
Chapter 8

Lookup-Table Based Hyperspectral

Data Compression

Jarno Mielikainen

Abstract This chapter gives an overview of the lookup table (LUT) based lossless

compression methods for hyperspectral images. The LUT method searches the

previous band for a pixel of equal value to the pixel co-located to the one to be

coded. The pixel in the same position as the obtained pixel in the current band is

used as the predictor. Lookup tables are used to speed up the search. Variants of the

LUT method include predictor guided LUT method and multiband lookup tables.

1 Introduction

Hyperspectral imagers produce enormous data volumes. Thus, a lot of effort has

been spent to research more efficient ways to compress hyperspectral images. Three

different types of compression modalities for hyperspectral images can be defined.

Lossy compression achieves the lowest bit rate among the three modalities. It does

not bind the difference between each reconstructed pixel and the original pixel.

Instead, the reconstructed image is required to be similar to the original image on

mean-squared error sense. Near lossless compression bounds the absolute differ-

ence between each reconstructed pixel and the original pixel by a predefined

constant. Lossless compression requires the exact original image to be

reconstructed from the compressed data. Since lossless compression techniques

involve no loss of information they are used for applications that cannot tolerate any

difference between the original and reconstructed data.

In hyperspectral images the interband correlation is much stronger than the

intraband correlation. Thus, interband correlation must be utilized for maximal

compression performance. Transform-based and vector-quantization-based

methods have not been able to achieve state-of-the-art lossless compression results
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for hyperspectral images. Therefore, lossless compression of hyperspectral data is

performed by using prediction-based approaches. However, there have been some

studies on transform-based [1–3] and vector-quantization based [4–6] methods.

Vector quantization is an asymmetric compression method; compression is much

more computationally intensive than decompression. On the other hand, transform-

based methods have been more successful in lossy compression than lossless

compression.

Prediction based methods for lossless compression of hyperspectral images can

be seen as consisting of three steps:

1. Band ordering.

2. Modeling extracting information on the redundancy of the data and describing

this redundancy in the form of a model.

3. Coding describes the model and how it differs from the data using a binary

alphabet.

The problem of optimal band ordering for hyperspectral image compression has

been solved in [7]. Optimal band reordering is achieved by computing a minimum

spanning tree for a directed graph containing the sizes of the encoded residual

bands. A correlation-based heuristic for estimating the optimal order was proposed

in [8]. Another prediction method based on reordering was introduced in [9].

However, in this chapter, all the experiments are performed using natural ordering

of the bands to facilitate comparisons to the other methods in the literature.

In this chapter, we concentrate on lookup table (LUT) based approaches to

modeling and we are will gives an overview of LUT based lossless compression

methods for hyperspectral images.

This chapter is organized as follows. In Sect. 2 we will present a short review of

previous work in lossless compression of hyperspectral images. Section 3 presents

basic LUT method. In Sect. 4 predictor guided LUT is described. Use of a quantized

index in LUT method is discussed in Sect. 5. Multiband generalization of LUT

method is presented in Sect. 6. Experiments results are shown in Sect. 7. Finally,

conclusions are drawn in Sect. 8.

2 Lossless Compression of Hyperspectral Images

Previous approaches to lossless compression of hyperspectral images include A1,

which is one of three distributed source coding algorithms proposed in [10].

It focuses on coding efficiency and the other two algorithms proposed in [10] are

more focused on error-resiliency. The A1 algorithm independently encodes non-

overlapped blocks of 16 � 16 samples in each band. This independency makes it

easy to parallelize the algorithm. The first block of each band is transmitted

uncompressed. The pixel values are predicted by a linear prediction that utilizes

pixel value in previous bans, the average pixel values of both the current block and

the co-located block in the previous band. Instead of sending prediction parameters
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to decoder they are guessed by the decoder. For each guess the pixels of the block

are reconstructed and the Cyclic Redundancy Check (CRC) is computed. Once

CRC matches the one included in the compressed file, the process terminates.

The FL algorithm [11] employs the previous band for prediction and adapts the

predictor coefficients using recursive estimation. The BG block-based compression

algorithm [12] employs a simple block-based predictor followed by an adaptive

Golomb code. IP3 (third-order interband predictor) [13] method takes advantage of

spatial data correlation and derives spectral domain predictor using Wiener filter-

ing. They also employed a special backward pixel search (BPS) module for

calibrated image data.

Clustered differential pulse code modulation (C-DPCM) [14] method partitions

spectral vectors into clusters and then applies a separate least-squares optimized

linear predictor to each cluster of each band. The method can be seen as an

extension of the vector quantization method in [5]. However, the quantization

step of [5] is omitted. In [15], another approach using clustering was presented.

The causal neighborhoods of each pixel are clustered using fuzzy-c-means cluster-

ing. For each of the clusters, an optimal linear predictor is computed from the

values, the membership degrees of which exceed a threshold. The final estimate is

computed as a weighted sum of the predictors, where the weights are the member-

ship degrees. The Spectral Fuzzy Matching Pursuits (S-FMP) method exploits a

purely spectral prediction. In the same paper, a method called Spectral Relaxation-

Labeled Prediction (S-RLP) was also proposed. The method partitions image bands

into blocks, and a predictor, out of a set of predictors, is selected for prediction.

A method based on Context-Adaptive Lossless Image Coding (CALIC), which

is called 3-D CALIC [28], switches between intra- and interband prediction modes

based on the strength of the correlation between the consecutive bands. In multi-

band CALIC (M-CALIC) method [16], the prediction estimate is performed using

two pixels in the previous bands in the same spatial position as the current pixel.

The prediction coefficients are computed using an offline procedure on training

data. An adaptive least squares optimized prediction technique called Spectrum-

oriented Least SQuares (SLSQ) was presented in [17]. The prediction technique

used is the same as the one in [18], but a more advanced entropy coder was used.

The predictor is optimized for each pixel and each band in a causal neighborhood of

the current pixel. SLSQ-HEU uses a heuristic to select between the intra- and

interband compression modes. Also, an optimal method for inter-/intracoding

mode selection called SLSQ-OPT was presented.

Selecting between a Correlation-based Conditional Average Prediction (CCAP)

and a lossless JPEG was proposed in [19]. The selection is based on a correlation

coefficient for contexts. The CCAP estimate is a sample mean of pixels

corresponding to the current pixel in contexts that match the current pixel context.

BH [20] is a block-based compressor. Each band of the input image is divided into

square blocks. Next, the blocks are predicted based on the corresponding block in the

previous band. Nonlinear Prediction for Hyperspectral Images (NPHI) [21] predicts

the pixel in the current band based on the information in the causal context in the

current band and pixels colocated in the reference band. NPHI was also extended
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into an edge-based technique, called the Edge-based Prediction for Hyperspectral

Images, which classifies the pixels into edge and nonedge pixels. Each pixel is then

predicted using information from pixels in the same pixel class within the context.

In [23], a method called KSP, which employs a Kalman filter in the prediction stage,

was proposed.

3 LUT Method

The LUT method [22] makes a prediction of the current pixel px,y,z (xth row, yth
column, and zth band) using all the causal pixels in the current and previous band.

LUT method is based on the idea of Nearest Neighbor (NN) search. The NN

procedure searches for the nearest neighbor in the previous band that has the

same pixel value as the pixel located in the same spatial position as the current

pixel in the previous band px,y,z�1. The search is performed in reverse raster-scan

order. First, a pixel value equal to px,y,z�1 is searched. If an equal valued pixel is

found at position (x’,y’,z�1), then estimated pixel is predicted to have the same

value as the pixel in the same position as obtained pixel in the current band px’,y’,z.
Otherwise, the estimated pixel value is equal to the pixel value in the previous

band px,y,z�1.

LUT method accelerates NN method by replacing time consuming search

procedure with a lookup table operation, which uses the pixel co-located in the

previous band as an index in the lookup table. The lookup table returns the nearest

matching pixel.

An example illustrating the search process is shown in Figs. 8.1–8.3. The

example uses two consecutive image bands, which have 3�8 pixels each. The

previous band (band number 1) and current band (band number 2) are shown in

Figs. 8.1 and 8.2, respectively. The corresponding lookup table is shown in Fig. 8.3.

In the example, pixel p3,8,2 ¼ 325 is the current pixel to be predicted in the current

band. The causal pixels in the previous band are searched to find a match for the co-

located pixel p3,8,1 ¼ 315. Both current pixel and its co-located pixel have yellow

background in Figs. 8.2 and 8.1, respectively. Three matches (green background)

are returned. The pixel value in the current band that is present at the nearest

matching location, p2,6,1 ¼ 315, is used as the predictor for p’3,8,2 ¼ p2,6,2 ¼ 332.
A time-consuming search was avoided because the lookup table directly returned

the predictor value.

4 Predictor Guided LUT Method

In the LUT method the nearest matching pixel value might be not be as good of a

match as many other matching pixels. In the previous example the pixels in the

current band corresponding to the other two matching locations are closer to
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the actual pixel value 325 than the nearest matching pixel value 332. This type of

behavior of LUT method motivated the development of Locally Averaged

Interband Scaling (LAIS)-LUT method [29], which uses a predictor to guide the

selection between two LUTs.

LAIS-LUT method works by first computing a LAIS estimate by scaling pixel

co-located in the previous band. The LAIS scaling factor is an average of ratios

between three neighboring causal pixels in the current and previous band:

1

3

px�1;y;z

px�1;y;z�1
þ px;y�1;z

px;y�1;z�1
þ px�1;y�1;z

px�1;y�1;z�1

� �
(8.1)

LAIS scaling factor in (8.1) is used to compute an estimate for the current pixel:

p00x;y;z ¼ 1

3

px�1;y;z

px�1;y;z�1
þ px;y�1;z

px;y�1;z�1
þ px�1;y�1;z

px�1;y�1;z�1

� �
px;y;z�1 (8.2)

336 335 314 335 314 335 319 327

316 315 317 315 328 315 325 319

322 334 329 314 329 324 317 315

Fig. 8.1 Previous image

band. Co-located pixel has

yellow background. Matching

pixels have green background

Index Value

314 328

315 332

316 335

317 333

Fig. 8.3 Lookup table

328 339 323 339 328 332 331 335

330 350 339 324 333 325 333 325

335 324 325 327 320 332 327 335

Fig. 8.2 Current image band.

Current pixel has yellow
background. Pixels
corresponding to the

matching pixel have green
backgrounds
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LAIS-LUT uses two LUTs, which are similar to the one used in the LUT

method. The second LUT is updated with the past entries of the first LUT. The

predictor returned by the LUT that is the closest one to the LAIS estimate is chosen

as the predictor for the current pixel. If the LUTs return no match then the LAIS

estimate is used as the estimated pixel value.

We use the LUT example to illustrate the search process in LAIS-LUT. LAIS

estimates for the three matching pixels in the previous example are shown in

Fig. 8.4. Two LUTs corresponding to bands in Figs. 8.1 and 8.2 are shown in

Fig. 8.5. Recall that the current pixel is p3,8,2 ¼ 325 and the causal pixels in the

previous band are searched to find a match for the co-located pixel p3,8,1 ¼ 315.

Out of the three matching pixels two are in LUTs (green background in Fig. 8.5).

LAIS estimate (321.9) for 2nd LUT value 327 is closer than LAIS estimate (316.2)

for the first LUT value 332. Therefore, pixel value from second LUT is used as the

predictor for p’3,8,2 ¼ p2,5,2 ¼ 327.

Pixel
Position

(2,3)

(2,5)

(2,7)

324

327

332

320.1

321.9

316.2

Pixel
Value

LAIS
Estimate

Fig. 8.4 LAIS estimates for

LAIS-LUT

index
1st
LUT

2nd
LUT

314

315

316

317

324

327

-

325

328

332

335

333

Fig. 8.5 Two lookup tables

for LAIS-LUT
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5 Uniform Quantization of Co-Located Pixels

In [24], a quantization of indices in LUT method was proposed. In LAIS-QLUT

method a uniform quantization of the co-located pixels is performed before using

them for indexing the LUTs. The use of quantization reduces the size of the LUTs

by an order of magnitude A quantized interband predictor is formed by uniformly

quantizing the colocated pixel px,y,z�1 before using it as an index to the LUT.

Naturally, this reduces the size of the LUTs by the factor that is used in the uniform

quantization.

Except for a slightly simpler LAIS from [25] LAIS and an additional

quantization step, LAIS-QLUT is the same algorithm as LAIS-LUT.

The LAIS scaling factor in LAIS-QLUT is an average of ratios between three

neighboring causal pixels in current and previous band:

1

3

px�1;y;z þ px;y�1;z þ px�1;y�1;z

px�1;y;z�1 þ px;y�1;z�1 þ px�1;y�1;z�1

� �
(8.3)

Thus, the corresponding LAIS estimate the current pixel is the following:

p00x;y;z ¼ 1

3

px�1;y;z þ px;y�1;z þ px�1;y�1;z

px�1;y;z�1 þ px;y�1;z�1 þ px�1;y�1;z�1

� �
px;y;z�1 (8.4)

LAIS in LAIS-QLUT requires a division operation and four addition operations

compared to the three division, one multiplication, and two addition operations

required by LAIS in LAIS-LUT.

The search process in LAIS-QLUT will be illustrated using the same image bands

are in the previous example. Quantized version of the previous image band is shown in

Fig. 8.6 for a quantization factor 10. LAIS-Q estimates for two matching pixels are

shown in Fig. 8.7. TwoLUTs for LAIS-QLUT are shown in Fig. 8.8 for a quantization

factor 10. The current pixel is p3,8,2 ¼ 325 and the causal pixels in the previous band

are searched to find a match for quantized co-located pixel p3,8,1 / 10 ¼ 32. Two of

matching pixels, which are in LUTs have LAIS-Q estimates of 328.2 for first LUT

value 333 and 328.3 for second LUT value 325. The second LUT value is closer to the

corresponding LAIS-Q estimate than the other one. Therefore, pixel value from the

first LUT is used as the predictor for p’3,8,2 ¼ p3,6,2 ¼ 324.

34

32

32 32323233 33 3331

32 32 32 32 3233 33

34 32 3331 34 3431

Fig. 8.6 Quantized previous

image band. Co-located pixel

has yellow background.
Matching pixels have green
background
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There are two separate variants of LAIS-QLUT. The first variant, The

LAIS-QLUT-OPT method selects the optimal uniform quantization factor for each

band. In order to find the optimal quantization factor, an exhaustive search of all

possible quantization values is performed. Thus, the quantization factor selection is

based on which quantization factor achieves the best compression efficiency for that

specific band. The excessive time complexity of the LAIS-QLUT-OPT method could

be decreased slightly by computing entropy of the residual image instead of actually

encoding residuals for the determination of the optimal quantization factor.

The second variant of LAIS-QLUT is called LAIS-QLUT-HEU and it uses con-

stant quantization factors. The constant quantization factors are selected using a

heuristic. The heuristic selects the constant quantization factors to be the bandwise

mean values of the optimal quantization factors of an image set. A division operation

required by the quantization represents the only increase in the time complexity of

LAIS-QLUT-HEU compared to LAIS-LUT.

6 Multiband LUT

In [26], LUT and LAIS-LUT method have been generalized to a multiband and

multi-LUT method. In the extended method, the prediction of the current band

relies on N previous bands. LUTs are defined on each of the previous bands

Pixel
Position

(3,6)

(3,7)

325

333

328.3

328.2

Pixel
Value

LAIS
Estimate

Fig. 8.7 LAIS estimates for

LAIS-QLUT

index

31 324 328

32 333 325

33 339 350

34 332 339

1st
LUT

2nd
LUT

Fig. 8.8 Two lookup table

for LAIS-QLUT
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and each band containsM LUTs. Thus, there are NM different predictors to choose

from. The decision among one of the possible prediction values is based on the

closeness of the values contained in the LUTs to a reference prediction.

Two different types of purely spectral multiband prediction estimates were

proposed for. One of the reference predictors is crisp and the other one is fuzzy.

The first method is S-RLP [15]. The method partitions image bands into blocks, and

a predictor, out of a set of predictors, is selected for prediction. In the S-FMP

method [15] the causal neighborhoods of each pixel are clustered using fuzzy-c-

means clustering. For each of the clusters, an optimal linear predictor is computed

from the values, the membership degrees of which exceed a threshold. The final

estimate is computed as a weighted sum of the predictors, where the weights are the

membership degrees. The LUT based compression methods based on S-RLP and

S-FMP are denoted as S-RLP-LUT and S-FMP-LUT, respectively.

7 Experimental Results

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is an airborne

hyperspectral system collecting spectral radiance in 224 contiguous spectral bands

with wavelengths from 370 to 2,500 nm. The AVIRIS instrument consists of four

spectrometers that view a 20-m2 spot on the ground fromaflight altitude of 20 km. This
spot is simultaneously viewed in all the spectral bands. A spatial image is formed by

moving the spectrometers perpendicular to the direction of the aircraft [27].

Experimental results are shown for two different AVIRIS data sets. The first data

set consists of four calibrated radiance images from 1997 AVIRIS sample data

product. The AVIRIS images are from the following four different areas: Cuprite,

NV; Jasper Ridge, CA; Lunar Lake, NV; and Moffett Field, CA. They are the most

widely used data for benchmarking hyperspectral image compression algorithms.

Image features and the number of lines are listed in Table 8.1. Each image contains

614 samples/line and they are stored as 16-bit signed integers. A gray scale image

of Moffett Field image can be seen in Fig. 8.9.

Newer data set was acquired on 2006. A new AVIRIS data set consists of five

calibrated and uncalibrated 16-bit images from Yellowstone, WY and two 12-bit

uncalibrated images one from Hawaii and one from Maine. Summary of the new

Consultative Committee for Space Data Systems (CCSDS) AVIRIS data is given

in Table 8.2. Each image is a 512-line scene containing 224 spectral bands.

An example of a scene can be seen in Fig. 8.10 in the form of a false color image

of calibrated Yellowstone scene 11.

Table 8.1 The standard 1997 AVIRIS images [11]

Site Features Lines

Cuprite Geological features 2,206

Jasper Ridge Vegetation 2,586

Lunar Lake Calibration 1,431

Moffett Field Vegetation, urbar, water 2,031
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This AVIRIS data is a part of the CCSDS data set, which is used to assess the

performance of hyperspectral compression algorithms.

Table 8.3 shows results for the NN method. The first column depicts the length

of the search window; 0 lines means that only the current line is searched. The

following columns are bit rates in bits/pixel for the four test images and the average,

respectively. When the search window’s length is equal to the length of image, the

method naturally predicts the same values as the LUT method. These results show

Fig. 8.9 Gray scale image of

Moffett Field image from

AVIRIS 1997 image set
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Table 8.2 AVIRIS images included in the CCSDS test set [11]

Site Scene numbers Year Samples/line Bit depth Type

Yellowstone 0,3,10,11,18 2006 677 16 Calibrated

Yellowstone 0,3,10,11,18 2006 680 16 Uncalibrated

Hawaii 1 2001 614 12 Uncalibrated

Maine 10 2003 680 12 Uncalibrated

Fig. 8.10 False color image of calibrated Yellow stone 11 from CCSDS AVIRIS data set

Table 8.3 Compression results in bits/pixel for calibrated AVIRIS 1997 test images in bits per

pixel

# of lines Cuprite Jasper ridge Lunar lake Moffett field

0 5.69 5.84 5.78 6.02

1 5.41 5.63 5.50 5.80

2 5.29 5.50 5.33 5.65

4 5.05 5.35 5.14 5.48

8 4.89 5.21 4.98 5.32

16 4.79 5.10 4.88 5.21

32 4.72 5.03 4.79 5.14

64 4.69 5.00 4.75 5.10

128 4.68 4.98 4.73 5.08

256 4.66 4.97 4.72 5.06

512 4.66 4.97 4.72 5.05

1,024 4.65 4.95 4.71 5.05
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that limiting the search window size significantly affects the performance of the NN

method compared to the full search. Thus, a large search window is necessary in

order to achieve good compression ratios.

Table 8.4 shows compression results for AVIRIS 1997 data. The results are

reported for the band-interleaved-by-line (BIL) and band-sequential (BSQ)

formats. In the BIL format, the current line, along with the two previous lines, is

available. For BSQ data, the current band and several previous bands are available

for processing. The LUT family does not benefit from the BSQ data format. This is

due to two factors. First, LUT and LAIS-LUT methods only utilize one previous

band. Second, LAIS-LUTmethods need only the data from the current and previous

image lines. Those lines were already provided by the BIL data format. Most

compression method exhibit identical compression results for both BIL and BSQ

data. Only one bits/pixel value is shown for those methods. For the other methods

both BIL and BSQ results are provided. The results for the two different data

formats are separated by a forward-slash and dash denotes unavailable results.

Differential JPEG-LS computes the difference between each band and the previous

band before running JPEG-LS on residual data.

Experimental results show that LUT based algorithms work extremely well for

calibrated AVIRIS 1997 data. Even the low time complexity LAIS-LUT and

QLAIS-LUT variants have close to the state-of-the-art compression ratios. IP3-

BPS method takes ten times longer than LUT and five times longer than LAIS-LUT

or LAIS-QLUT-HEU to compress AVIRIS image [13].

Table 8.4 Compression results in bits/pixel for calibrated AVIRIS 1997 test images in bits

per pixel

Cuprite Jasper ridge Lunar lake Moffett field Average

JPEG-LS 7.66 8.38 7.48 8.04 7.89

Diff. JPEG-LS 5.50 5.69 5.46 5.63 5.57

3D-CALIC 5.23/5.39 5.19/5.37 5.18/5.32 4.92/5.05 5.19/5.28

BH –/5.11 –/5.23 –/5.11 –/5.26 –/5.18

M-CALIC 4.97/5.10 5.05/5.23 4.88/5.02 4.72/4.89 4.98/5.06

SLSQ-OPT 4.94/5.08 4.95/5.08 4.95/5.08 4.98/5.10 4.96/5.09

CCAP –/4.92 –/4.95 –/4.97 – –

KSP –/4.88 –/4.95 –/4.89 –/4.92 –/4.91

FL# 4.82 4.87 4.82 4.93 4.86

NPHI 4.79 4.89 4.97 4.79 4.86

C-DPCM –/4.68 –/4.62 –/4.75 –/4.62 –/4.67

S-RLP 4.69 4.65 4.69 4.67 4.67

S-FMP 4.66 4.63 4.66 4.63 4.64

LUT 4.66 4.95 4.71 5.05 4.84

LAIS-LUT 4.47 4.68 4.53 4.76 4.61

LAIS-QLUT-HEU 4.30 4.62 4.36 4.64 4.48

LAIS-QLUT-OPT 4.29 4.61 4.34 4.63 4.47

S-RLP-LUT 3.92 4.05 3.95 4.09 4.00

S-FMP-LUT 3.89 4.03 3.92 4.05 3.97

IP3-BPS 3.76 4.06 3.79 4.06 3.92
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The LUT method requires a full LUT for each band. Assuming 16-bit LUTs,

each LUT’s memory requirements are roughly equivalent to 107 lines of an

AVIRIS image data. The LUT’s memory requirements are independent of the

spatial size of the image. Therefore, the relative size of the LUTs compared to

the image gets smaller as the spatial size of the image gets larger. For our test

images, the amount of the memory required by LUTs is 4–7% of the memory used

by the image. The average quantization factor for LAIS-QLUT-HEU was 28. Thus,

the average LUT memory requirement is roughly equivalent to four lines of

AVIRIS image data compared to 107 lines of data in the original LUT method.

We have also experimented with the optimization of the quantization factors for

each image instead of for each band. That procedure gave a quantization factor of

ten for all the test images. The average bit rate was 4.60 bits/pixel. This compares

unfavorably to the 4.47 bits/pixel average bit rate of LAIS-QLUT-HEU. Therefore,

separate bandwise quantization factors are worthwhile.

Tables 8.5–8.7 depict compression results for new AVIRIS data in bits per pixel

for various different compression methods. C-DPCM-20 and C-DPCM-80 refer to

the prediction length 20 and 80 for C-DPCM, respectively. A modified C-DPCM

method uniformly quantizes coefficients to 12 bits instead of 16 bits in the original

C-DPCM.

Table 8.5 Compression results in bits/pixel for 16-bit raw CCSDS AVIRIS test images in bits

per pixel

Algorithm Scene 0 Scene 3 Scene 10 Scene 11 Scene 18 Average

JPEG-LS 9.18 8.87 7.32 8.50 9.30 8.63

BG 6.46 6.31 5.65 6.05 6.40 6.17

A1 6.92 6.78 6.10 6.53 6.92 6.65

LUT 7.13 6.91 6.25 6.69 7.20 6.84

LAIS-LUT 6.78 6.60 6.00 6.30 6.82 6.50

FL# 6.20 6.07 5.60 5.81 6.26 5.99

IP3 6.20 6.08 5.56 5.81 6.25 5.98

C-DPCM-20 5.88 5.71 5.20 5.52 5.75 5.61

C-DPCM-80 5.82 5.65 5.17 5.47 5.69 5.56

Table 8.6 Compression results in bits/pixel for 12-bit raw CCSDS AVIRIS test images in bits

per pixel

Algorithm Hawaii Maine Average

JPEG-LS 4.58 4.50 4.54

A1 3.49 3.65 3.57

LUT 3.27 3.44 3.36

LAIS-LUT 3.05 3.19 3.12

BG 3.03 3.17 3.10

IP3 2.55 2.68 2.62

FL# 2.58 2.63 2.61

C-DPCM-20 2.43 2.57 2.50

C-DPCM-80 2.38 2.52 2.45
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The results for uncalibrated CCSDS AVIRIS test data in Tables 8.5 and 8.6 show

that LUT-based methods lose their performance advantage when applied to uncali-

brated data. Moreover, the results in Table 8.7 show that LUT-based algorithms that

exploit calibration artifacts in AVIRIS 1997 images have no performance advan-

tage on the calibrated CCSDS AVIRIS images.

8 Conclusions

An overview of the lookup table (LUT) based lossless compression methods for

hyperspectral images have been presented in this chapter. Experimental results on

AVIRIS data showed that the LUT based algorithms work extremely well for old

calibrated AVIRIS data. Even the low-complexity LAIS-LUT and QLAIS-LUT

variants have close to the state-of-the-art compression ratios.

LUT-based methods exploit artificial regularities that are introduced by the

conversion of raw data values to radiance units [11]. The calibration-induced

artifacts are not present in the newer AVIRIS images in Consultative Committee

for Space Data Systems (CCSDS) test set. Thus, LUT based method do not work as

well on raw or the newer AVIRIS images in 2006, which use new calibration

measures.
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