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Abstract: Atherosclerosis is a disease of the blood vessel characterized by the development of
an arterial occlusion containing lipid and cellular deposits. Caveolae are 50-100 nm
cell surface plasma membrane invaginations that are believed to play an important
role in the regulation of cellular signaling and transport of molecules among others.
These organelles are enriched in sphingolipids and cholesterol and are characterized
by the presence of the protein caveolin-1. Caveolin-1 and caveolae are present
in most of the cells involved in the development of atherosclerosis. The current
literature suggests arather complex role for caveolin-1 in this disease, with evidence
of either pro- or anti-atherogenic functions depending on the cell type examined. In
the present chapter, the various roles of caveolae and caveolin-1 in the development
of atherosclerosis are examined.

INTRODUCTION
The Development of Atherosclerosis: Current Understanding

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality
in industrialized nations. Atherosclerosis is the primary cause of CVD and is mainly
characterized by the formation of plaques that develop in the arterial wall. This wall
consists of three distinct cellular layers: the intima, the media and the adventitia. The
intima is the innermost monolayer of the artery formed by endothelial cells (ECs) and
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internal elastic lamina. The media consists of smooth muscle cells (SMCs) embedded in
an extracellular matrix (ECM). The adventitia is the outer layer of the arterial wall and
is made up predominantly of fibroblasts and ECM.!

Plaque formation is a complex multistep process that is initiated by the accumulation
of lipoproteins in the arterial intima and followed by the infiltration of monocytes at lesion
sites. Lipoprotein infiltration mainly involves low-density lipoprotein (LDL), which acts
as a molecular suitcase for the transport and delivery of lipids to peripheral tissues. Thus,
increased plasma LDL levels have been linked to increased risk of CVD.? Importantly, the
entrapmentof LDL particles and their subsequent modification (e.g., oxidation oraggregation)
in the sub-endothelial space of arteries®* have been demonstrated to play a major role in
the initiation of atherosclerosis.® As a result, the transfer of LDL from the blood stream to
the sub-endothelial space may be the defining initial step for the atherosclerotic process.

The presence of modified LDL particles in the sub-endothelial space induces early
inflammation via the activation of ECs. This inflammatory process is initiated by the
expression of adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1),
intracellular cell adhesion molecule-1 (ICAM-1), P-Selectin and E-Selectin.® Selectins
play a key role in the primary interaction between monocytes and the endothelium, namely
tethering and rolling of monocytes at the surface of activated endothelial cells.” Subsequently,
monocytes differentiate into macrophages that can take-up large amounts of modified LDL
and eventually become foam cells, which are enriched in cholesteryl esters (CE). The
presence of T-lymphocytes, foam cells and macrophages in the intima further contribute
to the inflammatory response via the secretion of chemokine and cytokine molecules, such
as Monocyte Chemoattractant Protein-1 (MCP-1) and Tumor Necrosis Factor-o (TNF-a.).?

In the early stages of this process, foam cell formation occurs via the uptake and
subsequentaccumulation of modified LDL in macrophages.’ Ingested lipoprotein particles are
degraded into cholesterol, amino acids and fatty acids in the lysosomes. Excess cholesterol
is stored in lipid droplets as cholesteryl esters (CE).!° These cholesterol-loaded macrophages
transform into foam cells since the expression of receptors responsible for lipoprotein uptake
(i.e., scavenger receptors) is not regulated by cellular cholesterol levels.!' The scavenger
receptors CD36 and Scavenger Receptor class A (SR-A) are receptors that bind modified
LDL. Contrary to the LDL-receptor, mRNA levels of these receptors are not regulated by
cellular cholesterol levels. Consequently, mice deficient in either of these receptors exhibit
reduced atherosclerotic lesions.'*!* This phenotype is likely due to impaired modified LDL
uptake by macrophages and, consequently, reduced fatty streak formation.

During all stages of lesion progression, macrophages may undergo apoptosis'*!> and
with prolonged cholesterol loading, macrophages show characteristics of necrosis.'® In
vitro experiments have shown that free cholesterol (FC)-loading or oxidized LDL (oxLDL)
treatment of macrophages leads to necrosis that is characterized by disruption of the plasma
membrane and swelling of cellular organelles.!*!® Other possible causes for macrophage
death in atherosclerotic lesions include growth factor deprivation' and the exposure to
factors such as inflammatory cytokines and nitric oxide.?® These observations highlight
the importance of the macrophage phagocytotic properties that would allow an efficient
clearance of apoptotic cells. The removal of the resulting apoptotic cells by phagocytosis is
carried out by infiltrating macrophages in a process known as efferocytosis.?' This process
is decreased in the more advanced stages of atherosclerosis and, as a result, increased
plaque necrosis and inflammation are observed.’? Besides apoptotic macrophages, lesions
in the sub-endothelial space at this stage are also composed of proliferating SMCs and an
ECM composed of lipid-rich cellular and necrotic debris.!** The secretion of cytokines and
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growth factors by macrophages and T-cells further promote the migration and proliferation
of SMCs. In turn, these stimulated SMCs produce ECM proteins that can facilitate plaque
rupture.! All of these events are believed to promote the development of an atheroma and
later plaque rupture can eventually lead to blood clot and acute arterial occlusion causing
a myocardial infarction or stroke depending on the location.'->*2*

A goodunderstanding of the molecular mechanisms associated with the development
of atherosclerosis has been obtained in mouse models. Mice are normally very resistant to
atherosclerosis. However, under specific genetic and dietary conditions, they can develop
hypercholesterolemia and extensive atherosclerotic lesions with characteristics that are
similar to those observed in humans. In mice, a targeted disruption of the apolipoprotein
E gene (apoe) is characterized by increased very low-density lipoproteins (VLDL) and
LDL associated cholesterol levels in the blood stream. In addition, feeding apoe” mice
with a western-type diet (i.e., enriched in cholesterol) leads to a further increase in plasma
cholesterol levels that canreach 1500-2000 mg/dl (~ten times normal values) and therefore
accelerates the appearance of lesions in the aorta.?>2¢

Caveolin-1 (Cav-1) is expressed in all of the cell types involved in the development
ofatherosclerosis (i.e., endothelial cells, macrophages and smooth muscle cells). Because
of'its role in the regulation of cellular cholesterol homeostasis and in numerous signaling
pathways, it has been proposed to play an important role in atherosclerosis together with
caveolae. The objective of this chapter is therefore to provide a better understanding of
the role of Cav-1 and caveolae in the complex process of atherosclerosis development at
the cellular and molecular levels. The study of complex diseases such as atherosclerosis
is challenging because of its multi-factorial origin, most notably environmental and
genetic. Based on data generated by various laboratories, including ours, we believe that
the study of Cav-1 will allow the development of novel scientific approaches to study
atherosclerosis by examining the different steps associated with the development of this
disease. In this chapter, we present a caveolae-based approach to dissect the various steps,
in particular, intimal LDL accumulation, endothelial, macrophage and SMC function.
These cell types are directly involved in the development of atherosclerosis at different
stages during disease progression. More specifically, we underline the multifaceted and
sometimes opposing roles of Cav-1 in ECs, macrophages and SMCs. Finally, we present
a working model for Cav-1 function in atherogenesis.

Caveolae: Discovery and Biochemical Properties

“Caveolae”, a term coined by Yamada,?” are small, 50-100 nm, flask-shaped plasma
membrane invaginations, first identified by Palade in 1953 and described as “little caves”
due to their appearance by electron microscopy.?® This type of vesicular structure is a
subtype of lipid rafts, which are plasma membrane microdomains enriched in sphingolipids
and cholesterol.? The particular lipid composition of caveolae/lipid rafts is responsible for
the insolubility observed in non-ionic detergents (e.g., Triton X-100) at 4° C and a light
buoyant density after sucrose gradients ultracentrifugation.’® These properties have been
instrumental for the purification and biochemical characterization of these structures.?'-3
They are involved in the regulation of signal transduction events, endocytosis, transcytosis,
membrane trafficking and the regulation of cholesterol homeostasis.***¢ They are highly
sensitive to cholesterol depletion as treatment of cells with cholesterol-binding agents
(e.g., cyclodextrin) flatten these structures.’”** Caveolae are characterized by the presence
of the protein Cav-1. Caveolae and Cav-1 are abundant in terminally differentiated cells,
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including fibroblasts, epithelial cells, adipocytes and ECs.*#° Cav-1-deficient mice lack
caveolae in all of the cell types normally expressing Cav-1. These findings indicate that
Cav-1 is required for the formation of caveolae.*!#

Caveolae and Caveolins Structure and Function

The molecular makeup of caveolae has remained mysterious for four decades after
their initial morphological description. The discovery of Cav-1 as a major structural
protein component of caveolae has since provided new insights into the multifaceted
function of caveolae and caveolins.*®** Cav-1 was first identified through a screening of
tyrosine-phosphorylated proteins in Rous sarcoma v-Src positive cells. This protein was
detected in caveolae by immuno-electron microscopy and protein sequencing identified it
as the previously characterized VIP21 protein (Vesicular integral-membrane protein of 21
kDa).**¢ Two additional caveolin protein isoforms have also been identified by sequence
identity. Together, they form the caveolin protein family, which consists of three proteins
(Caveolin-1, Caveolin-2, Caveolin-3) thatare well-conserved from C. elegans to mammals.*

Cav-1 has an unusual topology (Fig. 1) with the middle portion of the protein (~33 amino
acids) embedded intothe cytoplasmic leaflet ofthe lipid bilayer and its amino and carboxy termini
in the cytosol, thus forming a hairpin-like structure.* Cav-1 and Cav-3 homo-oligomerize,
while Cav-1 and Cav-2 form hetero-oligomers, via the caveolin oligomerization domain
(COD, residues 61-101).*” After synthesis in the endoplasmic reticulum (ER), Cav-1 forms
high molecular oligomeric complexes with either itself or Cav-2. In skeletal muscle and
cardiac myocytes, Cav-3 is the main structural component of caveolae.*® Cav-1 oligomers
organize themselves within the membrane to form a higher order umbrella-like structure (Fig.
1). As the complex traffics through the Golgi network, a higher order complex of well over
1000 subunits (Cav-1 oligomers) eventually leads to the formation of caveolae at the plasma
membrane in association with cholesterol and sphingolipids. Cav-1 protein levels are highly
dependent on cellular cholesterol levels.*-? In addition, this protein has a high affinity for
cholesterol.***¢ The initial Cav-1 oligomers allow to anchor various receptors and signaling
molecules.’”*® Besides, this structure promotes the invagination and bending of the membrane
through the caveolin-induced asymmetrical conformation.

Domain mapping and deletional analysis have identified a Cav-1 scaffolding domain
(CSD, residues 82-101), which allows Cav-1 to mediate protein-protein interactions and
modulate signal transduction pathways. Several cytoplasmic and transmembrane proteins
and downstream signaling molecules have been shown to preferentially localize to caveolae
and interactwith Cav-1. These molecules include Src-family tyrosine kinases, p42/44 MAPK
and endothelial nitric oxide synthase (eNOS). Cav-1 can hold these signal transducing
molecules in an inactive state until they are activated by the appropriate stimulus.’”>
These properties allow caveolae and caveolins to regulate signal transduction and act as
platforms for compartmentalization, engaging signaling molecules in a manner similar
to lipid rafts. This function has been proposed in the “caveolin signaling hypothesis™.®°

ABSENCE OF CAVEOLIN-1 DECREASES ATHEROSCLEROSIS
DEVELOPMENT

The first direct indication suggesting that Cav-1 plays a role in atherosclerosis has
come from findings obtained in our laboratory. We have shown a major reduction of
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Figure 1. Caveolae Organization. A) Representation of Cav-1 hairpin-like structure with its domains,
including the scaffolding domain (CSD) which allows Cav-1 to bind and regulate kinases and other
downstream signaling pathways. B) Representation of Cav-1 oligomer formation (14-16 monomers)
with an umbrella-like structure embedded within the plasma membrane enriched in cholesterol and
sphingomyelin. C) Higher ordered complex of well over 1000 subunits eventually forms caveolae within
the lipid bilayer of the plasma membrane. D) Examples of caveolae structures observed in differentiated
cells. Grape-like structures plasma membrane attached caveolae are shown.

atherosclerosis in caveolin-1-deficient (cav-1~") mice in the apoe™ genetic background.
These double knock-out mice displayed reduced aortic lesions by up to 70% compared to
apoe”~mice alone despite remarkably elevated levels of circulating plasma cholesterol.®"-2

However, Cav-1 is expressed in all the cell types involved in the development of
an atheroma. Nevertheless, its expression levels and function are different depending
on the cell type. In fact, current studies suggest that Cav-1 has both a pro- and
anti-atherogenic role that is context-dependent based on the cell type in which it is
expressed.®! The various roles of Cav-1 in atherosclerosis will be discussed in the
following sections.

Role of Caveolin-1 in the Regulation of Endothelial Cell Function
Caveolae and the Regulation of LDL Transcytosis

Elevated plasma LDL cholesterol levels have been associated with increased risk for
heart disease development. As a consequence, all mouse models used for atherosclerosis

studies exhibit abnormal lipoprotein profiles. Transcytosis and retention of LDL are
believed to be the initiating events that lead to downstream processes such as activation
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of ECs and subsequent monocyte recruitment. The transcytosis process is defined as the
transfer across ECs of a molecule (e.g., LDL) from the lumen to the subendothelial side
of'a blood vessel. Its occurrence may be related to the presence of Cav-1 in ECs, since it
was suggested that caveolae could mediate LDL transcytosis®® (Fig. 2). Other molecules
that are known to transcytose across ECs are albumin® and transferrin.% Interestingly,
ECs that lack Cav-1 display impaired transcytosis of albumin.*¢-7

Transcytosis is the first function that has been ascribed to caveolae® and fifteen years
later it was shown that the majority of LDL transcytosis occurs via caveolae.” Endothelial
caveolae are thought to play a role in transcytosis via receptor-mediated transfer of LDL
across ECs®“® or fluid phase transfer of LDL across ECs. A third pathway by which LDL
could cross the endothelial barrier might be via a paracellular transport, which could occur
between two ECs (Fig. 2). However, the latter pathway isunlikely to occur since LDL particles
may be too large (20-30 nm) to fit between the tightly apposed ECs. In fact, Simionescu et al
have shown that the transfer of molecules via the paracellular pathway is limited to those in
the 3-6 nm range.”® Moreover, Vasile et al® have shown that LDL particles are endocytosed
in small amounts in ECs by receptor-dependent and receptor-independent processes. In
addition, caveolae have also been shown to be responsible for the transcytosis of LDL and
HDL across ECs of the blood brain barrier.”"-”* Finally, in a recent study, we have shown
that Cav-1-deficient mice present defects in the aortic uptake of LDL particles, both in vivo
and in vitro.* In direct support of these findings, we have confirmed that downregulation of
the Cav-1 protein in human umbilical vein endothelial cells leads to an over 50% reduction
in LDL uptake (S Pavlides and PG Frank unpublished data). The latter studies demonstrate
a critical role for caveolae-mediated transcytosis of LDL particles from the vascular lumen
to the sub-endothelial space. Furthermore, they also indicate an important pro-atherogenic
function for Cav-1 and caveolae in ECs. Therefore, the requirement for high cholesterol
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Figure 2. Transcellular model of LDL transfer across endothelial cells. LDL is transferred from the lumen
to the sub-endothelial space via three possible transcellular pathways: A) Receptor-mediated transcytosis:
LDL binds specific receptors that are found in caveolae (such as CD36). Caveolae vesicles endocytose
and transfer LDL across the cell, where caveolae fuse with plasma membrane on the basal side to release
LDL within the intima. B) Fluid phase-mediated transcytosis: LDL particles engage in caveolae vesicles
in a nonspecific manner and are transferred across the cell to the intima. C) Paracellular pathway: LDL
particles are transported between the space of two apposed cells in a caveolae-independent manner.
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circulating levels in animal models susceptible to atherosclerosis is not sufficient but
transcytosis of LDL across ECs is a prerequisite for the initiation of atherosclerotic lesion
progression. Blockage of this process could prevent atherosclerotic lesion development.
Further research into the factors regulating this step may lead to the development of novel
drugs for the treatment of vascular diseases.

Caveolin-1: Role in the Regulation of eNOS Function and Inflammation

Endothelial Cav-1 is implicated in vascular inflammation, which is a critical element
in the development of atherosclerosis. In that regard, the endothelial nitric oxide synthase
(eNOS) has been demonstrated to play an important role in inflammation. eNOS is an
enzyme produced by endothelial cells and it is palmitoylated and myristoylated.”” These
posttranslational modifications are a common feature of many signaling proteins that are
targeted to caveolae.* Moreover, eNOS interacts with the Cav-1 scaffolding domain and
is tonically inhibited by Cav-1 in vascular ECs.*>7%77 eNOS is a complex dimeric enzyme,
which activity is highly regulated. Intracellular calcium concentration rises upon agonist
(e.g., acetylcholine) stimulation of ECs. This reaction leads to the binding of calmodulin to
intracellular calcium and the newly-formed complex effectively displace Cav-1 from eNOS
and associates with the latter. Dissociation of eNOS from caveolin allows the production
of nitric oxide (NO).”® Dysregulated eNOS activity, due to the lack of one of the major
cofactors can have adverse effects by inducing superoxide production” (see Chapter 3 for
additional details relating to the role of Cav-1 in the regulation of eNOS function).

Activation of eNOS is associated with protective effects on lesion formation via
decreased expression of adhesion molecules, such as VCAM-1.5¥" VCAM-1 is a
protein that belongs to the immunoglobulin superfamily, which also includes integrins
and selectins.®? Under basal, unstimulated physiological conditions, VCAM-1 is not
expressed. However, under specific pro-inflammatory conditions, such as in the presence
of cytokines like Tumor Necrosis Factor (TNF)-a or Interleukin (IL)- 18, ECs are activated
and quickly synthesize VCAM-1.% Previous studies have demonstrated the important
role of VCAM-1 in the development of atherosclerosis.®*35 Our studies using cav-17
apoe”~ and apoe” mice have shown that the absence of Cav-1 in endothelial cells could
lead to a reduction in VCAM-1 production.®* In addition, Fernandez-Hernando et al®1?
have demonstrated the direct role of Cav-1 in the regulation of adhesion molecule
expression. In this study, Fernandez-Hernando et al have shown that the re-expression
of Cav-1 in endothelial cells of cav-17-apoe™ is sufficient to reverse the effect observed
on VCAM-1 expression. In addition, these authors have also shown that the expression
of other markers of inflammation (ICAM-1, E-selectin and P-selectin) is reduced in
cav-1"apoe” mice.**'?’ Taken together, these data suggest that endothelial Cav-1 plays
an essential role in the regulation of endothelial cell activation.

Summary

The current literature strongly suggests that endothelial Cav-1 and caveolae plays
critical roles in the development of atherosclerosis. Moreover, contrary to its role
in macrophages and smooth muscle cells (See the following two sections), a clear
pro-atherogenic role has been demonstrated for endothelial Cav-1.2% It may regulate
lipoprotein and cholesterol accumulation in the intima.® In addition, we and others have
demonstrated direct and indirect effects for Cav-1 in the regulation of endothelial-mediated
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inflammation.®*#¢ Finally, Cav-1 may also play an important role in the regulation of
endothelial cell replacement in injured blood vessels. In that case, the presence of Cav-1
may limit cellular replacement in injured blood vessels, thereby promoting lipoprotein
accumulation in the intima and eventually atheroma growth.®’

Role of Caveolin-1 in the Regulation of Macrophage Function
Macrophage Apoptosis during Atherosclerotic Development

Macrophage apoptosis occurs at all stages of atherosclerotic lesion development after
foam cell formation.'*'> Cav-1 has been implicated in the regulation of apoptosis in anumber
of cell types such as endothelial cells®® and smooth muscle cells.®” Extensive analysis shows
that Cav-1 expression sensitizes certain types of cells to chemicals that induce apoptosis. For
example, NIH 3T3 cells that overexpress Cav-1 are more sensitive to apoptosis mediated
by the protein kinase inhibitor staurosporine. Conversely, NIH 3T3 cells that have been
depleted of Cav-1 become resistant to apoptosis induced by staurosporine.” Similar results
have been obtained with the bladder epithelial cell line T24.”° Studies have shown that
regulators of apoptosis, such as the TNF-a. receptor® and caspase-3* localize to caveolae
and their function may depend on the presence of caveolae. These data suggest that the
localization of apoptotic regulators within caveolae is critical for apoptosis.

Several studies have now examined the role of molecules regulating macrophage apoptosis
inthedevelopment ofatherosclerosis. In vivo studies using bone marrow transplantation of cells
lacking the pro-apoptotic gene Bax have revealed that decreased macrophage apoptosis leads
to increased early lesion size and cellularity.” Similar results were obtained in bone marrow
transplantation experiments using cells lacking the pro-apoptotic (or tumor-suppressor) gene
p33.% Both of the above studies have used mouse models susceptible to atherosclerosis such
as apoe” and Ildlr”- mice. However, these bone marrow-derived macrophages lacking the
pro-apoptotic genes (bax, p53) have been shown to display increased cellular proliferation,
which may further contribute to the increased lesion size.”” On the other hand, mice that lack
the anti-apoptotic factor, AIM (apoptosis inhibitor expressed by macrophages) have been
shown to develop smaller early atherosclerotic lesions compared to their /d/r~~ control group.**
The above examples are indicative of an inverse relationship between apoptosis and early
atherosclerotic lesion development. Increased apoptosis leads to decreased cellularity and
therefore, reduced lesion size. Conversely, decreased apoptosis leads to increased cellularity
and therefore, increased lesion size.

In mouse peritoneal macrophages (MPMs), Cav-1 expression is up regulated
during simvastatin-induced apoptosis of macrophages where Cav-1 colocalizes with
phosphatidylserine (PS).* In their study, Gargalovic and Dory have suggested that Cav-1
may be involved in the externalization of PS during early apoptosis and that increased
expression of Cav-1 in MPM may serve as an early marker for apoptosis.> Recently, we
have shown that the absence of Cav-1 in MPMs is associated with increased accumulation
of CE and decreased free cholesterol (FC).>> CE is a neutral lipid that is stored in lipid
droplets within the cytoplasm. It is the accumulation of CE that leads to the formation
of foam cells.?® This event is concomitant with reduced FC synthesis and increased acyl
coenzyme A: cholesterol acyltransferase (ACAT) activity.”® Increased FC levels in the ER
are toxic for macrophages and may lead to the activation of the unfolded protein response
(UPR) and eventually to apoptosis.'”**7 Our findings® are in agreement with the first
line of defense against cholesterol toxicity, which, in macrophages, is the esterification
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of FC into CE by the enzyme ACAT.” Therefore, efficient conversion of FC into CE is
considered a survival mechanism.!”* These results suggest that cav-17~ macrophages
may be more resistant to the toxic effects of FC and less susceptible to apoptosis than
wild-type macrophages. Thus, if cell death (apoptosis) is inefficient and cholesteryl ester
is stored more efficiently in macrophages lacking Cav-1, cellularity may be amplified
in association with enhanced foam cell formation. This hypothesis is in agreement
with our preliminary studies in which we observe an increased in early atherosclerotic
lesion development in wild-type mice transplanted with bone marrow obtained from
caveolin-1-deficient mice (S. Paulides and P.G. Frank, unpublished data).

Phagocytosis: Role in Lesion Development and Progression

The process of efferocytosis by macrophages infiltrating the atherosclerotic lesion is
crucial for the containment of the atheroma. Many groups have suggested that apoptosis is
linked to phagocytosis'® and others have shown that at carly stages of lesion development,
foam cell accumulation and apoptosis are regulated by the levels of phagocytosis. In
early lesion development, the process of phagocytosis is considered favorable because it
helps prevent further expansion of the atheroma by decreasing cellularity and lessening
the inflammatory cascade. Macrophage apoptosis is associated with diminished lesion
cellularity and decreased lesion progression in early lesions, in which phagocytic clearance
of apoptotic macrophages seems to be efficient.”>* Moreover, even if the initial response
is the engulfment of foam cell apoptotic bodies by neighboring macrophages, phagocytes
may become engorged with apoptotic foam cell “remnants,” including abundant lipids.
Eventually, the capacity of macrophages to carry out this process can be exceeded.
However, in later more complex lesions, this balance is disrupted and apoptotic cell
clearance is usually defective and this defect leads to advanced plaque formation.?>!°!

Data suggests that Cav-1 is involved in the modulation of macrophage inflammatory
responses (e.g., to oxLDL) and in the clearance of apoptotic cells at lesion sites.!0%10
Electron microscopy studies have shown that Cav-1 is linked to the process of phagocytosis
and cannibalism (an act of engulfing live cells)!* among malignant tumor cells, through
images of caveolae-like structures (caveolae-caveolae fusion) at the site of cell contact
between the phagocyte and the tumor cell. Additional studies have shown that Cav-1 is
present in endolysosomes of phagocytes, indicating that caveolae may contribute to the
formation of the “cannibalistic vacuole”.!” Our laboratory has shown that cav-1-- MPM
have decreased phagocytic clearance ability of apoptotic thymocytes and fluorescein-labeled
E.coli K-BioParticles.'” To further expand on these results, Li et al,'” have also shown
that phagocytosis is impaired in wild-type MPM treated with methyl-p-cyclodextrin, which
disrupts caveolae by depleting cholesterol from the plasma membrane. If Cav-1-deficient
cells have reduced phagocytic capabilities, it may follow that Cav-1 is important for the
proper clearance of apoptotic foam cells by macrophages in the arterial intima. In that
case, macrophage Cav-1 may play an anti-atherogenic role since it allows macrophages
to cleanup apoptotic foam cells and cellular debris at lesion sites.

Macrophage and Inflammation
Macrophages have also been shown to play a critical role in the regulation of vascular

inflammation during atherogenesis.! Interestingly, Cav-1 has previously been shown to
play a role in the regulation of this process.!” Overexpression of Cav-1 in macrophages
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leads to reduced secretion of TNF-a and IL-6, whereas downregulation of Cav-1 leads to
increased TNF-o and IL-6 secretion.!® In that case, signaling via the NFkB/Akt pathway is
also increased. Therefore, Cav-1 is believed to play an anti-inflammatory role and prevent
activation via the NFkB/Akt pathway.!% In addition, the pro-apoptotic role of Cav-1 in
macrophages may preventa prolonged inflammatory response and may reduce the recruitment
of T-cells and monocytes into atherosclerotic plaques. Taken together, these data suggest
that the absence of Cav-1 in macrophage may lead to events (apoptosis-inflammation) that
synergistically contribute to accelerated plaque progression in early lesions.

Summary

In general, most of the studies have provided evidence for a role of Cav-1 in the
regulation of macrophage function. We propose that Cav-1 plays a role in the regulation
of cellular cholesterol homeostasis, apoptosis and inflammation. In each of the function
examined, we and others have shown that macrophage Cav-1 has antiatherogenic properties.

Role of Caveolin-1 in the Regulation of Vascular Smooth Muscle Cell Migration
and Proliferation

Vascular tunica media is mainly composed of SMCs that can contract or relax and,
as a consequence, allow the modification of blood vessel shape and blood pressure.
Like the aforementioned macrophages and endothelial cells, SMCs play a critical role in
atherosclerosis development. Early studies have shown that diet-induced atherosclerosis
alters vascular smooth muscle morphology and/or function in rabbit,'”” swine,'® nonhuman
primate'®!'"® and humans.'"! In particular, an increase in SMC proliferation leads to
increased arterial wall thickness and intracellular lipid accumulation. In parallel, various
research groups have realized that SMCs can present either a contractile or a synthetic
phenotype.!>!1> The latter cellular state involves the acquisition of proliferative, migrating
and secreting machineries, which play key roles during atherosclerosis development.!1¢-118

Caveolae structures have been detected in association with the plasma membrane of
brain vascular SMCs by freeze fracture ultrastructure techniques.''® Similar to striated
muscle cells, vascular SMCs express Cav-1,-2 and -3;'212> however, in contrast to striated
muscle cells, caveolin-3 has been detected to a lesser extent in vascular SMCs. 212
Interestingly, while genetic deletion of Cav-3 in mice prevents caveolae formation in
striated muscle cells,'*!? Cav-1 genetic ablation is sufficient to considerably diminish
the number of caveolae in vascular SMCs.**!'*”12 Moreover, while Cav-1 is expressed
in all vascular SMCs, caveolin-3 expression appears to be restricted to arterial rather
than venous SMCs.'*

Regulation of SMC migration

The main role of SMCs is to aid in the distribution of blood through vascular
smooth muscle contraction and relaxation. This vascular smooth muscle function is
in part controlled by NO produced by eNOS in ECs,"! although studies have also
demonstrated the existence of NOS activity in SMC."32133 As mentioned earlier, Cav-1
regulates NO production in ECs. Therefore, a great amount of evidence in this field
has shown that Cav-1 indirectly regulates SMC function. Consequently, it has been
shown that aortic rings from Cav-1-deficient mice fail to contract properly when
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exposed to phenylephrine and the NO-mediated relaxation effects of acetylcholine
significantly increases compared to the effect observed in aortic rings obtained from
wild-type mice.*>* Supporting the increased production of NO in cav-1~" aortic rings,
treatment with the NOS inhibitor L-NAME, causes a significantly greater contraction
of aortic rings obtained from cav-I7~ mice than of those obtained from wild-type
mice.* More recently, endothelial re-expression of Cav-1 in cav-17- mice has been
shown to rescue low flow-mediated dilation'** and restored SMC contractility.'** Taken
together, these data suggest that signaling mediated by NO in SMCs is regulated by
endothelial Cav-1. Interestingly, several studies have now confirmed the link between
defective NO-signaling and atherosclerosis. These observations have been made in
human subject as well as in animal models.'*° The current literature suggests a critical
role for Cav-1 in this pathway. Interestingly, endothelial Cav-1 expression has been
shown to be upregulated in hypercholesterolemic subjects.'?” This fact is sufficient to
explain by itself the abnormal NO-mediated vasorelaxation observed in these patients.
These findings have more recently been confirmed in mice overexpressing Cav-1 in
endothelial cells only.%

NOS activity and presence of the nNOS isoform have been demonstrated in
SMC.130132133 Ty addition, Cav-3 is expressed in SMCs'?*!2* and nNOS has also been
shown to interact with the scaffolding domain of Cav-3."3® Taken together, these
observations point towards the idea that Cav-3 may also regulate NO production in
SMCs and may therefore play an important role in the development of CVD. However,
this hypothesis has not been yet addressed. In general, the current literature suggests that
Cav-1 and/or Cav-3 may play a key role in the vasorelaxation of SMCs via their ability
to regulate NO production. Since NO can regulate SMC function,'* Cav-1 and Cav-3
may therefore, indirectly regulate the phenotype of SMCs. This process may be relevant
for the pathogenesis of atherosclerosis.

Before proliferating, SMCs migrate into the vascular intima to form part of the
occlusive mass found in atheromas.*® SMC migration is controlled by a set of molecules
including PDGF, angiotensin II, TGFf and FGF'¥! that activate tyrosine kinases.'** Cav-1
expression has been implicated in the regulation of a number of signaling pathways that
regulate SMC migration. This is possibly due to the fact that Cav-1 negatively regulates
and stabilizes key players (i.e., kinases) implicated in various signaling cascades.'**'’
Moreover, Cav-1 may also modulate vascular protease activity and SMC migration.'*
Taken together, these data are consistent with those obtained in our laboratory where we
have shown that aortic SMCs from cav-17" mice have an increased migratory potential
compared to aortic SMCs obtained from wild-type mice.'¥

Role of Caveolin-1 in the Regulation of SMC Proliferation

It is well accepted that SMCs have the capacity to acquire proliferative properties (i.e.,
synthetic phenotype) atthe initial stages of atherosclerosis.!*!* Since Cav-1 hasbeen shown
to regulate various signaling pathways involved in the control of cellular proliferation, we
can expect Cav-1 to play an important role in the regulation of vascular SMC proliferation.
In agreement with this idea, several in vitro studies have demonstrated an antiproliferative
function for Cav-1 in vascular SMC."?*'?” For example, Schwencke et al (2005) have
demonstrated that in the absence of Cav-1, primary SMCs display increased proliferative
properties.'”” Recently, vascular SMCs have been found to proliferate in response to static
pressure correlating with Cav-1 downregulation and the activation of ERK 1/2."*' ERK1/2 has
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been shown to be negatively regulated by Cav-1 in various studies.'*¢!4*152 Besides the ERK
pathway, Cav-1 may regulate other signaling pathways involved in the regulation of SMC
proliferation. These pathways include integrin/focal adhesion kinase'** and tissue factor.!>*

Correlative studies have also shown that Cav-1 expression is reduced in human vascular
SMC from atherosclerotic lesions'?’!** and in neointimal hyperplasia.* Neointima formation
is a process characterized by SMC proliferation and extracellular matrix deposition in the
vascular intimal layer. To evaluate the role of Cav-1 in the pathogenesis of neointimal lesions,
we have used cav-17~ mice as a model system. The right common carotid artery of wild-type
and cav-17- mice was ligated just proximal to its bifurcation. The changes in vessel wall
geometry in response to flow reduction in cav-17~ and wild-type mice were determined by
measuring the luminal, intimal and medial areas of carotid arteries after vessel ligation. Our
results demonstrate that Cav-1-deficiency is associated with increased neotimal formation
with the concomitant activation of the p42/44 MAP kinase cascade and upregulation of cyclin
D1.5¢ In support of these findings, Schwencke et al (2005) have shown that proliferation of
SMCs from cav-1 mice is inhibited when re-expressing Cav-1.12” Under specific conditions
(i.e., cyclic strain), Cav-1 may also be involved in the activation of pro-proliferative signals.'s’
However, this line of research will require further investigations.

Recent studies have shown that Cav-1 may influence vascular protease activity and
potentially stabilize atherosclerotic lesions. Rodriguez-Feo et al'*® have demonstrated
that low levels of SMC Cav-1 promotes plaque instability with increased lipid core size,
macrophage infiltration and increased secretion of IL-6, IL-8 and matrix metalloprotease-9
activity.'*® This study implies that the absence of Cav-1 in SMCs could be directly related to
impaired inflammatory responses that contribute to the formation of an atherosclerotic lesion.

Summary

In summary, these findings suggest that Cav-1 and caveolae in SMCs play an
important role in the regulation of SMCs phenotype. They suggest that Cav-1 may play
both antiproliferative and antimigratory roles. Therefore, we propose that SMC Cav-1
may have an anti-atherogenic role during the development of atherosclerosis.

CONCLUSION

A role for Cav-1 during atherogenesis has first been demonstrated in our laboratory.
We have shown that double knockout mice cav-17"apoe”~develop significantly less
atherosclerotic lesions than the control apoe” mice. It is proposed that endothelial Cav-1
promotes atherogenesis through its role in the transcytosis of LDL across ECs from the
blood stream into the subendothelial intima. In addition, endothelial Cav-1 appears to play
an important role in the regulation of vascular inflammation. By contrast, macrophage
Cav-1 may have an anti-atherogenic role. Supporting this hypothesis, we have recently
shown that Cav-1 regulates intracellular cholesterol homeostasis and accumulation of
CE in macrophages, but decreased FC* indicating a possible survival function.!®'7° In
addition to the latter finding, we have also shown that macrophages lacking Cav-1 present
impaired phagocytosis properties.!> These findings indicate that macrophage Cav-1 can
contribute to reduced atherosclerotic lesion cellularity. Another anti-atherogenic role of
Cav-1 may be linked to its ability to reduce the production of cytokines by macrophages
submitted to a pro-inflammatory stimulus.'’ Furthermore, Cav-1 expression in SMCs is
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hypothesized to be anti-atherogenic by inhibiting migration and proliferation of this cell
type during atherosclerosis progression. Finally, these findings suggest rather complex
and sometimes opposing roles for Cav-1 supporting a cell-context dependent paradigm
for all three types of cells that play a central role during atherosclerosis development.®' A
better understanding of the role of Cav-1 in vivo is required to better define the various
functions of Cav-1. It is expected that these studies will provide us with a better rational
for the treatment of patients with CAD.
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