Chapter 3
Engine Control by Classical Methods

Abstract This chapter reviews and applies classical SISO design techniques (root
locus and frequency domain loopshaping) to the problem of fan speed control using
fuel flow rate as control input. A model-matching method is also described that is
used in CMAPSS as a design tool. The shortcomings associated with the use of fixed
linear compensation are illustrated with simulation examples.

As expected, classical linear compensation is adequate only to govern the engine
close to a fixed operating point, as defined by the current inlet conditions and desired
thrust setpoint. Engine accelerations across wide fan speed ranges, as well as thrust
regulation across changing inlet conditions are handled poorly when a fixed linear
controller is used. Aside from nonlinearity and parametric changes in the plant,
critical variables must be maintained within safety ranges.

Linear compensation, however, is the basic building block of standard GTE
control systems. Parametric changes and nonlinearity are addressed conventionally
addressed with gain-scheduled linear compensators, while limit protection logic
schemes are used to override the active linear regulator when a critical variable
approaches its safety limit. In this chapter, three basic design approaches to thrust
regulation by means of classical linear compensation are examined. Fuel flow rate
is considered to be the only control actuator. At the end of the chapter, a CMAPSS
simulation is presented that exposes the limitations of fixed-regulator schemes.

3.1 Setpoint Control via EPR or Fan Speed

As this book is being printed, no direct sensing technology yet exists that is capable
of producing reliable thrust measurements suitable for feedback. Thrust estimation
from other sensed quantities is very challenging due to its strong dependence on the
engine’s health condition, which is not precisely known [24,25]. For this reason,
alternative variables that can be reliably sensed and which are a proxy for thrust
are used. Among these, EPR and N; are commonly-used. A table-lookup routine
can determine the value of EPR or Ny that results in the desired F, setpoint, given
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current inlet conditions. For all practical purposes, compensator design can proceed
by assuming that a setpoint or reference profile has been given in terms of either
ANy or AEPR.

The transfer functions from AWg to AEPR and A Ny are directly obtained from
the linearized engine model at the appropriate flight condition, and have the form

AEPR  ags® +ais + ar
AWe — S24cs+c
ANy bos? + bys + by
AW~ S24cis+c

3.1

3.2)

Coefficients c¢; and ¢, are intrinsic to the flight condition and fixed for all engine
outputs. The only assumption made about these coefficients is that they define a
pair of transfer function poles having negative real parts. That is, linearized engine
models are inherently stable. Nothing can be assumed about numerator coefficients,
leaving open the possibility that they define transfer function zeroes with positive
real parts, (non-minimum phase zeroes). In certain cases, however, these zeroes
have real parts which are very large in comparison with the absolute value of the
real parts of other zeroes and poles. Such high-frequency dynamics can usually
be ignored without detriment to the accuracy of the linear model, provided the
low-frequency gain of the transfer function is preserved [26]. Whenever a control
technique discussed in this book is unable to handle nonminimum-phase systems,
the necessary assumption will be made explicit.

3.1.1 Integral Control

It is an established fact of linear control theory [26] that a feedback compensator
loop must display at least one free integrator (pole at the origin) for offset-free set-
point attainment. In addition, such Type I control loop offers enhanced disturbance
rejection abilities. Indeed, step disturbances at plant input are completely rejected.
Since transfer functions (3.1) and (3.2) cannot be assumed to contain a pole at the
origin, a free integrator must be implemented as part of the controller.

Integral design proceeds by cascading the free integrator with the plant transfer
function to form an augmented plant model, used as the basis for compensator
selection. The zero-pole landscape associated with the augmented plant determines
the simplest compensator structure to be attempted.

3.1.2 Compensator Design with the Root Locus

The classical root locus methodology is readily applied, since the plant models of
(3.1) and (3.2) are of low order. Recalling classical control concepts, the objective
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is to introduce a compensator and choose the loop gain so that all closed-loop poles
have negative real parts, while a number of dominant closed-loop poles belong to
a region of the complex plane which corresponds to desirable transient response.
A set of poles is dominant relative to the remaining poles when their time constants
are significantly larger than the remaining time constants. A time constant ratio of
8 between the fastest dominant pole and the slowest nondominant pole is typically
adopted as a dominance criterion [26].

Root locus design frequently seeks to obtain one pair of dominant complex poles.
This is because the relationship between pole locations and transient response is
straightforward for the standard second-order transfer function:

w2

) = Pt 28wns + w2’

where ¢ = G(0) is the static, or DC gain, wy, is the natural frequency, and ¢ is the
damping ratio. Readers are referred to Dorf [26] if a review of second-order transient
properties is needed. When 0 < ¢ < 1, the response of G(s) to a step input is
said to be underdamped, and the roots of the denominator are complex and equal
to —Cwy & /1 — wyi.

The step response can be readily predicted in terms of percent overshoot and
settling time according to the formulas

(),
P.O. = 100e (W*?Q) , 3.3)
4
ts = twn’ (3.4)

According to these formulas, overshoot is a decreasing function of damping ratio,
while settling time decreases with the absolute value of the real part of the complex
poles. A combination of maximum allowable overshoot and settling time then
results in a trapezoidal target region for the dominant poles, as illustrated in Figs. 3.1
and 3.2.

When more than two poles are dominant or if zeroes are present in the dominance
region, the above formulas and target region do not apply, and iterative design
must be carried out with the aid of a simulation package. In the simplest situation,
the augmented plant has no zeroes (the coefficients of s> and s in the numerator
are zero). As seen in Fig. 3.1 (top), proportional control is the simplest stabilizing
compensator. However, the free integrator contributed by the controller causes two
branches of the locus to cross the imaginary axis, introducing a limit in the loop
gain for stability. When plant open-loop poles are close to the imaginary axis, slow
response times will be obtained, and the design specifications become unfeasible
under this compensator structure. A zero can be contributed by the compensator
(PD control) to distort the root locus branches so that faster responses are possible,
as seen in Fig. 3.1 (bottom). Since the free integrator belongs to the controller, an
overall compensator with no more zeroes than poles is obtained. Tuning is done
through the location of the zero and the value of the controller gain.
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Fig. 3.1 Root locus analysis of augmented plant with no zeroes

In contrast, one or two zeroes may exist, and they may be nonminimum phase. As
shown in Fig. 3.2 (top), the loop may be inherently unstable, precluding the use of
a free integrator. Alternatively, it may be possible to use negative proportional gain,
as shown in Fig. 3.2, followed by a compensator zero. The reader must keep in mind
that the designed compensators produce AWr as their output, which is allowed to be
negative. This incremental control must be added to the baseline Wr corresponding
to the flight condition under which the design is being carried out. Care must be
exercised in keeping Wr between realistic limits by testing the linear compensator
against the full nonlinear engine model.

3.1.3 Compensation in the Frequency Domain: Manual
Loopshaping

Although it may be possible to meet transient response specifications using the
root locus and trial-and-error procedures, the frequency domain method bridges
specifications and designer inputs in a more direct fashion. Some trial-and-error is
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Fig. 3.2 Root locus analysis of augmented plant with non-minimum phase zero

still required to fine tune the design. In classical loopshaping, the designer attempts
to reproduce the Bode plot of a target open-loop transfer function L(s) = G(s) K(s)
by manipulation of the zeroes, poles, and gain of K(s). The target transfer function
is specified by its Bode plot features. These features are obtained from an open-loop
target of the form

W2

561 20w (3:3)

where w, and ¢ are chosen so that the closed-loop transfer function

L(s) = G(s)K(s) =

L(s) w2

T = = n
() 14+ L(s) 2+ 20wns + w?

has a transient response matching the design specifications. Standard formulas [26]
link w, and ¢ to step response characteristics such as percent overshoot and settling
time:

PM ~ 100¢, (3.6)
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wh & (—1.196¢ + 1.85)wy, 3.7)
we A wy/1.6, (3.8)

where wy, is the closed-loop bandwidth, the frequency at which the magnitude of
T (s) reaches —3 dB, and w, is the crossover frequency, at which the magnitude of
L(s) is 0 dB. These formulas are good approximations when ¢ is between 0.3 and
0.8. The design process is best accomplished with the aid of software packages such
as SISOtool, a graphical user interface for interactive controller design in Matlab.
Assuming that zero steady-state error to step inputs is desired along with a settling
time 7 and overshoot P.0., the process is as follows:

1. Use (3.3) to calculate the required damping ratio ¢ using the P.O. specification.

2. Use (3.4) to calculate the required natural frequency w, using ¢ from above and
the ¢, specification.

3. Use formulas (3.6)—(3.8) to calculate the closed-loop bandwidth wy, the target
crossover frequency w, and the target phase margin PM .

4. According to the features of the uncompensated loop G(s), zeroes and poles are
added to K(s) and its gain is adjusted in SISOtool until L(s) attains the target
phase margin and crossover frequency.

If the design process leads to an L(s) that attains the target phase margin and
crossover frequency while having a pole-zero structure different than that of (3.5),
it should be emphasized that the original time-domain specifications should still be
approximately met, provided that the designed L(s) contains an integrator and a
dominant real pole is achieved. That is, if the dominant factor of the designed L (s)
has the form

k
s(s+ p)’
then it corresponds to the target of (3.5) with w, = v/k and ¢ = ﬁ/?

3.1.4 Edmund’s Model-Matching Method

A model-matching approach due to Edmunds [27] is implemented as a controller
design tool in CMAPSS-1. It is essentially an automated frequency domain loop-
shaping approach, where the target is the closed loop magnitude response, defined
by the tunable bandwidth and damping ratio parameters. It also includes a tunable
real pole beyond the closed-loop bandwidth. A least-squares optimization process
is used to arrive at a controller that produces a closed-loop frequency response
having the specified real pole and the intended bandwidth and damping ratio.
Note from (3.6) that the damping ratio is an indirect phase margin specification.
The advantage of the method is that it requires only three parameters as user
input, eliminating iterative design and thus being suitable for automated design.
Unfortunately, the least-squares process may produce spurious nonminimum phase
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zeroes in the controller. These zeroes may compromise the performance and stability
of the loop, invalidating the design if they cannot be removed on the basis of root
dominance.

3.1.5 Comparative Example

A compensator is to be designed to produce an increment of 100 RPM in fan speed
under the following requirements:

1. Zero steady-state error.
2. Overshoot less than 5%.
3. Settling time near 1 s.

The designs are conducted using the CMAPSS-1 90k-class engine model at FCO1.
Comparisons among root locus, loopshaping, and Edmund’s model matching
method will be carried out. Finally, the controllers are applied to the engine model at
a drastically different flight condition (FCOS) to illustrate performance deterioration
and motivate the need for advanced controllers. From the tables in Appendix B, the
transfer function from AWr in pounds per second (pps) to AN in RPM at FCO1
can be obtained from the state-space matrices as

ANy 230.7s +2032 3.9
AW 52+ 8.564s + 17.47° '

The plant features two stable real poles and one minimum-phase zero. The zero-
steady state error requirement is addressed by including an integrator at plant input,
while formulas (3.3) and (3.4) imply that the damping ratio must be greater than
0.7 and that the dominant poles must have real part less than —4. The zero of the
compensator and the gain are readily tuned with the aid of design packages such as
SISOtool, part of Matlab. The overall compensator becomes

3.70
K(s) = 0.016->2

Figure 3.3 shows the root locus of the compensated loop. The closed-loop poles
are —4.19 + 3.67i and —3.85. Note that there is a real closed-loop pole in addition
to the complex pair used to define the target trapezoidal region. This pole nearly
cancels the zero of the plant, resulting in little deviation from the projected step
response.

Manual loopshaping design is achieved by translating time domain performance
specifications into a set of parameters for the target loop. Using the formulas in
(3.6)—(3.8), the target crossover frequency is calculated as w. = 3.62 rad/s, and the
target phase margin is PM =70°. The target loop shape is achieved by including
a real zero in the controller in addition to the integrator and by tuning the gain.
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Root Locus Design at FCO1
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Fig. 3.3 Root locus design at FCO1

The location of the zero and the value of the gain are chosen with minimal iterations
in SISOtool. The resulting compensator becomes
3.45
K(s) = 00125122
s
This controller achieves a phase margin of 76.1° and a crossover frequency of 3.99
rad/s, as shown in Fig. 3.4.
Edmund’s method is applied next. Formulas (3.6)—(3.8) indicate, again, that a
closed-loop bandwidth of w,, = 5.79 rad/s and a damping ratio of { = 0.7 match
the specifications of this example. No guidance for the selection of the real pole is

offered by the model-matching method, so it is arbitrarily set to —20. The built-in
model-matching solver in CMAPSS gives the controller

s+ 3.715

(3.10)

Note that all three methods yield controllers attempting to cancel the zero of the
plant. The transient response is about the same for the three designs, as shown in
Fig.3.5.



3.2 Shortcomings of Fixed Linear Compensator Designs 43

Manual Loopshaping Design at FCO1
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Fig. 3.4 Manual loopshaping design at FCO1

3.2 Shortcomings of Fixed Linear Compensator Designs

Although only three design methods have been discussed, it should be clear
that other classical compensation techniques still produce a fixed control transfer
function. Advanced linear compensation methods such as Ho, control and u
synthesis [28-30] ultimately deliver a fixed compensator. If properly conducted,
these compensators should match the specified nominal transient response. These
optimized compensators, however, offer enhanced robustness properties. In the GTE
control problem, a properly designed robust compensator will maintain prescribed
degrees of closed-loop stability and performance as the parameters of the plant
change. As seen earlier, linearized models change due to varying inlet conditions,
inherent engine nonlinearity and engine aging.

As it will become evident in the following sections and chapters, linear compen-
sators designed on the basis of linearized models are sufficient to maintain stability
in the face of plant parameter variations and inherent engine nonlinearity. The major
challenge for control design arises from the need to maintain critical operating
variables within allowable limits, without undue penalties to transient response
qualities. The tendency of variables such as stall margin and turbine temperature
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Fan Speed Response at FCO1
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Fig. 3.5 Comparison of step responses obtained with root locus, manual loopshaping, and model-
matching designs at FCO1

to cross their allowable limits is exacerbated by engine aging, which increases the
limit protection challenge by introducing robustness requirements.

3.2.1 Parameter Variations Across the Flight Envelope

To illustrate the extent of performance loss due to parametric changes in the plant,
the loopshaped controller designed at FCO1 is applied to the linearized model at
FCO8 (see Table 2.3), given by

AN¢

AW

252.25 + 1011
s2 +3.919s + 3.528°

A quick calculation reveals that the phase margin is reduced to 42.2°, which predicts
a higher overshoot (30%), as shown in Fig. 3.6. Although both settling time and
overshoot have fallen outside specifications, performance loss can be qualified
as mild, and stability is not compromised even at this drastically different flight
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Fan Speed Response at FC08
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Fig. 3.6 Response of controllers designed at FCO1 when applied to FC08

condition. Robust linear controllers designed with suitable methods are able to
maintain specifications across a larger range of operating conditions, as shown in
Chap. 4.

Gain scheduling, or the tailoring of controller gains to operating points or
regions, has been used by the GTE industry for decades as the standard way to
account for large parameter variations. To illustrate the extent of these variations,
consider the linearized plant transfer functions at FCOl and FC08. A quick
examination reveals that their four parameters (two pole locations, one zero location
and a gain) have undergone significant changes. In a typical gain scheduling design,
linear functions linking plant parameters to a set of scheduling variables are sought.
Typical choices for scheduling variables in GTE control are inlet static pressure
and fan speed itself. The first scheduling variable accounts for parametric changes
arising from varying altitude, while the second captures intrinsic plant nonlinearity.
Fixed linear compensators are then designed for various combinations of scheduling
variables. Gain interpolation is used during real-time operation. Alternatively, it
may be possible to parameterize controller gains using the scheduling variables
as parameters. Gains are computed in real-time using formulas rather than table
look-ups. Gain scheduling and its parent technique, linear-parameter-varying (LPV)
control, will be examined in Chap. 5.
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Fig. 3.7 Block diagram for output y; under closed-loop control on y;

3.2.2 Engine Limits

As discussed in Sect. 1.3, several critical engine variables must be kept under
allowable limits at all times. Engine models such as those included in the CMAPSS
family include critical variables among the outputs. Moreover, the linearization
functions in all versions of CMAPSS produce output matrices for these outputs.
Given a flight condition and its associated A and B matrices, a pair of C and D
matrices defines a transfer function from fuel flow increment to an incremental
output of choice. These output transfer functions are essential for the design of
limit protection strategies. For instance, the linearized transfer function for the high-
pressure turbine outlet temperature at FCO1 is

AT, . .
48 _ 146‘24(3‘ +4.73)(s + 2 30)’
We s2 4+ 8.564s + 17.47

where ATyg is in °R. As expected, the denominator of the above transfer function
is the same as that of (3.9). Indeed, the set of poles of the transfer function
from AWg to any system output is the constant for a fixed flight condition. The
transfer function poles match the eigenvalues of state-space matrix A. Thus, the
differences in the transient behavior of critical outputs are characterized by the
zeroes of their respective transfer functions. Suppose G;(s), G, (s) are two output
transfer functions, and K(s) is a compensator placed in a feedback loop involving
Gi(s), as shown in Fig.3.7. The closed-loop transfer function relative to G (s) is
given by

Yi(s) _ G;(s)K(s)

R(s) 14+ Gi(s)K(s)

Using this formula, the closed-loop transfer function between fan speed increment
demand, N¢, dmd and ATyg under the loopshaped fan speed controller becomes

(3.11)

ATy 1756 (s + 4.733)(s + 3.45)(s +2.301)
AN;,dmd 7 (s 4 3.515)(s2 + 7.8165 + 23.92)
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Fig. 3.8 Closed-loop magnitude response of turbine temperature under fan speed control

A frequency response plot for ﬁ% is shown in Fig.3.8, revealing large
magnitudes near the design crossover region. This predicts significant transient
peaking of Tug, a highly undesirable feature. A simulation of the loopshaped
controller applied to the nonlinear engine model further illustrates the limitations
of a fixed-compensator approach. Gain scheduling and built-in limit protection
features in CMAPSS-1 were bypassed, replacing them by the single control transfer
function. The designed control transfer function K(s) has AW as its output. To
deploy the controller to the nonlinear engine, the absolute fuel flow command Wr
must be calculated. To do this, the integrator in K(s) is factored out as follows:

K(s) = K’(s)%.

If the loopshaped design is used for K(s), the new compensator K’'(s) is of the
PD type. The output of K’(s) is the derivative of fuel flow rate, We. Thus, the
absolute fuel flow command is obtained by integration of W, using the linearization
value of Wg as initial condition, as shown in Fig.3.9. Since the control transfer
function is driven from the fan speed tracking error, no adjustments are required at
the input (the linearization value of Ny at the starting flight condition cancels out at
the summing node). The simulation corresponds to a TRA demand changing from
0 to 100 degrees as a step, with inlet conditions fixed at FCO1 values. Figures 3.10
and 3.11 show that, although the fan speed demand is met with no offset, severe
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3.9 CMAPSS implementation of an incremental linear compensator

Response of fixed controller to large fan speed change demand
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Response of fixed controller large fan speed change demand
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Fig. 3.11 Engine response to large fan speed demand with fixed linear compensator

transient peaking occurs in every output. Referential limits for N¢, EPR, Tug, N,
and SmHPC have been represented with dashed lines. All limits are exceeded by
large amounts, strongly suggesting that, regardless of synthesis method, no fixed
linear regulator can be found that is able to achieve limit protection and adequate
fan speed response.

Finally, the CMAPSS simulation data has been represented in a compressor
map in Fig. 3.12. The horizontal coordinate is the corrected flow through the HPC,
calculated through (1.20), (1.21), and (1.22), with P; and T; taken at HPC inlet.
The value from (1.22) is then divided by a scaling factor. The vertical coordinate
is the HPC pressure ratio from the simulation, also scaled. The scaling factors are
applied so that both coordinates are compatible with the scaling used in CMAPSS
to store map data (efficiency and speed contours and R-lines). The initial and final
steady conditions have been represented on the engine operating line. The trajectory
starting from FC14 proceeds toward the stall limit, reaching a zero stall margin
condition. The CMAPSS solver will not produce negative stall margin values hence,
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Simulated Trajectory on HPC Map
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Fig. 3.12 Simulated trajectory in compressor map coordinates

the trajectory remains on the stall line for some time. It later abandons the stall line
and proceeds to the regulation point at FCO1. Although the simulated trajectory is
inadmissible from a practical standpoint, it exemplifies the challenges associated
with control design in the presence of operating limits.
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