
Chapter 1
An Introduction to Parametric Resonance

Jonatan Peña-Ramı́rez, Rob H.B. Fey, and Henk Nijmeijer

1.1 Introduction

In many engineering, physical, electrical, chemical, and biological systems, oscilla-
tory behavior of the dynamic system due to periodic excitation is of great interest.
Two kinds of oscillatory responses can be distinguished: forced oscillations and
parametric oscillations. Forced oscillations appear when the dynamical system is
excited by a periodic input. If the frequency of an external excitation is close to
the natural frequency of the system, then the system will experience resonance, i.e.
oscillations with a large amplitude. Parametric oscillations are the result of having
time-varying (periodic) parameters in the system. In this case, the system could
experience parametric resonance, and again the amplitude of the oscillations in the
output of the system will be large.

Systems with time-varying parameters are called parametrically excited systems
[19]. A very classical example of a parametrically excited system is a swing. To
increase the amplitude of the motion, the person must crouch in the extreme position
and sit straight up in the middle position. Consequently, the distance between the
hanging point and the center of gravity of the person varies periodically. This system
(person on a swing) can be seen as pendulum with varying length [24].

In this book, many of the chapters deal with a specific class of dynamical systems,
namely with the dynamics describing the motion of a ship sailing in the ocean.
Indeed, a ship can be seen as an autoparametric system, where the dynamics corres-
ponding to the roll motion are parametrically excited by the other motions in the
ship and under some circumstances, it will experience parametric resonance known
as parametric roll, which consists of large oscillations in the roll motion, which
may become dangerous for the ship, its cargo, and its crew. The phenomenon of
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parametric roll is related to the periodic change of stability as the ship is sailing
against the waves (with length close to the length of the ship and height exceeding a
critical value) at a speed such that the wave excitation frequency (called encounter
frequency) is approximately twice the natural roll frequency and the roll damping
of the ship is insufficient to avoid the onset of parametric roll [9, 11].

Perhaps the lead in research on parametric roll was taken by William Froude
(1810–1879), who in 1861 discovered that the roll angle can increase rapidly when
the period of the ship is in resonance with the period of wave encounter [8]. He also
came to the conclusion that the roll motion is not produced by the waves hitting the
side of the hull, but rather because of the pressure of the waves acting on the hull.
For a historical note on the early days of parametric roll, the reader is referred to
[6] and [10]. It is worthwhile mentioning that in 1998 there was an incident with
a post-Panamax C11 class container ship, which was caught by a violent storm
and experienced parametric roll with roll angles close to 40◦. As a consequence,
one third of the on-deck containers were lost overboard and a similar amount were
severely damaged [9]. This event converted the study of parametric roll into a hot
topic for research.

When studying parametric resonance in a dynamical system, at some point in the
analysis, a very familiar equation will pop up. We refer to Mathieu’s equation, which
is a special case of second order differential equation with a periodic coefficient.
Therefore, this introductory chapter is devoted to present the Mathieu equation
and some of its applications. The idea is to motivate the reader to investigate the
properties of this equation, its solutions, and the stability of the solutions and
then apply it in practical problems. The last part of this chapter presents a short
introduction of autoparametric systems, which are interconnected systems where
parametric resonance appears in one of the constituting subsystems due to the
vibrations in one of the other constituting subsystems, which can be externally
excited, parametrically excited, or self excited.

1.2 The Mathieu Equation

In 1868, M. Émile Mathieu (1835–1890) published his celebrated work about the
vibrational movement of a stretched membrane having an elliptical boundary [16].
By transforming the two dimensional wave equation

∂ 2V
∂x2 +

∂ 2V
∂y2 + c2V = 0 (1.1)

into elliptical coordinates and separating it into two ordinary differential equations,
Mathieu obtained the differential equation

d2u
dt2 +(a− 2qcos2t)u = 0. (1.2)
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This equation is called the Mathieu equation. In the physical problem studied by
Mathieu the constants a and q are real. This is also true for any practical problem.
Some of the properties of this equation are [3]:

• Mathieu’s equation always has one odd and one even solution.
• (Floquet’s theorem) Mathieu’s equation always has at least one solution x(t) such

that x(t+π) =σx(t), where the constant σ , called the periodicity factor, depends
on the parameters a and q and may be real or complex.

• Mathieu’s equation always has at least one solution of the form eμtφ(t), where
the constant μ is called the periodicity exponent and φ(t) has period π .

• In the case that the parameters a and q are real, then it holds for the periodicity
exponent μ that either Re(μ) = 0 or Im(μ) is an integer.

As a consequence of Floquet’s theorem, the general solution of (1.2) has the form

u(t) = Aeμtφ(t)+Be−μtφ(−t), (1.3)

where A and B are constants of integration and μ and φ(t) are as described above. In
the case that Re(μ) = 0 and Im(μ) = r/s, a rational fraction with s ≥ 2, the general
solution (1.3) is periodic and remains bounded as t −→ ∞ and therefore (1.3) is
called a stable solution. If Re(μ) = 0 and Im(μ) is irrational, then solution (1.3) is
aperiodic and stable. In the particular case that Re(μ)= 0, Im(μ) = n with n integer,
solution (1.3) is classified as unstable. In the same way, if Re(μ) �= 0 and Im(μ) is
an integer then (1.3) is an unstable solution. Since the value of μ depends on a
and q, it follows that the solution of Mathieu’s equation is stable for certain values
of a and q, whereas it is unstable for other values. For a complete explanation of
solutions of the Mathieu equation and its stability regions in the plane (a,q), the
reader is referred to [3, 17, 27].

In the analysis of parametric resonance, it is common to use a generalized form
of Mathieu’s equation given by:

d2x
dt2 +F(t)x = 0, (1.4)

where F(t) is a periodic function of time. Equation (1.4) is called Hill’s equation.
Its solution is of the form (1.3) and it has similar stability properties as the Mathieu
equation.

By using Floquet’s theorem, it follows that if x(t) is an arbitrary solution of (1.4),
then

x(t + 2π) = σx(t). (1.5)

Three cases are considered for (1.5) in order to determine its stability (see [27]):

⎧
⎨

⎩

1 |σ |> 1 then x(t) is unstable
2 |σ |< 1 then x(t) is stable
3 |σ |= 1 then x(t) is unstable.

(1.6)
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For a complete analysis about the properties (solutions and their stability) of
(1.4), the reader is again referred to [3,17,27] and to [7] for a geometrical approach.

1.3 Applications of Mathieu’s Equation

The Mathieu equation can be used in practical applications where the problem at
hand is either a boundary value problem or an initial value problem. An example of
a boundary value problem is the solution of the wave equation expressed in elliptical
coordinates. An application illustrating an initial value problem is that one of a
pendulum with periodically varying length.

For the sake of clarity, three classical examples where the Mathieu equation ap-
pears are presented. The choice of the examples comes from the fact that we want to
show the broad application of Mathieu’s equation in several disciplines. Examples 1
and 2 correspond to the class of initial value problems, whereas Example 3 belongs
to the class of boundary value problems.

1.3.1 Example 1: A Mechanical Mechanism

Figure 1.1 shows a link–mass–spring mechanism which can be viewed as a
dynamical system covered by Mathieu’s equation [17]. The mass m can move in
the vertical direction and the spring and the links are assumed to be massless. The
spring is unstretched when the mass m is at D. Moreover, it is assumed that y/l�1.
The driving force F0 = l f0 cos2ωt applied at the pin-joint B can be resolved into
components, one along AB and the other along DA. Then, it follows that the force
driving the mass in the vertical direction is F1 = ( f0 cos2ωt)y.

Using Newton’s second law, it follows that the equation of motion of the system
in the vertical direction is

m
d2y
dt2 + ky = F1. (1.7)

A

B

k

C

l F0 = lf0 cos 2ωt

F1=(f0 cos 2ωt)y

O
D

y

fixed pin joint

Fig. 1.1 Schematic diagram of a dynamical mechanical system covered by Mathieu’s equation
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Since F1 = ( f0 cos2ωt)y, (1.7) becomes

m
d2y
dt2 +(k− f0 cos2ωt)y = 0. (1.8)

Introducing a new time variable τ =ωt leads to the standard form of the Mathieu
equation

d2y
dτ2 +(a− 2qcos2τ)y = 0, (1.9)

where a = k/(ω2m) and q = f0/(2ω2m).

1.3.2 Example 2: An Oscillatory Electrical Circuit

Another interesting application of the Mathieu equation is in the analysis of osci-
llatory circuits having time varying parameters, which have been highly important
in the development of communication systems since the introduction of the super-
regenerative receiver by Edwin Howard Armstrong (1890–1954) in 1922 [2]. The
example at hand is the RLC circuit depicted in Fig. 1.2, which is described in [4].
The circuit contains a coil with constant inductance L, a capacitor with constant
capacitance C and a time varying resistance R which is given by the expression:

R = γ +ρ(i)+Rm sinωt, (1.10)

where γ is an ohmic resistance, ρ(i) is a negative resistance (accounting for rege-
neration, i.e., supplying energy to the circuit to reinforce the oscillations), which is
dependent on the current i and can be either less, equal, or greater than γ . Finally,
Rm sinωt is a periodic resistance.

Using Kirchhoff’s voltage law it follows that the governing differential equation
of the circuit of Fig. 1.2 is

L
di
dt

+(γ +ρ(i)+Rm sinωt) i+
1
C

∫

idt = 0. (1.11)

Under the assumption that γ +ρ(i)�Rm sinωt, (1.11) verifies [4]:

L
di
dt

+Rm sinωti+
1
C

∫

idt = 0. (1.12)

After taking the time derivative of (1.12), it follows that

d2i
dt2 +

Rm

L
sinωt

di
dt

+

(

ω2
0 +

ωRm

L
cosωt

)

i = 0, (1.13)
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L

ρ(i) Rm sin ωtγ

C

i

R

Fig. 1.2 Equivalent circuit of
a super-regenerative receiver

where ω0 = 1/
√

LC is the resonance frequency of the circuit. The damping term
may be removed by the substitution i = Iye(k/ω)cosωt with k = Rm/2L. With this
substitution, (1.13) becomes

Ie(k/ω)cosωt
(

d2y
dt2 +

(

ω2
0 + 2kω cosωt +

k2

2
− k2

2
cos2ωt

)

y

)

= 0. (1.14)

By considering the extreme cases k�ω and k�ω , (1.14) reduces to

d2y
dt2 +

(
ω2

0 + 2ωk cosωt
)

y = 0 and
d2y
dt2 +

(

ω2
0 +

k2

2
− k2

2
cos2ωt

)

y = 0,

(1.15)

respectively. Both equations in (1.15) can be written in the standard form of Ma-
thieu’s equation by defining a new time variable. For instance, consider the second
equation in (1.15) and define τ = ωt. This leads to

d2y
dτ2 +(a− 2qcos2τ)y = 0, (1.16)

where a = (2ω2
0 + k2)/2ω2 and q = k2/4. Clearly, (1.16) is the Mathieu equation.

Further applications of Mathieu’s equation on oscillatory electrical circuits
containing time varying parameters can be found in [5] and [17].

1.3.3 Example 3: Hydrodynamics

A considerable part of this book is dedicated to the study of parametric roll occurring
in ships sailing in the sea; therefore, in this introductory chapter, an application of
the Mathieu equation related to hydrodynamics is obvious. The example at hand
is related with the free oscillations of water in an elliptical lake (see Fig. 1.3),
whose eccentricity is close to 1. This example is described in [13]. The position
of any point referred to the major and minor axes of the lake is given by the
horizontal coordinates x and y with corresponding velocities u and v. Assume that
the coordinate system rotates at constant angular velocity ω about the z-axis (earth’s
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y, vx, u

z

ω

D

Fig. 1.3 Elliptical lake

rotation axis). It can be shown that the equations of horizontal motion (assuming
infinitely small relative motion) are [14]:

∂u
∂ t

− 2ωv =−g
∂ζ
∂x

and
∂v
∂ t

+ 2ωx =−g
∂ζ
∂y

, (1.17)

where g is the acceleration of gravity and ζ is the height of the free surface above
its equilibrium position. Next, the equation of continuity is given by the expression

− ∂ζ
∂ t

=
∂ (Du)

∂x
+

∂ (Dv)
∂y

, (1.18)

where D is the depth of the lake, which is assumed to be uniform.
Next, explicit expressions for u and v are computed by considering “perturbative”

solutions for u, v, and ζ of the form eiσt (see [12,14]), with σ = 2π/T with T being
the period of tidal oscillation [25]. Hence

u = u1eiσt = u1(cosσ t + isinσ t) (1.19)

v = v1eiσt = v1(cosσ t + isinσ t) (1.20)

ζ = ζ1eiσt = ζ1(cosσ t + isinσ t). (1.21)

Substitution of (1.19)–(1.21) in (1.17)–(1.18) yields

iσu− 2ωv =−g
∂ζ
∂x

and iσv+ 2ωu =−g
∂ζ
∂y

(1.22)

and
− iσζ = D

(
∂u
∂x

+
∂v
∂y

)

. (1.23)

From (1.22) follows that

u =
g

σ2 − 4ω2

(

iσ
∂ζ
∂x

+ 2ω
∂ζ
∂y

)

and v =
g

σ2 − 4ω2

(

iσ
∂ζ
∂y

− 2ω
∂ζ
∂x

)

.

(1.24)
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By using (1.24), (1.23) is represented as:

∂ 2ζ
∂x2 +

∂ 2ζ
∂y2 +

σ2 − 4ω2

gD
ζ = 0. (1.25)

Equation (1.25) is the well known two-dimensional wave equation. Since the
problem at hand involves a boundary condition, which is elliptical in shape, it is
convenient to express (1.25) in elliptical coordinates ξ and η , which are related to
x and y in the following manner

x+ iy = hcosh(ξ + iη), (1.26)

or
x = hcoshξ cosη , y = hsinhξ cosη . (1.27)

Expressed in elliptical coordinates, (1.25) becomes (for the transformation
procedure, see [17] or [28])

∂ 2ζ
∂ξ 2 +

∂ 2ζ
∂η2 + 2k2 (cosh2ξ − cos2η)ξ = 0, (1.28)

where k2 =
(
σ2 − 4ω2

)
h2/8gD.

By substituting in (1.28) a solution of the form

ζ = XY (1.29)

with X being a function only depending on ξ and Y a function only depending on
η , it follows that

− 1
X

(
d2X
dξ 2

)

+ 2k2 cosh2ξ =
1
Y

(
d2Y
dη2

)

− 2k2 cos2η . (1.30)

It is straightforward to see that both sides of (1.30) should be equal to the same
constant, say R. In consequence, it follows that

d2X
dξ 2 +

(
2k2 cosh2ξ −R

)
X = 0 (1.31)

d2Y
dη2 +

(
R− 2k2 cos2η

)
Y = 0. (1.32)

Equation (1.31) is the so-called modified Mathieu equation [17], whereas (1.32) is
the standard Mathieu equation. Then, it is clear that the problem of free oscillations
of water in an elliptical lake is an example of an application of the Mathieu
equation.
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1.3.4 Other Modern Applications

Nowadays, the literature is very rich in applications related to the Mathieu equation.
For example, this equation is considered in

• the study of the stability of structural elements such as plates and shells, which
are widely used in aerospace and mechanical applications [1, 23].

• the analysis of the dynamical behavior of micro- and nano-electromechanical
systems, which are very often used in actuators, sensors, and in data and
communication applications [18, 21].

• the study of parametric resonance in civil structures like bridges [20].

For more applications of the Mathieu equation the reader is referred to [22] and
the references there in.

As a final note, an example of parametric resonance in a biological system
is briefly discussed. The squid giant axon membrane is taken as example. This
axon controls part of the water jet propulsion system in squid. When considering
the membrane capacitance as a periodic time varying parameter, it has been
found that the membrane sensitivity to stimulation is increased due to parametric
resonance [15]. However, it should be stressed that the equations describing the
membrane potential response are parametrically excited first order equations, which
can not be written in the form of the Mathieu equation.

1.4 Autoparametric Systems

The phenomenon of parametric resonance also occurs in a special class of non-
linear dynamical systems called autoparametric systems. In its simplest form, an
autoparametric system consists of two nonlinearly coupled subsystems. One of
the subsystems (called primary system) can be externally excited, parametrically
excited, or self-excited. Due to the coupling, the other subsystem (called secondary
system) can be seen as a parametrically excited system. A particular feature of
autoparametric systems is that for certain values of the excitation frequency and/or
certain values of the parameters, the primary system will have an oscillating
response, whereas the secondary system will be at rest. When this solution becomes
unstable, the system will experience autoparametric resonance, i.e., the oscillations
of the primary system will produce an oscillating behavior in the secondary
subsystem. In some cases, the oscillations of the secondary system will grow
unbounded [26].

Perhaps one of the simplest examples of an autoparametric system is given
by a pendulum attached to a mass–spring–damper system, where the mass can
move in the vertical direction and is driven by a harmonic force. In such case,
the primary system is given by the mass–spring–damper subsystem, whereas the
pendulum is considered as the secondary subsystem. For certain intervals of the
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excitation frequency, the behavior of the system is as follows: the mass oscillates in
the vertical axis, whereas the pendulum remains at rest. However, there are intervals
of the excitation frequency such that the pendulum is parametrically excited by the
oscillatory mass–spring–damper system and the pendulum will no longer stay at rest
but it will show an oscillating behavior.

In the study of the stability of autoparametric systems, often the Mathieu equation
plays a fundamental roll. This is demonstrated by the following academic exam-
ple where the primary system is assumed to be externally excited. Note that the
considered system does not model any physical system; however, it is quite useful in
demonstrating some of the basic properties of autoparametric systems. This example
has been presented in [26].

Consider an autoparametric system (in dimensionless form) given by the set of
equations:

ẍ+β1ẋ+ x+α1y2 = kη2 cosηt, (1.33)

ÿ+β2ẏ+ q2y+α2xy = 0, (1.34)

where the primary system (1.33) is externally excited by a harmonic force, and the
secondary system (1.34) is parametrically excited. The secondary system is coupled
to the first system by the term α2xy, whereas the primary system is coupled to the
secondary system with the term α1y2. Parameters βi ∈R

+ (i = 1,2) are the damping
coefficients, q = ω2/ω1 is the ratio of the natural frequency ω2 of the secondary
system and the natural frequency ω1 of the primary system. The amplitude of the
external excitation is given by k and the driving frequency η is given by the ratio of
the (dimensional) excitation frequency ω and the natural frequency of the primary
system ω1, i.e., η = ω/ω1.

This system has a semi-trivial solution (i.e., a solution where x(t) and ẋ(t) have
oscillatory behavior and y(t) = ẏ(t) = 0), which is determined by substituting

x(t) = Rcos(ηt +ψ) (1.35)

y(t) = 0 (1.36)

into (1.33)–(1.34). This yields an expression for R, which is

R =
kη2

√

(1−η2)2 +β 2
1 η2

. (1.37)

Then, the semi-trivial solution of (1.33)–(1.34) is given by:

x(t) =
kη2

√

(1−η2)
2
+β 2

1 η2
cos(ηt +ψ), y(t) = 0, (1.38)
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ẋ(t) = − kη3
√

(1−η2)2 +β 2
1 η2

sin(ηt +ψ), ẏ(t) = 0. (1.39)

The stability of the semi-trivial solution (1.38)–(1.39) is determined by inserting
the expressions

x = Rcos(ηt +ψ1)+ u(t), y = 0+ v(t), (1.40)

where u(t) and v(t) are small perturbations, into (1.33)–(1.34). This leads to the
linear approximation

ü+β1u̇+ u = 0 (1.41)

v̈+β2v̇+
[
q2 +α2Rcos(ηt +ψ1)

]
v = 0. (1.42)

From (1.41) it is clear that u is asymptotically stable. In consequence, the stability
of (1.38)–(1.39) is completely determined by (1.42), which indeed is the Mathieu
equation (1.2). In [26], it has been found that the main instability domain of (1.42)
corresponds to values of q ≈ 1

2 η . Indeed, by using the averaging method, it is
possible to find the boundary of the main instability region and then to determine,
for which values of the amplitude of the external excitation, the semi-trivial solution
(1.38)–(1.39) becomes unstable, i.e., for which values of k the response y(t) �= 0.

Now, an example of an autoparametric system occurring in engineering applica-
tions is considered. When studying parametric roll resonance in ships, the dynamics
describing the motions of the ship in the vertical plane (heave, pitch, and roll) can
be seen as an autoparametric system, where the primary system, consisting of the
dynamics of heave and pitch motion, is externally excited by the ocean waves,
whereas the secondary system, corresponding to the roll dynamics, is parametrically
excited by the oscillations in heave and pitch. As in the previous example, the heave–
pitch–roll system also accepts a semi-trivial solution similar to (1.38)–(1.39), i.e.
under certain conditions confer [11], the ship will exhibit oscillations in heave and
pitch directions, whereas no oscillations in roll will appear. However, it has been
found that this solution is prone to become unstable when the frequency, to which
the system approaches waves, is almost twice the value of the roll natural frequency.
In such case parametric roll will appear.

1.5 Conclusions

This introductory chapter has been written in order to show the reader that a solid
knowledge of the Mathieu equation, its properties, and solutions will facilitate the
analysis of the parametric resonance phenomenon occurring in dynamical systems
with time-varying parameters. By using some examples from diverse disciplines, it
has been shown that since its introduction in 1868, the Mathieu equation has been
of paramount importance in the development of the theory of parametrically excited
systems.
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A short summary about a special class of systems called autoparametric systems
has been presented. In this kind of systems, parametric resonance will occur due
to the interconnection of the constituting subsystems. Therefore, the theory of
autoparametric systems is a very useful framework when analyzing, for instance,
the parametric roll effect, because the influence of other motions of the ship can be
included into the analysis.

As a final remark, it should be clear to the reader that when analyzing a single
degree of freedom dynamical system with time varying parameters, the solutions
of the Mathieu equation or Hill’s equation are of key importance to analyze the
behavior of the system, whereas when analyzing an interconnected system, where
one of the subsystems acts as a parametric excitation of the other subsystem, then
the theory related to autoparametric systems should be used in order to determine
the behavior of the system.

In general, the chapters contained in this book are indeed applications strongly
related to the Mathieu equation or Hill’s equation and/or applications, where the
system under consideration belongs to the class of autoparametric systems.
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