
Chapter 5
Gain Scheduling and Adaptation

Abstract This chapter introduces gain-scheduling and linear-parameter-varying
techniques to address plant variability across the flight envelope. This chapter also
introduces the concept of adaptive control and presents a basic model-reference
adaptive control design. Matlab code and simulations using the CMAPSS nonlinear
engine model are included.

This chapter is an overview of two control concepts that address plant variability
across the flight envelope: scheduling and adaptation. These control methods are
fundamentally different from robust approaches in that controller parameters are
not fixed, but undergo significant changes during system operation. Gain scheduling
as used in standard GTE control is described in Sect. 5.2. Next, in Sect. 5.3,
a more systematic linear parameter-varying (LPV) approach to gain scheduling
is presented. In Sect. 5.4, the basic concept of adaptive control is introduced,
followed by a simple version of a well-established adaptive control methodology,
namely Model Reference Adaptive Control (MRAC). Application of scheduling and
adaptation concepts to fan speed control is illustrated throughout the chapter with
CMAPSS-1 simulation examples.

5.1 Robustness, Scheduling, Adaptation

The techniques presented in Chap. 4 attempt to find a fixed controller that tolerates
a range of plant parameter variations. Tolerance is understood first as the ability to
maintain closed-loop stability upon uncertain plant variations. When plant matrices
vary in a polytope, closed-loop stability of a given compensator can be checked us-
ing the definition of quadratic stability and associated LMI feasibility computations.
Moreover, such fixed compensators can be synthesized using H2=H1 methods.
Stability is necessary, but cannot be regarded as the sole criterion to define a
successful GTE control implementation. Controllers must also maintain consistent
transient response and tracking accuracy across the flight envelope. As demonstrated
in Chap. 4, fixed controllers synthesized through H2=H1 methods offer a degree
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92 5 Gain Scheduling and Adaptation

of performance robustness, as measured by the minimum achievable norm. Still,
significant tracking offsets and transient performance loss occur when attempting to
use a single controller for all flight conditions.

Gain scheduling techniques address plant variations by introducing matching
controller gain variations, attempting to obtain uniform transient responses across a
wide range of operating conditions. The appropriate gain variations are determined
during offline design and fixed for subsequent operation in the form of scheduling
tables. In contrast, adaptive techniques induce control parameter variations online,
as part of the control system implementation. Adaptive parameters can assume
values outside the linear space generated by interpolation of scheduling table gains,
thus improving the control system’s adaptability to changes in the plant. Adaptive
controllers introduce nonlinear dynamics in the closed-loop system. Therefore, their
proper design requires an understanding of the theoretical bases governing their
behavior. In this chapter, focus is limited to a simple form of adaptive control that
is adequate for SISO plant models whose number of poles exceeds the number of
zeroes by one. The transfer function from fuel flow to fan speed fits this case, and
the adaptive technique is readily applied with good results.

5.1.1 Input Scheduling

Standard SISO GTE control systems use fuel flow as the only actuator used in
a feedback loop ultimately aimed at controlling engine thrust. Other actuators,
mainly VSV and VBV, are still actively governed during flight. Although there
are no “controllers” in the usual sense that provide commands to these actuators,
they are still commanded through a function of real-time measurements. The term
“scheduling” is used in the GTE industry to denote this form of actuator command.
In CMAPSS-40k, for instance, these actuators are commanded through functions
of the corrected fan speed of (1.23), corrected core speed, and Mach number.
Since the corrected speeds are functions of state variables, this form of command
effectively adds decoupled SISO loops to the engine. Furthermore, it corresponds to
proportional control, where the proportional gain is scheduled by Mach number and
‚, the nondimensional total temperature at LPC outlet. VSV and VBV command
functions are limited to the allowable ranges of these actuators. Multivariable
designs such as those presented in Chap. 4 forego of these scheduling functions and
allow VSV and VBV to be commanded from a multi-output feedback controller.

5.2 Standard Gain-Scheduled GTE Control

Classical GTE gain scheduling centers on the idea of a fixed-structure (say, PI)
compensator for fan speed or EPR control, whose gains are adjusted according
to certain scheduling variables. These variables are chosen to reflect changes in
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environmental conditions such as altitude, Mach number, and sea-level temperature,
which act as parameters of the linearized engine models. State variables such as fan
speed may also be used as scheduling variables. Note that when a state variable –
or function thereof – is used as scheduling variable, a nonlinear feedback control
loop is effectively introduced. This additional loop has the potential to destabilize
the main control loop if not carefully designed. As shown in Fig. 5.1, it is customary
to insert a low-pass filter between the state variable used for scheduling and the
input of the scheduling table. This is to ensure that the changes to the control gains
brought about by state variables are slow in comparison with the bandwidth of the
main loop. The scheduler used in ad-hoc designs is nothing more than a look-up
table giving control gains as a function of scheduling variables.

Although there is no universal rule for the selection of scheduling variables, it
is reasonable to identify a set of physical parameters which dictate the numerical
values of system matrices obtained through linearization. Recalling (2.1) and (2.2),
it is clear that all parameters of functions f1 and f2, together with steady input
values and a fixed set of health parameters, are needed to define an equilibrium
point. Ideally, a set of scheduling variables would be comprised by all parameters.
In practice, however, a few parameters can be identified that have the largest
influence in the numerical values of the resulting linearized matrices. In the GTE,
physical consideration and experience show that thermodynamic conditions at
engine inlet, i.e., inlet static pressure and Mach number have the largest influence.
Fan speed, an engine state, is frequently used as an additional scheduling variable
to account for the intrinsic nonlinearity of functions f1 and f2. Inlet pressure may
be used directly, or equivalently, altitude may be used. An additional important con-
sideration for the selection of scheduling variables is their availability as real-time
measurements.

The scheduling tables are built by selecting a controller structure and repeating a
controller design for various combinations of scheduling variables. The resulting
gains are then included in look-up tables. Linear interpolation is used to find
controller gains from real-time measurements of the scheduling variables.

In CMAPSS-40k, fixed PI control structures are used for the fan speed, core
speed, and EPR control loop options. Scheduling variables are altitude and Mach
number for the P-gain, and altitude, Mach number and fan speed for the I-gain.
Figures 5.2 and 5.3 are graphical representations of the P and I-gain scheduling
used by default in CMAPSS-40k. As conventionally used in GTE control systems,
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gain scheduling is a simple and effective way of achieving response specifications
across the flight envelope under normal circumstances. The chief weakness of
ad-hoc gain scheduling is its lack of robustness and its lack of adaptability to
unforeseen conditions. If plant parameters change in ways that have not been
accounted for in the scheduling tables, serious performance loss or instability can
occur (See Shamma and Athans [38]). Engine aging and deterioration effects are
in fact model parameters, whose variations are introduced as a disturbance input.
These parameters are not typically used as scheduling variables. Doing so would
lead to overly complex look-up tables. Besides, health parameters are not available
as real-time measurements and their estimation and use in engine prognostics
are challenging research problems. For more information on health parameter
estimation, see references [20–22, 39].

5.3 Linear Parameter-Varying Methodologies

LPV control denotes a group of techniques based on a structured description of plant
parameter variability. By imposing an LPV structure on the uncertain plant, robust
designs based on H1 theory become possible. The interested reader is referred to
the work of Wolodkin et al. [40], where gain scheduling for turbofan engine control
is conducted under an H1 optimization objective. This approach offers superior
performance in comparison with ad-hoc scheduling of several fixed designs.

An LPV description of the uncertain state-space plant has the form

Px D A.p/x C B.p/u; (5.1)

y D C.p/x C D.p/u; (5.2)

where p D Œp1 p2 p3 :::ps � is a vector of s parameters, and system matrices are
given by

A.p/ D A0 C p1A1 C p2A2 C ::: C psAs; (5.3)

B.p/ D B0 C p1B1 C p2B2 C ::: C psBs; (5.4)

C.p/ D C0 C p1C1 C p2C2 C ::: C psCs; (5.5)

D.p/ D D0 C p1D1 C p2D2 C ::: C psDs; (5.6)

where A0; A1:::; B0; B1; :::C0; C1; :::D0; D1; :::Ds is a set of coefficient matrices.
The parameters are chosen in the same way as scheduling parameters, that is, on
the basis of knowledge or experience with the system. For fan speed control, a
reasonable set of parameters is given by altitude, Mach number, and fan speed itself.
For the remainder of the chapter, we assume that p D Œm h f �, where m is the
Mach number, h is the altitude normalized by a convenient scaling factor, and f is
the fan speed, also normalized by a suitable scaling factor.
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5.3.1 Obtaining an LPV Decomposition from Polytopic Vertices

Instances of A.p/, B.p/, C.p/, and D.p/ are available to the designer as an
outcome of linearization at some steady-state condition determined by a fixed value
of p and a set of matching equilibrium states and inputs. The coefficient matrices,
however, need to be determined. When a set of instances of the system matrices
corresponding to known parameter vectors are available, the coefficient matrices
are determined through a generalized system of linear equations.

Suppose that a set of matrices A.p.i//; i D 1; 2; :::r is available, corresponding
to a set of parameter vectors p.1/; p.2/; :::p.r/. The following linear system arises
from (5.3):

2
66664

I p1.1/I p2.1/I ::: ps.1/I

I p1.2/I p2.2/I ::: ps.2/I

:::
:::

I p1.r/ p2.r/I ::: ps.r/I

3
77775

2
66664

A0

A1

:::

As

3
77775

D

2
66664

A.p1/

A.p2/

:::

A.ps/;

3
77775

: (5.7)

This linear system has the form RV D S , where V is the unknown matrix. The
dimensions of R are nr-by-ns, where n is the dimension of each square matrix
A.p/. If r D s and p.i/ are chosen so that R has full rank, the solution can be found
as V D R�1S . If r > s, the system is overdetermined and an exact solution may be
found only for a rather restrictive set of problem data in R and S . An approximate
solution for V can be found by minimizing the 2-norm (largest singular value) of the
residual matrix RV � S . The solution to this case is V D RCS , where RC denotes
the Moore–Penrose pseudoinverse [41] of R, which can be calculated in Matlab
using the pinv command. The parameter vector chosen for GTE fan speed control
has s D 3. Thus, three instances of system matrices would be necessary to obtain
the LPV coefficient matrices using R�1. Three flight conditions cannot be expected
cover the operating envelope, implying that the pseudoinverse must be used.

5.3.1.1 CMAPSS-1 LPV Decomposition

The 14 conditions listed in Appendix B are readily used to obtain a set of four
coefficients for A.p/ and B.p/. Altitude is normalized by 10,000 and fan speed by
3,000 to define the parameter vector. Matrix A.p/, for instance, is decomposed as

A.m; h; f / D
"

0:1974 0:4174

0:1285 1:0424

#
C m

"
�1:0000 0:0626

0:1002 �0:2370

#

Ch

"
0:7476 �0:2551

�0:0653 0:7102

#
C f

"
�5:0210 1:3617

0:5981 �7:2702

#
:
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To illustrate the magnitude of the error associated with the use of the pseudoinverse,
consider m D 0:7, h D 2, and f D 0:775, corresponding to FC06. Computation of
A from the LPV decomposition results in

"
�2:8971 1:0059

0:5314 �3:3350

#
:

This represents a 6.1% error in matrix 1-norm (largest column absolute value sum)
relative to the true value of A at FC06. Similar errors exist for all other matrices and
flight conditions.

5.3.2 A Simple LPV Approach to Fan Speed PI Control

Since fan speed increment is the first state in (5.1), an output y defined as fan speed
increment will have constant C D Œ1 0� and D D 0. This implies that the transfer
function from fuel flow increment u D �WF to y D �Nf always has the form

G.s/ D k.s C z/

.s C c1/.s C c2/
; (5.8)

where c1 and c2 may be complex conjugates. In CMAPSS-40k, linearization at high
PLA levels tends to give complex poles, while real poles are seen at low PLA
settings. In CMAPSS-1, real poles are observed for all 14 flight conditions. The
technique presented in this section is restricted to plants with real poles only. The
technique is based on the same premise as conventional gain scheduling: scheduling
variables (in this case, parameters p ) are available as real-time measurements
from sensors. Then system matrices A.p/ and B.p/ can be computed in real-time
using the LPV decomposition of (5.3) and (5.4). This information can be used to
calculate the gains of a controller whose structure has been predetermined to meet
performance and stability-related objectives.

Denote the entries of A.p/ and B.p/ as aij .p/ and bi .p/, respectively, for i D
1; 2 and j D 1; 2. Transfer function G.s/ may then be parameterized by these
entries by using a scalar version of (4.1):

G.s/ D b1s � b1a22 C b2a12

s2 � .a11 C a12/s C a11a22 � a12a21

: (5.9)

Recalling Chap. 3, the PI controller structure is a suitable choice to meet the zero
steady-state error requirement and obtain adequate transient responses. The control
transfer function K.s/ D Kp CKi=s leads to the closed-loop characteristic equation

s3 � .a11 C a22 � Kpb1/s
2 � .a12a21 � a11a22 � Ki b1 � Kpa12b2 C Kpa22b1/s

C Kia12b2 � Kia22b1 D 0:
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This equation possesses three roots, of which at least one must be real, since
complex roots appear in conjugate pairs. An approach to selecting control gains
is to enforce a pole-zero cancelation in the closed-loop transfer function. Recall that
the zeroes of G.s/K.s/ are the same as those of the closed-loop transfer function
T .s/, up to pole-zero cancelations. In this technique, the zero introduced by the PI
controller at s D �Ki=Kp is to cancel a real root of the closed-loop characteristic
equation. This is done to remove part of the response variability arising from plant
parameter changes. To place a constrain on Ki and Kp so that the sought pole-
zero cancelation occurs, a symbolic computation process must be carried out. First,
s D �Ki =Kp is substituted in the closed-loop characteristic equation. When this is
done, the characteristic equation can be factored as KiQ.Ki ; Kp/ D 0, where Q is
a quadratic polynomial in Ki . Then two nonzero solutions for Ki are found from
Q.Ki; Kp/ D 0:

KC
i D �Kp

2

�
a11 C a22 C p

�
�
; (5.10)

K�
i D �Kp

2

�
a11 C a22 � p

�
�
; (5.11)

where � D a2
11 � 2a11a22 C a2

22 C 4a12a21. It can be readily verified that
1
2

�
a11 C a22 ˙ p

�
�

are the eigenvalues of A.p/. Hence, the restriction of the

technique to real eigenvalues is justified to prevent complex controller gains.
Thus, each solution produces the cancelation of one of the two real plant poles.
Furthermore, although the objective was to cancel a closed-loop pole, (5.10)
and (5.11) show that the only way to achieve this is by direct cancelation of the
plant open-loop pole. Hence, after cancelation, the loop transfer function has the
form

G.s/K.s/ D k0.s C z/

s.s C c/
;

where z is the plant zero, c is the un-canceled plant pole, and k0 is a new gain.
Equations (5.10) and (5.11) place a constraint on the relationship between Ki

and Kp, but do not completely determine their values. A root locus argument can
be used to show that sufficiently high values of Kp will result in an approximate
cancelation of the plant zero. Furthermore, increasing Kp leads to faster responses
and insensitivity from plant parameters. Indeed, assuming without loss of generality
that c1 > c2 in (5.8), it is clear that using KC

i will result in the cancelation of c1 and
using K�

i results in the cancelation of c2. Assume that KC
i is chosen. The open-loop

transfer function is then

G.s/K.s/ D Kpk
.s C z/

s.s C c2/
:



5.3 Linear Parameter-Varying Methodologies 99

Root Locus for z>c2

Re

Im

Root Locus for z<c2

Re

Im

Root Locations for High Kp (z>c2)

Re

Im

Root Locations for High Kp (z<c2)

Re

Im

−z

−c2

−c2

−z

Fig. 5.4 Possible root loci and closed-loop root locations: pole-zero cancelation design with K
C
i

and high Kp

Two possible root loci are shown in Fig. 5.4, according to the relative magnitudes
of z and c2. In both cases, a sufficiently high value of Kp will place a closed-loop
pole at the location of the plant zero. The closed-loop transfer function is nearly
independent from plant parameters. The remaining real pole proceeds to �1 as Kp

is increased. This observation indicates that Kp does not need to be scheduled, but
rather set at an appropriate value, best determined from simulation trials. The same
general behavior is seen if K�

i is chosen. In a real-time implementation, the eight
coefficient matrices are stored in memory, from where the entries of A.p/ and B.p/

are computed. A fixed Kp and KC
i or K�

i as calculated from (5.10) and (5.11) are
used as PI gains.

5.3.2.1 Linearized Study: CMAPSS-1

A simulation study is conducted with Kp D 0:1, using the eight coefficient matrices
of the LPV decomposition. Unit step responses corresponding to the 14 plants
controlled with the LPV-based PI controlled are shown in Fig. 5.5. The results
show that, in this case, KC

i tends to produce faster responses than K�
i C and that a

constant Kp is sufficient to produce consistent transient responses across wide plant
parameter changes.
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5.3.2.2 LPV Scheduling in Nonlinear Engine: CMPASS-1

A simulation is now conducted using the nonlinear 90k engine. Altitude, Mach
number, and fan speed are varied during the simulation, mimicking the parameter
changes taking place during takeoff and climb. Initially, the engine is at sea level, the
Mach number is zero, and the TRA is 20. This corresponds to FC13 in Appendix B,
or near-idle conditions, where Nf D 1;497 rpm, as shown in Table 2.3. Altitude is
changed to 20,000 ft., Mach number to 0.7, and TRA to 100, which correspond to
FC06, where Nf D 2;324 rpm. The transition between altitude and Mach number
parameters is taken as a 1-second ramp. Although no aircraft is capable of such
fast altitude and airspeed changes, these parameter changes are useful to benchmark
engine control systems. The fan speed reference input passed to the control system is
given by a ramp having a slope of 500 rpm/s, the maximum admissible in CMAPSS-
1. The proportional gain Kp is maintained at 0.1, and the formula for KC

i is
used. Figure 5.6 shows that the LPV-based scheduling of the P-gain produces very
accurate fan speed demand tracking. The lower plot shows that the control input
is more aggressive in comparison with the native scheduled controller. Figure 5.7
shows the variation of Ki .
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5.3.3 Other LPV Approaches

The LPV-based pole-zero cancelation approach presented above represents an
improvement over standard point design interpolations in a practical sense. Indeed,
formulas replace tables, making it possible to generate gains with finer resolution in
a compact format. The offline generation of coefficient matrices is very systematic
and easily extensible to a larger number of vertices. The method, however, does not
have any explicit robustness properties. Many multivariable robust approaches to
gain scheduling using the LPV parameterization were developed in the 1990s. For
a theoretical basis, see Kamen and Khargonekar [42], Apkarian and Gahinet [43] or
Packard and Kantner [44]. For application of these techniques to aircraft engines,
see Wolodkin et al. [40], Balas [45] or extensions of the LPV parameterization
that allow polynomial dependence on coefficient matrices, but include linear
dependence on controller parameters. Such polynomial LPV synthesis has been
developed by SNECMA, a French aerospace manufacturer, see Henrion [46] and
Gilbert [47].

5.4 Overview of Adaptive Control

The central idea of adaptive control schemes is to introduce a controller structure
and a set of parameters ‚ which, along with feedback measurements, determine
the value of the control input at every instant. In ideal circumstances, when the
plant is known exactly, ‚ could be computed so that the closed-loop system
has desirable characteristics. The premise justifying the use of adaptive control is
that plant parameters are either uncertain or changing in time. Then ‚ cannot be
calculated beforehand. Various adaptive schemes introduce an adaptation law, or
parameter update law to refine an initial guess of ‚ during the course of system
operation. Numerous adaptive schemes have been proposed, see, for instance,
Åstrom and Wittenmark [48] or Ioannou [49]. Three architectures are frequently
used: model-reference adaptive control (MRAC), indirect adaptive control, and self-
tuning regulators. As Fig. 5.8 shows, the MRAC scheme introduces a reference
model, which specifies the desired dynamics of the controlled plant. The MRAC
is a dynamic system whose parameters ‚ are adjusted so that the error between the
reference model and the actual plant outputs is driven to zero. This approach can
be categorized as direct, in that no attempt is made to estimate the unknown plant
parameters as an intermediate step for the computation of the control input. The MIT
rule was used in the early beginnings of adaptive control to update the parameters:

d‚

dt
D ��e

@e

@‚
;
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ẋ = f(x,u, p)

p̂

Fig. 5.9 Indirect adaptive control system schematic

where e is the error between plant and reference model outputs and � is a positive
constant governing the speed of adaptation. This rule was subsequently shown
to lead to unpredictable system behavior, ranging from poor performance and
slow adaptation to unstable closed-loop systems (see Anderson [50]). Present-day
adaptation and control law synthesis are firmly grounded on Lyapunov stability
theory.

Indirect adaptive approaches include a plant parameter estimator and a control
design algorithm as an intermediate step, as shown in Fig. 5.9. The controller
has been parameterized and tuned in terms of plant parameters, much like what
was done in Sect. 5.3.2 using the LPV parameterization. A parameter estimator
constantly updates plant parameters, which determine controller gains. Compu-
tationally, the only distinction between indirect adaptive control and LPV-based
gain scheduling is the mechanism used to arrive at plant parameters: A recursive
estimator is used in adaptive control. In contrast with the static, predetermined
LPV parameterization, no offline information about plant variability is needed in
the indirect adaptive case. A self-tuning regulator is a form of indirect adaptive
control where plant parameter estimates are used to conduct controller design
leading to the gains to be implemented in a fixed-structure controller, as shown
in Fig. 5.10. This differs from other indirect schemes in that plant parameters are
not directly used in the controller parameterization. Depending on the type of con-
troller design to be performed, self-tuning regulators could represent a significant
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real-time computational burden. Some of the burden associated with the design
can be transferred to offline computation, resulting in explicit implementations (see
Grimble [51]).

5.4.1 Relative-Degree 1 MRAC

An MRAC scheme originally developed by Feuer and Morse [52] and further
elaborated by Ioannou [49] is now summarized. This form of MRAC is applicable
to linear SISO plants whose parameters are unknown, but whose relative degree is
known to be equal to one. Recall that the relative degree of a linear transfer function
is defined as the number of poles minus the number of zeroes. In addition, the plant
transfer function is required to be minimum-phase and to have a high-frequency
gain with known sign. Let the plant model be given in transfer function form as

Yp.s/ D G.s/U.s/ D k
N.s/

D.s/
U.s/; (5.12)

where N.s/ and D.s/ are the numerator and denominator polynomials such that
the degree of D.s/ is higher than the degree of N.s/ by one. The polynomials are
assumed to be monic, that is, the leading coefficient (the coefficient of the highest
power of s) of N.s/ and D.s/ must be one. In this case, the magnitude of the plant
frequency response approaches an asymptote of the form jkj

w , where k is the high-
frequency gain. These assumptions are satisfied by the transfer function from fuel
flow to fan speed, upon which many standard GTE designs are based. The reference
model is given by a transfer function of the form

Ym.s/ D W.s/R.s/;

where r is the reference input to be tracked by yp and W.s/ must be of relative
degree one and also satisfy the following assumptions:
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1. All poles of W.s/ must have negative real parts.
2. W.s/ must be minimum-phase.
3. The real part of W.j w/ must be nonnegative for all w � 0.
4. The high-frequency gain of W.s/ has the same sign as that of G.s/.

Conditions (2) and (3) above are satisfied by strictly positive real (SPR) transfer
functions, which can be generated for any relative degree using two matrix
conditions due to Kalman and Yakubovich, see [48]. In this section, we only
consider reference models of the form

Wm.s/ D 1

�s C 1
; (5.13)

which satisfy all assumptions and are sufficient for an introductory exposition of
MRAC methods. The speed of response of the reference model can be tuned using
time constant � .

This form of MRAC uses four controller gains assembled in a parameter vector
‚ D Œ‚1 ‚2 ‚3 ‚4�

T. The control input is calculated as

u D ‚T!; (5.14)

where ! D Œ!1 !2 yp r�T. Quantities !1 and !2 are the outputs of first-order
filters of the form

P!1 D F!1 C gup; (5.15)

P!2 D F!1 C gyp; (5.16)

whose initial conditions are set as !1.0/ D !2.0/ D 0. An arbitrary nonzero value
is chosen for g and F is chosen so that the above filters are stable, that is, F < 0.
Finally, the parameter adaptation law is given by

P‚ D �Ge! sign .kpkm/; (5.17)

where km is the model’s high-frequency gain, G is a tunable positive-definite matrix
and the error has been defined as

e D yp � ym:

Matrix G controls the rate of parameter adaptation.

5.4.2 Example: CMAPSS-1

The MRAC schemed is tested first using the 14 linearized plant models of
CMAPSS-1. A step command for �Nf of 100 rpm is used as reference input. The
reference model was chosen as
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Fig. 5.12 Fan speed responses of model-reference adaptive control over 14 linearized plants

Wm.s/ D 1

0:1s C 1
:

The adaptive gains were chosen with almost no trial-and-error as

G D

2
6664

0:1 0 0 0

0 0:1 0 0

0 0 0:1 0

0 0 0 0:1

3
7775 ; F D �2 g D 1:

The reader interested in reproducing these results may refer to Fig. 5.11, which
shows the Simulink implementation. The initial parameter vector was chosen as
‚0 D Œ0 0 0 0�T. The step response simulation was repeated using the 14 transfer
functions from incremental fuel flow to incremental fan speed using the data from
Appendix B, and without modifications to G, F , g, or ‚0. Figure 5.12 shows that the
fan speed responses closely match each other and the reference model: there is no
overshoot and the settling time is about four time constants. Figure 5.13 shows how
parameters adapt and converge to different values to achieve the specified model-
matching objective.
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Fig. 5.13 Parameter adaptation responses of model-reference adaptive control over 14 linearized
plants
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Fig. 5.14 Comparison of nonlinear engine responses: model-reference adaptive control and
CMAPSS-1 native scheduled regulator
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Fig. 5.15 Model-reference adaptive control in nonlinear engine: parameter adaptation histories

The relative-degree 1 MRAC design is now applied to the 90k nonlinear engine of
CMAPSS-1. Altitude, Mach number, and fan speed are varied during simulation, the
same way as in the example of Sect. 5.3.2.2. The MRAC system was tuned with G D
1 � 10�8 I4, � D 0:5, and initial parameter vector ‚0 D Œ0 0 0 0�T. Figure 5.14
shows the fan speed and fuel flow input responses corresponding to the MRAC in
comparison with the CMAPSS-1 native gain-scheduled fan speed controller. Even
with zero as initial parameter guesses, the adaptive control system is able to attain
zero offset and reasonable transient response characteristics. Figure 5.15 shows how
parameters are adapted and converge to steady values. A “bootstrapping” tuning
procedure may be used to improve transient response. After a first simulation with
‚0 D 0, the resulting steady values of ‚ may be used as ‚0. A new simulation
is run, with an improvement in transient response. The first simulation converged
to ‚ D Œ0 0:0002 0:0006 0:0015�T. Figure 5.16 shows how performance
is significantly improved by setting ‚0 to these new values. The process may be
repeated to produce further improvements, but the refinement process will tend
to tailor ‚0 to a particular simulation, and the same transient qualities will not
be observed for a new set of plant parameter changes. A good choice for ‚0 is
best obtained by a simulation study comprising several plant parameter variation
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Fig. 5.16 Response of model-reference adaptive control with initial parameter refinement

scenarios. Theoretical results guarantee that the error will converge to zero and
that the parameters will converge to steady values. Instability can be observed in
simulation, however, due to interaction of adaptive dynamics and numerical solution
algorithms. The CMAPSS simulation presented here used a 2nd-order Runge–Kutta
method (Heun’s algorithm) with a fixed step size of 0.015. Under these conditions,
choosing the entries of G as 1�10�7 leads to large numerically-induced oscillations.
Values near 5 � 10�7 cause unboundedness of ‚ and !.
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