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Introduction

People know and use conic sections for a long time. They observe these curves in 
many situations: the parabolic trajectory of a thrown stone, the circular waves when 
the stone falls in calm water, and the elliptical shadows of round objects during 
sunsets (see Fig. 1).

Conic sections were and still are one of the most favorite objects of mathematical 
study and education. Students spend hours in the classroom working with circles, 
ellipses, parabolas, and hyperbolas. They are presented with a concentrated view 
about these curves, a view that has been distilled for hundreds of years. Although 
mathematically correct, this view may not lead to complete rationalization, because 
it might be hard for students to project mathematical ideas into something more 
comprehensible from their everyday life.

A preliminary informal inquiry showed that it is difficult for many students to 
identify conic sections in a non-classroom environment. This triggered the creation 
of visualization tools that could introduce these curves from various perspectives. 
These tools are the focus of this paper.

Traditionally, conic sections are described as intersections of a plane and a cone 
(Downs 1993). Searching the WWW reveals that this is the predominant description 
of conic sections, independent on whether materials describe mathematical 
concepts in simple language (like Math2.org’s “A conic section is the intersection 
of a plane and a cone”) or use scientific terminology (like Wolfram MathWorld’s 
“The conic sections are the nondegenerate curves generated by the intersections of 
a plane with one or two nappes of a cone”).
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Unfortunately, “although intuitively and visually appealing, these definitions for 
the conic sections tell us little about their properties and uses” (Smith 2011). 
Additionally, these definitions do not always create transferable knowledge – i.e., 
knowledge that a person can use to bridge concepts from two distinct disciplines. 
There are observations that connecting is important to understand. According to 
Wageman (2010), “The more connections students can make the more interesting 
the topic becomes to them and then deeper understanding can occur.”

Some educators are forced to make compromise by choosing only few aspects of 
the curves, those that “have important applications in the real world” (Demana et al. 
2000). A few educational materials based on this traditional approach are being 
advertised as “the perfect set for teaching a unit on conic sections” (Nasco 2010).

The introduction of Dynamic Geometry Software (DGS) added a lot of expres-
siveness to the representation of conic sections and provided a playground for inter-
esting explorations. However, DGS is still visually bound to the mathematical 
representation. DGS uses the conventional geometrical primitives that are not 
immediately relatable to concepts outside the educational environment. Even 
advanced DGS tools like Cabri (Schumann 2005) and the Geometer’s Sketchpad 
(Scher 2003) represent conic sections in the traditional way. Although correct, 3D 
and interactive, these representations are just advanced variations of the schemes 
found in mathematical textbooks and in online math resources.

The author’s own attempt to combine DGS with virtual reality also did not provide 
any significant impact. Figure 2 represents a snapshot of an interactive 3D applica-
tion for experimenting with the traditional approach. It is less mathematical and 
more like a game, but still it is a cone intersected by a plane.

Another application of the author is a microworld developed for the Developing 
Active Learning Environment for Stereometry (DALEST) project which was 
 co-funded by the European Union under the Socrates Program, MINERVA, 2005 
Selection (Boytchev 2007). Partners in this project were several educational 

Fig. 1 Circular shapes of lamps in Korinthos, Greece, and their elliptical shadows
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 institutions across Europe. The Slider application represents the intersection of an 
object with a plane. By moving the plane and studying the intersection, the user has 
to “guess” the object. One of the subsets of activities is related to studying conic 
sections (Fig. 3).

Both applications (the ones shown in Figs. 2 and 3) utilized modern visualization 
technologies by providing the user with a game-like look-and-feel. However, like 
models developed by other DGS tools, the representation does not help students to 
resolve practical challenges like:

Make an ellipse with a reading lamp.
Construct a rolling mechanism that generates an ellipse.
Draw a hyperbola using a fixed-length thread.

These applications do not provide assistance in solving the inverse problems too, 
like “Is this shadow a parabola or a hyperbola?” or “Where are the focal points of 
this ellipse?”

Fig. 2 Interactive 3D application for exploration of the traditional representation of conic 
sections

Fig. 3 Snapshots from a DALEST-Elica application for interactive exploration of the intersection 
of a plane and a solid
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There are trends of bringing the reality back into Math education by constructing 
and using mechanical tools that relate to mathematical concepts. And interesting 
work is the construction of LEGO mechanisms that function as physical representa-
tion for mathematics and mathematical inquiry (Isoda et al. 2001)

The idea that initiated the work presented in this paper is to create new tools and 
models that describe and utilize various properties of conic sections. The main fea-
tures of these tools are to present the properties of the conic sections in a way that is:

Unique: The tools have to demonstrate conic sections form a perspective that is 
inherently unavailable in traditional hard-copy textbooks and is still difficult to 
implement in contemporary systems of dynamic geometry.
Attractive: The tools should use virtual reality, game-like 3D models and interac-
tive interfaces to build and then to support the student’s interest in conic sections. 
Such attention to the visual appearance is important in order to minimize the gap 
between a “boring” topic in mathematics and the out-of-school entertainment.
Natural: The tools should represent ideas that can be immediately related (and 
even applied) to real-life situations and at the same time to be still mathemati-
cally correct.

Homemade Conic Sections with Light

In 2009 the author completed an artistic project–exhibition based on computer 
generated images and digital photographs (Boytchev 2009). All posters feature 
fragments of the Mandelbrot set fractal accompanied by artistic interpretations. One 
of the posters depicts an area from the fractal that resembles a coordinate system 
with a pair of hyperbolas and their asymptotes (see Fig. 4).

The description of the poster says: The hyperbola might have been discovered by 
Menaechmus, a tutor of Alexander the Great. One hundred years later Apollonius 
named the ellipse, parabola and hyperbola. There are many ways to construct a conic 
section, but the easiest one is with a table, a ball and a torch. How? Apparently, it 
appears that the ball is not necessary in order to generate all types of conic sections.

Fig. 4 The fractal exhibition and the hyperbolic shapes in the Mandelbrot set fractal
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The question in the poster raises an interesting problem: Is it possible to model 
all conic sections at home, using only objects from our everyday life? Is it possible 
to classify conic sections produced in this way? To answer these questions a set of 
interactive 3D applications are implemented by the author. They are based on real-
life “experiments” and some of them were demonstrated at the Spring Conference 
of the Union of Bulgarian Mathematicians in 2010. Figure 5 shows several “experi-
ments” conducted in a hotel room using available objects and without any prelimi-
nary preparation. The “experiments” provide enough data for students to determine 
why the light reflection in the first photograph is a parabola, while the light in the 
last one makes a hyperbola.

These experiments inspired the construction of a set of interactive 3D applica-
tions. They are designed and developed within the scope of the project InnoMathEd 
– Innovations in Mathematics Education on European Level (http://www.math.uni-
augsburg.de/prof/dida/innomath). Partners in this project are University of Augsburg, 
Bulgarian Academy of Sciences, University of South Bohemia, University of 
Bayreuth, Projekt Bildung Institut, German School Board Bolzano, University of 
Cyprus, Tyrolean Educational Service, University of Cambridge, and University of 
Oslo. The project addresses pupils’ mathematical understanding, use of ICT and 
competences for lifelong learning (Bianco 2009).

The first application in the set re-explores the traditional approach that involves 
a cone and an intersecting plane. Snapshots of this program are shown in Fig. 2. 
Although the software provides an intuitive and easy-to-understand way for describ-
ing conic sections, it does not help students implement the model in real life. Instead, 
the model is suitable only for virtual experiments. Most of the other applications, 
however, are designed in a way that their ideas can be re-implemented and re-acted 
at home – this is crucial to our goal of having mathematical knowledge that is trans-
ferrable and applicable outside the classroom.

The next few applications in the set model just a torch and a table. The light 
from the torch forms a cone, while the table is an intersecting plane. The image on 
the table surface is the intersection of the light cone and the plane. It is straightfor-
ward to create a circle or an ellipse. However, is it also possible to generate parabo-
las and hyperbolas, in spite of the fact that they extend to infinity – see Fig. 6. 

Fig. 5 All four types of conic sections generated with objects at hand
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There are simple rules that “predict” the type of the curve. These rules have a 
 mathematical background, but they can be understood and applied by students with 
insufficient mathematical skills. The slope of the upper side of the light cone 
 (segment AB in Fig. 7) determines the type of the curve. It is an ellipse (or a circle) 
if A is below B, a hyperbola if A is above B, and a parabola if AB is horizontal.

It is possible to rephrase the rules – if point A is below the horizon, we have an 
ellipse (or a circle), if A is above the horizon – hyperbola, and if it exactly at the 
horizon – we have generated a parabola.

The torch in the model is used to generate a light cone. If we have a traditional 
electrical bulb, it emits light in all directions. Yet, we are still able to generate conic 
sections. Figure 8 (left) shows the elliptical shadow generated by another 3D appli-
cation. By moving the light, we can generate all conic sections. Again, the rules are 
simple. A parabola appears when the bulb is at the same level as the top of the ball, 
a hyperbola – when it is below it.

The position of the ball has an important mathematical meaning. The point of 
contact with the table is a focal point (focus) and the ball is a Dandelin sphere 
(Kendig 2005; Weisstein 2010). The right snapshot in Fig. 8 shows a similar appli-
cation where two balls produce hyperbolic shadow and at the same time they play 

Fig. 6 Making an ellipse (left) and all conic sections (right) using a torch

Fig. 7 Generation of an ellipse
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the role of two Dandelin spheres. A quick examination of the online visual resources 
shows that the predominant representation of Dandelin spheres is that they touch the 
foci of an ellipse. However, the application provides all options – students can 
immediately explore the Dandelin spheres of all types of conic sections.

There are a few other interactive 3D applications in the set. One of them uses just 
a tube. If a student looks the ground through it, the cone of sight will “cut” a conic 
section from the ground. The simple identification rules could be based on the hori-
zon. If the student sees only ground – this is an ellipse. If the horizon cuts through 
the sight – it is a hyperbola.

The last application in the set illustrates the transition from one conic curve to 
another by using a virtual pizza that can be digitally deformed by pulling the focal 
points apart. Initially, the pizza is circular and both foci coincide – Fig. 9. If the 
student moves a finger to the right, the pizza becomes an ellipse. If the focus is 
dragged to infinity, the pizza will be a parabola. And, finally, when that hand goes 
beyond infinity, it “wraps” through the other side of the screen, we will produce a 
hyperbolic pizza.

Virtual Models of Mechanical Devices

Except for the applications using the light or the absence of light to model conic 
sections, the author has implemented a rich set of non-interactive 3D applications 
that represent models of mechanical devices drawing conic curves (Boytchev 2010a). 

Fig. 8 Using shadows to generate an ellipse (left) and hyperbola (right)

Fig. 9 The interactive pizza application



274 P. Boytchev

These devices represent various methods and could foster interesting mathematical 
research activities for students. All devices are built by a set of primitive elements 
including a pencil that draws on paper.

It is easy and straightforward to model a device drawing a circle; however we 
should think of a more enhanced device if we need all conic sections. Figure 10 
presents snapshots of such device, where the pencil can slide forward and backward 
controlled only by gravity.

Some of the mathematical problems occurring during the design of the anima-
tions were:

How long should the pencil be (so that it will not slide off its holder)?
How to model the infinities of parabolas (using finite objects)?
How to draw both branches of hyperbolas (within a single device)?

The model in Fig. 10 recreates the conical nature of conic sections – the pencil 
rolls on the surface of an invisible cone (defined by the angle between the disk and 
the pencil) while the paper acts as an intersecting plane. The gravity forces the pen-
cil to slide forward as much as needed to reach the paper, while the paper, itself, 
pushes it back.

As seen in the third snapshot, there is one specific case when the pencil becomes 
horizontal in its upmost position. This is the case of drawing a parabola. The tip of the 
pencil points to infinity (or to the horizon, if we consider the model in Figs. 6 and 7).

When the disk is vertical, there are situations when the tip of the pencil points 
upwards. In such cases the gravity pulls the pencil down and it touches the paper 
with its “back.” If we use a double-sided pencil, in which both ends can draw, we 

Fig. 10 Pencil attached to a disk can draw any conic section
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will get the pencil to draw one of the hyperbola branches with one of the ends, and 
the other branch with the other end. This construction is shown in the last snapshot 
in Fig. 10. Animations of this device can be seen in YouTube playlist “Mathematical 
devices” (Boytchev 2010a).

The disk rotation used in the model is essential for the formation of the conic 
curves, but is not the only way to make them with rotation. The sum of two vectors 
with different lengths rotating at the same angular speed but in opposite directions 
is a vector that traverses an ellipse; see Fig. 11 (left). The two shorter beams repre-
sent one of the vectors; the longer ones represent the other. The construction uses a 
parallelogram to maintain mechanical stability and to demonstrate the commutative 
nature of vector addition.

The right snapshot in Fig. 11 represents a ruled surface called hyperboloid. It is 
created by a tilted line rotated around a vertical axis. The intersection of the hyper-
boloid and a horizontal plane is a circle, while the intersection with a vertical plane 
is a hyperbola.

Virtual Models of Existing Mechanical Devices

The models shown in Figs. 10 and 11 are not quite practical in the sense that they 
are suitable for generation of imaginary curves, but cannot be used for making tan-
gible conic sections. For example, it is hard to use these devices to make elliptical 
windows. Carpenters have solved this problem by using a simple yet effective device 
called the Trammel of Archimedes (Apostol and Mnatsakanian 2009). This device 
can draw an ellipse with predefined major and minor axes. It also provides sufficient 
precision for carpentry.

Variations of the trammel are shown in Fig. 12. A fixed length segment slides 
along two perpendicular pairs of rails while the pencil is attached near the segment’s 
midpoint (if the pencil is exactly in the midpoint, it will draw a circle). In reality, the 
devices used by carpenters are slightly different. For example, the pencil is often 

Fig. 11 Other rotational methods to generate some conic sections
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attached on an extension of the sliding segment. This allows the carpenters to use 
much shorter rails.

The Trammel of Archimedes can draw any curve from a straight line to a circle, 
traversing through ellipses with various eccentricities. Unfortunately, it cannot draw 
a parabola or a hyperbola. Fortunately, there is another ancient method of drawing 
ellipses based on the property that the sum of distances from any point on the ellipse 
to its foci is constant. Figure 13 shows snapshots of animations visualizing all conic 
curves generated with a fixed-length thread. The top two cases are well known and 
are included just for completeness. An interesting challenge is to design a similar 

Fig. 12 Variations of the Trammel of Archimedes

Fig. 13 A thread used to draw conic sections
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mechanism for parabolas and hyperbolas, as long as almost all hard copy and online 
textbooks show only the case with an ellipse.

The lower left snapshot shows a parabola. The thread has both of its ends freely 
attached to a rail that is collinear to the parabola’s directrix. These ends can slide 
along the rail keeping both sides of the thread perpendicular to the rail. The midsec-
tion of the thread embraces the pencil and the fixed focus point. A similar device is 
shown in the last snapshot. It has the same structure, except that the rail is a circular 
arc. In this case, the pencil draws a hyperbola. It is a nice mathematical exercise to 
prove that the curve is really a hyperbola.

The topic of modeling the construction of conic intersections is virtually unlim-
ited. Figure 14 represents a hypotrochoidal device, where a disk rolls inside a ring. 
The radii of the disk and the ring are selected in such a way, that the attached pencil 
draws an ellipse.

Student Activities

The interactive 3D applications and the 3D animations presented in this paper are 
included in a set of more than 60 models of devices. Some of them draw mathemati-
cal curves, other represent mathematical transformations, construction of 3D sur-
faces, and even non-geometrical phenomena like normal distribution in statistics.

All these applications are rather new and they are still not used in the classroom 
or at home. Teaching materials are now being prepared that will utilize the full 
multidisciplinary power of the models. The rest of the section describes briefly 
some potential activities.

Fig. 14 A hypotrochoidal ellipse
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Computer Science/Computer Graphics

Each model is a program written in Elica Logo programming language. The design 
and the implementation of such program require skills and knowledge. Some 
models are very simple from programming point of view, others are quite complex. 
The building of precisely selected series of models can improve these skills and 
amass knowledge. The internal structure of models is based on concepts of the 
Object-oriented programming.

The power of having a complete programming control over the model allows the 
student to create new virtual mechanical elements. This is something which is 
impossible in closed software environments and in the LEGO-based models of 
mechanisms where the user can operate only a limited set of parts.

Physics: Mechanics

The virtual models included in the collection are not just mathematical abstractions. 
They comply with known physical restrictions and utilize the properties of compo-
nents made of different materials. A thread can change its shape, while a solid beam 
cannot.

A library with virtual mechanical parts is now under development (see Fig. 15). 
Its purpose is simplify the construction of virtual models in non-programming 
contexts. The parameters of each part are customizable by the students, which only 

Fig. 15 A snapshot of the environment using the library for virtual mechanics
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need to pick the desired parts and define their behavior. The first classroom 
application of this library is in the 2011 spring semester of the undergraduate course 
“Geometry of Motion” at Sofia University. Students are expected to “invent” new 
devices and then to implement them virtually using the library.

Mathematics: Geometry

There are many papers and web sites describing the properties of conic sections. 
However, the construction of virtual devices requires understanding of these properties 
at a higher level of abstraction. Converting a mathematical model into a mechanical 
one is a real mathematical and engineering challenge. Besides, mathematical chal-
lenges are hidden in the models themselves. They can be used to teach mathematical 
concepts and be used as an experimental playground for various tasks.

Figure 16 (left) illustrates a mathematical problem – to find whether the curve 
generated by the device is a hyperbola or it is just looking like a hyperbola. Also, if it 
draws hyperbola, could we customize the dimensions of the mechanical parts, so that 
it draws a degenerate hyperbola – a pair of intersecting lines? Figure 16 (right) shows 
a moiré pattern (Strong 1964). Is it a family of hyperbolas at various eccentricities?

Art: Animation

The collection of animations inspired the author to create a mathematical film that 
illustrates seven different ways of constructing ellipses (Boytchev 2010b). Although 
purely artistic, the making of the film was based on solving many geometrical, 
mechanical, and programming problems. Students may also be engaged in similar 
multidisciplinary activities, where, they blend scientific and artistic designs while 
constructing an artifact of their choice.

Fig. 16 Are these hyperbolas?
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The InnoMathEd project provided a home for the collection and it is a nice 
environment to create and evaluate teaching/learning activities. The adoption of 
techniques from virtual reality and gaming edutainment makes the animations and 
the applications more appealing.

Conclusion and Future Plans

The set of virtual models and the library described in this paper are still under 
construction. Most likely they will never be finished as long as new models and 
devices are continuously being added. All models are available for free both as 
source codes and as 30-s clips.

The first classroom evaluation of the proposed interactive 3D models will be com-
pleted by mid-2011 within the InnoMathEd project and the results will be reported 
in future papers. The work described in this paper is focused solely on the design 
and the development of the software tools. The pedagogical aspects of their applica-
tion will be researched in the next phase of the project.

The software by itself does not imply that it is effective for educational purposes, 
because technology in education is educationally neutral. Whether its use is effective 
or not in the classroom, depends on how it is used. In this respect, the presented 
software provides educational perspectives that are not feasible in the traditional 
mathematical textbooks and are not used by the modern DGS. Whether these 
perspectives will be utilized, is related to the actual application in the classroom.

The major expected benefits of using the presented models are: (1) to provide 
multiple real-life representations of conic sections; (2) to demonstrate the main 
properties of conics in a clear way; and (3) to build engaging and entertaining virtual 
environment, which utilizes the power of ICT in areas, where conventional text-
books fail.
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