
Chapter 15
Controlling Parametric Resonance: Induction
and Stabilization of Unstable Motions

Roberto Galeazzi and Kristin Y. Pettersen

15.1 Parametric Resonance: Threat or Advantage?

Parametric resonance is a well-known resonant phenomenon, which can determine
the instability of a system in response to small periodic variations of one of its
parameters. In the light of this simple description, the common sense suggests that
parametric resonance is a threat for any system where it can potentially onset. As
a matter of fact, if we restrain the analysis to marine structures and automotive
systems the former answer perfectly fits. For the last 12 years parametric roll
resonance on ships has been in focus of the maritime community as one of the
top stability related issues, and still it is. Several control strategies have been
proposed, which try to stabilize the large roll motion: backstepping controllers have
been designed to damp the resonant oscillations using, for example, active U-tanks
[5] or fin stabilizers [3]; an extremum seeking controller has been proposed to
detune the frequency synchronization by altering ship’s speed and/or course [2]. A
considerable effort has also been produced by the automotive research community,
in particular focusing on how periodic variations of the road profile can induce
unstable steering oscillations in motorcycles [8, 13].

However, if we look at a completely different class of systems it is possible to
find several applications where the onset of parametric resonance is an advantage.
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In micro-electromechanical systems parametric resonance phenomena are induced
in order to, for example, reduce the parasitic signal in capacitive sensing [16], or
to increase the sensitivity of mass sensors at the pico scale (10−12 g) [17],
or to increase robustness against parameter variations in micro-gyroscopes [12].
Analogous interests in capitalizing the large energy released by parametric resonant
oscillations to boost specific system features is also raising in the field of wave
energy exploitation. Here the idea is to induce parametric resonance in order to
increase the amount of energy producible by the converter [10, 11].

Therefore, by looking at the large variety of systems and possible applications
where parametric resonance may naturally occur or can be artificially induced, it
appears natural to investigate how active control strategies can be used in order
to either trigger the resonant phenomenon or to stabilize it. Starting from this
consideration, in this chapter the authors revisit some of the theory of parametric
resonance through the use of a mechanical equivalent, which can represent many of
the systems aforementioned, and they cast both the induction and the stabilization
of resonant oscillations as a tracking problem. An input–output feedback linearizing
controller is then designed and shown to be capable both of triggering parametric
resonance and stabilizing the unstable motion.

In particular, Sect. 15.2 introduces the mechanical system used in the analysis,
namely the pendulum with moving support, as a member of the class of autopara-
metric systems. Lagrangian description of the system’s dynamics is provided, and
the stability analysis of the open loop system is carried out. Section 15.3 formulates
the control problems, and it presents the design of the controller based on feedback
linearization theory. Section 15.4 illustrates the performance of the closed loop
system through simulation results. Section 15.5 draws some conclusions, and it
highlights possible future research paths.

15.2 Autoparametric Systems

Autoparametric systems consist of two or more vibrating components, which
interact in a nonlinear fashion [14]. The components are divided into the primary
system, which is usually in a vibrating state, and the secondary system, which is
usually at rest while the primary system is oscillating. This state is called semi-
trivial solution of the autoparametric system.

The excitation acts on the primary system under the form of external forcing, self-
excitation, parametric excitation, or a combination of those. Within certain intervals
of the excitation frequency the semi-trivial solution can become unstable, and the
system enters in autoparametric resonance. The vibrations of the primary system act
as parametric excitation on the secondary one, which will be no longer at rest.

Autoparametric systems in resonance condition can display different behaviors
including periodic, quasi-periodic, non-periodic, and also chaotic behaviors. More-
over, the occurrence of the resonance often goes along with saturation phenomena.
In particular, when the secondary system enters into parametric resonance it
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Fig. 15.1 Pendulum with
moving support. The
reference frame is
right-handed, therefore
positive rotations are
counterclockwise

functions as an energy absorber by draining energy from the external excitation
through the primary system. This entails a large increase of the amplitude of the
displacements of the secondary system whereas the oscillation’s amplitude of the
primary system is maintained as almost constant.

The energy absorbency of the secondary system can determine both undesirable
and desirable results. When parametric roll onsets on a ship, the roll motion becomes
the sink of the wave energy exciting the vessel, and the springing of violent roll
oscillations is definitely a troublesome outcome. Conversely if the resonance could
be induced in a wave energy converter, the capability of draining more energy out
of the wave motion will clearly be beneficial.

The difference between autoparametric resonance and parametric resonance
resides in the presence of a primary system driving the onset of the resonant
condition. For instance parametric roll on ships can be seen as either a parametric
resonance or an autoparametric resonance phenomenon depending on whether we
consider only the roll subsystem or we include the heave and/or pitch dynamics. In
the former case the parametric resonance origins as a results of the quasi-periodic
variations of the ship’s metacentric height, which is a parameter within the roll
dynamics; in the latter case are the oscillations in heave and/or pitch (primary
system), directly excited by the wave motion, which determine the onset of the
resonant behavior in roll.

15.2.1 Pendulum with Moving Support

A well-known autoparametric system is the pendulum with moving support, as that
represented in Fig. 15.1. The system consists of a pendulum, whose pivot point
is connected to a mass-spring-damper, which in turn is placed atop a cart. The
position of the pivot point can change both along the X and Y directions due to
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the vertical oscillation of the mass-spring-damper or to the horizontal displacement
of the cart. The mass-spring-damper together with the cart represent the primary
system, whereas the pendulum is the secondary system. The system is assumed
to be underactuated since no direct control action can be performed either on
the vertical motion of the mass-spring-damper or on the swinging motion of the
pendulum.

The mass-spring-damper is in a vibration state due to the action of an external
sinusoidal force; conversely the pendulum’s bob is not directly subject to any
force/moment apart from gravity, hence the secondary system is initially at rest.
In order to induce parametric resonance into the secondary system two conditions
must be fulfilled:

• The equilibrium position of the pendulum’s bob must be altered.
• The natural frequency of the pendulum must be approximately equal to half the

frequency of the external excitation.

Since the swinging of the pendulum cannot be directly actuated due to the absence
of a torque acting on the pivot point, the first requirement can be met by changing
the position of the cart, which will produce an inertia effect about the pivot point.
Considering that the natural frequency of a pendulum is a function of the length of
the pendulum’s rod, it is evident that in order to achieve the second requirement the
pendulum must have a variable length rod.

A four degrees-of-freedom model is first derived by applying Lagrange’s theory.
Then a stability analysis under the assumption of external sinusoidal excitation is
carried out to determine the stability conditions to be infringed in order to trigger
the resonant phenomenon.

15.2.1.1 Lagrangian Model

Consider a mass-spring-damper system of mass m1 oscillating under the action of
an external sinusoidal force Fy(t). A second mass m2 is attached to the bottom end
of a massless rod of variable length, whose pivot point is joint to the first mass m1.
The two masses are placed on top of a massless cart that is free to move along the
horizontal direction.

Said l0 the nominal length of the pendulum, the variable rod’s length is given by

l(t) = l0 + δl(t), ∀ t δl(t)>−l0,

where δl is the deviation from the nominal value. Then the vector of generalized
coordinates is defined as q � [xM,yM,θ ,δl ]

T, where (xM,yM) is the position of the
mass m1, and θ is the oscillation angle of the pendulum.

The equations of motion can be derived from Lagrange’s equations

d
dt

(
∂L (q, q̇)

∂ q̇

)
− ∂L (q, q̇)

∂q
= τ, (15.1)
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where
L (q, q̇) = T (q, q̇)−V (q) (15.2)

is the Lagrangian given by the difference between the kinetic energy T and the
potential energy V ; τ is the vector of the generalized forces that accounts for
unknown external forces (disturbances) τe and for control inputs τc

τ = τe + τc

=

⎡
⎢⎢⎣

0
Fe

y

0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

Fc
x

0
0

Fc
δ

⎤
⎥⎥⎦ .

Given the position (xM,yM) of the mass m1, the position of the mass m2 at any
given instant in time is given by the vector (in the following the notation sθ and cθ
stands for sinθ and cosθ , respectively)

rP :

{
xP = xM +(l0 + δl)sθ
yP = yM − (l0 + δl)cθ

, (15.3)

and its velocity by the vector

vP :

{
ẋP = ẋM +(l0 + δl) θ̇cθ + δ̇lsθ
ẏP = ẏM +(l0 + δl) θ̇ sθ − δ̇lcθ

. (15.4)

The kinetic energy of the (m1,m2)-system is then given by

T (q, q̇) =
1
2

q̇TM(q) q̇

=
1
2

m1
(
ẋ2

M + ẏ2
M

)
+

1
2

m2
(
ẋ2

P + ẏ2
P

)

=
1
2
(m1 +m2)

(
ẋ2

M + ẏ2
M

)
+

1
2

m2

[
(l0 + δl)

2 θ̇ 2 + δ̇ 2
l

+ 2(l0 + δl)(ẋMcθ + ẏMsθ ) θ̇ + 2δ̇l (ẋMsθ − ẏMcθ )
]
, (15.5)

where M(q) is the mass-inertia matrix

M(q) =

⎡
⎢⎢⎣

m1 +m2 0 m2 (l0 + δl)cθ m2sθ
0 m1 +m2 m2 (l0 + δl)sθ −m2cθ

m2 (l0 + δl)cθ m2 (l0 + δl) sθ m2 (l0 + δl)
2 0

m2sθ −m2cθ 0 m2

⎤
⎥⎥⎦

M(q) = MT (q) ;
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whereas the potential energy reads

V (q) =
1
2

ky2
M +m2g(l0 + δl)(1− cθ) (15.6)

with k being the spring constant of the mass-spring-damper. The Lagrangian is
hence given by

L (q, q̇) =
1
2
(m1 +m2)

(
ẋ2

M + ẏ2
M

)
+

1
2

m2

[
(l0 + δl)

2 θ̇ 2 + δ̇ 2
l

+ 2(l0 + δl)(ẋMcθ + ẏMsθ ) θ̇ + 2δ̇l (ẋMsθ − ẏMcθ )
]
− 1

2
ky2

M

−m2g(l0 + δl)(1− cθ ) , (15.7)

which gives rise to the following equations of motion

(m1 +m2)ẍM + d1ẋM

+m2

[
(l0 + δl)θ̈cθ − (l0 + δl)θ̇ 2sθ + 2δ̇lθ̇cθ + δ̈lsθ

]
= Fc

x , (15.8)

(m1 +m2)ÿM + d2ẏM + ky

+m2

[
(l0 + δl)θ̈ sθ +(l0 + δl)θ̇ 2cθ + 2δ̇lθ̇ sθ − δ̈lcθ

]
= Fe

y , (15.9)

m2(l0 + δl)
2θ̈ + d3θ̇ +m2(l0 + δl)gsθ

+m2(l0 + δl)
[
ẍMcθ + ÿMsθ + 2δ̇lθ̇

]
= 0 (15.10)

m2δ̈l + d4δ̇l

−m2
[
(l0 + δl)θ̇ 2 + ẍMsθ − ÿMcθ + g(1− cθ)

]
= Fc

δ (15.11)

where linear damping terms diq̇i have been introduced. System (15.8)–(15.11) can
be rewritten in dimensionless form as

ẍ+ μ1ẋ+α
[
(1+ δ )

(
θ̈cθ − θ̇ 2sθ

)
+ 2δ̇ θ̇cθ + δ̈sθ

]
= Φc

x , (15.12)

ÿ+ μ2ẏ+ω2
y y+α

[
(1+ δ )

(
θ̈ sθ + θ̇ 2cθ

)
+ 2δ̇ θ̇ sθ − δ̈cθ

]
= Φe

y , (15.13)

θ̈ +
μ3

(1+ δ )2 θ̇ +
2

1+ δ
δ̇ θ̇ +

1
1+ δ

(
ω2

θ + ÿ
)

sθ +
1

1+ δ
ẍcθ = 0, (15.14)

δ̈ + μ4δ̇ − (1+ δ ) θ̇ 2 − ÿcθ + ẍsθ +ω2
θ (1− cθ ) = Φc

δ , (15.15)
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where

x =
xM

l0
, y =

yM

l0
, δ =

δl

l0

and the parameters are given by

α =
m2

m1 +m2
, ω2

θ =
g
l0

, ω2
y =

k
m1 +m2

,

μ1 =
d1

m1 +m2
, μ2 =

d2

m1 +m2
, μ3 =

d3

m2l2
0

, μ4 =
d4

m2l0
,

Φc
x =

Fc
x

(m1 +m2) l0
, Φe

y =
Fe

y

(m1 +m2) l0
, Φc

δ =
Fc

δ
m2l0

.

By means of matrix notation the following compact form can be achieved (the
symbol ˜ denotes non-dimensional quantities)

M̃(q̃) ¨̃q+ D̃ ˙̃q+ C̃
(
q̃, ˙̃q

)
˙̃q+ g̃(q̃) = τ̃, (15.16)

where q̃ = [x,y,θ ,δ ]T, and τ̃ =
[
Φc

x ,Φe
y ,0,Φc

δ
]T

. M̃(q̃) is the scaled mass-inertia
matrix

M̃(q̃) =

⎡
⎢⎢⎢⎣

1 0 α (1+ δ )cθ αsθ

0 1 α (1+ δ )sθ −αcθ

(1+ δ )cθ (1+ δ )sθ (1+ δ )2 0

sθ −cθ 0 1

⎤
⎥⎥⎥⎦ ,

D̃ is the viscous damping matrix

D̃ =

⎡
⎢⎢⎢⎣

μ1 0 0 0

0 μ2 0 0

0 0 μ3 0

0 0 0 μ4

⎤
⎥⎥⎥⎦ , D̃ > 0,

C̃
(
q̃, ˙̃q

)
is the Coriolis-centripetal matrix

C̃
(
q̃, ˙̃q

)
=

⎡
⎢⎢⎢⎢⎣

0 0 −α
(
(1+ δ ) θ̇ sθ − δ̇cθ

)
αθ̇cθ

0 0 α
(
(1+ δ ) θ̇cθ + δ̇sθ

)
αθ̇ sθ

0 0 (1+ δ ) δ̇ (1+ δ ) θ̇
0 0 −(1+ δ ) θ̇ 0

⎤
⎥⎥⎥⎥⎦ ,
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and g̃(q̃) is the vector of gravitational-restoring forces and moments

g̃(q̃) =

⎡
⎢⎢⎣

0
ω2

y y
(1+ δ )ω2

θ sθ
ω2

θ (1− cθ)

⎤
⎥⎥⎦ .

15.2.2 Stability Analysis

In this section, a stability analysis under the assumption of external sinusoidal
excitation is carried out, to determine the conditions to be infringed in order to
trigger the resonant phenomenon.

Consider the mass-spring-damper (15.13) driven by Φe
y = Φ0 cosωet, and no

control action is performed, that is Φc
x = Φc

δ = 0. Then the semi-trivial solution
of the system (15.12)–(15.15) is given by

x(t) = 0, (15.17)

y(t) = Y0 cos(ωet +ψy), (15.18)

θ (t) = 0, (15.19)

δ (t) = Δ0 cos(ωet +ψδ ), (15.20)

where the pairs of parameters (Y0,ψy) and (Δ0,ψδ ) can be found by substituting
(15.18) and (15.20) into the linear system

ÿ+ μ2ẏ+ω2
y y−αδ̈ = Φ0 cosωet, (15.21)

δ̈ + μ4δ̇ − ÿ = 0 . (15.22)

The stability of the semi-trivial solution is investigated by looking at its behavior
in a neighborhood defined as

x(t) = 0+ ux(t), (15.23)

y(t) = Y0 cosωet + uy(t), (15.24)

θ (t) = 0+ uθ(t), (15.25)

δ (t) = Δ0 cosωet + uδ (t), (15.26)

where ux(t), uy(t), uθ (t), and uδ (t) are small perturbations, and the phase shifts
ψy and ψδ have been arbitrarily set to zero. Substituting (15.23)–(15.26) into
the system (15.12)–(15.15) and linearizing around the semi-trivial solution the
following variational system in nondimensional time ζ = 1

2 ωet is obtained



15 Controlling Parametric Resonance: Induction and Stabilization... 313

u′′x + μ̃1u′x −α (σ − 2μ̃4Δ0 sin(2ζ ))uθ − αμ̃3

1+Δ0 cos(2ζ )
u′θ = 0, (15.27)

u′′y + μ̃2u′y +
4ω2

y

ω2
e

uy + μ̃4u′δ = 0, (15.28)

u′′θ +
1

1+Δ0 cos(2ζ )

[(
μ̃3

1+Δ0 cos(2ζ )
+ 4(1−α)Δ0 sin(2ζ )

)
u′θ

+(σ + ε cos(2ζ ))uθ − μ̃1u′x

]
= 0, (15.29)

u′′δ + μ̃4u′δ + μ̃2u′y +
4ω2

y

ω2
e

uy = 0 . (15.30)

where σ =
4ω2

θ
ω2

e
, ε = 4Y0

ω2
e

, and μ̃i =
2μi
ωe

. Equations (15.28) and (15.30) form a

marginally stable linear system whose solution (uy,uδ ) converges to (0, ūδ ) for ζ
going to infinity. Therefore the stability of the overall system is solely determined
by the (ux,uθ )-subsystem.

The (ux,uθ )-subsystem (15.27) and (15.29) is a linear periodic system of the
form

ż = A(ζ )z, A(ζ +T ) = A(ζ ), (15.31)

where z = [ux,u′x,uθ ,u′θ ]
T, and the time-varying dynamical matrix A(t) is

A(ζ ) =

⎡
⎢⎢⎢⎣

0 1 0 0
0 −μ̃1 α (σ −2μ̃4Δ0 sin(2ζ )) αμ̃3

1+Δ0 cos(2ζ )
0 0 1 0

0 μ̃1
1+Δ0 cos(2ζ ) − σ+ε cos2ζ

1+Δ0 cos(2ζ ) − μ̃3
(1+Δ0 cos(2ζ ))2 − 4(1−α)Δ0 sin(2ζ )

1+Δ0 cos(2ζ )

⎤
⎥⎥⎥⎦ , (15.32)

whose entries are periodic functions of period T = π . According to Floquet theory
[4] the system (15.31) admits three different kinds of solutions, that is stable,
unstable, or periodic, depending on the characteristic multipliers associated to the
system. Further, the overall stability of the (ux,uθ )-subsystem relies on the stability
of the uθ dynamics as shown by (15.27), which admits a solution ux �= 0 only if
uθ �= 0.

If we assume that Δ0 � 1 then (15.29) reduces to the linear damped Mathieu
equation [9] linked to the cart dynamics through a velocity coupling. Therefore, it is
plausible that the stability properties of the uθ dynamics are quite similar to those of
the Mathieu equation with damping. In order to confirm this assumption the Fourier
spectral method [1, 15] is applied to numerically derive the stability chart of the
system (15.31).

Figure 15.2 shows the stability diagram around the first region of instability
derived for the following values of the system’s parameters: μ̃1 = 0.5, μ̃3 = 0.1,
μ̃4 = 0.8, Δ0 = 0.02, α ≈ 0.09. In particular, the dash-dotted lines are the transition
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Fig. 15.2 Stability diagram of the (ux,uθ )-subsystem: stable, periodic, and unstable solutions can
alternate depending upon the value of the parameter set (σ ,ε)

curves of the linear Mathieu equation coupled with the cart dynamics with μ̃i = 0;
the solid lines are the transition curves of system (15.31) with μ̃i = 0; the dashed
lines are the transition curves of system (15.31) with damping coefficients equal to
the values above mentioned.

By comparing the transition curves of the linear Mathieu equation (dash-dotted
lines) with those of system (15.31) when damping is not included (solid lines) we
can see that the effect of the time-varying rod length is to slightly push up the origin
of the unstable tongue detaching it from the σ -axis. Moreover, as for the standard
damped Mathieu equation, the effect of the damping is to increase the size of the
stable regions. As expected, system (15.31) shows three different behaviors: stable
if the (σ ,ε) pair is below the transition curve; periodic if the (σ ,ε) pair lies on
the transition curve; unstable if the (σ ,ε) pair is above the transition curves. The
three different scenarios are illustrated in the inserts within Fig. 15.2.

Concluding, the stability of the (ux,uθ )-subsystem is determined by three
parameters: the frequency tuning σ , which has to be close to 1 (i.e. ωθ ≈ 1

2 ωe)
in the first region of instability; the system damping, which defines the smallest
amplitude of the parametric excitation needed in order to trigger the resonance; the
amplitude of the parametric excitation ε , which determines the magnitude of the
system response.
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15.3 Parametric Resonance Control

As the stability analysis pointed out, parametric resonance is an instability phe-
nomenon, whose onset is due to the concurrent fulfillment of two conditions:

• The frequency of the parametric excitation is approximately equal to twice
the natural frequency of the secondary system (principal parametric resonance
condition).

• The amplitude of the parametric excitation is larger than the damping of the
secondary system.

Moreover, the secondary system must be perturbed from its stable equilibrium point
in order to trigger the resonance.

Control strategies aiming at stabilizing or inducing parametric resonance into the
system have to act on the primary or secondary system such that the aforementioned
conditions are failed or met, respectively. It is worth to note that the stabilization of
parametric resonance can be achieved by not satisfying only one of the require-
ments, for example increasing the damping of the secondary system; however by
failing both of them a faster convergence to a stable mode is obtained. Conversely,
the induction of parametric resonance requires that both prerequisites are attained.

The authors decided to focus on the frequency coupling condition in order to
both induce and stabilize the resonant oscillations, assuming that the damping
condition is implicitly satisfied. In particular, the induction of parametric resonance
is achieved by bringing the system into the principal parametric resonance region,
that is, where ωθ = 1

2 ωe.

15.3.1 Parametric Resonance Induction

Assuming that the frequency of the external excitation ωe acting on the mass-spring-
damper is retrievable by means of low-level signal processing, the induction of
parametric resonance into the system (15.16) can be set up as an output tracking
problem.

Problem 15.1. Let ωI(t) = 1
2 ωe be the induction reference frequency at time t.

Find a control law Φc
δ = Φc

δ (q̃, ˙̃q,ωI(t)) such that ωθ converges asymptotically to
the prescribed reference frequency trajectory ωI(t).

The solution of the output tracking problem results in designing the control law
Φc

δ such that the length of the pendulum rod δ converges to δ ∗ for t → ∞, where
δ ∗ =(4le− l0)/l0 with le being the length of the rod of a virtual pendulum oscillating
at the natural frequency ωe. However this control action alone is not sufficient to
trigger parametric resonance; in fact a small perturbation is necessary to bring the
pendulum away from its stable equilibrium point θ = 0. Problem 15.1 can then be
reformulated as
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Parametric Resonance Tracking. Given the system (15.16) and the induction
reference frequency ωI(t), find a control law τ̃c = [Φc

x (q̃, ˙̃q,x∗),Φc
δ (q̃, ˙̃q,ωI(t))]T

such that ωθ converges asymptotically to the prescribed frequency ωI(t), and
θ (t) �= 0 for all t > tc, where tc is the time instant where the control action starts.

The second control goal is achieved by arbitrarily changing the position of the
cart along the X axis, with no specific preference about the value of the new set point
or the direction of the motion. Therefore the controller goal in this case is limited to
stabilize the cart around the new chosen position x∗.

Consider the multivariable nonlinear system described in state space form as

ẋ = f(x)+b(x)u+p(x)w, (15.33)

y = h(x) (15.34)

in which x is the state vector split into the position x1 = [x1,x2,x3,x4]
T � [x,y,θ ,δ ]T

and the velocity x2 = [x5,x6,x7,x8]
T � [ẋ, ẏ, θ̇ , δ̇ ]T, u = [Φc

x ,Φc
δ ]

T is the vector
of control inputs, w = Φe

y is the disturbance. The following smooth vector fields
defined in an open set of R8

f(x)�
[

x2

−M̃(x1)
−1(D̃x2 + C̃(x1,x2)x2 + g̃(x1))

]
,

b(x)� 1
1−α

[
0 0 0 0 1 0 − cosx3

1+x4
−sinx3

0 0 0 0 −α sinx3 α cosx3 0 1

]T

,

p(x)� 1
1−α

[
0, 0, 0, 0, 0, 1, − sin x3

1+ x4
, cosx3

]T

describe the state dynamics, whereas the smooth functions

h(x)� [x1,x4]
T

describe the output evolution.

Proposition 15.1. The transformation of variables

z =
[

ξ
η

]
= T(x)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x5

x4

x8

x2

x3
αx8 cosx3−α(1+x4)x7 sinx3−x6

α cosx3

x7 +
x5 cosx3+x6 sinx3

1+x4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.35)
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is a local diffeomorphism on the domain Dx =
{

x ∈ R
8|x3 �= π

2 + nπ ∧ x3 �=
arcsin

(
α− 1

2

)
∧x4 �=−1

}
, which brings the system (15.33)–(15.34) into the normal

form

η̇ = f0(η ,ξ ), (15.36)

ξ̇ = Acξ +BcΓ (x)[u−ν(x)−υ(x)], (15.37)

y = Ccξ , (15.38)

where ξ ∈R
4, η ∈R

4, and (Ac,Bc,Cc) is a canonical form representation of a chain
of integrators.

Proof. The transformation of variables T(x) is obtained by exploiting the notion of
vector relative degree and applying Proposition 5.1.2 in [6]. System (15.33)–(15.34)

has vector relative degree {ρ1,ρ2} = {2,2} on the domain D1 =
{

x ∈ R
8|x3 �=

arcsin
(

α− 1
2

)}
; in fact by using the Lie derivative we obtain

Lb j hi = 0 , for 1 ≤ j ≤ 2, 1 ≤ i ≤ 2

and

Lb1Lf h1(x) =
1

1−α
, (15.39)

Lb1Lf h2(x) =− sinx3

1−α
, (15.40)

Lb2Lf h1(x) =−α sin x3

1−α
, (15.41)

Lb2Lf h2(x) =
1

1−α
. (15.42)

Moreover the matrix

Γ (x) =
[

Lb1Lf h1(x) Lb2Lf h1(x)
Lb1Lf h2(x) Lb2Lf h2(x)

]

=

[
1

1−α −α sinx3
1−α

− sinx3
1−α

1
1−α

]
(15.43)

is nonsingular on D1, since its determinant

det(Γ (x)) =
1−α sin2 x3

(1−α)2
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is zero if x3 = arcsin
(

α− 1
2

)
. Therefore we can define the first four new variables as

ξ1 � h1(x) = x1, (15.44)

ξ2 � Lf h1(x) = x5, (15.45)

ξ3 � h2(x) = x4, (15.46)

ξ4 � Lf h2(x) = x8 . (15.47)

Since ρ = ρ1 +ρ2 = 4 and the state space is eight dimensional, it is possible to
find four other functions ηi(x) such that the mapping

T(x) = [ξ1, . . . ,ξ4,η1, . . . ,η4]
T

is a local diffeomorphism. By noting that the distribution B = span{b1,b2} is
involutive on D1, we can determine the functions ηi by solving the set of linear
partial differential equations

Lb j ηi(x) = 0

⇒
{ ∂ηi

∂x5
− cosx3

1+x4

∂ηi
∂x7

− sinx3
∂ηi
∂x8

= 0

−α sin x3
∂ηi
∂x5

+α cosx3
∂ηi
∂x6

+ ∂ηi
∂x8

= 0
. (15.48)

A set of functions satisfying system (15.48) is given by

η1 � x2, (15.49)

η2 � x3, (15.50)

η3 �
αx8 cosx3 −α(1+ x4)x7 sinx3 − x6

α cosx3
, (15.51)

η4 � x7 +
x5 cosx3 + x6 sinx3

1+ x4
. (15.52)

which is defined on the domain D2 =
{

x ∈R
8|x3 �= π

2 + nπ ∧ x4 �=−1
}

. Therefore,
the change of variables (15.35) qualifies as a diffeomorphism since its jacobian
matrix is nonsingular on the domain Dx = D1 ∩D2.

Finally by applying the transformation T(x) to the system (15.33)–(15.34) we
obtain the normal form (15.36)–(15.38) where Γ (x) is given by (15.43) and
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ν(x) =

[
L2

f h1(x)
L2

f h2(x)

]

=

⎡
⎢⎣

1
1−α

(
−μ1x5 +αμ4x8 sinx3 +

αμ3
1+x4

x7 cosx3 +αω2
θ sinx3

)
1

1−α

( −μ4x8 + μ1x5 sinx3 − μ2x6 cosx3

+(1−α)(1+ x4)x2
7 −ω2

θ (1− cosx3)−ω2
y x2 cosx3

)
⎤
⎥⎦ ,

(15.53)

υ(x) =
[

LpLf h1(x)
LpLf h2(x)

]

=

[
0

cosx3
1−α

]
. (15.54)

��
Equation (15.54) shows that the disturbance Φe

y affects the output y2, whereas
the output y1 is insensitive to it. Hence the control design should also address
the problem of disturbance decoupling together with the tracking of parametric
resonance.

Proposition 15.2. Consider the system in normal form (15.36)–(15.38), and the
reference vector yR = [y1R(t), ẏ1R(t),y2R(t), ẏ2R(t)]T = [x∗1(t),x

∗
5(t),x

∗
4(t),x

∗
8(t)]

T.
The input–output feedback linearizing control law

u = Γ (x)−1(ν(x)+υ(x)w+φ(x)),

where
φ(x) = v+ ÿR(t)

solves the Parametric Resonance Tracking problem and decouples the disturbance
from the output y2. Moreover, the internal dynamics η̇ = f0(η ,ξ ) is bounded for all
t ≥ 0.

Proof. Let

e =

⎡
⎢⎢⎣

ξ1 − y1R(t)
ξ2 − ẏ1R(t)
ξ3 − y2R(t)
ξ4 − ẏ2R(t)

⎤
⎥⎥⎦= ξ − yR

be the tracking error vector. Introducing the tracking error into the normal form
(15.36) and (15.37) yields

η̇ = f0(η ,e+ yR), (15.55)

ė = Ace+BcΓ (x)
{
[u−ν(x)−υ(x)]−

[
ÿ1R

ÿ2R

]}
. (15.56)
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Hence the state feedback control

u = Γ (x)−1(ν(x)+υ(x)w+φ(x)) (15.57)

reduces the system (15.36)–(15.37) to the cascade system

η̇ = f0(η ,e+ yR), (15.58)

ė = Ace+Bcφ(x), (15.59)

where

φ(x) =−KIe+
[

ÿ1R

ÿ2R

]
. (15.60)

By selecting the gain matrix KI such that the matrix Ac −BcKI is Hurwitz, then the
Parametric Resonance Tracking problem is solved.

The normal form (15.36) and (15.37) has an equilibrium point at (η ,ξ ) = (0,0).
In particular, the zero dynamics η̇ = f0(η ,0) given by

η̇1(η ,0) =−αη3 cosη2 +αη4 sinη2

1−α sin2 η2
, (15.61)

η̇2(η ,0) =
η4 +

1
2 αη3 sin(2η2)

1−α sin2 η2
, (15.62)

η̇3(η ,0) =
μ2(η3 cosη2 +η4 sinη2)

(α sin2 η2 − 1)cosη2
−

(
η4 +

1
2 αη3 sin(2η2)

)
η3 sin(2η2)

2(α sin2 η2 − 1)cosη2

+
ω2

y η1

α cosη2
, (15.63)

η̇4(η ,0) =
η4 +

1
2 αη3 sin(2η2)

α sin2 η2 − 1

(
μ3 − (η3 cosη2 +η4 sinη2)α cosη2

α sin2 η2 − 1

)

−ω2
θ sinη2 (15.64)

is locally asymptotically stable in η = 0. In fact by linearizing the zero dynamics
around η = 0 we obtain the following matrix

A0 =

⎡
⎢⎢⎢⎣

0 0 −α 0
0 0 0 1

ω2
y

α 0 −μ2 0
0 −ω2

θ 0 −μ3

⎤
⎥⎥⎥⎦ , (15.65)
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whose eigenvalues

λ1,2 =−1
2

μ2 ±
√

μ2
2 − 4ω2

y , (15.66)

λ3,4 =−1
2

μ3 ±
√

μ2
3 − 4ω2

θ (15.67)

have always negative real part. Hence, applying Theorems 4.16 and 4.18 in [7]
it follows that for sufficiently small initial conditions of the error and internal
dynamics e(0), η(0), and for a small reference trajectory ωI(t) with small derivative,
the state η(t) will be bounded for all t ≥ 0. ��
Remark 15.1. Note that the proof about the local boundedness of the internal
dynamics is valid only if the reference trajectory is small. If this is not the case
the time-varying nonlinear system

η̇ = f0(η ,yR(t)) (15.68)

should be considered instead.

15.3.2 Parametric Resonance Stabilization

The choice of focusing on the frequency coupling condition allows to exploit
the control law (15.57) also for stabilizing the system once parametric resonance
has fully developed. This can be attained by defining a stabilizing trajectory
ωS(t) �= 1

2 ωe to be tracked by the closed-loop system. The control problem can
be formulated as

Parametric Resonance Stabilization. Assume that ωe = 2ωθ and that the system
(15.16) is in parametric resonance. Given the stabilizing reference frequency
ωS(t) = ω̄ �= 1

2 ωe(t), find a control law Φc
δ = Φc

δ (q̃, ˙̃q,ωS(t)) such that ωθ
converges asymptotically to ωS(t).

The solution of the Parametric Resonance Stabilization problem results in
designing the control law Φc

δ such that the length of the pendulum rod δ converges
to δ ∗ for t → ∞, where δ ∗ = (l̄− l0)/l0 with l̄ being the length of the rod of a virtual
pendulum oscillating at the natural frequency ω̄ .

Note that since the stabilization is achieved by detuning the frequency coupling
condition ωθ = 1

2 ωe there is no need for controlling the horizontal position of the
cart. Therefore in the following analysis it is assumed that the controller does not
actuate the cart, which will remain at the position x = x∗ where it was originally
placed.
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Proposition 15.3. Assume that ωe = 2ωθ and that the system in normal form
(15.36)–(15.37) is in parametric resonance. Consider the reference vector yR =
[y2R(t), ẏ2R(t)]T = [x∗4(t),x

∗
8(t)]

T. The input–output feedback linearizing
control law

u = Γ (x)−1(ν(x)+υ(x)w+φ(x)),

where

φ(x) = v+ ÿR(t)

solves the Parametric Resonance Stabilization problem and decouples the distur-
bance from the output y2. Moreover the internal dynamics η̇ = f0(η ,ξ ) is bounded
for all t ≥ 0.

Proof. Analogously to the proof of Proposition 15.2 we define the tracking error as

e =

⎡
⎢⎢⎣

0
0

ξ3 − y2R(t)
ξ4 − ẏ2R(t)

⎤
⎥⎥⎦ ,

where the first two entries are equal to zero because the cart is assumed to maintain
its position. The normal form (15.36) and (15.37) then reads

η̇ = f0(η ,e+ yR), (15.69)

ė = Ace+BcΓ (x)
{
[u−ν(x)−υ(x)]−

[
ÿ1R

ÿ2R

]}
. (15.70)

Therefore the state feedback control law

u = Γ (x)−1(ν(x)+υ(x)w+φ(x)) (15.71)

with φ(x) =−KSe+[0, ÿ2R]
T reduces the normal form to the cascade

η̇ = f0(η ,e+ yR), (15.72)

ė = (Ac −BcKS)e, (15.73)

where Ac −BcKS is Hurwitz.
The boundedness of the internal dynamics η(t) = f0(η ,ξ ) can be demonstrated

analogously as in Proposition 15.2. ��
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15.4 Simulation Results

The efficacy of the proposed control strategies for inducing and stabilizing paramet-
ric resonance has been tested in simulation.

Figure 15.3 shows an example of induction and tracking of parametric resonance.
For 0 < t < 100 s the mass-spring-damper oscillates under the action of the external
sinusoidal disturbance Φe

y while the pendulum is at rest. At t = 100 s a new reference
trajectory δ ∗(t), which ensures the tuning of the frequency coupling condition is
provided. As a consequence, the controller (15.57) enforces that the output y2(t)
follows the reference trajectory and that the frequency condition for the onset of
parametric resonance is fulfilled. At the same time the controller destabilizes the
pendulum by driving the cart to its new set point x∗. This produces the sparkle for
the onset of parametric resonance into the pendulum, which for 100 ≤ t < 400 s
develops oscillations of increasing amplitude at a frequency ωθ = 1

2 ωe,1. At t =
400 s the frequency of the external excitation decreases determining a temporary
frequency ratio ωθ/ωe,2 = 1 as shown in Fig. 15.4. Hence the controller increases
the rod’s length δ up to the new reference trajectory maintaining the parametric
resonance alive. The amplitude of the pendulum oscillations further increases due
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Fig. 15.3 Parametric resonance tracking: multiple variations of external excitation frequency ωe
are tracked by the controller
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Fig. 15.4 Parametric resonance tracking: the controller enforces that the frequency ratio ωe/ωθ is
kept equal to 2
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Fig. 15.5 Parametric resonance tracking: (top) control signals and (bottom) position errors of the
controlled variables

to the larger amplitude of the parametric excitation provided by y. Figure 15.5
illustrates the commanded control signals and the evolution of the position error.

Figure 15.6 shows an example of stabilization of parametric resonance after it
has been triggered according to the former description. At t = 600s a stabilizing
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Fig. 15.6 Parametric resonance stabilization: the controller stabilizes the pendulum about θ = 0
by detuning the frequency coupling condition

trajectory that detunes the frequency coupling condition is provided. Consequently,
the controller (15.71) enforces the output y2 to track the new reference signal, and
it brings the pendulum out of the principal parametric resonance condition within
200s. The decay rate of the pendulum oscillations could be increased if the proposed
control strategy is coupled with a damping injection into the secondary system. This
could be done by increasing the moment due to dissipative forces, for example, by
applying a direct torque on the pendulum’s pivot point or by moving the cart in
counter phase with respect to the pendulum oscillations.

15.5 Conclusions

Parametric resonance is a widespread phenomenon that may be threatening or
beneficial according to the particular system where it takes place. A four degrees-
of-freedom Lagrangian model of a pendulum with moving support has been derived
in order to, first, revisit some of the stability theory of autoparametric resonant
systems by applying Floquet theory, and, second, to design control strategies to
induce and stabilize the unstable oscillations. Two control problems, namely the
Parametric Resonance Tracking and the Parametric Resonance Stabilization, have
been set up as output tracking problems where induction and stabilization of
parametrically resonant behaviors are achieved by tracking a reference frequency,
which enforces or not the frequency coupling condition ωθ = 1

2 ωe. An input–
output feedback linearizing controller has been designed and analytically proven to
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solve both control problems. The efficacy of the proposed control strategy has been
also verified in simulation, where both induction and stabilization of parametric
resonance into the pendulum with moving support have been successfully obtained.

The authors believe that control strategies aiming at inducing and tracking
parametric resonance will be of particular interest for future application as energy
conversion systems where the obvious goal is to increase the energy throughput
while maintaining constant or even reducing the effort to produce such energy.
In this respect parametric resonance can become a very useful phenomenon since
very large oscillations can be generated by a rather small parametric excitation.
However the same feature that makes parametric resonance appealing should create
awareness of the potential danger hidden in such phenomenon. That is why a sound
and profound knowledge of the dynamics of the system where parametric resonance
is wished to be induced is needed in order to capture the energy flow between
the different system modes when the resonance takes places. Therefore models
and control methods which rely on the concept of energy exchange in the system
and through interacting systems seems to be particularly suited for these kinds of
applications.
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