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Preface

Gas turbine engines – in particular, turbofan engines ubiquitously installed in
commercial aircraft – must be operated by means of feedback control. In a broad
sense, the objective of the control system is to achieve good thrust response
qualities while maintaining critical engine outputs within safety limits. The design
of controllers capable of delivering this objective represents a challenging problem,
even when linear models with known parameters are considered for analysis.
The fact that gas turbine engine dynamics are nonlinear and subject to uncertain
parameter variations adds many layers of complexity to the problem.

Propulsion control systems installed in operating commercial aircraft, however,
are ultimately based on classical, SISO linear compensation loops. Features have
been added incrementally over the course of their development to address the
exigencies of faster and more powerful, yet more reliable engine installations.
Parameter variability from measurable sources – such as altitude and Mach number
– has traditionally been accounted for by introducing gain scheduling, while engine
safety limits have been addressed by override schemes. Both features still retain
classical feedback compensation at their core.

Standard engine control systems have been in use for decades, without major
conceptual changes. Concurrently, many new control theories – many of them with
demonstrated industrial applications – have been developed. Much control systems
research is devoted to the recurrent themes of parametric uncertainty, nonlinearity,
and constraints in system variables. These themes are characteristic of the most
challenging control problems and certainly arise in gas turbine engines.

The wide gap between the host of available advanced control technologies and
the ad-hoc implementations of everyday practice may be explained by the simple
fact that the latter have been so far sufficient. Recent research thrusts in aircraft
control, however, require that the performance that can be extracted from the engines
be maximized, given a set of allowable limits on critical variables. Specifically, fast
thrust responses are critical in certain emergency flight maneuvers. As elaborated in
the book, classical feedback is no longer suitable as a paradigm for the development
of advanced propulsion control concepts.
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viii Preface

One of the two chief motivations to write this book has been to bring advanced
controls closer to the highly relevant application domain of gas turbine engines.
Before advanced concepts can be introduced, standard engine controls must be
reviewed and made precise. Presenting standard engine controls using a precise
control systems framework has been the second major motivation. As a result,
the book spans introductory topics such as the engine’s principle of operation and
dynamic model, followed by classical feedback compensation and ending with
advanced research topics.

Book Audience

The book is aimed at readers falling between two ends of a broad spectrum: at one
end are aerospace or mechanical engineers with basic knowledge in control systems;
at the other are control engineers with little or no knowledge about gas turbines
(the typical electrical engineer may fit this category). Of course, any “interpolated”
engineer will also benefit from this book, since it includes detailed information on
turbine engine systems and introduces advanced control topics.

The material should be accessible to first-year graduates in mechanical, electri-
cal, or aerospace engineering. Readers are assumed to be familiar with classical
control concepts such as stability, root locus design, and frequency response, as
well as basic pole-placement design. Proficiency in Matlab/Simulink is required to
follow the numerical examples and understand simulations.

The book contains numerous nonlinear engine simulations conducted using
NASA’s CMAPSS package, available to the public in the USA. This package is
required only for readers seeking to reproduce the nonlinear engine simulations
contained in the book. The linearized state-space matrices for the 90,000-lb
and 40,000-lb engine have been included in the appendix for readers not using
CMAPSS. The data are useful to follow many control design calculations, and may
even be used to generate a custom simulation accounting for parametric changes.

Although the book does not contain end-of-chapter problems, it is written much
in the style of a textbook. As such, it may be used as the basis or as reference
material for a graduate course in aircraft engine controls. A course with emphasis in
fundamental concepts could be designed using Chaps. 1–3, 5, and 7, while a course
emphasizing research aspects could be designed using Chaps. 1, 2, 6–9.

Outline

Chapter 1: Introduction reviews the thermodynamic principles explaining the
operation of a gas turbine, assuming minimal familiarity with thermodynamic vari-
ables. The components of the real gas turbine engine and its operation are described,
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introducing key quantitative performance measures. Safety and operational limits
are discussed, including mathematical descriptions of surge and stall phenomena.

Chapter 2: Engine Models and Simulation Tools offers a brief overview
of engine dynamics, aiming at the extraction of linearized models that can be
used as a basis for design. The Commercial Modular Aeropropulsion System
Simulation (CMAPSS) package developed by the NASA Glenn Research Center
is also described.

Chapter 3: Engine Control by Classical Methods reviews and applies classical
SISO design techniques (root locus and frequency domain loopshaping) to the
problem of fan speed control using fuel flow rate as control input. A model-matching
method is also described that is used in CMAPSS as a design tool. The shortcomings
associated with the use of fixed linear compensation are illustrated with simulation
examples.

Chapter 4: Engine Control by Robust State Feedback reviews linear multi-
variable theory and introduces polytopic system descriptions of plant variability.
This chapter also presents various methods for MIMO state-feedback synthesis,
such as: LQR, H2, H1 and mixed-objective optimization with regional pole
placement constraints. A simplified H1 compensator synthesis method is presented
for SISO systems. Matlab code and simulations using the CMAPSS nonlinear
engine model are included.

Chapter 5: Gain Scheduling and Adaptation introduces gain-scheduling and
linear-parameter-varying techniques to address plant variability across the flight
envelope. This chapter also introduces the concept of adaptive control and presents
a basic model-reference adaptive control design. Matlab code and simulations using
the CMAPSS nonlinear engine model are included.

Chapter 6: Sliding Mode Control of Turbofan Engines introduces the concept
of sliding mode control and elaborates in its robustness properties and commonly-
used tuning approaches. This chapter also presents MIMO versions of the sliding
mode regulator and setpoint tracker, as well as a simplified SISO design. Linear and
nonlinear engine simulations using CMAPSS are included.

Chapter 7: Engine Limit Management with Linear Regulators describes the
min–max logic arrangement used in standard engine control systems to maintain
critical variables within permissible bounds. A thorough analysis of this arrange-
ment is conducted using the concept of positive invariance. The shortcomings of
the min–max approach are made evident in simulations. A brief description of an
acceleration-limiting approach is also included.

Chapter 8: Engine Limit Management with Sliding Modes develops a
method to maintain critical engine variables within allowable limits, without the
disadvantages associated with the standard min–max approach. Guidelines for the
association of sliding mode regulators to logic max or min selectors are given,
along with an H2=H1 sliding coefficient synthesis method. Simulations using the
CMAPSS nonlinear engine model are included.

Chapter 9: Engine Limit Management with Model Predictive Control
introduces the concept of model predictive control and develops basic prediction
formulas based on linear state-space models. The constrained optimization problem
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is formulated using compact matrix formulas suitable for incorporation in Matlab’s
quadratic program solver. Model predictive control is then applied to the engine
control problem to address input and output constraints. The chapter also discusses
computational complexity and approaches aimed at its reduction. Matlab code and
simulations using the CMAPSS nonlinear engine model are included.

Topics Not Covered

Among the most relevant topics not covered are: (a) engine modeling through
system identification, (b) observer-based control, (c) engine health estimation, and
(d) robust output-feedback synthesis (except for the simplified method of Sect. 4.9).

Note that gas turbine engine control represents a rare (and fortunate) case
where the state variables are available as real-time measurements. This explains the
intentional omission of (b) and (d). As far as (a) and (c), these topics are vast and
could each give rise to an entire volume. At the same time, they can be safely omitted
from a controls-oriented treatment. References have been included throughout the
book for readers interested in those topics.
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Chapter 1
Introduction

Abstract This chapter reviews the thermodynamic principles explaining the
operation of a gas turbine, assuming minimal familiarity with thermodynamic
variables. The components of the real gas turbine engine and its operation
are described, introducing key quantitative performance measures. Safety and
operational limits are discussed, including mathematical descriptions of surge and
stall phenomena.

The chapter introduces gas turbine engines (GTEs), describing their operating
principles and constraints mostly in a qualitative fashion. Aerospace engineers and
readers who are familiar with these topics can skip it altogether, or give it a quick
look and start with the chapter on mathematical modeling.

The GTE is one of the most complex machines ever built, not only for its
constructive intricacies, but also for the dynamic behaviors it displays and the
sophisticated engineering required for its operation. Due to its high fuel efficiency,
power ratings, and reliability, the GTE is used for various forms of transportation
systems, including airplanes, helicopters, marine ships, and military tanks (the M1
Abrams, for instance). Ground-based electric power generation relies on GTEs for
peak periods in many of the world’s metropolitan areas.

This book focuses on control systems for turbofan engines, a GTE design
optimized for commercial air transportation. The principles of operation of turbofan
engines and their control methods are similar to those of other kinds of GTE.
Novice readers who use this book as their primary reference source for aircraft
engine controls will be comfortable when examining material specific to other kinds
of GTE.

1.1 Principles of Operation

Useful power is extracted from a GTE by three means:

1. Momentum exchange: most of the useful power delivered by aeronautical GTEs
results from the ejection of gas at high velocities through the exit nozzle.

H. Richter, Advanced Control of Turbofan Engines, DOI 10.1007/978-1-4614-1171-0 1,
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Fig. 1.1 The ideal
Joule–Brayton cycle
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The reaction thrust is proportional to both mass flow rate and velocity of the
ejected gas relative to the engine.

2. Direct mechanical connection of a load to an engine shaft: accessories such
as pumps and electric generators in aircraft engines derive their power this
way. Ground-based engines used in power generation deliver most of their
power through a shaft connected to a generator. Marine engines deliver power
mechanically to propellers.

3. Fluid transfer (bleed air): high-pressure, hot air may be extracted from aircraft
GTE compressors for various purposes, for instance de-icing systems, pneumatic
actuators, and cabin climate control.

1.1.1 The Joule–Brayton Cycle

GTEs are approximate practical implementations of the Joule–Brayton thermody-
namic cycle. The cycle is devised so that heat energy (from combustion of fuel)
can be converted into mechanical work with high efficiency. Since the energy
content of a working fluid increases with pressure and temperature, mechanical
compression (volume reduction) and heat addition through combustion are used.
The fluid is then allowed to expand and cool, returning to its initial state. Mechanical
power is extracted during the expansion stage by forcing the flow to impinge
on a movable surface (turbine blade) or by momentum exchange as described
above. The ideal Joule–Brayton cycle is shown in a pressure-volume diagram in
Fig. 1.1. The working fluid is compressed from 1 to 2 without transferring heat
to the surroundings or generating heat due to friction. This idealized process is
known as isentropic compression. Heat is then added at constant pressure between
2 and 3. The energy required to bring the fluid from points 1 to 3 equalsQin CWin,
that is, the heat energy added by the fuel and the mechanical work required to
compress the fluid. A total mechanical power ofWout is extracted through isentropic
expansion between 3 and 4. The dotted line in Fig. 1.1 indicates that part of Wout is
diverted to drive the compressor, a feature inherent to all GTE designs. Thus, only
Qin is regarded as an energy “investment” in efficiency calculations. The cycle is
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completed by constant-pressure cooling of the fluid. Cooling is achieved by heat
transfer Qout from the fluid to the surroundings. In the ideal Joule–Brayton cycle,
this heat represents lost energy. The efficiency of the ideal cycle is obtained by
dividing the net useful work by the energy “investment”:

�i D Wout �Win

Qin
: (1.1)

When the working fluid is an ideal gas with ratio of specific heats � D Cp

Cv
, the

efficiency of the ideal Joule–Brayton cycle can be derived as a function of the cycle
pressure ratio as [1]:

�i D 1 � 1

.P2
P1
/
��1
�

: (1.2)

The ratio P2
P1

plays an important role in key aspects of engine modeling, control,
and monitoring. It receives the name of engine pressure ratio, or EPR, a quantity
analogous to the compression ratio of piston engines. Note that high ideal efficien-
cies correspond to high EPR. Engines installed in large commercial aircraft, such as
General Electric’s GE90, can have EPR values higher than 40. Several components
are arranged in a GTE to perform the basic processes of the thermodynamic cycle:

1. A turbocompressor, or simply compressor: An arrangement of blades on a
rotating disk, whose function is to force air to flow into the engine as it reduces its
volume and increases its pressure. Torque is required to change the momentum
of the working fluid, forcing it to follow the curved surface of the blades. The
work required to drive the compressor comes from the engine itself (dotted line
in Fig. 1.1), by means of a shaft connecting compressor and turbine. Thus, the
compressor and the turbine rotate at the same angular speed. A GTE may have
one or more compressors, typically attached to corresponding turbines in separate
shafts.

2. A combustion chamber, or combustor: A cavity where fuel is added to com-
pressed air, resulting in combustion. The amount of energy added to the gas as a
result of combustion depends primarily on the heating value of the fuel and the
rate of fuel injection. This rate is the main control input of the propulsion control
system. To gain an idea of the orders of magnitude involved, consider that the
engine used in Boeing 777 aircraft has a typical fuel consumption of about 0.5 l/s
at takeoff [2]. The Jet A-1 fuel has a density of 0.8 kg/l and a heating value of
43 MJ/kg. Thus, the power contained in the fuel stream for a single engine is
17.2 MW. Naturally, not all the energy contained in the fuel is transferred to the
working fluid and in turn, not all of the energy of the fluid can be converted in
mechanical work propelling the aircraft.

3. A turbine: Conceptually, the opposite of the compressor, the turbine is an
arrangement of blades on a disk, which rotates due to impingement of fluid.
A turbine produces torque as a result of a momentum change of the fluid as
it follows the curved surface of the blades. Turbines may be designed so that
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Fig. 1.2 Basic arrangement
of components in a gas
turbine engine
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the exhaust gas has a large residual energy content. This is the case in jet
engines, where most of the thrust used to propel the aircraft is obtained by
high-velocity exhaust through a nozzle and only a small fraction of mechanical
power is extracted by the turbine to drive the compressor, fan, and accessories. In
contrast, a turbine may be designed for greater availability of mechanical power
at the shaft. This is the case of turbopropeller engines, where the shaft drives the
propellers, usually through a gearbox. Gas past the turbine is still directed to a
nozzle, producing a small additional thrust.

Figure 1.2 illustrates the arrangement of these three basic components in a con-
ceptual GTE. In terms of mechanical construction, GTEs can be roughly classified
by the number of shafts, or spools. A single-spool engine has one turbine and
one compressor which rotate as a unit, connected by one shaft. The two-spool
configuration prevails in turbofan engines used in modern commercial aircraft as
well as some military engines, for instance the SNECMA M88. In a two-spool
configuration, two compressors and two turbines are linked by concentric shafts,
which rotate independently.

1.2 The Bypass Turbofan Engine

The bypass turbofan GTE design was conceived to improve the fuel efficiency of
commercial aircraft. An additional component – the fan – is installed at the inlet of
the engine to increase the amount of air flowing through the engine. However, part
of the inlet airflow is not directed toward the compressor, combustor, and turbine,
but is rather bypassed through a duct, which ends in a nozzle. Since air leaves the
nozzle at a speed which is higher than the intake velocity, thrust is produced by
momentum exchange with the airframe. The flow which is not bypassed undergoes
the processes studied in Sect. 1.1.1, producing part of the total thrust. Note that the
thrust generated by the bypass flow does not require the burning of fuel, but some
mechanical work must be derived from a turbine to drive the fan.
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Fig. 1.3 Two-spool turbofan engine design

Although extra fuel must be burned to generate the power required to drive the
fan, more would have to be burned to achieve the same total thrust in the absence
of a bypass flow.

A more detailed explanation of the superior thrust efficiency of high bypass
versus low bypass designs is offered in Sect. 1.2.1. Figure 1.3 illustrates the two-
spool turbofan engine design upon which most of this book is based. A cutaway
model of a single-spool turbofan design can be seen in Fig. 1.4. The fan, low-
pressure compressor, (LPC) and low-pressure turbine (LPT) are connected by one
shaft and thus rotate synchronously. The high-pressure compressor (HPC) and high-
pressure turbine (HPT) are next to the combustor and are connected by a separate
shaft, usually concentric with the LP shaft. The arrangement of HPC, combustor,
HPT, and core nozzle is referred to as core engine. The symbols WF, VBV, and VSV
enclosed in ovals in Fig. 1.3 correspond to the main actuators used in GTE control
systems. WF corresponds to the fuel flow delivered by a pump, usually expressed in
pounds per second (pps). VBV denotes the variable bleed valve. The VBV is used
to extract high-pressure gas from the core, injecting it into the bypass flow, which
has a lower static pressure. This is done to prevent the compressor from entering an
unstable region of operation known as surge, which is discussed in Sect. 1.3.1. VBV
action is usually measured as a percentage or fraction of the fully-open position.
VSV represents the variable stator vanes. A compressor is built with several stages
of rotating blades separated by a stationary vane arrangements called stators. The
orientation of stator vanes may be changed with the engine in operation to control
the characteristics of the flow reaching the rotating blades. Specifically, VSV are
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Fig. 1.4 Cutaway model of a single-spool turbofan engine (photo courtesy Great Lakes Science
Center, Cleveland)

manipulated to reduce flow separation and subsequent stall in compressor blades.
VSV action is measured in degrees. More details about compressor and turbine
operability will be given in Sect. 1.3. Figure 1.3 includes part of the numbering used
to designate engine stations in standard practice [3]. For instance, numbers 20–24
are used to designate points between fan inlet and LPC outlet, while the range 41–48
is used for the HPT.

Turbofan engines may also be classified by their bypass ratio, that is, the ratio
of bypass to core mass flows. High bypass turbofans may have ratios as high as
11, as is the case of the Rolls–Royce Trent 1000 engines installed in Boeing 787
aircraft. Low bypass engines may use ratios as low as 0.3; the SNECMA M88
used in Dassault Rafale aircraft is one example. The bypass ratio value is chosen
to prioritize either fuel efficiency or aircraft speed. Indeed, the core exhaust has a
significantly higher velocity than the bypass exhaust due to the addition of energy
through fuel. When the bypass ratio is high, a large, slow-moving mass of air is
ejected through the bypass nozzle, creating thrust mainly due to high mass flow
rather than high exhaust velocity. If the bypass mass flow is reduced by certain factor
and the thrust is to be constant, the velocity of the bypass flow must be increased
by the same factor, which can be achieved by properly designing the duct and the
nozzle. In both scenarios, no fuel is burned in the bypass flow and the thrust is the
same, giving the impression that there is no difference in terms of fuel efficiency.
However, in the low bypass ratio case, more fuel has to be burned, since the core
flow is higher and the proportion of air to fuel has to be maintained in a narrow
range.
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1.2.1 Performance and Efficiency of Real Engines

A number of measures besides the ideal Joule–Brayton cycle efficiency are defined
to characterize the overall operation of a GTE. When the actual thrust produced by
the engine is Fn, the effective jet velocity veff is defined through (1.3) below:

Fn D Pm.veff � v0/; (1.3)

where v0 is the velocity of the air entering the engine relative to the moving aircraft.
When there is no wind, v0 is numerically equal to the aircraft’s ground speed. The
thrust power Pth is defined as the rate of work exerted by the thrust in moving the
aircraft at constant speed, that is,

Pth D Fnv0 D Pmv0.veff � v0/: (1.4)

In contrast, the propulsion power Ppr is the rate at which kinetic energy is added to
air as it flows at constant speed through the engine:

Ppr D 1

2
Pm.v2eff � v20/: (1.5)

The ratio of useful (thrust) power to invested (propulsion) power is known as
propulsion efficiency, or Froude efficiency:

�pr D Pth

Ppr
D 2

1C veff
v0

: (1.6)

Equation (1.6) elucidates the question of whether a design should favor a high value
of Pm and a low value of veff in (1.3), given a constant thrust level and some fixed v0.
For higher propulsion efficiency, it is clearly preferable to use a low veff and a
high Pm.

The thermal efficiency �th is defined as the ratio of propulsion power to the power
introduced through fuel burning:

�th D Ppr

PmfHf
; (1.7)

where Pmf is the rate of fuel mass consumption andHf is the heating value of the fuel.
The total efficiency is defined as the ratio of thrust power to the power introduced
through the burning of fuel:

�tot D Pth

PmfHf
D �pr�th: (1.8)

The specific thrust Fs is defined as the engine thrust per unit of air mass flowrate:

Fs D Fn

Pm : (1.9)



8 1 Introduction

Table 1.1 Overall performance figures of high-bypass and low-bypass GTEs (adapted from [4]
and [5])

SNECMA M88-2 GE-90

Max. thrust, kN 50 513
Engine pressure ratio 25:1 42:1
Air mass flow, kg/s 65 1,350
Bypass ratio 0.3:1 8.4:1
Thrust specific fuel consumption, kg/N-h 0.8 0.03

Finally, the thrust specific fuel consumption Pmns is a measure of fuel economy in
relation to thrust generation:

Pmns D Pmf

Fn
D v0
�totHf

: (1.10)

1.2.1.1 High-Bypass vs. Low-Bypass Engines

A high-bypass engine is designed to enhance Pmf in (1.3) while maintaining a low
jet exhaust velocity veff. This is accomplished by the large-diameter fan mounted at
the inlet and a proper bypass nozzle design. From (1.6) and (1.8), we see that for
equal values of thrust, a high-bypass engine will have greater propulsion and total
efficiencies than a low-bypass engine. Since Pm is larger in a high-bypass engine,
the specific thrust will be lower, and most importantly, the thrust specific fuel
consumption will also be smaller, as judged from (1.10). This reasoning explains
why high-bypass turbofans are a de facto choice for modern commercial aircraft.

Note that v0 is not constant, but increases as the aircraft reaches cruise conditions.
When v0 increases, thrust decreases, as seen in (1.3). Such thrust lapse is more
serious in high-bypass engines than in low-bypass engines, since veff is relatively
small. Designers must oversize engines to maintain the necessary thrust at high
airspeeds. As a beneficial consequence, high-bypass engines have very large take-
off thrust values, allowing them to lift heavy aircraft with relatively short take-off
distances. In contrast, low-bypass turbofans operate well at very high airspeeds,
explaining their choice for military aircraft, where fuel economy is not the biggest
priority. A comparison of the characteristics of a high-bypass and a low-bypass
engine is shown in Table 1.1.

1.3 Operability Limits and Component Maps

The efficiency figures introduced in Sect. 1.2.1 are formulated on the basis of the
engine as a whole. Individual engine components have their own efficiencies, which
collectively determine overall engine efficiency. Thus, it is important to describe the
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efficiencies of individual components as well as safe ranges of operation. Note that,
in some cases, highly efficient operating conditions may not necessarily correspond
to safe conditions. This occurs in fans and compressors, where stall limits overlap
regions of high adiabatic efficiency.

Efficiency and operability limits are described for fans, compressors, and turbines
by means of a component map. An accurate component map is constructed by
operating the component at various combinations of outlet/inlet pressure ratio
and mass flow rate under steady-state conditions. Although it is customary to
use nondimensional and corrected forms of pressure and mass flow rate, the plot
essentially describes the relationship between mass flow rate (horizontal axis)
and the corresponding pressure ratio (vertical axis). The component may also be
operated across several equilibrium points as a parameter or an input is varied.
For instance, when a throttle valve is installed at the outlet of a compressor, and
valve opening is varied slowly, a locus of points called throttle line may also be
represented on the compressor map.

1.3.1 Compressor and Fan Maps

The coordinates of a point in the compressor map correspond to steady-state
operation at some mass flow rate and corresponding pressure ratio. Unique values
of rotor speed and efficiency exist for a given set of compressor map coordinates.
Efficiency and speed data are represented in the map in the form of constant-
efficiency and constant-speed lines, as shown in Fig. 1.5. Specifically, the adiabatic
efficiency of compression is used, given by the ratio of the work needed to raise the
pressure under isentropic conditions to the actual work required to produce the same
pressure ratio.

1.3.1.1 Surge and Stall

The controls-minded reader may now find it useful to interpret the isolated
compressor as a nonlinear dynamic system where mass flow rate and pressure rise
are states. The compressor map is drawn in phase space, where outputs of interest
(rotor speed, efficiency) are represented as constant-value contours. Compressors
interacting with other engine elements such as a combustor or higher-pressure
compressor stages exhibit complex nonlinear behavior, some of which is regarded
as destructive and highly undesirable.

Rotating stall is an operating regime in which groups of compressor blades
are unable to move air in the flow direction due to localized off-design flow
conditions. Pockets of stagnant air, called stalled cells, which span a portion of the
circumference of the compressor disk are formed, reducing compression efficiency.
Stall is a wave-like phenomenon: stalled cells travel around the circumference of the
compressor at speeds near the mechanical rotational speed, hence the designation
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Fig. 1.5 Typical features of a
compressor map
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rotating stall. Stall may arise as a consequence of off-design engine operation or
damage to the blades caused by foreign object ingestion. The notorious US Airways
flight 1549 Hudson river landing of January 15, 2009 was caused by stall-induced
power loss in both engines. The Airbus A320 had flown through a flock of birds a
few minutes prior to the crash [6].

Surge is a more nefarious occurrence, where air not only fails to flow in the
desired direction, but also may flow explosively toward the inlet of the compressor.
Unlike rotating stall, surge is axisymmetric, spanning the whole compressor circum-
ference. When reverse flow occurs, upstream pressure is somewhat relieved, tending
to suppress reverse flow. If boundary conditions are maintained, however, upstream
pressure builds up again and the process is repeated in a limit cycle. The mechanical
vibrations and thermal stresses arising from a surge cycle can have consequences
ranging from accelerated engine wear to damage and total engine destruction.

The operating conditions which induce surge or stall in compressors and fans
are provided by engine manufacturers and represented in component maps in the
form of a boundary, which is equivalently referred to as stall line or surge line.
This information is supplied to the controls engineer with the basic premise that
controller designs must not generate transients causing the component to operate
close to the surge line.

Although it is standard practice to design controllers to maintain a safe distance
from the surge line, researchers have given ample consideration to compressor
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operation across this line, in an effort to produce mathematical models that can be
used to design surge recovery and surge suppression controllers. These controllers
could be made active upon the detection of unforeseen damage to an engine
component. The model by Moore and Greitzer [7] was widely adopted as a basis
for nonlinear analysis and control design. This model considers a compression
system formed by a ducted compressor discharging to a chamber, whose exhaust
is controlled by a throttle valve. First principles of fluid dynamics are applied to
generate a system of partial differential equations (PDE), which is then converted to
a system of three ordinary differential equations (ODE) by Galerkin approximation.
The system of equations is formulated in terms of pressure rise, flow coefficient,
and amplitude of oscillation of the first harmonic of angular flow disturbance.

Moore and Greitzer used the PDE model to establish that pure rotating stall and
pure surge are eigenmodes of the same coupled phenomena, and that they appear
combined in general cases. The third-order ODE model was later used by Baillieul,
Dahlgren, and Lehman to show that stall inception occurs through equilibrium
point bifurcation [8], a nonlinear effect whereby abrupt changes in the number
or nature of equilibrium points are brought about by a continuous change of a
parameter or input. As described earlier, compressor stall is characterized by a self-
sustaining oscillation, or limit cycle, around an equilibrium point. Away from the
stall boundary, the equilibrium point is stable. Baillieul and co-workers showed that
feedforward injection of air at compressor inlet could be used to enlarge the region
in which the equilibrium point is stable, an effective means of suppressing stall.

A simplified second-order model, due to Greitzer [9] was later used by Simon
and Valavani [10] to design a feedback controller using Lyapunov methods. The
controller enables compressor operation beyond the nominal surge line. Here, we
only present the second-order model and a few simulations to provide further
insight into surge behavior. Assume that a flow resistance (i.e., a valve), called load
is installed at the compressor outlet and let P denote the pressure rise between
compressor inlet and outlet and f the flow rate through the system. The simplified
model equations are given by

Pf D B.‰.f /� P/; (1.11)

PP D 1

B
.f �ˆ.P //; (1.12)

where B is a constant called the Greitzer parameter and ‰.f / and ˆ.P / are the
static pressure-flow characteristics of the compressor and load, respectively. Note
that the function ‰.f / is the compressor’s surge line, which may be determined
experimentally. Consider B D 0:5 and ˆ�1.f /D �f 3. The first simulation is
conducted with � D 1 and ‰.f /D � 3:5f 3 C 8:8f 2 � 4f C 0:8. There is a unique
equilibrium point obtained by simultaneously solving P D‰.f / and f Dˆ.P /.
Setting the initial conditions to unity for both variables, a stable transition to
the equilibrium point is observed in Fig. 1.6. For the second simulation, the load
characteristic is changed to use � D 3, so that intersection with the surge line
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Fig. 1.6 Stable compressor transient across surge line

occurs where its slope is positive. The same initial conditions are used, however
a surge cycle with intervals of reverse flow is observed in Fig. 1.7.

Although fans are generally limited to one or two stages and their blades have a
somewhat different geometry, they share the same stalling and surge characteristics
of compressors. Therefore, a fan map including a surge line is also furnished to the
controls engineer as part of the design requirements.

1.3.2 Turbine Maps

A multistage turbine is composed of stationary inlet guide vanes followed by
rotating disks. Gas flow through a turbine resembles the flow through a convergent–
divergent nozzle. Thus, pressure ratio is a monotonically increasing function of flow
for a range of flow values constituting the non-choked regime, corresponding to
subsonic flow throughout the nozzle. Given a constant inlet pressure, flow increases
as outlet pressure is reduced in the nonchoked regime. When the fluid at the
narrowest nozzle section reaches sonic speed (unity Mach number for adiabatic,
ideal gas flow), flow attains a maximum value and becomes independent of outlet
pressure. This regime is said to be choked. Higher values of flow are obtainable only



1.3 Operability Limits and Component Maps 13

0 0.5 1 1.5 2
0

1

2

3

4

5

6

Nondimensional Flow, f

N
on

di
m

en
si

on
al

 P
re

ss
ur

e,
 P

Compressor Surge Oscillations

Compressor Surge Line
Load Characteristic

0 time

Pressure

Flow

Fig. 1.7 Compressor surge cycle with reverse flow

by increasing the inlet pressure or temperature. In a GTE, turbines typically operate
in the choked regime, so that maximum flow is attained (recall that engine thrust
is proportional to mass flow rate). Besides, the mechanical work extracted from the
turbine increases with pressure ratio, making it convenient to operate the turbine in
the vertical portion of the map lines shown in Fig. 1.8.

Turbines are not prone to stall or surge, but place limits on engine operation
according to their allowable blade temperatures. Although temperature limits are
representable in a turbine map, these boundaries are obtained at steady-state con-
ditions. As it will be seen later, turbine temperature transients feature pronounced
overshoots which place tighter constraints on control system design than steady
limits.

1.3.3 Ray Lines and Stall Margin

As evident from Fig. 1.5, if mass flow rate and pressure ratio are independently
given, unique values exist for rotor speed and adiabatic efficiency. Numerical
solvers used in simulation packages rely on rotor speed as one of the independent
variables, however. This arises from the fact that the mechanical inertia associated
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with rotating masses constitutes the dominant mode of engine dynamics. Newton’s
law is readily applied to core and fan shafts, making their speeds a natural choice
of state variables. Rotor speed, however, cannot be paired with mass flow rate,
pressure ratio or efficiency to form a set of independent variables. For instance,
Fig. 1.5 shows that more than one value of mass flow rate may correspond to a
choice of pressure ratio and rotor speed. Nonuniqueness can also be observed when
rotor speed is paired with efficiency. Mass flow rate cannot be determined without
pressure ratio information. To circumvent these problems, a family of mass flow
rate-pressure ratio loci are chosen so that a single intersection exists with each
rotor speed line. Each locus is termed ray line or R-line, and is chosen arbitrarily,
under the single-intersection restriction. Straight lines have been used historically,
which justifies the “ray” terminology [11]. In any case, a scalar “R-function” of
mass flow rate and pressure ratio is defined, its contour lines corresponding to
R-lines in the compressor map. Engine simulators such as NASA’s CMAPSS define
the R-function so that one of its contours is the stall line itself. R-function value
and rotor speed are used in solver routines to determine the remaining variables
uniquely.

Given a point on the compressor or fan map defined by a pressure ratio PR and a
mass flow rate Pm, the stall margin is defined as

SM D PRstall. Pm/ � PR

PR
; (1.13)
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where PRstall. Pm/ is the function defining the stall line. Thus, points of the stall line
have SM D 0.

1.3.4 Combustor Instabilities and Blowout

Heat release due to combustion and acoustic wave propagation in a cavity are
dynamically coupled phenomena. In GTEs, the characteristics of this interaction
are modulated by the fuel flow rate imposed by the pump. Under normal operating
conditions, variables such as combustor pressure and temperature exhibit stable
responses to changes in fuel flow rate. Other regimes exist, however, that induce
potentially destructive pressure oscillations. As described empirically by Rayleigh
in 1845 [12], if perturbations are introduced to a steady flow condition so that
pressure and heat release are in phase, resonant oscillations are induced.

Lean combustor blowout, or flame extinction, occurs when the air-to-fuel ratio
is very small. This condition may be encountered upon sharp decelerations, when
the control system commands a decrease in fuel flow rate. Aircraft descent involves
engine operation near idle speeds, which corresponds to minimal fuel flow rates.
The risk of engine blowout is increased during these operations, especially under
inclement weather. Modern aircraft control systems allow safe engine operation near
blowout limits, with improved fuel economy and reduced emissions. Much controls-
oriented research has been done in support of achieving stable combustor operation
in a wide range of operating conditions [13].

Each point in a compressor map corresponds to a combination of mass flow
rate and pressure ratio. When considering the whole engine, a fuel flow rate is
also associated with the point. The locus of compressor map points having a fuel
flow rate equal to the lean blowout can be represented as an additional operating
boundary to be taken into account when designing engine controllers. A simple
approach often adopted in practice is to introduce absolute limits on both rate and
magnitude of the commanded fuel flow rate [2].

1.3.5 Structural and Thermal Limits

Aside from limits introduced by specific engine components, mechanical and
thermal limits on engine materials are imposed to reduce the rate at which wear
occurs. These limits are more restrictive than those which would cause immediate
component failure due to overstress or overtemperature. Vibration, which is directly
linked to rotation speed, is associated with fatigue and component life. Similarly,
turbine blade wear is strongly affected by temperature. Like fatigue, thermal damage
is accumulative. That is, any periods of time spent by the blades at high temperature
will reduce remaining life.

The locus of compressor map points having a steady turbine temperature equal
to the imposed limit may also be represented as a design boundary.
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1.3.6 Overall Engine Operating Limits

Compatibility of pressure in adjacent components and core flow equality throughout
the engine restrict the possible steady operating points and transient trajectories
observed in a component map. Compressor maps are typically used as the common
platform on which all constraints are represented. The engine operating line is the
locus of compressor pressure ratio and mass flow rate points obtained at steady-state
conditions as an engine input is varied. In single-input control systems, fuel flow rate
is changed by adjusting a throttle setting. The resulting compressor pressure ratio
and air mass flow rate are plotted on the compressor map once a steady-state has
been reached. Figure 1.9 shows such engine operating line and various constraints
represented on a compressor map.

1.4 A Note on Total and Corrected Quantities

The pressure and temperature attained by a gas when its velocity is reduced to
zero following an isentropic process are called total pressure and total temperature.
The point at which the fluid has zero velocity is called stagnation point. Thus, any
sensor designed to measure pressure or temperature at stagnation will indicate total
quantities. If an ideal gas has velocity V , pressure P and temperature T , there exist
unique values for the corresponding total quantities. The Mach numberM is defined
as the ratio of flow velocity to the speed of sound at the same temperature:

M D Vp
�RT

; (1.14)

where � D Cp

Cv
is the ratio of specific heats at constant pressure and constant

volume (� D 1:4 for air) and R is the universal gas constant (R D 286 J/kg-ı K).
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The ratios of total to absolute quantities are derived using conservation laws and
basic thermodynamic identities [1, 14]:

Tt

T
D 1C � � 1

2
M2; (1.15)

Pt

P
D
�
1C � � 1

2
M2

� 1��
�

: (1.16)

In addition to their relevance to sensing installations in aircraft, total quantities
appear repeatedly in many thermodynamic formulas and are frequently used to
define dimensionless parameters. The mass flow through a duct of areaA is given by

Pm D �AV; (1.17)

where � is the density. Using the ideal gas law �RT DP to eliminate density
from (1.17) and introducing total quantities from (1.15) and (1.16), the following
expression is obtained for Pm:

Pm D  A

p
Tt

Pt
; (1.18)

where the mass flow parameter  has been defined as

 D
r
�

R
M

�
1C � � 1

2
M2

�� �C1
2.��1/

: (1.19)

The usefulness of the mass flow parameter definition is clear from its dependence of
Mach number only. Equation (1.19) shows that, given fixed Pt and Tt, the maximum
mass flow rate per unit area is obtained at M D 1 (choked flow condition).

Nondimensional forms of the total pressure and temperature at an engine station
are usually obtained by normalization relative to the standard atmospheric properties
(Pstd D 101:3 kPa and Tstd D 288:15ı K):

ı D Pt

Pstd
; (1.20)

� D Tt

Tstd
: (1.21)

A normalized – albeit dimensional – form of the mass flow rate of air through
the engine frequently used in the aerospace industry is the corrected mass flow rate,
defined as

Pmcr D Pm
p
�

ı
D PstdAp

Tstd
 : (1.22)
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Therefore, Pmcr is the mass flow rate that would be observed if an engine initially
operating with Mach number M and atmospheric conditions given by P and T is
now operated at sea-level with the same value of M .

The corrected speed for an engine component rotating at angular rate N is
defined as

Ncr D Np
�
: (1.23)

The motivation behind this definition is that the temperature change across a
fan or compressor is proportional to the square of the ideal gas velocity. It
can be shown [14] that the ratio of a component’s rotational speed to the total
nondimensional temperature at its inlet is essentially constant hence,Ncr is constant
and allows to find values ofN at any flight condition defined by � , once as reference
has been established.

1.4.1 Summary

Various constraints associated with safe and efficient engine operation have been
introduced in this chapter. A significant portion of this book is devoted to constraint
handling using the tools of control systems theory. All of the variables which are
subject to a constraint will be presented as outputs of a state-space model. In a
linearized model, for instance, turbine temperature, compressor stall margin, fan
speed, and other variables will correspond to transfer functions from fuel flow rate,
all stemming from the same A and B matrices of a state-space system. Established
approaches, such as the industry-standard fan speed regulation with max–min limit
protection logic will be examined under this framework. Recent advances, including
model predictive control and sliding mode control applied to aircraft engines, will
also be introduced and evaluated under the constrained-output framework.



Chapter 2
Engine Models and Simulation Tools

Abstract This chapter offers a brief overview of engine dynamics, aiming at the
extraction of linearized models that can be used as a basis for design. The Commer-
cial Modular Aeropropulsion System Simulation (CMAPSS) package developed by
the NASA Glenn Research Center is also described.

This chapter outlines the methodologies commonly followed to arrive at dynamic
models, which are suitable for control design. A public-domain simulation package
developed by NASA is also described, which will be used for many simulation
studies contained in this book.

2.1 Two-Spool Shaft Dynamics

Mechanical system dynamics due to rotating inertias constitute the most important
contribution to engine transient behavior. In fact, shaft speeds are directly linked
with mass flow through the engine and thrust, which is the main output to be
manipulated by the propulsion control system. Additional dynamics due to gas mass
storage and heat transfer between gas and metal are present, but their use is reserved
to high-fidelity, detailed models. Likewise, the dynamics of actuator systems are
significantly faster than those associated with rotating masses, and are usually left
unmodeled. As it will be seen next, outputs of interest such as turbine temperatures,
pressure ratios and stall margins can be regarded as outputs of a dynamic model
whose states are shaft speeds.

In what follows, we assume the engine to be a two-spool turbofan, where Nf

denotes the angular speed of the assembly formed by fan, LPC, and LPT, and
Nc denotes the angular speed of the HPC-HPT shaft assembly (see Fig. 1.3). For
consistency with the standard terminology and simulation software, Nf and Nc will
be denoted fan speed and core speed, respectively. Newton’s law for rotating masses
is applied to each shaft as follows:

PNf D f1.Nf; Nc; u;w/; (2.1)

PNc D f2.Nf; Nc; u;w/: (2.2)

H. Richter, Advanced Control of Turbofan Engines, DOI 10.1007/978-1-4614-1171-0 2,
© Springer Science+Business Media, LLC 2012
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Here, f1 and f2 are the net torques delivered by the LPT and HPT, respectively,
normalized by the mass moment of inertia of the shaft assemblies. Vector u contains
the control input components. In a single-input control system, u is given by the
fuel flow rate WF. Additional control effectors may be enabled as actuators; for
instance, VBV and VSV may be included as components of u in addition to
WF. These additional inputs may be changed in a closed-loop or in an open-loop
fashion. In the latter case, VBV and VSV are scheduled, that is, calculated as
functions of engine variables other than states or inputs. Special attention must be
placed on whether these effectors are held constant – thus becoming parameters –,
scheduled, or used as control inputs. These choices have important implications
in subsequent linearization procedures and controller designs. Vector w is used
to capture the effects of uncertain inputs such as disturbances. An important
interpretation of w is given by the health parameter inputs, a set of quantities
representing engine deterioration and faults. Health parameters are discussed in
Sect. 2.1.3.

Engine dynamics arise from complex, interacting phenomena: gas-flow behavior
in the compressor and turbine (affected by air inlet as well as engine conditions),
shaft inertias and losses, fuel flow transport delay, combustion and the thermal
behavior of the engine and its surroundings. Due to the intricate geometry of the
engine components and the complexity of gas flow, algebraic expressions for f1 and
f2 are unavailable. Even the more sophisticated model generation and simulation
tools [2] resort to linearization of (2.1) and (2.2) as a basis to include information
about f1 and f2 through their partial derivatives. Note that these functions are highly
dependent on external variables such as aircraft speed and atmospheric conditions,
which act as their parameters.

When constant values of u and w are applied, along with a fixed set of parameters
for f1 and f2, the engine reaches a steady–state operating point, with corresponding
constant values of core and shaft speeds. Small-signal linearization is performed at
these conditions, yielding the model:

� PNf D @f1

@Nf
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o
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o

�w2 C ::::; (2.4)

where the subscript o has been used to indicate that the partial derivatives are eval-
uated at steady-state conditions. The steady values of Nf and Nc corresponding to
constant u, w and parameters are found by iterative procedures attempting to equate
the right-hand sides of (2.1) and (2.2) to zero. The process of finding the steady
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speeds and outputs corresponding to a set of steady inputs and parameters is carried
out by an engine model balancer, or steady-state solver. The implicit relationship
between constant inputs and steady outputs is called a steady engine map.

2.1.1 Model Construction from Cycle Deck Data

The partial derivatives of ff and f2 are obtained from a perturbation method based
on experimental data. Engine manufacturers are able to operate the machine in a test
stand, simulating multiple combinations of atmospheric conditions and airspeeds,
in addition to any desired input values. Data is collected from a host of sensors,
from which relevant quantities such as adiabatic efficiencies and stall margins are
computed. To obtain an approximate value of a partial derivative, the dependent
variable is slightly perturbed from its steady value, and the corresponding increment
in net torque recorded. Such sensitivity of the net torque to perturbations in the
dependent variable is the desired value for the partial derivative.

By repeating this procedure in a grid of values for u and function parameters,
local gradient information for f1 and f2 is collected. While a controls-oriented
model can be as simple as a single linear model corresponding to a point in the grid,
a high-fidelity simulation model uses partial derivative information obtained from
a fine grid covering the entire flight envelope. Such models “piece together” this
massive information, enabling numerical integration of trajectories across a wide
range of operating conditions.

Outputs of the form yi D yi .Nf; Nc; u;w/ are also linearized to yield
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ˇ̌
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o

�w2 C :::: (2.5)

It is worth emphasizing that engine dynamic models are available to the controls
engineer only as a collection of linear models, each one valid in a neighborhood
of an equilibrium point and corresponding to fixed set of parameters reflecting
flight conditions.

These models are expressible in the standard state-space form:

Px D Ax C Bu C �w; (2.6)

y D Cx CDu Cƒw; (2.7)

where xT D Œ�Nf �Nc�, yT D Œ�y1 �y2::::� and matrices A;B;C;D; � , and ƒ
contain the partial derivatives as follows:
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2.1.2 Models from System Identification

System identification techniques – parametric and spectral – are also applicable to
GTE model generation. These techniques are more formal and systematic than the
empirical partial derivative evaluations described above. Also, measurement noise
and its impact on model quality are addressed explicitly. In a parametric system
identification approach, a model structure is first selected where system order and
representation (state-space, transfer function, etc.) are defined. Then parameters
are estimated from experimental data using a numerical optimization algorithm.
In a nonparametric (spectral) model, the objective is to obtain numerical frequency
response traces (Bode plots) using input/output experimental information. A para-
metric model may also be fitted to the frequency domain traces by least squares or
any other suitable curve fitting procedure.

System identification techniques have several drawbacks, including the need for
time-consuming trial-and-error procedures to arrive at the proper model structure,
the influence of the chosen test input on the results and the need for long data
records [15]. For comprehensive information on system identification, the reader
is referred to classical works such as Ljung [16] or Sage and Melsa [17]. For a
detailed treatment of these methods as applicable to GTEs, refer to Kulikov and
Thompson [18].

2.1.3 Engine Aging and Deterioration Modeling

The response of engine states and outputs to actuator inputs changes with time, ac-
cording to the engine’s “age”, typically measured in hours of operation. Mechanical
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wear due to normal use is reflected as changes in internal flow characteristics and
component efficiencies. Component damage and engine-to-engine manufacturing
variations also result in significant changes to engine response. Although aging
and deterioration effects are distributed through the engine, a finite set of engine
health parameters is chosen that describe changes in specific engine components.
For instance, a normalized health parameter defined for the turbine efficiency may
vary between 0 and 1, with 0 representing a new turbine and 1 a “fully deteriorated”
one. The maximum level of deterioration is chosen by the modeler to indicate that
the component is no longer usable and that an engine overhaul is necessary. Health
parameter changes are represented as a bounded disturbance input vector w in the
linearized engine model of (2.6) and (2.7). Note that the same set of health parameter
inputs may be used to represent both slow aging and sudden fault, the distinction
being the particular function of time used in simulation studies.

Health parameters are used in several ways, ranging from condition monitoring
and fault detection to active control. In the latter case, designers may resort to
robustness properties or may rely on disturbance estimation techniques. Condition
monitoring and fault detection techniques require reliable parameter estimates
during engine operation. Health parameter estimation has been the subject of much
research and continues to be an active area of interest. The interested reader is
referred to the comparative study by Volponi et al. [19] covering Kalman filter
and soft computing estimation techniques. Further details on related problems and
specific applications of these techniques are found, for instance, in [20–22] and
references therein.

This book does not cover health parameter estimation techniques or their use in
fault detection and accommodation. However, control strategies will be studied in
detail which strive to preserve engine performance in the face of such uncertain
inputs. Some robust strategies incorporate a disturbance estimator, while others
rely entirely on robustness and disturbance bounds. Accounting for engine model
variations is crucial in propulsion control system design. Besides the need for
consistent thrust response throughout engine life, health parameter changes cause
the safety limits described in Sect. 1.3 to shift, reducing operability margins. For
instance, compressor deterioration – as captured by a corresponding parameter –
shifts the stall line in a direction that reduces the stall margin.

2.2 Commercial Modular Aero-Propulsion System Simulation

Most simulations presented in this book were generated using the state-of-the-art
Commercial Modular Aeropropulsion System Simulation, or Commercial Modular
Aero-Propulsion System Simulation (CMAPSS). This package was developed at the
NASA Glenn Research Center and is intended for public distribution [2]. CMAPSS
is a Simulink port and a database with a user-friendly graphical user interface
(GUI) allowing the user to perform model extraction, elementary control design,
and simulations without much effort. One version of CMAPSS contains a model
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Fig. 2.1 CMAPSS software modules

corresponding to a large, high-bypass ratio turbofan engine similar to the GE90.
Indeed, the CMAPSS-1 engine produces about 90,000 lbs of thrust at take-off
conditions. A separate version, CMAPSS-40k [23], contains a model representing
an engine in the 40,000-lb thrust class.

In this section, the main features of CMAPSS are described, along with a
representative session including model linearization, basic controller specification,
and simulation functions.

2.2.1 CMAPSS Main Features

The engine model is composed of several cascading modules, as shown in Fig. 2.1.
The atmospheric model comprises air properties spanning altitudes from 0 to
40,000 ft above sea-level, Mach numbers from 0 to 0.9, and sea-level temperatures
between �60 and 103ıF.

2.2.1.1 Model Inputs

Model inputs are divided into two categories: control inputs and health parameter
inputs. All versions of CMAPSS allow direct manipulation of fuel flow, with total
freedom for the implementation of feedback laws. Health parameter inputs may only
be specified as step functions of time. Simple modifications to the supplied Simulink
model can be introduced to allow for more general health parameter variations.
Depending on version, VSV and VBV may be accessible as control inputs or may
be subjected to scheduling functions hidden from the user. CMAPSS-1 includes
14 inputs, fuel flow rate being the first. The remaining 13 inputs constitute the set
of health parameters associated with pressure, flow, and efficiency characteristics
of the fan, LPC, LPT, HPC, and HPT. VSV and VBV are not available as control
inputs in this version. CMAPSS-40k includes 16 inputs: WF, VSV, VBV, and 13
health parameters. The complete list of inputs in CMAPSS is shown in Table 2.1.
Each time linearization is performed in CMAPSS-1, a B matrix with 2 rows and 14
columns is obtained. In CMAPSS-40k, B has 2 rows and 16 columns.
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Table 2.1 CMAPSS engine
model inputs (adapted
from [2, 23])

Index Input

1 Fuel flow (pps)
2 Variable stator vane (degrees)
3 Variable bleed valve (degrees)
4 Fan efficiency modifier
5 Fan flow modifier
6 Fan pressure-ratio modifier
7 LPC efficiency modifier
8 LPC flow modifier
9 LPC pressure-ratio modifier
10 HPC efficiency modifier
11 HPC flow modifier
12 HPC pressure-ratio modifier
13 HPT efficiency modifier
14 HPT flow modifier
15 LPT efficiency modifier
16 LPT flow modifier

2.2.1.2 Pilot Commands: TRA and PLA

The throttle resolver angle, or TRA, is the angular deflection of the pilot’s
power lever, having a range from 0 to 100%. In closed-loop operation, it is
desirable to obtain an approximately linear steady-state relationship between TRA
setting and net thrust across a wide range of inlet conditions. As elaborated
in Sect. 3.1, thrust control is achieved indirectly by controlling fan speed. This
is because no real-time thrust sensing is available in aircraft systems. For this
reason, TRA is mapped into a corrected fan speed demand through a static
function. Actual fan speed demand is then calculated using the inlet conditions
reflected in � . In control systems terminology, the TRA-to-Nf;cr demand mapping
constitutes a static reference prefilter placed outside the fan speed feedback loop.
The subsequent conversion to Nf demand involves inlet variables which can be
regarded as slowly-varying relative to the characteristic times of engine dynamics
and its control system. Therefore, propulsion control design may proceed by
assuming that a fan speed demand is supplied as an independent reference input.
The power lever angle, or PLA, is an alternative designation for the same pilot
control.

2.2.1.3 Model Outputs

Twenty-seven outputs are included in linearization models obtained via the GUI.
These outputs, in addition to many other auxiliary quantities, are written to the
workspace when a simulation is carried out. The 27 model outputs of CMAPSS-
1 are listed in Table 2.2, and the reader is referred to the User’s Guides [2, 23] for
a complete listing of additional variables. The C and D matrices obtained through
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Table 2.2 CMAPSS-1
engine model outputs
(adapted from [2])

Index Output Units

1 Fan speed, Nf rpm
2 Core speed, Nc rpm
3 Engine pressure ratio, EPR= P50

P2
–

4 Total pressure at fan outlet, P21 psia
5 Total temperature at fan outlet, T21 ıR
6 Total pressure at LPC outlet, P24 psia
7 Total temperature at LPC outlet, T24 ıR
8 Total pressure at HPC outlet, P30 psia
9 Total temperature at HPC outlet, T30 ıR
10 Total pressure at burner outlet, P40 psia
11 Total temperature at burner outlet, T40 ıR
12 Total pressure at HPT outlet, P45 psia
13 Total temperature at HPT outlet, T48 ıR
14 Total pressure at LPT outlet, P50 psia
15 Total temperature at LPT outlet, T50 ıR
16 Fan massflow, W21 pps
17 Net thrust, Fn lbf
18 Gross thrust, Fg lbf
19 Fan stall margin –
20 LPC stall margin –
21 HPC stall margin –
22 Corrected fan speed rpm
23 Corrected core speed rpm
24 Total bypass duct pressure, P15 psia
25 Percent corrected fan speed –
26 Static pressure at HPC outlet, Ps30 psia

27 Ratio,
Wf

Ps30
pps/psi

linearization in CMAPSS-1 have dimensions 27 by 2 and 27 by 14, respectively.
Naturally, most of these outputs serve only a monitoring purpose, and only a few
have a corresponding sensor in the real engine.

2.2.1.4 Pre-defined Flight Condition Data

Given a set of fixed inlet conditions and health parameters, each steady value of fuel
flow rate WF corresponds to a unique equilibrium point, defined by steady fan and
core speeds. Also, each one of the 27 outputs adopts a corresponding steady value.
Altitude, Mach number, and sea-level temperature completely define atmospheric
conditions. These three quantities can be regarded as parameters of f1, f2 and yi in
(2.1), (2.2), and (2.5), and must be specified as part of the linearization process. The
set of inlet conditions, steady fuel flow and corresponding steady states and outputs
constitutes a flight condition. CMAPSS-1 is distributed with a set of predefined
flight condition files.
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Table 2.3 Equilibrium point data for representative flight conditions from CMAPSS-1 (adapted
from [2]). All health parameter inputs are zero

FC01 FC05 FC06 FC07 FC08 FC09

Alt, ft 0.00 10000.00 20000.00 25000.00 35000.00 42000.00
Mach 0.00 0.25 0.70 0.62 0.84 0.84
TRA, ı 100.00 100.00 100.00 60.00 100.00 100.00
WF, pps 6.84 4.66 3.86 1.67 2.12 1.52
Nf, rpm 2388.00 2319.00 2324.00 1915.00 2223.00 2212.00
Nc, rpm 9051.00 8774.00 8719.00 8006.00 8346.00 8317.00
EPR 1.30 1.26 1.08 0.94 1.02 1.02
T48, ıR 2072.00 1947.00 1909.00 1534.00 1750.00 1744.00
Ps30, psia 522.13 371.76 206.76 163.94 183.10 130.51
LPC Rline 1.64 1.63 2.31 1.70 1.52 1.54
HPC Rline 1.95 1.96 1.98 2.03 2.00 2.03
Fn, lbf 86636.00 45830.00 25774.00 11475.00 13552.00 9647.00

Arbitrary flight conditions may be calculated in CMAPSS by specifying at-
mospheric conditions and fuel flow, followed by simulation under any stabilizing
controller. In CMAPSS-1, the results depend on the particular scheduling functions
used for VSV and VBV. CMAPSS-40k treats these actuators as control inputs, thus
two constant values must be selected along with a steady fuel flow value to define
the point of linearization completely. CMAPSS includes a steady-state solver, which
accepts steady input values and inlet conditions to find the steady values of the two
states and all outputs.

A set of predefined flight conditions is included in the CMAPSS-1 distributions.
These conditions may be invoked from the GUI as the first step in creating linearized
models and designing elementary controllers. Six representative flight conditions
extracted from CMAPSS-1 have been summarized in Table 2.3. Appendix B
contains tables for the linearized model matrices at each one of the six representative
flight conditions. This information is provided as an alternative for readers not using
CMAPSS. No predefined flight condition data is distributed with CMAPSS-40k,
however, several typical operating regimes are presented here for future reference.
Six regimes representing several stages of flight are summarized in Table 2.4.
The component maps introduced in Sect. 1.3 are customarily presented in the
industry in terms of corrected mass flow and speeds rather than absolute quantities.
CMAPSS also uses these quantities for internal calculations purposes, as well as
for displaying performance evaluation plots. The controls engineer should regard
corrected quantities as aids in understanding the effects of parametric changes to
the model introduced by flight condition variations.

2.2.2 Example

A sample session with CMAPSS-1 is described as a quick start-up guide for
interested readers. Matlab and Simulink must be available on a Windows platform,
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Table 2.4 Equilibrium point data for representative flight conditions from CMAPSS-40k.
All health parameter inputs are zero

A B C D E F

Ground idle Flight idle Approach Max cruise Max climb Max T.O.

Alt, ft 1000:00 6000:00 10000:00 38000:00 6000:00 1000:00

Mach 0:10 0:50 0:50 0:75 0:40 0:15

PLA, ı 40:00 44:00 52:00 68:00 73:00 78:00

WF, pps 0:33 0:59 1:03 1:00 2:69 3:02

VSV, ı �51:40 �39:90 �23:97 �1:43 �5:96 �4:88
VBV, % 1:00 0:90 0:50 0:01 0:04 0:00

Nf, rpm 1375:77 2240:21 2987:78 3764:46 3814:22 3803:43

Nc, rpm 8624:00 9515:11 10279:50 10932:01 11440:57 11525:14

EPR 1:03 0:94 1:06 1:53 1:44 1:49

T48, ıR 1091:13 1211:32 1417:84 1682:52 1839:91 1877:65

SmHPC, % 37:48 38:30 33:75 19:90 22:94 22:01

Fn, lbf 1879:92 2596:65 6620:98 6658:35 20521:32 28829:92

since dynamically linked libraries (DLL files) used in Matlab S-functions were
compiled for this operating system. Note, however, that the source C code for these
libraries is distributed with CMAPSS for the advanced user to recompile to match
his/her own architecture.

CMAPSS is distributed as a zipped file, which must be expanded in a
directory where the user has write permissions. Upon doing this, the file
setup_everything.m must be run to load basic data and set up the necessary
paths.

A main dialog is brought up from which the user can choose to create a linearized
model, design controllers or simulate the closed-loop engine, as shown in the
diagram of Fig. 2.2.

In this example, we first obtain a linearized model at FC01 by following the GUI
menus. The Simulink diagram used to inject perturbations and obtain the partial
derivative information described in Sect. 2.1.1 is brought up and ran automatically.
At the end of the run, the variable SSeng_14x27_unsc appears in the workspace,
containing a state-space system object with 14 inputs and 27 outputs, without
scaling. The first input corresponds to the incremental fuel flow �WF with respect
to the steady value defined by the flight condition, while the remaining 13 are
health parameter inputs (the reader may think of them as parametric disturbances).
The first two outputs are simply the two incremental states: �Nf and �Nc. To
extract the state-space matrices from SSeng_14x27_unsc, we use the command
[A,B,C,D]=ssdata(SSeng_14x27_unsc). The 2x2 system matrix A is
found as

>> A
A =

-3.8557 1.4467
0.46897 -4.7081.
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Suppose an SISO model is desired having �Wf as input and �T48 as output. The
following sequence of Matlab commands will store the desired model as LEM001:

>> B=B(:,1)
B =

230.67
653.55

>> C=C(13,:)
C =

-0.057313 -0.32243

>> D=D(13,1)
D =

146.37

>> LEM001=ss(A,B,C,D);

Thus, the transfer functions from �WF to any of the 27 outputs at FC01 share the
eigenvalues of A as poles: �3.3544 and �5.2093. In particular, the transfer function
from�Wf to �T48 is

>> zpk(LEM001)
Zero/pole/gain: 146.37 (s+4.733) (s+2.301)
--------------------------

(s+3.3544) (s+5.209)

Next, suppose a basic controller is to be tried for a fan speed set point change near
FC01. The GUI design tool is limited to one form of compensation, consisting of
lead-lag action with integration at plant input. The compensator pole is selected
arbitrarily in the GUI, while the gain and zero are found from a least-squares
algorithm referred to as “model-matching method”. The optimization objective is to
match a second-order closed-loop transfer function specified by the user by natural
frequency and damping ratio. More details about the model-matching method and
its limitations are given in Sect. 3.1.4. Letting the compensator pole to be �20 and
choosing a closed-loop frequency of 4 rad/s and a damping ratio of 0.7, the following
compensator is returned in variable SSreg_unsc:

>> zpk(SSreg_unsc)

Zero/pole/gain: 0.1122 (s+4.814)
--------------------------

(s+20)

An incremental, linearized simulation may be launched from GUI for preliminary
response evaluation. A Simulink diagram is brought up corresponding to this case.
The default setpoint for �Nf may be readily changed by the user. Although the
Simulink model uses scaled variables, the GUI plotting functions present the data in
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Fig. 2.3 Linearized simulation results produced by CMAPSS-1

absolute terms, as shown in Fig. 2.3. Now suppose the designed compensator is to
be tested against the full nonlinear engine model, operating with a single fan speed
control loop. Assuming SSreg_unsc still exists in the workspace, GUI dialogs
may be followed to reselect FC01 as flight condition and build the closed-loop
system. A Simulink diagram is brought up that contains the complete engine model
and controller sections. Note that the setpoint reference is not directly given in terms
of target fan speed or target incremental fan speed, but rather in terms of TRA, as
described in Sect. 2.2.1.

The actual fan speed reference input can be accessed after running the simulation
through variable Nf_dmd. In this example, a ramp input to reduce fan speed from
2387.5 to 2224.2 rpm with a slope of �300 rpm/s is used as a default. This rate and
a positive rate limit of 500 rpm/s arise from a block in the Simulink diagram. The
user may set these limits to -inf and inf to generate a step response. Upon doing
this, various outputs of interest may be plotted using the GUI as shown in Fig. 2.4.
Many other variables not accessible from the GUI are also written to the workspace.
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Fig. 2.4 Nonlinear engine simulation results panel produced by CMAPSS-1

2.2.2.1 Actuator Models (CMAPSS-40k)

CMAPSS-40k includes models for the three main actuators and their local control
loops. Feedback is used for the fuel metering valve (FMV) and the VSV actuator,
while VBV is operated in open-loop. The electrically-actuated FMV is placed
around a proportional control loop to produce the WF demanded by the engine
controller. Since the valve opening dynamics from actuator current to position
include a free integrator, P control is sufficient to achieve zero steady-state error (see
Sect. 3.1.1) if the valve operates in a linear regime. Backlash, saturation, rate limits,
and delay are present, however, as shown in Fig. 2.5. Note also that valve position
– rather than actual flow – is fed back, implying that accurate calibration data must
be available. If the nonlinearities and the delay are ignored, the closed-loop transfer
function from desired to actual flow rate is given by

TFMV.s/ D 350

s2 C 40s C 350
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Fig. 2.5 Local control loop for the fuel metering valve (CMAPSS-40k)

with poles at �27.07 and �12.93. The VSV actuator is placed around a proportional-
integral loop, which leads to the linear closed-loop transfer function:

TVSV.s/ D 3:75

s C 3:75
;

where an approximate pole-zero cancelation has been carried out. Indeed, the PI
controller introduces a zero designed to nearly cancel a closed-loop pole near 0.
The VBV actuator is operated in open-loop, with transfer function

TVBV.s/ D 23

s C 23
:

An examination of Appendix C reveals that the A matrix associated with lin-
earized engine dynamics has eigenvalues with real parts ranging from �0.75 to �4,
according to flight condition. These values indicate that open-loop engine dynamics
are significantly slower than those associated with the FMV and VBV actuators,
but about as fast as the dynamics of the VSV actuator. The designer must decide
whether to include actuator dynamics or to leave them as unmodeled dynamics and
rely on the robustness properties of his/her designs. Actuator dynamics appear are
cascaded at each plant input, making model extensions straightforward.



Chapter 3
Engine Control by Classical Methods

Abstract This chapter reviews and applies classical SISO design techniques (root
locus and frequency domain loopshaping) to the problem of fan speed control using
fuel flow rate as control input. A model-matching method is also described that is
used in CMAPSS as a design tool. The shortcomings associated with the use of fixed
linear compensation are illustrated with simulation examples.

As expected, classical linear compensation is adequate only to govern the engine
close to a fixed operating point, as defined by the current inlet conditions and desired
thrust setpoint. Engine accelerations across wide fan speed ranges, as well as thrust
regulation across changing inlet conditions are handled poorly when a fixed linear
controller is used. Aside from nonlinearity and parametric changes in the plant,
critical variables must be maintained within safety ranges.

Linear compensation, however, is the basic building block of standard GTE
control systems. Parametric changes and nonlinearity are addressed conventionally
addressed with gain-scheduled linear compensators, while limit protection logic
schemes are used to override the active linear regulator when a critical variable
approaches its safety limit. In this chapter, three basic design approaches to thrust
regulation by means of classical linear compensation are examined. Fuel flow rate
is considered to be the only control actuator. At the end of the chapter, a CMAPSS
simulation is presented that exposes the limitations of fixed-regulator schemes.

3.1 Setpoint Control via EPR or Fan Speed

As this book is being printed, no direct sensing technology yet exists that is capable
of producing reliable thrust measurements suitable for feedback. Thrust estimation
from other sensed quantities is very challenging due to its strong dependence on the
engine’s health condition, which is not precisely known [24, 25]. For this reason,
alternative variables that can be reliably sensed and which are a proxy for thrust
are used. Among these, EPR and Nf are commonly-used. A table-lookup routine
can determine the value of EPR or Nf that results in the desired Fn setpoint, given

H. Richter, Advanced Control of Turbofan Engines, DOI 10.1007/978-1-4614-1171-0 3,
© Springer Science+Business Media, LLC 2012
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current inlet conditions. For all practical purposes, compensator design can proceed
by assuming that a setpoint or reference profile has been given in terms of either
�Nf or �EPR.

The transfer functions from �WF to �EPR and �Nf are directly obtained from
the linearized engine model at the appropriate flight condition, and have the form

�EPR

�WF
D a0s

2 C a1s C a2

s2 C c1s C c2
; (3.1)

�Nf

�WF
D b0s

2 C b1s C b2

s2 C c1s C c2
: (3.2)

Coefficients c1 and c2 are intrinsic to the flight condition and fixed for all engine
outputs. The only assumption made about these coefficients is that they define a
pair of transfer function poles having negative real parts. That is, linearized engine
models are inherently stable. Nothing can be assumed about numerator coefficients,
leaving open the possibility that they define transfer function zeroes with positive
real parts, (non-minimum phase zeroes). In certain cases, however, these zeroes
have real parts which are very large in comparison with the absolute value of the
real parts of other zeroes and poles. Such high-frequency dynamics can usually
be ignored without detriment to the accuracy of the linear model, provided the
low-frequency gain of the transfer function is preserved [26]. Whenever a control
technique discussed in this book is unable to handle nonminimum-phase systems,
the necessary assumption will be made explicit.

3.1.1 Integral Control

It is an established fact of linear control theory [26] that a feedback compensator
loop must display at least one free integrator (pole at the origin) for offset-free set-
point attainment. In addition, such Type 1 control loop offers enhanced disturbance
rejection abilities. Indeed, step disturbances at plant input are completely rejected.
Since transfer functions (3.1) and (3.2) cannot be assumed to contain a pole at the
origin, a free integrator must be implemented as part of the controller.

Integral design proceeds by cascading the free integrator with the plant transfer
function to form an augmented plant model, used as the basis for compensator
selection. The zero-pole landscape associated with the augmented plant determines
the simplest compensator structure to be attempted.

3.1.2 Compensator Design with the Root Locus

The classical root locus methodology is readily applied, since the plant models of
(3.1) and (3.2) are of low order. Recalling classical control concepts, the objective
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is to introduce a compensator and choose the loop gain so that all closed-loop poles
have negative real parts, while a number of dominant closed-loop poles belong to
a region of the complex plane which corresponds to desirable transient response.
A set of poles is dominant relative to the remaining poles when their time constants
are significantly larger than the remaining time constants. A time constant ratio of
8 between the fastest dominant pole and the slowest nondominant pole is typically
adopted as a dominance criterion [26].

Root locus design frequently seeks to obtain one pair of dominant complex poles.
This is because the relationship between pole locations and transient response is
straightforward for the standard second-order transfer function:

G.s/ D c
w2n

s2 C 2	wns C w2n
;

where cDG.0/ is the static, or DC gain, wn is the natural frequency, and 	 is the
damping ratio. Readers are referred to Dorf [26] if a review of second-order transient
properties is needed. When 0 < 	 < 1, the response of G.s/ to a step input is
said to be underdamped, and the roots of the denominator are complex and equal
to �	wn ˙p

1 � 	2wni .
The step response can be readily predicted in terms of percent overshoot and

settling time according to the formulas

P:O: D 100e
�
�

	p
1�	2

�


; (3.3)

ts D 4

	wn
: (3.4)

According to these formulas, overshoot is a decreasing function of damping ratio,
while settling time decreases with the absolute value of the real part of the complex
poles. A combination of maximum allowable overshoot and settling time then
results in a trapezoidal target region for the dominant poles, as illustrated in Figs. 3.1
and 3.2.

When more than two poles are dominant or if zeroes are present in the dominance
region, the above formulas and target region do not apply, and iterative design
must be carried out with the aid of a simulation package. In the simplest situation,
the augmented plant has no zeroes (the coefficients of s2 and s in the numerator
are zero). As seen in Fig. 3.1 (top), proportional control is the simplest stabilizing
compensator. However, the free integrator contributed by the controller causes two
branches of the locus to cross the imaginary axis, introducing a limit in the loop
gain for stability. When plant open-loop poles are close to the imaginary axis, slow
response times will be obtained, and the design specifications become unfeasible
under this compensator structure. A zero can be contributed by the compensator
(PD control) to distort the root locus branches so that faster responses are possible,
as seen in Fig. 3.1 (bottom). Since the free integrator belongs to the controller, an
overall compensator with no more zeroes than poles is obtained. Tuning is done
through the location of the zero and the value of the controller gain.
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Fig. 3.1 Root locus analysis of augmented plant with no zeroes

In contrast, one or two zeroes may exist, and they may be nonminimum phase. As
shown in Fig. 3.2 (top), the loop may be inherently unstable, precluding the use of
a free integrator. Alternatively, it may be possible to use negative proportional gain,
as shown in Fig. 3.2, followed by a compensator zero. The reader must keep in mind
that the designed compensators produce�WF as their output, which is allowed to be
negative. This incremental control must be added to the baseline WF corresponding
to the flight condition under which the design is being carried out. Care must be
exercised in keeping WF between realistic limits by testing the linear compensator
against the full nonlinear engine model.

3.1.3 Compensation in the Frequency Domain: Manual
Loopshaping

Although it may be possible to meet transient response specifications using the
root locus and trial-and-error procedures, the frequency domain method bridges
specifications and designer inputs in a more direct fashion. Some trial-and-error is
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Fig. 3.2 Root locus analysis of augmented plant with non-minimum phase zero

still required to fine tune the design. In classical loopshaping, the designer attempts
to reproduce the Bode plot of a target open-loop transfer functionL.s/ D G.s/K.s/

by manipulation of the zeroes, poles, and gain of K.s/. The target transfer function
is specified by its Bode plot features. These features are obtained from an open-loop
target of the form

L.s/ D G.s/K.s/ D w2n
s.s C 2	wn/

; (3.5)

where wn and 	 are chosen so that the closed-loop transfer function

T .s/ D L.s/

1C L.s/
D w2n
s2 C 2	wns C w2n

has a transient response matching the design specifications. Standard formulas [26]
link wn and 	 to step response characteristics such as percent overshoot and settling
time:

PM � 100	; (3.6)
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wb � .�1:196	 C 1:85/wn; (3.7)

wc � wb=1:6; (3.8)

where wb is the closed-loop bandwidth, the frequency at which the magnitude of
T .s/ reaches �3 dB, and wc is the crossover frequency, at which the magnitude of
L.s/ is 0 dB. These formulas are good approximations when 	 is between 0.3 and
0.8. The design process is best accomplished with the aid of software packages such
as SISOtool, a graphical user interface for interactive controller design in Matlab.
Assuming that zero steady-state error to step inputs is desired along with a settling
time ts and overshoot P:0:, the process is as follows:

1. Use (3.3) to calculate the required damping ratio 	 using the P:O: specification.
2. Use (3.4) to calculate the required natural frequency wn using 	 from above and

the ts specification.
3. Use formulas (3.6)–(3.8) to calculate the closed-loop bandwidth wb, the target

crossover frequency wc and the target phase margin PM .
4. According to the features of the uncompensated loop G.s/, zeroes and poles are

added to K.s/ and its gain is adjusted in SISOtool until L.s/ attains the target
phase margin and crossover frequency.

If the design process leads to an L.s/ that attains the target phase margin and
crossover frequency while having a pole-zero structure different than that of (3.5),
it should be emphasized that the original time-domain specifications should still be
approximately met, provided that the designed L.s/ contains an integrator and a
dominant real pole is achieved. That is, if the dominant factor of the designed L.s/
has the form

k

s.s C p/
;

then it corresponds to the target of (3.5) with wn D p
k and 	 D p

2
p
k

.

3.1.4 Edmund’s Model-Matching Method

A model-matching approach due to Edmunds [27] is implemented as a controller
design tool in CMAPSS-1. It is essentially an automated frequency domain loop-
shaping approach, where the target is the closed loop magnitude response, defined
by the tunable bandwidth and damping ratio parameters. It also includes a tunable
real pole beyond the closed-loop bandwidth. A least-squares optimization process
is used to arrive at a controller that produces a closed-loop frequency response
having the specified real pole and the intended bandwidth and damping ratio.
Note from (3.6) that the damping ratio is an indirect phase margin specification.
The advantage of the method is that it requires only three parameters as user
input, eliminating iterative design and thus being suitable for automated design.
Unfortunately, the least-squares process may produce spurious nonminimum phase
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zeroes in the controller. These zeroes may compromise the performance and stability
of the loop, invalidating the design if they cannot be removed on the basis of root
dominance.

3.1.5 Comparative Example

A compensator is to be designed to produce an increment of 100 RPM in fan speed
under the following requirements:

1. Zero steady-state error.
2. Overshoot less than 5%.
3. Settling time near 1 s.

The designs are conducted using the CMAPSS-1 90k-class engine model at FC01.
Comparisons among root locus, loopshaping, and Edmund’s model matching
method will be carried out. Finally, the controllers are applied to the engine model at
a drastically different flight condition (FC08) to illustrate performance deterioration
and motivate the need for advanced controllers. From the tables in Appendix B, the
transfer function from �WF in pounds per second (pps) to �NF in RPM at FC01
can be obtained from the state-space matrices as

�Nf

�WF
D 230:7s C 2032

s2 C 8:564s C 17:47
: (3.9)

The plant features two stable real poles and one minimum-phase zero. The zero-
steady state error requirement is addressed by including an integrator at plant input,
while formulas (3.3) and (3.4) imply that the damping ratio must be greater than
0.7 and that the dominant poles must have real part less than �4. The zero of the
compensator and the gain are readily tuned with the aid of design packages such as
SISOtool, part of Matlab. The overall compensator becomes

K.s/ D 0:016
s C 3:70

s
:

Figure 3.3 shows the root locus of the compensated loop. The closed-loop poles
are �4:19˙ 3:67i and �3:85. Note that there is a real closed-loop pole in addition
to the complex pair used to define the target trapezoidal region. This pole nearly
cancels the zero of the plant, resulting in little deviation from the projected step
response.

Manual loopshaping design is achieved by translating time domain performance
specifications into a set of parameters for the target loop. Using the formulas in
(3.6)–(3.8), the target crossover frequency is calculated as wc D 3:62 rad/s, and the
target phase margin is PM D 70ı. The target loop shape is achieved by including
a real zero in the controller in addition to the integrator and by tuning the gain.
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Fig. 3.3 Root locus design at FC01

The location of the zero and the value of the gain are chosen with minimal iterations
in SISOtool. The resulting compensator becomes

K.s/ D 0:012
s C 3:45

s
:

This controller achieves a phase margin of 76.1ı and a crossover frequency of 3.99
rad/s, as shown in Fig. 3.4.

Edmund’s method is applied next. Formulas (3.6)–(3.8) indicate, again, that a
closed-loop bandwidth of wb D 5:79 rad/s and a damping ratio of 	 D 0:7 match
the specifications of this example. No guidance for the selection of the real pole is
offered by the model-matching method, so it is arbitrarily set to �20. The built-in
model-matching solver in CMAPSS gives the controller

K.s/ D 0:21
s C 3:715

s.s C 20/
: (3.10)

Note that all three methods yield controllers attempting to cancel the zero of the
plant. The transient response is about the same for the three designs, as shown in
Fig. 3.5.
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Fig. 3.4 Manual loopshaping design at FC01

3.2 Shortcomings of Fixed Linear Compensator Designs

Although only three design methods have been discussed, it should be clear
that other classical compensation techniques still produce a fixed control transfer
function. Advanced linear compensation methods such as H1 control and �

synthesis [28–30] ultimately deliver a fixed compensator. If properly conducted,
these compensators should match the specified nominal transient response. These
optimized compensators, however, offer enhanced robustness properties. In the GTE
control problem, a properly designed robust compensator will maintain prescribed
degrees of closed-loop stability and performance as the parameters of the plant
change. As seen earlier, linearized models change due to varying inlet conditions,
inherent engine nonlinearity and engine aging.

As it will become evident in the following sections and chapters, linear compen-
sators designed on the basis of linearized models are sufficient to maintain stability
in the face of plant parameter variations and inherent engine nonlinearity. The major
challenge for control design arises from the need to maintain critical operating
variables within allowable limits, without undue penalties to transient response
qualities. The tendency of variables such as stall margin and turbine temperature
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Fig. 3.5 Comparison of step responses obtained with root locus, manual loopshaping, and model-
matching designs at FC01

to cross their allowable limits is exacerbated by engine aging, which increases the
limit protection challenge by introducing robustness requirements.

3.2.1 Parameter Variations Across the Flight Envelope

To illustrate the extent of performance loss due to parametric changes in the plant,
the loopshaped controller designed at FC01 is applied to the linearized model at
FC08 (see Table 2.3), given by

�Nf

�WF
D 252:2s C 1011

s2 C 3:919s C 3:528
:

A quick calculation reveals that the phase margin is reduced to 42.2ı, which predicts
a higher overshoot (30%), as shown in Fig. 3.6. Although both settling time and
overshoot have fallen outside specifications, performance loss can be qualified
as mild, and stability is not compromised even at this drastically different flight
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Fig. 3.6 Response of controllers designed at FC01 when applied to FC08

condition. Robust linear controllers designed with suitable methods are able to
maintain specifications across a larger range of operating conditions, as shown in
Chap. 4.

Gain scheduling, or the tailoring of controller gains to operating points or
regions, has been used by the GTE industry for decades as the standard way to
account for large parameter variations. To illustrate the extent of these variations,
consider the linearized plant transfer functions at FC01 and FC08. A quick
examination reveals that their four parameters (two pole locations, one zero location
and a gain) have undergone significant changes. In a typical gain scheduling design,
linear functions linking plant parameters to a set of scheduling variables are sought.
Typical choices for scheduling variables in GTE control are inlet static pressure
and fan speed itself. The first scheduling variable accounts for parametric changes
arising from varying altitude, while the second captures intrinsic plant nonlinearity.
Fixed linear compensators are then designed for various combinations of scheduling
variables. Gain interpolation is used during real-time operation. Alternatively, it
may be possible to parameterize controller gains using the scheduling variables
as parameters. Gains are computed in real-time using formulas rather than table
look-ups. Gain scheduling and its parent technique, linear-parameter-varying (LPV)
control, will be examined in Chap. 5.
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Fig. 3.7 Block diagram for output yj under closed-loop control on yi

3.2.2 Engine Limits

As discussed in Sect. 1.3, several critical engine variables must be kept under
allowable limits at all times. Engine models such as those included in the CMAPSS
family include critical variables among the outputs. Moreover, the linearization
functions in all versions of CMAPSS produce output matrices for these outputs.
Given a flight condition and its associated A and B matrices, a pair of C and D
matrices defines a transfer function from fuel flow increment to an incremental
output of choice. These output transfer functions are essential for the design of
limit protection strategies. For instance, the linearized transfer function for the high-
pressure turbine outlet temperature at FC01 is

�T48

�WF
D 146:24

.s C 4:73/.s C 2:30/

s2 C 8:564s C 17:47
;

where �T48 is in ıR. As expected, the denominator of the above transfer function
is the same as that of (3.9). Indeed, the set of poles of the transfer function
from �WF to any system output is the constant for a fixed flight condition. The
transfer function poles match the eigenvalues of state-space matrix A. Thus, the
differences in the transient behavior of critical outputs are characterized by the
zeroes of their respective transfer functions. Suppose Gi.s/, Gj .s/ are two output
transfer functions, and K.s/ is a compensator placed in a feedback loop involving
Gi.s/, as shown in Fig. 3.7. The closed-loop transfer function relative to Gj .s/ is
given by

Yj .s/

R.s/
D Gj .s/K.s/

1CGi.s/K.s/
: (3.11)

Using this formula, the closed-loop transfer function between fan speed increment
demand,Nf; dmd and�T48 under the loopshaped fan speed controller becomes

�T48

�Nf; dmd
D 1:756

.s C 4:733/.s C 3:45/.s C 2:301/

.s C 3:515/.s2 C 7:816s C 23:92/
:
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Fig. 3.8 Closed-loop magnitude response of turbine temperature under fan speed control

A frequency response plot for �T48

�Nf;dmd is shown in Fig. 3.8, revealing large

magnitudes near the design crossover region. This predicts significant transient
peaking of T48, a highly undesirable feature. A simulation of the loopshaped
controller applied to the nonlinear engine model further illustrates the limitations
of a fixed-compensator approach. Gain scheduling and built-in limit protection
features in CMAPSS-1 were bypassed, replacing them by the single control transfer
function. The designed control transfer function K.s/ has �WF as its output. To
deploy the controller to the nonlinear engine, the absolute fuel flow command WF

must be calculated. To do this, the integrator in K.s/ is factored out as follows:

K.s/ D K 0.s/
1

s
:

If the loopshaped design is used for K.s/, the new compensator K 0.s/ is of the
PD type. The output of K 0.s/ is the derivative of fuel flow rate, PWF. Thus, the
absolute fuel flow command is obtained by integration of PWF, using the linearization
value of WF as initial condition, as shown in Fig. 3.9. Since the control transfer
function is driven from the fan speed tracking error, no adjustments are required at
the input (the linearization value of Nf at the starting flight condition cancels out at
the summing node). The simulation corresponds to a TRA demand changing from
0 to 100 degrees as a step, with inlet conditions fixed at FC01 values. Figures 3.10
and 3.11 show that, although the fan speed demand is met with no offset, severe
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Fig. 3.11 Engine response to large fan speed demand with fixed linear compensator

transient peaking occurs in every output. Referential limits for Nf, EPR, T48, PNc,
and SmHPC have been represented with dashed lines. All limits are exceeded by
large amounts, strongly suggesting that, regardless of synthesis method, no fixed
linear regulator can be found that is able to achieve limit protection and adequate
fan speed response.

Finally, the CMAPSS simulation data has been represented in a compressor
map in Fig. 3.12. The horizontal coordinate is the corrected flow through the HPC,
calculated through (1.20), (1.21), and (1.22), with Pt and Tt taken at HPC inlet.
The value from (1.22) is then divided by a scaling factor. The vertical coordinate
is the HPC pressure ratio from the simulation, also scaled. The scaling factors are
applied so that both coordinates are compatible with the scaling used in CMAPSS
to store map data (efficiency and speed contours and R-lines). The initial and final
steady conditions have been represented on the engine operating line. The trajectory
starting from FC14 proceeds toward the stall limit, reaching a zero stall margin
condition. The CMAPSS solver will not produce negative stall margin values hence,
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the trajectory remains on the stall line for some time. It later abandons the stall line
and proceeds to the regulation point at FC01. Although the simulated trajectory is
inadmissible from a practical standpoint, it exemplifies the challenges associated
with control design in the presence of operating limits.



Chapter 4
Engine Control by Robust State Feedback

Abstract This chapter reviews linear multivariable theory and introduces polytopic
system descriptions of plant variability. The chapter also presents various methods
for MIMO state-feedback synthesis, such as: LQR, H2, H1 and mixed-objective
optimization with regional pole placement constraints. A simplified H1 compen-
sator synthesis method is presented for SISO systems. Matlab code and simulations
using the CMAPSS nonlinear engine model are included.

The purpose of this chapter is to provide an overview of robust, multivariable
techniques that are directly applicable to the GTE control problem. As pointed
out in Chap. 3, fixed controllers cannot be expected to preserve engine limits or
to operate satisfactorily across the whole flight envelope, less so if the engine health
parameters are subject to changes and unmodeled dynamics exist. However, various
approaches to gain scheduling are based on a set of fixed controllers. It is therefore
essential to discuss the salient features of robust multivariable control and provide
practical design guidelines. The chapter assumes familiarity with the state-space
pole-placement concept, at a minimum.

Actual engines incorporate real-time sensing of fan and core speeds, which are
the states of the dynamic model. This fact opens the doors to many techniques
based on state measurement feedback, such as the linear quadratic regulator
(LQR) and sliding mode control. Although most state feedback techniques admit
observer-based extensions, the performance and robustness properties attained with
measurement feedback are partially lost when a state estimator is introduced.
A classical example of this effect is given by the performance and robustness losses
associated with observer-based implementations of linear quadratic regulation.
Loop transfer recovery techniques [29] aim to restore the lost performance and
robustness properties.

The chapter begins by introducing essential concepts such as singular values
and signal and system norms and their computation using Matlab. Robustness and
performance are then addressed using classical LQR theory. A characterization of
the uncertain design plant, along with a corresponding formulation of the control
objectives is then developed using the tools of H2 and H1 robust state feedback
synthesis. A classical LQR controller and robust H-norm based controllers are

H. Richter, Advanced Control of Turbofan Engines, DOI 10.1007/978-1-4614-1171-0 4,
© Springer Science+Business Media, LLC 2012
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designed for the 40k-class engine, using WF, VSV, and VBV as actuators. The
designs are then simulated in CMAPSS-40k.

4.1 Overview of Multivariable Systems Theory

Given a multi-input, multi-output (MIMO) system described by a set of state-space
matrices .A;B; C;D/, the single-input, single-output (SISO) transfer function
Gij .s/ from the j�th input to the i�th output is found using the formula:

Gij .s/ D Ci.sI � A/�1Bj CDij ; (4.1)

where Ci is the i�th row of C , Bj is the j�th column of B , and Dij is the
.i; j / entry of matrix D. The arrangement of the Gij in a matrix is the transfer
matrix G.s/. The poles of the individual entries Gij are a subset of the eigenvalues
of A, where pole-zero cancelations may have occurred in individual entries. The
transmission zeroes or multivariable zeroes of G.s/ have a special definition, and
they generally differ from the zeroes of the individual Gij .s/. The zeroes of a
transfer matrix are given by the set of values of s for which G.s/ loses rank.
Mathematically, s D z is a zero of G.s/ with multiplicity k if there exist k linearly
independent vectors v so that G.z/v D 0. In Matlab, the transmission zeroes are
readily found with the tzero command.

In this book, we limit ourselves to rational transfer matrices; that is, matrices
whose entries are ratios of polynomials. A rational transfer matrix is proper if its
individual entries are so, that is, if they do not have more zeroes than poles. A set
of state-space matrices .A;B; C;D/ always results in a rational, proper transfer
matrix.

4.1.1 Example

Take the 40k engine model matrices of CMAPSS-40k at Ground Idle listed in
Appendix C. Define the control input vector as u D Œ�WF �VSV �T and choose
two outputs as y D Œ�EPR �T48�

T. The following Matlab code is used to find the
transmission zeroes:

%Assumes A,B,C,D are in the workspace
sysSS=ss(A,B,C,D); %Create system
sysTM=zpk(sysSS) %Find and display transfer matrix
tzero(sysTM) %Display transmission zeroes

The reader can verify that the transfer matrix returned in sysTM is:

G.s/ D

�
289:0525.sC 3:925/.s C 1:918/ 0:1332.s � 95:1/.s C 3:471/

�10:9483.sC 1:274/.s C 4:64/ 0:1837.s2 C 0:7075s C 4:929/

�

.s C 3:992/.s C 2:439/
:
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The transmission zeroes are f2:9121; �0:5659; �3:9919; �2:4389g, while the
zeroes of the individual entries are f�3:925; �1:918; 95:1; �3:471; �1:274;
�4:64;�0:3538˙ 2:1918ig, a different set. A right-half plane transmission zero is
found at 2.9121. As in the SISO case, such nonminimum phase zeroes introduce fun-
damental limitations to attainable performance and may lead to design difficulties.

To illustrate the definition of transmission zero, evaluate the transfer matrix at
one of the zeroes, for instance at z D 2:9121. The reader can verify that G.z/ is
very close to being singular. Numerical precision prevents the exact verification of
the rank loss property. In contrast, if the zeroes of the individual transfer function
entries are used for z, the rank of G.z/ is always 2.

4.1.2 Singular Values

Singular values are fundamental indicators of the effects of input directionality on
system outputs. In one of their interpretations, they extend the notion of frequency
response to multi-input systems. Recalling basic linear algebra, a vector v of
constant unit length and variable direction will, in general, give rise to vectors w of
different lengths upon the linear operation w D T v, where T is a constant matrix.
The lengths obtained for w as v is varied are bounded above and below by two
quantities known as the maximum and minimum singular values of T :

N�.T / D max
jjvjjD1

jjT vjj; (4.2)

�.T / D min
jjvjjD1

jjT vjj: (4.3)

Every m-by-n matrix T with complex entries can be decomposed as T D U†V �,
where U and V are unitary matrices and † is a diagonal matrix of the form

† D
"
†1 0

0 0

#
;

where

†1 D

2
666664

N� 0 ::: 0

0 �2 ::: 0

:::
::: :::

:::

0 0 ::: �

3
777775
:

The diagonal entries of †1, N� D �1 > �2 > ::: > �p D � are the singular values,
with p Dmin .m; n/. The notation V � is used for the complex conjugate transpose
of V , and a unitary matrix is such that V �V D V V � D I . In Matlab, the singular
value decomposition is found with the command [U,S,V]=svd(T).



54 4 Engine Control by Robust State Feedback

4.1.3 The Infinity Norm of a Linear System

In control systems, notions of “size” are customarily defined for transfer matrices,
leading to bounds on the magnitude of the output as the input is varied under
constant norm. One of such definitions is given by the infinity norm jjGjj1, as
follows: Suppose a p-by-m transfer matrix G is excited with an input vector u.t/
with sinusoidal components uj .t/, j D 1; 2:::m, all sharing the same frequency w
but with possibly different amplitudes and phase shifts: uj .t/ D Uj sin.wt C j /.
Supposing output components reach a steady-state of sinusoidal oscillation of the
form yi .t/ D Yi sin.wt C �i /, i D 1; 2:::p, an amplification ratio can be defined as
jjY jj=jjU jj, where U D ŒU1 U2 :::Um� and Y D ŒY1 Y2 :::Yp�. The infinity norm of
G, denoted jjGjj1, can be interpreted as the least upper bound (supremum) of the
amplification ratio as frequency, input component amplitudes and phases are varied.
That is,

jjGjj1 D sup
j ;Uj ;w

jjY jj
jjU jj :

The frequency-domain definition of jjGjj1 allows its calculation through the
maximum singular value:

jjGjj1 D sup
w

N� fG.jw/g : (4.4)

For practical purposes, w is swept in a range, calculating the maximum and mini-
mum singular values of G.jw/ at each point. The overall maximum of N�.G.jw//
over all frequencies is the value of jjGjj1. In Matlab (Robust Control Toolbox),
an efficient numerical routine is implemented in the hinfnorm command. Alter-
natively, a routine using svd and freqresp can be easily programmed. As an
example, the following sequence of Matlab commands plots the maximum and
minimum singular values of the transfer function of Example 4.1.1 (assuming
system matrices are available in the workspace):

>> sys=pck(A,B,C,D);
>> w=logspace(-1,4,500); %create a vector of 500 logarithmically
spaced frequencies between 10ˆ(-1) and 10ˆ4
>> Gf=frsp(sys,w); %calculate frequency response
>> [u,s,v]=vsvd(Gf); %calculate SV decomposition at each
frequency
>> vplot(’liv,lm’,s); %plot singular values. The norm can be
visually extracted from the plot
>> hinfnorm(sys) %accurate calculation via bisection search

The reader can verify that jjGjj1 D 289 for the transfer matrix of Example 4.1.1.
Needless to say, this number is affected by the choice of units of measurement for the
inputs and outputs of the system. The infinity norm may also be calculated directly
with norm(sysTM,inf).
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4.1.4 The 2-Norm of a Linear System

The infinity norm is a measure of the peak amplification produced by the linear
system as input frequency and direction are varied. The 2-norm measures system
amplification in terms of root mean square averages rather than peaks:

jjGjj2 D
s

1

2


Z 1

�1
trace fG�.jw/G.jw/g dw: (4.5)

The definition shows that a finite 2-norm can only be obtained if G.1/ D 0, that is,
if the transfer matrix is strictly proper. For rational, strictly proper transfer matrices
with state-space realization .A;B; C; 0/, where A is stable, the 2-norm calculation
reduces to

jjGjj22 D trace .B�QB/ D trace .CPC �/; (4.6)

where P and Q are the observability and controllability Gramians, obtained from
the following Lyapunov equations:

AP C PA� C BB� D 0;

A�Q C QA C C �C D 0:

The Matlab command h2norm incorporates these calculations. The transfer matrix
of Example 4.1.1 does not have a finite 2-norm, since it is not strictly proper. The
reader may verify this fact by inspection, or numerically, using norm(sysTM,2).

4.2 Robust State Feedback Synthesis

The GTE control problem, although very challenging in many respects, has a
simplifying feature: the states of the linearized plant are measurable in real-time.
That is, fan and core speeds may be used directly in the calculation of feedback laws.
This permits the application of several state-based techniques for control without
the need for state estimation. In this section, we are interested in assessing the
stability of a feedback arrangement of plant and controller, not only when plant
parameters are known, but when they are subject to bounded, uncertain variations.
Figure 4.1 shows the basic state-feedback arrangement considered in this section.
The linearized engine plant is described in state-space form as

Px D Ax C Bu C �w; (4.7)

y D Cx CDu Cƒw C n; (4.8)
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ẋ = Ax + Bu + Γw
w

u

z∞

z2

x

Performance outputsExogenous input

K

Fig. 4.1 State feedback configuration

where x D Œ�Nf �Nc�
T is the state vector, u D Œ�WF �VSV �VBV �T

is the vector of control inputs and w is a vector that can be used to include
the effect of disturbances. In linearized models obtained with CMAPSS, w is
used to represent a vector of health parameter inputs, which can be regarded as
disturbances. As described in Sect. 2.1.3, w can be used to simulate the effects of
aging and deterioration of engine components. Output vector y may be defined
to reflect a combination of sensed variables, outputs that need to be regulated
and quantities that need to be monitored or maintained between certain limits.
A sensor noise vector n may also be considered in certain control problems. A
steady operating point is a set of states Nx such that A Nx C B Nu C � Nw D 0 for
some fixed inputs Nu and Nw. That is, given a constant health parameter vector and
a constant vector of actuator inputs, the engine reaches a steady operating condition
with corresponding constant values of fan and core speeds.

4.2.1 Polytopic Description of System Uncertainty

In addition to exogenous inputs, system (4.7) is subject to variations in all its
describing matrices. In the GTE, these changes arise mainly from two sources:

• Intrinsic nonlinearity: the dynamic relationship between control inputs and states
is nonlinear, even when operating the engine at fixed environmental conditions
(altitude, aircraft speed, ambient temperature). Therefore, system matrices will
vary with steady-state linearization point.

• Parametric variations: given the same set of steady states and inputs, different
system matrices will be obtained through linearization if environmental condi-
tions are changed.

It is important to note that engine health status could have been modeled as
parameters of functions f1 and f2 in (2.1) and (2.2). Changes in these parameters
would be reflected in changes to the linearized system matrices. Rather, the
designers of CMAPSS have chosen to capture faults and deterioration effects by
means of exogenous inputs collected in vector w.
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4.2.1.1 Scheduled vs. Robust Control

The variations in A,B C , D, � and ƒ are deterministic by nature. That is, they can
be traced to the steady operating point in a repeatable way. In a scheduled control
approach, this knowledge about the variation of system matrices with operating
point is used to construct a controller whose gains are tailored to operating region.
In contrast, when system matrix variations are not excessively wide, the designer
may choose to ignore this knowledge and regard the variations as uncertain, but
contained within certain bounds. This approach, termed “robust feedback synthesis”
derives fixed controllers whose sensitivity to plant parameter changes is minimized.
The complexity associated with gain-scheduled control implementations is thus
avoided. As the next sections will demonstrate, robust stability with fixed linear
compensators is feasible in GTE control systems. Consistent transient response
qualities across the flight envelope are not obtainable with fixed compensators,
however. For this reason, gain-scheduled control is used extensively in GTE control
systems. Gain scheduling is covered in Chap. 5.

In this section, we focus on the robust feedback stabilization problem, that is, we
attempt to find a fixed gainK capable of maintaining closed-loop stability regardless
of variations in system matrices. An appropriate description of the uncertain state-
space plant is given by the following polytopic system:

Px D A.˛/x CB.˛/u C �.˛/w; (4.9)

where A.˛/, B.˛/ and �.˛/ are restricted to vary in a polytope of matrices, defined
as a convex combination of k vertices Ai and Bi , i D 1; 2:::k:

A.˛/ D
kX
iD1

˛iAi ;

B.˛/ D
kX
iD1

˛iBi ;

�.˛/ D
kX
iD1

˛i�i ;

˛ D Œ˛1; ˛2; :::˛k �;

kX
iD1

˛i D 1:

Thus, each instance of A, B and � can be understood as made up of “percentage”
contributions of the vertices. These contributions are reflected in weight vector
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˛, whose entries are termed polytopic coordinates. Note that the influence of
exogenous inputs through � is not relevant to stability analysis. Similar definitions
apply to output matrices C.˛/, D.˛/, and ƒ.˛/.

To generate a polytopic description of a GTE model, the designer must choose a
number of representative steady operating points and perform system linearization.
Simulation packages such as the CMAPSS family include a pre-defined set of such
flight conditions, which provide good coverage of the entire flight envelope.

4.2.2 Nominal and Robust Stability

Recall that a rational transfer matrixG.s/ is stable if its entries are transfer functions
whose poles have negative real parts. In a state-space realization of G.s/ given by
the quadruple .A;B; C;D/, stability is equivalent to the condition that all the eigen-
values of A have negative real parts. If no pole-zero cancellations occur, the eigen-
values ofAmatch the set of poles of the entries ofG. When the feedback control law
u D �Kx is applied to system (4.7), the resulting closed-loop system has the form

Px D .A� BK/x C �w (4.10)

Thus, nominal stability is ensured if K can be chosen so that all eigenvalues of A�
BK have negative real parts. The pair .A;B/ is called stabilizable when a stabilizing
gain K exists. Several tests for nominal stabilizability are possible. A simple test
for stabilizability is accomplished by evaluating the modal controllability of .A;B/
as follows: the pair is first transformed to its controllability form . NA; NB/:

NA D
"
Anc 0

A21 Ac

#
; NB D

"
0

Bc

#
:

This transformation arises from the change of state coordinates z D T x, where
T D T T is an orthogonal transformation matrix. This change, referred to as a
similarity transformation, results in system matrices NA D TAT T and NB D TB ,
which share the same stabilizability properties as the original pair .A;B/. Matrix
Anc describes the dynamics of the uncontrollable subspace, a set of state variables
that are unaffected by the control input. The pair .A;B/ is stabilizable if and only
if Anc is stable. The similarity transformation T required to put the system in
controllability form can always be calculated. In Matlab, T , NA and NB are found
directly using the ctrbf command.

Note that stabilizable systems need not be controllable, but controllability implies
stabilizability. Controllable systems possess an empty uncontrollable subspace,
and Anc does not exist. When a system is controllable, a stabilizing K may be
found by pole-placement methods or more sophisticated robust synthesis methods,
considered later in this chapter. When the system is only stabilizable, however,
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a number of poles equal to the dimension of the controllable subspace may be
arbitrarily placed. The pole-placement problem is solved in z-coordinates using
.Ac; Bc/, resulting in a gain Kz yielding desired pole locations for Ac � BcKz. The
feedback gain to be used in the original system is then calculated asK D Œ� j Kz�T ,
where � denotes arbitrary values having no effect on the achieved pole locations.
These values do have an impact on the magnitude of the control effort, however.
For this reason, their choice is no longer immaterial in optimal feedback synthesis
approaches such as LQR or H1 control.

4.2.3 Quadratic Stability of Polytopic Systems

Consider a polytopic system of the form

Px D A.˛/x (4.11)

with vertices Ai , i D 1; 2; ::k and ˛ D Œ˛1; ˛2; :::˛k �. The system is quadratically
stable if all trajectories x.t/ starting from an arbitrary initial condition x.0/

converge to the origin as t ! 1 and, in addition, there exists a quadratic function
V.x/ D xTPx, which decreases when evaluated at x.t/. Quadratic stability is
equivalent to the existence of a k-by-k symmetric matrix P satisfying the following
set of Lyapunov inequalities [31]:

AT
i P C PAi < 0 ; i 2 f1; 2:::kg (4.12)

P > 0:

The inequality signs correspond to linear matrix inequalities, or LMI. The notation
X > Y used in conjunction with matrices X and Y means that X � Y is a positive-
definite matrix. A positive-definite matrix P defines a quadratic function f .x/ D
xTPx such that f .x/ > 0 for all vectors x ¤ 0. One test for positive-definiteness is
given by the requirement that all eigenvalues of P be positive. Similarly, a negative-
definite matrix defines a quadratic function that does not take positive values, and
negative-definiteness is equivalent to the requirement that all eigenvalues of P be
negative. For more details, the reader is referred to [32].

The quadratic stability of polytopic system (4.11) is readily evaluated in
Matlab. Assuming that the vertices are available in the workspace as variables
A_1, A_2,...A_k, the following sequence of commands attempts to find P :

s1=ltisys(A_1)
s2=ltisys(A_2)
....
sk=ltisys(A_k)
polysys=psys([s1 s2 ... sk])
[tmin,P]=quadstab(polysys)
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Quadratic stability can be conservative, as it is based on a single quadratic
Lyapunov function defined by P . It is also possible to seek a piecewise-quadratic
Lyapunov function to reduce conservativeness. The interested reader is referred, for
instance, to Johansson [33] for more information.

We now focus on the polytopic description of (4.9). We wish to determine
whether a state feedback gain K exists that results in quadratic stability of the
closed-loop system resulting from applying the control u D �Kx. This is the
quadratic stabilizability problem, which has also been formulated in terms of
LMIs [31]. Quadratic stabilizability is equivalent to the existence of a symmetric,
positive-definite matrixQ and a matrix Y such that

QAT
i CAiQ � BiY � Y TBT

i < 0 ; i 2 f1; 2:::kg : (4.13)

The search forQ and Y given verticesAi andBi is formulated as an LMI feasibility
problem. Feasibility can be evaluated in Matlab using the feasp command. Given
feasible matrices Q and Y , a stabilizing feedback gain can be computed as K D
YQ�1. We defer details regarding the computation of feedback gains to Sects. 4.4
and below, where synthesis methods are considered that include robust stability and
performance requirements.

4.3 Performance Measures

Consider again the feedback arrangement of Fig. 4.1. Performance outputs z2 and
z1 are chosen by designers to measure the effects of disturbances (vector w)
on variables of interest. Denoting the transfer matrix from w to z2 as Gw;z2 .s/,
a measure of closed-loop system performance is given by the norm of Gw;z2 .s/:
small values indicate that the system state and the computed control input are not
very sensitive to disturbances. Minimizing the 2-norm of Gw;z2 .s/ corresponds to
an optimal linear quadratic control problem to be discussed in the next section.
Denoting the transfer matrix from w to z1 as Gw;z

1

.s/, another measure of closed-
loop system performance is given by the norm of Gw;z

1

.s/. It should be noted
that w can be extended to contain reference commands in addition to disturbances.
Thus, if the control objective includes the requirement that the output y track a
reference command r.t/, vector w can be defined as w D Œd r�T, and good
tracking accuracy will be obtained by minimizing the norm of Gw;z.s/, where z
is defined as the tracking error: z D r � y. Minimizing the infinity norm of Gw;z

1

corresponds to an H1 gain synthesis problem, to be discussed in Sect. 4.6. The
designer’s role is to define z in a manner that best reflects the performance being
sought.
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4.4 LQR State Feedback Synthesis

Consider first the nominal system of (4.7), where A and B are fixed and no
disturbance input is considered. Define a performance output as z D Cx C Du
such that DTD is invertible. The linear quadratic regulator problem, or LQR, is to
find the control u.t/ that minimizes a performance measure given by

J D
Z 1

0

z.t/Tz.t/dt: (4.14)

Note that the value of J depends on the initial conditions x.0/. Under some
conditions [28–30] which include stabilizability of .A;B/, the solution takes the
form of a state-feedback law u.t/ D �Kx.t/ with a uniquely defined value ofK as
follows:

.DTD/�1.BTP CDTC/ D K; (4.15)

ATP C PA � .PB C C TD/.DTD/�1.BTP CDTC/C C TC D 0: (4.16)

The optimal solution for K is the same regardless of x.0/. Equation (4.16) is
known as the algebraic Riccati equation, and it yields a unique, positive-definite
solution for P under the assumption that .A;B/ is stabilizable. In Matlab, the
Riccati equation can be solved with the are command. Alternatively, the lqr
command computes P and the optimal gainK . CallingQ D C TC , R D DTD and
N D C TD, we see that zTz D xTQx C uTRu C 2xTN u. Given an initial condition
x.0/, a unique state trajectory x.t/ is obtained under the control u D �Kx.
The term xTQx penalizes excessive deviations the components of x.t/ from zero,
positive or negative. Since the term is under an integral sign and the integral takes
only positive values, trajectories which converge to zero slowly will be penalized
more than those rapidly approaching zero. Similar penalties are applied to the
control vector u, but using a different weighting matrix. The designer can useQ and
R to manage the tradeoff between a fast response without excessive peaking and the
magnitude of the control effort required to produce it. The cross-term 2xTN u is not
easily linked to response performance features and may be safely omitted in most
practical situations.

4.4.1 LQR with Regional Eigenvalue Constraints

A commonly-used tuning approach is to use diagonal Q and R matrices, individu-
ally penalizing state and control components by adjusting the diagonal entries of
these matrices. This method is not always satisfactory, and many trial-and-error
simulations could be needed. The designer may instead require that all closed-loop



62 4 Engine Control by Robust State Feedback

eigenvalues have real parts less than a specified negative number � . The time
constants of the closed-loop eigenvalues can thus be made as small as desired,
accelerating the speed of response. To do this, simply use A C �I in place of
A when calculating the gain from (4.15) and (4.16) [34]. This method, however,
does not restrict the imaginary part of the closed-loop poles, potentially leading to
unacceptably low damping ratios. To address this limitation, a circular region with
center at �� C 0i and radius � may be specified. The solution is found by using
1
�
.AC �I; B/ as state-space description of a discrete-time LQR problem. For more

details, the reader is referred to [34].

4.4.2 The Cheap LQR Problem and Performance Limits

Maintaining a low level of control effort is not crucial in certain problems. This
may occur, for instance, when the scaling of matrix B is such that small values of
u contribute significant changes to Px, and the allowable values of u – defined by
actuator limits – are large. The performance measure used in conjunction with the
cheap LQR problem is given by

J D
Z 1

0

xTQx C �uTRu dt; (4.17)

where � ! 0. Recalling that Q=C TC , the achievable performance (i.e., the
minimum attainable value of J ) is influenced by the zero locations of the transfer
matrix defined as H.s/ D C.sI � A/�1B . As shown in [35, 36], J will approach
zero as � ! 0 if and only if H.s/ is minimum-phase. In this case, the minimum-
phase zeroes are canceled by closed-loop poles in the limit, as � ! 0. When
H.s/ contains non-minimum-phase zeroes, J has a nonzero minimum value and
the closed-loop poles approach their mirror images relative to the imaginary axis.
Any excess poles approach infinity along asymptotes that remain in the left-half of
the complex plane.

The designer must therefore exercise care in choosing C to ensure that H.s/ is
minimum-phase and performance improves uniformly as � ! 0.

4.4.3 LQR Robustness Properties

The solution for the optimal feedback gain K enjoys strong stability robustness
properties. Specifically, an increasing gain margin of infinity, a decreasing gain
margin of 50% and a phase margin of ˙60ı are guaranteed for each control channel
in conjunction with any choice of Q and R. That is, if we consider the SISO
transfer functions from input components ui to performance output components zi ,
an unlimited gain increment or a 50% gain reduction will be tolerated without
compromise to closed-loop stability. Similarly, a phase shift can be introduced (due
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to unmodeled dynamics or signal delays) in a range of ˙60ı without destabilizing
the loop.

In the GTE control problem, such robustness properties are beneficial if actuator
dynamics are to be ignored. Many actuators can be modeled as a first-order transfer
function, introducing phase lags of up to 90ı. Thus, if the closed-loop bandwidth is
designed at appropriately small values, the phase lag due to actuator dynamics can
be kept larger than �60ı and stability can be maintained. Similarly, the nominal
gain of the actuator transfer function can be reflected in plant matrix B . Gain
reductions of up to 50% due to uncertainties or changes to actuator dynamics will be
tolerated.

4.4.4 Polytopic Systems

The previous sections assume that .A;B/ is a fixed, known plant description. To
design LQR controllers for the GTE under this assumption, a single representative
steady operating point would have to be chosen, and a single gain K would be
calculated for use in the entire operating envelope. If this were to be done, robust
stability of the resulting polytopic system with vertices .Ai �BiK/ could be readily
evaluated using conditions (4.12). Even if stability is verified, performance could be
unsatisfactory. A more reasonable approach is to use information about all vertices
to seek a control law, which minimizes an integral quadratic cost of the form of
(4.14). The optimal solution is given by a gain-scheduled state-feedback control
u D �Kix, where Ki are derived from a set of Riccati equations.

4.5 H2 State Feedback Synthesis

Consider the nominal system of (4.7) and suppose only performance output z2 is
considered in Fig. 4.1, defined as z2 D CxCDzuuCDzww. The closed-loop system
arising from the application of state-feedback control law u D �Kx is given by

Px D .A � BK/x C �w;

z2 D .C �DzuK/x CDzww:

The transfer matrix from the exogenous input vector w to the performance output z2
is then

Gw;z2 .s/ D .C �DzuK/.sI � .A � BK//�1� CDzw:

The H2 feedback gain synthesis problem is to be formulated as

Find K so that .A� BK/ is stable and jjGw;z2 jj2 < � for some � > 0.
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That is, we seek a stabilizing feedback gain that maintains the influence of the
exogenous inputs on the performance outputs below a prescribed level �. For
example, choosing z2 to be the incremental HPC stall margin � SmHPC would
result in a closed-loop controller, which minimizes the sensitivity of stall margin to
health parameter changes, in addition to rendering the closed-loop system stable.

4.5.1 Optimal H2 Synthesis

In an H2 synthesis problem, a prescribed norm value � is targeted by solving the
following LMI feasibility problem in variables X , Q, and K:

"
.A� BK/X CX.A� BK/T �

�T �I

#
< 0; (4.18)

"
Q .C �DzuK/X

XT.C �DzuK/
T X

#
> 0; (4.19)

trace.Q/ < �2: (4.20)

A numerical solution to the above LMI problem is incorporated in Matlab’s
msfsyn command to be discussed in the example at the end of this chapter. An
optimal H2 state feedback synthesis procedure is to attempt the LMI feasibility
problem repeatedly, with decreasing values of �, until the problem is no longer
feasible.

4.5.1.1 LQR and H2 Equivalence

When all states are available for measurement, the H2 state feedback synthesis
problem is equivalent to an LQR problem. Further, when only a vector of noisy
measurements is available, the H2 problem is equivalent to a linear quadratic
Gaussian, or LQG problem, whose solution is given by the combination of a state
estimator (Kalman filter) and a state feedback law computed on the basis of the state
estimates. Here, we focus in the state measurement feedback case, where all states
are available for computation of the feedback law. Recalling that jjGw;z2 jj2 is finite
only when the transfer matrix is strictly proper, we only consider the case Dzw=0.
It can be shown [28] that the optimal H2 state feedback synthesis problem with
plant matrices .A;B; �/ and performance output matrices .C;Dzu/ is equivalent to
an LQR problem with Q=C 0C , R=D0

zuDzu and N=C 0Dzu. The gain K obtained
as the solution of the LQR problem will be the same as the one resulting from H2

optimization regardless of � , but the optimum norm will be affected by it.
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To illustrate the equivalence in detail, consider the following example system

A D
�

0 1

�1 �2
�
; B D

�
1 0

1 1

�
; � D

� �1
3

�
;

C D
�

1 1

�1 2

�
; D D

�
0 1

2 2

�
:

We leave it to the reader to verify that the solution to the LQR problem with
Q D C 0C , R D D0

zuDzu, and N D C 0Dzu is given by

K D
�

1:13 0:59

�1:01 0:54

�

and that the solution to the optimum H2 gain synthesis problem (see following
section) gives the same K as above regardless of � . If the given � is used, the
optimum cost is 0.4484.

4.5.2 Polytopic Systems

The H2 state feedback synthesis problem for polytopic systems is also tractable
and can be solved through LMI feasibility. The definition of 2-norm of (4.5) is no
longer appropriate for polytopic systems. Instead, the equivalent LQG definition
of 2-norm is used, taking the maximum over all instances of system matrices
.A.˛/; B.˛/; C.˛//:

jjGjj22 D max
˛

lim
T!1

E

�
1

T

Z T

0

yT y dt

�
; (4.21)

where y is the output produced by polytopic system G when the input is a white
noise with unit covariance. Thus, a worst-case approach is adopted when calculating
the 2-norm of a polytopic system. A prescribed 2-norm can be targeted by solving
an LMI feasibility problem whose complexity increases with the number of vertices.
For further details, the reader is referred to [31]. The msfsyn command in Matlab
admits polytopic system descriptions.

4.6 H1 State Feedback Synthesis

The H2 synthesis approach delineated above seeks to maintain the influence of
exogenous inputs on a designer-defined performance output below a prescribed
value. The 2-norm is used as a measure of the “strength” of this influence. The
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H1 state feedback synthesis problem described here has the same objective, with
the distinction that the infinity norm is used. Also, the definition of the performance
output admits a nonzero Dzw term. Consider the nominal system of (4.7) and a
performance output z1=CxCDzuuCDzww. The transfer matrix from the exogenous
input vector w to the performance output z1 is then

Gw;z
1

.s/ D .C �DzuK/.sI � .A � BK//�1� CDzw:

The H1 feedback gain synthesis problem is formulated as

Find K so that .A� BK/ is stable and jjGw;z
1

jj1 < � for some � > 0.

The corresponding LMI feasibility problem is formulated as

2
64
.A � BK/X CX.A� BK/T � X.C �Dzu/

T

�T �I DT
zw

.C �DzuK/X Dzw ��2I

3
75 < 0; (4.22)

X > 0: (4.23)

As in the H2 case, an optimal H1 state feedback synthesis procedure is to attempt
the LMI feasibility problem repeatedly, with decreasing values of � , until the
problem is no longer feasible. This process, commonly known as � -iteration, is
incorporated in Matlab’s hinfsyn command. Alternatively, msfsyn can be used.
The latter command also works with polytopic systems.

4.6.1 Polytopic Systems

The infinity norm of a polytopic system G is regarded as the maximum time-
invariant norm taken over all instances of system matrices .A.˛/; B.˛/; C.˛/;D.˛//
with transfer function G˛.s/:

jjGjj1 D max
˛

sup
w

N� fG˛.jw/g : (4.24)

As in the H2 case, a prescribed infinity norm can be targeted by solving an
LMI feasibility problem whose complexity increases with the number of vertices.
The msfsyn command in Matlab admits polytopic system descriptions. For
further details, the reader is referred to [31] and Matlab’s Robust Control Toolbox
documentation.
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4.7 H2/H1 Feedback Synthesis with Regional Pole Placement

The reader may question the need for the H2 synthesis approach, given that H1
synthesis pursues the same general objective, and does not have the restriction
Dzw D 0. An intuitive justification for considering both norms can be found in their
input/output interpretations. Minimizing the infinity norm amounts to reducing the
peak of the closed-loop magnitude response across all frequencies. By design, the
magnitude response for frequencies other than the one corresponding to the peak
magnitude will also be suppressed. When high-frequency actuator dynamics are
left unmodeled, good tracking and disturbance rejection calls for more selective
control actions according to frequency: the controller should have an enhanced
reaction to low-frequency error components, while being more insensitive to high
frequency components. Subjecting all frequencies to the same peak magnitude
constraint is conservative, and may lead to poor results. For this reason, frequency
shaping is generally a necessary step in H1 methods. In contrast, the definition of
2-norm given in (4.21) indicates that minimizing jjGw;z2 jj2 implies reducing the time
average (in a root-mean-square sense) of the performance output z2. The definition
given in (4.5) shows that a frequency-average is also implied. The relationship to
LQR control and its integral quadratic performance measure gives the H2 approach
a time-domain interpretation, allowing the designer to manage the performance
vs. control effort constraint in a direct way. The reader wishing to examine the
theoretical bases of H1 and H2 control in detail is referred to standard material,
for instance [28–30]. These references also provide detailed coverage of frequency-
shaped H1 methods.

It is possible to consider H2 and H1 synthesis objectives simultaneously by
defining two sets of performance outputs z2 and z1. The designer can balance the
importance of each minimization by defining a weighted objective of the form

M D ajjGw;z
1

jj2 C bjjGw;z2 jj2; (4.25)

where a and b are non-negative weights. In the polytopic case, the norms are
understood to be worst-case values, i.e., the maximum over all instances of system
matrices. Again, minimization of the weighted objective is carried out under
LMI feasibility constraints [37]. Unlike direct pole-placement design, norm-based
minimization as presented until now does not provide a mechanism to enforce a
location constraint for the closed-loop poles. Such regional eigenvalue constraint
can be incorporated as an added LMI constraint, and the minimization problem
remains tractable under some relaxing assumptions, leading to suboptimal solutions.
The msfsyn command can be used to find a suboptimal solution to the mixed norm
minimization problem, with the option of including a regional eigenvalue placement
constraint. Placement regions in the complex plane can be of various shapes. The
designer can obtain generally faster response times by choosing a constraint of the
form Re(s/ < p, where s denotes a closed-loop pole and p is a negative number.
When the constraint is fulfilled, every closed-loop pole has a time constant lesser
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than 1=jpj. A circular region also be used to prevent poles having excessively low
damping. The example at the end of this chapter illustrates the use of msfsyn in
detail, as pertaining to the GTE control problem.

4.7.1 State-Feedback Setpoint Regulation and Input Integration

The state-feedback control law u D �Kx is designed to regulate the plant state
from an arbitrary initial condition x.0/ to the origin. This law is adequate for GTE
control problems where fan speed must be driven from one steady point to another.
Indeed, recall that the linearized plant state is given by fan and core speed deviations
from a steady operating state Œ NNf NNc�

T: x D Œ�Nf �Nc�
T, where �Nf D Nf � NNf

and �Nc D Nc � NNc. In nonlinear simulation or actual realtime operation, x is
formed by shifting the sensed Nf and Nc by the intended reference states NNf and
NNc. Thus, x D 0 and u D �Kx D 0 at the beginning of the maneuver. Since u is

the incremental actuator input, i.e.,uT D ŒWF �W F VSV � VSV VBV � VBV �,
constant inputs W F, VSV and VBV are being applied to the engine at the initial
time. A setpoint change is produced when the reference states and inputs are
suddenly changed to values defining a new steady operating point. The state will
no longer be zero and regulatory control action will begin according to u D �Kx.
If the closed-loop system is stable, x and u will be driven to zero again. The
actual inputs applied to the engine must be shifted by their references, that is,
ŒWF VSV VBV �T D �Kx C ŒW F VSV VBV �T. The control system must
thus include a pre-calculated list of the required references for each desired pair of
fan and core speed setpoints so that the sensed variables and the calculated control
can be appropriately shifted. Figure 4.2 shows the structure of the control law as
applied to the nonlinear engine. From a nominal linear model standpoint, a steady
operating point is defined by the equation

0 D A Nx C B Nu:

When A has no poles at zero (as is the case for the open-loop engine), the
equilibrium state corresponding to a constant input Nu can be calculated as

Nx D �A�1B Nu: (4.26)

The equation for the reverse operation is

B Nu D �A Nx: (4.27)

If there are less inputs than states, i.e., if m < n, system (4.27) is underdetermined
and infinitely many solutions for u exist. If m D n and B is invertible, a unique
solution can be found. If m > n the system is overdetermined and solutions for Nu
exist if A Nx is in the column span of B . This condition cannot be assumed to hold
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in general. When considering three control inputs and two states for the GTE, no
solutions to (4.27) can be assumed to exist for an arbitrary choice of Nx. In addition
to the structural difficulty arising from the use of three actuators with a 2-state plant,
the reader must keep in mind that linearized models are only approximations to the
actual nonlinear engine. The calculations for the triples .W F; VSV ; VBV / that yield
a desired pair . NNf; NNc/ must be performed using an accurate steady-state solver for
the nonlinear engine.

Disturbances and intrinsic engine nonlinearity limit the tracking accuracy of
the state feedback law u D �Kx. The effect of disturbances on the regulated
variables can be minimized by using the synthesis approaches of this chapter, but
not eliminated entirely. The ability of the control system to track varying reference
commands and reject disturbances can be enhanced by including integral control
action. As mentioned in Chap. 3, constant disturbances produce zero steady-state
error if the control loop is of type 1, that is, if it includes a free integrator. Input
integration is commonly-used in actual GTE control implementations and is found
in the built-in controllers designed for CMAPSS. To achieve integral control, the
following augmented plant description is used:

Px D Ax C Bu C �w; (4.28)

Pu D ur; (4.29)

which can be compactly described as

Pxa D Aaxa C Baur C �aw; (4.30)

where the ur is the new control input and the augmented state vector and matrices
are defined as xa D ŒxT juT�T and

Aa D
�
A B

0 0

�
; Ba D

�
0

I

�
; �a D

�
�

0

�
: (4.31)

When .A.˛/; B.˛/; �.˛// are polytopic, the vertices of the corresponding polytopic
augmented system can be directly computed. Moreover, the augmented poly-
topic system remains quadratically stabilizable when the original system is so.
Hence, the various norm-based gain synthesis approaches can be applied without
restrictions.

4.8 Example: CMAPSS-40k

In this section, we consider the fan speed control problem assuming that a fixed-
gain feedback law of the form u D �Kx is to be used across the flight envelope.
The model contained in CMAPSS-40k is used for linearized plant extraction and
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for realistic nonlinear simulations. We begin by choosing a six-vertex polytopic
description of the linearized engine to match representative flight regimes. We then
conduct a quadratic stabilizability evaluation considering input integration and then
carry out several designs, observing the following:

1. Setpoint changes near different flight conditions: the H2 and H1 designs with
input integration are compared in their ability to produce consistently good
responses near different operating regimes.

2. Effects of engine health status and faults: the disturbance rejection capabilities
of the various designs are compared.

4.8.1 A Polytopic Description for the 40k Engine

Let the vector of incremental control inputs be defined as

u D Œ�WF �VSV �VBV �T:

A six-vertex polytopic description .A.˛/; B.˛/; �.˛// can be constructed by
linearizing the engine at the six representative conditions shown in Table 2.4. The
corresponding linearized system matrices are listed in Appendix C. Two outputs
have been selected for the purposes of this example: the temperature at HPT outlet
(T48) and the HPC stall margin (SM-HPC). The corresponding C , D, and ƒ

matrices used as output vertices are also listed in Appendix C.

4.8.2 Stabilizability of the Scaled Augmented Plant

The augmented vertices Aai; Bai necessary to design an integral controller are
obtained directly from (4.31). Direct use augmented plant matrices in the LMI
feasibility problem of (4.13) may pose numerical difficulties due to disparate scaling
of Aa and Ba. Indeed, Ba is made up of only zeroes and ones, while Aa contains
entries ranging from zero to thousands. To avoid numerical problems, it is advis-
able to obtain a balanced realization through similarity transformation. Defining
za D T xa, T is selected so that the transformed pair of matrices Abal D TAaT

�1
and Bbal DTBa generate a matrix ŒAbal Bbal� with approximately the same row
and column norms. This process is implemented in Matlab’s ssbal command.
Alternatively, the balreal command can be used. A transformation matrix T
is obtained using an arbitrary augmented vertex and then used to transform the
remaining vertices. This is a reasonable approach since all vertices share a similar
scaling. Assuming that the augmented vertices are available in the workspace as
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Aa1, Aa2, etc. and Ba (constant for all vertices), the following code can be used to
evaluate quadratic stabilizability:

%Obtain balanced realizations
Cdummy=[1 0 0 0 0];Ddummy=zeros(1,3);
sys=ss(Aa1,Ba,Cdummy,Ddummy);
[sysbal,G,T,Ti]=balreal(sys);
[Abal1,Bbal]=ssdata(sysbal);
%Use the same transform for all augmented systems
Abal2=T*Aa2*Ti;Abal3=T*Aa3*Ti;
Abal4=T*Aa4*Ti;Abal5=T*Aa5*Ti;Abal6=T*Aa6*Ti;
%Prepare LMIs
setlmis([]);Q=lmivar(1,[5 1]);Y=lmivar(2,[3 5]);
lmiterm([-1 1 1 Q],1,1);
lmiterm([2 1 1 Q],1,Abal1’,’s’);
lmiterm([2 1 1 Y],-Bbal,1,’s’);
lmiterm([3 1 1 Q],1,Abal2’,’s’);
lmiterm([3 1 1 Y],-Bbal,1,’s’);
lmiterm([4 1 1 Q],1,Abal3’,’s’);
lmiterm([4 1 1 Y],-Bbal,1,’s’);
lmiterm([5 1 1 Q],1,Abal4’,’s’);
lmiterm([5 1 1 Y],-Bbal,1,’s’);
lmiterm([6 1 1 Q],1,Abal5’,’s’);
lmiterm([6 1 1 Y],-Bbal,1,’s’);
lmiterm([7 1 1 Q],1,Abal6’,’s’);
lmiterm([7 1 1 Y],-Bbal,1,’s’);
quad0=getlmis;
%Now run feasibility problem
[tmin3,xfeas]=feasp(quad0);
%Extract feasible sols
Qfeas=dec2mat(quad0,xfeas,Q);Yfeas=dec2mat(quad0,xfeas,Y);
%Calculate a feedback gain
KT=Yfeas*inv(Qfeas);
%Restore KT to original coordinates
K=KT*T;

The reader can verify that a feasible Q is found and that K yields stable closed-
loop vertices .Aai � BaiK/. Of course, the same K yields closed-loop stability for
arbitrary system matrix variations within the polytope.

Note: Many books, research articles, and software assume a control input of
the form u DKx rather than u D �Kx. Matlab’s robust state feedback synthesis
commands are not an exception. Using �B and �D in place ofB andD resolves the
discrepancy. This modification has been already incorporated in the code examples
presented in this chapter.

4.8.3 Fixed-Gain LQR Design

An LQR gain can be found using a fixed vertex, followed by a closed-loop quadratic
stability verification. As an example, the scaled vertex Abal1,Bbal is chosen
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arbitrarily, along with unit LQR weights: Q D I5 and R D I3. In the following
code, the resulting gain is used to calculate the closed-loop vertices and evaluate
quadratic stability using quadstab:

%Set Q and R
Q=eye(5);R=eye(3);
[KT,S,E]=lqr(Abal1,Bbal,Q,R);

%Restore KT to original coordinates
K=KT*T;
%Form polytopic closed-loop system in original coordinates
sys1=ltisys(Aa1-B*K);sys2=ltisys(Aa2-B*K);
sys3=ltisys(Aa3-B*K);sys4=ltisys(Aa4-B*K);
sys5=ltisys(Aa5-B*K);sys6=ltisys(Aa6-B*K);

polysys=psys([sys1,sys2,sys3,sys4,sys5,sys6]);
[tmin,P]=quadstab(polysys)

The closed-loop polytopic system is verified to be quadratically stable. The fixed
gain

K D
2
4 �0:0108 �0:0021 40:2654 0:3927 �0:2583

0:0037 �0:0056 0:3927 4:2430 �0:0294
0:0010 0:0003 �0:2583 �0:0294 4:0187

3
5 (4.32)

produces the closed-responses shown in Fig. 4.3 when applied to the individual
vertices. Although stability is guaranteed, a significant spread of response times is
observed.

4.8.4 Fixed-Gain LQR in CMAPSS-40k

The gain K in (4.32) is now tested against the nonlinear engine in CMAPSS-40k.
The observations made in Sect. 4.7.1 regarding controller deployment apply. The
overall control law takes the form

ur D �Kxa;

Wf D
Z
Wf.0/

ur.1/; (4.33)

VSV D
Z
VSV.0/

ur.2/; (4.34)

VBV D
Z
VBV.0/

ur.3/; (4.35)
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Fig. 4.3 Response of vertices with fixed LQR gain

where xT
a D Œ NNf � Nf NNc � Nc W F � WF VSV � VSV VBV � VBV �. Since

the control input vector is part of the augmented state, the set of target steady values
W F, VSV and VBV must be supplied to the controller. This implies that a database
of such values must exist, as generated by the nonlinear engine steady-state solver.
Each steady-state input triple NU D ŒW F VSV VBV � yields a corresponding pair of
steady states NX D Œ NNf NNc� through some mapping NX D ˆ. NU /, which is affected
by inlet conditions and health parameter values. This mapping is accessible only
through high-fidelity nonlinear simulation, and cannot be fully captured through
functions or tables due to the uncertain nature of health parameters. To conduct the
simulations of this section, the nonlinear engine was driven to a steady-state using a
“native” controller supplied with CMAPSS-40k. The native controller only usesWF

as a feedback-controlled input, while VSV and VBV are injected in a feedforward
fashion. The steady values of the three actuators were adopted as reference inputs
for this example.

Figure 4.4 shows the response of the nonlinear engine to positive step demands
in fan and core speeds. The starting operating regime is Ground Idle, labeled as “A”
in Table 2.4. The settling time for the state variables is about 3 s, with no overshoot.
Figure 4.5 shows the response to negative step demands in fan and core speeds. The
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Fig. 4.4 CMAPSS-40k response with fixed LQR gain near Ground Idle

starting operating regime is Max Cruise, labeled as “D” in Table 2.4. The settling
time for the state variables is now about 8 s, with no overshoot. In summary, this
fixed LQR gain provides stability but is unable to maintain response speed across
operating regimes. This, coupled with the need for precalculated steady references
limits the applicability of integrator-based fixed-gain approaches.

4.8.5 H2=H1 Fixed Gain Synthesis: Polytopic Plant Model

We now apply the H2, H1 and mixed synthesis methods to the six-vertex polytopic
plant and test the corresponding gains in CMAPSS-40k, comparing the results
with those obtained with the “native” fan-speed controller distributed with the
package. The native controller is a PI compensator around fan speed, with scheduled
gains. The other two control inputs, namely VSV and VBV, are scheduled in an
open-loop fashion, that is, without feedback from the state variables. Chapter 5
discusses gain scheduling in detail. We define two performance outputs: the HPT
outlet temperature T48 and the HPC stall margin SmHPC. Allowable limits are
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Fig. 4.5 CMAPSS-40k response with fixed LQR gain near Max Cruise

usually specified for these outputs. At the same time, these outputs tend to peak
during transients. Moreover, certain health parameter inputs result in stall margin
reductions. Continuing with the integral control approach, we define

z D Œ�T48 �SmHPC �
T D Ca.˛/xa CDzw.˛/w CDzuur:

Augmented vertex matrices Cai and Dizw are constructed from the data in
Appendix C according to:

Cai D ŒCi j Di�;

Dizw D ƒi :

Matrices Ci , Di and ƒi are formed for each vertex by stacking the corresponding
C , D and ƒ matrices for T48 and SmHPC. Note also that Dzu D 0, since the
performance outputs are independent of the new control vector ur, and that the
vertices of the augmented disturbance input matrix are given by �ai D Œ�T

i j 0�T.
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According to the synthesis method used in the example, we will regard both
components of z as H2 performance outputs, both as H1 performance outputs,
or a mix. Assuming that the augmented vertices already exist in the workspace
as Aa1, Aa2, etc., Ba (constant for all vertices), Ca1,Ca2, etc., Da (zero for all
vertices), Gammaa1,Gammaa2, etc. and Lambda1,Lambda2, etc., the following
Matlab code creates the polytopic description with 2 performance outputs, using a
balanced realization:

sys=ss(Aa1,Ba,Ca1,Da);
[sysbal,G,T,Ti]=balreal(sys);
[Abal1,Bbal,Cbal1,Dbal]=ssdata(sysbal);
Gammabal1=T*Gammaa1;
%Apply same balancing to all vertices
Abal2=T*Aa2*Ti;Cbal2=Ca2*Ti;Gammabal2=T*Gammaa2;
Abal3=T*Aa3*Ti;Cbal3=Ca3*Ti;Gammabal3=T*Gammaa3;
Abal4=T*Aa4*Ti;Cbal4=Ca4*Ti;Gammabal4=T*Gammaa4;
Abal5=T*Aa5*Ti;Cbal5=Ca5*Ti;Gammabal5=T*Gammaa5;
Abal6=T*Aa6*Ti;Cbal6=Ca6*Ti;Gammabal6=T*Gammaa6;
%Form polytopic system compatibly with msfsyn command:
%2 performance outs: [T48 SM-HPC]
sys1=ltisys(Abal1,[Gammabal1 -Bbal],Cbal1,[zeros(2,13) -Dbal]);
sys2=ltisys(Abal2,[Gammabal2 -Bbal],Cbal2,[zeros(2,13) -Dbal]);
sys3=ltisys(Abal3,[Gammabal3 -Bbal],Cbal3,[zeros(2,13) -Dbal]);
sys4=ltisys(Abal4,[Gammabal4 -Bbal],Cbal4,[zeros(2,13) -Dbal]);
sys5=ltisys(Abal5,[Gammabal5 -Bbal],Cbal5,[zeros(2,13) -Dbal]);
sys6=ltisys(Abal6,[Gammabal6 -Bbal],Cbal6,[zeros(2,13) -Dbal]);
polysys=psys([sys1,sys2,sys3,sys4,sys5,sys6]);

The reader should refer to Matlab documentation for details on the plant structure
assumed by msfsyn.

4.8.5.1 H2 Synthesis with Regional Pole Placement

When specific penalization of control effort is not included, the H2-norm min-
imization may lead to large K and unreasonably high closed-loop bandwidths.
It is possible to add a regional eigenvalue constraint to the minimization objective.
In this example, both performance outputs are regarded as z2. Note that the vertex
systems haveDzu D 0 (the zeros(2,13) entries) so that the 2-norm is finite. The
following code executes the minimization:

r=[2 3]; %# of z2 outputs and # of controls
obj=[0 0 0 1];
region=lmireg %choose disk with center -8, radius 6
[gopt,hopt,KT,Pcl]=msfsyn(polysys,r,obj,region);
K=KT*T;
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Closed-loop eigenvalues are required to lie in a disk centered at �8+0i with
a radius of 6. Attempts to reduce the radius and shift the center to obtain faster
eigenvalues eventually leads to unfeasibility. The optimizing gain is

K D

2
64

0:0058 0:0055 10:8379 0:2571 �0:0827
�0:2535 0:0475 �9:8546 9:5691 1:2961

�0:9121 0:3095 �9:7661 8:4027 12:3622

3
75 :

The lowest bound for jjGw;z2.s/jj2 returned by the program is 1.172 �104. The
order of magnitude of this quantity is linked to problem data and should not be
evaluated in an absolute sense. The norm bound is useful to compare designs
sharing the same performance outputs but having different eigenvalue regions. For
instance, if a disk centered at �10+0i with a radius of 10 is chosen, the reader
can verify that the optimum norm bound reduces to 900.27. This can be linked
to a faster center for the closed-loop eigenvalues and an enlarged constraint region,
as reflected in the radius specification.

Figures 4.6 and 4.7 show the responses to the same setpoint change considered
in the LQR example, near Ground Idle conditions. The eigenvalue placement
constraints allows to tune the controller for a faster response, matching the one
obtained with the scheduled compensator. A health parameter step disturbance is
injected through w at t D15 s. All components of w are equal to �0:1. Figure 4.6
shows that the ability to hold the setpoint in the presence of disturbance is roughly
the same for the native controller and the H2 design, except for Nc, where the H2

design holds Nc closer to its regulation value. This is expected, since Nc is not
under feedback with the native controller. Figure 4.7 shows that while the fuel flow
commands are similar, the VSV and VBV inputs are not. Note that VSV saturates
at the fully-open position under the H2 design.

4.8.5.2 Fixed-Gain H1 Design

The H1-norm minimization with a regional eigenvalue constraint is now carried
out. Both performance outputs are regarded as z1. The zeros(2,13) entries in
the code for the H2 case are changed to reflect the influence of w on the performance
outputs. If ƒ is used, it is difficult to find a feasible solution with the required
bandwidth. Instead, the design uses 0:5ƒ. Thus, the vertex definition lines must
be changed to

sys1=ltisys(Abal1,[Gammabal1 -Bbal],Cbal1,[0.5*Lambda1 -Dbal]);
...
sys6=ltisys(Abal6,[Gammabal6 -Bbal],Cbal6,[0.5*Lambda6 -Dbal]);
polysys=psys([sys1,sys2,sys3,sys4,sys5,sys6]);
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Fig. 4.6 Comparison of responses between CMAPSS-40k gain-scheduled fan speed compensator
and fixed-gain H2 state feedback near Ground Idle: states and outputs. A step disturbance of �0:1
is applied to all health inputs at t D 15 s

The following code is then used to regard both performance outputs as z1 and
carry out the minimization:

r=[0 3]; %# of z2 outputs and # of controls
obj=[0 0 1 0];
region=lmireg %choose disk with center -10, radius 10
[gopt,hopt,KT,Pcl]=msfsyn(polysys,r,obj,region);
K=KT*T;

Closed-loop eigenvalues are required to lie in a disk centered at �10C0i with a
radius of 10. The optimizing gain is

K D
2
4 �0:0013 �0:0036 13:9596 �0:0877 0:0374

�0:0179 0:2482 231:1991 23:6696 �2:4600
�0:1047 0:2329 227:2949 8:6254 12:9515

3
5 :
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The lowest bound for � returned by the program is 925.3. Figures 4.8 and 4.9
show the responses to the same setpoint change of the H2 example, again near
Ground Idle conditions. The same health parameter step disturbance is injected at
tD15 s. The closed-loop eigenvalues yield a response slightly slower than the H2

design and a slightly better ability to hold the setpoint in the presence of disturbance.
Figure 4.9 shows that the fuel flow control input is significantly more damped than
in the H2 design. The VSV input remains saturated for most of the transient.

4.8.5.3 Mixed H2/H1

We conclude the example with a mixed minimization objective: T48 is regarded as an
H2 performance output, while SM-HPC is regarded as an H1 performance output.
Since msfsyn assumes that the top rows of Cbal, Lambda, and Dbal correspond
to the z2 outputs, the matrices must be reordered:
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Fig. 4.8 Comparison of responses between CMAPSS-40k gain-scheduled fan speed compensator
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is applied to all health inputs at t D 15 s

sys1=ltisys(Abal1,[Gammabal1 -Bbal],
flipud(Cbal1),[0.75*Lambda1(2,:)-Dbal(1,:);zeros(1,16)]);
...
sys6=ltisys(Abal6,[Gammabal6 -Bbal],
flipud(Cbal6),[0.75*Lambda6(2,:) -Dbal(1,:);zeros(1,16)]);
polysys=psys([sys1,sys2,sys3,sys4,sys5,sys6]);

Again,� is scaled enough so that a feasible solution can be found. The following
code is then used to and carry out the mixed-objective minimization with a D 1 and
b D 10 as weights in (4.25):

r=[1 3];%# of z2 outputs and # of controls
obj=[0 0 1 10];
region=lmireg %choose disk with center -12, radius 10
[gopt,hopt,KT,Pcl]=msfsyn(polysys,r,obj,region);
K=KT*T;
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Fig. 4.9 Comparison of responses between CMAPSS-40k gain-scheduled fan speed compensator
and fixed-gain H2 state feedback near Max Cruise: control inputs. A step disturbance of �0:1 is
applied to all health inputs at t D 15 s

Closed-loop eigenvalues are required to lie in a disk centered at �12C0i with a
radius of 10. The optimizing gain is

K D
2
4 0:0163 0:0060 15:3492 0:0148 �0:1114

�1:0027 0:6748 161:8834 21:7061 1:6351

�0:8754 0:4571 126:2015 5:1284 16:6993

3
5 :

The bounds for the infinity and two-norms returned by the program are 496.3
and 6,299, respectively. These figures cannot be compared with the earlier synthesis
results due to changes in the definition of performance outputs. Simulation is
conducted this time near the Max Cruise condition, with a shaft deceleration
command and the same health disturbance inputs as before. Figures 4.10 and 4.11
show the responses. The responses are essentially equivalent to those produced
by the previous norm-based designs and the native gain-scheduled controller. In
summary, four gains were designed for use in an integral control approach: LQR,
H2 for both performance outputs, H1 for both performance outputs and mixed
H2=H1. The designs can be compared by measuring the closed-loop sensitivity
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Fig. 4.10 Comparison of responses between CMAPSS-40k gain-scheduled fan speed compen-
sator and fixed-gain mixed H2=H1

state feedback near Max Cruise: states and outputs. A step
disturbance of �0.1 is applied to all health inputs at t D15 s

of the performance outputs to exogenous inputs. This sensitivity can be evaluated
with a plot of the maximum singular values as a function of frequency for all four
designs. The worst-case peak singular value among closed-loop vertices is used.
The results of this comparison are shown in Fig. 4.12.

4.9 Simplified H1 Fan Speed Control

This chapter focused on state feedback techniques that take advantage of the
availability of state measurements and multiple control inputs. As discussed in
Sect. 4.7.1, information about the steady map of the engine must be incorporated
in state feedback laws to account for wide parametric variations and engine
nonlinearity. In contrast, a classical compensator loop using fuel flow to control



84 4 Engine Control by Robust State Feedback

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

W
F
,p

ps
Control Inputs: CMAPSS Native and Mixed H2/H−inf Design Near Max Cruise

0 10 20 30
−20

−15

−10

−5

0

V
S

V
,d

eg

Time,s
0 10 20 30

0

0.2

0.4

0.6

0.8

1
V

S
V

,%

Time,s

CMAPSS Native
Mixed H2/H−inf

Fig. 4.11 Comparison of responses between CMAPSS-40k gain-scheduled fan speed compen-
sator and fixed-gain H2=H1
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fan speed or EPR does not require reference states (other than the target fan speed
setpoint). Although a single compensator is insufficient to achieve control over
the whole flight envelope or maintain critical engine variables within permissible
limits, control transfer functions are the basis of traditional gain-scheduled designs
and limit-protection-logic arrangements. In this section, a simple, yet systematic
and effective method to design a fan speed or EPR control transfer function is
presented.

4.9.1 Mixed-Sensitivity H1 Design

Consider the SISO compensation loop shown in Fig. 4.13. Signals n and d represent
sensor noise and output disturbance, respectively, while transfer functionGd.s/ can
be used to “shape” the disturbance frequency spectrum. Elementary block-diagram
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Fig. 4.13 Classical SISO
feedback compensation loop
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algebra shows that the output of the plant is related to the reference input r and to n
and d as follows:

y D .I CGK/�1GKr C .I CGK/�1Gdd � .I CGK/�1GKn; (4.36)

while the following expression applies to the control input:

u D K.I CGK/�1.r �Gdd � n/: (4.37)
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Several transfer function definitions are in order. First, T D .I CGK/�1GK is the
usual closed-loop transfer function between r and y when noise and disturbance
are not considered. The transfer function S D .I C GK/�1 is termed sensitivity
function. This terminology is justified by the following identity:

dT=T

dG=G
D S:

That is, the sensitivity function is a measure of the changes in T relative to changes
in G. The closed-loop transfer function T is also referred to as complementary
sensitivity function, since S C T D I holds. This terminology is preferable, since
several “closed-loop transfer functions” exist that relate u, r , y, n, and d .

With these definitions, (4.36) and (4.37) may be rewritten as

y D T r C SGdd � T n; (4.38)

u D KS.r �Gdd � n/: (4.39)

Various control objectives can be expressed in terms of desirable characteristics for
T , S , and KS. First, the fundamental control objective is to force y.t/ to track r.t/
in a range of frequencies of interest. This implies that T should be as close to I
(to 1 in the SISO case) as possible. In other words, the Bode magnitude of T should
be flat, with a value of 0 dB, up to a design bandwidth. Note that n affects y in
the same way as r . Care must be exercised in limiting the design bandwidth so
that it does not encompass the sensor noise spectrum. Problems where the design
bandwidth overlaps the noise spectrum require special filtering techniques. Next,
SGd must be kept small to minimize the influence of disturbances on y. Finally,KS
must be small to maintain control input magnitudes within adequate ranges.

4.9.2 Frequency Weighting

The requirement that SGd be “small” is made more precise by requiring that
jS.jw/Gd .jw/j < 1 at all frequencies. Equivalently, jS.jw/j < 1=jGd.jw/j is
required. Typically, no information about the disturbance spectrum is available,
and therefore Gd.s/ is also unavailable. The designer may then model a generic
disturbance as an input having strong low-frequency components, with little energy
in the higher frequency range. These features distinguish disturbances from noise.
Disturbances are then slowly-varying perturbations capable of producing large
deviations in the plant output. According to this interpretation, 1=Gd.s/must have a
high-pass characteristic. For this reason, it is commonplace to express the sensitivity
minimization objective in the form

jS.jw/j < 1=jWS.jw/j;
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where 1=WS.jw/ is a design weight. Typical first- and second-order weights having
the required characteristics are as follows:

WS.s/ D s=M C wb

s C ˛wb
; (4.40)

WS.s/ D .s=
p
M C wb/

2

.s C wb
p
˛/2

: (4.41)

In both cases, wb is the corner frequency of 1=WS ,M is its high-frequency gain, and
˛ is its low-frequency gain. The weights only differ in the steepness of the transition
between ˛ and M . Insensitivity to disturbances is improved by decreasing ˛. Note
that the requirement that the magnitude of S be bounded by that of 1=WS also
imposes a lower-bound wb on the bandwidth of T . Although initially conceived as
a disturbance minimization objective, this form of weighting provides a mechanism
to introduce a speed-of-response specification through wb. The reader is referred to
Skogestad and Postlethwaite [29] for more details.

For the purposes of controller synthesis, the sensitivity minimization objective is
formulated as jjWSS jj1 < 1. An upper-bound for the bandwidth of T and a roll-off
rate can be specified as follows:

jjWTT jj1 < 1:

Here, 1=WT .s/ is chosen to impose an upper envelope on the magnitude of T .jw/.
A typical weight for T has the form

WT .s/ D s C wb=M

˛s C wb
: (4.42)

Design parameters wb, ˛, and M may be chosen to coincide with those of the
sensitivity weight, for simplicity.

Control magnitude weighting is likewise achieved with a specification of the
form

jjWuKS jj1 < 1:

A constant weight is usually sufficient and commonly chosen. All three objectives
can be combined in a mixed or stacked sensitivity minimization objective of the
form:

min
K

jjN.K/jj1; (4.43)

where N.K/ is given by

N D
2
4 WSS

WT T

WuKS

3
5 : (4.44)
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The mixed-sensitivity H1 problem is readily solved using Matlab’s mixsyn, part
of the Robust Control Toolbox. Its use is shown in the CMAPSS example of the
following section.

4.9.3 Example: Mixed H1 Synthesis: CMAPSS-40k

Consider the problem of controlling fan speed to a setpoint using fuel flow as
a single control input. The design bandwidth is chosen as wbD15 rad/s and the
remaining parameters areM D 2 and ˛ D 1�10�4. The first-order weight of (4.40)
is used for the sensitivity, along with the complementary sensitivity weight of (4.42).
Although a solution is obtainable with a large range of control weights, the weight
Wu must be chosen in the order of magnitude of 1 � 105 to obtain a compensator
which can work with the nonlinear CMAPSS engine model. The following code
illustrates the sequence of calculations in Matlab:

%Plant matrices at Ground Idle: Aa and Ba assumed
%available in the workspace
C=[1 0];D=0; %Output definition for fan speed TF
G=tf(ss(A,B,C,D));
w0=15; %desired closed-loop bandwidth
alph=1/10000; %desired disturbance attenuation inside bandwidth
M=2 ; %desired bound on hinfnorm(S) & hinfnorm(T)
s=tf(’s’); %Laplace transform variable ’s’
W1=(s/M+w0)/(s+w0*A); %Sensitivity weight
W2=1e5; %Control weight
W3=(s+w0/M)/(A*s+w0); %Complementary sensitivity weight
[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3);
K=balred(K,3); %Perform balanced model reduction
%Plot results:
L=G*K; %Loop transfer function
S=inv(1+L); %Sensitivity
T=1-S; %Complementary sensitivity
sigma(GAM/W1,’k--’,S,’k’,GAM/W3,’k:’,T,’.-k’);
%Manually adjust controller for explicit integration
numK=0.032341*conv([1 3.992],[1 2.439]);
denK=[conv([1 4.876],[1 14.06]) 0];

The control transfer function initially returned by mixsyn is

K.s/ D 0:032341.sC 1:5e05/.s C 3:992/.s C 2:439/

.s C 1:5e05/.s C 14:06/.s C 4:876/.s C 0:0015/
:

Two important observations regarding the structure of this compensator must be
made:

1. An approximate integrator has been introduced in the controller as a result of the
weighting function shapes.
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Fig. 4.14 Shaped sensitivity and complementary sensitivity functions

2. A near pole-zero cancelation is observed.
3. Some poles and zeroes have large magnitudes.

These features are not accidental, but appear rather frequently in conjunction with
H1 frequency shaping techniques. Also, compensators having a large number of
poles and zeroes are typical of these designs, especially when multiple weights are
used, as it is the case in MIMO systems. For this reason, controller reduction is
usually required before implementation. In this example, elimination of the pole
and zero at �1:5 � 105 is an obvious reduction that brings the controller to 3rd
order.

The approximate integrator may be modified to force an actual pole at zero. Upon
doing this, the final controller becomes:

K.s/ D 0:032341.sC 3:992/.s C 2:439/

s.s C 14:06/.s C 4:876/
:

Figure 4.14 shows the achieved sensitivity and complementary sensitivity functions
(after reduction) in relation to their weights. This controller was implemented in
CMAPSS-40k, holding the VBV and VSV actuators constant at their Ground Idle
trim values during the course of simulation. Figure 4.15 shows the fan speed, core
speed, and actuator responses.
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4.9.4 Summary

The state-feedback design with input integration and fixed gain is conceptually
simple. Systematic design procedures are available to synthesize the gain, according
to various performance optimization requirements. The example shows that a
fixed-gain design can be as effective as a classical gain-scheduled compensator
in achieving robust stability against plant parameter variations arising from flight
condition changes. Low sensitivity to health parameter inputs is also incorporated
as an objective during the design process.

The responses achieved in the simulation examples are still unrealistic. The
simulations of Sect. 4.8 show that the HPC stall margin, for instance, drops to 5%
regardless of controller, a value regarded as unsafe in actual engine operations.
Core acceleration, engine pressure ratio, and certain turbine temperatures are also
subject to allowable operating limits. The limit protection features of CMAPSS-40k
were disabled for these simulations. Robust nonlinear control approaches such as
Model Predictive Control and Sliding Mode Control, considered in Chaps. 9 and 6,
respectively, are capable of delivering superior performance. Limit management is
a crucial consideration in GTE control design. Chapter 7 is entirely devoted to this
problem.



Chapter 5
Gain Scheduling and Adaptation

Abstract This chapter introduces gain-scheduling and linear-parameter-varying
techniques to address plant variability across the flight envelope. This chapter also
introduces the concept of adaptive control and presents a basic model-reference
adaptive control design. Matlab code and simulations using the CMAPSS nonlinear
engine model are included.

This chapter is an overview of two control concepts that address plant variability
across the flight envelope: scheduling and adaptation. These control methods are
fundamentally different from robust approaches in that controller parameters are
not fixed, but undergo significant changes during system operation. Gain scheduling
as used in standard GTE control is described in Sect. 5.2. Next, in Sect. 5.3,
a more systematic linear parameter-varying (LPV) approach to gain scheduling
is presented. In Sect. 5.4, the basic concept of adaptive control is introduced,
followed by a simple version of a well-established adaptive control methodology,
namely Model Reference Adaptive Control (MRAC). Application of scheduling and
adaptation concepts to fan speed control is illustrated throughout the chapter with
CMAPSS-1 simulation examples.

5.1 Robustness, Scheduling, Adaptation

The techniques presented in Chap. 4 attempt to find a fixed controller that tolerates
a range of plant parameter variations. Tolerance is understood first as the ability to
maintain closed-loop stability upon uncertain plant variations. When plant matrices
vary in a polytope, closed-loop stability of a given compensator can be checked us-
ing the definition of quadratic stability and associated LMI feasibility computations.
Moreover, such fixed compensators can be synthesized using H2=H1 methods.
Stability is necessary, but cannot be regarded as the sole criterion to define a
successful GTE control implementation. Controllers must also maintain consistent
transient response and tracking accuracy across the flight envelope. As demonstrated
in Chap. 4, fixed controllers synthesized through H2=H1 methods offer a degree

H. Richter, Advanced Control of Turbofan Engines, DOI 10.1007/978-1-4614-1171-0 5,
© Springer Science+Business Media, LLC 2012
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of performance robustness, as measured by the minimum achievable norm. Still,
significant tracking offsets and transient performance loss occur when attempting to
use a single controller for all flight conditions.

Gain scheduling techniques address plant variations by introducing matching
controller gain variations, attempting to obtain uniform transient responses across a
wide range of operating conditions. The appropriate gain variations are determined
during offline design and fixed for subsequent operation in the form of scheduling
tables. In contrast, adaptive techniques induce control parameter variations online,
as part of the control system implementation. Adaptive parameters can assume
values outside the linear space generated by interpolation of scheduling table gains,
thus improving the control system’s adaptability to changes in the plant. Adaptive
controllers introduce nonlinear dynamics in the closed-loop system. Therefore, their
proper design requires an understanding of the theoretical bases governing their
behavior. In this chapter, focus is limited to a simple form of adaptive control that
is adequate for SISO plant models whose number of poles exceeds the number of
zeroes by one. The transfer function from fuel flow to fan speed fits this case, and
the adaptive technique is readily applied with good results.

5.1.1 Input Scheduling

Standard SISO GTE control systems use fuel flow as the only actuator used in
a feedback loop ultimately aimed at controlling engine thrust. Other actuators,
mainly VSV and VBV, are still actively governed during flight. Although there
are no “controllers” in the usual sense that provide commands to these actuators,
they are still commanded through a function of real-time measurements. The term
“scheduling” is used in the GTE industry to denote this form of actuator command.
In CMAPSS-40k, for instance, these actuators are commanded through functions
of the corrected fan speed of (1.23), corrected core speed, and Mach number.
Since the corrected speeds are functions of state variables, this form of command
effectively adds decoupled SISO loops to the engine. Furthermore, it corresponds to
proportional control, where the proportional gain is scheduled by Mach number and
‚, the nondimensional total temperature at LPC outlet. VSV and VBV command
functions are limited to the allowable ranges of these actuators. Multivariable
designs such as those presented in Chap. 4 forego of these scheduling functions and
allow VSV and VBV to be commanded from a multi-output feedback controller.

5.2 Standard Gain-Scheduled GTE Control

Classical GTE gain scheduling centers on the idea of a fixed-structure (say, PI)
compensator for fan speed or EPR control, whose gains are adjusted according
to certain scheduling variables. These variables are chosen to reflect changes in
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Fig. 5.1 Gain-scheduling
control system
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environmental conditions such as altitude, Mach number, and sea-level temperature,
which act as parameters of the linearized engine models. State variables such as fan
speed may also be used as scheduling variables. Note that when a state variable –
or function thereof – is used as scheduling variable, a nonlinear feedback control
loop is effectively introduced. This additional loop has the potential to destabilize
the main control loop if not carefully designed. As shown in Fig. 5.1, it is customary
to insert a low-pass filter between the state variable used for scheduling and the
input of the scheduling table. This is to ensure that the changes to the control gains
brought about by state variables are slow in comparison with the bandwidth of the
main loop. The scheduler used in ad-hoc designs is nothing more than a look-up
table giving control gains as a function of scheduling variables.

Although there is no universal rule for the selection of scheduling variables, it
is reasonable to identify a set of physical parameters which dictate the numerical
values of system matrices obtained through linearization. Recalling (2.1) and (2.2),
it is clear that all parameters of functions f1 and f2, together with steady input
values and a fixed set of health parameters, are needed to define an equilibrium
point. Ideally, a set of scheduling variables would be comprised by all parameters.
In practice, however, a few parameters can be identified that have the largest
influence in the numerical values of the resulting linearized matrices. In the GTE,
physical consideration and experience show that thermodynamic conditions at
engine inlet, i.e., inlet static pressure and Mach number have the largest influence.
Fan speed, an engine state, is frequently used as an additional scheduling variable
to account for the intrinsic nonlinearity of functions f1 and f2. Inlet pressure may
be used directly, or equivalently, altitude may be used. An additional important con-
sideration for the selection of scheduling variables is their availability as real-time
measurements.

The scheduling tables are built by selecting a controller structure and repeating a
controller design for various combinations of scheduling variables. The resulting
gains are then included in look-up tables. Linear interpolation is used to find
controller gains from real-time measurements of the scheduling variables.

In CMAPSS-40k, fixed PI control structures are used for the fan speed, core
speed, and EPR control loop options. Scheduling variables are altitude and Mach
number for the P-gain, and altitude, Mach number and fan speed for the I-gain.
Figures 5.2 and 5.3 are graphical representations of the P and I-gain scheduling
used by default in CMAPSS-40k. As conventionally used in GTE control systems,
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gain scheduling is a simple and effective way of achieving response specifications
across the flight envelope under normal circumstances. The chief weakness of
ad-hoc gain scheduling is its lack of robustness and its lack of adaptability to
unforeseen conditions. If plant parameters change in ways that have not been
accounted for in the scheduling tables, serious performance loss or instability can
occur (See Shamma and Athans [38]). Engine aging and deterioration effects are
in fact model parameters, whose variations are introduced as a disturbance input.
These parameters are not typically used as scheduling variables. Doing so would
lead to overly complex look-up tables. Besides, health parameters are not available
as real-time measurements and their estimation and use in engine prognostics
are challenging research problems. For more information on health parameter
estimation, see references [20–22, 39].

5.3 Linear Parameter-Varying Methodologies

LPV control denotes a group of techniques based on a structured description of plant
parameter variability. By imposing an LPV structure on the uncertain plant, robust
designs based on H1 theory become possible. The interested reader is referred to
the work of Wolodkin et al. [40], where gain scheduling for turbofan engine control
is conducted under an H1 optimization objective. This approach offers superior
performance in comparison with ad-hoc scheduling of several fixed designs.

An LPV description of the uncertain state-space plant has the form

Px D A.p/x C B.p/u; (5.1)

y D C.p/x CD.p/u; (5.2)

where p D Œp1 p2 p3 :::ps � is a vector of s parameters, and system matrices are
given by

A.p/ D A0 C p1A1 C p2A2 C :::C psAs; (5.3)

B.p/ D B0 C p1B1 C p2B2 C :::C psBs; (5.4)

C.p/ D C0 C p1C1 C p2C2 C :::C psCs; (5.5)

D.p/ D D0 C p1D1 C p2D2 C :::C psDs; (5.6)

where A0;A1:::; B0; B1; :::C0; C1; :::D0;D1; :::Ds is a set of coefficient matrices.
The parameters are chosen in the same way as scheduling parameters, that is, on
the basis of knowledge or experience with the system. For fan speed control, a
reasonable set of parameters is given by altitude, Mach number, and fan speed itself.
For the remainder of the chapter, we assume that p D Œm h f �, where m is the
Mach number, h is the altitude normalized by a convenient scaling factor, and f is
the fan speed, also normalized by a suitable scaling factor.
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5.3.1 Obtaining an LPV Decomposition from Polytopic Vertices

Instances of A.p/, B.p/, C.p/, and D.p/ are available to the designer as an
outcome of linearization at some steady-state condition determined by a fixed value
of p and a set of matching equilibrium states and inputs. The coefficient matrices,
however, need to be determined. When a set of instances of the system matrices
corresponding to known parameter vectors are available, the coefficient matrices
are determined through a generalized system of linear equations.

Suppose that a set of matrices A.p.i//; i D 1; 2; :::r is available, corresponding
to a set of parameter vectors p.1/; p.2/; :::p.r/. The following linear system arises
from (5.3):

2
66664

I p1.1/I p2.1/I ::: ps.1/I

I p1.2/I p2.2/I ::: ps.2/I

:::
:::

I p1.r/ p2.r/I ::: ps.r/I

3
77775

2
66664

A0

A1
:::

As

3
77775 D

2
66664

A.p1/

A.p2/

:::

A.ps/;

3
77775 : (5.7)

This linear system has the form RV D S , where V is the unknown matrix. The
dimensions of R are nr-by-ns, where n is the dimension of each square matrix
A.p/. If r D s and p.i/ are chosen so thatR has full rank, the solution can be found
as V D R�1S . If r > s, the system is overdetermined and an exact solution may be
found only for a rather restrictive set of problem data in R and S . An approximate
solution for V can be found by minimizing the 2-norm (largest singular value) of the
residual matrix RV � S . The solution to this case is V D RCS , where RC denotes
the Moore–Penrose pseudoinverse [41] of R, which can be calculated in Matlab
using the pinv command. The parameter vector chosen for GTE fan speed control
has s D 3. Thus, three instances of system matrices would be necessary to obtain
the LPV coefficient matrices using R�1. Three flight conditions cannot be expected
cover the operating envelope, implying that the pseudoinverse must be used.

5.3.1.1 CMAPSS-1 LPV Decomposition

The 14 conditions listed in Appendix B are readily used to obtain a set of four
coefficients for A.p/ and B.p/. Altitude is normalized by 10,000 and fan speed by
3,000 to define the parameter vector. Matrix A.p/, for instance, is decomposed as

A.m; h; f / D
"
0:1974 0:4174

0:1285 1:0424

#
Cm

"
�1:0000 0:0626

0:1002 �0:2370

#

Ch
"

0:7476 �0:2551
�0:0653 0:7102

#
C f

"
�5:0210 1:3617

0:5981 �7:2702

#
:



5.3 Linear Parameter-Varying Methodologies 97

To illustrate the magnitude of the error associated with the use of the pseudoinverse,
considerm D 0:7, h D 2, and f D 0:775, corresponding to FC06. Computation of
A from the LPV decomposition results in

"
�2:8971 1:0059

0:5314 �3:3350

#
:

This represents a 6.1% error in matrix 1-norm (largest column absolute value sum)
relative to the true value of A at FC06. Similar errors exist for all other matrices and
flight conditions.

5.3.2 A Simple LPV Approach to Fan Speed PI Control

Since fan speed increment is the first state in (5.1), an output y defined as fan speed
increment will have constant C D Œ1 0� and D D 0. This implies that the transfer
function from fuel flow increment u D �WF to y D �Nf always has the form

G.s/ D k.s C z/

.s C c1/.s C c2/
; (5.8)

where c1 and c2 may be complex conjugates. In CMAPSS-40k, linearization at high
PLA levels tends to give complex poles, while real poles are seen at low PLA
settings. In CMAPSS-1, real poles are observed for all 14 flight conditions. The
technique presented in this section is restricted to plants with real poles only. The
technique is based on the same premise as conventional gain scheduling: scheduling
variables (in this case, parameters p ) are available as real-time measurements
from sensors. Then system matrices A.p/ and B.p/ can be computed in real-time
using the LPV decomposition of (5.3) and (5.4). This information can be used to
calculate the gains of a controller whose structure has been predetermined to meet
performance and stability-related objectives.

Denote the entries of A.p/ and B.p/ as aij .p/ and bi .p/, respectively, for i D
1; 2 and j D 1; 2. Transfer function G.s/ may then be parameterized by these
entries by using a scalar version of (4.1):

G.s/ D b1s � b1a22 C b2a12

s2 � .a11 C a12/s C a11a22 � a12a21
: (5.9)

Recalling Chap. 3, the PI controller structure is a suitable choice to meet the zero
steady-state error requirement and obtain adequate transient responses. The control
transfer functionK.s/ D KpCKi=s leads to the closed-loop characteristic equation

s3 � .a11 C a22 �Kpb1/s
2 � .a12a21 � a11a22 �Kib1 �Kpa12b2 CKpa22b1/s

CKia12b2 �Kia22b1 D 0:
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This equation possesses three roots, of which at least one must be real, since
complex roots appear in conjugate pairs. An approach to selecting control gains
is to enforce a pole-zero cancelation in the closed-loop transfer function. Recall that
the zeroes of G.s/K.s/ are the same as those of the closed-loop transfer function
T .s/, up to pole-zero cancelations. In this technique, the zero introduced by the PI
controller at s D �Ki=Kp is to cancel a real root of the closed-loop characteristic
equation. This is done to remove part of the response variability arising from plant
parameter changes. To place a constrain on Ki and Kp so that the sought pole-
zero cancelation occurs, a symbolic computation process must be carried out. First,
s D �Ki=Kp is substituted in the closed-loop characteristic equation. When this is
done, the characteristic equation can be factored as KiQ.Ki ;Kp/ D 0, where Q is
a quadratic polynomial in Ki . Then two nonzero solutions for Ki are found from
Q.Ki;Kp/ D 0:

KC
i D �Kp

2

�
a11 C a22 C p

�
	
; (5.10)

K�
i D �Kp

2

�
a11 C a22 � p

�
	
; (5.11)

where � D a211 � 2a11a22 C a222 C 4a12a21. It can be readily verified that
1
2

�
a11 C a22 ˙ p

�
	

are the eigenvalues of A.p/. Hence, the restriction of the

technique to real eigenvalues is justified to prevent complex controller gains.
Thus, each solution produces the cancelation of one of the two real plant poles.
Furthermore, although the objective was to cancel a closed-loop pole, (5.10)
and (5.11) show that the only way to achieve this is by direct cancelation of the
plant open-loop pole. Hence, after cancelation, the loop transfer function has the
form

G.s/K.s/ D k0.s C z/

s.s C c/
;

where z is the plant zero, c is the un-canceled plant pole, and k0 is a new gain.
Equations (5.10) and (5.11) place a constraint on the relationship between Ki

and Kp, but do not completely determine their values. A root locus argument can
be used to show that sufficiently high values of Kp will result in an approximate
cancelation of the plant zero. Furthermore, increasing Kp leads to faster responses
and insensitivity from plant parameters. Indeed, assuming without loss of generality
that c1 > c2 in (5.8), it is clear that usingKC

i will result in the cancelation of c1 and
usingK�

i results in the cancelation of c2. Assume thatKC
i is chosen. The open-loop

transfer function is then

G.s/K.s/ D Kpk
.s C z/

s.s C c2/
:
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Fig. 5.4 Possible root loci and closed-loop root locations: pole-zero cancelation design with KC

i

and high Kp

Two possible root loci are shown in Fig. 5.4, according to the relative magnitudes
of z and c2. In both cases, a sufficiently high value of Kp will place a closed-loop
pole at the location of the plant zero. The closed-loop transfer function is nearly
independent from plant parameters. The remaining real pole proceeds to �1 asKp

is increased. This observation indicates that Kp does not need to be scheduled, but
rather set at an appropriate value, best determined from simulation trials. The same
general behavior is seen if K�

i is chosen. In a real-time implementation, the eight
coefficient matrices are stored in memory, from where the entries ofA.p/ and B.p/
are computed. A fixed Kp and KC

i or K�
i as calculated from (5.10) and (5.11) are

used as PI gains.

5.3.2.1 Linearized Study: CMAPSS-1

A simulation study is conducted withKp D 0:1, using the eight coefficient matrices
of the LPV decomposition. Unit step responses corresponding to the 14 plants
controlled with the LPV-based PI controlled are shown in Fig. 5.5. The results
show that, in this case, KC

i tends to produce faster responses than K�
i C and that a

constantKp is sufficient to produce consistent transient responses across wide plant
parameter changes.
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Fig. 5.5 Linearized responses of LPV-based scheduled controller across 14 flight conditions:
CMAPSS-1

5.3.2.2 LPV Scheduling in Nonlinear Engine: CMPASS-1

A simulation is now conducted using the nonlinear 90k engine. Altitude, Mach
number, and fan speed are varied during the simulation, mimicking the parameter
changes taking place during takeoff and climb. Initially, the engine is at sea level, the
Mach number is zero, and the TRA is 20. This corresponds to FC13 in Appendix B,
or near-idle conditions, where Nf D 1;497 rpm, as shown in Table 2.3. Altitude is
changed to 20,000 ft., Mach number to 0.7, and TRA to 100, which correspond to
FC06, where Nf D 2;324 rpm. The transition between altitude and Mach number
parameters is taken as a 1-second ramp. Although no aircraft is capable of such
fast altitude and airspeed changes, these parameter changes are useful to benchmark
engine control systems. The fan speed reference input passed to the control system is
given by a ramp having a slope of 500 rpm/s, the maximum admissible in CMAPSS-
1. The proportional gain Kp is maintained at 0.1, and the formula for KC

i is
used. Figure 5.6 shows that the LPV-based scheduling of the P-gain produces very
accurate fan speed demand tracking. The lower plot shows that the control input
is more aggressive in comparison with the native scheduled controller. Figure 5.7
shows the variation of Ki .
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5.3.3 Other LPV Approaches

The LPV-based pole-zero cancelation approach presented above represents an
improvement over standard point design interpolations in a practical sense. Indeed,
formulas replace tables, making it possible to generate gains with finer resolution in
a compact format. The offline generation of coefficient matrices is very systematic
and easily extensible to a larger number of vertices. The method, however, does not
have any explicit robustness properties. Many multivariable robust approaches to
gain scheduling using the LPV parameterization were developed in the 1990s. For
a theoretical basis, see Kamen and Khargonekar [42], Apkarian and Gahinet [43] or
Packard and Kantner [44]. For application of these techniques to aircraft engines,
see Wolodkin et al. [40], Balas [45] or extensions of the LPV parameterization
that allow polynomial dependence on coefficient matrices, but include linear
dependence on controller parameters. Such polynomial LPV synthesis has been
developed by SNECMA, a French aerospace manufacturer, see Henrion [46] and
Gilbert [47].

5.4 Overview of Adaptive Control

The central idea of adaptive control schemes is to introduce a controller structure
and a set of parameters ‚ which, along with feedback measurements, determine
the value of the control input at every instant. In ideal circumstances, when the
plant is known exactly, ‚ could be computed so that the closed-loop system
has desirable characteristics. The premise justifying the use of adaptive control is
that plant parameters are either uncertain or changing in time. Then ‚ cannot be
calculated beforehand. Various adaptive schemes introduce an adaptation law, or
parameter update law to refine an initial guess of ‚ during the course of system
operation. Numerous adaptive schemes have been proposed, see, for instance,
Åstrom and Wittenmark [48] or Ioannou [49]. Three architectures are frequently
used: model-reference adaptive control (MRAC), indirect adaptive control, and self-
tuning regulators. As Fig. 5.8 shows, the MRAC scheme introduces a reference
model, which specifies the desired dynamics of the controlled plant. The MRAC
is a dynamic system whose parameters‚ are adjusted so that the error between the
reference model and the actual plant outputs is driven to zero. This approach can
be categorized as direct, in that no attempt is made to estimate the unknown plant
parameters as an intermediate step for the computation of the control input. The MIT
rule was used in the early beginnings of adaptive control to update the parameters:

d‚

dt
D ��e @e

@‚
;
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Fig. 5.9 Indirect adaptive control system schematic

where e is the error between plant and reference model outputs and � is a positive
constant governing the speed of adaptation. This rule was subsequently shown
to lead to unpredictable system behavior, ranging from poor performance and
slow adaptation to unstable closed-loop systems (see Anderson [50]). Present-day
adaptation and control law synthesis are firmly grounded on Lyapunov stability
theory.

Indirect adaptive approaches include a plant parameter estimator and a control
design algorithm as an intermediate step, as shown in Fig. 5.9. The controller
has been parameterized and tuned in terms of plant parameters, much like what
was done in Sect. 5.3.2 using the LPV parameterization. A parameter estimator
constantly updates plant parameters, which determine controller gains. Compu-
tationally, the only distinction between indirect adaptive control and LPV-based
gain scheduling is the mechanism used to arrive at plant parameters: A recursive
estimator is used in adaptive control. In contrast with the static, predetermined
LPV parameterization, no offline information about plant variability is needed in
the indirect adaptive case. A self-tuning regulator is a form of indirect adaptive
control where plant parameter estimates are used to conduct controller design
leading to the gains to be implemented in a fixed-structure controller, as shown
in Fig. 5.10. This differs from other indirect schemes in that plant parameters are
not directly used in the controller parameterization. Depending on the type of con-
troller design to be performed, self-tuning regulators could represent a significant
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Fig. 5.10 Self-tuning regulator schematic

real-time computational burden. Some of the burden associated with the design
can be transferred to offline computation, resulting in explicit implementations (see
Grimble [51]).

5.4.1 Relative-Degree 1 MRAC

An MRAC scheme originally developed by Feuer and Morse [52] and further
elaborated by Ioannou [49] is now summarized. This form of MRAC is applicable
to linear SISO plants whose parameters are unknown, but whose relative degree is
known to be equal to one. Recall that the relative degree of a linear transfer function
is defined as the number of poles minus the number of zeroes. In addition, the plant
transfer function is required to be minimum-phase and to have a high-frequency
gain with known sign. Let the plant model be given in transfer function form as

Yp.s/ D G.s/U.s/ D k
N.s/

D.s/
U.s/; (5.12)

where N.s/ and D.s/ are the numerator and denominator polynomials such that
the degree of D.s/ is higher than the degree of N.s/ by one. The polynomials are
assumed to be monic, that is, the leading coefficient (the coefficient of the highest
power of s) of N.s/ and D.s/ must be one. In this case, the magnitude of the plant
frequency response approaches an asymptote of the form jkj

w , where k is the high-
frequency gain. These assumptions are satisfied by the transfer function from fuel
flow to fan speed, upon which many standard GTE designs are based. The reference
model is given by a transfer function of the form

Ym.s/ D W.s/R.s/;

where r is the reference input to be tracked by yp and W.s/ must be of relative
degree one and also satisfy the following assumptions:
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1. All poles of W.s/ must have negative real parts.
2. W.s/ must be minimum-phase.
3. The real part of W.jw/ must be nonnegative for all w � 0.
4. The high-frequency gain of W.s/ has the same sign as that of G.s/.

Conditions (2) and (3) above are satisfied by strictly positive real (SPR) transfer
functions, which can be generated for any relative degree using two matrix
conditions due to Kalman and Yakubovich, see [48]. In this section, we only
consider reference models of the form

Wm.s/ D 1

�s C 1
; (5.13)

which satisfy all assumptions and are sufficient for an introductory exposition of
MRAC methods. The speed of response of the reference model can be tuned using
time constant � .

This form of MRAC uses four controller gains assembled in a parameter vector
‚ D Œ‚1 ‚2 ‚3 ‚4�

T. The control input is calculated as

u D ‚T!; (5.14)

where ! D Œ!1 !2 yp r�T. Quantities !1 and !2 are the outputs of first-order
filters of the form

P!1 D F!1 C gup; (5.15)

P!2 D F!1 C gyp; (5.16)

whose initial conditions are set as !1.0/ D !2.0/ D 0. An arbitrary nonzero value
is chosen for g and F is chosen so that the above filters are stable, that is, F < 0.
Finally, the parameter adaptation law is given by

P‚ D �Ge! sign .kpkm/; (5.17)

where km is the model’s high-frequency gain,G is a tunable positive-definite matrix
and the error has been defined as

e D yp � ym:

Matrix G controls the rate of parameter adaptation.

5.4.2 Example: CMAPSS-1

The MRAC schemed is tested first using the 14 linearized plant models of
CMAPSS-1. A step command for �Nf of 100 rpm is used as reference input. The
reference model was chosen as
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Fig. 5.12 Fan speed responses of model-reference adaptive control over 14 linearized plants

Wm.s/ D 1

0:1s C 1
:

The adaptive gains were chosen with almost no trial-and-error as

G D

2
6664
0:1 0 0 0

0 0:1 0 0

0 0 0:1 0

0 0 0 0:1

3
7775 ; F D �2 g D 1:

The reader interested in reproducing these results may refer to Fig. 5.11, which
shows the Simulink implementation. The initial parameter vector was chosen as
‚0 D Œ0 0 0 0�T. The step response simulation was repeated using the 14 transfer
functions from incremental fuel flow to incremental fan speed using the data from
Appendix B, and without modifications toG,F , g, or‚0. Figure 5.12 shows that the
fan speed responses closely match each other and the reference model: there is no
overshoot and the settling time is about four time constants. Figure 5.13 shows how
parameters adapt and converge to different values to achieve the specified model-
matching objective.
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Fig. 5.13 Parameter adaptation responses of model-reference adaptive control over 14 linearized
plants
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Fig. 5.14 Comparison of nonlinear engine responses: model-reference adaptive control and
CMAPSS-1 native scheduled regulator
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The relative-degree 1 MRAC design is now applied to the 90k nonlinear engine of
CMAPSS-1. Altitude, Mach number, and fan speed are varied during simulation, the
same way as in the example of Sect. 5.3.2.2. The MRAC system was tuned withG D
1 � 10�8 I4, � D 0:5, and initial parameter vector ‚0 D Œ0 0 0 0�T. Figure 5.14
shows the fan speed and fuel flow input responses corresponding to the MRAC in
comparison with the CMAPSS-1 native gain-scheduled fan speed controller. Even
with zero as initial parameter guesses, the adaptive control system is able to attain
zero offset and reasonable transient response characteristics. Figure 5.15 shows how
parameters are adapted and converge to steady values. A “bootstrapping” tuning
procedure may be used to improve transient response. After a first simulation with
‚0 D 0, the resulting steady values of ‚ may be used as ‚0. A new simulation
is run, with an improvement in transient response. The first simulation converged
to ‚ D Œ0 0:0002 0:0006 0:0015�T. Figure 5.16 shows how performance
is significantly improved by setting ‚0 to these new values. The process may be
repeated to produce further improvements, but the refinement process will tend
to tailor ‚0 to a particular simulation, and the same transient qualities will not
be observed for a new set of plant parameter changes. A good choice for ‚0 is
best obtained by a simulation study comprising several plant parameter variation
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Fig. 5.16 Response of model-reference adaptive control with initial parameter refinement

scenarios. Theoretical results guarantee that the error will converge to zero and
that the parameters will converge to steady values. Instability can be observed in
simulation, however, due to interaction of adaptive dynamics and numerical solution
algorithms. The CMAPSS simulation presented here used a 2nd-order Runge–Kutta
method (Heun’s algorithm) with a fixed step size of 0.015. Under these conditions,
choosing the entries ofG as 1�10�7 leads to large numerically-induced oscillations.
Values near 5 � 10�7 cause unboundedness of ‚ and !.



Chapter 6
Sliding Mode Control of Turbofan Engines

Abstract This chapter introduces the concept of sliding mode control and
elaborates in its robustness properties and commonly-used tuning approaches.
This chapter also presents MIMO versions of the sliding mode regulator and
setpoint tracker, as well as a simplified SISO design. Linear and nonlinear engine
simulations using CMAPSS are included.

Sliding Mode Control (SMC) denotes a family of nonlinear techniques having
particularly strong robustness and disturbance rejection properties. These properties
arise from invariance conditions imposed on the system as part of the SMC
formulation. Regardless of its initial value, the state of the system is required to
reach a set called sliding manifold, or sliding surface in finite time, and remain in
the set beyond the reaching time. The system is then said to undergo a sliding mode.
Depending on certain conditions assumed for the disturbance and plant parameter
variations, the system can be made totally insensitive to these uncertainties while
in sliding mode. The ability to reach the sliding mode in finite time is guaranteed
under mild conditions on the disturbance and parameter uncertainties.

When the system is in sliding mode, the states are constrained by the relationship
defining the sliding surface. Suppose x D Œx1 x2�

T is the state vector of a second-
order system and the sliding surface is defined as the set S D f.x1; x2/ W x1 C
x2 D 0g. Then the states are constrained to be the negative of each other during
the sliding mode. This implies that two states are no longer necessary to describe
system dynamics during the sliding mode. Only one expression is needed for the
derivative of one of the states, and the other state is determined from the algebraic
constraint x1 C x2 D 0. This order reduction is a universal characteristic of SMC
systems having sliding manifolds of the form S D fx W s.x/ D 0g, where x is the
state vector and s.x/ is the sliding function.

The reduced-order dynamics governing the system in the sliding mode must
be made stable by proper choice of sliding function. As elaborated further in the
chapter, this represents one of the two essential SMC design tasks. The other is
to ensure that the system actually reaches the sliding mode and that its invariance

H. Richter, Advanced Control of Turbofan Engines, DOI 10.1007/978-1-4614-1171-0 6,
© Springer Science+Business Media, LLC 2012
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holds for a range of disturbances and parameter variations. Exact enforcement of the
invariance property relies on chattering control, an infinitely fast, finite-amplitude
switching of the control input. Although theoretical chattering cannot be reproduced
by any physical actuator, or even simulated in a computer, approximations to
switching control laws are available that offer a manageable tradeoff between high-
frequency control activity and relaxed forms of robustness. These relaxed robustness
properties still exceed what is achievable with fixed linear controllers.

The chapter begins with an example providing insight into the motivations behind
the SMC concept. Next, in Sect. 6.2, a MIMO SMC regulator is presented, along
with suitable methods to design various control parameters. In Sect. 6.3, an output
tracking design is introduced, and a simplified SISO fan speed tracking design
is developed in Sect. 6.4. Simulation examples using CMAPSS-1 are included
throughout the chapter.

6.1 Motivation Example: On–Off Rocket Thruster Control

Consider the problem of controlling the velocity of a projectile so that it trails a
moving target by a constant distance, as shown in Fig. 6.1. The x position of the
projectile is controlled using a thruster capable of being either on or off. Suppose
that the target moves with a known constant acceleration Rr . System dynamics are
given by the following differential equation:

m Rx D u;

where m is the mass of the projectile and u is the force produced by the thruster,
limited to the two values fUmin; Umaxg. Projectile dynamics are given in state-space
form by:

Px1 D x2;

Px2 D u

m
;

where x1 is the position of the projectile and x2 its velocity. Suppose first that m is
known exactly. The velocity of the projectile must match that of the moving target,
if a constant distance is to be maintained. Define a sliding function as the difference
between the velocities of the target and projectile:

s D Pr � x2:

Fig. 6.1 Schematic of
projectile velocity tracking
system r(t)x(t)

m
u

r(t) − x(t)
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The control objective can be expressed in terms of this function as the requirement
that s D 0 is reached in finite time, and that the zero value is maintained thereafter.
If Pr > x2 at any given time, the target is escaping, s is positive and must be reduced,
that is, Ps < 0 is needed. If Pr < x2 at any given time, the projectile is on a collision
course, s is negative and must be increased, that is Ps > 0 is required. Clearly, s and
its derivative must have opposite signs. That is, we may enforce

Ps D �� sign .s/; (6.1)

where � is a positive quantity affecting the “strength” of the reaction of Ps to the sign
of s. Note that s is essentially an error term, and that similar reactions to the sign
of the error are commonplace in household and industrial thermostats. Taking the
derivative of s from the definition, we obtain the following control law from (6.1):

u D m.Rr C � sign .s//

Assuming that Rr is a positive constant, we see that u can give rise to only two values.
The design is completed by choosing two values of � so that u matches the available
thruster forces:

m.Rr C �C/ D Umax;

m.Rr � ��/ D Umin:

Substituting control law (6.1) into the state-space description of the plant yields:

Px1 D x2;

Px2 D Rr C � sign .Pr � x2/;

where the signum function sign(s) is defined as

sign.s/ D
(
1; s > 0

�1; s < 0
:

Although the sign of zero is undefined, software packages assign it an arbitrary
value. In Matlab, for instance sign(0) returns zero. In the sliding mode, s D 0,
that is, Pr D x2, reducing the closed-loop system description to one differential
equation and one algebraic equation:

Px1 D Pr;
x2 D Pr:

Only the state equation for Px1 is needed. The second state is x2 is determined from
the input Pr through an algebraic relationship (simple identity in this case).
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Fig. 6.2 Signum function, relay and saturation function characteristics

Real-time operation and even system simulation are not possible with the
control law of (6.1). In the first case, no actuator is capable of instantaneous
switching between two distinct values. In the second, the number of consecutive
zero crossings of the variable s becomes unbounded, resulting in the failure of
numerical integration methods. It must be made clear, however, that chattering
control functions and state trajectories arising from them are valid mathematical
constructs. Their proper description requires the notion of differential inclusion, an
extension of the notion of differential equation. The interested reader is referred to
Utkin [53], one of the main proponents of SMC.

From an engineering perspective, suitable approximations to ideal switching are
often sufficient. A clear example is given by thermostats, and more generally, relay
control systems. Relays are designed to have a deadzone, a set of values of s where
switching is not allowed. A typical deadzone implementation of the control law of
(6.1) is as follows:

u D
(
Umax; s increasing and s � �

Umin; s < 0
:

The positive quantity � is the dead band, in this example situated entirely on
the nonnegative side of s. Another commonly-used approximation to the signum
function is given by the saturation function, defined as

sat.s=/ D

8̂
<̂
ˆ̂:
1; s � 

s=; � < s < 
�1; s � �

; (6.2)

where  is a small positive constant known as boundary layer thickness, used to ad-
just the accuracy of the approximation. The signum function and its approximations
by relay with deadzone and saturation function are illustrated in Fig. 6.2.

This system is now simulated using m D 1, Umax D 10, Umin D 0. Figure 6.3
shows that the projectile quickly matches the velocity of the target, thus trailing
it at a constant distance. The relay used � D 0:01 and a switch-off point of
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Fig. 6.3 Response of the projectile velocity tracking system using a relay with deadzone

s D 0. This results in high-frequency switching of the thruster between the off
and on states. The s-function reaches zero in less than 1 s. Figure 6.4 shows system
trajectories when the saturation function is used in place of the relay, with  D 0:01.
The velocity of the target is matched within a small error, and control chattering is
greatly reduced. Figure 6.5 compares the tracking accuracies of relay with deadzone
and saturation function.

6.1.1 Adding Uncertainty and Disturbance

Although the above velocity tracking problem could have been formulated using
a simple classical linear controller, it is the outstanding robustness properties what
makes SMC a far better solution. Consider that the mass is not exactly known, but
that a nominal value and maximum uncertainty are available. That is, take

m D m0 C�m;
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Fig. 6.4 Response of the projectile velocity tracking system using a saturation function

where m0 is the nominal value and j�mj � bm, for some positive bound. We
consider that bm < m0, so that the uncertain mass remains positive. Also, consider
that an unknown disturbance force f .t/ (due to aerodynamic drag, for example) acts
opposing the direction of motion. The disturbance force is assumed to be bounded
in absolute value by a constant, that is

jf .t/j � bf :

The differential equation describing projectile motion is now

.m0 C�m/ Rx D u C f .t/

and the corresponding state-space description is

Px1 D x2;

Px2 D u

m0 C�m
C f .t/

m0 C�m
:
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Fig. 6.5 Comparison of velocity tracking accuracies: relay with deadzone vs. saturation function

Define the sliding function in the same way as before, that is: s D Pr�x2. If�m and
f .t/ were exactly known, they could be incorporated in the control law to produce a
cancelation of terms and achieve Ps D �� sign.s/ as done before. That is, one could
choose

u D .m0 C�m/

�
Rr C � sign .s/ � f .t/

m0 C�m

�
:

Since �m and f .t/ are unknown, we show that the control law

u D m0.Rr C � sign .s//

may still be used, provided � is chosen appropriately. Instead of requiring Ps D ��
sign.s/, we define a function as

V D 1

2
s2:

This function is a measure of the distance of the system state to the set defined by
s D 0, and it is nonnegative. Therefore, we impose the requirement that the time
derivative of V be negative whenever s ¤ 0. This requirement guarantees that s
will reach zero in finite time. Indeed, note that PV D s Ps, thus s and Ps have opposite
signs. Then s will decrease if it is positive, and it will increase if it is negative. Once
s D 0, V D 0 and PV D 0. Now, V cannot increase due to the imposed requirement
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on PV , nor can it decrease, since V has already reached its minimum value of zero.
The only possibility is that s remain at zero indefinitely.

The requirement
s Ps < 0 (6.3)

is known as in SMC theory as a sliding mode attractiveness condition. Continuing
with the example, we derive the requirements on � so that the set defined by s D 0

is attractive. By the assumptions on disturbance and mass uncertainty bounds, the
following inequalities hold:

j�mj � bm < m0; (6.4)

0 < m0 C bm � jm0 C bmj; (6.5)

ˇ̌
ˇ̌ Rrm0

m0 C�m

ˇ̌
ˇ̌ � Rrbm

m0 � bm ; (6.6)

jf .t/j � bf ; (6.7)

ˇ̌̌
ˇ f .t/

m0 C�m

ˇ̌̌
ˇ � bf

m0 � bm : (6.8)

Now, the derivative of V is

PV D s Ps D s

�
Rr �m

m0 C�m
� m0

m0 C�m
� sign .s/ � f .t/

m0 C�m

�
:

Thus, if � is selected to satisfy

� >

�
m0 C�m

m0

�� Rrbm C bf

m0 � bm
�

inequalities (6.4)–(6.8) show that � is large enough to “overcome” the uncertainties
and guarantee that s Ps < 0. Thus, the sliding surface will be reached in finite time
and will remain invariant regardless of the value of �m and the actual disturbance
function f .t/. Velocity tracking during the sliding mode is totally insensitive to such
parameter variations and disturbance.

In this example, we consider that only two control values are available, which
must be matched to corresponding values of �. That is,

�C D Umax

m0

� Rr >
�
m0 C�m

m0

�� Rrbm C bf

m0 � bm

�

�� D Rr � Umin

m0

>

�
m0 C�m

m0

�� Rrbm C bf

m0 � bm
�
:



6.1 Motivation Example: On–Off Rocket Thruster Control 119

0 1 2 3 4 5
−5

0

5

10

15

r−
do

t a
nd

 x
2

Velocities: With Uncertainty and Disturbance

Target Velocity
Projectile Velocity

0 1 2 3 4 5
0

10

20

30

40

r 
an

d 
x 1

Positions: With Uncertainty and Disturbance

Target Position
Projectile Position

0 1 2 3 4 5
−5

0

5

10

15

u

Control Action

Time
0 1 2 3 4 5

−5

0

5

s

S−Function

Time

Fig. 6.6 Response of the projectile velocity tracking system with parametric uncertainty and
disturbance

Therefore, for the problem to be feasible, a minimum level of thruster force is
required for each direction:

Umax > m0

�
Rr C

�
m0 C bm

m0

�� Rrbm C bf

m0 � bm

��
;

Umin < m0

�
Rr �

�
m0 C bm

m0

�� Rrbm C bf

m0 � bm

��
:

As an example, consider a 20% uncertainty in the nominal mass, that is, m0 D 1

and j�mj � 0:2 D bm. Consider that the disturbance force is bounded as
jf .t/j � 0:1 D bf . For simulation, a sinusoidal disturbance with an amplitude
equal to bf and a frequency of 5 rad/s was used along with a perturbed mass of
m0 C �m D 1:2. The value of Umin D 0 used earlier is not adequate for this
“uncertainty budget”. In fact, the above inequalities for Umax and Umin indicate that
negative thruster action will be required, at a level Umin D �0:1. Simulation is
conducted with Umin D �0:5 and Umax D 10. The saturation function is used with
 D 0:01. Figure 6.6 shows that the velocity tracking objective is met perfectly
(up to saturation function approximation). Note that the control input “absorbs”
the sinusoidal disturbance, applying force corrections to the projectile so that the
disturbance is not propagated to the velocity.
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The rather powerful robustness and total insensitivity properties seen in this
example hold for a special case of disturbances and parameter variations known as
matched uncertainties. As elaborated in the following sections, general uncertainty
can be split into a matched component, which is entirely canceled by the control
input, and an unmatched component, whose effects can be minimized by proper
system tuning.

6.2 Multivariable SMC Regulator

The state-space regulation problem for uncertain plants is now considered. Let the
plant description be given by

Px D .AC�A/x C .B C�B/u C �w; (6.9)

where�A and�B can be used to reflect uncertainties or time variations inA and B .
The state equation may be rewritten as

Px D Ax C Bu C d.x; u; t/; (6.10)

where d.x; u; t/ D �AxC�BuC�w.t/ represents a generalized uncertainty term.
The dimensions of � are assumed to be n-by-h, corresponding to an h-component
disturbance w. Also, the state vector is of dimension n and there are m control
inputs. For reasons that will justified below, it is assumed thatm < n, B is full-rank
and .A;B/ is a controllable pair.

6.2.1 Matched Uncertainties

If the generalized uncertainty can be expressed as

d.x; u; t/ D B	.t; x; u/ (6.11)

for some new uncertainty vector 	.t; x; u/, then the uncertainties are said to be
matched. Matched uncertainties thus enter the plant through the same channels
as the control inputs. It is useful to analyze the conditions that must be met for
uncertainties to be of the matched type. Dropping the arguments of d and 	 from
the notation, note that d has dimensions n-by-1, so 	 must be m-by-1. Regarding
(6.11) as a system of n linear equations where 	 is a vector of m unknowns, and
continuing with the assumption that m < n, we see that the system of equations
is overdetermined. Recalling basic linear algebra, a solution for 	 will exist only
if d is a linear combination of the columns of B , (assumed to be full-rank).
Mathematically, this is expressed as

d 2 col B; (6.12)

where col denotes the linear space spanned by the columns of a matrix.



6.2 Multivariable SMC Regulator 121

In our GTE problem, there are two states, thus only one actuator may be used in
SMC designs based on .A;B/ to meet the assumption that m < n. The generalized
uncertainty 	 becomes a scalar, and d must be parallel to B for the matching
condition to be satisfied.

As the reader may appreciate, it is difficult to satisfy the matching condition
exactly. However, as illustrated by Khalil [54], a general uncertainty may be decom-
posed into matched and unmatched components. SMC will be totally insensitive
to the matched portion, without additional design effort, while the effects of the
unmatched component can be minimized by proper design. Thus, every stable SMC
tuning reduces the sensitivity of the closed-loop system to general uncertainties.

6.2.2 Control Law Development

The regulation objective is to drive the state from an arbitrary initial point to zero.
Introduce a vector of m sliding variables as

s D Gx;

where G is an m-by-n full-rank matrix of sliding coefficients. The sliding coeffi-
cients will be selected by the designer to prescribe desired dynamics to the nominal
system in the sliding mode defined by s D Ps D 0. It is assumed that this choice
satisfies the tranversality condition that GB is nonsingular.

The first stage of the control action is to bring the system state to the sliding
mode. This stage of the control law derivation is known as “sliding mode attractive-
ness” or “reachability problem”. As done in the introductory example of Sect. 6.1.1,
the condition s Ps < 0 guarantees that s D 0 will be reached in finite time. One way
of enforcing this condition for nonscalar sliding functions is to make

Ps D �„���!
sign .s/;

where „ is a diagonal matrix of positive gains and
���!
sign .s/ is a vector whose

components are sign.si /, i D 1; 2; ::m. If the generalized disturbance were known,
the hypothetical control input ueq required to achieve this condition could be found
using Ps D G Px D G.Ax C Bu C d/:

ueq D �.GB/�1.GAx C„
���!
sign .s/CGd/:

This control input is known as equivalent control. Under the action of ueq, the sliding
mode is eventually reached and s D 0 subsequently, regardless of the variation of d .
Substituting ueq into the plant description of (6.10), the sliding mode dynamics
become

Px D .A� B.GB/�1GA/x � B.GB/�1Gd C d: (6.13)
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Now, if the uncertainty is matched, d D B	, so the terms containing d in the above
equation cancel out, reducing the sliding dynamics to

Px D .A � B.GB/�1GA/x D Aeqx: (6.14)

This total insensitivity to matched uncertainty in the sliding mode is one of the
trademark features of SMC. The other one is its ability to reach s D 0 robustly, for
which the matching condition is not required, as seen next. Since d is unknown, it
cannot be part of the control law. A valid SMC control law can be specified simply
by omitting the uncertainty term:

u D �.GB/�1.GAx C„
���!
sign .s//: (6.15)

It should be clear that the stability of the sliding mode dynamics is determined by
(6.14). Since d has been omitted, it remains to verify that the sliding mode can still
be established. For this, the sign of si Psi under control law (6.15) is examined. We
have

si Psi D s.��i sign .si /CGid/;

where �i is the i -th diagonal entry in „ and Gi is the i -th row of G. Following a
reasoning similar to the one used in Sect. 6.1.1, it is clear that the reaching condition
is ensured if d.t; x; u/ is bounded and �i is chosen large enough. Explicitly, it is
necessary that �i > jjGid jj. Using the triangle inequality, the following sufficient
condition is obtained:

�i > jjGi jj�;
where the generalized uncertainty satisfies jjd.t; x; u/jj � �. Obtaining such a
bound for the most general form of uncertainty is impractical, since it depends
on the peak magnitudes of x and u, which are in turn influenced by �i . When no
uncertainties are considered for A and B , the bound is readily obtained from the
assumed bound on disturbance vector w and the norm of � .

6.2.3 Reduced-Order Dynamics and Sliding Coefficient Selection

When the system is in sliding mode, the states satisfy the algebraic constraint
Gx D 0. This implies that a set of states is linked to the remaining states through
an algebraic relationship. Since G ism-by-n and full-rank and x is n-by-1, the case
m D n would reduce the sliding set to the singleton set defined by x D 0, and
insensitivity to uncertainties would not hold until the system state has reached zero.
Control chattering would be immediately propagated to the system state, in absence
of sliding dynamics acting as a filter. In turn, when m > n, G contains redundant
rows, cannot be full-rank and GB becomes singular. Therefore, the assumption that
m < n is justified and maintained.
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The algebraic constraint Gx D 0 represents an underdetermined and
homogeneous system of linear equations. Since G is full-rank, m state variables
can be expressed as linear functions of the remaining n�m states. Equations (6.13)
and (6.14) must therefore contain redundant state variables. Indeed, it is possible to
show that Aeq has at least m zero eigenvalues, regardless of how G is chosen.
For stable sliding mode dynamics, Aeq must have n � m eigenvalues with
negative real parts. If G is chosen appropriately, there will be exactly m zero
eigenvalues. Moreover, I � B.GB/�1G has n � m unity eigenvalues and m

zero eigenvalues. This matrix appears as the disturbance input distribution matrix
in (6.13).

As an example, consider the following pair of system matrices

A D

2
6664

1 2 �1 2

2 2 0 1

�1 4 2 0

2 4 4 �1

3
7775 B D

2
6664
0 1

1 �1
2 4

1 1

3
7775

and the following sliding coefficient matrix:

G D
"

0:9674 0:7188 0:6433 0:4440

�1:2572 �0:9562 1:1158 �1:2753

#
:

The reader can verify that the eigenvalues of Aeq are 0, 0, �1 and �2. Here, two
states can be written as a function of the other two when the system is in sliding
mode. This may be done by direct algebraic manipulation of the equation Gx D 0.
The redundant state equations can likewise be eliminated from the sliding mode
dynamics of (6.13) and (6.14).

This elimination can be made systematic by introducing a convenient similarity
transformation, which puts the system in regular form. Let T be an invertible n-by-n
matrix satisfying

TB D
�
0

B2

�
; (6.16)

where B2 is an m by m matrix. When B is full-rank, such matrix can always be
found by the following procedure: the first n � m rows of T are chosen as vectors
which are orthogonal to each column of B , so that the zero matrix is obtained. This
is always possible, since m < n, thus the space spanned by the columns of B has
dimension m. This space can be extended into a basis of an n-dimensional space
using n �m additional vectors, which are orthogonal to col .B/. The remaining m
rows of T are chosen so that T is full-rank, but are otherwise arbitrary, resulting in
some B2 matrix. Edwards and Spurgeon [55] present a convenient method and list a
Matlab program to find an orthogonal matrix T using the QR decomposition of B .
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Introduce a change of coordinates z D T x. In terms of these coordinates, the
plant has the state-space description:

Pz1 D A11z1 CA12z2 C �1;

Pz2 D A21z2 CA22z2 C B2u C �2; (6.17)

where
TAT �1 D

�
A11 A12

A21 A22

�
(6.18)

and �1 and �2 are, respectively, the first n�m and last m rows of Td . Note that A11
is square with dimension n � m and A12 is n � m by m. To understand the order
reduction introduced by the sliding mode, express s in z coordinates as

s D Gx D GT �1z D Gz1z1 CGz2z2;

where Gz1 contains the first m columns of GT �1 and Gz2 the remaining m. Gz2

acts as a scaling factor and does not influence system dynamics in the sliding
mode. Since the design of G will be conducted by specifying GT �1 first, we may
assume that Gz2 has been chosen to be invertible. Usually, Gz2 D I is chosen by
designers for simplicity. Adopting this choice, we rederive control law (6.15) in z
coordinates:

u D �B�1
2 Œ.Gz1z1A11C A21/z1 C .Gz2A12 C A22/z2 C„

���!
sign .s/�: (6.19)

Substituting this law into (6.17) yields the following description of the closed-loop
dynamics:

Pz1 D A11z1 C A12z2 C �1; (6.20)

Pz2 D �Gz1.A11z1 CA12z2/ �„���!
sign .s/C �2: (6.21)

Under the SMC law, the sliding variables obey the relationship:

Ps D �„���!
sign .s/CGz1�1 C �2:

Thus, (6.21) can be rewritten as:

Pz2 D �Gz1.Pz1 � �1/C Ps �Gz1�1 D �Gz1Pz1 C Ps:

This implies that z2 may be integrated as follows

z2.t/ D �Gz1z1.t/C s.t/C C;

where C is a constant reflecting initial conditions. Noting that the above equation is
just a rearrangement of the definition of s, we see that C D 0.
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A better representation of closed-loop system dynamics is obtained by regarding
s as a state variable, along with z1. The following description accounts for system
behavior during the reaching phase as well as the sliding mode:

Pz1 D .A11 �A12Gz1/z1 C A12s.t/C �1.t/; (6.22)

Ps D �„���!
sign .s/CGz1�1.t/C �2.t/: (6.23)

Once more we observe that if the entries of „ are chosen large enough in relation
to the disturbance bounds, s will reach zero in finite time.

Equation (6.23) shows that the evolution of s is unaffected by z1. Then, s.t/ may
be regarded as an exogenous input to (6.22) alongside �1. For the overall nonlinear
system to be stable, it is then sufficient that .A11 � A12Gz1/ have all its eigenvalues
with negative real parts.

Turning attention now to the sliding regime, system dynamics reduce to

Pz1 D .A11 �A12Gz1/z1 C �1.t/:

If the disturbance is matched Td DTB	. In this case �1 D 0, as seen from (6.16).
Since the closed-loop dynamic equations in z coordinates were obtained from
x coordinates by similarity transformation, the eigenvalues of the corresponding
system matrices must be preserved. Therefore, from (6.22) and (6.23), we see
that the eigenvalues of .A11 � A12Gz1/ must match the nonzero eigenvalues of
Aeq of (6.14). This result provides a commonly-used approach to prescribe desired
dynamics for the sliding mode: direct pole placement based on the pair .A11; A12),
with Gz1 acting as the state-feedback gain.

It can be shown that .A11; A12/ is a controllable pair whenever .A;B/ is
controllable, justifying the assumption at the beginning of this section. Under this
assumption, the designer may freely assign n�m eigenvalues to Aeq. The resulting
Gz1 is then combined with Gz2 D I , and the desired sliding coefficients are found
as G D ŒGz1 I �T .

6.2.4 Utkin and Young’s LQ Method

Direct pole placement is simple and convenient for small values of n � m. For
problems of higher dimensionality, pole placement for SMC presents the same
difficulties found in state feedback design by manual pole placement: multiple pole
locations are not easily linked to transient response characteristics.

Many methods have been developed over the years to substitute manual pole
placement in conjunction with SMC. The eigenstructure assignment approach seeks
to minimize the effects of unmatched uncertainties on the sliding dynamics. As seen
in (6.22), Gz1 not only determines the eigenvalues of .A11 � A12Gz1/, but also
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partially determines the effects of �1 on z1. Eigenstructure methods take advantage
of the unused degrees of freedom associated with pole placement to minimize
unmatched disturbance effects. The interested reader is referred to Edwards and
Spurgeon [55] for a detailed exposition.

A simple and intuitive approach to select G is given by the quadratic minimiza-
tion method developed by Utkin and Young [56]. The objective is to minimize a cost
function of the form

J D
Z 1

tr

x.t/TQx.t/dt (6.24)

subject to system dynamics in the sliding mode, where tr denotes the time at which
the sliding mode begins and Q is a symmetric, positive-definite weight matrix.
As explained in detail in Utkin and Young [56] and Edwards and Spurgeon [55],
the quadratic minimization problem can be expressed in z-coordinates as

min J D
Z 1

tr

zT
1

OQz1 C vTQ22vdt subject to; (6.25)

Pz1 D OAz1 C A12v; (6.26)

where

OQ D Q11 �Q12Q
�1
22 Q21; (6.27)

OA D A11 � A12Q
�1
22 Q21; (6.28)

v D z2 CQ�1
22 Q21z1 (6.29)

and Qij are block matrices arising from partitioning TQT �1 in the same way as
TAT �1. The minimization problem of (6.25) and (6.26) has the standard LQR form,
with v regarded as the control input. The solution is then a static state feedback law
of the form

v D �Kz1;

where K may be obtained using Matlab’s lqr command. Substituting the optimal
solution for v into (6.29) yields

z2 D �.K CQ�1
22 Q21/z1:

Since the minimization is conducted under the constraint that the system is in
the sliding mode, we have s D 0, thus z2 D �Gz1z1. By direct comparison, the
optimizing value of Gz1 is given by

Gz1 D K CQ�1
22 Q21:
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6.2.5 SMC Regulator Example: CMAPSS-40k

In this example, an integral multivariable SMC regulator is designed to meet setpoint
command changes. The starting and ending flight conditions are the same as in
the example of Sect. 4.8. The SMC controller was designed using the linearized
matrices corresponding to the Ground Idle condition listed in Table 2.4. To facilitate
design, the plant is first scaled as follows:

xs D Txx D
"

1
500

0

0 1
1000

#
x;

v D Tuu D

2
64

1
5

0 0

0 1
100

0

0 0 1

3
75 u:

These scalings give rise to a set of transformed plant matrices of the form
.TxAT

�1
x ; TxBT

�1
u /. The augmented plant is then assembled using the scaled

matrices. Since the augmented plant has five states and there are three inputs, the
sliding dynamics are described by second-order dynamics. Consequently, the pole-
assignment problem conducted using the pair .A11, A12/ requires the specification
of two closed-loop eigenvalues. Choosing �2:5 and �3 as desired pole locations,
the following sliding coefficient vector is obtained in scaled coordinates:

Gs D

2
64

�0:0658 0:2296 1:0000 0 0

0:0563 �0:1349 0 1:0000 0

0:0003 �0:0010 0 0 1:0000

3
75 :

The controller is implemented in CMAPSS in scaled form, by appropriately scaling
the state measurements as part of the control algorithm. The computed control rate
vector Pv D vr must be de-scaled and integrated prior to its application to the engine.
The switching gains and boundary layer parameters were manually tuned as �1 D
�2 D 0:5, � D 1, 1 D 0:005, 2 D 0:01, and  D 0:05.

The SMC regulator requires the specification of target steady values for all aug-
mented state components. Moreover, the two steady speeds must be the equilibrium
values corresponding to the target steady inputs. These requirements are the same as
those applicable to the integral state-feedback regulators considered in Sect. 4.7.1.
The designer must have access to the steady map of the nonlinear engine to
determine a valid target state. Figures 6.7–6.9 show the results corresponding
to a fan speed increment demand starting at Ground Idle conditions. It can be
observed that fan and core speeds and control inputs reach their targets with high
accuracy and without noticeable chattering. The settling time for fan speed is
roughly 2.13 s.
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Fig. 6.7 Response of integral multivariable SMC design near Ground Idle: states and outputs

The same design is now used near Max Cruise condition, this time with a
fan speed decrease command. Figures 6.10–6.12 show the results. Although the
augmented state still reaches its setpoint with high accuracy, the transient response
is significantly slower. The robustness of the SMC design ensures convergence to
the boundary layer despite the unmatched uncertainty introduced by changes in A
andB . However, these changes have an influence in the overall transient behavior, in
particular during the sliding mode. Adaptive SMC techniques exist that can be used
to achieve more consistent transient response characteristics. The interested reader
is referred to the work of Kuo and co-workers [57] for a simple PID-like definition
of sliding surface with adaptive gains.

6.3 SMC Output Setpoint Following

Recalling the state feedback designs of Sect. 4.7.1, a desired output setpoint can
be achieved in nonlinear engine simulation by appropriately shifting the measured
plant state. This requires knowledge of the steady map of the nonlinear plant, so that



6.3 SMC Output Setpoint Following 129

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5
W

F
,p

ps

Time,s

Control Inputs: Integral SMC Design Near Ground Idle: CMAPSS−40k

0 1 2 3 4 5
−25

−20

−15

−10

V
S

V
,d

eg

Time,s
0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

V
B

V
,fr

ac
tio

n 
op

en

Time,s

Fig. 6.8 Response of integral multivariable SMC design near Ground Idle: control inputs

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time,s

s 1
, s

2 
an

d 
s 3

Sliding Functions: Integral SMC Design Near Ground Idle: CMAPSS−40k

s1

s2

s3

Fig. 6.9 Response of integral multivariable SMC design near Ground Idle: sliding variables



130 6 Sliding Mode Control of Turbofan Engines

0 1 2 3 4 5
3200

3300

3400

3500

3600

3700

N
f,r

pm
States and Outputs: Integral SMC Design Near Max Cruise: CMAPSS−40k

0 1 2 3 4 5
1

1.01

1.02

1.03

1.04

1.05

1.06
� 104

N
c,

rp
m

0 1 2 3 4 5
1000

1100

1200

1300

1400

1500

1600

Time,s

T
48

, ° R

0 1 2 3 4 5
20

25

30

35

40

45

50

Time,s

S
M

−
H

P
C

,%

Fig. 6.10 Response of integral multivariable SMC design near Max Cruise: states and outputs

the correct reference states can be determined. Similar state shifting can be used in
conjunction with SMC to drive the states to desired values.

Alternatively, the generation of reference states can be brought online, as part of
the overall control law. When the plant model is accurately known, reference states
can be generated by a simulation of the plant model under some stabilizing control.
The simulated control is designed so that model outputs follow a set of reference
inputs. This simulation runs in parallel with the control system, feeding the required
reference states to the SMC controller. By doing this, only output references are
specified, and previously calculated state references become unnecessary. When the
plant model is linear, the “virtual control” used to stabilize the model may be as
simple as a state-feedback law with reference prefilter.

Assume that the nominal plant model is given by

Px D Ax C Bu; (6.30)

y D Cx CDu; (6.31)
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Fig. 6.11 Response of integral multivariable SMC design near Max Cruise: control inputs

where u and y have dimensionsm-by-1. The objective is to specify an SMC control
law so that the closed-loop system is stable and y ! r as t ! 1, where r is a
vector of time-varying references to be tracked. Note that uncertain terms have been
omitted, but the same observations made for the regulator design apply: matched
uncertainties will not affect sliding mode dynamics, and sufficiently high values
of the switching gain guarantee the existence of a sliding mode when general
uncertainties are present. Assume, as before, that B is full-rank and .A;B/ is
controllable.

The regulator design presented here introduces a reference model, much like the
one used in conjunction with the model reference adaptive control of Sect. 5.4.1.
Here, the reference model is introduced to feed the SMC tracker a set of suitable
reference states. The reference model has the same structure as the nominal plant
under the action of a state feedback control. The state feedback control applied
to the reference model is designed so that its outputs track the references, at least
in the steady-state. The SMC is then formulated so that the plant state converges to
the model state in a robust fashion. The nominal plant outputs will then track the
references, matching their steady values.
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Let the reference model be given by

Pxm D Axm C Bum; (6.32)

um D �Kxm C P r; (6.33)

whereK is a feedback gain chosen to stabilize .A�BK/ and P is a static reference
prefilter designed so that ym D Cxm C Dum D r at steady state. At steady state,
one has Pxm D 0, so xm D �.A � BK/�1BP r . The steady model output is then
ym D ŒD � .C �DK/.A� BK/�1B�P r . Then P must be chosen as

P D 

D � .C �DK/.A� BK/�1B

��1
: (6.34)

Define the sliding function as s D Ge, where e D x�xm. As done for the regulator

design, the control input is obtained from the requirement that Ps D �„���!
sign .s/.

The control law is then:

u D �.GB/�1
h
GAe � .GB/um C„

���!
sign .s/

i
: (6.35)
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The reader may readily verify that the closed-loop dynamics under this control law
reduce to

Pe D Aeqe � B.GB/�1 „���!
sign .s/; (6.36)

Ps D �„���!
sign .s/: (6.37)

Clearly, s reaches zero in finite time and e converges to zero asymptotically if Aeq

is designed as done for the regulator design.

6.3.1 Example: Linearized CMAPSS-40k Model

Consider the CMAPSS-40k linearized model matrices near Ground Idle and define
the outputs to be the incremental fan speed, core speed, and HPC stall margin. We
conduct an integral design using an augmented plant model as in the regulator
example. Suppose K is chosen via an LQR design on the augmented model
matrices, as done in the example of Sect. 4.8.3. The scaling used in this example
is the same as the one used in the SMC regulator example. The value of K from
(4.32) is converted to scaled coordinates according to Ks DTuKT

�1
x to give

Ks D
2
4 �1:0800 �0:4200 40:2654 7:8540 �0:0517

0:0185 �0:0560 0:0196 4:2430 �0:0003
0:5000 0:3000 �1:2915 �2:9400 4:0187

3
5 :

The static prefilter gain is then computed from (6.34) as

Ps D
2
4 0:0146 0:0006 �0:1632

�0:0015 0:0012 0:0008

�0:1280 0:0240 �5:6871

3
5 :

The reference model and control law computations are implemented in scaled
coordinates, as shown in the Simulink diagram of Fig. 6.13. Next, we illustrate
Utkin and Young’s LQ method for the selection of sliding coefficients. Taking Q
to be a diagonal matrix with entries 1; 1; 10; 10; 10, the following matrix of sliding
coefficients is obtained:

Gs D
2
4 0:1148 0:1263 1:0000 0 0

�0:0484 0:1356 0 1:0000 0

�0:0005 �0:0005 0 0 1:0000

3
5 ;

which places the poles of Aeq at �4:46 and �5:55. The design is completed by
selecting the switching gains �i (diagonal entries of„) and values for the boundary
layer parameters i . Unlike the regulator example, s is computed on the basis of the
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Fig. 6.14 Response of integral multivariable SMC output tracking design near Max Cruise. The
simulation uses the linearized CMAPSS model

error between the state and its reference value. This requires that �i be re-tuned to
obtain an adequate reaching time. In this example, �1 D �2 D 500, �3 D 50 are
chosen, along with i D 0:1 for i D 1; 2; 3. Figure 6.14 shows plant outputs closely
following their setpoint references. Convergence of the sliding variables to zero is
also shown.

As presented, the reference model approach will give good results for small ex-
cursions of the states from their points of linearization. For larger transfers, however,
significant offsets will be observed. Sliding mode robustness is rendered useless,
mainly due to the attempt to capture the engine’s steady map in formula (6.34).
Although the SMC system will track the reference state in a robust fashion,
tolerating changes in A and B , references states are still generated according to
the linearized model. It is certainly possible to incorporate the LPV techniques of
Sect. 5.3 to correct the reference model in real-time. The accuracy of reference state
generation can be significantly improved.

Another limitation of this approach is that some combinations of steady reference
inputs may require corresponding steady control inputs falling outside actuator
saturation limits. Finding a restricted range for the reference inputs requires knowl-
edge of the nonlinear engine’s steady map, defeating the purpose of introducing a
reference model.
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6.4 Simplified SISO Integral SMC Design

We conclude the chapter by presenting a simplified integral control version of SMC
that can be applied to linear plants with one input and one output. This is directly
applicable to fan speed control using WF as control input. This SMC formulation is
also the basis for the advanced limit protection design of Chap. 8.

Assume that the plant is described in state-space form by:

Px D Ax C Bu; (6.38)

Pu D ur ; (6.39)

yreg D Cx; (6.40)

where yreg is a system output which is required to achieve a setpoint value r . It is
assumed that A is n-by-n and nonsingular and that .A;B/ is controllable. Define an
auxiliary output for this system as

y D Gx C u; (6.41)

where G is a vector of sliding coefficients to be designed. Let the sliding function
be defined as s D y � Ny, where Ny is a constant chosen to achieve yreg D r at steady
state (see (6.45)).

Taking the derivative of s and imposing the reaching condition Ps D �� sign.s/
results in

Ps D GŒA j B�xa C ur D �� sign .s/;

where xa is the augmented state defined as xT
a D Œx j u�. The expression for the

control rate is then
ur D �GŒA j B�xa � � sign.s/: (6.42)

The reaching condition Ps D �� sign.s/ can be integrated to give a useful formula
for the time required for s to reach the zero value. Denoting the reaching time by tr,
we have

s.tr/ D 0 D s.0/� �

Z tr

0

sign.s/dt:

Ideally, the sign of s must be constant until the sliding surface is reached. Thus,
sign.s/ Dsign.s.0//. Integrating and solving for tr gives:

tr D js.0/j
�

: (6.43)

Consider now the dynamics of the system in the sliding mode. From the definition of
s, y D Ny must hold. Thus, the augmented control state must be related to the plant
state by u D Ny �Gx. Substituting this into (6.38) yields the following expression:

Px D .A� BG/x C B Ny: (6.44)
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The above n-th order relationship already represents dynamics in the sliding
mode, which are of reduced order relative to the augmented plant. Note that no
transformation to the regular form is required, since direct pole placement on
A � BG can be carried out. If A � BG is stable, a steady state will be reached
where Px D 0 and x D Nx is the steady state calculated as

Nx D �.A � BG/�1B Ny:

The corresponding steady value for the regulated output is then C Nx. Equating this
to r gives the required value for Ny:

Ny D � r

C.A� BG/�1B
: (6.45)

Formula (6.45) was derived on the assumption that the plant is truly linear. The same
shortcomings observed with formula (6.34) apply: the nonlinear engine’s steady
map cannot be captured using a single relationship derived from a linearized model.
Our approach to obtain accurate setpoint attainment has been to use reference steady
values for the state, derived from the nonlinear steady map as part of various control
formulations.

The SMC approach of this section can be conveniently adjusted to use such
predetermined state references. Express the sliding function as

s D Gx C u � Ny D Gx C u �G Nx � Nu D G.x � Nx/C .u � Nu/: (6.46)

Control law (6.42) can now be implemented with Nx and Nu directly, which can be
found from the true nonlinear steady map so that the regulated output reaches the
intended setpoint.

6.4.1 Example: CMAPSS-1

The simplified design is now applied to the fan speed regulation problem. The
design plant is the transfer function from �WF to �Nf at FC07. Matrices A and
B corresponding to this condition are listed in Appendix B. The design comprises
three elements:

1. Choosing G to assign eigenvalues to the sliding mode dynamics.
2. Selecting values for the switching gain � and boundary layer thickness .
3. Finding the values of the reference states Nx and Nu from the actual steady map to

match the desired fan speed increment.

For the first task, direct pole placement is straightforward, since A � BG is
of second order. The poles can be chosen to reflect desirable time constant and
damping values. Taking a damping ratio 	D 0:7 and a natural frequency wn D 11:43
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Fig. 6.15 CMAPSS Implementation of integral SMC fan speed controller

rad/s corresponds to pole locations at �8 ˙ 8:1616i , which have an associated
settling time of 0.5 s. The pole placement calculation is done using Matlab’s place
command, yielding the following value for the sliding coefficients:

G D Œ0:1405 � 0:0318�:

Various criteria must be considered when choosing �. The time to reach s D
0 is determined by �, and also by G, since s.0/ depends on this parameter.
Robustness against uncertainties typically require a minimum value for �. Finally,
limit protection considerations also apply. In this example, � is tuned on the basis
of reaching time alone. The calculation of s.0/ requires knowledge of the reference
states and a closer look at the SMC implementation in CMAPSS.

Recalling that the linearized states are fan and core speed increments, and that Nx
and Nu are likewise incremental, (6.46) can be rewritten in terms of sensed and target
variables as follows:

s D G

 "
Nf �Nf0

Nc �Nc0

#
�
" NNf �Nf0

NNc �Nc0

#!
CWF �WF0 � .W F �WF0/:

The linearization, or “trim” values Nf0, Nc0 and WF0 cancel out, reducing the
expression for s to

s D G

 "
Nf � NNf

Nc � NNc

#!
CWF �W F:

Thus, s can be calculated online from the sensed speeds, actual fuel flow, and
predetermined values for NNf, NNc, and W F. The SMC section of the CMAPSS
implementation is shown in Fig. 6.15. Returning now to the calculation of �,



6.4 Simplified SISO Integral SMC Design 139

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1900

2000

2100

2200

2300

N
f, 

rp
m

Response of SISO Integral SMC Controller: CMAPSS−1

0 1 2 3 4 5
1.5

2

2.5

3

3.5

W
f, 

pp
s

Time, sec

Control Input

0 1 2 3 4 5
−35

−30

−25

−20

−15

−10

−5

0

5

s

Time, sec

Sliding Function

Fig. 6.16 Response of integral SMC fan speed controller: CMAPSS-1

consider a TRA change of 40ı from the trim value of 60ı defining FC07. The
corresponding trim values are Nf0 D 1915:3 rpm, Nc0 D 8006:3 rpm, and WF0 D
1:67 pps. The steady values after the 40ı TRA increment are obtained from
CMAPSS as NNf D 2254:8 rpm, NNc D 8481:2 rpm, and W F D 2:85 pps.
These figures can be used to calculate the initial value of the sliding function:
s.0/ D �33:78. Equation (6.43) can be used to tune � to obtain a desired reaching
time. For a reaching time less than 1.5 s, we choose � D 25. The boundary layer
thickness  is chosen to obtain a suitable tradeoff between chattering and regulation
accuracy. Trial-and-error is the best way to tune this parameter when the nonlinear
engine is being simulated. In this example,  D 0:05 was initially chosen, but
resulted in significant control chattering. A value of  D 0:5 was finally adopted.
As Fig. 6.16 shows, this value produces a very small offset between the actual and
target steady fan speeds, and no control chattering is observed.



Chapter 7
Engine Limit Management with Linear
Regulators

Abstract This chapter describes the min–max logic arrangement used in standard
engine control systems to maintain critical variables within the permissible bounds.
A thorough analysis of this arrangement is conducted using the concept of positive
invariance. The shortcomings of the min–max approach are made evident in simu-
lations. A brief description of an acceleration-limiting approach is also included.

The control techniques presented so far do not address the need to maintain critical
engine variables within permissible limits. As described in Sect. 1.3, engine outputs
such as stall margins and turbine temperatures must be kept between safe limits
at all times. The values chosen for safety limits depend on particular engine
characteristics, and typically reflect a tradeoff between high engine performance
and engine durability and operational safety. Indeed, large shaft accelerations
are desirable for improved maneuverability, since they produce fast thrust responses
to pilot commands. Large accelerations lead to transient reductions in stall margin,
however, increasing the danger of compressor surge. Large accelerations also
correlate with large turbine temperature transients. Since blade wear rate increases
with temperature, transient peak temperature suppression should be included as an
objective when designing fan speed controllers.

Constraints can be placed on system inputs and outputs. Temperatures, stall
margins, and pressure ratios are examples of output variables that may be subject to
constraints as part of a particular design process. Fuel flow rates and VSV and VBV
openings are inputs whose ranges are constrained. Input constraints can arise from
the same considerations as output constraints, that is, to address engine durability or
safety, or from the presence of physical limits in actuator systems. An example of a
safety-related input constraint is a minimum fuel flow rate requirement, imposed to
maintain the combustion chamber away from lean blowout conditions. An example
of a physical actuator constraint is given by the fact that a valve may not be
more than 100% open or less than fully closed. When such actuator saturation
effects are ignored during controller design, the implemented closed-loop controller
may oscillate or even become unstable. Designs which do not explicitly address
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saturation must be validated via simulation studies to evaluate the possibility and
effects of saturation modes during real-time operation.

In this chapter, a widely used control architecture intended to achieve limit
protection is examined. The min–max approach, presented in Sect. 7.1, is used in
many GTE control systems. CMAPSS-1 and CMAPSS-40k are distributed with
min–max limit management implementations, representative of the actual control
systems used in commercial engines such as General Electric’s GE90 and Pratt and
Whitney’s PW2000.

The concept of set invariance is introduced in Sect. 7.2. This concept is in-
strumental to the analysis of constrained control systems in general. Some basic
invariant set constructions are presented to illustrate the application of the theory to
GTE control. In Sect. 7.3, min–max architecture based on state feedback controllers
is analyzed for its invariance properties. Detailed examples using the CMAPSS-1
model are given throughout the chapter.

7.1 The Min–Max Limit Management Logic

The min–max selector arrangement is representative of actual aircraft engine control
systems. Similar arrangements have also been used in industrial processes where
a number of system outputs must be kept between prescribed limits as a main
output is controlled between setpoints. The premise is that a single control input
is available for the tasks of controlling the main output and maintaining a set of
outputs between desired limits. Figure 7.1 shows the min–max arrangement with

Fig. 7.1 Min–max limit
management logic with linear
compensators and integral
control
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linear compensators. A version of the min–max arrangement with state feedback
controllers is used for analysis in Sect. 7.3, and a version replacing the linear
compensators with sliding mode controllers is presented in Chap. 8.

As shown in Fig. 7.1, the technique uses input integration. The fuel flow control
input WF is applied to the engine, resulting in a set of h outputs characterized by
their linearized transfer functions from WF. Outputs are divided into two groups: a
set of upper-limited outputs, numbered as yi , for i D 1; 2:::l and a set of lower-
limited outputs, numbered with i D l C 1; l C 2; :::h. The reader should note that
transfer functions Gi.s/ for i D 1; 2:::h share the same poles, since they arise from
the same linearized state-space matrix A. The static gains Gi.0/ and zero locations
will differ, due to differences in matrices C and D defining the outputs. It is also
useful to remember that GTE dynamics are such that neither the transfer functions
Gi.s/ nor A have poles at the origin.

The min–max system is conceived to prevent selected variables from crossing
their limits, by activating their regulators as needed. If a variable approaches
its limit, its regulator should take over and attempt to drive the output to the
prescribed limit without overshooting it. The diagram of Fig. 7.1 shows that
upper-limited variables yi .s/ each have a controller Ki.s/ with a classical error
feedback structure. The setpoint corresponds to the desired output limit, ri . Each
upper-limited controller produces a “candidate” control rate uri . The minimum
rate among upper-limit regulator outputs is preliminarily chosen. A separate set
of lower-limit controllers produce their own candidate control rates. The maximum
control rate among lower-limit regulator rates and the “winner” from the min stage is
selected as the rate to be integrated, producing the fuel flow input command applied
to the plant.

The above description cannot be expected to satisfy the average controls
engineer. Unfortunately, few works can be found in the open literature that conduct
a detailed analysis of this system. Is the system always stable? Could it produce
endless switching among regulators? Why are upper-limited variables associated
with the min selector and lower-limited variables to the max selector? Under which
conditions is limit preservation guaranteed? It turns out that some of these questions
have simple and thorough answers, while others are either unresolved or require
analysis beyond the scope of this book.

The question of stability of min–max implementations using linear regulators,
for instance, has been treated with nonlinear techniques applicable to sector-
bounded nonlinearities, such as Popov’s criterion and the famous Small Gain
Theorem (see Glattfelder and Schaufelberger [58], for instance). These tools provide
only sufficient conditions, resulting in very conservative stability assessments.
Johansson [33] has analyzed a conceptually similar system using the tools of
piecewise-linear systems and multiple Lyapunov functions.

The author of this book proposed that the linear regulators be replaced by
sliding mode controllers. Although analysis becomes more complex due to the
nonlinearity inherent to sliding mode control, a full global asymptotic stability
proof was achieved and simple design guidelines generated, see Richter [59]. This
is presented in Chap. 8.
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The question of limit protection effectiveness is difficult to establish for the
transient regime when dynamic compensators (control transfer functions) are used.
When static feedback laws of the form u D �Kx C P r are used instead, some
simplifications occur, facilitating analysis. In the following sections, the dynamic
compensation case is studied for its limit protection properties at steady-state only,
while the static feedback case is analyzed for both transient and steady-state limit
preservation properties.

7.1.1 Default Index Assumptions: Min and Max Operators

Although the generic mathematical operations of taking the minimum or maximum
require no explanations, assumptions must be made regarding their behavior in
the event of non-unique minimum or maximum values among operands. For the
remainder of the book, we adopt the assignment rules made by the min and
max operations implemented in many computer languages. Let fN.i/g represent
an indexed collection of real numbers, for iD1; 2; :::n and let NN and N denote,
respectively, the maximum and minimum values found in the collection. If there
exists a single index Ni such that N.Ni/D NN , Ni is chosen as the outcome of the
max selection process. In general, if a set of maximizing indices exists, that is
set fI.j /g is such that N.I.j //D NN , then the lowest of such indices is chosen:
NiDmin.I.j //. For example, take the setNDf3; 5; �2; 5; 5; �2g. Here, NND5 and
IDf2; 4; 5g, thus NiD2. A similar convention is adopted for the min selector. In the
same example, iD3. This convention will be referred to as default index assumption
in what follows.

7.1.2 Static Properties of the Min–Max Arrangement
with Dynamic Compensators

Three fundamental questions pertaining to the operation of the min–max arrange-
ment are decided next: determining the regulator that becomes active at the initial
time .t D 0/, determining the regulator that remains active during a steady-state
regime .t ! 1/, and establishing conditions for limits to be preserved at steady-
state. As shown later in the chapter, a min-only or a max-only arrangement is
sufficient in some cases. Because of this and to facilitate understanding, analysis
is separated into min-only, max-only, and min–max cases.

7.1.2.1 Initial Regulator: Min-Only Case

Suppose only the min selector is used to select a control rate ur among candidate
rates uri , i 2 L. The min selection law is expressed as
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ur D min
i2L

furig : (7.1)

Suppose i D i0 is the regulator at the initial time. Then the following inequality
must hold for all j :

uri0.0/ � urj .0/:

If there exists j ¤ i0 such that urj D uri0 , then it is necessary that i0 < j due to
the default index assumptions. The control rates are expressed in terms of transfer
functions as

Uri0.s/ D Ki0.s/

1CG0
i0
.s/Ki0.s/

Ri0 .s/; (7.2)

Urj .s/ D Kj .s/.Rj .s/ �Gj .s/Uri .s//; (7.3)

where G0
i0
.s/ D Gi0.s/=s. Recalling the initial value theorem [26] and noting that

Ri0.s/ D ri0=s and Rj .s/ D rj =s, we have

uri0.0/ D lim
s!1

sUri0.s/ D lim
s!1

riKi0.s/

1CG0
i0
.s/Ki0.s/

: (7.4)

Note that G0
i0

has a pole at s D 0 and that it is strictly proper, since Gi0 is proper
and does not have zeroes at s D 0. Therefore, ifKi0.s/ is proper, we have uri0 .0/ D
Ki0.1/ri0 . When Ki0.s/ is an improper PD transfer function, the derivative term is
impulsive when ri0 is constant. The initial regulator observed in simulations or real-
time deployments will depend on the approximation involved in the implementation
of the derivative term. Therefore, we restrict our formulas for the initial regulator to
the case when all controllers are proper.

Now, using the initial value theorem on urj , we have

urj .0/ D lim
s!1

sUrj .s/ D lim
s!1

˚
rjKj .s/� sGj .s/Uri0.s/

�
: (7.5)

The reader can verify that if Kj .s/ is proper urj .0/ has a well-defined constant
value:

urj .0/ D Kj .1/rj :

Therefore, the initial regulator is calculated as the smallest index i0 satisfying

Ki0.1/ri0 � Kj .1/rj (7.6)

for all j 2 L.
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7.1.2.2 Initial Regulator: Max-Only Case

Now consider that only the max selector is used to select a control rate ur among
candidate rates uri , i 2 H . The max selection law is expressed as

ur D max
i2H

furig : (7.7)

Suppose i D i0 is the regulator at the initial time. The initial values of the rates uri
are the same regardless of the type of selector, max or min. The initial selection is
therefore given by the smallest index i0 satisfying

Ki0.1/ri0 � Kj .1/rj (7.8)

for all j 2 H .

7.1.2.3 Initial Regulator: Min–Max Case

The min–max case has a subtlety that requires careful attention. Referring back to
Fig. 7.1, the min–max selection law is given by

ur D max
k2H

�
min
j2L

˚
urj
�
; urk

�
; (7.9)

where urj are the min-selected regulator outputs and urk are the max-selected
regulator outputs. Again, the values of the initial rates are the same regardless of
the selection mechanism. Suppose i0 is the index of the regulator selected at t D 0.
If i0 2 L, the following inequalities must be true:

uri0 � urj for all j 2 L; (7.10)

uri0 � urk for all k 2 H: (7.11)

If i0 2 H , however, the following inequalities apply:

uri0 > urk for all k 2 L; (7.12)

uri0 > min
j2L

˚
urj
�
: (7.13)

Note that strict inequality must be used, since the winner of the min stage is applied
to the first port of the max selector. Thus, equality between the winner of the max
stage and the winner of the min stage would result in i0 2 L due to the default index
assumptions. Also note that uri0 is required to be greater than the minimum of the
rates produced by regulators inL, but not necessarily greater than each. This implies
that a two-step iterative process must be followed to determine i0. Assume first that
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i0 2 L and find the smallest index satisfying inequalities (7.10) and (7.11). If no
such index can be found, it must be that i0 2 H . Inequalities (7.12) and (7.13) are
then tested using the known value of the winner of the min stage.

The reader should observe that the calculations for the initial regulator in the
min, max and min–max cases are not influenced by whether a variable is upper- or
lower-limited. Only the type of selector must be taken into account.

7.1.2.4 Steady Regulator: Min-Only Case

Here, we assume that the closed-loop system is asymptotically stable, with a fixed
steady-state regulator selection denoted as i�. Applying the final value theorem [26]
to the Laplace expression for the control rate of (7.2), we obtain

uri�.1/ D lim
s!0

sUri�.s/ D lim
s!0

ri�Ki�.s/

1CG0
i�.s/Ki�.s/

: (7.14)

The reader can verify that uri� D 0 whenever Ki� and Gi� are proper and do not
have zeroes at the origin. Furthermore, the same is true if Ki� is a PD transfer
function and Gi� is proper with no zeroes at the origin. This is expected, since the
active loop is of type I, and the steady-state error to constant inputs is zero. Since
Ki� is driven by the error, its output will be zero at steady-state.

Applying the final value theorem to Urj .s/ from (7.3), we obtain

urj .1/ D lim
s!0

sKj .s/
hrj
s

�Gj .s/Uri�.s/
i
:

If Gj .s/ and Kj .s/ are proper with no poles at the origin, this reduces to

urj .1/ D Kj .0/

�
rj � ri

Gj .0/

Gi�.0/

�
: (7.15)

Therefore, i� is the smallest index satisfying

Kj .0/
ri�Gj .0/

Gi�.0/
� Kj .0/rj ; (7.16)

for all j 2 L. Note that
ri�Gj .0/

Gi�.0/
D Nyj=i�;

where Nyj=i� is the steady value attained by yj when i� is the steady regulator. If
Kj .0/ > 0, inequality (7.17) reduces to Nyj=i� � rj . This is interpreted verbally
as follows: “i� is the regulator for which outputs do not exceed their setpoints at
steady-state”. If Kj .0/ < 0, the inequality becomes Nyj=i� � rj . This corresponds
to: “i� is the regulator for which outputs do not become smaller than their setpoints
at steady-state”.
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7.1.2.5 Steady Regulator: Max-Only Case

The final regulator index for this case is the smallest index i� satisfying

Kj .0/
ri�Gj .0/

Gi�.0/
� Kj .0/rj (7.17)

for all j 2 H . If Kj .0/ > 0, inequality (7.17) reduces to Nyj=i� � rj . This is
interpreted verbally as follows: “i� is the regulator for which outputs do not become
smaller than their setpoints at steady-state”. If Kj .0/ < 0, the inequality becomes
Nyj=i� � rj . This corresponds to: “i� is the regulator for which outputs do not exceed
their setpoints at steady-state”.

The steady properties of the isolated min and max selectors provide a basic
guideline for design. If all outputs are upper-limited and Kj .0/ > 0 for all j , a
max regulator provides steady-state limit protection. If all outputs are lower-limited
and Kj .0/ > 0 for all j , a max selector provides steady-state limit protection. This
seems to be the assumption justifying the assignments found in the standard min–
max arrangements used in the aerospace industry.

As the reader may appreciate, the more general case where outputs have different
signs of Kj .0/, some being lower-limited and some being upper-limited are not
covered by the min-only or max-only arrangements. The min–max arrangement was
introduced as an attempt to cover these cases.

7.1.2.6 Steady Regulator: Min–Max Case

The same logic used for determining the initial regulator is followed, using the
appropriate formulas for the steady rates. If i� 2 L, the following inequalities hold:

0 � urj for all j 2 L; (7.18)

0 � urk for all k 2 H: (7.19)

If i� 2 H , however, the following inequalities apply:

0 > urk for all k 2 L; (7.20)

0 > min
j2L

˚
urj
�
: (7.21)

7.1.3 Example: CMAPSS-1

Consider the transfer functions from incremental fuel flow to incremental fan speed
(rpm), incremental HPT temperature (ıR) and HPC stall margin (%) near FC01:
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G1.s/ D �Nf.s/

�WF.s/
D 230:9s C 2000

s2 C 8:504sC 17:16
;

G2.s/ D �T48.s/

�WF.s/
D 146:2s2 C 1027sC 1528

s2 C 8:504s C 17:16
;

G3.s/ D �SmHPC.s/

�WF.s/
D �4:405s2 � 28:81s � 20:49

s2 C 8:504s C 17:16
:

Suppose that a set of controllers is selected that independently stabilize the above
transfer functions under an integral control loop (disregarding transient response
qualities), as follows:

K1.s/ D 0:21
s C 3:715

s C 20
;

K2.s/ D 0:1;

K3.s/ D �s � 1
s C 2

:

Suppose r1 D 10, r2 D 20, and r3 D � 10. In this example, G1.1/D 0,
G2.1/ D 146:2 and G3.1/ D �4:405. Also, K1.1/ D 0:21, K2.1/ D 0:1,
and K3.1/ D �1. Similarly, G1.0/ D 116:55, G2.0/ D 89:044, G3.0/ D �1:194
andK1.0/ D 0:039,K2.0/ D 0:1 and K3.0/ D �0:5.

If only a min selector is used, (7.6) can be used to determine that the initial
regulator is i0 D 2 and the final regulator is i� D 1. If only a max selector is used,
i0 D i� D 3. Suppose now that ur1 and ur2 are associated with a min selector, while
the min-preselection and ur3 are associated with a max selector. It can be readily
verified that i0 D i� D 3 as well.

The concept of positive invariance is introduced next as an essential tool to study
limit regulator behavior.

7.2 Basic Set Invariance Concepts

Set invariance theory is a unifying umbrella under which many techniques for
constraint handling have been developed. Although a detailed account of set
invariance and derived techniques is out of the scope of this book, some definitions
and results will be included. For an excellent introduction to the topic, readers are
referred to the survey by Blanchini [60].

Given a dynamical system with state vector x, a positively invariant set is a subset
So of the state-space formed by all initial conditions resulting in trajectories, which
remain in S for all subsequent times. That is, So is positively invariant if x.0/ 2 So
implies x.t/ 2 So for all t > 0, justifying the positive invariance qualification.

A result by Nagumo [61] establishes a necessary and sufficient condition for a set
to be positively invariant with respect to a given dynamical system. For the purposes
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Fig. 7.2 Illustration
of Nagumo’s invariance
condition. So is the invariant
set and @So its boundary

f(x) = dx
dt

x(0)

∂So

x(t)

of this book, invariant sets of simple descriptions are considered, such as ellipsoids,
half-spaces, and real intervals. Roughly, Nagumo’s condition is equivalent to the
requirement that the vector Px evaluated along the boundary of So be directed toward
its interior, as illustrated in Fig. 7.2. Nagumo’s condition is rather intuitive, and
becomes more so when x is a scalar, so that the invariant set is an interval, as shown
next.

7.2.1 Positive Invariance of an Interval

An interval .�1; b� is invariant for a generic real variable z.t/ if Pz.t/ � 0 at z D b.
Similarly, an interval Œa;1/ is invariant if Pz.t/ � 0 at z D a. When an interval is
invariant and z.t1/ belongs to the interval for some t1 > 0, then z.t/ will remain in
the interval for t � t1. The concept is readily applied to limit protection: the interval
.�1; 0�must be invariant for the error e D r � y when y is a lower-limited output.
Conversely, Œ0;1/ must be invariant for the error of upper-limited variables.

7.2.2 Ellipsoidal Invariant Sets for Linear Systems

An n-dimensional ellipsoid is described by the inequality

xTPx � 1;

where P is a symmetric, positive-definite matrix. Consider first an autonomous
linear state-space system described Px D Ax and an ellipsoidal set So described as

So D E D fx W xTPx � 1g:

For E to be PI, Nagumo’s theorem requires that Px D f .x/ D Ax be directed toward
the interior of E , when x is taken at its boundary, defined by h.x/ D xTPxD 1.
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Fig. 7.3 Invariance
enforcement by negative
gradient projection

∇h(x)

ẋ = f(x)

x

¶So : h(x) = 1

This can be ensured by the condition that the projection of f .x/ onto a vector
normal to the boundary be negative, as shown in Fig. 7.3. The invariance condition
is expressed as

rh.x/:f .x/ < 0:
For an ellipsoidal boundary we have rh.x/ D 2xTP , thus the condition becomes
2xTPAx < 0. The reader may recall that any square matrix can be decomposed
into a symmetric component and an antisymmetric component. Decompose PA as
follows:

PA D 1

2
.PAC ATP/C 1

2
.PA� ATP/:

The first term is symmetric, while the second is antisymmetric. Thus,

2xTPAx D xT.PAC ATP/x C xT.PA� ATP/x:

Recalling that the cross-terms of a quadratic form xY Tx cancel out when Y is anti-
symmetric, the invariance condition reduces to the following Lyapunov inequality

PAC ATP < 0: (7.22)

The above condition can be applied to evaluate the invariance of an ellipsoid relative
to the closed loop system Px D .A � BK/x resulting from using the state feedback
control law u D �Kx:

P.A � BK/C .A� BK/TP < 0: (7.23)

Note that inequality (7.23) is satisfied for some P when K stabilizes A � BK ,
but that a predetermined P need not satisfy the inequality for all stabilizing K .
A family of invariant ellipsoids associated with a given stabilizing K can be
found by turning inequality (7.23) into equality, using an arbitrary positive-definite,
symmetric matrix Q:

P.A � BK/C .A� BK/TP D �Q: (7.24)

All ellipsoids of the form xTPx D a, with a � 0 are then PI relative to the closed-
loop dynamics.
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7.2.3 Invariance of a Half-Space

State and output constraints can be formulated as a set of linear inequalities in the
state variables: G D \Gi for i D 1; 2::m, where Gi D fx W Gix � 1g. Application
of Nagumo’s result to a system Px D f .x/ and an individual linear constraint
Gix� 1 results in the following condition for invariance:

Gif .x/ � 0 along Gix D 1: (7.25)

In the case of a linear state-space system .A;B/ under state feedback u D �Kx,
this reduces to

Gi.A� BK/x � 0 along Gix D 1: (7.26)

In general, condition (7.26) cannot be satisfied for all points belonging to the
boundary defined by Gix D 1. Geometrically, if Gi is not parallel to Gi.A � BK/,
the boundary will be divided into three subsets: a subset where Gi.A�BK/x D 0,
a subset whereGi.A�BK/ > 0 and a subset where the condition is satisfied. When
several constraints exist, methodologies have been developed to ensure that points
belonging to the set, where Gi.A � BK/x > 0 do not satisfy the other constraints.
Polyhedral invariant set theory provides means to construct invariant sets using
linear segments. Given a constraint set defined by design requirements, polyhedral
invariant sets can be constructed with little conservativeness. An invariant set
construction is conservative if it excludes points of the constraint set which actually
lead to permissible trajectories. Polyhedral sets require a large number of vertices to
achieve low conservativeness. The interested reader is referred to Blanchini’s survey
for an introduction [60].

7.2.4 Ellipsoidal Operating Sets

Invariant sets are used to determine the range of allowable initial conditions so that
the ensuing trajectories do not violate the constraints. When error dynamics are
used as a basis, an invariant set description can be used to determine the allowable
range of the setpoints so that no limit violations will occur in the transient or steady
regimes. Such operating sets are thus invariant subsets of the constraint set. A simple
approach to finding an operating set is to find the largest invariant ellipsoid contained
in the constraint set. For this, ellipsoids which are tangent to individual constraints
are found. The smallest of such ellipsoids will be tangent to one of the constraints
and tangent or interior to the remaining ones, in addition to being invariant.

Given a linear constraint Gix � 1, and an invariant ellipsoid family defined by
matrix P , the ellipsoid which is tangent to the boundary Gix D 1 can be found by
solving the following constrained optimization problem:

maxV D xTPx subject to

Gix D 1:
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This is readily solved using Lagrange multipliers, yielding the following formula
for the maximum value of xTPx:

Vi D 1

GiP�1GT
i

:

Thus, the largest invariant ellipsoid tangent to the i -th constraint is given by

Ei D fx W xTPx � Vi g;
where P satisfies inequality (7.24). The overall invariant ellipsoid can be found
by taking the smallest Vi and matrix P . As an introductory example, consider the
double-integrator plant G.s/ D 1=s2 with state-space matrices A and B as follows:

A D
�
0 1

0 0

�
; B D

�
0

1

�
:

Suppose the constraints are given by jx1j � 1 and jx2j � 1:5. The plant is stabilized
with a state-feedback law of the form u D �Kx, where K is chosen so that Ac D
A�BK has eigenvalues with negative real parts. Suppose a K is designed using an
LQR approach, withQ D I andR D 1. This yieldsK D Œ1

p
3�, which places the

poles of Ac at �p
3=2˙ i=2. The following P satisfies Lyapunov inequality (7.23):

P D
�
1:5847 0:5489

0:5489 0:6339

�
:

The constraints are expressed as G1x D Œ1 0�x � 1, G2x D Œ�1 0�x � 1, G3x D
Œ0 1=1:5�x � 1 andG4 D Œ0 �1=1:5�x � 1. The values of Vi are calculated as V1 D
V2 D 1:109 and V3 D V4 D 1. Thus, the ellipsoid described by xTPx � 1 is tangent
the third and fourth constraints and interior to the first and second constraints, in
addition to being positively invariant. Figure 7.4 shows the ellipsoidal boundary in
relation to the constraints. A few trajectories have also been plotted.

The dotted line represents a trajectory which satisfies the constraints but whose
initial condition is not captured by the ellipsoid. In contrast, the dashed line is
a trajectory whose initial point belongs to the constraint set but which produces
constraint violation, and is correctly excluded by the ellipsoidal set. An example of
the ellipsoidal construction as applied to the GTE problem is given in Sect. 7.5.2.

A less conservative invariant set construction which retains the simplicity of
ellipsoids is given by the semiellipsoidal approach of O’Dell [62]. In this approach,
an invariant ellipsoid which may exceed the constraints is sought under the condition
that its intersection with the constraints retains the positive invariance property. The
methodology regards K and P as free parameters, optimized to yield an ellipsoid
of maximum volume. The resulting semiellipsoidal set is an approximation to the
maximal recoverable set under state feedback, i.e., the largest set of initial conditions
yielding trajectories which proceed to the origin without constraint violation. The
maximizing argumentK does not offer any performance guarantees, however.
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Fig. 7.4 Ellipsoidal invariant set and constraints: double-integrator system

The operating set approach amounts only to “passive” constraint validation. If
invariance cannot be established without unreasonable conservativeness, a different
control law must be found or the constraints relaxed. In contrast, approaches such
as the min–max arrangement constitute active means to enforce the constraints as
the system operates. The use of a reference governor allows to exploit set invariance
properties in an active way. The key idea is to filter reference inputs to force the state
to remain in an invariant set, see, for instance, Bemporad [63].

7.3 Min–Max Limit Management with Integral State
Feedback Controllers

Analysis of the min–max arrangement is somewhat simplified when state feedback
controllers are used instead of dynamic compensators. Consider a linear plant with
input integration, described by the following augmented state-space model:

Pxa D Aaxa C Baur ; (7.27)

yi D Caixa; (7.28)
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where xT
a D ŒxT u� is the augmented state vector and Aa and Ba are defined as in

(4.31). Outputs yi D Cix C Du are defined by their augmented matrices Cai D
ŒCi Di �. Consider the static state feedback law

uri D �Kixa C Piri ; (7.29)

where Ki is such that Aa � BaKi is stable. Although Ki could be chosen to be
constant across regulators to guarantee stability and achieve desirable transient
properties for the main controlled output, the min–max arrangement would become
useless. To see this, note that uri � urj is constant for a given pair i; j when a
constant K is used. Thus, the regulator selected by min and max at t D 0 becomes
permanent and no switching occurs. Assume, then, that the min, max, and min–max
arrangements involve distinct feedback gains.

The value of the prefilter gain Pi is chosen to ensure that yi D ri in the steady-
state, and must therefore vary with i (see (7.35)).

7.3.1 Closed-Loop Behavior Under a Fixed Regulator

Suppose the i -th regulator is active at all times. The closed-loop system becomes

Pxa D Acixa C BaPiri ; (7.30)

where Aci D Aa � BaKi . Since Ki is designed so that Aci has eigenvalues with
negative real parts, the augmented state reaches a steady-state value of Nxai satisfying

0 D Aa Nxai C Ba Nuri ; (7.31)

0 D Nuri D �Ki Nxai C Pi ri ; (7.32)

where (7.32) is obtained from the requirement that the last component of the aug-
mented state derivative be zero at steady-state, that is, Pu D Nuri D 0. Equations (7.31)
and (7.32) imply that Aa Nxai D 0 and that Pi must be related to Nxai as follows:

Pi D Ki

Nxai
ri
: (7.33)

The value of Nxai is determined by the requirement that yi D ri at steady-state.
Separating the first n components of (7.31), we have:

0 D A Nx C B Nu;
where NxT

ai D Œ NxT Nu�. Since A has no poles at the origin, Nx D �A�1B Nu. The steady
output is then

Nyi D Ci Nx CDi Nu D .�CiA�1B CDi/Nu D Gi.0/ri :
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For Nyi D ri , we must have Nu D ri=Gi .0/ and Nx D �A�1Bri=Gi .0/, thus

Nxai D ri

Gi .0/

� �A�1 B

1

�
; (7.34)

Pi D Ki

Gi .0/

� �A�1 B

1

�
: (7.35)

7.3.2 Closed-Loop Behavior Relative to a Fixed Index

It is convenient to shift the augmented state variable by the steady-state value
corresponding to an arbitrary index i . That is, define

Qxai D xai � Nxai : (7.36)

Relevant quantities are now expressed in terms of Qxai . The i -th and j -th outputs
become

yi D Caixa D Cai . Qxai C Nxai / D ri C Cai Qxai ; (7.37)

yj D Caj xa D Caj . Qxai C Nxai / D Nyj=i C Caj Qxai ; (7.38)

where Nyj=i is the steady value of yj when i is active at steady-state. The tracking
errors are expressed in terms of the new state variable as

ei D ri � yi D �Cai Qxai ; (7.39)

ej D rj � yj D Nej=i � Caj Qxai ; (7.40)

where Nej=i denotes the steady-state error in yj when i is active. The control rates
are expressed as

uri D �Ki. Qxai C Nxai /C Piri D �Ki Qxai ; (7.41)

urj D �Kj . Qxai C Nxai /C Pj rj ; (7.42)

where (7.32) has been used.
The reader should observe that (7.37)–(7.42) use an arbitrary index i as a

reference, but are valid regardless of the active regulator. The next two expressions
for the derivatives of tracking errors ei and ej , however, assume that i is the active
regulator, and this is reflected in the notations Pei=i and Pej=i .

Pei=i D �CaiAci Qxai ; (7.43)

Pej=i D �CajAci Qxai : (7.44)
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Equations (7.30) and (7.31), and the definition of Qxai from (7.36) have been used
in the derivation of (7.43) and (7.44). Finally, the following expression for the
difference between control rates will be useful in subsequent developments:

uri � urj D .Kj �Ki/ Qxai CKj Nxai � Pj rj : (7.45)

7.3.3 Static Properties of the Min–Max Arrangement
with State Feedback

The static analysis conducted for the min–max arrangement with dynamic com-
pensators is repeated for the state feedback case. The same fundamental issues are
discussed: determining the regulator that becomes active at the initial time .t D 0/,
determining the regulator that remains active during a steady-state regime .t ! 1/,
and establishing conditions for limits to be preserved at steady-state. Unlike min–
max systems with control transfer functions, initial conditions have an effect in the
initial regulator selection. Since linear systems are considered, initial conditions do
not determine steady-state properties, however.

7.3.3.1 Initial Regulator: Min-Only Case

Using (7.45) directly, the initial regulator i0 must satisfy

.Kj �Ki0/ Qxai0 .0/ � �Kj Nxai0 C Pj rj

for all j 2 L. Using identity (7.34), i0 is determined as the smallest index satisfying

.Kj �Ki0/ Qxai0.0/ � �Mj

ri0
Gi0.0/

C Pj rj (7.46)

for all j 2 L where the scalar Mj is defined as

Mj D Kj

� �A�1 B

1

�
: (7.47)

7.3.3.2 Initial Regulator: Max-Only Case

Simply reversing inequality (7.46), we see that initial regulator i0 is the smallest
index satisfying

.Kj �Ki0/ Qxai0.0/ � �Mj

ri0
Gi0.0/

C Pj rj (7.48)

for all j 2 H .
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7.3.3.3 Initial Regulator: Min–Max Case

The logic is the same as for the dynamic compensator case: if i0 2 L, the following
inequalities must hold:

.Kj �Ki0/ Qxai0 .0/ � �Kj Nxai0 C Pj rj for all j 2 L; (7.49)

.Kj �Ki0/ Qxai0 .0/ � �Mk

ri0
Gi0.0/

C Pkrk for all k 2 H: (7.50)

If i0 2 H , however, the following inequalities apply:

.Kj �Ki0/ Qxai0 .0/ � �Mk

ri0
Gi0 .0/

C Pkrk for all k 2 H; (7.51)

.Kj �Ki0/ Qxai0 .0/ > min
j2L

˚
urj .0/

�
: (7.52)

A guess must be made regarding whether i0 2 L or i0 2 H and the corresponding
inequalities verified.

7.3.3.4 Steady Regulator: Min-Only Case

Suppose i� is the index of the steady regulator. Then Pu D uri� D 0 and Qxai� D 0.
Equation (7.45) is used directly to determine that i� is the smallest index satisfying

Mj

ri�

Gi�.0/
� Pj rj

for all j 2 L. If Pj is designed so that yj D rj in steady-state (i.e., according to
(7.35)), then the reader can verify that i� is the smallest index satisfying

1

Gj .0/
Mj

 Nyj=i� � rj
� � 0; (7.53)

where Nyj=i� D Gj .0/ri�=Gi�.0/ is the steady value attained by yj when i� is
active at steady state. This result is interpreted in a similar way as done for the
dynamic compensator case, where Mj=Gj .0/ plays the role of the compensator’s
low-frequency gain K.0/: when Mj=Gj .0/ > 0, i� is the regulator for which
outputs do not exceed their setpoints at steady-state. If Mj=Gj .0/ < 0, i� is the
regulator for which outputs do not become smaller than their setpoints at steady-
state. Note from (7.35) that Mj=Gj .0/ ¤ 0, otherwise the tracking task would not
be possible.
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7.3.3.5 Steady Regulator: Max-Only Case

In this case, i� is the smallest index satisfying

1

Gj .0/
Mj

 Nyj=i� � rj
� � 0 (7.54)

for all j 2 H . When Mj=Gj .0/ > 0, i� is the regulator for which outputs do not
become smaller than their setpoints at steady-state. When Mj=Gj .0/ < 0, i� is the
regulator for which outputs do not exceed their setpoints at steady-state.

In summary, when Mj=Gj .0/ > 0, the min selector protects upper-limited
outputs at steady-state and the max selector protects lower-limited outputs at steady-
state. When Mj=Gj .0/ < 0, the reverse steady-state protections are afforded.

7.3.3.6 Steady Regulator: Min–Max Case

If i� 2 L, the following inequalities must hold:

Mj

ri�

Gi�.0/
� Pj rj ; (7.55)

Mk

ri�

Gi�.0/
� Pkrk (7.56)

for all j 2 L and all k 2 H . If there exist values of j or k for which the
above inequalities fail, then it must be that i� 2 H and the following inequalities
must hold:

Mk

ri�

Gi�.0/
� Pkrk; (7.57)

min

�
�Mj

ri�

Gi�.0/
C Pj rj

�
< 0 (7.58)

for all k 2 H , with the minimum in inequality (7.58) is taken over j 2 L. These
conditions can be interpreted following a similar process as done for the isolated
min and max cases. Suppose first that i� 2 L. Inequalities (7.55) and (7.56) can be
written as

Mj

Gj .0/
. Nyj=i� � rj / � 0; (7.59)

Mk

Gk.0/
. Nyk=i� � rk/ � 0 (7.60)
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Table 7.1 Guidelines for the
association of outputs to
selectors based on
steady-state characteristics.
When using the min–max
arrangement, i� 2 L is
required

Sign of
Case Mj=Gj .0/ Association

I: All upper-limited, + Min only

sign
�

Mj

Gj .0/

	
constant – Max only

II: All lower-limited, + Max only

sign
�

Mj

Gj .0/

	
constant – Min only

III: All upper-limited, + Min in min–max

mixed sign
�

Mj

Gj .0/

	
– Max in min–max

IV: All lower-limited, + Max in min–max

mixed sign
�

Mj

Gj .0/

	
– Min in min–max

Mixed limits, Use min–max

V: mixed sign
�

Mj

Gj .0/

	
As in III and IV

for all j 2L and all k 2H . Thus, min-linked outputs yj such that Mj=Gj .0/>0

and max-linked yk outputs such that Mk=Gk.0/ < 0 will remain below their
setpoints at steady-state. Similarly, min-linked outputs yj such thatMj=Gj .0/ < 0

and max-linked yk outputs such that Mk=Gk.0/ > 0 will remain above their
setpoints at steady-state. Now suppose design parameters are chosen so that i� 2 H .
Inequality (7.60) holds for all k 2 H , but min-linked outputs must satisfy the
following:

0 > min

�
Mj

Gj .0/
.rj � Nyj=i�/

�
:

When Mj=Gj .0/ < 0 we have

min

�
Mj

Gj .0/
.rj � Nyj=i�/

�
D Mj

Gj .0/
max

˚
rj � Nyj=i�

�
:

It follows that rj < Nyj=i� for all j 2 L, indicating that min-linked variables are
lower-limited by rj , matching the min-only result. However, if Mj=Gj .0/ > 0, we
can only say:

0 > min
˚
rj � Nyj=i�

�
and no bounds can be guaranteed for Nyj=i� . Thus, if the design requires i� 2 H for
some reason, only lower-limited outputs havingMj=Gj .0/ < 0 should be linked to
the min-selector.

The preceding analysis can be regarded as a design guideline for the association
of outputs to selectors. This is done solely on the basis of steady-state characteris-
tics. The guidelines have been summarized in Table 7.1.
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7.3.4 Example: CMAPSS-1 Linearized Model

Consider the same transfer functions of Example 7.1.3. Matrices A and B of the
state-space realization are as follows:

A D
� �3:8420 1:4125

0:5310 �4:6623
�
; B D

�
230:9226

653:7255

�
:

For y1 D�Nf,C1 D Œ1 0� andD1 D 0. The values of matricesC andD for�T48 are
C D Œ�0:1022 � 0:2952� and DD 146:24. Finally, a state-space realization of the
transfer function to �SmHPC using the same A and B has C D Œ0:0189 0:0066�

and D D �4:4052. Note that this flight condition is close, but not equal to FC01
listed in Appendix B

Consider first that y1 must be driven to a setpoint r1 D 100 rpm while preventing
y2 D �T48 from exceeding r2 D 200ıR. That is, y2 is an upper-limited output. The
individual regulators are designed using an LQR approach for the augmented plant,
with Q D C T

a1Ca1 and Q D C T
a2Ca2, where Ca1 D ŒC1 D1� and Ca2 D ŒC2 D2�

are the augmented output matrices. Using R D 1 for both designs, the resulting
state-feedback gains are

K1 D Œ0:7098 0:0840 20:9204� ;

K2 D Œ�0:1006 � 0:2870 144:7929� :

The required values of P1 and P2 for perfect tracking when the regulators are
used independently are P1 D 1 and P2 D 1, with NxT

a1 D Œ100 131:7106 0:8581�,
as determined from formulas (7.35) and (7.34). Suppose that a min selector is used
and, for illustrative purposes, that the input integrator has initial condition u.0/ D 1.
Then Qxa1.0/ D Œ�100 � 131:7106 0:1419�. The initial regulator is then i0 D 2

by application of condition (7.46). Similarly, condition (7.53) predicts that i� D 1.
This is confirmed by the simulation results of Fig. 7.5. If the min selector is not used
and a feedback loop is established to control y1 to its setpoint, y1 has a settling time
of about 0.4 s and zero steady-state error by design. Output y2, however, exceeds its
intended limit by far during the transient regime and settles at Ny2=1 D 76:39 < r2.
If the min selector is used, ur2 is active from t D 0 until t D 0:22, which causes
y2 to be regulated toward its limit. A regulator switching occurs near t D 0:22 and
i D 1 becomes active for all subsequent times. Note that y1 overshoots its limit by
about 2%. Thus, this example shows that the min selector preserved limits during the
transient regime for y2 but not for y1, motivating further analysis of limit protection
properties. This is done in Sect. 7.3.5. Now suppose �T48 is not a concern, but that
the HPC stall margin must be kept above certain limit to minimize the risk of stall or
surge. Define y2 D � SmHPC and suppose that the stall margin must not decrease
more than 10% from its steady value at FC01, that is y2 must be lower-limited
by r2 D �10. References to the standard min–max arrangement used in the GTE
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Fig. 7.5 Response of state-feedback system with min selector: CMAPSS-1 linearized model with
upper-limited output y2 D �T48

industry assume a priori that the regulators of lower-limited outputs are applied to
the ports of a max selector. As this example demonstrates, the choice of selector
must take additional considerations into account. Suppose K2 is designed using an
LQR approach with Q D C T

a2Ca2 and R D 1, andK1 and r1 are maintained. Now,

K2 D Œ�0:0097 � 0:0045 3:0135�

and P2 D �1. If, according to conventional wisdom, the max selector is used,
it can be verified that i0 D 1 and i� D 2. As shown in Fig. 7.6, the results are
disastrous. Since i� D 2, the lower limit imposed on y2 is preserved at steady-state,
but Ny1=2 D 975:98, far above r1. Also, y2 becomes smaller than its limit during the
transient. If a min selector is used instead, the results are acceptable if fan speed is
allowed to overshoot. In this case, i0 D 2 and i� D 1. Since Ny2=1 D �1:02, the lower
limit imposed in y2 is still preserved at steady-state, and moreover, transient limit
protection is observed. To illustrate the initial and steady properties of the min–max
arrangement, consider the following output definitions: y1 D �Nf, y2 D �T48,
y3 D � Ps30 and y4 D �.WF=Ps30). The last two outputs are the incremental
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Fig. 7.6 Response of state-feedback system with max and min selectors: CMAPSS-1 linearized
model with lower-limited output y2 D � SmHPC

static pressure at HPC outlet, and the incremental ratio between fuel flow and Ps30.
To prevent lean blowout conditions in the combustor, y3 is lower-limited. A low
limit is usually imposed on y4 to prevent the LPC from stalling.

The linearized C and D parameters for y3 and y4 can be found in Appendix B.
The state feedback gains are designed using an LQR approach with Q D C T

aiCai
and R D 1 as before. The resulting gains are

K3 D Œ0:0639 0:1534 25:2464� ;

K4 D Œ�0:0039 � 0:0085 3:5781�

with corresponding values of P3 D 1 and P4 D 1. The two upper-limited outputs
are linked to the min selector, while the lower-limited outputs are linked to the
max selector. Consider setpoints as follows: r1 D 100, r2 D 200, r3 D �50, and
r4 D �20. Formulas (7.49)–(7.52) can be used to determine that i0 D 1. Likewise,
formulas (7.55)–(7.58) indicate that i� D 1. The response to this case is shown
in Fig. 7.7. Since y3 and y4 have DC gains G3.0/ D G4.0/ with the same sign as
G1.0/, their DC value increases when r1 > 0. Therefore, they move away from their
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Fig. 7.7 Response of state-feedback system with min–max selectors: CMAPSS-1 linearized
model with upper-limited output y2 D �T48 and lower-limited outputs y3 D � Ps30 and
y4 D �WF/Ps30 (fan speed increase demand)

negative limits and their regulators are never active. As in the previous example, the
T48 limit regulator becomes active in the transient regime. Now suppose r1 D �100
rpm. In this case, y3 and y4 decrease from their initial values. It can be verified that
i0 D 4 and i� D 1. As shown in Fig. 7.8, the 4th regulator remains active for some
time after t D 0 and y3 and y4 are maintained above their lower limits at steady
state, as well as during the transient.

7.3.5 Transient Limit Protection Analysis

The invariance condition for intervals presented in Sect. 7.2.1 is now applied to
study the limit protection properties of the min–max approaches with static state
feedback. Analysis is divided into three cases corresponding to min-only, max-only,
and min–max selectors. For upper-limited outputs, the error e D r � y must not
become negative. That is, Œ0;1/ must be positively invariant. For lower-limited
outputs, e must not become positive, that is, .�1; 0� must be positively invariant.
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Fig. 7.8 Response of state-feedback system with min–max selectors: CMAPSS-1 linearized
model with upper-limited output y2 D �T48 and lower-limited outputs y3 D � Ps30 and
y4 D �WF/Ps30 (fan speed decrease demand)

The sign of Pe must be examined along the boundary e D 0 to determine invariance.
Given a fixed i and j ¤ i , five sets are relevant:

1. Uij : the set where uri D urj
2. Ei : the set where ei D 0

3. Ej : the set where ej D 0

4. PEi : the set where Pei=i D 0

5. PEj=i : the set where Pej=i D 0

Set Uij represents the boundary between the two half-spaces which are the regions
of activity of each regulator, and the roles of the other sets are clear from their
definitions. For the min-only or max-only cases, the sets are hyperplanes, as
represented in Figs. 7.9 and 7.10. Sets PEi and PEj=i divide the space into two halves,
one where the error increases and the other where the error decreases, and this has
been indicated with plus or minus signs.

For upper-limited variables, the invariance condition requires that the derivative
of the error be nonnegative whenever the error is zero. Now, as seen in Figs. 7.9
and 7.10, Ei and Ej=i are divided into two regions, corresponding to positive and
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negative error derivatives. Assuming that i is the active regulator, limit protection
is ensured by requiring that the regions of Ei and Ej=i where, the error increases
lie outside the region where i is active. That is, the intersection of PEi and Ei must
be outside the half space where i is active, and the intersection of PEj=i and Ej must
likewise be outside the half space where i is active.

Equations (7.39) and (7.43) are combined to determine the set PEi \ Ei , resulting
in the following system of linear equations on Qxai :

� �Cai
�CaiAci

�
Qxai D

�
0

0

�
: (7.61)

The matrix characterizing the above system of equations is full-rank, unless Cai and
CaiAci are parallel vectors. For this to happen, there would have to exist a scalar �
such that CaiAci D �Cai . Taking the transpose of this equation, we get

AT
ciC

T
ai D �C T

ai

that is, C T
ai would have to be an eigenvector of AT

ci . Assuming that Ki has been
verified not to produce this exception, the only solution to system (7.61) is Qxai D 0.
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Likewise, (7.40) and (7.44) are combined to determine the set PEj=i \Ej , resulting
in the following system of linear equations on Qxai :

� �Caj
�CajAci

�
Qxai D

� Nej=i
0

�
: (7.62)

System (7.62) does not have a unique solution in general. In this case, it becomes
necessary to find particular ones that assist in arriving at invariance conditions. This
is done separately for the min-only, max-only, and min–max cases.

7.3.5.1 Transient Limit Protection: Min-Only Case

Suppose all variables are upper-limited. To guarantee that yi will not exceed its
upper limit, we require that uri � urj > 0 along solutions to (7.61). If C T

ai is not
an eigenvector of AT

ci , Qxai D 0 is the only solution. Using (7.45), we see that the
required inequality reduces to Kj Nxai > Pj rj for all j 2 L. Using (7.34) and the
definition of Mj from (7.47), this becomes:

Mj

ri

Gi .0/
> Pj rj (7.63)

for all j 2 L. Noting that inequality (7.63) is the opposite of inequality (7.53),
we see that transient limit protection cannot be guaranteed for i D i�, even for
intervals of time where i� is active! This can be confirmed in the min-only case of
Example 7.3.4, where i� D 1 and y1 exhibits overshoot while its own regulator
is active. In the max-only case where i� D 2, y2 violates its limit in the transient
regime, even when its regulator is active. These shortcomings are removed by using
sliding mode controllers instead of linear regulators (See Chap. 8).

Now consider the condition for yj not to exceed its upper limit while i is active.
For this, we require that uri � urj > 0 along solutions to (7.62). Since there is
no explicit solution in this case, the solution that minimizes uri � urj is sought,
followed by a requirement that the minimum solution be positive. Mathematically,
the invariance condition can be expressed as

.Kj �Ki/ Qx�
ai > �Kj Nxai C Pj rj ;

where Qx�
ai is the solution to the following constrained minimization problem:

Qx�
ai D arg min .Kj �Ki/ Qxai

subject to
� �Caj

�CajAci
�

Qxai D
� Nej=i

0

�
: (7.64)
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A negative test for invariance can be conducted by finding any solution to
system (7.62) and checking whether uri � urj is satisfied for all j 2 L for that
particular value of Qxai . If so, the set PEj=i \ Ej contains at least one point for which
the active regulator is i and invariance for yj cannot be concluded.

7.3.5.2 Transient Limit Protection: Max-Only Case

The corresponding invariance conditions for yi and yj are obtained by reversing the
inequalities in (7.63) and (7.64), and are the same whether upper- or lower-limited
variables are involved. That is, invariance for yi is guaranteed if:

Kj Nxai < Pj rj (7.65)

for all j 2 H . Similarly, invariance for yj is guaranteed if:

.Kj �Ki/ Qx�
ai < �Kj Nxai C Pj rj ;

where Qx�
ai is the solution to the following constrained minimization problem:

Qx�
ai D arg min .Kj �Ki/ Qxai

subject to� �Caj
�CajAci

�
Qxai D

� Nej=i
0

�
: (7.66)

Although the invariance conditions for the min-only and max-only cases were
developed used two regulators, their validity extends to more than two regulators
by considering all possible pairs of regulators.

7.3.5.3 Transient Limit Protection: Min–Max Case

In this case, analysis must be made in groups of three regulators, an arbitrary fixed
regulator i assumed active, a regulator j in the min group, and a regulator k in the
max group. Two cases must be considered: i 2 L and i 2 H . Assuming i 2 L, the
region where i is active is given by UL \ UH , where:

UL D ˚ Qxai W uri � urj � 0 for all j 2 L� ;
UH D f Qxai W uri � urk � 0 for all k 2 H g :
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Invariance will be guaranteed if PEi \ Ei lies outside UL \ UH . As before, if Qxai D 0

is the only element of PEi \ Ei , the invariance conditions reduce to

Kj Nxai > Pj rj ; (7.67)

Kk Nxai < Pkrk (7.68)

for all j 2 L and for all k in H . For a regulator i 2 H , the region where it is active
is given by UH \ Ul , where Ul is defined as

Ul D ˚ Qxai W uri > min
˚
urj
�
; j 2 L� :

The reader will observe that this set has a complex description. Establishing the
invariance of yj while i is active is also rather difficult. First, j must be assumed to
begin to either L or H . For each case, subcases corresponding to i 2 L and i 2 H
must be contemplated. This process is best handled numerically, with the aid of a
computer program.

7.4 Example: CMAPSS-1 Linearized Model

Continuing with Example 7.3.4, consider first the problem of establishing transient
limit protection when only the min selector is used. It can be verified that Ca1 is
not parallel to Ca1Aci and therefore Qxa1 D 0 is the only solution to system (7.61).
Thus, no transient limit protection can be guaranteed for i�. Although (7.63) is
only a sufficient condition, simulation showed that y1 overshoots its limit in the
transient regime, even for intervals when its own regulator is active. To see whether
invariance can be established for y2 while i� D 1 is active, note that Ny2=1 D 76:39,
so Ne2=1 D 123:61. An exact solution to system (7.62) can be readily found using
the pseudoinverse as QxT

a1 D Œ25:4488 4:2484 � 0:8189�. Evaluating ur1 � ur2
at this value using (7.45) gives �247.25, indicating, again, that there is a point
where e2 D Pe2=1 D 0 with i D 1 being active. Therefore, invariance for y2
cannot be concluded during the transient regime for periods where i D 1 is active.
Simulation shows, however, that y2 remains below its limit. The conservativeness of
the sufficient condition can be traced to the fact that the solution found for Qxa1 does
not belong to the actual state trajectory followed by the system. A refined version of
the invariance condition would require taking into account such trajectories, which
depend on the previous switching history.

Now consider the max-only case of Example 7.3.4. Again, no transient limit
protection can be guaranteed for i� D 2 for periods where this regulator is active.
Condition (7.63), is satisfied for i D 1, however. Therefore, y1 will not exceed its
limit when its own regulator is active. In this example i0 D 1, and i D 1 remains
active for a short time, where y1 < r1, verifying transient invariance for this case.
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A regulator switching occurs and the active regulator becomes i� D 2 for all future
times. Invariance cannot be concluded for y2 while i D 2 is active, and simulation
confirms that y2 becomes smaller than its limit.

The preceding steady and transient limit protection analysis, as well as the
examples, suggest that the standard min–max arrangement may be ill-conceived,
at least when used in conjunction with linear regulators. Although steady limit
preservation is achieved in a simple fashion, there is no clear way to guarantee that
outputs will remain within their prescribed bounds in the transient regime. When
sliding mode controllers are used, stability and limit protection are guaranteed under
most cases, as described in Chap. 8.

7.5 Alternative Minimum-Interaction Design: H1 Approach

A reasonable alternative to using limit regulators is to design the state feedback gain
so that one of the outputs (say, fan speed) has a suitably fast transient response while
the other outputs are suppressed during transients, minimizing the possibility of
limit violations. This problem can be formulated using the multiobjective H1 state
feedback synthesis discussed in Chap. 4. Adequate fan speed response is obtained by
the built-in robust stability property, together with a regional eigenvalue placement
constraint. Limited outputs are regarded as performance outputs z2 or z1. The latter
choice is convenient when output disturbances are included, since the H1 norm
remains finite even for nonstrictly proper transfer functions.

7.5.1 Example: CMAPSS-1

The constant feedback gain H1 design is now applied to the fan speed control
problem near FC01. System parameters are given in Appendix B. Recalling the
developments of Chap. 4, the robust state feedback synthesis approach handles the
system description given below:

Pxa D Aaxa C Baur C �aw; (7.69)

z1 D Cxa; (7.70)

where w is a vector of disturbances. Matrix � has not been listed in Appendix B,
but may be obtained through linearization using the CMAPSS-1 interface. The
objective is to find a feedback gainK stabilizing the augmented closed-loop matrix
Ac D Aa � BaK while minimizing the infinity norm of the transfer function from
w to z1. The designer controls fan speed response by specifying a target region
for the closed-loop eigenvalues of Ac. The H1 minimization objective translates
into transient suppression of the limited outputs. The presence of a disturbance
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Fig. 7.11 Response of limited outputs for minimum interaction design: positive �Nf demand

component introduces a design tradeoff. The larger the influence of disturbances
(as measured through matrix �), the smaller the closed-loop allowable bandwidth.
This can be observed when carrying the design using, for instance, the msfsyn
command: � may need to be scaled to maintain feasibility.

In this example, � is scaled to 10% of their linearization value. A disk centered
at �10 with radius 7 is used as the target region, resulting in an H1 norm of 169
and a feedback gain as follows:

K D Œ0:0001 � 0:0008 3:8233� ;

which places the closed-loop eigenvalues of Ac at �5:444, �3:8419, and �3:0417.
Using a fan speed demand of �Nf D 100 rpm, it can be verified that the
corresponding steady values of the limited outputs are �T48 D 75:835ı R, �
Ps30=48.26 psi and �˚ D 1:56 pps/psi. As Fig. 7.11 shows, the transient peak
of �T48 remains under the limit of r2 D 200 that was used in the previous
examples. A step health parameter disturbance was applied at t D 12 s. Figure 7.12
corresponds to�Nf D �100 rpm. In this case, all limited outputs remain within the
bounds used in the previous examples.
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Fig. 7.12 Response of limited outputs for minimum interaction design: negative �Nf demand

7.5.2 Example: Ellipsoidal Invariant Set: CMAPSS-1
Linearized Model

An ellipsoidal invariant set is now derived for the closed-loop system of the previous
example, first using the feedback gain obtained through H1 synthesis. Define a
shifted state vector as done in Sect. 7.3.2:

Qxa D xa � Nxa;

where Nxa represents a target state so that y1 D r1 when the system reaches steady-
state. The state-feedback law for fan speed setpoint tracking is ur D �Kxa C P r1,
which can be written in terms of Qxa as follows:

ur D �Kxa C P r1 D �K. Qxa � Nxa/C P r1 D �K Qxa;

where (7.33) has been used. Recalling that Aa Nxa D 0, substitution of the above
control law into system (7.69) yields the following closed-loop dynamics

PQxa D .Aa � BaK/ Qxa:
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Now, the constraints are formulated in terms of xa from the limited output
specifications:

y2 D Ca2 Qxa � r2;

y3 D Ca3 Qxa � r3;

y4 D Ca3 Qxa � r4:

Note that the first output (incremental fan speed) has not been regarded as a limited
output, but if necessary, it can be directly added to the list of constraints. The
constraint vectors are now normalized so that they correspond to the assumed
description Gix � 1. For this, inequalities reflecting positive upper bounds are
simply divided by the value of the bound. For negative lower bounds, the left-hand
and right-hand sides of the inequality are switched and the inequality divided by
the negative of the bound. According to this, the three constraints adopt the desired
form, with G2 D Ca2=r2, G3 D Ca3=r3, and G4 D Ca4=r4.

An arbitrary symmetric, positive-definite matrix Q may be used to obtain a
family of invariant ellipsoids from the solution of Lyapunov equation (7.24). For
each constraint, the largest admissible ellipsoid from this family is found by
calculating its Vi value. The smallest Vi , say V , is then selected, and the operating
set for Qxa is defined as QxT

a P Qxa � V . Although this guarantees invariance, the
orientation of the ellipsoid may not be the best for the given constraints. An
improvement is to find P to maximize the volume of the ellipsoid, subject to the
invariance condition (7.23) and Gi Qxa � 1, see O’Dell [62].

As an example, take QD I . The Lyapunov equation is solved using
lyap((Aa-Ba*K)’,Q) to yield

P D

2
664
0:1342 0:0303 7:3913

0:0303 0:1184 11:4089

7:3913 11:4089 2397:3

3
775 :

The values of Vi are calculated as V2 D 1438:7, V3 D 8780:9, and V4 D 9526:1.
Therefore, the operating set for Qxa is described by the inequality QxT

a P Qxa � 1438:7.
This result can be given a practical interpretation by considering the meaning of

Qxa. The operating set restricts the distance between xa.0/ and Nxa, the target state.
Recalling that xT

a D Œ�Nf �Nc �WF� is the incremental state relative to a steady
linearization point, we see that xa.0/ D 0 if the setpoint change maneuver starts at
the linearization point. For such cases, we can restrict the target state to guarantee
limit protection by enforcing NxT

a P Nxa � 11:3. Using (7.34), this inequality becomes

�
r1

G1.0/

�2 � �A�1B
1

�T

P

� �A�1B
1

�
� 1;



174 7 Engine Limit Management with Linear Regulators

which in this example reduces to jr1j � 38:3, a conservative figure. Now consider
the problem of finding a stabilizing K that maximizes the volume of an invariant
ellipsoid contained in the constrained set. This problem can be solved using O’Dell’s
techniques [62], yielding the following combination of P and K:

P D

2
664
0:00000219 0:00000537 0:00064

0:00000537 0:00001354 0:00121

0:00064366 0:00121329 1:12223

3
775 ;

K D Œ0:000578 0:001120 0:877210�:

This feedback gain places the closed-loop eigenvalues at �1:251, �2:965, and
�5:165, producing a somewhat slower response in comparison with the value
obtained through H1 synthesis. The minimum value of V is now 1 and the bound
for r1 becomes 78.8 rpm, a less conservative value. This value is still far from the
maximum value of r1 for which a limited output reaches its limit. Indeed, since all
closed-loop poles are real, no output will exhibit overshoot. Thus, an upper-limited
variable yj can only reach rj in the steady state. For this, ri� must be chosen so
that Nyj=i� D rj . In this example, for y2 to reach r2 D 200, r1 must be chosen as
r2G1.0/=G2.0/ D 261:8 rpm.

7.6 Acceleration and Deceleration Limiting

In addition to limits placed on the magnitudes of critical variables such as turbine
temperature, shaft speeds, combustor pressure and engine pressure ratio, the core
shaft acceleration must also be maintained between prescribed bounds. An upper
bound is introduced to protect the engine against surge and stall, while the lower
limit is introduced to provide safety against engine flame-out. Recalling (2.2), we
see that core acceleration PNc depends on fuel flow,WF. A traditional way to maintain
core acceleration below its prescribed upper bound is simply to override the value of
ur calculated by the min-selected regulators, replacing it with a constant rate of zero
pps/sec whenever the acceleration reaches its upper limit. Minimum acceleration is
likewise maintained by replacing the rate produced by the max stage with ur D 0

whenever the acceleration reaches its lower limit.
In CMAPSS-1, these operations are implemented by override switches triggered

by PNc, as shown in Figs. 7.13 and 7.14. The threshold value for j PNcj is 500 rpm/s.
Note that a similar acceleration limiting scheme could, in principle, be applied to
PNf. When thrust is being controlled indirectly by a feedback loop on Nf, however,

such scheme is not necessary, since reference ramps are usually commanded for
this variable. Hence, fan acceleration should follow response specifications. When
an EPR loop is established as a means to achieve thrust control, Nf and Nc may
be regarded as upper-limited variables, and corresponding acceleration limiters
included.
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7.6.1 “N-Dot” Control and Acceleration Scheduling

The so-called “N-dot” control concept exploits the algebraic relationship between
shaft accelerations and fuel flow, as observed in (2.1) and (2.2). In principle, if the
inverse of functions f1 and f2 were available, one could compute values of fuel
flow resulting in a desired instantaneous value for PNf or PNc. In practice, no such
inverses are available for real-time computations, and uncertain and unmeasurable
time-varying parameters participate in the definitions of f1 and f2.
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Since fuel flow is related to acceleration by an uncertain algebraic relationship,
the latter may be controlled by establishing a PI loop using the former as control
input. Assuming that good tracking properties are attainable, thrust control is
achieved by providing adequate acceleration references, or acceleration schedules.
These references are shaped so that their integral corresponds to a desirable shaft
speed response. In addition, acceleration schedules may be used to introduce limit
protections in critical engine variables. For more details on Ndot control, readers are
referred to Link and Jaw [14] and Spang and Brown’s survey [64].



Chapter 8
Engine Limit Management with Sliding Modes

Abstract This chapter develops a method to maintain critical engine variables
within allowable limits, without the disadvantages associated with the standard min–
max approach. Guidelines for the association of sliding mode regulators to logic
max or min selectors are given, along with an H2=H1 sliding coefficient synthesis
method. Simulations using the CMAPSS nonlinear engine model are included.

Sliding modes constitute a powerful tool to achieve the simultaneous objectives of
robust output regulation and limit protection. Research conducted by the author in
collaboration with NASA [73] indicate that many shortcomings of the standard
min–max approach can be removed by replacing linear regulators with SMC.
A single-input version of the max-min/SMC approach was available at the time this
book was printed, and is presented in this chapter. Thus, the developments of this
chapter assume that only one input is available to manage both regulation and limit
protection objectives.

The central idea of the max–min/SMC approach is to define sliding functions
as the difference between a limited variable and its permissible limit. One of such
functions is defined for each limited output, in addition to a sliding function defined
for the main regulated output (fan speed in the GTE problem). Recalling from
Chap. 6 that since convergence of the s variable to zero is one-sided, if follows
that outputs will not cross their limits when their corresponding SMC regulator is
active.

Remarkably, the technique also assures that outputs will not cross their limits
even when some other regulator is active. This represents a significant improvement
over the min–max arrangement with linear regulators of Chap. 7, where transient
limit protection cannot be guaranteed.

Establishing stability is of the utmost importance for the development of new
control laws. In the max–min/SMC approach, asymptotic stability is guaranteed,
ensuring that suitably-defined error states converge to zero. The approach consti-
tutes a hybrid dynamical system, in that discrete variables exist that interact with
the continuous system state. The relevant discrete variable in the max–min/SMC

H. Richter, Advanced Control of Turbofan Engines, DOI 10.1007/978-1-4614-1171-0 8,
© Springer Science+Business Media, LLC 2012
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approach is q, the index of the currently active SMC regulator. This variable takes
on integer values, reflecting the number of regulators being implemented. A notion
of stability must also be considered for q. The max-min/SMC approach has the
property that q undergoes a finite number of transitions before it settles at a steady
value.

The limit-preserving and stability properties of the max–min/SMC approach are
ensured by following simple guidelines for associating regulators with the max
or min selectors, and then tuning each SMC regulator independently. That is, a
separation property applies, akin to the well-known property of linear observers
used in combination with linear state feedback control [65]. Note that the sliding
coefficients corresponding to the SMC limit regulators are no longer design
freedoms: they are defined by the C matrix of each limited output. Because of this,
the technique is applicable to minimum-phase outputs only, since the eigenvalues
of the matrix defining sliding mode dynamics coincide with the zeroes of the
transfer function from input to limited output. The reader may wish to re-visit
Chap. 3, where the effects of right-half plane zeroes are discussed. Thus, limit
regulator design entails the selection of switching gains � and boundary-layer
parameters . The sliding coefficients corresponding to the main SMC regulator
are design freedoms, as elaborated below. Basic design is conducted by choosing
these coefficients on the basis of the main output regulation task alone. An
advanced design technique is also possible, where interaction between main and
limit regulators is addressed in a mixed H2=H1 synthesis framework similar to that
of Chap. 4.

The detailed stability argument for max–min/SMC is involved and out of the
scope of this book. Interested readers are referred to Richter [59] for a complete
mathematical proof. Here, the control law is developed and the salient stability and
limit-preservation properties are described.

8.1 System Description, Assumptions and Control Objectives

The architecture of max–min/SMC is the same as the max–min arrangement of
Chap. 7, with the linear regulators replaced by sliding mode regulators, as illustrated
in Fig. 8.1.

Due to the requirement that the main output be precisely regulated, integration
is used at plant input. The regulators, thus, provide control input rates. Letting L D
f1; 2; :::lg andH D fl C 1; l C 2; :::hg, the max–min selection law is expressed as

ur D max
k2H

�
min
j2L

˚
urj
�
; urk

�
; (8.1)

where urj are the min-linked regulator outputs and urk are the max-linked regulator
outputs. Some studies characterizing the behavior of related schemes have appeared
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in the research literature [66–68]. Recently, the (nonasymptotic) stability of this
particular scheme under linear regulators has been analyzed by Johansson [33]
using piecewise-quadratic Lyapunov functions. Even for linear regulators, a com-
plete characterization of closed-loop behavior that includes essential issues such
as determining which regulator will be active at steady-state or how to design
the regulators to address performance requirements does not exist in the open
literature. Limit protection is an indispensable consideration in the GTE problem;
however, few works addressing the max–min arrangement have appeared [64,
69]. Of particular importance is the observation that limit regulators may be-
come active even when the auxiliary outputs are far from their limits, causing
a degradation in the response of the main output due to an overriding control
objective [69]. Also, as established in Chap. 7, the max–min architecture with
linear regulators does not ensure transient limit protection, a less-than-desirable
feature.
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We consider linearized models for the engine, with a single control input u
(typically fuel flow). Considering that the controller includes integral action, the
state-space description of the design plant is:

Px D Ax C Bu C �w (8.2)

Pu D ur ; (8.3)

where x is n-by-1 and u and ur are scalars. The above model captures the effect
of uncertainties and exogenous inputs through vector w and its input matrix � , of
compatible dimensions. Assume that a set of outputs is defined as

yi D Gix C‚iu (8.4)

for i D 1; 2; :::h, with Gi a 1-by-n vector and ‚i a scalar.
We make three key assumptions: A is nonsingular, ‚i ¤ 0 and matrices Aeq:i

defined in (8.5) have eigenvalues with negative real parts for i D 1; 2; :::h.

Aeq;i D A� BGi

‚i

: (8.5)

The assumption on Aeq;i is equivalent to the requirement that the outputs defined
by (8.4) are minimum-phase relative to the state-space system of (8.2). Note that
whenA contains a zero eigenvalue, the corresponding integrator can be factored out
from the transfer function between u and yi , resulting in a nonsingularA. The input
integrator is not implemented explicitly as part of the control law. When‚i D 0 for
some i , further modifications are required [59].

8.1.1 Control Objectives

Without loss of generality, let y1 be the output whose setpoint is to be transferred
with zero steady-state error. This must be achieved under constraints of the form
yk � Nyk and yl � Nyl , where k are the indices of the upper-limited outputs and
l are the indices of the lower-limited outputs. In addition, usual transient response
specifications apply for the design of the main output regulator.

8.1.2 Sliding Mode Control Laws

Define sliding variables as
si D yi � Nyi (8.6)

for i 2 L [ H , where Nyi D Gi Nxi C ‚i Nui . The reference variables Nxi and Nui are
selected to be equilibrium pairs, that is, so that A Nxi C B Nui D 0. The standard
SMC control law is obtained by requiring that si D 0 in finite time (reaching
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phase). Beyond the reaching phase, si D 0 must become invariant (sliding phase).
The system then evolves with reduced-order dynamics matching the zero dynamics
associated with output si . Thus, a minimum-phase assumption is required. For a
single SMC regulator (fixed i ), the control law given below in (8.7), where �i is a
positive constant, forces the function 1

2
s2i to have derivative si Psi D ��i sign .si /.

implying that the set si D 0 is reached in finite-time, with subsequent invariance.

uri D � 1

‚i

.Gi .Ax C Bu/C �i sign .si // (8.7)

In view of the definition of si , a limit regulator, if operated alone, causes
its corresponding limited output to attain the limit value in finite time
without overshoot. Under the max–min selection logic, the closed-loop
system is given by (8.2), (8.3), (8.4), (8.6), (8.7), and (8.1). The controller
implements (8.6), (8.7), (8.1), and (8.3).

8.2 Behavior Under a Fixed Regulator

Let i and j be two fixed regulator indices and define the augmented state as xa ,
ŒxT ju�T , let Nxai D Œ NxTi jNui �T and define the augmented state relative to i as Qxa ,
xa � xai. Using this definition, it is straightforward to derive the following identities
pertaining to system behavior under the control law of (8.7):

PQxa D Ai Qxa � 1

‚i

Bi�i sign .si / (8.8)

sj D Jj Qxa C�j;i (8.9)

Psj ji D ‚j

�
�j;i Qxa � �i

‚i

sign .si /

�
: (8.10)

where:

Ai D
"

A B

�Gi
‚i
A �Gi

‚i
B

#
; BT

i D Œ01�nj1� (8.11)

Jj D ŒGj j‚j � ; �j;i D Jj . Nxai � Nxaj/ (8.12)

�j;i D
�
Gj

‚j

� Gi

‚i

� 

A
ˇ̌
B
�

(8.13)

The notation Psj ji is interpreted as “the derivative of sj when i is the active
regulator”. When i D j , we simply write Psi . Note that �i;i D 0 and �i;i D 0 for
i 2 L [ H . It follows from standard sliding mode theory that for each i , the
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spectrum of Ai is formed by the eigenvalues of Aeq;i from (8.5) and zero. The
closed-loop system resulting from applying the input of (8.7) to system (8.2), (8.3) is
more conveniently described in terms of the derivatives of the s variables, as before,
and the rate of x. In fact, define Xr , Px. The closed-loop system dynamics are
expressed as

PXr D Aeq;iXr � B
�i

‚i

sign .si / (8.14)

Psj ji D ‚j

��
Gj

‚j

� Gi

‚i

�
Xr � �i

‚i

sign .si /

�
: (8.15)

The rate system is a convenient description, since Aeq;i characterizes the dynamics
of the sliding mode, facilitating the description of asymptotic properties.

8.2.1 Determination of the Steady Regulator Index

Define a switching function q.x; u/ with values in L [ H . The minimum (min),
maximum (max) switching functions are expressed by (8.16) and (8.17), respec-
tively.

qmin D arg min
i2L

furig (8.16)

qmax D arg max
j2H

˚
urj
�
: (8.17)

When the above equations yield nonunique values, an assignment is made
according to a predefined arbitrary rule. For the remainder of this chapter, qmin D
min (i; j ) and qmax D min (i; j ) are assumed whenever uri D urj. When a max–
min arrangement is used, it is assumed that the min preselection is applied to the
first port of the max selector, so that the min input is used in case of equality
with the max preselection. These assumptions will be referred to as default index
assumptions.

As done for the max–min arrangement for linear regulators of Chap. 7,
a procedure to determine the steady regulator index is developed next.

Under the min switching law, system (8.2), (8.3) has a unique equilibrium point at

. Nxi� ; Nui�/, where i� 2 L is the index such that
sign .�j;i� /

‚j
� 0 8j 2 L.

Given system parameters, it is straightforward to compute the terminal regulator
index. All �j;i combinations are computed. For the min law, an index i� is sought
that satisfies 0 � � �j

‚j
sign .�j;i�/ for all j 2 L; j ¤ i�.
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Under the max switching law, system (8.2), (8.3) has a unique equilibrium point
at . Nxi� ; Nui�/, where i� 2 H is the index such that sign .�j;i�/ � 0 8j 2 H . This
index is termed terminal regulator index.

The determination of the terminal index for the max and max–min switching
laws is presented next.

Under the max–min switching law of (8.1), system (8.2), (8.3) has a unique
equilibrium point at . Nxi� ; Nui�/, where i� 2 L [ H is the index satisfying
condition (8.18):

0 � � sign .�k;i�/

‚k

8k 2 H (8.18)

and either condition (8.19) or condition (8.20):

0 � � sign .�j;i�/

‚j

8j 2 L (8.19)

0 > min
j2L

�
� sign .�j;i�/

‚j

�
: (8.20)

When condition (8.19) is satisfied, the terminal regulator index i� 2 L. Otherwise,
condition (8.20) is satisfied and i� 2 H .

A simple algorithm to identify the ending regulator i� in the max–min case
follows:

1. Assume that i� 2 L and take i� D 1.
2. Check condition (8.18). If true, check condition (8.19). If true, i� is the ending

regulator. If not, take the next i� 2 L and re-check.
3. If the final regulator is not found in L, repeat the above steps, checking

condition (8.20) instead of (8.19).

8.3 Summary of Stability Properties

In [59], a proof of global asymptotic convergence to the equilibrium point Nxai

is developed that relies only on the assumptions stated at the outset. The proof
is based on attractiveness properties of each individual sliding set, together with
considerations about the geometry of the regions of RnC1 in which each regulator is
active under any of the min, max or max-min switching logic. Here, the relevant
stability properties are summarized, omitting the lengthier proofs. The reader is
referred to [59] for detailed proofs.
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8.3.1 Stability: Min or Max Switching

All trajectories of System (8.2), (8.3) under control input (8.7) and the min
switching law converge asymptotically to the unique equilibrium point xai� .
The property maxfurig D � minf�urig can be used to infer stability for the max
case using the proof of the min case.

8.3.2 Stability : Max–Min Switching

The max–min case requires additional analysis, as index selection cannot be
expressed in terms of min only. However, the property maxfak � bj g D maxfakg �
minfbj g for any two collections of numbers fakg and fbj g proves useful in reducing
the proof to the already-studied min and max cases. An important property of the
max–min arrangement is that there exists a finite time after which switching is
restricted to happen either among the min or the max selectors, whichever group
contains the terminal index. In what follows, and without loss of generality, it is
assumed that the terminal regulator index belongs to the min set, that is, i� 2 L.

All trajectories of System (8.2), (8.3) under control input (8.7) and the max–
min switching law converge asymptotically to the unique equilibrium point xai� .
Moreover, the total number of switchings from the L set to the H set is at most
equal to the number of regulators in the H set.

8.4 Invariance Properties: Limit Protection

The results of this section show that the min, max, and max–min designs actually
maintain outputs within limits. In summary, it will be shown that when the min
switching law is used alone, outputs whose ‚ is positive will be protected against
upper-limit violations and outputs whose ‚ is negative will be protected against
lower-limit violations. Conversely, the max switching law alone protects outputs
whose ‚ is positive against lower-limit violations and outputs whose ‚ is negative
against upper-limit violations. A max–min scheme is used to cover additional
combinations of signs of ‚ and upper or lower limits.

Recalling the definitions of Sect. 7.2.1, an interval .�1; b� is invariant for a
generic real variable z.t/ if Pz.t/ � 0 at z D b. Similarly, an interval Œa;1/ is
invariant if Pz.t/ � 0 at z D a. When an interval is invariant and z.t1/ belongs to
the interval for some t1 > 0, then z.t/ will remain in the interval for t � t1. For the
proposed technique to be effective, the interval .�1; 0� must be invariant for the
sj of upper-limited variables, in view of the definition of sj for limited output yj .
Conversely, Œ0;1/ must be invariant for the sj of lower-limited variables.
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8.4.1 Invariance Under Min Switching

Let yj be a limited variable. The derivative of sj when i is active is given by (8.15).
When i is active, we must have ui � uj , so:

Psj ji
‚j

D �j;i Qxa � �i

‚i

sign .si / � � �j

‚j

sign .sj /:

Noting that the inequality changes to equality for j D i , it is clear that Psj
‚j

� 0

at sj D 0 under any regulator. If ‚j > 0, upper-limit protection is guaranteed. If
‚j < 0, lower-limit protection is guaranteed.

8.4.2 Invariance Under Max Switching

Following the same reasoning used for the min case, it is clear that Psj
‚j

� 0 at sj D 0

under any regulator. If ‚j > 0, lower-limit protection is guaranteed. If ‚j < 0,
upper-limit protection is guaranteed.

8.4.3 Invariance Under Max–Min Switching

One would expect that the max–min arrangement guarantee invariance of any real
interval Œa; b� containing zero, regardless of the sign of ‚, but this is not the case.
An exception occurs for sj when j 2 L and the active regulator belongs toH . This
lack of symmetry arises from the fact that for q 2 H to be active it is necessary
that urq be greater than the minimum of all url, l 2 L, but not for every url in L. In
contrast, for q 2 L to be active, url must be greater than every urh, h 2 H . Indeed,
suppose q D i 2 L is active and consider a variable sj and its derivative along the
boundary sj D 0:

Psj ji =‚j D uri � urj � �j sign .sj /=‚j D uri � urj: (8.21)

If j 2 L, it is necessary that uri�urj � 0, while one must have uri�urj � 0 if j 2 H .
Thus, while q 2 L, sj is upper-bounded by zero if ‚j > 0, and it is lower-bounded
by zero if ‚j < 0. Now consider q D i 2 H to active. Equation (8.21) still applies.
If j 2 H , it is necessary that uri � urj � 0. Thus, while q 2 H , all variables sj
associated to the max selector will be upper-bounded by zero when ‚j < 0 and
will be lower-bounded by zero if ‚j > 0. The difficulty arises when considering
j 2 L while the active regulator is in H . The difference uri � urj may be positive,
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negative or zero, and invariance does not apply. Fortunately, separate arguments
can be made which maintain the validity of the approach under commonly found
circumstances. These arguments are elaborated in the next section.

8.5 Additional Considerations

For the remainder of the article, it is assumed that regulators are assigned to selectors
so as to exploit the invariance properties described above. These assignment rules
have been summarized in Table 8.1.

8.5.1 Limited Output Consistency

The results of this chapter are directly applicable to setpoint changes, implying that
initial and final plant states ŒxT ju�T are equilibrium points. Then it is always possible
to redefine variables so that the initial input u, state x, and outputs yj are zero.
Frequently, it occurs that the sign of the DC gain of the transfer functions from u to
y for the limited outputs coincides with the sign of‚. The steady plant input–output
relationships have the form

Nyj D ‚j .1�GjA
�1B=‚j /Nu

for j D 1:::h. If 1 � GjA
�1B=‚j > 0, then the sign of steady input Nu will match

that of the limit Nyj when ‚j > 0 and will be of the opposite sign when ‚j <

0. This has useful implications for the behavior of min-variables when q 2 H ,
where invariance was not found. The following heuristic reasoning applies: if q 2 H
because an upper-limited variable from the max group is reaching its (positive) limit,
then u will be negative, since‚j must be negative according to the assignment rules.
Any yi among the min-selected variables which is upper-limited will be driven away
from its limit by the negative Nu, since ‚i > 0 by the assignment rules. The same
reasoning can be followed for other combinations. This behavior is confirmed in
simulation.

Table 8.1 Guidelines for the
association of sliding mode
regulators to selectors

Limit Sign of ‚ Selector

Upper + Min
Upper � Max
Lower + Max
Lower � Min
Regulated output n.a. min
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8.6 Design Process

This paper deals with a single control input and a single controlled output, whose
setpoint is to be changed. Of all outputs, exactly one is the controlled variable,
while the rest are limited variables. The Gi and ‚i for the limited outputs are
given by the system definition and are thus not design freedoms. The fundamental
assumption that they define minimum-phase outputs must hold for this technique
to work, however. The designer may freely choose all switching gains �i and the
reference states Nxi and Nui so that they constitute equilibrium pairs and so that they
correspond to the desired setpoint for the controlled variable and to the limits Nyi .
Next, upper-limited variables such that ‚i > 0 and lower-limited variables having
‚i < 0 are placed under the min selector, while upper-limited variables with‚i < 0

and lower-limited variables such that ‚i > 0 are placed under the max selector, as
summarized in Table 8.1.

For the purposes of showing stability, no distinction was made between regulated
and limited outputs, and the sliding function for the regulated variable was defined as
the difference between the output and a limit. Suppose y0 D C0x CD0u is the true
system output to be regulated (i.e., fan speed). Since output setpoint regulation is
equivalent to the selection of a reference pair . Nx; Nu/, one may introduce a “limited”
variable and associated regulator for the purpose of reaching the reference state.
Without loss of generality, suppose that y1 D G1x C ‚1u is such variable. For y0
to reach its setpoint, . Nx1; Nu1/ must be chosen under the restriction that G1 Nx C ‚1 Nu
equals the desired setpoint, and G1 and‚1 must be chosen to satisfy the minimum-
phase assumption and for good performance during the sliding mode. The regulator
for y1 is then placed under the min selector. Under nominal conditions, the designer
ensures that i� D 1, so that y1 attains the commanded setpoint. This is easily
accomplished by manipulation of ‚1 and �1, since the choices do not affect the
ability to place the eigenvalues of Aeq;1, nor compromise system stability.

8.6.1 MultiObjective Control: Mixed H2/H1 Feedback
Gain Synthesis

Although the above alone will guarantee stability and limit protection in both
transient and steady states, eigenvalue placement for Aeq;1 using G1 may be
carried out under additional, performance-oriented constraints. The interaction
among the controlled and limited variables may be minimized in the sense of a
mixed-sensitivity H1 approach. Consider the following generic control system in
state-space form:

Px D Ax CB1w C B2u (8.22)

zi;1 D Cix CDi;1w CDi;2u (8.23)

zj;2 D Cjx CDju; (8.24)
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where i D 1; 2; ::I and j D 1; 2::J are the indices of performance outputs zi;1 and
zj;2. The objective is to find a feedback gainK that:

1. Stabilizes .A;B2/ under the control input u D �Kx and
2. Minimizes a weighted objective function of the form ˛jjT1jj21 C ˇjjT2jj22,
where T1 is the closed-loop transfer matrix from the exogenous inputs w (i.e.,
disturbances) to the performance outputs zi;1 and T2 is the closed-loop transfer
matrix from w to the performance outputs zi;2. The weighting coefficients ˛ and ˇ
reflect design priorities and may be set to zero. The subindices represent the infinity
and 2-norms, respectively, which are commonly-used in the standard H1 and LQG
problems [28, 29]:

jjT1jj1 D max
w

N� .T1.jw// (8.25)

jjT2jj22 D 1

2


Z 1

�1
trace .T2.jw/T �

2 .jw//dw; (8.26)

where N� denotes maximum singular value and � denotes complex-conjugate
transpose. These norms were used in Chap. 4 as part of a robust state feedback gain
synthesis approach.

Note that the performance outputs are stacked together, allowing the designer to
include multiple objectives in the norm minimization. This generic problem may be
solved with additional constraints, for instance the requirement that the eigenvalues
of .A� B2K/ lie in certain region of the complex plane. Software tools such as the
msfsyn function within Matlab’s Robust Control Toolbox are available to solve
these problems.

In the context of aircraft engine controls, w may represent actual disturbances
or may be used to capture the effects of engine aging and deterioration. In fact,
matrix � in (8.2), representing the influence of health parameter perturbations,
may be directly obtained by linearization. In the context of sliding mode control,
w represents an unmatched disturbance if � does not belong to the column space
of B [53, 55, 70]. This means that w cannot be regarded as an additive component
to the control input u. Consequently, w may not be exactly canceled out by u even
if it were known or accurately estimated. Since it cannot be assumed that health
parameter perturbations will be of the matched type, a reasonable design objective
is to minimize the influence of w on the regulated variable.

The generic multiobjective synthesis approach described above may be directly
applied to guide the selection of G1, the sliding coefficients for the main regulator.
To do this, system dynamics under an ideal sliding regime with i� as the active
regulator are considered. Under these conditions, the control input has the state-
feedback form u D �Kx, with K D 1

‚i�
Gi� . The H2 objective is included by

considering zj;2 D yj ji� . That is, the (transient) excursions of yj under control
input u D � 1

‚i�
Gi�x are to be minimized in an H2-sense. For this, the transfer

functions of interest are of the form

Tj;2.s/ D Gj .sI � A/�1B C‚j : (8.27)
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Note that T2 is formed by stacking the Tj;2 together. Also note that T2 in the generic
problem regards w as the input. Here, B1 D B2 D B has been used to reflect the
intuitive requirement that u must not unduly excite yj .

The H1 objective is included by considering a single performance output
zi�;1 D yi� . The corresponding transfer function is

Ti�;2.s/ D C0.sI �A/�1B1 CD0; (8.28)

where C0 and D0 define the regulated output. Note that Gi� ¤ C0 and ‚�
i ¤ D0 in

general.

8.7 Design Examples

8.7.1 Linearized Simulation Study

We consider the problem of changing fan speed between two setpoints with
limits in T48, EPR, high-pressure compressor stall margin (SmHPC), and HPC
exit static pressure (Ps30). Note that no real-time sensing of the stall margin is
possible, however the SM controller only requires fan and core speeds as feedback
measurements. The CMAPSS model linearized at flight condition FC07 listed in
Appendix B is used.

This system is open-loop stable, so the assumption that A is nonsingular is
satisfied. We consider the excursions of EPR and T48 from the values in Table 2.3 to
be upper limited at 0.35 and 400ıR, respectively, while those of Ps30 and SmHPC to
be lower-limited at �85 psia and �15%. The values of the limits are representative
of actual engine operations. These limited outputs are defined as in (8.4) with

G2 D Œ0:0071 0:0177�; ‚2 D �18:4743
G3 D Œ0:0244 � 0:2665�; ‚3 D 410:4741

G4 D Œ�0:0037 0:1599�� 10�3; ‚4 D 0:0461

G5 D Œ0:0017 0:0855�; ‚5 D 25:5719;

where indices 2, 3, 4, and 5 correspond to SmHPC, T48, EPR, and Ps30, respectively.
It can be verified that these outputs are minimum-phase, satisfying the minimum-
phase assumption. Given a fan speed increment setpoint and the set of limits,
the corresponding reference states . Nxi ; Nui / are readily computed by enforcing
equilibrium conditions and using the output definitions, that is

A Nxi C B Nui D 0

Gi Nxi C‚i Nui D Li ;

where Li are the values of the limits. Note that the reference states for the fan speed
regulator are found using C1 D Œ1 0�, D1 D 0, and L1 equal to the desired setpoint
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for �Nf . However, the fan speed regulator does not use C1 and D1 as sliding
function coefficients, since limit preservation is not required for this variable. To
find G1 and ‚1, we solve the H2 minimization with regional eigenvalue placement
described in the design section. The optimization is carried out with the msfsyn,
which is part of Matlab’s Robust Control Toolbox. The eigenvalue placement region
was specified as the half-space Re(s/ � �4. Setting G1 D 1 arbitrarily, the solution
returns

G1 D Œ0:0118 0:0026�;

which places the eigenvalues of Aeq;1 at �5.26 and �4.40. The regulators are now
associated with the min or max selectors according to Table 8.1. The fan speed
regulator is applied to the min regulator. Since ‚2 < 0 and y2 is lower-limited,
the output limit regulator #2 is applied to the min selector. Similarly, since ‚3 and
‚4 are positive and y3 and y4 are upper-limited, the corresponding regulators are
applied to the min selector. Finally,‚5 > 0 and y5 is lower-limited, so the regulator
is associated with the max selector. Under nominal conditions, the designer wishes
that #1 be the terminal regulator. Since the only controller parameters left to
be specified are the switching gains �i > 0, and because their choice does not
compromise stability, tuning is straightforward and requires little or no iteration.
The � gains are adjusted until i� D 1 is predicted and a satisfactory response is
observed in simulation. For this example, it can be verified that setting �i j‚i j D 15

for i D 1; 2; 3; 4; 5 results in i� D 1.
Figures 8.2 and 8.3 show fan speed and auxiliary output responses to a setpoint of

�Nf D 340 rpm with all limit regulators disabled. As expected, it can be observed
that y1 attains its setpoint; however, some auxiliary variables exceed their limits.
Specifically, T48 and SmHPC incur transient violations. EPR does not reach its limit,
and Ps30 has a DC gain of the opposite sign as Nf , causing it to move away from
its lower-limit. Note that the settling time for Nf is about 1 s.

Figures 8.4 and 8.5 show the responses obtained when the limit regulators are
enabled. It can be seen that T48 and SmHPC now “ride” their limits during the
transient regime. Naturally, the fan speed response will show some performance
degradation in terms of transient behavior, but its ability to reach the setpoint will
not be hindered, since the design ensures that i� D 1 under nominal conditions. The
settling time is now about 1.4 s. Note that the limit �T48 D 400ıR has been made
very “tight” for illustrative purposes. Considering that the absolute limit on T48 used
in realistic engine controls is close to 2,200ıR, Table 2.3 indicates that �T48 could
be chosen as high as 657ıR. Under these conditions, the same design would result
in a faster settling time.

To illustrate activation of the lower limit, suppose now that fan speed is to be
reduced, that is, the setpoint is �Nf D �340 rpm. It can be verified that i� D 1

and i0 D 1 still hold under the same design parameters. Figures 8.6 and 8.7 show
that Ps30 reaches its lower limit and holds it for some time.
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Fig. 8.4 Fan speed response with limit regulators enabled: positive setpoint change
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8.7.2 CMAPSS Implementation: Upper Limit on T48

The above example was meant to illustrate the details of the design process.
The simulations used linearized models, however. The simulation studies of this
section are conducted in CMAPSS-40k, and strongly suggest that the combination
of sliding mode regulators and max–min selectors is robust enough to produce
satisfactory responses and limit protection behavior when applied to a high-fidelity
nonlinear engine simulation. In turn, the nonlinear simulation provides evidence
for the feasibility of this technique to be deployed in real-time to an actual engine.
Note that the control law of (8.7) carries an insignificant computational burden,
especially when compared to other control strategies aiming to handle constraints,
like model predictive control. In this example, minimizing the effects of health
parameter changes is also included among the design objectives. A fan speed
regulator and a T48 regulator are considered, both associated with a single min
selector. The increment request for Nf is the same as in the previous example, but
the T48 limit is reduced to 1,900ıR (�T48 D 357ıR to study the behavior of each
design under tight limits. Among the health parameter perturbations discussed in
Sect. 8.1, the HPT flow modifier and the HPT efficiency modifier have the largest
influence on T48. They correspond to a specific � matrix (see (8.2)), obtained
during linearization. At the flight condition considered in this example matrix � is
given by:

� D
� �505:4 152:6

4325:2 �1030:5
�
:

Step changes from 0% to 3% in each component of w will be considered in
the CMAPSS example, simulating the effect of a sudden fault. A comparison is
to be made between the proposed design and the max–min strategy with linear
regulators, which is the default in CMAPSS. Each linear regulator (including that
for the regulated output) is designed using the so-called KQ technique due to
Edmunds [27]. In summary, each regulator is restricted to be of the lead-lag type.
The pole of the regulator is arbitrarily set, and the zero and the gain are found by
model-matching optimization, whereby the closed-loop system is required to meet
a target closed-loop bandwidth wb and damping ratio 	 for a pair of dominant poles.
Although this classical technique may be satisfactory for independent loops, it does
not incorporate any information about the interaction of the regulators through the
max–min selector, nor does it use information about the values of the setpoints or
limits. As a result, poor performance may be observed, even when a limited variable
stays far from its limit. For illustrative purposes, a KQ design was conducted
using 	D 0:7 and wb D 4 rad/s, which according to classical compensation design
techniques [26] should produce a settling time of 1.45 s assuming that the regulator
is active at all times. These parameters and a real pole at sD � 20 were used for
both Nf and T48 regulators. The resulting compensators are

KNf .s/ D 0:1196s C 0:1868

s C 20
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Fig. 8.8 CMAPSS simulations: Fan speed response with T48 limit regulator and simulated fault

KT48.s/ D �0:01017sC 0:1073

s C 20
:

Note that the KQ design introduces a right-half plane zero in the T48 loop,
raising concerns about the general validity of Edmunds’ approach. Separately,
a sliding mode max–min design with mixed H2 norm minimization was carried out,
following the same steps as in the previous example, including performance output
z1 to capture the effects of w on Nf . The regional pole placement constraint was
maintained, this time using Re(s/ � �5. Finally, ˛ D 1 and ˇ D 1 were used. The
resulting sliding coefficient vector for the N1 regulator was G1 D Œ0:0168 0:0014�,
with ‚1 arbitrarily set to 1. The eigenvalues of Aeq;1 are �5.0112 ˙ 1.5396i . The
switching gains were set at �1j‚1j D �2j‚2j D 15. The resulting controller was
implemented in CMAPSS, and a sample comparison simulation was run. The results
are summarized in Figs. 8.8 and 8.9. It is clear that the new design outperforms KQ
by a large amount in terms of fan speed response, maximization of the available
limit, and low sensitivity to a simulated fault. Note that the settling time with the
proposed design is 40% shorter than the one obtained with the KQ design. The
example also indicates that a design based on a linearized plant is adequate for
deployment to the nonlinear model, although scheduling or gain adaptation is likely
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to be necessary to cover the whole flight envelope or to accommodate larger setpoint
changes.

8.7.3 CMAPSS Implementation with Multiple Limit Regulators

In this example, a more realistic implementation of the max/min SMC approach is
described. As in the simulation example, T48 and EPR are regarded as upper-limited
and Ps30 as lower-limited. A limit regulator cannot be directly implemented for the
stall margin, however, since this output is not sensed in the actual engine. A related
variable usually referred to as ˆ can be used instead to achieve a minimum stall
margin requirement. This variable is defined as the ratio of fuel flow rate to static
HPC outlet pressure Ps30:

ˆ D WF

Ps30
:

An allowable range for the value of ˆ is typically used to calculate corresponding
allowable values of WF on the basis of the current value of Ps30 [71]. That is, the
value ofWF calculated by the control system is passed through a saturation function
with variable limits which are determined from the minimum and maximum values
allowed for ˆ and the current value of Ps30. In this example, however, we consider
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Fig. 8.10 CMAPSS simulation diagram for max–min/SMC: Main output regulator

only an absolute lower limit on ˆ, enforced by an SMC limit regulator. Since theD
coefficient of the linearized output �ˆ is positive, the limit regulator is associated
to the max selector. Note that if an upper limit is specified for ˆ in addition to the
lower limit, an extra regulator must be associated to the min selector.

The example corresponds with a burst and chop maneuver starting at FC07. A fan
speed demand is created that corresponds to a step increase in TRA from 60 to 100ı.
The opposite TRA change is used for the chop portion. The sliding coefficients for
the main output regulator are determined using the H2=H1 approach. Fan speed
is regarded as the z1 performance output and z2 includes all limited outputs. Equal
weights for the H2 and H1 objectives are specified, and the target eigenvalue region
is taken as a disk centered at �8 with radius 2.

The sliding coefficients returned by msfsyn are

G D Œ0:0452 � 0:0010�;

which places the poles of Aeq at �9.99 and �6.00. The design is completed by
specifying a set of switching gains that provide an adequately fast response while
ensuring that the fan speed regulator is active at steady state. The switching gain for
the main regulator was chosen as �1 D 1, while �j D 15j‚j j was chosen for all
limit regulators. Boundary layer thickness parameters must be chosen according to
orders of magnitude projected for the s variables.  D 0:5 was chosen for the main
SMC regulator, together with 2 D 0:01, 3 D 4 D 5 D 0:1.

Figures 8.10 and 8.11 show the Simulink implementations of the main and
limit regulators, where the T48 regulator has been used as an example of the latter.
Figure 8.12 shows the behavior of the system state and main sliding function. The
fan speed response has a fast settling time of about 0.8 s.
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As shown in Fig. 8.13, T48 tends to peak during the burst transient, but SMC limit
regulator effectively maintains the variable at the exact value of the limit (2,175ı) as
long as necessary. Similarly, ˚ tends to undershoot pronouncedly during the chop
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transient, but is effectively held at the limit of 20 by its regulator. An upper limit of
1.3 was specified for EPR. Since the designer has no control over the sliding mode
dynamics for the limit regulators, small oscillations around the limit value may be
observed in a nonlinear engine simulation. This is the case with EPR: even if this
regulator is forced to remain active at all times, convergence to s D 0 is not one-
sided, but contains some oscillation. This explains the slight overshoot observed for
EPR in Fig. 8.13. Figure 8.14 shows the fuel flow input produced by the control
system. No significant chattering is detected, despite the high regulation accuracy
of this system. Finally, the burst and chop sequence has been represented in the HPC
map in Fig. 8.15.

8.8 Summary

The above CMAPSS implementations demonstrate the effectiveness of the max–
min arrangement with SM regulators. The designer can use this technique to
achieve a balance between speed of response and allowable limits for critical engine
variables. Even with constant control gains, limit relaxation will be reflected in
faster responses, and conversely, the main output response will become slower if



8.8 Summary 201

limits are made more restrictive. This feature is highly desirable for the development
of resilient aircraft control systems, where the engines feature aggressive control
modes reserved for emergency maneuvers. In emergencies, extending engine life
becomes secondary to achieving enhanced thrust response. Indeed, recent aviation
safety research [69,72] indicates that thrust response times determine the feasibility
of certain emergency maneuvers where the propulsion system is used for flight
control. In one scenario where all rudder control has been lost, the pilot commands
different levels of thrust to the engines to achieve a yawing moment. Studies indicate
that the control system must feature fast thrust response modes to be used in
emergencies. In these situations, enhanced response must be favored over engine
durability, while still guaranteeing component safety.

On the premise that the standard max–min architecture is used for both normal
and enhanced responses, there are essentially two ways of obtaining faster thrust
responses: (a): redesigning the regulators for larger closed-loop bandwidths; and
(b): relaxing the protective limits on variables which tend to peak as thrust
response is made faster. Among the variables displaying such peaking are turbine
outlet temperature, which peaks during acceleration, stall margin, which tends to
undershoot during acceleration, and combustor pressure, which tends to undershoot
during deceleration. Unfortunately, the max-min arrangement with linear regulators
introduces an undesirable relationship between design bandwidths, limit settings
and the achieved speed of response. This observation was first made by Litt [69] and
confirmed by the author in a simulation study [73]. The same study demonstrates
that the max-min arrangement with SM regulators removes this limitation.

The technique presented in this chapter requires the specification of augmented
state references, which includes target steady values for the actuators, since integral
control is used. As mentioned in Sects. 4.7.1 and 6.3, the steady map of the nonlinear
engine must be used to pre-calculate such references. This drawback is aggravated
when health parameter changes occur, since the steady map depends on these
uncertain parameters. Note, however, that real-time implementations of the SM
limit regulators do not require state references, due to the definition of the sliding
function. Only the limit setting and a real-time output measurement are needed to
calculate the sliding function.



Chapter 9
Engine Limit Management with Model
Predictive Control

Abstract This chapter introduces the concept of model predictive control and
develops basic prediction formulas based on linear state-space models. The con-
strained optimization problem is formulated using compact matrix formulas suitable
for incorporation in Matlab’s quadratic program solver. Model predictive control is
then applied to the engine control problem to address input and output constraints.
The chapter also discusses computational complexity and approaches aimed at its
reduction. Matlab code and simulations using the CMAPSS nonlinear engine model
are included.

Model predictive control (MPC) is a technique conceived to incorporate con-
straints explicitly at the outset of the control law derivation process. As its name
implies, MPC relies on predictions generated using a mathematical model of the
plant. In this regard, the philosophy behind the construction of MPC laws is radically
different from traditional error-feedback control approaches. Instead of producing a
control action in response to the current and past errors, MPC evaluates the results of
applying candidate control input sequences, selecting the sequence that minimizes
a performance measure. Only the first term of the sequence is then injected to
the plant, and the process is then repeated. The effects of applying a candidate
control input sequence must be evaluated through a performance figure whose value
depends on the predicted plant response.

System operation under MPC resembles a game of chess, where the player
analyzes several moves in advance, using the rules of the game and his/her
perception of the opponent’s playing strategy as a “model” that allows him/her
to make predictions. Piece values and strategic considerations lead the player to
determine an optimal course of events for the next few moves. Naturally, the
player is allowed only one turn, so only the first term of the optimal sequence is
implemented. In a control system, the opponent’s move is analogous to the reaction
of the plant to a control input. The player must then repeat his/her predictions and
select a new optimal move, given the current situation.

An insightful comparison between MPC and error-based feedback (say, PI
control) can also be made by analogy with the act of steering a car on a winding
road, with limited visibility. Normal driver actions correspond to MPC: the visible
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portion of the road’s centerline provides predictions used by the brain to make
anticipatory corrections to the steering wheel and the speed of the vehicle. Note
that visible portion of the road constitutes a moving, or receding horizon, a key
concept associated with MPC. In contrast, error-feedback control is analogous to
using the rearview mirror as the only source of visual information: the driver
reacts to errors that have already occurred, such as deviating excessively from the
centerline.

Because of its anticipatory character, MPC is well suited to handle constraints,
since only sequences predicted to satisfy the constraints are considered as suitable
control candidates. Since candidates are evaluated through a performance function
(typically an LQR-like cost), good transient performance is ensured in addition to
constraint satisfaction. Constraints are easily formulated to capture limits on the
state variables and output and input magnitudes and rates.

Despite its many attractive features, MPC has a significant shortcoming in its
computational burden. The calculations involved in prediction and optimal sequence
determination must be completed quickly enough, so that the plant state has not
deviated excessively from the value it had at the beginning of prediction. The
requirement of fast control computation is not exclusive to MPC, of course. Digital
control implementations use sample periods significantly smaller than the fastest
time constant found in the design plant. In GTE control, sample times near 0.01 s are
typical. The digital control system must complete various operations in less than the
sample time: reading sensors, calculating the control law, commanding the control
inputs to the actuators and other operations. A safe latency time must also be allowed
where the control system is in a wait state until the next sample instant comes up.
This means that the time allotted for control law calculations is a small percentage
of the sample period. As it will be seen below, the MPC calculation involves
a numerically intensive quadratic constrained optimization problem, known as a
quadratic program.

Studies have been conducted to determine the applicability of MPC to the GTE
control problem, including some by the author of this book aimed at reducing
computational complexity. Examples of this research include the work of Brunell
and co-workers [74], De Castro [75], Richter [76], and Van Essen [77].

In this chapter, the standard state-space formulation of MPC for linear plants is
presented, maintaining the exposition at an introductory level. Basic examples and
Matlab code are provided for nominal linear plants, followed by realistic CMAPSS
simulations. Readers interested in a more comprehensive and in-depth exposition of
MPC techniques are referred to Camacho and Bordons [78] or Rossiter [79].

9.1 Digital Control Systems and Zero-Order Hold Equivalents

The MPC strategy presented in this chapter is based on a linear discrete-time model
of the plant. A discrete-time equivalent of the continuous-time linear plant is a set
of difference equations describing the changes of the samples of the state variable
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upon application of a sequence of constant control inputs. The samples of the
continuous-time state variable x.t/ are denoted x.k/, and the sequence of constant
control inputs is denoted u.k/. Samples are separated in time by the sampling period
Ts, and the following relationship holds:

t D kTs;

where the sample index k is a nonnegative integer. This situation corresponds to a
digital control implementation, where actuators are updated only at predetermined
instants and held constant at all other times. Similarly, sensors are read only at
prescribed instants of time. In most implementations, the rate at which sensors are
read and actuators updated is the sample rate, the reciprocal of the sampling period.
In a multirate implementation, sensor readouts may occur more frequently than
actuator updates, or individual sensors or actuators may be processed at different
rates. The action of holding sensor and actuators constant except at sampling instants
is termed a zero-order hold (ZOH) operation. Ideally, digital-to-analog (DAC) and
analog-to-digital (ADC) converters perform the ZOH operation when processing
actuators and sensors.

A ZOH equivalent model captures the dynamic relationship between x.k/ and
u.k/, given an underlying continuous-time process with state variable x.t/ and input
u.t/ D u.kTs/. When the continuous-time, n-th order process is given by the state-
space model

Px D Ax C Bu; (9.1)

y D Cx CDu; (9.2)

the ZOH equivalent has the following state-space form [80]:

x.k C 1/ D Adx.k/C Bdu.k/; (9.3)

y.k/ D Cx.k/CDu.k/; (9.4)

where matrices Ad and Bd are determined as follows:

Ad D eATs ; (9.5)

Bd D
Z Ts

0

eAsBds: (9.6)

Figure 9.1 illustrates the arrangement used in a digital control system and the
relationship between continuous and discrete-time signals. A comprehensive study
of discrete-time systems and digital controls requires considerable time, and lies
outside the scope of this book. Readers are referred to Franklin, Powell, and
Workman [81] or Åstrom and Wittenmark [80] for in-depth coverage.
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Fig. 9.1 Digitally controlled continuous-time plant

For the purposes of our introductory presentation of MPC, a discussion on
discrete-time stability and the calculation of Ad and Bd are sufficient. Consider
the following autonomous discrete-time system:

x.k C 1/ D Adx.k/:

This system is said to be stable if given any initial condition x.0/, the solution
satisfies jjx.k/jj ! 0 as k ! 1. That is, the solution sequences generated by
choosing arbitrary initial conditions must all converge to zero. Stability is equivalent
to the requirement that all eigenvalues of Ad have magnitudes less than 1. This
condition is also commonly expressed as the requirement that all eigenvalues of Ad
lie inside the unit circle of the complex plane.

Consider now the control system of (9.3). The concepts of stabilizability and
state feedback stabilization are entirely analogous to those studied in Sect. 4.2.2: the
system is said to be stabilizable if there exists a state feedback gain K such that
Ad � BdK has all its eigenvalues inside the unit circle. This matrix arises from
the state feedback control law u.k/ D �Kx.k/. A matrix K can be found that
places the n eigenvalues of Ad � BdK at any desired location if the pair .Ad ; Bd /
is controllable. The definition of controllability and its numerical rank test are the
same as for continuous-time systems.

The calculation of Ad and Bd given A, B , and a sample period Ts can be
accomplished by various methods. Once Ad has been obtained, Bd is directly
evaluated by performing the integration indicated in (9.6). Therefore, only the
calculation of Ad must be considered. This matrix is defined through the following
matrix exponential series

eX D I CX C 1

2Š
X2 C 1

3Š
X3 C :::;

whereX is a square matrix. The matrix exponential should not be confused with the
matrix resulting from taking the exponential of the individual entries. In Matlab,
the latter is calculated as eˆX, while the matrix exponential is calculated using
expm(X).
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One simple way to calculate eX applies to nilpotent matrices. A nilpotent matrix
has the property that Xq D 0 for some integer q � 2. In this case, the series
definition of eX has a finite number of nonzero terms and the computation can
be done directly. The Laplace formula of (9.7) may also be used when A has low
dimensions.

eAt D L�1f.sI �A/�1g (9.7)

For general matrices, the exponential is best calculated numerically, using a linear
algebra package such as Matlab. The Cayley–Hamilton theorem may also be used,
reducing the computation of eX to a system of linear equations, see, for instance,
Brogan [65].

For our purposes, the ability to obtain Ad and Bd numerically is sufficient. In
Matlab, this is accomplished the continuous-to-discrete conversion function c2d.
As an example, the following code obtains the ZOH equivalent of the CMAPSS-1
or -2 model matrices at FC01:

%Assuming that A and B are in the workspace
C=[1 0];
D=0; %C and D need to be specified: use fan speed as the output
sys_CT=ss(A,B,C,D); %create continuous-time system
Ts=1e-3; %choose a sample period
sys_DT=c2d(sys_CT,Ts,’zoh’); %convert to discrete-time using ZOH
[Ad,Bd,Cd,Dd]=ssdata(sys_DT); %extract matrices
%Note that Cd=C and Dd=D

The reader can verify that the eigenvalues of Ad are inside the unit circle. This
is expected since the system is stable in continuous-time and must remain so in
discrete-time. The selection of Ts must consider various factors:

1. The sampling frequency 1=Ts has to be large enough to capture continuous-time
dynamics with fidelity. As a rule of thumb, 1=Ts must be chosen to be at least ten
times larger than the highest frequency (pole) present in the plant model.

2. The sampling frequency 1=Ts has to be larger than the design bandwidth of the
closed-loop system.

3. Ts cannot be smaller than the minimum sample period afforded by the control
hardware, including DAC, ADC, and real-time processor.

Real-time propulsion control algorithms are implemented by the full-authority
digital engine controller (FADEC), a digital computer and associated electronic
hardware mounted on or near the engine. Readers are referred to Jaw and Mat-
tingly [14] for more information on FADEC and its predecessors.

The digital controller supplied with CMAPSS-40k, for instance, uses Ts D
0:015 s. The fastest plant pole is �4, found at ground idle conditions, as it can be
determined from the data of Appendix C. The sampling frequency of 66.7 Hz is
therefore more than ten times larger than the fastest dynamics of the plant (4 rad/s).
A 0.5-s settling time specification with 5% overshoot, for example, corresponds to a
closed-loop bandwidth of 11.6 rad/s, as calculated with the formulas of Sect. 3.1.3.
The sampling period of Ts D 0:015 s. is clearly adequate according to the above
guidelines.
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If a value for Ts has not been yet determined, it is still possible to find Ad and
Bd in terms of Ts by resorting to a symbolic computation package. This procedure
is adequate for small values of n. The following Matlab code assumes that the
Symbolic Math Toolbox is available.

%Assuming that A and B are in the workspace
syms Ts %declare symbolic variable Ts
Ad=expm(A*Ts); %calculate matrix exponential symbolically
vpa(Ad,3) %display results to 3 decimals
Bd=int(Ad*B,0,Ts); %integrate symbolically
vpa(Bd,3) %display results to 3 decimals

The reader may verify that substituting Ts D 0:001 into the symbolic expressions
for Ad and Bd yields the same results as the c2d function used earlier.

9.2 Optimal Receding Horizon Control

The linear quadratic control (LQR) approach presented in Sect. 4.4 used the cost
function of (4.14) as a measure of optimality. The upper integration limit is 1, so
that the long-term response of trajectories, as well as their transient behavior are
captured. Trajectories not converging to zero are thus disallowed, since they would
result in infinite cost. The use of infinity as upper integration limit corresponds to
an infinite-horizon optimization problem. The solution to the discrete-time optimal
linear quadratic control problem parallels the continuous-time case discussed in
Sect. 4.4. That is, the solution to the infinite-horizon LQR problem is given by the
linear state feedback law u.k/ D �Kx.k/, where the state feedback gainK is found
from a discrete-time algebraic Riccati equation.

In contrast, the finite-horizon linear quadratic optimal control problem uses a
finite time T as upper integration limit. In the general case, the solution is no longer
expressible as a feedback law, but rather as an optimal control function defined only
between 0 and T . The optimal control function is thus an explicit function of time, in
what constitutes an open-loop or feedforward control solution [82]. Finite horizons
are useful, for instance, when the system state must be transferred optimally between
two values in a given time, without regard to system behavior beyond the horizon.
Optimal spacecraft trajectories may be determined in this fashion. For example,
a satellite may be required to transfer to a lower orbit in a prescribed time and by
burning fuel in an optimal fashion. Thrusters are turned off once the satellite reaches
the lower, faster orbit and the optimization problem no longer applies.

In discrete-time systems, a finite-horizon quadratic cost function aimed at
optimal output tracking has the form

J D
iDnyX
iD1

e.k C i/T Qe.k C i/C
nu�1X
iD0

u.k C i/T Ru.k C i/; (9.8)
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Fig. 9.2 Receding-horizon control schematic

where r.k/ is the vector of reference inputs, e.k/ D r.k/ � y.k/ and Q and R
are positive-definite weighting matrices. The summation limits ny and nu are the
prediction horizon and the control horizon, respectively.

An optimal control sequence u�.k C i/; i D 0; 1; 2; :::nu � 1 is obtained by
minimizing J subject to the system dynamics of (9.3) and (9.4), and possibly
including input and output constraints. The unconstrained minimization case re-
duces to a discrete version of the algebraic Riccati equation (see Kirk, [82]), while
the constrained case requires an entirely numerical approach. If the engineering
problem under consideration truly involves a finite horizon (as in the satellite
example), u�.k/ is applied to the plant over the entire control horizon in an open-
loop fashion. In contrast, problems requiring continued feedback control action must
use either infinite horizons or a receding-horizon approach. In the latter case, a
subsequence u�.k C i/; i D 0; 1; 2:::n�

u is applied. Once the last element of the
subsequence has been applied, the optimization problem is solved again, leading to
a new optimal sequence, and the process is repeated indefinitely. Receding-horizon
control usually sets the subsequence length to 1, that is, only u�.k/ is applied to the
plant. Figure 9.2 illustrates the concept of receding horizon control. Of course, the
use of receding-horizon control is reasonable when the optimal solution sequences
are not the same each time the problem is solved. This is certainly the case when
considering constraints, since the optimal sequence will be strongly influenced by
the proximity of the state variables and control inputs to the constraint boundaries
at the time of optimization. As it occurs in the GTE problem, design plant matrices
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may also be changing in time (recall the LPV approach of Sect. 5.3.) The presence of
constraints and plant parameter variations is indeed the main reasons why receding
horizon control constitutes a valid choice for GTE control problems.

9.3 Prediction Equations

We begin our development of MPC laws by obtaining formulas to predict state
and output sequences over a horizon ny , starting from a state x.k/ and applying
a sequence of inputs u.k C i/, for i D 0; 1; 2:::nu � 1. Using the plant model of
(9.3) and (9.4) to perform iterated substitutions, we have:

x.k C 1/ D Adx.k/C Bdu.k/

x.k C 2/ D Adx.k C 1/CBdu.k C 1/ D A2dx.k/C AdBdu.k/C Bdu.k C 1/

x.k C 3/ D Adx.k C 2/CBdu.k C 2/ D A3dx.k/C A2dBdu.k/

CAdBdu.k C 1/C Bdu.k C 2/

::: D :::

x.k C ny/ D Anyx.k/CAny�1Bdu.k/CAny�2Bdu.kC1/C:::CBdu.kCny � 1/:

The sequence of outputs generated by (9.4) is likewise predicted as follows:

y.k C 1/ D Cx.k C 1/ D CAdx.k/C CBdu.k/CDu.k C 1/

y.kC2/ D Cx.kC2/ D CA2dx.k/CCAdBdu.k/CCBdu.kC1/CDu.kC2/
y.k C 3/ D Cx.k C 3/ D CA3dx.k/C CA2dBdu.k/C CAdBdu.k C 1/

C CBdu.k C 2/CDu.k C 3/

::: D :::

y.k C ny/ D CAnyx.k/C CAny�1Bdu.k/C CAny�2Bdu.k C 1/

C :::C CBdu.k C ny � 1/CDu.k C ny/:
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Note that the above formulas assume nu D ny . In matrix form, the prediction
equations reduce to

Ox D Pxxx.k/CHx Ou; (9.9)

Oy D Px.k/CH Ou: (9.10)

Here, the circumflex notation over x, y, and u is used to denote “prediction” (Ou will
be the outcome of an optimization calculation, yet it is still customary to refer to
it as the “predicted” control input sequence). Matrices Pxx , P , Hx , and H are as
follows:

Pxx D

2
6664
Ad

A2d
:::

A
ny
d

3
7775 P D

2
6664
CAd

CA2d
:::

CA
ny
d

3
7775 ; (9.11)

Hx D

2
6664
Bd 0 0 :::

AdBd Bd 0 :::
:::

:::
:::

:::

A
ny
d Bd A

ny�2
d Bd A

ny�3
d Bd :::

3
7775 ; (9.12)

H D

2
6664
CBd D 0 :::

CAdBd CBd D :::
:::

:::
:::

:::

CA
ny
d Bd CA

ny�2
d Bd CA

ny�3
d Bd :::

3
7775 : (9.13)

The above prediction formulas are valid for the MIMO case. When the plant output
y is a p-by-1 vector and the control input is an m-by-1 vector, P has dimensions
pny-by-n andH has dimensions pny-by-mny. The input sequence is organized by
stacking the m-by-1 vectors Ou.k C i/ vertically, beginning with i D 0. The same
arrangement is used for Oy.

9.4 Incremental MPC Formulation: Unconstrained Case

The benefits of integral control action can be incorporated into the MPC formulation
by a discrete version of state augmentation. The control update equation analogous
to continuous-time integration is:

u.k C 1/ D u.k/C�u.k/: (9.14)



212 9 Engine Limit Management with Model Predictive Control

The new control input is �u.k/, and the augmented plant model becomes:

"
x.k C 1/

u.k/

#
D
"
Ad Bd

0 I

#"
x.k/

u.k � 1/

#
C
"
Bd

I

#
�u.k/;

y.k/ D ŒC D�

"
x.k/

u.k � 1/

#
CD�u.k/:

Denoting the augmented state vector as xTa .k/ D ŒxT .k/ uT .k�1/�, the augmented
model can be compactly represented by:

xa.k C 1/ D Adaxa.k/C Bda�u.k/; (9.15)

y.k/ D Cdaxa.k/CD�u.k/; (9.16)

where the definition of matrices Ada, Bda , and Cda is evident. Note that prediction
equations (9.9) and (9.10) are directly applicable to the augmented model, using
Ada; Bda; Cda, and Dd as plant matrices.

Next, consider a simplified version of cost function (9.8) as follows:

J D
iDnyX
iD1

e.k C i/T e.k C i/C �

nu�1X
iD0

�u.k C i/T�u.k C i/: (9.17)

Here a lumped scalar weight � is used, and �u.k C i/ for i D 0; 1; ::nu � 1 are
the variables with respect to which optimization is to be carried out. The subsequent
development assumes that ny exceeds nu by at least one, that is, ny � nu C 1.
MatrixH in (9.13) was defined using nu D ny , however. A modifiedH is obtained
by assuming that �u.k C i/ D 0 for i � nu, implying that control increments are
zero between control and prediction horizons. This is equivalent to retaining only
the first nu block-columns ofH (that is, the firstmnu columns ofH ) in (9.13) when
calculating predicted outputs.

The predicted sequence e.kC i/ for i D 0; 1; 2:::ny can be expressed in terms of
the current state and predicted control sequence by using the definition of the error
and the prediction equations. Indeed, using Oy.kC i/ D Pxa.k/CH�u.k/, the first
summation in (9.17) becomes

iDnyX
iD1

e.k C i/T e.k C i/ D Œr � Pxa.k/ �H�Ou�T Œr � Pxa.k/ �H�Ou� ; (9.18)
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where�Ou and the reference sequence r are organized as follows:

�Ou D

2
666666666666666666666666666666664

�Ou1.k/
�Ou2.k/
:::

�Oum.k/

)
�Ou.k/

�Ou1.k C 1/

�Ou2.k C 1/
:::

�Oum.k C 1/

)
�Ou.k C 1/;

:::

�Ou1.k C nu � 1/
�Ou2.k C nu � 1/
:::

�Oum.k C nu � 1/

)
�Ou.k C nu � 1/

3
777777777777777777777777777777775

; (9.19)

�r D

2
666666666666666666666666666666664

r1.k/

r2.k/
:::

rp.k/

)
r.k/

r1.k C 1/

r2.k C 1/
:::

rp.k C 1/

)
�r.k C 1/

:::

r1.k C ny � 1/
r2.k C ny � 1/
:::

rp.k C ny � 1/

)
�r.k C ny � 1/

3
777777777777777777777777777777775

: (9.20)
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The second summation in (9.17) is equivalent to �.�Ou/T�Ou. Expanding (9.18) and
combining gives:

J D �T OuŒHTH C �I ��Ou C 2


xTa P

TH � rTH ��Ou C J0;

where J0 contains terms that are independent of�Ou. In unconstrained minimization,
the minimizing argument is unaffected by the constant term J0. The optimization
problem can then be formulated as follows:

minimize over�Ou:

J 0 D .�Ou/T 
HTH C �I
�
�Ou C 2



xTa P

TH � rTH ��Ou:
The above objective function is quadratic, with HTH C �I being symmetric

and positive-definite. Therefore, it possesses a global minimum that can be found
by equating the gradient to zero. The solution for the optimal sequence starting at
time k is

�Ou D .HTH C �I/�1HT .r � Pxa.k//: (9.21)

Only the first element of this sequence is to be applied to the plant. Thus, the MPC
input has the form

u.k/ D Prr �Kxa;
where Pr is an m-by-pny matrix resulting from extracting the first m rows of
.HTH C �I/�1HT , and K is an m-by-n matrix resulting from extracting the first
m rows of .HTH C �I/�1HTP .

Clearly, unconstrained MPC reduces to a state feedback law with reference
prefilter, with constant gains.

9.4.1 Example

Consider the following arbitrary system matrices:

Ad D
2
4 0 1 3

1 1 0

�1 0 2

3
5 ; Bd D

2
4 1 2

2 0

0 �1

3
5 :

Suppose two outputs are defined as

y D Cdx D
�
1 0 0

0 1 �1
�
:

Here, n D 3, m D 2 and p D 2. As an example, take ny D 3 and nu D 2.
Matrices H and P , as well as the equivalent feedback gain and prefilter gain are
readily computed using the following iterative Matlab code:
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%Plant matrices
Ad = [0 1 3;1 1 0;-1 0 2];Bd = [1 2;2 0;0 -1];
C = [1 0 0;0 1 -1];D = [0 0;0 0];
n=size(Ad,1); %state dimension
m=size(Bd,2); %input dimension
p=size(C,1); %output dimension
%Horizons
ny=3;nu=2;
%Compute P
P=C*Ad;
for i=1:ny-1,

P=[P;C*Adˆ(i+1)];
end
%Compute H
H=zeros(p*ny,m*nu);
for i=1:ny,

for j=1:i,
H(1+(i-1)*p:i*p,1+(j-1)*m:j*m)=C*Adˆ(i-j)*Bd;

end
H(1+(i-1)*p:i*p,j*m+1:(j+1)*m)=D;

end
%Retain only the first nu blocks
H=H(:,1:nu*m);
%Extract prefilter and state feedback gain
lambda=2; %example
Pr=inv(H’*H+lambda*eye(m*nu))*H’;
Pr=Pr(1:m,:);
K=inv(H’*H+lambda*eye(m*nu))*H’*P;
K=K(1:m,:);

The reader can check that the eigenvalues of Ad � BdK are 0:0772 ˙ 0:1146i

and 0.224, located within the unit circle. The above code can be used to experiment
with the effects of nu and ny on the closed-loop pole locations.

Although unconstrained MPC and state feedback with prefilter have similar laws,
their implementations are slightly different. In state feedback, r.k/ is multiplied
by the prefilter gain at each sampling instant. In MPC, r is a vector of predicted
references, and its value must be available over the prediction horizon. The
dimensions of Pr are m-by-pny, while the reference prefilter gain used in linear
state feedback has dimensionsm-by-p.

Except for the possibility of tracking changes in the reference inputs by means
of prediction, there is little reason to use unconstrained MPC. There is no clear
relationship between ny and np and the resulting closed-loop pole locations, making
other linear approaches preferable. The advantages of MPC become evident only
when constraints are contemplated, as developed in the following section.

9.5 Incremental MPC Formulation: Constrained Case

Suppose now that the control input and a set of outputs are required to remain within
prescribed limits at all times. The cost function to be minimized is given by (9.17).



216 9 Engine Limit Management with Model Predictive Control

Because the objective function is quadratic, the minimizing argument is independent
of the constant J0, even in the constrained case. Thus, the optimization problem
takes the form

minimize over�Ou

J 0 D .�Ou/T ŒHTH C �I ��Ou C 2ŒxTa P
TH � rT H��Ou

subject to

U � u.k C i/ � U for i D 0; 1:::nu � 1 (input constraints)

Y � y.k C i/ � Y for i D 1:::ny (output constraints):

Here, U , U , Y , and Y are vectors containing the bounds for the individual input
and output channels. Input and output constraints must be expressed in terms of the
optimization degrees of freedom�Ou before a numerical solution to the problem can
be programmed. Since u.k C i/ D u.k � 1C i/C�u.k C i/, the input constraint
for i D 0 becomes:

U � u.k � 1/ � �u.k/ � U � u.k � 1/:

Advancing k by one step gives:

U � u.k/ � �u.k C 1/ � U � u.k/:

Replacing u.k/ with u.k � 1/C�u.k/ and re-arranging yields:

U � u.k � 1/ � �u.k C 1/C�u.k/ � U � u.k � 1/:

Advancing k by one step once more and performing the same substitution for u.k/
gives:

U � u.k � 1/ � �u.k C 3/C�u.k C 2/C�u.k C 1/ � U � u.k � 1/:

A clear pattern arises, allowing us to write the entire set of input constraints in matrix
form as follows:

2
666664

I 0 0 :::

I I 0 :::

:::
:::

:::
:::

I I I ::::

3
777775

2
666664

�u.k/

�u.k C 1/

:::

�u.k C nu � 1/

3
777775

�

2
666664

I

I

:::

I

3
777775
.U � u.k � 1//
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and

�

2
666664

I 0 0 :::

I I 0 :::

:::
:::

:::
:::

I I I ::::

3
777775

2
666664

�u.k/

�u.k C 1/

:::

�u.k C nu � 1/

3
777775

� �

2
666664

I

I

:::

I

3
777775
.U � u.k � 1//:

Introduce the following definitions:

Cc D

2
666664

I 0 0 :::

I I 0 :::

:::
:::

:::
:::

I I I ::::

3
777775
; L D

2
666664

I

I

:::

I

3
777775
: (9.22)

The complete set of input constraints can now be compactly represented as:

Cc�Ou � Ndu.k/; (9.23)

�Cc�Ou � d u.k/; (9.24)

where Ndu.k/ D L.U � u.k � 1// and d u.k/ D �L.U � u.k � 1//.
A reasonable approach to output constraint handling is the requirement that

predicted outputs satisfy the constraints over the prediction horizon. Using Oy.k/ D
Pxa.k/CH�u.k/, output constraints reduce to:

H�Ou � Ndy.k/; (9.25)

�H�Ou � dy.k/; (9.26)

where vectors Ndy.k/ and dy.k/ are defined as

Ndy.k/ D

2
666664

Y

Y

:::

Y

3
777775

� Pxa.k/; dy.k/ D �

2
666664

Y

Y

:::

Y

3
777775

C Pxa.k/: (9.27)

The bound vectors in the above equations contain ny blocks Y or Y , each one having
dimensions p-by-1. Input and output constraints can now be combined in a single
inequality on�Ou, resulting in the following optimization problem:
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minimize over�Ou

J 0 D .�Ou/T ŒHTH C �I ��Ou C 2ŒxTa P
TH � rT H��Ou

subject to

M�Ou � d.k/;

whereM and d.k/ are defined as

M D

2
6664

Cc

�Cc
H

�H

3
7775 ; d D

2
6664

Ndy.k/
dy.k/

Ndu.k/

d u.k/

3
7775 : (9.28)

This constrained optimization problem constitutes a quadratic program, for which
efficient numerical solution routines exist. In Matlab (Optimization Toolbox), the
quadprog routine is available to handle this optimization. Note that the constraint
definition involves a constant matrix M and a variable vector d.k/. The latter must
be recomputed at each sampling instant. Note also that selected components of M
and d may be omitted to reflect the absence of certain constraints.

9.6 Example: Linearized CMAPSS-40k Plant at Ground Idle

An example is now presented that illustrates the preparatory steps required to apply
MPC to the GTE problem, followed by a linearized discrete-time simulation entirely
programmed in a Matlab script included in Appendix D. The objective is to produce
a fast change in fan speed while maintaining fuel flow, VSV, and VBV within
acceptable bounds. In addition, two outputs, namely T48 and SmHPC are to be kept
between allowable limits.

Matrices A and B corresponding to ground idle conditions are given in
Appendix C. Output matrices for�T48 and� SmHPC are also listed. This example
uses ny D 7 and nu D 3. Since the linearized model is incremental, the bounds on
inputs and outputs are given accordingly.

In practical situations such as the one represented in this example, the controlled
variables may not be subject to constraints, and the constrained outputs may not
need to be controlled. In this example, three actuators are used to control a single
output, namely fan speed. Two other variables, namely HPT outlet temperature
and HPC stall margin are considered as constrained outputs. This implies that
different sets of H and P matrices must be used, according to whether an output
is controlled or constrained. The code listed in Appendix D illustrates how a mixed
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Fig. 9.3 Output Response of CMAPSS-40k engine linearized near ground idle: model predictive
control with large control weighting

set of constraint handling and tracking requirements is incorporated into the MPC
formulation.

Figures 9.3 and 9.4 show the input and output trajectories with � D 1� 105. Due
to the high value of control weighting, the actuators do not attain their maximum
allowable values and the settling time required to attain a setpoint for �Nf of
100 rpm is roughly 1 s. An overshoot of 22% is obtained. A second simulation using
� D 0:01 shows that the tradeoff between response speed and control effort can
easily be manipulated with a single tuning parameter. Indeed, Figs. 9.5 and 9.6 show
that the settling time is significantly reduced, while the overshoot becomes zero.
This is achieved through periods of maximal control effort in WF and VSV. Note
that the large shaft accelerations observed in Fig. 9.5 are possible only in idealized,
linear simulations. The weighting parameter � must be in the order of magnitude
of 1 � 105 for a nonlinear CMPASS simulation to be feasible, as shown in the next
example.

9.7 Example: Nonlinear Engine Simulation: CMAPSS-40k

Deployment of MPC to a high-fidelity simulator may be done at various levels of
sophistication and complexity. For instance, the engine may be linearized numeri-
cally at every simulation step, as an effective way of dealing with plant parameter
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Fig. 9.6 Control inputs of CMAPSS-40k engine linearized near ground idle: model predictive
control with small control weighting

changes. Alternatively, the LPV decomposition of Sect. 5.3 could be used to reduce
the computational load. In this example, a fixed plant model is used throughout
simulation. Offsets in the regulated and constrained outputs are expected, since
predictions are based on an approximate model. The objectives are the same as in the
previous linearized example: control fan speed while maintaining T48 and SmHPC
within the following bounds: �150ıR��T48 � 300ıR and �10% ��SmHPC
� 20%. Bounds are also specified for the three control inputs as follows: 0:05 pps
� WF � 5 pps, �50ı � VSV � �6ı, and 0:01� VBV � 1 (measured as a fraction
of fully-open). A fan speed increment demand of 500 rpm was used throughout the
example.

Very little tuning iterations are required to obtain acceptable responses. The
designer adjusts only� and the control and prediction horizons. Figure 9.7 shows the
effect of changing ny for fixed values of nu and �. It is observed that performance
improvement is initially obtained by increasing ny , but further changes have no
effect beyond ny D 10. Similarly, the effect of changing nu for fixed values of
ny and � is shown in Fig. 9.8. Again, responses improve as nu is increased, but no
detectable improvement occurs beyond nu D 3. Although the threshold values of
ny and nu are tailored to this example, the qualitative behavior is typical of MPC.
In other words, the optimal trajectories quickly converge to the infinite-horizon
solutions.

Changes in � have a strong influence on the simulation outcome. Low values
tend to produce faster responses with actuator saturation, and very high values may
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Fig. 9.9 Shaft speed responses: MPC in CMAPSS-40k

penalize control activity excessively, resulting in poor transient response. A value
of � D 1 � 106 was selected by trial-and-error for the remaining simulations, along
with ny D 10 and nu D 3. Figure 9.9 shows the responses of fan and core speeds.
The settling time for fan speed is near 3 s, and there is a noticeable offset from
the incremental requirement of 500 rpm. Since constrained output prediction relies
on the C and D matrices of the linearized model, significant deviations between
actual and predicted outputs occur. Because of this, if the intended output bounds
are used directly in the MPC calculations, output constraint violations are observed
in this example. The bounds may be made more conservative in an effort to satisfy
output constraints in real-time operation or realistic simulations. In this example, the
incremental upper output bounds were taken as 150ıR and 10% forT48 and SmHPC,
respectively. The incremental lower output bounds were taken as �75ıR and �5%.
Figure 9.10 shows that T48 and SmHPC remain within their originally intended
incremental bounds. Figure 9.11 shows the optimal control input trajectories.
Only VBV reaches its bound (0.1%), due to the high control penalty used in this
design.

Efficient ways are available to refine predictions by adding a generalized
disturbance term to the prediction equations. State estimation techniques can be
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used to generate online estimates of the generalized disturbance; see, for instance,
Camacho [78] and Rossiter [79]. In the GTE problem, correcting terms must
be generated by means of the engine steady map, which introduces additional
complexity in the MPC law. One significant advantage of MPC is that it exploits
the availability of three actuators to achieve control of a single relevant variable,
namely fan speed, without the “square plant” limitations frequently found in
traditional linear MIMO control. In the unconstrained case, a single control input
(fuel flow) suffices to control a single output. When constraints are contemplated,
the extra degrees of freedom in control input improve the feasibility of achieving
the simultaneous regulation and limit protection tasks.

9.8 Addressing Computational Burden

Prior to the 1990s, MPC applications were confined to “slow” systems such
as oil refining and other chemical processes, due to the large amount of time
required to perform numerical optimizations. Currently, due to rapid progress
in developing fast and cheap computing power, MPC is being considered as a
serious candidate for faster processes such as mechanical systems and aircraft
engine controls. Theoretical MPC research in the 2000s was directed at complexity
reduction by piecewise implementation [83], multiplexed schemes [76, 84–86], and
hybrid approaches that can optimize over logical or integer variables. For a survey
containing industrial applications, see [87].

The availability of fast and cheap real-time processing has motivated work on
MPC applied to aircraft engines [74–76, 88]. However, the FADEC on-board pro-
cessors used in GTE control systems are still not powerful enough to accommodate
the execution of the complex algorithm in real time. In the following sections,
a brief overview is offered on MPC variants specifically designed to reduce the
computational cost.

9.8.1 Explicit MPC Implementations

In an explicit MPC implementation, the solution of the optimization problem
inherent to predictive control is performed offline. The solution consists in the
computation of regions of the state space and corresponding control gains to be used
in the actual real-time implementation. An explicit MPC implementation is essen-
tially a multidimensional look-up table for the control gain. This approach requires
that the plant model and objective function be reducible to a multiparametric (mp)
programming problem. That is, the optimization problem should have the initial
state appearing as a parameter in a linear fashion. The paper by Bemporad, Borrelli,
and Morari [89] develops a performance criterion based on the sum of either the 1
norm or 1-norm of the input command and the deviation of the state from its desired



226 9 Engine Limit Management with Model Predictive Control

value. By taking the 1 norm over space and the 1-norm over time, it is possible to
reduce the problem to an mp case. The solution offered by using the mixed 1=1
norm is attractive for relatively small linear MPC problems. This method saves
computing time by offering precomputed solutions at each time step. In the case of
large plants, using this approach would impose high demands in memory because
of the high-number of state variables. In addition, the explicit implementation is not
well suited to plants exhibiting high variability, and the possibility of reducing the
problem to multiparametric programming is difficult to establish.

9.8.1.1 1-Norm Criterion with End Condition

Dynamic matrix control (DMC) involves a system description in terms of step
response parameters. This description is used in a receding-horizon optimization to
generate a sequence of controls that minimizes the deviations between the actual and
desired step responses. DMC is traditionally used in conjunction with a quadratic
objective function (QDMC). As seen in [90], an objective function based on the
1-norm can be used along with an end condition. This approach is computationally
less intensive than QDMC. By introducing an end-condition in the performance
index, it is possible to obtain a stable and high performance control system even
when using input/output constraints and short prediction horizons. The control law
is calculated by solving an online linear program, which is less complex than a
quadratic one.

9.8.1.2 Mixed-Norm Approaches

A cost function is introduced in [91] that allows the formulation of a robustly stable
MPC problem solvable by a linear program. Using a 1/ 1 norm performance index
for this cost allows precomputation of the solution, so that the linear program does
not have to be solved online. The objective of predictive control is to compute the
future control sequence u.k/; u.kC1/; ::::; u.kCNu/ in such a way that the optimal
j step-ahead prediction y.k C j jk/ are driven close to r.k C j / for the prediction
horizon. The above approaches focus on changing the objective function so that the
optimization problem becomes linear. In some cases, this allows part or all of the
optimization process to be moved offline.

9.8.2 Multiplexed Control

A multiplexed control implementation denotes an arrangement in which a group of
actuators is updated sequentially and cyclically, as opposed to simultaneously. In
this technique, only a group of actuators are updated every sampling instant keeping
all other actuators held at their previous values. The group of actuators being
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updated is given by a predetermined schedule. A multiplexing schedule specifies the
instants at which each actuator is commanded to the value dictated by the control
law. Multiplexed control has been contemplated as an effective way to reduce the
complexity of MPC [76, 84–86].

Application of multiplexing to receding-horizon strategies is straightforward.
At each time step, a constrained MPC problem of reduced dimension is solved,
corresponding to a subset of all available actuators. Only the first value of the
calculated control sequence is applied, while the remaining actuators are kept
at their previous values. The problem is solved again at subsequent time steps,
but using the appropriate subset of actuators. In [85], two related algorithms are
presented, assuming full state information. In one of the schemes, all actuators are
optimized at once, but under the constraint that their increment will be nonzero
only everym time steps, wherem is the number of actuators. This scheme does not
reduce the dimensionality of the constrained optimization routine, so it is of little
advantage in terms of computational efficiency. In the second scheme, only one
actuator at a time is optimized. Information about the previously predicted values
of the other actuators is included in the optimization. The approach amounts to
treating the nonoptimized actuators as known disturbances. The predicted values
of the actuators will never be realized, however, due to the receding nature of the
control algorithm.

Multiplexing is an effective way to reduce the complexity (i.e., dimensionality)
of MPC calculations. At sampling instant k, linearization and discretization are
performed to derive a single-input linear model, where the input is selected from
among the set of all actuators according to a predefined, cyclic schedule. All other
inputs are assumed constant and equal to the values they had at sampling instant
k � 1. The single-input linear model is used in the MPC optimization of Sect. 9.5,
resulting in an optimal move sequence for the selected input. The first element
of the sequence is applied to the corresponding plant actuator, while the other
actuator commands are held at their previous values. The operation is repeated at
the following sampling instants for the remaining inputs one by one and according
to the schedule, completing what will be termed an update cycle. Update cycles
are repeated indefinitely, until the control system is stopped. The update cycle is
illustrated in Fig. 9.12. Note that the effective sample rate has been reduced to the
original one divided by the number of actuators. However, the rate at which some
actuator is being updated is the same as the original. The computational advantage
of the multiplexed implementation lies in that all QP routines are now performed
over just one degree of freedom. It is a well-established fact that the time required
to solve a QP problem grows with the cube of the number of inputs [92], while the
sample rate reduction is only linear in the number of inputs. Therefore, the time
savings earned by multiplexing may even allow to increase the original sample rate
to help recover any lost performance due to slower sampling. This is especially
true for the disturbance rejection properties (a faster rate helps reduce the effects of
disturbance in the intersample). This possibility is heavily dependent on the problem
at hand, since the other computational costs need to be taken into account.
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Fig. 9.12 Multiplexed control updates

A study conducted by the author [76] demonstrated the feasibility of using mul-
tiplexed MPC to control a large commercial turbofan engine. Dramatic computation
time savings were achieved without significant performance losses.

The main concern in a multiplexed MPC implementation is stability. The closely
related periodic estimation problem has been analyzed by DeNicolao [93]. The
concept is to seek conditions under which a periodic extension of the first few values
of the optimal gain sequence can be stabilizing when used as periodic feedback.
These conditions are obtained by considering the cyclomonotonicity properties
of the discrete periodic Riccati equation (DPRE). In [94], a similar problem is
considered and sufficient conditions for stability are derived. The reader interested
in MPC stability results in a broad sense is referred to Sect. 7.8 in Camacho [78]
as a starting point. A rigorous study of MPC stability for nonlinear systems was
pioneered by Mayne and co-workers [95–97].



Afterword

A comparison among the various approaches to control seems in order. A recurrent
problem associated with state-based feedback implementations is the need to
provide accurate state references. Steady references must be obtained by evaluation
of the nonlinear engine’s steady map. Time-varying references require a reference
trajectory generator such as the one used in SM control. Reference state generation
by means of a linearized model is largely inadequate, however, and nonlinear ref-
erence models reflecting engine dynamics are prohibitively complex. Besides, such
a model cannot capture the effects of uncertain inputs. The beneficial robustness
properties of SM control are then less effective, since states are being controlled
toward values that do not result in the desired output setpoints.

The sliding mode approaches presented in this book use constant gains. Despite
its robustness properties, a constant-gain SM controller cannot be expected to
deliver the same transient response qualities across the whole flight envelope. In this
respect, the standard gain-scheduled SISO fan speed regulator can outperform a SM
controller. When engine limits are considered, however, sliding modes introduce
significant advantages over linear regulation, regardless of whether constant or
scheduled gains are used. Using scheduled, or even better, adaptive gains in
conjunction with SM regulators in a max–min architecture is a promising possibility.
SISO versions of SM control for second-order systems are available, which require
references for the output only, not for the states. Moreover, adaptive versions have
been developed. Preliminary work by the author and his graduate students suggest
that adaptive SM control in combination with the max–min architecture represents
a marked improvement over the standard approach to engine control: robust output
regulation and limit management are achieved with low-complexity controllers,
without the need for scheduling tables.

In regards to engine limit protection, MPC is as effective as the max–min
arrangement with SM regulators, provided the quadratic program remains feasible
and its computation can be completed in a timely manner. Computational burden
has so far prevented MPC from being deployed to FADEC systems.

H. Richter, Advanced Control of Turbofan Engines, DOI 10.1007/978-1-4614-1171-0,
© Springer Science+Business Media, LLC 2012
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Advances in adaptive control are being made to introduce robustness properties
and fast adaptation rates. Application of these novel theories to the GTE control
problem have shown encouraging results [98, 99].



Appendix A
Time-Optimal Control of Fan Speed

Classical optimal control can be used to derive insight into the theoretical limits of
response speed. The minimum-time problem, also known as time-optimal control
problem, although not directly implementable in the nonlinear engine, provides
valuable information regarding the theoretical limits of engine response speed as
a function of constraints in input variables. In this section, the controller yielding
the minimum transfer time to a steady operating condition is developed, assuming
that upper and lower limits are placed in the fuel flow.

The linearized engine model with fuel flow input and fan speed output has a
constant structure across flight conditions, namely a transfer function with one real
zero and two poles:

�Nf .s/

�WF .s/
D k.s C a/

.s C p1/.s C p2/
(A.1)

where �Nf and �WF represent the deviations in fan speed and fuel flow from the
steady point at which linearization was performed. The values of k, a, p1 and p2
vary according to flight condition. The following analysis assumes that p1 and p2
are real. This assumption is satisfied by the linearized models arising from all 14
flight conditions in CMAPSS-1, and for most flight conditions in CMAPSS-40k.

Due to the relatively simple form of transfer function (A.1), the derivation of
the time-optimal law is possible by analytical means. As it has been well estab-
lished [82], the optimal control strategy to minimize the transition time between two
states under bounded control is a bang-bang law. That is, either the maximum or the
minimum control is used, the transitions being dictated by the current location of
the state relative to a switching surface. Theory shows that the maximum number of
switchings between minimum and maximum control equals the order of the system
minus one, provided the system is linear and time-invariant. Therefore, at most one
switching is used in the time-optimal law for transfer function (A.1). The switching
surface is given by a curve in the plane of the states.

H. Richter, Advanced Control of Turbofan Engines, DOI 10.1007/978-1-4614-1171-0,
© Springer Science+Business Media, LLC 2012
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A.1 Time-Optimal Regulator

The time-optimal regulator is designed to transfer the state from an arbitrary initial
condition to the origin. Its construction is a necessary step in obtaining the time-
optimal setpoint tracker. Let u denote the input, i.e., U.s/ D WF .s/. Suppose that
fuel flow is bounded by maximum and minimum values as follows:

Umin � u � Umax

Suppose that the initial state is given by x0. The switching curve is given by the set
of points x0 which result in the system reaching the origin in some time t under
constant control. The switching curve, thus, has two branches, one corresponding to
u D Umin and the other corresponding to u D Umax.

The switching curve may be constructed by several methods. For very simple
systems, the state equations are solved analytically for constant input. Time is then
eliminated from the equations and the resulting locus forced to pass through the
origin.

When time cannot be eliminated from the state solutions due to algebraic
complexity, a numerical routine may be written to obtain the desired locus. Explicit
state solutions for constant control are still required.

As a third alternative, time may be eliminated from the state equations before
solving them. An ordinary linear differential equation is then solved to give the
desired switching curve.

In this section, the last two methods were used. An observable canonical
realization of (A.1) is given by the following state-space matrices:

A D
� �.p1 C p2/ 1

�p1p2 0

�
; B D

�
k

ka

�
(A.2)

State x1 in this realization equals the output �Nf . Note that the second state is not
equal to the acceleration.

The general solution of a linear state-space system is given by

x.t/ D eAtx0 C
Z t

0

eA�Bu.t � �/d� (A.3)

The matrix exponential, known as transition matrix .t/ D eAt, may be obtained
by a variety of methods, as discussed in Sect. 9.1. The Laplace formula in (9.7) was
used in this case. Performing the indicated operations the transition matrix is found
to be

.t/ D
"� p1

p2�p1 e�p1t � p2
p1�p2 e�p2t 1

p2�p1 e�p1t C 1
p1�p2 e�p2t

� p1p2
p2�p1 e�p1t � p1p2

p1�p2 e�p2t p2
p2�p1 e�p1t C p1

p1�p2 e�p2t

#
(A.4)
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The integration indicated in (A.3) is carried out using u.t/ D U , where U is some
constant. Calling R.t; U / D R t

0
eA�BU d� , we get

R1.t; U / D kU..e�p1t � 1/.1 � a=p1/C .e�p2t � 1/.a=p2 � 1//=.p2 � p1/

R2.t; U / D kU..e�p1t � 1/p2.1 � a=p1/C .e�p2t � 1/p1.a=p2 � 1//=.p2 � p1/

The solution to the state equations under constant input can then be rewritten as

x.t/ D .t/x0 CR.t; U /

To obtain the switching curve numerically, simply assign values to t and solve

0 D .t/x0 CR.t; U /

for x0, using the two constant values for U . Note that the above equation is linear
in x0 and that .t/ is invertible provided there are no poles at the origin. Also
note that time may not be eliminated from (A.3). However, an implicit, closed-
form, equation for the switching curve may be obtained by integration of the state
differential equations. This form is preferable for control implementation purposes.
The state equations of the linearized model in observable canonical form are:

Px1 D �.p1 C p2/x1 C x2 C ku (A.5)

Px2 D �p1p2x1 C aku (A.6)

Time may be formally eliminated by using the chain rule to write

dx2
dx1

D �p1p2x1 C aku

�.p1 C p2/x1 C x2 C ku
(A.7)

Equation (A.7) can be solved for constant u. The process is lengthy, as it entails three
transformations and several indefinite integrations. The solution technique used in
this work can be found in [100]. The implicit solution is given by

s.x1; x2/ D ln jz1j � lnC C 1

p1 � p2

�
�
.p1 C p2/ ln

ˇ̌
ˇ̌ z � p1
z � p2

ˇ̌
ˇ̌ � p1 ln jz � p1j C p2 ln jz � p2j

�
D 0

(A.8)

where z1 D x1 � ˛, z D x2�ˇ
z1

, with ˛ D aku=.p1p2/ and ˇ D ku..p1 C p2/a �
p1p2/=.p1p2/. The values of C are obtained by setting x1 D 0 and x2 D 0 with
each value of control bound. The switching curve is then defined as s.x1; x2/ D 0.
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A.2 Example

To illustrate on the shape of the switching curve, consider the linearized model
obtained at sea level, standard day, and zero Mach number, with TRA=80 degrees.
Nominal fan speed at those conditions is 2,224 rpm, corresponding to a steady
fuel flow of 5.511 pps. These conditions are labeled as FC10 in [2] and Table 2.3.
Figure A.1 shows the calculated switching curve. Suppose the initial state is x0 D
Œ100 0�T. Since the state of the linearized model is incremental, this implies that
the initial fan speed is 2224C 100 rpm. The switching curve and sample trajectory
were obtained using a value of Umax D �Umin D 5. The upper-right branch of the
switching curve is the locus of the points from which the origin is reached using
u D Umin, while the lower-right branch corresponds to u D Umax. Minimum control
is selected at the initial time, which brings the state to the switching curve at point
Œ�126:2 � 1352�T, at t D 0:126. Upon reaching the switching curve, the control is
switched to the maximum value, which is held constant until the state reaches the
origin. The total time for the maneuver is approximately 0.24 s.
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Fig. A.1 Switching curve and sample optimal trajectory
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A.3 Minimum-Time Setpoint Tracker

The above regulator is able to transfer the system from any initial state to the
origin. We are interested in the transfer from any initial state to an arbitrary steady
point. Suppose the target setpoint is defined by states Nx1 and Nx2. Define the setpoint
tracking errors as

e1 D Nx1 � x1 (A.9)

e2 D Nx2 � x2 (A.10)

If the Œ Nx1 Nx2�T defines a steady (equilibrium) point, then the following relations
obtained from (A.5) and (A.6) must hold:

u0 D p1p2 Nx1
ak

(A.11)

x2 D ku0

�
.p1 C p2/a

p1p2
� 1

�
(A.12)

where u0 is the required steady input. Using the definitions and the above steady
relationships, the tracking error dynamics become

Pe1 D �.p1 C p2/e1 C e2 C k Qu (A.13)

Pe2 D �p1p2e1 C ak Qu (A.14)

where Qu D u0 � u. That is, when the desired setpoint is an equilibrium point, the
tracking error dynamics coincide with those of the plant and the switching curve
derivations are valid relative to Qu. Therefore, the time-optimal control for setpoint
tracking in terms of Qu is given by

Qu D

8̂
<̂
ˆ̂:

u0 � Qumax; .e2 � 0 and s.e1; e2; Qumin/< 0/ or .e2 < 0 and s.e1; e2; Qumin/ > 0/

u0 � Qumin; .e2 � 0 and s.e1; e2; Qumin/> 0/ or .e2 < 0 and s.e1; e2; Qumin/ < 0/

0; e1 D 0 and e2 D 0

(A.15)

At implementation time, zero control is used within a small neighborhood of the
origin. Since u D u0 � Qu, the values of Qumin and Qumax are readily calculated so that u
effectively attains its maximum and minimum values during implementation.

It is important to note that umax must be chosen to be equal or larger than the
steady input required to maintain the desired steady output, that is umax � u0
when u0 > 0, and, similarly, umin � u0 when u0 < 0. The time-optimal solution
approaches an open-loop step response as the control bounds approach the required
steady values.
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A.4 Example: Setpoint Tracking

For comparison purposes, the speed transfer corresponding to an increment of 5ı
in TRA discussed in [69] is simulated under time-optimal control. Unlike [69], no
integrator is placed in front of the plant. None is required to achieve zero steady
error under bang-bang control and idealized linear plants. A TRA increment of
5ı corresponds to a fan speed increase demand of Nx1 D 37:6 rpm. Using (A.11)
and (A.12), the values of the second equilibrium state and the input are Nx2 D 245:84

and u0 D 0:264. If the time-optimal law is applied with umax D u0, we obtain an
open-loop step response (no switching) Fig. A.2 shows the response resulting from
using umax D �umin D. As it can be seen, the transfer is completed in 0.48 s. The
speed overshoot is about 20%. Of particular importance is the response of the high-
pressure turbine outlet temperature, T48. The maximum excursion is about 88ıR,
which added to the baseline of 1941ıR applicable to FC10 gives a maximum value
of 2029ıR, which is significantly lower than the nominal limit of 2072ıR. It can
also be observed that the fan acceleration does not exceed the 500 rpm/s limit.
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Incorporation of engine output limits in a classical optimal control framework is
cumbersome and leads to numerically intensive solutions. However, the presence of
such limits will result in slower transfer times for the fan speed. Therefore, the basic
analysis of this section provides an absolute lower-bound on response times, given
a set of fuel flow rate bounds.



Appendix B
Representative Linear Model Matrix Listings:
90k Engine

Linearized Models

Px D Ax C Bu

y D Cx CDu

State Vector: x D Œ�Nf �Nc�
T

Control Input: u D �WF

Outputs: y D Cx CDu D Œ�T48 �SmHPC �
T

Find D for each output in the table.

H. Richter, Advanced Control of Turbofan Engines, DOI 10.1007/978-1-4614-1171-0,
© Springer Science+Business Media, LLC 2012
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FC01 EPR T48 PS30 WF/PS30

A D
� �3:8557 1:4467

0:4690 �4:7081
�

C T D
�
0:0000

0:0002

�
C T D

� �0:0573
�0:3224

�
C T D

�
0:0514

0:1912

�
C T D

� �0:0046
�0:0172

�

WF: B D
�
230:6739

653:5547

�
0.0236 146.3700 20.1147 5.0778

FC02 EPR T48 PS30 WF/PS30

A D
� �4:1804 1:5321

0:3244 �4:9290
�

C T D
�
0:0001

0:0002

�
C T D

� �0:0361
�0:3162

�
C T D

�
0:0542

0:1969

�
C T D

� �0:0047
�0:0172

�

WF: B D
�
231:8138

674:5305

�
0.0230 140.0339 20.0431 4.9098
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FC03 EPR T48 PS30 WF/PS30

A D
� �4:0334 1:4777

0:5872 �4:6338
�

C T D
�
0:0000

0:0002

�
C T D

� �0:0492
�0:3267

�
C T D

�
0:0469

0:1886

�
C T D

� �0:0043
�0:0174

�

WF: B D
�
225:5204

627:2142

�
0.0222 147.3667 19.5623 5.0602

FC04 EPR T48 PS30 WF/PS30

A D
� �3:7401 1:4001

0:4752 �4:5586
�

C T D
�
0:0000

0:0002

�
C T D

� �0:0620
�0:3214

�
C T D

�
0:0523

0:1851

�
C T D

� �0:0049
�0:0172

�

WF: B D
�
231:5508

657:3084

�
0.0246 151.4478 20.1995 5.2629

FC05 EPR T48 PS30 WF/PS30

A D
� �2:9378 1:0937

0:4149 �3:4793
�

C T D
�
0:0000

0:0002

�
C T D

� �0:0572
�0:3081

�
C T D

�
0:0399

0:1401

�
C T D

� �0:0048
�0:0170

�

WF: B D
�
239:7745

688:5648

�
0.0352 202.1763 20.9649 7.1323

FC06 EPR T48 PS30 WF/PS30

A D
� �2:9150 1:0362

0:7871 �3:4432
�

C T D
�
0:0000

0:0003

�
C T D

�
0:0496

�0:3524
�

C T D
�
0:0089

0:1395

�
C T D

� �0:0012
�0:0195

�

WF: B D
�
239:3185

723:6188

�
0.0520 234.8718 21.1914 8.4488
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FC07 EPR T48 PS30 WF/PS30

A D
� �1:7435 0:7462

0:5080 �2:1737
�

C T D
� �0:0000

0:0002

�
C T D

�
0:0244

�0:2665
�

C T D
�
0:0017

0:0855

�
C T D

� �0:0004
�0:0189

�

WF: B D
�
287:6845

891:1333

�
0.0461 410.4741 25.5719 16.1801

FC08 EPR T48 PS30 WF/PS30

A D
� �1:7852 0:6006

0:4678 �2:1335
�

C T D
�
0:0000

0:0004

�
C T D

�
0:0427

�0:3263
�

C T D
�
0:0062

0:0845

�
C T D

� �0:0014
�0:0192

�

WF: B D
�
252:1854

788:2555

�
0.1046 389.0245 22.7781 14.4589

FC09 EPR T48 PS30 WF/PS30

A D
� �1:2320 0:3757

0:2003 �1:4073
�

C T D
�
0:0001

0:0004

�
C T D

� �0:0143
�0:2806

�
C T D

�
0:0117

0:0540

�
C T D

� �0:0037
�0:0173

�

WF: B D
�
255:8006

789:9624

�
0.1396 545.2447 22.8232 20.2336

FC10 EPR T48 PS30 WF/PS30

A D
� �3:6284 1:5373

0:9017 �4:6475
�

C T D
�
0:0000

0:0002

�
C T D

�
0:0058

�0:3480
�

C T D
�
0:0178

0:1947

�
C T D

� �0:0018
�0:0192

�

WF: B D
�
247:3701

685:2015

�
0.0204 167.9945 20.9823 5.9613
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FC11 EPR T48 PS30 WF/PS30

A D
� �3:3384 1:4517

0:8547 �4:2881
�

C T D
� �0:0000

0:0001

�
C T D

�
0:0334

�0:3062
�

C T D
�
0:0036

0:1730

�
C T D

� �0:0004
�0:0190

�

WF: B D
�
262:2267

773:8465

�
0.0170 193.0274 22.7029 7.1444

FC12 EPR T48 PS30 WF/PS30

A D
� �2:6591 1:3162

0:5251 �3:2409
�

C T D
� �0:0000

0:0001

�
C T D

�
0:0807

�0:3435
�

C T D
� �0:0067

0:1558

�
C T D

�
0:0008

�0:0194
�

WF: B D
�
274:6438

814:3750

�
0.0145 236.4380 24.2831 9.0547

FC13 EPR T48 PS30 WF/PS30

A D
� �2:1668 1:2163

0:5305 �2:7527
�

C T D
� �0:0000

0:0001

�
C T D

�
0:0561

�0:3109
�

C T D
� �0:0079

0:1363

�
C T D

�
0:0012

�0:0201
�

WF: B D
�
293:1481

867:6547

�
0.0118 307.2016 26.4699 12.3309

FC14 EPR T48 PS30 WF/PS30

A D
� �1:8470 0:7489

0:0996 �1:4302
�

C T D
�
0:0000

0:0000

�
C T D

�
0:0252

�0:1936
�

C T D
�
0:0054

0:0792

�
C T D

� �0:0010
�0:0144

�

WF: B D
�
305:0075

973:0158

�
0.0093 423.5049 30.4577 18.5904



Appendix C
Representative Linear Model Matrix Listings:
40k Engine

Linearized Models

Px D Ax C Bu C �w

y D Cx CDu Cƒw

State Vector: x D Œ�Nf �Nc�
T

Control Input: u D Œ�WF �VSV �VBV �T

Outputs: y D Œ�T48 �SmHPC �
T

Find the entries of D for each input/output pair in the tables.

A: Ground Idle T48 SM-HPC

A D
� �3:3808 1:2954

0:4444 �3:0501
�

C T D
� �0:0191

�0:1178
�

C T D
�

0:0158

�0:0037
�

WF: B D
�

667:8408

1333:9594

�
289.0525 �10:9483

VSV: B D
� �39:2134
117:2730

�
0.1332 0.1837

VBV: B D
� �14:2485

�26:8107
�

1.2568 �0:4766
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�T D

2
66666666666666666666664

3229:35 1:44

�5799:41 �22:52
�4131:20 �23:42
2617:58 �3623:81

�857:69 763:08

�749:29 609:21

�972:53 5988:77

3004:78 �6507:42
265:74 �1023:23

�1402:83 8408:06

576:60 �2749:05
3706:27 72:97

�2727:40 4456:86

3
77777777777777777777775

ƒT D

2
66666666666666666666664

�0:11 0:00

1:70 �0:00
1:76 �0:00

�417:24 �11:38
�59:25 20:54

�74:03 19:72

�468:85 16:05

�385:27 �4:06
41:60 �2:16

�633:12 0:01

161:07 136:04

�5:49 0:00

�335:61 0:05

3
77777777777777777777775

B: Flight Idle T48 SM-HPC

A D
� �1:1549 0:6616

�0:0159 �0:7976
�

C T D
�

0:0303

�0:1536
�

C T D
�
0:0009

0:0184

�

WF: B D
�

683:7410

1895:4487

�
702.9648 �41.7502

VSV: B D
� �47:9399

57:0275

�
13.0597 �1.5734

VBV: B D
� �2:6723

�22:7373
�

�1.2138 �0.0640

�T D

2
66666666666666666666664

774:61 0:14

�1619:52 �8:48
�5595:28 �28:85
549:65 �310:76

�314:65 145:97

�749:83 334:51

�323:11 1936:69

1353:04 �1484:78
109:25 �517:99

�461:76 2840:79

225:65 �1269:65
1069:22 10:19

�834:76 1069:20

3
77777777777777777777775

ƒT D

2
66666666666666666666664

�0:04 �0:00
2:55 0:00

8:66 0:00

�158:40 6:91

13:63 0:05

0:30 1:78

�324:31 17:08

�366:88 43:97

72:22 �3:22
�459:36 0:00

186:01 146:49

�1:65 0:00

�172:90 0:03

3
77777777777777777777775
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C: Approach T48 SM-HPC

A D
� �1:8587 0:8003

0:1120 �1:4456
�

C T D
� �0:0164

�0:1012
�

C T D
�

0:0134

�0:0017
�

WF: B D
�

758:8063

1522:1852

�
521.6510 �24.0067

VSV: B D
� �4:7317
14:9885

�
�0.8507 0.0558

VBV: B D
� �50:5556

�50:8004
�

9.4784 �2.7488

�T D

2
66666666666666666666664

1346:32 0:48

�2202:88 �13:81
�4815:21 �33:99
1232:31 �922:65
�253:04 122:88

�175:93 150:89

�348:79 3056:55

1915:89 �2952:48
�23:71 �500:22

�602:69 4501:85

294:39 �1467:15
1906:22 17:62

�1831:97 2520:80

3
77777777777777777777775

ƒT D

2
66666666666666666666664

�0:06 �0:00
1:69 0:04

4:15 0:11

�259:24 �3:95
�22:74 10:74

�78:80 22:12

�393:71 16:44

�355:64 5:27

46:08 �2:16
�560:19 0:01

158:06 141:35

�2:19 0:00

�313:68 0:05

3
77777777777777777777775
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D: Max Cruise T48 SM-HPC

A D
� �0:7922 0:1767

�0:2641 �0:7087
�

C T D
� �0:1844

0:0828

�
C T D

�
0:0169

�0:0040
�

WF: B D
�

639:9616

1304:5674

�
705.5011 �23.6348

VSV: B D
� �2:1429
15:2779

�
�3.4862 0.0948

VBV: B D
� �11:7834

8:2245

�
9.5838 �0.6111

�T D

2
66666666666666666666664

1306:60 0:03

�2871:81 �0:40
�920:00 �0:07
547:54 �746:63
26:20 �613:61

�84:34 �12:52
�337:36 2536:27

763:42 �2005:82
74:17 �303:30

�528:99 3666:80

209:50 �1090:18
1751:01 9:85

�1263:63 2124:35

3
77777777777777777777775

ƒT D

2
66666666666666666666664

�0:01 0:00

0:07 �0:00
0:01 �0:00

�107:87 �15:33
�548:10 36:52

�78:55 7:95

�469:94 14:17

10:11 �6:02
39:85 �1:46

�657:71 0:01

172:76 124:88

�1:76 0:00

�381:05 0:05

3
77777777777777777777775



C Representative Linear Model Matrix Listings: 40k Engine 247

E: Max Climb T48 SM-HPC

A D
� �2:7539 0:8918

�0:1772 �2:1688
�

C T D
� �0:1126

�0:0653
�

C T D
�

0:0160

�0:0041
�

WF: B D
�

640:6942

1253:2251

�
302.9325 �10.0433

VSV: B D
� �29:5063
104:8643

�
�3:0793 0.2092

VBV: B D
� �49:6910

17:1234

�
10.7990 �0.8963

�T D

2
66666666666666666666664

2949:29 2:26

�5718:23 �36:75
�3996:15 �35:99
2282:37 �2581:93
�275:23 426:38

�815:03 1019:16

�922:30 6381:18

2633:97 �5595:40
227:18 �442:27

�1408:07 9066:52

681:88 �2913:75
3970:59 94:82

�2802:84 4729:29

3
77777777777777777777775

ƒT D

2
66666666666666666666664

�0:18 0:00

2:86 �0:00
2:80 �0:00

�382:19 �13:07
�268:89 25:74

�93:43 18:23

�519:78 14:77

�277:55 �8:18
�45:47 �1:18

�705:31 0:01

133:56 130:33

�7:38 0:00

�367:94 0:04

3
77777777777777777777775
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F: Max Takeoff T48 SM-HPC

A D
� �2:8410 0:6988

�0:6479 �1:7524
�

C T D
� �0:1460

�0:0350
�

C T D
�

0:0155

�0:0028
�

WF: B D
�

640:7678

1236:6792

�
278.9871 �9.0952

VSV: B D
� �27:3716
103:1969

�
�3.8705 0.1971

VBV: B D
� �28:2962

15:2226

�
6.5006 �0.4516

�T D

2
66666666666666666666664

3144:46 1:57

�5319:68 �25:39
�4707:37 �33:80
1933:24 �1705:43
285:62 �982:04

�131:33 �80:66
�933:15 6577:19

2534:64 �5371:77
620:07 �799:68

�1456:94 9484:27

309:42 �2823:41
4260:76 89:07

�3040:31 4821:35

3
77777777777777777777775

ƒT D

2
66666666666666666666664

�0:11 0:00

1:83 �0:00
2:44 �0:00

�277:43 �11:18
�318:87 24:77

�104:35 17:10

�496:25 14:59

�205:78 �6:94
�6:20 �1:25

�684:59 0:01

127:78 129:33

�6:43 0:00

�348:04 0:04

3
77777777777777777777775



Appendix D
Matlab Code for Linearized MPC Simulation

%MPC example
%CMAPSS-40k linearized at Ground Idle
%3 constrained inputs
%constraints on 2 outputs: T48 and SM-HPC
%Plant matrices for Ground Idle assumed available
%in the workspace as Aa,Ba,Ca,Da
%Plant matrices
A=Aa;B=Ba;
Cconstr=Ca; D=Da;%to be used for constraints
sysCT=ss(A,B,Cconstr,D);
Ts=0.015;
%Discretize
sysDT=c2d(sysCT,Ts,’zoh’);
[Adu,Bdu,Cdu_constr,Ddu]=ssdata(sysDT);
%Augment
Ad=[Adu Bdu;zeros(3,2) eye(3)];Bd=[Bdu;eye(3)];
Cd_constr=[Cdu_constr Ddu];Dd_constr=Ddu;
Cd=[1 0 0 0 0]; %to be used for control
n=size(Ad,1); %state dimension
m=size(Bd,2); %input dimension
p=size(Cd,1); %controlled output dimension
%Horizons
ny=7;nu=3;
%Compute P for control
P=Cd*Ad;
for i=1:ny-1,

P=[P;Cd*Adˆ(i+1)];
end
%Compute P for constraints
Pc=Cd_constr*Ad;
for i=1:ny-1,

Pc=[Pc;Cd_constr*Adˆ(i+1)];
end
%Compute H for control
H=zeros(p*ny,m*nu);
for i=1:ny,

for j=1:i,

H. Richter, Advanced Control of Turbofan Engines, DOI 10.1007/978-1-4614-1171-0,
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250 D Matlab Code for Linearized MPC Simulation

H(1+(i-1)*p:i*p,1+(j-1)*m:j*m)=Cd*Adˆ(i-j)*Bd;
end

end
%Retain only the first nu blocks
H=H(:,1:nu*m);
%Compute H for constraints
pc=size(Cd_constr,1); %constrained output dimension
Hc=zeros(pc*ny,m*nu);
for i=1:ny,

for j=1:i,
Hc(1+(i-1)*pc:i*pc,1+(j-1)*m:j*m)=Cd_constr*Adˆ(i-j)*Bd;

end
Hc(1+(i-1)*pc:i*pc,j*m+1:(j+1)*m)=Dd_constr;

end
%Retain only the first nu blocks
Hc=Hc(:,1:nu*m);
%Compute Cc
Cc=zeros(m*nu,m*nu);
for i=1:nu,

for j=1:i,
Cc(1+(i-1)*m:i*m,1+(j-1)*m:j*m)=eye(m);

end
end
%Optimization Weight
lambda=0.01;
r0=100; %controlled output reference
r=100*ones(ny,1);
%Offline computations
Ly=eye(pc);
for i=1:ny-1,

Ly=[Ly;eye(pc)];
end
y_max=Ly*[300;20]; %Incremental upper-bounds: T48 and SmHPC
y_min=Ly*[-150;-10]; %Incremental lower-bounds: T48 and SmHPC
Lu=eye(m);
for i=1:nu-1,

Lu=[Lu;eye(m)];
end
u_max=[2;15;0.4]; %Incremental upper-bounds: WF,VSV and VBV
u_min=[-1;-20;-0.5];%Incremental lower-bounds: WF,VSV and VBV
%Initialization
S=H’*H+lambda*eye(m*nu);
%Initial conditions
xa=zeros(n,1);
f=H’*(P*xa-r);
dyp=y_max-Pc*xa;
dym=-y_min+Pc*xa;
uprev=zeros(m,1);
dup=Lu*(u_max-uprev);
dum=-Lu*(u_min-uprev);
M=[Hc;-Hc;Cc;-Cc];
d=[dyp;dym;dup;dum];
xnow=zeros(2,1); %Plant state initialization
ynext=[1 0;Ca]*xnow;
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u=uprev; %Control initialization
simhor=30; %simulation horizon
for k=1:simhor;

ctrlvec=quadprog(S,f,M,d);
u_apply=ctrlvec(1:m); %extract first term of optimal sequence
u=[u uprev+u_apply]; %store control history
xnext(:,k)=Adu*xnow+Bdu*u(:,end); %update plant
ynext=[ynext [1 0;Ca]*xnext(:,k)]; %store output history
xnow=xnext(:,k);
uprev=u(:,end);
xa=[xnow;uprev];
%online MPC reformulation
f=H’*(P*xa-r);
dyp=y_max-Pc*xa;
dym=-y_min+Pc*xa;
dup=Lu*(u_max-uprev);
dum=-Lu*(u_min-uprev);
d=[dyp;dym;dup;dum];

end
t=Ts*[0:simhor];
%Plotting
plot(t,ynext(1,:),’k’)
hold on
plot(t,ynext(2,:),’k--’)
plot(t,ynext(3,:),’k:’)
ylabel(’\Delta N_f,\Delta T_{48} and \Delta SmHPC’,’FontSize’,14)
xlabel(’Time, sec.’, ’FontSize’,14)
title(’Linearized MPC Simulation: CMPASS-40k Near Ground Idle:

Outputs’, ’FontSize’,14)
legend(’\Delta N_f’,’\Delta T_{48}’,’\Delta SmHPC’)
figure(2)
plot(t,u(1,:),’k’)
hold on
plot(t,u(2,:),’k--’)
plot(t,u(3,:),’k:’)
ylabel(’\Delta W_F, \Delta VSV and \Delta VBV’,’FontSize’,14)
xlabel(’Time, sec.’, ’FontSize’,14)
title(’Linearized MPC Simulation: CMPASS-40k Near Ground Idle:

Inputs’, ’FontSize’,14)
legend(’\Delta W_F’,’\Delta VSV’,’\Delta VBV’)



Glossary

Pm Mass flow rate
Pmcr Corrected mass flow rate
�i Ideal cycle efficiency
arg min
x2S

ff .x/g Value of x taken from set S which minimizes f .x/

Fn Net thrust
M Mach number
Nc Core speed
Nf Fan speed
Nf;cr Corrected fan speed
WF Fuel flow rate
CMAPSS Commercial Modular Aeropropulsion System Simulation
EPR Engine Pressure Ratio
FADEC Full-Authority Digital Engine Controller
FMV Fuel Metering Valve
GTE Gas Turbine Engine
HPC High-Pressure Compressor
HPT High-Pressure Turbine
LMI Linear Matrix Inequality
LPC Low-Pressure Compressor
LPT Low-Pressure Turbine
LPV Linear Parameter-Varying
LQR Linear Quadratic Regulator
MRAC Model Reference Adaptive Control
PD Proportional-Derivative
PI Proportional-Integral
PLA Power Lever Angle
SISO Multi-Input, Multi-Output
SISO Single-Input, Single Output
SM Stall margin
SMC Sliding Mode Control
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254 Glossary

SmHPC HPC Stall Margin
TRA Throttle Resolver Angle
VBV Variable Bleed Valve
VSV Variable Stator Vane
ZOH Zero-Order Hold
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A
Acceleration and deceleration limits

CMAPSS-1 min–max arrangement,
174–175

CMAPSS-1 override switches,
174–175

“N-dot” control, 175–176
surge and stall protection, 174

B
Bypass turbofan engine

bypass ratio, definition, 6
cutaway model, single-spool turbofan

engine, 5, 6
effective jet velocity, 7
Froude/propulsion efficiency, 7
fuel efficiency, 4
high-bypass vs. low-bypass engines, 8
HPT and HPC, 5
LPC and LPT, 5
propulsion and thrust power, 7
specific thrust, 7
thrust specific fuel consumption, 8
total and thermal efficiency, 7
two-spool turbofan engine design, 5
VBV, 5
VSV, 5–6

C
Cayley–Hamilton theorem, 207
Choked and non-choked regime, 12
Closed-loop transfer function, 39
CMAPSS-1 linear parameter-varying

decomposition, 96–97
Combustion chamber/combustor, 3

Commercial Modular Aero-Propulsion System
Simulation (CMAPSS)

actuator models (CMAPSS-40k), 32–33
function diagram, 28, 29
GUI plotting functions, linearized

simulation result, 30, 31
Matlab and Simulink, 27–28
model inputs, 24–25
“model-matching method,” 30
model outputs, 25–26
NASA Glenn Research Center, 23
nonlinear engine simulation results panel,

31, 32
pre-defined flight condition data, 26–28
SISO model, 30
software modules, 24
2�2 system matrix, 28
TRA and PLA, 25
transfer function, 30

Compensator design
augmented plant with non-minimum phase

zero, 38, 39
augmented plant with no zeroes, 37, 38
damping ratio and PD control, 37
dominant closed-loop poles, 36–37
linear compensator, 38
percent overshoot and settling time, 37
second-order transfer function, 37

Compressor and fan maps
adiabatic efficiency, 9, 10
compressor surge cycle, reverse flow, 12, 13
equilibrium point bifurcation, 11
Greitzer parameter, 11
nonlinear dynamic system, 9
PDE and ODE, 11
rotating stall, 9–10
stable compressor transient, 11, 12
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Compressor and fan maps (cont.)
steady-state operation, 9
surge, 10

Corrected mass flow rate, 17–18
Corrected speed, 18
Crossover frequency, 40

D
Disturbance input distribution matrix, 123
Dynamic compensators

initial regulator
max-only case, 146
min–max case, 146–147
min-only case, 144–145

steady regulator, 147–148
Dynamic matrix control (DMC), 226

E
Edmund’s model-matching method, 40–41
Eigenstructure assignment approach, 125
Ellipsoidal operating sets

constrained optimization problem, 152
double-integrator system, 153–154
invariant sets, 152
recoverable set, 153
reference governor, 154
semiellipsoidal set, 153

Engine control. See also Robust state
feedback

fixed linear compensator designs
classical compensation technique, 43
control transfer function, 43
engine limits, 46–50
parameter variations, flight envelope,

44–45
setpoint control, EPR/fan speed

CMAPSS, 42
compensator requirements, 41
Edmund’s model-matching method,

40–41
FC01, root locus design, 41, 42
integral control, 36
loopshaping (see Frequency domain

compensation)
manual loopshaping design, FC01, 42,

43
non-minimum phase zeroes, 36
poles and one minimum-phase zero, 41
root locus (see Compensator design)
SISO tool, 42
state-space matrices, 41
thrust estimation, 35

transfer functions, 36
transient response, 42, 44

Engine limits
closed-loop transfer function, 46
CMAPSS, 46
compressor map, 49, 50
fan speed demand, engine response, 47–49
frequency response plot, 47
linear compensator, 47, 48
linearized transfer function, 46
management

linear regulators (see Linear regulators)
MPC (see Model predictive control)
sliding modes (see Sliding mode

control)
scaling factor, 49

Engine models and simulation tools
CMAPSS (see Commercial Modular Aero-

Propulsion System Simulation)
two-spool shaft dynamics

cycle deck data, model construction,
21–22

engine aging and deterioration
modeling, 22–23

engine model balancer/steady-state
solver, 21

fan speed and core speed, 19
health parameters, 20
high-fidelity model, 19
LPT and HPT, 20
small-signal linearization, 20
steady engine map, 21
system identification, 22
VBV and VSV, 20

Engine pressure ratio (EPR), 3
Explicit model predictive control

implementation, 225–226

F
Fan speed PI control

closed-loop characteristic equation, 97
CMAPSS-1

linearized study, 99–100
nonlinear engine, 100, 101

open-and closed-loop pole, 98
pole-zero cancelation, 98
quadratic polynomial, 98
root loci, 99
transfer function, 97

Fixed-gain linear quadratic design
closed-loop polytopic system, 73
closed-loop quadratic stability, 72
control law, 74
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ground idle, 74, 75
Max Cruise, 74, 76
vertices response, 73

Frequency domain compensation
Bode plot features, 39
crossover frequency and closed-loop

bandwidth, 40
dominant factor, 40
open-and closed-loop transfer function,

39
phase margin, 40
trial-and-error procedure, 38

Fuel metering valve (FMV), 32
Full-authority digital engine controller

(FADEC), 207

G
Gain scheduling and adaptation

adaptive control
adaptation law/parameter update law,

102
indirect adaptive control, 102, 103
MIT rule, 102
MRAC, 102, 103 (see also Model-

reference adaptive control)
self-tuning regulators, 102–104

closed-loop stability, 91
GTE control, 93

CMAPSS-40k, 93, 94
engine aging and deterioration effects,

95
fan speed/EPR control, 92
nonlinear feedback control loop, 93
scheduling variables, 93, 95

input scheduling, 92
LPV method (see Linear parameter-varying

method)
matching controller gain variations, 92

Gas turbine engines (GTEs)
bypass turbofan engine (see Bypass

turbofan engine)
corrected mass flow rate, 17–18
corrected speed, 18
direct mechanical connection, engine

shaft, 2
fluid transfer, 2
Joule–Brayton cycle

combustion chamber/combustor, 3
efficiency, energy “investment,” 3
isentropic compression, 2
pressure-volume diagram, 2
single-spool engine, 4
turbine, 3–4

turbocompressor, 3
two-spool configuration, 4

Mach number, 16
mass flow, 17
momentum exchange, 1–2
operability limits and component maps

combustor instabilities and blowout, 15
compressor and fan maps (see

Compressor and fan maps)
core and fuel flow, 16
engine components, 8–9
engine operating line, 16
ray lines and stall margin, 13–15
structural and thermal limits, 15
turbine maps, 12–13

stagnation point, 16
total pressure and temperature, 16

Graphical user interface (GUI), 23

H
Heun’s algorithm, 110
H2/H1

feedback gain synthesis
feedback gain, 188
generic control system, 187
transfer function, 189
unmatched disturbance, 188

High-pressure compressor (HPC), 5
High-pressure compressor stall margin

(SmHPC), 189
High-pressure turbine (HPT), 5

I
Incremental model predictive control

formulation
constrained case

cost function, 215
input and output constraints, 216–217
optimization problem, 216, 218
quadprog routine, 218

unconstrained case
arbitrary system matrices, 214
augmented state vector, 212
closed-loop pole location, 215
control update equation, 211–212
integral control, 211
iterative Matlab code, 214–215
lumped scalar weight, 212
objective function, 214
optimization problem, 214
reference sequence, 213

Integral state feedback controller
closed-loop behavior, fixed index, 156–157
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Integral state feedback controller (cont.)
CMAPSS-1 linearized model

invariance condition, 169
lean blowout condition, 163
sliding mode controller, 170
state-feedback gain, 161
state-space realization, 161
steady-state limit protection, 162
T48 limit regulator, 164
transient limit protection, 162

fixed regulator, closed-loop behavior,
155–156

min–max arrangement, state feedback
initial regulator, 157–158
steady regulator, 158–160

state-space model, 154
static state feedback law, 155
transient limit protection analysis

invariance condition, 164, 165
linear equations, 166
max-only case, 168
min–max case, 168–169
min-only case, 167–168
positive and negative error derivative,

165–166
”�Iteration process, 66

L
Lean combustor blowout, 15
Linear closed-loop transfer function, 33
Linearized model predictive control simulation,

248–250
Linearized plant model

fan speed response, 107
parameter adaptation response, 107, 108
simulation diagram, 106, 107

Linear matrix inequalities (LMI), 59
Linear model matrix

40k engine, 242–247
90k engine, 238–241

Linear parameter-varying (LPV) method, 45
coefficient matrices, 95
fan speed PI control (see Fan speed PI

control)
polynomial LPV synthesis, 102
polytopic vertices, 96–97
uncertain state-space plant, 95

Linear quadratic (LQR) control, 208
Linear quadratic Gaussian (LQG), 64
Linear regulators

acceleration and deceleration limiting
CMAPSS-1 min–max arrangement,

174–175

CMAPSS-1 override switches,
174–175

“N-dot” control, 175–176
surge and stall protection, 174

constrained control system, 142
fuel flow rate, 141
integral state feedback controller

closed-loop behavior, fixed index,
156–157

CMAPSS-1 linearized model, 161–165,
169–170

fixed regulator, closed-loop behavior,
155–156

min–max arrangement, state feedback,
157–160

state-space model, 154
static state feedback law, 155
transient limit protection analysis,

164–169
minimum-interaction design

CMAPSS-1, 170–172
ellipsoidal invariant set, 172–174

min–max limit management logic
aircraft engine control system, 142
CMAPSS-1, 148–149
default index assumption, 144
dynamic compensator, 144–148
linear compensators, 142–143
lower-and upper-limited output, 143

physical actuator constraint, 141
set invariance

constraint handling, 149
ellipsoidal invariant sets, 150–151
ellipsoidal operating set, 152–154
Lyapunov inequality, 151
Nagumo’s invariance condition, 150
positive invariance, 150
state constraints, 152

Low-pressure compressor (LPC), 5
Low-pressure turbine (LPT), 5
Lyapunov equations, 55
Lyapunov inequalities, 59

M
Mach number, 16
Mass flow, 17
Matlab code, 248–250
Max Cruise condition

control inputs, 128, 131
sliding variables, 128, 132
states and outputs, 128, 130

Max–min switching, 184
Model predictive control (MPC)
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CMAPSS-40k plant
control inputs, 219–221
nonlinear engine simulation (see

Nonlinear engine simulation)
output response, 219, 220
T48 and SmHPC, 218

computational burden
mixed-norm approach, 226
multidimensional look-up table, 225
multiplexed control, 226–228
1-norm criterion, 226
“slow” systems, 225

digital control systems
Cayley–Hamilton theorem, 207
CMAPSS-1/-2 model matrices, FC01,

207
continuous and discrete-time signal,

205, 206
continuous-time linear plant, 204
FADEC, 207
matrix exponential series, 206
nilpotent matrices, 207
sampling period, 205
stabilizability and state feedback

stabilization, 206
Symbolic Math Toolbox, 208
Ts selection factors, 208
ZOH operation, 205

error-based feedback, 203
features, 204
GTE control, 204
incremental MPC formulation (see

Incremental model predictive
control formulation)

optimal receding horizon control
control horizon, 209
finite-horizon quadratic cost function,

208
GTE problem, 209–210
LQR control, 208
open-loop/feedforward control solution,

208
prediction horizon, 209
receding-horizon control, 209

prediction equations, 210–211
quadratic program, 204
sample period and safe latency time, 204
system operation, 203

Model-reference adaptive control (MRAC)
CMAPSS-1

adaptive gains, 107
initial parameter refinement, 109, 110
linearized plant model (see Linearized

plant model)

nonlinear engine response, 108, 109
2nd-order Runge–Kutta method, 110
reference model, 105, 107

control input and first-order filters, 105
parameter adaptation law, 105
relative degree, 104, 105
strictly positive real transfer function, 105
transfer function, 104

Moore and Greitzer model, 11
Moore–Penrose pseudoinverse, 96
Multi-input, multi-output (MIMO) system, 52
Multiple limit regulators

max–min/SMC
burst/chop trajectories, HPC map, 200
fuel flow input, 199, 200
limited output regulator, 197–199
state variable and sliding function

response, 197, 198
Ps30, 196
sliding coefficients, 197
TRA, 197

Multivariable sliding mode control regulator
CMAPSS-40k

control inputs, 127–129, 131
integral state-feedback regulators, 127
sliding coefficient vector, 127
sliding variables, 127–129, 132
starting and ending flight conditions,

127
states and outputs, 127, 128, 130
unmatched uncertainty, 128

equivalent control, 121
matched uncertainties, 120–121
nonscalar sliding functions, 121
reduced-order dynamics and sliding

coefficient selection, 122–125
sliding mode dynamics, 121–122
state-space regulation problem, 120
total insensitivity, 122
tranversality condition, 121
triangle inequality, 122
Utkin and Young’s LQ method, 125–126

N
Nonlinear engine simulation

constrained output response, 223, 224
control horizon effect, 221, 222
high-fidelity simulator, 219
MIMO control, 225
optimal control input trajectories, 223, 224
prediction horizon effect, 221, 222
shaft speed response, 223
T48 and SmHPC, 221
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O
Open-loop transfer function, 39
Ordinary differential equations (ODEs), 11

P
Partial differential equations (PDEs), 11
Polytopic plant model

augmented vertex matrices, 75
fixed-gain H

1

design, 79–81
H2 synthesis, regional pole placement,

77–79
integral control approach, 75
Matlab code, 76–77
mixed H2/H1

, 81–85
six-vertex polytopic plant, 74

Power lever angle (PLA), 25
Projectile velocity tracking system, 112, 117

parametric uncertainty and disturbance,
119

relay with deadzone, 114, 115
saturation function, 115, 116

Q
Quadratic objective function (QDMC), 226

R
Robust state feedback

CMAPSS-40k
fan speed control problem, 70
fixed-gain LQR design (see Fixed-gain

linear quadratic design)
H2/H1

fixed gain synthesis (see
Polytopic plant model)

polytopic description, 71
quadratic stabilizability evaluation,

70
scaled augmented plant stabilizability,

71–72
configuration, 55, 56
GTE control, 55
health parameter inputs, 56
H

1

fan speed control
Bode magnitude, 86
CMAPSS-40k, 87–90
complementary sensitivity function,

85
elementary block-diagram algebra,

83–84
EPR control transfer function, 83
frequency weighting, 86–87
sensitivity function, 84

SISO compensation loop, 83, 85
state feedback laws, 82

H
1

synthesis, 65–66
H2 synthesis

closed-loop system, 63
LMI feasibility, 64
LQG, 64
LQR problem, 64–65
polytopic systems, 65
state-feedback control law, 63
state measurement feedback, 64
transfer matrix, 63

linearized engine plant, 55
LQR synthesis

algebraic Riccati equation, 61
cheap LQR problem and performance

limits, 62
performance output, 60–61
polytopic systems, 63
regional eigenvalue constraints, 61–62
robustness properties, 62–63

multivariable systems theory
linear system, infinity norm, 54
Matlab code and MIMO, 52
multivariable zeroes, 52
2-norm, linear system, 55
singular values, 53
SISO, 52
transfer matrix, 52
transmission zeroes, 52, 53

nominal and robust stability, 58–59
performance measures, 60
polytopic description, system uncertainty

faults and deterioration effects,
CMAPSS, 56

GTE sources, 56
scheduled vs. robust control, 57–58

quadratic stability, polytopic systems,
59–60

regional pole placement, H2/H1

synthesis
high-frequency actuator dynamics, 66
regional eigenvalue constraint, 67
setpoint regulation and input

integration, 67–70
time average, 67

steady operating point, 56
Root locus analysis, 36–38
Root mean square average, 55

S
Second-order transfer function, 37
Single-input, single-output (SISO) transfer

function, 52
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Sliding coefficient matrix, 123
Sliding mode control (SMC)

assignment rules, 186
asymptotic stability, 177
chattering control, 112
CMAPSS implementation

multiple limit regulators (see Multiple
limit regulators)

upper limit, T48, 194–196
control objectives, 180
design process

multiobjective control, 187–189
upper-and lower-limited variables, 187

fixed regulator
augmented state, 181
closed-loop system dynamics, 182
steady regulator index, 182–183
system behavior, 181

hybrid dynamical system, 177
limited output consistency, 186
limit protection, invariance properties

max–min switching, 185–186
max switching, 185
min switching, 185
upper-and lower-limited variables, 184

linearized model, 180
linearized simulation study

limited outputs, 189
Matlab’s Robust Control Toolbox, 190
negative setpoint change, 190, 193
positive setpoint change, 190–192
SmHPC, 189

max–min arrangement, 178, 179
max–min selection law, 178–179
MIMO SMC regulator, 112
minimum-phase outputs, 178
multivariable SMC regulator (see

Multivariable sliding mode control
regulator)

on–off rocket thruster control
control law, 113
deadzone implementation, 114
disturbance force, 116
matched uncertainties, 120
nominal value and maximum

uncertainty, 115–116
projectile dynamics, 112
projectile motion, 116
projectile velocity tracking system (see

Projectile velocity tracking system)
saturation function, 114
signum function, 113, 114

sliding function, 112, 117
sliding mode attractiveness

condition, 118
state-space description, 116
system dynamics, 112
thruster force, 113, 119
uncertainty budget, 119

output setpoint
closed-loop dynamics, 133
control input, 132
linearized CMAPSS-40k model,

133–135
nominal plant model, 130
nonlinear engine simulation, 128
reference model, 131, 132
“virtual control,” 130

reduced-order dynamics, 111
resilient aircraft control systems, 201
robust output regulation and limit

protection, 177
separation property, 178
simplified SISO integral SMC design

auxiliary output, 136
CMAPSS-1, 137–139
fan speed control, 136
regular form, 136
sliding function, 137
sliding mode, 136
steady state calculation, 137

sliding manifold/surface, 111
sliding variables, definition,

180–181
stability properties, 183–184
state-space system, 180
thrust response, 201

Stall line, 10
Stall margin (SM), 14–15

T
Throttle resolver angle (TRA), 25
Time-optimal control

bang-bang law, 231
control bound, 233
linearized engine model, 231
minimum-time setpoint tracker,

235–237
state-space matrices, 232
switching curve and sample optimal

trajectory, 234
switching surface, 231
transition matrix, 232–233
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Time-optimal regulator, 232–233
Trial-and-error method, 38–39
Turbocompressor, 3

U
Utkin and Young’s LQ method, 125–126

V
Variable bleed valve (VBV) actuator, 5, 32, 33
Variable stator vane (VSV) actuator, 5, 32, 33

Z
Zero-order hold (ZOH) operation, 205
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