
Chapter 2
Detection of Parametric Roll for Ships

Roberto Galeazzi, Mogens Blanke, and Niels K. Poulsen

2.1 Introduction

Observations of parametric resonance on ships were first done by Froude [9, 10]
who reported that a vessel, whose frequency of oscillation in heave/pitch is twice
its natural frequency in roll, shows undesirable seakeeping characteristics that can
lead to the possibility of exciting large roll oscillations. Theoretical explanations
appeared in the 20th century, see [26, 35] and references herein, and parametrically
induced roll has been a subject in maritime research since the early 1950s [23]
and [32]. The report by France et al. [8] about the APL China incident in October
1998 accelerated the awareness and parametric roll resonance became an issue
of key concern. Døhlie [7] emphasized parametric resonance as a very concrete
phenomenon, which will be able to threaten some of the giants of the sea in common
passage conditions, which were previously considered to be of no danger.

Publications addressing parametric roll on container ships include [3,5,17,20,21,
24,33,34,36]. Fishing vessels were in focus in [27,28]. A main topic of this research
has been to analyse the nonlinear interactions between roll and other ships’ motions
and develop models, which could predict vessels’ susceptibility to parametric roll
at the design stage. However, commercial interest is to maximize cargo capacity.
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Hull designs have not been significantly changed and parametric resonance is left
as a calculated risk. Therefore, there is a need to enhance safety against parametric
roll through on-board detection and decision support systems.

First generation warning systems are based on longer horizon analysis of ship’s
responses and they provide polar diagrams with risk zones in speed and heading.
These are found in commercial products as the SeaSense [30] and the Amarcon’s
OCTOPUS Resonance.1 For detection of the resonant bifurcation mode, Holden
et al. [19] proposed an observer based predictor that estimates the eigenvalues of
a linear second-order oscillatory system. This algorithm issues a warning when
eigenvalues have positive real parts. The method works convincingly but was
designed to cope with excitation by narrow band regular waves. Irregular sea
conditions were studied by McCue and Bulian [25] who used finite time Lyapunov
exponents to detect the onset of parametric roll, but this method was not found to
possess sufficiently robustness when validated against experimental data.

Starting from early results outlined in [12,13] this chapter re-visits the core of the
theory of parametric resonance and proposes signal-based methods for detection of
parametric roll [11]. Development of a robust warning system for detecting the onset
of parametric roll is discussed, and it is shown possible to obtain based solely on
signals. The core of the method is shown to consist of two detection schemes:
one in the frequency domain, a second in the time domain. The frequency-based
detector uses an indicator of spectral correlation between pitch or heave and the
roll. A time-based detector exploits the phase synchronization between the square
of the roll and of pitch. A generalized likelihood ratio test (GLRT) is derived for a
Weibull distribution that is observed from data and adaptation is employed to obtain
robustness in reality with time-varying weather conditions. Robustness to forced roll
motion is also discussed and the detection system’s performance is evaluated on two
data sets: model test data from towing tank experiments and data from a container
vessel experiencing an Atlantic storm.

2.2 Parametric Roll – Conditions and Underlying Physics

This section presents empirical experience and introduces a mathematical treatment
of parametric roll resonance.

2.2.1 Empirical Conditions

Empirical conditions have been identified that may trigger parametric roll reso-
nance:

1http://www.amarcon.com

http://www.amarcon.com
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1. the period of the encounter wave is approximately equal to half the roll natural
period (Te ≈ 1

2 Tφ )
2. the wave length is approximately equal to the ship’s length (λw ≈ LPP)
3. the wave height is greater than a ship-dependent threshold (hw > h̄s)

When these conditions are met, and the ship sails in moderate to heavy longitudinal
or oblique seas, then the wave passage along the hull and the wave excited vertical
motions result in variations of the intercepted water-plane area and in turn, they
change the roll restoring characteristics. The onset of parametric resonance causes
a quick rise of roll oscillation, which can reach amplitudes larger than ±40◦
([6, 8]), and it may bring the vessel into conditions dangerous for cargo, crew, and
hull integrity. Damages produced by parametric roll to the post-Panamax container
ship APL China had a price tag of USD 50 millions in 1998 [15].

2.2.2 Mathematical Background

Consider a vessel sailing in moderate head regular seas and let the wave elevation
be modeled as a single frequency sinusoid

ζ (t) = Aw cos(kxcos χ − kysinχ −ωet),

where Aw is the wave amplitude, ωe the wave encounter frequency, k the wave
number, and χ the wave encounter angle. In head seas the wave encounter angle
is χ = 180◦, and

ζ (t) = Aw cos(kx+ωet).

The incident wave gives rise to forces and moments acting on the hull. In head
seas, conventional forced roll cannot occur since forces and moments from wave
pressure on the hull have no components perpendicular to the ship, but motions in
the vertical plane are clearly excited. Heaving and pitching cause periodic variations
of the submerged hull geometry. In particular, during a wave passage, the intercepted
water-plane area SW changes from the still water case SW0 , causing a variation of the
position of the center of buoyancy [29]. This in turn gives rise to a modification of
the transverse metacentric height GM and also to a new position of the metacenter
M. The center of gravity G depends upon the ship’s loading condition and is fixed.
Consequently the periodic fluctuation of GM, which can be considered sinusoidal,

GM(t) = GM+GMa cos(ωet)

influences the stability properties of the vessel through the roll restoring moment
that is approximated by:

τ(t)≈ ρg∇GM(t)sin φ ,
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where GM is the mean value of the metacentric height, GMa is the amplitude of
the variations of the metacentric height in waves, ρ is the water density, g is the
acceleration constant of gravity, and ∇ is the displaced volume.

The following situations alternate in a periodic manner:

• a wave trough is amidships: in this case SW > SW0 causing a larger restoring
moment (τ > τ0) and increased stability

• a wave crest is amidships: in this case SW < SW0 inducing a smaller restoring
moment (τ < τ0) and reduced stability.

If a disturbance occurs in roll when the ship is between the wave crest and trough
at amidships position, then its response will be greater than in calm water since it
is approaching a situation of instantaneous increased stability. Therefore the vessel
will roll back to a larger angle than it would have done in calm water. After the first
quarter of the roll period Tφ the vessel has rolled back to the zero degree attitude but
it continues towards port side due to the inertia. However now the ship encounters a
wave crest amidships, which determines a reduced restoring moment with respect to
that in calm water; therefore the ship rolls to a larger angle than it would have done
in calm water. As a result the roll angle is increased again over the second quarter
of the roll period, reaching a higher value than at the end of the first quarter. This
alternate sequence of instantaneous increased and reduced restoring moment causes
the roll angle to keep increasing unless some other factors start counteracting it.

Formally, this can be described as the interaction between coupled modes of
an autoparametric system, where the primary system is externally forced by a
sinusoidal excitation. In particular, let θ be the pitch angle, and φ be the roll angle.
Then the system reads

(
Iy −Mθ̈

)
θ̈ +Mθ̇ θ̇ +Mθ θ +Mφ 2φ2 = Mw cos(ωwt), (2.1)

(
Ix −Kφ̈

)
φ̈ +Kφ̇ φ̇ +Kφ φ +Kφ 3φ3 +Kφθ φθ = 0, (2.2)

where Ix, Iy are the rigid body inertia in roll and pitch; Kφ̈ , Mθ̈ are the added
inertia; Kφ̇ , Mθ̇ are the linear damping due to viscous effects; Kφ , Kφ 3 , Kφθ , Mθ ,
and Mφ 2 are the linear and the nonlinear coefficients of the restoring moments due
to hydrostatic actions; Mw, ωw are the amplitude and frequency of the wave induced
pitch moment. The model introduced above is not meant to precisely describe the
hull–wave interactions that determine the onset and development of parametric roll
on ships, but it simply tries to cast the roll–pitch dynamics within the autoparametric
resonance framework along the lines of [31].

System (2.1)–(2.2) can be rewritten as:

θ̈ + μ1θ̇ +ω2
1 θ +α1φ2 = κ cos(ωwt) (2.3)

φ̈ + μ2φ̇ +ω2
2 φ + εφ3 +α2φθ = 0 (2.4)
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with coefficients

μ1 =
Mθ̇

Iy −Mθ̈
, ω1 =

√
Mθ

Iy −Mθ̈
, α1 =

Mφ 2

Iy −Mθ̈
, κ =

Mw

Iy −Mθ̈

μ2 =
Kφ̇

Ix −Kφ̈
, ω2 =

√
Kφ

Ix −Kφ̈
, α2 =

Kφθ

Ix −Kφ̈
, ε =

Kφ 3

Ix −Kφ̈
.

The so-called semi-trivial solution of the system (2.3)–(2.4) can be determined
by posing

θ (t) = θ0 cos(ωwt + ς) (2.5)

φ(t) = 0 (2.6)

and by substituting θ (t) and φ(t) into (2.3) and (2.4) it yields

θ0 =
κ

√(
ω2

1 −ω2
w

)2
+ μ2

1 ω2
w

. (2.7)

The stability of the semi-trivial solution is investigated by looking at its behavior in
a neighborhood defined as:

θ (t) = θ0 cos(ωwt + ς)+ δθ(t), (2.8)

φ(t) = 0+ δφ(t), (2.9)

where δθ and δφ are small perturbations. Substituting (2.8) and (2.9) into the system
(2.3)–(2.4), and linearizing about the semi-trivial solution the following system is
obtained

δ̈θ + μ1δ̇θ +ω2
1 δθ = 0 (2.10)

δ̈φ + μ2δ̇φ +
(
ω2

2 +α2θ0 cos(ωwt + ς)
)

δφ = 0. (2.11)

Equation (2.10) has the solution δθ = 0, which is exponentially stable since μ1 > 0.
Therefore, the stability of the semi-trivial solution is fully determined by (2.11),
which is referred to as the damped Mathieu equation. By applying Floquet theory
[16] it is possible to show that (2.11) has its principal instability region for ω2 ≈
1
2 ωw, and its boundary is given by:

1
4

μ2
2

ω2
w
+

(
ω2

2

ω2
w
− 1

4

)2

=
1
4

α2
2 θ 2

0

ω4
w

. (2.12)
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This boundary condition can be used to determine the critical value κc of the external
excitation, which triggers the parametric resonance in the secondary system. In
particular substituting (2.7) into (2.12) we obtain

κc = 2
ω2

w

√(
ω2

1 −ω2
w

)2
+ μ2

1 ω2
w

α2

√
1
4

μ2
2

ω2
w
+

(
ω2

2

ω2
w
− 1

4

)2

. (2.13)

For κ > κc the semi-trivial solution becomes unstable, and a nontrivial solution
appears which is given by:

θ (t) = θ1 cos(ωwt + ς1), (2.14)

φ(t) = φ0 cos

(
1
2

ωwt + ς2

)
, (2.15)

where

θ1 =
2ω2

w

α2

√
1
4

μ2
2

ω2
w
+

(
ω2

2

ω2
w
− 1

4

)2

(2.16)

and φ0 grows over time.
The system (2.3)–(2.4) shows a saturation phenomenon both in pitch and in roll.

For values of the excitation amplitudes between 0 and κc the semi-trivial solution is
hence stable with an amplitude that grows linearly with κ , as shown in (2.7). When
the amplitude of the external excitation becomes larger than κc then the semi-trivial
solution loses stability and a nontrivial solution appears. In particular (2.16) shows
that the amplitude of the solution of the primary system stays constant, whereas the
amplitude of the secondary system grows with increasing κ . Therefore, when the
excitation amplitude increases, the amount of energy stored in the primary system
stays constant and the entire energy rise flows to the secondary system. The rate
at which energy is pumped into the secondary system is not constant but varies
according to the change of the phase ς2, which is connected to the variation of the
amplitude φ0 through the nonlinearity in the restoring moment. When the rate at
which energy being dissipated by viscous effects has matched the rate at which
energy is transferred to the roll subsystem, the system reaches a steady state motion
characterized by a constant amplitude φ0 and a phase shift ς2 = π . Figure 2.1 shows
the development of parametric roll resonance while the amplitude of the excitation
κ̄ = κ/κc increases: the stability chart clearly illustrates in the parameter space how
the stability properties of the secondary system changes in response to a variation
of the amplitude of the external excitation.

Concluding, parametric roll is a resonance phenomenon triggered by existence
of the frequency coupling ωw ≈ 2ω2, and whose response shows a phase synchro-
nization of 180◦ with the parametric excitation.
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Fig. 2.1 Parametric resonance in the pitch–roll auto-parametric system: (left) stability diagram of
the secondary system for different levels of damping, and different amplitude of the excitation;
(right) pitch and roll time series evolution

2.3 Detection Methods

Change detection is often based on a statistical test between a hypothesis H0 and
an alternative H1. The hypothesis H0 is related to the normal situation whereas the
alternative is related to a deviation from normal.

Assume the data available for the test are Y = [y(1), . . . ,y(N)], and that it is
possible to assign a distribution of the data for the normal (fault free) case p(Y;H0)
and for the not-normal (faulty) case p(Y;H1), as shown in Fig. 2.2.

Applying the Neyman–Pearson strategy (see, e.g., [2, 22] or [4]) H1 will be
decided if

L(Y) =
p(Y;H1)

p(Y;H0)
> γ, (2.17)

where γ is a design parameter. The function L(Y) is referred to as the likelihood
ratio. Then the detection process can be seen as a mapping from a data manifold
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Fig. 2.2 Top: Distributions of data in the fault free case H0 and in the faulty case H1. Bottom:
Data when a fault occur at t = 100

into a decision manifold. When testing between two simple hypothesis the decision
manifold is divided into two regions defined as:

R0 = {Y : decide H0 or reject H1}
R1 = {Y : decide H1 or reject H0} ,

where R1 is called the critical region.
Performing a statistical test, two types of erroneous decisions can be made.

A false alarm if deciding H1 while H0 is true, or a missed detection if deciding
H0 while H1 is true.

While H1 true, the probability of false alarm is PFA = P(H1;H0) and the
probability of correct detection is PD = P(H1;H1). Both depend on the threshold γ
chosen, as illustrated in Fig. 2.2. In a simple test situation (the distribution of data
is known in both the normal and in the faulty situation) the Neyman–Pearson test in
(2.17) maximizes PD for a given PFA.

In the composite situation, where the two distributions are not precisely known,
but they depend on some unknown parameters, the generalized likelihood ratio test
results in deciding H1 if

L(Y) =
p(Y; θ̂ 1,H1)

p(Y; θ̂ 0,H0)
> γ, (2.18)



2 Detection of Parametric Roll for Ships 25

where θ̂ i is the maximum likelihood estimate (MLE) of θ i, i.e.,

θ̂ i = max
θ

L(Y|θ i;Hi) . (2.19)

The specific detection methods that follow below are patent pending [11].

2.3.1 Detection in the Frequency Domain

In Sect. 2.2 it was shown that the onset and development of parametric roll is
attributable to the transfer of energy from the pitch mode (but also heave motion
can contribute), directly excited by the wave motion, to the roll mode, at a frequency
about twice the natural roll frequency. Therefore, an increase of power of roll square
close to the frequencies where pitch is pumping energy into roll may be exploited
as an indicator of parametric resonance.

Given two signals, e.g., x(t) and y(t), the cross-correlation provides a measure
of similarity of the two waveforms as a function of time lag. If the two signals are
discrete sequences then the cross-correlation and cross-spectrum are defined as:

rxy[m] �
∞

∑
m=−∞

x∗[m]y[n+m],

Pxy(ω) �
∞

∑
m=−∞

rxy[m]e− jωm, (2.20)

where m is the time lag, and ∗ denotes complex conjugate. The functions carry
information about which components are held in common between the two signals
and since it is the roll sub-harmonic regime addressing the onset of parametric roll
resonance, the detection problem can be set up as monitoring the cross-spectrum of
φ2[n] and θ [n].

The parametric roll detection problem is then formulated as:

H0 : Pφ 2θ (ω)≤ P̄, (2.21)

H1 : Pφ 2θ (ω)> P̄,

where P̄ is a power threshold. Instead of using directly the cross-spectrum, a spectral
correlation coefficient could be exploited, defined as:

Sφ 2θ �
σ2

φ 2θ√
σ2

φ 2σ2
θ

. (2.22)

where σ2
φ 2θ is the average power of the cross-spectrum of φ2 and θ , σ2

φ 2 is the

average power of the square of the roll angle, and σ2
θ is the average power of the

pitch angle.
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Fig. 2.3 Model tank experiment 1195: alignment of peaks between pitch θ and roll φ during the
onset and development of parametric roll

The detection problem can then be rewritten as:

H0 : Sφ 2θ ≤ S̄ ,

H1 : Sφ 2θ > S̄ , (2.23)

where S̄ is a measure of the level of spectral correlation.

2.3.2 Detection in the Time Domain

2.3.2.1 Statistics of the Driving Signal

After onset, parametric roll resonance is characterized by nonlinear synchronization
between motions. Døhlie [7] pointed out that when parametric roll develops there
is a lining up of peaks between the pitch motion and the roll motion, that is, every
second peak of pitch is in-phase with the peak in roll, as shown in Fig. 2.3. Figure
2.3 also shows that when this alignment is partially lost, the roll oscillations start
decaying, as e.g., between 150 s and 250 s, or after 300 s. Therefore, a signal which
carries the phase information of pitch and roll could be exploited for solving the
detection problem.
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Fig. 2.4 Negative and positive peaks in d address how the amplitude of the roll oscillations
increases and decreases. Data from model basin test

Following [13], given the roll angle φ and the pitch angle θ , the signal indicating
the parametric resonance in roll is defined as:

d (t)� λ (t)φ2 (t)θ (t) , (2.24)

where the time-varying scaling factor 0 < λ (t) ≤ 1 is introduced to reduce the
sensitivity to variations in sea state. Consider Fig. 2.4, where φ (t) and d (t) are
plotted for one experiment without parametric roll (Exp. 1194) and another with
parametric roll (Exp. 1195). The driving signal d(t) characterizes quite well the
way the amplitude grows or decays inside the signal φ . When the amplitude of φ
abruptly grows, a sequence of negative spikes shows up in the driving signal. In
contrast, when the amplitude of φ decreases, positive spikes reflect this in d(t).

Moreover, when parametric roll is developing, the magnitudes of the negative
spikes in the driving signal are much larger than that seen when the roll mode is not
in a resonant condition (Fig. 2.4, middle plots). Therefore, a significant variation
in the variance of the driving signal d(t) can be expected when parametric roll is
developing. An alternative to directly using the d(t) signal would be to use the
amplitude of local minima between up-crossings,

z(k)�−min(d(t)), t ∈ ]T (k− 1),T (k)], (2.25)

where T (k) are the time-tags of up-crossings in d(t).
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Fig. 2.5 Auto-correlation of driving signal d(t) and local minima z(k). Data from Atlantic passage
during a storm

An important condition for subsequent statistical testing and correct selection
of thresholds, is that data are independent and identically distributed (IID). A
plot of the autocorrelation functions of d(t) and z(k) under the hypothesis H0 is
shown in Fig. 2.5. The driving signal d(t) is heavily correlated due to the narrow-
band process that creates this signal. The autocorrelation of the local minima z(k)
have a smooth roll-off with a forgetting factor of 0.3. If whitening of z(k) should
subsequently be needed, a simple discrete filter could be employed for this purpose.
The autocorrelation behavior makes z(k) a natural choice for subsequent statistical
analysis in the time-domain.

As to the distribution of z(k), a scrutiny showed that a Weibull distribution
characterizes z(k) quite well. The Weibull distribution, which is defined only for
z > 0, has cumulative density function, CDF:

P(z) = 1− exp

(
−
( z

υ

)β
)

(2.26)

and probability density function, PDF:

p(z) =
β

2υβ (z)β−1 exp

(
−
( z

υ

)β
)
, (2.27)

where υ and β are scale and shape parameters, respectively.
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According to the observations from model test data, a good way to discriminate
between resonant and nonresonant cases is to look for a variation in signal power. In
particular, the bottom plots of Fig. 2.4 show that the onset of parametric resonance
in roll is preceded by an abrupt variation of the amplitude of z(k); therefore, a
detector which looks for large changes in signal power is aimed at. For the Weibull
distribution the variance is given by:

σ2 = υ2
[

Γ
(

1+
2
β

)
−Γ 2

(
1+

1
β

)]
.

Hence the detection scheme must trail variations in scale and shape parameters.

2.3.2.2 GLRT for Weibull Processes (W -GLRT)

Assume that the local minima z(t) of the driving signal is a realization of a Weibull
random process. Then the distribution of N independent and identically distributed
samples of z is characterized by the probability density function:

W (z;θ ) =
(

β
2υβ

)N N−1

∏
k=0

[
zβ−1

k exp

(
−
(zk

υ

)β
)]

, (2.28)

where θ = [υ ,β ]T is the parameter vector fully describing the Weibull PDF.
The detection of parametric roll can be formulated as a parameter test of the

probability density function:

H0 : θ = θ 0, (2.29)

H1 : θ = θ 1,

where θ 0 is known and it represents W in the nonresonant case, whereas θ 1 is
unknown and it describes the parametric resonant case. By applying the generalized
likelihood ratio test, the detector decides H1 if

LG (z) =
p
(
z; θ̂ 1,H1

)

p(z;θ 0,H0)
> γ, (2.30)

where the unknown parameter vector θ1 is replaced with its maximum likelihood
estimate θ̂ 1, and γ is the threshold given by the desired probability of false alarms.

The first step in computing LG is to determine θ̂ 1 =
[
υ̂1, β̂1

]T
, therefore we need

to maximize p
(
z; θ̂ 1,H1

)
. Given p

(
z; θ̂ 1

)
the estimates of the parameters υ1 and

β1 are computed as:
∂ ln p

(
z; θ̂ 1

)

∂θ j
= 0
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which results in

υ̂1 =

(
1
N

N−1

∑
k=0

zβ̂1
k

) 1
β̂1

(2.31)

1

β̂1
=

∑N−1
k=0 zβ̂1

k lnzk

∑N−1
k=0 zβ̂1

k

− 1
N

N−1

∑
k=0

lnzk . (2.32)

Balakrishnan and Kateri [1] have shown that β̂1 exists, it is unique, and its value is
given by the intersection of the curve 1/β̂1 with the right-hand side of (2.32).

Having determined the MLEs υ̂1 and β̂1 it is then possible to derive an explicit
form for the detector. By taking the natural logarithm of both sides of (2.30),

ln

(
β1

2υβ1
1

)N N−1

∏
k=0

[
zβ1−1

k exp

(
−
(

zk
υ1

)β1
)]

(
β0

2υβ0
0

)N N−1

∏
k=0

[
zβ0−1

k exp

(
−
(

zk
υ0

)β0
)] > lnγ ⇒

N ln

(
β1

β0

υβ0
0

υβ1
1

)

+(β1 −β0)
N−1

∑
k=0

lnzk −
N−1

∑
k=0

(
zk

υ1

)β1

+
N−1

∑
k=0

(
zk

υ0

)β0

> lnγ, (2.33)

where the parameters [β1,υ1] are replaced by their estimates.
Data show that the shape parameter is approximately the same under both

hypothesis, β1 = β0 = β , then the GLRT reads

Nβ ln

(
υ0

υ̂1

)
+

υ̂β
1 −υβ

0

(υ0υ̂1)
β

N−1

∑
k=0

zβ
k > lnγ ⇒

Nβ ln

(
υ0

υ̂1

)
+N

υ̂β
1 −υβ

0

υβ
0

> lnγ. (2.34)

Therefore the test quantity g(k) is

g(k) =

(
υ̂1(k)

υ0

)β
− 1−β ln

(
υ̂1(k)

υ0

)
(2.35)

and the threshold where H1 is decided is

g(k)>
lnγ
N

≡ γg. (2.36)
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Fig. 2.6 Test statistics g(k) observed in heavy weather conditions with forced roll. Data from
Atlantic passage during a storm. A Weibull distribution fits the data well

Asymptotically, as N → ∞ a theoretical value exists for γ , independent of distribu-
tion of z(k). However, since only few peaks are used here, the distribution of g(k)
need be investigated and the value of the threshold γg need be determined from this
distribution.

2.3.2.3 Selection of Threshold

Selection of the threshold γg to obtain a sufficiently low false alarm rate, depends
on the statistics of g(k) in (2.35) under assumption H0. Given the test signal
g(k), which behaves according to the PDF p(g;H0) under the hypothesis H0, the
threshold γg, which obtains a given false alarm probability, follows from

PFA =

∫

{g:LG(g)>γg}
p(g;H0)dg. (2.37)

Since the GLRT runs over only few peaks to obtain rapid detection, asymptotic
results for the distribution of g(k) are not applicable. Instead, the distribution
p(g;H0) can be reliably estimated from data. A plot of the histogram of the test
statistics g(k) is shown in Fig. 2.6 together with the estimated Weibull distribution.
The data used are recordings from a container vessel during 9 h of navigation
through an Atlantic storm.
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Having obtained the parameters υ0g and β0g of the Weibull distribution for
g(k) under H0, W (g(k);H0), the threshold for a desired false alarm probability
is obtained from

1−PFA = 1− exp

(

−
(

γg

υ0g

)β0g
)

(2.38)

or

γg = υ0g (− lnPFA)
1

β0g . (2.39)

For the hypothesis H0 shown in Fig. 2.6 the Weibull fit is characterized by υ0 =
0.70± 0.04 and β0 = 0.99± 0.04; hence to obtain a probability of false alarms
PFA = 0.0001, the threshold must be set to γg = 5.0.

2.3.2.4 Robustness Against Forced Roll

For a real ship sailing in oblique short-crested seaways some forced roll with
frequency equal to the encounter frequency will always occur. This does not obscure
the proposed detection schemes since both the spectral correlation coefficient and
the GLRT for nonGaussian processes are insensitive to forced roll.

Consider pitch and roll as narrow-band signals:

θ (t) s.t. Θ(ω) = 0 for |ω −ωθ | ≥ Ωθ ,

φ(t) s.t. Φ(ω) = 0 for |ω −ωφ | ≥ Ωφ ,

where Θ(ω) and Φ(ω) are the spectra of pitch and roll centered at the center
frequency ωθ and ωφ respectively. The bands of the spectra are given by Bθ =
{ω s.t. |ω −ωθ | < Ωθ} and Bφ = {ω s.t. |ω −ωφ | < Ωφ}, where Wθ = 2Ωθ and
Wφ = 2Ωφ are the bandwidths.

If ωθ = ωe = 2ωφ , as in parametric resonance, then Bθ = {ω s.t. |ω − 2ωφ | <
Ωθ}, hence the spectrum of the square of the roll angle overlaps in large part or
completely the pitch spectrum. With pitch and the roll signals:

θ (t) = θ0(t)cos(2ωφ t +ψθ (t)) (2.40)

φ(t) = φ0(t)cos(ωφ t +ψφ (t)) (2.41)
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the spectra of pitch and of the square of roll are

Θ(ω) =
1
2

[
Θi(ω − 2ωφ )+Θi(ω + 2ωφ)

−Θq(ω − 2ωφ)−Θq(ω + 2ωφ )
]

(2.42)

Φ2(ω) =
1
2

[
Φ0(ω)+Φi(ω − 2ωφ )+Φi(ω + 2ωφ)

−Φq(ω − 2ωφ)−Φq(ω + 2ωφ )
]
. (2.43)

Here Θi = F (θ0(t)cos(ψθ (t))), and Θq = F (θ0(t)sin(ψθ (t))) are the Fourier
transforms of the in-phase and quadrature components of the pitch angle; whereas
Φ0 = F (φ2

0 (t)), Φi = F (φ2
0 (t)cos(2ψφ (t))), and Φq = F (φ2

0 (t)sin(2ψφ (t))) are
the Fourier transform of the DC, in-phase and quadrature components of the second
power of roll. Therefore, by applying the cross-correlation theorem to the signals at
hand,

Pφ 2θ =
1
4

[
ΦiΘi(ω − 2ωφ)+ΦiΘi(ω + 2ωφ)+ΦqΘq(ω − 2ωφ )

+ΦqΘq(ω + 2ωφ )−ΦiΘq(ω − 2ωφ)−ΦiΘq(ω + 2ωφ)

−ΦqΘi(ω − 2ωφ)−ΦqΘi(ω + 2ωφ )
]
. (2.44)

The cross-spectrum is different from zero since φ2(t) and θ (t) are centered at the
same frequency; hence the spectral correlation coefficient is different from zero and
it can be used for detecting parametric roll.

Consider now a ship sailing in near head seas condition. The lateral component
of wave force excites roll motion directly, hence pitch and roll both respond at the
same frequency (ωφ = ωθ = ωe). The cross-spectrum in this case is equal to zero,

Pφ 2θ =
1
4

[
Θi(ω −ωe)+Θi(ω +ωe)−Θq(ω −ωe)−Θq(ω +ωe)

]

× [
Φ0(ω)+Φi(ω − 2ωe)+Φi(ω + 2ωe)

−Φq(ω − 2ωe)−Φq(ω + 2ωe)
]
= 0, (2.45)

since the spectra are different from zero only around ω = ωe or ω = 2ωe. Therefore
the spectral correlation coefficient is zero, showing that the proposed detection
method is insensitive to forced roll.

The GLRT for the Weibull distribution of the local minima z(k) is also proven to
be insensitive to forced roll. Consider pitch and roll as sinusoidal signals:

θ (t) = θ0 cos(ωθ t + ς) (2.46)

φ(t) = φ0 cos(ωφ t). (2.47)
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In forced roll condition, roll and pitch are sinusoids of the same frequency (ωθ =
ωφ = ω), which yields the following driving signal:

d(t) = φ2(t)θ (t)

= φ2
0 θ0 cos2 (ωt)cos(ωt + ς) . (2.48)

According to (2.25) we have that

z(k) = α(ς)φ2
0 θ0 ≤ φ2

0 θ0, 0 < α(ς) ≤ 1, (2.49)

where α(ς) is the amplitude reduction factor due to the phase shift between the two
wave forms.

To prove that the GLRT detector is not sensitive to forced roll, we need to
demonstrate that there exists a constant Γ such that for any γ > Γ the detector does
not trigger an alarm. In general Γ is function of the phase shift ς and of the time
interval ΔT over which the estimates of the scaling and shape factors are performed.
In particular the time interval ΔT determines how many local minima are taken into
account for the detection.

To find Γ we need to prove that

(β1 −β0)
N

∑
k=1

logz(k)− 1

υβ1
1

N

∑
k=1

z(k)β1 +
1

υβ0
0

N

∑
k=1

z(k)β0 (2.50)

is upper bounded. For any ΔT ∈ [0 , T ], where T = 2π/ω is the natural roll period,
the GLRT detector is not sensitive to forced roll if the threshold γ is set larger than

Γ � Nmax(β1 −β0) log(φ2
0 θ0)− Nmax

υβ1
1

(φ2
0 θ0)

β1 +
Nmax

υβ0
0

(φ2
0 θ0)

β0 , (2.51)

where Nmax is the maximum number of local minima, which fall within one roll
period.

2.4 Detection System Robustification

The proposed detection schemes rely on assumptions, which in general may not
be completely fulfilled during real navigation operations. The spectral correlation
performs best when the signals at hand have a narrow band power spectrum because
in that case the Fourier transform of the convolution between the second power of
roll with pitch will be zero most of time except when parametric roll is developing.
However, in real sailing conditions the wave spectrum exciting the ship motions can
be rather large, and it induces ship responses whose frequency content spans over
a wide range of frequencies as well. Figure 2.7 compares the power spectra of time
series recorded during an experiment in a towing tank, and during a container vessel
voyage through an Atlantic storm.
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Fig. 2.7 Comparison of power spectra for model basin and Atlantic storm

During real navigation, the roll and pitch motions have an energy content
different from zero over a wide range of frequencies, and this will contribute to
determine a nonzero spectral correlation also in these regions of frequencies where
parametric roll is not likely. Consequently robustification of the spectral correlation
is needed.

This is obtained by bandpass filters that narrow in the roll and pitch signals
frequency ranges of interest. The pass-bands regions are centered about ωφ and
ωe = 2ωφ , to focus on frequency ranges where parametric roll resonance can
develop. The spectral correlation hence takes the form

fSφ 2θ =

fσ2
φ 2θ√

σ2
φ 2σ2

θ

, (2.52)

where the superscript f addresses that the computation involves the filtered signals.
The normalization factor in (2.52) is still calculated from the raw roll and pitch
signals.

For the phase condition (GLRT) detector, a time-varying scaling factor λ (t) is
applied to the driving signal in (2.24) to adapt to weather conditions. Furthermore,
the H0 parameters are estimated on-line. These together served to obtain desired
false alarm rates and make the GLRT detector insensitive to changes in sea state.
Assume that we are at time t = T and the GLRT is fed with data logged within
the window [T −M + 1,T ]. The scaling factor λ is computed taking into account
all the data from the time window [T − n ∗M+ 1,T −M], where n ∈ N is a design
parameter.
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Utilizing the W -GLRT detector we should assume that the Weibull PDFs for the
nonresonant and resonant case differ both for the shape β and scale υ parameters.
In Sect. 2.3.2.2 it was shown that the MLE of the shape parameter is found as a
solution of a nonlinear equation, which in practice must be solved at each iteration
of the algorithm. However, data show that the shape factor remains approximately
unchanged, hence, β0 = β1 = β . Therefore, the W -GLRT detector only looks for
variations in the scale parameter υ .

Finally, it is important to point out how the thresholds were chosen. For the cross-
correlation, the spectral correlation coefficient fSφ2θ varies between zero and one,
hence the threshold S̄ can be set to any value higher than 0.4 according to how
conservative the detector should be.

For the GLRT-based detector it was shown that an empirical threshold can be
computed based on the estimated H0 distribution of the test quantity g(k).

2.5 Detection Scheme Validation

This section presents the validation of the detection schemes on both model scale
and full scale data sets. After introducing the data sets, the performance of the
Weibull GLRT detector is evaluated in both scenarios. Next, the overall robust
performance of the monitoring system given by the integration of the spectral
correlation detector with the W -GLRT detector is tested. For the performance
assessment of the spectral correlation detector the reader may refer to [14].

2.5.1 Experimental and Full Scale Data Sets

To assess the performance of the proposed detection schemes for parametric roll
the detectors have been validated against two data sets. The first data set consists
of eight experiments run in irregular waves scenario.2 The vessel used for the
experiments was a 1:45 scale model of a container ship with length overall of 294 m.
The principal dimensions and hydrodynamic coefficients can be found in [18]. The
time-history of roll is shown in Fig. 2.9 (top plot). Although the vessel experienced
parametric roll only once, all the experiments were made to trigger the resonant
phenomenon, but in the irregular wave scenario it is somewhat difficult to obtain a
fully developed parametric roll resonance, because consecutive wave trains may not
fulfill all conditions for its development.

2The terminology irregular wave scenario means that the wave motion used to excite the vessel is
generated by the interference of multiple sinusoidal waves centered at different frequencies, and it
is described by a given power spectrum. This terminology is used in opposition to the regular wave
scenario where instead the vessel is excited by a single sinusoidal wave.
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Fig. 2.8 The evolution of the pitch power spectrum provides an idea of the frequency content of
the wave spectrum during the navigation

The second data set is full scale data recorded on board Clara Maersk, a
33000 dwt container ship crossing the North Atlantic. Nine hours of navigation were
analyzed. Conditions were significant wave height judged by navigators to develop
from 5–6 m to 7–10 m. Relative direction of waves were 150◦–170◦ where 180◦
is head sea. The pitch power spectrum shown in Fig. 2.8 provides an idea of the
broad frequency content of the wave spectrum exciting the container ship during the
storm.

For this data set it is essential to point out that there was no prior awareness about
the onset of parametric roll resonance; hence the assessment of detections and/or
false alarms was done by visual inspection of the time series around the alarm time.

The model test experimental data set is used to evaluate the capability of the
detectors to timely catch the onset of parametric roll; whereas the real navigation
data set is used to ensure the insensitivity to usual forced roll.

In order to simulate a continuous navigation the single records of the two data
set have been stitched together. A smoothing filter was applied around the stitching
points to avoid that sudden fictitious variations within the signals at hand could
trigger an alarm. Hence the roll time series scrutinized are those shown in Fig. 2.9.
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Fig. 2.9 Top: Roll motion time series recorded from experimental runs. Experiment 1195 is the
only one where parametric roll clearly developed. Bottom: Roll motion time series recorded during
navigation across the North Atlantic Ocean

2.5.2 Validation of Weibull GLRT Detector

Figures 2.10 and 2.11 show the results of the Weibull GLRT detector after
processing the model and full scale data sets.

On the experimental data set the Weibull GLRT detector performs well.
Figure 2.10 illustrates that the parametric roll event that occurs between t = 70 min
and t = 90 min is timely detected when the roll angle is about 3◦. The lost of phase
synchronization is also detected by the Weibull GLRT, which withdraws the alarm at
t = 90 min when the roll motion decays and it seems that the parametric resonance
is over. However, a new alarm is suddenly raised when the resonant oscillations take
place again.

On the sea trial data set the Weibull GLRT detector raises five alarms, which
all last for exactly one window length M, as shown in Fig. 2.11. Since no prior
awareness about the presence/absence of parametric roll events was available for
this data set, the alarms have been classified by visual inspection and it was
concluded that all five cases are likely to be false alarms.

It is not surprising that a single detector cannot provide full information about
the resonance condition since both the phase synchronization and the frequency
coupling must be satisfied simultaneously. Robust detection performance therefore
needs simultaneous detection of the presence of both conditions.
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Fig. 2.12 Performance of the monitoring system on the model basin experimental data set

2.5.3 Robust Performance

The spectral correlation detector and the Weibull GLRT detector have shown fairly
good performance providing a timely detection but they both give false alarms.
To obtain the full picture, the two detectors are combined within a monitoring
system, which issues alarms of parametric roll occurrence based upon the tests
made by both detectors together. Furthermore, robustness is obtained by making the
adaptation to prevailing conditions only when none of the thresholds are exceeded.
This means the H0 statistics and the normalization of the spectral correlation in
practice are calculated from data that are older than the data windows used – a few
roll periods – and with appropriate forgetting to be able to track changes in weather.
The performance of the monitoring system with robustified algorithms is shown in
Fig. 2.12 for the model basin experimental data set, and in Fig. 2.13 for the real
navigation data. The general quality of detection performance is apparent.

The performance improvement of the Weibull GLRT detector when combined
with the spectral correlation detector is shown in Fig. 2.13. The reduction of false
alarms is determined by the fact that in this case the update of the scaling factor λ (t)
is related to the alarms raised by the monitoring system and not to those issued by
the Weibull GLRT detector alone.
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Fig. 2.13 Performance of the monitoring system on navigation data from Clara Maersk

2.5.4 Discussion

While the results have shown very convincing from model tank testing where
parametric resonance was present and Atlantic passage in a storm, where it was
believed, but not known with certainty that no parametric resonance was present,
an independent test with full-scale data would be needed for final proof of the
concepts and algorithms presented in this chapter. Such data have recently been
made available from trials where also wave radar data were logged. The results
with these data were convincing but this validation is outside the scope and space
allocated to this chapter. The monitoring system methodology and implementation
are patent pending [11], and is expected to find its way to the Seven Seas under the
trade mark PAROLL�.

2.6 Conclusions

Detection methods were investigated for the diagnosis of parametric roll resonance
and were validated against data from model basin tests and from a full-scale Atlantic
crossing with a container vessel.

In the spectral domain, spectral analysis provided an indicator for energy flowing
from the pitch motion, directly excited by the waves, into roll motion causing
resonance. In the time domain, a Weibull GLRT detector monitored the behavior
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of a driving signal carrying information about the phase correlation between the
square of the roll angle and the pitch angle. Robustness against usual forced roll
motion was shown for both detectors.

The detectors showed to be very capable of timely detecting the onset of
parametric roll, while achieving a very low false alarm rate. A necessary part of
achieving excellent overall detection performance was obtained by combining the
hypotheses from the two detectors.
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