
Chapter 5
Reconfigurable CPU Instruction Set Extensions

Swapping just small fractions of the configuration of an FPGA can be very beneficial
in many applications. This is in particular useful for reconfiguring the instruction
set of embedded soft core processors. This is highly relevant for software driven
design flows. Here, the system is initially implemented as far as possible in
software (which is faster to accomplish than hardware development). By profiling
the application, hot spots will be identified and kernals will be implemented for
the FPGA for acceleration until performance requirements are met. There are
several methodologies to integrate such accelerator modules. This ranges from small
CPU instruction set extensions to large and fully autonomous modules that work
concurrently with the CPU.

In this chapter, we will investigate how CPU instruction set extensions can be
used efficiently with the help of partial runtime reconfiguration. The base idea of
extending a CPU with exchangeable instructions is sketched in Fig. 5.1. Custom
instructions access the register file in the same way as the ALU. By decoding unused
instruction in the CPU ISA (instruction set architecture) a multiplexer may select
between normal ALU operation or one or more user defined instructions.

Softcore CPUs with statically implemented custom instructions are well sup-
ported. For example the NIOS-II CPU from Altera can be easily extended with
custom instructions when using the SOPC builder wizard of the Quartus design
tools. Similarly, Xilinx allows to add custom hardware to thier Microblaze softcore
CPU using FSL ports. These ports provide basically a streaming port interface
between the Microblaze core and the custom hardware. However, for implementing
runtime reconfigurable custom instructions, the support is weak, hence omitting this
powerful opportunity.

In the following section, we will firstly demonstrate that commonly used
techniques, like the Xilinx bus macro approach or the recent proxy logic technique
is not well suited for integrating custom instructions. After this, in Sect. 5.2, we
will demonstrate for a reconfigurable soft core processor that instructions can be
integrated into the system without causing any additional logic overhead for the
communication. In Sect. 5.3, we reveal how such systems can be easily implemented
with the tool ReCoBus-Builder. Rather than providing reconfigurable islands, we

D. Koch, Partial Reconfiguration on FPGAs: Architectures, Tools and Applications,

© Springer Science+Business Media New York 2013

235
DOI 10.1007/978-1-4614-1225-0Lecture Notes in Electrical Engineering 153, 5,



236 5 Reconfigurable CPU Instruction Set Extensions

result

OP_A OP_B

instruction

result

OP_A
OP_B

conf.
instr.

conf.
instr.

instruction

register fileregister file

a b

Fig. 5.1 (a) Example of a CPU data path. (b) Extension of the ALU with multiple configurable
instructions. The modules are connected to the operands from the register file and a multiplexer
selects between the different results

will integrate multiple custom instructions in a slot-based fashion. Finally, in
Sect. 5.4, an experimental evaluation of a system providing a MIPS CPU extended
to support reconfigurable custom instructions will be presented.

5.1 On-FPGA Communication for Custom Instructions

One basic problem to be solved in the design of partially reconfigurable systems is to
constrain the routing of the interface signals for a partial module during its physical
implementation. As introduced in Chap. 2, there are several ways to accomplish this.
However, when considering a custom instruction set extension, as shown in Fig. 5.1,
we have to consider that a relatively large wire count is required for connecting a
relatively small reconfigurable area. For example, if we consider a bit permutation
function, we have to connect 32 wires towards an island hosting the permutation
accelerator and an additional 32 wires for the result. Note that this example would
not demand any logic on the FPGA as a permutation is basically wiring on the
FPGA. But still, as compared to a software implementation of a permute function,
we can easily save a hundred or more assembly instructions, even if fully unroling
the function. Or, if we consider a 64-bit XOR gate (over both operands) to be hosted
in the same reconfigurable island, it requires two times 32 wires for connecting
the input operands. But also in this case, we need only 21 4-input LUTs (e.g., on
a Xilinx Virtex-II FPGA) or 13 or 6-input LUTs on a (Xilinx Spartan-6 FPGA)
for implementing the 64 bit XOR gate. Again, this instruction would save about a
hundred instructions per call of the function. In other words, for some programs,
we could gain a substantial speed-up by just adding little additional logic. And by
making this configurable, we could host virtually an infinite amount of different
accelerators for supporting various software tasks.

When implementing such custom instructions with slice-based bus macros, as
illustratrated in Fig. 5.2a, it takes two LUTs per signal wire only for providing the
accelerator connection. If we consider in total 100 wires for linking two times a 32-
bit operand, a 32-bit result vector and a few additional signals, The overhead is 200
LUTs. This is roughly 10 � more than actually needed for the XOR gate! Moreover,



5.1 On-FPGA Communication for Custom Instructions 237

a

b

Fig. 5.2 Integrating custom
instructions using (a) Xilinx
bus macros, (b) proxy logic

the look-up tables constitute not only a logic overhead, but also a latency overhead
which is roughly 0.4 ns on a Virtex-II FPGA per LUT. Finally, adding LUTs for the
communication can negatively impact the placement of both, the static system and
the partial modules. For example, a placed bus macro LUT interrupts carry chains
and it can further force to spread a module over more area.

With the recent proxy-logic approach, the situation has improved, as shown in
Fig. 5.2b. However, it still needs 100 LUTs for the communication. Again this is
pure overhead in terms of resources and latency. And as explained in Sect. 2.4.5
on Page 71, the proxy logic approach is not well suited to implement systems with
many different reconfigurable modules.

At this point, someone might think to use static only implementations instead,
if custom instructions are that small. This is probably the better option for very
few instructions. With a rising number of instructions, the CPU gets larger and
consequently slower. When assuming the simplified diagram of a CPU datapath
in Fig. 5.1a, the ALU contains a multiplexer for selecting between the different sets
of instructions of the ALU (e.g., Boolean logic, simple arithmetic, shifter, etc.). This
multiplexer is in the critical path and unlikely to be pipelined [Met04], and despite
that an FPGA fabric is mainly based on multiplexers, it is poor in implementing
wide input multiplexers (see also Sect. 2.6 on Page 104). If carefully applied,
runtime reconfiguration allows to integrate more instructions while providing higher
performance than a static system. Note that this is in many cases still valid even
when considering the configuration overhead. Moreover, partial reconfiguration
adds a flexibility to the system that allows to integrate hardware accelerators
dynamically to a system like known from the software world.



238 5 Reconfigurable CPU Instruction Set Extensions

5.2 Zero Logic Overhead Integration

In this section, we will demonstrate how the Xilinx vendor tools can be used
to integrate reconfigurable instructions without any logic overhead. As shown in
Fig. 5.3a, we are only interested in binding the signals between the static system (the
CPU) and the partial modules (the custom instructions) to a preceisly defined wire
of the fabric, called a “PR link”, in the following. In order to occupy a wire segment
(i.e., use a PR link), we need a path that will use this wire. In other words, there
must by somewhere a primitive source (e.g., a LUT output) and another primitive
destination (e.g., a LUT input) in our netlist with a requested connection from the
source to the destination. However, this creates a path in our netlist but we have still
not constrained the routing. This is done by generating blocker macros, that occupy
a user specified set of routing resources such that the Xilinx vendor router cannot
use these wires for further implementation steps. The blocker concept is introduced
in Sect. 3.2.4. Note that we cannot constrain the routing directly in a way that we
say “use wirex for signaly”. We are basically defining a wire allocation in a way that
we define “do not use wirez”. However, if we ensure by our allocation, that there is
only one possible path remaining, we can actually achieve our goal to bind a signal
path to a wire.

a

b c

Fig. 5.3 Constraining the routing to use PR links. (a) The allocated wires to be used as PR links.
These wires carry out the static-partial communication. (b) During the implementation of the static
system, we place connection primitives into the reconfigurable region that act as a placeholders
for the partial modules (here the custom instructions). In addition, we place a blocker into the
reconfigurable region that conguests all wires except some tunnels for the PR link. (c) During the
implementation of the partial modules, we place connection primitives into the static region that
act as a placeholder fot the static system (here the CPU). In addition, we place a blocker around
the reconfigurable region that conguests all wires except some tunnels for the PR link



5.2 Zero Logic Overhead Integration 239

5.2.1 Static System Constraints

With the knowledge of how to create a path and how to constrain this path to certain
wire resources of the FPGA fabric, we can implement the static system. The static
system contains the CPU and a reconfigurable region. In order to create paths into
this region for connecting the operands OP A and OP B (see Fig. 5.1), we place
a connection primitive into the reconfigurable region (PR region), as depicted in
Fig. 5.3b. This primitive acts as a placeholder for the partial module and is the
destination for the operand routing. Similarly, for creating a path for the result vector
back to the CPU in the static part, we place a placeholder acting as the source for the
path. Note that the same LUT primitive (or, to be more preceise, a slice) might be
used as a placeholder for multiple input and output signals at the same time. So far,
this seams to be pretty much identical to the proxy logic approach. However, we will
now add a blocker into the reconfigurable region that blocks all routing resources in
this region, except the wires to be used as PR links. Note, that the placement of the
placeholders and the blocking is not random and has to support the intended PR link.
If we now start the router, we will create the routing of the static system including
paths to and from the partial region that are routed using the requested PR links.
There are two things to remember: (1) we have not added any logic overhead to
the static system, and (2) we only blocked wire resources inside the reconfigurable
region.

5.2.2 Partial Module Constraints

The partial module implementation (here the custom instructions) is very similar to
what we did for the static system. However, all signals directions are now changed
and with respect to a custom instruction, the operands are no inputs and the result
vector is an output. Consequently, we place a source placeholder as the start for
the operands outside the reconfigurable region (i.e., the static region). Respectively,
we add also placeholders acting as the destinations for the result vector. Again,
placeholders for inputs and outputs can share the same FPGA primitive, as shown
in Fig. 5.3. We will now add a blocker around the partial module that conguests
all routing resources, except the ones needed to route the operands and results
over the PR links. Here it is important, that the blocker releases PR links that are
compatible to the PR links used in the static design. Again, there are two things to
remember: (1) we have added no logic overhead to the static system, and (2) we
only blocked wires outside the reconfigurable region. Consequently, when loading a
reconfigurable instruction into an reconfigurable island that was created as described
for the static system in the last section, there will be no placeholder module visible.
The placeholders are only temporarily required to create a path over the PR link.



240 5 Reconfigurable CPU Instruction Set Extensions

a

b

Fig. 5.4 Wire allocation for the zero overhead integration technique. (a) Allocating wire1 and
wire2 results in an unpredictable routing, while (b) allocating wire0 and wire1 results in an unique
routing

5.2.3 Communication Binding by Wire Allocation

The zero logic overhead technique has to follow some rules. Again, by blocking, we
can only select the set of wires that are allowed for routing (i.e., wire allocation)
but this does not necessary ensure a particular binding of a logical signal to a
physical wire. However, the binding is achieved by allocating wires such that only
one unique routing path can be used to reach the connection macro (see Fig. 5.4). As
a consequence, not all wires within a CLB can be used at the same time to implement
the routing between the static part and the partial part of a system. This is because
in the case that multiple wires are routed from one configurable logic block (CLB)
to another, wires must be allocated that cannot be swapped. A possible swapping
of wires would allow the router to decide between more than one option for a PR
link, which cannot be accepted. A situation of allocating swappable wire resources
is shown in Fig. 5.4a. Here, the problem is that both allocated wires can be arbitrary
used to connect to both placeholders that used for the data signals data[0] and
data[1]. Consequently, the router has two possibilities to chose from and we
cannot gurantee a signal binding to a specific PR link. However, by allocating a
different wire set, we leave only one possible path per data signal and we achieve
an exact binding to wires, as shown in Fig. 5.4b. Note that designing PR link paths



5.3 Implementing Reconfigurable Instructions with the ReCoBus-Builder 241

needs deep knowledge about the FPGA routing fabric including wire resources and
possible switch matrix settings. This information is provided by Xilinx individually
for each FPGA in a language called XDL [BKT11].

5.3 Implementing Reconfigurable Instructions
with the ReCoBus-Builder

The ReCoBus-Builder is originally designed for implementing bus-based systems
consisting of many small resource slots that are integrated with the help of macros,
as revealed in Sect. 3.2. At this point, we focus only on macros implementing the
connection bar architecture (Sect. 2.6.1). For implementing the zero logic overhead
approach, we follow the original ReCoBus-Builder flow and perform resource
budgeting and define a floorplan that fulfills the resource requirements. Then, we
create our communication architecture that will provide connection primitives in
the static part of the system as well as in each resource slot. Let us consider the
simple case of a connection bar to connect only a single resource slot. We would
then basically generate a Xilinx bus macro for an island reconfiguration style. When
following the default ReCoBus-Builder flow, we will generate two blocker macros,
one for the static design and one for the reconfigurable modules. We will use these
blockers for implementing the PR link approach shown in Fig. 5.3. As the blockers
generated by the ReCoBus-Builder will not block the wires that are already used
for the connection bar macro, the blocker will contain a tunnel for a PR link. The
only thing that is now missing are the placeholder primitives. These primitives
are taken directly from the generated connection bar macro. Consequently, we can
generate compatible placeholder/blocker pairs for both the static system and the
partial modules. If we assume a connection bar with one internal wire towards east
and another wire towards westwards direction, the resulting primitives and blockers
would match the example in Fig. 5.3. The ReCoBus-Builder has a wire database for
each supported device. This is used by the tool to check if a wire allocation can
ensure PR links without possible swaps as discussed in the last paragraph. With this
approach, we can provide four double wire PR links per CLB on a Xilinx Virtex-II
FPGA.

As a case study, we consider to integrate up to five different instructions into the
system at the same time. Instead of using five individual islands for hosting the
instruction modules (as it would be necessary following the Xilinx PR flow),
the system uses a more flexible approach with one reconfigurable area that is
tiled into five resource slots, as depicted in Fig. 5.5. This has the advantage that
modules of different size can be more efficiently integrated into the system by
taking a variable amount of slots. The communication architecture has to link the
two operands to each slot and the result vector back individually for each slot
to an instruction multiplexer. By using different wire resources for the operands
and the result vectors that route over different distances, both requirements can



242 5 Reconfigurable CPU Instruction Set Extensions

OP_A

OP_B

instruction
A B

register file

Fig. 5.5 Partial region of the reconfigurable ALU part. The slots can host different sized modules.
Due to the interleaved routing of the operands with double lines and due to the available middle
access in the middle of a double line, both operators can be accessed in each slot

be properly implemented. By taking advantage of the regular FPGA fabric, the
slots can be arranged completely identically, hence allowing free placement of
instructions into the reconfigurable ALU. Figure 5.5 reveals a detail of the routing
architecture of Xilinx Virtex-II FPGAs that was used to provide slots that are smaller
than the routing distance of a wire. In the example, it is assumed that one resource
slot is only one CLB wide and that the operands are routed using double lines
that route two CLBs wide. However, by using a connection in the middle of the
wire, which is provided by the routing fabric after a distance of one CLB, and by
displacing the start points of the regular routing structure of the two operands by
one CLB in horizontal direction, both operands can be accessed in any slot. This is
possible by routing the signals in an interleaved manner. Note that it is also possible
to route paths by cascading multiple different wires, which would allow to widen the
slots (in terms of CLB columns) and to extend the total amount of slots for hosting
modules (see Sect. 2.5.2 on Page 81 for more details). The interleaving results in
swapping the operands with respect to the placement position (odd or even start
slot). However, for instructions that are not commutative, we can use two physical
implementations in order to omit the alignment multiplexing. See Sect. 2.5.3 on
Page 92 for more details on interleaving.

5.4 Case Study on Custom Instructions

The case study has been implemented with the ReCo-Bus-Builder on a Xilinx
Virtex-II XC2V500-5 FPGA. The tool generates regular structured macros together
with the surrounding blocker macros that constrain the routing. The implementation
follows directly the methodology revealed in Sect. 5.2. The communication macros
provide the connection primitives and fix the wire resources. The ReCoBus-Builer
generates the all macros (including the blocker) in the Xilinx design language
(XDL). While communication macros are instantiated using the HDL flow, the
blockers are integrated into the design just before the final route step. A floor-
planning view on the system is depicted in Fig. 5.6. The area reserved for hosting



5.4 Case Study on Custom Instructions 243

Fig. 5.6 Floorplanning view of the case study. Each gray square represents a CLB that provides
eight 4-input LUTs. The five highlighted columns are reserved for hosting up to five different 32-bit
instructions

reconfigurable instructions is 8% of the total amount of CLBs that are available
on the used device. With five times 48 slices, the PR region provides roughly
15–20% the amount of logic that would be required by an optimized 32 bit soft
core processor, such as the Xilinx Microblaze. For the experiments, we used our
own MIPS processor implementation that has not been optimized for speed or area,
but which can be easily adapted to include reconfigurable instructions.

5.4.1 Static System Implementation

During implementation of the static system, connection primitives that are placed
inside the reconfigurable region and that are surrounded with blocker macros have
been used to constrain all signals required to integrate the instructions. A screenshot
with the static system is shown in Fig. 5.7. The amount of wires that are connected
from the static part of the system to the PR region is 2 � 32 for the operands plus
additional eight wires of control signals. In reverse direction, each one out of the five
slot delivers a 32 bit result plus additional four flags. This results in a total amount
of 64 C 8 C 5 � .4 C 32/ D 252 wires.



244 5 Reconfigurable CPU Instruction Set Extensions

Fig. 5.7 Xilinx FPGA editor view of the static system. Blockers in the PR region prohibit routes
of the static system

According to the partial design flow provided by Xilinx, the number of operand
bits and control signals has to be multiplied by the number of slots, as that flow
does not consider multicast routing to multiple slots without additional connection
primitives. Then the slice based macro approach would cost 2�5�.72C36/ D 1;080

LUTs only for the communication. This is 18% of the available LUTs on the target
device and roughly one third of the logic a fully featured 32 bit Microblaze soft core
processor would take. Even using the new flow that is based on proxy logic, would
still result in a remarkable unnecessary overhead.

When floorplanning a reconfigurable system, it is recommended to consider
the underlying FPGA architecture. For example, Xilinx FPGAs are column-wise
reconfigured, which should be taken into account by designing the slots vertically.
This optimizes the reconfiguration time. A restriction derived from the full column
reconfiguration scheme is that no distributed memory can be used directly above or
below the PR region as this would corrupt the state of these primitives. Following
this rule, partial reconfiguration can be carried out while continuing the system to
operate.

FPGAs provide carry chain logic, which are used for different kinds of arithmetic
operations. On Xilinx FPGAs, the carry chains include four LUTs per CLB and
the chains are arranged in upwards direction. Consequently, we built the system
such that exactly two times four operand signal bits and four bits of the result
vector are connected in a CLB. Furthermore, the signal vector bits are connected
bottom-up (LSBs in the bottom) to follow the carry chain. Without this physical port



5.4 Case Study on Custom Instructions 245

Fig. 5.8 View on the implementation of a CCITT CRC checker instruction

mapping, routing will get very conguested for the modules. In [CPF09], a tool using
a simulated annealing heuristic was used to place communication macros around a
reconfigurable region that was also used for reconfigurable CPU extensions. Such
tools have an excessive runtime as they require a place and route step for each
annealing step. It can be assumed, that the final result would be very similar to
the here proposed rule based port mapping that needs only one place and route run.

5.4.2 Reconfigurable Instructions

For implementing the reconfigurable modules, the complete static system was
substituted with a connection bar macro, as depicted in Fig. 5.8. This permits to
implement reconfigurable modules in absence of the static system. As can be seen in
Fig. 5.8 for a CRC checksum function, a module is surrounded with a blocker macro
for restricting modules into strict bounding boxes. This design has no connections
to external pins. The timing was constrained with the Xilinx TPSYNC parameter.

5.4.3 Results and Overhead Analysis

Swapping instructions comprises a significant time for writing the correspond-
ing partial bit stream to the right target position. In addition, extra time might
be required for computing a placement position or performing some bitstream



246 5 Reconfigurable CPU Instruction Set Extensions

Table 5.1 Implementation and performance details

b.stream tconf SW
Instruction # Slices Slots Latency (max/av) (KB) (ms) (cycles) k @ 50 MHz

64-bit XOR 19 (40%) 1 7.04 / 5.95 ns 2.64 0.6 61 492
CCITT CRC 33 (34%) 2* 5.32 / 3.98 ns 5.28 1.2 215/257* 279/233
sat. add/sub 70 (73%) 2 9.89 / 7.81 ns 5.28 1.2 12 5,000
Barrel shifter 90 (94%) 2 11.07 / 7.88 ns 5.28 1.2 143 420
‘1’ bit counter 214 (89%) 5 11.37 / 8.25 ns 13.2 3 102 1,471
Mask & permute 16 (33%) 1 5.94 / 4.05 ns 2.64 0.6 98 306
�Additional slot to accomplish routing

manipulations. This extra time overhead is implementation dependent and not
further considered in the following. However, due to the small size of the systems,
most work could be precomputed offline (e.g., a table for the placement position).
When taking the decision to use reconfigurable instructions, it is important to know
the latency that has to be considered for the reconfiguration process (response time)
and the time the processor will require when executing the instructions alternatively
as simple software function calls. This determines the breakeven factor k and the
system has to trigger a reconfigurable instruction at least k times before gaining a
benefit in the total execution time of the system. Note that we use function calls
and no traps, as traps are very specific for emulating CPU instructions in software
and because traps have a tiny additional overhead that would not occur in case of
normal function calls. The configuration times and the execution times for software
implementations of the custom instructions (determined in a simulator) are listed in
Table 5.1.

The reconfiguration process is relatively slow and would consequently prevent
using custom instructions in time critical parts of the software (e.g., interrupts).
However this is not problematic as critical software parts should typically not
perform complex computations. The breakeven factor k is the number of possible
invocations of a particular instruction during the time to configure this instruction.
As can be seen, for complex operations, such as the CRC instruction, less than 300
calls of this reconfigurable instruction would pay of the configuration overhead;
and even if an instruction can save only a few cycles, this can pay of after just a
few thousand cycles. Considering that the saturation addition/subtraction module is
used in an image processing application, it can be assumed that it is very likely to
trigger this function an sufficient amount of times. It must be mentioned that the
listed values are theoretical and the breakeven points will probably be likely higher.
This is because the configuration data transfer is in our system in conflict with the
CPU (shared memory buses); and even having only a few KB of configuration data
results in a burst affecting the CPU. However, reconfigurable instructions are still
an interesting option for both saving FPGA resources and gaining performance.

The values in brackets denote the utilization within the occupied slots. Despite
that the CRC logic would easily fit into one slot, an additional slot was required to
fully route the module. The bitstream size states only the fraction of the partial



5.4 Case Study on Custom Instructions 247

module and no static parts. The reconfiguration time is mainly related to the
amount of slots that have to be written to the device. A single slot configuration is
11.6 KB on this device which results in 0.6 ms configuration time, when assuming a
configuration speed of 20 MB/s. The latency was determined using the FPGA editor.
The values are measured between the operand fetching pipeline register through the
combinatory path of the instruction and further towards the output of the instruction
select multiplexer. The max value denotes the critical path delay and the average
delay over all paths.

The examples point out that small FPGA areas are sufficient to include very
valuable instructions into a CPU with the help of partial runtime reconfiguration.
Despite the small slots, a high number of signals can be interfaced to partial
modules.


	Chapter
5 Reconfigurable CPU Instruction Set Extensions
	5.1 On-FPGA Communication for Custom Instructions
	5.2 Zero Logic Overhead Integration
	5.2.1 Static System Constraints
	5.2.2 Partial Module Constraints
	5.2.3 Communication Binding by Wire Allocation

	5.3 Implementing Reconfigurable Instructions with the ReCoBus-Builder
	5.4 Case Study on Custom Instructions
	5.4.1 Static System Implementation
	5.4.2 Reconfigurable Instructions
	5.4.3 Results and Overhead Analysis



