first category in (.9', H) such that TN(PN) is an 
r-consistent estimator of TN(P) for P E .9' \ D, that is, 

( 1.10) 

Because the requirement that PN is IN -Hellinger-consistent may be 
somewhat unexpected, we shall show by means of a counterexample (Exam
ple 3.4 in Section 3) that this assumption is really needed. Ordinary Hellinger 
consistency is not sufficient. It is clear from the work of Le Cam (1973, 1986) 
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and Birge (1983, 1986) that VlV -Hellinger-consistent estimators will gener
ally exist for finite dimensional families .9 where dimension is defined in 
terms of metric entropy. Typical examples of such families are parametric 
families .9 = {Pe: e E 0} with 0 c IRk, provided that Hellinger distance in 
.9 and Euclidean distance in 0 are compatible in some sense. For these fami
lies Theorem 1.4 enables us to find a substitution estimator that will work 
for "most" P if anything does. For infinite dimensional families .9, VlV
Hellinger-consistent estimators of P will generally not exist, and without 
further assumptions on TN, one will generally not be able to construct a 
satisfactory estimator of TN(P) either. 

We also note that for parametric families .9 = {Pe: e E 0} with 0 c IRk, it 
is possible to prove results similar to Theorem 1.4, where the exceptional set 
equals D = {P0 : e E 0 0 } and 0 0 has Lebesgue measure 0 [cf. Putter (1994)]. 

The two main results in this section are concerned with the interplay 
between conditions on TN and conditions on PN, needed to obtain reasonable 
substitution estimators TN(PN) of TN(P). Theorem 1.2 discusses what is 
needed for TN under the weakest possible condition (consistency) on PN. 
Theorem 1.4, on the other hand, operates under the weakest possible condi
tion [estimability of TN(P)] on TN. 

In the remainder of the paper we proceed as follows. In Section 2 we apply 
the results of this section to the bootstrap and discuss the significance of our 
results in this context. Section 3 provides a number of examples that clarify 
the relationship between our results and standard bootstrap theory. Proofs of 
Theorems 1.2, 1.4 and 1.3 are given in Sections 4, 5 and 6, respectively. 

2. The bootstrap. In the setup of the previous section, consider a se
quence of random variables YN = YN(X1, . . . , XN; P), where YN is a measur
able map from il?N X .9 to a separable metric space (..?, s ). Let !J't be the 
space of all probability distributions on (..?, s) equipped with a metric r, 
which metrizes weak convergence. An obvious choice for r is Prohorov's 
metric Q. For distributions R 1 , R 2 E !J'l this is defined by 

(2.1) Q(R 1 , R 2 ) = inf{s > 0: R 1(A):::; R 2(A 8 ) + e, for all A E~( ..?, s)}, 

where A 8 is an e-neighborhood of A. Since(..?, s) is separable, Q does indeed 
metrize weak convergence of probability measures in !J't [cf. Dudley (1989), 
Section 11.3], but of course other choices of r are also possible. Note that the 
separability of (..?, s) also implies that (!J't, r) is separable [ cf. Billingsley 
(1968), page 239]. Our aim is to estimate the law TN(P) of YN under P. 
Obviously TN(P) E !J'l. 

As before, let us estimate P by PN = p N(Xv . . . , XN) for a measurable map 
pN: il?N ~ .9. With PN as the resampling distribution, the bootstrap estima
tor of TN(P) is simply a substitution estimator TN(PN ). To see this, note that 
if the resampling distribution is PN, the bootstrap estimates the distribution 
of YN by that of 
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where Xi, ... , XjJ are i.i.d. with distribution PN. However, this is just a 
description of TN(PN ). The bootstrap estimate TN(PN ) can be computed either 
analytically or by Monte Carlo simulation, but we shall not be concerned with 
that question here. 

Note that the resampling distribution PN is not necessarily the empirical 
distribution of X1 , ... , X N, as is customary for the nonparametric bootstrap. 
In fact, our requirement that PN takes its values in go prohibits this in many 
cases. If, for example, go is a parametric family {P11 : () E 0}, our estimate 
PN = P0N will typically be based on an estimate ON of the parameter () and 
our bootstrap procedure will be the so-called parametric bootstrap. As we 
have indicated in Section 1, the purpose of this paper is to emphasize the 
importance of a judicious choice of the resampling distribution PN so as to 
satisfy the requirements of our theorems. All but one of the examples in 
Section 3 will concern cases where the nonparametric bootstrap fails, but a 
proper choice of PN will make the bootstrap work. On the one hand, this 
illustrates the great flexibility of the bootstrap method. On the other hand, it 
also shows that precise information about the behavior of the distribution 
TN(P) of YN as a function of P is needed to arrive at the correct resampling 
distribution PN. Unfortunately, such information may often not be available. 

With the present choice of (9P, r) and TN , Theorems 1.1-1.4 and Corollary 
1.1 become results on the consistency of the bootstrap. For the sake of brevity, 
we shall not reformulate these results in this particular context. All the 
reader has to remember is that TN(P) is now the distribution of the random 
variable YN = YN(X1, ... , X N; P) taking values in a separable metric space, r 
is a metric metrizing weak convergence of probability distributions on this 
space and TN(PN) is the bootstrap estimate of TN(P) with PN as the resam
pling distribution. As we pointed out above, assumption (ii) of Theorem 1.3 is 
automatically satisfied. 

We begin by noting that the equicontinuity condition of Theorem 1.1 has 
been used to prove consistency of the bootstrap estimator ever since the 
beginning of research on bootstrap asymptotics [cf., e.g., Bickel and Freedman 
(1981) and Beran (1984)]. 

In Theorem 1.2, the choice of the metric r is irrelevant as long as it 
metrizes weak convergence of probability distributions on the separable 
metric space (9 , s ). Assumption (ii) of Theorem 1.2 now means that the 
distributions TN(P) of YN converge weakly to a limit distribution T(P). The 
conclusion of Theorem 1.2 is that for P E go\ D, the bootstrap estimator 
TN(PN ) converges weakly to T(P) in probability. 

The situation is more complicated in the remaining results where we do 
not require convergence of TN(P). The conclusions of these theorems refer to 
sequences TN(PN) and TN(P) of distributions for which the distance tends to 
zero in r-metric. This is not a matter which depends only on the topology of 
weak convergence which is induced by r. For different choices of the metric r 
metrizing weak convergence, r(PN , QN ) ~ 0 may mean the same or different 
things [cf. Dudley (1989), Theorem 11.7.1 and problem 8 on page 313]. This 
problem disappears if the sequence TN(P) is uniformly tight. 
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In the context of the bootstrap, the assumption that the distributions 
TN(P) of YN converge weakly to a limit distribution T(P) is important for 
another reason as well. It allows us to use the (M -N)-bootstrap TM(PN ), 
where M = MN tends to infinity with N, but at a slower rate MN =o(N). 
Since consistent estimation of TM(P), TN(P) or T(P) amounts to the same 
thing in this case, the (M -N)-bootstrap may be viewed as an attempt to 
estimate TM(P) with the advantage of having at our disposal a resampling 
distribution PN which is much closer to the underlying P than PM. As a 
result the (M -N)-bootstrap is consistent much more generally than the 
traditional (N-N)-bootstrap [cf. Politis and Romano (1994)]. Viewed in this 
light, we may weaken condition (iii) of Theorem 1.4 to Hellinger consistency 
at an arbitrarily slower rate H(PN, P) = &p(aN) with aN~ 0, but Na'F. ~ oo, 

provided that we replace the bootstrap TN(PN) by the (M -N)-bootstrap 
TM(PN) with M = a"N2 and that TN(P) ~ T(P). However, with these modifi
cations, Theorem 1.4 is simply contained in Theorem 1.2 and it follows that 
we have nothing new to say about this method of improving the bootstrap by 
employing a smaller resample size. We are solely concerned with an appropri
ate choice of the resampling distribution PN. 

The assumption (i) in Theorems 1.2 and 1.4 that TN is continuous for each 
N will generally not cause any problems. For most reasonable choices of the 
topology ll and the metric r, the distribution TN of YN for a fixed value of N 
would be continuous if YN did not depend on P. The direct dependence of YN 
on P is not likely to make matters worse, and the assumption that TN is 
continuous for every fixed N will be satisfied in all reasonable cases. It is the 
equicontinuity that may be lacking for certain P. 

It was mentioned in Section 1 that for a parametric model go = {P0 : e E 8} 
with 8 c IRk, a IN -Hellinger-consistent parametric estimator PN =PeN will 
typically exist, provided that Hellinger distance in go and Euclidean distance 
in 8 are compatible in an appropriate sense. In this case, Theorem 1.4 
asserts that for continuous TN, the parametric bootstrap with resampling 
distribution PeN will work for "most" P if anything does, even if TN(P) does 
not converge to a limit distribution T(P). 

As we pointed out at the end of Section 1, Theorems 1.2 and 1.4 deal with 
two extreme cases with minimal conditions on PN and TN, respectively. In the 
context of the bootstrap this distinction attains an added significance. Before 
applying the bootstrap one should answer two questions: 

1. What should one bootstrap? 
2. How should one bootstrap? 

The first of these questions refers in particular to choosing the proper 
dependence of YN-and hence of TN(P)-on P. As a general rule one should 
do this in such a way that TN depends on Pas little as possible. Theorem 1.2 
suggests that whenever possible one should normalize YN so that its distribu
tion TN(P) tends to a limit distribution T(P). Any consistent choice of a 
resampling distribution PN will then produce a bootstrap TN(PN) that works 
outside a set D of the first category. To get rid of this set D, one may search 
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for a topology ll on g which is fine enough to make TN equicontinuous on !}iJ , 

and then for a ll-consistent estimator PN. Unfortunately, this step will often 
be impossible for lack of the necessary knowledge of TN . 

The second question refers to the choice of the resampling distribution PN. 
Theorem 1.4 asserts that even if we do not know how to normalize YN 
properly, the parametric bootstrap will generally still work on g \D. In 
nonparametric models, however, we had better make sure that TN converges. 

In the extensive literature on the bootstrap it is usually shown that the 
bootstrap is strongly consistent, in the sense that r(TN(PN ), TN(P)) ~ 0 
P-almost surely. For perfectly good reasons, strong consistency has not played 
an important role in the development of statistics so far, and hence we have 
been content to formulate our results in terms of ordinary (weak) consistency 
r(TN(PN ), TN(P)) ~P 0. 

3. Examples. In this section we shall give some examples that illustrate 
the importance of choosing an appropriate resampling distribution PN in 
applying the bootstrap. The first example exhibits a function TN(P) that is 
continuous in P with respect to Hellinger distance for every fixed N , but 
where the pointwise limit T(P) = limN -. oo TN(P) has a single discontinuity at 
a point P0 . It is shown that a parametric bootstrap fails in the point of 
discontinuity of T. With a suitable metric that isolates that point, the 
equicontinuity is recaptured. 

EXAMPLE 3.1. Let g> = {Pa: 0 s a < 1/2}, where Pa is the probability 
distribution on IR with distribution function Fa, defined for 0 < a < 1/2 by 

(3.1) ( 
0, if X S 0, 

Fa ( X) = 1 - ( 1 + a X) - 1 1 a , if X > 0, 

and for a = 0 by 

(3 .2) F 0 ( X) = lim Fa ( X) = { 01 ' _ x 
a--> 0 -e ' 

if X S 0 , 
if X > 0. 

Let g> be equipped with Hellinger distance Hand let the metric r on Yl be 
Levy's metric. The Hellinger distance on g is related to Euclidean distance 
on the parameter space [0, 1/ 2) by the relation 

Ia- /31 
(3.3) H(P P)= + o(la-/31) fora,f3E(0,1 / 2) 

a • {3 V2(1+a)(1+2a) 

and 

(3.4) 

We are interested in the distribution of the random variables 

(3.5) 

where M N stands for max ; ~ 1 N X ;. Note that YN depends on the underly-
ing distribution through N - a: ... ' 
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Let TN(Pa) be the law of YN when X1 , ... , XN are i.i.d. with distribution Pa 
and let GN, a denote the distribution function of TN(PJ. Then for 0 < a < 1/2, 

GN,a(x) = P(N-a(MN -log N)::::; x) = [F,(Nax +log N)]N 

X> -N-a log N, 

and for a= 0, 

GN,o(x) =P(MN-logN::;;x) =(1-exp(-x-logN))N, x > -logN. 

For fixed N, it is easily seen that TN is continuous at P, for a > 0. Further
more, GN ,(x) ---7 GN 0(x) as a ---7 0 for every x > -log N and hence 
r(TN(P,), ;N(P0 )) ---7 0 'as a ---7 0, so that TN(P) is continuous at P0 • Hence, for 
each N, TN is clearly continuous on !}'J. 

Now let N tend to infinity and let T(P,) be the pointwise limit of TN(Pa). 
The distribution function of T(P) will be denoted by Ga. Then for 0 < a < 
1/2, 

G,(x) = lim GN,a(x) = exp( -(ax) - lfa), 
N-> oo 

X> 0, 

and for a= 0, 

X E IR. 

We find that T(P) is not continuous at P 0 , since lima _, 0 Ga(x) = 0 for all x. 
Application of Theorem 1.2 yields the existence of a set D of the first 

category in (g;, H) such that the sequence TN is equicontinuous at P for all 
P E g; \D. Consequently if PN is a Hellinger-consistent sequence of estima
tors of P, the bootstrap with resampling distribution PN is consistent for all 
P E g; \D. Note that P 0 belongs to the exceptional set D since the limit T is 
not continuous at P0 • A closer analysis reveals that TN is equicontinuous at 
P, for a> 0. 

It appears therefore that P0 is the only trouble spot in the model !}'J, so the 
problem can be resolved by choosing a metric on g; that isolates P 0 . Take, for 
instance, 

(3.6) 
_ (H(P,Q), 

7r(P,Q)- In 
v2, 

ifP,Qi=P0 , 

if P = P0 * Q or P * P0 = Q. 

Clearly 7T defines a metric on g; and the sequence TN is trivially equicontinu
ous with respect to 7T at P 0 , and hence on !}'J, A 7T-consistent estimator of P 
will have to satisfy Pt(PN = P0 ) ---7 1 and for all P E!}iJ\ {P0} both pN(pN = 
Po) ---7 0 and H(PN, P) ---7p 0. If we set PN = PrxN' then this implies that aN 
has to be a consistent estimate of a satisfying 
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It is indeed possible to detect the isolated point P 0 in .9 with probability 
tending to 1 by choosing, for instance, 

if M N ::::;; 2log N, 
(3.7) 

otherwise. 

Since TN is equicontinuous with respect to 7T and 7T(P&N ' P) ~P 0, for every 
P E .9, the bootstrap with resampling distribution P& is consistent for every 

N 

P in .9. Note that this result may also be obtained directly by applying 
Corollary 1.1 combined with (3.7), but it seemed instructive to exhibit a 
metric 7T that separates {P0 } and .9 \ {P0 } explicitly. 

EXAMPLE 3.2. If the class of all possible distributions .9 is complete, the 
exceptional set of the first category, appearing in the result of Theorems 1.2 
and 1.4, is small in the sense that its complement is dense in .9. If .9 is not 
complete, however, these sets can be quite large. In this example we discuss a 
particular statistical model .9 equipped with Hellinger metric H, such that 
.9 is of the first category in (.9, H). This model is not an artificial construct, 
but it is the natural model for a statistical situation of interest. 

Let .9 be the class of probability distributions P on (0, oo) with distribution 
functions F satisfying 

(3.8) 
F(x) 

lim--= a(P) E (O,oo) . 
x'\.0 X 

Let X1, X2 , .•. be i.i.d. random variables taking values in (0, oo) with un
known common distribution P in .9 and distribution function F. Consider 
the random variable 

(3.9) 

and let TN(P) be the distribution of YN under P . Note that .9 is precisely the 
class of underlying distributions P for which TN(P) converges to a nondegen
erate limit T(P), which is an exponential distribution with parameter a(P). 
Let .9 be equipped with Hellinger distance H. Then assumptions (i) and (ii) 
of Theorem 1.2 are satisfied. It is shown in Putter and van Zwet (1994) that 
application of Theorem 1.2 does not yield any positive information in the 
sense that the exceptional set D appearing in the conclusion of the theorem 
equals the entire space .9. The aforementioned paper also contains a direct 
proof that .9 is indeed a set of the first category in (.9, H). Luckily, all this 
trouble is caused only by a wrong choice of the metric p. If we define 

(3 .10) 
IF(x)- G(x)l 

7T ( P, Q) = sup , 
x > O X 

where F and G denote the distribution functions corresponding to P and Q, 
then it is shown in Putter and van Zwet (1994) that the sequence TN is 
equicontinuous with respect to 7T for all P E .9. A 7T-consistent estimator PN 
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of P is also provided. Its distribution function FN is given by 

{
FN(gN) 

A x, ifO <X < gN, 
FN(x)= gN 

FN(x), if x ~ gN, 

(3.11) 

where FN denotes the empirical distribution function and gN is a sequence of 
positive numbers converging to zero with NgN ~ oo. It follows that the 
bootstrap with PN as resampling distribution works for all P in !!IJ. 

In practice, this example occurs in a slightly modified form. Instead of 
X1, . . . ' XN, one observes z1 = (j + X1, ... ' ZN = (j + XN for the purpose of 
estimating the parameter () E IR which is the lower endpoint of the support 
of the distribution of the Zi. When using min(Z1, ... , ZN) as an estimator of 
e, one is indeed interested in the distribution of YN = N(min(Z1, . .. , ZN)
()) = N min(X1, .. . , XN ). Obviously, PN as defined by (3.11) cannot be used 
for the resampling distribution of X'f, ... , Xf:r , since the empirical distribu
tion function FN of X1, . . . , XN is now unknown. However, a slight modifica
tion will work. If GN denotes the empirical distribution function of Z1, .. . , ZN, 
one can estimate the distribution P of X1 by a distribution PN with 
distribution function. 

{ 
GN(min(Z1, . . . ,ZN) + gN) 

_ X, if 0 < X < gN, 
FN(x) = gN 

GN(min(Z1, ... ,ZN) + x), if x ~ gN, 

where gN ~ 0 and NgN ~ 00 • It is easy to see that 7r(PN, PN) ~P 0, so that 
7r(PN, P) ~P 0 and the resampling distribution PN will produce a consistent 
bootstrap for all P E !!IJ. 

EXAMPLE 3.3 (Superefficiency). Another example, related to Example 3.1, 
is provided by Beran (1982). Consider an i.i.d. sequence X1, .. . , XN with a 
common normal distribution P8 with unknown mean () and unit variance. 
The Hodges estimator of () is given by 

f XN, if IXNI > N - 11\ 

(3.12) TN = \ bXN' if IXNI :::;; N - 114' 

where XN = (1/ N)L.f: 1 Xi and bE (0, 1). We wish to find a bootstrap esti
mate for the distribution TN(P0 ) of 

YN = N112 (TN- e) 

under P8 • We equip the class !!IJ = {P11 : () E IR} with the Euclidean metric din 
the parameter space, that is, d(P0 , P0 , ) = le- e'l. Thus, in effect we are 
identifying !!IJ and its parameter space R Let (.9P', l) denote the class of all 
distributions on IR equipped with the Levy metric l. Consider TN as a map 
from (!!IJ, d) to ( .9P', l). 
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If we denote the distribution function corresponding to TN(P0 ) by GN 0 , we 
find · 

<l>(x), 

( 
X + ( 1 - b) eN112 ) 

<I> b , 

<I>( -Nl/ 4 _ eN1; 2), 

<I>( Nl/ 4 _ eN1;2 ), 
if -1 < N - 114 (x + eN112 ) < -b, 

if b < N- 114 (x + eN112 ) < 1, 

where <I> denotes the standard normal distribution function. It follows that 
the pointwise limit G0 of GN 0 is given by 

(3.13) (
<l>(x j b), 

Go(x) = <l>(x), 
if e = o, 
otherwise. 

This implies that the limit T(P0 ) of TN(P0 ) is a normal distribution with 
variance b2 if e = 0 and unity otherwise. Since 0 < b < 1, the Hodges 
estimator is superefficient at e = 0. 

Obviously, TN is continuous at every P0 and since TN ~ T, Theorem 1.2 
applies, and hence the sequence TN is equicontinuous on .9 \ D, where D is 
of the first category. As T has a discontinuity at P0 , this distribution clearly 
belongs to D. Observing that GN 0(x) = GN I:J' (x) = <l>(x) if both lx + eN 112 1 

:?::::: N 11 4 and lx + e'N1121:?::::: N 11 4 ; we see th~t l(TN(P0 ), TN(P0 . )) can be made 
arbitrarily small for e' in a small neighborhood of a fixed e =1= 0 and large N, 
so that TN is equicontinuous at every P0 with e =I= 0. Hence, D = {P 0}, the 
single point of discontinuity of the limit distribution T . 

Of course this does not imply that 

(3.14) 

for sequences eN ~ 0. However, as Beran (1982) points out, (3.14) does hold 
for sequences eN converging at rate N - 112 . To see this, notice that for such 
sequences 

In fact, for every c > 0, (3.14) holds uniformly for leNI:?::::: cN- 112. This shows 
that for eN = XN, for instance, the parametric bootstrap with resampling 
distribution PeN will work for e =I= 0, but fails for e = 0. 

In Example 3.1 we have shown how to deal with a situation like this. By 
applying Corollary 1.1, we find that all we have to do to make the parametric 
bootstrap work is to modify the estimator eN = X N to ensure that 
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which is the Hodges estimator for b = 0, will accomplish this and the 
corresponding parametric bootstrap TN(P0) will work for all e. 

The reason we discuss the Hodges estimator TN is that it is perhaps the 
best known example of an estimator which is superefficient for a single 
parameter value e = 0. Le Cam (1953) has pointed out that one can modify 
TN in an obvious way to construct an estimator which is superefficient for all 
e belonging to a countable closed set in IR. Moreover, Le Cam showed that an 
estimator of e can only be superefficient on a set of the first category in IR 
equipped with the Euclidean metric. Since superefficiency can only occur at 
points where TN is not equicontinuous, this may be viewed as a consequence 
of Theorem 1.2. 

EXAMPLE 3.4. Our last example concerns the question of existence of a 
consistent bootstrap estimator. It may also clarify why a IN -Hellinger
consistent estimator PN is needed in Theorem 1.4. 

Let X 1 , X2 , ••• be i.i.d. random variables with a common normal distribu
tion with expectation e E IR and variance 1, which we shall indicate as Pe or 

- N 
.IY(e, 1). Define XN = (1/N)l::i ~ 1 xi and 

YN = N112(.XN- aNe). 

We distinguish three different cases. 
Case (i): aN = 1. The distribution TN(Pe) of YN is .#(0, 1) independent of e, 

which can obviously be estimated consistently for any metric r on !Jt. Also the 
sequence TN is equicontinuous for any topology II on go = {Pe: e E IR} and 
any metric r on !Jt. As we can choose any II and r, Theorem 1.1 ensures that 
t,_he bootstrap TN(P0) equals the true distribution TN(Pe) for any "estimator" 
eN of e, consistent or not. 

Case (ii): aN= 0. Now TN(Pe) is .IY(N112e, 1), which cannot be estimated 
consistently in Prohorov or Levy metric. The reason for this is that any 
estimator of e has an error which is at least of order N - 1; 2 in probability 
and as a result N 112e cannot be estimated consistently. It follows that there 
is no consistent bootstrap estimator of TN(Pe) either. 

Case (iii): aN = 1 - sN, sN \.. 0. Now TN(P0 ) is .!Y(sNN112e, 1) which can be 
estimated consistently by .IY(sNN112 XN, 1) in Prohorov or Levy metric. If eN 
is an estimator of e, the bootstrap TN(P0) will work if and only if 

sNNl/2 (eN - e) ---+p" 0 

for every e E R This is true for every sequence sN \.. 0 if and only if 
eN- e = &p(N- 112 ) or H(Pe' , Pe) = &p(N- 112 ). It follows that the assump
tion in The~rem 1.4 that ?; is IN -H~llinger-consistent cannot be relaxed. 
The bootstrap TN(Px), which incidentally is the same as .IY(sNN112 XN, 1), is 
obviously consistent. 
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4. Proof of Theorem 1.2. In this section (9J, ll) will be a topological 
space, (~, r) a metric space and TN a sequence of continuous maps from 
(iP, ll) to(~, r), converging to a limit T: (9J, ll) ~ (~, r). 

DEFINITION. TN is locally uniformly convergent at P0 if for every 8 > 0 
there exists a neighborhood Ue of P 0 and a number Ne such that 
r(TN(P), T(P)) ~ 8 for all N?. Ne and for all P E U8 • 

DEFINITION. TN is equicontinuous at P0 if for every 8 > 0 there exists a 
neighborhood ue of Po such that p E ue implies 

sup r(TN(P),TN(P0)) ~ 8. 

N 

For the sequence of continuous maps TN, define 

(4.1) E 1 = {P E lP : TN islocallyuniformlyconvergentat P}, 

( 4.2) E 2 = { P E 9J: TN is equicontinuous at P}. 

The following lemma asserts that E 1 and E 2 are equal. 

LEMMA 4.1. Suppose that TN is continuous for N = 1, 2, . . . and that TN 
converges pointwise to a limit T. Then TN is equicontinuous at P0 E 9J if and 
only if TN is locally uniformly convergent at P0 . 

PROOF. Suppose that TN is locally uniformly convergent at P0 and fix 
8 > 0. Then there exists a neighborhood Ue of P0 and an integer Ne such that 

r( TN( P)' T( P)) ~ 8 for p E ue and N?. Ne. 

Hence, for p E ue and N ?. Ne' 

r( TN( P), TN( P0)) ~ r( TN( P), TN/ P)) + r( TN( P0), TN,( P0)) 

+ r(TNe(P),TNc(P0 )) 

~ 48 + r( TN,( P), TN,( P0) ). 

Since TN is continuous for every N, there exists a neighborhood u; of P0 such 
that for p E u;, r(TN(P), TN(Po)) ~ 8 for N ~ Ne, so 

r(TN(P),TN(P0)) ~58 
for p E ue n u.: and all N . Hence TN is equicontinuous at Po. 

Conversely, suppose that TN is equicontinuous at P0 . Fix 8 > 0. Then 
there exists a neighborhood ue of Po such that r(TN(P), TN(Po)) ~ 8 for 
p E ue and all N . Since TN~ T, this implies that r(T(P), T(Po)) ~ 8 for 
p E Ue. Hence, for p E ue and all N, 

r(TN(P),T(P)) ~ r(TN(P),TN(P0)) + r(T(P),T(P0)) + r(TN(P0),T(P0)) 

~ 28 + r(TN(P0),T(P0)). 
As TN~ T, there exists Ne such that for all p E ue and N?. Ne, 

r(TN(P),T(P)) ~ 38, 

so TN is locally uniformly convergent at P0 . D 
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LEMMA 4.2. Suppose that TN is continuous for each N and that TN 
converges pointwise to a limit T. Let E 1 and E 2 be defined as in (4.1) and (4.2). 
Then Ef (and hence also E2) is a set of the first category in (9', ll). 

PROOF. The sequence of maps TN is locally uniformly convergent at P0 iff 
for every m there exists M = M(m) such that P 0 is an interior point of 

G m M = { P: r (TN ( P), T ( P)) ~ 2 ~ for all N 2 M} , 
and hence an interior point of the larger set 

FmM = {P: r( TN(P), TN'(P)) ~ 1/m for all N, N' 2M}. 

As TN is continuous, FmM is the intersection of closed sets and is therefore 
closed. S}nce TN ~ T, clearly U ~ ~ 1 F m M = 9' for every m. 

Let FmM denote the interior of FmM· The sequence TN is not locally 
uniformly convergent at P iff there exists m such that P $. U M FmM• that is, 
iff for some m, 

p E U FmM\ U FmM'· 
M=l M'=l 

Hence 

Ef = mQl ( MQl FmM \ MQl FmM') C mQl MQl ( FmM \FmM ). 

Since FmM is closed, FmM \FmM is a closed set with empty int~rior and 
therefore nowhere dense. It follows that the set U m U M(FmM \FmM) is a 
countable union of nowhere dense sets, and hence of the first category and a 
fortiori so is Ef. The lemma is proved. D 

PROOF OF THEOREM 1.2. When TN is equicontinuous at P and PN is a 
consistent estimator of P, it is clear from the argument leading to Theorem 
1.1 that r(TN(PN), TN(P)) ~P 0. It follows from Lemmas 4.1 and 4.2 that 
there exists a set D of the first category in 9' such that TN is equicontinuous 
at all P E 9' \D. The theorem is proved. D 

5. Proof of Theorem 1.4. In this section we shall assume that 9' is a 
metric space, equipped with Hellinger distance H and that TN: (9', H) ~ 
(.911, r) is continuous for each N. We shall omit the assumption that TN 
converges pointwise. For the proof of Theorem 1.4 we follow an entirely 
different path. Let us first collect some results about Hellinger distance. 
Suppose that for each N = 1, 2, ... , (2"N, S!IN) is a measurable space and Q IN 
and Q2N are probability measures on (2"N,S!IN) with densities q1N and q2N 
with respect to a u-finite dominating measure f.l-N· Let us define an asymptot
ically perfect test for distinguishing between {QlN} and {Q2N} as a sequence of 
tests for Q 1N against Q2 N for which the probabilities of errors of both type I 
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and type II tend to zero as N tends to infinity. Existence of such an 
asymptotically perfect test between {Q1N} and {Q2N} is related to the Hellinger 
distance between Q1N and Q2N. In particular, an asymptotically perfect test 
cannot exist iflimsupN .... oo H 2(Q1N, Q2N) < 2. 

LEMMA 5.1. Suppose that limsupN .... oo H 2(Q1N, Q2N) < 2. Then for any 
sequence AN Esi'N, 

PROOF. We can write 

(5.1) H 2(Q1N,Q2N) = j(qi{l- q~~2 ) 2 dp,N = 2- 2j(q1Nq2N)112 dp,N, 

and hence liminf f(q1Nq2N)112 dp,N > 0. The Cauchy-Schwarz inequality 
ensures that for every Nand for any set AN E si'N, 

f( )1/2 d f ( )1/2 d f ( )1/2 d q1Nq2N P,N = q1Nq2N P,N + c qlNq2N P,N 
A N A N 

::::;; (! q1Ndp,Nf q2Ndp,N)
112 

AN AN 

The lemma follows. D 

Let P and PN be probability measures on a measurable space (2", si') with 
densities p and PN with respect to a (T-finite measure p, on (2", si'). On the 
product measurable space (ZN, si'N) we define the product measures Q1N = 

pN and Q2N = P!/ with densities n~ 1 p(x) and n~ 1 PN(x) with respect 
to p,N = p,N. By (5.1) we have 

N 

1- ~H 2 (Q1N•Q2N) =f ... f n {p(xJpN(xJ}112 dp,N 
t = 1 

(5.2) = [f{p(x)pN(x)}l /2 dp,]N 

= (1- ~H 2 (P,PN)]N. 
It follows that H(P, PN) = &(N- 112) implies that limsupN H 2(Q1N, Q2N) < 
2, and Lemma 5.1 yields the following corollary: 

CoROLLARY 5.1. Suppose H(P, PN) = &(N - 112). Then for any sequence 
AN Esi'N, 
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LEMMA 5.2. Suppose that TN: (.91, H)~ (.9i", r) is continuous for every N 
and that TN= tN(X1 , ... , XN) is a consistent estimator of TN(P), that is, 

r(TN,TN(P)) ~P 0 foreveryP E .91. 

Then there exists a set D of the first category in (.91, H) such that for every 
P 0 E .91 \ D, every & > 0 and every sequence oN \.. 0, 

(5.3) lim sup pN(r(TN,TN(P))~&)=O. 
N-> oo {P: H(P,P0 ):;;8N} 

PROOF. Fix an integer k > 0 and define 1/Jfvkl: (.91, H)~ IR with Euclidean 
distance by 

1/Jfvkl( P) = pN (r(TN, TN( P)) ~ 1jk ), N = 1, 2, .... 

Clearly, 1/Jfvkl(p) ~ 0 as N ~ oo for every P E .91. Since we would like to apply 
Lemma 4.2 to 1/Jfvkl, we would also need continuity and hence we modify 1/Jfvkl 
slightly: choose oN \.. 0 and define 

~fvkl(P) = 2_fljk+8NpN(r(TN, TN(P)) ~ u) du. 
ON l j k 

We have 

(5.4) 

the last inequality for N ~ N 0 = N 0(k), such that oN :::; 1/(k(k + 1)). There
fore, ~Jvkl ~ 0 on .91, but ~Jvkl is also continuous on 9v. To see this, note that 
for any Pv P2 E .9i and A Est'N, IPf(A)- Pf'(A)I:::; H(Pf, Pf'), and for 
fixed N, we can make this arbitrarily small by taking H(P1 , P2 ) small [cf. 
(5.2)]. Hence, for every fixed N, 

1
-<kl 1 Jl /k+oN N( ( ) ) I !f;N (P1)-- P 2 r TN, TN(P1 ) ~ u du 

ON l jk 

can be made as small as we wish to taking H(P1 , P2 ) small. Since TN is 
continuous and the integral defining ~Jvkl depends continuously on the upper 
and lower bound of the range of integration, the same is true for 

1

1 Jl /k+oN N( ( ) ) -<kl I - P 2 r TN, TN(P1 ) ~ u du- !fiN (P2 ) , 
ON ljk 

which proves the continuity of each of the functions ~Jvkl. 
Application of Lemma 4.2 yields the existence of a set n<kl of the first 

category in (.91, H) such that {~Jvkl} is locally uniformly convergent at P0 for 
every P0 E .91\ D(kl, so a fortiori 

( 5.5) sup ~Jvkl( P) ~ 0 
{P: H(P , P0 ):;;8N} 

for every Po E .91\ D(k) and every sequence ON\, 0. Taking D = u ~= l n<k) 
and noting that D is also of the first category, we find that (5.5) holds for all 
k = 1, 2, ... , provided that P0 E .91\ D. Because of (5.4), this implies the 
same for !f;}J'l itself, and hence we obtain (5.3) and the lemma. 0 
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LEMMA 5.3. Suppose that TN: (go, H)~ (~, r) is continuous for every N 
and that TN= tN(X1, ... , XN) is a consistent estimator of TN(P). Then there 
exists a set D of the first category in (go, H) such that for every P 0 Ego\ D 
and every C > 0, 

(5.6) sup r( TN( P), TN( P 0 )) ~ 0. 
{P: H(P , P 0 ) :o:;,CN- 112 } 

PROOF. According to Lemma 5.2 we can choose a set D of the first 
category in (go, H) such that for every P0 Ego\D, every C > 0 and every 
E > 0, 

(5.7) sup pN(r(TN,TN(P))~s)~O. 
(P: H(P,P0 )5CN- 112 } 

Fix Po Ego\D and take any sequence PN E go with H(PN, Po):::;; cN- 112. 
For N = 1, 2, ... , define 

AN= {r(TN,TN(P0 )) ~ r(TN,TN(PN))} Esd'N. 

On AN we have 

r(TN, TN( P 0 )) ~ 1/2{r(TN, TN( PN)) + r(TN, TN( P 0 ) )} 

~ lj2r(TN(PN),TN(P0 )), 

and similarly on A'N, 

r(TN,TN(PN)) > 1j2r(TN(PN),TN(P0 )). 

It follows that 

[Pt'(AN) + Pff(A'N)]:::;; 21co ,2 e)(r(TN(PN),TN(P0 ))) 

+2 sup pN(r(TN,TN(P))~s). 
{P : H(P, P 0 )5CN- 112} 

Because H(PN, P0 ):::;; CN- 112 , we can combine Corollary 5.1 and (5.7) to 
conclude that 

limsupr(TN(PN),TN(P0 )):::;; 2s. 
N 

Since sis an arbitrary positive number and PN is an arbitrary sequence with 
H(PN, P0 ):::;; CN- 112 the proof is complete. D 

PROOF OF THEOREM 1.4. Take D as in Lemma 5.3, fix P Ego \ D and take 
s > 0. By assumption (iii), we can find C > 0 such that for every N, 

pN( H( fiN, P) :::;; cN- 112 ) ~ 1- s. 

Application of Lemma 5.3 yields that for every positive o and for every 
p Ego\D, 

limsupPN(r(TN(PN),TN(P)) > o):::;; E, 
N 

and as s is positive but otherwise arbitrary, this proves the theorem. D 
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6. Proof of Theorem 1.3. In this section we only assume measurability 
of the maps TN, separability of (9f, r) and the existence of an r-consistent 
estimator TN of TN(P). To construct an r-consistent substitution estimator 
TNCPN ), we begin by choosing PN = pN(X1, .. . , XN) to be an approximate 
minimum distance estimator, that is, an estimator satisfying 

(6.1) 

for some sequence BN "- 0. If this can be done in such a way that PN: !P:N ---7 go 
is measurable so that PN is a proper estimator, then the consistency of 
TN(PN) will follow, since for every P0 Ego, 

r(TN(PN),TN(P0 )) ~ r(TN,TN(PN)) + r(TN,TN(P0 )) 

~ inf r(TN, TN( P)) + BN + r(TN, TN( P 0 )) 
P E:Ji' 

~ 2r(TN, TN( P 0 )) + BN ---7p0 0 

because of the consistency of TN . 
It remains to be shown that (6.1) can be satisfied for a measurable PN· 

Define 9f0 = {TN(P): P Ego}, let ~0 denote the closure of 9f0 in (9f, r) and 
let T !J denote the projection of TN E 9f on ~0 . Inequality ( 6.1) asserts that 
PN must be chosen in such a way that TN(PN) lies in a ball with center TN 
and radius r(TN, TjJ) + BN. One easily convinces oneself that this implies 
that for any ball B c9f with radius BN/3, we can choose a fixed PN 
satisfying (6.1) for all TN E B. As (9f, r) is separable, we can cover 9f with a 
countable number of balls Bk with radius BN/3. For every m, we can 
therefore define PN as a fixed point of go for all TN in the measurable set 
Bm n r:l Bk, so that PN is an elementary measurable function of TN. As TN 
is a measurable function of Xl> ... , XN, the proof is complete. D 
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RESAMPLING FEWER THAN n OBSERVATIONS: 
GAINS, LOSSES, AND REMEDIES FOR LOSSES 

P. J. Bickel, F. Gotze and W. R. van Zwet 
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Abstract: We discuss a number of resampling schemes in which m = o(n) observa
tions are resampled. We review nonparametric bootstrap failure and give results 
old and new on how the m out of n with replacement and without replacement 
bootstraps work. We extend work of Bickel and Yahav (1988) to show that m 
out of n bootstraps can be made second order correct , if the usual nonparametric 
bootstrap is correct and study how these extrapolation techniques work when the 
nonparametric bootstrap does not. 

Key words and phrases: Asymptotic, bootstrap, nonparametric, parametric, test
ing. 

1. Introduction 

Over the last 10-15 years Efron's nonparametric bootstrap has become a 
general tool for setting confidence regions, prediction, estimating misclassification 
probabilities, and other standard exercises of inference when the methodology is 
complex. Its theoretical justification is based largely on asymptotic arguments 
for its consistency or optimality. A number of examples have been addressed 
over the years in which the bootstrap fails asymptotically. Practical anecdotal 
experience seems to support theory in the sense that the bootstrap generally 
gives reasonable answers but can bomb. 

In a recent paper Politis and Romano (1994), following Wu (1990), and 
independently Gotze (1993) showed that what we call the m out of n without 
replacement bootstrap with m = o( n) typically works to first order both in the 
situations where the bootstrap works and where it does not. 

The m out of n with replacement bootstrap with m = o( n) has been known 
to work in all known realistic examples of bootstrap failure. In this paper, 

• We show the large extent to which the Politis, Romano, Gotze property is 
shared by the m out of n with replacement bootstrap and show that the latter 
has advantages. 

• If the usual bootstrap works them out of n bootstraps pay a price in efficiency. 
We show how, by the use of extrapolation the price can be avoided. 
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• We support some of our theory with simulations. 

The structure of our paper is as follows. In Section 2 we review a series 
of examples of success and failure to first order (consistency) of (Efron's) non
parametric bootstrap (nonparametric). We try to isolate at least heuristically 
some causes of nonparametric bootstrap failure. Our framework here is some
what novel. In Section 3 we formally introduce them out of n with and without 
replacement bootstrap as well as what we call "sample splitting", and establish 
their first order properties restating the Politis-Romano-Gotze result. We relate 
these approaches to smoothing methods. Section 4 establishes the deficiency of 
the m out of n bootstrap to higher order if the nonparametric bootstrap works 
to first order and Section 5 shows how to remedy this deficiency to second order 
by extrapolation. In Section 6 we study how the improvements of Section 5 be
have when the nonparametric bootstrap doesn't work to first order. We present 
simulations in Section 7 and proofs of our new results in Section 8. The critical 
issue of choice of m and applications to testing will be addressed elsewhere. 

2. Successes and Failure of the Bootstrap 

We will limit our work to the i.i.d. case because the issues we discuss are 
clearest in this context. Extension to the stationary mixing case, as done for the 
m out of n without replacement bootstrap in Politis and Romano (1994), are 
possible but the study of higher order properties as in Sections 4 and 5 of our 
paper is more complicated. 

We suppose throughout that we observe X1, ... , Xn taking values in X= RP 
(or more generally a separable metric space). i.i.d. according to F E F0 . We 
stress that Fo need not be and usually isn't the set of all possible distributions. 
In hypothesis testing applications, Fo is the hypothesized set, in looking at the 
distributions of extremes, Fo is the set of populations for which extremes have 
limiting distributions. We are interested in the distribution of a symmetric func
tion of xl,···,Xn; Tn(Xl, ... ,Xn,F) = Tn(Fn,F) where Fn is defined to be 
the empirical distribution of the data. More specifically we wish to estimate a 
parameter which we denote en(F), of the distribution of Tn(Fn, F), which we 
denote by .Cn(F). We will usually think of en as real valued, for instance, the 
variance of fo median (X1, ... , Xn) or the 95% quantile of the distribution of 
fo(X- Ep(XI)). 

Suppose Tn(-, F) and hence en is defined naturally not just on Fo but on F 
which is large enough to contain all discrete distributions. It is then natural to 
estimate F by the nonparametric maximum likelihood estimate, (NPMLE), Fn, 
and hence en(F) by the plug in en(Fn)· This is Efron's (ideal) nonparametric 
bootstrap. Since en(F) = r(.Cn(F)) and, in the cases we consider, computation 
of 1 is straightforward the real issue is estimation of .Cn(F). Efron's (ideal) 
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bootstrap is to estimate .Cn(F) by the distribution of Tn(Xi , ... , X~ , Fn) where, 
given xl, .. . 'Xn the Xt are i.i.d. Fn, i.e. the bootstrap distribution of Tn. In 
practice, the bootstrap distribution is itself estimated by Monte Carlo or more 
sophisticated resampling schemes, (see DeCiccio and Romano (1989) and Rikley 
(1988)). We will not enter into this question further. 

Theoretical analyses of the bootstrap and its properties necessarily rely on 
asymptotic theory, as n -----+ oo coupled with simulations. We restrict analysis to 
Tn(Fn, F) which are asymptotically stable and nondegenerate on :Fo. That is, 
for all F E Fo, at least weakly 

.Cn(F) -----+ .C(F) non degenerate 

en(F)-----+ e(F) (2.1) 

as n-----+ oo. 
Using m out of n bootstraps or sample splitting implicitly changes our goal 

from estimating features of .Cn(F) to features of .Cm(F). This is obviously non
sensical without assuming that the laws converge. 

Requiring non degeneracy of the limit law means that we have stabilized the 
scale of Tn ( Fn, F). Any functional of .Cn (F) is also a functional of the distribution 
of crnTn(Fn, F) where ern -----+ 0 which also converges in law to point mass at 0. 
Yet this degenerate limit has no functional e(F) of interest. 

Finally, requiring that stability need occur only on :F0 is also critical since 
failure to converge off :Fo in a reasonable way is the first indicator of potential 
bootstrap failure . 

2.1. When does the nonparametric bootstrap fail? 

If en does not depend on n, the bootstrap works, (is consistent on :Fo), if e is 
continuous at all points of :F0 with respect to weak convergence on :F. Conversely, 
the nonparametric bootstrap can fail if, 
1. e is not continuous on :Fo. 

An example we explore later is en(F) = 1(F discrete) for which en(Fn) obvi
ously fails if F is continuous. 
Dependence on n introduces new phenomena. In particular, here are two 
other reasons for failure we explore below. 

2. en is well defined on all of :F but e is defined on :Fo only or exhibits wild 
discontinuities when viewed as a function on :F. This is the main point of 
examples 3-6. 

3. Tn(Fn, F) is not expressible as or approximable on :Fo by a continuous function 
of ..fii(Fn- F) viewed as an object weakly converging to a Gaussian limit in 
a suitable function space. (See Gine and Zinn (1989).) Example 7 illustrate 
this failure. Again this condition is a diagnostic and not necessary for failure 
as Example 6 shows. 
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We illustrate our framework and discuss prototypical examples of bootstrap 
success and failure. 

2.2. Examples of bootstrap success 

Example 1. Confidence intervals: Suppose (J"2 (F) :::::::: Var F(Xt) < oo for all 
FE Fa. 
(a) Let Tn(Fn, F) :::::::: vn(X- EFX1). For the percentile bootstrap we are inter
ested in Bn(F) :::::::: PF[Tn(Fn , F) ::; t]. Evidently B(F) = q)C· (~) ). In fact, we want 

to estimate the quantiles of the distribution of Tn(Fn, F). If Bn(F) is the 1- a 
quantile then B(F) = (J"(F)z1 -a where z is the Gaussian quantile. 

~ - 2 1 -2 
(b) Let Tn(Fn ,F) = vn(X- EFXI)/s where s = n-1 Li=1(Xi- X) . If 

Bn(F) :::::::: PF(Tn(Fn, F) ::; t] then, B(F) = q)(t), independent of F. It seems silly 
to be estimating a parameter whose value is known but, of course, interest now 
centers on B'(F) the next higher order term in Bn(F) = q)(t) + e'Jn) + O(n- 1). 

Example 2. Estimation of variance: Suppose F has unique median m(F), 
continuous density f(m(F)) > 0, EFIXI 8 < oo, some 5 > 0 for all F E Fa and 
Bn(F) = Var F(Vn median (X1 , ... , Xn)). Then B(F) = [4j2(m(F))]-1 on Fa. 

Note that , whereas Bn is defined for all empirical distributions F in both 
examples the limit B(F) is 0 or oo for such distributions in the second. Never
theless, it is well known (see Efron (1979)) that the nonparametric bootstrap is 

consistent in both examples in the sense that Bn(Fn).f...B(F) for F E Fa. 

2.3. Examples of bootstrap failure 

Example 3. Confidence bounds for an extremum: This is a variation on 
Bickel Freedman (1981). Suppose that all F E Fa have a density f continuous 
and positive at F-1 (0) > -oo. It is natural to base confidence bounds for F-1(0) 
on the bootstrap distribution of 

Tn(Fn,F) = n(minXi - F-1 (0)). 
~ 

Let 

Bn(F) = PF[Tn(Fn, F)> t] = (1- F( !._ + F-1 (0)t. 
n 

Evidently Bn(F) ---> B(F) = exp(-f(F- 1(0))t) on Fa. 
The nonparametric bootstrap fails. Let 

N~(t) = t 1(Xi ::; !._ + X (l) ), t > 0, 
i= l n 

where X (l) :::::::mini X i and 1(A) is the indicator of A. Given X(1), nFn(~+X(1)) 

is distributed as 1+ binomial (n -1, F(*~~j;~~~ifcll)) which converges weakly 
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to a Poisson (f(F- 1(0))t) variable. More generally, nFn("¢L + X(1)) converges 
weakly conditionally to 1 + N(·), where N is a homogeneous Poisson process 
with parameter f(F - 1(0)). It follows that N~(-) converges weakly (marginally) 
to a process M(1 + N(-)) where M is a standard Poisson process independent of 
N(·). Thus if, in Efron's notation, we use P* to denote conditional probability 
given Fn and let F~, be the empirical d.f. of x;, 0 0 0 ,X~ then P*[Tn(F~) > t] = 
P* [N~(t) = 0] converges weakly to the random variable P[M(1+N(t)) = OIN] = 
e-(N(t)+1) rather than to the desired O(F). 

Example 4. Extrema for unbounded distributions: (Athreya and Fukuchi 
(1994) , Deheuvels , Mason, Shorack (1993)) 

Suppose F E Fo are in the domain of attraction of an extreme value distri
bution. That is: for some constants An(F), Bn(F), 

n(1- F)(An(F) + Bn(F)x) --+ H(x, F), 

where H is necessarily one of the classical three types (David (1981) , p.259): 
e-t3x1(,Bx :2: 0), ax-t3 1(x :2: 0), a( -x)t3 1(x::; 0), for a, ,8 =/= 0. Let, 

On(F) = P [(max(X1, ... ,Xn)- An(F))/Bn(F)::; t] -+ e-H(t,F) := O(F). (2.2) 

Particular choices of An(F), for example, F - 1(1- ~) and Bn(F) are of interest 
in inference. However, the bootstrap does not work. It is easy to see that 

n(1- Fn(An(F) + tBn(F)))~N(t), (2 .3) 

where N is an inhomogeneous Poisson process with parameter H(t, F) and~ de
notes weak convergence. Hence ifTn(Fn , F)=(max(X1 , ... , Xn)-An(F))/Bn(F) 
then 

(2.4) 

It follows that the nonparametric bootstrap is inconsistent for this choice of 
An , En. If it were consistent , then 

P*[T (F* F ) < t]~e-H(t ,F) n n> n _ (2 .5) 

for all t and (2.5) would imply that it is possible to find random A real and B =/= 0 
such that N(Bt +A) = H(t, F) with probability 1. But H(t, F) is continuous 
except at 1 point. So (2.4) and (2.5) contradict each other. Again, O(F) is well 
defined for F E Fo but not otherwise. Furthermore, small perturbations in F 
can lead to drastic changes in the nature of H, so that e is not continuous if Fo 
is as large as possible. 

Essentially the same bootstrap failure arises when we consider estimating 
the mean of distributions in the domain of attraction of stable laws of index 
1 <a::; 2. (See Athreya (1987)) 
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Example 5. Testing and improperly centered U and V statistics: (Bre
tagnolle ( 1983)) 

Let Fo={F: F[-c,c]=1,EFX1=0} and let Tn(Fn)=nX2 =nfxydFn(x) 
dFn (y). This is a natural test statistic for H : F E Fo. Can one use the non
parametric bootstrap to find the critical value for this test statistic? Intuitively, 
Fn tf. Fo and this procedure is rightly suspect. Nevertheless, in more compli
cated contexts, it is a mistake made in practice. David Freedman pointed us to 
Freedman et al. (1994) where the Bureau of the Census appears to have fallen 
into such a trap. (see Hall and Wilson (1991) for other examples.) The nonpara
metric bootstrap may, in general, not be used for testing as will be shown in a 
forthcoming paper. 

In this example, due to Bretagnolle (1983), we focus on Fo for which a general 
U or V statistic T is degenerate and show that the nonparametric bootstrap 
doesn't work. More generally, suppose 1j; : R2 ---. R is bounded and symmetric 
and let Fo = {F: f'lj;(x , y)dF(x) = 0 for ally}. 

Then, it is easy to see that 

A J 0 0 Tn(Fn) = 1/J(x, y)dWn (x)dWn (y), (2.6) 

where W~(x) = y'n(Fn(x)- F(x)) and well known that 

where W 0 is a Brownian Bridge. On the other hand it is clear that, 

Tn(F~) = n J 1/J(x, y)dF~(x)dFn(Y) 

= j 1/J(x,y)dW~(x)dW~*(y) + 2 j 1/J(x,y)dW~(x)dW~*(y) 

+ j 1/J(x, y)dW~(x)dW~(y), (2.7) 

where W~*(x) = y'n(F~(x)- Fn(x)). It readily follows that, 

P*[Tn(F~)::; t] ~ P[j 1j;(x,y)dW0 (F(x))dW0 (F(y)) 

+2 j 1/J(x, y)dW0 (F(x))dW0 (F(y)) 

+ j 1/J(x, y)dW0 (F(x))dW0 (F(y)) ::; t1W0], (2.8) 

where W0 , W 0 are independent Brownian Bridges. 
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This is again an instance where B(F) is well defined for F E F but Bn(F) 
does not converge for F tf. Fa 

Example 6. Nondifferentiable functions of the empirical: (Beran and 
Srivastava (1985) and Diimbgen (1993)) 

Let Fa= {F: EpXf < oo} and 

Tn(Fn, F)= vn(h(X)- h(p,(F))) 

when p,(F) = EpX1. If his differentiable the bootstrap distribution of Tn is, of 
course, consistent. But take h(x) = lx l, differentiable everywhere except at 0. It 
is easy to see then that if p,(F) #- 0, £n(F) ---+ N(O, Var p(X1)) but if p,(F) = 0, 
£n(F) ---+ IN(O, Var p(Xl))l. 

The bootstrap is consistent if p, #- 0 but not if p, = 0. We can argue as follows. 
Under p, = 0, yn(X* - X), ynX are asymptotically independent N(O, CJ 2 (F)). 
Call these variables z and Z'. Then, vn( IX* I - IXI)~ I Z + Z'I- IZ' I, a variable 
whose distribution is not the same as that of IZI. The bootstrap distribution, 
as usual, converges (weakly) to the (random) conditional distribution of IZ + 
Z'l - IZ'I given Z'. This phenomenon was first observed in a more realistic 
context by Beran and Srivastava (1985). Diimbgen (1993) constructs similar 
reasonable though more complicated examples where the bootstrap distribution 
never converges. If we represent Tn(Fn , F) = yn(T(Fn) - T(F)) in these cases 
then there is no linear T(F) such that yn(T(Fn) - T(F)) ~ ynT(F)(Fn - F) 
which permits the argument of Bickel-Freedman (1981). 

2.4. Possible remedies 

Putter and van Zwet (1993) show that if Bn(F) is continuous for every n on 
F and there is a consistent estimate Fn of F then bootstrapping from Fn will 
work, i.e. Bn(Fn) will be consistent except possibly for Fin a "thin" set. 

If we review our examples of bootstrap failure, we can see that constructing 
suitable Fn E Fa and consistent is often a remedy that works for all F E Fa 
not simply the complement of a set of the second category. Thus in Example 3 
taking Fn to be Fn kernel smoothed with bandwidth hn ---+ 0 if nh~ ---+ 0 works. 
In the first and simplest case of Example 4 it is easy to see, Freedman (1981), 
that taking Fn as the empirical distribution of Xi- X, 1 ::; i ::; n which has mean 
0 and thus belongs to Fa will work. The appropriate choice of Fn in the other 
examples of bootstrap failure is less clear. For instance, Example 4 calls for Fn 
with estimated tails of the right order but how to achieve this is not immediate. 

A general approach which we believe is worth investigating is to approximate 
Fa by a nested sequence of parametric models, (a sieve), {Fa,m}, and use the 
M.L.E. Fm(n) for Fa ,m(n)' for a suitable sequence m(n) ---+ oo. See Shen and 
Wong (1994) for example. 
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The alternative approach we study is to change Bn itself as well as possibly 
its argument. The changes we consider are the m out of n with replacement 
bootstrap, the ( n - m) out of n jackknife or (;:J bootstrap discussed by Wu 
(1990) and Politis and Romano (1994), and what we call sample splitting. 

3. The m Out of n Bootstraps 

Let h be a bounded real valued function defined on the range of Tn, for 
instance, t ----> 1 ( t ::; to). 

We view as our goal estimation of Bn(F) = Ep(h(Tn(Fn , F))). More com
plicated functionals such as quantiles are governed by the same heuristics and 
results as those we detail below. Here are the procedures we discuss. 
(i) The n/n bootstrap (The nonparametric bootstrap) 

Let, 

Bn(F) = E*h(Tn(F~ , F)) = n- n L h(Tn(Xil' ... ,Xin,F)). 
(i1, ... ,in) 

Then, Bn = Bn(Fn) = Bn(F) is the n/n bootstrap. 
(ii) The m/n bootstrap 

Let 

Bm,n(F) = n- m L h(Tm(Xil' ... 'xim' F)). 
(i1, ... ,im) 

Then, Bm,n = Bm,n(Fn) = Bm(Fn) is the m/n bootstrap. 
(iii) The (;:,) bootstrap 

Let 

(n) -1 

Jm,n(F) = L 
m . . 

'll < .. ·<~m 

Then, Jm,n = Jm,n(Fn) is the (;:,) bootstrap. 
(iv) Sample splitting 

Suppose n = mk. Define, 

k- 1 

Nm ,n(F) = k- 1 L h(Tm(Xjm+1, ... 'x(j+1)ml F)) 
j=O 

and Nm,n = Nm,n(Fn) as the sample splitting estimates. For safety in practice 
one should start with a random permutation of the Xi· 

The motivation behind Bm(n) ,n for m(n) ----> oo is clear. Since, by (2.1), 

Bm(n)(F) ----> B(F), Bm(n)(Fn) has as good a rationale as Bn(Fn)· To justify lm,n 
note that we can write Bm (F) = Bm ( F x · · · x F) since it is a parameter of the 

'-v-" 
m 
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law of Tm(Xl, ... , Xm, F). We now approximate F x · · · x F not by the m 
dimensional product measure Fn x · · · x Fn but by sampling without replace-

m 
ment. Thus sample splitting is just k fold cross validation and represents a crude 
approximation to F x · · · x F. 

'-v-" 
m 

The sample splitting method requires the least computation of any of the 
lot. Its obvious disadvantages are that it relies on an arbitrary partition of the 
sample and that since both m and k should be reasonably large, n has to be really 
substantial. This method and compromises between it and the (;:J bootstrap are 
studied in Blom (1976) for instance. The (~) bootstrap differs from the mjn by 
op(1) if m = o(n112 ). Its advantage is that it never presents us with the ties 
which make resampling not look like sampling. As a consequence, as we note in 
Theorem 1, it is consistent under really minimal conditions. On the other hand 
it is somewhat harder to implement by simulation. We shall study both of these 
methods further , below, in terms of their accuracy. 

A simple and remarkable result on Jm(n) ,n has been obtained by Politis and 
Romano (1994), generalizing Wu (1990). This result was also independently 
noted and generalized by Gotze (1993). Here is a version of the Gotze result and 
its easy proof. Write 1m for lm,n, Bm for Bm,n, Nm for Nm,n· 

Theorem 1. Suppose r;: -----+ 0, m -----+ oo . 
Then, 

m 1 

Jm(F) = Bm(F) + Op((- )2). 
n 

(3.1) 

If h is continuous and 

Tm(Xl, ... , Xm, F)= Tm(Xl, ... , Xm, Fn) + Op(1) (3.2) 

then 
(3.3) 

Proof. Suppose Tm does not depend on F. Then, Jm is aU statistic with kernel 
h(Tm(xl, ... , Xm)) and EFJm = Bm(F) and (3.1) follows immediately. For (3.2) 
note that 

and (3.2) follows by bounded convergence. These results follows in the same 
way and even more easily for Nm. Note that if Tm does not depend on F, 
EFNm = Bm(F) and, 

m 
Var F(Nm) = -Var F(h(Tm(Xl, ... ,Xm))) > Var F(Jm)· (3.5) 

n 
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Note. It may be shown, more generally under (3.2), that, for example, dis
tances between the (;:J bootstrap distributions of Tm(Fm, F) and .Cm(F) are 
also 0p(m/n) 112 . 

( i) 
Let Xj = (Xj, ... , Xjhxi 

hi1 , ... , ir (Xl,···,Xr)=~ L h(Tm(XJ:1 l, ... ,xj!r ),F)), (3.6) 
r. l 5_ jd·· ·hr5.r 

for vectors i = ( i1, ... , ir) in the index set 

Then 

m 1 
Bm,n(F) = L . L Wm,n(i) (n) . L. hi(Xj1 , ••• , Xjr ' F), (3.7) 

r=1 ,EAr,rn r l5.Jl5.···5.Jr5.m 

where 

( .) (n) ( m ) / m Wm,n 't = . . n . 
r Zl, ... ,Zr 

Let 

m 

Bm,n(F) = EpBm,n(F) = L L Wm,n(i)Ephi(Xl, ... , Xr)· (3.8) 
r =1 iEAr,rn 

Finally, let 

and define bm(x) by extrapolation on [0, 1]. Note that 6m(1) = 0. 

Theorem 2. Under the conditions of Theorem 1 

m 1 

Em n(F) = Bm n(F) + Op(- )2. , , n 

If further, 
6m(1- xm- 112 ) ---t 0 

uniformly for 0 :::; x :::; M, all M < oo, and m = o( n), then 

Bm,n(F) = Bm(F) + o(1) . 

Finally if, 

fT1 (X(in) X(ir ) F) - fT1 (X(ii) X(ir) F~ ) + (1) 
1 m 1 '· · · ' r ' - 1 m 1 ' · · ·' r ' n Op 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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wheneveri E Ar,m,m---. oo andmax{i1, ... ,ir} = O(m112 ) then, ifm---. oo,m = 
o(n), 

(3.14) 

The proof of Theorem 2 will be given in the Appendix. There too we will 

show briefly that, in the examples we have discussed and some others, Jm(n), 

Bm(n)' Nm(n) are consistent for m(n)---* oo, 7: ---. 0. 
According to Theorem 2, if Tn does not depend om F the m/n bootstrap 

works as well as the (~) bootstrap if the value of T m is not greatly affected by 
a number on the order of vm ties in its argument. Some condition is needed. 

Consider Tn(X1, .. . ,Xn) = 1(Xi = Xj for some i # j) and suppose F is contin
uous. The (~) bootstrap gives T m = 0 as it should. If m # o( fo) so that the 

(~) and m/n bootstraps do not coincide asymptotically the m/n bootstrap gives 
Tm = 1 with positive probability. Finally, (3.13) is the natural extension of (3.2) 
and is as easy to verify in all our examples. 

A number of other results are available for m out of n bootstraps. 
Gine and Zinn (1989) have shown quite generally that when fo(Fn- F) is 

viewed as a member of a suitable Banach space :F and, 

(a) Tn(X1, ... , Xn, F)= t( fo(Fn- F)) fort continuous 
(b) :F is not too big 

then Bn and Bm(n) are consistent. 
Praestgaard and Wellner (1993) extended these results to Jm(n) with m = 

o(n). Finally, under the Gine-Zinn conditions, 

(3.15) 

if m = o( n). Therefore, 

(3.16) 

and consistency of Nm if m = o(n) follows from the original Gine-Zinn result. 
We close with a theorem on the parametric version of the m/n bootstrap 

which gives a stronger property than that of Theorem 1. 
Let :F0 = {Fe : B E 8 c RP} where 8 is open and the model is regular. 

That is, B is identifiable, the Fe have densities fe with respect to a 13 finite p 

and the map B ---. ..fTe is continuously Hellinger differentiable with nonsingular 
derivative. By a result of LeCam (see Bickel, Klaassen, Ritov, Wellner (1993) for 
instance), there exists an estimate Bn such that, for all B, 

J 1/2 1/2 2 1 
(f0n (x)- fe (x)) dp(x) =OpeC:;;)· (3.17) 
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Theorem 3. Suppose :Fo is as above. Let Ff) =Fe x · · · x Fe and II· II denote 
m 

the variational norm. Then 

(3.18) 

Proof. This is consequence of the relations (LeCam (1986)). 

liFe/; - F@:) II ::; H(Fe/; ' F@:) [(2 - H 2 (Fe/; ' F@:)], (3.19) 

where 

(3.20) 

and 

H 2 (Fe/;,F@:) = 1- (! Vfe0 fe 1 df.L)m = 1- (1- H 2 (Fe0 ,F))m. (3.21) 

Substituting (3.21) into (3.20) and using (3.17) we obtain 

I IF;'- FlJ II =Ope (1- exp Ope ( m))~ (1 + exp 0p8 ( m)~) =Ope (m)~. (3.22) 
n n n n 

This result is weaker than Theorem 1 since it refers only to the parametric 
bootstrap. It is stronger since even form= 1, when sampling with and without 
replacement coincide, IIFn - Fe II = 1 for all n if Fe is continous. 

4. Performance of Bm, Jm, and Nm as Estimates of Bn(F) 

As we have noted, if we take m( n) = o( n) then in all examples considered 
in which Bn is inconsistent, Jm(n) , Bm(n), Nm(n) are consistent. Two obvious 
questions are, 
(1) How do we choose m(n)? 
(2) Is there a price to be paid for using Jm(n), Bm(n), or Nm(n) when Bn is 
consistent? 

We shall turn to the first very difficult question in a forthcoming paper on 
diagnostics. The answer to the second is, in general, yes. To make this precise 
we take the point of view of Beran (1982) and assume that at least on :Fo, 

(4.1) 

where B(F) and ()'(F) are regularly estimable on :Fo in the sense of Bickel, 
Klaassen, Ritov and Wellner (1993) and O(n- 1 ) is uniform on Hellinger com
pacts. There are a number of general theorems which lead to such expansions. 
See, for example, Bentkus, Gotze and van Zwet (1994). 
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Somewhat more generally than Beran, we exhibit conditions under which 
En = Bn(Fn) is fully efficient as an estimate of Bn(F) and show that the m out 
n bootstrap with r;: ---+ 0 has typically relative efficiency 0. 

We formally state a theorem which applies to fairly general parameters Bn. 
Suppose p is a metric on Fo such that 

(4.2) 

Further suppose 
A. B(F), B'(F) are p Fn§chet differentiable in Fat F0 E F0 . That is, 

B(F) = B(Fo) + j 1/J(x, Fo)dF(x) + o(p(F, Fo)) (4.3) 

for 1/J E Lg(Fo) = {h : f h2 (x)dFo(x) < oo, f h(x)dFo(x) = 0} and B' obeys 
a similar identity with 1/J replaced by another function 1/J' E Lg(F0 ). Suppose 
further 
B. The tangent space of Fo at Fo as defined in Bickel et al. (1993) is Lg(Fo) so 
that 1/J and 1/J' are the efficient influence functions of e, B'. Essentially, we require 
that in estimating F there is no advantage in knowing F E F 0 . 

Finally, we assume, 
C. For all M < oo, 

a strengthened form of ( 4.1). Then, 

Theorem 4. Under regularity of B, B' and A and C at Fo, 

1 n 
= B(Fo) + B'(Fo)m-1/ 2 +- 2:)1/J(Xi, Fo) + 1/J'(Xi, F0 )m-112 ) 

n i=1 

+O(m- 1 ) + op(n- 112 ). (4.5) 

If B also holds, Bn(Fn) is efficient. If in addition, B'(Fo) =/= 0, and r;: ---+ 0 the 
efficiency of Bm(Fn) is 0. 

Proof. The expansions of B(Fn)e'(Fn) are immediate by Frechet differentiability 
and (4.5) follows by plugging these into (4.1). Since e, B' are assumed regular, 
1/J and 1/J' are their efficient influence functions. Full efficiency of Bn(Fn) follows 
by general theory as given in Beran (1983) for special cases or by extending 
Theorem 2, p.63 of Bickel et al. (1993) in an obvious way. On the other hand, if 

B'(Fo) =/= 0, fo(Bm(Fn)-Bn(Fo)) has asymptotic bias (~-1)e'(Fo)+0(~) = 

~(1 + o(1))B'(F0 )---+ ±oo and inefficiency follows. 
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Inefficiency results of the same type or worse may be proved about lm 
and Nm but require going back to Tm(Xl, ... , Xm, F) since lm and Bn are 
not related in a simple way. We pursue this only by way of Example 1. If 
en(F) = Var F(fo(X- f.L(F)) = e(F), Bm = Bn but, 

2 ~ m -1 
lm =a (Fn)(1- --). 

n-1 
(4.6) 

Thus, since e'(F) = 0 here, Bm is efficient but lm has efficiency 0 if fo ----t oo. 
Nm evidently behaves in the same way. 

It is true that the bootstrap is often used not for estimation but for setting 
confidence bounds. This is clearly the case for Example (1b), the bootstrap of 
t where e(F) is known in advance. For example, Efron's percentile bootstrap 
uses the (1 - o:)th quantile of the bootstrap distribution of X as a level (1 -
o:) approximate upper confidence bound for f.L · As is well known by now (see 
Hall (1992)), for example, this estimate although, when suitably normalized, 
efficiently estimating the (1- o: )th quantile of the distribution of y'n(X- f.L) does 
not improve to order n - 112 over the coverage probability of the usual Gaussian 
based X + ZI - a Jn· However, the confidence bounds based on the bootstrap 

distribution of the t statistic y'n(X- J-t( F))/ s get the coverage probability correct 
to order n - 112 . Unfortunately, this advantage is lost if one were to use the 1- o: 
quantile of the bootstrap distribution ofTm(Fm , F) = yrn(Xm -f.L(F))/ Sm where 
Xm and s~ are the mean and usual estimate of variance bsed on a sample of size 
m. The reason is that, in this case, the bootstrap distribution function is 

(4.7) 

rather than the needed, 

The error committed is of order m - 112 . More general formal results can be stated 
but we do not pursue this. 

The situation for Jm(n) and Nm(n) which function under minimal conditions, 
is even worse as we discuss in the next section. 

5. Remedying the Deficiencies of Bm(n) when Bn is Correct: Extrapo
lation 

In Bickel and Yahav (1988), motivated by considerations of computational 
economy, situations were considered in which en has an expansion of the form 
(4.1) and it was proposed using Bm at m =no and m = n1, no < n1 << n to 
produce estimates of en which behave like Bn. We sketch the argument for a 
special case. 
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Suppose that, as can be shown for a wide range of situations, if m---+ oo, 

A A I A -1 / 2 -1 
Bm = Bm(Fn) = B(Fn) + e (Fn)m + Op(m ). (5.1) 

Then, if n1 > no ---+ oo 

B'(Fn) = (Bno- Bn1 )(n0112 - n~ 1 12 )- 1 + Op(n01/ 2) (5.2) 

-1/ 2 -1 / 2 
A no Bnl - n1 Bno - 1 

B(Fn) = _112 _ 112 + Op(n0 ) (5.3) 
no - n1 

and hence a reasonable estimate of Bn is, 

More formally, 

Proposition. Suppose {Bm} obey C of Section 4 and non- 112 ---+ oo. Then, 

(5.4) 

Hence, under the conditions of Theorem 3 Bn0 ,n1 is efficient for estimating Bn(F). 

Proof. Under C, (5.4) holds. By construction, 

Bno,nl = B(Fn) + e'(Fn)n- 112 + Op(n01 ) + Op(n01/ 2n- 112) 

= Bn(Fn) + Op(n01 ) + Op(n0112n-112) + Op(n-1 ) 

= Bn(Fn) + Op(n01) (5.5) 

and (5.4) follows. 

Assorted variations can be played on this theme depending on what we know 
or assume about Bn. If, as in the case where Tn is at statistic, the leading term 
B(F) in (4.1) is= 80 independent ofF, estimation of B(F) is unnecessary and we 
need only one value of m =no. We are led to a simple form of estimate, since 1/J 
of Theorem 4 is 0, 

(5.6) 

This kind of interpolation is used to improve theoretically the behaviour of 
Bm0 as an estimate of a parameter of a stable distribution by Hall and Jing 
(1993) though we argue below that the improvement is somewhat illusory. 

If we apply (5.4) to construct a bootstrap confidence bound we expect the 
coverage probability to be correct to order n - 112 but the error is Op((n0n) - 112 ) 

rather than Op(n- 1 ) as with Bn. We do not pursue a formal statement. 
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5.1. Extrapolation of 1m and Nm 

We discuss extrapolation for Jm and Nm only in the context of the simplest 
Example 1, where the essential difficulties become apparent and we omit general 
theorems. 

In work in progress, Gotze and coworkers are developing expansions for gen
eral symmetric statistics under sampling from a finite population. These results 
will permit general statements of the same qualitative nature as in our discussion 

of Example 1. Consider Bm(F) = PF[vm(Xm- J-L(F)) ::; t]. If EX[ < oo and 
the Xi obey Cramer's condition, then 

where CJ 2 (F) and K3(F) are the second and third cumulants ofF and Hk(t) = 
(~t})k d~:~t). By Singh (1981), Em = Bm(Fn) has the same expansion with F 

replaced by Fn. However, by an easy extension of results of Robinson (1978) and 
Babu and Singh (1985), 

where 

~ 2 ~ m-1 
K2m = (J (Fn)(1- --) 

n-1 
~ ~ m- 1 2(m- 1) 

K3m = K3(Fn)(1- --)(1- ). 
n - 1 n - 2 

The essential character of expansion (5.8), if m/n = o(1), is 

(5.9) 

(5.10) 

(5.11) 

where In is Op(1) and independent of m . The mjn terms essentially come from 
the finite population correction to the variance and highter order cumulants of 
means of samples from a finite population. They reflect the obvious fact that 
if mjn ---+ ..\ > 0, Jm is, in general, incorrect even to first order. For instance, 
the variance of the (;,) bootstrap distribution corresponding to vm( X - J-L( F)) 
is 1/n I:(Xi- X)2 (1- ~~{ )) which converges to CJ2(F)(1- ..\) if m/n---+ ..\ > 0. 
What this means is that if expansions (4.1), (5.1) and (5.11) are valid, then 
using Jm(n) again gives efficiency 0 compared to En. Worse is that (5.2) with 
Jn0 , 1n1 replacing En0 , En1 will not work since the ndn terms remain and make 
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a contribution larger than n-112 if ni/n112 ---+ oo. Essentially it is necessary to 
estimate the coefficient of m/n and remove the contribution of this term at the 
same time while keeping the three required values of m: no < n1 < n2 such that 
the error oc;o + C;?) is o(n- 112). This essentially means that no,n1,n2 have 

order larger than n 112 and smaller that n 314 . 

This effect persists if we seek to use an extrapolation of lm for the t statistic. 
The coefficient of mjn as well as m - 1/ 2 needs to be estimated. An alternative here 
and perhaps more generally is to modify the t statistic being bootstrapped and 

extrapolated. Thus Tm(X1, .. . , Xm, F) = Vm er~~'::?d-~})2 leads to an expansion 

for Jm of the form, 

(5.12) 

and we again get correct coverage to order n - 112 by fitting the m - 112 term's 
coefficient, weighting it by n - 112 - m - 112 and adding it to lm· 

If we know, as we sometimes at least suspect in symmetric cases, that O(F) = 
0, we should appropriately extrapolate linearly in m - 1 rather than m - 112 . 

The sample splitting situation is less satisfactory in the same example. Under 
(5.1), the coefficient of 1/Vm is asymptotically constant . Put another way, 
the asymptotic correlation of Em, B>..m as m, n ---+ oo for fixed .A > 0 is 1. 

This is also true for Jm under (5.11). However, consider Nm and N2m (say) if 
Tm = J1Ti(Xm - p,(F)). Let h becontinuouslyboundedlydifferentiable, n = 2km. 
Then 

1 m _ 2m _ 

Cov (Nm, N 2m) = k Cov ( h(m-112(2:)Xj- X))), h((2m)- 112 2:)Xj- X))). 
j=1 j=1 

(5.13) 
Thus, by the central limit theorem, 

1 Cov ( (Z1 + Z2)) 
Corr(Nm, N2m) ---+ 2 Var (Z1 ) h(Z1), h V2 , (5.14) 

where z1 , z2 are independent Gaussian N(O, a 2(F)) and a2(F) = Var F(X1)· 
More generally, viewed as a process in m for fixed n , Nm centered and normalized 
is converging weakly to a non degenerate process. Thus, extrapolation does not 
make sense for N m. 

Two questions naturally present themselves. 
(a) How do these games play out in practice rather than theory? 
(b) If the expansions (5.1) and (5 .11) are invalid beyond the Oth order, the usual 
situation when the nonparametric bootstrap is inconsistent, what price do we 
pay theoretically for extrapolation? 
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Simulations giving limited encouragement in response to question (a) are 
given in Bickel and Yahav (1988). We give some further evidence in Section 7. 
We now turn to question (b) in the next section. 

6. Behaviour of the Smaller Resample Schemes When Bn is Inconsis
tent, and Presentation of Alternatives 

The class of situations in which Bn does not work is too poorly defined for 
us to come to definitive conclusions. But consideration of the examples suggests 
the following, 

A. When, as in Example 6, B(F), B'(F) are well defined and regularly estimable 
on :Fo we should still be able to use extrapolation (suitably applied) to Bm 
and possibly to lm to produce better estimates of Bn(F). 

B. When, as in all our other examples of inconsistency, B(F) is not regularly 
estimable on :Fo extrapolation should not improve over the behaviour of Bn0 , 

Bn1· 
C. If no, n1 are comparable extrapolation should not do particularly worse either. 
D. A closer analysis of Tn and the goals of the bootstrap may, in these "irregular" 

cases, be used to obtain procedures which should do better than them/nor 
(;:J or extrapolation bootstraps. 
The only one of these claims which can be made general is C. 

Proposition 1. Suppose 

(6.1) 

where ;::::: indicates that the ratio tends to 1. Then, if no/n1 f> 1 

(6.2) 

Proof. Evidently, Bna;Bn1 = Bn(F) + D(En) where D(En) means that the exact 
order of the remainder is En. On the other hand, 

Bn0 - Bn1 ( 1 1 1 1 ) (f¥0 ) 
- 1/ 2 - 1/ 2 ;;;:; - 2( ;;n;:. + ;;n:;-) = D(En) - + D(1) 

n 0 - n 1 v n v no v n1 n 

and the proposition follows. 

We illustrate the other three claims in going through the examples. 

Example 3. Here, p-1(0) = 0, 

t2 
Bn(F) = ef(O)t ( 1 + n- 1 j'(o)2 ) + O(n- 2) (6.3) 
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which is of the form (5.1). But the functional ()(F) is not regular and only 
estimable at rate n - 113 if one puts a first order Lipschitz condition on F E F 0 . 

On the other hand, 

~ t ~ t ~ 
log Bm = mlog(1- Fn(- )) = mlog(1- (Fn(-)- Fn(O))) 

m m 
t mAt t At t 2 = -m(F(- )-F(O))--y'ri(Fn(- )-F(- ))+Op(m(Fn(- )-F(- )) ) 

m fo m m mm 

1 ~ 1 =tf(O)+D(-)+Dp( -)+Op(-), (6.4) 
m n n 

where as before D, Dp indicate exact order. As Politis and Romano (1994) point 
out, m = D(n113) yields the optimal rate n- 113 (under f Lipschitz). Extrapo

lation does not help because the j'iij term is not of the form !nj'iij where In 
is independent of m. On the contrary, as a process in m, vmn(Fn(,/,J - F(/n)) 
behaves like the sample path of a stationary Gaussian process. So conclusion B 
holds in this case. 

Example 4. A major difficulty here is defining Fo narrowly enough so that it is 
meaningful to talk about expansions of ()n(F), Bn(F) etc. If Fo in these examples 
is in the domain of attraction of stable laws or extreme value distributions it is 
easy to see that ()n(F) can converge to ()(F) arbitrarily slowly. This is even 
true in Example 1 if we remove the Lipschitz condition on f. By putting on 
conditions as in Example 1, it is possible to obtain rates. Hall and Jing (1993) 
specify a possible family for the stable law attraction domain estimation of the 

1 
mean mentioned in Example 4 in which Bn = D(n- <>) where a is the index of the 
stable law and a and the scales of the (assumed symmetric) stable distribution 
are not regularly estimable but for which rates such as n - 2/ 5 or a little better are 
possible. The expansions for ()n (F) are not in powers of n - l/2 and the expansion 
for Bn is even more complex. It seems evident that extrapolation does not help. 
Hall and Jing's (1993) theoretical results and simulations show that Bm(n) though 
consistent, if m(n)/n---+ 0, is a very poor estimate of ()n(F) . They obtain at least 
theoretically superior results by using interpolation between Bm and the, "known 
up to the value of the stable law index a", value of ()(F). However, the conditions 
defining Fo which permit them to deduce the order of Bn are uncheckable so that 
this improvement appears illusory. 

Example 6. The discontinuity of ()(F) at p,(F) = 0 under any reasonable specifi
cation of Fo makes it clear that extrapolation cannot succeed. The discontinuity 
in ()(F) persists even if we assume F 0 = {N(p,, 1) : p, E R} and use the para
metric bootstrap. In the parametric case it is possible to obtain constant level 
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confidence bounds by inverting the tests for H : lf.l l = IJ.Lol vs K : lf.ll > IJ.Lol 
using the noncentral XI distribution of ( y'nX) 2 . Asymptotically conservative 
confidence bounds can be constructed in the nonparametric case by forming a 
bootstrap confidence interval for J.l(F) using X and then taking the image of this 

interval into f.l ---+ lf.l l· So this example illustrates points B and D. 
We shall discuss claims A and D in the context of Example 5 or rather its 

simplest case with Tn(Fn, F) = nX2 . We begin with, 

Proposition 2. Suppose EpX[ < oo, EpX1 = 0, and F satisfies Cramer's 
condition. Then, 

If m = D(n112 ) then 

P*[l vmX* I2 ~ t2] = Pp[nX2 ~ t] + Op(n- 114 ) (6.6) 

and no better choice of {m(n)} is possible. If no < n1 , non-112 ---+ oo, n1 

o(n3/4 ), 

Bno,nl = Bno- no{(Bn1 - Bn0 )/(nl- no)}= Pp [nX2 ~ t] + Op(n- 112 ). (6.7) 

Proof. We make a standard application of Singh (1981). If Q-2 = ~ L:(Xi -X) 2 , 

K3 = ~ l:(Xi- X) 3 we get, after some algebra and Edgeworth expansion, 

P*[ r:::;X*< ]=<I>(t-ylriiX) __ l (t-ylriiX)K3H (t-ylriiX) 0 ( _1 ) y m _ t A r,;;;'P A 6 2 A + p m 0 

r7 vm r7 r7 

After Taylor expansion in ylrii! we conclude, 

* - *2 2 t tp' t -2 k3 t - m 3/2 1 
P [mXm ~t ]=2<!>(~)-1+-(~)mX -~['PH3](~)X+Op(-) +Op(m-) 

r7 2 r7 3r7 r7 n 
(6.8) 

and (6.5) follows. Since mX2 = Dp(m/n) , (6.6) follows. Finally, from (6.5), if 
n n - 112 n n - 112 ---+ oo 

0 ' 1 

Since X= Op(n- 112 ), (6.7) follows. 
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Example 5. As we noted, the case Tn(Fn , F) = n.X2 is the prototype of the 
use of the m/n bootstrap for testing discussed in Bickel and Ren (1995). From 
( 6. 7) of proposition 2 it is clear that extrapolation helps. However, it is not 
true that Bno ,n 1 is efficient since it has an unnecessary component of variance 
(K3j6)[cpH2](t)X which is negligible only if K3(F) = 0. On the other hand 
it is easy to see that efficient estimation can be achieved by resampling not 
the Xi but the residuals Xi - X, that is, a consistent estimate of F belong
ing to F 0 . So this example illustrates both A and D. Or in the general U or 
V statistic case, bootstrapping not Tm(Fn , F) = n J 1/;(x, y)dFn(x)dFn(Y) but 
rather n J 1/;(x, y)d(Fn- F)(x)d(Fn- F)(y) is the right thing to do. 

7. Simulations and Conclusions 

The simulation algorithms were written and carried out by Adele Cutler and 
Jiming Jiang. Two situations were simulated, one already studied in Bickel and 
Yahav (1988) where the bootstrap is consistent (essentially Example 1) the other 
(essentially Example 3) where the bootstrap is inconsistent. 
Sample size: n = 50, 100, 400 
Bootstrap sample size: B = 500 
Simulation size: N = 2000 
Distributions: Example 1: F =XI; Example 3: F =X~ 
Statistics: 
Example l(a) modified: rj{:) = y'rii( VX:::- Vii[F}) 
Example l(b)· r,(b) = 'rii(X -~-L(F)) where s2 = - 1- "m (X·- X )2 • m V"" Srn m m-1 L.. ~=1 ., m . 
Example 3. T/h) = m(min(X1, ... , Xm)- F - 1(0)) 
Parameters of resampling distributions: G;;}(.1), G;-/(.9) where Gm is the dis
tribution of Tm under the appropriate resampling scheme. We use B, J, N to 
distinguish the schemes mjn, (;:J and sample splitting respectively. 

In Example 1 the G-:;;,1 parameters were used to form upper and lower "90%" 

confidence bounds for e = Vii[F}. Thus, from rj{:), 

(7.1) 

for the "90%" upper confidence bound based on the m/n bootstrap and, from 
rj}:) , 

- _ - Sn -1 1/2 
BmB - ((Xn- VnGmB(.1))+ ) , (7.2) 

where GmB now corresponds to the t statistic. fl_mB' is defined similarly. The ~mJ 
bounds are defined with GmJ replacing GmB· The ~mN bounds are considered 
only for the unambiguous case m divides n and a an integer multiple of mjn. 
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Thus if m n/10, G~]v(.1) is simply the smallest of the 10 possible values 

{Tm(Xjm+l, . .. 'x(j+1)m' Fn), 0:::; j :::; 9}. 
We also specify 2 subsample sizes no < n 1 for the extrapolation bounds, 

- (a) 
tl.na,n1 Bn0 ,n1 • These are defined for Tm , for example, by. 

0 = fx- _1 { (G;;:o1B(.1) + G;;:11B(.1)) 
no,n1 VAn Vn 2 

+( n -1/2 - ~ ( n;;-1/2 +n~1/2)) ( c;;:o1B( .1)- c;;:l1B (.1)) I ( n;;-1/2 -n~1/2)}. (7.3) 

We consider roughly, no= 2yfii, n1 = 4yfii and specifically, the triples (n, no, n1): 
(50,15,30),(100,20,40) and (400,40,80). 

In Example 3, we similarly study the lower confidence bound one= F-1 (0) 
given by, 

and the extrapolation lower confidence bound 

Note that we are using 1/m rather than 1/ y'rii for extrapolation. 

Measures of performance: 

(7.4) 

(7.5) 

C P = Coverage probability, the actual probability under the situation sim
ulated that the region prescribed by the confidence bound covers the true value 
of the parameter being estimated. 

RMSE = jE(Bound-Actual quantile bound) 2 . 

Here the actual quantile bound refers to what we would use if we knew the dis
tribution of Tn(X1, ... , Xn, F). For example forT/:::) we would replace G~1(.1) 
in (7.1) for F =XI by the .1 quantile of the distribution of yfii( yl§ii- 1) where 

Sm has ax;;. distribution, call it G~- 1 (.1). Thus, here, 

We give in Table 1 results for the Bn1 , Bn and Bn0 ,n1 bounds, based on r:!:,l. 
The T/:::) bootstrap, as in Bickel and Yahav (1988), has CP and RMSE for 
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Bn, Bn0 ,n1 and Bn1 agreeing to the accuracy of the Monte Carlo and we omit 
these tables. 

We give the corresponding results for lower confidence bounds based on rj.;:l 
in Table 2. Table 3 presents results for sample splitting for rj::l. Table 4 presents 
rj::l results for the (;:J bootstrap. 

Table 1. The t bootstrap: Example 1 (b) at 90% nominal level 

Coverage probabilities ( C P) RMSE 
n B B1 BR B B1 BR 
50 

UB .88 .90 .88 .19 .21 .19 
LB .90 .90 .90 .15 .15 .15 

100 
UB .90 .93 .89 .13 .14 .12 
LB .91 .90 .91 .11 .10 .11 

400 
UB .91 .94 .90 .06 .07 .06 
LB .91 .90 .91 .05 .05 .05 

Notes: (a) B1 corresponds to (6.2) or its LCB analogue for m=n1 (n)=30, 
40, 80. Similarly B corresponds tom= n. 

(b) BR corresponds to (6.3) or its LCB analogue with (n0 ,nl) = 
(15 , 30), (20, 40) , (40, 80). 

Table 2. The min statistic bootstrap: Example 3 at the nominal 90% level 

n CP RMSE n CP RMSE 
50 100 

B .75 .01 B .75 .04 
B1 .78 .07 B1 .82 .03 
BR .70 .07 BR .76 .04 

B1S .82 .07 B1S .87 .03 
BRS .80 .07 BRS .86 .03 

400 
B .75 .09 

B1 .86 .01 
BR .83 .01 

Notes: (a) B corresponds to (6.4) with m = n, B1 with m=n1 =30, 40,80, 
B1S with m=n1 = 16. 

(b) BR corresponds to (6.5) with (no, n 1 ) = (15 , 30), (20, 40), (40, 80), 
BRS with (no, nl) = (4, 16). 
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Table 3. Sample splitting in Example 1(a) 

CP RMSE 
n N Bm(n) N B m(n) 

50 
UB .82 .86 .32 .18 
LB .86 .91 .28 .16 

100 
UB .86 .89 .30 .14 
LB .84 .90 .26 .12 

400 
UB .85 .89 .28 .08 
LB .86 .91 .27 .09 

Note: N here refers tom = .1n and o: = .1. 

Table 4. The (;:,) bootstrap and the mjn bootstrap in Example 1(a) 

CP E(Length) 
n m J B J B 
50 16 .82 .88 .07 .09 
100 16 .86 .88 .04 .05 
400 40 .88 .90 .01 .01 

Note: These figures are for simulation sizes of N = 500 and for 90% con
fidence intervals. Thus, the end points of the intervals are given by (7.1) 
and its UCB counterpart forB and J but with .1 replaced by .05. Similarly, 
[E(Bound-Actual quantile bound)2]112 is replaced by the expected length of 
the confidence interval. 

Conclusions. The conclusions we draw are limited by the range of our simula
tions. We opted for realistic sample sizes, of 50, 100 and a less realistic 400. For 
n = 50, 100 the subsample sizes n 1 = 30 (for n = 50) and 40 (for n = 100) are 
of the order n/2 rather than o(n). For all sample sizes no = 2fo is not really 
"of larger order than fo" . The simulations in fact show the asymptotics as very 
good when the bootstrap works even for relatively small sample sizes. The story 
when the bootstrap doesn't work is less clear. 

When the bootstrap works (Example 1) 
• BRand B are very close both in terms of CP, and RMSE even for n = 50 

from Table 1. 
• B1's CP though sometimes better than B's consistently differs more from B's 

and its RMSE follows suit In particular, for UB in Table 1, the RMSE of 
B1 is generally larger. LB exhibits less differences but this reflects that UB is 
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governed by the behaviour of XI at 0. In simulations we do not present we get 
similar sharper differences for LB when F is a heavy tailed distribution such 
as Pareto with EX5 = oo 

• The effects, however, are much smaller than we expected. This reflects that 
these are corrections to the coefficient of the n - 112 term in the expansion. 
Perhaps the most surprising aspect of these tables is how well B1 performs. 

• From Table 3 we see that because the m we are forced to by the level con
sidered is small, C P for the sample splitting bounds differs from the nominal 
level. If n --+ oo, m/n --+ .1 the coverage probability doesn't tend to .1 since 
the estimated quantile doesn't tend to the actual quantile and both CP and 
RMSE behave badly compared to Bm. This naive method can be fixed up 
(see Blom (1976) for instance). However, its simplicity is lost and the (;:J or 
m/n bootstrap seem preferable. 

• The (~) bounds are inferior as Table 4 shows. This reflects the presence of the 
finite population correction m/n, even though these bounds were considered 
for the more favorable sample size m = 16 for n = 50, 100 rather than m = 
30, 40. Corrections such as those of Bertail (1994) or simply applying the 
finite population correction to s would probably bring performance up to that 
of Bn1 . But the added complication doesn't seem worthwhile. 

When the bootstrap doesn't work (Example 3) 

• From Table 2, as expected, the CP of the n/n bootstrap for the lower con
fidence bound was poor for all n. For no = 2fo, n1 = 4fo, CP for B1 was 
constantly better than B for all n. BR is worse than B1 but improves with n 
and was nearly as good as B1 for n = 400. For small no, n1 both B1 and BR 
do much better. However, it is clear that the smaller m of B1S is better than 
all other choices. 

We did not give results for the upper confidence bound because the granularity of 
the bootstrap distribution of mini Xi for these values of m and n made C P = 1 
in all cases. 

Evidently, n0 , n 1 play a critical role here. What apparently is happening is 
that for n0 , n 1 not sufficiently small compared with n extrapolation picks up the 
wrong slope and moves the not so good B1 bound even further towards the poor 
B bound. 

A message of these simulations to us is that extrapolation of the Bm plot 
may carry risks not fully revealed by the asymptotics. On the other hand, if 
no and n 1 are chosen in a reasonable fashion extrapolation on the fo scale 
works well when the bootstrap does. Two notes, based on simulations we do 
not present , should be added to the optimism of Bickel, Yahav (1988) however. 
There may be risk if no is really small compared to fo. We obtained poor 
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results for BR for the t statistics for no = 4 and 2. Thus no = 4, n 1 = 16 gave 
the wrong slope to the extrapolation which tended to overshoot badly. Also, 
taking n 1 and no close to each other, as the theory of the 1988 paper suggests is 
appropriate for statistics possessing high order expansions when the expansion 
coefficients are deterministic, gives poor results. It can also be seen theoretically 
that the sampling variability of the bootstrap for m of the order fo makes this 
prescription unreasonable. 

The principal message we draw is that it is necessary to develop data driven 
methods of selection of m which lead to reasonable results over situations where 
both the bootstrap works and where it doesn't. Such methods are being pursued. 
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Appendix 

Proof of Theorem 2. Fori= (i1, ... ,ir) E Ar,m let U(i) = d) L:{h;(Xjp· . . , 

Xjr, F) : 1 :S: Jl < · · · < Jr :S: n}. Then, since hi as defined is symmetric in its 
arguments it is a U statistic and llhlloo is an upper bound to its kernel. Hence 

(a) 

(b) 

Var FU(i) :S: l lhl l ~~. On the other hand, 
n 

m 

(c) Bm,n(F) = L _2:)wm,n(i)U(i): i E Ar,m} by (3.7). Thus, by (c), 
r=l 

m 

(d) Var~2Bm,n(F) :S: LL{Wm,n(i)Var~2 U(i): i E Ar,m} 
r = l 

by (a). This completes the proof of (3.10). 
The proof of (3.11) is more involved. By (3.8) 

m 

(e) IBm,n(F)- B(F)I :S: L L{IEFh;(Xl, ... ,Xr)- Bm(F) Iwm,n(i): i E Ar,m}· 
r=l 
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Let, 

(f) 

Expression (f) is easily recognized as the probability of getting n- r empty 
cells when throwing n balls independently into m boxes without restrictions (see 
Feller (1968), p.19) . Then it is well known or easily seen that 

(g) 

(h) 

It is easy to check that , if m = o( n) 

(i) 
m 

Em n(Rm) = m(1 + 0(-)) , n 

(j) Var m,n(Rm) = O(m) 

so that, 

(k) 

From (e), 

(1) 
m r 

IOm,n(F)- e(F)I :::; L 8m(- )Pm,n[Rm = r]. 
r=l m 

By (k), (1) and the dominated convergence theorem (3.12) follows from (3.11) 
and (k). 

Finally, as in Theorem 1, we bound, as in (3.4), 

m 

(m) IBm,n(F)- Bm(F)I:::; L L{Ep lh;(Xl, ... ,Xr) - h;(Xl, ... ,Xr,Fn) l : 
r=l 

i E Ar,m}Wm,n(i) , 

where 

(n) h;(Xl, ... 'Xr, Fn) = ~ L h(Tm(Xj~l) ' ... 'xj~r)' Fn)). 
r. l ~jFf-···=hr~ T 
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Let Rm be distributed according to (f) and given Rm = r, let (h, ... , Ir-) be 
uniformly distributed on the set of partitions of m into r ordered integers, h ::; 
!2 ::; · · · ::; Ir- . Then, from (m) we can write 

(o) 

where ll ~l loo < ll hll oo · Further, by the continuity of h and (3.13), since h < 
· · · :S IRrn , 

(p) 

whenever Em= O(m- 112). Now, I Rrn > Emm, 

(q) 

and Ij 2: 1 imply that , 

(r) 

Thus, 

(s) 

Rrn-1 

m(1 - Em) 2: L Ij 2: (Rm - 1). 
j =1 

if Emm112 ---too. Combining (s) , (k) and (p) we conclude that 

(t) 

and hence (o) implies (3.14). 

The corollary follows from (e) and (f). 

Note that this implies that the m/n bootstrap works if about y'rii ties do 
not affect the value of Tm much. 

Checking that Jm, Bm, Nm m = o(n) works 
The arguments we give for Bm also work for Jm only more easily since 

Theorem 1 can be verified. It is easier to directly verify that, in all our examples, 
the m/n bootstrap distribution of Tn(Fn, F) converges weakly (in probability) 
to its limit .C(F) and conclude that Theorem 2 holds for all h continuous and 
bounded than to check the conditions of Theorem 2. Such verifications can be 
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found in the papers we cite. We sketch in what follows how the conditions of 
Theorem 1 and 2 can be applied. 

Example 1. (a) We sketch heuristically how one would argue for function
als considered in Section 2 rather than quantiles. For Jm we need only check 
that (2.6) holds since y'rii(X- p,(F)) = op(1) . For Em note that the distribu
tion of m - 112 (iiX1 + · · · + irXr) differs from that of m - 112 (X1 + · · · + Xm) by 

(·2-1) 
o(2:::::j=1 ~ ). n we maximize 2:::::j=1 (i]- 1) subject to 2:::::j=1 ij = m, ij ~ 1 we 

obtain 2(":n-r) + (m-:nr) 2
• Thus for suitable h, 8m(x) = 2(1- x) + )rn-(1- x) 2 and 

the hypotheses of Theorem 2 hold. 
(b) Note that , 

P[vn(X-:(F)) ~ t] = P[vn(X- p,(F))- st ~ 0] 

and apply the previous arguments to Tn(Fn , F) = yln(X- p,(F))- st. 

Example 2. In Example 2 the variance corresponds to h(x) = x 2 ifTm(Fm, F)= 
m 112 (med(X1, ... ,Xm) - F - 1a)). An argument parallel to that in Efron (1979) 
works. Here is a direct argument for h bounded. 

(a) P[ d(x(ii) x(i,.)) ...j. d(X(ii) x(i,.-1) x )] < 1 me 1 , ... , r r me 1 , ... , r , r+ 1 _ r + 1 · 

Thus, 

(b) 

Hence for h bounded, 

and we can apply Theorem 2. 

Example 3. Follows by checking (3.2) in Theorem 1 and that Theorem 2 applies 
for Jm by arguing as above for Em. Alternatively, argue as in Athreya and 
Fukushi (1994). 

Arguments similar to those given so far can be applied to the other examples. 
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20 
On a Set of the First Category 
Hein Putter1 

Willem R. van Zwet2 

ABSTRACT In an analysis of the bootstrap Putter & van Zwet (1993) showed 
that under quite general circumstances, the bootstrap will work for "most" 
underlying distributions. In fact, the set of exceptional distributions for which 
the bootstrap does not work was shown to be a set D of the first category in 
the space P of all possible underlying distributions, equipped with a topol
ogy n. Such a set of the first category is usually "small" in a topological 
sense. However, it is known that this concept of smallness may sometimes 
be deceptive and in unpleasant cases such "small" sets may in fact be quite 
large. 
Here we present a striking and hopefully amusing example of this phe
nomenon, where the "small" subset D equals all of P. We show that as 
a result, a particular version of the bootstrap for the sample minimum will 
never work, even though our earlier results tell us that it can only fail for 
a "small" subset of underlying distributions. We also show that when we 
change the topology on P-and as a consequence employ a different resam
pling distribution-this paradox vanishes and a satisfactory version of the 
bootstrap is obtained. This demonstrates the importance of a proper choice 
of the resampling distribution when using the bootstrap. 

20.1 Introduction 

Many of the results of asymptotic statistics cannot be established in com
plete generality. One often has to allow the possibility that the result will 
not hold if the underlying probability distribution belongs to a small subset 
D of the collection of all possible underlying probability distributions P. 
In many concrete examples, D will turn out to be empty, but in general 
one has to take the existence of such an exceptional set into account. 

If P is a parametric model, the exceptional set D will typically be small 
in the sense that it is indexed by a set of Lebesgue measure zero in the 
Euclidean parameter space. From a technical point of view, its occurrence 
is caused by an application of a result like Egorov's or Lusin's theorem 
where exceptional sets of arbitrarily small Lebesgue measure occur. In more 
general models one could conceivably use similar tools for more general 

1University of Leiden 
2University of Leiden and University of North Carolina. 
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measures, but it is difficult to think of a measure on P which is such that 
we can agree that a set of measure zero is indeed small in a relevant sense. 

In a recent study of resampling, we have followed a different path and 
established asymptotic results where the exceptional set is small in a topo
logical rather than a measure-theoretic sense (Putter & van Zwet 1993) . If 
we equip the set P with a metric p, the exceptional set D in these results 
is a set of the first category in the metric space (P, p). We recall that a set 
of the first category is a countable union of nowhere dense sets, and that 
a set is nowhere dense if its closure has empty interior. Equivalently, a set 
is of the first category if it can be covered by a countable union of closed 
sets, each of which has empty interior. 

This concept of a small set was used by Le Cam as early as Le Cam (1953), 
where it is shown that superefficiency can only occur on a set of the first 
category. In a parametric setting, Le Cam was careful to point out that 
under the right conditions the exceptional set also corresponds to a set of 
Lebesgue measure zero in the parameter space. The same is true for the 
results in Putter & van Zwet (1993), as shown by Putter (1994). 

Of course the question remains whether a set of the first category is 
indeed small in any accepted sense. If (P, p) is complete, we know that 
a set of the first category is small, for example in the sense that it has a 
dense complement (cf. Dudley 1989, pp. 43-44). If (P, p) is not complete, 
then a set of the first category can be uncomfortably large: in fact we shall 
see that the entire space P may be of the first category itself. 

In this note we discuss a particular statistical model Po equipped with 
Hellinger metric H, such that (Po, H) is not complete and Po is of the first 
category in (Po, H). An application of our results on resampling shows 
that a particular version of the bootstrap will work except if the underlying 
distribution belongs to a set D of the first category. Unfortunately, it turns 
out that D = Po so that we have no guarantee that this version of the 
bootstrap will ever work, and indeed it may never do. Luckily, our analysis 
also shows that we need not despair. It turns out that our problems are 
not caused by any inherent pathology of the model Po , but by a wrong 
choice of metric on Po . If we replace H by a different, complete, metric 
and modify the construction of the bootstrap accordingly, the pathology 
disappears and we obtain a version of the bootstrap that will work for any 
P E Po . In fact the example may serve to clarify the importance of a 
correct choice of the resampling distribution when using the bootstrap. 

In Section 2 we exhibit the particular class of distributions Po which is of 
the first category in (P0 , H). In section 3 we show that this class is not an 
artificial construct, but that it is the natural model for a statistical situation 
of interest. We then proceed to make the connection with a result on the 
bootstrap in Putter & van Zwet (1993) and show that this result doesn't 
produce a satisfactory version of the bootstrap for this model. Finally we 
show that a different choice of metric on Po will resolve our problems. 
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20.2 A set of the first category 

Let us consider the class :J>0 of probability distributions P on (0, oo) which 
have distribution functions F satisfying 

(1) lim F(x) = a(P) E (O,oo). 
x!O X 

We equip :J>0 with Hellinger metric H. For distributions P, Q E :P0 , with 
densities f and g with respect to a common o--finite measure v, this is 
defined by 

(2) Proposition The set :J>0 is of the first category in (:P0 , H). 

Proof. Fork= 1, 2, ... , let Dk = 1/k and 

Bk = {P E :Po: I F(x) - F(ck) I ~ 1 for 0 < x ~ 8k}· 
X Dk 

00 

Clearly, :Po C U Bk, and since convergence in Hellinger metric implies 
k=l 

pointwise convergence of distribution functions, we see that each Bk is 
closed in (:P0 , H). It remains to be shown that no Bk contains an open set. 

Fix k and choose a distribution P E Bk with distribution function F and 
with a(P) = a. Define Gn(x) = min (n- 1, (3 + a)x), Fn = max(Gn, F), 
and let Pn be the distribution with distribution function Fn· Then a(Pn) = 
3 +a but, for n large enough, Fn(8k)/8k = F(8k)/8k ~ 1 +a because 
P E Bk· It follows that Pn rf. Bk for large n, even though Pn converges 
to P in Hellinger metric. 0 

20.3 A bootstrap fiasco 

Let :J> be a class of probability distributions on JR. We equip :J> with a 
metric p. Let X 1 , X2 , ..• be independent and identically distributed (i.i.d.) 
random variables with (unknown) common distribution P E :J>. We are 
interested in the large sample behavior of a random variable 

(3) 

Let TN(P) denote the distribution of YN under P E :P, and suppose 
that, for every P E :J>, TN(P) converges weakly to a limit distribution 
r(P). If PN = PN(X1 , ... ,XN) is an estimator of P taking values in :P, 
then TN(PN) is called a bootstrap estimator of TN(P), or of r(P), with 
resampling distribution PN. For all P and PN, the distributions TN(P), 
r(P), and TN(PN) are elements of the class ~ of all probability measures 
on JR. We equip this class with Levy distance f, or any other metric which 
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metrizes weak convergence. The bootstrap is said to work for a particular 
P E P if it is an £-consistent estimator of TN(P), i.e. if£( TN(PN ), TN(P)) 
converges to zero in probability under P. As t(TN(P), T(P)) - 0, this is 
the same as £-consistency for estimating the limit distribution T(P). 

The following two propositions are taken from Putter & van Zwet (1993). 

( 4) Proposition Suppose that 

(i) The sequence of maps TN : (P, p) --+ (:R, £) is equicontinuous on P; 

(ii) PN takes values in P and is a ,rconsistent estimator of P, i.e. 
~ p 

p(PN,P)- 0 for every PEP. 
Then the bootstrap TN(PN) works for every P E :P. 

(5) Proposition Suppose that 
(i) TN : (P, p) --+ (:R, £) is continuous for every N; 

(ii) For every PEP, TN(P) converges weakly to a limit T(P); 

(iii) PN takes values in P and is a ,rconsistent estimator of P, i.e. 
~ p 

p(PN, P)--+ 0 for every PEP. 
Then there exists a set D of the first category in (P, p) such that the 
sequence TN is equicontinuous at every P E P \ D and hence the bootstrap 
TN(PN) works for every PEP\ D. 

Usually these results are used with Hellinger distance H for p, and on closer 
inspection it often turns out that the exceptional set D may be taken to 
be empty. 

In the remainder of this paper we shall consider a specific example of this 
situation. We choose :P = P0 , the class of distributions defined in (1). For 
i.i.d. random variables X 1, ... , XN taking values in (0, oo) with common 
distribution P E :P0 , we define 

(6) 

Note that Po is a natural model for studying the large sample behavior of 
Y~, since it is precisely the class of underlying distributions for which the 
distributions TN(P) of Y~ under P converge weakly to a non-degenerate 
limit, which is an exponential distribution with parameter a(P). 

Bootstrapping the sample minimum is a problem of some notoriety as 
it is an early example where the usual choice of the empirical distribution 
PN for the resampling distribution PN does not work. To check whether 
the bootstrap with a different choice of PN will work for "most" P E :P0 , 

we may appeal to Proposition 5. In doing so, we are still free to choose 
a metric p on Po and we shall make the usual choice by taking p to be 
Hellinger distance H. Since Y~ is a function of X 1 , .. • , X N only, and 
not of P, it is easy to see that TN : (P0 , H) --+ (:R, £) is continuous for 
each N. As TN(P) converges weakly to a limit T(P) for every P E :P0 , 

Proposition 5 asserts that if PN is a Hellinger consistent estimator with 
values in Po, then the bootstrap TN(PN) will work except for P in a set 



303

20. On a Set of the First Category 319 

D of the first category in (P0 , H). The content of Proposition 2 having 
made us somewhat suspicious, we may want to investigate the nature of 
the exceptional set D where the functions TN : (Po, H) --+ (~. £) are not 
equicontinuous. Since T(P) depends on P only through a(P), and any 
P E Po may be approximated arbitrarily well in Hellinger distance by a 
sequence Pr E Po with a constant value of a(Pr) different from a(P), we 
know that the limit distribution T is nowhere continuous in P. This implies 
that the functions TN are not equicontinuous at any P E P0 , so that our 
worst suspicions are confirmed: the exceptional set D equals the entire 
set of possible distributions in this case. Our application of Proposition 5 
with p = H has therefore produced no positive information concerning this 
example at all. 

Even though Proposition 5 is vacuous in this case, it might still by a 
stroke of luck be true that the bootstrap estimate TN(PN) would work 
for most reasonable Hellinger-consistent estimators PN of P. First of all 
we note that it is indeed possible to construct an estimator of P which is 
Hellinger-consistent for every distribution P on lR which has no singular 
part (cf. Devroye & Gyorfi 1990, p. 1497). All we have to do is to assign 
probability k/N to all values which were observed k > 1 times, and add 
a kernel density estimator based on the remaining values which have only 
been observed once. Using the normal kernel we arrive at an estimator F!v 
for the distribution function F of P which is given by 

N 

(7) F'N(x) = ~ t; ( 6i1(o,xJ(Xi) + (1- 6i)~ ( x ~NXi)) 

where~ is the standard normal distribution function, 

(B) 6. = { 0 if Xi =f Xi for j =f i, 
' 1 otherwise, 

and hN --+ 0 but NhN --+ oo. Admittedly, F!v does not satisfy (1) and 
hence the corresponding estimator P!v of P does not take its values in 
:P0 as is required in Proposition 5. However this defect is easily cured by 
considering the following slight modification of F!v, 

(9) F ( ) _ { xF!v(MN)/MN 
N x - F!v(x) 

for 0 ~ x < MN, 
for x?: MN, 

where MN = min(X1 , ... , XN ). Clearly FN satisfies (1), and hence the 
corresponding estimator PN of P takes its values in Po and is Hellinger 
consistent for every P E Po which has no singular part. Nevertheless we 
shall see that the bootstrap TN ( PN) based on this estimator does not work 
for any P E Po. 

The bootstrap TN(PN) has distribution function 

HN(Y) = 1- (1- FN(y/N))N. 
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For P E P0 , the limit distribution r(P) is exponential with parameter 
a(P) E (O,oo), and hence the bootstrap TN(PN) will work for a particular 
P E Po if and only if 

sup IHN(Y)- [1- exp{ -a(P)y}JI~O. 
y>O 

This is easily seen to be equivalent to 

(10) 

for every y > 0. 
However, {10) cannot hold. If FN denotes the empirical distribution 

function, (7) implies that for all x, 

1 ~ 1- 8· 
FN(x) ~ N LJ 1co,xJ(Xi)[8i + TJ ~ 1/2FN(x). 

i=l 

As FN(x) = 0 for x < MN, we also find that for all x, 

FN(x) ~ 1/2FN(x). 

Hence, for every y > 0, the definition (1) ensures that as N - oo, 

P(INFN(~)- a(P)yl ~ a(P)y) ~ P(NFN(~) ~ 2a(P)y) 

~ P(NFN(~) ~ 4a(P)y) = P(z ~ 4a(P)y) +o(1) f+ 0, 

where Z has a Poisson distribution with expectation a( P)y > 0. This 
shows that (10) is false, and as a consequence, the bootstrap based on PN 
does not work for any P E P0 , and the fiasco is indeed complete. 

20.4 A bootstrap success 

Luckily, the disastrous results of the previous section also indicate quite 
clearly how the damage may be repaired. Our problems in the previous 
section originate from the fact that the parameter of the exponential limit 
distribution a(P) is not a continuous function of the underlying distribution 
P E Po with respect to Hellinger distance on P0 • Hence we should look for 
a different metric on P0 , and in view of the definition of a(P) in (1), one 
obvious candidate is a metric 1r defined by 

(11) 1r(P, Q) =sup IF(x)- G(x)l 
x>O X 

where F and G denote the distribution functions corresponding toP and Q. 
With this new metric 1r, things immediately fall into place. The metric 

space (P0 , 1r) is easily seen to be complete and hence sets of the first cat
egory have dense complements. Clearly the exponential limit distribution 
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T(P) is continuous when viewed as a map T : (P0 , 1r) ..-. (~, l). Also, the 
sequence of distributions TN(P) of YN is equicontinuous on Po. To see this, 
note that for underlying distributions P and Q with distribution functions 
F and G, YN has distribution functions 

HN,P(Y) = 1- (1- F(yjN))N 

and 
HN,Q(Y) = 1- (1- G(yjN))N. 

Fix P E Po and 0 < t: < 1. Choose positive numbers y0 and zo such that 

4log(4/t:) 
Yo= a(P) and F(z)? 1/2a(P) z for 0 :5 z :5 zo 

and note that iaN- bNI ~ Nla- bl if 0 ~a, b ~ 1. If N? Yofzo we choose 
1r(P, Q) ~ 2~0 ~ a(:) and find 

sup IHN,P(Y)- HN,Q(Y)i =sup 1(1- F(yjN))N- (1- G(y/N))N' 
y y 

~ N sup jF(yjN)- G(yjN)i + (1- F(yofN))N + (1- G(yofN))N 
Y~Yo 

~ Yo7r(P, Q) + exp{-N F(yofN)} + exp{ -NG(yofN)} 
€ 

:5 2 + exp{ -1/2 a(P) Yo}+ exp{ -1/2 a(P) Yo+ Yo7r(P, Q)} 

€ ( € )2 € €2 € 
~ 2 + 4 +exp{-1/4a(P)yo} = 2 + 16 + 4 < t:. 

On the other hand, if 1 ~ N < y0 /zo, we choose y1 such that 

1 _ F ( zoY1 ) ~ _: . 
Yo 4 

For 1r(P, Q) ~ 4~1 we find 

sup IHN,P(Y)- HN,Q(Y)i 
y 

~ Y11r(P,Q) + (1- F(yi/N))N + (1- G(yi/N))N 

~ ~ + (1- F(yi/N)) + ( 1- F(yi/N) + ~ 1r(P, Q)) 

:5 ~ + ( 1 - F ( ~~1 
) ) + ( 1 _ F ( z~~l ) + ~) :5 t: . 

Hence for every 0 < t: < 1 there exists 8 > 0 depending on P but not on 
Q, such that 1r(P, Q) :58 implies sup11 IHN,P(Y)- HN,Q(Y)i ~ t: for all N, 
which establishes the equicontinuity of {TN} on P0 . 

By Proposition 4 th:_ equicontinuity of TN : (P0 , 1r] --+ (~, l) implies 
that the bootstrap TN(PN) will work for all P E Po if PN is a 1r-consistent 
estimator of P. An example of such an estimator is the random distribution 
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PN with distribution function 

(12) for 0 ~ x < f.N 
for x 2: f.N , 

where FN denotes the empirical distribution function, f.N ---+ 0 but Nf.N ---+ 

oo. To see this, let F denote the distribution function corresponding to the 

underlying distribution P E :P0. Then FN(f.N )/f.N ~ a(P) if f.N ---+ 0 and 
Nf.N ---+ oo, since 

and 

It follows that, if f.N ---+ 0 and Nf.N ---+ oo as N ---+ oo, then 

sup IFN(x)- F(x)l ~ I FN(f.N) - a(P)I + sup I F(x) - a(P)I ~ 0. 
x~~N X f.N x~~N X 

Also, for every sequence 1JN ---+ 0 with 1JN > f.N, 

!FN(x)- F(x)! = sup IFN(x)- F(x)l (1) 
sup F(x)fa(P) + o 

~N ~XS.TJN X ~N S.xS.TJN 

and this tends to zero in probability if N f.N ---+ oo ( cf. Chang 1955, Theo
rem 1; see also Shorack & Wellner 1986, p. 424) . Finally, taking TJN such 
that N 1121JN ---+ oo, we have 

IFNtx)- F(x)l IFN(x)- F(x)l 0 (N-112 -1) 
sup ~sup = p "'N . 

x>T'/N X x 1JN 

Thus then-consistency of FN follows and we have shown 

(13) Proposition If PN is an estimator of P with distribution function 
FN given by (12), then the bootstrap estimator TN(PN) of the distribution 
TN(P) ofYj!, is consistent for all P E Po. 
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Chapter 19 

Discussion of three resampling papers 

Peter J. Bickel 

Abstract 
Discussion of: 
Putter H., and van Zwet W.R. (1996) . Resampling: Consistency of substitution esti
mators, Annals of Statistics 24 2297-2318. 
Putter H., and van Zwet W.R. (1997). On a set of the first category. Festschrift for 
Lucien Le Cam, Springer Verlag , 315-324. 
Bickel P., Gotze F. and van Zwet W.R. (1997). Resampling fewer than n observa
tions: Gains, Losses and Remedies for Losses, Statistica Sinica 1 1-31. 

It is a pleasure to return to these three papers of van Zwet's on the bootstrap, two 
coauthored with Hein Putter and the other with Friedrich Gotze and myself. 

They marked van Zwet's attempt to understand the behaviour of bootstrap esti
mates of parameters, when observations, X1 , .. . ,Xn were i.i .d. for P E & . This was 
done for clarity of conception only. It was evident that generalizations to weakly 
dependent data should hold. 

In the first two papers Putter and van Zwet considered a sequence rN(P) of param
eters which were themselves probability distributions, and endowed with a suitable 
metric (e.g. Prohorov-Levy). f!lJ was endowed with a metric p. If PN is a p consistent 
estimate of P and 

(19.1) 

the bootstrap rN(PN) was defined as successfully estimating rN(P). 
Their main emphasis in the first paper was to show the general feasibility of 

constructions satisfying (refequation 1) for continuous rN except on sets of the first 
category in f!lJ . This led then, on the one hand, to the parametric bootstrap and, 
on the other, to the view that bootstraps and PN had to be tailored to the specific 
problem, for interesting rN. Essentially this is the case unless p is the Hellinger 

Peter J. Bickel 
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metric in which case, p consistency of any PN typically fails unless f!lJ is regular 
parametric- but see Golubev et al [1]. 

The second paper gave interesting examples of situations where such PN could 
be constructed but, unless a great deal of attention to the structure of f!lJ was given, 
would have the set of the first category mentioned be all of f!lJ! 

The third paper jointly with Gotze and myself took a different track, concen
trating on sequences, "CN(P,PN) such as those that usually arise in setting confidence 

bounds and other statistical questions, e.g. "CN(PN, P) = N- ~ (fxdPN- JxdP) for 
f!lJ = { P: J x2dP < oo }. 

Here, and throughout the sequel, PN is the empirical distribution. As in the above 
example, the "CN are assumed to have a basic property quite different from the "CN 
considered by Putter and van Zwet: 

(I) "CN(PN, P) converges weakly to a limiting probability distribution "Cp . 

In the example above "Cp = fi(O, Varp(Xl)). Our focus was on estimating the 
probability distribution of "CN(PN, P). 

Condition I trivially implies that, if mN ---7 oo, "CmN CAnN, P) converge weakly to "Cp 
as well. The condition suggests that we use implicit scaling as in the example and 
estimate the distribution of "CN (PN, P) by that of "CmN (P::ZN, PN) where mN ---7 oo slowly, 
{ P;} depends on PN and converges to P in an appropriate metric p. 

Independently, Politis and Romano (1994) and Gotze (1993) considered the basic 
but statistically less interesting case that "CN(PN, P)- "CN(P), so that 'rp is degenerate. 
They showed that if P; is the empirical distribution of a sample drawn without re
placement from X1, ... ,XN, mN ---7 oo and "); ---7 0, then the conditional distributions 
of 'r( P; , PN) given the data converge weakly, with probability 1, to "Cp without any 
further conditions. Our (1997) paper goes on to investigate when "CmN ( P;N, A) con
verges to "Cp generally, both when P;N corresponds to sampling without replacement 
and with replacement. A number of other issues are also studied. Not surprisingly 
when "CN (P;, A) converges weakly to "Cp, it typically does so faster than "CmN (P::ZN, A) 
with "); ---7 0. We discuss ways of removing this disability and propose a crude rule 
for data determined selection of mN. 

This approach and general applications to situations where the Efron bootstrap 
fails are analyzed further in Gotze and Rakauskas (2001), Bickel and Sakov (2002a) 
and Bickel and Sakov (2002b ). 

The papers with Putter exhibit van Zwet's typical approach to research: A general 
question is sharply posed followed by a definitive, technically subtle answer, in 
this case, I think, not as satisfactory as van Zwet originally hoped. The 1997 paper 
though considerably less elegant and definitive than the work with Putter would 
seem to have the general applicability that van Zwet initially hoped for- but that's 
obviously a biased opinion. 
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De Gunst has formulated a stochastic model for the growth of a 
certain type of plant cell population that initially consists of n cells. The 
total cell number Nn(t) as predicted by the model is a non-Markovian 
counting process. The relative growth of the population, n - 1(Nn(t)- n), 
converges almost surely uniformly to a nonrandom function X . In the 
present paper we investigate the behavior of the limit process X(t) as t 
tends to infinity and determine the order of magnitude of the duration of 
the process Nn(t). There are two possible causes for the process Nn to stop 
growing, and correspondingly, the limit process X(t) has a derivative 
X'(t) that is the product of two factors, one or both of which may tend to 
zero as t tends to infinity. It turns out that there is a remarkable 
discontinuity in the tail behavior of the processes. We find that if only one 
factor of X'(t) tends to zero, then the rate at which the limit pro
cess reaches its final limit is much faster and the order of magnitude 
of the duration of the process Nn is much smaller than when both occur 
approximately at the same time. 

1. Biological background. Much of the research in plant cell biotech
nology is directed at biosynthesis of secondary metabolites in plant cell 
cultures [Morris, Scragg, Stafford and Fowler (1986)]. Control of the produc
tivity of these cell cultures in multiliter vessels in industry requires detailed 
knowledge of the kinetics of growth, division, differentiation and product 
formation of cells grown under different environmental conditions. However, 
our understanding of these kinetics is still very incomplete. In collaboration 
with K. R. Libbenga of the Department of Plant Molecular Biology at the 
University of Leiden, we have developed a mathematical model for the 
division, differentiation and population growth of plant cells in a liquid 
medium. This model is based on the presently available experimental knowl
edge of the behavior of individual cells, and takes into account the influence 
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of the depletion of two components of the medium that are indispensable for 
the growth and division of the cells. 

Before we formulate the model in Section 2, let us first describe the 
biological background. We start at the level of a single plant cell, which is 
transferred at time t = 0 to a fresh liquid medium containing the substances 
needed for the growth, division and survival of the cell. The cell will go 
through a sequence of events called the cell cycle, which starts at time 0 and 
ends with the division of the cell. The cell cycle is illustrated in the diagram 
of Figure 1. The cycle starts with the G1-phase (G for gap) during which the 
biosynthetic activity of the cell proceeds at a high rate. The S-phase (synthe
sis) that follows starts when DNA synthesis begins and ends when the DNA 
content of the cell nucleus has doubled and the chromosomes have replicated. 
The cell then enters the G2-phase (another gap), which continues until the 
final M-phase (mitosis), which is the brief period of actual cell division. 
During the M-phase, the biosynthetic activity of the cell proceeds very slowly 
and increases again rapidly after division as the two new cells enter the 
G1-phase of their cell cycles. Together, the G1-, S- and G2-phases are also 
called the interphase. 

It is a well verified fact that the duration of the cell cycle varies consider
ably, even among cells of the same type under the same external conditions. 
Most of the variability is observed in the length of the G1-phase; the remain
der of the cycle time shows far less variation. Moreover, it is known that the 
G1-phase tends to last longer if the supply of certain nutrients is reduced; the 

FIG. 1. The four successive phases of a typical cell cycle. 
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duration of the other parts of the cycle is scarcely affected [cf. Alberts, Bray, 
Lewis, Raff, Roberts and Watson (1989), page 745]. 

Another well established fact is that once the cell has left the G1-phase, it 
is committed to complete the cell cycle regardless of environmental conditions 
[Alberts, Bray, Lewis, Raff, Roberts and Watson (1989), page 745]. This 
indicates the existence of a point of no return-often called the restriction 
point Slf-somewhere late in the Gcphase. It is thought that, as the cell 
approaches the point Slf, it must "wait" for some endogenous trigger or 
stimulus that moves it past Slf, and that under fixed external conditions the 
probability per unit time of passing .9f is roughly constant. In a mathematical 
model this would correspond to an exponentially distributed waiting time for 
a stimulus to occur, and if the remainder of the length of the G1-phase-like 
that of the other phases-is almost constant, then the total duration of the 
cell cycle would be the sum of a constant time and an exponentially dis
tributed one. This hypothesis was advanced in a seminal paper by Smith and 
Martin (1973) and verified on the basis of experimental data [see also Shields 
(1977)]. Later authors have criticized this so-called transition probability 
model [cf. Nelson and Green (1981)], but at present the existence of the 
restriction point seems to be firmly established. Others [Brooks, Bennett and 
Smith (1980), Castor (1980) and Cooper (1982)] have proposed alternative 
probability distributions for the duration of the cell cycle, incorporating more 
than one waiting time, for instance, but it seems difficult to distinguish 
between these models on the basis of the existing experimental data. At this 
time the transition probability model appears to be the accepted theory in the 
biological literature [Alberts, Bray, Lewis, Raff, Roberts and Watson (1989), 
pages 733 and 746]. 

We have already noted that the average duration of the Gcphase increases 
as the supply of nutrients is reduced, and when no nutrients are present, 
cells cannot pass the restriction point at all. Hence we shall assume in our 
model that the parameter of the exponential waiting time for a stimulus is an 
increasing function of the concentration of nutrients, which tends to zero as 
the concentration does. The remaining part of the cycle is not affected by the 
concentration of nutrients. Of course, a cell also consumes nutrients, espe
cially during the first part of the G1-phase leading up to the restriction point 
Sif. In our model we shall telescope this process and assume for simplicity that 
a cell only consumes a fixed amount of nutrient at the time it receives the 
stimulus to pass Slf. 

A plant cell that takes part in the cycling process is usually small and 
spherical, with its nucleus positioned at the center. However, if one watches a 
population of plant cells grow by cell division, one also notices after some 
time the presence of larger, more stretched out cells, with nuclei close to the 
cell wall. These cells are in an early stage of differentiation and do not divide. 
Such a differentiating cell most probably resides in the Gcphase, before the 
restriction point Slf, in a so-called quiescent, or G0-state [Alberts, Bray, 
Lewis, Raff, Roberts and Watson (1989), page 750]. It is possible for such a 
cell to restart its cycle, but it needs a much more powerful trigger to do so 
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than the one needed for passing .9/: it has to dedifferentiate first before it 
resumes its cell cycle. Transfer of a cell to a fresh liquid medium is appar
ently such a trigger and will make the cell start its cycle almost at once. 

Although the underlying biochemical mechanisms are far from known, 
there are strong indications [Bayliss (1985); Trewavas (1985)] that plant 
hormones play a crucial role in determining differentiation: the higher their 
concentration in the medium, the larger the proportion of cells that are 
actively cycling, and the smaller the proportion of cells that will never divide 
but will differentiate instead. In the absence of hormones, there will be no 
cycling cells. We shall model this phenomenon by assuming that at the time 
of cell division, the two new cells independently become cycling cells (type A 
cells) with probability P or differentiating cells (type B cells) with probability 
(1 - P). Here P is assumed to be an increasing function of the hormone 
concentration in the medium at the time of division, which vanishes as the 
hormone concentration does. A cell also takes up hormones, and we shall 
assume that a fixed amount of hormone is used up by each cell at the time of 
its division. 

Having described the behavior of a single cell, we now turn to the behavior 
of a population of plant cells in a liquid medium. Such populations can occur 
either as batch cultures or as continuous cultures [Street (1973)]. In either 
case, the culture consists of isolated cells-or very small cell aggregates-that 
remain dispersed as they grow in the liquid medium. This is achieved by 
continuous stirring of the fermentor in which the cells grow. A culture is 
started by the transfer of a certain number of cells to a fresh medium 
containing known quantities of nutrients and hormones. In contrast to a 
continuous culture, a batch culture does not have any inflow of fresh medium 
or outflow of culture. As such, the batch culture is the appropriate system to 
study the growth of the number of cells of a population and to investigate the 
influence of the different components of the medium on the population 
growth. In what follows we shall, therefore, restrict our attention to plant 
cells in batch culture. 

The transfer of the cells to a fresh medium at time 0 triggers all cells to 
start their cycles almost at once, and we shall, therefore, assume that at time 
0 all cells are of type A and that their cell cycles· have been synchronized. If 
the amount of nutrient were kept constant or varied over time in a nonran
dom fashion, it would be reasonable to assume that the duration of the cycles 
of different cells would be independent. However, in batch culture, the 
concentration of nutrient decreases at the random times when stimuli arrive, 
and cells compete for the available nutrient. This creates a complicated type 
of dependence between the division times for different cells. 

Similarly, the hormone concentration decreases at the times of cell divi
sion. It follows that the cell population will ultimately stop growing, either 
because the nutrient is exhausted and no more stimuli can occur, or because 
the hormone concentration has become so low that the population of cycling 
cells can no longer be sustained. In the model this occurs when the probabil
ity P of becoming an A cell has fallen below 0.5. 
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In batch culture, cell death is observed only at the beginning when cells 
are transferred to a fresh medium, and at a time when the cell density has 
been very high for a considerable period. The effect of the former is removed 
by simply never counting these dead cells, whereas the latter occurs in 
practice only after the growth of the population has stopped. We shall, 
therefore, assume that cell death does not occur. 

On the basis of this biological description we shall build a mathematical 
model for the growth of a plant cell population in batch culture in Section 2. 
In this model we shall study the duration of the growth process (i.e., the time 
until the population stops growing) when the initial population size n is 
large. We shall find that the duration is usually proportional to log n. 
However, if the nutrient is exhausted at approximately the same time as the 
hormone concentration becomes too low to sustain the process, the duration is 
proportional to n lf2 log n. Similar results are proved for an appropriately 
defined limit process. 

2. The mathematical model. Let us turn this biological description 
into a mathematical model for the growth of a population of plant cells in 
batch culture. We start at time t = 0 with n cells. Because we intend to 
consider the growth of this population as n tends to infinity, we use n as an 
index throughout. The Smith-Martin model tells us that the duration of a 
cell cycle is of the form (W +c), where W is a random waiting time for a 
stimulus to arrive and c > 0 is a constant. In a constant environment W has 
an exponential distribution with parameter A (i.e., with expectation 1/ A) and 
stimuli arrive independently for different cells. To fix thoughts, we assume 
that the cell cycle starts with the exponential waiting time for the stimulus 
and that the cell divides a constant time c after receiving the stimulus. 

At time t, there will be Nn(t) cells, of which NAn(t) are A cells (i.e., cycl
ing cells). Of these NAn(t) A cells, Nln(t) cells are at time t waiting for a 
stimulus to arrive, whereas the remaining NAn(t) - Nln<t) A cells are some
where in the time span of length c between arrival of a stimulus and division, 
and will, therefore, divide before or at time (t +c). Thus 

(2.1) 
NAn(t)- Nln(t) = Nn(t +c)- Nn(t) or 

N 1 n ( t) = NAn ( t) - ( Nn (t + c) - Nn ( t)) . 

At time t = 0, all cells are of type A and at the beginning of their cycle, so 

(2.2) 

We shall also need normalized versions of the three processes defined so far, 
and we write 

(2.3) 

X n ( t) = n -l ( Nn ( t) - n), 

XAn(t) = n - 1NAn(t), 

Xln(t) = n - 1Nln(t) . 



320

NON-MARKOVIAN MODEL FOR POPULATION GROWTH 1117 

At the time of a cell division, the two new cells independently become A 
cells with probability P and B cells with probability (1 - P). This probability 
P is an increasing function of the hormone concentration immediately before 
the division, and in batch culture this concentration decreases as time goes 
on. Suppose that the amount of hormone at timet= 0 equals [nbh], with bh 
a positive constant, and that an amount 1 is used up at each division. Here 
[ x] denotes the largest integer less than or equal to x. Immediately before 
the ith division, the amount of hormone is ([nbh] - (i- 1)), and hence the 
probability of a cell becoming an A cell at the ith division equals 

(2.4) 
_ ( [ nb h ] - i + 1 ) 

pin -P ' 
n 

i = 1, 2, . . . ' 

where P is increasing on [0, oo) and P(u) = 0 for u s 0. According to Monod 
kinetics, which is the standard model for these biochemical processes [see, for 
instance, Roels (1983)], P is given by 

{
0, 

P(u) = u = 1- ah 
ah + u ah + u' 

us 0, 
(2.5) u > 0, 

where ah denotes a positive constant. Note that Pin = 0 for i ;:::: [ nbh] + 1. 
Because P is nonnegative, nondecreasing and concave, one easily verifies 
that form= 1, 2, ... , [nbh], 

(2.6) I m jm/ n I bh r_pin-n P(bh-u)du .sP(bh)= b sl. 
i = 1 o ah + h 

Let Zn = (Z1n, Z 2 n, ... ) denote a random sequence, where Z 1n, Z 2n, ... are 
independent and zin has a binomial distribution with parameters 2 and pin• 
Here Zin models the number of A cells created at the ith division, and hence 

(2.7) 

N n(t) - n 

NAn(t) = 2n - Nn(t) + r. zin 
i = 1 

Nn(t) - n 

=n+ L (Zin-1). 
i = 1 

In view of (2.1), for t > c, 

Nn(t-c) - n 

(2.8) N}n(t- c)= 2n- Nn(t) + L Zin· 
i = 1 

Note that, conditional on Zn, {NAn(s): s s t} depends only on {Nn(s): s s t}, 
but {N}n(s): s s t} depends on {Nn(s): s s (t + c)}. 

The parameter A of the exponential waiting time for a stimulus is an 
increasing function of the amount of substrate (or nutrients) present, and in 
batch culture this concentration decreases over time. Suppose that the amount 
of substrate at time t = 0 equals [ nbJ, for a positive constant b8 , and that an 
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amount 1 is used up for each stimulus. At time t, (Nn(t) - n) divisions have 
taken place, and this is also the number of stimuli that have arrived before or 
at time (t - c). Hence, the amount of substrate at time (t - c) equals 

Thus, the time dependent rate at which a stimulus arrives at time (t- c) is 
an increasing function of {[ nb5 ]/n} - Xn(t), say Q({[ nb5 ]/n} - Xn(t)). Accord
ing to Monod kinetics once more, Q is defined by 

u.::; 0, 

(2.9) u > 0, 

where d and as are positive constants. Note that the rate becomes zero after 
[nbs] stimuli have arrived. 

The amount of substrate n({[nb5 ]jn}- Xn(t)) that is present at time 
(t -c) will remain unchanged until the random time (r- c) when the first 
stimulus after (t - c) arrives. Thus, ( r- c) is distributed as the minimum of 
the times of the first event in independent Poisson processes with intensity 
Q({[nbs]/n}- Xn(t)). For the Njn(t- c) waiting A cells that are already 
present at time (t -c), the corresponding Poisson processes start at time 
(t -c), and for A cells created after time (t - c) the processes start at the 
time of their creation. Thus, given Zn, the conditional intensity of the 
stimulus process at time (t -c) equals the left-continuous version of Njn(t -
c)Q({[ nb5 ]/n} - Xn(t)). Because a stimulus at time (t -c) corresponds to a 
cell division at timet, it follows that, conditional on Zn, the process {Nn(t)- n: 
t :2:. 0} is a counting process with the left-continuous version of 

0.::; t < c, 

t;;:::: c, 

as its conditional intensity. Together with the distribution of Zn given before, 
this determines our mathematical model for the growth of a plant cell 
population in batch culture. 

The process Nn stops growing for one of two entirely different reasons: 
either A cells become extinct or the rate at which the stimuli arrive becomes 
zero. Thus the process Nn(t) reaches its final value at the first time t when 
either NAn(t) = 0 or Nn(t) = n + [nbs]. Note that Njn(t- c)= 0 is not suf
ficient for Nn to stop growing at time t, because new A cells may be born 
between time (t -c) and t. If Tn denotes the random time of the final cell 
division, then by (2. 7), 

( 
Nn(t) - n ) 

Tn = inf t: .L (Zin- 1) = -n 1\ inf{t: Nn(t) = n + [nb5 ]}, 

t = 1 
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where (a 1\ b) means the smaller of a and b [similarly, the larger of a and b 
will be denoted by (a V b)]. The random level that Nn has reached by then 
equals 
(2.11) Nn(Tn) = n + Mn A [nbs], 
where 

(2.12) Mn = inf{m : .E (Zin- 1) = -n} ~ n. 
!= 1 

Clearly this final level Nn(Tn) depends only on Zn and bs. The process stops 
because N(Tn) = n + [ nbJ or NAn(Tn) = 0, or both, depending on whether 
Mn >[nbs] or Mn <[nbs] or Mn =[nbs], respectively. An alternative expres
sion for Tn is 

(2.13) 

which shows that given Zn, Tn is the time at which the counting process Nn 
reaches a fixed level. 

Suppose that, for large n, the process Xn(t) = (Nn(t) - n)jn is close 
to a deterministic function X(t) in D[O, oo), the space of right-continuous, 
IR-valued functions on [0, oo) with left-hand limits everywhere. Then by (2.8), 
(2.10) and the fact that 

m m 
-1" -1" Jm/n n L..zin- n L..2Pin- 2 P(bh- u) du 

1 1 0 

by (2.6), we find that Azn(t)jn will be close to F(t, X), where F: [0, oo) X 

D[ 0, oo) ~ IR is defined by 

(2.14) 
{ Jx(t-c) } F(t,x)= 1-x(t)+2

0 
P(bh-u)du 

X Q(bs- x(t))1[c,oo)(t) . 

Here an "' bn means that the quotient of an and bn tends to 1 (in probability) 
as n tends to infinity. Thus it seems plausible that, if a deterministic limit X 
of the processes xn exists, it should satisfy the equation 

{
0, 

x ( t) = f F ( s, x) ds, 

O:::;t<c, 
(2.15) 

t ~c. 

It is shown in De Gunst (1989) that (2.15) has a unique solution X in 
D[O, oo). This function X is continuous, nonnegative, nondecreasing and 
bounded on [0, oo), and differentiable on (c, oo) with a continuous, positive 
and bounded derivative. Hence X(t) tends to a finite limit X(oo) as t tends to 
infinity, and in view of (2.14) and (2.15), it follows that X'(t) also tends to a 
limit, which must necessarily be zero: 

X ( oo) = lim X ( t) < oo, 
t-> 00 

lim X'( t) = 0. 
(2.16) 

t - )00 

For biologically plausible values of the parameters, the graph of X exhibits 
alternating intervals of slow and rapid increase, which level off as time 
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progresses. This reflects the synchronism of cells at time t = 0, which is 
gradually destroyed by the variability of the cycle times. Figure 2 shows a 
graph of X that was obtained by fitting a numerical solution of (2.15) to the 
only experimental data that are available so far, and that are also shown in 
this figure. Figure 2, as well as a statistical analysis of the experimental data, 
shows that for appropriate parameter values, the function X describes actual 
batch culture growth quite well. A detailed description of the experimental 
procedures, the statistical analysis of the data, and a further discussion of the 
relevance of the results can be found in De Gunst, Harkes, Val, Van Zwet and 
Libbenga (1990). 

Having defined X as the nonrandom counterpart of Xn, we proceed to 
define the counterparts of the other processes in (2.3) by 

(2.17) 

t 
~ 

<I> 
0 ...-
X 
0 

I 
.!!l 
Q3 
0 

0 
Q; 
.D 
E 
:::1 
z 

JX(t) 
XA(t) = 1-X(t) + 2 P(bh- u) du, 

0 

X1(t- c)= 1- X(t) + 2 jX(t - c)P(bh- u) du, 
0 

1.60 
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FIG. 2. Experimental data of the growth of a batch culture of tobacco cells (dots). The curve 
through the data was fitted using numerical solutions of (2.10). The parameter values are 
n = 1.625 X 108 1-1, c = 26h, d = 4 h, b5 = 29.9, k 5 = 2.2 X 10- 11 mol, Ys = 5.4 X 

1010 mol - l, bh = 4.7, kh = 9.7 x 10- 17 mol, Yh = 3.4 x 1015 mol- 1 . 
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in analogy with (2.7) and (2.8). Thus, by (2.10), (2.14) and (2.15) we have the 
two corresponding expressions 

(2.18) 

(2.19) 

Azn(t) = nXJn(t- c)Q({[ nbJ/n} - Xn(t)) fort;;::: c, 

X'(t) = XJ(t- c)Q(bs- X(t)) fort;;::: c, 

for the conditional intensity of (Nn - n) and the derivative of X . 
In De Gunst and Van Zwet (1992) it is shown that indeed Xn converges in 

probability to X at a rate of n -I;z uniformly on [0, oo). Moreover, there is an 
exponential bound for the tail probability. The same holds for XAn and XA, as 
well as for XJn and XJ. Theorem 2.1 summarizes these results. 

THEOREM 2.1. Let X be the solution of (2.15). Then there exist positive 
numbers A and a, such that for n = 1, 2, ... and x;;::: 0, 

(2.20) 9'( sup I Xn( t) -X( t) I ;;::: x) sA exp{- ax 2 n}, 
t ~ O 

and hence 

(2.21) supiXn(t) -X(t)l = &'Y' (n-1 12). 
t ~ O 

The same conclusions hold if Xn and X are replaced by XAn and XA or XJn 
and XJ, respectively. 

To simplify our notation in what follows, we introduce a function 1/J defined 
on [0, oo) by 

(2.22) 

Note that 

(2.23) XA(t) = 1/J(X(t)) for all t. 

By (2.5), P is nondecreasing and vanishes for negative values of its argu
ment, and hence 1/J is concave on [O,oo) with 1/J(O) = 1 and limv -"'" 1/J(v) = -oo. 
Define a new parameter y as the solution of 

(2.24) 1/J(y)=O. 

Obviously, y is uniquely determined and 1/J is positive (negative) to the left 
(right) of y . Apart from our choice (2.5) for the function P, y depends only on 
bh . By (2.22) and (2.24), y;;::: 1. 

To complete our notation we define 

(2.25) 

(2.26) 

X A ( 00 ) = lim X A ( t) = lim X J ( t) = 1/1 ( X ( oo)) , 
t-+ oo t-+oo 

p = P(bh- X(oo)), 

q = Q(bs- X(oo)), 

q' = Q'( b5 - X(oo)), 

where Q' denotes the derivative of Q. 
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We have already noted that the process Nn will stop because one or both of 
the factors in (2.18) vanish. Similarly, for the deterministic limit function X, 
(2.16), (2.19) and (2.25) imply that 

(2.27) 

so that we have three different cases: either X(oo) = b8 and hence q = Q(b8 -

X(oo)) = 0 or XA(oo) = t/J(X(oo)) = 0 or both. An alternative way to express this 
is to write 

(2.28) X ( oo) = inf{ v : t/J ( v) s 0} 1\ b s = y 1\ b s , 

which is the analogue of (2.11) and (2.12). 
In the present paper, we shall investigate two closely related issues: the 

behavior of X(t) for large values oft and the duration of the process Nn, that 
is, the time Tn to the final cell division. These issues concern the tail behavior 
of the processes X and Xn, respectively, the former being an (easier) deter
ministic version of the latter. We shall show that, depending on the values of 
the biological parameters, there is a remarkable discontinuity in this tail 
behavior of X and Xn. 

Let us consider more closely the three cases that (2.27) allows and classify 
their occurrence in terms of the parameters y and b s. 

(2.29)(i) 

'}' > bs: 

By (2.28), X(oo) = b8 and q = Q(bs- X(oo)) = 0. 

On the other hand, X A ( oo) = t/1 ( X ( oo)) = t/1 ( b s) > 0; 

Y < bs: 

By (2.28), X(oo) = y and q = Q(bs- X(oo)) = Q(b8 - y) > 0. 

(2.29)(ii) On the other hand, XA(oo) = t/J( X(oo)) = t/J( y) = 0. 

Notethatinthiscasep =P(bh -X(oo)) =P(bh- y) < ~' 
because(2.22) impliesO = t/J(y) ~ 1 + y{2P(bh- y) -1}; 

'}' = bs: 

By (2.28), X(oo) = b8 = y and q = Q(b8 - X(oo)) = 0. 

(2.29)(iii) However, in this case, XA( oo) = t/J( X( oo)) = t/J( y) = 0. 

As in the previous case, p = P ( b h - b s) = P ( b h - y) < ~ . 

We shall show that if y 1= b8 , 

X( oo) -X( t) "'Ae - at as t~ oo, 

T 1 
_n_ ~ - in probability as n ~ 00 

log n a 

and give expressions for a in case ( y - b8 ) is positive or negative. If y = b8 , 
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however, we find a very different behavior: 
1 

n 11 2 log n 

X ( oo) - X ( t ) "' - as t ---? oo, 
at 

is of exact order 1 in probability as n ---? oo 

and, again, we give an expression for a in this case. 

1123 

The biological interest of these results lies in the fact that for . a certain 
balance ( y = b8 ) between the initial amounts of substrate [ nb8 ] and hormone 
[ nb h], the model predicts a much longer duration of the growth process than 
for other parameter values. This phenomenon, which is indeed a very essen
tial aspect of the model, lends itself to experimental verification. Because the 
experiments considered here are very expensive and time consuming, this 
verification has not yet been carried out. Another aspect of these results that 
is of some practical importance is that some of the secondary metabolites are 
known to be synthesized only at the end of the cell culture's growth process, 
and one would, therefore, like to avoid values of y close to b8 • 

From a mathematical point of view, the results of this paper are rather 
more delicate than those of Theorem 2.1. Though the main feature ofTheorem 
2.1 is the uniformity in t, the theorem still provides very little information 
about the behavior of Xn(t) and X(t) for very large t, which is needed here. 
There seem to be few results on the duration of processes similar to the one 
we study. Kurtz (1982) discusses a case where the limit process X reaches its 
ultimate value in finite time; Barbour (1975) and Nagaev and Mukhomor 
(1975) study the duration of an epidemic. The problems that these authors 
face are very different from ours. 

In Section 3, we prove the results on the behavior of X(oo) - X(t) for large 
t. A result on a class of differential equations that plays a key role in this 
analysis is given in Appendix A. In Section 4 we tackle the estimation of Tn. A 
maximal inequality and a fluctuation inequality that are needed in Section 4 
are given in Appendix B. 

3. Tail behavior of X. In this section we investigate the behavior of 
X(t) for large values of t. Our starting point will be expression (2.19): For 
t ;:::: c, 

X'(t) = XJ(t - c)Q(bs- X(t)) = ( XA(oo) + [ XJ(t - c)- XA(oo)]) 

X ( q + ( Q( bs -X( t)) - q]), 
and Taylor expansion of the terms in square brackets. By (2.17) and because 
both P and Q have bounded derivatives of every order, we find 

XJ(t- c) - XA(oo) = X(oo)- X(t) - 2 J X(oo) P(bh - u) du 
X(t - c ) 

(3 .1) = (X(oo) - X(t)) - 2p(X(oo)- X(t- c)) 

+ &((X(oo) - X(t- c)) 2), 
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(3.2) Q(bs -X(t)) -q =q'(X(oo) -X(t)) +&((X(oo) -X(t)) 2 ). 

Here p, q and q' are defined in (2.26). By (2.27), 

(3.3) XA( oo)q = 0. 
It follows that 

(3.4) 

X'(t) = (q + q'XA(oo))(X(oo)- X(t)) 

- 2pq(X(oo) -X(t- c)) 

+q'(X(oo) -X(t)) 2 

- 2pq'(X(oo)- X(t))(X(oo)- X(t- c)) 

+&(q(X(oo) -X(t-c)) 2 +XA(oo)(X(oo) -X(t)) 2 

+(X(oo) -X(t))(X(oo) -X(t -c)) 2). 

LEMMA 3.1. 

X(oo) -X(t-c) =&(X(oo) -X(t)) ast~oo. 

If y = b8 , then 

X(t) -X(t-c) =&((X(oo) -X(t)) 2) ast~oo. 

PROOF. By (3.3), Xioo)q = 0. If q = 0, then X(oo) = b8 • By (3.1), 
XJ(t - c) ~ X(oo) + XA(oo) ~ 2b8 , and as Q' decreases, Q(bs - X(t)) ~ 
Q'(O)(X(oo) - X(t)). Hence X'(t) ~ 2b8 Q'(O)(X(oo) - X(t)) for t > c and 

t X'(s) (X(oo)-X(t-c)) 
~- cX(oo) -X(s) ds =log X(oo) -X(t) ~ 2cbsQ'(O), 

so that X(oo) - X(t - c) ~ e2 cb,Q'(Ol(X(oo) - X(t)) for t ~ 2c. 
If Xioo) = 0, then (3.1) implies that 0 ~ XJ(t -c)~ X(oo)- X(t), whereas 

Q(bs - X(t)) ~ Q(b8 ) as Q is increasing. Repeating the foregoing argument, 
we see that X(oo)- X(t- c) ~ ecQ(b,l(X(oo) - X(t)) for t ~ 2c. 

Finally, if y = b8 , then we are in case (2.29)(iii) and Xioo) = q = 0. Now 
(3.1) and (3.2) imply that for t ~ c, 

X'(t) ~q'(X(oo) -X(t)) 2 +&((X(oo) -X(t)) 3). 

Integrating over (t - c, t), we find 

X(t)- X(t- c)= &((X(oo)- X(t- c)) 2 ) = &((X(oo)- X(t)) 2 ). o 

Theorems 3.1, 3.2 and 3.3 deal with the three essentially different cases 
(2.29)(i)-(iii) that we discussed in Section 2. We note that 1/J and y are 
defined in (2.22) and (2.24). 

THEOREM 3.1. Let y > bs and define a = r/f(b8 )/(da8 ) > 0. Then X(oo) = bs 
and there exists a positive number A, such that 

(3.5) lim eat ( X ( oo) - X ( t)) = A. 
t~oc 
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PROOF. This is case (2 .29)(i), so that X(oo) = b8 , Xioo) = if!(b8 ) > 0, q = 0 
and q' = Q'(O) = 1j(da8 ). Hence (3.4) and Lemma 3.1 imply that 

(3.6) X'(t) =q'XA( oo)(X(oo) -X(t)) + &((X(oo) -X(t)) 2). 

The theorem follows from Lemma A.1 in Appendix A with v = 0, w =a= 
q'Xioo) = if!(b8 )j(da8 ) and f(t) = X(oo)- X(t). D 

THEOREM 3.2. Let y < b8 and define a E (0, Q(b8 - y )] as the unique 
solution of Q(bs- y)- a= 2P(bh- y)Q(bs - y)eac. Then X(oo) = y and 
there exists a positive number A such that 

(3.7) limeat(X(oo)- X(t)) =A. 
t--'> 00 

PROOF. This is case (2.29)(ii), so that X(oo) = y, XA(oo) = 0, q = 
Q(bs - y) > 0 and p = P(bh - y) < ~. Together with Lemma 3.1, this im
plies that (3.4) reduces to 

(3.8) 
X' ( t) = q ( X ( oo) - X ( t)) - 2 pq ( X ( oo) - X (t - c)) 

+ &{(X(oo) -X(t)) 2). 

The theorem follows from Lemma A.1 in Appendix A with v = 2pq = 
2P(bh- y)Q(bs- y), w = q = Q(b8 - y) and f(t) = X(oo)- X(t). Note that, 
because p = P(bh- y) <~.we have indeed v < w. D 

THEOREM 3.3. Let y = bs and define a = (1 - 2P(bh - b8 )) j (da 8 ) > 0. 
Then X(oo) = b8 and 

(3.9) limat(X(oo)- X(t)) = 1. 
t--'> 00 

PROOF. We are now in case (2.29)(iii), so that X(oo) = bs = y, Xioo) = 
1/J(y) = 0, q = Q(O) = 0, q' = Q'(O) = 1j(da8 ) > 0 and p = P(bh- b8 ) < ~· 
Hence a = q'(1 - 2p) is positive. Together with Lemma 3.1, this implies that 
(3.4) reduces to 

(3.10) X ' (t) =a(X(oo) -X(t)) 2 + &{(X(oo) -X(t)) 3). 

Dividing by (X(oo)- X(t))2 and integrating, we find for c < s < t, 

1 1 
X(oo) -X(t)- X( oo) -X(s) =a(t -s) + &((t -s)(X(oo) -X(s))). 

Dividing by at and then letting first t and then s tend to infinity, we find 
that (at(X(oo)- X(t))) - 1 tends to 1. D 

4. Duration of the growth process. We now turn to the duration Tn of 
the growth process Nn. To simplify our notation we shall write 

( 4.1) b 8 n = [ n: sJ E ( b s - ~ , b 8 ] , b h n = [ n: h ] E ( b h - ~ , b h] 
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throughout this section. In view of (2.28) and the fact that y ~ 1 on the one 
hand and (2.11) and (2.12) on the other, we know that X(oo) ~ 1 1\ bs and 
Xn(Tn) ~ 1/\ bsn· ForEE (0, 1 1\ b5 ) we may, therefore, define T(e) and Tn(s) 
by 

(4.2) X(oo) -X(T(s)) = E, 

( 4.3) 

LEMMA 4.1. There exist positive numbers A and a such that for 0 < E < 
1 1\ bs and n = 1, 2, ... , 

( 4.4) 

PROOF. 

9 (Tn(s) > T(i)) s9(Xn(Tn) -xn(T(i)) > s) 

s9(supjXn(t) -X(t)j > !...) 
t ~ 0 4 

because X(oo) = X(T(E/2)) + s/2 and Xn(Tn) = Xn(oo). Hence (4.4) follows 
from Theorem 2.1. 0 

Lemma 4.1 ensures that Tn(e) is bounded except on a set of exponentially 
small probability for every fixed E > 0. Of course, Tn tends to infinity in 
probability as n --') oo in view of Theorem 2.1 and the results of Section 3. For 
our study of the first order asymptotic behavior of Tn, any bounded contribu
tion to Tn will be irrelevant, and we may, therefore, study Tn - Tn(s) instead. 
This implies that we need only take the times needed for the final [ s n] cell 
divisions into account, for arbitrarily small positive s. 

As in Section 3, the cases y > b5 , y < bs and y = bs are essentially differ
ent and we shall discuss these cases in three separate subsections. 

4.1. The case y > b5 • If y > bs we are in case (2.29)(i), so X(oo) = b5 , 

Xioo) = tjJ(b5 ) > 0, q = Q(O) = 0 and q' = Q'(O) = 1j(da5 ). Theorem 2.1 
implies that, except on a set 11~ of negligible probability for large n, 
Xin(Tn) = XAn(Tn) = XAn(oo) will be close to XJ(oo) = XA(oo) = tjJ(bs) > 0, and 
the same is true for XJn(t - c) for sufficiently large t. In particular, XAn(Tn) 
> 0 on nn. Because the process xn stops when either XAn = 0 or xn = bsn' 
we must have Xn(Tn) = bsn and hence Q(bsn - Xn(t)) is approximately equal 
to q'(Xn(Tn)- Xn(t)) for large t. It follows from (2.10) that on !ln, Azn(t) is 
close to na(Xn(Tn) - Xn(t)) for large t, where a = tjJ(b)j(da 5 ) > 0. But this 
means that, going back in time from Tn, the times between the last [ En] 
consecutive cell divisions are approximately independent and exponentially 
distributed random variables with means 1ja, 1j(2a), 1j(3a), ... , 1/([ sn]a), 
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provided that 8 > 0 is sufficiently small. This implies that (Tn - Tn(s)), which 
is the sum of these variables, is asymptotic to (log n)ja , and by Lemma 4.1 
this remains true for Tn. 

In the remainder of this subsection we make this argument rigorous. In 
Lemma 4.2 we study the appropriate sum of independent exponential random 
variables. Theorem 4.1 provides a precise statement of the result and in its 
proof we fill in the gaps in the heuristic argument given before. 

LEMMA 4.2. Let V1, V2 , •. • be i.i .d. random variables that are exponen
tially distributed with mean 1. For 8 E (0, 1] and m ;;:.; 1/8, define 

[ em] V. 
(4.5) 8m(8) = L --!- . 

j = l J 

Then for 8 E (0, 1], m ;;:.; 1/8 and x ;;:.; 0, 

.9( I 8 m ( 8) - log m I ;?; x) s ~ exp { - i } . 
PROOF. Writing 8m(s) = 8 we have 

Ee 8 1 2 = fl ~ s 2 fl -.-1 - s 2(8m) 11 2 , 

[ em] • [ em ] ( · ) 1/ 2 

j = l}-2 } = 2 ;-1 

EeS / 2 
.9(8;?; log m + x) s { 1 I 1 } s 28 112e - xl2 , 

exp 2 og m + zX 

[em] j 1 
Ee - s = fl -- < -

J=lj+1-8m' 

Ee - s 1 
.9(8 slog m- x) s ---,{-1----,-} s-e- x. 

exp - og m + x 8 

As 8 11 2 s 8 - 1 , the lemma is proved. D 

THEOREM 4.1. Let y > b8 and define a = ljJ(b8.) j (da 8 ) > 0 as in Theorem 
3.1. Then, for every 8 > 0 there exist positive numbers A and a such that for 
n = 1, 2, . .. and 0 s x s n, 

(4.6) .9(1Tn- lo:nl;;:.; 81ogn +x) sAexp{-ax}, 

and hence 

(4.7) 
Tn 1 
-- ~- inprobability. 
log n a 

PROOF. Choose 8 E (0, 1 1\ bs 1\ XA(oo)) and consider the event 

On= {IXAn(Tn) -XA(oo)l s 8}. 
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In view of (2.3), (2.7), (2.11) and (2.12) this event is measurable with respect 
to the (T-algebra Yzn generated by zn = (Zln• z2n• . .. ). Because XAn<Tn) = 

XAn(oo), Theorem 2.1 ensures that 

(4.8) 

for positive A 1 and a 1. 

As e < Xioo), we have XAn(Tn) > 0 and hence Xn(Tn) = bsn on nn . Also, by 
(2.7), (2.8) and (4.3), 

=XAn(Tn) + sup (XAn(t) -XAn(Tn)) 
t :?. Tn( e ) 

and 

It follows that on n n, 

SUp X 1 n (t - C) :::; X A ( oo) + 2 e, 
l :?. Tn(e) 

inf Xln(t- c)~ XA(oo)- 3e. 
t :?. Tn( e)+ c 

On nn, X n(Tn) = bsn• and hence (2.9) and (4.3) imply that for t ~ Tn(e), 

Define a = Xioo)j(da 8 ) = ljJ(b 8 )j(da) as in the statement of the theorem 
and choose 8 E (0, a - 1). Combining (2.10) and the inequalities derived so far, 
we find that by taking e > 0 sufficiently small, we can make sure that on n n , 

( 4.9) 

( 4.10) 

Conditionally on Zn = z with {Zn = z} c fin, the process (Nn(t) - n) is a 
counting process with intensity Azn(t), which is bounded above and below by 
(4.9) and (4.10). In view of the argument in the first paragraph of this 
subsection, this implies that conditionally on Zn = z with {Zn = z} c nn , 
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(Tn - rn(e)) is stochastically larger than a sum of [en] independent exponen
tial random variables with means (1 - oa)j(aj), j = 1, 2, ... , [en], or equiva
lently, than ((1 - oa)ja)Sn(e) with Sn(e) as in Lemma 4.2 with m = n. 
Hence by (4.8), 

9 { Tn - lo: n ~ -o log n - x) 

~ g>( Tn - Tn( e) ~ 1 -a oa log n -X) 

~g>(Sn(e) ~logn- ax ) +A1 exp{-a1e 2 n}. 
. 1- oa 

Similarly, (4.10) implies that conditionally on Zn = z with {Zn = z} c nn, 
(Tn - rn(e)) is stochastically smaller than ((1 + oa)ja)Sn(e) + c, and hence 
by Lemma 4.1 and (4.8), 

( log n ) 
9 Tn - -a- ~ o log n + x 

~9'(Tn- rn(e) ~ 1 +aoalogn +x- r(i)) 
+ A 2 exp{ -a2 e 2 n} 

~g>( Sn( e) ~log n + 1 : oa ( x- r( i) -c)) 

+ A 3 exp{- a 3 e 2 n} 

for appropriate positive A 2 , A 3 , a 2 and a 3 • Combining these results with 
Lemma 4.2, we find that for n = 1, 2, ... and r(e/2) + c ~ x ~ n, 

9 (I Tn - lo: n I ~ o log n + x) 

~ 9 (IS n (e) - log n I ~ 1 : oa ( x - r ( i) - c)) + ~ exp{ - an} 

~ ~exp{ a (r(!.-) + c- x)} +A exp{ -an} 
e 1 + oa 2 2 

~ Aexp{ -ax} 

for appropriately chosen positive A and a. If A ~ exp{a(r(e/2) +c)}, then 
this bound remains valid for 0 ~ x < r(ej2) + c and the proof of (4.6) is 
complete. For x = o log n, (4.6) yields (4.7). 0 

4.2. The case y < b8 • If y < b8 we are in case (2.29)(ii), so X(oo) = y < b8 , 

XA(oo) = 0, q = Q(bs - y) > 0 and p = P(bh - y) < ~· Theorem 2.1 implies 
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that, except on a set D~ of negligible probability for large n, Xn(Tn) = Xn(oo) 
will be close to X(oo) = y, and the same is true for Xn(t) for sufficiently large 
t. In particular, Xn(Tn) < bsn on fin, and hence the process Xn must stop 
because XAn<Tn) = 0. Moreover, on nn, Q(bsn - Xn(t)) is close to q for large t 
and the probabilities Pin of A cells are approximately equal top for the final 
[ 8n] cell divisions if 8 > 0 is small [cf. (2.4)]. It follows that on fin and for 
small 8 > 0, (Tn - Tn(e)) is approximately equal to the duration of a process 
that starts at time Tn(8) with NAn(Tn(8)) A cells-of which N}n(Tn(8)) are 
waiting for a stimulus-and has a fixed stimulus rate q > 0 and a fixed 
probability of A cells p < ~-Both NAn(Tn(e)) and N}n(Tn(8)) are of exact order 
n with probability close to 1, because XAn(Tn(8)) and X.Jn(Tn(e)) are close to 
XA(T(e)) and X_1(T(e)), which are positive. 

Let S(p, q, c) be the duration of a process that starts with a single waiting 
A cell and has a fixed stimulus rate q > 0 and a fixed probability of A cells 
p < ~. In Lemma 4.3 we show that the right tail of the distribution of 
S(p, q, c) behaves like that of an exponential distribution with mean a - 1 , 

where a is the solution of q -a = 2pqeac. Hence (Tn - Tn(8)) is approxi
mately distributed as the maximum of a (random) number M of independent 
exponentially distributed random variables with mean a - 1 , and this number 
M is of exact order n. But this means that (Tn - Tn(8)) ~(log n)ja, and by 
Lemma 4.1 we also have Tn ~(log n)ja. 

In the remainder of this subsection we first prove Lemma 4.3 concerning 
the distribution of S(p, q, c). Theorem 4.2 provides a precise formulation 
of the result for Tn and some additional details will be found in the proof of 
this theorem. 

Thus in Lemma 4.3 we consider the following situation. At time t = 0 there 
is a single A cell waiting for a stimulus. A cells independently receive a 
stimulus after an exponential waiting time with mean (q) - 1 and divide a 
constant time c later. With each division the new cells independently become 
A cells with probability jJ and B cells with probability (1 - p). B cells do not 
divide. Let S(jJ, q, c) denote the time until the final division. 

LEMMA 4.3. Suppose that q > 0 and 0 s jJ < ~ and define a E (0, q] as 
the unique solution of q - a = 2pqeiic. Then there exists a positive number A 
such that 

(4.11) lime ii 19'(S(jJ,q,c) > t) =A. 
t- oo 

PROOF. Writing f(t) = 9'(S(jJ, q, c)> t) we find fort> c, 

f(t) = e - q(t -c ) + 2jJ(1- jJ)q[ - ce_ iis f(t- c- s) ds 
0 

f t -c - [ 2] + jJ 2q e - qs 2f(t- c- s)- (f(t- c- s)) ds 
0 
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- p 2if[ - ce - qs(f(t- c- s)) 2 ds 
0 

= e - q(t -c)[1 + 2pq~ot -ceqsf(s) ds- p 2if{ - ceqs(f(s)) 2 ds]. 

Multiplying by eti<t- cl, differentiating and dividing again by eti<t-cl, we obtain 
fort> c, 

f'(t) + qf(t) = 2pqf(t- c)- p 2q(f(t- c)) 2 

or 

f' ( t) = 2 pqf( t - c) ( 1 - ~ f( t - c)) - qf( t). 

Obviously, f is strictly decreasing and f' < 0 on [c, oo). Because 0:::;;, p < i, 
we have limt -><=" f(t) = 0 and we may apply Lemma A.1 in Appendix A with 
v = 2 pq and w = q to complete the proof. D 

THEOREM 4.2. Let y < bs and define a E (0, Q(bs - y )] as the unique 
solution ofQ(bs - y)- a= 2P(bh - y)Q(bs - y)eac as in Theorem 3.2. Then, 
for every 8 > 0 there exist positive numbers A and a such that for n = 1, 2, ... 
and 0:::;;, x:::;;, n, 

( 4.12) .9 (I Tn - lo: n I ;::: 8 log n + x) s A exp{ - ax} , 

and hence 

( 4.13) 
Tn 1 
-- ~ - in probability. 
log n a 

PROOF. Choose e E (0, 1 1\ (bs - y )) and define the event 

{ln = {IXn(Tn)- X(oo)l s e}. 

By (2.3), (2.11) and (2.12, nn is measurable with respect to the a -algebra Yzn 
generated by Zn = (Z1n, Z 2 n, .. . ), and by Theorem 2.1, 

( 4.14) 

for positive A1 and a 1. On On, X n(Tn):::;;, X(oo) + e = y + e < bs and hence 
Xn(Tn) < bsn for n ;::: no . It follows that for n ;::: no, XAn<Tn) = 0 on nn. 

As q = Q(bs - y) > 0 and p = P(bh- y) < i, we can choose e' E (0, q 1\ 

( i - p )) and define 

( 4.15) 
P1 = (p- e' ) V 0 E(O,t), 
q 1 = q- e' > 0, 

P2 =p + e' E (O,t), 
q 2 = q + e' > 0. 
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By taking e > 0 sufficiently small we can obviously ensure that on ii n and 
for n ~ n 1 and t ~ Tn(e), 

( 4 .16) 
p1:::;;P(bhn-Xn(t)+ ~):::;;pz, 
q1:::;; Q(bsn- Xn(t)):::;; Qz· 

Consider a process X~(t) obtained by modifying Xn(t) as follows: 
For t > rn(e) the rate Q(bsn - Xn(t)) and the probability P(bhn - Xn(t) + 
1/n) are replaced by q 1 and p 2 , respectively, and all A cells present at 
time Tn(e) are replaced by A cells waiting for a stimulus. On On and for 
n ~ n 1, (4.16) implies that X~ is obtained from Xn by adding a random 
number of A cells and increasing the length of the cell cycle of a number of 
cells by a random amount, and as a result the duration Tn+ of X~ is 
stochastically larger than Tn on fin for n ~ n 1. Moreover, (Tn+ - rn(e)) is 
distributed as the maximum of NAn(rn(e)) independent and identically dis
tributed random variables, each distributed as S(p 2 , q 1, c) discussed in 
Lemma 4.3. As NAn(rn(e)):::;; n(1 + b8 ), (4.14) and Lemma 4.1 yield for n ~ n 1 , 

9(Tn ~t) :::;;9(T;: ~t) +.9(0~) 

:::;;9(T;:- Tn(e) ~ t- r(e/2)) +A2 exp{-a2 e 2 n} 

:::;; n(1 + b8 )9 (S(p 2 , q 1 , c)~ t- r(e/2)) + A 2 exp{ -a2 e 2 n} 

for positive A 2 and a 2 , and all t . 
Define a as in the statement of the theorem as the solution of q - a = 

2pqeac. Similarly, suppose that a satisfies q 1 -a= 2p 2 q 1eac. As p 2 > p and 
q 1 < q, we have a <a and a j a as e' in (4.15) tends to zero. Hence, for every 
o > 0, we can choose e' > 0 sufficiently small to ensure that a - 1 :::;; a- 1 :::;; 

a - 1 + o. By Lemma 4.3 we find that for n ~ n 1 and 2r(e/2):::;; x:::;; n, 

9 ( Tn - lo! n ~ o log n + x) 

:::;; n(1 + b8 )9 (S(p 2 ,q1,c) ~ (al + o)logn +x- r(e/2)) 
( 4.17) 

_ { ax} +A2 exp{ -a2 e 2 n}:::;; n(1 + bs)Aexp -log n- 2 

+A2 exp{-a2 e 2 n} :::;A3 exp{ -a3 x} 

for positive A, A 3 and a 3 • Obviously an appropriate choice of A 3 will 
guarantee the validity of this bound for all n and 0 :::;; x :::;; n. 

We may also modify the process Xn(t) by replacing Q(bsn - Xn(t)) and 
P(bhn - Xn(t) + 1/n) by q 2 and p 1 for t > Tn(e), and simply removing all A 
cells that have received a stimulus before or at time rn(e). On On and for 
n ~ n 1 , (4.16) obviously implies that the duration T;: of this new process 
X;;(t) is stochastically smaller than Tn. Moreover, (Tn- - rn(e)) is distributed 



336

NON-MARKOVIAN MODEL FOR POPULATION GROWTH 1133 

as the maximum of NJn(T/e)) independent copies of S(p1, q2 , c). As X'(t) > 0 
for all t > c, (2.14), (2.15) and (2.17) imply that for every e > 0 there exists 
YJ > 0 such that XJ(t) ~ 2YJ for 0 .:::;; t.:::;; T(e/2). It follows from Theorem 2.1 
and Lemma 4.1 that 

for positive A4 and a 4 • Hence, for n ~ n 1 , (4.14) yields 

!!!J(Tn.:::;; t) .:::;;!!!J(Tn- .:::;; t) +!!!J(fl~) 

.:::;; [9(S(p1 ,q2 ,c).:::;; t)rn +A5 exp{ -a5 n} 

for positive A 5 and a 5 • 

Define ii as the solution of q 2 - ii = 2p 1q2 eac. As p 1 .:::;; p and q 2 > q, we 
have ii > 0 and ii J, a as e' in (4.15) tends to zero. Hence, for every o > 0 we 
can choose e' > 0 sufficiently small to ensure that a - 1 - o .:::;; ii - 1 .:::;; a - 1 . By 
Lemma 4.3 we find that for n ~ n 1 and 0 .:::;; x .:::;; n, 

!!lJ ( Tn - lo! n .:::;; -o log n - x) 

( 4.18) .:::;; [g;(s(p 1 ,q2 ,c).:::;; (~- o)logn -x)rn +A5 exp{-a5 n} 

.:::;; [ 1 - A exp{ -log n + iix} ] 11 n + A 5 exp{ - a5 YJ} 

.:::;; exp{ -AYJeiix} + A 5 exp{ -a5 n} .:::;; A 6 exp{ -a6 x} 

for positive A, A 6 , and a6 • Obviously the bound will hold for all n and 
0.:::;; x .:::;; n for an appropriate choice of A 6 • Together, (4.17) and (4.18) prove 
(4.12). Taking x = o log n in (4.12) we complete the proof of the theorem. D 

4.3. The casey= b8 • If y = b8 we are in case (2.29Xiii), so X(oo) = b8 = y, 
XA(oo) = 0, q = Q(O) = 0 and p = P(bh - bs) < t. The process xn may stop 
because Xn(Tn) = bsn or XAn(Tn) = 0, and in contrast to the two previous 
cases, neither of these possibilities can be ruled out with large probability. 
We shall, therefore, have to deal with both possibilities and our approach will 
combine the main elements of the proofs in the two previous subsections. 

In the cases y > bs andy < bso either (bsn - Xn(Tn)) or XAn(Tn) equals zero 
and the other one of these two quantities is of exact order 1 with high 
probability. Because now both b8 - X(oo) = 0 and XA(oo) = 0, the latter part 
of this statement is no longer true and we shall have to assess the exact order 
of magnitude of the nonzero quantity among (bsn - Xn(Tn)) and XAn(Tn). In 
view of the complicated dependence of these two random variables, some care 
is needed here. We shall proceed by bounding the nonzero variable in terms of 
Zn = (Z1n, Z 2 n, ... ) in Lemma 4.4, and then showing that this implies that it 
is of exact order n - 112 in probability in Corollary 4.1. 
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LEMMA 4.4. Let y = b8 • If Xn(Tn) = bsn• then 

1 [nbs] 3 
L ( zin - 2Pin) - - :::; XAnCTn) 

n i= 1 n 
( 4.19) 

If XAn(Tn) = 0, then 

1 [nbs] 3 
L (Zin- 2Pin) 

n i=l n 

( 4.20) 

PROOF. Because y = b8 , we have by (2.22) and (2.24), 

( 4.21) 

Because P is nondecreasing, this implies for 0 :::; v:::; b8 , 

( 4.22) 
{bs (bs- 1)v 

21, P(bh- u) du:::; b . 
bs- V S 

3 
+ -. 

n 

If Xn(Tn) = bsn we use (2.7), (4.21) and straightforward algebra to obtain 

XAn(Tn) =- L (Zin- 2Pin) + 2 - L pin- jbsnP(bh- u) du 
1 [nbs] ( 1 nbsn ) 

ni=l ni=l o 

( 4.23) + J,bs(1 - 2P( bh - U)) du 
bsn 

where l.9i'l :::; 3jn by (2.6) and because 0 :::; P(u):::; 1 for all u and 0 :::; bs -
bsn < 1/n. Because XAn(Tn) is nonnegative, it also equals the absolute value 
of the expression on the right in (4.23), and (4.19) follows. 

If XAn(Tn) = 0, we again use (2.7) and (4.21) to obtain 

bsn - Xn(Tn) = 2 jbsP( bh - U) du 
0 

( 4.24) 
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Hence by (4.22), 

bsn -Xn(Tn):::; bsb- 1 (bs -Xn(Tn)) + 2fxnCTn)P(bh- u) du 
s 0 

or 

-2(2.. nXfn) Pin- JXn(Tn)P(bh- u) du))• 
n i=1 o 

and the inequality on the right in (4.20) follows from (2.6). 
To prove the lower bound in (4.20) we start once more with (4.24) and write 

1 [nb 8 ] 

bsn - Xn(Tn) - - L zin 
n i=nXn(Tn)+ 1 

b 1 [nb 8 ] 

= 2 f SP( bh - u) du - - L zin - ( bs - bsn) 
o n i= 1 

1 [nbs] 

= -- L (Zin - 2Pin) -!}f 
n i= 1 

with .9f as in (4.23) so that I!Jfl :::; 3jn. Because o :::; Zin :::; 2 for all i and n, 
this yields 

1 [nb 8 ] 

L (Zin- 2Pin) 
n i= 1 

:::; bsn - Xn(Tn), 
which completes the proof of the lemma. D 

As before, let Yzn denote the u-algebra generated by Zn = (Z1n, Z 2 n, ... ). 

CoROLLARY 4.1. Let y = b8 • For 0 < b < B, define the events 

(4.25) fi 1n = {b:::; n 112XAn(Tn):::; B}, 

(4.26) fi 2n = {b :::;n 112 (bsn -Xn(Tn)) :::;B}. 
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These events are Yzn-measurable and for every e > 0 there exist 0 < b < B 
such that for sufficiently large n, 

( 4.27) 

PROOF. Yzn-measurability follows from (2.11), (2.12) and (2.7). Obviously, 
bsn - Xn(Tn) = 0 on nln and XAn<Tn) = 0 on n2n" Hence (4.27) follows from 
Lemma 4.4, the central limit theorem and Lemma B.1 in Appendix B. D 

So we have shown that both (bsn - Xn(Tn)) and XAn(Tn) = XJn(Tn) are 
either equal to zero or of exact order n -l/2 in probability. However, to 
analyze the process N/t) for large t we shall have to determine the exact 
order of magnitude of both factors Q(bsn- Xn(t)) and Njn(t- c)= nXJ/t
c) of the conditional intensity Azn(t) of the process [cf. (2.10)]. The factor 
Q(bsn - X/t)) is monotone in t and our knowledge concerning (bsn - Xn(t)) 
will suffice. Determining the exact order of XJn(t -c) for large t is a more 
delicate matter. In Lemma 4.5 we establish an asymptotic expression for 
XJn(t -c) for large n and t in terms of XAn(Tn) and (Xn(Tn)- Xn(t)). A key 
step in obtaining this expression is to show that (Xn(t)- Xn(t- c))-and 
hence the difference between XJn(t -c) and XAn(t)-is negligible for our 
purposes. 

LEMMA 4.5. Let y = bs, sop= P(bh - bs) < ~-Then for every D > 0, 

( 4.28) sup (Xn(t) -Xn(t -c)) =&'go(logn), 
t:Z.rn(Dn - 112)+c n 

sup jXJn(t- c)- {XAn(Tn) 
( 4.29) t:Z.rn(Dn - 112)+c 

PROOF. Take e > 0. In (4.25) and (4.26) we choose 0 < b < B so that (4.27) 
holds for sufficiently large n. On n~ = n1n u n2n we have fort ~ Tn(Dn - 1/ 2), 

nXn(Tn) 

XJn(t- c) =XAn(Tn) + (Xn(Tn) -Xn(t))- L zin 
i=nXn(t-c)+ 1 

~ (B + D)n-112, 

Q(bsn -Xn(t)) ~ Q'(O)(bsn -Xn(t)) ~ (Bd+D) n- 112 , 
as 

because Q'(O) = 1j(da). By (2.10) this implies that on n~, 

(B + D) 2 

sup Azn(t)~A= d 
t:z.rn(Dn-112 ) as 
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Conditionally on Zn = z with {Zn = z} c n~, Nn is a counting process with 
intensity Azn(t):::;; A. Hence, if II(t) denotes a unit Poisson process and k a 
positive integer, 

.9( sup (Xn(t) - Xn(t- c));;:: 2k) 
t ?. T,(Dn - 112 ) +c n 

::; .9( ~~~ (II(At)- II(A(t- c)));;:: 2k) + s 

11 (At )s; Dn 112 

::; ,9( sup (II(t)- IT(t - Ac));;:: 2k) + s 
t ?. Ac 

ll(t h; Dn 112 

Dn1! 2 
:::;; -k-exp{2Ac- k} + s, 

by Lemma B.2 in Appendix B. Because A = A(s) is finite for every e > 0, this 
proves (4.28). 

By (2. 7) and (2.8), 

XJn(t- c)- {XAn(Tn) + (1- 2p)(Xn(Tn) -Xn(t))} 

( 4.30) 

Because 0 :::;; Zin :::;; 2, the first term on the right in (4.30) is bounded in 
absolute value by 2(Xn(t)- X/t -c))= &g((log n)jn) uniformly for t;;:: 
rn(Dn - 112) + c by (4.28). To deal with the next term we note that nXn(Tn):::;; 
[ nbJ and that for t ;;:: rn(Dn - 1/ 2 ) + c, nXn(t) ;;:: [nbs] - ([nbs] - nXn(Tn)) -
[Dn112] = [nbs] - &g(n112) by Corollary 4.1. Application of Lemma B.1 
in Appendix B for M = &(n 11 2 ) yields that the second term on the right in 
(4.30) is &g(n - 314 ) uniformly for t ;;:: rn(Dn - 112 ) + c. Finally, (2.4), (2.5) and 
Corollary 4.1 imply that uniformly for t ;;:: rn(Dn - 112 ) + c, 

1 nX, (T,) 

0 :::;; - L (pin - P) 
n i=nX, (t) + l 

:::;; (X n ( Tn) - X n ( t)) ( P ( b h n - X n ( t)) - P ( b h - b s)) 

::;;Dn-1! 2p'(bh -ps)(~ + bsn -Xn(Tn) +Dn - 112) = &g(n-1). 

Together with (4.30), these estimates establish (4.29) and the lemma. D 
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We are now in a position to determine the exact order of magnitude of Tn. 
Roughly speaking, we shall argue that if Xn(Tn) = bsn' the situation is 
similar to the one in Theorem 4.1, the main difference being that in the 
present case XJn(t - c), and hence Azn(t), is smaller by a factor n 11 2 for 
large t . This implies that Tn is of order n 112 log n rather than log n as is the 
case in Theorem 4.1. Similarly, if XAn(Tn) = 0, the situation is comparable to 
that 
in Theorem 4.2, but now Q(bsn - Xn(t)) is smaller by a factor n 1/ 2 for large t. 
Again the conclusion is that Tn is of order n 11 2 log n instead of log n as in 
Theorem 4.2. The basic reason underlying all of this is that in the case y = bs 
we have Xioo) = bs - X(oo) = 0, and hence the nonzero quantity among 
XAn(Tn) and (bsn - X n(Tn)) is of order n - 1 ; 2 by Corollary 4.1. As we already 
noted, this is essentially different from what happens if y > bs or y < b5 , 

when either XA(oo) or (bs - X(oo)) is positive and hence either XAn(Tn) or 
(bsn - Xn(Tn)) is of exact order 1. 

THEOREM 4.3. Let y = b5 • Then for every e > 0 there exist positive num
bers a and A such that for n = 2, 3, ... , 

( 4 .31) 

and hence 

( 4.32) 

9'( an112 log n ~ Tn ~ An112 log n) ~ 1- e, 

Tn 
"""-7-=--- is of exact order 1 in probability . 
n 112 log n 

PROOF. Take e > 0 and define fl 1n and fl 2n as in (4.25) and (4.26) with 
0 < b < B such that (4.27) holds for sufficiently large n. By Lemma 4.1, 
Theorem 3.3 and Lemma 4.5, we can also choose positive numbers C and D, 
and an event nn with 9'(fln) ~ 1 - e and such that on nn, 

( 4.33) Tn(Dn-1 12) ~ T( ~ n - 1/2) ~ Cn1f 2, 

sup I XJn(t- c) 
t~ Tn(Dn - l f 2 ) + c 

( 4 .34) 
- {X An ( Tn) + ( 1 - 2 P )(X n ( Tn) - X n ( t))} I 

~ Cn - 3/4 . 

Note that on fl 1n u fl 2 n we also have the trivial inequality 

( 4.35) 
XJn(t -c) ~ XAn( t) ~ XAn(Tn) + ( X(Tn) - X n( t)) 

~ (B + D)n- 112 
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Given Zn = z with {Zn = z} c !1 1n, (Nn(t)- n) is a counting process with 
conditional intensity Azn(t). On !11n n nn, (4.25), (4.34) and (4.35) imply that 
for sufficiently large n, 

Azn(t) 2': (bn 11 2 - Cn11 4 )Q'(b5 )(bsn -Xn(t)) 

fort 2': Tn(Dn - 112 ) + c , 
( 4 .36) 

Azn(t) ~ (B + D)n11 2 Q '(O)(bsn- Xn(t)) 

fort 2': Tn(Dn - 112 ) . 

By redefining Azn on the subset of fl 1n , where these inequalities do not hold, 
we can ensure that (4.36) is satisfied on !11n while changing the process only 
on a subset of n1n n n~. In the proofofTheorem 4.1 we now replace Tn(e) by 
Tn(Dn - 112 ) and (4.9) and (4.10) by (4.36), and repeat the argument following 
(4.10) to conclude that (Tn - Tn(Dn - 112 )) is stochastically bounded above and 
below by two constant multiples of n 112Sm(e), where Sm(e) is as in Lemma 
4.2 with em = Dn112 • Application of Lemma 4.2 yields the existence of 
positive numbers a 1 and A1 such that 

9'( a 1 n 11 2 log n ~ Tn - Tn( Dn - 112) ~ A1 n 11 2 n 11 2 log nl!11n) 
( 4.37) -

e: 1- e - 9'(fl~ l!1 1 n) 

for sufficiently large n. 
On !1 2 n, (4.26) implies that for t e: Tn(Dn - 112 ), 

(4.38) q 1n - 11 2 ~ Q(bsn- Xn(t)) ~ q 2 n - 11 2 

for positive q1 = Q'(b5 )b and q 2 = Q'(O)(B +D). Arguing as in the proof of 
Theorem 4.2, we find that (4.35) and (4.38) imply that on !1 2 n, (Tn -
Tn(Dn - 112)) is stochastically smaller than the maximum of (B + D)n112 

independent copies of S(p2 , q 1 n - 112 , c), with S(jj , q, c) as in Lemma 4.3. 
Moreover, S(p 2 , q 1n - 11 2 , c) is distributed as n 11 2S(p 2 ,q 1,cn - 11 2 ), which is 
stochastically smaller than n 112S(p 2 , q 1, c). 

On the other hand, on n2n• (Tn - Tn(Dn - 112)) is stochastically larger than 
the maximum of Njn(Tn(Dn - l / 2)) independent copies of S(p1, q 2 n - 112, c). 
Also S(p1, q 2 n - 1; 2, c) is stochastically larger than n112S(p1, q 2 , 0) and on 
!1 2 n nOn, Njn(Tn(Dn - 112 )) 2': bn112 - Cn 114 by (4.34). As in the proof of 
Theorem 4.2, we apply Lemma 4.3 to these upper and lower bounds and find 
that there exist positive numbers a 2 and A 2 such that 

( 4.39) 
9'( a 2 n 11 2 log n ~ Tn - Tn( Dn - 112) ~ A 2 n 11 2 log nl!12n) 

2-: 1- e - 9'(!1~1!12n) 

for sufficiently large n. 
Because 9'(!1~) ~ e and 9'(!11n u !12n) e: 1 - e, (4.33), (4.37) and (4.39) 

ensure the validity of (4.31) for large n and, therefore, trivially for all n 2': 2. 
Because (4.32) is merely a restatement of (4.31), this completes the proof of 
the theorem. D 
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APPENDIX A 

LEMMA A.l. For real numbers c > 0 and 0 ~ v < w, let f: [0, oo)--') (0, oo) 
be continuously differentiable on (c, oo) with derivative f' < 0 and lim t ..... "" 
f(t) = 0, and suppose that as t --') oo, 

(A.l) 
f'(t) = vf(t- c)(l + &(f(t- c))) 

- wf( t) ( 1 + &( f( t - c))) . 
Then the equation w - a = veac has a unique solution a E (0, w] and there 
exists a positive number A such that 

(A.2) limeatf(t) =A. 
t ..... 00 

PRooF. Because w - x > vecx for x = 0, vecx is nonnegative and nonde~ 
creasing in x and ( w - x) decreases strictly to 0 as x j w, the equation 
w - a = veac does indeed have a unique solution a E (0, w ]. Note that a = w 
if v = 0. 

Take 6 = (w - v)/4. As f(t)--') 0 for t--') oo, there exists t 0 > c such that 
for t ~ t 0 , 

f' ( t) ~ ( v + 6) f( t - c) - ( w - 6) f( t)' 

and hence, for t ~ t0 , 

f( t) = - 1oo f' ( u) du ~ - ( v + 6) 1oo f( u) du + ( w - 6) 1oo f( u) du 
t t - c t 

= ( w - v - 2 6) 1oo f( u) du - ( v + 6) J' f( u) du 
t t - c 

w- v 00 

~ -2-~ f(u) du- wcf(t- c). 

As a result, 

(A.3) 
00 2 1 f( u) du ~ --{ f( t) + wcf( t - c)} --') 0 as t --') oo 

t w-v 

and we have shown that f is integrable. 
The lemma is now trivial for v = 0. We have 

f'( t) 
-- = -w + &(f(t- c)) 
f(t) ' 

and for s, t --') oo, 

log(;::~~:~) ~ J,'( j(<:; + w) du ~ &(C,'t( u) du) ~ o(l}. 

Because a = w in this case, this proves (A.2). 
We may therefore assume that 0 < v < w and 0 < a < w, and that 

(A.4) f'(t) = vf(t- c)- wf(t) + &((f(t- c)) 2). 
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g(t) = eatf(t), t ~ 0. 

Rewriting (A.4) in terms of g with the aid of the equation w -a = veac, we 
find for t > c, 

(A.6) g'(t) =(w-a)(g(t-c) -g(t)) + &'(f(t-c)g(t-c)). 

Hence, for an appropriate constant C > 0 and t > c, 

(w- a)[(1- e(t))g(t- c)- g(t)] 
(A.7) 

~ g'(t) ~ (w- a)[(1 + e(t))g(t- c)- g(t)], 

where e(t) = Cf(t -c). 
For k = 1, 2, ... , define 

m k = min g ( t), M k = max g ( t) , 
(k-l)c ~ t ~ kc (k-l)c ,;t~kc 

ek = e(kc). 

Choose k 0 so that eko ~ t. Fork ~ k 0 and kc ~ t ~ (k + 1)c, we have ek ~ t 
and by (A. 7), 

- (w- a)[g(t)- (1- ek)mk] 

~g'(t) ~ (w- a)[(1 + ek)Mk -g(t)]. 
(A.8) 

For t = kc, both [g(t)- (1- ek)mk] and [(1 + ek)Mk - g(t)] are positive 
and the inequalities (A.8) for g'(t) ensure that both remain so throughout the 
interval kc ~ t ~ (k + 1)c. However, this implies that fork ~ k 0 , 

(A.9) 

Because ek ~ t fork ~ k 0 , we find that for every k ~ k 0 , 

TI (1- er) ~ exp(-2 £: er) ~ exp{- 2C [ " f(u) du}, 
r = k r = k C (k - 2)c 

(A.10) 

TI (1 + er) ~ exp( £: er) ~ exp{ C [ " f(u) du}. 
r=k r=k C (k-2)c 

In view of (A.3), this yields the existence of a sequence 8k ~ 0 and M > m > 0 
such that for every k ~ k 0 , 

00 

infmr ~ mk n (1- er) ~ mk(1- 8k) ~ m > 0, 
r?.k r=k 

00 

supMr ~ Mk 0 (1 + er) ~ Mk(1 + 8k) ~ M < oo . 
r ?. k r = k 

It follows that for every k ~ k 0 , 

(A.ll) 
0 < m ~ mk(1- 8k) ~ liminfg(t) ~ limsupg(t) 

t --> 00 t--> 00 
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Let us look at (A.8) somewhat more carefully. Because g(t)- (1 - sk)mk 
> 0 and (1 + sk)Mk - g(t) > 0 for t E [kc, (k + 1)c], we find that for 
kc ~ t ~ (k + 1)c and k ~ k 0 , 

log = ( du > - ( w - a) c ( 
g(t)- (1- sk)mk ) t g'(u) 

g(kc)- (1- sk)mk Jkcg(u)- (1- sk)mk - ' 

and after replacing g(t) by mk+ 1, 

(A.12) mk +1 ~ (1- sk)mk + e-<w-a)c[g(kc)- (1- sk)mk]· 

Similarly, the right-hand inequality in (A.8) ensures that for k ~ k 0 , 

(A.13) 

and subtracting (A.12) from (A.13) we see that fork ~ k 0 , 

Mk +1 - mk +1 ~ (1- e-<w-a)c)[(1 + sk)Mk- (1- sk)mk] 

~ {3(Mk- mk) + 2Msk, 

where {3 = 1 - exp{ -(w - a)c} E (0, 1). By iterating this inequality, we find 
that for r ~ 1, 

r 

Mko +r- mko+r ~ f3r(Mko- mko) +2M L {3r-vsko +v- 1 
v= 1 

00 00 

~ {3 r M + M L {3j + 2M L Bj 
j=[(r+ 1)/2) j=k 0 +[rj2] 

M 2MC oo 

~ {3rM + --[3rf2 + --j f(u) du. 
1 - {3 C 1j2(2k 0 +r-5)c 

As 0 < {3 < 1, (A.3) ensures that 

(A.14) lim (Mk- mk) = 0, 
k->00 

and because Sk ~0, (All) and (A.14) show that g(t) tends to a positive and 
finite limit as t ~ oo. In view of (A.5), the proof is complete. D 

APPENDIX B 

LEMMA B.l. If X1 , X2 , ••• are independent bounded random variables, 
0 ~ XJ ~ a for j = 1, 2, ... , then for all M E N and every x ~ 0, 

(B.1) g( max IE (XJ- EXJ)I ~ x) ~ 4exp{-~}· 
l~m~M j=l 9a M 

PROOF. The lemma follows from Theorem 2 in Hoeffding (1963) combined 
with Levy's ·inequality [Shorack and Wellner (1986), page 844]. 0 
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LEMMA B.2. If IT(t) is a unit Poisson process, a and b are positive 
numbers and m E 1\1, then 

(B.2) .9'( sup (II(t)- II(t- b))~ 2m) ~ ~exp{2b- m}. 
t>b m 

ll(t)::s;a 

PROOF. Let 0 = Y0 < Y1 < Y2 < 
Then 

be the consecutive jump times of II. 

.9'( sup (II(t)- II(t- b))~ 2m- 1) 
t~b 

ll(t)::s:a 

=.9'( min (Yk- Yk - (2 m-l)) ~b) 
2m -l::s:k::s:a 

~ .9'( min (Yrm - Y{r-l)m) ~ b) 
l::s;r::s;[ajm] 

= {.9(II(b) ~ m- l)}[ajm]. 

Because II(b) has a Poisson distribution with mean b, we have .9'(II(b) ~ m) 
~ exp{2b- m} and hence for a~ m and m ~ 2b, 

.9'( sup (II(t)-II(t-b))~2m-1) 
t~b 

ll(t)sa 

ajm a 
~ (1- exp{2b- m}) ~ 1- -exp{2b- m}, 

m 
which proves (B.2) for a~ m and m ~ 2b. For a < m or m < 2b, (B.2) is 
trivially true. D 
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Parameter estimation for the supercritical 
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Contact processes - and, more generally, interacting particle processes - can serve as models for a 
large variety of statistical problems, especially if we allow some simple modifications that do not 
essentially complicate the mathematical treatment of these processes. We begin a statistical study of 
the supercritical contact process that starts with a single infected site at the origin and is conditioned 
on survival of the infection. We consider the statistical problem of estimating the parameter A of the 
process on the basis of an observation of the process at a single time t. We propose an estimator of A 
and show that it is consistent and asymptotically normal as t --> oo. 

Keywords: contact process; parameter estimation; random mask; shrinking; supercritical 

1. Introduction 

A d-dimensional contact process is a simplified model for the spread of a biological 
organism or an infection on the lattice 7l.d . At each time t :;::. 0, every point of the lattice (or 
site) is either infected or healthy. As time passes, a healthy site is infected at Poisson rate ..1. 

by each of its 2d immediate neighbours which is itself infected; an infected site recovers 
and becomes healthy at Poisson rate 1. Given the set of infected sites £1 at time t, the 
processes involved are independent until a change occurs. If the process starts with a set 
A c 7l.d of infected sites at time t = 0, then £1 will denote the set of infected sites at time 
t:;::. 0 and g: : t:;::. 0} will denote the contact process. For example, g~d : t:;::. 0} or 
{£)0} : t:;::. 0} will denote the processes starting with every site infected, or with a single 
infected site at the origin. If the starting set is chosen at random according to a probability 
distribution a, then the process will be written as { £~ : t :;::. 0} . If we do not want to specify 
the initial state of the process at all, we simply write g 1 : t :;::. 0}. 

We also need a compact notation for the state of a single site x E 7l.d at time t. For any 
contact process s 1, we write 

£t(x) = l g, (x) = { ~ if x is infected at time t, 
if x is healthy at time t, 

(1.1) 

thus using the same symbol £1 for both the set of infected points and its indicator function. 
Of course s:(x) and s~(x) will refer to the processes £1 and s~ in the same manner. 

1350- 7265 © 2003 ISIIBS 
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The first thing to note about the contact process is that for all non-empty A C 71..", the 
infection will continue forever with positive probability if and only if A exceeds a certain 
critical value Ad. Such a process is called supercritical. Thus, if we define the random 
hitting time 

TA = inf{t: £1 = 0}, A c 71..", (1.2) 

with the convention that rA = oo if £1 =/=- 0 for all t ~ 0, then for the supercritical contact 
process 

lfJl(rA = oo) > 0 

for every non-empty A c 71..". Moreover, if A has infinite cardinality lA I = oo, then 

lfJl(rA = oo) = 1. 

(1.3) 

(1.4) 

In the supercritical case, the process £7d that starts with all sites infected converges in 
distribution to the so-called upper invariant measure v = VJc. Here convergence in 
distribution means convergence of probabilities of events defined by the behaviour of the 
process on finite subsets of 71..", and 'invariant' refers to the fact that the process 
{!;~ : t ~ 0} is stationary. In particular, the distribution of !;~ is equal to v for all t. 
Obviously, v is also invariant under integer-valued translations of 71..". The long-range 
behaviour of the supercritical contact process { £1 : t ~ 0} for arbitrary non-empty A c 71.." 
is described by the complete convergence theorem. Let f£1 denote the probability 
distribution of £1 and 00 the distribution that assigns probability 1 to the empty set. 

Theorem 1.1. Let A C 71.." and A> ),d· Then, as t ____, oo, 

f£1 -2:". lfJl(rA < oo)o0 + lfJl(rA = oo)vJc. (1.5) 

For a proof see Liggett (1999, p. 55). 
If A >Ad and A = 71..", the process £7d survives forever with probability 1 by (1.4) and 

converges exponentially to the limit process, that is, for positive C and y and all t ~ 0, 

0 ~ P(£7d(x) = 1) - P(l;"(x) = 1) ~ Ce-yr (1.6) 

(Liggett 1999, p . 57). 
Another major result concerning the contact process is the shape theorem. To formulate 

this result we first have to describe the graphical representation of contact processes due to 
Harris (1978). This is a particular coupling of all contact processes of a given dimension d 
and with a given value of A, but with every possible initial state A or initial distribution a. 

Consider space-time 71.." X [0, oo). For every site x E 71.." we define on the line x X [0, oo) a 
Poisson process with rate 1; for every ordered pair (x, y) of neighbouring sites in 71.." we 
define a Poisson process with rate A. All of these Poisson processes are independent. 

We now draw a picture of 71.." X [0, oo) where, for each site x E 71..", we remove the 
points of the corresponding Poisson process with rate 1 from the line x X [0, oo ); for each 
ordered pair of neighbouring sites (x, y) we draw an arrow going perpendicularly from the 
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line x X [0, oo) to the line y X [0, oo) at the points of the Poisson processes with rate A 
corresponding to the pair (x, y). 

For any set A c 7l_d, define ~: to be the set of sites that can be reached by starting at 
time 0 at some site in A and travelling until time t along unbroken segments of lines 
x X [0, oo) in the direction of increasing time, as well as along arrows. Clearly, g: : t ;, 0} is distributed as a contact process with initial state A. By choosing the initial 
set at random with distribution a, we define g~ : t ;, 0}. The obvious beauty of this 
coupling is that for two initial sets of infected sites A c B, we have ~1 c ~: for all t ;, 0. 

Unless indicated otherwise, we shall assume that all contact processes are defined 
according to this graphical construction. We shall also restrict attention to the supercritical 
case and assume that A > Ad throughout. 

Before formulating the shape theorem we need to introduce some notation. Let II · II 
denote the L00 norm on ~d , that is, 

llxll = max lx; l 
J.,;;, J.,;;, d 

for x =(xi, ... , xd) E ~d, and let Q = (x E ~d : ll xl l ~ t} denote the unit hypercube centred 
at the origin. For A, B c ~d, A EB B= {x + y : x E A , y E B} will denote the direct sum of 
A and B, and for real r, rA = {rx: x E A} . Define 

(1.7) 
s~ t 

(1 .8) 

Thus for the process { ~;o } : t ;, 0} that starts with a single infected site at the origin, H 1 

is obtained by taking the union of the sites that have been infected up to or at time t, and 
replacing these sites by unit hypercubes centred at these sites in order to fill in the space 
between neighbouring sites. Similarly, K 1 is the filled-in version of the set of sites where 
~;o} and ~~t coincide. We are now in a position to formulate the shape theorem (cf. Durrett 
1991 ; Bezuidenhout and Grimmett 1990). 

Theorem 1.2. There exists a bounded convex subset U of ~d with the origin as an interior 
point and such that, for any E E (0, 1), 

(1 - E)tU c H1 n K1 c H1 c (1 + E)tU, (1.9) 

eventually almost surely on the event { y {O} = oo} where ~;o} survives forever. 

The shape theorem describes the growth of the set of infected sites if the process ~;o} 
survives forever. Roughly speaking, the convex hull of the set of infected sites will grow 
linearly in time as t ---+ oo and acquire an asymptotic shape tU, where U is a fixed convex 
set with the origin as an interior point. Inside this set, say in (1 - E)tU, the smallest and the 
largest possible process ~;o} and ~?" are equal eventually a.s., and this must mean that, for 
large t , their distribution is close to the equilibrium distribution v. Together, the complete 
convergence theorem and the shape theorem describe the peculiar type of convergence of 
the supercritical contact process to its limiting distribution. The infection spreads at a 
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constant speed and, relatively soon after it has reached a site x, equilibrium will set in at 
that site. 

A third important property of the contact process is its self-duality. If, in the graphical 
representation, time is run backwards and all arrows representing infection of one site by 
another are reversed, then the new graphical representation has precisely the same 
probabilistic structure as the original one. In particular, 

ifll(~1 n B-=!=- 0) = ifll(~~ n A -=!=- 0), for all A, B c 7l..d and t ;?: 0. ( 1.1 0) 

With A = {0} and B = 7l_d this yields 

ifll (r{O} > t) = ifll(~7d (O) = 1) 
which, letting t ___, oo in the supercritical case, reduces to 

ifll ( r{o} = oo) = ifll ( ~~ (0) = 1). 
Combining this with (1.6), we see that if A > Ad, then 

ifll(t < r{o} < oo) ~ ce-Y1 (1.11) 

(cf. Liggett 1999, p. 57). 
In this paper we shall study the estimation problem for the parameter A of the 

supercritical contact process ~;o } , given that it does, not die out. Based on an observation of 
~)0} at a single time t , we derive an estimator A ;o} and show that it is consistent and 
asymptotically normal as t ___, oo. 

The informal description of the convergence of the contact process immediately suggests 
a way to derive an estimator of the parameter A. If ~;o} survives forever, then observing 
~)0} (x) for all sites x contained in (1 - E)tU is asymptotically the same as observing the 
limit process ~~(x) on this set. This asymptotic 'equivalence' of~~ and ~;o } on (1- E)tU 
should allow us to derive an estimator of A based on the limit process ~~(x) for sites 
x E (1 - E)tU, and hope that this estimator will also work for the process ~;a}. The 
advantage of deriving the estimator under ~~ is that we can use the stationarity of this 
process to set up the estimating equation. 

For D C 7l_d , define the total number of infected sites in the set D at time t as 

n1(D) = L ~~(x) , (1.12) 
x E D 

and the total number of pairs of neighbouring sites for which one site is healthy and lies in D 
and the other is infected as 

where 

kt(D) = L kr(x) , 
x E D 

k1(x) = (1 - ~t(x)) L ~t (y) . 
lx-yl=l 

(1.13) 

(1.14) 
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Here lx- Yl = 2.::;1x;- Y; l denotes the L 1 distance between sites x andy. When we need to 
specify the initial state of the process we shall use an appropriate notation. For example, n)0} 

and k)0} will indicate that we are referring to the process £)0} . Similarly, for the process £~ , 
we write n~(x) and k~. 

For the £~ process, £~(x) increases by 1 at rate Ak~(x) and decreases by 1 at rate £~(x). 
As £~ is stationary, this implies that AIEk~ (x) = IE£~ (x) and, since £~ is spatially translation
invariant, we have 

A _ IE £~(x) _ IE£~(0) 
- IEk~(x)- IEk~ (O) · 

(1.15) 

Notice that these expectations are independent of t because of the stationarity of £~ . For 
t ~ 0, let At c 7l_ d be finite sets of cardinality IA11 ----+ oo as t ----+ oo. It seems reasonable to 
expect that some form of the law of large numbers will ensure that, as t ----+ oo, 

and 

k~(A t ) = 2.:::xEA, k~(x) "' IEk~(O). 
IAtl IAtl 

This would imply that n~(A 1 ) / k~(A 1 ) is a plausible estimator of A on the basis of an 
observation of the process £~ at a single time t. If, in addition to IA1 I ----+ oo, we also require 
that A1 c (l - E)tU for some E > 0, then the shape theorem suggests that, conditional on £)0} 

surviving forever, the probabilistic behaviour of £) 0} and £~ should be asymptotically the 
same on the set At c 7l_d . But this indicates that if we observe the process £{0} instead of£~ , 
then n)0}(A 1)/ k)0}(At) would be a plausible estimator of A based on £)0}, p~ovided that £)0} 

survives. Unfortunately, the set U is unknown - as is t in many applications - and hence we 
cannot implement this estimation procedure directly. However, the shape theorem also 
suggests that if £)0} survives forever, the convex hull C(£)0}) of the set £)0} of infected sites 
behaves asymptotically like tU. Hence we may expect that if we define a mask 

C1 = (1- o)c(.;;o}), 
for some o > 0, and £)0} survives, then IC1 n 7l_dl----+ oo and C1 C (1- E)tU for some f > 0. 
Combining these ideas, we arrive at 

{0} ( 
~{o } = ~ {o } (C1 ) = n1 Ct) 

I I k)O}(Ct) 
(1.16) 

as a plausible estimator of A on the basis of an observation of £)0} at a single time t. In fact 
we shall use masks C1 which are obtained by shrinking the set C(£)0} ) in a more general 
manner than through multiplication by 1 - o (cf. Section 3). 

The aim of this paper is to prove that ~ j o} is a consistent and asymptotically normal 
estimator of A on the event where £)0} survives forever. To do this we not only have the 
considerable problem of making the above heuristic argument precise, but in order to prove 
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the asymptotic normality, we also have to show that, for the .;)o} process conditional on 
survival, distant sites evolve almost independently. The technical tools for dealing with 
these problems are provided in Fiocco and van Zwet (2003). 

We should stress at this point that shrinking C(.;)0}) to obtain the mask C1 is absolutely 
essential to obtain an estimator that works well in practice. Without shrinking, the mask 
will contain the boundary area of the set of infected points where equilibrium has not yet 
set in and the infected points are therefore less dense. This has the effect of lowering the 
estimator of ll. Simulation shows that the resulting negative bias is considerable and that 
20-40% of the sites have to be removed by shrinking to eliminate this bias ( cf. Fiocco 
1997). From a theoretical point of view we shall find that without shrinking - i.e. if a = 0 
and hence C1 = C(.;)0}) - we can still show consistency of the estimator i )0J, but not its 
asymptotic normality. 

2. Technical tools 

In this section we provide the reader with a number of tools that will be used in this paper 
for establishing the properties of i )0}. These results may be found in Fiocco and van Zwet 
(2003). Let C(.;)0J) be the convex hull of the set of infected sites. Theorems 1.3- 1.5 in 
Fiocco and van Zwet (2003) provide eventually almost sure bounds on this set, and 
probability bounds for the lower inclusion for H 1 n K 1 as well as C(.;)0}) in (1.9) and (2.1). 

Theorem 2.1. For every E E (0, 1 ), 

(1 - E)tU C C(.;)0J) C (1 + t. )tU (2.1) 

eventually a.s. on the set { T{O} = oo}. Moreover, for every E E (0, 1) and r > 0, there exists a 
positive number A r,c such that, for every t > 0, 

ifl>((1 - E)tU c Ht n Kt iT {O} = oo) ~ 1 - A ,,ct-r 

ifl>((1 - E)tU C C(.;)0})1r{O} = oo) ~ 1 - A,.,ct-r. 

Before formulating the next result we need to introduce some notation. Let H = { 0, 1 }2 d 

denote the state space for the contact process. For f : H ---> IRi and x E 7l_d, define 

L'lf (x) = sup{lf(17)- f(~) l : J7 , ~ E Hand 17(y) = ~(y) for ally =J x} , (2.2) 

lllfl ll = L L'l j (X) . 
xEZ d 

For R1, F2 c 7l_ d, let d(R1, R2) denote the L 1 distance of R1 and R2 : 

d 

d(R,, R2) = inf lx- Yl = inf L lx; - Yi l· 
x E R1,y E R2 xE R1 ,y E Rz i=l 

Let 
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DR = {.f : H ____, IR, lllf ll l < oo, f(lJ) depends on 1J only through 1J n R}, (2.3) 

that is, DR is the class of functions f with lllf ll l < oo such that f(lJ) depends on 1J only 
through lJ(x) with x E R. 

Theorem 2.2. There exist positive numbers y and C such that for every R1, R2 c ll.d, 

f E DR1 g E R2 , and t ~ 0, 

l cov(f(;~\ g(;~")) I :S Clllflll· g llle-yd(Rt ,Rzl. (2.4) 

In particular, there exist positive numbers y and C such that, for all t ~ 0, and x, y E ll.d, 

l cov(;~" (x). ;~" (y)) 1 :S ce-y[x-y[. (2.5) 

and 

(2.6) 

Proof. The first part of the theorem is Theorem 1.7 in Fiocco and van Zwet (2003), and is 
proved in Section 3 of that paper. Inequalities (2.5) and (2.6) follow because lllfl ll = Il l g ill = 1 
and 8, respectively. D 

Obviously (2.5) and (2.6) imply that a 2(n~" (D)) and a 2(k~d (D)) are of order ID I for 
large D. The following theorem extends this results to all moments of even order. 

Theorem 2.3. For any k = 1, 2, ... , there exists a number Ck > 0 such that for every 
D c ll.d and t ~ 0, 

(2.7) 

and 

(2 .8) 

Proof. The proof follows from Theorem 4.1 in Fiocco and van Zwet (2003). D 

Let ~;" denote a process distributed as ;~" conditioned on { T{o} = w}. Theorem 1.6 in 
-z z" Fiocco and van Zwet (2003) asserts that we can couple the processes ; 1 and ; 1 in such a 

way that they coincide on tU except on a set of exponentially small probability. We shall 
not explicitly describe this coupling, other than to note that it is not in accordance with the 
graphical representation since the two processes are defined on essentially different subsets 
of the sample space. We repeat the theorem for the reader's convenience: 

zd -z" z" _zd 
Theorem 2.4. There exist a coupling (e; 1 , e;1 ) of (;1 , ; 1 ) and positive constants C and 
y such that for all t > 0, 

( t ll.d _ t.Z" ) -y t 
[FD eSt n tU - eSt n tU > 1 - Ce . 
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Let ~;o} denote a process which is distributed as ; ;o} conditioned on { r{o} = oo}. The 
final result in this section is a restatement of Theorem 1.8 in Fiocco and van Zwet (2003) 
and asserts that for this process, distant sites evolve almost independently for large t. 

Theorem 2.5. For every E E (0, 1) and r > 0 there exist a positive number A r,<• as well as 
positive constants C and y, such that, for all t > 0 and all f and g satisfYing f E DR, with 
R1 C (1 - E)tU n 7l_d, and g E DR2 with R2 C 7l_d, 

l cov(f(~;o} ), g(~;o} )) l ~ lllfl ll · lll g lll (ce - yd(R2 ,R2l + Ar,< rr). (2.9) 

3. Shrinking 

As we have argued in the Introduction, we choose the mask C1 for computing the estimator 
i)O} as a shrunken version of the convex hull C(;)0}) that is guaranteed to lie in (1 - E)tU 
with large probability. As an example we discussed the choice C1 = (1 - o)C(;)0}), about 
which we shall have more to say later in this section (see Example 3.2). However, we also 
noted that it is possible to consider more general methods of shrinking, and this is the topic 
of the present section. 

For a set A c fRd the interior of A is denoted by A and the discrete cardinality of A as 
lAID= lA n 7!..dl· Define a shrinking operation as follows. 

Definition 3.1. Suppose that to any convex set V C [Rd there corresponds a convex set 
v- C fRd. Then the map V --+ v- is called a shrinking if, for every convex V and W with 
0 E V, 

and 

v- c v, 
v c w '* v- c w-, 

l(tV)- ID --+ oo as t--+ oo, 

if s, t--+ oo with t/s--+ 1, then l(tV)-ID--+ 1. 
l(sV)- ID 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Property (3.3) guarantees that if V contains a ball centred at the ongm and hence tV 
grows linearly in t in any direction, then the number of lattice points in (tV)- tends to 
infinity. By a standard argument one finds that (3.4) is equivalent to the following condition: 
if 0 E V, then for every o > 0 there exist E > 0 and to > 0 such that 

1
1[(1 + E)tV]-ID- 1 1 ~ 0 
1[(1 - E)tV] - ID 

for all t ~ to. 

We shall base the estimator of A. on a shrunken version C1 of C(;;o}), that is, 

(3.5) 
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and 

{0}( ) 
~{o} = ~ {o } (C,) = n1 Ct . 

t I k)Ol(Ct) 

1079 

(3.6) 

(3.7) 

The set defined in (3 .6) is caped the random mask or window. Notice that 0 is an interior 
point of U and hence of C(~;o ) eventually a.s., so that C, satisfies (3 .1 )-(3.4) eventually a.s. 
Since we are concerned with limit behaviour of ~)0 l as t ___, oo, this is sufficient for our 
purpose. 

Together (3.6), (3.7) and Definition 3.1 will allow us to prove consistency of ~ )0l on the 
set where ~)0 l survives forever. However, in order to prove strong consistency of ~ )0 l , we 

0 

need to strengthen assumption (3.3) and require that if 0 E V, then 

1. . f l(tV)- ID O 
1mm i > . 

l -->00 t' 
for some o > 0, 

To prove asymptotic normality of our estimator given { r {o} = oo} 
that if 0 E V, then 

v- c(l-o)V, 

(3.8) 

we need to assume 

(3.9) 

while at the same time strengthening (3.3) in a different direction and requiring that 

as t ___, oo. (3.1 0) 

We end this section by presenting various ways of shrinking that one may wish to apply 
to the convex hull of the set of infected sites C(~)0 l ) in order to obtain the mask C1• 

Example 3.1 v- = V. This satisfies Definition 3.1 as well as (3.8) and (3.10), but not (3.9). 
In this case we do not shrink but simply choose C, = C(~)0 l ) for computing ~)0l. 

Example 3.2 v- = (1 - o) V, 0 < o < 1. Obviously Definition 3.1 as well as (3.8)- (3.1 0) 
are satisfied. In determining the mask C1 = (1 - o)C(~)0l) we have to face the problem that 
we observe the set ~)0l, but not necessarily the location of the origin. As C1 is determined by 
shrinking C(~)0l ) towards the origin, we have to estimate the origin and shrink towards this 
estimated origin instead. An obvious estimate of the origin is the coordinatewise average of 
all sites in C(~)0l ), that is, the centre of gravity of this set of sites. In view of Theorem 2.1 
and the fact that the set U is obviously symmetric with respect to the origin, it is easy to see 
that the estimate of the origin has error o p( t) on the set where ~)0 l survives forever. But this 
implies that shrinkipg C(~)0l ) towards the estimated rather than the true origin will notA affect 
the consistency of A )0l in the conclusion of Theorem 4.1. The asymptotic normality of A )0l in 
Theorem 5.1 will not be affected either by a slightly more complicated argument. 

Example 3.3 v- = peeling( V). This type of shrinking avoids the estimation of the origin of 
the picture. For an arbitrary convex set V c IRd, the peeling procedure starts with the set 
Vo = C( V n &:.d), the convex hull of the lattice points of V. Notice that, in the particular case 
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we are considering, V = C(~)01) and hence Vo = V. The peeling of V is now obtained by 
removing all lattice points in the L 1 contour of V0 , constructing the convex hull of the 
remaining lattice points of Vo, and repeating this procedure k times until a fraction a of the 
lattice points in V0 has been removed. This amounts to stripping away the k outermost layers 
of the blob. Obviously peeling satisfies Definition 3.1 as well as (3.8) - (3 .10). In view of the 
problems encountered in Example 3.2, we prefer peeling over multiplication by 1 - o as a 
shrinking operation. For more details on peeling, see Fiocco (1997). 

Example 3.4 v- = B{ c, r}· The mask is computed by taking a Euclidean ball inside the set of 
infected sites with centre c and radius r, where the centre is estimated by taking the 
coordinatewise average of all sites in C(~)0 } ) and the radius r is computed by averaging the 
L1 distances between the estimated centre and the sites in (C)~)0 } ) . 

It should be clear from these four examples that we have a great deal of freedom in 
choosing our mask as a shrunken version of C(~)0} ). In order to satisfy (3.1)- (3.4), we 
mainly have to watch out that we do not remove all but a bounded number of lattice points 
of C ( ~) 0} ), and that for large sets the fraction a of lattice points deleted depends on the 
size of the set in a smooth manner. Conditions (3 .8) and (3 .1 0) are not likely to be violated 
for any sensible procedure either. Assumption (3.9) asserts that the shrinking is non-trivial. 

Simulation of the estimator for dimension d = 2 indicates that for best results, the 
optimal fraction a of sites to be deleted by shrinking should generally be between 0.2 and 
0.4, and should decrease for increasing t. For a = 0, i.e. without shrinking, the performance 
of the estimator is generally disastrous. On theoretical grounds one can argue that a should 
be chosen proportional to t - 1• 

4. The estimation problem: Consistency 

In the proof of the consistency of i)0} we shall not follow the same route as we did in 
Section 1 to arrive at the estimator i )0} ( C1). Rather than introducing a new coupling to 
compare ~)0} on { r {O} = oo} with ~~, we shall simply employ the standard graphical 
representation for comparison with ~~d instead. In Theorem 2.1 we showed that on 
{ r {o} = oo}, C(~)0} ) can be bracketed between two non-random convex sets. By applying 
the shape theorem (Theorem 1.2) we reduce the problem to one concerning the ~~" process 
on a non-random convex set and then show that the difference between the random and the 
non-random masks is negligible. 

Let A1 C 7l_d be a finite non-random set with IA1 1 -----+ oo as t -----+ oo. By analogy with 
(1.12) and (1.13), define 

n~d (A ,) = L ~~d (x) (4.1) 
xEA, 
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k~d (A 1) = L k~d (x), k~d ex) = o - s~d cxn L s~d (y). (4.2) 
xEA, lx - y l= l 

Lemma 4.1. Suppose that fort~ 0, the sets A, C 7l_d satisfY A1 C A1• if t < t', IA1 1 < oo and 
lA, I ____, oo for t ____, oo. Then, as t ____, oo, 

Moreover, if, for some o > 0, 

then, as t ____, oo, 

n~d (A,) !__, IEsv(O), 
lA, I 

lim inf lA; I > 0, 
1---.oo t 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Proof. We shall only prove (4.3) and (4.6) . The proof of (4.4) and (4.7) is almost exactly the 
same. 

By Theorem 2.3 and the Markov inequality, 

(4.8) 

for every k = 1, 2, ... and appropriate Ck,, > 0. By (1.6), 

IEnf}~~) = IEs~d (O) ____, IEsv(O) (4.9) 

as t ____, oo. Since IA1 1 ____, oo, this proves (4.3). 
For every E > 0 and A c 7l_d, we have 

I' c!~~,l n~: .(A) - n~' (A) I "" ciAI) "' I'( 2 "" ciA I), ( 4.1 0) 

where Z has a Poisson distribution with IEZ = f-1 = c·h· IAI, where c = 1 V 2dX To see this, 
note that between time t and t + h a change at any particular site in A occurs at rate at most 
c. As 
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we find that if h :;;; E/ (4c), then 

IP(Z :? EI AI) :;;; e2fl- <IAI :;;; e- ciAI/2. ( 4.11) 

Take to = 0 and define to < t1 < t2 < . .. recursively by 

tm+I = (tm + c/(4c)) 1\ inf{t > tm: At- of. At+}, 

where 

At-= IimAs = U As, 
sTt s<t 

At+ = lim As = n As. 
sl t s>t 

Hence tm+I is obtained by adding to tm until one either arrives at tm + E/(4c) or encounters a 
change in At. Because A1 is non-decreasing, this implies that by passing from tm to tm+I, one 
either increases t by t/(4c) or IAt l by at least 1. It follows that tm --+ oo as m--+ oo. To see 
this, note that either tm --+ oo or IA1'" I --+ oo. Since IA1 I < oo for all t, we must have tm --+ oo 
in both cases. Obviously there exists 0 :;;; k :;;; m- 1 such that tm :? kt / (4c) and 
IAtm+l:? IAtml:? IAtm- 1:? m- k- 1. By (4.5) this implies that 

1. . fIAt -1 lmlll __ m _ > 0 
m m0' 

for o' = 0 1\ 1. It follows from (4.8) that, for every k = 1, 2 ... , 

IP(I n~~:.t ) - [~~: (0) 1:? E) :;;; Ck,, m- a'k , ( 4.12) 

and the same is true with A 1'" replaced by A 1'" - or Atm+· 
As tm+l - tm :;;; E/(4c) and At= Atm+ for tm < t < tm+!, (4.10) and (4.11) yield 

[p> ( sup I n?d (At)- n?: (Atm+)l :? EIAtm+l ) :;;; e- <IAtm +l /2 
l m<t< t m+l 

< e-cCm"'/2 
~ , ( 4.13) 

for some C > 0 and m > mo . By (4.12) with k > 1/ o', (4.13) and the Borei - Cantelli lemma 
we find 

ntd (A1) ll.d 
IAt l - [~~ (0) ____, 0 a.s., 

and, together with ( 4.9), this proves ( 4.6). D 

Lemma 4.1 allows us to prove both the consistency and the strong consistency of ~ ;o} as 
t --7 00. 

Theorem 4.1. Let ~;o} ( Ct) be the estimator of A, for the process ~;o} defined in (3.6)- (3.7) 
and Definition 3.1. Then on the set where ~)O} survives forever, 
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If, in addition, (3.8) holds, then 

1)0}( C,) ----. A 

a.s. on the set where ~)0} survives forever. 

as t-----> oo. 

as t -----> oo 

1083 

(4.14) 

( 4.15) 

Proof. Choose o > 0 and £ > 0 such that (3.5) is satisfied for some t0 > 0. Define 
At= [(1- ~:)tU] - n 7!_d and Bt = [(1 + ~:)tU] - n 7!_d. By Theorem 2.1, (3.2) and (3.6), 
A1 c C1 n 7l_d c B1 eventually a.s. on { r{o} = oo }, and then (3.5) ensures that 

n)0}(At) ~ n)0 }(Ct) ~ {n )0 }(At) + IBt\A,I} ~ n)0 }(At) + oiAt l· 

Again by (3.5), it follows that 

(1 + o)- 1 liminf n)0}(A1)/IA11 ~ liminf n)0}(Ct)/ 1Ctl 
/ ----'" 00 / - H)() 

By (3.1)-(3.3), At satisfies the assumptions for (4.3) to hold and as A1 C (1 - ~:)tU, 

Theorem 1.2 implies that n)0}(A1) = nr (A 1) eventually a.s. on {r{O} = oo}. Letting t -----> oo 
and then o -----> 0, we find that nj0}(C1)/ICt l .!... IE~v(O) on {r{o} = oo}. In exactly the same 
way one may use (4.4) to prove that k)0}(C1)/IC11 -4 IEk~(O) on {r{O} ----. oo}, and (4.14) 
follows by combining these results and using (1.15). By using (4.6) and (4.7) instead of 
( 4.3) and ( 4.4), one establishes ( 4.15) under the additional condition (3.8). D 

Remark 4.1. By (4.14), 

IP{ Ii)o} -AI ~ ~: l r { o } = oo} _____. 0 as t----. oo, ( 4.16) 

for every £ > 0. From a statistical point of view this appears unsatisfactory since we shall 
never know whether the process will survive forever and hence whether x;o} will be close to 
A even for very large t. However, for the supercritical contact process ( 4.16) is obviously 
equivalent to 

( 4.17) 

for every E > 0, and this statement does have statistical relevance. Of course our result does 
not provide any information in the subcritical case (A ~Ad). 

5. The estimation problem: Asymptotic normality 

This section is devoted to the proof of a conditional central limit theorem for the estimator 
1)0} = l)0}(C1) based on the random mask C1• First, we establish the joint asymptotic 
normality of 
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IA ~ I - ' 12 ( n7d (At) - 1Ati1E£v(O), k7d (At) - IAtiiEe(O)) 

for a non-random mask A1 C 7l.d, with IA11 < jf for all t;:. 0 but IA11 ---+ oo as t ---+ oo. Next 
we show that this result carries over to the ~;o process, that is, the £)0} process conditioned 
on {r{O} = oo}. This proves the asymptotic normality of the estimator A)0 }(A1) given 
{ rl0} = oo} for a non-random mask A1• Then we show that the contribution to the 
standardized estimator which is due to the randomness of the mask C1 = [C(£)0})]- vanishes 
as t ---+ oo . The asymptotic normality of 

1Cti-I /2(A)0}(Ct) - A) 

given { r l0} = oo} then follows. 
A very general central limit theorem for a translation-invariant random field was proved 

by Bolthausen (1982) under mixing conditions. Let ~(x), x E 71.", denote a real-valued 
translation-invariant random field, that is, {S(x) : x E 7l.d} is a collection of random 
variables and the joint law of the ~(x) is invariant under integer-valued shifts in 7l.d. It is 
assumed that IE~2(x)<oo. For x = (x1, ••• ,xd), y=(y1, • • • ,yd)E7l.d, define the L00 

distance of x and y as 

p(x, y) = max lx; - Yil· 
1 -:S;i~ d 

Let An C 7l.d, n = 1, 2, ... , with IAn l < oo for all n , IAnl ---+ oo as n ---+ oo and 

Here 

I&An I ---+ 0 
I An i 

as n ---+ oo . 

&An = {x E An: 3 y E 7l.d\An with p(x, y) = 1} 

denotes the L00 contour of An in 7l.d . Consider 

Sn = L (~(x) - IE~(O)). 
xEA 11 

(5.1) 

(5.2) 

If C c 7l.d, let Be be the a-algebra generated by {S(x), x E C}. For C,, C2 c 7l.d, let 

p(C,, C2) = inf{p(x, y) : x E C" y E C2}. 

For m E N, k, l E N U { oo }, define the mixing coefficients 

ak,t(m) = sup{ IIP(B, n B2)- IP(B ,)IP(B2)1 : B; E B e;, IC, I ~ k, (5.3) 

IC2I ~ l, p(C" Cz);:. m}. 

Let N(f.1, a 2) denote the univariate normal distribution with expectation ,u and variance a 2 

and N(f.1, L) the bivariate normal distribution with expectation vector 11 and covariance 
matrix L. Part of Bolthausen's theorem reads as follows. 

Lemma 5.1. Suppose that, as m ---+ oo, 
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00 

L md- Ia k, t(m) < oo, fork+ l :;;:; 4, (5.4) 
rn= I 

(5.5) 

and that, for some o > 0, 

00 

1EI~(x) l 2+o < oo and L md- 'au(m)OJ(2+o) < oo . (5 .6) 
rn= I 

Then Lxadl cov(~(O), ~(x)) l < oo. If, in addition, a 2 = L xEZd cov(~(O), ~(x)) > 0 and (5.1) 
holds, then IAni- '12 Sn / a converges in distribution to N(O , 1). 

For our purposes we have to modify this result slightly. First of all, we allow a different 
stationary random field ~ n (x) for each n, so that Sn becomes 

Sn = L (~n (X) - IE~n (O)). 
xE A n 

As a result, we also have to replace the assumptions of the lemma by versions which are 
uniform in n. This means that in the assumptions of the lemma we replace a k,t(m) by the 
supremum over n of expression (5.3) for ~ n (x). Similarly, the integrability of l~ n (x)IZ+o in 
(5 .6) is replaced by the uniform integrability of l~ n (x)l 2+6 . Then Bolthausen's proof goes 
through to show that SUPnLxEZdl cov(~ n (O), ~ n (x))i < oo and that IAn l- ' i 2Sn/an .12, N(O, 1), 
provided that lim inf a~ > 0, where a~ = L xEZd cov(~n (O), ~n (x)) . 

A second modification of Lemma 5.1 concerns assumption (5.5) . It is clear from 
Bolthausen's proof that (5.5) may be replaced by 

as l ____, oo . (5.7) 

With these modifications, Lemma 5.1 allows us to prove: 

Lemma 5.2. Choose E E (0, 1) and At C 7l.d for t ;;;: 0 such that 

At C (1- E)tU, IAtl ----+ oo, and I8Ati/1 Atl ----+ 0 as t ----+ oo. (5.8) 

As t ----+ oo, the conditional distribution of the random vector 

IAtl - 1/ 2 (I.:<s}0}(x) - IEs v(O)), l::<k1°}(x) - IE e(O))) 
xEA 1 xEA 1 

(5 .9) 

given { r{o} = oo} converges weakly to N(O, L), where 

( 
a2 

L- I 

a! , 2 

(5.1 0) 

and 
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aT = L cov(~v(O), ~v(x)), a~ = L cov(e(O), kv(x)), 
x E7fd x E7Ld 

(5.11) 

Proof. The lemma concerns the process ~;o } which is distributed as ~)0 l conditioned on 
{r{O} = oo}, restricted to the set (1 - E)tU. By Theorems 1.2 and 2.4 we may first replace 
this process by the conditional process ~?" and then by the unconditional process ~?" . 
Similarly, we may replace IE~v(O) by IE~?" co) since 1 At i 1 /2 IIE~?" co) -IE~v(O)I = 
O(tdl2e- Y1)---+ 0 by (1.6). The same holds for IEkv(O) and 1Ek7" (0). Hence, it suffices to 
prove that 

IAtl - ' /2 (L ( ~?d (x) - IE~? " (0)), L ( k?" (x) - 1Ek?" (0))) · 
xEAt xEAt 

is asymptotically N(O, ~). 
Let u and u be real numbers and define 

l;t(x) = u~?" (x) + uk?" (x). 

Clearly {l;1(x), x E zd} is a real-valued, translation-invariant random field for each t. 
Consider 

St = L(l;t(X)- IE l; ,(O)). 
x E A , 

The fact that S1 depends on a real-valued index t ---+ oo, instead of an integer n ---+ oo as in 
our version of Bolthausen 's result, is of course immaterial in what follows. Note that 
ll; 1(x) ~ lui + 4 lv l so that all moments of ll;tCx)l are bounded independent oft. 

Let us write akt1(m) for the quantity defined in (5.3) computed for (; 1• By Theorem 2.2 
and because p(x, y) ~ d(x, y) = "'£1= 1lxi - Yi l, there exist positive C and y such that 

aklt(m) ~ Ckle-Y111 , 

independent oft. This means that assumptions (5.4), (5.6) and (5.7) are satisfied uniformly in 
t. Note that (5.5) is not satisfied since we cannot allow l = oo, but, as we have indicated, 
(5.7) serves just as well. Hence, we have proved that 

I A~ I - 1 12a ~ 1 L ( u ( ~?" (x)- IE~zd (0)) + u ( k?d (x)- IEk?d (0))) 
xEA 1 

has a standard normal limit distribution provided that lim inf a; > 0. Here 

a7 = L:cov(u~?d(O)+vk?d (O), u~?"(x)+vk?" (x)). 
xE7L" 

(5 .12) 

(5.13) 

By (1.6) the terms in (5.13) converge to cov(u~v(O) + uk~(O), u~v(x) + uk~(x)) as 
t ---+ oo, and by Theorem 2.2 the terms are bounded by C'exp{ - y"'£ 1,;; i,;;dlxil}, independent 
of t. It follows that the sum also converges, so a; tends to 
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(5.14) 

Hence S1 is asymptotically N(O, a 2(u, v)) if a 2(u, v) > 0 and asymptotically degenerate at 0 
if a 2(u, v) = 0. The lemma is proved by the Cramer- Wold device. D 

To prove the joint asymptotic normality of n)0}(C1) and k)0}(Ct) - and hence of 1 ;o}(C1) 

- conditional on { r {o} = oo }, we have to consider the difference between these quantities 
computed for the random mask C1 and a non-random mask which is close to C1• For E > 0 
and t > 0, define 

(5 .15) 

that is, A1 and B1 consist of the sites in the shrunken versions of the sets (1 - E)tU and 
(1 + E)tU respectively, where the shrinking operation V ---+ v- is defined in Definition 3.1. 

Lemma 5.3. For E E (0, 1) define A1 and B1 as in (5.15) and let D1 = (B1\A1) n C1, with 
C1 = [C(£)0})] - as given by (3 .6) and Definition 3.1. If the shrinking operation V---+ v
satisfies (3.9) for some o E (0, 1), then, for every z > 0, 

limlimsup IP ( IA11- I/2 12:)£)0l (x)- IE£v(O))I ~ zlr{O} = oo) = 0, (5.16) 
c___,.O l-----"00 xED, 

Proof. We shall only prove (5.16) as the proof of (5.17) is almost the same. As before, we 
write ~;o} for the conditional process (.;;o} 1-r{O} = 00 }; ]'] will denote the conditional 
probability lfll(· lr {O} = oo). 

Without loss of generality we assume that t:;;; o/4 so that (1- o)(1 +E):;;; 1- 3oj4 and, 
by (3 .9), 

Bt = [(1 + E)tur n 71..d c (1 - o)(1 + E)tu c ( 1 - 3:) tu. (5.18) 

As ID11 :;;; IB11 = O(td) and IA11---+ oo, we note that in (5 .16) we may replace IE£v(O) first by 
IE£7" (0) because of (1.6) and then by IE~~d (0) because of Theorem 2.4, and finally by IE~ )o} (0) 
in view of Theorem 2.1. Hence, in order to prove (5.23), it is enough to show that 

Define 

C7 = [C({~;o} U (1- E)tU} n (1 + E)tUr 

-{0} 
By (2.1), (1- E)tU C C(£1 ) C (1 + E)tU, and hence 

(5.20) 



366

1088 M. Fiacco and WR. van Zwet 

c( a;o} U (1 - c)tU} n (1 + c)tU) = c(~;o } U (1 - c)tU) 

=C(cc~;o} u (l- ~::)w) =C(~;01 ) 

eventually a.s. (IP). It follows that 

(5.21) 

eventually a.s. (iP). Obviously this implies that 

xE D1 xE Bt\ A t 

= L ( ~;o} (x) - IE~; o} (x)) I c7 (x) 
x EB 1\A 1 

eventually a.s. (IP). Instead of (5.19), it is therefore sufficient to show that 

. . ( L/21 '""" -{0} -{0} I ) hmhmsup iP IA11- ~ (~1 (x) -IE~1 (x))I c; (x) ~ z = 0. 
E-----t 0 t --+ C>O 

xE B 1\ A 1 

Clearly this will follow if we prove that 

(5.22) 

By (5.20) the random set c'; is determined by the random set {~;o} U 
(1 - ~::)tU} n (1 + c)tU which is bracketed by the non-random convex sets (1 - c)tU and 
(1 + c)tU. It follows that c '; is determined by the values of ~)0 } (y) for sites 
y E (1 + ~::)tU\(1 - ~::)tU. Put differently, for every x E 7l.d, the function gx : H ----+ {0, 1} 
defined by 

(5.23) 

satisfies 

with R = {(1 + ~::)tU\(1- ~::)tU} n 7l.d (5.24) 

and DR defined by (2.3). 
The expected value in (5.22) can be written as 
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L IE (~~o} (x) -IE~;o} (x)) (~;o } (x') -IE~;o}(x ' ))Ic; (x)Ic; (x') (5.25) 
x,x'EB1\A 1 

- {0} -{0} -{0} 
with fx (S 1 ) = !; 1 (x) - 1El;1 (x) and g x defined by (5.23). Obviously 

f x · f x• E D {x,x'} • gx · g x• E DR, (5.26) 

in view of (5.24). If x , x' E B1\ A1, then (5.18) ensures that {x, x'} c (1 - 3o j 4)tU and, 
because E ~ o/ 4, (5 .24) implies that R c {(1- o j 4)tU Y . Hence, if d(-, ·) denotes L1 

distance, then 

d({x, x'} , R) ~ b'gt for all x, x ' E B1 \ A1, (5.27) 

where b'g is a positive number depending only on o. Finally, we use (2.2) to compute 

l l lfxf~lll = 2, (5 .28) 

for an appropriate constant a > 0. Combining (5.25)- (5.28) and invoking Theorem 2.5 with 
r = 3d, we obtain 

~ IAt l- 1 L IEfx(~;o } )fx'(~;o } )IEgx(~;o} )gx· (~; o } ) + M 1 

x,x'E B,\A 1 

-{0} -{0} 
lcov(l; 1 (x), !;1 (x'))l + M,, 

where the remainder term M 1 satisfies, for appropriate positive c0 and c6, 

as t ---t oo, 

since IBt \ Atl ~ IBrl ~ 1(1 + E)tUID ~ 10 + o j 4)tUID = O(td) and IArl ---t 00 by (3.3). 
To prove (5.22) , it therefore remains to be shown that 

lim lim sup IA1 l- 1 
(----:l- 0 / ----:l- OC 

~ I ( -{0} -{0} ) I L...,; cov !;1 (x), !;1 (x') = 0. (5 .29) 
x,x'EB,\ A, 

Invoking Theorem 2.5 once more, this time with r = d + 1, we find that, for x , x' E B1\ A1, 

x =/= x', and appropriate cg > 0, 
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since x, x' E B1 \A1 implies lx - x' l = 0( t). It follows that 

for some c;r; > 0, as I:xEZ"\{O} Ixl -(d+ I) converges. Hence, (5.29) holds if 

1. 1" IBt\At l 1m 1m sup -
1 

-

1

- = 0. 
"_,o t---; oo At 

But since At = [(1 - E)tU] - n 7l_d and Bt = [(1 + E)tU]- n 7l_d, this is a consequence of (3 .5). 
This proves (5.29) and the lemma. D 

We are now in a position to prove the main result of this paper. 

Theorem 5.1. Let i )0}(Ct) be the estimator of A for the process £)0} defined in (3 .6)- (3.7) 
and Definition 3.1. If the shrinking operation V---+ v- satisfies (3.9) for some a E (0, 1) as 
well as (3.1 0), then, as t ---+ oo, the conditional distribution of 

(5.30) 

given that { r{o} = oo }, converges weakly to N(O, o 2 ). Here 

(5.31) 

where OJ, 02 and 01 .2 are given by (5.11). 

Proof. In the proof we write ~;o} for the conditional process C£)0} lr{O} = oo }. For t ~ 0, 
define At and Bt by (5.15). Since 0 E U, we have At C (1- E)tU by (3.1) and 
[(1 - E)tU]----+ [Rd by (3.10). Because [(1- E)tU]- is bounded and convex, it follows that 
I8Ati/1At l ---+ 0 as t---+ oo by an easy argument. Hence A1 satisfies condition (5.8) of Lemma 
5.2 and we find that, for every E E (0, 1), the random vector 

has a limiting N(O, L) distribution with L given by (5.10)- (5.11). 
In view of (3.9), we may apply Lemma 5.3 to obtain 
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(5.33) 

as f---+ 0 for every z > 0. Here D1 = (B1\A1) n C1. Notice that by (2.1) and (3.2) we have 
A1 c C1 n 7l_d c B1 and hence 

(5.34) 

eventually a.s. on { rl0} = oo }. 
Next we note that IBri/IAr l ---+ 1 by (3.5) and hence ICr i/ IAr l ---+ 1 eventually a.s. on 

{ r l0} = oo} as t ---+ oo. It now follows by a standard argument that the limit distribution of 
(5.32) will remain unchanged if A1 is replaced by C1 and IArl by IC1 1. Finally, (3.7) and 
another standard argument establish the theorem. D 

6. The asymptotic variance of i ~o} ( Ct) 

If the variance a 2 of the normal limit distribution in Theorem 5.1 were known, then this 
would allow us to assess the accuracy of the estimator or to set up asymptotic confidence 
intervals for A of the form 

:;ro} I 1-1 ; 2 '{o} I 1-1 ; 2 
AI (Cr) - Uaj2 Cr D a<}, < At (Cr) + Uaj2 Cr D a, (6.1) 

where Ua is the upper a-point of the standard normal distribution. This asymptotic confidence 
interval would be valid provided that ; )o} survives forever, but, as we pointed out in Remark 
4.1, it is enough that ; )01 =f. 0, that is, that the process has survived up to time t. 

Since a 2 is unknown we have to find an estimator of a 2 . One way to achieve this would 
be to estimate a 2 = a 2(A) as a function of A by simulating ;)01 a large number of times for 
each A, each time computing the value of i )0} ( C1) and using I C1 I 0 times the sample 
variance of these values as an estimate of a 2(A). One could then use a 2(i)01(C1)) as an 
estimate of a 2 . Of course in any particular instance it would be enough to carry out these 
simulations only for A = i )01(C1). 

An alternative way to estimate a 2 would be to use the observed process ; )01 itself. First, 
we subdivide the mask C1 into k subsets C1 1, ... , C1 k of (approximately) equal size and 
compute the values i )01(C1.i) for i = 1, ... : k. We then use k- ' ICrln times the sample 
variance of these values as an estimate of a 2 . 

An obvious advantage of the second method is that it is not as dependent on the model 
as the first. It is quite conceivable that the estimator i )01 ( C1) is a useful statistic in a much 
broader class of models than the contact process. In this case the second method is more 
likely to produce a sensible result than the first. 
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ON THE MINIMAL TRAVEL TIME NEEDED 
TO COLLECT n ITEMS ON A CIRCLE 

BY NELLY LITVAK AND WILLEM R. VAN ZWET 

University ofTwente and University of Leiden 

Consider n items located randomly on a circle of length 1. The locations 
of the items are assumed to be independent and uniformly distributed 
on [0, 1). A picker starts at point 0 and has to collect all n items by 
moving along the circle at unit speed in either direction. In this paper we 
study the minimal travel time of the picker. We obtain upper bounds and 
analyze the exact travel time distribution. Further, we derive closed-form 
limiting results when n tends to infinity. We determine the behavior of the 
limiting distribution in a positive neighborhood of zero. The limiting random 
variable is closely related to exponential functionals associated with a Poisson 
process. These functionals occur in many areas and have been intensively 
studied in recent literature. 

1. Introduction. This paper is devoted to the properties of the optimal route 
of the picker who has to collect n items independently and uniformly distributed 
on a circle. By optimal route we mean the route providing the minimal travel time 
(see Figure 1). The problem has applications in performance analysis of carousel 
systems. A carousel is an automated storage and retrieval system which is widely 
used in modem warehouses. The system consists of a large number of shelves 
or drawers rotating in a closed loop in either direction. Orders are represented 
by a list of items. The list specifies the type and retrieval quantity of each item. 
The picker has a fixed position in front of the carousel, which rotates the required 
items to the picker. In this paper we study the minimal travel (rotation) time of the 
carousel while picking one order of n items, the locations of which are assumed to 
be independent and uniformly distributed on the carousel. 

Let Uo = 0 be the picker's starting point and, for i = 1, 2, ... , n, let the 
random variable Ui denote the position of the ith item. The random vari
ables U1, U2, . .. , Un are independent and uniformly distributed on [0, 1). 
Set Un+l = 1. Let 

0= Uo:n < Ut:n < ... < Un:n < Un+l:n = 1 

denote the ordered Uo, Ut, . . . , Un+l· Then the picker's starting point and the 
positions of the n items partition the circle into n + 1 uniform spacings 

l~i~n+l. 

Received December 2002; revised May 2003. 
AMS 2000 subject classifications. Primary 90B05; secondary 62E15, 60F05, 60G51. 
Key words and phrases. Uniform spacings, carousel systems, exact distributions, asymptotics, 

exponential functionals. 
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------ - candidate route 

optimal route 

FIG. 1. Minimal travel time on a circle. 

Let X 1, X2, ... be independent exponential random variables with mean 1 and 
write 

So=O, 

It is well known that [cf. Pyke (1965)] 

(1.1) 

that is, the spacings are distributed as normalized exponentials. According to Pyke 
(1965), this construction is useful "to show that an ordering of uniform spacings 
may be considered as an ordering of the exponential random variables." 

Now, let Tn be the minimal travel time. We explore Tn in terms of the uniform 
(n + I)-spacings D1,n, D2,n, ... , Dn+l ,n· For n = 1, the problem is trivial. The 
picker just chooses the shorter distance from the starting point to the item, and 
thus the travel time T1 is distributed as (lj2)Du (a normalized minimum of two 
exponentials). For n = 2, one can easily verify that the optimal route is guaranteed 
by the nearest item heuristic where the next item to be picked is always the nearest 
one. The travel time distribution for this heuristic was obtained by Litvak and Adan 
(2001). It follows from their result that T2 is distributed as (1/2)Dt ,2 + (3/4)D2,2· 
For n :=::: 3, the problem becomes much more difficult. 

A crucial and simple observation made by many authors [see, e.g., Bartholdi 
and Platzman (1986)] is that the optimal route admits at most one turn. Obviously, 
it is never optimal to cover the same segment of the circle more than twice. Thus, 
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in general, Tn can be expressed as 

(1.2) 

Tn = 1 -max{ max {D j ,n - Uj-1: nL 
1~J~n 

m~x {Dn+2-j,n- (1- Un+2-j:n)}}. 
1~J~n 

883 

This formula is easy to understand by means of Figure 1. Clearly, for j = 1, 
2, ... , n, the term Dj,n- Uj-1 : n is the gain in travel time (compared to one full 
rotation) obtained by skipping the spacing Dj,n and going back instead (ending in a 
clockwise direction). The same can be said about Dn+2- j,n- (1- Un+2- j: 11 ), but 
here the picker ends in a counterclockwise direction. Under the optimal strategy, 
the picker chooses the largest possible gain. 

Let T~m) be the travel time under so-called m-step strategies: the picker chooses 
the shortest route among 2(m + 1) candidate routes that change direction at most 
once (as does the optimal route) and only do so after collecting no more than m 
items. It was proved by Litvak and Adan (2002) that for 2m < n, 

(1.3) 

T11(m) = 1- max{ max {Dj,n- Uj-l:nL 
l~J~m+l 

J!laX {Dn+2-j ,n- (1- Un+2-j :n)}} 
1~J~m+1 

d 1- - 1- max{ max {Xj- Sj-1}, 
Sn+l l ~j ~m+1 

max {Xn+2-j- (Sn+1- Sn+2-j)}} 
l~J~m+1 

d !m+ 1 1 m+1 1 I = 1 - max "' . D1· n, "' . Dn+2-;' n . ~ 2J - 1 ' ~ 2J - 1 ' 
J=l ;=1 

Formula (1.3) follows from the following curious property of exponential random 
variables obtained by Litvak (2001). 

LEMMA 1.1. For any m = 0, 1, ... and 0 < q < 1, 

(1.4) 

The proof also implies that for any m = 0, 1, ... , n, 

(1.5) 
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If 2m < n, then the two internal maxima in the third expression of (1.3) are 
independent and ( 1.4) can be used to rewrite each of them separately. Moreover, the 
same argument applies for the normalized exponentials yielding (1.3). If 2m ~ n, 
then the two internal maxima become dependent and the argument fails. 

In fact, the optimal strategy is the m-step strategy with m = n - 1. Intuitively, 
it is clear, however, that with high probability the optimal route has only a few 
steps before a turn. That is, them-step strategy often prescribes the optimal picking 
sequence even when m is relatively small. It was shown by Litvak and Adan (2002) 
that already form = 2, them-step strategy is quite close to optimal and, on average, 
outperforms the nearest item heuristic. 

Let K~m) and Kn denote a number of items collected before a turn under the 
m-step strategy and the optimal strategy, respectively. If there is no turn, these 
numbers are set equal to zero. It was proved by Litvak and Adan (2002) that: 
(i) Tn(m) and K~m) are independent random variables; (ii) for any k = 0, 1, ... , m 

and 2m< n, 

(1.6) 

JP>(K,~m) = k) = JP>([arg rpax {Dj ,n- Uj-l: 11 } = k + 1]) 
l:::OJ:::Om+l 

= JP>([arg max {Xj - SJ-d = k + 1]) 
l :::O J :::Om+l 

1 

(iii) for any k = 0, 1, ... , n - 2, 

(1.7) 

The last estimate is helpful in the analysis of the limiting properties of the optimal 
route. For example, it was proved by Litvak and Adan (2002) that for any fixed 
k=O, 1, . .. , 

(1.8) lim JP>(K11 = k) = 1/2k+1. 
11--+00 

Indeed, observe that fork = 0, 1, ... , m, 

JP>(K,~m) = k)- JP>(K11 > m) _:::: JP>(K11 = k) _:::: JP>(K~m) = k). 

Now, let m and n go to infinity in such a way that the inequality 2m < n is always 
satisfied. Then (1.8) follows readily from (1.6) and (1.7). 

In this paper we first derive simple upper bounds for the minimal travel time. 
Then we analyse the distribution of T11 • Further, we obtain the limiting behavior 
of T11 when n tends to infinity. 
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2. Upper bounds. Let Tn be the minimal travel time needed to collect n items 
independently and uniformly distributed on a circle of length 1. The following 
lemma gives an upper bound that holds for any realization of the random items' 
locations. 

LEMMA 2.1. For any n 2: 1, the travel time Tn never exceeds 1 -an+ 1, where 

1 
a 1 - ----=----

n+ - 2m+ l + 2m - 2' 

1 
a I - -----=--n+ - 2 . 2m+ 1 - 2' 

This upper bound is tight. 

n=2m; 

n =2m+ 1. 

PROOF. Assume that n = 2m + 1. For n = 2m the proof is similar. The 
positions of the items plus the picker's starting point partition the circle into 
n + 1 spacings with lengths dt, d2, ... , dn+l· Note that for any collection 
dt, d2, ... , dn+l 2: 0 there exists a number j = 1, 2, ... , m + 1 such that either 
(")d· 2j - l d 21- 1 l-1 2 . 1 ("")d . 2j - l 1 1 2: an+J, l < an+J, - , , ... , J- 'or 11 n+2-1 2: an+J, 
dn+2-l < 21- 1an+l, l = 1, 2, ... , j- 1. This follows since 

m+l 
2 L 2j-lan+l =dt +d2 + ·· · +dn+l = 1. 

j=l 

Without loss of generality assume (i). Then the route that skips the spacing d j and 
goes back instead has length 

1-dj +d1 +d2+·· · +dj-l :S 1-an+l, 

and its length must be greater or equal than Tn. This proves the upper bound. 
To show the tightness wejustputdj = dn+2-j = 2j-lan+I, j = 1, 2, ... , m + 1. 

In this case the travel time under the optimal strategy equals 1 - an+ 1. D 

Let us now consider the following approximation of Tn in (1.2), 

0 d 1 { Tn = 1- -S- max max {Xj- Sj_J}, 
n+I l.:Sj.:Sm+l 

max {Xn+2-j- (Sn+l- Sn+2-j)}}, 
l .:S j .:Sm'+l 

where m = m' = (n- 1)/2 if n is odd and m = m' + 1 = n/2 if n is even. In both 
cases we have m + m' = n - 1 so that the X j 's from the first internal maximum are 
not involved in the second internal maximum. That is, the two internal maxima are 
independent, and we can apply Lemma 1.1 to each of these separately to arrive at 

0 d lm+l 1 m'+l 1 l 
(2.1) Tn = 1- max "\:' . D 7· n, "\:' -. -Dn+2-1· n . 

L- 21 - 1 . ' ~ 21 - 1 ' 
1=1 1=1 
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Clearly, Tn° gives a tight stochastic upper bound for Tn. In fact, Tn° and Tn differ 
with probability of order 2-n/2 according to (1.7). It was shown by Litvak and 
Adan (2002) that Tn° is stochastically larger than the weighted sum 

n+l 

Tn* = "L:O- aj)Dj ,n· 
j=2 

Straightforward estimation of the expected difference between Tn* and T~ yields 

Thus, 

(2.2) 

0 * 0.09 
IE(Tn - Tn. ) < 0.09IE(Dt n) = --. 

' n+1 

1 n+ 1 0.09 
IE(Tn) < IE(T~) < -- L(l-aj) + --. 

n + 1 j=2 n + 1 

In Table 1 (see Section 4), we compare the mean travel time IE (Tn) obtained by 
simulation with upper estimate (2.2) and approximation (4.8), which follows from 
the limiting results in Section 4. The results prove that the bound (2.2) is quite 
sharp. For larger n, however, (4.8) gives a slightly better approximation. 

3. The minimal travel time distribution. In this section we produce an 
explicit expression for IP(Tn 2: 1 - t). First, note that it is never optimal to tum 
after covering half of a circle. Now, consider the events 

An,k(u, v) = [Uk :n = u < 1/2 < 1- v = Uk+1 :nL 

O.:su,v < 1j2,k=0, 1, ... ,n. 

Fork= 2, 3, ... , n -2, the joint distribution of U1: n • ... , Uk-1: n' 1-Uk+2: n • ... , 
1 - Un: n given An,k(u, v) is that of 

uU1 :k-1, . .. , uUk-1 :k-1, v Vn-k-1: n-k-1, . . . , v V1 : n-k-1, 

where U and V are independent vectors of uniform order statistics. As the event 
[Tn 2: 1- t] implies 1- v- u- u 1\ v.:::: t, we have fork= 2, 3, ... , n- 2, 

(3.1) 

IP(Tn 2: 1- tiAn,k(u, v)) 

=IP( max {(Uj :k-1- Uj-1 :k-d- Uj-l:k-d :S tju, 
l"S.J'S.k 

max {(Vj:n-k-1- Vj-1 :n-k-1)- Vj-l :n-k-d :S tjv) 
1'5:.J"S.n-k 

X 1 [1-v-u-u i\v"S.t] 

= Pk-1 (t ju )Pn-k-l (t /v )1[1-v-u-uAv-s.t] · 
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Here u 1\ v = min { u, v} denotes the smaller of u and v and 

(3.2) Pm(t)= JP> ( . f!laX . {Dj ,m-Uj-1:m}:St), 
I ::OJ ::Om+ I 

m = 1, 2, ... ; t :=:: 0. 

887 

One readily verifies that the final expression in (3.1) continues to hold fork= 1 
and k = n - 1, provided we define 

(3 .3) Po(t) = l[t > 1l· t :::: 0. 

For k = 0 and k = n, we find 

JP> (Tn :=:: 1- tiAn ,o(O, v)) = Pn-1(tjv)1[1-v:Sl ]• 

JP>(Tn :=:: 1- tiAn ,n(U , 0)) = Pn-1 (t/u)l[l-u::st]· 

It follows that 

JP>(T11 :=:: 1 - t) 

(3.4) 

[1 /2 [1 /2 n-1 ( ) 
= Jo Jo {; ~ kuk-1(n- k)vn-k-1 

X Pk-1 (t ju)Pn-k-l (tjv)l[l- v-u-ui\v:st ] du dv 

11/ 2 

+ 2 · l[t> l / 2] u=l-l nu 11
-

1 Pn-1(tju)du. 

Formula (1.5) and Theorem 2 of Ali and Obaidullah (1982) imply an expression 
for Pm(t). Writing 

. 1 
Cj = (21 - 1)- , j = 1, 2, ... , 

and x+ = max{x, 0} for the positive part of a number x, we find that form= 1, 
2, ... , 

The last expression is also valid form= 0. Of course, fort > 1, the terms in (3.5) 
sum to 1. 

Alternatively, one can determine Pm (t), recursively. Conditioning on U1 : m• we 
find form= 2, 3, ... , 

P( J:!laX {Di ,m-Ui-1:m} < t1Ul :m=u) 
1:St:Sm+1 

= P((l- u) max {Di,m-1- Ui-1 :m-d- u < t)l[u :st] 
l :St :=om 

( t +u) = Pm-1 -- l[u :St]· 
1-u 
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This yields the recursive equation 

(3.6) it m 1 ( t + U) Pm(t) = m(l- u) - Pm-1 -- du, 
o 1-u 

which is valid for m = 1, 2, .... 
We can now find the distribution of Tn by substituting (3.3) and either 

(3.5) or (3.6) in (3.4) and integrating. One obtains, for example, fort:::::: 0, 

P1(t) = !C3t -1)+- ~(t -1)+, 

P2(t) = k{(7t- 1)+}2 - ~{(3t- 1)+}2 + ~{(t- 1)+}2 

and for 0 ::= t ::= 1, 

IfD(T1 :::::: 1- t) = (2t- 1)+, 

IfD(T2:::::: 1- t) = j-{(4t- 1)+}2 - 2{(2t- 1)+}2, 

IfD(T3:::::: 1- t) = i{(6t- 1)+ }3 -1~ {(4t- 1)+}3 

- i{(4t- 1)+}2 + ~ {(2t- 1)+}3. 

Although the general structure of these functions is fairly easy to understand, it 
seems quite useless to provide explicit expressions for IfD(Tn :::::: 1 - t) for much 
larger values of n. Instead, we study their asymptotic behavior in Section 4. 

4. Limiting results. In this section we shall obtain the limiting distribution of 
(n + 1)(1 - Tn) . First of all, let us consider the limiting behavior of 

THEOREM 4.1. Let X1, X2, ... be independent exponential random variables 
with mean 1. Then 

m+ 1 1 d oo 1 
(4.1) (m+1)" . Djm---+" . Xj, 

L 21 - 1 ' ~ 21 - 1 
1=1 1=1 

and the limiting distribution is given by 

P(t) = lim Pm(tj(m + 1)) 
m--+oo 

(4.2) ~ . I . . nj 1 = 1- L(-1)1 - 21 exp{-(21 - 1)t} - 1-. 

j=1 1=1 2 - 1 

The distribution function P satisfies the integral equation 

(4.3) 12t 
e-t P(t) = t e-u P(u) du. 
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PROOF. The argument essentially repeats the proof of Theorem 4 of Litvak 
and Adan (2001). Define 

(4.4) 
m+l 1 

lm = L . Xj, 
. 21 -1 

1=1 

00 1 
l=L . Xj. 

. . 21 -1 
1=1 

By the monotone convergence theorem, IE(J) = limm--+oo IE(Jm) < oo . In particu
lar, it implies JID( J < oo) = 1. 

Now, using (1.1), we write 

m+l 1 d (m + 1)lm 
(m + 1) L -j-Dj,m = . 

j=l 2 - 1 Sm+l 

By definition, the sequence Um} converges a.s. to J. The strong law of large 
numbers implies that the sequence {(m + 1)/Sm+d converges a.s. to 1. Thus, 
{(m + 1)lm/Sm+d converges a.s. to J which immediately gives (4.1). 

The distribution P of J can be obtained via inversion of its Laplace-Stieltjes 
transform 

00 2j- 1 
cp(s) =IE(exp(-sl)) = n . . 

. 21 -1 + s 
j=l 

One can expand cp(s) in rational fractions of sand obtain 

00 (-1).i-12.i j-1 1 

cp(s) =I: 2j- 1 + s TI 21 - 1· 
j=l l=l 

(4.5) 

Here, in order to write the formula for the residues of cp(s), one can apply 
well-known expressions from so-called q-calculus [see, e.g., Gasper and Rahman 
(1990)], but in our case it is not difficult to verify this formula directly. Inversion 
of ( 4.5) yields ( 4.2). 

Finally, we use (3.6) and the dominated convergence theorem to obtain 

P(t) = lim Pm(tj(m + 1)) 
m--+oo 

. !ot/ (m+l) m-1 (tf(m + 1) + u) 
= lim m(1- u) Pm-1 du 

m--+ oo 0 1- U 

=lot e-u P(t + u) du 

[2t 
= et lt e-u P(u) du, 

which proves (4.3). D 
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Obviously, we also have convergence of moments. For the kth moment of P, 
(4.2) yields 

lo oo 00 2i j 1 
JE(Jk)= tkdP(t)=k!'L_(-1)}-l . k[l-1-· 

0 }=1 (21 - 1) 1=1 2 - 1 

Alternatively, one can directly use (4.4) to find a simple expression for 
cumulants K v , v ::::: 1, of P. It is immediate that 

Furthermore, 

00 
~ . 1 

JE(J) = Kl = ~(21 - 1)- , 
j=1 

00 

Var(J) = K2 = 'L_(2J- 1)-2 . 

j=1 

00 . 00 00 (it)\! 
log(lEexp(itJ)) =-~ log(1- (21- 1)-1it) = ~ ~ . , 

~ ~ ~ v(21 - 1)1! 
}=1 j=1 1!=1 

where i is the imaginary unit. Since log(lE exp(itJ)) = 2::~ 1 Kv(it)v(v!)- 1, it 
follows that 

00 

Kv = (v -1)! 'L_(2j -1)-v, 
j =l 

The distribution function P on [0, oo) has the remarkable property that it is 
infinitely often differentiable and that all of its derivatives P (k) vanish at the origin. 
This is most easily seen by differentiating (4.3), but one may also use (4.2) to 
show analytically that P (k) (0) = 0 for all k = 1, 2, ... . It follows that P is not 
analytic at the origin. The series (4.2) diverges for all t < 0 and, hence, P cannot 
be represented by its Taylor series around t = 0. 

Now repeating the argument from the proof of Theorem 4.1, one can show that 

0 d !~ 1 ~ 1 I I (n + 1) ( 1 - Tn ) ---+ max ~ . X j, ~ . X j , 
. 21- 1 . 21- 1 
j=1 j=l 

where X 1, X2 , ... , Xi, X~ , . . . are independent exponentials with mean 1. Since 
the two sums in the maximum are independent and ( 1. 7) ensures that 

we have proved the following statement. 
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THEOREM 4.2. Let X 1, X2 , ... , X~, X~, ... be independent exponential ran
dom variables with mean 1. Then 

(4.6) !00 1 00 1 ) (n + 1)(1- T11 ) ~max L . Xj, L . Xj , 
. 2.1- 1 . 2.1- 1 
J=l J=l 

and the limiting distribution is 

(4.7) lim lfD(Tn > 1- t/(n + 1)) = [P(t)] 2 , 
11----'>00 

where P(t) is given by (4.2). 

Again we have moment convergence and for the kth moment we find 

lim lE[(n + 1)(1 - T11 )]k 
11----'> 00 

00 . 2j j 1 
=2k'"(-1)1-l n--

. L.. (2j - I)k 21 - 1 
;=1 1= 1 

00 00 + . 2i+j j 1 i-1 1 

- 2k! L 2::<-IY J (2i + 2j- 2)k+l n 2l -1 n 2r- I' 
j=l i=l l=l r =l 

An equivalent expression for the expectation can be obtained as 

lim lE[(n + 1)(1 - T11 )] 
11----'>00 

~ 2.1578. 

For large n we therefore have the estimate 

(4.8) 
2.1578 

1E(T11 ) ~ 1- . 
n+l 

In Table 1 we compare the mean travel time obtained by simulation with 
upper estimate (2.2) (see Section 2) and approximation (4.8). We see that both 
approximations are quite sharp, but (4.8) performs somewhat better. It is no 
surprise that both (2.2) and (4.8) are close to 1E(T11 ) for large n since all three 
quantities converge to 1 as n -+ oo. What is encouraging is that, already for n = 30, 
both approximations of (n + 1)(1 - 1E(T11 )) are very good. That (4.8) yields a 
better approximation of IE(T,1 ) than (2.2) is to be expected since it is asymptotically 
correct up to and including order n-1, whereas (2.2) has a slight asymptotic error 
of about + 0.006/(n + 1). After all, (2.2) was derived as an upper bound. 
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TABLE 1 
Estimation of the mean travel time under the optimal strategy 

n 3 5 10 15 20 30 

lE(Tn) 0.5262 0.6591 0.8052 0.8653 0.8972 0.9304 
JE [(n + 1)(1- Tn)] 1.8952 2.0454 2.1423 2.1548 2.1592 2.1572 

Upper estimate (2.2) 0.5433 0.6670 0.8068 0.8658 0.8976 0.9306 
(n + 1)[1-upper estimate(2.2)] 1.8268 1.9980 2.1252 2.1472 2.1504 2.1514 

Approximation (4.8) 0.4605 0.6404 0.8038 0.8651 0.8972 0.9304 
(n + 1)[1-approximation (4.8)] 2.1578 2.1578 2.1578 2.1578 2.1578 2.1578 

5. Asymptotic behavior in the neighborhood of zero. In this section we 
study the behavior of P(t) as t--+ +0. So far we have found only that P has 
vanishing derivatives at the origin and can not be expanded in a Taylor expansion 
around t = 0. We shall, therefore, have to attack this problem in a different manner. 

Let X1, X2, ... be independent exponential random variables with mean 1, let 
. 1 

Cj = (21 - 1)- , j = 1, 2, ... , 

and define 
00 

J = LCJXj. 
j=l 

We want to determine the behavior of 

P(t) = JP(J::: t) 

for small positive values oft . In principle this problem is solved in Theorem 3.2 
of Davis and Resnick (1991), but we need to do a substantial amount of analysis 
to make their result explicit, even in our relatively simple case. 

In our case, the distribution function F (x) = P (X 1 < x) = 1 - exp{-x} and the 
density f (x) = exp{-x} are regularly varying at 0 with index a = 1 and a- 1 = 0, 
respectively. The c J 's are positive and nonincreasing, their sum converges and for 
every e E (0, 1), 

00 00 

en l:fc]!c~}lu~e-n] =en I:{(2n -1)/(2} -1)}2 1u~e-n]-+ o 
J=l j=l 

as n--+ oo. The density f satisfies 

fooo e-lh f 2 (x)dx = 1/{2(1 +A.)} for A.> 0. 

Hence, we have verified the assumptions of Theorem 3.2 of Davis and Resnick 
( 1991) in our case. The theorem states that 

(5.1) P(m)J "'exp{A.m;_}cp1 (A.)/(A.S;_ ,J2;) as A.--+ oo. 
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Here 

oo c· oo 1 
rn A = L J = L . ' 

) = 1 1 + AC j ) = L 21 - 1 + A 

00 1 00 2)- 1 
<{JJ(A) =Til+ Ac · = n 2)- 1 +A 

j=l J j=l 

and 

We obviously have to study the behavior of these quantities as A --+ oo and, 
hence, rn A --+ 0. It is easier to deal with integrals than sums. Fork= 1, 2, ... and 
A--+ oo, we have 

and, hence, 

00 00 

.:::: L::C2) -1 +A)-k- L:C2) -1 +A)-k 
)=0 

=A-k 

)=L 

oo looo L(2)- 1 + A)-k = (2x- 1 + A)-k dx + O(A -k). 
. L 0 j= 

For k = 2, this yields 

(5.2) 
sf= (log2)-1 fooo (y + A)-2(y + 1)-1 dy + O(A -2) 

= (logA)/(A2log2) + O(A - 2), 

as A--+ oo. If we apply the same approach to AmA and log<p1 (A), however, then 
the error caused by approximating these sums by integrals is of the order 0 ( 1) and 
O(logA), respectively, which yields a multiplicative error factor (1 + O(aAb)) 
in ( 5.1) for some positive a and b. Of course this is not good enough so we 
shall have to expand the series representing Am A and log <p 1 (A) directly with 
remainder o(l) in both cases. 

Let k be a natural number and() E [0, 1) be such that 

A= 2k+B , 
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and thus 

k = (logA.)/log2- e = L(logA.)/log2J, 

e = (logA.)jlog2- k = frac((logA.)/log2). 

Here LxJ and frac(x) are the integer and the fractional part of x, respectively. In 
order for A. --+ oo, it is necessary and sufficient that k --+ oo, while e may vary 
arbitrarily in [0, 1) with k. Using (5.2) we find 

Hence, 

(5.3) 

with 

co A. 
A.m A. = " ----:---~ 2j -1 +A. 

1=1 

co 2k+8 

= ~ 2j - 1 + 2k+8 
1=1 

co 2k+8 
= L j k+e + O(A. -1logA.) 

j=1 2 + 2 

k 1 co 1 =" . + " . + O(A. - 1 logA.) L...t 21-k-e + 1 . ~ 21-k-e + 1 
1=1 1=k+1 

k-1 1 co 1 =" . e +" . e + O(A. -1logA.) 
~ 2-1- + 1 L...t 21- + 1 
1=0 1=1 

k 2j co 1 
= L · 1 e + L · e + O(A. - 1logA.) 

. 21 + 2 - . 21- + 1 
1=1 1=1 

k 21-e co 2e 
=k- L . 1 e + L . e +O(A.-1logA.) 

j = 1 21 + 2 - j =I 21 + 2 

logA. co 21-e co 2e 
=-- L . 1 e + L . e -B+O(A.-1logA.). 

log 2 j=1 21 + 2 - j=1 21 + 2 

A.mA. = (logA.)/log2+ A(B) + O(A. - 1logA.), 

co 21-e co 2e 
A (e) = - ~ 2j + 21 - e + L 2j + 2e - e. 

1=1 1=1 

Notice that the term A(B) of order 1 is not constant but depends one E [0, 1). The 
expansion (5 .3) is obviously uniform in e. 
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Similarly, by (5.3), 

00 

logcpJ(A.) = l::Iog{(2j -1)/(2j -1 +A.)} 
j=l 
00 00 

= l::Iog{2j/(2j +A.)}+ l::Iog(l-2-j) 
j=l j=1 

00 

+ L log{1 + 1j(2j- 1 +A.)} 
j=l 

00 00 

= L log{2j I (2j + 2k+8)} + L log(l - 2- j) 
j=l j=l 

+ O(A. - I log A.). 

Furthermore, 

00 

L log{2j j(2j + 2k+tl)} 
j=l 

k 00 

= l::Iog{21- 8 j(2j +21- 8)} + l::Iog{2j j(2j +28)} 
j=1 j=1 

= k(1- 8) log2- (1/2)k(k + 1) log2 

k 00 

- Llog(l +21- 8-j)- Llog(1 +28 -j). 
j=l j=l 

Substituting k =(log A.)/ log2- e and using 

00 00 

L log(1 + 21-8-j):::: L 21-8-j = O(A. -1), 

j=k+l j=k+l 

we finally find 

(5.4) 

where 

(5.5) 

(logA.)2 logA. 
log<PJ(A.) =- +- + B(8) + O(A. -'log A.), 

21og2 2 

00 

B(8) = L log{ (1- 2-j)/[(1 + 28 - j)(1 + 21- 8- j)]} 
j=1 

- (1/2)8(1 - 8) log 2. 

895 
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Again the term B(()) of order 1 depends on () and the expansion is uniform 
in() E [0, 1). 

Substituting (5.3), (5.4) and (5.2) in (5.1), we obtain, for A.--+ oo, 

1og2 { 1 2 ---'----- exp ---(logJ....) 
2n log A. 2log 2 

P(m;..)"'"' 

(5.6) 

+ (~ + - 1-) log A.+ A(())+ B(O)}. 
2 log2 

It remains to find approximations of log A. and (log J....) 2 as functions of 

t = m;._ = (logA.)I(J....log2) +A(()) I A.+ O(J.... - 2 logJ....). 

We find 

log(llt) =log A. -log log A.+ loglog2- A(O)(log 2)1 log A. 

+ 0( (logJ....)-2), 

log log(l It) =log log A. - (log log A.) I log A.+ (log log 2) I log A. 

+ 0 ((log log J....) 2 I (log J....) 2) 

and, hence, 

log A.= log(llt) +log log(11 t) -log log 2 +(log log(llt) )I log(ll t) 

- (loglog2)1log(11t) + A(O)(log2)1log(llt) 

+ O((loglog(11t))2 1(1og(llt))2), 

(logA.)2 = [log(llt) + loglog(11t) -loglog2]2 + 2loglog(11t) 

- 2loglog2 + 2A(()) log2 

+ O((loglog(11t)) 2 llog(llt)). 

Together with (5.5) and (5.6), this yields that, fort --+ 0, 

with 

(5.7) 

P(t) "'"' C(()) exp{ -(2log 2) - l [log(ll t) +log log(1 1 t) -log log 2]2 } 

X t-(1 / 2+1 / log2) 

1 00 1- 2-j c c ()) = 2 -8( 1-8) 12 __ n --,.----------.,.-
v'2if j=1 (1 + 28- j)(l + 21-8- j). 

The factor C(()) depends on()= frac((logA.)Ilog2). 
It remains to express () in terms of t. Define 

1/f(t) = (log2)-1[log(11t) + loglog(llt) -loglog2]. 
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We have k + 61 = (logA.)jlog2 = 1/f(t) + a(l), and as Cis positive and bounded, 
the derivative of Cis positive and bounded and C(61) = C(1- 61). This implies that 
C(frac{ljf(t)}) = C(61)(1 + a(1)). It follows that, as t--+ +0, 

(5.8) P(t) '"'"'C (frac{ 1/f(t)}) exp{- lo; 2 [ 1/f(t)i} t-(l/2+1 /log2), 

with C defined in (5.7). This is an exact asymptotic expression for P(t) as t--+ +0. 
The dependence on frac(ljf(t)) in (5.8) is a most unusual feature. In fact, 

preliminary numerical calculations make one wonder whether there is any 
dependence at all, since one finds that C(61) equals a constant (~ 0.01013) 
throughout the interval 0 :S 61 < 1 to any reasonable degree of accuracy. Thus, 
in order to properly understand the asymptotic expression (5.8), we have to 
analyze C(61) in more detail. Proposition 5.1 states that C(61) does indeed depend 
on 61, but in a very peculiar way. In fact, for any real61, 

where 

(5.9) 

00 

J3(61) = 1 + 2 L exp{ -2k2n 2 I log2} cos{2kn(112- 61)} 
k=1 

= 03(n(112- 61), exp{ -2n2 I log2}). 

Here 03 is a theta function 

Note that for all 61, 

00 

03(z, q) = 1 + 2 L l 2 cos(2kz). 
k=l 

is a quantity which is difficult to reveal numerically! 

PROPOSITION 5 .1 . For any real 61, 

00 n (1 + 2e- j)(1 + 21-e-j) 

(5.10) 
j=l 

where J3(61) is given by (5.9). 



388

898 N. LITVAK AND W. R. VAN ZWET 

PROOF. We first apply Jacobi's triple product identity [see, e.g., Askey (1980) 
and Gasper and Rahman (1990)]. For any q E (0, 1), 

00 00 

(5.11) n (1- xqj)(1- x - 1qj+1)(1- qj+1) = L ( -l)nqG) xn 0 

j=O n=-oo 

Take x = -2-e, q = 112. Then (5.11) becomes 

00 00 

(5.12) n (1 + 2e - j)(l + 21 - e- j)(l- 2- j) = I: 2 - n(n - 1) / 22- en. 

j=1 n=-oo 

The right-hand side of (5.12) is of the form 

where 

and 

00 

c(8) L g(n), 
n=-oo 

g(x) = ~ exp{ -(112)(log2)(x- 112 + 8)2 } 
2n 

is a normal density with mean f-L = 112 - e and standard deviation 0' = 1 I -JIOV. 
The characteristic function of g is given by 

y (t) = exp{ -t2 1(2log2) + it(112- 8)}, 

where i is the imaginary unit. For each fixed A and for each real ~, the Poisson 
summation formula [see Feller (1970)] gives 

(5.13) 
+oo n +oo 
L y(~+2kA)=- L g(nniA)exp{in(niA)~}. 

A k=-oo n=-00 

Put A= n, ~ = 0. Then the right-hand side of (5.13) becomes I;~_00 g(n) and 
on the left-hand side we have 

00 00 

L y(2kn)=y(0)+ L exp{-2k2n 21log2}exp{i(112-8)2kn} 
k= - 00 k=- oo 

kf-0 

00 

= 1 + 2 L exp{ -2k2n 2 1 log2} cos{2kn(112- 8)} 
k=1 

= 7'h(8). 
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Hence, (5.13) reduces to 

n=-oo 

implying that the right-hand side of (5.12) equals c(B)lJJ(B). This immediately 
yields (5.10). The proposition is proved. D 

We summarize our findings in the following theorem. 

THEOREM 5.2. Let X1, X2, ... be independent exponential random variables 
with mean 1, and let 

00 

'"""' . 1 J = L.)2.! -1)- Xj. 
j=l 

Then 

.JIOg20}:t (1- 2- j)2 
IfD(J < t) "' --____,..,_::....._ ___ _ 

- 21182n!J3(frac{l/f(t)}) 

x exp{ _lo;2[l/f(t)f }t-(1 /2+1/ log2) as t---+ +0, 

where 

l/f(t) = (log2)- 1[log(ljt) + loglog(1/t) -loglog2] 

and lJ3 is defined in (5 .9). 

6. Related results. In a similar fashion we can also analyze more general 
linear combinations of i.i.d. exponential random variables than J. For any 
q E (0, 1), define 

00 

J(q) = (q-1- 1) L(q-j -1)-1 Xj. 

j=l 

Clearly, J _ J(1/ 2). One can show that 

m+l 1 
(m + 1)(q - 1 - 1) L -j _ 1 Dj,m ~ J(q) 

j=l q 
as m---+ oo, 

where the expression on the left occurs in the right-hand side of (1.5) for n = m. 
The random variable J(q) can be written in the following way. Let N(t) be a 
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standard Poisson process. Then 

(q-1 -1)-1 J (q) = fooo qN(t)+1(l _ qN(t)+l)-1 dt 

00 

= Lqj I(q j )' 

)=1 

where 

J(q)= Jo oo qN(t)dt= fqJ - 1xJ 
0 )=1 

is an exponential functional associated with a Poisson process. The functional J(q) 

has been intensively studied in recent literature. Its density was obtained indepen
dently by Dumas, Guillernin and Robert (2002), Bertoin, Biane and Yor (2002) 
and Litvak and Adan (2001), for q = 1/2. Carmona, Petit and Yor (1997) derived 
a density of J000 h(N (t)) dt for a large class of functions h: N---+ IR+, in particu
lar, for h (n) = qn. Bertoin, Biane and Yor (2002) found the fractional moments 
of J(q)_ If i(q)(t) is a density of J (q), then i(q)(t) and all its derivatives equal 0 
at the point t = 0. This implies, by the way, that all moments of 1/ J(q) are finite. 
However, for q = 1je, it was proved by Bertoin and Yor (2002a) that 1/ J(l / e) is 
not determined by its moments. 

The functional J(q) appears in a number of applications. Let TnN 1 be the travel 
time needed to collect n items independently and uniformly distributed on a circle 
of length 1 operating under the nearest item heuristic (the picker always travels to 
the nearest item to be retrieved). Then it was shown by Litvak and Adan (2001) 

that (n + 1)(1 - TnN 1) converges in distribution to J0 /2). Dumas, Guillemin and 
Robert (2002) showed that the distribution of J(q) plays a key role in the analysis 
of limiting behavior of a Transmission Control Protocol connection. These results 
were extended by Guillemin, Robert and Zwart (2002), who found the distribution 
and the fractional moments of the exponential functional 

(6.1) /(~) = fooo e- W ) dt, 

where (~(t), t ::::_ 0) is a compound Poisson process. An exponential func
tional (6.1) associated with a Levy process ~(t) appears in mathematical finance 
and many other fields. It has been studied recently by Bertoin and Yor (2001, 
2002a, b), Bertoin, Biane and Yor (2002), Carmona, Petit and Yor (1997) and Yor 
(2001). 
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Along the same lines as in Section 5, one can prove theorems similar to 
Theorem 5.2 for J(q) and J(q) . In fact, it is straightforward to repeat the 
calculations for 

00 

ql(q) = LqjXj 

j=l 

and 
q 00 1 

--J(q)-" X. 
-~ . ]' 1-q . . q- J-1 

j=l 

We obtain, for q E (0, 1) as t---+ +0, 

where 

1/f(q)(t) = (log(1/q))- 1[log(1/t) + loglog(1/t) -log(log(l/q))], 

00 

Jjq) (8) = 1 + 2 L exp{ -2k2n 2 I log(1/q)} cos{2br(l/2- 8) }. 
k=l 

This agrees with the result of Bertoin and Yor (2002a) that 

logi(t)""' -Hlog(1/t))2 as t ---+ +0, 

where i (t) is a density of 

For the functional I 0 /2), which describes the limiting behavior of the travel time 
under the nearest item heuristic, we find 

00 

JP(I(l /2)::::: 2t) ""'JP(J::::: t) [1 (1- 2- j) - 1' 
j=l 

t---+ +0. 
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Chapter 23 

Applications: simple models and difficult 
theorems 

Nelly Litvak 

Abstract In this short article I will discuss three papers written by Willem van 
Zwet with three different co-authors: Mathisca de Gunst, Marta Fiocco, and myself. 
Each of the papers focuses on one particular application: growth of the number of 
biological cells [3], spreading of an infection [7], and the optimal travel time in 
warehousing carousel systems [8]. 

23.1 Introduction 

In this short article I will discuss three papers written by Willem van Zwet with 
three different co-authors: Mathisca de Gunst, Marta Fiocco, and myself. Each of 
the papers focuses on one particular application: growth of the number of biological 
cells [3], spreading of an infection [7], and the optimal travel time in warehousing 
carousel systems [8]. To my opinion, each of these papers displays the attitude that I 
personally value a lot in mathematics. An application is the strong starting point for 
each of the papers. Further, the model is simple and transparent. Yet, the analysis 
involves advanced mathematics and brings to the results that not only give new in
sights into the applications but also are of a pure mathematical interest. The present 
volume contains [7] and [8], and the follow-up paper [4] of [3] which I will also 
briefly discuss. 

The papers are written in a clear language and do not try to look more fancy than 
they are. In fact, I remember Willem laughing at my attempts to make the paper 
more general by replacing 112 with bE (0, 1): 'What have you done? Please, bring 
the 1/2 back! It is more natural and makes the whole thing much easier to read'. 
And on my sceptical remark about the number of people who are actually going to 
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Department of Applied Mathematics, University ofTwente, P.O. Box 217,7500 AE Enschede, The 
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read this text he smiled again: 'Well, you have to assume people will read it.' Now, 
assuming that people will read the introduction to this chapter, I will try, to the best 
of my own understanding, to describe the essence of the models and the results for 
each of the papers, what I think was difficult and why it worked. I will try to stick 
to common sense and intuition, so please forgive me if I am not very precise and go 
ahead, read the papers for correct formulations and exact results. 

23.2 A non-Markovian model for cell population growth 

Biostatistics is an extremely important topic, popularity of which has grown hugely 
in the last years. The paper [3] describes a model for a cell population growth. 
Initially, we have n plant cells transferred to a medium of a known composition at 
timet = 0. The cells can divide, and we are interested in the number Nn (t) of cells at 
timet > 0. Specifically, we want to obtain a law of large numbers and a central limit 
theorem for the process Nn (t) as n grows large. The motivation for this problem 
formulation is that in reality the number of cells is quite large. 

The division happens as follows. From the medium, the cells receive a stimulus 
at a random time, and after that it takes a cell exactly c time units before it divides. 
The time it takes to receive a stimulus depends on the concentration of a substrate 
(sugar) in the medium. Clearly, with time, the substrate is being used up and thus it 
takes longer before a cell receives a stimulus. As described so far, the model already 
contains two non-trivial features. First, the rate at which the cells receive a stimulus 
is variable (non-increasing). Second, the cells' 'pregnancy' of length c obviously 
makes the process Nn (t) non-Markovian. There is also a third interesting feature of 
the model, namely, the authors distinguish between A-cells and B-cells, where only 
A-cells are able to divide. As a result of a division, two cells are produced, each of 
which can be an A-cell with a probability that depends on the concentration of a 
hormone in the medium. Again, with time the hormone is being used up and thus 
the probability of producing an A-cell is decreasing. 

Altogether, the model description is not hard and very natural but each of the 
model assumptions brings essential new features in the analysis. Then, what makes 
this model solvable? One helping feature is the 'boundedness' of the process. First 
of all, at most two cells can be born at each division. This makes the number of 
born A-cells bounded, and we can apply the inequalities of the type presented in 
Lemma 4.2, which resembles the Azuma's inequality for martingales (see e.g. [13, 
p. 307]). Second, the authors assume that the amount of the substrate and the hor
mone is proportional to the original number of cells. This is a natural scaling, which 
ensures that, on average, each cell can potentially receive a certain fixed amount of 
both ingredients. For each cell, this makes the whole process bounded. Therefore, 
intuitively, it is clear that after a random finite time Tn no division will happen for 
one of the two possible reasons: either the substrate is finished and thus no cell can 
receive a stimulus, or the hormone is finished and thus no more A-cell is born. More
over, the total amount of cells remains of the order n at any time, which ensures that 
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the usual scalings for the large deviation result (Theorem 4.2) and the central limit 
theorem (Theorem 5.1) work in this setting. Another feature that makes the model 
tractable is that, despite the process being non-Markovian, the time it takes a new 
cell to obtain a stimulus is exponential, which allows to talk about the rates and use 
the bounds developed for Markov processes (e.g. Lemma 4.1 ). 

The large deviation result established in Theorem 4.2 implies that that Nn (t) j n 
converges to a function X (t) in probability, uniformly in t at exponential rate when 
n grows to infinity. Here the function X (t) is the averaged integrated intensity of 
the process. To obtain X (t), the authors need to make several steps of conditioning 
and averaging, where the first important step is the conditioning on the number of 
A-cells produced at each division. Obviously, in this model, the intensity at time t 
depends on the aggregated intensity before time t because this aggregated intensity 
defines how much substrate and hormone has been used before t. Hence, it is natural 
that X (t) is defined as a solution of an integral equation. Technically, the uniform 
convergence result is very difficult and requires a lot of preliminary work. Totally 
different argument is used to prove the convergence for a bounded t (Theorem 4.1) 
and fort ---+ oo (Lemma 4.6). Finally, the proof of the main theorem combines all the 
preliminary results plus uses a very elegant argument to control the deviation of the 
integrated intensity process from X (t). 

The central limit theorem in Section 5 describes in detail the convergence of 
the process Vn(t) = n112(Nn(t) / n-X(t)) to its limit V(t) in distribution, where the 
convergence is in the sense of the Skorohod metric. The process V (t) involves two 
independent Wiener processes: one of them, W0 , is responsible for the random devi
ation of Nn (t) from the integrated intensity process, and another one, W1, reflects the 
randomness due to a random number of A-cells produced at each division. Clearly, 
V (t) is again a solution of an integral equation that involves both Wo and W1 in 
a non-trivial way. The form of V (t) and its covariance structure are really compli
cated, and, as noticed by the authors, 'almost impossible to guess without going into 
the special structure of the underlying process .. .'. 

Last section contains numerical examples, which show that the scaling results 
are in good agreement with experimental data. 

The above summarises paper [3], which is the first part of the analysis of the non
markovian model of the population growth. This volume contains the second part of 
this work, paper [4], where the duration of the growth is analysed. Here the authors 
obtain a remarkable discontinuity result. It turns out that with a certain balance 
between the initial amount of hormone and substrate the number of divisions and 
the duration of the process is much larger than for other values of the parameters. 
Another example of surprising properties of this deep interesting model. 

23.3 Parameter estimation for the supercritical contact process 

The paper studies a contact process on a d-dimensional grid. The model description 
is typical for processes of this sort. Each site in zd is either infected or healthy. 
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A healthy site gets infected at rate A by any of its infected neighbors. An infected 
site becomes healthy at rate 1. The process is supercritical, that is, with positive 
probability, an infection started by one infected site, will last forever. This is ensured 
by the inequality A > AJ, where Ad is a critical value. 

The goal of the paper is to estimate the parameter A. Intuitively, it is not hard to 
imagine what the estimator should be. The authors follow a most natural path. Pro
vided that the process started by a single infected site in 0 and survives forever, we 
take some set D where a stationary regime has been established. Then the estimator 
for A at time t is simply 

}. = #infected sites in D at t 
# sites in D that are healthy but have infected neighbors 

(23.1) 

The fraction above is a result of a balance equation in stationarity: the denominator 
multiplied by A is the rate at which new sites get infected, and the nominator (multi
plied by one) is the rate at which infected sites get healthy. In stationarity, both rates 
should be equal. 

The description of the proposed estimator will be complete once we decide on 
how to choose D, and this is where the main difficulty lies because each of the re
quirements to D is quite tricky: how do we know whether the stationary regime has 
been established? how do we know which site started the infection? and what if 
infection has been started by a set of sites? The authors resolve this questions by 
employing the shape theorem (Theorem 1.2 in the paper,e.g. [5]). The meaning of 
this theorem is very well described in the paper right after its statement on p. 1073. 
In summary, the shape theorem has two consequences. First, the set of infected 
sites grows with timet roughly as tU where U is a non-random set. Second, inside 
U, the processes started with one infected site and with all infected sites are equal 
eventually almost surely. Both consequences are extremely important for establish
ing the results of the paper. In Theorem 2.1, the authors prove that for the process 
started with one infected site, the convex hull of all infected sites is squeezed be
tween (1- E)Ut and (1 + E)Ut eventually a.s. provided that the process survives 
forever. Thus, the convex hull of infected sites becomes a starting point for creating 
a suitable set D. Next, the similarity of the process started with one and all infected 
sites provides the tool for proving the consistency of the estimator as t --+ oo, see 
Section 4. 

Two other important elements of the model and the approach must be mentioned: 
shrinking and bounded correlations. Throughout the paper authors work not directly 
with the convex hull of infected sites '6'; but rather with a so-called shrinking of this 
set, C1• Shrinking is defied in Section 3 in a very general sense, and several possible 
procedures are suggested to obtain a shrinking. Essentially, shrinking means that the 
'border' sites have to be removed. The reason is that the equilibrium has not yet set 
on these sites, and this may (and will!) distort the estimator. The consistency of the 
estimator (23 .1) with D = Ct as t --+ oo holds under very mild shrinking conditions. 
However, for the asymptotic normality to hold, a certain fraction of nodes from '6'; 
has to be removed. The authors notice that in fact, to obtain a good estimator, one 
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should remove 20% to 40% of sites. Further, for the asymptotic normality it is cru
cial that correlations between any two sites decrease exponentially with the distance 
between these sites. These short-range dependencies, that ensure that some sort of 
central limit theorem must hold, are stated in Theorem 2.2 and further in Lemma 5.1. 
The asymptotic normality of the estimator is established in Theorem 5 .1. This is 
not however the end of the story because the asymptotic variance of the estimator 
involves unknown parameters. In Section 6 the authors discuss this difficulty and 
provide a possible plausible solution. 

I would like to add that a quantitative analysis of infection spread is definitely a 
very important topic, for example, in social and computer networks. Such networks 
however are usually not a grid. On the contrary, they exhibit power law degree distri
butions and the well known small-world phenomenon. These fascinating properties 
of real-life networks motivated an emergence of a new research area, devoted to the 
studies of complex systems, that has boosted in the last ten years. We refer to e.g. [1] 
for a survey of the field and its relation to statistical mechanics and interacting par
ticle systems. The problem of infection spread in complex networks is for sure one 
of the key topics in this new area (see e.g. [2, 6, 10, 11]). Rigorous mathematical 
studies in this direction have just started. Obviously, the problem of parameter esti
mation for existing computer viruses and pandemics is highly relevant and offers an 
endless number of new mathematical challenges. 

23.4 Collecting n items on a circle 

Finally, my own paper [8] . This work was a continuation of my PhD thesis that I 
did at EURANDOM, in Eindhoven. I was lucky to have a PhD project that I could 
explain to anyone even without the famous back-side of an envelop. Imagine a circle 
and suppose that n items are distributed randomly at its circumference, which we 
assume to have a length 1. We start at point zero and move at a constant (unit) speed 
with the goal to collect all n items. We may move in one direction or turn, following 
any strategy we like. For instance we may choose to never change a direction, or 
always collect an item nearest to our current position, or pick the shortest route. The 
problem is to find the distribution of the travel time under different strategies. The 
question arises in automated storage and retrieval systems known as warehousing 
carousels. A circle represents a carousel that consists of a large number of shelves 
or drawers moving in a closed loop in either direction, and the items are locations 
of the products to be picked. The objective is to evaluate the rotation time, which is 
an important part of the response time of the system. 

Clearly, if we just move in one direction, the problem is trivial: the probability to 
collect all items within timet E [0, I] is just tn. However, already for the nearest-item 
strategy a straightforward approach results in hopelessly messy calculations, which 
do not lead to any meaningful outcomes. Nevertheless, the problem has an elegant 
solution, and the distribution of the travel time often can be written in a very simple 
form. The fruitful idea is to recall that the intervals between adjacent items are 
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uniform spacings that are distributed as i.i.d. exponential random variables, divided 
by their sum. Then the travel time can be written as a function of exponential random 
variables. In order to find the distribution of this function, the memory-less property 
can be used yielding surprisingly simple outcomes like in Lemma 1.1 in the paper. 
This way, in the papers with lvo Adan, we derived elegant formulas for the travel 
time distribution under the nearest item heuristic and some other close-to-optimal 
strategies. For the optimal route, the problem however remained open. 

It may take at most one-two minutes to guess what the optimal route on a circle 
should be. Clearly, it is not optimal to turn more than once. Thus, we just have to 
choose the shortest out of the 2n routes with no turn or one tum. The distribution of 
the optimal travel time however remains tricky even if we employ the spacings. The 
difficulty arises from the theoretical possibility that we may have to collect more 
than a half of the items before the tum. Although this scenario is all but irrelevant in 
practice, it has to be taken into account in the analysis, messing up the calculations. 
In the thesis I could not solve the problem and presented only some preliminary 
results on the upper bounds for the optimal route (Section 2 of the paper). Willem 
liked the problem from the very beginning and always believed that the distribution 
of the optimal route can be obtained. This paper started with obtaining the recursive 
equation for the optimal route (Section 3). Although the equations are not explicit, 
we do provide a recursion, which makes it possible to find the minimal travel time 
distribution for any n. 

The results became much cleaner and the focus of the paper actually shifted when 
we turned to the asymptotic behavior as n goes to infinity. Theorem 4.2 states that in 
this case the difference between the shortest travel time and one complete rotation 
behaves as 1 / ( n + 1) multiplied by the maximum between two independent random 
variables of the form J = L,j:1 (2i- 1)- 1 X, where X/s are independent standard 
exponential random variables. 

Interestingly, at that time such weighted sums of exponentials attracted a lot of 
attention as a special case of an exponential functional of a Poisson process (see 
Section 6). In particular, Fabrice Guillemin, Philippe Robert and Bert Zwart en
countered such functionals in the analysis of a transmission control protocols on the 
Internet. One intriguing and unresolved question about such random variables was 
their lower-tail behavior, that is, the asymptotic expression of P( J < t) as t ---+ 0. 
To this end, only the asymptotics of logP(J < t) was known. The article by Davis 
and Resnick that Bert Zwart pointed to us was highly relevant but the results could 
not be applied directly because they were given in the form of transforms. After 
long calculations we arrived to the formula (5 .8) that provided the exact asymptotic 
behavior in a closed-form. Compared to the logarithmic asymptotics, this formula 
contained several additional terms that were not known before. However, we were 
not completely satisfied because one of the factors (the function C in (5.8)) was 
defined by an infinite product. When plotted, this function looked liked a constant. 
Was it a yet another weird way to write a constant? It was tempting to prove it. 
We were delighted when a more detailed analysis (Proposition 5.1) revealed that 
our function C had an unexpected oscillating behavior involving theta-functions. 
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The oscillations were so small that they simply could not be seen in the plots, the 
analysis was needed to find them! 

The explanation of why the oscillations appear seems to lie in the sort of a 'binary 
tree structure' of our functional J, whose coefficients are negative powers of two. 
Later on, Philippe Robert found that such oscillating asymptotic behavior is a typical 
feature of algorithms with a tree structure. For further reading I recommend his very 
interesting papers [9] and [12]. I think that the oscillating asymptotic behavior of 
algorithms is a highly compelling phenomenon, and I am very happy that our paper 
contributed in its study. 
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A PROOF OF KAKUTANI'S CONJECTURE ON RANDOM 
SUBDIVISION OF LONGEST INTERVALS 

BY W . R. VAN ZwET 

University of Leiden 

Choose a point at random, i.e., according to the uniform distribution, 
in the interval (0, 1). Next, choose a second point at random in the largest 
of the two subintervals into which (0, I) is divided by the first point. Con
tinue in this way, at the nth step choosing a point at random in the largest 
of the n subintervals into which the first (n - 1) points subdivide (0, 1). 
Let F,. be the empirical distribution function of the first n points chosen. 
Kakutani conjectured that with probability 1, F~ converges uniformly to 
the uniform distribution function on (0, 1) as n tends to infinity. It is 
shown in this note that this conjecture is correct. 

1. Introduction. Let X1 be uniformly distributed on (0, I). For n = 2, 3, · · ·, 
the conditional distribution of X,. given X 10 ••• , X,._1 is uniform on the largest of 
the n subintervals into which X 10 ••• , X,._ 1 subdivide (0, 1 ). Let F,. denote the 

empirical distribution function (df) of xl' 0 0 0
' X,., thus F,.(x) = n-1 2::7=1 11Xi;:>;x) • 

THEOREM. With probability 1 

( 1.1) lim,.~oo sup •• co, 1 ) fF,.(x) - xf = 0 . 

At first sight the truth of this statement seems intuitively obvious. The 
Glivenko-Cantelli theorem tells us that (1.1) holds with probability 1 if X1 , 

X2 , ••• are independent and identically distributed (i.i.d.) according to the 
uniform distribution on (0, 1 ). Compared with this case, one feels that F,. should 
converge to the uniform df even faster in the present situation, because at each 
step one is putting a point where it is needed most, i.e., in the largest subinter
val. At the same time, however, it is clear that the procedure by which the 
points are chosen makes their joint distribution extremely complicated. To be 
convinced of this, one only has to try and write down what happens in just the 
first few steps. 

The main idea of the proof is the introduction of a stopping rule for which 
the stopped sequence has an essentially simpler character than the original one. 
For t E (0, 1 ), let Nt be the smallest natural number n for which X 10 ••• , X,. 

subdivide (0, 1) into (n + 1) subintervals of length ;;:;; t. Correspondingly, define 
Nt = 0 for t ~ I. The basic property of the stopped sequence x1, 0 0 0 ' X Nt is 
that any (sub-) interval appearing during its construction will receive another 
random point before the sequence is stopped, if and only if its length exceeds t. 

It follows that the joint distribution of Nt and the set {X1, • ·., X Nt} remains un
changed if at each step the next point is chosen at random in any one of the 
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existing subintervals of length > t rather than in the largest subinterval as pre
scribed by the original procedure. In the first place this implies that for t E (0, 1 ), 
the conditional distribution of (Nt - 1) given X 1 = x is that of the sum of the 
numbers of random points needed to subdivide the intervals (0, x) and (x, 1) inde
pendently and in the prescribed way into subintervals of length ;£ t. By blowing 
up these intervals to length 1 and replacing t by tfx and t/(1 - x) respectively 
one sees that 

(1.2) 

where for Nt;x and Nt111 _,) independent copies are chosen. 
Another consequence of the abovementioned property of the stopped sequence 

is the following. Take x E (0, 1) and let Nt(x) denote the number of values in 
(0, x] among Xl' · · ., XNt' thus Nt(x) = NtFN/x). Suppose that 0 < t < x and 
let ~ be the first value in the interval [ x - t, x] occurring in the sequence 
X 1, • • ·, XNt' If from the Nt(x) values in (0, x] we delete all values in(~, x], the 
number remaining is distributed as the number of random points needed to sub
divide (0, x] into subintervals of length ;£ tin the prescribed way, i.e., as Nt;x· 
If also t < l - x, the same argument applied to the interval (x, 1) shows that 
there exist copies of Nt;x and Nt;c1-x) such that 

(1.3) 

with probability 1. This clearly holds for all t since Nt;x = 0 for t ~ x and 
Nt;c1-x) = 0 fort~ 1 - x. 

2. ·Proof of the theorem. For t E [ t, 1 ), the stopped sequence Xl' · · ·, X Nt 
never returns to a subinterval it has left. Hence the Markov inequality yields 

(2.1) 

where Ul' U2 , ••• are i.i.d. with a uniform distribution on (0, 1), so that E{Ui v 
(1 - Ui)} = !· It follows that ENt"' < oo for every m ~ 0 and t ;£ t < 1. For 
s, t E (0, 1 ), N.t is stochastically smaller than a sum of (Nt + 1) copies of N, and 
hence EN/'' < oo for m ~ 0 and 0 < t < 1. Since EN/'' is nonincreasing in t, 

(2.2) for 0 < t0 < 1 and m ~ 0 . 

Clearly ENt"' = 0 for t ~ 1 and m ~ 0 because Nt = 0 for t ~ 1. Another con
sequence of (2.1) is that for t < t < 1 

P(Nt > k) ;£ IU=1 P({Ui v (1 - Ut)} > t) ;£ {2(1 - t)lk' 

ENt = l:k'=o P(Nt > k) ;£ 21 ~-i. 

Since Nt ~ 1 a.s. for t < 1, it follows that 

(2.3) 

Define p(t) = ENt. Fort~ 1, p(t) = 0 and in view of (1.2) one finds that 
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for 0 < t < I, 

(2.4) p(t) = ~~ {P ( ~) + p c ~ J + I} dx = 2 ~~ p ( ~) dx + I 

= 2 ~!P (_!_)dx +I= 2t ~~ p(y)dy +l. 
X J2 

Now supy;s;t p(y) < oo for t > 0 because of (2.2) and hence (2.4) implies that p 
is continuous and even differentiable on (0, I) with 

or 

( p(t)- l)' = p'(t) _ p(t)- I = _ 2 p(t), 
t t t2 t2 

p'(t) 
p(t) + I 

- . 
t 

Together with (2. 3) this yields 

(2.5) p(t) = ~ - 1 
t 

for 0 < t < 1 . 

Let v(t) denote the variance of Nt and apply (1.2) again, this time also using 

the independence of Nt;x and Ntlc i-x ) in (1.2). In view of (2.5) one obtains for 

0 < t ~ t. 
v( t) = E ( Nt - ~ + 1 y 

= ~~E(Nt1x + Ntm-x 1 - 3f- 2(1 ; x) + 2y dx 

_ 1 ( 2x 1) 2 d P£( 2(1- x) ) 2 

-~oE Nt;x- -t+ x+lo Nt,o-xJ- t +l dx 

( 2x ) 2 

= 2 ~ ~ E Nt~z - t + I dx , 

where the cross-product term vanishes because of (2.5) and because either 

tjx < 1 or tj(l- x) <I fortE (0, !J and XE (0, I), x * !· So fortE (0, !), 

(2.6) v(t) = 2 ~; v(tjx) dx + 2 ~~ (~- 1)2 dx = 2t ~; v(y) dy + '!-_!_. 
t j 3 

Because of (2.2), supy;s;t v(y) < oo for t > 0, and together with (2.6) this ensures 
that vis continuous on (0, !J and differentiable on (0, !) with 

or 

( v(t))' = v'(t) _ v(t) = _ 2 v(t) 
t t t2 t2 

_v'(tl = 
v( t) 

- . 
t 



406

136 W. R. VAN ZWET 

Hence, if c = tv(~), 

(2.7) c v(t) = -
t 

for 0 < t < ~. 

For m = 2, 3, · · ·, define Mm = N.,.-z and Mm(x) = N.,,-z(x) for x E (0, 1). 
Then (2.5), (2. 7) and the Bienayme-Chebyshev inequality imply that 

a2(M) P(IMm - 2m2 + II ~ m~) ::£ ,m = em-! . 
m• 

By the Borel-Cantelli lemma 

lim supm m-~IMm - 2m2 1 ::£ 1 a.s. 

so that 

(2.8) a.s . , 

(2.9) a .s. 

For fixed x E (0, 1) and t = m-2, the reasoning leading to (2.8) may also be 
applied to each of t~e three terms on the left- and right-hand sides of (1.3). 
Since the argument does not involve joint distributions for different values of 
m, it follows without further specification of the copies chosen in ( 1. 3) that for 
any fixed x E (0, 1) 

a.s. , 

or, in view of (2.8), 

(2.1 0) 

M n-M IFn(x) - x l ::£ __!!t_ IF M (x) - xl + m {x V (1 - x)} 
n "' n 

and together with (2. 8), (2. 9) and (2.1 0) this implies that for every fixed x E (0, I), 

(2.11) limn~= F.,(x) = x a.s. 

By a standard argument this yields (1.1) and the theorem is proved. 

Acknowledgement. The author recalls with pleasure the 1976 stochastics 
meeting at Oberwolfach where R . M. Dudley introduced the participants to 
Kakutani 's conjecture and proceeded to shoot down our combined attempts at 
solving the problem. 
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Note added in proof. After this paper was submitted it has come to the author's 
attention that J. Komlos and G. Tusnady had also arrived at the conclusion that 
Kakutani's conjecture can be proved by the method employed in this paper. 
More recently essentially the same proof was given again independently in 
Lootgieter (1977a); an outline of this paper is given in Lootgieter (1977b). For 
the solution of a related nonrandom problem the reader is referred to Kakutani 
(1975), Adler and Flatto (1977) and Lootgieter (loc. cit.). 
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A STRONG LAW FOR LINEAR FUNCTIONS OF ORDER 
STATISTICS 

BY W. R. VAN ZWET 

University of Leiden 

A strong law of large numbers for linear combinations of order statistics is 
proved under integrability conditions only. Together with some straightforward 
extensions, the theorem generalizes previous results of Wellner, Helmers and 
Sen. 

1. Introduction. Let U1, U2 , • • • be random variables defined on a single 

probability space (~, te, P) and suppose that U" U2, • • • are independent and 
identically distributed (i.i.d.) according to the uniform distribution on (0, 1). For 

N = 1,2, ... ' ul :N < u2:N < . .. < UN :N denote the ordered u" .. . 'UN. Intro
duce Lebesgue measurable functions JN: (0, 1) ~ IR, N = 1, 2, · · ·, a Borel mea
surable function g: (0, 1) ~ 1R and define gN: (0, 1) ~ !R, N = 1, 2, · · · , by 

(1.1) gN(t) = g(U[Nt)+! :N), 

where [x] denotes the integer part of x. We adopt the convention that when 

integration is with respect to Lebesgue measure A on (0, 1), we shall write ff for 

ffd;\. The range of integration will be (0, 1) unless explicitly indicated otherwise. 

For 1 < p < oo, LP is the Lebesgue space of measurable functions j: (0, I)~ 1R 

with finite norm ilfiiP = {fifiPYIP for 1 <p < oo and llflloo = ess supifl for 

p = 00. 

The purpose of this note is to show that under integrability assumptions on JN 

andg, 

(1.2) MN = fJN(gN- g) = "i/(_lg(lf; ,N)f//!',)/NJN- fJNg 

converges to zero for N ~ oo with probability I (w.p. 1). If, moreover, JN converges 

in an appropriate sense to a function J which shares the integrability properties of 

JN, we prove that 

(1.3) 

also converges to zero w.p. 1. 

If JN(t) = cN,i for (i- 1)/N < t < i/N, i = 1, · · · ,N, and g = hoF- 1 for a 
probability distribution function (df) F on 1R and a Borel measurable function 

h: 1R ~ IR, then the joint distribution of fJNgN, N = I, 2, · · · , is that of 

N- 1":icN,;h(X; ,N),N = 1,2,· · ·, where the X; ,N are order statistics of a sequence 
of i.i.d. random variables with common df F. We are ther.efore concerned with the 

almost sure convergence of suitably standardized linear combinations of a function 
of order statistics. 

Received September 25, 1978; revised May 22, 1979. 
AMS 1970 subject classifications. Primary 60F15; secondary 62030. 
Key words and phrases. Strong law, order statistics. 
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Previous results in this direction may be found in Wellner (1977), Helmers (1977) 
and Sen (1978). Wellner restricts attention to the case where JN(t) = cN,i for 
(i - 1) IN < t ..;; i IN, i = 1, · · · , N, and assumes that g is left continuous and of 
bounded variation on closed subintervals of (0, 1). He proves that MN ~ 0 w.p. 1 if 
numbers b1, b2 and C, as well as 8 > 0 exist such that, for all N and t E (0, 1), 

where dIg I denotes integration with respect to the total variation measure induced 
by g. He shows that MN ~ 0 w.p. 1 under the additional assumption that JN 

converges to J pointwise. 
It is clear that Wellner's result will cover most cases that one is likely to come 

across in practice, the main flaw being that it just fails to contain the strong law for 
the sample mean, i.e., the case where JN = 1 and g E L 1• This gap is closed in 
Helmers (1977) where it is shown that MN~ 0 w.p. 1 for eN;= J(ii(N + 1)), J 

piecewise continuous and bounded and g = F- 1 E L 1• ' 

For b1, b2 E [0, 1), Wellner's conditions (1.4) and (1.5) imply integrability of g 

and JN and for this case a mathematically more satisfactory result was obtained in 
Sen (1978, Theorem 4.1). Sen also takes JN(t) =eN,; for (i- l)IN < t < iiN, 

i = 1, · · · , N, and assumes that JN converges pointwise to J, but now J is required 
to be continuous and of bounded variation on closed subintervals of (0, 1). This 
switching of the smoothness condition from g (Wellner) to J (Helmers and Sen) is 
quite common in problems concerning linear functions of order statistics, where 
one can use both kinds of smoothness almost interchangeably. The improvement, 
however, is that instead of (1.4)-(1.6), Sen requires that g E L!l and supN II JN liP< 
oo for somep,q E (1, oo) withp- 1 + q- 1 = 1, to prove that MN~o w.p. 1. Note 
that JN~J pointwise and supNIIJNIIP< oo imply J E LP by Fatou's lemma and 
together with g E Lq this ensures that Sen's assumption that Jg E L 1 is automati
cally satisfied. Apparently unaware of Wellner (1977), Sen also proves another 
result (Theorem 4.2) which is strictly contained in Wellner's. 

The present note constitutes an attempt to provide a mathematically cleaner 
version of the above results. Roughly speaking we shall show that all smoothness 
conditions on g and J, including (1.6), are superfluous and that the pointwise 
convergence of JN can be relaxed. We do not assume. that JN is a step function. 

2. A strong law. Let g: (0, 1) ~ IR be Borel measurable and let gN be defined 
by ( 1.1 ). We begin by proving · 

LEMMA 2.1. With probability 1, gN converges to g in Lebesgue measure, i.e., 

limN--->ooi\{t:lgN(t)- g(t)l ;;;. 8} = 0 for every 8 > 0. 
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PROOF. Choose e > 0. By Lusin's theorem there exists a Borel set B c (0, 1) 
and a continuous function g: (0, 1) ~ IR such that A.( B) < e and g = g on (0, 1) n 
Be. Define gN(t) = g(U(NtJ+I:N) and BN = {t:U(NtJ+I:N E B}, so that gN = gN on 
(0, 1) n Bf... Since A.( B N) = P N( B), where P N denotes the empirical distribution of 
U1, ···,UN, it follows from the strong law that lim supNA.(BN) < e w.p. 1. In view 
of the Glivenko-Cantelli theorem and the continuity of g, this implies that w.p. 1 
we have for every 8 > 0 

limNsupA.{t:lgN(t)- g(t)l ~ 8} < A.(B) + limNsupA.(BN) 

+ limNsupA.{t:lgN(t)- g(t)l ~ 8} < 2e. 

Since e > 0 is arbitrary the lemma is proved. 

THEOREM 2.1. Let 1 < p < oo, p- 1 + q- 1 = 1, and suppose that JN E LP for 
N = 1, 2, · · · and g E Lq. If either 

(i) 1 < p < oo and supN II J N II P < oo, or 
(ii) p = 1 and { JN: N = 1, 2, · · · } is uniformly integrable, 

then limN ..... ooMN = 0 with probability 1. 

PROOF. Suppose first that 1 < p < oo , so q < oo; w.p. 1, gN~ gin Lebesgue 
measure and flgNiq= N- 1~lg(u;)lq~flglq by the strong law. By Vitali's theo
rem this implies that f I gN - g I q ~ 0, and Holder's inequality yields I M N I < 
IIJNIIpllgN-gllq~ow.p.l. 

Suppose now that p = 1, so q = oo. Because of the uniform integrability of JN 
and Lemma 2.1, we have w.p. 1 

limNsup IMNI < 8limNsup IIJNIIt + 21!glloo limNsupf{lg.-gJ>.S}IJNI 

= 8limNsup IIJNIIt 

for every 8 > 0. Since supN II JN 11 1 < oo, the proof is complete. 
For JN E LP, N = 1, 2, · · ·, consider the type of convergence to J E LP defined 

by limN ..... oofJNf = fJf for every f E Lq. For 1 < p < oo this is weak convergence 
in LP and for p = oo it is weak* convergence in L00 • Necessary and sufficient 
conditions for a set { JN, N = 1, 2, · · · } c LP to be sequentially relatively compact 
in the topology of this convergence are precisely conditions (i) and (ii) in Theorem 
2.1 (for 1 < p < oo see Dunford and Schwartz (1958), IV.8.4 and IV.8.11; for 
p = oo see Banach (1932), page 131, for the sufficiency of (i); the necessity is easy). 
To ensure that JN converges to J E LP in the above sense one only has to add to 
conditions (i) and (ii) the further assumption that f/,JN~ f/,J for every t E (0, 1) 
(see Dunford and Schwartz (1958), IV. 13.23, 25, 27, and Banach (1932), page 
135-136). Under this additional assumption we may therefore replace fJNg by fJg 
in Theorem 2.1 to obtain 

CoROLLARY 2.1. Suppose that the conditions of Theorem 2.1 are satisfied and that 
there exists a function J E LP such that limN ..... oof6JN = f/,J for every t E (0, 1). Then 
limN--+ooMN = 0 with probability 1. 
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Note that the remarks preceding Corollary 2.1 also imply that the conditions on 
J N and J in the corollary are necessary as well as sufficient to ensure that M N ~ 0 
w.p. 1 for every g E Lq. 

3. Variations on a theme. Theorem 2.1 and its corollary clearly contain 
Wellner's result for 0 < b 1 = b2 < 1 as well as those of Helmers and Sen (cf. 
Section 1). In this section we extend our results to cover the other cases discussed 
by Wellner, which enlarges the range of applications considerably. Though these 
extensions are straightforward, the conditions inevitably become more cumbersome 
to state. 

For different b 1 and b2 in [0, 1), (1.4) and (1.5) allow a different balance between 
the rates of growth of g and J N near 0 and 1. Correspondingly, we shall show that 
in Theorem 2.1 and Corollary 2.1 one may allow different values of p and q on 
different subintervals of (0, 1), provided these subintervals overlap; the existence of 
such overlapping subintervals is easily seen to be equivalent to the assumptions of 
Theorem 3.1. The indicator function of a set A is denoted by x(A) or x(A,.). 

THEOREM 3.1. Let 0 = t0 < t 1 < · · · < tk = 1 and e > 0. For j = 1, · · ·, k, let 
1 < pj < oo, pj- 1 + qj- 1 = 1 and define intervals Aj = (tj_ 1, tj) and Bj = (tj_ 1 - e, 
tj +e) n (0, 1). Suppose that, for j = 1, ... ' k, JNx(Aj) E LPJ for N = 1, 2, ... ' 
gx(Bj) E Lq1 and either 

(i) 1 <pj < oo and supNiiJNx(Aj)IIP1 < oo, or 
(ii) pj = 1 and { JNx(A): N = 1, 2, · · · } is uniformly integrable. 

Then lim N--+oo M N = 0 with probability 1. If, moreover, there exists a function J with 

Jx(Aj) E LP1 for}_= 1, · · · , k, such that limN ..... oofJJN = f~J for every t E (0, 1), 
then also lim N--+oo M N = 0 with probability 1. 

PROOF. Consider an index} with 1 <pj < oo, so qj < oo. Choose 8 E (O,e] and 
define c; = (tj_ 1 - 8, tj + 8) n (0, 1). The Glivenko-Cantelli theorem and the strong 
law ensure that w.p. 1 

limNsup fA)gNiq1 < limNsup ~~lg(lf;)iq1X( c;, U;) = fc)glq1 < oo. 

Since 8 E (O,e] is arbitrary, this implies that figNiq1x(Aj) ~ figlq1x(Aj) w.p. 1 by 
Fatou's lemma. Arguing as in the proof of Theorem 2.1, we conclude that 
fJN(gN- g)x(Aj) ~ 0 w.p. 1. 

For an index j with pj = 1 and qj = oo, the Glivenko-Cantelli theorem ensures 
that lim supNIIgNx(A)IIoo < llgx(Bj)lloo < oo w.p. 1, and again copying the proof 
of Theorem 2.1, we find that fJN(gN-g)x(Aj)~O w.p. 1. This proves the 
first statement of the theorem. The second statement is obvious because 
the assumptions of the theorem imply that fJNgx(Aj) ~ fJgx(A) for j = 
1,· .. ' k. 

A second extension of our re.sults concerns, e.g., the case where near a point 
t~ E [0, 1], lgl (or IJNI) grows faster than (uniform) integrability would allow, but 
where the effect of this is cancelled by the fact that JN (or g) tends to zero at t0 at 
an appropriate rate. Since we are concerned with the product of JN at the point t 
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and gat the point u1NtJ+l:N• this cancellation will work best if we can pin down 
the order statistics near t0 quite close to their expected values. This means that the 
best results are to be obtained for t0 = 0 and/or 1, which corresponds to (1.4) and 
(1.5) for the case where one or both of the b; are outside the interval [0, 1). As this is 
also the most common situation in applications, we shall restrict the few remarks 
we make to this case. The reader can easily formulate a similar result for arbitrary 
t0 for himself. 

Take any 8 > 0 and define intervals KN,; for i = l, · · · , [(N + 1)/2], N = 
1,2,· .. ' by 

[ i { ( N2 ) } - 1
-

8 

KN,; = N log i(N- i + 1) ' 

i ( 4N2 
)] (1 + 8) N log log i(N _ i + 1) n (0, 1). 

For P - almost every w E n, there exists N( w) such that for N ;a. N( w) and 
i = 1, · · ·, [(N + 1)/2] we have U;,N E KN,;· This follows easily from Theorems 2 
and 3 in Shorack and Wellner (1978) together with Bernstein's inequality for 
binomial tails. For N = 1, 2, · · · , define gN: (0, 1) ~ [0, oo] by 

gN(t) sup{lg(s)l: s E KN,[NtJ+I} fort E (o, t), 

sup{ ig(1 - s )I : s E KN,N-[NtJ} fort E [ ~, 1 ). 

Then, w.p. 1, lgNI < gN on (0, 1) for sufficiently large N. 
For 11 E (0, ~ ), let D., denote the interval ( 17, 1 - 11 ). The following result is now 

an immediate consequence of Theorem 3.1. 

THEOREM 3.2. Suppose that, for every 11 E (0, f), gx(D.,), JNx(D.,) and Jx(D.,) 
satisfy the conditions on g, JN and J in Theorem 3.1. If also 

lim.,_olimNsupfD~iJNI(iN + lgl) = lim.,-ofD~iJgi = 0, 

then the conclusions of Theorem 3.1 continue to hold. 
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A REFINEMENT OF THE KMT INEQUALITY FOR THE 
UNIFORM EMPIRICAL PROCESS 

BY DAVID M. MASON1 AND WILLEM R. VAN ZWET 

University of Munich and University of Leiden 

A refinement of the Koml6s, Major and Tusnady (1975) inequality for the 
supremum distance between the uniform empirical process and a constructed 
sequence of Brownian bridges is obtained. This inequality leads to a weighted 
approximation of the uniform empirical and quantile processes by a sequence 
of Brownian bridges dual to that recently given by M. C&Orgo, S. C&Orgo, 
Horvath and Mason (1986). The present theory approximates the uniform 
empirical process more closely than the uniform quantile process, whereas the 
former theory more closely approximates the uniform quantile process. 

1. Introduction. Let U1, U2 , • •• , be a sequence of independent uniform 
(0, 1) random variables, and for each n ~ 1, let Gn denote the uniform empirical 
distribution function and ul n ::;; • • • ::;; un n the order statistics based on the 
first n of these uniform (0, i) random vari~bles. Define the uniform empirical 
quantile function to be, for each n ~ 1, 

(k- 1)/n < s::;; kjn, k = 1, .. . , n, 

where Un(O) = U1, n• and the uniform quantile process 

0 ::;; s ::;; 1. 

Also let 

denote the uniform empirical process. 
M. Csorgo, S. C80rgo, Horvath and Mason (Cs-Cs-H-M) (1986) recently 

constructed a probability space on which sit a sequence ul, u2, ... ' of indepen
dent uniform (0, 1) random variables and a sequence B1, B2 , ••• , of Brownian 
bridges such that for universal positive constants a, b, c and n 0 

{1) P( sup n112!.Bn(s)-Bn(s)!>alogd+x)<be-cx, 
05.s5.d/n . 

for all n0 ::;; d::;; n, 0 ::;; x ::;; d 112 , with the same inequality holding for the 
supremum taken over 1 - djn::;; s::;; 1. Setting d = n in (1) yields the M. 
C80rgo and Revesz (1978) inequality for the Brownian bridge approximation to 
the uniform quantile process. 
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From inequality (1) we obtain immediately that on the Cs-Cs-H-M (1986) 
probability space 

(2) sup n112l !3n( s) - Bn( s) I = O(log n) a.s. 
O!:>s!:>l 

We note that this particular sequence Bn does not approximate the empirical 
process an as closely as it does f3n, since by Kiefer (1970) 

(3) limsup sup (2n)114lan(s)- !3n(s)l/((loglogn)11\logn)112) = 1 a.s., 
n--+oo Oss!:>l 

which in combination with (2) yields 

(4) limsup sup (2n)114lan(s)- Bn(s)l/((loglogn)114(1ogn)112) = 1 a.s. 
n--+oo O!:>s~l 

Inequality (1) leads to the following important weighted approximation state
ments [cf. Cs-Cs-H-M (1986)]: 

On the Cs-Cs-H-M (1986) probability space we have, for any 0 ~ v1 < ~. 

(5) sup IPn(s)- Bn(s)l/(s(1- s))112 -v1 = Op(n-v1 ), 

1/ (n+ l)~s ~nj(n+ 1) 

and for any 0 ~ P2 < i, 
(6) sup lan(s)- Bn(s)l/(s(1- s))112 -v2 = Op(n-v2), 

O~s~l 

where for n ~ 2, Bn(s) = Bn(s) when 1/n ~ s ~ 1 - 1jn and zero elsewhere. It 
can be shown that statements (5) and (6) do not hold for v1 ~ ~ and v2 ~ i. 

The construction of the Cs-Cs-H-M (1986) probability space is based on the 
Koml6s, Major and Tusnady (KMT) (1976) strong approximation to the partial 
sums of independent random variables. In Cs-Cs-H-M (1986) it was remarked 
that an analogous theory should be feasible starting out instead from the KMT 
(1975) strong approximation to the uniform empirical process. The purpose of 
this paper is to present this alternative theory. 

Just as the key result in the Cs-Cs-H-M (1986) theory is inequality (1), a 
refinement of theM. Csorgo and Revesz (1978) inequality, the key result in the 
present alternative theory is a refinement of the KMT (1975) inequality for the 
Brownian bridge approximation to the uniform empirical process. 

THEOREM 1. There exist a sequence of independent uniform (0, 1) random 
variables U1, U2 , ••• , and a sequence of Brownian bridges B 1, B2 , ••• , sitting on 
the same probability space (0, d, P) such that for universal positive constants 
C, K and;.\., 

(7) P( sup n112lan(s)- Bn(s) I> Clog d + x) < Ke-xx, 
O~s~d/n 

for all - oo < x < oo and 1 ~ d ~ n, with the same inequality holding for the 
supremum taken over 1 - djn ~ s ~ 1. 
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Setting d = n in (7) yields the original KMT (1975) inequality. 
From (7) we have immediately that on the probability space of Theorem 1 

(8) sup nlf2lan(s)-Bn(s)I=O(logn) a.s., 
O~s~l 

whereas now by the Kiefer result quoted in (3) 

(9) limsup sup (2n)114IPn(s)- Bn(s)l/((loglogn)114(logn)112) = 1 a.s. 
n--+oo O~s~l 

By essentially copying the proofs of Theorems 2.1 and 2.2 of Cs-Cs-H-M 
(1986), we obtain the following versions of the above weighted approximation 
statements: 

THEOREM 2. On the probability space of Theorem 1, statement (5) holds for 
all 0 ~ v1 < ~and statement (6) holds for all 0 ~ v2 < i· 

We see that not only are the almost sure approximation statements reversed, 
but so are the weighted approximation statements. Hence, we hav:e a theory 
completely dual to that given in Cs-Cs-H-M (1986). In applications of this 
approximation methodology in probability and statistics, one now has the choice 
of working on the Cs-Cs-H-M (1986) probability space or on the probability 
space of Theorem 1 depending on whether in the particular problem in question 
one needs to approximate more closely the uniform empirical or the uniform 
quantile process by a sequence of Brownian bridges. For some of the wide-rang
ing applications of this weighted approximation theory the reader is referred to 
Cs-Cs-H-M (1986). 

The remainder of this paper is devoted to a proof of Theorem 1. This proof 
resembles that of the KMT (1975) inequality for the empirical process and it 
would have been convenient if we could merely have pointed out the modifica
tions needed to produce the refinement of Theorem 1. Unfortunately, the proof 
in KMT (1975) contains few details and we shall have to provide these in the 
present paper. The inequality for the tail of a multinomial distribution that is 
given in Lemma 3, may be of independent interest. 

2. Outline of the proof of Theorem 1. Let B denote a fixed Brownian 
bridge. For each integer n ~ 1 we construct n independent uniform (0, 1) random 
variables U1<n>, ... , u~n> as random functions of increments of the Brownian 
bridge B exactly as in KMT (1975), pages 123-124. Let Gn and an denote the 
empirical distribution function and empirical process based on ul<n>, ... ' u~n>. 
For any nonnegative integers i and k such that 0 < (k + 1)2-i ~ 1, write 

ll\71 = n( Gn((k + 1)2-i) - Gn(k2-i)} 

and 

Also let 
6,<n) _ fl(n) _ fl(n) 

i,k- i+1,2k i+1,2k+1 
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and 

D- (n) - n<n) - n<n) 
i,k- i+1,2k i+1,2k+l' 

For the sequence of random vectors (Ufn>, ... , u;n>, B), n = 1, 2, ... , the follow
ing fundamental inequality holds: 

LEMMA 1 [Lemma 2 of KMT (1975)]. There exist positive constants cl, c2 
and 11 such that 

ll:,.<.n> - iJ~n)l ~ C 2in-l{(l:,.<.n> )2 + (a<n> - n2-i)2} + C 
I, k I, k 1 I, k 1, k 2' 

whenever 

To prove Theorem 1 it will be enough to show that the following inequality is 
valid: 

INEQUALITY 1. There exist universal positive constants K, C and A such 
that for all - oo < x < oo, n ;;;::; 1 and 1 ~ d ~ n, 

(10) P( sup n112IB(s)- an(s)l > Clogd + x) < Ke->-x, 
O~s~d/n 

with the same inequality holding for the supremum taken over 1 - djn ~ s ~ 1. 

The fact that the second part of Inequality 1 is true follows from the first part 
and the underlying symmetry of the KMT construction, i.e., 

{(an(s), B(s)): 0 ~ s ~ 1} =~{(an(1- s), B(1- s)): 0 ~ s ~ 1}. 

Having established the inequality for (an, B), n = 1, 2, ... , one can then con
struct a sequence of independent uniform (0, 1) random variables U1, U2 , ••• , and 
a sequence of Brownian bridges B 1, B2 , ••• , sitting on the same probability space 
(Q, d, P), say, such that Inequality 1 holds with an replaced by an and B by 
Bn. The general technique of constructing such a probability space is described in 
Lemma 3.1.2 in M. C80rgo (1983). 

Inequality 1 is almost a direct conSequence of the following inequality: 

INEQUALITY 2. There exist universal positive constants a, b and A such that 
for any n ;;;::; 1 and 1 ~ z ~ n, 

P( sup n 112IB(s)- an(s)l > z) < aexp{b(p- j)- Az}, 
O~s~2-; 

where p is a nonnegative integer such that 

n2-<P+l) < zj32 ~ n2-P 

and j is any integer 0 ~ j ~ p. 
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To see that Inequality 2 implies Inequality 1, we choose any n ~ 1 and 
1 ~ d ~ n. Select an x such that 1 ~Clog d + x ~ n, where C = bj(A log2) 
with b and A as in Inequality 2. Define integers p and j by 

n2-<p+l) < (x + Clogd)/32 ~ n2-P, 

j = min([login/d)], p ), 

where [ y] denotes the integer part of y. 
Now djn ~ 2-i and by Inequality 2 

P( sup n112IB(s)- ais)i > Clogd + x) 
Os.ss.djn 

(ll) ~p( sup n112IB(s)-an(s)i>Clogd+x) 
o s. s s. z-, 

~ a exp { b( p - j) - AC log d - Ax} . 

Since p ~ log 2n + 5, our choice of C and j implies that 

b( p - j) - AC log d ~ b max(log 2d + 6, 0) - b log2d ~ 6b 

and hence (10) holds for 1 ~ Clog d + x ~ n with K =a exp{6b}. If' Clog d + 
x < 1, then necessarily x < 1 and (10) holds with K = exp{A }. 

Finally, let Clog d + x > n. There exists a positive K 0 such that 

P( sup I B( s) I > r) + P( sup I an( s) I > r) < Koexp{- 2r2 }, 
Os.ss.l Os.ss.l 

for all n ~ 1 and r ~ 0 [cf. M. Csorgo and Revesz (1981) and Dvoretzky, Kiefer 
and Wolfowitz (1956)]. Since now (Clog d + x)2jn > x, it follows that (10) holds 
with K = K 0 and A= t. Combining these results we find that Inequality 1 
holds, if we assume the validity of Inequality 2. 

The proof of Theorem 1 will be complete once we establish Inequality 2. This 
will be done in Section 3. 

3. Proof of Inequality 2. The proof of Inequality 2 will consist of a number 
of lemmas. Repeated use will be made of the following special case of Bernstein's 
inequality: Let X have a binomial distribution with parameters n ~ 1 and 
0 < p < 1. Then for any r ~ 0 [cf. Bennett (1962)], 

(12) P(iX- 11PI > (np )'12r) < 2 exp/- ( (' '!2))). 
\ 2 1 + r I 3( np) 

For each i = 1, 2, ... , set 

gi,n = (nGn(2-i)- n2-i)2 

and for any choice of integers 0 ~ j ~ p and l ~ 1, define 
p+l 

sj,p = :E 2t,n, 
i-j+l 

l 

Tz = L 22i-tgi, n. 
i=l 
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We shall first be concerned with establishing bounds for the tails of the 
distributions of 81, P and T1• 

LEMMA 2. For every A > 0 there exists a positive number :\1 such that for 
all n ~ 1, z ~ 0 and p so that z ~An 2-P, and 1 ~ l ~ p + 1, 

(13) P(n- 1T1 > z) < 2exp{ -X1z}. 

PROOF. Introduce the independent and identically distributed random vec
tors 

}j = (1{~,;; 2- 1} - 2-t, ... ' 1{~,;;2- 1} - 2- 1), 

and the inner product and norm on IR 1 given by 

j = 1, . .. , n, 

l 

(x, y) = 2-z L 22ixiyi, 
i= 1 

Notice that 
l 

o2 = EiiYtll 2 = L 2i- l(1 - 2- i) = 2- (l + 2)2 - 1, 

so that i ~ o 2 < 2. By HOlder's inequality we have, for m ~ 2, 

( 
z )(m-2)/ 2 

EiiYtiim ~ o2 i~t 22i - l < o2(2U+1)/2)m- 2. 

Applying an exponential bound given by Yurinskii (1976), page 491, we obtain 

P(n- 1T1 > z) = P( f ~· > (nz) 112) 
;~1 

( z [ 1.62 ( 2t+ 12 ) ,1/ 2]- 1) 
~2exp--1+---- . 

2o 2 o2 n 

Since 21+1 ~ 2P+ 2 ~ 4Anjz and t ~ a 2 ~ 2, the lemma follows. D 

In order to bound the tail of the distribution of 81, P we require a technical 
lemma which is likely to be of separate interest. Let (X1, ... , Xk+ 1) have a 
multinomial distribution with parameters n, p 1, ... , Pk+ 1• Assume that Pi> 0 
fori= 1, ... , k and define 

k 

s= LPiE(0,1]. 
i=l 

We shall prove 

LEMMA 3. For every C > 0 and 8 > 0, there exist positive numbers a, b and 
X such that for all n ~ 1, k ~ 1 and positive z, p 1, ••• , Pk satisfying z ~ 
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Cn min{pi: 1 ~ i ~ k} and s ~ 1 - 8, 

(14) p L t t > z < a exp{ bk - Xz}. ( 
k (X.-np .)2 ) 

i=l npi 

PROOF. For every E > 0, (12) and the upper bound on z ensure that 

( !Xi - npil ) k ( e2np ) 
P max ---- > E ~ 2 L exp - ( i ) 

lsisk npi i~l 2 1 + ej3 

~ 2kexp{ -X(e)z} ~ exp{k- X(e)z}, 

with X( e)= e2{2C(1 + e/3)} - 1• Hence, it suffices to show that 

(15) P(.~, Y; > z) < aexp{bk- Az), 

where 

( X.- n'P ·)2 
l.f t t 2 

~ e npi, 
npi 

otherwise, 

for some constant e > 0 to be chosen below. 

877 

Let X1, • •• , Xk+ 1 be independent with Xi having a Poisson distribution with 
parameter npi, and define 

¥. = { (xi- npi)
2

, 
(x.- n'P ·)2 

l.f t t 2 
~ E npi, 

t npi npi 
0, otherwise. 

Clearly there exists e > 0, independent of n, p 1, • • • , Pk; such that fori = 1, ... , k 
and lhl ~ te(npi)112 , 

( xi - npi ) ( ( h ) 1; 2) Ri(h) = Eexp h · 11 2 = exp npiexp 11 2 - npi- h(npJ 
(npJ (npJ 

~ exp{h2 }, 

and this determines our choice of e. Thus, for 0 < y ~ e2npi and h = y 112j2, 

( - ) ( xi - npi ) ( xi - npi ) 
p yi > y ~ p ( ) 1/ 2 > Y112 + p ( ) 1/ 2 < - Y11 2 

npi npi 

~ Ri(h)exp( -hy112 } + Ri( -h)exp{ -hyll2 } 

~ 2exp{ -y/4}. 
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It follows that 

E exp { Yj6} = {XI P( Y; > 6log x) dx 
0 

= 1 + i 1e2np'P( Yi > y) eY/6 dy 
0 

~ 1 + i fooo e-y/12 dy = 5 

and hence 

(16) P( .t Y; > z) ~ Eexp/ t( .t Yj- z)) 
~-1 \ ~=1 

~ exp{k log5- zj6}. 

The transition from (16) to (15) is achieved by conditioning. We have 

(17) 

( 
k ) ( k k+1 ) 

P .I: y; > z = P .I: ¥i > z .I: xi = n 
~-1 ~=1 ~=1 

where 

P('L7=1 Xi= mi'L7~} Xi= n) 
Am= P('L7=1 Xi= m) 

n! n-m 
( )I (1 - S) ens. 
n- m .nm 

Application of Stirling's formula in the form 

{ 
1 } k!ek 

exp 12k + 1 ~ (2'1Tk )112 kk < exp{-1 } - 12k 

to the cases 1 ~ m ~ n- 1 and m = n separately, yields 

Am~ 3{nj(n- m + 1)} 112 forallO ~ m ~ n. 

By considering the ratio Am+ 1/Am one sees that Am attains its maximum value 
form= [ns] + 1. Hence, for all 0 ~ m ~ n, 

Am~ a( n- ~ns] r/2 ~ 3(1- s)-1/2 ~ 38-1/2. 

Together with (17) and (16) this implies 

P(,~, Y; > z) ,; 38-'12 P(,~, Y, > z) ,; 38- 112exp( k log 5 ~ z j6}. 

The proof is complete. 0 
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LEMMA 4. For every A > 0, there exist positive numbers a 2, b2 and ;\ 2 such 
that for aU n ::?: 1, z ::?: 0 and p so that z :s; An2-P, and 0 :s; j :s; p, 

(18) P( n- 1sj,p > z) < a~xp{ b2(p- j) - ;\ 2z}. 

PROOF. Define 

xi= n{ Gn(2-i) - Gn(2-<i+l>) - 2 - <i+l>}, 

X = n{G (2-<P+I>) - 2-(p+I>} p+1 n • 

For v = j + 1, ... , p + 1, we have 

and hence 

p+1 p+1 
:s; L 2 - i/2 L 2i;2 X? 

i=-v i=v 

p+1 p+1 
n-1sj,p :s; 4n-1 .E 2"/2 .E 2ii2Xi2 

v=j+1 i=v 
p+1 

:s; 16n- 1 .E 2iX? 
i=j+1 

i=j+1, ... ,p, 

:s; 16n- 1(. t 2i+lx? + 2p+lx;+ 1). 

1-}+1 

Now (Xi+l• ... , Xp+l• n- Xj+l- · · · -Xp+l) has a multinomial distribution 
with parameters n, 2- U+ 2>, ... , 2-(p+I>, 2-(p+I>, 1 - 2-U+I>. Since z :s; 
2An2-(p+I>, application of Lemma 3 for C = Aj8, k = p- j + 1 and 8 = ! 
yields 

P(n- 1Sj,p > z) < aexp{b(p- j + 1)- ;\z/16} 

and the assertion of the lemma follows. D 

Choose e > 0. For any integers p ::?: 0, 0 :s; l :s; i - 1 and j::?: 0, define the 
events 

c<n> = { max 2il~\n6- n2-il > m}, 
p 1~i~p+1 ' 

Cfn) = { max 2i+ll~(n) - n2-(i+l}l >en}, 
1,l . . 1+l , m 

2-l+•~m~2-l+t+l_1 

p-1 p 

p.<n> = u u cfn) 
}, p 1, l I 

l-i i=l+ 1 
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where Fj~~) = 0 if j ~ p by convention. Finally, for 0 .::;; j .::;; p, set 

E(n> = c<n> u p<n> 
j,p p j , p• 

LEMMA 5. For every A > 0 and e > 0, there exist positive constants a3 , b3 

and A3 such that for all n 2 1, z ~ 0 and p so that z .::;; An2-P, and 0 .::;; j.::;; p, 

P(EJ,")) < aaexp{b3(p- j)- A3z}. 

PRooF. Take A= e2/{4A(l + e/3)} . As n2-P ~ zjA, inequality (12) yields 

P + 1 . 2 exp { -A z} 
P( c<n)) < 2 L exp{ -Az2P-,+l} < ' 

P i= 1 1- exp{ -Xz} 

which is bounded by 2(1- exp{ -A})-Iexp{ -Az} if z ~ 1. For 0.::;; z < 1, 
P(C~n>) < exp{A}exp{ -Xz}, so that for z ~ 0 

P(c~n> ) < aexp{ -Az}, 

with positive a depending only on A and e. 
For j = p, Ft';) = 0. For 0 .::;; j .::;; p - 1, we have 

P(ci:1>).::;; 2-t+i+Iexp{ -Az}, 

for each j .::;; l .::;; p - 1 and l + 1 .::;; i .::;; p. Hence, for 0 .::;; j .::;; p - 1, 
p-1 p 

P(Ft';)).::;; L L 2-l+i+Iexp( -Az}.::;; 2p-J+ 3exp{ -Az}, 
l=j i=l+1 

which completes the proof. D 

For the proof of our next lemma we need the following combinatorial identity 
that can be inferred from a similar identity given on page 118 of KMT (1975): 
Let f be any function on [0, 1]. For nonnegative integers i and m such that 
0 <(2m+ 1)/2i+l < 1 define the second differences 

cp(i, m, f)= 2f((2m + 1)2-(i+l))- f(m2-i)- f((m + 1)2 - i). 

Then for any choice of nonnegative integers k, p and l such that 

2-(l+l) < (2k + 1)2 - (p+l).::;; 2-l, 

we have 

(19) 

t((2k + 1)2-(p+l)) = (2- (2k + 1)21-P)f(2-(l+ 1)) 

+ ((2k + 1)2l-p- 1) /(2- 1) 

p 

+ L c(i, p, k )cp( i, k(i), f), 
i=l+1 

where the sum is defined to be zero if l ~ p and fori= l + 1, ... , p, 

(20) k(i) = [(2k + 1)j2P+l-i), 0.::;; c(i, p, k).::;; 1. 
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In addition, we shall use the elementary identity 
r-1 

(21) f(2-r) = L <P(i,O, f )2-r+i, for r ~ 1, 
i - 0 

valid whenever f(O) = f(1) = 0. 
For any two nonnegative integers j ~ p, let 

~.p = { k ~ 0: (2k + 1)2-(P+ 1) ~ 2-j}. 

LEMMA 6. For every A > 0 there exist positive numbers a 4 , b4 and X4 such 
that for all n ~ 1, z ~ 0 andp so that z ~ An2-P, and 0 ~j ~ p, 

P( max n112 jan((2k + 1)2-(p+l>) - B((2k + 1)2-<P+l>) I > z) 
ke~.p 

< a4exp{bip- j)- X4z}. 

PROOF. Choose positive C1, C2 and 11 for which the assertion of Lemma 1 
holds and take e = 1112 in the definition of the event Et) in Lemma 5. We shall 
write E for EJ~ and Ec for its complement, and we define 

Zk = n112jan((2k + 1)2-<P+ 1>)- B((2k + 1)2-<p+l>) j. 

In view of Lemma 5 it suffices to find positive a, band X such that 

(22) L P(Zk > z, Ec) < aexp{b(p- j)- Xz}. 
ke~.p 

Obviously, 0 E ~.P; if k E ~.P' k * 0, then (2k + 1)2- (p+I) cannot be equal to 
2 -z for any l. It follows that 

p-l 

(23) ~.P = {0} U U / 1, / 1 = { k: 2-(1+ 1> < (2k + 1)2-(p+l) < 2-1}. 

l=j 

We begin by studying Z0 • Identity (21) yields 
p 

Z < .l "jiJ(n)- '£<n>j2-(p-i) 
0 - 2 £... t,O t,O ' 

i=O 

and on the set E c we have 

I A(n) - 2-il .l 2-i f . = 0 + 1 1.1i,o n ~ 2 11n , orz , ... ,p , 

the conclusion for i = 0 being trivial since a<t_b = n. This also ensures that on E c 

(24) 
IK<n>l = i2a<.n> - a<.n>l t,O t+1,0 t,O 

~ j2d<t}1, 0 - n2-ii + jd~~6- n2-ii ~ 11n2-i, 

for i = 0, ... , p and hence Lemma 1 implies that on E c 

(25) 

p 

Z ~ C n- 12-<P+ 1>" 22 i{(K<.n> )2 + (a<.n> - n2-i) 2} + C 0 1 £... t,O t , O 2 
i=O 

p+1 

< 5C n- 12-<P+ 1> " 22i(a<.n> - n2-i) 2 + C - 1 £... t,O 2 
i=l 
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Application of Lemma 2 shows that 

(26) P(Z0 > z, Ec) ~ 2exp{ -X1(z- C2)/(5C1)}. 

Next we consider the case k Ef1 for some l satisfying j ~ l ~ p- 1. Since 
2-(1+ 1) < (2k + 1)2-<P+1) < 2- 1, we have 1 < (2k + 1)21-P < 2 and identities 
(19) and (21) ensure that 

l p 

zk ~ 2 L: li>l.'V- li<r,612-(l-i) + L: li>i<.ni(i>- ii<i~1<i>l 
i=O i=l+l 

where the second inequality follows by the same argument that led to (25). 
Notice that if k ef1, then necessarily 2p-t + 1 ~ 2k + 1 ~ 2p-t+ 1 - 1 and 
hence for each i = l + 1, ... , p, we find 

2-(l+ 1) ~ 2k(i)2-(i+ 1) < (2k(i) + 1)2-(i+1) < 2(k(i) + 1)2-(i+1) ~ 2- 1• 

But this implies that for i = l + 1, ... , p and on the set E c, 

I A(n) I < I A(n) 2 -(i+ 1)1 + I A(n) 2 -(i+ 1)1 Lli, k(i) - Lli+1,2k(i)- n Lli+1,2k(i)+1 - n 

< l.,n2-i 
- 2'1 ' 

I A(n) - n2-il < IA(n) - n2-(i+1)1 + IA(n) - n2-(i+1)1 Lli, k(i) - Lli+1,2k(i) Lli+1,2k(i)+1 

< .l.,n2-i 
- 2'1 ' 

and Lemma 2 yields 

Zk ~ 20C1n - 1T1+1 + 4C2 
p 

+ C1n- 1 L 2i{ ( li\~1(i)) 2 + ( a\~1(i)- n2-i)2} + C2(P- l). 
i=l+l 

Arguing as on page 120 of KMT (1975) it can be shown that 

{(a\~1<i>•(li\~1<i>) 2): i = l+ 1, ... ,p} =§J{(a\~6.(lii.o)l i = l+ 1, ... ,p}. 
and because 

p p+1 

"' 2i{(ii<.n> )2 + (a<!!-> - n2-i)2} ~ 7 "' 2i(a<!l> - n2-i)2 = 78 L.. £,0 £,0 L.. £,0 l,p 
i=l+l i=l+1 

by (24}, we obtain fork Efz, 

P(Zk > z, Ec) 

~ P(20C1n-1T1+1 + 4C2 > z/2) + P(7C1n-1S1,p + C2(p- l) > z/2) 

~ 2 exp{ -X1(z- 8C2)/(40C1)} 

+a2exp{bip- j)- X2(z- 2C2(p -l))/(14C1)} 

~ a exp { b( p - j) - Xz} , 



427

A REFINED KMT INEQUALITY 

for positive a, band X. Notice that ft has 2p-l-l elements, so 
p-1 
.E .E P(Zk > z, Ec) ~ dexp{(b + log2)(p- j)- Xz}. 
l=j kef~ 

Together with (23) and (26) this yields (22) and the lemma. D 

For any 0 ~ j ~ p and n ;;::: 1, let 

an(j,p)= sup sup n112lan(s)-an(s-h)l, 
Os.hs.2 - p hs.ss.2-J 

Bn(j,p)= sup sup n112iB(s)-B(s-h)i. 
Os.hs.2-P hs.ss.2-J 

883 

LEMMA 7. There exist positive constants a5, b5 and >. 5 such that for aU 
n;;::: 1, z > 0 andp so that n2-<P+l) < zj16 ~ n2-P, and 0 ~j ~ p, 

P(an(j, p) + Bn(j, p) > z) < a5exp{b5(p- j)- A5z}. 

PROOF. Whenever (k- 1)2-P ~ s- h ~ k2-P for some k = 1, ... ,-2P-i, then 

-n2-p ~ n112(an(s)- an(s- h)) 

~ n112(an((k + 1)2-P)- an((k- 1)2-P)) + 2n2-P. 

Because zj2 > 4n2-P we find by inequality (12) 

P( an(j, p) > z/2) ~ P( an(j, p) > 4n2-P) 

~ 2P-ip( n112ian(2-<p- 1)) I > n2-<p-1)) 

(27) <2exp{(p-j)log2- 3:2-p} 
~ 2 exp{ ( p - j)log 2 - : 4 z}. 

If W denotes a standard Wiener process, then 

{B(s): 0 ~ s ~ 1} =~{W(s)- sW(1): 0 ~ s ~ 1}, 

and hence 

P(Bn(j, p) > z/2) ~ P( sup sup n112iW(s)- W(s- h) I> z/4) 
Os.hs.2-p hs.ss.2-i 

+P(n1122-PW(1) > zj4). 

It now follows from Lemma 1.2.1 on page 29 of M. Csorgo and Revesz (1981) and 
an elementary bound for the tail of the standard normal distribution [ cf. Feller 
(1968)] that for positive constants a, b and >., 

P(Bn(j, p) > zj2) < aexp{b(p- j)- >.z}. 

Together with (27) this proves the lemma. D 

We are now in a position to prove Inequality 2. Choose any n;;::: 1, 1 ~ z ~ n, 
p so that n2-(p+l) < z/32 ~ n2-P and 0 ~ j ~ p. Since for every 0 ~ s ~ 2-i, 
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there exists an integer k;;:::: 0 such that (2k + 1)2- (p+l) ~ 2-j and 

js- (2k + 1)2-(p+l)l ~ 2-P, 
we see that 

P( sup n 112lan(s)- B(s)l > z) ~ P(an(j,p) + Bn(j,p) > z/2} 
O.,;s.,;2 - ' 

+P( max nll2!an((2k + 1)2-(p+l)) 
kE~,p 

-B((2k + 1)2-(p+l>)! > z/2), 

with ~.p as in Lemma 6. As z/2 satisfies the assumptions of Lemma 6 as well as 
those of Lemma 7, application of these lemmas completes the proof of Inequality 
2 and also of Theorem 1. D 
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The Asymptotic Distribution of Point Charges on 
a Conducting Sphere 

Willem R. van Zwet 

University of Leiden and University of North Carolina 

Abstract. Consider n point charges, each with charge ~, in electrostatic 
equilibrium on the surface S of a conducting sphere. It is shown that as n 
tends to infinity, the distribution of the total charge 1 on S tends to the 
uniform distribution on S. Though this is an entirely deterministic result, 
the proof is probabilistic in nature. 

1 Introduction 

Consider n point charges (electrons), each with charge ~~ in equilibrium position 
on the surface S of a conducting unit sphere in R3 . If d denotes Euclidean distance 
in R3 , these charges will be located at points {nl, {n2, ... , {nn on S for which the 
potential energy 

1 

~ d({ni,{nj) 

is an absolute minimum. Let Pn denote the measure that assigns measure ~ to 
each of the points {n 1, .. . , {nn so that for any E C S , Pn (E) denotes the charge 
situated in E. Let >. be Lebesgue measure on S and II= >./(4?r) the uniform 
probability measure on S . Is it true that Pn converges weakly to II as n - oo? 
In other words, is the macroscopic model where the electrical charge is viewed as 
a continuous phenomenon compatible with the microscopic description in terms of 
point charges? 

The problem of providing a rigorous proof of this intuitively obvious conjec
ture was raised by Korevaar (1972) and Robbins (1975). Two different proofs were 
given independently by Korevaar (1976) and van Zwet (1976), the former preceding 
the latter by some months. At the time, however, neither proof was published. Six
teen years later, matters of priority don't seem terribly relevant any more and since 
the present author's probabilistic proof is simple and perhaps somewhat amusing, it 
is presented here. We shall prove 

Theorem 1 Pn converges weakly to II, so lim Pn(B) = II(B) for every Borel 
n-oo 

set B C S whose boundary relative to S has II -measure zero. 

In fact we prove more. It will be shown that the result remains valid if S is 
replaced by an arbitrary compact set K C R3 with positive capacity and II by 
the so-called minimizing measure Po on K . For a review of relevant literature see 
Korevaar (1976). 

427 
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2 Charges on a Compact Set 

We begin by dealing with the general case. Let K be an infinite compact set 
in R3 and let P n denote the class of probability measures that assign measure ~ 
to each of n distinct points of K . Consider n identical point charges situated 
at points Z1, z2, ... , Zn in K. For convenience we take these charges to be ~ so 
that the total charge is equal to 1. If the potential energy of this configuration is 
finite, the points z 1 , ... , Zn must be distinct and the charge distribution may be 
described by a measure P E Pn assigning measure ~ to Zt, ... , Zn. In this case 
the energy may be written as 

- 1 "" 1 // 1 1/J(P) = 2 L....J d( . ·) = -d( )1{#~} dP(z)dP(y). n ._.. z,,z1 z,y 
,.,.., K K 

(2 .1) 

Now let ~nl, ..• , ~nn be a configuration of the n point charges for which the energy 
is an absolute minimum. Because K is infinite and compact such configurations 
exist and have finite energy, and the points ~nl, . . . ,~nn are distinct. Let Pn E Pn 
be the corresponding probability measure which puts mass ~ at ~nl, . . . , ~nn. Then 
clearly 

;fi(Pn) = J J -d( 1 ) 1{#~} dPn{z) dPn(Y) = min ;fi{P) < oo. (2.2) z,y PeP. 
KK 

Instead of the above discrete model with indivisible point charges which are not 
subject to internal forces that would make them explode, one can also consider a 
model where charge is viewed as a "continuous" phenomenon. In this model the 
distribution of a total charge 1 on K is given by a measure P in the class P of 
all probability measures on the Borel sets in K, where P(B) denotes the charge 
in the Borel set B. For P E P and z E R3 one defines the potential of P by 

U(P, z) = j d(:, y) dP(y), (2.3) 

K 

the energy of P by 

.,P(P) = J J d(:,y)dP(z)dP(y) = J U(P,z)dP(z) (2.4) 

KK K 

and the capacity of the set K by 

C(K) = [ inf .,P(P.)] -l (2.5) 
PeP 

Note that under this model the presence of a point charge implies infinite energy. 
If C(K) = 0, then clearly .,P(P) = oo for every PEP. On the other hand, 

if C(K) > 0, then there exists a unique measure Po E P for which 1/J assumes 
its absolute minimum on P (c.f. Landkof (1972} p.131-133). Po is called the 
minimizing measure on K and represents the equilibrium (i.e. minimum energy) 
distribution of a charge 1 on K under the continuous model. Note that since 
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1/;(Po) = }Pj~ 1/;(P) = C(~), (2.6) 

the assumption C(K) > 0 ensures that Po assigns measure zero to single points 
and that the compact set K must therefore be non-denumerable. 

Theorem 2 Let K be a compact set in R3 with positive capacity. Then Pn 
converges weakly to Po, so lim Pn(B) = Po( B) for every Borel set B C K 

n-oo 
whose boundary relative to K has P0 -measure zero. 

Proof Let X 1 , .. . , Xn be independent random points in K that are identically 
distributed according to the probability measure Po . Since Po assigns probability 
zero to single points, the points X 1 , ... , Xn are distinct with probability 1. Hence 
(2.1) and (2.2) imply that with probability 1 

- 1"' 1 
1/;(Pn) ~ n2 L.t d(X X·) . 

itj " 1 

Taking the expectation on the right we find 

- n-111 1 1/;(Pn) ~ -n- d(x,y)dPo(x)dPo(Y) = 
n-1 · 
-1/;(Po). 

n 
(2.7) 

KK 

Now let Qn = Pn x Pn denote the product measure on K X K. Because K X K is 
compact, the set { Qn : n = 1, 2, ... } is relatively compact in the topology·,of weak 
convergence (I fdQn -+ I fdQ for bounded continuous f). To show that Qn 
converges weakly to a probability measure Q on K x K it is therefore sufficient to 
show that every weakly convergent subsequence has limit Q. Let Qn. , k = 1, 2, ... , 
denote such a weakly converging subsequence with limit Qo and define a bounded 
and continuous function fc on K x K by fc(x, y) = min(c, 1/d(x, y)) for c > 0. 
Noting that Qn assigns probability * to the set {(x, y) : x = y} we see that for 
every c > 0, 

liminf.,b(Pnk) = liminf J -d( 1 )1{zty}dQn11 (x,y) 
1:-oo 1:-oo x, y 

KxK 

~ liminf 1 fc(x, y)1{zty}dQn11 (x, y) = liminf[ 1 fcdQn 11 - -=-] 
1:-+oo 1:-oo n~: 

KxK KxK 

= liminf 1 fedQn 11 = 1 fcdQo, 
1:-+oo 

KxK KxK 

so that the monotone convergence theorem implies that 

(2.8) 
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For every n , Qn is the product of two identical probability measures on K and 
Q0 must therefore have the same structure, say Q0 = P0 x P0 with P0 E P . Hence 
(2.7) and (2.8) yield 

,P(P0) ~ liminf ~(Pnk) ~ liminf n~:- 1¢(P0 ) = 1/;(Po) 
1:-oo 1:-oo n~: 

and since Po is the unique measure in P minimizing 1/J, we find that P0 = Po so 
that Q0 = Po x Po. Since the limit Qo is independent of the weakly convergent 
subsequence Qn,. we have chosen, it follows that Qn converges weakly to Po x Po 
and hence that Pn converges weakly to Po. 

3 Charges on the Surface of a Sphere 

It remains to consider the special case where K = S. Clearly S is compact and 
one easily verifies that the uniform probability measure II = .A/ ( 47r) on S has 
finite energy 1/J(II) and a constant potential U(II, x) for x E S. But this implies 
that S has positive capacity and that II is the unique minimizing measure on 
S (see Landkof (1972, p. 137). Theorem 1 is therefore an immediate consequence of 
Theorem 2. 
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WEAK CONVERGENCE RESULTS FOR THE KAKUTANI 
INTERVAL SPLITTING PROCEDURE 

BY RONALD PYKE AND WILLEM R . VAN ZWET 

University of Washington and University of Leiden 

This paper obtains the weak convergence of the empirical processes 
of both the division points and the spacings that result from the Kakutani 
interval splitting model. In both cases, the limit processes are Gaussian. 
For the division points themselves, the empirical processes converge to a 
Brownian bridge as they do for the usual uniform splitting model, but with 
the striking difference that its standard deviations are about one-half as 
large. This result gives a clear measure of the degree of greater uniformity 
produced by the Kakutani model. The limit of the empirical process of the 
normalized spacings is more complex, but its covariance function is explicitly 
determined. The method of attack for both problems is to obtain first the 
analogous results for more tractable continuous parameter processes that 
are related through random time changes. A key tool in their analysis is 
an approximate Poissonian characterization that obtains for cumulants of a 
family of random variables that satisfy a specific functional equation central 
to the K -model. 

1. Introduction. We are interested in comparisons between two probability 
models for the random subdivision of the unit interval. The first is the usual model 
in which the division points are independent Unif(O, 1) random variables (r.v.'s). 
We refer to this as the U -model. The second model will be referred to as the 
K-model (for Kakutani) in which the first division point, X1, is a Unif(O, 1) r.v., 
and then thereafter the nth division point, Xn, conditionally given the preceding 
n - 1 points {X 1, ... , Xn- d, is uniformly distributed over the largest subinterval 
formed by 0,1,Xt,X2, ... ,Xn-l· The K-model was suggested by Kakutani 
(1975) who conjectured that the empirical distribution function (d.f.) of the first 
n subdivision points converges to the uniform d.f. on [0, 1], just as is well known 
to be the case for the U -model. This Glivenko-Cantelli result for the K -model was 
shown to be true by van Zwet (1978). 

The K -method of interval splitting, however, should by its very nature result in 
"more uniform" spacings than those of the U -method. This is intuitively clear since 
in the K -model the largest spacing is always the one that is being split, whereas in 
the U -model, the largest spacing may remain untouched for several iterations while 
at the same time the smaller intervals are consequently being divided into even 
smaller ones. This difference between the two models was clarified in Pyke (1980) 
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where it was shown that for the K -model the empirical d.f. of the normalized 
spacings converges uniformly with probability one to the uniform d.f. on [0, 2]. 
This is in sharp contrast to the U -model where the limit is an exponential d.f. 
over (0, oo); a result of Blum [cf. the footnote in Weiss (1955)]. 

The purpose of this paper is to study the weak convergence under the Kakutani 
model of the empirical processes for both the division points and their spacings. 
The results and their proofs clarify further the differences between the U- and the 
K -model. The differences are rather striking. In particular, the difference between 
the two interval-splitting models is summarized by the fact that although the 
empirical processes for the division points converge in law to Brownian bridges 
under both the U- and K -models, the standard deviations in the latter case are 
approximately half what they are for the former; see Theorem 4.1. 

To be more precise we introduce the following notation. Let {Xn: n :::: 1} be 
the sequence of r.v.'s with values in (0, 1) that represent the successive division 
points of the unit interval. Let Xn1 ::=: Xn2 ::=: · · · ::=: Xnn be the ordered values of 
{X1, . .. , Xn}. Define the spacings 

(1.1) Dni = Xni- Xn,i-1, 1 ::=: i ::=: n + 1 with Xno = 0, Xn,n+1 = 1, 

and let D~i := (n + 1)Dni, 1 ::::: i ::::: n + 1, denote the normalized spacings. 
Since under the K -model, the maximum normalized spacing converges a.s. to 2 
[see (1.12)], it is expedient to introduce the relative spacings, {Dni/ Mn; 1 ::=: i ::=: 
n + 1} in which Mn := max{Dnt, ... , Dnn+l }. 

Let Fn, Gn and G~ denote, respectively, the empirical d.f.'s of the division 
points {X 1, ... , Xn}, the spacings { Dn 1, ... , Dn ,n+ d and the normalized spacings 
{D~1 , ... , D~.n+d· Let F be the Unif(O, 1) d.f., G be the Unif(O, 2) d.f., and H be 
the exponential d.f. with mean 1. Then the Glivenko-Cantelli results reviewed 
above can be stated as follows, where II · II is the supremum norm in ffi.1: with 
probability 1 under the U -model, 

(1.2) IIFn- Fll-+ 0 and IIG~- Hll--+ 0 

whereas under the K -model 

(1.3) IIFn- Fll-+ 0 and IIG~- Gil-+ 0. 

Thus no differentiation between the two models shows up at this level for the 
division points, though it does for the spacings. However, Theorem 4.1 shows 
dramatically that differences are in fact present for the division points in the orders 
ofn112 11Fn- Fll. 

Before introducing the notation for the processes to be studied, we recall that 
the key method of proofs for results under the K -model involves a random time 
change from the discrete index n E z+ to the continuous parameter S > 0 defined 
by 

(1.4) Ns = min{n E z+: Mn ::S s}, s > 0, 
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where Mo = 1. Interpret min 0 = +oo. Note that Ns = 0 when s ::::_ 1. Thus 
Ns denotes the smallest sample size n for which no spacing exceeds s. The 
method relies essentially upon a stochastic recursion relationship [(1.9) or (1.10)] 
that holds in the continuously indexed case. Results are first proved for this case 
and then an argument is provided to show that the results desired for the original 
quantities (indexed by n) follow as corollaries. 

In terms of the parameter s, the analogous functions to those introduced above 
are 

F(x, s) = FN, (x), 

Ns(x) = NsF(x, s) = #{j: Xj ::S x, 1 ::S j ::S Ns }, 
(1.5) 

G(x,s) = GN5 (X), 

K(x, s) = (Ns + l)G(x, s) = #{J: DNd:::; x, 1:::; j:::; Ns + 1 }. 

The following results from van Zwet (1978) and Pyke (1980) are used 
extensively throughout the paper: 

(1.6) {2/t-1, 
/-L(t) := ENr = O, 

for 0 < t < 1, 
fort ::::_ 1, 

(1.7) v(t) := var Nr =eft for 0 < t:::; 1/2, 

{ 
2x / s 2 , if 0 < x :::; s < 1, 

(1.8) f-L(x,s):=EK(x,s)= 2js, if0<s<x:::;1, 
s(x-1), ifs::::_1, 

where s(u) = 0 or 1 according as u < 0 or u ::::_ 0. The constant c = v(1j2)j2 
in (1.7) is evaluated in Lemma 3.2. A key result in this paper is Theorem 2.2 that 
shows in particular that all of the remaining cumulants of Nt are also proportional 
to t-1 in intervals of the form (0, 1/ k) . Central to the study of these and all 
other results about the continuous parameter version of the Kakutani method are 
the recursive representations that come directly from the iterative nature of the 
Kakutani procedure. In particular, one may check that Nt satisfies the relationship 

(1.9) L * 1 Nt = Nt; u + Nt / (1-U) + ' 0 < t < 1, 

where N and N* are independent identically distributed processes and U is a 
Unif(O, 1) r.v. independent of Nand N* . More generally, one can show that 

(1.10) K X t -K - - K -- --L (X t) *( X t ) (,)- u'u + 1-u ' 1-u' 0 < t < 1, 

where again K L K* and K, K* and U are independent. Of course, U represents 
the first (uniform) partition point of the unit interval. Since K (1, t) = K (t, t) = 
Nt + 1, (1.9) is seen to be a special case of (1.10). 
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Throughout the paper we also need the following limit results from van Zwet 
(1978) and Pyke (1980) which are contained in their proofs of the Glivenko
Cantelli results of (1.3): 

(1.11) sNs -+ 2 a.s. as s -+ 0; 

nMn-+ 2 a.s. as n -+ oo 
(1.12) 

where Mn =max{Dni: 1 ~ i ~n +I}; 

(1.13) s-1 MNs -+ 1 a.s. ass-+ 0 [from (1.11) and (1.12)]; 

(1.14) s K (y s, s) -+ 2 y uniformly for 0 ~ y ~ 1, a.s. ass-+ 0. 

The purpose of this paper is to study under the K -model the weak convergence 
of the empirical processes associated with the division points and the spacings. We 
denote these processes of interest as follows: 

(i) empirical processes of the division points: for 0 ~ x ~ 1, 

(1.15) 
parameter n ~ 1, 

parameters> 0, 

Un(X) = n 112{Fn(X)- x}, 

U(x, s) = (s/2)112{N5 (x)- xNs }; 

(ii) empirical processes of the normalized spacings: for 0 ~ y ~ 1, 

parameter n ~ 1, Vn*(y) = n 1 12{G~(2y)- y}, 

V*(y, s) = (s/2)112{ K(Ns2: 1, s)- y(Ns + 1) }; 

(iii) empirical processes of the relative spacings: for 0 ~ y ~ 1, 

(1.16) 
parameters > 0, 

parameter n ~ 1, 

(1.17) 
parameters> 0, 

Vn(Y) = Jn+1 {Gn(Mny)- y}, 

V(y, s) = (2/s)1 /2{ K(ys, s) - Y} · 
Ns + 1 

For convenience, we will refer to processes indexed by continuous parameters 
as stopped processes, referring thereby to the random stopping times Ns involved 
in their definitions. 

Central to the study of these processes is the related stopped process defined by 

(1.18) W(y , s) = (2/s) 112{ ~K(ys , s)- y }• 0 ~ y < 00, s > 0, 

since as we now show, V and V* are expressible in terms of W and W is simpler 
to study. Observe that in view of (1.8), W ( · , s) is a centered process only for 
0 ~ y ~ 1 and s < 1. Since Ns + 1 = K(s , s), 

W(l, s) = (2/s)112{ ~(Ns + 1)- 1} 
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and one can check that with 8s := 2/(s(Ns + 1)), the two stopped spacings 
processes satisfy 

(1.19) 

and 

(1.20) 

V*(y, s) = W(y8s , s)- W(l, s)(8s + l)y 

V(y, s) = (2/s)l /2{ K(ys, s)- y} 
Ns + 1 

(2/s)l /2 
= {K(ys , s)- y(Ns + 1)} 

Ns+ 1 

= 8,(2/s)1' 2 { ~K(ys , s)- y- ~Y( K(s, s)-D J 

= Os { W (y, S) - y W (1, S)} 

for 0 < s .:::; 1. Since 8s -+ 1 a.s., by (1.11), the limiting behaviors of V*(·, s) 
over 0 < y < 1 and V (·, s) over 0 < y .:::; 1 will follow from that of W(·, s) 
in D[O, 1]. Notice that although V* may appear to be a type of"tied-down" version 
of W, it is not actually zero at y = 1, as is V. Moreover, the support interval of 
significance for V* ( ·, s) is random, namely, [0, 8s]. This is a result of the fact that 
the normalized maximum spacing has a finite limit; see (1.12). Since the limiting 
distribution of the maximum spacing may be obtained separately [see (6.6) and the 
discussion following] it suffices to place our emphasis here upon the processes of 
the relative spacings, namely, Vn and V ( ·, s), which we do in Section 6. 

The limiting behaviors ofthe empirical processes Un and Vn* under the U -model 
are well known. Essentially due to Donsker [(1952); cf. Billingsley (1968)] is the 
fact that Un -+ L U, where U is the standard Brownian bridge with representation 
U(t) = Bo(t) := B(t)- tB(l), 0.:::; t.:::; 1, in which B is the standard Brownian 
motion with B(O) = 0 and var B(l) = 1. For the spacings' empirical process, 
weak convergence was obtained in Pyke [(1965), Theorem 6.4]. Here the definition 
must be modified to Vn*(y) = n 1 12{G~(H- 1 (y))- y} to keep the process on [0, 1] 
since by (1.2) and (1.3) the a.s. limit for G~ is the exponential H rather than 
the uniform G over (0, 2). Hence H-1 (y) = -ln(l - y). [In (1.16) observe that 
c-1(y) = 2y.] With this notational change, the U-model's weak convergence 
result for the spacings' empirical process is that v; -+ L V* where V* is a mean 
zero, Gaussian process with 

Cov{V*(x), V*(y)} = x(l- y)- m(x)m(y), 

where m(y) = -(1- y) ln(l- y). 

NOTE. Although the functions introduced above are point indexed, we will 
use the same symbol to represent their corresponding set-indexed functions 
whenever they are well defined. For example, since K (-, s) is non decreasing, 
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it determines a Lebesgue-Stieltjes measure which we will write as K ( B, s). In 
particular, (1.8) implies 

(1.21) 
2 

EK(sJ,s)=-111 
s 

for any Borel subset J of [0, 1] and s < 1. Here, I J I denotes the Lebesgue measure 
of J. 

The outline of the paper is as follows. The key result about the eventual simple 
form of the cumulants is proved in Section 2. The weak convergence of the 
empirical processes for the division points and for the normalized spacings are 
obtained, respectively, in Sections 4 and 6. The corresponding preliminary results 
for the convergence of the stopped processes are given, respectively, in Sections 
3 and 5. Finally, in Section 7, the covariance function for the limiting Gaussian 
processes in the spacings case is derived, thereby characterizing those processes 
completely. 

2. Cumulants of functions of the stopped process. As mentioned above, 
there is a fundamental recursive structure present in the Kakutani interval-splitting 
procedure that is central to its study. Recall that N5 is the number of partition 
points that are necessary to get al1 spacings ::: s. The first splitting point, X 1, 

is a Unif(O, 1) r. v. For simplicity, write U = X 1· After the first split, there are 
two intervals, (0, U) and ( U, 1) of lengths U and 1 - U, respectively. Once 
U is observed, the procedure is equivalent to watching two independent Kakutani 
procedures taking place on these two intervals until both of them result in spacings 
smaller than s. Moreover, the number of division points needed to partition an 
interval of length U according to the K -model until no subinterval exceeds s has 
the same distribution as the number of points needed to divide (0, 1) so that no 
subinterval exceeds s j U. From this, the representations (1.9) and (1.10) follow. 
These relations are really of the same type. For if one sets x = yt in (1.10), then 
for fixed y, the resulting recursion for K is of the same form as that which (1. 9) 
gives for Nt + 1. To emphasize this general nature, let {D(t): t > 0} be a real
valued process satisfying 

(2.1) D(t) L D(t/U) + D*(t/(1- U)) for 0 < t < 1 

where D = L D*, U is Unif(O, 1) and D, D* and U are independent. 

LEMMA 2.1. If D satisfies (2.1) and, for a positive integer m, EID(t)lm is 
boundedfor t 2: 1, then for every to> 0, EID(t)lm is boundedfor t 2: to. 

PROOF. Fix a positive integer r and choose t E [2-r, 2-r+1 ). Define inde
pendent Do, D1, ... and U1, U2, ... with Di =L D and Vi =L U for all i. Let 



439

386 R. PYKEAND W. R. VAN ZWET 

Vi = Ui v (1- Ui), Wi = Ui 1\ (1- Ui) and 

Vt =min In : fr vi ::::: t2r-l). 
t=l 

By iterating (2.1) until the arguments of the Di are all :::: 2-r+l we find 

D(t) L Do(tjW1)+DI(t/VI) 

L = Do(t/WJ) + :ll.{v1=l)Dl(t/VI) 

+ :ll.{v, >lJ[ D1 (t/(VJ W2)) + D2(tj(V1 V2))] 

L · · · L v'tl Dk (t I (( TI vi) Wk+l)) + Dv1 (t I fr vi). 
k=O t=l t=l 

Conditioning first on {U1, U2 , .. . } (and hence on v1), Minkowski's inequality 
implies 

EID(t)lm :S E(vt + l)m sup{ EID(s)lm: s :=:::: 2-r+l }. 

Now Markov's inequality yields 

n 

::::: 2E f1 vi = 2{it, 
i=l 

so that 
00 00 

E(v1 + l)m = L nm P(v1 = n- 1) :S 2 L nm(3/4)n-l =Am < 00. 

n=2 n=2 

Because Am > 1, this yields 

sup{ E I D(t) lm : t :=:::: 2- r} :S Am sup{ E I D(t) lm: t :=:::: 2- r+L} 

:SA~ sup{ EID(t)lm : t:::: 1} 

by recursion over r, which gives the desired result. 0 

We now establish that the structure of D that is implicit in the representa
tion (2.1) forces the process D to have a pseudo-Poissonian nature (in terms of 
cumulants) as is made precise in the following theorem. Here and throughout, we 
denote the mth cumulant and the mth central moment of a r.v. Z by Km(Z) and 
fJ-m(Z), respectively. 
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THEOREM 2.2. Suppose that D satisfies (2.1) and that, form= 1, 2, ... , 
EID(t)im is bounded fort::::_ 1. There then exist constants q, cz, ... such that 

(2.2) ED(t) =.:..!. 
t 

forO< t < 1, 

and form::::_ 2, 

(2.3) 
Cm 

Km(D(t)) =
t 

for 0 < t .:=: 11m. 

It follows that CJ = limrtl E D(t) and Cm = m- 1 Km(D(11m)). 

PROOF. We write Km(t) = Km(D(t)) and J.L(t) = KJ(t) = ED(t). For 
0 < t < 1, (2.1) implies that 

J.L ( t) = { 1 
{ J.L C t I u) + J.L (tIC 1 - u)) } d u = 2 f 1 J.L (t 1 u) d u = 2t 1 oo fL c;) d y. 

lo lo r y 

By Lemma 2.1, sup{J.L(Y): y ::::_ t} is bounded fort > 0, so that fL is first of all 
continuous on (0, 1), and therefore also differentiable on (0, 1) with 

( J.L(l))' = J.L 1(t)- J.L(l) = -2J.L(t) 
t t t2 t2 . 

Hence J.L(t) + tJ.L1(t) = 0 on (0, 1) and (2.2) follows. 
Define 

oo (iw)i 
'tjl(t , w) = log(E exp{iwD(t)l) = L KJ(t)-.1-. 

)=I J. 

The right-hand side is an asymptotic expansion in the sense that if we truncate the 
sum after r terms, the remainder is O(lw lr+l) as w--+ 0, uniformly fort::::_ to> 0. 
Of course (2.1) implies 

exp{'tjl(t, w)} = fo 1 exp{'tf!Ctlu, w) + 'tf!(tl(l- u), w)} du 

(2.4) 
{l/2 

=2 Jo exp{'tf!(tlu,w)+'tf!(tl(l-u),w)}du. 

Fix m ::::_ 2, t E (0, 11m], and assume that KJ(t) = c11t fort< 1lj and j = 
1, 2, ... , m- 1. To prove (2.3) we shall show that this implies that Km(t) = cmlt 
fort.:=: 1Im. Define n = [ml2] and note that: 

(i) if u E (nt, 112), then t1(1- u) < tlu < 11n, so that KJ(tlu) = c1ult and 
Kj(tl(1- u)) = Cj(1- u)lt for j = 1, 2, ... , n; 

(ii) if u E ((k - 1)t, kt) for some k = 1, ... , n, then tlu < 1l(k - 1) 
and tl(l - u) < 11(m- k), so that KJ(tlu) = CJult for j = 1, .. . , k- 1 and 
KJ(tl(1- u)) = c1(1- u)lt for j = 1, ... , m- k. 
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Multiplying (2.4) by 

l m-1 (iw)j l l m-1 (iw)j l 
exp - L Kj(t)-.-,- =exp -t-1 L Cj-.-,-

j=1 J. j=1 ]. 

we find 

l 00 (iw)j l 
exp ~ Kj(t)-.!-

J=m ] 

11/2 l 00 
( (t) ( t ))(iw)j 1 m-

1 (iw)jl =2 exp L Kj - +Kj ---=- -.-1--- L Cj-.-1- du 
nt j=n+l U 1 U ]. t j=n+l ]. 

n 1kt ~m-k( ( t) u) (iw)j + 2 L exp L K j - - c j- -.1-
k=l (k-1)t j=k u t J. 

m-1 ( ( ) ( ) (' )1. t t c · zw 
+ L Kj - +Kj ---=-)- _}_ -.,-

j=m-k+1 U 1 U t ]. 

+ j~ (Kjm +Kjc ~ J) (i;?j }du 
Now we expand both sides in powers of (i w) and equate the coefficients of 
(iw)m lm!. Note that in the first integral only terms containing Km contribute to 
this coefficient and that 

fkt f(tlu)du = t fk f(11y)dy = Ct 
J(k-l)t lk-l 

where C = C(k, f) is constant in t. Hence we find after some reflection that 

Km(t) = fo\Km(tlu) + Km(tl(1- u) )) du + Ct = 2 fo 1 
Km(tlu) du + Ct 

for 0 < t .::; 1 I m. 

By Lemma 2.1, Km(Y) is bounded on (t, oo), so that Km is continuous on (0, 11m) 
and differentiable on (0, 1 I m) with 

( Km(t))' = K:n(t) _ Km(t) = _ 2 Km(t) 
t t t2 t2 . 

It follows that Km(t) + tK:n(t) = 0 on (0, 1Im) and so Km(t) =emit fortE 
(0, 1Im]. D 

In view of (1.9) and (1.10), two special examples of D-processes to which this 
theorem applies are Nr + 1 and K (at, t) . Since these examples are central in what 
follows, we summarize their structure as follows . 
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COROLLARY 2.3. Form= 2, 3, ... and 0 < t s 1/m, the cumulants of N1 

and K (at, t) for 0 <as 1 are given by 

(2.5) 

1 
with Cm = -Km(Nt;m), 

m 

1 
Km(K(at, t)) = Cm ,a/t with Cm ,a = m Km(K(ajm, 1/m)) 

and E(N1) = J-i(t) = 2/t- 1, E(K(at, t)) = 2ajt for 0 < t < 1. 

In particular, this corollary shows that the variance of N1 is c j t if 0 < t s 1/2 
(with c = c2), as given previously in (1.7), and the fourth central moment is 

(2.6) J-i4(t) := E[N1 - /-i(t)]4 = c4jt + 3c2 jt2 if 0 < t s 1/4. 

The latter is needed several times in what follows . 
The main result above generalizes straightforwardly to the case of vector

valued D(t) = (Dt (t), D2(t), ... , Dr(t)). In this paper, only the bivariate case 
r = 2, is needed (in Sections 5 and 7) so we will restrict our discussion to this 
case for notational convenience. In analogy with the univariate case, multivariate 
cumulants are the coefficients in the multivariate Taylor expansion of the logarithm 
of the joint characteristic function. Thus in particular, if Z =(X, Y) is a r.v. with 
EJXlmlYln < oo for all m , n ::=: 1, the (m, n)th cumulants, Km ,n = Km ,n(X, Y) are 
defined by 

oo oo (iv)m (iw)n 
logEexp(ivX +iwY) = L LKmn----. 

m=On=O m! n! 
m+n2:1 

Clearly, the joint cumulants {Kmn} are determined by the univariate cumulants of 
v X + w Y; for l ::=: 1, 

l 

(2.7) Kt(vX + wY) = L (~ )vmwl- mKm ,l-m· 
m=O 

Now, if we take X= Dt (t), Y = D2(t) and assume that for every v, w, vD1 (t) + 
wD2(t) satisfies the conditions of Theorem 2.2 so that 

q(v, w) 
Kt(t) = Kt(vDl (t) + wD1 (t)) = for 0 < t s 1/ l, 

t 
it follows from the identity in (2.7) that the coefficients Km ,t-mU), now depending 
upon t, must satisfy Km ,t- m(t) = Cm ,t- m!t for 0 < t s 1/l for some constants 
Cm ,l-m. This verifies: 

THEOREM 2.4. Let D(t) = (Dt(t), D2(t)), t > 0, satisfy (2.1), with 
EJDt(t)jm and EID2(t)jm bounded in t ::=: 1 for each m ::=: 1. Then there exist 
constants {cmn} such that 

ClQ 
ED1(t) = -, 

t 
forO< t < 1 
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and form 2: 0, n 2: 0, m + n 2: 2, 

( ) Cm ,n 
Kmn D(t) = -

t 

1 
forO< t :S --. 

m+n 

Note that in the above, Kw(D(t)) = K1 (D1 (t)) = E D1 (t), with a similar identity 
for D2. 

3. Weak convergence of the U ( ·, s) processes. In this section, we prove that 
the stopped empirical process of the division points, U ( ·, s), as defined in ( 1.15), 
converges weakly to a nonstandard Brownian bridge, cr Eo, as s ---+ 0 in which 
the constant cr = (4ln2- 5/ 2) 112 ~ 0.5221003. [It turns out that cr 2 = c/ 2 with 
c defined in (1.7).] In the following section, we show that Un, the ordinary 
empirical process for the partition points, inherits this same limit. Consequently, 
even though the K -model is indistinguishable from the U -model with regard 
to the Glivenko-Cantelli result for division points, when one considers weak 
convergence the two cases are quite different. The K -model results in a limiting 
process that has only about half of the variation as does the limit under the 
U -model. 

Consider the definitions of the empirical processes of partition points given 
in (1.15). With Un = n 112 (Fn - F), the stopped version of the process would 
be UNs· But 

UNs (x) = (Ns) 1/ 2 { N~~x)- x }• 0 :S X :S 1, 0 < S < 1, 

= (N5 )-
112 { N 5 (x)- xNs }. 

Since s N5 ---+ 2 a.s. by (1.11 ), this process is asymptotically equivalent to U (x, s). 
But one can expand 

U(x , s) = (s/2) 112{N5 (x) -xNs} 

= (s/2) 1/2{ N5 (x)- 2:}- x(s/2) 1/ 2{ Ns- ~ }· 

Just as for the usual U -model, this representation suggests the study of the non
tied-down process 

(3.1) Z(x, s) := (s /2) 112 { N5 (x) - 2x js }, O:sx:s1,0 < s < 1, 

in terms of which U(x, s) = Z(x , s) - xZ(l , s). The proof of the following 
theorem is therefore a proof of the convergence of Z(·, s), from which that of 
U (-, s) follows directly. 

THEOREM 3.1. As t---+ 0, U(·, t)---+ L cr Bo(·), where Bois standard Brownian 
bridge and cr 2 = ~ var(N1;2) = 4ln2- 5/2 so that cr = 0.5221003 . 
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PROOF. For 0 < s < 1, introduce the notation 0 = Xso :S Xsl :S · · · :S Xs,Ns :S 
Xs,Ns+l = 1 to represent the Ns division points and write Dsi = DNsi = Xsi -
Xs ,i-1, 1 :S i :S N5 + 1, for the associated spacings. For x E [0, 1], define X 5 (x) = 
Xs ,N5 (x) and X,t(x) = Xs,N5 (x)+l• so that X 5 (x) :S x < X,t(x) are the division 
points that straddle x . Write D5 (x) = X,t(x)- X 5 (x). 

The following representation is key. For any 0 < t < s < 1, 

L N~)( (i) ) * (X- X5 (x)) 
(3.2) Nt(X) = 8 Nt/Dsi + 1 + Nt / Ds(X) Ds(X) 

where {N.(i)} are independent processes with the same laws as N., N.*O =LN.(-) 
and all of these processes are independent of each other and of N5 ( · ). Thus, 
conditionally given :f:'s = <Y(Dsi : 1 :S i :S Ns + 1) = <Y(X 1, X2, .. . , X NJ, Nt(x) is 
a sum of independent r. v.'s. More to the point is the observation that Nt (-) is 
essentially a partial-sum process, the difference being the N*-term in (3 .2). 

Our approach, suggested by (3.2), is to apply standard weak convergence results 
to this partial-sum process, and then show that the difference term is negligible. 
Actually, there are two partial-sum processes involved. The one suggested by (3 .2) 

has jumps of Ntjbsi + 1 at the times Xsi. [Remember that we will be studying these 
processes conditional on :Fs and with t = t (s) < s going to zero appropriately 
with s .] The more standard time scale for plotting partial-sum processes is to plot 
the ith sum at its variance. We will therefore first use this standard time scale to 
get weak convergence, then show that the difference between the two time scales 
converges uniformly to zero, and finally prove that the contribution due to the extra 
N* term in (3.2) is negligible. 

Write 

(3.3) 

where Ji,(s) =ENs is given in (1.6). Thus St(·; s) is a partial sum process with 

increments (t /2) 112[Ntjbsi - Ji,(t / Dsi)] plotted at Xsi. Let S7 (·; s) be the related 
partial-sum process whose increments are the same but which are plotted at the 
cumulative proportional variances Ti = (<Yf + . ·. + <Y?)/(<Yf + · · · + <YFv +1) with 

<Y? = var Ntjbsi. Before obtaining the limit of this S7(·; s) process it is ~ecessary 
to determine the limiting behavior of the time scale given by { Ti}. For this, we first 
need to complete the evaluation of v(u) = var(Nu). 

From (1.7) and the definition of Nu, it is known that v(u) = 0 if u :=:: 1 and= cju 
for 0 < u :S 1/2 where c = v(1/2)/2. It remains to compute v(u) for 1/2 :S u < 1 
and thereby evaluate c. 

LEMMA 3.2. For 1/2 :S u < 1, the distribution of Nu is given by 

(3.4) P[Nu > k] =l'u E.(ln ~y I j!= zk P[.r>( In D "'k l 
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fork= 0, 1, 2, ... where :P(A.) denotes a Poisson r.v. of mean A.. Moreover, the 
variance of N u is 

(3.5) 1 ( 1 ) 4 v(u)=- 8ln-+2 --+2, 
u u u2 

In particular, c = v(1/2)/2 = 8ln 2- 5. 

1 
-<u<l. 2-

PROOF. For 1/2:::: u < 1, the splitting points X1, X2, ... , XNu never return to 
an interval they have left, so that as in the proof of Lemma 2.1, 

P[N, > k] = PLG V; > u] 
where V1, V2, ... are independent Unif(l/2, 1) r.v.'s. Hence the -ln Vi are 
distributed as independent standard exponential random variables Zi, each 
conditioned on being smaller than ln 2. For 1/2 :::: u < 1, L~=l Zi < ln(1/u) 
implies zi < ln(1/u):::: ln2 fori= 1, ... 'k and 

P[N, > k] = P (~ Z; <In~ ~ max Z; <ln2) 

= 2k P(t zi <ln.!.) 
i=l u 

which proves (3.4). This in tum implies 

oo oo (ln 1 I u) j j 
EN?;= L(2k + 1)P[Nu > k] = U L .1 L(2k + 1)2k 

k=O j=O } . k=O 

00 . 
(ln 1/u)l . 

=uL ., {(2j-1)21+1 +3} 
j=O j. 

= ~ ( 8ln ~ - 2) + 3. 

Since ENu = 2ju- 1 by (1.6), the expression (3.5) follows by direct calculation. 
D 

To establish the weak convergence of the s; ( ·, s) partial-sum process, it suffices 
[cf. Gihman and Skorokhod (1974), page 411] to show [with Es and Ps denoting 
the conditional quantities, E(-IFs) and P[-IFs], respectively, that 

Ns+l 

(3.6) }~ L Est{ Ntjbsi - t-L(tj Dsi) }2Jl.[tl f21N,jb -J.t(t/D5;)I > s] = O, 
i=) Sl 
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for a suitable choice oft = t (s) < s going to zero with s. By the Cauchy-Schwarz 
and Chebyshev inequalities, the sum in (3.6) is bounded by 

Ns+l 

(3 .7) L t{tL4(t/Dsi)tv(t/Dsi)s - 2 }112 

i=l 

in which /L4(u) = E[Nu - fL(u)]4 and v(u) = var(Nu). By definition and by 
Theorem 2.2, u2 /L4(u) and uv(u) are bounded for all u > 0. Hence the bound 
in (3.7) is 

Ns+l 

(3.8) s- 1 L D;(2 {(t/Dsi) 2tL4(t/Dsi)} 112 {(t/Dsi)v(t/Dsi )} 112 :S Co(MN,) 112 

i=l 

for some constant Co where Mn is the maximum spacing at the nth stage. But 
by (1.13) this bound goes to zero, which establishes (3.6) and hence the desired 
weak convergence result. The limit process must be a mean zero Brownian 
motion and it remains only to determine its variance at x = 1. By the discussion 
following (3.3), 

Ns+l 

(t/2) 112 L {Ntjbsi -tL(t/Dsi)}=S;(l,s). 
i=l 

By (1.7) and (3 .5) the (conditional) variance of this sum, with a 2 = c j2, is equal 
to 

(3.9) 

2 1 " 2 =a +- ~ Dsi{(t/D5i)v(t/Dsi)-2a }. 
2 i : D5;S:2t 

But since uv(u) is bounded for all u > 0 (see Theorem 2.2) and since 2: {Dsi: Dsi :S 
2t} :S 2tK(2t, s), the second term in (3.9) is bounded for some constant C by 
CtK(2t , s) = C(f)sK(:ts,s). By (1.14) this is 0(1) with probability 1 and, 
moreover, is a(1) if t = o(s). This proves that when t 1 s --+ 0, var s;(l, s)--+ a 2 = 
c/2 = v(1/2)/4 = 4ln2- 5/2 by Lemma 3.2. Thus 

(3.10) 
L s; (-, s)--+ a B(-) 

ass--+ 0 with t = o(s). 
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REMARK. Let us clarify how the unconditional weak convergence follows 
from conditional applications of limit theorems. Our approach is to use two 
parameter values, t < s with t = t(s), and express a process, X 1(-) say, in such 
a way that conditionally given :Fs a limit result holds. For example, if g is any 
bounded continuous real-valued function defined on the range of X1(-), suppose 
E{g(X1(·))i:Fs}-+ Eg(X(·)) a.s. Then by Lebesgue's dominated convergence 
theorem, Eg(X1(·))-+ Eg(X(-)). This example suffices for our purposes, since 
it shows how conditional weak convergence a.s. proves unconditional weak 
convergence; all of our examples are for D[O, 1] processes with limits in C(O, 1). 

We now compare the time scales of S1(-; s) and St(·; s). By (3.3), the 
increments of S1 (·; s) are the same as for St(-; s) but they occur at Xsi rather 
than at ri . The differences between the two time scales are 

j 

X sj- TJ = L{Dsi- v(t/Dsi)/a}} 
i=l 

where a}= a[+··· + a~s +l· Note that ta} /2 is equal to (3.9) and therefore 

to} /2 = a 2 + o(l) a.s. if t = o(s), as was shown following (3.9). 
By means of the same partition used in (3.9), 

(3.11) 
:s (ta}) - 11ita}- 2a2 1 + 2a2 L Dsi 

Dsi:"::.t 

:S o(l) + Co2tK(2t, s) 

for some constant Co. Thus as before, (1.14) implies that this converges a.s. to zero 
ass-+ 0 provided t = o(s). Since this proves that the difference between the time 
scales converges uniformly to zero with probability 1, it follows from (3.10) and 
the above remark that 

(3 .12) 
L 

StC s)-+ a B(-) 

ass-+ 0 with t = o(s). 
It remains to show that the extra N* term in (3.2) and the centering differences 

of the Z ( ·, t) and S1 (-; s) processes are asymptotically negligible. Observe first that 
theN* term is bounded by 

N5 (x) 
(i ) C) 

sup N1(x)- "(Nt/Ds,· + 1) = max {N1;1o. + 1} := Ms 1• 
L._.; l _< i _< Ns+l 5 1 ' O:::c_x::::_l i=l 

(3.13) 
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[The difference on the left-hand side is actually nonnegative by (3.2) and 

approaches Ntjbs, i+l + 1 as x /' Xs,i+1·] To show that t 112 Ms,t---+ 0 in probability, 
given :F;., compute 

N, +l 
p [M > st-112] < """ p [N(i) + 1 > st-1/2] s s,t - L....- s t/ Dsi 

i=1 

:S (N5 + l)P[Nt js + 1 > st-112] 

since each Dsi :S s. Thus in particular, each Ntjbsi is stochastically (given :Fs) 

less than Ntis · Suppose tjs :S 1/4. Then by (2.6), Markov's inequality with fourth 
moments gives 

P[Nt js + 1 > st-112] :S !J-4(tjs)j(st- 112 - 2sjt)4 

= {qsjt + 12a4s2 jt2}j(st-112 - 2sjt)4 

so that 

_ 112 c4t + 12a4s 
P5 [Ms ,t > st ] :S s(Ns + 1) (s _ 2sjt1! 2)4 . 

Since s Ns ---+ 2 a.s. by (1.11), this bound converges to zero a.s. provided s = 
o(-J[) . In view of (3.12) we also need t = o(s), so choose t = s312. In this 
case then, this proves that almost surely, t 112 Ms, t ---+ 0 in probability conditionally 
given :F;.. 

Now by (3.1)-(3.3) and (3.13), 

(3.14) 

sup IZ(x, t)- St(x; s)l 
O_:::x _::: 1 

Ns 
:S t 1/ 2 Ms ,t + t 112 L I~J-(l / Dsi) + 1 - 2Dsi/ tl + 2t- 112 MN5 

i=1 

where we have written x = L~~x) Dsi + (x- Xsi) and used lx- Xsil :S D5 (x) 
and so maxi lx - Xsi I :S maxi Dsi = MNs. We have just shown that the first term 
is op(1) a.s. if s = o(-J[). By (1.13) the third term is o(l) under the same proviso. 
By (1.6) the middle term is bounded by 

t 112 L 12D5i/t- 11 :S t 112 K(t, s). 
i : Dsi :'St 

Since t < s < 1, E{t 112K(t,s)} = 2t312s - 2 by (1.8). Thus if t = o(s413) this 
converges to zero and so the middle term on the right-hand side of (3.14) converges 
to zero in probability. We have thus established that if s = s(t) = o(-J{) and 
t = o(s413), as is the case if s = t213 for example, then the left-hand side of 
(3.14) is bounded by the sum of three terms, T1 (t) + T2(t) + T3(t) say, in which 
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T2 and T3 are measurable :Fs and each converge in probability to zero, while with 
probability 1, T1 converges to zero in probability conditional on :Fs . It follows 
that T1 also converges to zero in probability, thus showing that Z(·, t) and Sr(; s) 

converge weakly to the same limiting process when s = t 213 . In view of (3.12) the 
proof of Theorem 3.1 is complete. D 

An important consequence of the above proof is that it gives the limiting 
distribution for Nr. Since Z(1, t) = (t/2)112{Nr- 2ft}, we have the following 
corollary. 

COROLLARY 3.3 . As t---+ 0, (t/2) 112{N1 - 2/t} converges in law to a 
N(O, a 2) random variable, with a= 4ln2- 5/2 as in Theorem 3.1. 

4. Weak convergence of the Un process. As discussed at the start of 
Section 3, the stopped process U ( ·, s) is asymptotically equivalent to U Ns ( · ), the 
regular empirical process of the division points computed at the random sample 
size Ns. We show in this section that the process U n inherits from U ( ·, s) and U Ns 

the same weak convergence. Thus the limiting process for Un, which is Bounder 
the U -model, becomes aBo for the K -model. 

Random sample size central limit theorems were first considered in a general 
setting by Anscombe (1952) who studied the case of sums of independent r.v.'s. 
The weak convergence of uniform empirical processes under random sample size 
was studied in Pyke (1968); see also Csorg6 (1974) and Klaassen and Wellner 
(1992). The situation here is quite different in that we will deduce the convergence 
of the fixed sample size process from that of the random sample size case. 
Of course, one can reverse this formally by defining random times sn so that 
Un = U(·, Sn); simply use Sn = Mn. 

The result to be proved is the following: 

THEOREM 4.1. As n ---+ oo, Un ---+ L aBo, where Bo is standard Brownian 
bridge and a= (4ln2- 5/2) 112 = 0.52210. 

PROOF. The proof essentially is by moments but entails a coupling argument 
in a critical spot. Some technical results are needed that are presented first in a 
series oflemmas. The first three involve the cumulants Km and central moments /Lm 

of differences N s - Nr. 

LEMMA 4.2. 

(4.1) 

Form= 2, 3, ... and 0 < s < t::::; 1/m, 

1 
Km(Ns - Nr) = Km(Ns jtm- Nl ;m)-. 

mt 

PROOF. It is easy to check that D(t) =Nat - Nr for 0 <a < 1 satisfies the 
relationship (2.1). Thus (4.1) follows from Theorem 2.2 with a= sft . D 
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LEMMA 4.3. For every 0 < c < 1 and m = 2, 3, ... , there exists a positive 
number Cm (c) such that 

(4.2) 

(4.3) 

IKm(Ns- Nt )l :':: Cm(c)(~- ~) 
IMm(Ns- Nr)l 

for ct :':: s < t < 1, 

for ct :':: s < t < 1. 

PROOF. First take 1/m :':: t < 1. Let M = K((s, t] , t) := K(t, t)- K(s, t), be 
the number of intervals with length l E (s , t] at the first time when all intervals are 
less than or equal to t. Since [M = 0] = [Ns - N 1 = 0] and Ns - N 1 :=::: 0 a.s., 

P(M > 0) = P(Ns- N 1 ::::: 1) :':: E(Ns- N 1) = 2(1/s- 1/t). 

Now, for l E (s , t] , ljt::::: sjt::::: c and since M :':: 1/s a.s., 

M [1 /s] 
( ") ( ) 

Ns- Nt :':: L Ns}t :':: 1l(M> 0} L N/ 
j=1 j=1 

where the N(j) are independent copies of N which are also independent of M. 
Hence, fork= 1, 2, ... , m and 1/m :':: t < 1, Minkowski's inequality implies 

k (1 1) k k E(N5 -N1) :'::2 -;-[s-ENE 

(m)m m(1 1) ~ (1 1) :'::2--; ENE -;-[ =cm(c) -;-[, 

where Zm(c) is finite since EN'; < oo [see van Zwet (1978)]. For t :=::: 1/m, 
1/s -1/t :':: 1/ct :':: m/c, and this yields (4.2). Insertion of this into (4.1) suffices 
to cover the case of t < 1/ m so that 

for c t :':: s < t < 1. 

But this yields (4.3) for some cm(c) > c:n(c) and the proof is complete. D 

Recall that N1 (x) denotes the number of points among X 1, ... , X Nr which fall 
in (0, x], 0 :':: x :':: 1. Suppose that among the N1(x) points in (0, x], ~ is the 
first point in [ x - t, x] and that we delete all points in ( ~, x] that follow it. Let 
N;1x denote the number of points remaining. Clearly N 1(x) :=::: N:;x and N:;x is 
distributed like N1;x· Note that for fixed x the processes {N:;x :0 < t < x} and 
{ N1 jx : 0 < t < x} also have the same distribution. 

Furthermore, (N1(x)- N;1x ) is stochastically smaller than N1;2- 2. To see this, 
note that among the points X 1, . .. , X N,, the first points ~ and~~ in [x - t , x] and 
(x, x + t], respectively, plus all points in(~,~') form a Kakutani splitting of the 
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interval (x - t, x + t) into intervals of length .::; t, which is half the width of the 
interval. 

Summarizing, we have a process N:;x distributed like Nt;x and such that 

(4.4) Nt(x) = N:;x + R(x, t) 

where, for every x and t, 

st 
(4.5) 0.::; R(x, t).::; N1 ;2- 2. 

LEMMA 4.4. For every c > 0 and m = 2, 3, ... , there exists a positive number 
Cm(c) such that 

(4.6) I~Lm(Ns(X)- Nt(x))i :S Cm(c){ (~- ~)m/2 + 1} 
for ct .::; s < t < x .::; 1. 

PROOF. In view of (4.4) and (4.3), 

I ~Lm(Ns(X)- Nt(x)) i 

= I ~Lm(N;;x - N:;x + R(x, s)- R(x, t))l 

= f ( 7 )1-ik(R(x, s)- R(x, t) )1-im-k(N;;x- N:;x) 
k=O 

.::; Cm(c ){ (~- ~) m/
2 + (~- ~)} + I~Lm(R(x, s)- R(x, t)) l 

m-2 

+ L ( 7) I~Lk(R(x, s)- R(x, t)) icm-k(c) 
k=2 

X {(~-~)(m-k)/2 +(~-~)}· 
Now (4.5) implies that 

I~Lk(R(x, s)- R(x, t))l::: 22k-l{ EIR(x, s)lk + EIR(x, t)lk}::: 2k E(Nt ;2- 2)k 

and since N1; 2 has finite moments of every order, the proof is complete. D 

LEMMA 4.5. For every 0 < a < A, 

lim 
n---'>00 

sup 
O_::=:x _::=: l 

an l/2_::=:1r - l-n / 2I.::=:An I/2 

I N2;n(x)- Nr(X) _ xl = O 
n- 2/r 

a.s. 
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PROOF. Fix x E (0, 1]. Consider two sequences sn and tn such that 

c max(sn, tn) .:=:: rnin(sn, tn) < max(sn, tn) < x .:=:: 1 and n-8 1 s~- t I-+ oo for some 
positive c and 8. Then ( 4.6) implies that for every m = 1, 2, ... , 

P( INsn(x)- Ntn(x)- EN5 11 (X) + ENt11 (x)l:::: n -814 ~~- ~I) =o(n- am /4 ) 

as n-+ oo. Hence, by choosing m > 418, 

. INsn(x)- Nt11 (X)- ENs11 (X) + ENtn(x)l 
hm =0 a.s. 
n lxlsn -xltnl 

For s , t < x, (4.4), (4.5) and (1.6) insure that I E(N5 (x)- Nt(x))- 2x Is+ 2x I tl .::::: 
E(N1;2- 2) = 1 and hence 

(4.7) 
. Nsn (x)- Nt11 (x) 

hm = 1 
n---+ oo 2x I Sn - 2x I tn 

a.s. 

for every pair of sequences satisfying the above requirements. 
Take sn = 21n and definer;;}= nl2 + k1}n 112 where 

and 1J is a fixed (small) positive number. For each k E 1],, sn = 21n and tn ,k satisfy 
the requirements for (4.7), so 

1. IN2;n(X)-Ntnk (x) I O 1mmax · -x= 
n---+oo kEf!, n - 21 tn,k 

(4.8) a.s. 

Let Tn be a sequence with an 112 .:=:: I r; 1 - n 121 .:=:: An 112 . Then there exist 

kn, kn + 1 E 1f, such that r;;-,L .::::: r; 1 .::::: t;;:k,+1. Now r;;:1,+1 - r;;:k, = 1Jn 112 and 

lt;;:k, - nl21:::: [ai1J]1Jn ll2, so for 1J.::::: al2, 

1. I Nrn (x)- Ntn kn (x) I 1msup , 
n n- 21tn,k11 

(4.9) 

1. INtnkn+l(x)-Ntnkn(x)l 1 < 1msup ' ' --
- n 21tn ,k11+1- 21tn ,k11 [ai1J] 

21] 1. I Ntn k+ 1 (x) - Ntn k (x) I < - 1msupmax · ' 
-a n kEf!, 21tn ,k+1-2ltn ,k 

21]X 21] 
< - < - a.s., 

a a 

since the pair of sequences tn,k and tn ,k+l satisfy the requirements for (4.7). Also 

. I n-21rn I 1 21] (4.10) hmsup - 1 < -- < -. 
n n- 21tn,kn - [a!IJ] - a 
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Combining ( 4.8)-( 4.10) and noting that 17 > 0 may be taken arbitrarily small, we 
find that for fixed x E (0, 1], 

(4.11) lim sup IN2;n(x)-N,n(x) -xi=O a.s. 
n--+oo 1 n - 2/r an1 /2_:sirn- - nJ21.:SAnl/2 n 

Since (N2;n (x)- N,n (x))/(n- 2/rn) is nondecreasing in x and equals 0 for x = 0, 
a standard argument completes the proof. D 

Let n(x) = 2:::7=1 Jl.(O,xJ(Xi) be the number of points among X 1, ... , Xn that fall 
in (0, x ], so that Fn (x) = n~) is the empirical d.f. of X 1, .. . , Xn. 

LEMMA 4.6. As n ---7 00, 

in probability. 

PROOF. We have 

sup n 112IFN2;n(x)- Fn(x) l ---7 0 
O_:sx_:s1 

n1 121FN2;n(x)- Fn(x) l = n1 /2IN2;n -niiN2;n(X) -n(x)- Fn(x) l. 
N2;n N2;n- n 

By (1.3), (1.6), (1.7) and (1.11), it suffices to show that 

(4.12) -1/21N I I N2;n(X)- n(x) I P 0 n 21 n - n sup - x ---7 . 
O_:sx_:s1 N2;n - n 

The definition of Mn following (1.1) implies thatNMn = n , so NMn (x) = n(x) . 
Applying Lemma 4.5 twice, once for general x and once for x = 1 and substituting 
r = Mn, we find that, for every 0 <a <A, 

1. I N2;n(x)- n(x) Ill ( - 1/ 2IM- 1 121) O 1m sup - x [a, A] n n - n = 
n--+ ooo_:sx _:s l N2;n- n 

a.s. 

and since n-112IN2;n- nl is bounded in probability by (1.6) and (1.7), we have, 
for every 0 < a < A, 

_ 112 IN2;n(x)-n(x) I 
n IN2;n- nl sup - x 

O_:sx_:s1 N2;n - n (4.13) 

We have {Mn > t} = {N1 > n} and hence, if n- 2ft+ 1 > 0 and 0 < t < 1, 

( Nt-ENt n-2/t+1 112) 
P(Mn > t) = P > 112 t 

a(N1) c 
(4.14) 

c 
< ------:::-
- t(n-2ft+1)2' 
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and therefore, for sufficiently large n, 

P(n-112(M;;1 - nj2) <-A) 

= P(M > (n/2- Anl /2) - l) < c(n/2- Anl /2) < _c_ . 
n - (2An 112 + 1)2 - 8A2 

401 

This probability can be made arbitrarily small by taking A large and the same is 
true for P(n- 112(M;; 1 - n/2) > A), so (4.13) can be extended to 

-1 / 2 I N2;n(x)- n(x) I n IN2;n-nl sup -x 
O~x~ l N2;n - n 

(4.15) 
x 1L[a.oo)(n- l/21M;;1 - n/21) ~ 0. 

Finally we consider the set B = {n-1121M;1 - n/21 sa}. Writing s,:;- 1 = 

(n/2 + an 112) and t,:;- 1 = (n/2- an 112) we see that on the set B, Nrn s n s Nsn 
and since Sn < 2/n < tn, we have IN2;n- nl S INsn - Nrnl on B. Hence, by 
Lemma 4.3, we have for sufficiently large n and any 8, s > 0, 

P(n - 1121N2jn- nl sup I N2 jn(X)- n(x) - xi11B::: 8) 
O~x ~l N2;n - n 

< P(n-1121N - N I> 8) < E(Nsn - Nrn)2 (4.16) _ Sn tn - - 82n 

2c2(1/2)an112 + 16a2n a 2 
< <17- < s - 82n - 82 - ' 

if we take a sufficiently small. Together (4.15) and (4.16) imply (4.12) and the 
lemma. D 

To complete the proof of Theorem 4.1, it suffices now to take s = 2 j n in U ( ·, s) 
to see that 

{ (n/2) 112 (FN2;n (x)- x); 0 < x < 1} ~aBo 
by Theorem 3.1. It then follows from Lemma 4.6 that the proof is complete. D 

5. Weak convergence of the W(o, t) and V(·, t) processes. We now 
prove that the stopped empirical processes of the relative spacings, V (-, t) , 
converge weakly on [0, 1] to a Gaussian process V 0 as t -+ 0. The proof 
concentrates in fact upon establishing the weak convergence on [0, 1] of the related 
processes W ( ·, s) of which the V -processes are tied-down versions; see ( 1.17), 
( 1.18) and ( 1.20). The proof is based on a representation of W (-, t) as a sum of 
independent processes. As in Section 3, let :Fs = a(Dsi: 1 s i s Ns + 1) be the 
a -field of the partitions at level s . For any 0 < t < s < 1, we may write 

Ns+l 

(5.1) K(x, t) = L K(i)(xj Dsi, tj Dsi) 
i=l 



455

402 R. PYKE AND W. R. VAN ZWET 

where K (i), 1 :=: i :=: Ns + 1, are independent copies of K that are independent also 
of :F;,. From this and the definition of W(·, t) in (1.18), we get the following key 
representation of W (-, t) as a sum of conditionally independent processes, namely, 
for any 0 < t < s < 1, 

Ns+1 
(5.2) W(-, t) = L DI(2w<i)(·, tj Dsi) 

i=1 

in which w<i), 1 :=: i :=: Ns + 1, are independent copies of W that are also 
independent of :Fs. The visual simplicity of this representation is due to the 
definition (1.18) in which the centering for (rj2)K(yr, r) is chosen to bey rather 
than its mean when y > 1 orr ~ 1. Since we are only concerned with the processes 
W(y, t) for 0 :=: y :=: 1, the case of y > 1 plays no role in (5.2), but since tj Dsi 
may exceed 1, the case of r ~ 1 does. When only terms centered at expectations 
are used, the expression (5.2) becomes 

(5.3) 

W(y, t) = L D;(2wU)(y, tj Dsi) 
i: Dsi>t 

+ (tjs) 112W(ytjs, s) + 2y(sjt) 112 j 1 zW(dz, s), 
t j s 

for 0 :=: y :=: 1 and 0 < t < s < 1. It is in this form that the recursion is used in 
Section 6. Note that the full integral over [0, 1] in the above is zero. 

We first use the representation (5.2) to prove the limiting normality of the 
finite-dimensional distributions. We do this by applying the Lindeberg central limit 
theorem to the sum in (5.2) conditionally given :F;, . [The remark following (3.10) 
should be noted for this section as well.] Since we need to compute moments using 
Theorem 2.2, we split the summation of (5 .2) into two parts according as t / Dsi > 
1/4 or :S 1/4. Write W(-, t) = ws-c, t) + ws+c, t), where ws- represents the 
summation over those i for which Dsi < 4t. Recall from (1.8) that for 0 :=: y :=: 1 
and 0 < u < 1, EW(y, u) = 0. Then, conditionally given :F;,, ws- and Wt are 
independent and ws+ has mean zero, so that for 0 :=: y :=: 1 and 0 < t < s < 1, 

vars{W(y, t)} = vars{Ws-(y, t)} + Es[Wt(y, t)]2 , 

where vars, Es, Ps indicate the conditional quantities given :Fs. Also, for 
0 < t :=: 1/2 and m = 2, Corollary 2.3 implies 

+ 2 "' 2 1 "'+ 1 (5.4) Es[Ws (y, t)] = ~ DsiEs[W(y, t/Dsi)] = 2c2,y ~ Dsi :S 2c2,y 
i: Dsi~4t 

where c2,y is the constant of Corollary 2.3 for m = 2 and a = y, and z:=+ denotes 
summation over {i: Dsi ~ 4t}. [The actual covariance function for the W(·, t) 
processes, and hence for the limiting W ( ·) process, is derived in (7 .1 0) where in 
particular, c2,y = a(y, y) with a defined in (7.9).] 
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Next we deal with w-(y, t). Since E5 [W(y, tl Dsi)] = 0 whenever Dsi > t, we 
find in view of (1.8) and (1.14) that with probability 1, 

(5.5) 
=(t12) 112 L [E5 K(ytiDsi,tiD5i)-(2ylt)Dsi] 

i: Ds; St 

:S (t12) 112 L 1 + y(21t) 112 L Dsi 
i : Ds; S yt i: Ds;St 

To handle the variance of w- (y , t), observe first that W (y , u) is nonrandom when 
u ::::_ 1. Thus 

(5.6) 

var5 {W-(y, t)} = L Dsi var5 {W(y , tl Dsi)} 
i : D5 ; <41 

< L DsiEs[W(y,tiDsi)f 
t < D5 ;<4t 

:S 4tK(4t, s) sup E[W(y , u)]2 . 
1/ 4<u<l 

By (1.14), tK(4t , s)--+ 0 a.s. as s--+ 0 if t = t(s) is chosen so that tis--+ 0. 
Moreover, the quantity C(y) := sup114< u< 1 E[W(y , u)]2 is finite, since, for 114 :S 
u < 1, 

E[W(y, u)]2 :S E[~K2 (uy, u)] :S ~E(Nu + 1)2 :S ~E(N1;4 + 1)2 

which is finite; see van Zwet (1978). Thus 

ass--+ 0 and t3 ls4 --+ 0. 

Consider now the limiting finite-dimensional distributions of W5+(·, t). The 
Lindeberg criterion (conditional given :Fs) for the one-dimensional case involves 

Lt (8) := L + Dsi Es {[w<i) (y' t I Dsi) ]2Jl.[Dl{2iWUl (y ,t / Dsi )l2: t: B/ / 2]} 

for 8 > 0 and B1 = var5 (Wt(y , t)). From Holder's and Chebyshev's inequalities 
we obtain 

"'+ { (i) 4 1/ 2 (i) 1/ 2 } 1/ 2 Lt(8) :S~ Dsi Es[W (y,tiDsi)] Ps[Dsi IW (y,tiDsi)l ::::_8B1 ] 

:S L+ D;( 2 { Es[W(i) (y, t I Dsi) ]4 Es [WU\y, t I Dsi) ]2 } 112/ 8B1
112. 
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Since t I Dsi :::; 1 I 4, the moments in the summation are bounded by constants 
(for fixed y) by Corollary 2.3. Also, Br converges to the nonzero constant 
C2,yl2 by (5.4) and the sentence following (5.6). Since each Dsi :::; s by 
definition, it follows from the above that Lr(c)l Br = O(s 112) = o(l) ass-+ 0 
provided only that t -+ 0 as well. Thus Lindeberg's condition is satisfied, and 
therefore the one-dimensional distributions of W ( ·, t) converge to those of W ( ·). 
For higher dimensions, the proof is similar requiring only that finite linear 
combinations I: a j W (y j, t) be considered. We have therefore established the 
following lemma. 

LEMMA 5.1. As t -+ 0, the finite-dimensional distributions of {W (y, t): 0:::; 
y :::; 1} converge to those of W(·), a mean zero Gaussian process on [0, 1] with 
covariance given in (7.9) and (7.10). 

To complete the proof of weak convergence, we will apply a standard 
sufficient condition for tightness in D[O, 1] that is based on a moment bound for 
adjacent increments of the process; see Theorem 15.6 of Billingsley (1968). The 
appropriate bound is given in the fo1lowing lemma. (We gratefu1ly acknowledge 
our appreciation to Christian Genest for pointing out an error in an earlier attempt 
to prove this result based only on a moment bound for a single interval.) 

Write J1 = (x, y], h = (y, z] for 0:::; x < y < z:::; 1, and recall that we write, 
for example, W(J1, t) = W(y, t)- W(x, t). The adjacency and interval structure 
of J1 and h is not required in the moment bound that we now derive, and so we 
state it for general disjoint Borel sets. Observe that although K ( ·, t) and W ( ·, t) are 
defined as point functions, since they are clearly equivalent to (signed) measures, 
this enables us to write K ( B, t) and W ( B, t) unambiguously for any Borel set B 
as well as for intervals. 

LEMMA 5.2. There exists a constant C such that for all t E (0, 1] and any 
disjoint Borel subsets It and h of[O, 1], 

(5.7) E[W(J1, t) W(h, t)]2 :S Cll1llhl. 

PROOF. Assume first of all that 0 < t:::; 114. [The reader should note that for 
its application to tightness, the bound of (5.7) is only needed fort in some interval 
of the form (0, to).] By applying Theorem 2.4 to the pair Di (t) = K (t Ji, t), 
i = 1, 2, we get for j, k = 0, 1, 2, that 

(5 .8) 
1 

for 0 < t < -. -4 

This joint cumulant may be expressed in terms of central moments; specifically, 



458

KAKUTANI INTERVAL SPLITTING 

a straightforward computation shows that if EX = p,, E Y = v, 

K2,o(X, Y) = O'i, 

(5.9) 
Ko,2(X, Y) = 0'~, 

K1,1 (X, Y) = Cov(X, Y) and 

K2,2(X, Y) = E(X- p,)2(Y- v)2 - O'i(}~- 2[Cov(X, Y)]2. 

405 

Thus, using W(J1, t) =X and W(h, t) = Y, this means by (1.8) and the scalar 
homogeneity evident in (5.9), that for 0 < t:::; 1/4, 

(5.10) 

E[W(J1, t) W(h, t)f = (~) 2 
K2,2(t) + E[W(J1, t)f E[W(h, t)]2 

+ 2{EW(J1, t)W(h, t)} 2 

= (~) 2 {K2, 2 (t) +K2,Q(t)KQ,2(t) +2[K1 ,1(t)f} 

t 1 1 2 
= 4c2,2 + 4C2,QCQ,2 + 2c1,1, 

with the last equation following from (5 .8). It remains, then, to obtain bounds for 
the constants c22, c2o and c11 in terms of llrl and lhl so as to verify (5.7) when 
0 < t:::: 1/4. 

By definition, and in view of (5.9) and (1.21), it follows that for any 0 < t:::; 1/4, 

C2,2 = fK2,2(t) = fK2 ,2(D1 (t), D2(t)) 

:::; tE({D1(t)- ED1(t)}2{D2(t)- ED2(t)}2) 

(5.11) 
= tE({D1 (t)- 2t-111II}2{D2(t)- 2t-11hl}2) 

:::; t( E{D1 (t)D2(t)}2 + (2t - 11111)2 E[D2(t)f + (2t - 11hl)2 E[D1 (t)]2 

+ 16t-21lrllh1E(Dl(t)D2(t)) + 16t-4 1111 21h12) 

:::; tE{D1(t)D2(t)}2 + Ct{IJriE[D2(t)]2 + lhiE[D1(t)]2 + llrllhl} 

for some constant Ct depending on the chosen t but not on the Ji 's. For this, recall 
that Di (t) :::; (Nt + 1) and Nt has finite moments by Lemma 2.1. Thus to obtain 
the desired bound for c2,2, it suffices to bound E{D1(t)D2(t)}2 and E[Di(t)]2 

appropriately for some value oft:::; 1/4. To bound the other two terms of (5.10) 
observe first that by Cauchy-Schwarz, cf, 1 :::; c2,oco,2· Hence it suffices to establish 
an appropriate bound for the right-hand side of 

c2.0 = tE { K(tft. t) _ ~~111 r:::: tE[K(tl1. t)]2 

for some 0 < t:::; 1/4. Such bounds are contained in the following: 
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LEMMA 5.3. For any Borel set 1 c [0, 1], 0 < t < 1 and k = 1, 2, ... , 

(5.12) E[K(t1, t)]k::::; 2ki1IEN1k, 

and for any disjoint Borel sets 11 and h in [0, 1] and 0 < t < 1, 

(5.13) E[K (t 11, t)K (t h, t)]2 ::::; Clh llhiE N( 

for some constant C. 

PROOF. The first inequalities are the simplest to prove since they involve only 
one set 1. (Although only the case k = 2 is needed here, we give it for general k 
since this requires no new ideas.) For this single 1, write D (t) = K (t 1, t). We use 
the representation 

N, 

0::::; D(t) = I>/j 
j=l 

where the r. v. 1J j equals the number of new spacings with length in t 1 that originate 
with the jth splitting, which occurs at X j. Since lJj = 0, 1 or 2, we have for any 
k :::: 1 that 

[ 
N1 ] k oo oo ( k ) 

E[D(t)]k = E L lJj = L ... L E n lJj;:n.[N,~max; j;] 
j=l j[=l jFl i=l 

00 00 

::::; 2k- l L · · · L E(1Jmaxj;:ll.[N1 ~maxj;]) 
j]=l .ik=l 

00 

= 2k- l L (/- (j- 1)k)E(1J_;:ll.[N1 ~j]) 
j=l 

00 

= 2k-l L (/- (j - 1)k) P[Nt :::: j]E[l]j I Nt :::: j]. 
j=l 

On the event [N1 :::: j], X_; splits an interval whose length exceeds t. Hence, since 
the splitting is done uniformly, E[1JjiN1 :::: j]::::; 2111 and so, for any 0 < t::::; 1, 

00 

E[D(t)]k::::; 2kl11 L / P[Nt = j] = 2ki1IENtk· 
j=l 

To prove the second inequality (5.13), let lJij equal the number of the two new 
spacings that originate with the ith splitting, whose lengths are in t 1_;. Thus, each 
lJij E {0, 1, 2}, and 

Nr 00 

(5.14) D_;(t) = K(t1j, t) = L1Jij = L1Jij:ll.[Nr~il· 
i=l i=l 
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Recall that Mn is the maximum spacing after n splittings. Write 

E K 2(t h, t)K2 (t h. t) 

(5.15) 

Set 

(5.16) 

00 00 00 00 

=ELL L L 1Jit11kt11j21JL21l[Nt?:.max{i, j ,k,l)] 
i=1 k=1 j=11=1 

00 

:':: 4 L L L (i 2 - (i- 1)2)(/- (j- 1)2)E(rJil 'IJj21l[N1 ?:.n])· 

n=l i~n j~n 
iVj=n 

tlt ( tlt ) A;=--U 1---
M;-1 M;-1 

B j = _.!!_}:_ U ( 1 - _.!!_}:_) , 
Mj - 1 Mj - 1 

and 

407 

where for J C lR and a, bE IR, a- bJ ={a- bx: x E J}. Note that the measures 
of A; and B j satisfy 

(5.17) 

for all i and j. By definition, 

(5.18) 
'IJml = 11[(1-Um)Mm- JEtli] + 1l[UmMm- 1Etli] 

S 21J.[VmE(tll/Mm-t)U(l-tlJ/Mm-J)] = 21J.[UmEAm]• 

with a similar bound holding for 1Jm2· Substitution of this into (5.15) yields 

E K 2(t h, t) K 2 (t h, t) 

(5.19) 00 

:':: 64 L L L ij P[U; E A;, Uj E Bj, Nr ::=: n]. 
n=l i~n j~n 

iVj=n 

There are two cases to consider in evaluating the inner summations of ( 5 .19), 
namely, i = j = n and i < j = n (with i = n > j being similar). 

Consider i = j = n, for which the summands involve Ann Bn. Because of the 
disjointness of It and h, it follows from their definitions in (5.16) that 

={(-t II)n(1--t h)}u{(-t h)n(1--t 11)}. 
Mn-1 Mn-1 Mn-1 Mn-1 
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Notice that the two sets in parentheses are disjoint and have the same Lebesgue 
measure. Thus 

P[Un E Ann Bn, Nr ~ n] 

= 2P [ U n E M~-l { l1 n ( M:-l - h)}, Mn - l > t] 
(5.20) 

= 2E(M~-l 111 n ( M: - l -h) ln[M11 _ 1>tJ) 

:S 2£ (Ill n ( M:-l -h) ln[M11 _ 1 >t]). 
However, for any v > 1, 

the convolution of two indicator functions. By Fubini, 

P[Un E Ann Bn, Nt ~ n] 
(5.21) 

:=: 2 fo 1 
Jl11 (x)E { J11z ( M:-l - x )n[M11 _ 1>td dx. 

Since h c [0, 1] and 0 < x :S 1, the expectation in the integrand is equal to 
P[Mn-l E tLx] where Lx = (x +h) n (1, 2]. But 

P[Mn- l E tLx] = J dsP[Mn - l :S s] = J ds(-P[Ns ~ n]). 
tLx tLx 

Thus (5.21) yields 

(5.22) P[Un E Ann Bn, Nr ~ n] :S 2 t Jl11 (x) f ds(-P[Ns ~ n])dx. Jo tLx 

Substitution of this into (5.19) shows that the part of the summation for which 
i = j = n satisfies 

00 

64 Ln2 P[Un E Ann Bn, Nr ~ n] 

(5.23) 
n=l 
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However, the mass function 

00 

<l>(s) := L n2 P[Ns 2: n] 
n=l 

(5.24) 

1 3 1 2 1 
= 3EN5 +lENs+ 6EN5 • 

Since in the integration of ( 5.23 ), s E (t, 2t], it follows that s ::S 1/3 whenever 
t ::S 1/6. In this case, then, the key Corollary 2.3 implies that 

1 3 1 2 1 
<l>(s) = 3{K3(Ns) + 3K2(Ns)ENs +(ENs) } + 2{K2(Ns) +(ENs) } + 6ENs 

= C3 + C2 (~ - 1) + ! (~ - 1) 3 + C2 + ! (~ - 1) 2 + ! (~ - 1) 
3s s s 3 s 2s 2 s 6 s 

= ao + a1s- 1 + a2s-2 + a3s-3, 

say, and so <I> is differentiable with -<I>' (s) ::S bs - 4 for some constant b for 
s E (t, 2t]. Substitution into (5.23) shows that the part of the summation in (5.19) 
with i = j = n satisfies 

00 

(5.25) 64 L n2 P[Un E Ann Bn, Nt 2: n]::::: 128bt- 311I II hi ::::: Ct - 3 11! II hi 
n=l 

as desired whenever 0 < t ::::: 1/6. Note that since t(Nt + 1) 2: 1 always, t-3 ::S 
E(Nt + 1)3 ::S 8ENi. 

Consider now t > 1/6. To show that the measure determined by <I> remains 
dominated by Lebesgue measure over (t, 1), it suffices to show that for any k 2: 1 
and any 1/6 < s < r < 1, E(N; - N:) ::S b(r- s) for some constant b. To this 
end, for 1/6 < s < r < 1 consider 

N:- N: = [Nr + (Ns- Nr)]k- N: 

(5.26) = ~(k)Nt(N - N )k-l < C Nk-l(N - N )k 
~~ rs r -kr s r 
1=0 

for some constant Ck. Moreover, by (5.1), 

(i) 
Ns- Nr = L N s/Dri 

(5.27) 
i: Dr;>s 

(i) 
= L (Ns / Dr;- 1) + K((s, r], r) 

i: Dr; >s 
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in which the superscript i indexes independent processes as in (5.1); see also the 
proof of Lemma 4.3. Thus, by Minkowski's inequality, 

E((N,- N,)'I'F,) :0 L E,. [ E{N;/b,- 1)'} Il k+ K((s, r], r) J 
k 

:S {K((s , r] , r){E(Ns;r -1)k}l / k + K((s,r] , r)t 

:S {K((s , r],r)}k{(E(Ns;r -1)k)l / k + 1}k, 

in which :Fr = CJ(Dri: 1 :S i :S Nr + 1) as introduced in Section 3. Since to 
show the a.e. differentiability of <I> it suffices to consider r - s small, assume 
without loss of generality that r - s < 116, implying that sIr > 112; recall that 
1 I 6 < s < r < 1. Hence, the second factor in the last expression is (by Lemma 2.1) 
bounded, and so 

E((Ns- Nr)ki:Fr) :S Ck{K((s, r], r)}k 

:S CkN: fl. [Ns>Nr]' 

where, here and in the following, Ck is used generically to denote constants 
depending only upon k. Therefore, (5 .26) yields 

(5.28) 

The event [Ns > Nr] = [K ( (s, r ], r) > 0] is the event that at least one of the first 
Nr splits resulted in a spacing in (s, r]. As for the proof of (5.12) above but with 
r in place of t, let 1J j be the number of spacings formed by the j th splitting that 
have lengths in rl = (s , r] with 1 =(sir, 1]. Then 

so that 

(5.29) 

00 

[Ns > Nr] C U [l}j > 0, Nr ::::: j] 
j=l 

00 

E(N'/:k-l.fL[Ns> Nrl) :S L E(N'/:k-lfl.[rypO, Nr~j]) . 
j=l 

However, conditionally given {Dj-l ,i: 1 :S i :S j} and fl.[Nr ~j], Nr is stochastically 
dominated as follows: 

(5.30) 
h [1 / r] 

Nr L J. + "' N(i) st~ J. + "' N(i) 
~ r / Dj ,i - ~ r ' 

i:Dj ,i>r i=l 

since after J splittings, the splitting process continues independently in the 
intervals whose lengths, D j ,i , still exceed r, and since the number of such intervals 
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does not exceed 1 I r. Note in particular that this stochastic bound does not depend 
upon Uj, the jth splitting uniform r.v., nor, therefore, upon 1Jj. Thus 

(5.31) 

E (N;k - 1 Jl[TJj>O,Nr==:j]) 

( 
[1 / r] )2k-1 

:S E j + ~ N;i) P[1Jj > 0, N,. 2: j] 
t=1 

:S (j + ~(EN;k-1)1/(2k-1)) 2k-1 P[1Jj > 0, N,. 2: j] 

:S Ckik- 1 P[1Jj > 0, N,. 2: j], 

in which the second inequality utilizes Minkowski's inequality and Lemma 2.1; 
recall r > 1/6. Moreover, as in the proof of (5.12), 

(5.32) 

P[1Jj > 0, N,. 2: j] :S 2P[UjMj-1 E (s, r], N,. 2: jJ 
= 2E((r/ Mj-1)(1- sjr)Jl[Nr==:n) 

2 
:S -(r- s)P[N,. 2: j]. 

r 

Thus (5.29), (5.31) and (5.32) applied to (5.28) yields 

(5.33) 

00 

EN;- EN: :S Ck(r- s) L /k-1 P[N,. 2: j] 
j=1 

:S Ck(r- s)EN;k :S Ck(r- s) 

by Lemma 2.1 for all k 2: 1 and 1/6 < s < r < 1 with r- s < 1/6. By (5.24) this 
shows that a bounded <P' exists a.e. over (1/6, 1). Hence (5.23) yields 

(5.34) 

00 1 

64L:n2P[UnEAnnBn,Nr2:n]:SC 1 JlJ1(x)ltLxldx 
n=1 0 

:s CllJIIhl 

as desired when t > 1/6. This and (5 .25) complete the bounding of the terms 
in (5.19) with i = j = n. 

To compute a bound for the other terms of (5.19) in which i < j = n, observe 
that 

(5.35) 

P[Ui E Ai, Un E Bn, Nr 2: n] 

= E{E(Jl[VnEBnJIMn-1. Ui E Ai, Nr 2: n)Jl[ViEAiJJl[N1:::nJ} 

:S E { (2t/ Mn - 1)1h1Jl[V;EA;,N1 ==:n]} 

:S 21hiP[Ui E Ai, Nr 2: i, Nr 2: n] 
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where the insertion of [N1 ~ i] changes nothing since n > i. To compute the 
remaining probability, notice that when Vi E Ai, (5.16) implies that at least one 
of Vi Mi - 1 or (1 - Vi) Mi - 1 is in t 11, and thus is less than or equal to t . Hence, at 
least one of the two spacings formed by the ith splitting is never split again during 
the next Nt - i splittings. 

Given {Di-l ,k: 1 ::=: k ::=: i}, [N1 ~ i] and [Vi E tft/Mi-d, the conditional 
distribution of N1 is, as in (5 .30), that of 

(5 36) i + "' N(k) + N(O) 
. ~ t / Di - l,k t j(l-Ui)M; - 1 

k: D; - u <M; - 1 

where the N(k) are independent copies of N. Clearly the last term of (5.36) does 

not exceed N/j~i- J so that (5.36) is stochastically smaller than 

i 
. "'N(k) 
1 + ~ t / D; - J,k · 

k=l 

This in tum has the same distribution as the conditional distribution of N1 + 1 given 
{Di-l ,k : 1 ::=: k ::=: i} and [Nt ~ i]. The same result holds if we had assumed that 
1- Vi E tl1/ Mi-l, and hence if Vi E Ai. It follows that 

P[Vi E Ai, N1 ~ i, N1 ~ n] 

However, 

= E{P[Nt ~ ni{Di-l,k: 1 :S k :S i}, ViE Ai, Nt ~ i]1l[U;EA;,N1::::iJ} 

:S E{P[Nt ~ n -li{Di-l ,k: 1 :S k :S i}, Nt ~ i]1l[U;EA;, N1 :::::iJ} 

= E P[Nt ~ n- liNt~ i, Mi-d1l[N1 :::::iJ P[Vi E Ai INt ~ i , Mi-ll 

P[Vi E Ai INt ~ i , Mi-d :S 2(t/ Mi-1)1111 :S 21111 · 

Thus, for 1 ::=: i ::=: n - 1, 

P[Vi E Ai , Nt ~ i, Nt ~ n] :S 211r1P[Nt ~ n -liNt~ i]P[Nt ~ i] 

:S 211r IP[Nt ~ n- 1]. 

In view of (5.35) this implies that the sum of the terms of (5.19) with i < j = n is 
bounded by 

oo n-1 
2561hllhl L L niP[Nt ~ n- 1] 

n=l i=l 
00 

= 12811lllhl L n2(n- l)P[Nt ~ n -1] 
n=l 
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Together with (5.25) and (5.34) this completes the proof of (5.13) and hence of 
Lemma5.3. D 

Return now to the proof of Lemma 5.2 in the remaining case oft > 1/4, or 
more generally, when t is bounded away from 0. Observe that since for any t, 
W(Ji, t) = (t j2) 112[K (t Ji, t) - 21 Ji 1/t], direct expansion in (5.7) yields 

E[W(J1, t)W(h, t)]2 

t2 { 2 4 4 2} = 4E K (tfi, t)- tlfiiK(tfi, t) + t 2 ll1l 

(5.37) X { K 2(th, t)- ~lhiK(th, t) + ~ lhl2 } 

t 2 { 16 s 4 E [K(t l1 , t)K (t h, t)f +pili llhi[K(t li, t)K (t h, t)] 

16 2 2 4 2 2 4 2 2 } +f411IIIhl + t 2 ll1l K (th,t)+ t 2 1hl K (tfi,t). 

Thus (5.7) follows directly from Lemma 5.3 whenever tis bounded away from 0. 
This completes the proof of Lemma 5.2. D 

Tightness clearly follows from Lemma 5.2; Chebyshev's inequality implies that 
for any A. > 0 and disjoint adjacent intervals J1 and h in [0, 1], 

P[IW(fi, t)l >A., IW(h, t)l >A.] 

s P[IW(Jl, t)W(h, t)i >A. 2] sA. - 4CI1IIIhl. 

Theorem 15.6 of Billingsley (1968), then suffices, together with the finite
dimensional limits established earlier in Lemma 5.1, to prove the following main 
result. 

THEOREM 5.4 . The stopped processes W(-, t) converge weakly in D[O, 1] as 
t--+ 0 to a mean zero Gaussian process W(·) with covariance given by (7.10). 
Moreover, by (1.20), the stopped empirical processes of the relative spacings 
satisfy V(-, t) --+L V where V(y) = W(y)- yW(l), a mean zero Gaussian 
process with covariance given by (7.12). 

6. Weak convergence of the Vn-processes. Consider the empirical process 
of the relative spacings, { Dni / M n; 1 s i s n + 1}, defined in ( 1.17) by 

(6.1) Vn(Y) = J"n+i{G~((n + 1)Mny)- y}, Osysl. 
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The weak convergence of the related stopped process 

(6.2) 
2 

V(y, s) = {W(y, s)- yW(1, s)} 
s(Ns + 1) 

for 0:::: y:::: 1 and 0 < s:::: 1 is given in Theorem 5.4, namely, 

(6.3) 
L 

V(·, s)---+ W(-)- (-)W(l) = V(-) 

in D[O, 1] ass---+ 0, with the limit process V being a mean zero Gaussian process 
with covariance given in (7 .12). 

By the above definitions, one may write 

(6.4) ( ) 1/ 2 Vn(Y) = Mn(n + 1)/2 V(y, Mn), 

which means that the desired weak convergence of Vn will be established once it 
is established for W(-, Mn). 

To show the latter, we will establish that as n ---+ oo, 

(6.5) 
L 

W(-, 2/n)- W(· , Mn) ---+ 0 

in D[O, 1]. From this, the limit process for W(·, Mn) is seen to be that of W (· , 2/n) , 
namely, W. 

The first step is to show that for any E > 0, there exists n8 and L = Le > 0 such 
that 

(6.6) 

for all n ::=: n8 . To see this, observe that the expression following (4.14) states that 
for any A> 0, 

P( Mn- ~ > (~- An1 f2) -1- ~) = P( Mn > (~- Anl /2) -1) ::S 8:2 
for all n sufficiently large. But, for A= L/8, 

~- An 112 -- = -[(1- 2An-112)- 1 - 1] < 8An-312 = Ln-312 ( )
-1 2 2 

2 n n 

for all n sufficiently large, implying that 

P(M - ~ > Ln-312) < 8c 
n n- - £2 

for all n sufficiently large. Together with ( 4.14) 's analogous bound for small values 
of Mn - 2/ n, this proves (6.6). Alternatively, one may use a standard renewal 
theory argument to obtain the limit law for n312(Mn - 2/n) from that of Ns 
since (Mn > s) = (Ns > n); specifically, one obtains from Corollary 3.3 that 
n112{nMnf2- 1} has the same asymptotic normal distribution N(O, a 2) as does 
(2/t) 112(tNtf2- 1). 
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In view of (6.6), the proof of (6.5) will be complete if we can show that for 
every integer L > 0 

(6.7) 
p 

sup sup I W(y, s)- W(y, t)l ---+ 0 
s: it-si:::OLt312 O::Oy::Ol 

as t ---+ 0. To handle the supremum over s in the above, equip the interval [1 = 
[t - Lt312 , t + Lt312] with the grid of 2L 2 + 1 equally spaced points Si = Si (t) = 
t + (-L + i/L)t312 , i = 0, 1, ... , 2L2 . Note that si+l- si = t 312 jL for each i. 
Assume without loss of generality that t < (2L)-2 to insure that each Si E (0, 1) 
and that t j Si < 2 for each i. To prove (6.7) it obviously suffices to show that for 
every positive integer L :::: 2, 

(6.8) 
p 

sup IW(y, t)- W(y, si)l---+ 0 
O::Oy::Ol 

fori = 0, 1, . .. , 2L 2 

as t ---+ 0, and that for every s > 0, 8 > 0, there exist L > 0 and t* > 0 such that 
fort< t*, 

(6.9) P( max sup sup IW(y, s)- W(y, si)l > 8) < s. 
0::Si<2L2 s; ::Os::Os;+I O::Oy::Ol 

To prove (6.8), observe first that known characterizations of tightness for 
D[O, 1]-valued processes imply that the processes formed by summing two tight 
families of processes are also tight; compare Theorem 15.2 of Billingsley (1968) 
and check that the D[O, 1] modulus w~(8) satisfies the following: For any s > 0 
and 8 > 0, there exists 8* = 8*(s , 8) for which 

wj+g(8*) s wj(8) + w~(8) + 2s. 

This follows by first choosing 8 -partitions that approximate the moduli wj(8) and 
w~(8) to within s, and then use the refinement of these two partitions to obtain an 
upper bound for w~l+gC8*) in which 8* is the span of this refinement. In view of 
Theorem 5.4 this means that the family of processes {W(·, t)- W(·, Si): t E (0, 1]} 
is tight. Thus, to show W(-, t) -we Sj)---+ L 0 as t---+ 0, and hence the uniform 
convergence in probability to zero that is expressed in (6.8), it suffices to show 
W(y , t)- W(y, Si)---+ p 0 for each fixed y E [0, 1]. This we do by establishing the 
following lemma. 

LEMMA 6.1. ForO< s s 1/2 andO <A< 1, 

sup E[W(y, s)- W(y, As)]2 = 0(1- A). 
O::Oy ::Ol 

PROOF. From (7 .9) and (7.10), we have, for any 0 s y, z s 1 and 0 < s s 1/2, 

(6.10) Cov(W(y, s) , W(z, s)) = ~a(y 1\ z, y v z) = A(y, z) + y 1\ z 



469

416 R. PYKE AND W. R. VAN ZWET 

in which the non-Brownian portion of the covariance, 

(6.11) 
A(y, z) = -6yz + 2yz{ (1 + y)-1 + (1 + z)-1} + 2y ln(l + z) 

+ 2zln(1 + y) + (y + z -1)+(1- (y + z)-1), 

is a symmetric function with uniformly bounded partial derivatives over [0, 1]2 . 

By (5.3), 

E{W(y, A.s)W(y, s)} 

=A. 112 E {W(A.y, s) W(y , s)} 

+2yA.-112E{[ W(1,s) -A.W(A.,s)- [ 1 W(x,s)dx Jw(y,s)} 

where integration by parts has been applied to the last term of (5.3). Consequently, 
(6.10) implies that 

E{W(y, A.s)W(y, s)} 

r.: 2y 
= v A{A(A.y, y) + A.y} + v'AA(y, 1) 

(6.12) 
2y [1 

- 2yv'AA(y , A.)- y'A } ;._ A(x , y) dx 

2y2 2y [1 
+ y'A - 2yv'A(y A A.) - y'A };._ (x A y) dx. 

Hence, 

E[W(y, s)- W(y, A.s)f 

= 2A(y , y) + 2y- 2E{W(y, A.s)W(y , s)} 

(6.13) 

r.: 4y 
= 2{ A(y , y)- v AA(A.y , y)} + yi;_{A.A(y, A.)- A(y , 1)} 

4y [1 
+ y'A};._ A(x,y)dx+2y(l-A.312) 

4y 4y [l 
+ y';_{A.(y A A.)-y}+ yf;_};._ (xAy)dx. 

It follows from (6.11) that A( ·, ·) and its first-order partials are bounded, thereby 
insuring that the first three terms above are of order 0 ( 1 -A.). The last three terms, 
not involving A(·,·), are easily checked to be of the desired order as well, thereby 
completing the proof. D 
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By takings= Si and)..= tfsi fori= 0, 1, ... , 2L 2, it follows from Lemma 6.1 
that W(y, t)- W(y, si)--+ p 0 for each y as t--+ 0; note that for each fixed L > 0, 

Sj- t L-J[ 
1-A.=--s =O(-J"i)--+0 

Sj 1- L-J[ 

as t --+ 0. This completes the proof of (6.8). 
The proof of (6.9) uses the following inequalities. For 0 < u s s s v s 1, we 

have [cf. (1.5)] 

(6.14) K(yu, v) s K(ys, v) s K(ys, s) s K(ys, u) s K((yv) 1\ u, u) 

and so by (1.18), with p = ujv and 0 s y s 1, 

(6.15) 

JPW(py, v)- (2-1-(1- p2 ) y-;; 05 
s W(y, s) 

5 ~wGAI, pv)+~H(~"')-yj 
s -1-w(~ 1\1 , pv) + ~(p-2 -1). 05 p y-;; 

For application of these bounds to (6.9), take v = Si+1 and u = Si so that p = 
si/si+l· Observe that by definition, 

Si+1-Si -J[jL -J[jL 
0<1-p= = < . 

- Si+1 1 + (-L + (i + 1)/L)-J"i- 1- L-J[ 

Hence, since we have assumed t < (2L)-2 and L :::: 2, then 1 - p < 2-J[ j L and 
p > 3/4. It follows that the nonrandom terms in the bounds of (6.15) are bounded 
in absolute value by 16/ L. Consequently, for si s s s si+1 and 0 s y s 1, we 
obtain the following uniform bounds for (6.9), in which we write II · II for the 
supremum over [0, 1] and w f(8) = sup{lf(u)- f(v)l: 0 sus v s u + 8 s 1} for 
the usual modulus of continuity: 

1 (y ) 16 W(y, s)- W(y, sj) s 05 W P 1\ 1, Si - W(y, Si) + L 

= (p- 112 -l)w(~ 1\ 1,sj) + w( (y , ~ 1\ 1].si) + ~ 
1 16 

S (1- p) II W(·, Sj) II+ WW(-,s;)(P- - 1) + L 

2-J[ (2-J[) 16 
S LIIW(·, sdll + WW(-,s;) L + L 
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16 
W(y, s)- W(y, Si) =::: 0) W(py, Si+I)- W(y, Si)- L 

= (p112 - 1)W(py, Si+I)- W(y(p, 1], Si+I) 

16 
+ W(y , Si+l)- W(y, Sj)- L 

2: -(1- p)IIW(·, Si+I)II- wwc,s;+1)(1- p) 

16 
-IIW(-, Si+l)- W(·, Sj)ll- L 

2-/t (2-/l) 2: -LIIW(·, Si+ I)II- wwc,si+ 1) L 
16 

-IIWC Si+l)- W(-, Si)ll- [; • 

Since the maximum discontinuity of W ( ·, s) is (s /2) 112, the limiting process, 
W, in Theorem 5.4 is continuous so that for every i and L, WW(·,s)(2-/l/ 
L) -+p 0 and IIW(·,si)ll = Op(l). Moreover, a similar argument to that used 
earlier to prove (6.9) suffices to show that II W (-, Si+l)- W (-, Si) II -+ p 0 for each i. 
Therefore, for each fixed L, 

which establishes (6.9). This completes the proof of (6.8) and (6.9), and hence of 
(6.7) and (6.5), thereby proving: 

THEOREM 6.2. The empirical processes of the relative spacings, Vn: n 2: 1, 
converge weakly in D(O, 1) to the mean zero Gaussian process V with covariance 
function given in (7.12) . 

7. The covariance of the spacings processes. The covariance functions of 
the limiting empirical processes for the normalized spacings are only given 
implicitly in the above in the sense that they are expressible in terms of 
constants from Theorem 2.2 for D(t) = K (t J, t). An explicit expression for these 
covariances is now derived, thereby completing the characterization of the limiting 
process. 

The basic function is the covariance of K ( ·, s). For 0 :::; x :::; y :::; s and 0 :::; s :::; 1, 
set 

(7.1) 
c(x, y, s) = Cov(K(x, s), K(y, s)), 

C(u, v, s) = c(us , vs , s) for 0:::; u:::; v. 
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Since K satisfies the representation (1.10), we already know much of the structure 
of the covariance because of Theorem 2.4; note that D(t) = (K(ut, t), K(vt, t)) 
satisfies the hypotheses of Theorem 2.4. Thus for 0 ::=:: t ::=:: 112 the second mixed 
cumulant, KJ ,I(t) = KJ ,l(K(ut, t), K(vt, t)) = C(u, v, t), is proportional to t-1 

for each u and v. Specifically, 

(7.2) C(u, v , t) = (2t)-1 C(u, v , ~) for 0 < t ::=:: ~· 

What remains to be done is to compute the actual proportionality constants and 
this is what is done below. 

In view of (1.10), with K* denoting an independent copy of K, 

( ( X S) "'( X S ) c(x,y,s)=Cov K -,- +K' --,-- , 
U U 1-U 1-U 

(7.3) 

=2fo1 
c(xlu,ylu,slu)du+2 fa' f-L(xlu,slu)f-L(Yiu,slu)du 

+ 2 Ia 1 
f-L (xI u , s I u) f-L (y I ( 1 - u), s I ( 1 - u)) d u - f-L (x , s) f-L (y, s) 

where f-L (x, s) = E K (x, s). This uses the following easy computation: if U is a 
Unif(O, 1) r.v. independent of processes X(·) andY(·), then whenever the integrals 
make sense, 

Cov(X(U), Y(U)) 

= fo' EX(u)Y(u)du- EX(U)EY(U) 

= fo' {Cov(X(u), Y(u)) + EX(u)EY(u)}du- EX(U)EY(U). 

[In applying this to (7.3) we use the conditional independence of the summands 
making up X(u) and Y(u).] 

In view of the evaluation of f-L in (1.8), the second integral in (7 .3) is 

!o l los 1' 2xu 2yu f-L(xlu, slu)f-L(Y lu, slu) du = s(x- u)s(y- u) du + - 2 - 2 du 
0 0 s s s 

= x + 4xyl3s4 - 4xyl3s. 

To evaluate the third integral of (7 .3), note first that by ( 1.8), the integrand is zero 
when either x < u ::::: s or 1 - s ::=:: u < 1 - y . Upon applying (1 .8) appropriately 
to the integrand over the remaining intervals of integration 0 < u ::=:: x 1\ (1 - s), 
s v (1- y) < u ::=:: 1, 1- y < u ::=:: x (when x + y > 1) and s < u ::=:: (1- s) (when 
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s < 1/2), one obtains 

[
1 {L(xju, sju){L(-Y-, - 8 -) du lo 1- u 1- u 

= (xjs2)(1- {s v (1- y)}2) 

(7.4) 
+ (y/s 2)(1- {s v (1-x)}2) + (x + y -1)+ 

2xy 3 2 + :ll.[s<l/2] 384 (4s - 6s + 1). 

Together with (1.8) this allows us to evaluate c(x, y, s) for 0 _:s x _:s y _:s s and 
0 < s :S 1 by means of (7.3). Substituting x = us and y = vs we find that, for 
0 :S u :S v :S 1 and 0 < s :S 1, 

C(u, v, s) = 2s 11 C(u, v, w)w-2 dw + 2us- 4uvj3s2 - 8uvs /3 

(7.5) + (2u/s)[l- {s v (1- vs)}2] + (2v/s)[l- {s v (1- us)}2] 

+ 4uv 3 2 + 2[(u + v)s- 1] + :ll.[s<l/2] 382 (4s - 6s + 1). 

This expression shows that C(u, v, ·) is continuous on (0, 1) (recall that there is 
a discontinuity at s = 1) and is differentiable for all s except possibly at the five 
values: 1/2 _:s (1 + v)- 1 _:s (1 + u)-1 _:s [(u + v) 1\ 1]-1 _:s 1. Dividing by s, then 
differentiating with respect to s and finally multiplying by s2 shows that 

(7.6) 

d 
-{sC(u, v, s)} 
ds 

4uv 4u 4v 
= - 2 - -:ll.[s(l+v)2:1] - -:ll.[s(l+u)2:1] - 4uv:ll.[s(l+v) <1] 

s s s 

- 4uv:ll.[s(l+u)<l] + 2:ll.[s(u+v)2:1] + 4uv(2- s-2):ll.[s<l j2] 

for all but those five exceptional points. [The reader may note that the right-hand 
side of this expression is zero for 0 < s < 1/2, thereby leading to an alternate 
proof that sC(u, v , s) is constant over that range as stated in (7.2).] To obtain the 
proportionality constant of (7.2), we integrate the above from s = 1/2 to s = I
to obtain 

C(u, v, 1-)- ~C(u, v, 1/2) 

(7.7) = 4uv- 4u ln(l + v)- 4v ln(l + u) 

- 4u v [ (1 + u) - 1 + (1 + v) - 1 - 1 J + 2 ( u + v - 1) + / ( u + v). 

Thus, to complete the computation it remains only to determine C (u, v, 1-). For 
this, we need the distribution of K (x, 1-) K (y, 1-) which is deducible from the 
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following in which we represent the two ordered spacings by (1 - U) j2 and 
(1 + U)/2 with U being a Unif(O, 1) r.v. For 0.:::; x.:::; y.:::; 1, 

and 

P[K(x, 1-) = 2, K(y, 1-) = 2] = P[(l + U)/2.:::; x], 

P[K(x, 1-) = 1, K(y, 1-) = 2] = P[(l- U)/2 < x < (1 + U)/2 < y] 

= P[(1- 2x) v (2x- 1) < U < 2y- 1] 

P[K(x, 1-) = 1, K(y, 1-) = 1] = P[(l- U)/2 < x.:::; y < (1 + U)/2] 

= P [ U > ( 1 - 2x) v (2 y - 1)]. 

Since E K (x, 1-) = p,(x, 1-) = 2x, straightforward computations lead to 

(7.8) C(u, v, 1-) = 2u- 4uv + 2(u + v -1)+. 

A combination of (7.2), (7.7) and (7.8) completes the proof of the following 
theorem. 

THEOREM 7.1. ForO< u _:::; v _:::; 1, 

a(u, v) 
Cov(K(us, s), K(vs, s)) = C(u, v, s) = , 

s 
0 < s.:::; 1/2, 

where 

a(u, v) = ~C(u, v, 1/2) 

(7.9) = -12uv + 4uv{ (1 + v) - 1 + (1 + u) - 1} + 4u ln(1 + v) 

+ 4v ln(l + u) + 2u + 2((u + v- 1)+)2 (u + v)- 1, 

with (x)+ = max(O, x). 

As a corollary of this result, the covariance of the process W(-, s), which is 
defined in (1.18) and has mean zero on [0, 1] by (1.8), is 

(7.10) Cov(W(u, s), W(v, s)) = (sj2)C(u, v, s) = ~a(u, v) 

for 0.:::; u.:::; v.:::; 1 and 0 < s.:::; 1/2. Note also that a(l, 1)/2 = 4ln2- 5/2 = a 2; 

see Theorem 4.1. Clearly, the limiting process W ( ·) has the same covariance. 
By (1.19) this would mean that the covariance function for a limiting V*-process 
for the normalized spacings would become 

Cov(V*(u), V*(v)) 

(7.11) = u(1- v) + (8ln2- 3)uv- 2u ln(1 + v)- 2v ln(1 + u) 

+ { (u + v- 1)+} 2 j(u + v) 
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for 0 :::=: u :::=: v :::=: 1. More importantly, however, the covariances for the limiting 
V -process of Theorem 6.1 for the relative spacings becomes, by (7.10) and (1.20), 

( 3 1 1 ) Cov(V(u), V(v)) = u(l- v)- uv -------
2 1+u 1+v (7.12) 

+ { (u + v- 1)+}2 f(u + v) 

for 0 :::=: u :::=: v :::=: 1. Observe that this latter covariance is zero at V = 1 since 
V is a tied-down process, whereas the untied process V* has variance at v = 1 
of a 2 = 4ln2- 5j2; compare Theorem 3.1 and the difference between V and V*, 
which is seen through (1.19) and (1.20) to be V(l)- V*(1) = W(l). 

REMARK. The focus of this paper has been solely upon the interval-splitting 
procedure of Kakutani ( 197 5), and the methodologies required to obtain the weak 
convergence limits for the two main empirical processes under the particular 
dependence structure determined by this procedure. The paper therefore extends 
in a natural way the strong law or Glivenko-Cantelli results previously obtained 
for the Kakutani model; compare Lootgieter (1977), van Zwet (1978) and 
Pyke (1980). 

Generalizations of the Kakutani procedure have been proposed. For example, 
the splitting random variables, { Ui} in this paper, could have distributions other 
than uniform. Alternatively, procedures could allow for random selection of the 
interval to be split, rather than restricting it to be always the longest interval. 
Glivenko-Cantelli results for generalized procedures of these types have been 
studied in Brennan and Durrett (1987) and papers referenced therein. It is an open 
question whether weak convergence results for the analogous empirical processes 
can also be derived by the methodologies of this paper. 

Other related references are Sibuya and ltoh (1987) and Komaki and Itoh 
(1992). 

During the preparation of this paper, the authors had discussions with 
P. Diaconis and M. Shahshahani about their interests in this and related work. In 
particular, correspondence from P. Diaconis described calculations involving mo
ments of the trace of a random n x n permutation matrix on the one hand, and of 
a random n x n orthogonal matrix on the other hand, for which the first n (resp., 
2n + 1) moments are exactly the moments of a Poisson (resp. normal) random 
variable. The connection with our work lies in the loose similarity with the type of 
result contained in our Theorem 2.2 in which an increasing number of moments 
become constant as a parameter, 1ft increases. 

REFERENCES 

ANSCOMBE, P. (1952). Large-sample theory of sequential estimation. Proc. Cambridge Philos. Soc. 
45 600-607. 



476

KAKUTANI INTERVAL SPLITTING 423 

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York. 
BRENNAN, M . D. and DURRETT, R. (1987). Splitting intervals. II. Limit laws for lengths. Probab. 

Theory Related Fields 75 109- 127. 
CsbRGO, S. (1974). On weak convergence of the empirical process with random sample size. Acta 

Sci. Math. Szeged 36 17-25. 
DONSKER, M. (1952). Justification and extension of Doob's heuristic approach to the Kolmogorov

Smirnov theorems. Ann. Math. Statist. 23 277-281. 
GIHMAN, I. I. and SKOROHOD, A. V. (1974). The Theory of Stochastic Processes I. Springer, New 

York. 
KAKUTANI, S. (1975). A problem of equidistribution on the unit interval [0, 1]. Proceedings of 

ObelWolfach Conference on Measure Theory. Lecture Notes in Math. 541 369-376. 
Springer, Berlin. 

KLAASSEN, C. A. J. and WELLNER, J. A. (1992). Kac empirical processes and the bootstrap. 
In Proceedings of the Eighth International Conference on Probability in Banach Spaces 
(M. Hahn and J. Kuebs, eds.) 411-429. Birkhauser, Boston. 

KOMAKI, F. and ITOH, Y. (1992). A unified model for Kakutani's interval splitting and Renyi's 
random packing. Adv. in Appl. Probab. 24 502-505. 

LOOTGIETER, J. C. (1977). Sur Ia repartition des suites de Kakutani (I). Ann. lnst. H. Poincare Ser. B 
13 385-410. 

PYKE, R. (1965). Spacings. J. Roy. Statist. Soc. Ser. B 27 395-449. 
PYKE, R. (1968). The weak convergence of the empirical process with random sample size. Proc. 

Cambridge Philos. Soc. 64 155-160. 
PYKE, R. (1980). The asymptotic behavior of spacings under Kakutani's model for interval 

subdivision. Ann. Probab. 8 157-163. 
SIBUYA, M. and ITOH, Y. (1987). Random sequential bisection and its associated binary tree. Ann. 

Inst. Statist. Math. 39 69-84. 
VAN ZWET, W. R . (1978) . A proof of Kakutani's conjecture on random subdivision of longest 

intervals . Ann. Probab. 6 133-137. 
WEISS, L. (1955). The stochastic convergence of a function of sample successive differences. Ann. 

Math. Statist. 26 532-536. 

DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF WASHINGTON 

SEATTLE, WASHINGTON 98195 
USA 
E-MAIL: pyke@math.washington.edu 

DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF LEIDEN 

P.O . Box 9512 
2300 RA LE!DEN 

THE NETHERLANDS 

E-MAIL: vanzwet@math.leidenuniv.nl 

mailto:pyke@math.washington.edu
mailto:vanzwet@math.leidenuniv.nl


477S. van de Geer and M. Wegkamp (eds.), Selected Works of Willem van Zwet, Selected Works in Probability 
and Statistics, DOI 10.1007/978-1-4614-1314-1_29, © Springer Science+Business Media, LLC 2012

Chapter 29 

A discussion of Willem van Zwet's probability 
papers 

David M. Mason 

Abstract I discuss five papers ofWillem van Zwet: [19], [20], [13], [21] and [15]. 

I shall begin my discussion of Willem's probability papers with his 1978 paper on 
the Kakutani conjecture. Willem tells me that this is his favorite paper. I can see 
why. It is not only a fine piece of mathematics; it also displays very well a common 
feature of many of Willem's best papers, namely, it begins with a key insight, which 
lights the way to the solution of a knotty problem. 

The full story of Willem's involvement with the Kakutani conjecture appears in 
the Statistical Science interview of him by Rudy Beran and Nick Fisher (Beran and 
Fisher (2009)). Therefore I shall not repeat it here. I met Kakutani in Lunteren in 
1984, when he was a speaker and I was a participant. By that time his conjecture 
was solved. He did not lecture about it and we did not discuss it. On the other hand, 
I have heard Willem talk about it a number of times at Oberwolfach Meetings and 
other occasions. 

Here is a description of the conjecture and a sketch of Willem's beautiful solu
tion. The Kakutani interval splitting is as follows: Let v, be a Uniform (0, 1) random 
variable. Now proceed sequentially, choosing for each integer n 2 1, Vn+ 1 uniformly 
from the largest of the n + 1 subintervals into which the previously constructed 
variables V1, ..• , Vn partition (0, 1). Consider the empirical distribution function Fn 
based on the sample V1, •.. , Vn at stage n. Kakutani conjectured, that with probability 
1, as n--+ oo, 

sup IFn (t) - tl-+ 0. (29.1) 
O:St :S l 

He was, of course, motivated by the Glivenko-Cantelli theorem, which implies that 
if Gn is the empirical distribution function of U1 , ... , Un, i.i.d. Uniform (0, 1), then, 
with probability 1, as n--+ oo, 

David M. Mason 
Statistics Program, University of Delaware, 213 Townsend Hall Newark, DE 19716 
e-mail: davidm@udel.edu This research was partially supported by an NSF Grant. 

mailto:davidm@udel.edu
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sup IGn(t) -t l --+0. 
0:St :S 1 

It turns out that the Kakutani conjecture is correct. 

David M. Mason 

(29.2) 

In van Zwet (1978), Willem devised an ingenious proof of (29.1). Essential to 
his approach was a stopping time formed as follows: For each integer n ~ 1 let 
0 = Vo ,n :::; V1 ,n :::; . . . :::; Vn ,n :::; Vn+ 1 ,n = 1 denote the order statistics of V1 , ... , Vn , and 
introduce the n + 1 spacings Di,n = ~.n - Vi- 1 ,n• i = 1, ... , n + 1. Fort > 0, define the 
stopping time N1 = min { n : max 1 :Si:Sn+ 1 Di,n :::; t}. We shall write N for the process 
Nt. t > 0. Notice that N1 is the smallest integer such that all of the subintervals have 
length at most t. Crucial to his proof was the distributional identity 

(1) (2) 
M =d Nt /V +~/( 1 -V ) + 1, (29.3) 

where N(l) ,N(2) and V are independent, with N(1) =d N(2) =d Nand V being Uni
form (0, 1). The distributional identity (29.3), in tum, leads to differential equations 
whose solutions give that for some c > 0, 

f.1 ( t) : = E N1 = 2 It - 1 for 0 < t < 1 and cr2 ( t) : = Var ( N1) = cIt for 0 < t < 1 I 2. 
(29.4) 

Here is a synopsis of Willem's proof of (29.1). For any x E (0, 1] let N1 (x) = 
N1FN1 (x). It is easy to argue that for any x E (0, 1] there exist distributionally equiv

alent versions of N:;x of N1;x and N;/(1-x) of N1j( l- x) such that 

(29.5) 

Set tm = m-2 form~ 1. Using Chebyshev's inequality and the identities in (29.4) he 

shows that for any sequences { N/m}, { N:,n /x } and { N;m/(1- x)}, where form~ 1, 

Nfm = d Mm' N:m!x = d Ntm /x and N:m /( l- x) = d Ntm/(1-x) • with probability 1, 

This implies by the inequalities in (29.5) that, with probability 1, FN1 (x) --+ x, 
m 

from which (29.1) follows by a routine argument, noting that, with probability 1, 

NrmiNtm+l --+ 1. 
In Pyke and van Zwet (2004), Ron Pyke and Willem considered the question of 

the weak convergence of the Kakutani empirical process, 

Un (x) = Jfi{Fn (x) - x}, x E [0, 1]. 

They prove that Un converges weakly to crB, written Un -+d crB, where B is a stan
dard Brownian bridge on [0, 1] with <J = -J41n2 - 512 = .5221003, which is ap
proximately one half as large as in the i.i .d. case. Recall that the uniform empirical 
process 

lXn (x) = Vn{Gn (x) -x} , x E [0, 1], (29.6) 
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converges weakly to B. This shows that though the Kakutani sampling procedure 
does not differ from the usual i.i.d. situation at the Glivenko-Cantelli level in the 
sense that both (29.2) and (29.1) hold, it does at the asymptotic distributional level. 
Roughly speaking, this says that the Kakutani scheme leads to more regularly spaced 
points than in the i.i.d. uniform model. 

Once again the stopping time N1 is a basic ingredient in the proof. Now higher 
moments are required and these are obtained through the cumulants of N1 + 1. They 
extend the method in van Zwet (1978) used to derive (29.4) to show that form;:::: 1, 
the m-th cumulant of M + 1 is 

km (t) = Cm/t for 0 < t::; 1/m, with mcm = km (1/m). 

It was also necessary to ferret out the underlying process that drives the weak con
vergence of Un, which they found to be the following: For 0 < t < s < 1 let 

h N (l ) N (2) .. d N w ere , , .. . , are u. . . 
Conditioned on Di,Ns , i = 1, ... , Ns + 1, S1 (-; s) is clearly a partial sum process 

on [0, 1] based on independent summands, with jumps at the Vi ,Ns . By a careful 
analysis, applying a classical weak convergence result, they prove that as long as 
t ( s) = o ( s) as s \. 0 at a proper rate, the process S1 ( ·; s) converges weakly, both 
conditionally and unconditionally, to a'W, where W is a standard Brownian motion. 
After that is established, they complete the proof by verifying that random jump 
times can be replaced by deterministic ones and the appropriate pieces can be fit 
together properly to conclude that Un -+daB. 

Pyke (1980) had shown that the empirical distribution of the normalized spac
ings (n + 1) Di,n• i = 1, ... , n + 1, of the Kakutani sample converges to the Uniform 
(0, 2) distribution, whereas in the i.i.d. case it goes to the exponential distribution 
with mean 1. Pyke and van Zwet (2004) establish that the corresponding empiri
cal process converges weakly to a mean zero Gaussian process with a complicated 
covariance function. They also treat the empirical process of the relative spacings 
Di,n/ Mn, where Mn = max { Di,n : i = 1, ... , n + 1}. They do this by adapting the 
methods that they used to prove Un -+daB. Sadly this was Ron Pyke's last paper. 

Willem and I first met at an N.S.F Regional Conference in 1982 in Eugene, Ore
gon, where he was the featured speaker. However, my first professional contact with 
Willem was in 1979, when I wrote him for a preprint of his paper van Zwet (1980), 
which is on a strong law of large numbers for linear functions of orders statistics. 
These are statistics of the form 

n ii/n 
1Ln=Lg(Ui,n) ln(u)du, 

i=l (i- 1)/n 

where g is a measurable function on (0, 1) and {Jn} is a sequence of measurable 
functions on (0, 1) that converge in an appropriate sense to a function J. At that 
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time, proving central limit theorems and strong laws for ILn was still in vogue. The 
game was to balance smoothness conditions on g with those on J. 

Will em came up with an elegant solution to the strong law problem for ILn in van 
Zwet (1980). To state his main results, introduce the centering constants 

rl rl 
J.ln = Jo lngdA and J.1 = Jo J gdk 

(We denote Lebesgue measure by A and assume here whatever conditions needed to 
insure that the integrals are finite.) The following result is a combination of Theorem 
2.1 and Corollary 2.1 of van Zwet (1980). 

Theorem 1 Let 1 :::; p:::; oo, p - 1 + q- 1 = 1, and suppose that In E Lp (dA )for n?:. 1, 
and g E Lq (dA) . If either 

(i) 1 < p :::; oo and supn IIJn II < oo, or 

(ii) p = 1 and {In} is uniformly integrable, 

then with probability 1 
1Ln- J.ln--+ 0. (29.7) 

Moreover, if there is aJ E Lp (dA) such that f~lngdA--+ f~JgdAforevery t E (0, 1). 
Then we can replace J.ln by J.1 in (29.7). 

The key technical result used in his proof was the following lemma based on 
Lusin's theorem: With [x] denoting the integer part of x, define for each integer 
n?:. 1, 

gn (t) = g (U[tn]+ t,n) fortE (0, 1). 

Lemma 1 With probability 1, gn converges tog in Lebesgue measure A on (0, 1), 
i.e. for all 8 > 0, 

limA{t: lgn(t)-g(t)l >8} =0. 
n---too 

Armed with this result, the proof of (29.7) is short and sweet. Some classical 
criteria for weak convergence in Lp, 1 :::; p < oo, and weak* convergence in Loo play 
a role. Willem then shows how this result and its extensions imply the strong laws 
for ILn of Helmers (1977), Wellner (1977) and Sen (1978). 

I published my own strong law for ILn in Mason (1982), in which for certain 
subclasses of linear functions of order statistics I provided necessary and sufficient 
conditions for (29.7) to hold. I also considered ILn whose g functions are not in 
Lq (dA) for any q?:. 1. 

I next discuss the most significant of my two joint papers with Willem. This is 
Mason and van Zwet (1987), where we obtained the following refinement of the 
Kom16s, Major and Tusmidy [KMT] (1975) Brownian bridge approximation to the 
uniform empirical process CXn. Recall the definition of CXn given in (29.6). 

Theorem 2 There exists a probability space (Q ,A,P) with independent Uniform 
(0, 1) random variables u,, U2, .. . , and a sequence of Brownian bridges B, ,82, 
... , such that for all n?:. 1, 1:::; d:::; n, and -oo < x < oo, 
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P { sup lan(t)- Bn(t)l ~ n- 112(alogd +x)} :S bexp( -ex) 
0<5_t5_d /n 
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(29.8) 

and with the same inequality holding with the supremum is taken over 1 - d I n ::; 
t ::; 1, where a, band care suitable positive constants independent of n, d and x. 

Setting d = n into these inequalities yields the original KMT inequality. Our 
result drew a fair amount of interest and has been applied in a number of papers. I 
note that as of this writing google scholar lists 54 citations to our paper, which is 
pretty good for a theoretical paper. Rio (1994) has computed values for the constants 
in (29.8). Later, Castelle, and Laurent-Bonvalot (1998) obtained a similar refinement 
to the KMT Kiefer process approximation to an. 

M. Csorg6, S. Csorg6, Horvath and Mason [Cs-Cs-H-M](1986) had earlier con
structed a probability space on which an analog to these inequalities holds with an 
replaced by f3n (the uniform quantile process). We shall not define f3n in this discus
sion. 

Willem and I did much of the work on our paper during the month of March 
1985, while I was visiting him in Leiden. At the time, I was on extended leave from 
the University of Delaware and was in the middle of the first year of a two year stay 
at the University of Munich supported by an Alexander von Humboldt stipend. 

Our progress was severely hampered by the fact that KMT (1975) had only pro
vided a bare sketch of the proof of their original inequality. We spent an enormous 
amount of time filling in the missing details. This became an obsession to me. After 
two weeks in Leiden watching me consumed with this project night and day, my 
wife at the time got fed up with me and returned to Munich. 

Complete proofs are now available. Mason and van Zwet (1987) combined with 
Mason (2001a), which contains additional details based on Leiden notes, provides 
a proof. Also consult Bretagnolle and Massart (1989), Major (1999) and Dudley 
(2000). Bretagnolle and Massart (1989) determined values of the constants in the 
original KMT inequality. For more on the history of proofs refer to Mason (2007). 

Mason and van Zwet (1987) pointed out that their inequality leads to the follow
ing useful weighted approximation: For any 0 ::; v < 112, n ~ 1, and 1 ::; d ::; n - 1 
let 

"" (d). _ nvlan(t) -Bn(t)l 
Lln v .- sup I 

' d j n:::_t-5_ 1- d / n (t(l-t)) 1 2- v 
(29.9) 

On the probability space of Theorem 2, one has 

Lln,v(1) = Op(l). (29.10) 

Cs-Cs-H-M (1986) had obtained a version of this result on their probability space 
under the restriction that 0 ::; v < 1 I 4. Later, motivated by a question of Evarist 
Gine, I derived the following improved version ofthe Mason and van Zwet weighted 
approximation (29.10). I published this in the van Zwet Festschrift (see Mason 
(200lb)). 
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Theorem 3 On the probability space of Theorem 2, for every 0 ::; v < 1/2 there exist 
positive constants Av and Cv such that for all n 2 2, 1 ::; d ::; n- 1 and 0 ::; x < oo, 

(29.11) 

One of the key inequalities in Mason and van Zwet (1987) that was essential to 
derive the refinement of KMT was the following: Let (XI, ... ,Xk+l) with k 2 1 be a 
multinomial random vector with parameters n, pI , ... , p k+ 1. Assume that Pi > 0 for 
i= 1, ... ,kandlets=L.1=IPi E (0,1]. 

Lemma 2 For every C > 0 and o > 0, there exist positive numbers a, band A such 
that for all n 2 1, k 2 1 and positives, PI, ... ,pk satisfying z::; Cn min {PI , ... , Pk} 
and s::; l- 0 

( 
k (K- np·) 2 ) 

P i~ 1 npi 1 >z <aexp(bk-A,z). (29.12) 

This is Lemma 3 of Mason and van Zwet (1987). It was just what we needed to 
complete the proof of inequality (29.8) and it required us some time to formulate. 
(The final result was Willem's doing.) Therefore I was surprised when I found it 
quoted in the 1996 monograph on empirical processes by Aad van der Vaart and 
Jon Wellner (van der Vaart and Wellner (1996)), with a remark that it follows from 
Talagrand's general empirical process inequality. 

Willem and I also published a nice paper on the strong approximation to the 
renewal process. It was also begun during my Leiden visit. Unfortunately it had a 
controversial history, which I will not discuss here. 

Finally I must say something about the remaining paper in the collection of 
Willem's papers that are classified as 'probability'. This is van Zwet (1994). In this 
little gem can be found an elegant solution to the following problem: 

Consider n point charges, each with charge 1/ n, in electrostatic equilibrium on the 
surface S of a conducting sphere. Show that, as n tends to infinity, the distribution 
of the total charge 1 on S tends to the uniform distribution on S. 

Though this is an entirely deterministic result, the proof is probabilistic in na
ture. I will conclude this discussion with some informative and personal remarks by 
Will em about the history of this paper: 

Let me also say something about the paper classified as 'probability', to wit the 
paper on point charges on a conducting sphere. In 1975 Herbert Robbins spoke at 
Lunteren. At the end of his talk he proposed a few problems, one of these being: 
prove that n electrons become uniformly distributed on the sphere as n tends to 
infinity. He said this problem had been bothering him for years. 

Some time later I saw the same problem again, this time as a prize problem of 
the Dutch Mathematical Society. I found a simple proof that is a funny mixture 
of potential theory and probability, and sent it to the mathematics society. They 
awarded me the prize, but the jury report mentioned that the problem had been 
solved before by a well-known Dutch analyst called Jaap Korevaar. 
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It turned out that Korevaar had suggested the problem to the mathematics society. 
(He also heard it from Robbins.) They had used it for a prize problem for a num
ber of years without receiving a solution. Then Korevaar found a solution himself, 
but forgot to tell the mathematics society about this, so they continued running the 
problem as a prize question. 

They were pretty embarrassed, and though Korevaar's proof was totally different 
from mine (lots of calculations), we both buried our proofs in a desk drawer. How
ever, 17 years later I still liked my proof and thought 'what the hell' and spoke about 
it at the Purdue Symposium in 1992, mentioning Korevaar's proof too, of course. 
David Siegmund was present and after the meeting he told Robbins about my talk. 
Robbins'- as usual cynical -comment was 'My god, did it take him 20 years to 
solve this? 

This is Willem, the inimitable storyteller. It has been a pleasure writing these pages. 
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