
Chapter 10
Frequency Detuning Control by Doppler Shift

Christian Holden, Dominik A. Breu, and Thor I. Fossen

10.1 Introduction

Control of parametric roll resonance has attracted considerable research in recent
years [1, 7–11, 13–15, 18, 19]. The proposed control methods can roughly be
categorized as direct or indirect methods. The direct methods are aimed at directly
controlling the roll motion by generating an opposing roll moment, as seen in
[11,19]. Indirect strategies attempt to violate the empirical conditions necessary for
the onset of parametric roll resonance, as seen in [1, 14, 15, 18]. A hybrid approach,
doing both at the same time, is also possible, as seen in [7–9].

In this work, we consider the indirect approach to control parametrically excited
roll motions. A simple model for parametric roll resonance is the Mathieu equation:

m44φ̈ + d44φ̇ +
[
k44 + kφt cos(ωet +αφ )

]
φ = 0,

where m44 is the sum of the moment of inertia and the added moment of inertia
in roll, d44 the linear hydrodynamic damping coefficient, k44 the linear restoring
moment coefficient and kφt the amplitude of its change, ωe the encounter frequency,
and αφ a phase angle. All the parameters are considered constant.

It is known from [17] that such a system parametrically resonates at ωe ≈
2
√

k44/m44 (an encounter frequency of twice the natural roll frequency). The
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encounter frequency ωe is the Doppler-shifted frequency of the waves as seen from
the ship. As the frequency is Doppler-shifted, it can be changed by changing the
ship’s speed.

The main purpose of this chapter is to show that it is feasible to control parametric
roll resonance by changing the encounter frequency to violate the condition ωe ≈
2
√

k44/m44. We call this frequency detuning.
As shown in Chap. 9, Mathieu-type equations are not valid for non-constant ωe.

To design and analyze the control system, we therefore use the simplified, 1-DOF
model (9.39) developed in Sect. 9.5, allowing the ship’s forward speed to change,
but only slowly. For ships susceptible to parametric roll – many of which are large
[2, 4–6] – this is not an unreasonable assumption.

Based on the 1-DOF roll model (9.39) in Sect. 9.5, we propose a simple controller
based on a linear change of the encounter frequency, achieved by variation of the
ship’s forward speed. We then prove mathematically that the proposed controller is
able to drive the ship out of parametric resonance, driving the roll motion to zero. It
is worth noting that the controller is in fact simple enough that a human helmsman
can perform the necessary control action, rendering a speed controller unnecessary.

The controller is tested with the simplified 1-DOF model (9.39) and the full
6-DOF model presented in Sect. 9.2.2, and is shown to work as expected in both
cases.

The rest of this chapter is organized as follows. Section 10.2 lists nomenclature.
Section 10.3 briefly summarizes the model used. The controller is derived and its
theoretical properties are proven in Sect. 10.4. Its performance in simulation is
shown in Sect. 10.5. Section 10.6 contains the conclusion. A short appendix contains
the proof of a lemma used in the proof of the controller’s performance.

10.2 Nomenclature

In this chapter, the following parameters are used:

vb = [vb
1,v

b
2,v

b
3]
� The linear velocity of the ship observed in a reference frame

attached to the ship.
ωωωb = [ωb

1 ,ω
b
2 ,ω

b
3 ]

� The angular velocity of the ship observed in a reference
frame attached to the ship.

vn = [vn
1,v

n
2,v

n
3]
� The linear velocity of the ship observed in an (assumed

inertial) reference frame attached to the mean ocean surface.
ωωωn = [ωn

1 ,ω
n
2 ,ω

n
3 ]

� The angular velocity of the ship observed in an (assumed
inertial) reference frame attached to the mean ocean surface.

R A rotation matrix rotating vectors from the body-fixed to the
inertial frame.

ΘΘΘ = [φ ,θ ,ψ ]� The roll–pitch–yaw Euler angles.
m44 > 0 The total moment of inertia in roll; the sum of the rigid-body

moment of inertia in roll and the added moment of inertia
in roll.

d44 > 0 The linear damping coefficient in roll.
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k44 > 0 The linear restoring coefficient in roll.
kφt > 0 The amplitude of the time-varying change in the linear

restoring coefficient in roll.
ωe(t) The time-varying encounter frequency; the Doppler-shifted

frequency of the waves as seen from the ship.
αφ The phase of the time-varying change in the linear restoring

coefficient in roll.
kφ 3 > 0 The cubic restoring coefficient in roll.
ω0 The frequency of the waves as seen by an observer in an

(assumed inertial) frame attached to the mean ocean surface.
kw The wave number as seen by an observer in an (assumed

inertial) frame attached to the mean ocean surface.
u = ω̇e The control input.
ε A control parameter.
t Time.
t0 The start time.
t1 The controller is turned on at time t = t1.
t2 The controller is turned off at time t = t2.
ωe,0 = ωe(t0) The initial value of the encounter frequency.
ωe,1 = ωe(t ≥ t2) The final value of the encounter frequency.
ᾱφ The phase of the time-varying change in the linear restoring

coefficient in roll at time t ≥ t2.
γ The normalized damping ratio.
κ The normalized linear restoring coefficient.
ι The normalized change in the linear restoring coefficient.
α The normalized cubic restoring coefficient.
T Normalized time (fast).
t̄ Normalized time (slow).
σ The detuning parameter.
a(t̄) The (slowly) time-varying amplitude of the steady-state roll

motion; φ ≈ a(t̄)cos(T −β (t̄)/2) for t ≥ t2.
β (t̄) The (slowly) time-varying phase of the steady-state roll

motion; φ ≈ a(t̄)cos(T −β (t̄)/2) for t ≥ t2.

10.3 Roll Model for Non-Constant Speed

As previously mentioned, we use no direct actuation in roll; instead, we are changing
ωe (by changing the forward speed) to detune the encounter frequency and thus
violate a necessary condition for the existence of parametric roll resonance.

We make the following assumptions:

A 10.1. The ship is traveling in head or stern seas.
A 10.2. The waves are planar, standing, and sinusoidal, with frequency ω0 and wave

number kw.
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A 10.3. The ship is changing speed only slowly.
A 10.4. The ship’s sway and heave velocities are small.
A 10.5. The ship’s pitch angle is small.

The ship is traveling with linear and angular velocities

vb = [vb
1,v

b
2,v

b
3]
� ∈ R

3 (10.1)

ωωωb = [ωb
1 ,ω

b
2 ,ω

b
3 ]

� ∈ R
3 (10.2)

as seen from the ship. For an observer standing on the mean ocean surface, the ship
will appear to have linear and angular velocities

vn = Rvb = [vn
1,v

n
2,v

n
3]
� ∈ R

3 (10.3)

ωωωn = Rωωωb = [ωn
1 ,ω

n
2 ,ω

n
3 ]

� ∈ R
3, (10.4)

where R is a rotation matrix given by:

R(ΘΘΘ) =

⎡

⎣
cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ
−sθ sφcθ cφcθ

⎤

⎦ , (10.5)

where c·= cos(·), s·= sin(·) and ΘΘΘ = [φ ,θ ,ψ ]� are the roll, pitch, and yaw angles
as defined in [3], see also Chap. 9.

To analyze the effects of speed changes, we need a model that is valid for time-
varying speed. As discussed in Chap. 9, the commonly used Mathieu equation is not
adequate in this case. We thus use the 1-DOF model (9.39) of Sect. 9.5, given by

m44φ̈ + d44φ̇ +

[
k44 + kφt cos

(∫ t

t0
ωe(t) dτ +αφ

)]
φ + kφ 3φ3 = 0, (10.6)

where φ is the roll angle, m44 the sum of the rigid-body moment of inertia about
the x-axis and the added moment of inertia in roll, d44 the linear hydrodynamic
damping, k44 the linear restoring moment coefficient, kφt the amplitude of its
change, and kφ 3 the cubic restoring force coefficient. These parameters are constant.

We note that the natural frequency of φ is ωφ �
√

k44/m44. From Chap. 9, we
have that the encounter frequency ωe is given by:

ωe = ω0 − kwvn
1 = ω0 − kw[1,0,0]Rvb . (10.7)

The encounter frequency is the frequency of the waves as seen from the ship. Due
to the Doppler effect, this is not the same as the frequency of the waves seen by a
stationary observer, ω0. For a ship traveling at constant velocity, ωe is constant and
the Mathieu equation can be used to describe the ship’s behavior, see Chap. 9.
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If the ship is nonrotating (i.e., ωωωb ≡ 0), then

ω̇e =−kw[1,0,0]Rv̇b ≈−kwe�x R[v̇b
1,0,0]

�

≈ −kwv̇b
1 cos(θ )cos(ψ)≈−kwv̇b

1 cos(ψ) (10.8)

by the assumption of small sway velocity, yaw rate, and pitch angle. The ship is
assumed to be sailing in head or stern seas, that is, cos(ψ) = 1 (head seas) or
cos(ψ) =−1 (stern seas).

We can set v̇b
1 directly; this is the forward acceleration and can be changed by

increasing or decreasing throttle. It will, however, be limited, so we take it to satisfy
|v̇b

1| ≤ v̇b
1,max. Thus, we take u � ω̇e to be the control input, satisfying

|u|= |ω̇e| ≤ umax = |kw|v̇b
1,max . (10.9)

Note that the assumption that the forward speed changes only slowly implies that
vb

1,max is quite small. The assumption of slow speed change is a necessity to derive
the model (10.6), as detailed in Sect. 9.5.

As we can see from the above equation, umax depends on the size of v̇b
1,max and

kw. For the type of large, slow vessels that are susceptible to parametric roll, v̇b
1,max is

likely to have quite a low value. For ships to parametrically resonate, the wave length
has to be rather long, or kφt will be too small [12]. A long wave length implies a
small kw, since |kw|= 2π/λ if λ is the wave length. Thus umax is quite small.

10.4 Control Design

The control objective is to design u such that the origin of the roll system (10.6) is
(at least) asymptotically stable. Choosing a v̇b

1 so that ω̇e is equal to the desired u is
a control allocation problem.1

10.4.1 Control Principle

The basic control principle is to (slowly) change the encounter frequency from an
undesired value ωe,0 to a desired value ωe,1. We tentatively choose the controller

1It is also possible to change ωe by changing course (i.e., changing ψ). This will have the unwanted
side effect that the ship will now be directly excited by waves (i.e., there will be an external force
on the right-hand side of (10.6) proportional to the wave amplitude), which may also result in
relatively large roll amplitude in the type of seas that give rise to parametric resonance. Changing
ψ to change the encounter frequency is not investigated in this work.
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u(t) =

⎧
⎨

⎩

0 ∀ t ∈ [t0, t1]
ε ∀ t ∈ [t1, t2]
0 ∀ t ∈ [t2,∞)

(10.10)

for some small constant ε , with t2 ≥ t1 ≥ t0. The initial time is t0.
If ωe(t0) = ωe,0, then

ωe(t) =
∫ t

t0
u(τ) dτ +ωe,0 =

⎧
⎨

⎩

ωe,0 ∀ t ∈ [t0, t1]
ωe,0 + ε(t − t1) ∀ t ∈ [t1, t2]

ωe,1 ∀ t ∈ [t2,∞)

, (10.11)

where ωe,1 = ωe,0 + ε(t2 − t1). This gives

∫ t

t0
ωe(τ) dτ =

⎧
⎨

⎩

ωe,0(t − t0) ∀ t ∈ [t0, t1]
ωe,0(t − t0)+ 1

2 ε(t − t1)2 ∀ t ∈ [t1, t2]
ωe,1(t − t2)+ωe,0(t2 − t0)+

1
2 ε(t2 − t1)2 ∀ t ∈ [t2,∞)

.

(10.12)

If cos(ψ) ≡ ±1 and vb
2 = vb

3 = θ = 0, then ωe(t) = ω0 − kwvb
1 cos(ψ) and the

encounter frequency of (10.11) can then be achieved with a surge velocity of

vb
1 =

ω0 −ωe(t)
kw cos(ψ)

=
1

kw cos(ψ)

⎧
⎨

⎩

ω0 −ωe,0 ∀ t ∈ [t0, t1]
ω0 −ωe,0 − ε(t − t1) ∀ t ∈ [t1, t2]

ω0 −ωe,1 ∀ t ∈ [t2,∞)

. (10.13)

Proving that the controller (10.10) works is done in two steps: First, ensuring
that there exists a (unique finite) solution of (10.6) at t = t2. This step is done in the
Appendix. Secondly, we need to prove that if ωe(t)≡ ωe,1 ∀ t ≥ t2, then the solution
to the initial value problem

m44φ̈ + d44φ̇ +
[
k44 + kφt cos

(
ωe,1t + ᾱφ

)]
φ + kφ 3φ3 = 0 ,

φ(t2) = φ2, φ̇ (t2) = φ̇2 , (10.14)

where

ᾱφ � αφ −ωe,1t2 +ωe,0(t2 − t0)+
1
2

ε(t2 − t1)
2

is a constant, goes to zero for all φ2, φ̇2.

10.4.2 The System in the Time Interval t ∈ [t2,∞)

From the results in the Appendix, we know that there exists a unique finite solution
to (10.6), valid at t = t2. From t ≥ t2, the trajectories of the system will be the
solution to the initial value problem (10.14).
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From [17], we know that there are parameter values of ωe,1 which ensure that the
trajectories of the system (10.14) go to zero. If we assume that ωe,0 ≈ 2ωφ (where
parametric resonance of (10.6) is known to occur), we can find theoretical values
for the regions of stability from the approximate methods of [17].

Theorem 10.1 (Main result). Assuming that d44 is not very large, the behavior of
(10.14) can be categorized into three different categories, depending on the value of
ωe,1:

• If 0 ≤ ωe,1 ≤ ωe, then the origin of (10.14) is globally attractive.
• If ωe < ωe,1 ≤ ωe, then the origin of (10.14) is unstable, and there exists a high-

amplitude, stable limit cycle. All trajectories of (10.14) converge to this limit
cycle, with the exception of those starting in the origin.

• If ωe,1 > ωe, then the origin of (10.14) is locally stable, there exists a high-
amplitude, stable limit cycle, and a slightly lower-amplitude, unstable limit cycle.

ωe and ωe are the solutions to the equations

√

1− d2
44ω2

e

k2
φt

− m44ω2
e

kφt

(

2

√
k44

m44ωe
− 1

)

= 0 (10.15)

√√
√√1− d2

44ω2
e

k2
φt

+
m44ω2

e

kφt

(

2

√
k44

m44ωe
− 1

)

= 0 . (10.16)

If d44 is very large, then all solutions to the initial value problem (10.14) go to zero.
In this theorem, asymptotic stability of limit cycles follows the definition of [16,

Definition 8.1].

Proof. To simplify the analysis, we define the alternative dimensionless time scale

T � 1
2

ωe,1t + ᾱφ (10.17)

giving

d
dt

=
1
2

ωe,1
d

dT

d2

dt2 =
1
4

ω2
e,1

d
dT 2 .

Using primes to indicate derivatives with respect to T , we rewrite the system
(10.14) as:

φ ′′+ 2ιγφ ′+[κ + 2ι cos(2T )]φ +αιφ3 = 0, (10.18)
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where

ι =
2kφt

m44ω2
e,1

,

γ =
d44ωe,1

2kφt
,

κ =
4k44

m44ωe,1
,

α =
2kφ 3

kφt
,

are all positive dimensionless parameters. It is assumed that ι is small.
Equation (10.18) is known to parametrically resonate if κ ≈ 1 (i.e., ωe,0 ≈ 2ωφ ;

the encounter frequency is twice the natural roll frequency).
Using an O(ι) (big O notation) approximation to the solution of (10.18), [17]

derives a solution using the method of multiple scales (see [17]) given by:

φ = acos(T −β/2)+O(ι), (10.19)

where a and β are slowly time-varying.
Defining an alternative (also dimensionless) time scale

t̄ = ιT (10.20)

(which is slowly varying) and letting

√
κ = 1− ισ (10.21)

(with σ representing the nearness of κ to unity, and thus the system to parametric
resonance), a and β satisfy the (nonlinear homogenous ordinary) differential
equations

∂a
∂ t̄

= − a

2
√

κ
sin(β )− γa (10.22)

a
∂β
∂ t̄

= 2σa− a√
κ

cos(β )− 3α
4
√

κ
a3 . (10.23)

The a–β system has equilibrium points (corresponding to a steady-state periodic
motion of φ , i.e., a limit cycle) given by:

a = 0, β is arbitrary (10.24)
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σ

a

RI RIIIRII

Fig. 10.1 Stability regions of
(10.18), theoretical

(the trivial solution) and

sin(β ) =−2
√

κγ, cos(β ) = 2σ
√

κ − 3α
4

a2. (10.25)

Since
√

κ = 1− ισ , the non-trivial steady-state solution of φ has the amplitude

a2 =
8σ
3α

± 4
3α

√
1− 4γ2, (10.26)

where only the positive root is relevant.
If 2γ > 1, then (10.26) has no real roots and only the trivial steady-state solution

exists. As this is equivalent to high damping, if 2γ > 1, parametric resonance will
not occur. (The origin of (10.18) is then globally attractive for all ωe,1).

If 2γ ≤ 1, then there is one real root of (10.26) if 2|σ | <
√

1− 4γ2, and two if
2|σ | >

√
1− 4γ2. The condition 2σ = −

√
1− 4γ2 corresponds to (10.15) (giving

ωe) and 2σ =
√

1− 4γ2 to (10.16) (giving ωe).
Figure 10.1 illustrates the stability properties of (10.18) for the different cases.

Dashed lines represent unstable equilibrium values of a for different values of σ ,
and solid lines stable equilibrium values.2

In Region RI, there is only the trivial solution. From [17], this is globally
attractive.

In Region RII (where we have parametric resonance), the trivial solution is
unstable, and there exists a large-amplitude steady-state solution, a limit cycle. Apart
from the case where φ(t2) = φ̇(t2) = 0, this limit cycle is globally attractive [17].

2It is worth noting that Fig. 10.1 bears strong similarity to a cross-section with the wave height kept
constant of the simulation of the full 6-DOF model (9.8)–(9.9) of Sect. 9.2.2, except that in that
chapter there is no evidence of the high-amplitude solutions of (10.18) in Region III. The stability
regions indicated from simulating the 6-DOF model are shown in Fig. 10.2.
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σ

a

RI RIIIRII

Fig. 10.2 Stability regions of
the 6-DOF model (9.8)–(9.9)
of Sect. 9.2.2, simulation

t0

t1
[t2, ∞)

[t2, ∞)

σ

a
Fig. 10.3 Control of
parametric roll resonance:
Increasing versus decreasing
the encounter frequency

Region RIII has three equilibrium values, and is somewhat more complicated.
The value a = 0 (equivalent to φ = 0) is (locally) asymptotically stable. However,
there exist two limit cycles, one high-amplitude and one low-amplitude. The high-
amplitude one is (locally) asymptotically stable, whereas the low-amplitude one is
unstable. ��

Based on the proof of Theorem 10.1, we conclude that it is possible that, if one
increases ωe so that ωe,1  2ωφ (i.e., σ  0), φ does not go to zero but instead
to the high-amplitude limit cycle. If one instead decreases ωe so that ωe,1 � 2ωφ
(i.e., σ � 0), φ will go to zero no matter how large φ(t2) is. This is illustrated in
Fig. 10.3.

This suggests that reducing the encounter frequency is the most sensible choice,
and, in fact, the only option that can be guaranteed to work.

It is, however, worth noting that the analysis is based on a simplification of
the ship dynamics. The high-amplitude limit cycle has not been observed in the
simulations with the more physically accurate 6-DOF ship model (9.8)–(9.9) of
Sect. 9.2.2. [8, 18] came to the opposite conclusion regarding speeding up versus
slowing down. But bear in mind that in [8], the conclusion was largely predicated
on the need to have sufficient speed for the fins (which were used in addition to
speed change) to be effective.
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None the less, decreasing the encounter frequency has another benefit: If we
assume that σ starts at zero and slowly increases, trajectories will tend to go to a
higher-amplitude limit cycle as the steady-state value of a increases with increasing
σ in Region RII. However, if we instead decrease σ , trajectories will tend to go
to a lower-amplitude limit cycle even if we are still in parametric resonance. This
phenomenon has been observed in the simulations with the most accurate 6-DOF
model (9.8)–(9.9) of Sect. 9.2.2, so there is reason to suspect that this holds true for
real-world cases.

10.5 Simulation Results

To test the validity of the controller (10.10), we simulated the closed-loop system
using both the simplified model (10.6) and the full 6-DOF model (9.8)–(9.9) of
Sect. 9.2.2 in three different simulation scenarios. In all scenarios, we chose the
initial conditions such that the ship was experiencing parametric roll resonance.

In accordance with the open-loop simulations in Chap. 9, a reduction of the
frequency ratio to ωe,1/ωφ < 1.7 will lead the ship out of the region where the
ship is susceptible to parametric roll resonance.

We simulated three different scenarios:

1. Slow deceleration. The controller is turned on after parametric roll has already
fully developed.

2. Slow deceleration. The controller is turned on before parametric roll has fully
developed.

3. Fast deceleration. The controller is turned on before parametric roll has fully
developed.

The simulation parameters (the same as those used in Chap. 9) are listed in
Table 10.1. The control parameters are found in Tables 10.2–10.4. The simulation
results are summarized in Table 10.5, and can be seen in Figs. 10.4–10.6.

Table 10.1 Simulation parameters

Quantity Symbol Value

Wave amplitude ζ0 2.5 m
Wave length λ 281 m
Wave number kw −0.0224 –
Natural roll frequency ωφ 0.343 rad/s
Modal wave frequency ω0 0.4684 rad/s
Simulation start time t0 0 s

k44 1.7533×109 kgm2/s2

Model parameters kφ t 7.1373×108 kgm2/s2

(simplified roll equation) αφ 0.2741 rad
kφ3 2.2627×109 kgm2/s2
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Table 10.2 Control parameters, Scenario #1

Quantity Symbol Value

Control action ε −1.7889×10−4 rad/s2

Maximum deceleration v̇1,max 0.008 m/s2

Initial forward speed v1(t0) 7.44 m/s
Initial encounter frequency ωe,0 0.6346 rad/s
Final encounter frequency ωe,1 0.5831 rad/s
Final forward speed v1(t2) 5.14 m/s
Controller turned on t1 300 s
Controller turned off t2 588 s

Table 10.3 Control parameters, Scenario #2

Quantity Symbol Value

Control action ε −1.7889×10−4 rad/s2

Maximum deceleration v̇1,max 0.008 m/s2

Initial forward speed v1(t0) 7.44 m/s
Initial encounter frequency ωe,0 0.6346 rad/s
Final encounter frequency ωe,1 0.5831 rad/s
Final forward speed v1(t2) 5.14 m/s
Controller turned on t1 93 s
Controller turned off t2 381 s

Table 10.4 Control parameters, Scenario #3

Quantity Symbol Value

Control action ε −3.5778×10−4 rad/s2

Maximum deceleration v̇1,max 0.016 m/s2

Initial forward speed v1(t0) 6.67 m/s
Initial encounter frequency ωe,0 0.6174 rad/s
Final encounter frequency ωe,1 0.5660 rad/s
Final forward speed v1(t2) 4.37 m/s
Controller turned on t1 55 s
Controller turned off t2 199 s

Table 10.5 Simulation results, maximum roll angles

Simplified 1-DOF model Full 6-DOF model

Scenarios Uncontrolled Controlled Reduction Uncontrolled Controlled Reduction

#1 25.34◦ 25.34◦ 0% 23.34◦ 23.34◦ 0%
#2 25.34◦ 22.40◦ 11.6% 23.34◦ 20.33◦ 9.0%
#3 23.57◦ 13.71◦ 41.8% 17.99◦ 4.83◦ 73.2%

Figure 10.4 shows the simulation results for the controlled system in comparison
with the uncontrolled system for the first scenario. It is obvious from Fig. 10.4a
that the ship is experiencing large roll amplitudes caused by parametric resonance.
The frequency ratio is gradually decreased after 300 s (Fig. 10.4c), which causes the
expected gradual reduction of the roll motion to zero.
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Fig. 10.4 Simulation results, Scenario #1

The simulation results with the full 6-DOF model (9.8)–(9.9) of Sect. 9.2.2 are
shown in Fig. 10.4b. The controller works equally well with the more complex
model.

Of course, since the controller is turned on only after parametric roll has fully
developed, the maximum roll angle in Scenario #1 is the same for the controlled
and uncontrolled cases. (The steady-state roll angle is zero as predicted.)

The simulation results of the second scenario are shown in Fig. 10.5. In this
scenario, we reduce the encounter frequency when the roll angle is much lower
than in the first scenario, early enough that parametric rolling has not yet fully
developed (specifically, when the roll angle is about 5◦). Figure 10.5 shows that
both the simplified 1-DOF model and the full 6-DOF model behave similarly.
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Fig. 10.5 Simulation results, Scenario #2

However, despite the controller being turned on when roll is only at 5◦, the
maximum roll angle is not greatly reduced compared to the uncontrolled case. This
is simply because the ship is moving very slowly out of resonant condition. The
steady-state roll angle is none the less zero, as predicted.

To get the ship to move out of resonant condition before the roll angle has reached
dangerous levels requires, as it turned out, significantly faster deceleration than in
Scenarios #1 and #2, even if the controller was turned on at a lower roll angle.

To this effect, we simulated Scenario #3. The controller is turned on early, at a
time when the roll angle is about 2◦. The ship is decelerating at twice the rate of
Scenarios #1 and #2. Also, both the initial and final encounter frequencies are lower
in Scenario #3 than in the two others. The results are plotted in Fig. 10.6.
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From Fig. 10.6, we see that the controller is capable of reducing the roll angle
sufficiently fast such that the maximum roll angle is only from 1/2 (1-DOF
model) to 1/4 (6-DOF model) of the maximum roll angle of the uncontrolled case.
Interestingly, from Fig. 10.6 we see that the controller works significantly better for
the full 6-DOF model than for the simplified 1-DOF model. In steady-state, the roll
angle is zero, as expected.

From the simulation results, we see that the controller is capable of bringing the
ship out of parametric resonance and – assuming sufficient deceleration capability –
reduce the maximum roll angle significantly. It is also vital to turn on the controller
as early as possible. The simulations confirm the theoretical derivations presented
in Sect. 10.4.
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How practical the controller is in a real-world scenario depends almost entirely
on the ability of the captain (or the automated systems) to detect parametric
resonance, and the ability of the ship to rapidly decelerate. If these capabilities are
present, then the controller could prove useful. In the absence of one or both of these
abilities, the practicality of the controller is limited, at least on its own. However,
it might be possible to pair it with another control scheme such as fins as done
in [7, 9], u-tanks (investigated on their own in Chap. 12), gyro stabilizers, or other
active controllers.

10.6 Conclusions

A necessary, but not sufficient, condition for parametric resonance is that the
frequency of the parametric excitation has certain values. For ships, this frequency
can be changed (due to the Doppler effect) by changing the velocity. In this work, we
have derived a controller for parametric roll resonance in ships that takes advantage
of this and can drive the roll motion to zero. We call this frequency detuning control.

Based on the simplified 1-DOF roll model (9.39) developed in Sect. 9.5, we
proposed a simple controller incorporating a linear change of the wave encounter
frequency, accomplished by changing the forward speed of the ship. We showed
mathematically and in simulations – using both the simplified model and the 6-
DOF model (9.8)–(9.9) of Sect. 9.2.2 – that the proposed controller drives the roll
motion to zero. The derived controller is so simple that it can be implemented by a
helmsman, even without a speed controller on board.

However, while the controller drives the roll angle to zero, the transient behavior
can be problematic. Even if the controller is turned on at a very early stage, the ship
will have to be capable of a fairly rapid speed change to prevent high transient roll
angles. Frequency detuning does have the advantage that it can easily be paired with
direct actuation, such as the use of u-tanks, fins, or gyro stabilizers.

The effectiveness of the frequency detuning controller can be further increased
by course changes in addition to speed changes to alter the encounter frequency.
However, this can cause regular, directly induced roll excitation to become a
problem, and was not investigated in this work.

Frequency detuning can be used for other parametrically resonating systems as
long as it is possible to change the frequency of excitation. However, for most
systems with the ability to change the frequency of excitation, one presumably also
has the ability to change the amplitude of excitation. In that case, it is probably easier
to do so. In practice, this limits the applicability of the proposed control scheme to a
few systems, most notably those where the parametric resonance is induced by flow
past a free-moving body.
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Appendix

In this appendix, we prove the existence and uniqueness properties of (10.6).
From [17], we get the behavior of the system when ωe is a constant, but not

when it is changing. We need to guarantee a unique finite solution of (10.6) also for
time-varying ωe.

To prove the existence (and uniqueness) of the solution to (10.6), we will use the
following theorem and lemma, repeated here for convenience:

Theorem 10.2 ([16, Theorem 3.3]). Let f (t,x) be piecewise continuous in t and
locally Lipschitz in x for all t ≥ t0 and all x in a domain D ⊂ R

n. Let W be a
compact subset of D, x0 ∈W, and suppose it is known that every solution of

ẋ = f (t,x), x(t0) = x0

lies entirely in W. Then there is a unique solution that is defined for all t ≥ t0.

Lemma 10.1 ([16, Lemma 3.2]). If f (t,x) and ∂ f
∂x (t,x) are continuous on [a,b]×

D, for some domain D ⊂ R
n, then f is locally Lipschitz in x on [a,b]×D.

If we take x = [φ , φ̇ ]�, we can rewrite (10.6) as

ẋ =

[
x2

− d44
m44

x2 − 1
m44

[
k44 + kφt cos

(∫ t
t0

ωe(τ) dτ +αφ

)]
x1 −

kφ3

m44
x3

1

]

= f (t,x)

=

[
0 1

− k44
m44

− d44
m44

]

x+

[
0

− kφ t
m44

cos
(∫ t

t0
ωe(τ) dτ +αφ

)
x1 −

kφ3

m44
x3

1

]

= Ax+ g(t,x1) (10.27)

with

f (t,x) �
[

x2

− d44
m44

x2 − 1
m44

[
k44 + kφt cos

(∫ t
t0

ωe(τ) dτ +αφ

)]
x1 −

kφ3

m44
x3

1

]

A �
[

0 1
− k44

m44
− d44

m44

]

g(t,x1)�
[

0

− kφ t
m44

cos
(∫ t

t0
ωe(τ) dτ +αφ

)
x1 −

kφ3

m44
x3

1

]

.

Lemma 10.2. There is a unique solution of (10.27) (and thus (10.6)) defined for
all t ≥ t0.
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Proof. It is clear that f (t,x) of (10.27) is continuous in x for all x ∈ R
2. It is also

continuous in t for all t ≥ t0, as long as ωe(t) is piecewise continuous. Our choice
of ωe satisfies this.

The partial derivative of f with respect to x is given by:

∂ f
∂x

(t,x) = A−
[

0 0
kφ t
m44

cos
(∫ t

t0
ωe(τ) dτ +αφ

)
+ 3

kφ3

m44
x2

1 0

]

(10.28)

which, by the same argument, is continuous in x for all x ∈ R
2 and t ≥ t0. By [16,

Lemma 3.2], f is therefore locally Lipschitz in x for all t ≥ t0 and all x ∈ R
2. The

first part of [16, Theorem 3.3] is then satisfied.
To prove that the trajectories of the system are bounded, we use the Lyapunov

function candidate

V =
1
2

x�Px+
1
4

(
1+

m44

d44

)
kφ 3x4

1 (10.29)

with

P =

⎡

⎣
d44 + k44

(
1+ m44

d44

)
m44

m44 m44

(
1+ m44

d44

)

⎤

⎦= P� > 0 . (10.30)

The time derivative of V along the trajectories of the system (10.27) is given by:

V̇ = x�P(Ax+ g(t,x))+

(
1+

m44

d44

)
kφ 3x3

1x2

=−
(

k44 + kφt cos

(∫ t

t0
ωe(τ) dτ +αφ

))
x2

1 − d44x2
2 − kφ 3x4

1

− kφt cos

(∫ t

t0
ωe(τ) dτ +αφ

)(
1+

m44

d44

)
x1x2

≤−(
k44 − kφt

)
x2

1 − d44x2
2 − kφ 3x4

1 + kφt

(
1+

m44

d44

)
|x1||x2| . (10.31)

While k44 > kφt , V̇ is only negative definite for sufficiently small values of kφt .
If kφt is sufficiently small, then the origin of the system (10.27) would be globally
uniformly exponentially stable, by [16, Theorem 4.10]. A priori we know that this
is not the case; in parametric resonance, the origin is, in fact, unstable.

However, V can be used to prove that the trajectories of (10.27) are bounded.
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For |x1| ≥ μ > 0 ⇒‖x‖ ≥ μ it holds that

V̇ ≤−(
k44 − kφt

)
x2

1 − d44x2
2 − kφ 3x4

1 + kφt

(
1+

m44

d44

)
|x1||x2|

≤ −d44x2
2 − kφ 3 μ2x2

1 + kφt

(
1+

m44

d44

)
|x1||x2|

=−(1− δ )d44x2
2 − (1− δ )kφ 3μ2x2

1

+ kφt

(
1+

m44

d44

)
|x1||x2|− δd44x2

2 − δkφ 3 μ2x2
1 (10.32)

for some δ ∈ (0,1). Furthermore, the term

kφt

(
1+

m44

d44

)
|x1||x2|− δd44x2

2 − δkφ 3 μ2x2
1

is negative semidefinite if

k2
φt

(
1+

m44

d44

)2

≤ 4d44δ 2kφ 3 μ2 ⇒ μ ≥ 1

2δ
√

d44kφ 3

kφt

(
1+

m44

d44

)
.

(10.33)

Therefore, for μ satisfying the above inequality,

V̇ ≤−(1− δ )d44x2
2 − (1− δ )kφ 3μ2x2

1 (10.34)

which is negative definite. By [16, Theorem 4.18] the trajectories of (10.27) are
bounded for any initial condition x(t0).

Therefore, the second condition of [16, Theorem 3.3] is satisfied, and there exists
a unique solution of (10.27) (and thus (10.6)) that is defined for all t ≥ t0. ��
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