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A Study of the Onset and Stabilization
of Parametric Roll by Using
an Electro-Mechanical Device

Jonatan Peña-Ramı́rez and Henk Nijmeijer

14.1 Introduction

Maritime industry plays a major role in our life and in the economy of the
world. Most of the merchandize and goods like electronics, cars, food, clothes,
are transported from producers to end consumers by ship containers from one
end of the world to the other end. Over the last decades, shipping industry has
experienced a continuous growing both in their fleets and in the total trade volume.
As a consequence of this growing, it has been necessary the design of new ships
and vessels capable of transporting as much as possible of products. This is the
reason why nowadays ships are designed using cutting edge technology in order to
find an optimal design looking mainly at economic aspects. For instance, modern
container ships hulls feature a bow flare and stern overhang in combination with a
flow-optimized geometry below the water line. This design is twofold: at one hand
it provides maximum space for container storage and at the other hand it provides
a minimal water resistance. However, modern designs of vessels and ships seem to
be prone to a phenomenon called parametric roll.

Parametric roll is an undesired phenomenon because it may produce cargo da-
mage, delay or even suspension of the activities performed by the crew, seasickness
in passengers and crew and in the limit case it can lead to the capsizing of the ship
[13]. It has been suggested (c.f. [5]) that the onset of parametric roll is due to the
occurrence of the following conditions: the ship is sailing in head seas, the natural
period of roll is approximately twice the wave encounter period, the roll damping is
low, the wave height exceeds a critical level and the wavelength is close to the ship
length.
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Probably, the earliest studies about this phenomenon are due to William Froude
(1810–1879), who in 1857 started a serious research in order to find the causes and
conditions that lead to parametric roll resonance. It was the time when the Great
Eastern, a ship that was so big in comparison with the size of any other ship, was
under construction. The designer, I. K. Brunel was concerned because he thought
that the ship could behave in an unexpected manner. Brunel then asked Froude to
start a theoretical study on parametric roll. One of Froude’s early discoveries was
that the roll angle can increase rapidly when the period of the ship is in resonance
with the period of wave encounter. He also came to the conclusion that the roll
motion is not produced by the waves hitting the side of the hull, but rather because
of the pressure of the waves acting on the hull. Although Froude made several
simplifications in his analysis because of the intractable mathematics, his research
ended with a theory of rolling in waves and its stabilization by the introduction of
bilge keels (c.f. [3, 13], and the references therein).

Because modern ships still experience dangerous roll motions, it continues being
a hot topic not only in the research field but also in the maritime industry. We
mention two incidents, where millions of dollars were lost. In 1998, a post-Panamax
C11 class container was caught by a violent storm and experienced parametric roll
with roll angles close to 40◦. As a consequence one-third of the on-deck containers
were lost overboard and a similar amount were severely damaged [5]. More recently,
in January 2003, another Panamax container vessel encountered a storm in the North
Atlantic. It was reported that the ship experienced violent rolling with angles close
to 47◦. As a result, 133 containers were lost overboard and other 50 presented severe
damage [4].

So far, several models of different sophistication have been proposed by the
researchers in order to analyze the dynamical behavior of a ship in a seaway. In
particular, there are models that have been developed for the study of parametric
roll, for instance, we mention the simplified nonlinear models presented in [8, 12],
where three DOF are considered (heave, pitch, and roll). Furthermore, some authors
have derived their models by using an analogy of the ship motions to a mechanical
system [10, 16]. Besides the development of models there is the issue of finding
stabilization techniques in order to cope with parametric roll phenomenon. Hence,
in the literature we can find different stabilization techniques as for example, the
use of bilge keels [10], passive and active U-tanks [1, 7], rudders [2] and fins
stabilizers [6].

In this work, we present an experimental study of parametric roll occurring in a
container ship. As a “towing tank” we use an electro-mechanical platform consis-
ting of two (controllable) mass-spring-damper oscillators mounted on an elastically
supported (controllable) beam. The stiffness and damping in the system have been
identified experimentally and the state vector is reconstructed by using the position
measurements. Then, via computer controlled feedback, the dynamical properties
of the system are modified by canceling the inherent dynamics of the setup and
enforcing the dynamics of a 3-DOF (heave, pitch, and roll) container ship. The
heave and pitch motions are represented by the displacement of the oscillators and
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the supporting beam is used to mimic the roll motion. Additionally, the experimental
setup is masked with the dynamics of a mechanical system consisting of two masses
restrained by elastic springs and supporting two identical pendula. Such model was
developed to simulate heave-pitch-roll motion of a ship in longitudinal waves.

At the end of the day, we want to show that our experimental setup is suitable for
the experimental analysis of parametric roll and that can facilitate the understanding
of ship dynamics. Actually, we want to show that the setup can be seen as a testbed
for controllers ad hoc designed to stabilize the roll motion.

The rest of the manuscript is organized as follows. In Sect. 14.2 we describe in
detail the experimental setup. Then, in Sect. 14.3 we present experimental results
related to the onset and stabilization of parametric roll in a container ship. Next, in
Sect. 14.4 we conduct an experimental analysis of the dynamics corresponding to a
mechanical system developed to simulate the most general case of heave-pitch-roll
motion in a vessel. Finally, in Sect. 14.5 we draw some conclusions.

14.2 The Experimental Setup

In this section, we describe the electro-mechanical device depicted in Fig. 14.1
which has been used for the experiments. It consists of two oscillators mounted
on an elastically supported beam. The system has three DOF corresponding to the
axial displacement of the oscillators and the beam. Moreover, each DOF is equipped
with a voice coil actuator and with a linear variable differential transformer position

Fig. 14.1 Photo of the experimental setup at Eindhoven University of Technology
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Fig. 14.2 Schematic model of the setup

sensor. The maximum stroke of the oscillators and the beam is approximately 6 mm.
and the position sensors are calibrated such that 1 [V] = 5 [mm]. In the other hand,
the actuators have a limited input of ± 0.42 [V].

The experimental setup is schematically depicted in Fig. 14.2. The masses
corresponding to the oscillators are given by mi ∈ R

+ (i = 1,2) and the mass
of the supporting beam is denoted by m3 ∈ R

+. This mass may be varied by
a factor 10. The stiffness and damping characteristics present in the system are
assumed to be linear with constants coefficients κi,βi ∈ R

+ respectively. However,
the experimental setup allows modeling of different types of springs (for instance,
linear or cubic) and any other desired effect within the physical limitations of the
setup. The electric actuator force for subsystem i (i= 1 . . .3) is denoted as ui. Finally,
xi ∈ R (i = 1,2,3) are the displacements of the oscillators and the supporting beam
respectively.

Using Newton’s 2nd law, it follows that the idealized – i.e. assuming that no
friction is present – equations of motion of the system of Fig. 14.2 are

m1ẍ1 = −κ1(x1 − x3)−β1(ẋ1 − ẋ3)+ u1,

m2ẍ2 = −κ2(x2 − x3)−β2(ẋ2 − ẋ3)+ u2,

m3ẍ3 =
2

∑
i=1

[κi(xi − x3)+βi(ẋi − ẋ3)− ui]−κ3x3 −β3ẋ3 + u3. (14.1)

For convenience, system (14.1) is written in the following manner

ẍ1 = −ω2
1 (x1 − x3)− 2ζ1ω1(ẋ1 − ẋ3)+

1
m1

u1,

ẍ2 = −ω2
2 (x2 − x3)− 2ζ2ω2(ẋ2 − ẋ3)+

1
m2

u2,

ẍ3 =
2

∑
i=1

μi

[
ω2

i (xi − x3)+ 2ζiωi(ẋi − ẋ3)− 1
mi

ui

]
−ω2

3 x3 − 2ζ3ω3ẋ3 +
1

m3
u3,

(14.2)
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Table 14.1 Parameters values for the experimental setup according
to model (14.2)

Oscillator 1 Oscillator 2 Supporting platform

ωi [rad s−1] 12.5521 14.0337 9.7369
ζi [−] 0.3362 0.4226 0.0409
mi [kg] 0.198 0.210 4.1

where ωi =
√

κi
mi

[rad s−1], ζi =
βi

2ωimi
[−] are the angular eigenfrequency and

dimensionless damping coefficient present in subsystem i (i = 1,2,3), the coupling
strength is denoted by μi =

mi
m3

(i = 1,2). After a suitable parametric identification
of model (14.2) the parameters presented in Table 14.1 were obtained (see [14]).

The potential of this experimental setup to perform experiments on several
dynamical systems relies on the fact that the properties of the system can be adjusted
or modified by a suitable design of the control inputs ui. These inputs are generated
as follows: a data acquisition system reads data from the sensors and forwards the
converted data to a computer. In the computer the state vector is reconstructed by an
observer [15] and the reconstructed state vector is used to construct the new desired
dynamics. With this data, the output ui is generated, it consists of a feed forward
part (to cancel the original dynamics) plus compensation terms plus the desired
dynamics. Then, it is clear that by means of state feedback, the original dynamics
are masked with the dynamics that we want. For example, in [14] the setup is used
for experimentally testing synchronization of coupled oscillators.

By means of two experiments we show the capabilities of the experimental setup
to conduct experiments on parametric roll. As a first example we implement the
dynamics of a 3-DOF nonlinear container ship model navigating in head seas and as
a second example the dynamics of a mechanical model for simulating heave-pitch-
roll motion of a ship in longitudinal waves.

In both cases, a controller is implemented in order to stabilize the parametric roll
resonance condition. Since the experimental setup is fully actuated, the choice of
the controller is arbitrary and therefore many controllers can be implemented and
tested in the setup.

14.3 Case 1: A High-Fidelity 3-DOF Nonlinear Container
Ship Model

A ship can be seen as a rigid body that can be modeled as a 6-DOF system. Three
of these DOF, named surge, sway, and yaw, correspond to unrestored motions in the
horizontal plane while the other three DOF named heave, pitch, and roll, correspond
to oscillating motions in the vertical plane. However, some simplifications can be
done in the model, depending on the desired analysis. For instance, for the study of
parametric roll, some authors [8, 9, 12, 17] agree in the fact that a 3rd order model
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(considering heave, pitch, and roll) is enough to study the phenomenon, since the
restoring forces that may produce resonance on the ship roll motion only act when
the ship is subjected to motions in the vertical plane.

In this section, the dynamical behavior of the experimental setup presented in the
previous section is modified in order to mimic the dynamics of a nonlinear container
ship model developed in [8]. Additionally, we implement a control strategy for the
stabilization of the roll motion. Such control law is presented in [6] and is based in
a combined speed and fin stabilizer control.

14.3.1 The Model and Its Implementation in the Setup

Consider the following nonlinear container ship model

s̈ = (M+A)−1
(

cext(ζ , ζ̇ , ζ̈ )−B(φ̇)ṡ− cres(s,ζ )
)
, (14.3)

where

s(t) = [z(t) φ(t) θ (t)]T (14.4)

is the generalized vector which contains the three restoring degrees of freedom,
heave, roll, and pitch, respectively. M ∈ R

3×3 is the generalized mass matrix,
A ∈ R

3×3 describes the hydrodynamic added mass matrix and B ∈ R
3×3 represents

the hydrodynamic damping matrix. cres ∈ R
3×1 contains the nonlinear restoring

forces and moments dependent on the relative motions between ship hull and wave
elevation ζ (t). Finally, the generalized vector cext ∈ R

3×1 contains the external
forces exerted by the waves. These forces are depending on weave heading,
encounter frequency, wave amplitude, and time. For the derivation of the model,
as well as for definitions and expressions for M, A, B, cres, and cext, the reader is
referred to [8, 12].

Indeed, system (14.3) has the following structure

⎡
⎣ z̈

φ̈
θ̈

⎤
⎦=

⎡
⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

︸ ︷︷ ︸
(M+A)−1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎣ cextz

cextφ
cextθ

⎤
⎦

︸ ︷︷ ︸
cext(ζ ,ζ̇ ,ζ̈ )

−
⎡
⎣ cresz

cresφ
cresθ

⎤
⎦

︸ ︷︷ ︸
cres(z,φ ,θ ,ζ )

⎞
⎟⎟⎟⎟⎟⎟⎠

−
⎡
⎣ c11 c12 c13

c21 c22 c23

c31 c32 c33

⎤
⎦

︸ ︷︷ ︸
(M+A)−1B

⎡
⎣ ż

φ̇
θ̇

⎤
⎦ . (14.5)

For convenience, we rewrite (14.5) as

z̈ = Fz(z,φ ,θ ,ζ , ζ̇ , ζ̈ )− c11ż− c12φ̇ − c13θ̇ , (14.6)

φ̈ = Fφ (z,φ ,θ ,ζ , ζ̇ , ζ̈ )− c21ż− c22φ̇ − c23θ̇ , (14.7)

θ̈ = Fθ (z,φ ,θ ,ζ , ζ̇ , ζ̈ )− c31ż− c32φ̇ − c33θ̇ , (14.8)
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where Fz(·) = a11cextz + a12cextφ + a13cextθ − a11cresz − a12cresφ − a13cresθ . Expre-
ssions for Fφ and Fθ can be derived from (14.5).

As we mention before, the experimental setup not only allows for the imple-
mentation of other dynamics (like the dynamics of a ship) but also a wide variety of
controllers can be implemented and validated within the physical limits of the setup.
Hence, a controller is incorporated in order to stabilize the parametric roll resonance
condition occurring in system (14.6)–(14.8).

For the time being, we use the controller presented in [6]. This controller has two
objectives: to avoid that the encounter frequency approaches twice the roll natural
frequency ωφ , and to increase the damping in roll.

Since in deep water, the encounter frequency (c.f. [11]) is given by

ωe = ω − ω2

g
U cos(μ), (14.9)

where ω is the wave frequency, U is the forward velocity of the ship and μ is the
heading angle. Then, it is clear that the first objective is achieved by varying the
forward velocity of the vessel. Different to [6], we do not generate the velocity in a
dynamical way; rather we consider that the velocity is given by a setpoint that can be
increased/decreased with a prescribed acceleration/deceleration rate. The setpoint is
changed whenever the roll angle achieves a certain threshold. In this way, we do not
need to increase the model to a 4th order model.

The second objective is achieved by including fin stabilizers. The hydraulic
machinery, that generates the fin-induced roll moment τφ is modeled as follows
(see [6])

τ̇φ =
1
tr

τmaxsat

(
τc

τmax

)
− 1

tr
τφ , (14.10)

where τmax is the maximum moment that can be provided by the fins, τc is the
moment generated by the controller and is given in [6]. The time constant tr corres-
ponds to the time constant of the hydraulic machinery.

Consequently, it follows from (14.6)–(14.8) and (14.10) that the simplified
nonlinear ship container model with fin stabilizer control is given by

z̈ = Fz(z,φ ,θ ,ζ , ζ̇ , ζ̈ )− c11ż− c12φ̇ − c13θ̇ , (14.11)

φ̈ = Fφ (z,φ ,θ ,ζ , ζ̇ , ζ̈ )+ τφ − c21ż− c22φ̇ − c23θ̇ , (14.12)

θ̈ = Fθ (z,φ ,θ ,ζ , ζ̇ , ζ̈ )− c31ż− c32φ̇ − c33θ̇ . (14.13)

The experimental setup depicted in Fig. 14.1 can be adjusted to mimic the
container ship dynamics (14.11)–(14.13). First, we make an analogy between the
electro-mechanical experimental setup and the heave, roll, and pitch motion of
the ship. In other experiments (related with synchronization), we have found that
under some circumstances, the oscillators can be in an oscillating state while the
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beam is at rest. Therefore, the following choice seems to be logic: displacement of
oscillator 1 will correspond to heave displacement, displacement of oscillator 2 will
represent the rotation angle in pitch and the supporting beam will denote the rotation
angle in roll.

Next, the virtual coordinate system s = [z φ θ ]T is obtained by choosing the
appropriate coordinate transformation. Since in the experimental setup all the
displacements are translational, the coordinate transformation should be chosen
such that translational displacements are mapped to rotation angles. Then, we write:

⎡
⎣ z

φ
θ

⎤
⎦=

⎡
⎢⎢⎣

1
x∗1

0 0

0 0 γ1
x∗3

0 γ2
x∗2

0

⎤
⎥⎥⎦
⎡
⎣ x1

x2

x3

⎤
⎦ , (14.14)

where x∗i , i = 1,2, are the maximal displacements of the oscillators and x∗3 is the
maximal displacement of the supporting beam. In the sequel, these values are taken
to be x∗1 = x∗2 = x∗3 = 5 [mm]. This mapping assures rotation angles of ±γi [rad].

In order to complete the adjustment of the experimental setup we choose the
actuator forces as follows

u1 = m1
(
ω2

1 Δx1 + 2ζ1ω1Δ̇x1 +Fz(·)− c11ż− c12φ̇ − c13θ̇
)
, (14.15)

u2 = m2
(
ω2

2 Δx2 + 2ζ2ω2Δ̇x2 +Fθ (·)− c31ż− c32φ̇ − c33θ̇
)
, (14.16)

u3 = m3
(
ω2

3 x3 − 2ζ3ω3ẋ3 + μ1
(
Fz(·)− c11ż− c12φ̇ − c13θ̇

)
+μ2

(
Fθ (·)− c31ż− c32φ̇ − c33θ̇

)
+Fφ (·)

+τφ − c21ż− c22φ̇ − c23θ̇
)
, (14.17)

where Δxi = (xi − x3), Δ̇xi = (ẋi − ẋ3).
In closed loop, the dynamics of system (14.2) with controllers (14.15)–(14.17)

coincides with dynamics (14.11)–(14.13). Therefore, the electro-mechanical expe-
rimental setup has been “converted” into a container ship.

14.3.2 Experimental and Numerical Analysis

In order to demonstrate that the experimental setup can actually mimic the dy-
namical behavior of a ship, in particular the onset and stabilization of parametric
roll, we present two experiments: one corresponding to the uncontrolled case,
where oscillations in roll appear and the other one corresponding to the controlled
case, where parametric roll is stabilized. Indeed, the second experiment shows the
capability of the setup to test and validate controllers that have been designed to
cope with the problem of parametric roll.
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Fig. 14.3 Onset of parametric roll. Solid line: experiment, dotted line: simulation

For the first experiment, we consider system (14.11)–(14.13) with parameters
listed in [8]. Such parameters correspond with a 1 : 45 scale model ship. Further-
more, the following experimental conditions are assumed: wave amplitude Aω = 2.5
[m], wave frequency ω = 0.4640 [rad/s], encounter angle μ = 180◦, and encounter
frequency, we = 0.5842 [rad/s]. For this experiment the forward velocity of the ship
is taken to be 5.4806 [m/s]. Note that the forward velocity of the ship is directly
related with the surge motion of the ship and therefore it cannot be related to the
velocity of the experimental setup, where heave, pitch, and roll motions are being
reproduced by the oscillators and the beam respectively. In this analysis, the forward
velocity is considered as a control parameter given by a setpoint implemented in
software and its changes are reflected in adjustments in the value of the encounter
frequency (see (14.9)). Ultimately, this is reflected in changes in the dynamical
behavior of system (14.11)–(14.13).

The initial conditions for the oscillators and the beam are as follows: x1(0) = 125
[μm], x2(0) = 0, x3(0) = 58.178 [μm], ẋ1 = ẋ2 = ẋ3 = 0. These initial conditions
are related to the initial conditions of system (14.11)–(14.13) by means of (14.14).
In this experiment, we want to investigate the onset of parametric roll, therefore the
control input τφ in (14.12) is taken to be zero.

Figure 14.3 shows the experimental (solid line) and numerical (dotted line)
results corresponding to heave, roll, and pitch. The onset of parametric roll becomes
immediately clear from the graph in the middle of Fig. 14.3 and after 400 s it
stabilizes with an amplitude of ±15◦. The figure also reveals that the experimental
results are in fair agreement with the simulation results. Indeed, in steady-state it is
hard to distinguish the difference.
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Fig. 14.4 Experimental result. Parametric roll is stabilized

In a second experiment, we implement controller (14.10) in order to stabilize
parametric roll. All the initial conditions and parameters are as in experiment one.
The controller is activated when the rotational angle in roll achieves a threshold
angle of 10◦. Furthermore, when controller (14.10) is activated, the forward velocity
of the vessel is increased 35% with an acceleration rate of 0.04 [m/s2]. This
increment in the forward velocity is also reflected in the value of the encounter
frequency, which is also increased from 0.5842 [rad/s] to 0.6263 [rad/s]. In the same
way, the value of the external wave forces and the values of the entries of the added
mass matrix and hydrodynamic damping matrix are updated. In our experiment,
the hydraulic machinery has been implemented in software and we have considered
a time constant tr = 1 [msec] since the data acquisition system of the setup has a
maximum sampling period of 1 [msec].

Initially, the controller is switched-off, but when the rotation angle in roll reaches
the threshold value φ = 10◦, the controller is switched-on and after the transient, the
oscillations in roll are “quenched” as depicted in Fig. 14.4.

For the mapping (14.14) we have used γ1 = 0.035 [rad], which assures a
maximal rotation in pitch of θ = ±2◦ and γ2 = 0.3 [rad], which yields a maximal
rotation in roll of φ = ±17◦. This mapping not only allows to convert translational
displacements to rotational angles but also yields the signals in a range that is
suitable for the experimental setup as can be seen in Fig. 14.5, where the inputs
ui (see equations (14.15)–(14.17)) are depicted. From this figure it is evident that
the inputs of the actuators are far from saturation, since the maximum voltage input
allowed by the actuators is ±0.42 [V].
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Fig. 14.5 Control inputs ui sent to the experimental setup

14.4 Case 2: Mechanical Model for Simulating
Heave-Pitch-Roll Motions

In this section, we investigate the onset of parametric roll by using the mechanical
model depicted in Fig. 14.6, which has been developed to simulate heave-pitch-roll
motions of a ship in longitudinal waves and it has been presented in [17]. As in
the previous case, we present experiments related to the uncontrolled and controlled
situations.

14.4.1 The Model and Its Implementation in the Setup

Consider the mechanical system depicted in Fig. 14.6. It consists of two masses
restrained by elastic springs and supporting two equal pendulums rigidly connected
by means of a weightless rod. Each mass is externally excited by a harmonic force.
These external forces have the same amplitude and frequency but there is a phase
lag between them. This phase shift is to include the delayed effects of the wave
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Fig. 14.6 Mechanical model for simulating heave-pitch-roll motion

propagating along the ship. This model was developed to simulate the heave-pitch-
roll motion of a ship in longitudinal waves. For more details about the model, the
reader is referred to [17].

The equations of motion for the system of Fig. 14.6 are:

(m1 +m)
(
z̈1 −αω2 cosω t

)
+ d1ż1 + k1z1 +ml

(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
= 0, (14.18)

(m2 +m)
(
z̈2 −αω2 cos(ω t−ψ)

)
+ d2ż2 + k2z2 +ml

(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
= 0,

(14.19)

1
2

ml
(
z̈1 −αω2 cosω t+ z̈2 −αω2 cos(ω t−ψ)

)
sinϕ

+ml2ϕ̈ + cϕ̇ +mgl sinϕ = τp, (14.20)

where τp is an external torque for the pendula. By defining the new time variable

τ =
√

g
l t, system (14.18)–(14.20) is rewritten in the following dimensionless form

(see [17])

ω
′′
1 +κ1ω

′
1 + q2

1ω1 + μm1

(
ϕ

′′
sinϕ +ϕ

′2 cosϕ
)
= aη2 cosητ , (14.21)

ω
′′
2 +κ2ω

′
2 + q2

2ω2 + μm2

(
ϕ

′′
sinϕ +ϕ

′2 cosϕ
)
= aη2 cos(ητ −ψ), (14.22)

1
2

[
ω

′′
1 − aη2 cosητ +ω

′′
2 − aη2 cos(ητ −ψ)

]
sinϕ +ϕ

′′
+κ0ϕ

′
+ sinϕ = τϕ ,

(14.23)

where ωi =
zi
l , κi =

di
ω0(mi+m) , q2

i =
ki

ω2
0 (mi+m)

, μmi =
m

(mi+m) for i= 1,2 and ω0 =
√

g
l ,

κ0 =
c

ω0ml2 , η = ω
ω0

, a = α
l and τϕ =

τp

ml2ω2
0

.
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It can be shown that this system (with τϕ = 0) has a steady-state solution which
has the property ∑2

i=1[ω2
i + ω̇2

i ] �= 0, ϕ = ϕ̇ = 0. This solution can become unstable
in certain intervals of the frequency of excitation, denoted as ω in (14.18)–(14.20).
When the solution becomes unstable, parametric roll resonance will appear (ϕ �= 0).

For the case where parametric roll resonance appears, it is necessary to stabilize
it. Then, we derive a controller by following the derivations presented in [6]. This
controller is designed by using backstepping. Note however that, at this stage, we
can adopt any controller for the experimental setup to be tested.

For the design of the control, we use the uncoupled equation for roll ((14.23)
with ω ′′

1 = ω ′′
2 = 0) and it follows that the control model verifies:

ϕ
′′
+κ0ϕ

′′
+ sinϕ +

1
2

[−aη2 cosητ − aη2 cos(ητ −ψ)
]

sinϕ = τϕ , (14.24)

τ̇ϕ +
1
tr

τϕ =
1
tr

τmaxsat

(
τc

τmax

)
, (14.25)

where tr is a time constant that coincides with the sampling period of the data
acquisition system of the experimental setup (1 msec), τmax is the maximum input
that can be delivered to the system and τc verifies

τc =−Q3z2 −Q2z1 −κ0Q1ϕ + sinϕ +Q2
1ϕ −Q2ż1tr, (14.26)

where z1 = ϕ̇ +Q1ϕ , z2 = τϕ +Q2z1 +κ0Q1ϕ − sinϕ −Q2
1ϕ , Q1 > 0, Q2 > (Q1 +

2γ −κ0), γ = aη2

2 , Q3 > 0.
After the derivation of the controller, the system (14.21)–(14.23) with controller

(14.25) is implemented in the experimental setup of Fig. 14.1. The analogy between
system of Fig. 14.6 and the setup of Fig. 14.1 is as follows: the vertical displacement
corresponding to mass 1 is represented by oscillator 1, the vertical displacement of
mass 2 is represented by oscillator 2 and the rotation angle of pendula is represented
by the supporting beam.

The next step is to obtain the virtual coordinate system s :=
[

ω1 ω2 ϕ
]T

. Then,
we use the transformation

⎡
⎣ω1

ω2

ϕ

⎤
⎦=

⎡
⎢⎢⎣

ε1
x∗1

0 0

0 ε2
x∗2

0

0 0 α
x∗3

⎤
⎥⎥⎦
⎡
⎣ x1

x2

x3

⎤
⎦ , (14.27)

where x∗i has the same meaning as in (14.14). With this transformation, the
translational displacement of the supporting beam is mapped to rotation angle and
assures angles in roll of ±α [rad]. The constants εi > 0 are scaling factors used
in order to leave the signal corresponding to the vertical displacement of mass i
between suitable ranges for the setup.
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The adjustment continues by defining the actuator forces of the setup as follows:

u1 = m1

(
ω2

1 Δx1 + 2ζ1ω1Δ̇x1 +ω
′′
1

)
, (14.28)

u2 = m2

(
ω2

2 Δx2 + 2ζ2ω2Δ̇x2 +ω
′′
2

)
, (14.29)

u3 = m3

(
ω2

3 x3 + 2ζ3ω3ẋ3 + μ1ω
′′
1 + μ2ω

′′
2 +ϕ

′′)
(14.30)

with ω ′′
i , i = 1,2 and ϕ ′′

as given in (14.21)–(14.23). It is clear that the closed-loop
dynamics of the experimental setup coincides with the dimensionless dynamics of
the mechanical system depicted in Fig. 14.6.

14.4.2 Experimental and Simulation Results

Some experimental results are provided in order to show the capability of the ex-
perimental setup to mimic the dynamics of the mechanical model of Fig. 14.6 used
to simulate the heave-pitch-roll motion of a ship. The onset of parametric roll is
analyzed for the controlled and uncontrolled situations. We also analyze the effect
in the roll motion when the mass of the pendula (corresponding to the mass of the
supporting beam) is varied.

For the experiments, we consider model (14.21)–(14.23) with the following pa-
rameters: m = 8.1 [kg], m1 = m2 = 0.210 [kg], l = 9.81 [m], α = 0.5689 [-], ψ = π

8
[rad], g = 9.81 [m/s2], k1 = k2 = 8.0698 [N/s] d1 = d2 = 67.06 [Ns/m], c = 60
[Nms/rad], ω = 2 [rad/s].

In the first experiment, we investigate the occurrence of parametric roll reso-
nance. The initial conditions for the oscillators and the beam are as follows: x1(0) =
0.0011 [m], x2(0) = 0.001 [m], x3(0) = 0.00001 [m], ẋ1(0) = ẋ2(0) = ẋ3(0) = 0.
These initial conditions are related with the initial conditions of system (14.21)–
(14.23) by means of (14.27). In this experiment, parametric roll is not stabilized,
hence we consider τϕ = 0 in (14.23).

Figure 14.7 shows the time series for heave, pitch, and roll. The oscillations
in roll are slowly increasing until certain steady-state value (approximately 30◦)
as becomes evident from the graph at the bottom of the figure. The behavior in
heave and pitch motions is as expected, since the masses are excited with the
same amplitude and frequency but with a phase lag of π

8 [rad]. However, the
phase difference is a bit lower, in part, due to the “disturbance” produced by
the oscillations in roll, since we have verified in other experiments that when
parametric roll does not appear, the phase difference in heave and pitch is precisely
π
8 [rad]. The experimental and numerical results are fairly comparable and in
steady-state (around 350 s) the differences are negligible. The small differences
between experimental and numerical results observed in the transient are rather
quantitative than qualitative and the most probable cause is the slightly different
initial conditions and the natural damping present in the setup which is not perfectly
canceled.
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Fig. 14.7 Heave, pitch, and roll motions. Solid line: experimental results. Dotted line: simulation
results

In a second experiment, controller (14.25) is included in order to stabilize the
parametric roll resonance condition. The parameters of the controller are τmax =
0.01 [Nm], tr = 1 [msec], with gains Q1 = 5, Q2 = 10.155, and Q3 = 7. The
parameters for the model and the initial conditions are as in experiment one except
for x3(0) = 0.0002 and m = 6 [kg]. The controller is activated when the roll angle
achieves the threshold angle ϕ = 10◦. The experimental results are presented in
Fig. 14.8. From this figure it is possible to realize that parametric roll has been
stabilized. The control law τϕ has been implemented in software and is sent to the
setup by means of the data acquisition system. Finally, we present an experiment
in which one of the parameters of the system is varied during the experiment.
In [17] it has been shown that the stability threshold of the semi-trivial solution
∑2

i=1[ω2
i + ω̇2

i ] �= 0, ϕ , ϕ̇ = 0 is dependent on the parameters of the system. Indeed,
in experiments one and two, we have chosen the parameters such that the semi-
trivial solution is unstable (parametric roll occurs). However, we also find that by
considering m = 4.1 [kg] and with the same parameters as in experiment one, the
stability threshold is not violated and therefore no parametric roll appears. This is
illustrated experimentally. First, experiment one is repeated but with m = 4.1 [kg],
therefore no parametric roll occurs.
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Fig. 14.8 Parametric roll is stabilized
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Fig. 14.9 In this experiment parametric roll is triggered by varying the mass of the beam

At t=100 s, we add extra mass in the supporting beam. As a consequence, we
can observe resonance in the roll motion. At t ≈ 120 s, we remove the extra mass and
the resonance in roll disappears, as depicted in Fig. 14.9. Clearly, we can see that by
varying the mass of the supporting beam we can trigger the onset of parametric roll.
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14.5 Conclusions

We have presented an electro-mechanical setup which is capable of conducting
parametric roll experiments. The dynamical behavior of the system has been
modified such that we were able to mimic the dynamics of a simplified 3-DOF
nonlinear container ship model and the dynamics of a mechanical model which
simulates the heave-pitch-roll motion of a ship in a longitudinal sea. In both cases,
the oscillators are used to represent the heave and pitch motions and the supporting
beam is used to reproduce the roll motion. The experiments have been supported
by numerical results and are quite comparable with results that already have been
presented in the literature.

One of the advantages of this approach is the low implementation cost since for
the experiments we do not require additional equipment. The only requirement is a
computer and a data acquisition system. The rest is implemented in software. This
brings another advantage: in this setup it is possible to implement any external exci-
tation and hence, it is possible to create, for example, an excitation corresponding to
the waves of a rough sea or the situation in which the ship is navigating in random
seas. In the same way, it is possible to study the influence of specific parameters
in the onset of parametric roll, since we are able to change/update any parameter
at any time. Ultimately, this experimental testbed can be seen as an alternative for
the validation of models and mainly, for testing controllers ad hoc designed for the
stabilization of parametric roll, with the final aim of improving its performance in
real applications.
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