
Chapter 8
Engine Limit Management with Sliding Modes

Abstract This chapter develops a method to maintain critical engine variables
within allowable limits, without the disadvantages associated with the standard min–
max approach. Guidelines for the association of sliding mode regulators to logic
max or min selectors are given, along with an H2=H1 sliding coefficient synthesis
method. Simulations using the CMAPSS nonlinear engine model are included.

Sliding modes constitute a powerful tool to achieve the simultaneous objectives of
robust output regulation and limit protection. Research conducted by the author in
collaboration with NASA [73] indicate that many shortcomings of the standard
min–max approach can be removed by replacing linear regulators with SMC.
A single-input version of the max-min/SMC approach was available at the time this
book was printed, and is presented in this chapter. Thus, the developments of this
chapter assume that only one input is available to manage both regulation and limit
protection objectives.

The central idea of the max–min/SMC approach is to define sliding functions
as the difference between a limited variable and its permissible limit. One of such
functions is defined for each limited output, in addition to a sliding function defined
for the main regulated output (fan speed in the GTE problem). Recalling from
Chap. 6 that since convergence of the s variable to zero is one-sided, if follows
that outputs will not cross their limits when their corresponding SMC regulator is
active.

Remarkably, the technique also assures that outputs will not cross their limits
even when some other regulator is active. This represents a significant improvement
over the min–max arrangement with linear regulators of Chap. 7, where transient
limit protection cannot be guaranteed.

Establishing stability is of the utmost importance for the development of new
control laws. In the max–min/SMC approach, asymptotic stability is guaranteed,
ensuring that suitably-defined error states converge to zero. The approach consti-
tutes a hybrid dynamical system, in that discrete variables exist that interact with
the continuous system state. The relevant discrete variable in the max–min/SMC
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178 8 Engine Limit Management with Sliding Modes

approach is q, the index of the currently active SMC regulator. This variable takes
on integer values, reflecting the number of regulators being implemented. A notion
of stability must also be considered for q. The max-min/SMC approach has the
property that q undergoes a finite number of transitions before it settles at a steady
value.

The limit-preserving and stability properties of the max–min/SMC approach are
ensured by following simple guidelines for associating regulators with the max
or min selectors, and then tuning each SMC regulator independently. That is, a
separation property applies, akin to the well-known property of linear observers
used in combination with linear state feedback control [65]. Note that the sliding
coefficients corresponding to the SMC limit regulators are no longer design
freedoms: they are defined by the C matrix of each limited output. Because of this,
the technique is applicable to minimum-phase outputs only, since the eigenvalues
of the matrix defining sliding mode dynamics coincide with the zeroes of the
transfer function from input to limited output. The reader may wish to re-visit
Chap. 3, where the effects of right-half plane zeroes are discussed. Thus, limit
regulator design entails the selection of switching gains � and boundary-layer
parameters �. The sliding coefficients corresponding to the main SMC regulator
are design freedoms, as elaborated below. Basic design is conducted by choosing
these coefficients on the basis of the main output regulation task alone. An
advanced design technique is also possible, where interaction between main and
limit regulators is addressed in a mixed H2=H1 synthesis framework similar to that
of Chap. 4.

The detailed stability argument for max–min/SMC is involved and out of the
scope of this book. Interested readers are referred to Richter [59] for a complete
mathematical proof. Here, the control law is developed and the salient stability and
limit-preservation properties are described.

8.1 System Description, Assumptions and Control Objectives

The architecture of max–min/SMC is the same as the max–min arrangement of
Chap. 7, with the linear regulators replaced by sliding mode regulators, as illustrated
in Fig. 8.1.

Due to the requirement that the main output be precisely regulated, integration
is used at plant input. The regulators, thus, provide control input rates. Letting L D
f1; 2; :::lg and H D fl C 1; l C 2; :::hg, the max–min selection law is expressed as

ur D max
k2H

�
min
j 2L

˚
urj

�
; urk

�
; (8.1)

where urj are the min-linked regulator outputs and urk are the max-linked regulator
outputs. Some studies characterizing the behavior of related schemes have appeared
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Fig. 8.1 Max-Min/SMC arrangement

in the research literature [66–68]. Recently, the (nonasymptotic) stability of this
particular scheme under linear regulators has been analyzed by Johansson [33]
using piecewise-quadratic Lyapunov functions. Even for linear regulators, a com-
plete characterization of closed-loop behavior that includes essential issues such
as determining which regulator will be active at steady-state or how to design
the regulators to address performance requirements does not exist in the open
literature. Limit protection is an indispensable consideration in the GTE problem;
however, few works addressing the max–min arrangement have appeared [64,
69]. Of particular importance is the observation that limit regulators may be-
come active even when the auxiliary outputs are far from their limits, causing
a degradation in the response of the main output due to an overriding control
objective [69]. Also, as established in Chap. 7, the max–min architecture with
linear regulators does not ensure transient limit protection, a less-than-desirable
feature.
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We consider linearized models for the engine, with a single control input u
(typically fuel flow). Considering that the controller includes integral action, the
state-space description of the design plant is:

Px D Ax C Bu C �w (8.2)

Pu D ur ; (8.3)

where x is n-by-1 and u and ur are scalars. The above model captures the effect
of uncertainties and exogenous inputs through vector w and its input matrix � , of
compatible dimensions. Assume that a set of outputs is defined as

yi D Gi x C ‚iu (8.4)

for i D 1; 2; :::h, with Gi a 1-by-n vector and ‚i a scalar.
We make three key assumptions: A is nonsingular, ‚i ¤ 0 and matrices Aeq:i

defined in (8.5) have eigenvalues with negative real parts for i D 1; 2; :::h.

Aeq;i D A � BGi

‚i

: (8.5)

The assumption on Aeq;i is equivalent to the requirement that the outputs defined
by (8.4) are minimum-phase relative to the state-space system of (8.2). Note that
when A contains a zero eigenvalue, the corresponding integrator can be factored out
from the transfer function between u and yi , resulting in a nonsingular A. The input
integrator is not implemented explicitly as part of the control law. When ‚i D 0 for
some i , further modifications are required [59].

8.1.1 Control Objectives

Without loss of generality, let y1 be the output whose setpoint is to be transferred
with zero steady-state error. This must be achieved under constraints of the form
yk � Nyk and yl � Nyl , where k are the indices of the upper-limited outputs and
l are the indices of the lower-limited outputs. In addition, usual transient response
specifications apply for the design of the main output regulator.

8.1.2 Sliding Mode Control Laws

Define sliding variables as
si D yi � Nyi (8.6)

for i 2 L [ H , where Nyi D Gi Nxi C ‚i Nui . The reference variables Nxi and Nui are
selected to be equilibrium pairs, that is, so that A Nxi C B Nui D 0. The standard
SMC control law is obtained by requiring that si D 0 in finite time (reaching
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phase). Beyond the reaching phase, si D 0 must become invariant (sliding phase).
The system then evolves with reduced-order dynamics matching the zero dynamics
associated with output si . Thus, a minimum-phase assumption is required. For a
single SMC regulator (fixed i ), the control law given below in (8.7), where �i is a
positive constant, forces the function 1

2
s2

i to have derivative si Psi D ��i sign .si /.
implying that the set si D 0 is reached in finite-time, with subsequent invariance.

uri D � 1

‚i

.Gi .Ax C Bu/ C �i sign .si // (8.7)

In view of the definition of si , a limit regulator, if operated alone, causes
its corresponding limited output to attain the limit value in finite time
without overshoot. Under the max–min selection logic, the closed-loop
system is given by (8.2), (8.3), (8.4), (8.6), (8.7), and (8.1). The controller
implements (8.6), (8.7), (8.1), and (8.3).

8.2 Behavior Under a Fixed Regulator

Let i and j be two fixed regulator indices and define the augmented state as xa ,
ŒxT ju�T , let Nxai D Œ NxT

i jNui �
T and define the augmented state relative to i as Qxa ,

xa � xai. Using this definition, it is straightforward to derive the following identities
pertaining to system behavior under the control law of (8.7):

PQxa D Ai Qxa � 1

‚i

Bi �i sign .si / (8.8)

sj D Jj Qxa C �j;i (8.9)

Psj ji D ‚j

�
�j;i Qxa � �i

‚i

sign .si /

�
: (8.10)

where:

Ai D
"

A B

� Gi

‚i
A � Gi

‚i
B

#
; BT

i D Œ01�nj1� (8.11)

Jj D ŒGj j‚j � ; �j;i D Jj . Nxai � Nxaj/ (8.12)

�j;i D
�

Gj

‚j

� Gi

‚i

� 	
A

ˇ̌
B



(8.13)

The notation Psj ji is interpreted as “the derivative of sj when i is the active
regulator”. When i D j , we simply write Psi . Note that �i;i D 0 and �i;i D 0 for
i 2 L [ H . It follows from standard sliding mode theory that for each i , the
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spectrum of Ai is formed by the eigenvalues of Aeq;i from (8.5) and zero. The
closed-loop system resulting from applying the input of (8.7) to system (8.2), (8.3) is
more conveniently described in terms of the derivatives of the s variables, as before,
and the rate of x. In fact, define Xr , Px. The closed-loop system dynamics are
expressed as

PXr D Aeq;i Xr � B
�i

‚i

sign .si / (8.14)

Psj ji D ‚j

��
Gj

‚j

� Gi

‚i

�
Xr � �i

‚i

sign .si /

�
: (8.15)

The rate system is a convenient description, since Aeq;i characterizes the dynamics
of the sliding mode, facilitating the description of asymptotic properties.

8.2.1 Determination of the Steady Regulator Index

Define a switching function q.x; u/ with values in L [ H . The minimum (min),
maximum (max) switching functions are expressed by (8.16) and (8.17), respec-
tively.

qmin D arg min
i2L

furig (8.16)

qmax D arg max
j 2H

˚
urj

�
: (8.17)

When the above equations yield nonunique values, an assignment is made
according to a predefined arbitrary rule. For the remainder of this chapter, qmin D
min (i; j ) and qmax D min (i; j ) are assumed whenever uri D urj. When a max–
min arrangement is used, it is assumed that the min preselection is applied to the
first port of the max selector, so that the min input is used in case of equality
with the max preselection. These assumptions will be referred to as default index
assumptions.

As done for the max–min arrangement for linear regulators of Chap. 7,
a procedure to determine the steady regulator index is developed next.

Under the min switching law, system (8.2), (8.3) has a unique equilibrium point at

. Nxi� ; Nui�/, where i� 2 L is the index such that
sign .�j;i� /

‚j
� 0 8j 2 L.

Given system parameters, it is straightforward to compute the terminal regulator
index. All �j;i combinations are computed. For the min law, an index i� is sought
that satisfies 0 � � �j

‚j
sign .�j;i�/ for all j 2 L; j ¤ i�.
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Under the max switching law, system (8.2), (8.3) has a unique equilibrium point
at . Nxi� ; Nui�/, where i� 2 H is the index such that sign .�j;i�/ � 0 8j 2 H . This
index is termed terminal regulator index.

The determination of the terminal index for the max and max–min switching
laws is presented next.

Under the max–min switching law of (8.1), system (8.2), (8.3) has a unique
equilibrium point at . Nxi� ; Nui�/, where i� 2 L [ H is the index satisfying
condition (8.18):

0 � � sign .�k;i�/

‚k

8k 2 H (8.18)

and either condition (8.19) or condition (8.20):

0 � � sign .�j;i�/

‚j

8j 2 L (8.19)

0 > min
j 2L

�
� sign .�j;i�/

‚j

�
: (8.20)

When condition (8.19) is satisfied, the terminal regulator index i� 2 L. Otherwise,
condition (8.20) is satisfied and i� 2 H .

A simple algorithm to identify the ending regulator i� in the max–min case
follows:

1. Assume that i� 2 L and take i� D 1.
2. Check condition (8.18). If true, check condition (8.19). If true, i� is the ending

regulator. If not, take the next i� 2 L and re-check.
3. If the final regulator is not found in L, repeat the above steps, checking

condition (8.20) instead of (8.19).

8.3 Summary of Stability Properties

In [59], a proof of global asymptotic convergence to the equilibrium point Nxai

is developed that relies only on the assumptions stated at the outset. The proof
is based on attractiveness properties of each individual sliding set, together with
considerations about the geometry of the regions of RnC1 in which each regulator is
active under any of the min, max or max-min switching logic. Here, the relevant
stability properties are summarized, omitting the lengthier proofs. The reader is
referred to [59] for detailed proofs.
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8.3.1 Stability: Min or Max Switching

All trajectories of System (8.2), (8.3) under control input (8.7) and the min
switching law converge asymptotically to the unique equilibrium point xai� .
The property maxfurig D � minf�urig can be used to infer stability for the max
case using the proof of the min case.

8.3.2 Stability : Max–Min Switching

The max–min case requires additional analysis, as index selection cannot be
expressed in terms of min only. However, the property maxfak � bj g D maxfakg �
minfbj g for any two collections of numbers fakg and fbj g proves useful in reducing
the proof to the already-studied min and max cases. An important property of the
max–min arrangement is that there exists a finite time after which switching is
restricted to happen either among the min or the max selectors, whichever group
contains the terminal index. In what follows, and without loss of generality, it is
assumed that the terminal regulator index belongs to the min set, that is, i� 2 L.

All trajectories of System (8.2), (8.3) under control input (8.7) and the max–
min switching law converge asymptotically to the unique equilibrium point xai� .
Moreover, the total number of switchings from the L set to the H set is at most
equal to the number of regulators in the H set.

8.4 Invariance Properties: Limit Protection

The results of this section show that the min, max, and max–min designs actually
maintain outputs within limits. In summary, it will be shown that when the min
switching law is used alone, outputs whose ‚ is positive will be protected against
upper-limit violations and outputs whose ‚ is negative will be protected against
lower-limit violations. Conversely, the max switching law alone protects outputs
whose ‚ is positive against lower-limit violations and outputs whose ‚ is negative
against upper-limit violations. A max–min scheme is used to cover additional
combinations of signs of ‚ and upper or lower limits.

Recalling the definitions of Sect. 7.2.1, an interval .�1; b� is invariant for a
generic real variable z.t/ if Pz.t/ � 0 at z D b. Similarly, an interval Œa; 1/ is
invariant if Pz.t/ � 0 at z D a. When an interval is invariant and z.t1/ belongs to
the interval for some t1 > 0, then z.t/ will remain in the interval for t � t1. For the
proposed technique to be effective, the interval .�1; 0� must be invariant for the
sj of upper-limited variables, in view of the definition of sj for limited output yj .
Conversely, Œ0; 1/ must be invariant for the sj of lower-limited variables.
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8.4.1 Invariance Under Min Switching

Let yj be a limited variable. The derivative of sj when i is active is given by (8.15).
When i is active, we must have ui � uj , so:

Psj ji
‚j

D �j;i Qxa � �i

‚i

sign .si / � � �j

‚j

sign .sj /:

Noting that the inequality changes to equality for j D i , it is clear that Psj

‚j
� 0

at sj D 0 under any regulator. If ‚j > 0, upper-limit protection is guaranteed. If
‚j < 0, lower-limit protection is guaranteed.

8.4.2 Invariance Under Max Switching

Following the same reasoning used for the min case, it is clear that Psj

‚j
� 0 at sj D 0

under any regulator. If ‚j > 0, lower-limit protection is guaranteed. If ‚j < 0,
upper-limit protection is guaranteed.

8.4.3 Invariance Under Max–Min Switching

One would expect that the max–min arrangement guarantee invariance of any real
interval Œa; b� containing zero, regardless of the sign of ‚, but this is not the case.
An exception occurs for sj when j 2 L and the active regulator belongs to H . This
lack of symmetry arises from the fact that for q 2 H to be active it is necessary
that urq be greater than the minimum of all url, l 2 L, but not for every url in L. In
contrast, for q 2 L to be active, url must be greater than every urh, h 2 H . Indeed,
suppose q D i 2 L is active and consider a variable sj and its derivative along the
boundary sj D 0:

Psj ji =‚j D uri � urj � �j sign .sj /=‚j D uri � urj: (8.21)

If j 2 L, it is necessary that uri�urj � 0, while one must have uri�urj � 0 if j 2 H .
Thus, while q 2 L, sj is upper-bounded by zero if ‚j > 0, and it is lower-bounded
by zero if ‚j < 0. Now consider q D i 2 H to active. Equation (8.21) still applies.
If j 2 H , it is necessary that uri � urj � 0. Thus, while q 2 H , all variables sj

associated to the max selector will be upper-bounded by zero when ‚j < 0 and
will be lower-bounded by zero if ‚j > 0. The difficulty arises when considering
j 2 L while the active regulator is in H . The difference uri � urj may be positive,
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negative or zero, and invariance does not apply. Fortunately, separate arguments
can be made which maintain the validity of the approach under commonly found
circumstances. These arguments are elaborated in the next section.

8.5 Additional Considerations

For the remainder of the article, it is assumed that regulators are assigned to selectors
so as to exploit the invariance properties described above. These assignment rules
have been summarized in Table 8.1.

8.5.1 Limited Output Consistency

The results of this chapter are directly applicable to setpoint changes, implying that
initial and final plant states ŒxT ju�T are equilibrium points. Then it is always possible
to redefine variables so that the initial input u, state x, and outputs yj are zero.
Frequently, it occurs that the sign of the DC gain of the transfer functions from u to
y for the limited outputs coincides with the sign of ‚. The steady plant input–output
relationships have the form

Nyj D ‚j .1 � Gj A�1B=‚j /Nu

for j D 1:::h. If 1 � Gj A�1B=‚j > 0, then the sign of steady input Nu will match
that of the limit Nyj when ‚j > 0 and will be of the opposite sign when ‚j <

0. This has useful implications for the behavior of min-variables when q 2 H ,
where invariance was not found. The following heuristic reasoning applies: if q 2 H

because an upper-limited variable from the max group is reaching its (positive) limit,
then u will be negative, since ‚j must be negative according to the assignment rules.
Any yi among the min-selected variables which is upper-limited will be driven away
from its limit by the negative Nu, since ‚i > 0 by the assignment rules. The same
reasoning can be followed for other combinations. This behavior is confirmed in
simulation.

Table 8.1 Guidelines for the
association of sliding mode
regulators to selectors

Limit Sign of ‚ Selector

Upper + Min
Upper � Max
Lower + Max
Lower � Min
Regulated output n.a. min
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8.6 Design Process

This paper deals with a single control input and a single controlled output, whose
setpoint is to be changed. Of all outputs, exactly one is the controlled variable,
while the rest are limited variables. The Gi and ‚i for the limited outputs are
given by the system definition and are thus not design freedoms. The fundamental
assumption that they define minimum-phase outputs must hold for this technique
to work, however. The designer may freely choose all switching gains �i and the
reference states Nxi and Nui so that they constitute equilibrium pairs and so that they
correspond to the desired setpoint for the controlled variable and to the limits Nyi .
Next, upper-limited variables such that ‚i > 0 and lower-limited variables having
‚i < 0 are placed under the min selector, while upper-limited variables with ‚i < 0

and lower-limited variables such that ‚i > 0 are placed under the max selector, as
summarized in Table 8.1.

For the purposes of showing stability, no distinction was made between regulated
and limited outputs, and the sliding function for the regulated variable was defined as
the difference between the output and a limit. Suppose y0 D C0x C D0u is the true
system output to be regulated (i.e., fan speed). Since output setpoint regulation is
equivalent to the selection of a reference pair . Nx; Nu/, one may introduce a “limited”
variable and associated regulator for the purpose of reaching the reference state.
Without loss of generality, suppose that y1 D G1x C ‚1u is such variable. For y0

to reach its setpoint, . Nx1; Nu1/ must be chosen under the restriction that G1 Nx C ‚1 Nu
equals the desired setpoint, and G1 and ‚1 must be chosen to satisfy the minimum-
phase assumption and for good performance during the sliding mode. The regulator
for y1 is then placed under the min selector. Under nominal conditions, the designer
ensures that i� D 1, so that y1 attains the commanded setpoint. This is easily
accomplished by manipulation of ‚1 and �1, since the choices do not affect the
ability to place the eigenvalues of Aeq;1, nor compromise system stability.

8.6.1 MultiObjective Control: Mixed H2/H1 Feedback
Gain Synthesis

Although the above alone will guarantee stability and limit protection in both
transient and steady states, eigenvalue placement for Aeq;1 using G1 may be
carried out under additional, performance-oriented constraints. The interaction
among the controlled and limited variables may be minimized in the sense of a
mixed-sensitivity H1 approach. Consider the following generic control system in
state-space form:

Px D Ax C B1w C B2u (8.22)

zi;1 D Cix C Di;1w C Di;2u (8.23)

zj;2 D Cj x C Dj u; (8.24)
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where i D 1; 2; ::I and j D 1; 2::J are the indices of performance outputs zi;1 and
zj;2. The objective is to find a feedback gain K that:

1. Stabilizes .A; B2/ under the control input u D �Kx and
2. Minimizes a weighted objective function of the form ˛jjT1jj21 C ˇjjT2jj22,

where T1 is the closed-loop transfer matrix from the exogenous inputs w (i.e.,
disturbances) to the performance outputs zi;1 and T2 is the closed-loop transfer
matrix from w to the performance outputs zi;2. The weighting coefficients ˛ and ˇ

reflect design priorities and may be set to zero. The subindices represent the infinity
and 2-norms, respectively, which are commonly-used in the standard H1 and LQG
problems [28, 29]:

jjT1jj1 D max
w

N� .T1.j w// (8.25)

jjT2jj22 D 1

2�

Z 1

�1
trace .T2.j w/T �

2 .j w//dw; (8.26)

where N� denotes maximum singular value and � denotes complex-conjugate
transpose. These norms were used in Chap. 4 as part of a robust state feedback gain
synthesis approach.

Note that the performance outputs are stacked together, allowing the designer to
include multiple objectives in the norm minimization. This generic problem may be
solved with additional constraints, for instance the requirement that the eigenvalues
of .A � B2K/ lie in certain region of the complex plane. Software tools such as the
msfsyn function within Matlab’s Robust Control Toolbox are available to solve
these problems.

In the context of aircraft engine controls, w may represent actual disturbances
or may be used to capture the effects of engine aging and deterioration. In fact,
matrix � in (8.2), representing the influence of health parameter perturbations,
may be directly obtained by linearization. In the context of sliding mode control,
w represents an unmatched disturbance if � does not belong to the column space
of B [53, 55, 70]. This means that w cannot be regarded as an additive component
to the control input u. Consequently, w may not be exactly canceled out by u even
if it were known or accurately estimated. Since it cannot be assumed that health
parameter perturbations will be of the matched type, a reasonable design objective
is to minimize the influence of w on the regulated variable.

The generic multiobjective synthesis approach described above may be directly
applied to guide the selection of G1, the sliding coefficients for the main regulator.
To do this, system dynamics under an ideal sliding regime with i� as the active
regulator are considered. Under these conditions, the control input has the state-
feedback form u D �Kx, with K D 1

‚i�
Gi� . The H2 objective is included by

considering zj;2 D yj ji� . That is, the (transient) excursions of yj under control
input u D � 1

‚i�
Gi�x are to be minimized in an H2-sense. For this, the transfer

functions of interest are of the form

Tj;2.s/ D Gj .sI � A/�1B C ‚j : (8.27)
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Note that T2 is formed by stacking the Tj;2 together. Also note that T2 in the generic
problem regards w as the input. Here, B1 D B2 D B has been used to reflect the
intuitive requirement that u must not unduly excite yj .

The H1 objective is included by considering a single performance output
zi�;1 D yi� . The corresponding transfer function is

Ti�;2.s/ D C0.sI � A/�1B1 C D0; (8.28)

where C0 and D0 define the regulated output. Note that Gi� ¤ C0 and ‚�
i ¤ D0 in

general.

8.7 Design Examples

8.7.1 Linearized Simulation Study

We consider the problem of changing fan speed between two setpoints with
limits in T48, EPR, high-pressure compressor stall margin (SmHPC), and HPC
exit static pressure (Ps30). Note that no real-time sensing of the stall margin is
possible, however the SM controller only requires fan and core speeds as feedback
measurements. The CMAPSS model linearized at flight condition FC07 listed in
Appendix B is used.

This system is open-loop stable, so the assumption that A is nonsingular is
satisfied. We consider the excursions of EPR and T48 from the values in Table 2.3 to
be upper limited at 0.35 and 400ıR, respectively, while those of Ps30 and SmHPC to
be lower-limited at �85 psia and �15%. The values of the limits are representative
of actual engine operations. These limited outputs are defined as in (8.4) with

G2 D Œ0:0071 0:0177�; ‚2 D �18:4743

G3 D Œ0:0244 � 0:2665�; ‚3 D 410:4741

G4 D Œ�0:0037 0:1599� � 10�3; ‚4 D 0:0461

G5 D Œ0:0017 0:0855�; ‚5 D 25:5719;

where indices 2, 3, 4, and 5 correspond to SmHPC, T48, EPR, and Ps30, respectively.
It can be verified that these outputs are minimum-phase, satisfying the minimum-
phase assumption. Given a fan speed increment setpoint and the set of limits,
the corresponding reference states . Nxi ; Nui / are readily computed by enforcing
equilibrium conditions and using the output definitions, that is

A Nxi C B Nui D 0

Gi Nxi C ‚i Nui D Li ;

where Li are the values of the limits. Note that the reference states for the fan speed
regulator are found using C1 D Œ1 0�, D1 D 0, and L1 equal to the desired setpoint
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for �Nf . However, the fan speed regulator does not use C1 and D1 as sliding
function coefficients, since limit preservation is not required for this variable. To
find G1 and ‚1, we solve the H2 minimization with regional eigenvalue placement
described in the design section. The optimization is carried out with the msfsyn,
which is part of Matlab’s Robust Control Toolbox. The eigenvalue placement region
was specified as the half-space Re(s/ � �4. Setting G1 D 1 arbitrarily, the solution
returns

G1 D Œ0:0118 0:0026�;

which places the eigenvalues of Aeq;1 at �5.26 and �4.40. The regulators are now
associated with the min or max selectors according to Table 8.1. The fan speed
regulator is applied to the min regulator. Since ‚2 < 0 and y2 is lower-limited,
the output limit regulator #2 is applied to the min selector. Similarly, since ‚3 and
‚4 are positive and y3 and y4 are upper-limited, the corresponding regulators are
applied to the min selector. Finally, ‚5 > 0 and y5 is lower-limited, so the regulator
is associated with the max selector. Under nominal conditions, the designer wishes
that #1 be the terminal regulator. Since the only controller parameters left to
be specified are the switching gains �i > 0, and because their choice does not
compromise stability, tuning is straightforward and requires little or no iteration.
The � gains are adjusted until i� D 1 is predicted and a satisfactory response is
observed in simulation. For this example, it can be verified that setting �i j‚i j D 15

for i D 1; 2; 3; 4; 5 results in i� D 1.
Figures 8.2 and 8.3 show fan speed and auxiliary output responses to a setpoint of

�Nf D 340 rpm with all limit regulators disabled. As expected, it can be observed
that y1 attains its setpoint; however, some auxiliary variables exceed their limits.
Specifically, T48 and SmHPC incur transient violations. EPR does not reach its limit,
and Ps30 has a DC gain of the opposite sign as Nf , causing it to move away from
its lower-limit. Note that the settling time for Nf is about 1 s.

Figures 8.4 and 8.5 show the responses obtained when the limit regulators are
enabled. It can be seen that T48 and SmHPC now “ride” their limits during the
transient regime. Naturally, the fan speed response will show some performance
degradation in terms of transient behavior, but its ability to reach the setpoint will
not be hindered, since the design ensures that i� D 1 under nominal conditions. The
settling time is now about 1.4 s. Note that the limit �T48 D 400ıR has been made
very “tight” for illustrative purposes. Considering that the absolute limit on T48 used
in realistic engine controls is close to 2,200ıR, Table 2.3 indicates that �T48 could
be chosen as high as 657ıR. Under these conditions, the same design would result
in a faster settling time.

To illustrate activation of the lower limit, suppose now that fan speed is to be
reduced, that is, the setpoint is �Nf D �340 rpm. It can be verified that i� D 1

and i0 D 1 still hold under the same design parameters. Figures 8.6 and 8.7 show
that Ps30 reaches its lower limit and holds it for some time.
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Fig. 8.4 Fan speed response with limit regulators enabled: positive setpoint change
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8.7.2 CMAPSS Implementation: Upper Limit on T48

The above example was meant to illustrate the details of the design process.
The simulations used linearized models, however. The simulation studies of this
section are conducted in CMAPSS-40k, and strongly suggest that the combination
of sliding mode regulators and max–min selectors is robust enough to produce
satisfactory responses and limit protection behavior when applied to a high-fidelity
nonlinear engine simulation. In turn, the nonlinear simulation provides evidence
for the feasibility of this technique to be deployed in real-time to an actual engine.
Note that the control law of (8.7) carries an insignificant computational burden,
especially when compared to other control strategies aiming to handle constraints,
like model predictive control. In this example, minimizing the effects of health
parameter changes is also included among the design objectives. A fan speed
regulator and a T48 regulator are considered, both associated with a single min
selector. The increment request for Nf is the same as in the previous example, but
the T48 limit is reduced to 1,900ıR (�T48 D 357ıR to study the behavior of each
design under tight limits. Among the health parameter perturbations discussed in
Sect. 8.1, the HPT flow modifier and the HPT efficiency modifier have the largest
influence on T48. They correspond to a specific � matrix (see (8.2)), obtained
during linearization. At the flight condition considered in this example matrix � is
given by:

� D
� �505:4 152:6

4325:2 �1030:5

�
:

Step changes from 0% to 3% in each component of w will be considered in
the CMAPSS example, simulating the effect of a sudden fault. A comparison is
to be made between the proposed design and the max–min strategy with linear
regulators, which is the default in CMAPSS. Each linear regulator (including that
for the regulated output) is designed using the so-called KQ technique due to
Edmunds [27]. In summary, each regulator is restricted to be of the lead-lag type.
The pole of the regulator is arbitrarily set, and the zero and the gain are found by
model-matching optimization, whereby the closed-loop system is required to meet
a target closed-loop bandwidth wb and damping ratio 	 for a pair of dominant poles.
Although this classical technique may be satisfactory for independent loops, it does
not incorporate any information about the interaction of the regulators through the
max–min selector, nor does it use information about the values of the setpoints or
limits. As a result, poor performance may be observed, even when a limited variable
stays far from its limit. For illustrative purposes, a KQ design was conducted
using 	 D 0:7 and wb D 4 rad/s, which according to classical compensation design
techniques [26] should produce a settling time of 1.45 s assuming that the regulator
is active at all times. These parameters and a real pole at s D � 20 were used for
both Nf and T48 regulators. The resulting compensators are

KNf
.s/ D 0:1196s C 0:1868

s C 20
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KT48.s/ D �0:01017s C 0:1073

s C 20
:

Note that the KQ design introduces a right-half plane zero in the T48 loop,
raising concerns about the general validity of Edmunds’ approach. Separately,
a sliding mode max–min design with mixed H2 norm minimization was carried out,
following the same steps as in the previous example, including performance output
z1 to capture the effects of w on Nf . The regional pole placement constraint was
maintained, this time using Re(s/ � �5. Finally, ˛ D 1 and ˇ D 1 were used. The
resulting sliding coefficient vector for the N1 regulator was G1 D Œ0:0168 0:0014�,
with ‚1 arbitrarily set to 1. The eigenvalues of Aeq;1 are �5.0112 ˙ 1.5396i . The
switching gains were set at �1j‚1j D �2j‚2j D 15. The resulting controller was
implemented in CMAPSS, and a sample comparison simulation was run. The results
are summarized in Figs. 8.8 and 8.9. It is clear that the new design outperforms KQ
by a large amount in terms of fan speed response, maximization of the available
limit, and low sensitivity to a simulated fault. Note that the settling time with the
proposed design is 40% shorter than the one obtained with the KQ design. The
example also indicates that a design based on a linearized plant is adequate for
deployment to the nonlinear model, although scheduling or gain adaptation is likely
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to be necessary to cover the whole flight envelope or to accommodate larger setpoint
changes.

8.7.3 CMAPSS Implementation with Multiple Limit Regulators

In this example, a more realistic implementation of the max/min SMC approach is
described. As in the simulation example, T48 and EPR are regarded as upper-limited
and Ps30 as lower-limited. A limit regulator cannot be directly implemented for the
stall margin, however, since this output is not sensed in the actual engine. A related
variable usually referred to as ˆ can be used instead to achieve a minimum stall
margin requirement. This variable is defined as the ratio of fuel flow rate to static
HPC outlet pressure Ps30:

ˆ D WF

Ps30
:

An allowable range for the value of ˆ is typically used to calculate corresponding
allowable values of WF on the basis of the current value of Ps30 [71]. That is, the
value of WF calculated by the control system is passed through a saturation function
with variable limits which are determined from the minimum and maximum values
allowed for ˆ and the current value of Ps30. In this example, however, we consider
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only an absolute lower limit on ˆ, enforced by an SMC limit regulator. Since the D

coefficient of the linearized output �ˆ is positive, the limit regulator is associated
to the max selector. Note that if an upper limit is specified for ˆ in addition to the
lower limit, an extra regulator must be associated to the min selector.

The example corresponds with a burst and chop maneuver starting at FC07. A fan
speed demand is created that corresponds to a step increase in TRA from 60 to 100ı.
The opposite TRA change is used for the chop portion. The sliding coefficients for
the main output regulator are determined using the H2=H1 approach. Fan speed
is regarded as the z1 performance output and z2 includes all limited outputs. Equal
weights for the H2 and H1 objectives are specified, and the target eigenvalue region
is taken as a disk centered at �8 with radius 2.

The sliding coefficients returned by msfsyn are

G D Œ0:0452 � 0:0010�;

which places the poles of Aeq at �9.99 and �6.00. The design is completed by
specifying a set of switching gains that provide an adequately fast response while
ensuring that the fan speed regulator is active at steady state. The switching gain for
the main regulator was chosen as �1 D 1, while �j D 15j‚j j was chosen for all
limit regulators. Boundary layer thickness parameters must be chosen according to
orders of magnitude projected for the s variables. � D 0:5 was chosen for the main
SMC regulator, together with �2 D 0:01, �3 D �4 D �5 D 0:1.

Figures 8.10 and 8.11 show the Simulink implementations of the main and
limit regulators, where the T48 regulator has been used as an example of the latter.
Figure 8.12 shows the behavior of the system state and main sliding function. The
fan speed response has a fast settling time of about 0.8 s.
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As shown in Fig. 8.13, T48 tends to peak during the burst transient, but SMC limit
regulator effectively maintains the variable at the exact value of the limit (2,175ı) as
long as necessary. Similarly, ˚ tends to undershoot pronouncedly during the chop
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transient, but is effectively held at the limit of 20 by its regulator. An upper limit of
1.3 was specified for EPR. Since the designer has no control over the sliding mode
dynamics for the limit regulators, small oscillations around the limit value may be
observed in a nonlinear engine simulation. This is the case with EPR: even if this
regulator is forced to remain active at all times, convergence to s D 0 is not one-
sided, but contains some oscillation. This explains the slight overshoot observed for
EPR in Fig. 8.13. Figure 8.14 shows the fuel flow input produced by the control
system. No significant chattering is detected, despite the high regulation accuracy
of this system. Finally, the burst and chop sequence has been represented in the HPC
map in Fig. 8.15.

8.8 Summary

The above CMAPSS implementations demonstrate the effectiveness of the max–
min arrangement with SM regulators. The designer can use this technique to
achieve a balance between speed of response and allowable limits for critical engine
variables. Even with constant control gains, limit relaxation will be reflected in
faster responses, and conversely, the main output response will become slower if
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limits are made more restrictive. This feature is highly desirable for the development
of resilient aircraft control systems, where the engines feature aggressive control
modes reserved for emergency maneuvers. In emergencies, extending engine life
becomes secondary to achieving enhanced thrust response. Indeed, recent aviation
safety research [69,72] indicates that thrust response times determine the feasibility
of certain emergency maneuvers where the propulsion system is used for flight
control. In one scenario where all rudder control has been lost, the pilot commands
different levels of thrust to the engines to achieve a yawing moment. Studies indicate
that the control system must feature fast thrust response modes to be used in
emergencies. In these situations, enhanced response must be favored over engine
durability, while still guaranteeing component safety.

On the premise that the standard max–min architecture is used for both normal
and enhanced responses, there are essentially two ways of obtaining faster thrust
responses: (a): redesigning the regulators for larger closed-loop bandwidths; and
(b): relaxing the protective limits on variables which tend to peak as thrust
response is made faster. Among the variables displaying such peaking are turbine
outlet temperature, which peaks during acceleration, stall margin, which tends to
undershoot during acceleration, and combustor pressure, which tends to undershoot
during deceleration. Unfortunately, the max-min arrangement with linear regulators
introduces an undesirable relationship between design bandwidths, limit settings
and the achieved speed of response. This observation was first made by Litt [69] and
confirmed by the author in a simulation study [73]. The same study demonstrates
that the max-min arrangement with SM regulators removes this limitation.

The technique presented in this chapter requires the specification of augmented
state references, which includes target steady values for the actuators, since integral
control is used. As mentioned in Sects. 4.7.1 and 6.3, the steady map of the nonlinear
engine must be used to pre-calculate such references. This drawback is aggravated
when health parameter changes occur, since the steady map depends on these
uncertain parameters. Note, however, that real-time implementations of the SM
limit regulators do not require state references, due to the definition of the sliding
function. Only the limit setting and a real-time output measurement are needed to
calculate the sliding function.
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