
Chapter 4
Engine Control by Robust State Feedback

Abstract This chapter reviews linear multivariable theory and introduces polytopic
system descriptions of plant variability. The chapter also presents various methods
for MIMO state-feedback synthesis, such as: LQR, H2, H1 and mixed-objective
optimization with regional pole placement constraints. A simplified H1 compen-
sator synthesis method is presented for SISO systems. Matlab code and simulations
using the CMAPSS nonlinear engine model are included.

The purpose of this chapter is to provide an overview of robust, multivariable
techniques that are directly applicable to the GTE control problem. As pointed
out in Chap. 3, fixed controllers cannot be expected to preserve engine limits or
to operate satisfactorily across the whole flight envelope, less so if the engine health
parameters are subject to changes and unmodeled dynamics exist. However, various
approaches to gain scheduling are based on a set of fixed controllers. It is therefore
essential to discuss the salient features of robust multivariable control and provide
practical design guidelines. The chapter assumes familiarity with the state-space
pole-placement concept, at a minimum.

Actual engines incorporate real-time sensing of fan and core speeds, which are
the states of the dynamic model. This fact opens the doors to many techniques
based on state measurement feedback, such as the linear quadratic regulator
(LQR) and sliding mode control. Although most state feedback techniques admit
observer-based extensions, the performance and robustness properties attained with
measurement feedback are partially lost when a state estimator is introduced.
A classical example of this effect is given by the performance and robustness losses
associated with observer-based implementations of linear quadratic regulation.
Loop transfer recovery techniques [29] aim to restore the lost performance and
robustness properties.

The chapter begins by introducing essential concepts such as singular values
and signal and system norms and their computation using Matlab. Robustness and
performance are then addressed using classical LQR theory. A characterization of
the uncertain design plant, along with a corresponding formulation of the control
objectives is then developed using the tools of H2 and H1 robust state feedback
synthesis. A classical LQR controller and robust H-norm based controllers are
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52 4 Engine Control by Robust State Feedback

designed for the 40k-class engine, using WF, VSV, and VBV as actuators. The
designs are then simulated in CMAPSS-40k.

4.1 Overview of Multivariable Systems Theory

Given a multi-input, multi-output (MIMO) system described by a set of state-space
matrices .A; B; C; D/, the single-input, single-output (SISO) transfer function
Gij .s/ from the j�th input to the i�th output is found using the formula:

Gij .s/ D Ci.sI � A/�1Bj C Dij ; (4.1)

where Ci is the i�th row of C , Bj is the j�th column of B , and Dij is the
.i; j / entry of matrix D. The arrangement of the Gij in a matrix is the transfer
matrix G.s/. The poles of the individual entries Gij are a subset of the eigenvalues
of A, where pole-zero cancelations may have occurred in individual entries. The
transmission zeroes or multivariable zeroes of G.s/ have a special definition, and
they generally differ from the zeroes of the individual Gij .s/. The zeroes of a
transfer matrix are given by the set of values of s for which G.s/ loses rank.
Mathematically, s D z is a zero of G.s/ with multiplicity k if there exist k linearly
independent vectors v so that G.z/v D 0. In Matlab, the transmission zeroes are
readily found with the tzero command.

In this book, we limit ourselves to rational transfer matrices; that is, matrices
whose entries are ratios of polynomials. A rational transfer matrix is proper if its
individual entries are so, that is, if they do not have more zeroes than poles. A set
of state-space matrices .A; B; C; D/ always results in a rational, proper transfer
matrix.

4.1.1 Example

Take the 40k engine model matrices of CMAPSS-40k at Ground Idle listed in
Appendix C. Define the control input vector as u D Œ�WF �VSV �T and choose
two outputs as y D Œ�EPR �T48�

T. The following Matlab code is used to find the
transmission zeroes:

%Assumes A,B,C,D are in the workspace
sysSS=ss(A,B,C,D); %Create system
sysTM=zpk(sysSS) %Find and display transfer matrix
tzero(sysTM) %Display transmission zeroes

The reader can verify that the transfer matrix returned in sysTM is:

G.s/ D

�
289:0525.s C 3:925/.s C 1:918/ 0:1332.s � 95:1/.s C 3:471/

�10:9483.s C 1:274/.s C 4:64/ 0:1837.s2 C 0:7075s C 4:929/

�

.s C 3:992/.s C 2:439/
:



4.1 Overview of Multivariable Systems Theory 53

The transmission zeroes are f2:9121; �0:5659; �3:9919; �2:4389g, while the
zeroes of the individual entries are f�3:925; �1:918; 95:1; �3:471; �1:274;

�4:64; �0:3538 ˙ 2:1918ig, a different set. A right-half plane transmission zero is
found at 2.9121. As in the SISO case, such nonminimum phase zeroes introduce fun-
damental limitations to attainable performance and may lead to design difficulties.

To illustrate the definition of transmission zero, evaluate the transfer matrix at
one of the zeroes, for instance at z D 2:9121. The reader can verify that G.z/ is
very close to being singular. Numerical precision prevents the exact verification of
the rank loss property. In contrast, if the zeroes of the individual transfer function
entries are used for z, the rank of G.z/ is always 2.

4.1.2 Singular Values

Singular values are fundamental indicators of the effects of input directionality on
system outputs. In one of their interpretations, they extend the notion of frequency
response to multi-input systems. Recalling basic linear algebra, a vector v of
constant unit length and variable direction will, in general, give rise to vectors w of
different lengths upon the linear operation w D T v, where T is a constant matrix.
The lengths obtained for w as v is varied are bounded above and below by two
quantities known as the maximum and minimum singular values of T :

N�.T / D max
jjvjjD1

jjT vjj; (4.2)

�.T / D min
jjvjjD1

jjT vjj: (4.3)

Every m-by-n matrix T with complex entries can be decomposed as T D U †V �,
where U and V are unitary matrices and † is a diagonal matrix of the form

† D
"

†1 0

0 0

#
;

where

†1 D

2
666664

N� 0 ::: 0

0 �2 ::: 0

:::
::: :::

:::

0 0 ::: �

3
777775

:

The diagonal entries of †1, N� D �1 > �2 > ::: > �p D � are the singular values,
with p Dmin .m; n/. The notation V � is used for the complex conjugate transpose
of V , and a unitary matrix is such that V �V D V V � D I . In Matlab, the singular
value decomposition is found with the command [U,S,V]=svd(T).
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4.1.3 The Infinity Norm of a Linear System

In control systems, notions of “size” are customarily defined for transfer matrices,
leading to bounds on the magnitude of the output as the input is varied under
constant norm. One of such definitions is given by the infinity norm jjGjj1, as
follows: Suppose a p-by-m transfer matrix G is excited with an input vector u.t/

with sinusoidal components uj .t/, j D 1; 2:::m, all sharing the same frequency w
but with possibly different amplitudes and phase shifts: uj .t/ D Uj sin.wt C �j /.
Supposing output components reach a steady-state of sinusoidal oscillation of the
form yi .t/ D Yi sin.wt C �i /, i D 1; 2:::p, an amplification ratio can be defined as
jjY jj=jjU jj, where U D ŒU1 U2 :::Um� and Y D ŒY1 Y2 :::Yp�. The infinity norm of
G, denoted jjGjj1, can be interpreted as the least upper bound (supremum) of the
amplification ratio as frequency, input component amplitudes and phases are varied.
That is,

jjGjj1 D sup
�j ;Uj ;w

jjY jj
jjU jj :

The frequency-domain definition of jjGjj1 allows its calculation through the
maximum singular value:

jjGjj1 D sup
w

N� fG.j w/g : (4.4)

For practical purposes, w is swept in a range, calculating the maximum and mini-
mum singular values of G.j w/ at each point. The overall maximum of N�.G.j w//

over all frequencies is the value of jjGjj1. In Matlab (Robust Control Toolbox),
an efficient numerical routine is implemented in the hinfnorm command. Alter-
natively, a routine using svd and freqresp can be easily programmed. As an
example, the following sequence of Matlab commands plots the maximum and
minimum singular values of the transfer function of Example 4.1.1 (assuming
system matrices are available in the workspace):

>> sys=pck(A,B,C,D);
>> w=logspace(-1,4,500); %create a vector of 500 logarithmically
spaced frequencies between 10ˆ(-1) and 10ˆ4
>> Gf=frsp(sys,w); %calculate frequency response
>> [u,s,v]=vsvd(Gf); %calculate SV decomposition at each
frequency
>> vplot(’liv,lm’,s); %plot singular values. The norm can be
visually extracted from the plot
>> hinfnorm(sys) %accurate calculation via bisection search

The reader can verify that jjGjj1 D 289 for the transfer matrix of Example 4.1.1.
Needless to say, this number is affected by the choice of units of measurement for the
inputs and outputs of the system. The infinity norm may also be calculated directly
with norm(sysTM,inf).
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4.1.4 The 2-Norm of a Linear System

The infinity norm is a measure of the peak amplification produced by the linear
system as input frequency and direction are varied. The 2-norm measures system
amplification in terms of root mean square averages rather than peaks:

jjGjj2 D
s

1

2�

Z 1

�1
trace fG�.j w/G.j w/g dw: (4.5)

The definition shows that a finite 2-norm can only be obtained if G.1/ D 0, that is,
if the transfer matrix is strictly proper. For rational, strictly proper transfer matrices
with state-space realization .A; B; C; 0/, where A is stable, the 2-norm calculation
reduces to

jjGjj22 D trace .B�QB/ D trace .CP C �/; (4.6)

where P and Q are the observability and controllability Gramians, obtained from
the following Lyapunov equations:

AP C PA� C BB� D 0;

A�Q C QA C C �C D 0:

The Matlab command h2norm incorporates these calculations. The transfer matrix
of Example 4.1.1 does not have a finite 2-norm, since it is not strictly proper. The
reader may verify this fact by inspection, or numerically, using norm(sysTM,2).

4.2 Robust State Feedback Synthesis

The GTE control problem, although very challenging in many respects, has a
simplifying feature: the states of the linearized plant are measurable in real-time.
That is, fan and core speeds may be used directly in the calculation of feedback laws.
This permits the application of several state-based techniques for control without
the need for state estimation. In this section, we are interested in assessing the
stability of a feedback arrangement of plant and controller, not only when plant
parameters are known, but when they are subject to bounded, uncertain variations.
Figure 4.1 shows the basic state-feedback arrangement considered in this section.
The linearized engine plant is described in state-space form as

Px D Ax C Bu C �w; (4.7)

y D Cx C Du C ƒw C n; (4.8)
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ẋ = Ax + Bu + Γw
w

u

z∞

z2

x
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K

Fig. 4.1 State feedback configuration

where x D Œ�Nf �Nc�
T is the state vector, u D Œ�WF �VSV �VBV �T

is the vector of control inputs and w is a vector that can be used to include
the effect of disturbances. In linearized models obtained with CMAPSS, w is
used to represent a vector of health parameter inputs, which can be regarded as
disturbances. As described in Sect. 2.1.3, w can be used to simulate the effects of
aging and deterioration of engine components. Output vector y may be defined
to reflect a combination of sensed variables, outputs that need to be regulated
and quantities that need to be monitored or maintained between certain limits.
A sensor noise vector n may also be considered in certain control problems. A
steady operating point is a set of states Nx such that A Nx C B Nu C � Nw D 0 for
some fixed inputs Nu and Nw. That is, given a constant health parameter vector and
a constant vector of actuator inputs, the engine reaches a steady operating condition
with corresponding constant values of fan and core speeds.

4.2.1 Polytopic Description of System Uncertainty

In addition to exogenous inputs, system (4.7) is subject to variations in all its
describing matrices. In the GTE, these changes arise mainly from two sources:

• Intrinsic nonlinearity: the dynamic relationship between control inputs and states
is nonlinear, even when operating the engine at fixed environmental conditions
(altitude, aircraft speed, ambient temperature). Therefore, system matrices will
vary with steady-state linearization point.

• Parametric variations: given the same set of steady states and inputs, different
system matrices will be obtained through linearization if environmental condi-
tions are changed.

It is important to note that engine health status could have been modeled as
parameters of functions f1 and f2 in (2.1) and (2.2). Changes in these parameters
would be reflected in changes to the linearized system matrices. Rather, the
designers of CMAPSS have chosen to capture faults and deterioration effects by
means of exogenous inputs collected in vector w.
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4.2.1.1 Scheduled vs. Robust Control

The variations in A,B C , D, � and ƒ are deterministic by nature. That is, they can
be traced to the steady operating point in a repeatable way. In a scheduled control
approach, this knowledge about the variation of system matrices with operating
point is used to construct a controller whose gains are tailored to operating region.
In contrast, when system matrix variations are not excessively wide, the designer
may choose to ignore this knowledge and regard the variations as uncertain, but
contained within certain bounds. This approach, termed “robust feedback synthesis”
derives fixed controllers whose sensitivity to plant parameter changes is minimized.
The complexity associated with gain-scheduled control implementations is thus
avoided. As the next sections will demonstrate, robust stability with fixed linear
compensators is feasible in GTE control systems. Consistent transient response
qualities across the flight envelope are not obtainable with fixed compensators,
however. For this reason, gain-scheduled control is used extensively in GTE control
systems. Gain scheduling is covered in Chap. 5.

In this section, we focus on the robust feedback stabilization problem, that is, we
attempt to find a fixed gain K capable of maintaining closed-loop stability regardless
of variations in system matrices. An appropriate description of the uncertain state-
space plant is given by the following polytopic system:

Px D A.˛/x C B.˛/u C �.˛/w; (4.9)

where A.˛/, B.˛/ and �.˛/ are restricted to vary in a polytope of matrices, defined
as a convex combination of k vertices Ai and Bi , i D 1; 2:::k:

A.˛/ D
kX

iD1

˛i Ai ;

B.˛/ D
kX

iD1

˛i Bi ;

�.˛/ D
kX

iD1

˛i �i ;

˛ D Œ˛1; ˛2; :::˛k �;

kX
iD1

˛i D 1:

Thus, each instance of A, B and � can be understood as made up of “percentage”
contributions of the vertices. These contributions are reflected in weight vector
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˛, whose entries are termed polytopic coordinates. Note that the influence of
exogenous inputs through � is not relevant to stability analysis. Similar definitions
apply to output matrices C.˛/, D.˛/, and ƒ.˛/.

To generate a polytopic description of a GTE model, the designer must choose a
number of representative steady operating points and perform system linearization.
Simulation packages such as the CMAPSS family include a pre-defined set of such
flight conditions, which provide good coverage of the entire flight envelope.

4.2.2 Nominal and Robust Stability

Recall that a rational transfer matrix G.s/ is stable if its entries are transfer functions
whose poles have negative real parts. In a state-space realization of G.s/ given by
the quadruple .A; B; C; D/, stability is equivalent to the condition that all the eigen-
values of A have negative real parts. If no pole-zero cancellations occur, the eigen-
values of A match the set of poles of the entries of G. When the feedback control law
u D �Kx is applied to system (4.7), the resulting closed-loop system has the form

Px D .A � BK/x C �w (4.10)

Thus, nominal stability is ensured if K can be chosen so that all eigenvalues of A �
BK have negative real parts. The pair .A; B/ is called stabilizable when a stabilizing
gain K exists. Several tests for nominal stabilizability are possible. A simple test
for stabilizability is accomplished by evaluating the modal controllability of .A; B/

as follows: the pair is first transformed to its controllability form . NA; NB/:

NA D
"

Anc 0

A21 Ac

#
; NB D

"
0

Bc

#
:

This transformation arises from the change of state coordinates z D T x, where
T D T T is an orthogonal transformation matrix. This change, referred to as a
similarity transformation, results in system matrices NA D TAT T and NB D TB ,
which share the same stabilizability properties as the original pair .A; B/. Matrix
Anc describes the dynamics of the uncontrollable subspace, a set of state variables
that are unaffected by the control input. The pair .A; B/ is stabilizable if and only
if Anc is stable. The similarity transformation T required to put the system in
controllability form can always be calculated. In Matlab, T , NA and NB are found
directly using the ctrbf command.

Note that stabilizable systems need not be controllable, but controllability implies
stabilizability. Controllable systems possess an empty uncontrollable subspace,
and Anc does not exist. When a system is controllable, a stabilizing K may be
found by pole-placement methods or more sophisticated robust synthesis methods,
considered later in this chapter. When the system is only stabilizable, however,
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a number of poles equal to the dimension of the controllable subspace may be
arbitrarily placed. The pole-placement problem is solved in z-coordinates using
.Ac; Bc/, resulting in a gain Kz yielding desired pole locations for Ac � BcKz. The
feedback gain to be used in the original system is then calculated as K D Œ� j Kz�T ,
where � denotes arbitrary values having no effect on the achieved pole locations.
These values do have an impact on the magnitude of the control effort, however.
For this reason, their choice is no longer immaterial in optimal feedback synthesis
approaches such as LQR or H1 control.

4.2.3 Quadratic Stability of Polytopic Systems

Consider a polytopic system of the form

Px D A.˛/x (4.11)

with vertices Ai , i D 1; 2; ::k and ˛ D Œ˛1; ˛2; :::˛k �. The system is quadratically
stable if all trajectories x.t/ starting from an arbitrary initial condition x.0/

converge to the origin as t ! 1 and, in addition, there exists a quadratic function
V.x/ D xTP x, which decreases when evaluated at x.t/. Quadratic stability is
equivalent to the existence of a k-by-k symmetric matrix P satisfying the following
set of Lyapunov inequalities [31]:

AT
i P C PAi < 0 ; i 2 f1; 2:::kg (4.12)

P > 0:

The inequality signs correspond to linear matrix inequalities, or LMI. The notation
X > Y used in conjunction with matrices X and Y means that X � Y is a positive-
definite matrix. A positive-definite matrix P defines a quadratic function f .x/ D
xTP x such that f .x/ > 0 for all vectors x ¤ 0. One test for positive-definiteness is
given by the requirement that all eigenvalues of P be positive. Similarly, a negative-
definite matrix defines a quadratic function that does not take positive values, and
negative-definiteness is equivalent to the requirement that all eigenvalues of P be
negative. For more details, the reader is referred to [32].

The quadratic stability of polytopic system (4.11) is readily evaluated in
Matlab. Assuming that the vertices are available in the workspace as variables
A_1, A_2,...A_k, the following sequence of commands attempts to find P :

s1=ltisys(A_1)
s2=ltisys(A_2)
....
sk=ltisys(A_k)
polysys=psys([s1 s2 ... sk])
[tmin,P]=quadstab(polysys)
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Quadratic stability can be conservative, as it is based on a single quadratic
Lyapunov function defined by P . It is also possible to seek a piecewise-quadratic
Lyapunov function to reduce conservativeness. The interested reader is referred, for
instance, to Johansson [33] for more information.

We now focus on the polytopic description of (4.9). We wish to determine
whether a state feedback gain K exists that results in quadratic stability of the
closed-loop system resulting from applying the control u D �Kx. This is the
quadratic stabilizability problem, which has also been formulated in terms of
LMIs [31]. Quadratic stabilizability is equivalent to the existence of a symmetric,
positive-definite matrix Q and a matrix Y such that

QAT
i C Ai Q � Bi Y � Y TBT

i < 0 ; i 2 f1; 2:::kg : (4.13)

The search for Q and Y given vertices Ai and Bi is formulated as an LMI feasibility
problem. Feasibility can be evaluated in Matlab using the feasp command. Given
feasible matrices Q and Y , a stabilizing feedback gain can be computed as K D
YQ�1. We defer details regarding the computation of feedback gains to Sects. 4.4
and below, where synthesis methods are considered that include robust stability and
performance requirements.

4.3 Performance Measures

Consider again the feedback arrangement of Fig. 4.1. Performance outputs z2 and
z1 are chosen by designers to measure the effects of disturbances (vector w)
on variables of interest. Denoting the transfer matrix from w to z2 as Gw;z2 .s/,
a measure of closed-loop system performance is given by the norm of Gw;z2 .s/:
small values indicate that the system state and the computed control input are not
very sensitive to disturbances. Minimizing the 2-norm of Gw;z2 .s/ corresponds to
an optimal linear quadratic control problem to be discussed in the next section.
Denoting the transfer matrix from w to z1 as Gw;z1

.s/, another measure of closed-
loop system performance is given by the norm of Gw;z1

.s/. It should be noted
that w can be extended to contain reference commands in addition to disturbances.
Thus, if the control objective includes the requirement that the output y track a
reference command r.t/, vector w can be defined as w D Œd r�T, and good
tracking accuracy will be obtained by minimizing the norm of Gw;z.s/, where z
is defined as the tracking error: z D r � y. Minimizing the infinity norm of Gw;z1

corresponds to an H1 gain synthesis problem, to be discussed in Sect. 4.6. The
designer’s role is to define z in a manner that best reflects the performance being
sought.
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4.4 LQR State Feedback Synthesis

Consider first the nominal system of (4.7), where A and B are fixed and no
disturbance input is considered. Define a performance output as z D Cx C Du
such that DTD is invertible. The linear quadratic regulator problem, or LQR, is to
find the control u.t/ that minimizes a performance measure given by

J D
Z 1

0

z.t/Tz.t/dt: (4.14)

Note that the value of J depends on the initial conditions x.0/. Under some
conditions [28–30] which include stabilizability of .A; B/, the solution takes the
form of a state-feedback law u.t/ D �Kx.t/ with a uniquely defined value of K as
follows:

.DTD/�1.BTP C DTC / D K; (4.15)

ATP C PA � .PB C C TD/.DTD/�1.BTP C DTC / C C TC D 0: (4.16)

The optimal solution for K is the same regardless of x.0/. Equation (4.16) is
known as the algebraic Riccati equation, and it yields a unique, positive-definite
solution for P under the assumption that .A; B/ is stabilizable. In Matlab, the
Riccati equation can be solved with the are command. Alternatively, the lqr
command computes P and the optimal gain K . Calling Q D C TC , R D DTD and
N D C TD, we see that zTz D xTQx C uTRu C 2xTN u. Given an initial condition
x.0/, a unique state trajectory x.t/ is obtained under the control u D �Kx.
The term xTQx penalizes excessive deviations the components of x.t/ from zero,
positive or negative. Since the term is under an integral sign and the integral takes
only positive values, trajectories which converge to zero slowly will be penalized
more than those rapidly approaching zero. Similar penalties are applied to the
control vector u, but using a different weighting matrix. The designer can use Q and
R to manage the tradeoff between a fast response without excessive peaking and the
magnitude of the control effort required to produce it. The cross-term 2xTN u is not
easily linked to response performance features and may be safely omitted in most
practical situations.

4.4.1 LQR with Regional Eigenvalue Constraints

A commonly-used tuning approach is to use diagonal Q and R matrices, individu-
ally penalizing state and control components by adjusting the diagonal entries of
these matrices. This method is not always satisfactory, and many trial-and-error
simulations could be needed. The designer may instead require that all closed-loop
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eigenvalues have real parts less than a specified negative number 	 . The time
constants of the closed-loop eigenvalues can thus be made as small as desired,
accelerating the speed of response. To do this, simply use A C 	I in place of
A when calculating the gain from (4.15) and (4.16) [34]. This method, however,
does not restrict the imaginary part of the closed-loop poles, potentially leading to
unacceptably low damping ratios. To address this limitation, a circular region with
center at �	 C 0i and radius 
 may be specified. The solution is found by using
1


.A C 	I; B/ as state-space description of a discrete-time LQR problem. For more

details, the reader is referred to [34].

4.4.2 The Cheap LQR Problem and Performance Limits

Maintaining a low level of control effort is not crucial in certain problems. This
may occur, for instance, when the scaling of matrix B is such that small values of
u contribute significant changes to Px, and the allowable values of u – defined by
actuator limits – are large. The performance measure used in conjunction with the
cheap LQR problem is given by

J D
Z 1

0

xTQx C 
uTRu dt; (4.17)

where 
 ! 0. Recalling that Q=C TC , the achievable performance (i.e., the
minimum attainable value of J ) is influenced by the zero locations of the transfer
matrix defined as H.s/ D C.sI � A/�1B . As shown in [35, 36], J will approach
zero as 
 ! 0 if and only if H.s/ is minimum-phase. In this case, the minimum-
phase zeroes are canceled by closed-loop poles in the limit, as 
 ! 0. When
H.s/ contains non-minimum-phase zeroes, J has a nonzero minimum value and
the closed-loop poles approach their mirror images relative to the imaginary axis.
Any excess poles approach infinity along asymptotes that remain in the left-half of
the complex plane.

The designer must therefore exercise care in choosing C to ensure that H.s/ is
minimum-phase and performance improves uniformly as 
 ! 0.

4.4.3 LQR Robustness Properties

The solution for the optimal feedback gain K enjoys strong stability robustness
properties. Specifically, an increasing gain margin of infinity, a decreasing gain
margin of 50% and a phase margin of ˙60ı are guaranteed for each control channel
in conjunction with any choice of Q and R. That is, if we consider the SISO
transfer functions from input components ui to performance output components zi ,
an unlimited gain increment or a 50% gain reduction will be tolerated without
compromise to closed-loop stability. Similarly, a phase shift can be introduced (due
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to unmodeled dynamics or signal delays) in a range of ˙60ı without destabilizing
the loop.

In the GTE control problem, such robustness properties are beneficial if actuator
dynamics are to be ignored. Many actuators can be modeled as a first-order transfer
function, introducing phase lags of up to 90ı. Thus, if the closed-loop bandwidth is
designed at appropriately small values, the phase lag due to actuator dynamics can
be kept larger than �60ı and stability can be maintained. Similarly, the nominal
gain of the actuator transfer function can be reflected in plant matrix B . Gain
reductions of up to 50% due to uncertainties or changes to actuator dynamics will be
tolerated.

4.4.4 Polytopic Systems

The previous sections assume that .A; B/ is a fixed, known plant description. To
design LQR controllers for the GTE under this assumption, a single representative
steady operating point would have to be chosen, and a single gain K would be
calculated for use in the entire operating envelope. If this were to be done, robust
stability of the resulting polytopic system with vertices .Ai �Bi K/ could be readily
evaluated using conditions (4.12). Even if stability is verified, performance could be
unsatisfactory. A more reasonable approach is to use information about all vertices
to seek a control law, which minimizes an integral quadratic cost of the form of
(4.14). The optimal solution is given by a gain-scheduled state-feedback control
u D �Kix, where Ki are derived from a set of Riccati equations.

4.5 H2 State Feedback Synthesis

Consider the nominal system of (4.7) and suppose only performance output z2 is
considered in Fig. 4.1, defined as z2 D Cx CDzuuCDzww. The closed-loop system
arising from the application of state-feedback control law u D �Kx is given by

Px D .A � BK/x C �w;

z2 D .C � DzuK/x C Dzww:

The transfer matrix from the exogenous input vector w to the performance output z2

is then
Gw;z2 .s/ D .C � DzuK/.sI � .A � BK//�1� C Dzw:

The H2 feedback gain synthesis problem is to be formulated as

Find K so that .A � BK/ is stable and jjGw;z2 jj2 < � for some � > 0.
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That is, we seek a stabilizing feedback gain that maintains the influence of the
exogenous inputs on the performance outputs below a prescribed level �. For
example, choosing z2 to be the incremental HPC stall margin � SmHPC would
result in a closed-loop controller, which minimizes the sensitivity of stall margin to
health parameter changes, in addition to rendering the closed-loop system stable.

4.5.1 Optimal H2 Synthesis

In an H2 synthesis problem, a prescribed norm value � is targeted by solving the
following LMI feasibility problem in variables X , Q, and K:

"
.A � BK/X C X.A � BK/T �

�T �I

#
< 0; (4.18)

"
Q .C � DzuK/X

XT.C � DzuK/T X

#
> 0; (4.19)

trace.Q/ < �2: (4.20)

A numerical solution to the above LMI problem is incorporated in Matlab’s
msfsyn command to be discussed in the example at the end of this chapter. An
optimal H2 state feedback synthesis procedure is to attempt the LMI feasibility
problem repeatedly, with decreasing values of �, until the problem is no longer
feasible.

4.5.1.1 LQR and H2 Equivalence

When all states are available for measurement, the H2 state feedback synthesis
problem is equivalent to an LQR problem. Further, when only a vector of noisy
measurements is available, the H2 problem is equivalent to a linear quadratic
Gaussian, or LQG problem, whose solution is given by the combination of a state
estimator (Kalman filter) and a state feedback law computed on the basis of the state
estimates. Here, we focus in the state measurement feedback case, where all states
are available for computation of the feedback law. Recalling that jjGw;z2 jj2 is finite
only when the transfer matrix is strictly proper, we only consider the case Dzw=0.
It can be shown [28] that the optimal H2 state feedback synthesis problem with
plant matrices .A; B; �/ and performance output matrices .C; Dzu/ is equivalent to
an LQR problem with Q=C 0C , R=D0

zuDzu and N =C 0Dzu. The gain K obtained
as the solution of the LQR problem will be the same as the one resulting from H2

optimization regardless of � , but the optimum norm will be affected by it.
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To illustrate the equivalence in detail, consider the following example system

A D
�

0 1

�1 �2

�
; B D

�
1 0

1 1

�
; � D

� �1

3

�
;

C D
�

1 1

�1 2

�
; D D

�
0 1

2 2

�
:

We leave it to the reader to verify that the solution to the LQR problem with
Q D C 0C , R D D0

zuDzu, and N D C 0Dzu is given by

K D
�

1:13 0:59

�1:01 0:54

�

and that the solution to the optimum H2 gain synthesis problem (see following
section) gives the same K as above regardless of � . If the given � is used, the
optimum cost is 0.4484.

4.5.2 Polytopic Systems

The H2 state feedback synthesis problem for polytopic systems is also tractable
and can be solved through LMI feasibility. The definition of 2-norm of (4.5) is no
longer appropriate for polytopic systems. Instead, the equivalent LQG definition
of 2-norm is used, taking the maximum over all instances of system matrices
.A.˛/; B.˛/; C.˛//:

jjGjj22 D max
˛

lim
T !1

E

�
1

T

Z T

0

yT y dt

�
; (4.21)

where y is the output produced by polytopic system G when the input is a white
noise with unit covariance. Thus, a worst-case approach is adopted when calculating
the 2-norm of a polytopic system. A prescribed 2-norm can be targeted by solving
an LMI feasibility problem whose complexity increases with the number of vertices.
For further details, the reader is referred to [31]. The msfsyn command in Matlab
admits polytopic system descriptions.

4.6 H1 State Feedback Synthesis

The H2 synthesis approach delineated above seeks to maintain the influence of
exogenous inputs on a designer-defined performance output below a prescribed
value. The 2-norm is used as a measure of the “strength” of this influence. The
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H1 state feedback synthesis problem described here has the same objective, with
the distinction that the infinity norm is used. Also, the definition of the performance
output admits a nonzero Dzw term. Consider the nominal system of (4.7) and a
performance output z1=CxCDzuuCDzww. The transfer matrix from the exogenous
input vector w to the performance output z1 is then

Gw;z1
.s/ D .C � DzuK/.sI � .A � BK//�1� C Dzw:

The H1 feedback gain synthesis problem is formulated as

Find K so that .A � BK/ is stable and jjGw;z1
jj1 < 	 for some 	 > 0.

The corresponding LMI feasibility problem is formulated as

2
64

.A � BK/X C X.A � BK/T � X.C � Dzu/T

�T �I DT
zw

.C � DzuK/X Dzw �	2I

3
75 < 0; (4.22)

X > 0: (4.23)

As in the H2 case, an optimal H1 state feedback synthesis procedure is to attempt
the LMI feasibility problem repeatedly, with decreasing values of 	 , until the
problem is no longer feasible. This process, commonly known as 	 -iteration, is
incorporated in Matlab’s hinfsyn command. Alternatively, msfsyn can be used.
The latter command also works with polytopic systems.

4.6.1 Polytopic Systems

The infinity norm of a polytopic system G is regarded as the maximum time-
invariant norm taken over all instances of system matrices .A.˛/; B.˛/; C.˛/; D.˛//

with transfer function G˛.s/:

jjGjj1 D max
˛

sup
w

N� fG˛.j w/g : (4.24)

As in the H2 case, a prescribed infinity norm can be targeted by solving an
LMI feasibility problem whose complexity increases with the number of vertices.
The msfsyn command in Matlab admits polytopic system descriptions. For
further details, the reader is referred to [31] and Matlab’s Robust Control Toolbox
documentation.
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4.7 H2/H1 Feedback Synthesis with Regional Pole Placement

The reader may question the need for the H2 synthesis approach, given that H1
synthesis pursues the same general objective, and does not have the restriction
Dzw D 0. An intuitive justification for considering both norms can be found in their
input/output interpretations. Minimizing the infinity norm amounts to reducing the
peak of the closed-loop magnitude response across all frequencies. By design, the
magnitude response for frequencies other than the one corresponding to the peak
magnitude will also be suppressed. When high-frequency actuator dynamics are
left unmodeled, good tracking and disturbance rejection calls for more selective
control actions according to frequency: the controller should have an enhanced
reaction to low-frequency error components, while being more insensitive to high
frequency components. Subjecting all frequencies to the same peak magnitude
constraint is conservative, and may lead to poor results. For this reason, frequency
shaping is generally a necessary step in H1 methods. In contrast, the definition of
2-norm given in (4.21) indicates that minimizing jjGw;z2 jj2 implies reducing the time
average (in a root-mean-square sense) of the performance output z2. The definition
given in (4.5) shows that a frequency-average is also implied. The relationship to
LQR control and its integral quadratic performance measure gives the H2 approach
a time-domain interpretation, allowing the designer to manage the performance
vs. control effort constraint in a direct way. The reader wishing to examine the
theoretical bases of H1 and H2 control in detail is referred to standard material,
for instance [28–30]. These references also provide detailed coverage of frequency-
shaped H1 methods.

It is possible to consider H2 and H1 synthesis objectives simultaneously by
defining two sets of performance outputs z2 and z1. The designer can balance the
importance of each minimization by defining a weighted objective of the form

M D ajjGw;z1
jj2 C bjjGw;z2 jj2; (4.25)

where a and b are non-negative weights. In the polytopic case, the norms are
understood to be worst-case values, i.e., the maximum over all instances of system
matrices. Again, minimization of the weighted objective is carried out under
LMI feasibility constraints [37]. Unlike direct pole-placement design, norm-based
minimization as presented until now does not provide a mechanism to enforce a
location constraint for the closed-loop poles. Such regional eigenvalue constraint
can be incorporated as an added LMI constraint, and the minimization problem
remains tractable under some relaxing assumptions, leading to suboptimal solutions.
The msfsyn command can be used to find a suboptimal solution to the mixed norm
minimization problem, with the option of including a regional eigenvalue placement
constraint. Placement regions in the complex plane can be of various shapes. The
designer can obtain generally faster response times by choosing a constraint of the
form Re(s/ < p, where s denotes a closed-loop pole and p is a negative number.
When the constraint is fulfilled, every closed-loop pole has a time constant lesser
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than 1=jpj. A circular region also be used to prevent poles having excessively low
damping. The example at the end of this chapter illustrates the use of msfsyn in
detail, as pertaining to the GTE control problem.

4.7.1 State-Feedback Setpoint Regulation and Input Integration

The state-feedback control law u D �Kx is designed to regulate the plant state
from an arbitrary initial condition x.0/ to the origin. This law is adequate for GTE
control problems where fan speed must be driven from one steady point to another.
Indeed, recall that the linearized plant state is given by fan and core speed deviations
from a steady operating state Œ NNf NNc�

T: x D Œ�Nf �Nc�
T, where �Nf D Nf � NNf

and �Nc D Nc � NNc. In nonlinear simulation or actual realtime operation, x is
formed by shifting the sensed Nf and Nc by the intended reference states NNf and
NNc. Thus, x D 0 and u D �Kx D 0 at the beginning of the maneuver. Since u is

the incremental actuator input, i.e.,uT D ŒWF � W F VSV � VSV VBV � VBV �,
constant inputs W F, VSV and VBV are being applied to the engine at the initial
time. A setpoint change is produced when the reference states and inputs are
suddenly changed to values defining a new steady operating point. The state will
no longer be zero and regulatory control action will begin according to u D �Kx.
If the closed-loop system is stable, x and u will be driven to zero again. The
actual inputs applied to the engine must be shifted by their references, that is,
ŒWF VSV VBV �T D �Kx C ŒW F VSV VBV �T. The control system must
thus include a pre-calculated list of the required references for each desired pair of
fan and core speed setpoints so that the sensed variables and the calculated control
can be appropriately shifted. Figure 4.2 shows the structure of the control law as
applied to the nonlinear engine. From a nominal linear model standpoint, a steady
operating point is defined by the equation

0 D A Nx C B Nu:

When A has no poles at zero (as is the case for the open-loop engine), the
equilibrium state corresponding to a constant input Nu can be calculated as

Nx D �A�1B Nu: (4.26)

The equation for the reverse operation is

B Nu D �A Nx: (4.27)

If there are less inputs than states, i.e., if m < n, system (4.27) is underdetermined
and infinitely many solutions for u exist. If m D n and B is invertible, a unique
solution can be found. If m > n the system is overdetermined and solutions for Nu
exist if A Nx is in the column span of B . This condition cannot be assumed to hold
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in general. When considering three control inputs and two states for the GTE, no
solutions to (4.27) can be assumed to exist for an arbitrary choice of Nx. In addition
to the structural difficulty arising from the use of three actuators with a 2-state plant,
the reader must keep in mind that linearized models are only approximations to the
actual nonlinear engine. The calculations for the triples .W F; VSV ; VBV / that yield
a desired pair . NNf; NNc/ must be performed using an accurate steady-state solver for
the nonlinear engine.

Disturbances and intrinsic engine nonlinearity limit the tracking accuracy of
the state feedback law u D �Kx. The effect of disturbances on the regulated
variables can be minimized by using the synthesis approaches of this chapter, but
not eliminated entirely. The ability of the control system to track varying reference
commands and reject disturbances can be enhanced by including integral control
action. As mentioned in Chap. 3, constant disturbances produce zero steady-state
error if the control loop is of type 1, that is, if it includes a free integrator. Input
integration is commonly-used in actual GTE control implementations and is found
in the built-in controllers designed for CMAPSS. To achieve integral control, the
following augmented plant description is used:

Px D Ax C Bu C �w; (4.28)

Pu D ur; (4.29)

which can be compactly described as

Pxa D Aaxa C Baur C �aw; (4.30)

where the ur is the new control input and the augmented state vector and matrices
are defined as xa D ŒxT juT�T and

Aa D
�

A B

0 0

�
; Ba D

�
0

I

�
; �a D

�



0

�
: (4.31)

When .A.˛/; B.˛/; �.˛// are polytopic, the vertices of the corresponding polytopic
augmented system can be directly computed. Moreover, the augmented poly-
topic system remains quadratically stabilizable when the original system is so.
Hence, the various norm-based gain synthesis approaches can be applied without
restrictions.

4.8 Example: CMAPSS-40k

In this section, we consider the fan speed control problem assuming that a fixed-
gain feedback law of the form u D �Kx is to be used across the flight envelope.
The model contained in CMAPSS-40k is used for linearized plant extraction and
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for realistic nonlinear simulations. We begin by choosing a six-vertex polytopic
description of the linearized engine to match representative flight regimes. We then
conduct a quadratic stabilizability evaluation considering input integration and then
carry out several designs, observing the following:

1. Setpoint changes near different flight conditions: the H2 and H1 designs with
input integration are compared in their ability to produce consistently good
responses near different operating regimes.

2. Effects of engine health status and faults: the disturbance rejection capabilities
of the various designs are compared.

4.8.1 A Polytopic Description for the 40k Engine

Let the vector of incremental control inputs be defined as

u D Œ�WF �VSV �VBV �T:

A six-vertex polytopic description .A.˛/; B.˛/; �.˛// can be constructed by
linearizing the engine at the six representative conditions shown in Table 2.4. The
corresponding linearized system matrices are listed in Appendix C. Two outputs
have been selected for the purposes of this example: the temperature at HPT outlet
(T48) and the HPC stall margin (SM-HPC). The corresponding C , D, and ƒ

matrices used as output vertices are also listed in Appendix C.

4.8.2 Stabilizability of the Scaled Augmented Plant

The augmented vertices Aai; Bai necessary to design an integral controller are
obtained directly from (4.31). Direct use augmented plant matrices in the LMI
feasibility problem of (4.13) may pose numerical difficulties due to disparate scaling
of Aa and Ba. Indeed, Ba is made up of only zeroes and ones, while Aa contains
entries ranging from zero to thousands. To avoid numerical problems, it is advis-
able to obtain a balanced realization through similarity transformation. Defining
za D T xa, T is selected so that the transformed pair of matrices Abal D TAaT

�1

and Bbal D TBa generate a matrix ŒAbal Bbal� with approximately the same row
and column norms. This process is implemented in Matlab’s ssbal command.
Alternatively, the balreal command can be used. A transformation matrix T

is obtained using an arbitrary augmented vertex and then used to transform the
remaining vertices. This is a reasonable approach since all vertices share a similar
scaling. Assuming that the augmented vertices are available in the workspace as
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Aa1, Aa2, etc. and Ba (constant for all vertices), the following code can be used to
evaluate quadratic stabilizability:

%Obtain balanced realizations
Cdummy=[1 0 0 0 0];Ddummy=zeros(1,3);
sys=ss(Aa1,Ba,Cdummy,Ddummy);
[sysbal,G,T,Ti]=balreal(sys);
[Abal1,Bbal]=ssdata(sysbal);
%Use the same transform for all augmented systems
Abal2=T*Aa2*Ti;Abal3=T*Aa3*Ti;
Abal4=T*Aa4*Ti;Abal5=T*Aa5*Ti;Abal6=T*Aa6*Ti;
%Prepare LMIs
setlmis([]);Q=lmivar(1,[5 1]);Y=lmivar(2,[3 5]);
lmiterm([-1 1 1 Q],1,1);
lmiterm([2 1 1 Q],1,Abal1’,’s’);
lmiterm([2 1 1 Y],-Bbal,1,’s’);
lmiterm([3 1 1 Q],1,Abal2’,’s’);
lmiterm([3 1 1 Y],-Bbal,1,’s’);
lmiterm([4 1 1 Q],1,Abal3’,’s’);
lmiterm([4 1 1 Y],-Bbal,1,’s’);
lmiterm([5 1 1 Q],1,Abal4’,’s’);
lmiterm([5 1 1 Y],-Bbal,1,’s’);
lmiterm([6 1 1 Q],1,Abal5’,’s’);
lmiterm([6 1 1 Y],-Bbal,1,’s’);
lmiterm([7 1 1 Q],1,Abal6’,’s’);
lmiterm([7 1 1 Y],-Bbal,1,’s’);
quad0=getlmis;
%Now run feasibility problem
[tmin3,xfeas]=feasp(quad0);
%Extract feasible sols
Qfeas=dec2mat(quad0,xfeas,Q);Yfeas=dec2mat(quad0,xfeas,Y);
%Calculate a feedback gain
KT=Yfeas*inv(Qfeas);
%Restore KT to original coordinates
K=KT*T;

The reader can verify that a feasible Q is found and that K yields stable closed-
loop vertices .Aai � BaiK/. Of course, the same K yields closed-loop stability for
arbitrary system matrix variations within the polytope.

Note: Many books, research articles, and software assume a control input of
the form u D Kx rather than u D �Kx. Matlab’s robust state feedback synthesis
commands are not an exception. Using �B and �D in place of B and D resolves the
discrepancy. This modification has been already incorporated in the code examples
presented in this chapter.

4.8.3 Fixed-Gain LQR Design

An LQR gain can be found using a fixed vertex, followed by a closed-loop quadratic
stability verification. As an example, the scaled vertex Abal1,Bbal is chosen



4.8 Example: CMAPSS-40k 73

arbitrarily, along with unit LQR weights: Q D I5 and R D I3. In the following
code, the resulting gain is used to calculate the closed-loop vertices and evaluate
quadratic stability using quadstab:

%Set Q and R
Q=eye(5);R=eye(3);
[KT,S,E]=lqr(Abal1,Bbal,Q,R);

%Restore KT to original coordinates
K=KT*T;
%Form polytopic closed-loop system in original coordinates
sys1=ltisys(Aa1-B*K);sys2=ltisys(Aa2-B*K);
sys3=ltisys(Aa3-B*K);sys4=ltisys(Aa4-B*K);
sys5=ltisys(Aa5-B*K);sys6=ltisys(Aa6-B*K);

polysys=psys([sys1,sys2,sys3,sys4,sys5,sys6]);
[tmin,P]=quadstab(polysys)

The closed-loop polytopic system is verified to be quadratically stable. The fixed
gain

K D
2
4 �0:0108 �0:0021 40:2654 0:3927 �0:2583

0:0037 �0:0056 0:3927 4:2430 �0:0294

0:0010 0:0003 �0:2583 �0:0294 4:0187

3
5 (4.32)

produces the closed-responses shown in Fig. 4.3 when applied to the individual
vertices. Although stability is guaranteed, a significant spread of response times is
observed.

4.8.4 Fixed-Gain LQR in CMAPSS-40k

The gain K in (4.32) is now tested against the nonlinear engine in CMAPSS-40k.
The observations made in Sect. 4.7.1 regarding controller deployment apply. The
overall control law takes the form

ur D �Kxa;

Wf D
Z

Wf.0/

ur.1/; (4.33)

VSV D
Z

VSV.0/

ur.2/; (4.34)

VBV D
Z

VBV.0/

ur.3/; (4.35)
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Fig. 4.3 Response of vertices with fixed LQR gain

where xT
a D Œ NNf � Nf NNc � Nc W F � WF VSV � VSV VBV � VBV �. Since

the control input vector is part of the augmented state, the set of target steady values
W F, VSV and VBV must be supplied to the controller. This implies that a database
of such values must exist, as generated by the nonlinear engine steady-state solver.
Each steady-state input triple NU D ŒW F VSV VBV � yields a corresponding pair of
steady states NX D Œ NNf NNc� through some mapping NX D ˆ. NU /, which is affected
by inlet conditions and health parameter values. This mapping is accessible only
through high-fidelity nonlinear simulation, and cannot be fully captured through
functions or tables due to the uncertain nature of health parameters. To conduct the
simulations of this section, the nonlinear engine was driven to a steady-state using a
“native” controller supplied with CMAPSS-40k. The native controller only uses WF

as a feedback-controlled input, while VSV and VBV are injected in a feedforward
fashion. The steady values of the three actuators were adopted as reference inputs
for this example.

Figure 4.4 shows the response of the nonlinear engine to positive step demands
in fan and core speeds. The starting operating regime is Ground Idle, labeled as “A”
in Table 2.4. The settling time for the state variables is about 3 s, with no overshoot.
Figure 4.5 shows the response to negative step demands in fan and core speeds. The
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Fig. 4.4 CMAPSS-40k response with fixed LQR gain near Ground Idle

starting operating regime is Max Cruise, labeled as “D” in Table 2.4. The settling
time for the state variables is now about 8 s, with no overshoot. In summary, this
fixed LQR gain provides stability but is unable to maintain response speed across
operating regimes. This, coupled with the need for precalculated steady references
limits the applicability of integrator-based fixed-gain approaches.

4.8.5 H2=H1 Fixed Gain Synthesis: Polytopic Plant Model

We now apply the H2, H1 and mixed synthesis methods to the six-vertex polytopic
plant and test the corresponding gains in CMAPSS-40k, comparing the results
with those obtained with the “native” fan-speed controller distributed with the
package. The native controller is a PI compensator around fan speed, with scheduled
gains. The other two control inputs, namely VSV and VBV, are scheduled in an
open-loop fashion, that is, without feedback from the state variables. Chapter 5
discusses gain scheduling in detail. We define two performance outputs: the HPT
outlet temperature T48 and the HPC stall margin SmHPC. Allowable limits are
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Fig. 4.5 CMAPSS-40k response with fixed LQR gain near Max Cruise

usually specified for these outputs. At the same time, these outputs tend to peak
during transients. Moreover, certain health parameter inputs result in stall margin
reductions. Continuing with the integral control approach, we define

z D Œ�T48 �SmHP C �T D Ca.˛/xa C Dzw.˛/w C Dzuur:

Augmented vertex matrices Cai and Dizw are constructed from the data in
Appendix C according to:

Cai D ŒCi j Di �;

Dizw D ƒi :

Matrices Ci , Di and ƒi are formed for each vertex by stacking the corresponding
C , D and ƒ matrices for T48 and SmHPC. Note also that Dzu D 0, since the
performance outputs are independent of the new control vector ur, and that the
vertices of the augmented disturbance input matrix are given by �ai D Œ�T

i j 0�T.
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According to the synthesis method used in the example, we will regard both
components of z as H2 performance outputs, both as H1 performance outputs,
or a mix. Assuming that the augmented vertices already exist in the workspace
as Aa1, Aa2, etc., Ba (constant for all vertices), Ca1,Ca2, etc., Da (zero for all
vertices), Gammaa1,Gammaa2, etc. and Lambda1,Lambda2, etc., the following
Matlab code creates the polytopic description with 2 performance outputs, using a
balanced realization:

sys=ss(Aa1,Ba,Ca1,Da);
[sysbal,G,T,Ti]=balreal(sys);
[Abal1,Bbal,Cbal1,Dbal]=ssdata(sysbal);
Gammabal1=T*Gammaa1;
%Apply same balancing to all vertices
Abal2=T*Aa2*Ti;Cbal2=Ca2*Ti;Gammabal2=T*Gammaa2;
Abal3=T*Aa3*Ti;Cbal3=Ca3*Ti;Gammabal3=T*Gammaa3;
Abal4=T*Aa4*Ti;Cbal4=Ca4*Ti;Gammabal4=T*Gammaa4;
Abal5=T*Aa5*Ti;Cbal5=Ca5*Ti;Gammabal5=T*Gammaa5;
Abal6=T*Aa6*Ti;Cbal6=Ca6*Ti;Gammabal6=T*Gammaa6;
%Form polytopic system compatibly with msfsyn command:
%2 performance outs: [T48 SM-HPC]
sys1=ltisys(Abal1,[Gammabal1 -Bbal],Cbal1,[zeros(2,13) -Dbal]);
sys2=ltisys(Abal2,[Gammabal2 -Bbal],Cbal2,[zeros(2,13) -Dbal]);
sys3=ltisys(Abal3,[Gammabal3 -Bbal],Cbal3,[zeros(2,13) -Dbal]);
sys4=ltisys(Abal4,[Gammabal4 -Bbal],Cbal4,[zeros(2,13) -Dbal]);
sys5=ltisys(Abal5,[Gammabal5 -Bbal],Cbal5,[zeros(2,13) -Dbal]);
sys6=ltisys(Abal6,[Gammabal6 -Bbal],Cbal6,[zeros(2,13) -Dbal]);
polysys=psys([sys1,sys2,sys3,sys4,sys5,sys6]);

The reader should refer to Matlab documentation for details on the plant structure
assumed by msfsyn.

4.8.5.1 H2 Synthesis with Regional Pole Placement

When specific penalization of control effort is not included, the H2-norm min-
imization may lead to large K and unreasonably high closed-loop bandwidths.
It is possible to add a regional eigenvalue constraint to the minimization objective.
In this example, both performance outputs are regarded as z2. Note that the vertex
systems have Dzu D 0 (the zeros(2,13) entries) so that the 2-norm is finite. The
following code executes the minimization:

r=[2 3]; %# of z2 outputs and # of controls
obj=[0 0 0 1];
region=lmireg %choose disk with center -8, radius 6
[gopt,hopt,KT,Pcl]=msfsyn(polysys,r,obj,region);
K=KT*T;
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Closed-loop eigenvalues are required to lie in a disk centered at �8+0i with
a radius of 6. Attempts to reduce the radius and shift the center to obtain faster
eigenvalues eventually leads to unfeasibility. The optimizing gain is

K D

2
64

0:0058 0:0055 10:8379 0:2571 �0:0827

�0:2535 0:0475 �9:8546 9:5691 1:2961

�0:9121 0:3095 �9:7661 8:4027 12:3622

3
75 :

The lowest bound for jjGw;z2.s/jj2 returned by the program is 1.172 �104. The
order of magnitude of this quantity is linked to problem data and should not be
evaluated in an absolute sense. The norm bound is useful to compare designs
sharing the same performance outputs but having different eigenvalue regions. For
instance, if a disk centered at �10+0i with a radius of 10 is chosen, the reader
can verify that the optimum norm bound reduces to 900.27. This can be linked
to a faster center for the closed-loop eigenvalues and an enlarged constraint region,
as reflected in the radius specification.

Figures 4.6 and 4.7 show the responses to the same setpoint change considered
in the LQR example, near Ground Idle conditions. The eigenvalue placement
constraints allows to tune the controller for a faster response, matching the one
obtained with the scheduled compensator. A health parameter step disturbance is
injected through w at t D15 s. All components of w are equal to �0:1. Figure 4.6
shows that the ability to hold the setpoint in the presence of disturbance is roughly
the same for the native controller and the H2 design, except for Nc, where the H2

design holds Nc closer to its regulation value. This is expected, since Nc is not
under feedback with the native controller. Figure 4.7 shows that while the fuel flow
commands are similar, the VSV and VBV inputs are not. Note that VSV saturates
at the fully-open position under the H2 design.

4.8.5.2 Fixed-Gain H1 Design

The H1-norm minimization with a regional eigenvalue constraint is now carried
out. Both performance outputs are regarded as z1. The zeros(2,13) entries in
the code for the H2 case are changed to reflect the influence of w on the performance
outputs. If ƒ is used, it is difficult to find a feasible solution with the required
bandwidth. Instead, the design uses 0:5ƒ. Thus, the vertex definition lines must
be changed to

sys1=ltisys(Abal1,[Gammabal1 -Bbal],Cbal1,[0.5*Lambda1 -Dbal]);
...
sys6=ltisys(Abal6,[Gammabal6 -Bbal],Cbal6,[0.5*Lambda6 -Dbal]);
polysys=psys([sys1,sys2,sys3,sys4,sys5,sys6]);
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Fig. 4.6 Comparison of responses between CMAPSS-40k gain-scheduled fan speed compensator
and fixed-gain H2 state feedback near Ground Idle: states and outputs. A step disturbance of �0:1

is applied to all health inputs at t D 15 s

The following code is then used to regard both performance outputs as z1 and
carry out the minimization:

r=[0 3]; %# of z2 outputs and # of controls
obj=[0 0 1 0];
region=lmireg %choose disk with center -10, radius 10
[gopt,hopt,KT,Pcl]=msfsyn(polysys,r,obj,region);
K=KT*T;

Closed-loop eigenvalues are required to lie in a disk centered at �10C0i with a
radius of 10. The optimizing gain is

K D
2
4 �0:0013 �0:0036 13:9596 �0:0877 0:0374

�0:0179 0:2482 231:1991 23:6696 �2:4600

�0:1047 0:2329 227:2949 8:6254 12:9515

3
5 :
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Fig. 4.7 Comparison of responses between CMAPSS-40k gain-scheduled fan speed compensator
and fixed-gain H2 state feedback near Ground Idle: control inputs. A step disturbance of �0.1 is
applied to all health inputs at t D 15 s

The lowest bound for 	 returned by the program is 925.3. Figures 4.8 and 4.9
show the responses to the same setpoint change of the H2 example, again near
Ground Idle conditions. The same health parameter step disturbance is injected at
tD15 s. The closed-loop eigenvalues yield a response slightly slower than the H2

design and a slightly better ability to hold the setpoint in the presence of disturbance.
Figure 4.9 shows that the fuel flow control input is significantly more damped than
in the H2 design. The VSV input remains saturated for most of the transient.

4.8.5.3 Mixed H2/H1

We conclude the example with a mixed minimization objective: T48 is regarded as an
H2 performance output, while SM-HPC is regarded as an H1 performance output.
Since msfsyn assumes that the top rows of Cbal, Lambda, and Dbal correspond
to the z2 outputs, the matrices must be reordered:
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Fig. 4.8 Comparison of responses between CMAPSS-40k gain-scheduled fan speed compensator
and fixed-gain H2 state feedback near Max Cruise: states and outputs. A step disturbance of �0.1
is applied to all health inputs at t D 15 s

sys1=ltisys(Abal1,[Gammabal1 -Bbal],
flipud(Cbal1),[0.75*Lambda1(2,:)-Dbal(1,:);zeros(1,16)]);
...
sys6=ltisys(Abal6,[Gammabal6 -Bbal],
flipud(Cbal6),[0.75*Lambda6(2,:) -Dbal(1,:);zeros(1,16)]);
polysys=psys([sys1,sys2,sys3,sys4,sys5,sys6]);

Again, � is scaled enough so that a feasible solution can be found. The following
code is then used to and carry out the mixed-objective minimization with a D 1 and
b D 10 as weights in (4.25):

r=[1 3];%# of z2 outputs and # of controls
obj=[0 0 1 10];
region=lmireg %choose disk with center -12, radius 10
[gopt,hopt,KT,Pcl]=msfsyn(polysys,r,obj,region);
K=KT*T;
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Fig. 4.9 Comparison of responses between CMAPSS-40k gain-scheduled fan speed compensator
and fixed-gain H2 state feedback near Max Cruise: control inputs. A step disturbance of �0:1 is
applied to all health inputs at t D 15 s

Closed-loop eigenvalues are required to lie in a disk centered at �12C0i with a
radius of 10. The optimizing gain is

K D
2
4 0:0163 0:0060 15:3492 0:0148 �0:1114

�1:0027 0:6748 161:8834 21:7061 1:6351

�0:8754 0:4571 126:2015 5:1284 16:6993

3
5 :

The bounds for the infinity and two-norms returned by the program are 496.3
and 6,299, respectively. These figures cannot be compared with the earlier synthesis
results due to changes in the definition of performance outputs. Simulation is
conducted this time near the Max Cruise condition, with a shaft deceleration
command and the same health disturbance inputs as before. Figures 4.10 and 4.11
show the responses. The responses are essentially equivalent to those produced
by the previous norm-based designs and the native gain-scheduled controller. In
summary, four gains were designed for use in an integral control approach: LQR,
H2 for both performance outputs, H1 for both performance outputs and mixed
H2=H1. The designs can be compared by measuring the closed-loop sensitivity
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Fig. 4.10 Comparison of responses between CMAPSS-40k gain-scheduled fan speed compen-
sator and fixed-gain mixed H2=H1 state feedback near Max Cruise: states and outputs. A step
disturbance of �0.1 is applied to all health inputs at t D15 s

of the performance outputs to exogenous inputs. This sensitivity can be evaluated
with a plot of the maximum singular values as a function of frequency for all four
designs. The worst-case peak singular value among closed-loop vertices is used.
The results of this comparison are shown in Fig. 4.12.

4.9 Simplified H1 Fan Speed Control

This chapter focused on state feedback techniques that take advantage of the
availability of state measurements and multiple control inputs. As discussed in
Sect. 4.7.1, information about the steady map of the engine must be incorporated
in state feedback laws to account for wide parametric variations and engine
nonlinearity. In contrast, a classical compensator loop using fuel flow to control
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sator and fixed-gain H2=H1 state feedback near Max Cruise: control inputs. A step disturbance
of �0.1 is applied to all health inputs at tD1 s

fan speed or EPR does not require reference states (other than the target fan speed
setpoint). Although a single compensator is insufficient to achieve control over
the whole flight envelope or maintain critical engine variables within permissible
limits, control transfer functions are the basis of traditional gain-scheduled designs
and limit-protection-logic arrangements. In this section, a simple, yet systematic
and effective method to design a fan speed or EPR control transfer function is
presented.

4.9.1 Mixed-Sensitivity H1 Design

Consider the SISO compensation loop shown in Fig. 4.13. Signals n and d represent
sensor noise and output disturbance, respectively, while transfer function Gd .s/ can
be used to “shape” the disturbance frequency spectrum. Elementary block-diagram
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Fig. 4.13 Classical SISO
feedback compensation loop

K(s) G(s)
r

d

Gd(s)

n

u y

algebra shows that the output of the plant is related to the reference input r and to n

and d as follows:

y D .I C GK/�1GKr C .I C GK/�1Gd d � .I C GK/�1GKn; (4.36)

while the following expression applies to the control input:

u D K.I C GK/�1.r � Gd d � n/: (4.37)
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Several transfer function definitions are in order. First, T D .I C GK/�1GK is the
usual closed-loop transfer function between r and y when noise and disturbance
are not considered. The transfer function S D .I C GK/�1 is termed sensitivity
function. This terminology is justified by the following identity:

dT=T

dG=G
D S:

That is, the sensitivity function is a measure of the changes in T relative to changes
in G. The closed-loop transfer function T is also referred to as complementary
sensitivity function, since S C T D I holds. This terminology is preferable, since
several “closed-loop transfer functions” exist that relate u, r , y, n, and d .

With these definitions, (4.36) and (4.37) may be rewritten as

y D T r C SGd d � T n; (4.38)

u D KS.r � Gd d � n/: (4.39)

Various control objectives can be expressed in terms of desirable characteristics for
T , S , and KS. First, the fundamental control objective is to force y.t/ to track r.t/

in a range of frequencies of interest. This implies that T should be as close to I

(to 1 in the SISO case) as possible. In other words, the Bode magnitude of T should
be flat, with a value of 0 dB, up to a design bandwidth. Note that n affects y in
the same way as r . Care must be exercised in limiting the design bandwidth so
that it does not encompass the sensor noise spectrum. Problems where the design
bandwidth overlaps the noise spectrum require special filtering techniques. Next,
SGd must be kept small to minimize the influence of disturbances on y. Finally, KS

must be small to maintain control input magnitudes within adequate ranges.

4.9.2 Frequency Weighting

The requirement that SGd be “small” is made more precise by requiring that
jS.j w/Gd .j w/j < 1 at all frequencies. Equivalently, jS.j w/j < 1=jGd .j w/j is
required. Typically, no information about the disturbance spectrum is available,
and therefore Gd .s/ is also unavailable. The designer may then model a generic
disturbance as an input having strong low-frequency components, with little energy
in the higher frequency range. These features distinguish disturbances from noise.
Disturbances are then slowly-varying perturbations capable of producing large
deviations in the plant output. According to this interpretation, 1=Gd .s/ must have a
high-pass characteristic. For this reason, it is commonplace to express the sensitivity
minimization objective in the form

jS.j w/j < 1=jWS.j w/j;
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where 1=WS.j w/ is a design weight. Typical first- and second-order weights having
the required characteristics are as follows:

WS .s/ D s=M C wb

s C ˛wb
; (4.40)

WS .s/ D .s=
p

M C wb/2

.s C wb
p

˛/2
: (4.41)

In both cases, wb is the corner frequency of 1=WS , M is its high-frequency gain, and
˛ is its low-frequency gain. The weights only differ in the steepness of the transition
between ˛ and M . Insensitivity to disturbances is improved by decreasing ˛. Note
that the requirement that the magnitude of S be bounded by that of 1=WS also
imposes a lower-bound wb on the bandwidth of T . Although initially conceived as
a disturbance minimization objective, this form of weighting provides a mechanism
to introduce a speed-of-response specification through wb. The reader is referred to
Skogestad and Postlethwaite [29] for more details.

For the purposes of controller synthesis, the sensitivity minimization objective is
formulated as jjWSS jj1 < 1. An upper-bound for the bandwidth of T and a roll-off
rate can be specified as follows:

jjWT T jj1 < 1:

Here, 1=WT .s/ is chosen to impose an upper envelope on the magnitude of T .j w/.
A typical weight for T has the form

WT .s/ D s C wb=M

˛s C wb
: (4.42)

Design parameters wb, ˛, and M may be chosen to coincide with those of the
sensitivity weight, for simplicity.

Control magnitude weighting is likewise achieved with a specification of the
form

jjWuKS jj1 < 1:

A constant weight is usually sufficient and commonly chosen. All three objectives
can be combined in a mixed or stacked sensitivity minimization objective of the
form:

min
K

jjN.K/jj1; (4.43)

where N.K/ is given by

N D
2
4 WSS

WT T

WuKS

3
5 : (4.44)
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The mixed-sensitivity H1 problem is readily solved using Matlab’s mixsyn, part
of the Robust Control Toolbox. Its use is shown in the CMAPSS example of the
following section.

4.9.3 Example: Mixed H1 Synthesis: CMAPSS-40k

Consider the problem of controlling fan speed to a setpoint using fuel flow as
a single control input. The design bandwidth is chosen as wbD15 rad/s and the
remaining parameters are M D 2 and ˛ D 1�10�4. The first-order weight of (4.40)
is used for the sensitivity, along with the complementary sensitivity weight of (4.42).
Although a solution is obtainable with a large range of control weights, the weight
Wu must be chosen in the order of magnitude of 1 � 105 to obtain a compensator
which can work with the nonlinear CMAPSS engine model. The following code
illustrates the sequence of calculations in Matlab:

%Plant matrices at Ground Idle: Aa and Ba assumed
%available in the workspace
C=[1 0];D=0; %Output definition for fan speed TF
G=tf(ss(A,B,C,D));
w0=15; %desired closed-loop bandwidth
alph=1/10000; %desired disturbance attenuation inside bandwidth
M=2 ; %desired bound on hinfnorm(S) & hinfnorm(T)
s=tf(’s’); %Laplace transform variable ’s’
W1=(s/M+w0)/(s+w0*A); %Sensitivity weight
W2=1e5; %Control weight
W3=(s+w0/M)/(A*s+w0); %Complementary sensitivity weight
[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3);
K=balred(K,3); %Perform balanced model reduction
%Plot results:
L=G*K; %Loop transfer function
S=inv(1+L); %Sensitivity
T=1-S; %Complementary sensitivity
sigma(GAM/W1,’k--’,S,’k’,GAM/W3,’k:’,T,’.-k’);
%Manually adjust controller for explicit integration
numK=0.032341*conv([1 3.992],[1 2.439]);
denK=[conv([1 4.876],[1 14.06]) 0];

The control transfer function initially returned by mixsyn is

K.s/ D 0:032341.s C 1:5e05/.s C 3:992/.s C 2:439/

.s C 1:5e05/.s C 14:06/.s C 4:876/.s C 0:0015/
:

Two important observations regarding the structure of this compensator must be
made:

1. An approximate integrator has been introduced in the controller as a result of the
weighting function shapes.
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Fig. 4.14 Shaped sensitivity and complementary sensitivity functions

2. A near pole-zero cancelation is observed.
3. Some poles and zeroes have large magnitudes.

These features are not accidental, but appear rather frequently in conjunction with
H1 frequency shaping techniques. Also, compensators having a large number of
poles and zeroes are typical of these designs, especially when multiple weights are
used, as it is the case in MIMO systems. For this reason, controller reduction is
usually required before implementation. In this example, elimination of the pole
and zero at �1:5 � 105 is an obvious reduction that brings the controller to 3rd
order.

The approximate integrator may be modified to force an actual pole at zero. Upon
doing this, the final controller becomes:

K.s/ D 0:032341.s C 3:992/.s C 2:439/

s.s C 14:06/.s C 4:876/
:

Figure 4.14 shows the achieved sensitivity and complementary sensitivity functions
(after reduction) in relation to their weights. This controller was implemented in
CMAPSS-40k, holding the VBV and VSV actuators constant at their Ground Idle
trim values during the course of simulation. Figure 4.15 shows the fan speed, core
speed, and actuator responses.
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Fig. 4.15 Fan speed response with mixed sensitivity H1 design: CMAPSS-40k

4.9.4 Summary

The state-feedback design with input integration and fixed gain is conceptually
simple. Systematic design procedures are available to synthesize the gain, according
to various performance optimization requirements. The example shows that a
fixed-gain design can be as effective as a classical gain-scheduled compensator
in achieving robust stability against plant parameter variations arising from flight
condition changes. Low sensitivity to health parameter inputs is also incorporated
as an objective during the design process.

The responses achieved in the simulation examples are still unrealistic. The
simulations of Sect. 4.8 show that the HPC stall margin, for instance, drops to 5%
regardless of controller, a value regarded as unsafe in actual engine operations.
Core acceleration, engine pressure ratio, and certain turbine temperatures are also
subject to allowable operating limits. The limit protection features of CMAPSS-40k
were disabled for these simulations. Robust nonlinear control approaches such as
Model Predictive Control and Sliding Mode Control, considered in Chaps. 9 and 6,
respectively, are capable of delivering superior performance. Limit management is
a crucial consideration in GTE control design. Chapter 7 is entirely devoted to this
problem.
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