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In wired or wireless communication systems, the information that needs to be 
transmitted is not only required to reach the destination but it should be error free 
and should make efficient use of the channel bandwidth available. Various DSP 
based encoding/decoding algorithms, data compression and noise filtering tech-
niques have been developed to achieve effective and efficient data transmission 
with the help of FPGAs for hardware implementation. FPGA based implementa-
tions provide the flexibility of re-programming and quick delivery of the product to 
the market.

This chapter demonstrates the design of a simple DS-SS system including the 
basic building blocks such as, PN sequence generator, BPSK modulator/demodulator, 
BOOTH multiplier, Low Pass Filter and convolutional coding. The system is 
designed using Verilog HDL, simulation and functional verification of the design 
is performed using ModelSim® XE III 6.0d, and synthesis using Xilinx® ISE. The 
design is implemented and tested on Xilinx® Spartan 2E FPGA.

This chapter also demonstrates some of the algorithms and techniques used to 
accomplish data integrity and channel bandwidth efficiency in a communication 
system such as, Low Pass FIR filter using efficient Distributed Arithmetic (DA) 
architecture, Discrete Cosine Transform (DCT) using Scaled DCT architecture and 
Convolution coding and Viterbi decoding techniques. The Low Pass-Finite Impulse 
Response (LP-FIR) filter coefficients are calculated using MatLab FDA tool based 
on the given specification of the filter. The systems are designed using Verilog HDL, 
simulation and functional verification of the design is done using ModelSim® XE II 
6.0d and synthesis using Xilinx® ISE. The designs are implemented on Xilinx® 
Spartan 2E FPGA.

The prerequisites for approaching this chapter would be an adequate background 
of basic digital communication system.

Chapter 2
FPGA Application Design



18 2 FPGA Application Design

2.1  Design of Direct Sequence-Spread Spectrum System

Direct Sequence-Spread Spectrum (DS-SS) is a transmission technique in which a 
pseudo-noise code, independent of the information data is employed as a modula-
tion waveform to “spread” the signal energy over a bandwidth much greater than the 
signal information bandwidth. At the receiver the signal is de-spread using a syn-
chronized replica of the pseudo-noise code. The spreading sequence in DS-SS is 
often called as PN sequence.

In this section, the spread signal is modulated using Binary Phase Shift keying 
(BPSK) modulation technique in the transmitter and on the receiver side the modu-
lated signal is recovered using BPSK demodulation technique.

The basic building blocks of DS-SS system are shown in Fig. 2.1 [1].

2.1.1  PN Sequence Generator

2.1.1.1  Overview of PN Sequence Generator

A Pseudo-random Noise (PN) sequence/code is a binary sequence that exhibits 
randomness properties but has a finite length and is therefore deterministic. PN 
generators are heart of every spread spectrum systems. Each symbol or bit in the 
sequence is called as Chip [2].

PN generators are based on Linear Feedback Shift Registers (LFSR). The contents 
of the registers are shifted right by one position at each clock cycle. The feedback 
from predetermined registers or taps to the left most register are XNOR-ed 
together.

LFSRs have several variables:

The number of stages in the shift registers•	
The number of taps in the feedback path•	
The position of each tap in the shift registers stage•	
The initial starting condition of the shift register often referred to as the “FILL” •	
state

Fig. 2.1 Basic building blocks of DS-SS system
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The longer the number of stages of shift registers in the PN generator, longer the 
duration of the PN sequence before it repeats. For a shift register of fixed length N, 
the number and duration of the sequences that it can generate are determined by the 
number and position of taps used to generate the parity feedback bit.

A maximum length sequence (L) for a shift register of length N is referred to as 
m-sequence and is defined as [3]:

 = −NL 2 1,  

E.g. an eight stage LFSR will have a set of m-sequences of length 255.
Some of the most popular types of PN Sequence generators are:

m-sequence codes•	
Barker codes•	
Gold codes•	

2.1.1.2  Design of PN Sequence Generator

Design

Specifications:

Clock frequency for PN sequence generator system, F•	
pn

 = 100 KHz.
LFSR length, N = 4.•	
LFSRs are of D-FF type.•	
X-NOR gate is used for linear parity feedback to the system.•	
FPGA board clock frequency, F•	

b
 = 50 MHz (assumption)

Procedure:

A clock frequency of 100 KHz for PN Sequence generator is designed using a •	
divider of 500 clock cycles of F

b
.

Clock divider = F
b
/F

pn
 = 50 MHz/100 KHz = 500

Maximum length sequence, N = 4 corresponds to 4 D-FF to realize LFSRs of the •	
PN generator system.

Since N = 4, the maximum sequence length L = 24 − 1 = 15.
Hence the sequence repeats every 15 clock cycles.

The Chip rate for the PN sequence generator system is calculated as follows:•	
Chip period, T

c
 = 1/100 KHz = 10 ms

Chip rate, F
c
 = 100 KHz

The bit period for the input data signal is calculated as follows:•	
Data bit period, T

d
 = Max. sequence Length (L) × Chip period (Tc)

For the system, T
d
 = 15 × 10 ms

Hence, the input data bit period for the system is, T
d
 ³ 150 ms.
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Block Diagram

The block diagram of a PN sequence generator for the design specification is shown 
in Fig. 2.2.

2.1.1.3  Properties of PN Sequence

Merits of using PN sequence [4]:

 1. Balance property: In each period of the sequence the number of binary ones differ 
from the number of binary zeros by at most one digit (when LFSR stage length 
is odd)

 = + + + − − + − = +Pn 1 1 1 1 1 1 1 1  

 2. Run-length Distribution: A run is a sequence of a single type of binary digits. 
Among the sequence of ones and zeros in each period it is desirable that one-half 
the runs of each type are of length 1, about one-fourth are of length 2, one-eight 
are of length 3 and so on.

 3. Autocorrelation: The origin of the name pseudo-noise is that the digital signal 
has an autocorrelation function which is very similar to that of a white noise 
signal. For PN sequences the autocorrelation has a large peaked maximum 
for perfect synchronization of two identical sequences (like white noise). The 
synchronization of receiver is based on this property.

 4. Cross-correlation: Cross-correlation is the measure of agreement between two 
different codes pn

1
 and pn

2
. When Cross-correlation is zero the codes are called 

Orthogonal. In CDMA multiple users occupy the same RF bandwidth and 
transmit simultaneously. When the user codes are orthogonal, there is no 

Fig. 2.2 Block diagram of a PN sequence generator



212.1 Design of Direct Sequence-Spread Spectrum System

interference between the users after dispreading and the privacy of the com-
munication of each user is protected.

Demerits of using PN sequence [4]:

 1. Synchronization: The most sensitive aspect of DS-SS system is the synchroniza-
tion of the transmitter’s PN sequence to that of the receiver where an offset of 
even one PN chip can result in noise rather than a de-spread symbol sequence.

 2. Increased Bandwidth: As the data signal is spread using PN codes at higher fre-
quency, there is an increase in bandwidth used in the process.

 3. Complexity: There is an increased complexity and computational load both in the 
receiver and the transmitter to spread/de-spread the signal.

2.1.1.4  Simulation Results for PN Sequence Generator

The PN sequence generator is designed using Verilog HDL. Functional verification 
and simulation is performed using ModelSim.

The simulation results for PN sequence generator is shown in Fig. 2.3.

2.1.2  Transmitter for Direct Sequence-Spread Spectrum System

2.1.2.1  Overview of DS-SS Transmitter System

In DS-SS transmitter, the input data bits are spread by PN sequence generator. The 
spreading is actually done by multiplying the data bits with that of the PN sequence 
code generated. The frequency of PN sequence is higher than the Data signal. After 
spreading, the Data signal is modulated and transmitted. There are several schemes 
available for modulation, viz. BPSK, QPSK, M-QAM etc. The most widely used 
modulation scheme is the BPSK. In this design, BPSK modulation is used to modu-
late and transmit the spread signal.

The basic building blocks of a simple DS-SS transmitter system are shown in 
Fig. 2.4.

Fig. 2.3 Simulation results for PN sequence generator
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2.1.2.2  Design of DS-SS Transmitter

Multiplier Design

Specifications:

PN sequence Chip rate, Tc = 10 •	 ms.
Data signal Bit rate, Tb •	 ³ 150 ms.

Let the data signal be m(t) and PN sequence p(t). The two signals are multiplied 
and the multiplied output is the spread signal. Truth table for the multiplier s(t) = m(t). 
p(t) is shown in Table 2.1.

From the truth table, it can be inferred that an XNOR gate can act as a multiplier 
to spread the data signal with the PN signal. Hence the block diagram for the multi-
plier is shown in Fig. 2.5.

Oscillator Design

Specification:

PN sequence Chip rate, Tc = 10 •	 ms.
Carrier frequency, Fc •	 ³ 5 times Chip rate.

Design:

The oscillator carrier sampling rate is designed•	
Let the Sampling rate of sine wave be Fs = 25 MHz.

Table 2.1 Truth table for the multiplier

m(t) p(t) s(t)

0 0 1
0 1 0
1 0 0
1 1 1

Fig. 2.4 Block diagram of a DS-SS transmitter system
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Number of samples for a full cycle of sine wave is designed•	
Let the number of samples for a full cycle be N = 36.

The oscillator is designed to generate sine wave of carrier frequency Fc•	
( ) ( )≥ = =CFc 5 1 / T 5 1 /10 s 500KHz.µ

For the above design with sampling rate 25 MHz and 36 samples per cycle, the 
carrier frequency, Fc = 25 MHz/36 » 700 KHz. The oscillator is implemented using 
a Look-Up-Table (LUT) of nine samples and the logic is design in order to oscillate 
generating a sine wave.

The block diagram of the oscillator as per the design is shown in Fig. 2.6.

BPSK Modulator Design

Specification:

Spread binary sequence is the input to the system•	
Oscillator carrier sine wave of frequency, Fc •	 » 700 KHz

Fig. 2.5 Block diagram of a data and PN sequence multiplier

Fig. 2.6 Block diagram of an oscillator
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Design:

The BPSK modulator is designed using the spread binary sequence as the input to 
the system and the carrier frequency F

c
. The logic is implemented in such a way that 

the phase of the sine wave is shifted by 180° whenever the input binary bit 
changes.

The block diagram of the BPSK Modulator as per the design is shown in 
Fig. 2.7.

2.1.2.3  Simulation Results for DS-SS Transmitter

The DS-SS transmitter is designed using Verilog HDL. Functional verification and 
simulation is done using ModelSim. The simulation results for DS-SS transmitter is 
shown in Fig. 2.8.

2.1.3  Receiver for Direct Sequence-Spread Spectrum System

2.1.3.1  Overview of DS-SS Receiver System

In DS-SS receiver, the input to the system is the BPSK modulated signal. This signal 
would have been affected by noise and other interference in the communication 
channel. The DS-SS receiver should be designed carefully to reproduce the data 
signal with least error.

Fig. 2.7 Block diagram of BPSK modulator

Fig. 2.8 Simulation results for DS-SS transmitter system
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The BPSK modulated input signal is multiplied by the locally generated carrier 
wave by the oscillator. The multiplied signal is then passed through the low pass 
filter to get low frequency components only. A decision device is used to approxi-
mate the signal to binary sequence. This binary sequence is the spread sequence of 
the data signal.

The most sensitive part of the DS-SS receiver is the synchronization of the 
locally generated PN sequence and the sequence obtained from the decision device 
[3]. Even a single bit mismatch may lead to noise instead of the data signal. Suitable 
technique is used to achieve synchronization and multiply the local PN sequence 
code with that of the received PN code. The Data signal is obtained after the multi-
plication process.

In this design, since transmitter and receiver uses common clock on the same 
FPGA board, the delay in the receiver is considered and modeled appropriately. 
No specific synchronization technique is used.

The block diagram of a simple DS-SS receiver system is shown in Fig. 2.9.

2.1.3.2  Design of DS-SS Receiver

BPSK Demodulator Design

Specifications:

BPSK modulated signal is the input to the system•	
Oscillator carrier sine wave of frequency, Fc •	 » 700 KHz

The input BPSK signal is multiplied with the carrier sine wave generated from 
the local oscillator. The design and implementation of the signed BOOTH multi-
plier is discussed in the following section.

The multiplied output will have higher frequency components and channel noise 
as well. The high frequency components are eliminated using a suitable Low Pass 
Filter. Design of rectangular window Low-Pass FIR filter is also discussed in the 
following section.

The filtered low frequency component will have distortion in the signal. Hence a 
suitable ‘Decision Device’ is used to smoothen to binary sequence.

Fig. 2.9 Block diagram of a DS-SS receiver system
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BOOTH Multiplier Design

The BPSK modulated input signal is multiplied with the carrier sine wave generated 
using the local oscillator. A signed multiplier is designed using BOOTH multiplier 
algorithm [5].

The BOOTH algorithm used to implement the signed multiplier is as follows:

The multiplicand X and multiplier Y is loaded into a register. Bit adjustment is •	
made with X and Y so that bits length of X and Y are equal. Bit ‘0’ is padded in 
order to achieve it
An accumulator is used to store the result. The length of the accumulator should •	
be twice the length of multiplicand or multiplier. A = 2X or 2Y
The multiplicand X is loaded into the accumulator from LSB•	
A dummy bit of 0 is appended with the accumulator A at the LSB•	
During the multiplication operation, the pair of LSB of the accumulator and the •	
dummy bit is considered to follow further arithmetic operations
Depending on the bit pair obtained in the previous step, following operations are •	
performed:

“00” – Arithmetic shift right of the Accumulator. ○
“01” – Add multiplier Y to the Accumulator A (from MSB of A) and  ○
Arithmetic shift right of Accumulator.
“10” – Subtract multiplier Y from the Accumulator A (from MSB of A) and  ○
Arithmetic shift right of Accumulator.
“11” – Arithmetic shift right of the Accumulator. ○

Shift operations are performed along with dummy bit.
The above operations are continued till MSB of multiplicand X is shifted off •	
from the accumulator A.

In this section, 5-bit signed BOOTH multiplier is designed and implemented.

Low Pass Filter and Decision Device Design

Specifications:

The multiplied output from the BPSK demodulator is the input to this system•	
A Low Pass Filter with cutoff frequency, f = 105 KHz•	
Oscillator carrier wave sampling rate, Fs = 25 MHz•	

Design:

A Rectangular window FIR filter is designed with a cutoff frequency, f = 105 KHz.
Let the length of impulse response for the filter, N = 2.
The desired response of the ideal Low-pass filter is given by,
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 = ≤ ≤jw
dH (e ) 1, 0 f 105 KHz, otherwise 0  

The normalized angular frequency, w
c
 = 2pF/Fs = 8.4p × 10−3

 = ≤ ≤ ≤ ≤jw
d c cH (e ) 1,0 ; 0,ω ω ω ω π  

The filter coefficients are given by,

 
−= × ≠3

dh (n) sin(8.4 10  N) / ( N), where N 0.π π  

Therefore, the filter coefficients are,

 
− −= × = ×3 3h(0) 8.40 10 and h(1) 8.39 10  

In this design, one sample of the signal is stored in a register and then it’s added 
with the next sample. The filtered output samples obtained is then processed by the 
Decision Device. The output of the Decision Device is held High (1) when the out-
put of the filter is non-negative otherwise it’s made Low (0).

2.1.3.3  Noise Models and Synchronization

Noise models [1]:

•	 Multi Path Channels: In wireless channels there exists often multi path propaga-
tion. Since there are more than one path from the transmitter to the receiver. 
Such multi paths may be due to (a) atmospheric reflection or refraction (b) 
Reflections from ground, buildings or other objects. Corrective actions are taken 
to eliminate noise due to multi path channels using appropriate synchronization 
techniques.

•	 Jamming: The goal of the jammer is to disturb the communication of his adver-
sary. Protection against jamming waveforms is provided by purposely making 
the information-beating signal occupy a bandwidth far in excess of the minimum 
bandwidth necessary to transmit it. This has the effect of making the transmitted 
signal assume a noise-like appearance so as to blend into background. The trans-
mitted signal thus enabled to propagate through the channel undetected by 
anyone who may be listening. Spread spectrum is a method of “camouflaging” 
the information bearing signal.

In this design, the noise effect is not modeled as the transmitter and receiver is on 
the same FPGA board without any air interface.

Synchronization techniques [1]:

For proper operation of DS-SS system, the locally generated PN sequence in the 
receiver is synchronized to the PN sequence of the transmitter generator in both its 
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rate and position. A slight misalignment in the sequence results in noise instead of 
data signal.

The process of synchronizing the locally generated PN sequence with the 
received PN sequence is usually accomplished in two steps. The first step called 
acquisition consists of bringing the two spreading signals into coarse alignment 
with one another. Once the received PN sequence has been acquired, the second 
step called tracking takes over and continuously maintains the best possible wave-
form fine alignment by means of a feedback loop. This is essential to achieve high-
est correlation power and thus highest processing gain (SNR) at the receiver.

In this design, synchronization technique is not modeled since the same clock 
and PN sequence for receiver and transmitter is implemented on the same FPGA 
board. A delay of one clock pulse is modeled while multiplying the PN code in the 
receiver to compensate the filtering delay of one sample.

2.1.3.4  Simulation Results for DS-SS Receiver

The DS-SS receiver is designed using Verilog HDL [6]. Functional verification and 
simulation is done using ModelSim.

The simulation results for DS-SS receiver is shown in Fig. 2.10.
The simulation results for DS-SS modem is shown in Fig. 2.11. The synthesis 

report obtained from Xilinx ISE is also shown in Fig. 2.12. The modem can operate 
at a maximum frequency of 64 MHz on Xilinx Spartan 2E FPGA.

Fig. 2.10 Simulation results for DS-SS receiver system

Fig. 2.11 Simulation results for DS-SS modem
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2.2  FIR Filter Design

2.2.1  Concepts of FIR Filter

A discrete-time filter produces a discrete-time output sequence for the discrete-time 
input sequence. In the Finite Impulsive Response (FIR) system, the impulse response 
sequence is of finite duration, i.e. it has a finite number of non-zero terms and hence 
the filter coefficients are also constant. The response of the FIR filter depends only 
on the present and past input samples (a causal system). Thus making the system 
always stable.

The difference equation for length ‘M’ FIR filter is given by [4],

−= × + × − + × − + × − +… × − +0 1 2 3 M 1y(n) b (n) b (n 1) b (n 2) b (n 3) ..b (n M 1)  

×∑M-1

K=0 kY(n)= b (n-K)  

where, [b
k
] is the set of filter coefficients.

Some of the important characteristics of FIR digital filter are as follows [4]:

They can have an exact linear phase•	
They are always stable•	
The design methods are generally linear•	
They can be realized efficiently in hardware•	
The filter start-up transients have finite duration•	
The filter coefficients are constant for the given order of the filter•	

Fig. 2.12 Synthesis report for DS-SS modem
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In this section a Low-Pass FIR filter is designed using MatLab FDA tool for the 
given specifications. Simulated using ModelSim® and implemented using Xilinx® 
2E FPGA.

2.2.2  Low Pass FIR Filter Design

The Low Pass FIR (LPF) specifications given in the assignment are,

F•	
pass

 = 1 KHz, F
stop

 = 1.3 KHz
Pass band ripple = 3 dB, Stop band ripple = 60 dB•	

Assuming,

Sampling frequency of the input signal, F•	
s
 = 3 KHz.

FIR Filter design method: Equiripple with density factor 16.•	

The filter coefficients are obtained using MatLab FDA tool for the given specifica-
tion. The order of the filter, N = 16. The filter coefficients h(n) are as shown in Table 2.2. 
The frequency response for the given filter specification is shown in Fig. 2.13

Table 2.2 Filter coefficients for LP FIR filter with order 16

Transfer function Coefficients Transfer function Coefficients

h(0) 0.0328 h(8) 0.5763
h(1) 0.0816 h(9) −0.0550
h(2) −0.0065 h(10) −0.0694
h(3) −0.0047 h(11) 0.0847
h(4) 0.0847 h(12) −0.0047
h(5) −0.0694 h(13) −0.0065
h(6) −0.0550 h(14) 0.0816
h(7) 0.5763 h(15) 0.0328

Fig. 2.13 Frequency response (Magnitude) for the designed LP FIR filter
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2.2.3  Distributed Arithmetic Architecture

Distributed Arithmetic (DA) is an important technique to implement digital signal 
processing functions in FPGAs. DA provides an approach for multiplier-less imple-
mentation of DSP systems. It is an algorithm that can perform multiplication with 
Look-Up Table (LUT) based schemes. DA specifically targets the sum of products 
(also referred to as the vector dot product) computation that is found in many of the 
important DSP filtering and frequency transforming functions [7].

In this section, LP FIR filter is designed and implemented using DA architecture. 
By observing the filter coefficients in Table 2.2, the second half (8–15) of filter coef-
ficients are mirror image of the first half (0–7). Hence the SOP for second half can 
be accessed from the first half by re-ordering the input bits appropriately. The first 
half (0–7) coefficients can be broken into two parts and SOP can be calculated and 
stored in two different blocks. Hence, two LUTs of length 16 are sufficient to store 
the SOP for the obtained filter coefficients.

The basic functional operation of DA architecture is shown in Fig. 2.14.

2.2.4  Simulation and Synthesis Results

The LP FIR filter is designed using Verilog HDL. The design is simulated using 
ModelSim®. The impulse response for the LP FIR filter system is shown in Fig. 2.15. 
In this design, fixed point representations of real numbers are used. Filtered output 

Fig. 2.14 Block diagram to illustrate the functional operation of DA architecture
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values have lower 8 bits representing decimal part. Hence the exact filtered output 
values from the simulation results are calculated as follows:

 ( )= − − − − − − − − 8Y 8,22, 2, 12,22, 18, 13,148,148, 13, 18,22, 12, 2,22,8 / 2  

= − − − −
− − − −

Y (0.0312,0.8593, 0.0078, 0.0468,0.8593, 0.0703, 0.0507,0.5781,

0.5781, 0.0507, 0.0703,0.8593, 0.0468, 0.0078,0.8593,0.0312)
 

The design is synthesized and implemented on Xilinx® Spartan 2E FPGA. The 
HDL synthesis report is shown in Fig. 2.16.

2.3  Discrete Cosine Transform Algorithms

2.3.1  Concepts of DCT

The Discrete Cosine Transform (DCT) is a technique that converts a spatial 
domain waveform into its constituent frequency components as represented by a set 

Fig. 2.16 HDL synthesis report for LP FIR filter design

Fig. 2.15 Simulation results for impulse response for the LP FIR filter system
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of coefficients. The process of reconstructing a set of spatial domain samples is 
called the Inverse Discrete Cosine Transform (IDCT). The equation for 1-D N-point 
DCT is given by [8],

 

−

=

+
= ≤ ≤ −∑

1

0

(2 1)
( ) ( ) ( )cos[ ] 0 1

2

N

n

n k
X k k x n k N

N

π
α  

where,

 
α α= = ≤ ≤ −1 2

(0) , ( ) 1 1k for k N
N N  

One-Dimensional DCT has most often been used in two-dimensional DCT by 
employing the row-column decomposition which makes it suitable for hardware 
implementation. Typically the DCT coefficients produced have most of the block’s 
energy in a few frequency domain elements and hence quantization and coding is 
applied after DCT to provide lossless as well as lossy actual compression [8].

For data compression of image/video frames, usually a block of data is converted 
from spatial domain samples to another domain (usually frequency domain) which 
offers more compact representation. DCT technique is used in a wide range of signal 
and image processing applications. Some of the most popular applications are [8],

JPEG and JPEG2000 image compression standards•	
MPEG digital video standards•	
H.261 and H.263 video conferencing standards•	
Progressive Image Transmission (PIT) systems: teleconferencing, medical diag-•	
nostic imaging and security services

2.3.2  DCT Architectures on FPGA

The DCT can be implemented on FPGA using various architectures. Some of the 
popular one’s reported in [9] are discussed below:

•	 Distributed Arithmetic: The N-points DCT can be considered as N parallel filters. 
The DCT on the array requires N shift registers for parallel-to-serial conversion, 
N LUT memories and N shift-accumulators. All the N memories receive the 
same address. One shift-register and a shift-accumulator are each mapped to an 
add-shift cluster, while the LUT is mapped to a part of a memory cluster.

Area usage: 8 shift registers + 8 ROMs + 8 Accumulators
•	 Mixed ROM: The 8-point 1D-DCT can be expressed as the product of an 8 × 8 

matrix by an eight element column vector. Through algebraic manipulations, this 
matrix can be reduced to 4 × 4 matrix. Hence, the number of words per ROM is 
reduced to only 16 but some overhead has been incurred in the form of adders to 
calculate the address of the ROMs.

Area usage: 4 adders + 4 subtractions + 8 shift registers + 8 accumulators + 8 
ROMs
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•	 CORDIC Rotator based: The DCT computation is done using CORDIC rotator 
[10]. Since the memory is an integral part of the DA, and ROM size increases 
exponentially with respect to vector size N. Many techniques have been devel-
oped for reducing the size of ROM. The CORDIC algorithm reformulates the 
1-D DCT so that the ROM size is reduced to a fix size of four words, independent 
of the bandwidth of the input data. The DA functionality is implemented by 
converting parallel data to serial through shift registers and using this data to 
formulate the address of the memories. This implementation requires 6-CORDIC 
and 16 butterfly adders for an 8-point 1-D DCT. The CORDIC rotators are imple-
mented through ROM and shift accumulators, while butterfly adders are imple-
mented through add-shift clusters [11].

Area usage: 8 adders + 8 subtractions + 8 shift registers + 12 accumulators + 12 
ROMs

•	 Skew circular convolution: This technique starts with re-ordering the input 
sequences. Then skew circular convolutions are performed on the reordered 
inputs, which give odd-indexed transformed sequence. The transformed 
sequences are re-ordered for the proper output sequences.

Area usage: 4 adders + 4 subtractions + 8 shift registers + 8 accumulators + 8 
ROMs

2.3.3  Scaled 1-D 8-Point DCT Architecture

Since using LUTs results in a very efficient and regular structure suitable for VLSI 
implementation, especially on the FPGAs, there has been great interest in develop-
ing similar kind of LUT based DCT architecture. The Scaled DCT architecture is 
also a LUT based design. The architecture is primarily designed by making mathe-
matical and trigonometric manipulation using 1-D 8-point DCT equation on eight 
input data samples. In this design, LUT based Distributed Arithmetic architecture is 
used. The basic building blocks of this architecture are [9]:

20 butterfly adders•	
12 shift registers•	
10 LUTs•	

The constant scale factor (Y0 and Y4) is not considered in this implementation 
as that can be combined with the quantization constants without requiring any addi-
tional hardware such as LUTs. The simplified 1-D 8-point DCT equations are as 
shown below:

0 0 1 2 3 4 5 6 7Y 2 (X X X X X X X X ) / 4 = √ × + + + + + + +   

[ ]= − × + − × + − × + − ×1 0 7 1 6 2 5 3 4Y (X X ) A (X X ) B (X X ) C (X X ) D / 2  

[ ]= + − − × + + − − ×2 0 7 3 4 1 6 2 5Y (X X X X ) E (X X X X ) F / 2  
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[ ]= − × + − × + − × + − ×3 0 7 6 1 5 2 4 3Y (X X ) B (X X ) D (X X ) A (X X ) C / 2  

 = √ × − − + + − − + 4 0 1 2 3 4 5 6 7Y 2 (X X X X X X X X ) / 2  

[ ]= − × + − × + − × + − ×5 0 7 6 1 2 5 3 4Y (X X ) C (X X ) A (X X ) D (X X ) B / 2  

[ ]= + − − × + + − − ×6 0 7 3 4 2 5 1 6Y (X X X X ) F (X X X X ) E / 2  

[ ]= − × + − × + − × + − ×7 0 7 6 1 2 5 4 3Y (X X ) D (X X ) C (X X ) B (X X ) A / 2  

For N = 8,
A = cos(p/16)
B = cos(3p/16)
C = cos(5p/16)
D = cos(7p/16)
E = cos(p/8)
F = cos(3p/8)

The constant values A, B, C, D, E and F that is required to be multiplied with 
input X is performed by LUT based Distributed Arithmetic architecture. The block 
diagram of Scaled DCT architecture for 1-D 8-point samples is shown in Fig. 2.17.

2.3.4  Simulation and Synthesis Results

In this section, 1-D 8-point DCT is designed using Scaled DCT architecture and 
coded in Verilog HDL. The design is simulated using ModelSim®. The DCT for the 
input samples, X = (4, 2, 8, 4, 4, 6, 6, 6) is as shown in Fig. 2.18.

Fig. 2.17 Block diagram of scaled DCT architecture
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 Y (5120 / 2, 544, 58, 372, 512 / 2,404,807,439)= √ − − − − √  

In this design, fixed point representations of real numbers are used. DCT output 
values have lower eight bits representing decimal part of DCT output. Hence the 
exact DCT output values from the simulation results are calculated as follows:

8Y (5120 / 2, 544, 58, 372, 512 / 2,404,807,439) / 2= √ − − − − √  

 Y (14.1421, 2.0882, 0.2242, 1.4221, 1.4142,1.6011,3.1543,1.7475)= − − − −  

This design is implemented on Xilinx® Spartan 2E FPGA. The HDL [13] syn-
thesis report is shown in Fig. 2.19.

2.4  Convolution Codes and Viterbi Decoding

2.4.1  Concepts of Convolution Codes

Forward Error Correction (FEC) technique is used to improve the capacity of chan-
nel by adding some carefully designed redundant information to the data that is 
transmitted over the communication channel. The process of adding this redundant 
information is known as channel coding.

Fig. 2.18 Simulation results for 1-D 8-point DCT
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Convolutional coding and Block coding are the two major forms of channel 
coding. Convolutional codes operate on serial data, one or a few bits at a time. 
Block codes operate on relatively large message blocks. There are a variety of use-
ful convolutional and block codes, and a variety of algorithms for decoding the 
received coded information sequences to recover the original data. Convolutional 
encoding with Viterbi decoding is a FEC technique that is particularly suited to a 
channel in which the transmitted signal is corrupted mainly by Additive White 
Gaussian Noise (AWGN) [12].

The technique of convolutional coding transforms a binary message into a 
sequence of symbols to be transmitted. Upon reception, the received information 
must be related back to the original message bits. If there are no errors the process 
of decoding is readily accomplished. In general, convolutional coding techniques 
are applied to very long messages, such as the continuous stream of data from a 
satellite television transmitter.

A convolutional encoder with two shift registers is shown in Fig. 2.20.

Fig. 2.19 HDL synthesis report for 1-D 8-point DCT

Fig. 2.20 Block diagram of convolutional encoder for a rate ½., constraint length K = 3
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The system block diagram can be expressed with the following equations:

 A(n) x(n)  x(n 1)  x(n 2)= + − + −  

 B(n) x(n)  x(n 2)= + −  

The basic building components of the convolutional encoder are flip-flops 
comprising the shift registers and Exclusive-OR gates comprising the associated 
Modulo-Two adders. The number of shift registers in the encoder generating the 
encoded sequence determines the capability of the decoder to detect and correct num-
ber of bit errors received on the receiver in the obtained encoded sequence of data.

In this encoder, data bits are provided at a rate of ‘k’ bits per second. Channel 
symbols are output at the rate of n = 2k symbols per second. The constraint length 
K = 3 is the length of convolutional encoder, i.e., how many k-bit stages are avail-
able to feed the combinatorial logic that produces the output symbols. The input bit 
is stable during the encoder cycle. The encoder cycle starts when an input clock 
edge occurs. When the input clock edge occurs, the output of the left-hand flip-flop 
is clocked into the right-hand flip-flop, the previous input bit is clocked into the left-
hand flip-flop and a new input bit becomes available. Then the outputs of the upper 
and lower modulo-two adders become stable. The output selector cycles through 
two states. In the first state, it selects and outputs the output of the upper modulo-two 
adder. In the second state, it selects and outputs the output of the lower modulo-
two adder.

The state transition table that lists the channel output symbols, given the current 
state and the input data is shown in Table 2.3.

2.4.2  Viterbi Decoder

A Viterbi decoder uses the Viterbi algorithm for decoding bit stream that has been 
encoded using Convolutional codes. There are other algorithms for decoding a con-
volutional encoded stream (Ex: Fanon algorithm). The Viterbi algorithm is the most 
resource-consuming but it does the maximum likelihood decoding [12]. Viterbi 
decoding has the advantage that it has a fixed decoding time. It is well suited for 
hardware decoder implementation. But its computational requirements grow expo-
nentially as a function of constraint length. So it is usually limited in practice to 
constraint lengths of K £ 10.

Current state
Output symbols,  
if input = 0

Output symbols,  
if input = 1

00 00 11
01 11 00
10 10 01
11 01 10

Table 2.3 State transition 
table for the convolutional 
encoder
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The most important concept to aid in understanding the Viterbi algorithm is the 
Trellis diagram. The Trellis diagram for the convolutional encoder rate ½, constraint 
length K = 3 is shown in Fig. 2.21.

The four possible states of the encoder are depicted as four rows of horizontal 
dots. There is one column of four dots for the initial state of the encoder and one for 
each time instant during the message. For a 4-bit message with two encoder mem-
ory flushing bits, there are six time instants in addition to t = 0, which represents the 
initial condition of the encoder. The solid lines connecting dots in the diagram rep-
resent state transitions when the input bit is a one. The dotted lines represent state 
transitions when the input bit is a zero. The expanded version of the transition 
between one time instant to the next is shown in Fig. 2.22. Notice the correspon-
dence between the arrows in the Trellis diagram and the state transition diagram. 
Since the initial condition of the encoder is State 00, and the two memory flushing 
bits are zeros, the arrows start out at State 00 and end up at the same state [12].

Each time when a pair of channel symbols is received, the metric- Hamming dis-
tance between the received channel symbol pair and the possible channel symbol pairs 
is calculated for each state. The Hamming distance is computed by simply counting 
how many bits are different between the received channel symbol pair and the possible 

Fig. 2.21 Trellis diagram for Viterbi decoding with encoder rate ½ and K = 3

Fig. 2.22 State transitions 
from one state to the next 
state
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channel symbol pairs. The results can only be zero, one, or two. The metrics computed 
at each time instant for the paths between the states at the previous time instant and the 
sates at the current time instant are called branch metrics. For the first time instant, the 
results are stored as “accumulated error metric” values associated with the states. For 
the second time instant onwards, the accumulated error metrics will be computed by 
adding the previous accumulated error metrics to the current branch metrics. The 
process is continued for k + m symbols (for k bits message and m shift registers). The 
smallest accumulated error metric in the final state indicates how many channel sym-
bol errors occurred. This survival path which has the least accumulated error metric is 
selected. Original message bits are recreated by interpreting the bits from the solid 
and dotted arrows from the survival path in the Trellis diagram. The two flushing bits 
at the end are discarded from the recreated message bits.

In this section, Viterbi decoder for 4-bit message is designed using Viterbi 
algorithm [12].

Four registers of 6-bit width are used to store the survival path at each state •	
transition.
Four registers of 4-bit width are used to store the accumulated error metrics at •	
each state.
At the end of the last state, the survival path having the least accumulated error •	
metrics is used to reproduce the estimated input message bits from the survival 
path register.

2.4.3  Simulation and Synthesis Results

In this section, Convolutional encoder is designed using two shift-registers and 
Viterbi decoder is designed using Accumulated Error Metrics algorithm. The design 
is simulated using ModelSim®.

Assuming the input data to the convolutional encoder is x = (1001), the encoded 
sequence is, e = (11 10 11 11 10 11). Following different cases are simulated to test 
the Viterbi decoder design:

 1. No error in the received data from the channel. The simulation result for this case 
is shown in Fig. 2.23.
Received data: 11 10 11 11 10 11

 2. One bit error in the received data from the channel. The simulation result for this 
case is shown in Fig. 2.24.

Fig. 2.23 Simulation results for Viterbi decoding with no error in received channel data
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Received data: 11 11 11 11 10 11
 3. Two bits error in the received data from the channel. The simulation result for 

this case is shown in Fig. 2.25.
Received data: 11 11 11 11 11 11

This design is implemented on Xilinx® Spartan 2E FPGA. The HDL synthesis 
report is shown in Fig. 2.26.

Fig. 2.24 Simulation results for Viterbi decoding with one bit error in received channel data

Figure 2.25 Simulation results for Viterbi decoding with two bits error in received channel data

Fig. 2.26 HDL synthesis report for convolutional encoder and Viterbi decoder
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