
Chapter 11
Optimal Speed and Heading Control
for Stabilization of Parametric Oscillations
in Ships

Dominik A. Breu, Le Feng, and Thor I. Fossen

11.1 Introduction

Recently, several active control strategies for the stabilization of parametric roll
oscillations in ships have been proposed [2,7–10,14,15,17,18,27,29]. The potential
of violating one of the conditions for the onset of parametric roll resonance (see [6])
has been effectively shown in [2, 8–10, 17, 18, 27]. Those control strategies, called
frequency detuning control in Chap. 10, are designed to change the frequency of the
parametric excitation for instance via the Doppler-shift of the encounter frequency
– that is, the frequency of the waves as seen from the ship. The Doppler-shift can be
achieved by variations of the ship’s speed and heading angle.

Whereas the effectiveness of frequency detuning control to stabilize parametri-
cally excited roll oscillations in ships has been reported, research on how to change
the encounter frequency with respect to optimality has been conducted only recently
[2]. Since changes of the ship’s speed and heading angle result in a shift of the
encounter frequency, optimal control methodologies can be used to determine the
optimal encounter frequency and the optimal setpoints for the ship’s speed and
heading angle.

In this work, two optimal control methods for the stabilization of parametric roll
resonance are proposed. Based on the results in Breu and Fossen [2], the extremum
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seeking (ES) methodology is adapted to iteratively determine the optimal setpoint
of the encounter frequency. The mapping of the encounter frequency to the two
controllable states, the ship’s forward speed and heading angle, is a constrained
optimization problem which can be posed in a two-step sequential least-squares
formulation. By defining an appropriate objective function and designing globally
exponential stable speed and heading controllers, it is shown that the proposed ES
controller is able to stabilize the roll oscillations caused by parametric excitation
effectively.

As a second approach, the application of a model predictive controller (MPC)
to ships experiencing parametric roll resonance is proposed. Constraints on inputs
and states as well as an objective function aiming to violate one of the empirical
conditions for the onset of parametric roll resonance are formulated in the MPC
framework. It is illustrated in simulations that the proposed MPC approach is apt to
be used for the stabilization of parametrically excited roll oscillations.

11.2 3-DOF Ship Model

A simplified 3-DOF model of the ship describing the coupled motions in surge, roll,
and yaw is used to represent the ship dynamics.

11.2.1 Reference Frames

Two reference frames are considered; a geographical reference frame fixed to the
ocean surface, and a reference frame fixed to the vessel (body frame). Figure 11.1
depicts the two reference frames in the horizontal plane, that is, the z-axis is not
shown in Fig. 11.1.

ob

xb

u

v v
β

yb

βw

λ

k

yn

xn

rn
ob

ψ

χ

βw
n

Fig. 11.1 Horizontal plane, reference frames, and angle definitions
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The reference frame fixed to the vessel is moving with the vessel and it has its
origin at a location ob midships. The body axes xb, yb, and zb coincide with the
principle axes of inertia, as defined in [5]. The vectors decomposed in the body
frame are denoted in boldface with a superscript b.

We make the following assumption:

Assumption 11.1. The geographical reference frame fixed to the ocean surface is
inertial.

The ocean surface reference frame is defined by the North-East-Down coordinate
system in [5], with the axes accordingly. Boldface and a superscript n denote the
vectors expressed in the inertial frame.

11.2.2 Ship Dynamics

The generalized velocity vector expressed in the body frame is denoted by the vector
ννν = [u,v,w, p,q,r]�. The generalized external forces τττRB = [X ,Y,Z,K,M,N]�,
expressed in the body frame, are the sum of the generalized environmental forces
τττenv and the generalized control forces τττ , that is, τττRB = τττenv +τττ . The generalized
position (position and attitude) vector is denoted as ηηη = [N,E,D,φ ,θ ,ψ ]�, where
the position vector [N,E,D]� is expressed in the inertial frame and the elements of
the attitude vector [φ ,θ ,ψ ]� are the Euler angles.

The relationship between the generalized position and the velocities
satisfies [5]

η̇ηη = J(ηηη)ννν, (11.1)

where J(ηηη) is the transformation matrix consisting of the linear and angular velocity
transformation matrices as defined by Fossen [5].

The rigid-body kinetics are given by:

MRBν̇νν +CRB (ννν)ννν = τττRB, (11.2)

where MRB is the rigid-body inertia matrix, satisfying MRB = M�
RB > 0 and

ṀRB=0. The rigid-body Coriolis and centripetal matrix CRB (ννν) = −C�
RB (ννν) is

due to the rotation of the body frame about the inertial frame. By the super-
script {1,4,6}, we indicate that only the motions in surge, roll, and yaw – the
first, fourth, and sixth rows and columns of the 6-DOF model are
considered.

Assumption 11.2. The mass is distributed homogeneously and the ship has xz-
plane symmetry.



216 D.A. Breu et al.

Since the origin of the body frame is in the centerline of the ship and the body axes
coincide with the principle axes of inertia, the rigid-body inertia matrix takes the
following form:

M{1,4,6}
RB =

⎡
⎣

m 0 0
0 Ix 0
0 0 Iz

⎤
⎦ , (11.3)

where m denotes the ship mass, whereas Ix and Iz are the moments of inertia about
the xb- and the zb-axis, respectively.

The rigid-body Coriolis and centripetal matrix can expressed by:

C1,4,6
RB

(
ννν{1,4,6}

)
=

⎡
⎣

0 mzgr −mxgr
−mzgr 0 0
mxgr 0 0

⎤
⎦= 0, (11.4)

where rb
g = [xg,yg,zg]

� denotes the vector from the body origin to the center
of gravity (CG) of the ship, expressed in the body frame. Next the following
assumptions are made.

Assumption 11.3. The CG and the origin of the body frame coincide, that is,
rb

g = 0.

Assumption 11.4. For a maneuvering ship in a seaway, the surge and yaw motions
are approximated by the zero-frequency potential coefficients while added mass and
damping in roll is approximated at the natural roll frequency ωφ . Furthermore, the
fluid memory effects are neglected.

By Assumption 11.4, it follows that

M{1,4,6}
A =

⎡
⎣

A11 (0) 0 0
0 A44

(
ωφ

)
0

0 0 A66 (0)

⎤
⎦ . (11.5)

From (11.5) it follows that the hydrodynamic Coriolis and centripetal matrix is

C{1,4,6}
A

(
ννν{1,4,6}

)
= 0. (11.6)

The linear damping is the sum of the potential and viscous damping and becomes

D{1,4,6}
l = D{1,4,6}

p +D{1,4,6}
V :=−

⎡
⎣

Xu 0 0
0 Kp 0
0 0 Nr

⎤
⎦ , (11.7)
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where the viscous damping matrix D{1,4,6}
V is approximated by a diagonal matrix

and the couplings between the roll and yaw motions are neglected. The nonlinear
damping is

D{1,4,6}
n

(
ννν{1,4,6}

)
:=−

⎡
⎢⎣

X|u|u|u| 0 0
0 K|p|p|p| 0
0 0 N|r|r|r|

⎤
⎥⎦ . (11.8)

The quadratic damping coefficient in surge may be modeled as, see Fossen [5],

X|u|u =−1
2

ρS (1+ kf)
0.075

(log10 Rn − 2)2 , Rn =
uLpp

νk
.

The water density is denoted by ρ , the wetted surface of the hull by S, and the form
factor yielding a viscous correction by kf. The Reynolds number Rn depends on the
length between perpendiculars Lpp and the kinematic viscosity of the fluid νk.

Motivated by the results presented in Galeazzi et al. [9], Neves and Rodrı́guez
[24], Shin et al. [28] and based on the model introduced in Chap. 9, the restoring
forces for the surface vessel are approximated as:

g{1,4,6}
(

ηηη{1,4,6}
)
≈
⎡
⎣

0
ρg∇GMT φ −Kφ 3φ3

0

⎤
⎦ , (11.9)

where g is the acceleration of gravity, ∇ the displaced water volume, and GMT the
transverse metacentric height given by:

GMT = GMm +GMa cos

(∫ t

0
ωe (τ)dτ

)
. (11.10)

Here, GMm is the mean metacentric height, GMa the amplitude of the metacentric
height change in waves, and ωe the encounter frequency. This model takes into
account velocity changes since ωe is allowed to vary with time.

The ship dynamics can be written as:

η̇ηη{1,4,6} = J{1,4,6}
(

ηηη{1,4,6}
)

ννν{1,4,6} (11.11)

Mν̇νν{1,4,6}+C
(

ννν{1,4,6}
)

ννν{1,4,6}+D
(

ννν{1,4,6}
)

ννν{1,4,6}+ g
(

ηηη{1,4,6}
)
= τττ{1,4,6}

(11.12)
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where

J{1,4,6}
(

ηηη{1,4,6}
)
=

⎡
⎣

cos(ψ) 0 0
0 1 0
0 0 cos(φ)

⎤
⎦

M = M{1,4,6}
RB +M{1,4,6}

A

=

⎡
⎣

m+A11 (0) 0 0
0 Ix +A44

(
ωφ

)
0

0 0 Iz +A66 (0)

⎤
⎦

C
(

ννν{1,4,6}
)
= C{1,4,6}

RB

(
ννν{1,4,6}

)
+C{1,4,6}

A

(
ννν{1,4,6}

)
= 0

D
(

ννν{1,4,6}
)
= D{1,4,6}

l +D{1,4,6}
n

(
ννν{1,4,6}

)

=−

⎡
⎢⎣

Xu +X|u|u|u| 0 0
0 Kp +K|p|p|p| 0
0 0 Nr +N|r|r|r|

⎤
⎥⎦

g
(

ηηη{1,4,6}
)
= g{1,4,6}

(
ηηη{1,4,6}

)

=

⎡
⎣

0
ρg∇

[
GMm +GMa cos

(∫ t
0 ωe(τ)dτ

)]
φ −Kφ 3φ3

0

⎤
⎦ .

For simplicity, it is assumed that the ship is controlled by a single rudder such that

τ{6} =−Nδ δ , (11.13)

where δ denotes the rudder angle. Then, the yaw subsystem can be approximated
by a first-order Nomoto model with time and gain constants T and K, respectively
(Fossen [5]):

T ṙ+ r = Kδ . (11.14)

The Nomoto constants T and K can be related to the hydrodynamic ship coefficients
such as the acceleration derivatives and the velocity derivatives. These coefficients
may be approximated by considering the geometrical dimensions of the ship, that is,
the length between the perpendiculars and the draft of the ship, as stated by Clarke
et al. [4].

The control inputs to the 3-DOF ship model (11.11) and (11.12) are the control
forces in roll τφ and surge τu, as well as the rudder deflection δ . Measured outputs
of the system are the roll angle φ , the roll rate φ̇ , the surge speed u, the heading
angle ψ and the heading rate ψ̇.
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11.2.3 Encounter Frequency Model

In this chapter, the following assumption is made:

Assumption 11.5. The waves are planar and regular sinusoidal.

Consequently, the waves can be described by:

ζ (r, t) = ζ̄ cos
(

ω0t −k�rn +φζ

)
, (11.15)

where ζ (r, t) is the sea surface elevation at a location rn at a time t. The vector rn is
expressed in the inertial frame. The amplitude of the sinusoid is ζ̄ , the modal wave
frequency ω0, and the initial phase shift φζ . The wave vector k implicitly defines
the wave number k:

k = ke

where e is the propagation vector, satisfying ‖e‖= 1. The wave length for a planar
wave is

λ =
2π
‖k‖ =

2π
k

(11.16)

and the phase velocity is

c =
ω0

‖k‖ =
λ
Tw

(11.17)

with Tw the period. We assume that ζ̄ , ω0, and k are constants for simplicity.
To an observer at a fixed location in the inertial reference frame, the frequency

at which the waves encounter the ship equals the modal wave frequency. This is
however not true when the observer is moving with the ship at a nonzero velocity.
A moving ship causes a shift in the peak frequency of the wave spectrum which can
be accounted for by introducing the encounter frequency.

From Fig. 11.1 it is evident that the encounter angle expressed in the inertial
frame is given by:

β n
w = βw +ψ .

We assume without loss of generality that β n
w is constant; that is, the waves are

always coming from the same compass direction. The horizontal velocity of the
ship v = ννν{1,2} is expressed in the body frame and can readily be expressed in the
inertial frame:

vn = R(ψ)v, (11.18)

where R(ψ) ∈ SO(2) is the rotation matrix about ψ . It satisfies R(ψ)R�
(ψ) = R� (ψ)R(ψ) = I and detR(ψ) = 1, that is, it is orthogonal. The rotation
matrix is given by:

R(ψ) =

[
cos(ψ) −sin(ψ)

sin(ψ) cos(ψ)

]
.
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The peak frequency shift of the wave spectrum is due to the Doppler shift. The
projection of the ship velocity vn on the wave vector k is

vp = vpe = ‖vn‖cos(β n
w − χ)e, (11.19)

where the course angle χ is the sum of the heading angle ψ and the sideslip angle
β . The encounter frequency, that is the frequency of oscillation of the waves as it
appears to an observer on the ship, can then be calculated by considering the Doppler
shift and by combining (11.18) and (11.19):

ωe = ω0
(
1− vp/c

)

= ω0

(
1− k

ω0
‖R(ψ)v‖cos(β n

w − χ)
)

= ω0 − k
√

u2 + v2 cos(β n
w −ψ −β ) . (11.20)

Under the assumption of deep water (h ≥ λ/2), where h is the water depth, the
dispersion relationship holds:

k =
ω2

0

g
. (11.21)

To decouple the surge model from the sway–yaw subsystem, it is assumed that the
forward speed of the vessel is slowly time-varying only, which implies:

‖v‖=
√

u2 + v2 ≈ u (11.22)

and that there is no ocean current present. From Fig. 11.1 it is apparent that the
sideslip angle β is

β = arcsin

(
v

‖v‖
)
≈ v

‖v‖ (11.23)

when β is small. Since the sway component of the ship velocity is neglected, the
sideslip angle is disregarded as well.

Hence, the encounter frequency can be expressed by:

ωe (u,ψ ,ω0,β n
w) = ω0 − ω2

0

g
ucos(β n

w −ψ) . (11.24)

Notice that the encounter frequency (11.24) couples the roll dynamics to the
surge and yaw dynamics in (11.12), respectively.
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11.3 Extremum Seeking Control

Extremum seeking control is a real-time optimization methodology, popular in both
research and industry. It is characterized by the online tuning of the a priori unknown
setpoint of a system to achieve an optimal output, with respect to an objective
functional for example. ES is not model based – it is applicable also when the model
is not perfectly known. In the ES methodology, a perturbation signal is added to the
system to find an estimate of the gradient of the objective signal. In Ariyur and
Krstić [1], a thorough introduction to ES control, including many applications in
various research areas, is presented.

11.3.1 Extremum Seeking Applied to Ships in Parametric Roll
Resonance

In this section, the ES method is adapted to the regulation of parametrically excited
roll motions in ships as depicted in Fig. 11.2. The proposed, overall scheme consists
of the ship – the surge and the yaw motions are coupled to the roll motion by
the encounter frequency (11.24) – the control block and a dynamic feedback loop
(ES loop).
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Fig. 11.2 Extremum seeking control applied to ships in parametric roll resonance
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The output J of the objective function has an extremum, that is a minimum or a
maximum, at ω∗

e,d . The ES loop adds a slow perturbation to the best current estimate
of ωe,d in order to iteratively and online tune the parameter ωe,d to its optimal value
ω∗

e,d .
By assuming the perturbation signal to be sufficiently slow compared to the open-

loop dynamics, the system can be viewed as a static map and its dynamics can be
neglected for the ES loop. The high-pass filter s/(s+ωh) serves to eliminate the
offset of the cost signal J and the second perturbation creates a sinusoidal response
of J. Adding a sinusoidal perturbation signal to the best estimate of ωe,d causes
the two sinusoids to be in phase or out of phase depending on whether the best
estimate is smaller or larger than its optimal value ω∗

e,d . Whereas the low-pass filter
ωl/(s+ωl) is used to extract the offset caused by multiplying the two sinusoids,
the integrator in the ES loop gives the approximate gradient update law. ([1])

The proposed ES control schemes requires three time scales in the overall system.
Since it is assumed that the map from the reference to the output of the objective
function is a static map, the time constant of the plant needs to be the fastest.
Furthermore, the perturbation signal must be sufficiently slow compared to the plant,
or it would not be fed through the plant properly. The filters give an estimate of the
gradient update law, implying that their time constants are required to be the slower
than those of both the plant and the perturbation signal.

The encounter frequency (11.24) depends among others on the ship’s forward
speed and heading angle which are controllable. The best estimate of the optimal
encounter frequency is therefore mapped to the desired surge speed ud and the
desired heading angle ψd by a (nonlinear) control allocation as depicted by the
control block in Fig. 11.2. Speed and heading controllers are then used to compute
the required control force in surge τu and the rudder deflection δ .

It is noteworthy that the optimal setpoint of the encounter frequency – and as a
matter of fact, the ship’s speed and heading angle – is a priori not known. There
lies the power of the ES control which iteratively tunes the encounter frequency, as
the parameter of the feedback loop, to its optimal value which minimizes a defined
objective functional. Hence, the vital role of the choice of the objective function is
apparent for the performance of the ES control applied to parametric roll resonance.

Treating the encounter frequency as the sole parameter in the proposed ES con-
trol scheme seems advantageous compared to the formulation as a multiparameter
ES method. In particular, control allocation allows to take into account restrictions
on the ship’s speed and heading angle as well as on their variation rate.

11.3.2 Objective Function

The objective function is one of the key factors with respect to the performance of
the proposed ES control method applied to ships in parametric roll resonance, as
depicted in Fig. 11.2. Its choice determines the ability to regulate the roll motion as
well as it accounts for mission dependent restrictions.
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It is well known that certain ships are prone to experience parametric roll
resonance when the encounter frequency is close to double the natural roll frequency
of the ship, that is, see Nayfeh and Mook [23]:

ωe ≈ 2ωφ . (11.25)

The objective function is constructed as the weighted superposition of two cost
functionals, accounting for the frequency condition (11.25) and the deviation from
the nominal cruise condition, respectively:

J = w1J1 +w2J2, (11.26)

where w1 and w2 are the weights. The two cost functionals are expressed by:

J1 = c1e−c2(ωe−2ωφ)
2

(11.27)

J2 = c3 (ωe −ωe,0)
2 , (11.28)

where ci > 0, i ∈ {1,2,3} are constants. Equation (11.27) represents the penalty
of the ship not violating the frequency condition (11.25). Equation (11.28), on the
other hand, penalizes the deviation of the ship from its nominal cruise condition
expressed by the nominal encounter frequency ωe,0, that is, the encounter frequency
(11.24) with the nominal setpoints for the ship’s surge speed u0 and heading angle
ψ0. By the choice of the constant parameters ci, i ∈ {1,2,3} in (11.27) and (11.28),
the shape of the cost functionals can be adjusted.

It is apparent from the definition of the objective function (11.26) that in order
to avoid parametric roll resonance the objective has to be minimized. Thus, the ES
loop is designed such that its parameter ωe,d is iteratively tuned to the optimal value
ω∗

e,d , resulting in a minimum of the objective function.

11.3.3 Control Allocation

The control allocation block depicted in Fig. 11.2 maps the parameter of the ES
loop ωe,d – the desired encounter frequency – to the desired trajectory of the control
variables, that is the ship’s desired surge speed ud and heading angle ψd. Revisiting
(11.24), the desired encounter frequency is approximated by a first-order Taylor
expansion, taking into account small variations of the ship’s forward speed and
heading angle:

ωe,d (u+Δu,ψ +Δψ , ·) = ω0 − ω2
0

g
cos(β n

w −ψ)u− ω2
0

g
cos(β n

w −ψ)Δu

− ω2
0

g
sin(β n

w −ψ)uΔψ . (11.29)
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Here, it is assumed that the desired encounter frequency can be achieved by
a deviation of Δu and Δψ from the ship’s forward speed and heading angle,
respectively. Equation (11.29) suggest that the virtual control input can be chosen as:

τv =− g

ω2
0

[
ωe,d (u+Δu,ψ +Δψ , ·)−

(
ω0 − ω2

0

g
cos(β n

w −ψ)u

)]

=− g

ω2
0

[
ωe,d (u+Δu,ψ +Δψ , ·)−ωe (u,ψ , ·)] (11.30)

The relation between the virtual control input (11.30) and the variations in surge
speed and heading angle can be expressed by the constrained linear mapping

τv = B(u,ψ ,β n
w)ζζζ , (11.31)

ζζζ min ≤ ζζζ ≤ ζζζ max (11.32)

where the control effectiveness matrix B(u,ψ ,β n
w) and the variation vector ζζζ are

given by:

B(u,ψ ,β n
w) =

[
cos(β n

w −ψ)

sin(β n
w −ψ)u

]
, ζ =

[
Δu
Δψ

]
. (11.33)

The constraints are expressed in (11.32) where ζmin and ζmax denote the lower and
upper bounds on ζ , respectively. The desired ship’s surge speed and heading angle
are then merely

ud = u+Δu (11.34)

ψd = ψ +Δψ . (11.35)

According to [11, 30], the control allocation problem (11.31) and (11.32) can be
split up into a two-step sequential least-squares problem to find the variation of the
ship’s forward speed and heading angle:

S = arg min
ζζζ min≤ζζζ≤ζζζ max

‖Wτv (B(u,ψ ,β n
w)ζζζ − τv)‖ (11.36)

ζζζ opt = argmin
ζζζ∈S

‖Wζ (ζζζ −ζζζ d)‖, (11.37)

where Wτv and Wζ are weight matrices. First, the set of feasible solutions S that
minimize B(u,ψ ,β n

w)ζζζ − τv is computed. Then, the best solution – the solution
which minimizes Wζ (ζζζ −ζζζd) – is determined. ζζζ d is the vector of desired variations
in ship’s surge speed and heading angle and is presumably null.

The sequential least-squares problem (11.36) and (11.37) is solved in Mat-
lab using the Quadratic Programming Control Allocation Toolbox (QCAT) (see
Härkegård [12]).
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11.3.4 Speed and Heading Controllers

The speed and heading controllers determine the appropriate control force in
surge and the rudder deflection from the desired surge speed and heading angle,
respectively, see Fig. 11.2.

By assumption, the inner control loop, consisting of the ship and the control block
in Fig. 11.2, is designed such that its dynamics can be neglected for the ES loop.
Thus, the inner control loop needs to be considerably faster than the overall closed-
loop system, yielding that the controllers are required to be fast in comparison to
the perturbation signal and the filters of the ES loop.

Speed Controller

The surge dynamics is given by the first row in (11.12). Assuming, that the mass
and the damping terms are perfectly known, the speed controller can be designed by
using feedback linearization:

τu = (m+A11 (0))vu +
(−Xu −X|u|u|u|

)
u. (11.38)

By taking the virtual control input vu as an ordinary proportional controller, the
closed-loop surge dynamics becomes

u̇ = vu =−ku,p (u− ud) , ku,p > 0 (11.39)

where ku,p is the controller gain, chosen such that the error dynamics is globally
exponentially stable (GES); see Fossen [5] or Khalil [20].

Heading Controller

The yaw dynamics is represented by the first-order Nomoto model (11.14). To
design the heading controller, is is assumed that ψ̇ ≈ r and that the rudder deflection
δ is the control input:

δ =−kψ,p (ψ −ψd)− kψ,d (ψ̇ − ψ̇d) , kψ,p, kψ,d > 0. (11.40)

The desired yaw rate ψ̇d is generated by using a third-order reference model. The
proportional and derivative gains, kψ,p and kψd , in (11.40) are determined such that
the error dynamics of the closed-loop system

T ψ̈ +
(
1+Kkψ,d

)
ψ̇ +Kkψ,pψ = Kkψ,pψd +Kkψ,dψ̇d (11.41)

is GES (Fossen [5] or Khalil [20]).
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11.3.5 Stability Considerations

It can be proven that the ES parameter converges to a neighborhood of its optimal
value and that the ES algorithm is exponentially stable (see Krstić and Wang [21]
and Breu and Fossen [2]). Consider the single-input, single-output nonlinear system:

ẋ = f(x,u) , (11.42)

y = h(x) , (11.43)

where x ∈R
n is the state vector, u ∈R the input, y ∈R the output; f : Rn ×R→R

n

and h : Rn → R are smooth. The control law u = α (x,θ ) is parametrized by θ ,
and assumed to be smooth. The closed-loop system corresponding to (11.42) and
(11.43) then becomes

ẋ = f(x,α (x,θ )) (11.44)

and it has equilibria parametrized by θ . For the stability analysis, the following
assumptions are made (see Krstić and Wang [21]).

Assumption 11.6. There exists a smooth function l : R→R
n such that:

f(x,α (x,θ )) = 0 if and only if x = l(θ ) . (11.45)

Assumption 11.7. The equilibrium x = l (θ ) of (11.44) is locally exponentially
stable (LES) with decay and overshoot constants uniform in θ for each θ ∈ R.

Assumption 11.8. There exists θ ∗ ∈ R such that:

(h ◦ l)′ (θ ∗) = 0 (11.46a)

(h ◦ l)′′ (θ ∗) > 0. (11.46b)

Assumptions (11.6) and (11.7) guarantee the robustness of the control law with re-
spect to θ , i.e., any equilibria produced by θ can be stabilized by the control law. As-
sumption 11.8 implies that the output equilibrium map has a minimum when θ = θ ∗.

It was proven by averaging for a static system and by the singular perturbation
method for a dynamic system that (11.44) converges to a unique, exponentially
stable, periodic solution in a neighborhood of the origin [21]. The perturbation
signal and the filters in the ES loop determine the size of this neighborhood.

Due to the three different time scales in the proposed ES control (see Sect. 11.3.1)
the plant – the surge and yaw subsystems – can be viewed as a static map.
The ES parameter ωe, determined from the ship’s forward speed and heading
angle, parametrizes the equilibria of the plant. The speed and heading controllers
ensure local exponential stability of the equilibria which may be produced by
the ES parameter ωe, see Sect. 11.3.4, and the objective function defined in
Sect. 11.3.2 fulfills locally Assumption 11.8. Thus, the parameter ωe converges to a
neighborhood of its optimal value ω∗

e .
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11.4 Model Predictive Control

Model predictive control (MPC) is a rather recent control methodology which is
characterized by the usage of an explicit plant model to predict the output of the
process. This prediction is consequently used to find an optimal control signal which
minimizes a specified objective function. The MPC formulation allows to address
the constraints of the states and the input explicitly. MPC has been successfully
applied to a wide variety of control problems and the increasing availability of
computing power has only added to its popularity in both academia and industry,
see, for example, Camacho and Bordons [3]. In ship control, MPC formulation
has been applied among others to autopilot control design, roll stabilization, fault-
tolerant control of a propulsion system, tracking, and control of ship fin stabilizers,
see Kerrigan and Maciejowski [19], Naeem et al. [22], Perez [25], and Perez and
Goodwin [26].

11.4.1 Model Predictive Control Applied to Ships in Parametric
Roll Resonance

The basic structure of a MPC setup is depicted in Fig. 11.3. The MPC algorithm
consists generally of the following elements, see Camacho and Bordons [3]:

• Prediction model
• Objective function
• Optimizer to obtain the control law

The strategy of MPCs can be summarized in a three step loop which is performed
at each time instant, see, for example, Camacho and Bordons [3]:

Model +

Optimizer

Past inputs
and outputs Predicted

outputs
−

Reference
trajectory

Future errors

Cost
function Constraints

Future
inputs

Fig. 11.3 Basic structure of a model predictive controller [3]
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1. The future process outputs are predicted for a prediction horizon N, depending
on the past inputs and outputs and on the future control signals.

2. An optimization problem is solved to determine the set of future control signals,
minimizing the objective function.

3. The first control signal is sent to the process and the steps 1–3 are repeated at the
next time instant.

In the context of the control of parametric roll resonance of ships, an approach
featuring the MPC formulation to control the ship’s forward speed and heading
angle simultaneously in order to damp the roll motion is used. Furthermore, it
is assumed that no control input affects the roll dynamics, that is, τφ = 0. The
ship’s surge speed and heading angle can however be changed. This results in
a time-varying encounter frequency and the transients due to heading and speed
changes must be taken into account. By changing the speed and heading actively it
is possible to violate a condition for parametric roll resonance. To that matter, the
MPC formulation is adapted to find the optimal surge speed and heading angle to
achieve a regulation of the roll motion while taking into account constraints on the
inputs as well as on the states.

11.4.2 State-Space Model

Consider the 3-DOF ship model (11.12) in Sect. 11.2.2. The encounter frequency
(11.24) couples the roll dynamics to the surge and yaw dynamics, respectively, as
derived in Sect. 11.2.3. For convenience the system dynamics is expressed as

ẋ = f(x,τττ) (11.47)

y = g(x) , (11.48)

where x =
[
ηηη{1,4,6},ννν{1,4,6}]� and

f(x,τττ) =
[

J{1,4,6} (ηηη{1,4,6})ννν{1,4,6}

M−1
[
τττ −C

(
ννν{1,4,6})ννν{1,4,6}−D

(
ννν{1,4,6})ννν{1,4,6}− g

(
ηηη{1,4,6})]

]

g(x) = x

11.4.3 Objective Function

The MPC objective function is constructed similar to the one in Sect. 11.3.2, that
is, as the weighted sum of cost functionals. Following the reasoning in Sect. 11.3.2,
the following objective function is proposed:

J = w1J1 +w2J2, (11.49)
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where the weights are wi, i ∈ {1,2} and

J1 = c1e−c2(ωe−2ωφ)
2

(11.50)

J2 = c3 (ωe −ωe,0)
2 , (11.51)

where ci > 0, i ∈ {1,2,3} are constants. As in Sect. 11.3.2, (11.50) represents
the penalty of the ship not violating the frequency condition (11.25), and (11.51)
penalizes the deviation of the ship from its nominal cruise condition given by ωe,0 –
the encounter frequency (11.24) with the nominal setpoints for the ship’s surge
speed u0 and heading angle ψ0.

11.4.4 Obtaining the Control Law

To obtain the control signal, the objective function (11.49) has to be minimized
at each time instant. The minimization of (11.49) is subject to equality constraints
which, for a state space model as presented in Sect. 11.4.2 and 11.2.2, respectively,
are the model constraints given by (see Camacho and Bordons [3]):

f(x,τττ) = 0 (11.52)

y− g(x) = 0. (11.53)

Furthermore, the minimization of (11.49) is as well subject to inequality
constraints expressed as

y ≤ y(t + j)≤ y, ∀ j = 1,N (11.54)

τττ ≤ τττ (t + j)≤ τττ, ∀ j = 1,M− 1 (11.55)

Δτττ ≤ Δτττ (t + j)≤ Δτττ, ∀ j = 1,M− 1, (11.56)

where N and M are the prediction horizon and the control horizon, respectively. The
solution of the problem to minimize the objective function (11.49) with the model
constraints (11.52) and (11.53) and the inequality constraints (11.54)–(11.56) is not
a trivial one. It generally involves solving a nonconvex, nonlinear problem.

The nonlinear MPC (NMPC) problem in the form of a general nonlinear

programming problem with w =
[
τττ�,x�,y�

]�
is, see Camacho and Bordons [3],

min
w

J (w)

subject to: c(w) = 0, h(w)≤ 0. (11.57)
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Here, c corresponds to the equality constraints (11.52) and (11.53) and h to the
inequality constraints (11.54)–(11.56).

The optimization (11.57) is performed by using the TOMLAB Optimization
Environment (TOMLAB/NPSOL),1 see Holmström et al. [16].

11.5 Simulation Results

The ship is simulated by applying both the ES control methodology and the
nonlinear MPC to the system. The initial values for the simulations are chosen
such that the ship is experiencing parametrically excited rolling. The nominal
cruise condition is chosen as u0 = 7.5m/s and ψ0 = 0◦. We assume that the
ship is initially in head sea condition, that is, β n

w = π . Table 11.1 lists the model
parameters. In the simulation results, the controlled variables are denoted by the
subscript c.

Table 11.1 Model parameters, adopted from [13]

Quantity Symbol Value

Moment of inertia, roll Ix 1.4014×1010 kgm2

Added moment of inertia, roll A44 2.17×109 kgm2

Nonlinear damping, roll K|p|p −2.99×108 kgm2

Linear damping, roll Kp −3.20×108 kgm2/s
Water density ρ 1025 kg/m3

Gravitational acceleration g 9.81 m/s2

Water displacement ∇ 76468 m3

Mean meta-centric height GMm 1.91 m
Amplitude of meta-centric height change GMa 0.84 m
Restoring coefficient Kφ3 −2.9740×109 kgm2/s2

Mass m 7.6654×107 kg
Added mass, surge A11 7.746×106 kg
Linear damping, surge Xu −5.66×103 kg/s
Wetted surface S 11800 m2

Form factor kf 0.1 −
Ship length Lpp 281 m
Kinematic viscosity νk 1.519×10−6 m2/s

Nomoto time constant T −160.15 s
Nomoto gain constant K −0.1986 1/s

Natural roll frequency ωφ 0.3012 rad/s
Modal wave frequency ω0 0.4353 rad/s

1See http://www.tomopt.com for information about the TOMLAB Optimization Environment.

http://www.tomopt.com
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11.5.1 Extremum Seeking

The ES control is initially deactivated but is turned on the time instant when the roll
amplitude exceeds φ = 3◦ for the first time.

The roll angle and frequency ratio with and without the ES control is shown in
Fig. 11.4. Note that, in the uncontrolled scenario, the ship is experiencing parametric
roll resonance with high roll amplitudes; see Fig. 11.4a. It is furthermore apparent
that, when the ES control is activated, the ship is driven out of the frequency
ratio relevant for parametric rolling and consequently the roll motion is reduced
significantly.

The frequency ratios ωe,d/ωφ and ωe,c/ωφ in Fig. 11.4b denote the desired
frequency ratio as output of the ES feedback loop and the actual, controlled,
frequency ratio, thus indicating the ability of the controllers to track the desired
encounter frequency.

Figure 11.5 shows the ship’s surge speed and the control force in surge, whereas
Fig. 11.6 depicts the ship’s heading angle and the rudder deflection for both the
uncontrolled and the controlled scenario.
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Both the ship’s surge speed and heading angle follow the reference trajectory,
determined by the control allocation block. Due to the perturbation signal in the
ES control, the ship’s surge speed and heading angle show an expected oscillatory
behavior.

The cost as defined in the objective function is shown in Fig. 11.7 and Fig. 11.8
shows a comparison of the roll angle, when the ES control is activated at different
roll angles, that is, at 3◦, 5◦, and 10◦, respectively.

11.5.2 Model Predictive Control

The MPC control, initially turned off, is activated when the roll amplitude exceeds
φ = 3◦ for the first time. In Fig. 11.9, the roll angle and the frequency ratio is
shown for the controlled and the uncontrolled scenario. Figure 11.9a depicts that
the ship is experiencing large roll angles due to parametric roll resonance in the
uncontrolled scenario. However, the reduction of the frequency ratio reduces the
roll angle quickly when the MPC is active.
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The ship’s forward speed and the control force in surge are shown in Fig. 11.10
and the ship’s heading angle and the rudder deflection are depicted in Fig. 11.11.
Again, the controlled and the uncontrolled scenario is shown.

Figure 11.12 shows the cost defined by the proposed objective function. Finally,
in Fig. 11.13, the roll angle is shown, when the MPC is activated at different time
instants, corresponding to roll angles of 3◦, 5◦, and 10◦, respectively.



234 D.A. Breu et al.

time (s)

ro
ll

an
gl

e
(◦

)

0 200 400 600 800 1000
–20

0

20

1200

φ3
φ5
φ10

Fig. 11.8 Extremum seeking – Roll angle: Comparison when the controller is activated at 3◦, 5◦,
and 10◦, respectively

time (s)

ro
ll 

an
gl

e 
(◦

)

0 200 400 600 1000
–20

0

20

time (s)

fr
eq

ue
nc

y 
ra

ti
o 

(−
)

0 200 400 600 1000

1.8

1.85

1.9

800

φ
φc

ωe/ωφ

ωe,c/ωφ

800

a

b

Fig. 11.9 MPC – Roll angle, frequency ratio

11.6 Conclusions

In this chapter, two active control approaches for the stabilization of parametric
oscillations in ships by frequency detuning have been proposed. This is done by
violating one of the conditions for the onset of parametric roll resonance by varying
the ship’s forward speed and heading angle simultaneously and thus controlling
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the frequency of encounter. The proposed control strategies feature optimality
considerations with respect to the optimal speed and heading changes to stabilize
parametrically excited roll motion.

The methodology of ES control has been applied to control ships exhibiting para-
metric roll resonance. The encounter frequency is tuned in real time to its optimal
setpoint by defining an appropriate objective function. The encounter frequency
commands are mapped to the ship’s forward speed and heading angle by formulating
the control allocation problem in the sequential least-squares framework, taking into
account constraints on the actuators. The speed and heading controllers guarantee
exponentially stable origins of the tracking error dynamics.

Furthermore, MPC is considered as a second approach for the stabilization of
parametric roll resonance. By explicitly formulating both constraints on the input
and the states as well as an objective function which accounts for the parametric roll
resonance condition, a controller has been presented that effectively drives the ship
out of parametric resonance and reduces the roll motion significantly.

Both the ES and the model predictive controllers have been successfully verified
in computer simulations and it has been shown that the combined variation of the
ship’s forward speed and heading angle in both control approaches is efficient to
stabilize the roll motion of a ship experiencing parametric roll resonance.
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