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Preface

Parametric Resonance in Dynamical Systems contains a collection of contributions
presented at an invited workshop with the same name held from June 22–26, 2011
in Longyearbyen, Svalbard, Norway.

The subject of the book is parametric resonance in marine and mechanical
systems with focus on detection, mathematical modeling, and control. The book
contains new results on modeling, detection, and control of parametric resonance
and it is a supplement to engineers who are familiar with nonlinear systems.

What is Parametric Resonance?

Parametric resonance is a phenomenon not caused by external excitation, but by
time-varying changes in the parameters. The archetypical example is the Mathieu–
Hill equation:

ÿ+ a(t)y = 0

where a(t + T ) = a(t). If the period T or 2T is an integer multiple of the natural
period N, a resonance occurs causing the origin to become unstable.

Not only mechanical systems, vehicles, motorcycles, aircraft, and marine craft
but also micro–electro-mechanical systems are prone to parametric resonance.
Sparse offshore platforms and ships also exhibit parametric resonance. For ships,
parametric resonance is known to occur in roll in certain conditions. The resulting
heavy roll motion, which can reach 30–40 degrees of roll angle, may bring the
vessel into conditions dangerous for the ship, the cargo, and the crew. Container
ships, fishing vessels, and cruise ships are also known to be prone to parametric
roll and several incidents have been reported with significant damage to cargo
as well as structural damages for millions of dollars. The origin of this unstable
motion is the time-varying geometry of the submerged hull-more specific, time-
varying changes in water area produce periodic variations of the transverse stability
properties of the ship. This is seen as periodic oscillations of the ship’s meta-centric
height and consequently the spring stiffness. Other examples feature similar effects
as described in the aforementioned ship example.
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Can Parametric Resonance be Controlled?

There are a few potential methods for controlling the parametric resonance phe-
nomenon. Detuning the resonance condition by (semi-)active control is possible if
the control objective can be properly defined. Alternatively, feedback can be used to
provide additional damping. In order to understand the effect of detuning and active
control, it is necessary to study the Poincare maps and Ince–Strutt diagrams for
bounded and unbounded solutions of the Mathieu–Hill equation. This gives insight
in how nonlinear observers and controllers can be designed for systems exhibiting
parametric oscillations. However, the subject of parametric resonance and passive
and/or active control of it, is still far from being fully understood, and it forms the
theme of this book. Our particular aim is to bring together contributions and insights
from the different disciplines where parametric resonance occurs. It is our belief that
this will be of great importance for researchers in these disciplines.
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Chapter 1
An Introduction to Parametric Resonance

Jonatan Peña-Ramı́rez, Rob H.B. Fey, and Henk Nijmeijer

1.1 Introduction

In many engineering, physical, electrical, chemical, and biological systems, oscilla-
tory behavior of the dynamic system due to periodic excitation is of great interest.
Two kinds of oscillatory responses can be distinguished: forced oscillations and
parametric oscillations. Forced oscillations appear when the dynamical system is
excited by a periodic input. If the frequency of an external excitation is close to
the natural frequency of the system, then the system will experience resonance, i.e.
oscillations with a large amplitude. Parametric oscillations are the result of having
time-varying (periodic) parameters in the system. In this case, the system could
experience parametric resonance, and again the amplitude of the oscillations in the
output of the system will be large.

Systems with time-varying parameters are called parametrically excited systems
[19]. A very classical example of a parametrically excited system is a swing. To
increase the amplitude of the motion, the person must crouch in the extreme position
and sit straight up in the middle position. Consequently, the distance between the
hanging point and the center of gravity of the person varies periodically. This system
(person on a swing) can be seen as pendulum with varying length [24].

In this book, many of the chapters deal with a specific class of dynamical systems,
namely with the dynamics describing the motion of a ship sailing in the ocean.
Indeed, a ship can be seen as an autoparametric system, where the dynamics corres-
ponding to the roll motion are parametrically excited by the other motions in the
ship and under some circumstances, it will experience parametric resonance known
as parametric roll, which consists of large oscillations in the roll motion, which
may become dangerous for the ship, its cargo, and its crew. The phenomenon of

J. Peña-Ramı́rez (�) • R.H.B. Fey • H. Nijmeijer
Department of Mechanical Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
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T.I. Fossen and H. Nijmeijer (eds.), Parametric Resonance in Dynamical Systems,
DOI 10.1007/978-1-4614-1043-0 1, © Springer Science+Business Media, LLC 2012
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2 J. Peña-Ramı́rez et al.

parametric roll is related to the periodic change of stability as the ship is sailing
against the waves (with length close to the length of the ship and height exceeding a
critical value) at a speed such that the wave excitation frequency (called encounter
frequency) is approximately twice the natural roll frequency and the roll damping
of the ship is insufficient to avoid the onset of parametric roll [9, 11].

Perhaps the lead in research on parametric roll was taken by William Froude
(1810–1879), who in 1861 discovered that the roll angle can increase rapidly when
the period of the ship is in resonance with the period of wave encounter [8]. He also
came to the conclusion that the roll motion is not produced by the waves hitting the
side of the hull, but rather because of the pressure of the waves acting on the hull.
For a historical note on the early days of parametric roll, the reader is referred to
[6] and [10]. It is worthwhile mentioning that in 1998 there was an incident with
a post-Panamax C11 class container ship, which was caught by a violent storm
and experienced parametric roll with roll angles close to 40◦. As a consequence,
one third of the on-deck containers were lost overboard and a similar amount were
severely damaged [9]. This event converted the study of parametric roll into a hot
topic for research.

When studying parametric resonance in a dynamical system, at some point in the
analysis, a very familiar equation will pop up. We refer to Mathieu’s equation, which
is a special case of second order differential equation with a periodic coefficient.
Therefore, this introductory chapter is devoted to present the Mathieu equation
and some of its applications. The idea is to motivate the reader to investigate the
properties of this equation, its solutions, and the stability of the solutions and
then apply it in practical problems. The last part of this chapter presents a short
introduction of autoparametric systems, which are interconnected systems where
parametric resonance appears in one of the constituting subsystems due to the
vibrations in one of the other constituting subsystems, which can be externally
excited, parametrically excited, or self excited.

1.2 The Mathieu Equation

In 1868, M. Émile Mathieu (1835–1890) published his celebrated work about the
vibrational movement of a stretched membrane having an elliptical boundary [16].
By transforming the two dimensional wave equation

∂ 2V
∂x2 +

∂ 2V
∂y2 + c2V = 0 (1.1)

into elliptical coordinates and separating it into two ordinary differential equations,
Mathieu obtained the differential equation

d2u
dt2 +(a− 2qcos2t)u = 0. (1.2)
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This equation is called the Mathieu equation. In the physical problem studied by
Mathieu the constants a and q are real. This is also true for any practical problem.
Some of the properties of this equation are [3]:

• Mathieu’s equation always has one odd and one even solution.
• (Floquet’s theorem) Mathieu’s equation always has at least one solution x(t) such

that x(t+π) =σx(t), where the constant σ , called the periodicity factor, depends
on the parameters a and q and may be real or complex.

• Mathieu’s equation always has at least one solution of the form eμtφ(t), where
the constant μ is called the periodicity exponent and φ(t) has period π .

• In the case that the parameters a and q are real, then it holds for the periodicity
exponent μ that either Re(μ) = 0 or Im(μ) is an integer.

As a consequence of Floquet’s theorem, the general solution of (1.2) has the form

u(t) = Aeμtφ(t)+Be−μtφ(−t), (1.3)

where A and B are constants of integration and μ and φ(t) are as described above. In
the case that Re(μ) = 0 and Im(μ) = r/s, a rational fraction with s ≥ 2, the general
solution (1.3) is periodic and remains bounded as t −→ ∞ and therefore (1.3) is
called a stable solution. If Re(μ) = 0 and Im(μ) is irrational, then solution (1.3) is
aperiodic and stable. In the particular case that Re(μ)= 0, Im(μ) = n with n integer,
solution (1.3) is classified as unstable. In the same way, if Re(μ) �= 0 and Im(μ) is
an integer then (1.3) is an unstable solution. Since the value of μ depends on a
and q, it follows that the solution of Mathieu’s equation is stable for certain values
of a and q, whereas it is unstable for other values. For a complete explanation of
solutions of the Mathieu equation and its stability regions in the plane (a,q), the
reader is referred to [3, 17, 27].

In the analysis of parametric resonance, it is common to use a generalized form
of Mathieu’s equation given by:

d2x
dt2 +F(t)x = 0, (1.4)

where F(t) is a periodic function of time. Equation (1.4) is called Hill’s equation.
Its solution is of the form (1.3) and it has similar stability properties as the Mathieu
equation.

By using Floquet’s theorem, it follows that if x(t) is an arbitrary solution of (1.4),
then

x(t + 2π) = σx(t). (1.5)

Three cases are considered for (1.5) in order to determine its stability (see [27]):

⎧
⎨

⎩

1 |σ |> 1 then x(t) is unstable
2 |σ |< 1 then x(t) is stable
3 |σ |= 1 then x(t) is unstable.

(1.6)
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For a complete analysis about the properties (solutions and their stability) of
(1.4), the reader is again referred to [3,17,27] and to [7] for a geometrical approach.

1.3 Applications of Mathieu’s Equation

The Mathieu equation can be used in practical applications where the problem at
hand is either a boundary value problem or an initial value problem. An example of
a boundary value problem is the solution of the wave equation expressed in elliptical
coordinates. An application illustrating an initial value problem is that one of a
pendulum with periodically varying length.

For the sake of clarity, three classical examples where the Mathieu equation ap-
pears are presented. The choice of the examples comes from the fact that we want to
show the broad application of Mathieu’s equation in several disciplines. Examples 1
and 2 correspond to the class of initial value problems, whereas Example 3 belongs
to the class of boundary value problems.

1.3.1 Example 1: A Mechanical Mechanism

Figure 1.1 shows a link–mass–spring mechanism which can be viewed as a
dynamical system covered by Mathieu’s equation [17]. The mass m can move in
the vertical direction and the spring and the links are assumed to be massless. The
spring is unstretched when the mass m is at D. Moreover, it is assumed that y/l�1.
The driving force F0 = l f0 cos2ωt applied at the pin-joint B can be resolved into
components, one along AB and the other along DA. Then, it follows that the force
driving the mass in the vertical direction is F1 = ( f0 cos2ωt)y.

Using Newton’s second law, it follows that the equation of motion of the system
in the vertical direction is

m
d2y
dt2 + ky = F1. (1.7)

A

B

k

C

l F0 = lf0 cos 2ωt

F1=(f0 cos 2ωt)y

O
D

y

fixed pin joint

Fig. 1.1 Schematic diagram of a dynamical mechanical system covered by Mathieu’s equation
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Since F1 = ( f0 cos2ωt)y, (1.7) becomes

m
d2y
dt2 +(k− f0 cos2ωt)y = 0. (1.8)

Introducing a new time variable τ =ωt leads to the standard form of the Mathieu
equation

d2y
dτ2 +(a− 2qcos2τ)y = 0, (1.9)

where a = k/(ω2m) and q = f0/(2ω2m).

1.3.2 Example 2: An Oscillatory Electrical Circuit

Another interesting application of the Mathieu equation is in the analysis of osci-
llatory circuits having time varying parameters, which have been highly important
in the development of communication systems since the introduction of the super-
regenerative receiver by Edwin Howard Armstrong (1890–1954) in 1922 [2]. The
example at hand is the RLC circuit depicted in Fig. 1.2, which is described in [4].
The circuit contains a coil with constant inductance L, a capacitor with constant
capacitance C and a time varying resistance R which is given by the expression:

R = γ +ρ(i)+Rm sinωt, (1.10)

where γ is an ohmic resistance, ρ(i) is a negative resistance (accounting for rege-
neration, i.e., supplying energy to the circuit to reinforce the oscillations), which is
dependent on the current i and can be either less, equal, or greater than γ . Finally,
Rm sinωt is a periodic resistance.

Using Kirchhoff’s voltage law it follows that the governing differential equation
of the circuit of Fig. 1.2 is

L
di
dt

+(γ +ρ(i)+Rm sinωt) i+
1
C

∫

idt = 0. (1.11)

Under the assumption that γ +ρ(i)�Rm sinωt, (1.11) verifies [4]:

L
di
dt

+Rm sinωti+
1
C

∫

idt = 0. (1.12)

After taking the time derivative of (1.12), it follows that

d2i
dt2 +

Rm

L
sinωt

di
dt

+

(

ω2
0 +

ωRm

L
cosωt

)

i = 0, (1.13)
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L

ρ(i) Rm sin ωtγ

C

i

R

Fig. 1.2 Equivalent circuit of
a super-regenerative receiver

where ω0 = 1/
√

LC is the resonance frequency of the circuit. The damping term
may be removed by the substitution i = Iye(k/ω)cosωt with k = Rm/2L. With this
substitution, (1.13) becomes

Ie(k/ω)cosωt
(

d2y
dt2 +

(

ω2
0 + 2kω cosωt +

k2

2
− k2

2
cos2ωt

)

y

)

= 0. (1.14)

By considering the extreme cases k�ω and k�ω , (1.14) reduces to

d2y
dt2 +

(
ω2

0 + 2ωk cosωt
)

y = 0 and
d2y
dt2 +

(

ω2
0 +

k2

2
− k2

2
cos2ωt

)

y = 0,

(1.15)

respectively. Both equations in (1.15) can be written in the standard form of Ma-
thieu’s equation by defining a new time variable. For instance, consider the second
equation in (1.15) and define τ = ωt. This leads to

d2y
dτ2 +(a− 2qcos2τ)y = 0, (1.16)

where a = (2ω2
0 + k2)/2ω2 and q = k2/4. Clearly, (1.16) is the Mathieu equation.

Further applications of Mathieu’s equation on oscillatory electrical circuits
containing time varying parameters can be found in [5] and [17].

1.3.3 Example 3: Hydrodynamics

A considerable part of this book is dedicated to the study of parametric roll occurring
in ships sailing in the sea; therefore, in this introductory chapter, an application of
the Mathieu equation related to hydrodynamics is obvious. The example at hand
is related with the free oscillations of water in an elliptical lake (see Fig. 1.3),
whose eccentricity is close to 1. This example is described in [13]. The position
of any point referred to the major and minor axes of the lake is given by the
horizontal coordinates x and y with corresponding velocities u and v. Assume that
the coordinate system rotates at constant angular velocity ω about the z-axis (earth’s
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y, vx, u

z

ω

D

Fig. 1.3 Elliptical lake

rotation axis). It can be shown that the equations of horizontal motion (assuming
infinitely small relative motion) are [14]:

∂u
∂ t

− 2ωv =−g
∂ζ
∂x

and
∂v
∂ t

+ 2ωx =−g
∂ζ
∂y

, (1.17)

where g is the acceleration of gravity and ζ is the height of the free surface above
its equilibrium position. Next, the equation of continuity is given by the expression

− ∂ζ
∂ t

=
∂ (Du)

∂x
+

∂ (Dv)
∂y

, (1.18)

where D is the depth of the lake, which is assumed to be uniform.
Next, explicit expressions for u and v are computed by considering “perturbative”

solutions for u, v, and ζ of the form eiσt (see [12,14]), with σ = 2π/T with T being
the period of tidal oscillation [25]. Hence

u = u1eiσt = u1(cosσ t + isinσ t) (1.19)

v = v1eiσt = v1(cosσ t + isinσ t) (1.20)

ζ = ζ1eiσt = ζ1(cosσ t + isinσ t). (1.21)

Substitution of (1.19)–(1.21) in (1.17)–(1.18) yields

iσu− 2ωv =−g
∂ζ
∂x

and iσv+ 2ωu =−g
∂ζ
∂y

(1.22)

and
− iσζ = D

(
∂u
∂x

+
∂v
∂y

)

. (1.23)

From (1.22) follows that

u =
g

σ2 − 4ω2

(

iσ
∂ζ
∂x

+ 2ω
∂ζ
∂y

)

and v =
g

σ2 − 4ω2

(

iσ
∂ζ
∂y

− 2ω
∂ζ
∂x

)

.

(1.24)



8 J. Peña-Ramı́rez et al.

By using (1.24), (1.23) is represented as:

∂ 2ζ
∂x2 +

∂ 2ζ
∂y2 +

σ2 − 4ω2

gD
ζ = 0. (1.25)

Equation (1.25) is the well known two-dimensional wave equation. Since the
problem at hand involves a boundary condition, which is elliptical in shape, it is
convenient to express (1.25) in elliptical coordinates ξ and η , which are related to
x and y in the following manner

x+ iy = hcosh(ξ + iη), (1.26)

or
x = hcoshξ cosη , y = hsinhξ cosη . (1.27)

Expressed in elliptical coordinates, (1.25) becomes (for the transformation
procedure, see [17] or [28])

∂ 2ζ
∂ξ 2 +

∂ 2ζ
∂η2 + 2k2 (cosh2ξ − cos2η)ξ = 0, (1.28)

where k2 =
(
σ2 − 4ω2

)
h2/8gD.

By substituting in (1.28) a solution of the form

ζ = XY (1.29)

with X being a function only depending on ξ and Y a function only depending on
η , it follows that

− 1
X

(
d2X
dξ 2

)

+ 2k2 cosh2ξ =
1
Y

(
d2Y
dη2

)

− 2k2 cos2η . (1.30)

It is straightforward to see that both sides of (1.30) should be equal to the same
constant, say R. In consequence, it follows that

d2X
dξ 2 +

(
2k2 cosh2ξ −R

)
X = 0 (1.31)

d2Y
dη2 +

(
R− 2k2 cos2η

)
Y = 0. (1.32)

Equation (1.31) is the so-called modified Mathieu equation [17], whereas (1.32) is
the standard Mathieu equation. Then, it is clear that the problem of free oscillations
of water in an elliptical lake is an example of an application of the Mathieu
equation.
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1.3.4 Other Modern Applications

Nowadays, the literature is very rich in applications related to the Mathieu equation.
For example, this equation is considered in

• the study of the stability of structural elements such as plates and shells, which
are widely used in aerospace and mechanical applications [1, 23].

• the analysis of the dynamical behavior of micro- and nano-electromechanical
systems, which are very often used in actuators, sensors, and in data and
communication applications [18, 21].

• the study of parametric resonance in civil structures like bridges [20].

For more applications of the Mathieu equation the reader is referred to [22] and
the references there in.

As a final note, an example of parametric resonance in a biological system
is briefly discussed. The squid giant axon membrane is taken as example. This
axon controls part of the water jet propulsion system in squid. When considering
the membrane capacitance as a periodic time varying parameter, it has been
found that the membrane sensitivity to stimulation is increased due to parametric
resonance [15]. However, it should be stressed that the equations describing the
membrane potential response are parametrically excited first order equations, which
can not be written in the form of the Mathieu equation.

1.4 Autoparametric Systems

The phenomenon of parametric resonance also occurs in a special class of non-
linear dynamical systems called autoparametric systems. In its simplest form, an
autoparametric system consists of two nonlinearly coupled subsystems. One of
the subsystems (called primary system) can be externally excited, parametrically
excited, or self-excited. Due to the coupling, the other subsystem (called secondary
system) can be seen as a parametrically excited system. A particular feature of
autoparametric systems is that for certain values of the excitation frequency and/or
certain values of the parameters, the primary system will have an oscillating
response, whereas the secondary system will be at rest. When this solution becomes
unstable, the system will experience autoparametric resonance, i.e., the oscillations
of the primary system will produce an oscillating behavior in the secondary
subsystem. In some cases, the oscillations of the secondary system will grow
unbounded [26].

Perhaps one of the simplest examples of an autoparametric system is given
by a pendulum attached to a mass–spring–damper system, where the mass can
move in the vertical direction and is driven by a harmonic force. In such case,
the primary system is given by the mass–spring–damper subsystem, whereas the
pendulum is considered as the secondary subsystem. For certain intervals of the
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excitation frequency, the behavior of the system is as follows: the mass oscillates in
the vertical axis, whereas the pendulum remains at rest. However, there are intervals
of the excitation frequency such that the pendulum is parametrically excited by the
oscillatory mass–spring–damper system and the pendulum will no longer stay at rest
but it will show an oscillating behavior.

In the study of the stability of autoparametric systems, often the Mathieu equation
plays a fundamental roll. This is demonstrated by the following academic exam-
ple where the primary system is assumed to be externally excited. Note that the
considered system does not model any physical system; however, it is quite useful in
demonstrating some of the basic properties of autoparametric systems. This example
has been presented in [26].

Consider an autoparametric system (in dimensionless form) given by the set of
equations:

ẍ+β1ẋ+ x+α1y2 = kη2 cosηt, (1.33)

ÿ+β2ẏ+ q2y+α2xy = 0, (1.34)

where the primary system (1.33) is externally excited by a harmonic force, and the
secondary system (1.34) is parametrically excited. The secondary system is coupled
to the first system by the term α2xy, whereas the primary system is coupled to the
secondary system with the term α1y2. Parameters βi ∈R

+ (i = 1,2) are the damping
coefficients, q = ω2/ω1 is the ratio of the natural frequency ω2 of the secondary
system and the natural frequency ω1 of the primary system. The amplitude of the
external excitation is given by k and the driving frequency η is given by the ratio of
the (dimensional) excitation frequency ω and the natural frequency of the primary
system ω1, i.e., η = ω/ω1.

This system has a semi-trivial solution (i.e., a solution where x(t) and ẋ(t) have
oscillatory behavior and y(t) = ẏ(t) = 0), which is determined by substituting

x(t) = Rcos(ηt +ψ) (1.35)

y(t) = 0 (1.36)

into (1.33)–(1.34). This yields an expression for R, which is

R =
kη2

√

(1−η2)2 +β 2
1 η2

. (1.37)

Then, the semi-trivial solution of (1.33)–(1.34) is given by:

x(t) =
kη2

√

(1−η2)
2
+β 2

1 η2
cos(ηt +ψ), y(t) = 0, (1.38)
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ẋ(t) = − kη3
√

(1−η2)2 +β 2
1 η2

sin(ηt +ψ), ẏ(t) = 0. (1.39)

The stability of the semi-trivial solution (1.38)–(1.39) is determined by inserting
the expressions

x = Rcos(ηt +ψ1)+ u(t), y = 0+ v(t), (1.40)

where u(t) and v(t) are small perturbations, into (1.33)–(1.34). This leads to the
linear approximation

ü+β1u̇+ u = 0 (1.41)

v̈+β2v̇+
[
q2 +α2Rcos(ηt +ψ1)

]
v = 0. (1.42)

From (1.41) it is clear that u is asymptotically stable. In consequence, the stability
of (1.38)–(1.39) is completely determined by (1.42), which indeed is the Mathieu
equation (1.2). In [26], it has been found that the main instability domain of (1.42)
corresponds to values of q ≈ 1

2 η . Indeed, by using the averaging method, it is
possible to find the boundary of the main instability region and then to determine,
for which values of the amplitude of the external excitation, the semi-trivial solution
(1.38)–(1.39) becomes unstable, i.e., for which values of k the response y(t) �= 0.

Now, an example of an autoparametric system occurring in engineering applica-
tions is considered. When studying parametric roll resonance in ships, the dynamics
describing the motions of the ship in the vertical plane (heave, pitch, and roll) can
be seen as an autoparametric system, where the primary system, consisting of the
dynamics of heave and pitch motion, is externally excited by the ocean waves,
whereas the secondary system, corresponding to the roll dynamics, is parametrically
excited by the oscillations in heave and pitch. As in the previous example, the heave–
pitch–roll system also accepts a semi-trivial solution similar to (1.38)–(1.39), i.e.
under certain conditions confer [11], the ship will exhibit oscillations in heave and
pitch directions, whereas no oscillations in roll will appear. However, it has been
found that this solution is prone to become unstable when the frequency, to which
the system approaches waves, is almost twice the value of the roll natural frequency.
In such case parametric roll will appear.

1.5 Conclusions

This introductory chapter has been written in order to show the reader that a solid
knowledge of the Mathieu equation, its properties, and solutions will facilitate the
analysis of the parametric resonance phenomenon occurring in dynamical systems
with time-varying parameters. By using some examples from diverse disciplines, it
has been shown that since its introduction in 1868, the Mathieu equation has been
of paramount importance in the development of the theory of parametrically excited
systems.
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A short summary about a special class of systems called autoparametric systems
has been presented. In this kind of systems, parametric resonance will occur due
to the interconnection of the constituting subsystems. Therefore, the theory of
autoparametric systems is a very useful framework when analyzing, for instance,
the parametric roll effect, because the influence of other motions of the ship can be
included into the analysis.

As a final remark, it should be clear to the reader that when analyzing a single
degree of freedom dynamical system with time varying parameters, the solutions
of the Mathieu equation or Hill’s equation are of key importance to analyze the
behavior of the system, whereas when analyzing an interconnected system, where
one of the subsystems acts as a parametric excitation of the other subsystem, then
the theory related to autoparametric systems should be used in order to determine
the behavior of the system.

In general, the chapters contained in this book are indeed applications strongly
related to the Mathieu equation or Hill’s equation and/or applications, where the
system under consideration belongs to the class of autoparametric systems.
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Chapter 2
Detection of Parametric Roll for Ships

Roberto Galeazzi, Mogens Blanke, and Niels K. Poulsen

2.1 Introduction

Observations of parametric resonance on ships were first done by Froude [9, 10]
who reported that a vessel, whose frequency of oscillation in heave/pitch is twice
its natural frequency in roll, shows undesirable seakeeping characteristics that can
lead to the possibility of exciting large roll oscillations. Theoretical explanations
appeared in the 20th century, see [26, 35] and references herein, and parametrically
induced roll has been a subject in maritime research since the early 1950s [23]
and [32]. The report by France et al. [8] about the APL China incident in October
1998 accelerated the awareness and parametric roll resonance became an issue
of key concern. Døhlie [7] emphasized parametric resonance as a very concrete
phenomenon, which will be able to threaten some of the giants of the sea in common
passage conditions, which were previously considered to be of no danger.

Publications addressing parametric roll on container ships include [3,5,17,20,21,
24,33,34,36]. Fishing vessels were in focus in [27,28]. A main topic of this research
has been to analyse the nonlinear interactions between roll and other ships’ motions
and develop models, which could predict vessels’ susceptibility to parametric roll
at the design stage. However, commercial interest is to maximize cargo capacity.
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Hull designs have not been significantly changed and parametric resonance is left
as a calculated risk. Therefore, there is a need to enhance safety against parametric
roll through on-board detection and decision support systems.

First generation warning systems are based on longer horizon analysis of ship’s
responses and they provide polar diagrams with risk zones in speed and heading.
These are found in commercial products as the SeaSense [30] and the Amarcon’s
OCTOPUS Resonance.1 For detection of the resonant bifurcation mode, Holden
et al. [19] proposed an observer based predictor that estimates the eigenvalues of
a linear second-order oscillatory system. This algorithm issues a warning when
eigenvalues have positive real parts. The method works convincingly but was
designed to cope with excitation by narrow band regular waves. Irregular sea
conditions were studied by McCue and Bulian [25] who used finite time Lyapunov
exponents to detect the onset of parametric roll, but this method was not found to
possess sufficiently robustness when validated against experimental data.

Starting from early results outlined in [12,13] this chapter re-visits the core of the
theory of parametric resonance and proposes signal-based methods for detection of
parametric roll [11]. Development of a robust warning system for detecting the onset
of parametric roll is discussed, and it is shown possible to obtain based solely on
signals. The core of the method is shown to consist of two detection schemes:
one in the frequency domain, a second in the time domain. The frequency-based
detector uses an indicator of spectral correlation between pitch or heave and the
roll. A time-based detector exploits the phase synchronization between the square
of the roll and of pitch. A generalized likelihood ratio test (GLRT) is derived for a
Weibull distribution that is observed from data and adaptation is employed to obtain
robustness in reality with time-varying weather conditions. Robustness to forced roll
motion is also discussed and the detection system’s performance is evaluated on two
data sets: model test data from towing tank experiments and data from a container
vessel experiencing an Atlantic storm.

2.2 Parametric Roll – Conditions and Underlying Physics

This section presents empirical experience and introduces a mathematical treatment
of parametric roll resonance.

2.2.1 Empirical Conditions

Empirical conditions have been identified that may trigger parametric roll reso-
nance:

1http://www.amarcon.com

http://www.amarcon.com
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1. the period of the encounter wave is approximately equal to half the roll natural
period (Te ≈ 1

2 Tφ )
2. the wave length is approximately equal to the ship’s length (λw ≈ LPP)
3. the wave height is greater than a ship-dependent threshold (hw > h̄s)

When these conditions are met, and the ship sails in moderate to heavy longitudinal
or oblique seas, then the wave passage along the hull and the wave excited vertical
motions result in variations of the intercepted water-plane area and in turn, they
change the roll restoring characteristics. The onset of parametric resonance causes
a quick rise of roll oscillation, which can reach amplitudes larger than ±40◦
([6, 8]), and it may bring the vessel into conditions dangerous for cargo, crew, and
hull integrity. Damages produced by parametric roll to the post-Panamax container
ship APL China had a price tag of USD 50 millions in 1998 [15].

2.2.2 Mathematical Background

Consider a vessel sailing in moderate head regular seas and let the wave elevation
be modeled as a single frequency sinusoid

ζ (t) = Aw cos(kxcos χ − kysinχ −ωet),

where Aw is the wave amplitude, ωe the wave encounter frequency, k the wave
number, and χ the wave encounter angle. In head seas the wave encounter angle
is χ = 180◦, and

ζ (t) = Aw cos(kx+ωet).

The incident wave gives rise to forces and moments acting on the hull. In head
seas, conventional forced roll cannot occur since forces and moments from wave
pressure on the hull have no components perpendicular to the ship, but motions in
the vertical plane are clearly excited. Heaving and pitching cause periodic variations
of the submerged hull geometry. In particular, during a wave passage, the intercepted
water-plane area SW changes from the still water case SW0 , causing a variation of the
position of the center of buoyancy [29]. This in turn gives rise to a modification of
the transverse metacentric height GM and also to a new position of the metacenter
M. The center of gravity G depends upon the ship’s loading condition and is fixed.
Consequently the periodic fluctuation of GM, which can be considered sinusoidal,

GM(t) = GM+GMa cos(ωet)

influences the stability properties of the vessel through the roll restoring moment
that is approximated by:

τ(t)≈ ρg∇GM(t)sin φ ,
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where GM is the mean value of the metacentric height, GMa is the amplitude of
the variations of the metacentric height in waves, ρ is the water density, g is the
acceleration constant of gravity, and ∇ is the displaced volume.

The following situations alternate in a periodic manner:

• a wave trough is amidships: in this case SW > SW0 causing a larger restoring
moment (τ > τ0) and increased stability

• a wave crest is amidships: in this case SW < SW0 inducing a smaller restoring
moment (τ < τ0) and reduced stability.

If a disturbance occurs in roll when the ship is between the wave crest and trough
at amidships position, then its response will be greater than in calm water since it
is approaching a situation of instantaneous increased stability. Therefore the vessel
will roll back to a larger angle than it would have done in calm water. After the first
quarter of the roll period Tφ the vessel has rolled back to the zero degree attitude but
it continues towards port side due to the inertia. However now the ship encounters a
wave crest amidships, which determines a reduced restoring moment with respect to
that in calm water; therefore the ship rolls to a larger angle than it would have done
in calm water. As a result the roll angle is increased again over the second quarter
of the roll period, reaching a higher value than at the end of the first quarter. This
alternate sequence of instantaneous increased and reduced restoring moment causes
the roll angle to keep increasing unless some other factors start counteracting it.

Formally, this can be described as the interaction between coupled modes of
an autoparametric system, where the primary system is externally forced by a
sinusoidal excitation. In particular, let θ be the pitch angle, and φ be the roll angle.
Then the system reads

(
Iy −Mθ̈

)
θ̈ +Mθ̇ θ̇ +Mθ θ +Mφ 2φ2 = Mw cos(ωwt), (2.1)

(
Ix −Kφ̈

)
φ̈ +Kφ̇ φ̇ +Kφ φ +Kφ 3φ3 +Kφθ φθ = 0, (2.2)

where Ix, Iy are the rigid body inertia in roll and pitch; Kφ̈ , Mθ̈ are the added
inertia; Kφ̇ , Mθ̇ are the linear damping due to viscous effects; Kφ , Kφ 3 , Kφθ , Mθ ,
and Mφ 2 are the linear and the nonlinear coefficients of the restoring moments due
to hydrostatic actions; Mw, ωw are the amplitude and frequency of the wave induced
pitch moment. The model introduced above is not meant to precisely describe the
hull–wave interactions that determine the onset and development of parametric roll
on ships, but it simply tries to cast the roll–pitch dynamics within the autoparametric
resonance framework along the lines of [31].

System (2.1)–(2.2) can be rewritten as:

θ̈ + μ1θ̇ +ω2
1 θ +α1φ2 = κ cos(ωwt) (2.3)

φ̈ + μ2φ̇ +ω2
2 φ + εφ3 +α2φθ = 0 (2.4)
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with coefficients

μ1 =
Mθ̇

Iy −Mθ̈
, ω1 =

√
Mθ

Iy −Mθ̈
, α1 =

Mφ 2

Iy −Mθ̈
, κ =

Mw

Iy −Mθ̈

μ2 =
Kφ̇

Ix −Kφ̈
, ω2 =

√
Kφ

Ix −Kφ̈
, α2 =

Kφθ

Ix −Kφ̈
, ε =

Kφ 3

Ix −Kφ̈
.

The so-called semi-trivial solution of the system (2.3)–(2.4) can be determined
by posing

θ (t) = θ0 cos(ωwt + ς) (2.5)

φ(t) = 0 (2.6)

and by substituting θ (t) and φ(t) into (2.3) and (2.4) it yields

θ0 =
κ

√(
ω2

1 −ω2
w

)2
+ μ2

1 ω2
w

. (2.7)

The stability of the semi-trivial solution is investigated by looking at its behavior in
a neighborhood defined as:

θ (t) = θ0 cos(ωwt + ς)+ δθ(t), (2.8)

φ(t) = 0+ δφ(t), (2.9)

where δθ and δφ are small perturbations. Substituting (2.8) and (2.9) into the system
(2.3)–(2.4), and linearizing about the semi-trivial solution the following system is
obtained

δ̈θ + μ1δ̇θ +ω2
1 δθ = 0 (2.10)

δ̈φ + μ2δ̇φ +
(
ω2

2 +α2θ0 cos(ωwt + ς)
)

δφ = 0. (2.11)

Equation (2.10) has the solution δθ = 0, which is exponentially stable since μ1 > 0.
Therefore, the stability of the semi-trivial solution is fully determined by (2.11),
which is referred to as the damped Mathieu equation. By applying Floquet theory
[16] it is possible to show that (2.11) has its principal instability region for ω2 ≈
1
2 ωw, and its boundary is given by:

1
4

μ2
2

ω2
w
+

(
ω2

2

ω2
w
− 1

4

)2

=
1
4

α2
2 θ 2

0

ω4
w

. (2.12)
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This boundary condition can be used to determine the critical value κc of the external
excitation, which triggers the parametric resonance in the secondary system. In
particular substituting (2.7) into (2.12) we obtain

κc = 2
ω2

w

√
(
ω2

1 −ω2
w

)2
+ μ2

1 ω2
w

α2

√

1
4

μ2
2

ω2
w
+

(
ω2

2

ω2
w
− 1

4

)2

. (2.13)

For κ > κc the semi-trivial solution becomes unstable, and a nontrivial solution
appears which is given by:

θ (t) = θ1 cos(ωwt + ς1), (2.14)

φ(t) = φ0 cos

(
1
2

ωwt + ς2

)

, (2.15)

where

θ1 =
2ω2

w

α2

√

1
4

μ2
2

ω2
w
+

(
ω2

2

ω2
w
− 1

4

)2

(2.16)

and φ0 grows over time.
The system (2.3)–(2.4) shows a saturation phenomenon both in pitch and in roll.

For values of the excitation amplitudes between 0 and κc the semi-trivial solution is
hence stable with an amplitude that grows linearly with κ , as shown in (2.7). When
the amplitude of the external excitation becomes larger than κc then the semi-trivial
solution loses stability and a nontrivial solution appears. In particular (2.16) shows
that the amplitude of the solution of the primary system stays constant, whereas the
amplitude of the secondary system grows with increasing κ . Therefore, when the
excitation amplitude increases, the amount of energy stored in the primary system
stays constant and the entire energy rise flows to the secondary system. The rate
at which energy is pumped into the secondary system is not constant but varies
according to the change of the phase ς2, which is connected to the variation of the
amplitude φ0 through the nonlinearity in the restoring moment. When the rate at
which energy being dissipated by viscous effects has matched the rate at which
energy is transferred to the roll subsystem, the system reaches a steady state motion
characterized by a constant amplitude φ0 and a phase shift ς2 = π . Figure 2.1 shows
the development of parametric roll resonance while the amplitude of the excitation
κ̄ = κ/κc increases: the stability chart clearly illustrates in the parameter space how
the stability properties of the secondary system changes in response to a variation
of the amplitude of the external excitation.

Concluding, parametric roll is a resonance phenomenon triggered by existence
of the frequency coupling ωw ≈ 2ω2, and whose response shows a phase synchro-
nization of 180◦ with the parametric excitation.
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Fig. 2.1 Parametric resonance in the pitch–roll auto-parametric system: (left) stability diagram of
the secondary system for different levels of damping, and different amplitude of the excitation;
(right) pitch and roll time series evolution

2.3 Detection Methods

Change detection is often based on a statistical test between a hypothesis H0 and
an alternative H1. The hypothesis H0 is related to the normal situation whereas the
alternative is related to a deviation from normal.

Assume the data available for the test are Y = [y(1), . . . ,y(N)], and that it is
possible to assign a distribution of the data for the normal (fault free) case p(Y;H0)
and for the not-normal (faulty) case p(Y;H1), as shown in Fig. 2.2.

Applying the Neyman–Pearson strategy (see, e.g., [2, 22] or [4]) H1 will be
decided if

L(Y) =
p(Y;H1)

p(Y;H0)
> γ, (2.17)

where γ is a design parameter. The function L(Y) is referred to as the likelihood
ratio. Then the detection process can be seen as a mapping from a data manifold
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Fig. 2.2 Top: Distributions of data in the fault free case H0 and in the faulty case H1. Bottom:
Data when a fault occur at t = 100

into a decision manifold. When testing between two simple hypothesis the decision
manifold is divided into two regions defined as:

R0 = {Y : decide H0 or reject H1}
R1 = {Y : decide H1 or reject H0} ,

where R1 is called the critical region.
Performing a statistical test, two types of erroneous decisions can be made.

A false alarm if deciding H1 while H0 is true, or a missed detection if deciding
H0 while H1 is true.

While H1 true, the probability of false alarm is PFA = P(H1;H0) and the
probability of correct detection is PD = P(H1;H1). Both depend on the threshold γ
chosen, as illustrated in Fig. 2.2. In a simple test situation (the distribution of data
is known in both the normal and in the faulty situation) the Neyman–Pearson test in
(2.17) maximizes PD for a given PFA.

In the composite situation, where the two distributions are not precisely known,
but they depend on some unknown parameters, the generalized likelihood ratio test
results in deciding H1 if

L(Y) =
p(Y; θ̂ 1,H1)

p(Y; θ̂ 0,H0)
> γ, (2.18)
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where θ̂ i is the maximum likelihood estimate (MLE) of θ i, i.e.,

θ̂ i = max
θ

L(Y|θ i;Hi) . (2.19)

The specific detection methods that follow below are patent pending [11].

2.3.1 Detection in the Frequency Domain

In Sect. 2.2 it was shown that the onset and development of parametric roll is
attributable to the transfer of energy from the pitch mode (but also heave motion
can contribute), directly excited by the wave motion, to the roll mode, at a frequency
about twice the natural roll frequency. Therefore, an increase of power of roll square
close to the frequencies where pitch is pumping energy into roll may be exploited
as an indicator of parametric resonance.

Given two signals, e.g., x(t) and y(t), the cross-correlation provides a measure
of similarity of the two waveforms as a function of time lag. If the two signals are
discrete sequences then the cross-correlation and cross-spectrum are defined as:

rxy[m] �
∞

∑
m=−∞

x∗[m]y[n+m],

Pxy(ω) �
∞

∑
m=−∞

rxy[m]e− jωm, (2.20)

where m is the time lag, and ∗ denotes complex conjugate. The functions carry
information about which components are held in common between the two signals
and since it is the roll sub-harmonic regime addressing the onset of parametric roll
resonance, the detection problem can be set up as monitoring the cross-spectrum of
φ2[n] and θ [n].

The parametric roll detection problem is then formulated as:

H0 : Pφ 2θ (ω)≤ P̄, (2.21)

H1 : Pφ 2θ (ω)> P̄,

where P̄ is a power threshold. Instead of using directly the cross-spectrum, a spectral
correlation coefficient could be exploited, defined as:

Sφ 2θ �
σ2

φ 2θ
√

σ2
φ 2σ2

θ

. (2.22)

where σ2
φ 2θ is the average power of the cross-spectrum of φ2 and θ , σ2

φ 2 is the

average power of the square of the roll angle, and σ2
θ is the average power of the

pitch angle.
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Fig. 2.3 Model tank experiment 1195: alignment of peaks between pitch θ and roll φ during the
onset and development of parametric roll

The detection problem can then be rewritten as:

H0 : Sφ 2θ ≤ S̄ ,

H1 : Sφ 2θ > S̄ , (2.23)

where S̄ is a measure of the level of spectral correlation.

2.3.2 Detection in the Time Domain

2.3.2.1 Statistics of the Driving Signal

After onset, parametric roll resonance is characterized by nonlinear synchronization
between motions. Døhlie [7] pointed out that when parametric roll develops there
is a lining up of peaks between the pitch motion and the roll motion, that is, every
second peak of pitch is in-phase with the peak in roll, as shown in Fig. 2.3. Figure
2.3 also shows that when this alignment is partially lost, the roll oscillations start
decaying, as e.g., between 150 s and 250 s, or after 300 s. Therefore, a signal which
carries the phase information of pitch and roll could be exploited for solving the
detection problem.
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Fig. 2.4 Negative and positive peaks in d address how the amplitude of the roll oscillations
increases and decreases. Data from model basin test

Following [13], given the roll angle φ and the pitch angle θ , the signal indicating
the parametric resonance in roll is defined as:

d (t)� λ (t)φ2 (t)θ (t) , (2.24)

where the time-varying scaling factor 0 < λ (t) ≤ 1 is introduced to reduce the
sensitivity to variations in sea state. Consider Fig. 2.4, where φ (t) and d (t) are
plotted for one experiment without parametric roll (Exp. 1194) and another with
parametric roll (Exp. 1195). The driving signal d(t) characterizes quite well the
way the amplitude grows or decays inside the signal φ . When the amplitude of φ
abruptly grows, a sequence of negative spikes shows up in the driving signal. In
contrast, when the amplitude of φ decreases, positive spikes reflect this in d(t).

Moreover, when parametric roll is developing, the magnitudes of the negative
spikes in the driving signal are much larger than that seen when the roll mode is not
in a resonant condition (Fig. 2.4, middle plots). Therefore, a significant variation
in the variance of the driving signal d(t) can be expected when parametric roll is
developing. An alternative to directly using the d(t) signal would be to use the
amplitude of local minima between up-crossings,

z(k)�−min(d(t)), t ∈ ]T (k− 1),T (k)], (2.25)

where T (k) are the time-tags of up-crossings in d(t).
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Fig. 2.5 Auto-correlation of driving signal d(t) and local minima z(k). Data from Atlantic passage
during a storm

An important condition for subsequent statistical testing and correct selection
of thresholds, is that data are independent and identically distributed (IID). A
plot of the autocorrelation functions of d(t) and z(k) under the hypothesis H0 is
shown in Fig. 2.5. The driving signal d(t) is heavily correlated due to the narrow-
band process that creates this signal. The autocorrelation of the local minima z(k)
have a smooth roll-off with a forgetting factor of 0.3. If whitening of z(k) should
subsequently be needed, a simple discrete filter could be employed for this purpose.
The autocorrelation behavior makes z(k) a natural choice for subsequent statistical
analysis in the time-domain.

As to the distribution of z(k), a scrutiny showed that a Weibull distribution
characterizes z(k) quite well. The Weibull distribution, which is defined only for
z > 0, has cumulative density function, CDF:

P(z) = 1− exp

(

−
( z

υ

)β
)

(2.26)

and probability density function, PDF:

p(z) =
β

2υβ (z)β−1 exp

(

−
( z

υ

)β
)

, (2.27)

where υ and β are scale and shape parameters, respectively.
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According to the observations from model test data, a good way to discriminate
between resonant and nonresonant cases is to look for a variation in signal power. In
particular, the bottom plots of Fig. 2.4 show that the onset of parametric resonance
in roll is preceded by an abrupt variation of the amplitude of z(k); therefore, a
detector which looks for large changes in signal power is aimed at. For the Weibull
distribution the variance is given by:

σ2 = υ2
[

Γ
(

1+
2
β

)

−Γ 2
(

1+
1
β

)]

.

Hence the detection scheme must trail variations in scale and shape parameters.

2.3.2.2 GLRT for Weibull Processes (W -GLRT)

Assume that the local minima z(t) of the driving signal is a realization of a Weibull
random process. Then the distribution of N independent and identically distributed
samples of z is characterized by the probability density function:

W (z;θ ) =
(

β
2υβ

)N N−1

∏
k=0

[

zβ−1
k exp

(

−
(zk

υ

)β
)]

, (2.28)

where θ = [υ ,β ]T is the parameter vector fully describing the Weibull PDF.
The detection of parametric roll can be formulated as a parameter test of the

probability density function:

H0 : θ = θ 0, (2.29)

H1 : θ = θ 1,

where θ 0 is known and it represents W in the nonresonant case, whereas θ 1 is
unknown and it describes the parametric resonant case. By applying the generalized
likelihood ratio test, the detector decides H1 if

LG (z) =
p
(
z; θ̂ 1,H1

)

p(z;θ 0,H0)
> γ, (2.30)

where the unknown parameter vector θ1 is replaced with its maximum likelihood
estimate θ̂ 1, and γ is the threshold given by the desired probability of false alarms.

The first step in computing LG is to determine θ̂ 1 =
[
υ̂1, β̂1

]T
, therefore we need

to maximize p
(
z; θ̂ 1,H1

)
. Given p

(
z; θ̂ 1

)
the estimates of the parameters υ1 and

β1 are computed as:
∂ ln p

(
z; θ̂ 1

)

∂θ j
= 0
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which results in

υ̂1 =

(
1
N

N−1

∑
k=0

zβ̂1
k

) 1
β̂1

(2.31)

1

β̂1
=

∑N−1
k=0 zβ̂1

k lnzk

∑N−1
k=0 zβ̂1

k

− 1
N

N−1

∑
k=0

lnzk . (2.32)

Balakrishnan and Kateri [1] have shown that β̂1 exists, it is unique, and its value is
given by the intersection of the curve 1/β̂1 with the right-hand side of (2.32).

Having determined the MLEs υ̂1 and β̂1 it is then possible to derive an explicit
form for the detector. By taking the natural logarithm of both sides of (2.30),

ln

(
β1

2υβ1
1

)N N−1

∏
k=0

[

zβ1−1
k exp

(

−
(

zk
υ1

)β1
)]

(
β0

2υβ0
0

)N N−1

∏
k=0

[

zβ0−1
k exp

(

−
(

zk
υ0

)β0
)] > lnγ ⇒

N ln

(
β1

β0

υβ0
0

υβ1
1

)

+(β1 −β0)
N−1

∑
k=0

lnzk −
N−1

∑
k=0

(
zk

υ1

)β1

+
N−1

∑
k=0

(
zk

υ0

)β0

> lnγ, (2.33)

where the parameters [β1,υ1] are replaced by their estimates.
Data show that the shape parameter is approximately the same under both

hypothesis, β1 = β0 = β , then the GLRT reads

Nβ ln

(
υ0

υ̂1

)

+
υ̂β

1 −υβ
0

(υ0υ̂1)
β

N−1

∑
k=0

zβ
k > lnγ ⇒

Nβ ln

(
υ0

υ̂1

)

+N
υ̂β

1 −υβ
0

υβ
0

> lnγ. (2.34)

Therefore the test quantity g(k) is

g(k) =

(
υ̂1(k)

υ0

)β
− 1−β ln

(
υ̂1(k)

υ0

)

(2.35)

and the threshold where H1 is decided is

g(k)>
lnγ
N

≡ γg. (2.36)
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Fig. 2.6 Test statistics g(k) observed in heavy weather conditions with forced roll. Data from
Atlantic passage during a storm. A Weibull distribution fits the data well

Asymptotically, as N → ∞ a theoretical value exists for γ , independent of distribu-
tion of z(k). However, since only few peaks are used here, the distribution of g(k)
need be investigated and the value of the threshold γg need be determined from this
distribution.

2.3.2.3 Selection of Threshold

Selection of the threshold γg to obtain a sufficiently low false alarm rate, depends
on the statistics of g(k) in (2.35) under assumption H0. Given the test signal
g(k), which behaves according to the PDF p(g;H0) under the hypothesis H0, the
threshold γg, which obtains a given false alarm probability, follows from

PFA =

∫

{g:LG(g)>γg}
p(g;H0)dg. (2.37)

Since the GLRT runs over only few peaks to obtain rapid detection, asymptotic
results for the distribution of g(k) are not applicable. Instead, the distribution
p(g;H0) can be reliably estimated from data. A plot of the histogram of the test
statistics g(k) is shown in Fig. 2.6 together with the estimated Weibull distribution.
The data used are recordings from a container vessel during 9 h of navigation
through an Atlantic storm.
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Having obtained the parameters υ0g and β0g of the Weibull distribution for
g(k) under H0, W (g(k);H0), the threshold for a desired false alarm probability
is obtained from

1−PFA = 1− exp

(

−
(

γg

υ0g

)β0g
)

(2.38)

or

γg = υ0g (− lnPFA)
1

β0g . (2.39)

For the hypothesis H0 shown in Fig. 2.6 the Weibull fit is characterized by υ0 =
0.70± 0.04 and β0 = 0.99± 0.04; hence to obtain a probability of false alarms
PFA = 0.0001, the threshold must be set to γg = 5.0.

2.3.2.4 Robustness Against Forced Roll

For a real ship sailing in oblique short-crested seaways some forced roll with
frequency equal to the encounter frequency will always occur. This does not obscure
the proposed detection schemes since both the spectral correlation coefficient and
the GLRT for nonGaussian processes are insensitive to forced roll.

Consider pitch and roll as narrow-band signals:

θ (t) s.t. Θ(ω) = 0 for |ω −ωθ | ≥ Ωθ ,

φ(t) s.t. Φ(ω) = 0 for |ω −ωφ | ≥ Ωφ ,

where Θ(ω) and Φ(ω) are the spectra of pitch and roll centered at the center
frequency ωθ and ωφ respectively. The bands of the spectra are given by Bθ =
{ω s.t. |ω −ωθ | < Ωθ} and Bφ = {ω s.t. |ω −ωφ | < Ωφ}, where Wθ = 2Ωθ and
Wφ = 2Ωφ are the bandwidths.

If ωθ = ωe = 2ωφ , as in parametric resonance, then Bθ = {ω s.t. |ω − 2ωφ | <
Ωθ}, hence the spectrum of the square of the roll angle overlaps in large part or
completely the pitch spectrum. With pitch and the roll signals:

θ (t) = θ0(t)cos(2ωφ t +ψθ (t)) (2.40)

φ(t) = φ0(t)cos(ωφ t +ψφ (t)) (2.41)
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the spectra of pitch and of the square of roll are

Θ(ω) =
1
2

[
Θi(ω − 2ωφ )+Θi(ω + 2ωφ)

−Θq(ω − 2ωφ)−Θq(ω + 2ωφ )
]

(2.42)

Φ2(ω) =
1
2

[
Φ0(ω)+Φi(ω − 2ωφ )+Φi(ω + 2ωφ)

−Φq(ω − 2ωφ)−Φq(ω + 2ωφ )
]
. (2.43)

Here Θi = F (θ0(t)cos(ψθ (t))), and Θq = F (θ0(t)sin(ψθ (t))) are the Fourier
transforms of the in-phase and quadrature components of the pitch angle; whereas
Φ0 = F (φ2

0 (t)), Φi = F (φ2
0 (t)cos(2ψφ (t))), and Φq = F (φ2

0 (t)sin(2ψφ (t))) are
the Fourier transform of the DC, in-phase and quadrature components of the second
power of roll. Therefore, by applying the cross-correlation theorem to the signals at
hand,

Pφ 2θ =
1
4

[
ΦiΘi(ω − 2ωφ)+ΦiΘi(ω + 2ωφ)+ΦqΘq(ω − 2ωφ )

+ΦqΘq(ω + 2ωφ )−ΦiΘq(ω − 2ωφ)−ΦiΘq(ω + 2ωφ)

−ΦqΘi(ω − 2ωφ)−ΦqΘi(ω + 2ωφ )
]
. (2.44)

The cross-spectrum is different from zero since φ2(t) and θ (t) are centered at the
same frequency; hence the spectral correlation coefficient is different from zero and
it can be used for detecting parametric roll.

Consider now a ship sailing in near head seas condition. The lateral component
of wave force excites roll motion directly, hence pitch and roll both respond at the
same frequency (ωφ = ωθ = ωe). The cross-spectrum in this case is equal to zero,

Pφ 2θ =
1
4

[
Θi(ω −ωe)+Θi(ω +ωe)−Θq(ω −ωe)−Θq(ω +ωe)

]

× [Φ0(ω)+Φi(ω − 2ωe)+Φi(ω + 2ωe)

−Φq(ω − 2ωe)−Φq(ω + 2ωe)
]
= 0, (2.45)

since the spectra are different from zero only around ω = ωe or ω = 2ωe. Therefore
the spectral correlation coefficient is zero, showing that the proposed detection
method is insensitive to forced roll.

The GLRT for the Weibull distribution of the local minima z(k) is also proven to
be insensitive to forced roll. Consider pitch and roll as sinusoidal signals:

θ (t) = θ0 cos(ωθ t + ς) (2.46)

φ(t) = φ0 cos(ωφ t). (2.47)
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In forced roll condition, roll and pitch are sinusoids of the same frequency (ωθ =
ωφ = ω), which yields the following driving signal:

d(t) = φ2(t)θ (t)

= φ2
0 θ0 cos2 (ωt)cos(ωt + ς) . (2.48)

According to (2.25) we have that

z(k) = α(ς)φ2
0 θ0 ≤ φ2

0 θ0, 0 < α(ς) ≤ 1, (2.49)

where α(ς) is the amplitude reduction factor due to the phase shift between the two
wave forms.

To prove that the GLRT detector is not sensitive to forced roll, we need to
demonstrate that there exists a constant Γ such that for any γ > Γ the detector does
not trigger an alarm. In general Γ is function of the phase shift ς and of the time
interval ΔT over which the estimates of the scaling and shape factors are performed.
In particular the time interval ΔT determines how many local minima are taken into
account for the detection.

To find Γ we need to prove that

(β1 −β0)
N

∑
k=1

logz(k)− 1

υβ1
1

N

∑
k=1

z(k)β1 +
1

υβ0
0

N

∑
k=1

z(k)β0 (2.50)

is upper bounded. For any ΔT ∈ [0 , T ], where T = 2π/ω is the natural roll period,
the GLRT detector is not sensitive to forced roll if the threshold γ is set larger than

Γ � Nmax(β1 −β0) log(φ2
0 θ0)− Nmax

υβ1
1

(φ2
0 θ0)

β1 +
Nmax

υβ0
0

(φ2
0 θ0)

β0 , (2.51)

where Nmax is the maximum number of local minima, which fall within one roll
period.

2.4 Detection System Robustification

The proposed detection schemes rely on assumptions, which in general may not
be completely fulfilled during real navigation operations. The spectral correlation
performs best when the signals at hand have a narrow band power spectrum because
in that case the Fourier transform of the convolution between the second power of
roll with pitch will be zero most of time except when parametric roll is developing.
However, in real sailing conditions the wave spectrum exciting the ship motions can
be rather large, and it induces ship responses whose frequency content spans over
a wide range of frequencies as well. Figure 2.7 compares the power spectra of time
series recorded during an experiment in a towing tank, and during a container vessel
voyage through an Atlantic storm.
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Fig. 2.7 Comparison of power spectra for model basin and Atlantic storm

During real navigation, the roll and pitch motions have an energy content
different from zero over a wide range of frequencies, and this will contribute to
determine a nonzero spectral correlation also in these regions of frequencies where
parametric roll is not likely. Consequently robustification of the spectral correlation
is needed.

This is obtained by bandpass filters that narrow in the roll and pitch signals
frequency ranges of interest. The pass-bands regions are centered about ωφ and
ωe = 2ωφ , to focus on frequency ranges where parametric roll resonance can
develop. The spectral correlation hence takes the form

fSφ 2θ =

fσ2
φ 2θ

√
σ2

φ 2σ2
θ

, (2.52)

where the superscript f addresses that the computation involves the filtered signals.
The normalization factor in (2.52) is still calculated from the raw roll and pitch
signals.

For the phase condition (GLRT) detector, a time-varying scaling factor λ (t) is
applied to the driving signal in (2.24) to adapt to weather conditions. Furthermore,
the H0 parameters are estimated on-line. These together served to obtain desired
false alarm rates and make the GLRT detector insensitive to changes in sea state.
Assume that we are at time t = T and the GLRT is fed with data logged within
the window [T −M + 1,T ]. The scaling factor λ is computed taking into account
all the data from the time window [T − n ∗M+ 1,T −M], where n ∈ N is a design
parameter.
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Utilizing the W -GLRT detector we should assume that the Weibull PDFs for the
nonresonant and resonant case differ both for the shape β and scale υ parameters.
In Sect. 2.3.2.2 it was shown that the MLE of the shape parameter is found as a
solution of a nonlinear equation, which in practice must be solved at each iteration
of the algorithm. However, data show that the shape factor remains approximately
unchanged, hence, β0 = β1 = β . Therefore, the W -GLRT detector only looks for
variations in the scale parameter υ .

Finally, it is important to point out how the thresholds were chosen. For the cross-
correlation, the spectral correlation coefficient fSφ2θ varies between zero and one,
hence the threshold S̄ can be set to any value higher than 0.4 according to how
conservative the detector should be.

For the GLRT-based detector it was shown that an empirical threshold can be
computed based on the estimated H0 distribution of the test quantity g(k).

2.5 Detection Scheme Validation

This section presents the validation of the detection schemes on both model scale
and full scale data sets. After introducing the data sets, the performance of the
Weibull GLRT detector is evaluated in both scenarios. Next, the overall robust
performance of the monitoring system given by the integration of the spectral
correlation detector with the W -GLRT detector is tested. For the performance
assessment of the spectral correlation detector the reader may refer to [14].

2.5.1 Experimental and Full Scale Data Sets

To assess the performance of the proposed detection schemes for parametric roll
the detectors have been validated against two data sets. The first data set consists
of eight experiments run in irregular waves scenario.2 The vessel used for the
experiments was a 1:45 scale model of a container ship with length overall of 294 m.
The principal dimensions and hydrodynamic coefficients can be found in [18]. The
time-history of roll is shown in Fig. 2.9 (top plot). Although the vessel experienced
parametric roll only once, all the experiments were made to trigger the resonant
phenomenon, but in the irregular wave scenario it is somewhat difficult to obtain a
fully developed parametric roll resonance, because consecutive wave trains may not
fulfill all conditions for its development.

2The terminology irregular wave scenario means that the wave motion used to excite the vessel is
generated by the interference of multiple sinusoidal waves centered at different frequencies, and it
is described by a given power spectrum. This terminology is used in opposition to the regular wave
scenario where instead the vessel is excited by a single sinusoidal wave.
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Fig. 2.8 The evolution of the pitch power spectrum provides an idea of the frequency content of
the wave spectrum during the navigation

The second data set is full scale data recorded on board Clara Maersk, a
33000 dwt container ship crossing the North Atlantic. Nine hours of navigation were
analyzed. Conditions were significant wave height judged by navigators to develop
from 5–6 m to 7–10 m. Relative direction of waves were 150◦–170◦ where 180◦
is head sea. The pitch power spectrum shown in Fig. 2.8 provides an idea of the
broad frequency content of the wave spectrum exciting the container ship during the
storm.

For this data set it is essential to point out that there was no prior awareness about
the onset of parametric roll resonance; hence the assessment of detections and/or
false alarms was done by visual inspection of the time series around the alarm time.

The model test experimental data set is used to evaluate the capability of the
detectors to timely catch the onset of parametric roll; whereas the real navigation
data set is used to ensure the insensitivity to usual forced roll.

In order to simulate a continuous navigation the single records of the two data
set have been stitched together. A smoothing filter was applied around the stitching
points to avoid that sudden fictitious variations within the signals at hand could
trigger an alarm. Hence the roll time series scrutinized are those shown in Fig. 2.9.
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Fig. 2.9 Top: Roll motion time series recorded from experimental runs. Experiment 1195 is the
only one where parametric roll clearly developed. Bottom: Roll motion time series recorded during
navigation across the North Atlantic Ocean

2.5.2 Validation of Weibull GLRT Detector

Figures 2.10 and 2.11 show the results of the Weibull GLRT detector after
processing the model and full scale data sets.

On the experimental data set the Weibull GLRT detector performs well.
Figure 2.10 illustrates that the parametric roll event that occurs between t = 70 min
and t = 90 min is timely detected when the roll angle is about 3◦. The lost of phase
synchronization is also detected by the Weibull GLRT, which withdraws the alarm at
t = 90 min when the roll motion decays and it seems that the parametric resonance
is over. However, a new alarm is suddenly raised when the resonant oscillations take
place again.

On the sea trial data set the Weibull GLRT detector raises five alarms, which
all last for exactly one window length M, as shown in Fig. 2.11. Since no prior
awareness about the presence/absence of parametric roll events was available for
this data set, the alarms have been classified by visual inspection and it was
concluded that all five cases are likely to be false alarms.

It is not surprising that a single detector cannot provide full information about
the resonance condition since both the phase synchronization and the frequency
coupling must be satisfied simultaneously. Robust detection performance therefore
needs simultaneous detection of the presence of both conditions.
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Fig. 2.12 Performance of the monitoring system on the model basin experimental data set

2.5.3 Robust Performance

The spectral correlation detector and the Weibull GLRT detector have shown fairly
good performance providing a timely detection but they both give false alarms.
To obtain the full picture, the two detectors are combined within a monitoring
system, which issues alarms of parametric roll occurrence based upon the tests
made by both detectors together. Furthermore, robustness is obtained by making the
adaptation to prevailing conditions only when none of the thresholds are exceeded.
This means the H0 statistics and the normalization of the spectral correlation in
practice are calculated from data that are older than the data windows used – a few
roll periods – and with appropriate forgetting to be able to track changes in weather.
The performance of the monitoring system with robustified algorithms is shown in
Fig. 2.12 for the model basin experimental data set, and in Fig. 2.13 for the real
navigation data. The general quality of detection performance is apparent.

The performance improvement of the Weibull GLRT detector when combined
with the spectral correlation detector is shown in Fig. 2.13. The reduction of false
alarms is determined by the fact that in this case the update of the scaling factor λ (t)
is related to the alarms raised by the monitoring system and not to those issued by
the Weibull GLRT detector alone.
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Fig. 2.13 Performance of the monitoring system on navigation data from Clara Maersk

2.5.4 Discussion

While the results have shown very convincing from model tank testing where
parametric resonance was present and Atlantic passage in a storm, where it was
believed, but not known with certainty that no parametric resonance was present,
an independent test with full-scale data would be needed for final proof of the
concepts and algorithms presented in this chapter. Such data have recently been
made available from trials where also wave radar data were logged. The results
with these data were convincing but this validation is outside the scope and space
allocated to this chapter. The monitoring system methodology and implementation
are patent pending [11], and is expected to find its way to the Seven Seas under the
trade mark PAROLL�.

2.6 Conclusions

Detection methods were investigated for the diagnosis of parametric roll resonance
and were validated against data from model basin tests and from a full-scale Atlantic
crossing with a container vessel.

In the spectral domain, spectral analysis provided an indicator for energy flowing
from the pitch motion, directly excited by the waves, into roll motion causing
resonance. In the time domain, a Weibull GLRT detector monitored the behavior
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of a driving signal carrying information about the phase correlation between the
square of the roll angle and the pitch angle. Robustness against usual forced roll
motion was shown for both detectors.

The detectors showed to be very capable of timely detecting the onset of
parametric roll, while achieving a very low false alarm rate. A necessary part of
achieving excellent overall detection performance was obtained by combining the
hypotheses from the two detectors.
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Estimation of Parametric Roll in Random
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Nomenclature

Ai j Added mass/moment of inertia in the ith direction due to the jth motion
( j = 3: heave, j = 4: roll and j = 5: pitch)

Bi j Damping coefficient in the ith direction due to the jth motion
FDF

i Diffraction force in the ith direction
FFK+B

i Froude–Krylov force and buoyancy in the ith direction
Fn Froude number
H Wave height
Ixx Moment of inertia in roll
m Ship mass
N Roll damping coefficient
φ Roll angle
φa Roll amplitude
λ Wave length
θ Pitch angle
ωe Encounter frequency
ζ Heave displacement
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3.1 Introduction

Parametric rolling is a dangerous phenomenon for safety of cargo onboard. In
regular waves, it can be evaluated with model experiments or numerical simulation
in the time domain within practical accuracy [1–9]. However, this does not simply
result in the ability to predict parametric roll in irregular waves because of its
practical nonergodicity. Belenky et al. [10], using numerical simulation in the time
domain, points out that the roll motion of a parametric rolling ship in irregular
waves is nonergodic and it does not have a normal distribution. Bulian et al. [11],
discusses the evaluation of parametric rolling in random waves, in the light of model
experiments. These studies are executed with container ships, which are vulnerable
to parametric rolling because of their exaggerated flare and transom stern [12]. In
the year of 2003, however, a car carrier also suffered parametric rolling, of which the
amplitude was 50◦ or over in the North Atlantic [13]. Using the measured data of the
car carrier, a numerical study was published with the conclusion that parametric roll
could not occur in its numerical experiment if the ocean waves are fully irregular
[14]. A reasonably good agreement between physical and numerical experiments
with a car carrier in irregular waves [15] was reported but further consideration as a
random event is required.

ITTC [16] has published the “Recommended Procedure on Model Tests on Intact
Stability”. It states that, due to the possibility of nonergodicity in parametric rolling,
several realizations of shorter durations are more desirable than one realization of
long duration. However, a quantitative guidance of number and length of realizations
have not been provided yet. This chapter attempts to develop a guideline for physical
and/or numerical experiments in irregular waves based on the data of a car carrier.
To avoid the difficulty due to practical nonergodicity, more sophisticated approaches
for focusing wave groups [17,18] or the worst wave scenario [19] are also proposed.
Even so, to validate them it is essential to establish a guideline of direct experiments
as mentioned above. Furthermore, physical and numerical experiments are executed
for a container ship and the comparisons of these results are used to explain the
applicability of the guidelines proposed in this chapter.

3.2 Model Experiment

The authors conducted model experiments with a car carrier; see Table 3.1 and
Fig. 3.1. This is a typical car carrier nowadays and it is roughly similar to the ship
suffering parametric rolling in the North Atlantic as reported by [13]. Its exaggerated
bow flare and distinct transom stern are causing the parametric rolling.

The model was moored with elastic ropes at the bow point for realizing a head
wave condition at a point located 40 m away from the wave maker. The surge, sway,
and yaw motions were softly restrained and the roll, pitch, and yaw motions were
measured by a gyroscope.



3 Estimation of Parametric Roll in Random Seaways 47

Table 3.1 Principal
particulars of the car carrier

Items Ship Model

Length between perpendiculars: Lpp 192.0 m 3.0 m
Breadth: B 32.26 m 0.506 m
Depth: D 37.0 m 0.578 m
Mean draught: d 8.18 m 0.128 m
Displacement: W 27,908 ton 103.95 kg
Block coefficient: Cb 0.537 0.537
Metacentric height: GM 1.25 m 0.020 m
Natural roll period: Tϕ 22.0 s 2.75 s
Pitch radius of gyration: κyy/Lpp 0.25 0.25

CL

Fig. 3.1 Body plan of the car
carrier

Table 3.2 Experimental conditions for the car carrier

Significant wave height (H1/3 [m]) Mean wave period (T01 [s])

Ship scale Model scale Ship scale Model scale Number of trials
Case A 5.31 0.0830 9.76 1.22 30
Case B 2.655 0.0415 9.76 1.22 25

Long-crested irregular waves were generated using the ITTC spectrum and their
conditions are shown in Table 3.2. Case A corresponds to the severe parametric
rolling condition that the car carrier faced in 2003 [13]. The model experiment was
conducted with more than 25 different realization and each time its duration was
more than 750 s.

Prior to these systematic experiments, some trials were executed with different
significant wave heights using only four realizations for each wave height. As shown
in Fig. 3.2, a threshold for parametric rolling exists near the significant wave height
of 2.66 m for this mean wave period. Thus Case B is chosen to be close to the
threshold for parametric rolling in random waves.
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Fig. 3.2 Dependence of significant wave height on maximum roll angle

3.3 Evaluation Methodology for Parametric Rolling

It is difficult to evaluate parametric rolling in irregular waves due to its practical
nonergodicity. This means that the temporal average of one long realization is not
equal to the ensemble average of many different realizations.

Therefore, the standard deviations of each realization is used. First, the ensemble
average of the standard deviation of the random process, Xi(t), is defined as follows:

σ2
erg :=

∑N
i=1 ∑n

j=1
(Xi(t j)−X̄i)

2

n−1

N
, (3.1)

where n is the sample point number of each realization, N is the number of
realizations and X̄i is the mean of each realization. Second, the running standard
deviation (running STD) is defined as a function of time as follows:

σ2(t) :=
∑ns

j=1 (Xj(t j)− X̄(t))2

n− 1
, (3.2)

where ns is the sample point number of each realization up to the specified time, t
and X̄(t) is the mean of each realization up to t. In the calculations, records during
the first 180 s are excluded as transient states [11].
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3.4 Experimental Results

The results of pitch motion and wave elevation in Case A are shown in Figs. 3.3 and
3.4, respectively. Since the running STDs tend to converge to the ensemble averages
of the standard deviations, it is suggested that the wave elevation and pitch motion in
irregular waves can be regarded as ergodic process within practical accuracy, that is,
3% or less. This assumption is well established in conventional seakeeping studies.

In contrast, the running STDs of the roll motions in irregular waves as shown
in Figs. 3.5 and 3.6, do not converge to the ensemble averages of the standard
deviations. In Case A the dispersion is approximately 20% and in Case B more
than 40%. This is because the condition of Case B is close to the threshold of
parametric rolling. In irregular waves, parametric roll occurs only when a ship
meets a wave group satisfying the condition of parametric rolling. Thus if the
condition is sufficiently above the threshold, parametric roll frequently occurs. As
a result, the dispersion of the standard deviation could be smaller as shown in
Case A. These results clearly indicate that the temporal average is different from
the ensemble average within long but limited time duration of the experiments,
while the ergodicity itself should be discussed with the average of the infinite time
duration. Consequently, it can be concluded that parametric roll in irregular waves
can be viewed as a “practically nonergodic” process [11].

Fig. 3.3 Running STD of wave elevation normalized with ensemble average in Case A. The dotted
line indicates the ensemble average of running STDs
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Fig. 3.4 Running STD of pitch motion normalized with ensemble average in Case A. The dotted
line indicates the ensemble average of running STDs

Fig. 3.5 Running STD of roll motion normalized with ensemble average in Case A. The dotted
line indicates the ensemble average of running STDs

3.5 Quantitative Guidelines from Model Experiments

To obtain quantitative guidelines from the experimental results, we attempt to
compare the set average of the realizations. The set average is defined as the
average of realizations randomly selected from the total set of experimental
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Fig. 3.6 Running STD of roll motion normalized with ensemble average in Case B. The dotted
line indicates the ensemble average of running STDs

Fig. 3.7 Four realizations set average of roll STD in Case A. The dotted line indicates the
ensemble average of running STDs

realizations. The numbers of selected realizations are chosen as follows: 4, 8, 12,
and 16. The results for Case A are shown in Figs. 3.7–3.10 and for Case B in
Figs. 3.11–3.14.

When the realization number for the set average increases, the fluctuation
decreases in Case A. Here the 12-realization set average shows only 5% errors at the
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Fig. 3.8 Eight realizations set average of roll STD in Case A. The dotted line indicates the
ensemble average of running STDs

Fig. 3.9 Twelve realizations set average of STD in Case A. The dotted line indicates the ensemble
average of running STDs

point of 500 s. This is comparable to the error of the pitch motion and wave elevation
so this will be a permissible range. The estimation error of parametric rolling could
be approximately 5% of the real value. Therefore, for this case it is recommended to
use more than 12-realizations and each realization should be more than 500 s, which
corresponds to 180 cycles of the natural roll period.
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Fig. 3.10 Sixteen realizations set average of roll STD in Case A. The dotted line indicates the
ensemble average of running STDs

Fig. 3.11 Four realizations set average of roll STD in Case B. The dotted line indicates the
ensemble average of running STDs

In Case B, it has more than 20% error at the same point of Case A. The error
does not depend much on the number of set averages and time of realization. This
is due to the fact that the condition of Case B is close to the threshold of parametric
rolling for the car carrier. Comparing 12- and 16-realizations set averages in Case B,
no remarkable difference exists. Therefore, it should be noted that such dispersion
cannot be avoided for evaluation of parametric roll in irregular waves under the
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Fig. 3.12 Eight realizations set average of roll STD in Case B. The dotted line indicates the
ensemble average of running STDs

Fig. 3.13 Twelve realization set average of roll STD in Case B. The dotted line indicates the
ensemble average of running STDs

condition close to the threshold. It is noteworthy that this guideline is obtained
with this particular car carrier and only for these particular wave conditions. Thus
further experiments with different ships and waves are required. Nevertheless, the
guideline specification as well as the methodology used seems to be a base for
further investigation using more comprehensive experimental data sets.
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Fig. 3.14 Sixteen realizations set average of roll STD in Case B. The dotted line indicates the
ensemble average of running STDs

3.6 Container Ship Case Study

To examine the applicability of the proposed guideline, physical and numerical
experiments in irregular waves were conducted for a C11 class post-Panamax
container ship modified by MARIN [20]. Its principal particulars and body plan
are given in Table 3.3 and Fig. 3.15, respectively.

The physical model experiments for a 1/100 scaled model of the container ship
in regular and irregular head waves were executed in a similar procedure for the
car carrier model. The authors also executed numerical simulation for this container
ship with a coupled heave–roll–pitch model given by [9]:

(m+A33(φ))ζ̈ +B33(φ)ζ̇ +A34(φ)φ̈ +B34(φ)φ̇ +A35(φ)θ̈ +B35(φ)θ̇

= FFK+B
3 (ξG/λ ,ζ ,φ ,θ )+FDF

3 (φ) (3.3)

(Ixx +A44(φ))φ̈ +N(φ̇)+A43(φ)ζ̈ +B43(φ)ζ̇ +A45(φ)θ̈ +B45(φ)θ̇

= FFK+B
4 (ξG/λ ,ζ ,φ ,θ )+FDF

4 (φ) (3.4)

(Iyy +A55(φ))θ̈ +B55(φ)θ̇ +A53(φ)ζ̈ +B53(φ)ζ̇ +A54(φ)φ̈ +B54(φ)φ̇

= FFK+B
5 (ξG/λ ,ζ ,φ ,θ )+FDF

5 (φ) (3.5)

In this model, the nonlinear Froude–Krylov forces are calculated by integrating
wave pressure up to the wave surface. Dynamic components, that is, radiation
and diffraction forces are calculated for an instantaneous submerged hull by
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Table 3.3 Principal
particulars of the modified
C11 container ship

Item Value

Length between perpendiculars: L 262.0 m
Breadth: B 40.0 m
Depth: D 24.45 m
Mean draught: T 11.5 m
Block coefficient: Cb 0.56
Metacentric height: GM 1.965 m
Natural roll period: Tφ 25.1 s

Fig. 3.15 Body plan of the
modified C11 container ship

Fig. 3.16 Comparison of parametric roll amplitude for the modified C11 class container ship in
regular waves between the physical and numerical experiments with the wave length to ship length
ratio of 1.0 [9]
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Fig. 3.17 Results of the maximum roll angle from the physical model experiments of the modified
C11 class container ship in irregular head waves with the significant wave height of 10.43 m, the
mean wave period of 9.99 s and the Froude number of 0.0. Here the dotted line indicates the mean
of the maximum roll angles
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Fig. 3.18 Results of the maximum roll angle from the numerical experiments of the modified C11
class container ship in irregular head waves with the significant wave height of 10.43 m, the mean
wave period of 9.99 s and the Froude number of 0.0. Here the dotted line indicates the mean of the
maximum roll angles

considering a time-dependent roll angle. Two-dimensional hydrodynamic forces
are calculated by solving the boundary integral equation for the velocity potential.
Diffraction forces are calculated by the Salvesen–Tuck–Faltinsen (STF) method
[21]. Hydrodynamic forces for vertical motion and diffraction modes are calculated
with the mean wave frequency while for the sway and roll modes the natural roll
frequency assuming parametric roll resonance are used. The roll damping moment
is estimated from decay tests using the physical ship model.

In case of regular waves, good agreements between the physical and numerical
experiments were already reported as shown in Fig. 3.16 by the authors [9]. Further-
more, the results shown in Figs. 3.17 and 3.18 show reasonably good agreements
in the maximum roll angles between the physical and numerical experiments in
irregular waves for several realizations. The duration of each realization is 500 s.
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It is noteworthy that good agreements exist not only in the mean of the maximum
roll angles but also for the dispersion of the roll angle. Thus it suggests that the
tentatively proposed guideline could be applicable to both physical and numerical
experiments.

3.7 Concluding Remarks

Model experiments of a car carrier were conducted with many realizations for long-
time duration in order to establish guideline specifications for model experiment
and numerical simulation of parametric rolling. It is confirmed that parametric
rolling in irregular waves has practical nonergodicity. In order to evaluate parametric
rolling, it is recommended to average many realizations. This chapter confirms that
about 12-realizations and more than 360 encounter wave cycles should be used in
the experiments. For cases close to the threshold for parametric rolling accurate
estimation is difficult. Numerical results for parametric roll estimation should be
sufficiently above the threshold when it is used in practical stability assessment.
Reasonable good agreements between the physical and numerical experiments
suggest that the above tentative guideline could be applicable to both physical and
numerical experiments.
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Chapter 4
Trimaran Vessels and Parametric Roll

Gabriele Bulian and Alberto Francescutto

4.1 Introduction

Multihull vessels are typically considered as a viable alternative to standard fast
monohulls in particular when high speed and large deck areas are required. Typical
extreme configurations can be considered as monohulls on one side and catamarans
on the other side. However, between these two extremes, it is possible to find
a category of ships, i.e., “ships with outriggers” [12], which are characterized
by a central, usually slender, monohull and typically two (for trimarans) or four
(for pentamarans) outriggers. In this paper we focus our attention to the case of
trimaran, i.e., multihull vessels with two outriggers and a central slender hull. The
pentamaran configuration can be considered along with the trimaran configuration,
at least for what concerns linear hydrodynamics, because the two additional
outriggers in pentamarans are typically outside water in calm water condition
[10]. The very slender central hull is typically characterized by a limited, or even
negative, initial stability and outriggers allow to compensate for this drawback by
providing additional static stability. From the point of view of transport efficiency,
trimaran/pentamaran vessels are potentially very competitive [14] especially when
passengers and/or volume-based cargoes are of concern [12]. From the point of view
of ship motions, favorable seakeeping characteristics of ships with outriggers have
also been observed in bow/head waves [10,12,15], making these types of configura-
tions potentially beneficial in terms of, e.g., passengers’ comfort. Thanks to the fact
that, with respect to a monohull, the positions, shapes, and dimensions of outriggers
represent additional design parameters, ships with outriggers provide more degrees
of freedom to the designer in the ship optimization procedure. This makes the design
of ships with outriggers an interesting and challenging topic, especially in view of
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the fact that the positions and shapes of the outriggers have direct consequences
on resistance, static/dynamic stability, seakeeping, and manoeuvring. The total ship
resistance can indeed be modified by changing the relative position between the
main hull and the outriggers as a consequence of the wave interference [2]. Also the
restoring moment of the ship in calm water is influenced by the positions and shapes
of the outriggers and this also has direct consequences on the nonlinear rolling
motion characteristics of ships with outriggers [6]. Of particular interest, from both
the design and research point of view, it is the possibly strongly nonlinear roll
behavior of ships with outriggers when the transversal separation of the outriggers
is not very large and when the draught of the outriggers is limited. In such cases,
indeed, the emergence of the outriggers at small heeling angles in calm water leads
to a significant change in the slope of the restoring moment at relative small heeling
[2, 6] and this leads also to a significant bending of the roll response curve in beam
waves [6]. Designs with outriggers having limited draught can also lead to issues in
longitudinal waves for what concerns parametric roll. Indeed, considering the case
of a ship with outriggers in longitudinal regular waves, the possible emergence of
outriggers as the wave crest moves along the ship can lead to significant variations
of the metacentric height with respect to the calm water value. A sufficiently large
variation of metacentric height with respect to the calm water value can eventually
lead to the inception of parametric roll if the appropriate conditions are met. It
would therefore be beneficial to design the outriggers with a sufficient draught
[11]. However, in order to reduce the overall ship resistance, the draught of the
outriggers, and hence their wetted surface, is often kept at minimum. This makes
certain ships with outriggers potentially prone to the inception of parametric roll and
this is exactly the topic covered by this paper for the particular case of a trimaran
vessels tested at the Hydrodynamic Laboratories of the University of Trieste.

Investigations carried out on trimaran vessels have shown that the fluctuation
of the metacentric height in longitudinal regular waves for this type of ships shows
considerable differences with respect to the case of standard monohulls. In particular
the position of the wave crest leading to the minimum of the metacentric height in
waves depends on the position of the outriggers, while in case of monohulls the
minimum of the metacentric height in waves is typically associated with a wave
crest close to amidships. In addition, the fluctuation of the metacentric height in case
of trimaran configurations contains a not negligible contribution from harmonics
higher than the first harmonic, particularly from the second harmonic, even at small
wave steepnesses [9], while in case of monohulls the fluctuation of the metacentric
height is governed by its first harmonic even for relatively large wave steepnesses
[4]. Due to the nonnegligible contribution from higher harmonics, particularly the
second harmonic, in the fluctuation of the metacentric height, the Mathieu equation
is no longer an appropriate model for checking the inception of parametric roll
especially in the second (or higher) parametric resonance regions. As a natural
extension it is therefore more appropriate to analyse the stability of the upright
position by means of a more general Hill equation-based model.
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The paper is structured as follows. Firstly, the nonlinear 1-DOF mathematical
model used for describing parametrically excited rolling motion in longitudinal
regular waves is presented, together with its corresponding linearized form, which is
necessary for the linear stability analysis of the upright position. In this context the
generic Floquet theory is described in view of its numerical implementation in this
study. Indeed, for taking into account the complex nonpurely-sinusoidal behavior
of the metacentric height in waves, the Floquet theory is applied numerically in
order to obtain information on the stability of the upright position in generic ranges
of model’s parameters. The ship used for numerical simulations and experimental
tests is then described. An example of computation of regions of instability of the
upright position (stability map) is reported highlighting the importance of taking
into account harmonics in the fluctuation of GM up to at least the second one.
The rolling amplitude in the nonlinear range is then addressed in order to show
some peculiar features of the parametrically excited roll response for the considered
trimaran vessel. In both cases relevant experimental data are also reported. Finally
an example of determination of optimum positioning of the outriggers is shown
where the target is the minimization of the variation of the metacentric height in
waves.

4.2 Description of the 1-DOF Mathematical Model for Roll
Motion in Longitudinal Regular Waves

The employed numerical model is a 1-DOF model for regular longitudinal waves
[8], where roll restoring in waves is calculated using a quasi-static approach for
heave and pitch. The model can be considered similar also when a dynamic
description is given for heave and pitch if the coupling of roll into vertical motions
is neglected. Smith effect is not considered and a purely hydrostatic pressure under
the nonflat sea surface is assumed for the computation of the roll restoring moment
in waves. This approximation is usually acceptable in case of long waves, where the
ship’s draught is small in comparison with the wave length. In case of shorter waves
this approximation could be no longer valid, and the actual pressure under the wave
should be considered. However, the same model can be applied also by calculating
the restoring moment using the actual pressure field under the wave. In the following
we assume that the ship, when upright in calm water, has positive metacentric
height (GM), i.e., we implicitly assume that φ = 0 is a stable equilibrium in calm
water. Moreover we assume that the ship speed is constant, i.e., we neglect the
surge motion. The nonlinear 1-DOF model for roll motion in longitudinal waves
is written as:

φ̈ + d
(
φ̇ ,V

)
+

Δ
J′xx

GZ(φ ,V,xc(t),λw,aw) = 0, (4.1)
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where

• φ [rad] is the roll angle
• V [m/s] is the ship speed
• d

(
φ̇ ,V

)
[rad/s2] is the damping function, explicitly considering a dependence on

forward speed.
• Δ [N] is the ship displacement (assumed constant according to the quasi static

assumption for heave)
• J′xx [kg ·m2] is the roll moment of inertia comprising the effect of added inertia
• GZ(φ ,V,xc(t),λw,aw) [m] is the roll righting lever depending on

– roll angle φ
– ship speed V
– instantaneous wave crest position xc(t) [m] along the ship
– wave length λw [m]
– wave amplitude aw [m]

In the mathematical model (4.1) a speed dependence is considered on both the
damping term and the restoring. Taking into account speed effects on damping is a
quite standard and necessary procedure in order to reflect in particular the additional
linear damping due to lift effects, but also the often observed reduction of nonlinear
damping terms at forward speed [17]. However, forward speed lift effects also affect
the ship restoring [27] and this effect is seldom considered. A complete description
of the dependence of restoring on speed, heeling angle, and wave characteristics
position is a quite complex problem which requires an extensive experimental
or numerical investigation. Here we introduce lift effects in the model (4.1) in
a simplified way on the basis of a superposition assumption. The forward speed
righting lever is assumed to be decomposed as follows:

GZ(φ ,V,xc(t),λw,aw) = GZzs (φ ,xc(t),λw,aw)+ δGZ(φ ,V )

GZzs (φ ,xc(t),λw,aw) = GZ(φ ,V = 0,xc(t),λw,aw) , (4.2)

where GZzs (φ ,xc(t),λw,aw) is the righting lever in waves at zero speed, while
δGZ(φ ,V ) is the forward speed contribution which, for simplification, is assumed
to depend only on the ship speed and not on the wave characteristics. It is therefore
worth underlining that the assumed simplified modeling neglects the direct effect
of the wave on δGZ(φ ,V ). In our experiments we have not measured directly the
restoring moment at forward speed, but we have carried out roll decays at forward
speed. Therefore the forward speed contribution to the restoring has been further
simplified using a metacentric approximation as follows:

δGZ(φ ,V )≈ δGM(V )sin(φ) , (4.3)

where the variation of metacentric height δGM(V ) is assumed to be representative
of the speed dependent part of δGZ (φ ,V ). The indirect determination of the speed
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dependent part δGM(V ) of the metacentric height has been based on the analysis
of the roll natural frequency ω0 (V ) from roll decays at forward speed. Indeed, the
increase or decrease of the metacentric height at forward speed can be associated
with an increase or decrease, respectively, of the natural roll frequency with respect
to the calm water value. Accordingly, it is possible to indirectly determine δGM(V )
as follows:

δGM(V ) = GMzs

(
ω2

0 (V )

ω2
0,zs

− 1

)

ω0,zs = ω0(V = 0), (4.4)

where GMzs [m] and ω0,zs [rad/s] are the zero speed calm water metacentric height
and roll natural frequency respectively. It must be underlined that the relation (4.4)
implicitly assume that forward speed effect on the roll added inertia are negligible
with respect to forward speed lift effects on restoring. A quite standard explicit
modeling of the roll damping function d

(
φ̇ ,V

)
can be considered to be given by a

linear + quadratic + cubic model based on the roll velocity:

d
(
φ̇ ,V

)
= 2μ (V ) φ̇ +β (V ) φ̇

∣
∣φ̇
∣
∣+ δ (V ) φ̇3, (4.5)

where the coefficients of the damping function, considered to be possibly dependent
on the ship speed V , are as follows:

• μ (V ) [1/s] is the linear roll damping coefficient;
• β (V ) [1/rad] is the quadratic roll damping coefficient;

• δ (V )
[
s/rad2

]
is the cubic roll damping coefficient;

Using a damping modeling as in (4.5), the model (4.1) can be rewritten as:

φ̈ + 2μ (V ) φ̇ +β (V ) φ̇
∣
∣φ̇
∣
∣+ δ (V ) φ̇3

+ω2
0,zs

GZzs (φ ,xc(t),λw,aw)+ δGM(V ) sin(φ)
GMzs

= 0. (4.6)

The model (4.6) is a nonlinear one which is therefore suitable for direct time-domain
simulations of roll motion in the nonlinear range. However, one of the important
parts of parametric roll assessment, and often the initial part of the assessment
procedure, is the determination of the regions of parameters where the upright
position φ = 0 becomes unstable under the parametric excitation induced by the
considered longitudinal wave(s). To this end it is necessary to use the linearization
of the model (4.6) close to φ = 0, which is:

φ̈ + 2μ (V ) φ̇ +ω2
0,zs

GMzs (xc(t),λw,aw)+ δGM(V )

GMzs
φ = 0, (4.7)
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where

GMzs (xc(t),λw,aw) =
∂GZzs (φ ,xc(t),λw,aw)

∂φ

∣
∣
∣
∣
(φ=0,xc(t),λw,aw)

. (4.8)

It is also worth noticing that, according to the models (4.6) and (4.7), and
considering a constant forward speed, it is possible to define a reference average
roll natural frequency at forward speed ω0 (V,λw,aw) for a given wave length λw

and wave amplitude aw as follows:

ω0 (V,λw,aw) = ω0,zs

√〈
GMzs (λw,aw)

〉
+ δGM(V )

GMzs
, (4.9)

where
〈
GMzs (λw,aw)

〉
=

1
λw

∫ λw

0
GMzs (xc,λw,aw)dxc. (4.10)

Such reference average natural roll frequency is the roll frequency which governs
the tuning between the ship and the waves for the inception of parametric roll. The
special case of aw = 0 corresponds to the calm water case. In this condition, in
accordance with (4.4), the calm water natural roll frequency ω0 (V ) at forward speed
becomes:

〈
GMzs (λw,aw = 0)

〉
= GMzs ⇒ ω0 (V ) = ω0,zs

√

1+
δGM(V )

GMzs
. (4.11)

In general, the average zero speed metacentric height in waves
〈
GMzs (λw,aw)

〉

is different from the calm water zero speed metacentric height GMzs. It therefore
follows that the ratio between the reference natural roll frequency in waves
ω0 (V,λw,aw) and the encounter wave frequency (the so called tuning ratio) is not
only a function of the speed, but it also depends on the wave length and wave
amplitude. Since the inception of parametric roll is strongly influenced by the tuning
ratio, it follows that, for a given wave length λw, the “most dangerous” ship speeds
can significantly depend on the wave amplitude aw, in particular when ω0 (V,λw,aw)
is strongly dependent on aw.

For a given ship in given loading condition one of the interests is usually the
determination of the set of parameters (λw,aw,V ) for which φ = 0 is unstable. The
linear model (4.7) represents the basis for determining such set of parameters. It is
important to note that the model (4.7) contains speed effects both in damping and
in restoring, although with some approximations. Moreover the fluctuation of the
metacentric height is, in general, nonlinearly dependent on the wave amplitude aw

for a given wave length λw. In addition, the time varying part GMzs (xc(t),λw,aw) of
the linearized restoring term is, in general, and in particular in case of trimaran ves-
sels, a nonpurely-sinusoidal function of the time t (or, equivalently, of the wave crest
position xc(t)) [3, 4]. Instead, the Fourier decomposition of GMzs (xc(t),λw,aw)
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contains, in general, and in particular for trimaran vessels, significant contributions
from higher harmonics and particularly from the second harmonic component [9]. If
GMzs (xc(t),λw,aw) has, for a given wave length λw and a given wave amplitude aw,
a significant harmonic content, the widely used approach based on a Mathieu-like
approximation of the model (4.7) (e.g., [1, 7]) becomes unsuitable.

Considering a generic Fourier expansion of the restoring term, the model (4.7)
can be assimilated to a generic Hill equation [16] with damping. Such model can
show more complex and/or extended instability regions for the solution φ = 0 with
respect to its single harmonic, i.e. Mathieu-like, approximation. In order to handle
this increased complexity and in order to address all the parametric resonance region
the linear stability analysis of φ = 0 is therefore carried out by exploiting the generic
results from Floquet theory.

4.3 Floquet Theory and Its Direct Numerical Application

Floquet theory provides a criterion for determining whether the equilibrium solution
of a linear system of first-order differential equations with periodic coefficients is
unstable or not. Mathematical details of Floquet theory can be found in literature
[16,18,19,22,23]. The intention of this section is to provide the essence of the ideas
behind the numerical application of the Floquet theory as used in this paper.

As starting point we use the following generic linear first-order dynamic model
in R

N with periodic matrix of coefficients P(t) with period TP:

{
u̇ = P(t)u

P(t +TP) = P(t),
(4.12)

where u ∈ R
N×1 and P ∈ R

N×N . The vector u(t) is the state vector of the system
under analysis. Since the system (4.12) is linear and homogeneous the origin of the
state space is a solution, i.e., u(t) ≡ 0 is always a solution of (4.12). The problem
is to determine when such solution is stable and when it is unstable. It is worth
highlighting already here that the linearized roll motion equation (4.7) can be put
in the form (4.12) by using u =

(
φ , φ̇

)T
, where the superscript T represents the

transpose operator.
In non-degenerate cases it is possible to construct for (4.12) a set of N

independent fundamental solutions. Any other solution of (4.12) can be obtained
by means of linear combination of the fundamental set of solutions. Although the
way of determining the fundamental set of independent solutions is not unique, a
choice for the generic jth fundamental solution s j(t) with j = 1, . . .,N could be:

⎧
⎨

⎩

ṡ j = P(t)s j
(
s j(t = 0)

)

k = 1 for k = j
(
s j(t = 0)

)

k = 0 for k �= j.
(4.13)
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When the fundamental set of solutions s j(t) according to (4.13) is known, it is
possible to create an N ×N matrix ΣΣΣ (t) which contains, in the generic jth column,
the fundamental solution s j(t). Accordingly, ΣΣΣ(t) can be considered as solution of
the following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Σ̇ΣΣ = P(t)ΣΣΣ
P(t +TP) = P(t)

ΣΣΣ(t = 0) = IN

ΣΣΣ(t) ∈R
N×N ; P ∈R

N×N ,

(4.14)

where IN is the N ×N identity matrix. When the matrix ΣΣΣ (t) is known it is possible
to determine the generic solution of (4.12) for a given set of initial conditions
u0 = u(t = 0) simply as follows:

u(t) =ΣΣΣ(t)u0 ∀t ≥ 0. (4.15)

Thanks to the linearity of (4.12) and the TP-periodicity of P(t) it follows that, for
any generic t ≥ 0, the following relation holds:

u(t +TP) =ΣΣΣ(t +TP)u0 =ΣΣΣ(t)u(TP) = ΣΣΣ (t)ΣΣΣ(TP)u0. (4.16)

The matrix ΣΣΣ(TP) is called the monodromy matrix and it is the key element for the
determination of the stability properties of the solution u(t)≡ 0. For the analysis of
the stability of the system what is indeed sufficient to know is the behavior of the
sequence u(t = nTP) as n → +∞ with n ∈ N. Indeed, according to (4.16) we have
that:

u(t = nTP) = [ΣΣΣ(TP)]
n u0. (4.17)

The relation (4.17) allows to know the state vector u after a generic number n
of characteristic periods TP if the state vector is known at t = 0. The original
continuous time problem (4.12) is transformed by (4.17) into a discrete time
problem by means of a Poincaré mapping. From the geometrical point of view the
discrete-time problem (4.17) can basically be considered as a linear mapping
R

N → R
N with parameter n. The question now is how the mapping (4.17) can be

used to decide on the stability of u = 0. Basically the idea is that if some vector u0

exists such that at least one component of u(nTP) grows indefinitely as n → ∞, then
the solution u(t) ≡ 0 is unstable. To obtain information on the behavior of u(nTP)
for n → ∞ it is sufficient to look at the eigenvalues λ j of the monodromy matrix
ΣΣΣ (TP). Such eigenvalues are called the Floquet multipliers and are related to the
Floquet characteristic exponents σ j by the relation:

λ j = eσ jTP ⇔ σ j =
ln(λ j)

TP
. (4.18)
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The Floquet multiplier λ j, as well as the Floquet exponents σ j, can be (and usually
are) complex numbers. The solution u(t) ≡ 0 is unstable when at least one Floquet
multipliers has modulus larger than one, i.e.,

∃ j :
∣
∣λ j
∣
∣> 1 ⇒ u(t)≡ 0 is unstable. (4.19)

If the monodromy matrix ΣΣΣ (TP) is known it is then possible to decide upon
the stability or instability of the system by simply checking the modulus of the
eigenvalues of ΣΣΣ(TP).

Unfortunately closed form analytical expressions for the monodromy matrix can
hardly be found in general, apart from simple cases. On the other hand the problem
can always be approached from a direct numerical point of view [26] by determining
from numerical integration the set of fundamental solutions according to (4.13) for
one characteristic period TP, i.e., for t ∈ [0,TP]. From the knowledge of s j(t = TP)
for j = 1, . . .,N it is possible to construct the monodromy matrix ΣΣΣ(TP) from which
an analysis of the eigenvalues can be performed to decide upon the stability of the
solution u(t)≡ 0.

As anticipated, the linearized equation of motion (4.7) can be recast in the form
(4.12) by using the standard transformation u =

(
φ , φ̇

)T
. In case of parametric roll

the characteristic period of the matrix of coefficients P(t) is equal to the ship-wave
encounter period Te (in our modeling the ship speed V is constant), i.e., Tp = Te. The
linear equation (4.7) is then numerically integrated for t ∈ [0,Te] using two different

initial conditions, namely, u1
0 =

(
φ = 1, φ̇ = 0

)T
and u2

0 =
(
φ = 0, φ̇ = 1

)T
. From

the knowledge of u j (Te) =
(
φ j (Te) , φ̇ j (Te)

)T
j = 1,2, i.e., from the knowledge

of s1 and s2, see (4.13), the 2× 2 monodromy matrix ΣΣΣ (Te) can be created and a
calculation of eigenvalues allows to apply the criterion (4.19). The same method
can be easily introduced in more complex analytical models as, e.g., 3-DOF models
coupling dynamically heave, roll and pitch [20, 21].

The method based on the direct determination of the monodromy matrix is of
quite straightforward application and, by using only N time domain numerical
integrations in a short time window [0,TP], it allows to obtain a formally correct
stability check, although this check can be sometime influenced by the numerical
accuracy of the integration scheme.

It is important to stress two characteristics associated with the direct application
of the Floquet theory. First of all the stability check based on the eigenvalues of the
monodromy matrix allows to address all the parametric resonance regions using the
same approach/code. This means that we do not need to specify in advance whether
we are interested in the first, or second, or some other parametric resonance region
as it instead occurs when using approximate analytical expressions for the threshold
boundaries in different parametric resonance region [16]. In addition, the direct
determination and analysis of the monodromy matrix retains all the characteristics
of the periodic parameters. In particular the method retains all the harmonics in the
fluctuating restoring in (4.7), which is important in case of trimaran vessels and/or
large wave steepness for both mono and multihulls especially when the second, or
higher, parametric resonance regions are of concern.



72 G. Bulian and A. Francescutto

4.4 Example Calculations and Experiments in Longitudinal
Regular Waves

4.4.1 Ship Geometry and Forward Speed Effects on Linear
Damping and Restoring

A trimaran vessel has been used in the numerical calculations and a 1:50 scale model
has been used for experimental tests. An extended overview of the results from
the experimental campaign and simulations in longitudinal regular waves for this
ship has been given by [8], while results of experiments and simulations in beam
regular waves have been provided by [6]. Herein we will only report some sample
results from experiments and simulations in longitudinal regular waves by focussing
our discussion on the highlighting of the peculiar characteristics of the trimaran
behavior.

The trimaran geometry and the main ship data are shown in Fig. 4.1. The stagger
is defined as the distance, in longitudinal direction, between the aft end of the main
hull and the aft end of the outriggers. The clearance is defined as the distance,
in transversal direction, between the ship centerplane and the centerplane of each
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Fig. 4.1 Trimaran ship used for experiments and simulations
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Fig. 4.2 Dimensionless linear roll damping coefficient as a function of the ship speed

outrigger. It can be seen that the outriggers have a very shallow draught (of the
order of 0.7 m) which leads to their emergence at very small heeling (about 4◦) in
calm water. In addition, the outriggers can easily come (partially) out of water in
case the ship is on a wave, especially if the wave trough is close to the position of
the outriggers. Since the two outriggers significantly contribute to the metacentric
radius, their emergence from water leads to a significant reduction of the initial
stability and, eventually, to the whole restoring.

Roll decays at different forward speeds have been carried out on the model of
the trimaran vessel in order to assess the influence of the speed on damping and on
restoring. The linear roll damping coefficient typically increases with forward speed
because of the lift effects on the hull while rolling. This has been observed also
for the considered trimaran as shown in Fig. 4.2. The linear roll damping μ (V ) is
reported in Fig. 4.2 in dimensionless form, as ν (V ), by dividing it using the forward
speed calm water roll natural frequency ω0 (V ). In addition, the ratio between the
forward speed dimensionless linear roll damping ν (V ) and its zero speed value
ν (V = 0) is also reported. It can be seen that the effect of the forward speed is
significant, leading to almost a tenfold increase of ν (V ) even at moderate Froude
numbers.

As anticipated, also the roll natural frequency as measured from roll decays
has been found to be affected by forward speed. This is something which occurs
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also in case of conventional monohulls [4]. In the present modeling we assume
that the variation in the roll natural frequency is completely explained by restoring
variations due to lift effects on the hull when heeled. This basically neglects different
hydrodynamic effects such as, e.g., a possible speed dependence of the roll added
inertia. The roll natural frequency from roll decays and the corresponding value of
GM(V ) = GMzs + δGM (V ) according to (4.4) and (4.11) are shown in Fig. 4.3.
It can be seen that for small forward speed there is a small reduction in the roll
natural frequency, which corresponds, under our assumptions, to a decrease of the
forward speed metacentric height with respect to the zero speed value. However, as
the forward speed increases, the roll natural frequency significantly increases above
the zero speed value. According to our assumptions, the corresponding forward
speed metacentric height also increases, reaching a maximum value which is, at
full scale, about 0.38 m in excess of the calm water value. Finally, at the maximum
tested forward speed an abrupt reduction is visible for the roll natural frequency.
This final point is however doubtful, due to the difficulties involved in the execution
and analysis of roll decays at high forward speed. Such difficulties at high forward
speeds are associated with the strong linear damping and the limited usable length
of the towing tank of the University of Trieste (about 35–40 m).
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4.4.2 Hydrostatic Calculations of Restoring and Metacentric
Height in Waves (Zero Speed)

The calculation of the righting arm in wave has been carried out in the example
case of a wave having length equal to the ship length and steepness equal to 1/50.
This wave has been actually used also in the experiments. The resulting zero speed
righting arm GZzs (φ ,xc,λw = L,aw = 0.5λw/50) from hydrostatic calculations is
reported in Fig. 4.4. It can be seen that the fluctuation of restoring in waves is
significant. For typical monohulls the minimum of the metacentric height occurs,
for a wave having length close to the ship length, when the wave crest is close
to amidships, while the maximum usually occurs when a wave trough is close
to amidships. It can be seen that, for the considered trimaran configuration, the
situation is actually opposite. Indeed the case with xcrest/L = 0 (trough amidships)
is associated with an increased restoring with respect to calm water, while the case
xcrest/L= 0.5 (crest amidships) is associated with a significant reduction of restoring
which even leads to a negative metacentric height, i.e., a negative slope of GZ
at φ = 0. This result is a direct consequence of the emergence of the outriggers
when the ship is on a wave through, with the bow and the stern on the wave crests
(remember that in this example the wave length λw is equal to the ship length L) and
the outriggers, which are positioned in the central part of the ship, out of water.
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It order to have a better understanding of the variation of restoring as the
wave crest moves along the ship length, it is useful to look at the behavior
of the metacentric height in waves for a few different wave lengths having the
same wave steepness. Figure 4.5 shows GMzs (xc,λw,aw) for three different wave
lengths (0.5 L, 1.0 L, and 1.5 L) all having the same wave steepness (sw = 2aw/
λw = Hw/λw = 1/50). It can be seen that the fluctuation of the metacentric height
is characterized by a behavior which cannot be accurately described by a simple
sinusoidal fluctuation. In addition, in all cases, the maximum of the metacentric
height occurs when the wave crest is close to amidships, because in such condition
the outriggers, which are close to the center of the main hull, remain completely
in water and therefore contribute to the metacentric height. On the other hand, in
case of wave trough close to amidships, the metacentric height is very significantly
reduced particularly for the longer waves.

The significant departure of the fluctuation of GM in waves from a simple
sinusoid is the main reason calling for the use of a theoretical approach for the
assessment of the stability of the upright position which is able to take into account
not only the first harmonic of the fluctuation of GM in waves, but actually its
exact shape and hence all its harmonic components. Figure 4.6 shows the results
of a Fourier analysis of the metacentric height in waves, without forward speed
effects, i.e., GMzs (xc,λw,aw), when λw = L and sw = 1/50. It can be noticed
that the amplitude of the second harmonic is about 35% of the amplitude of
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the first harmonic and it cannot therefore be neglected. Higher harmonics have,
instead, much smaller amplitudes and they could in principle be neglected in
comparison with the first two harmonics. In addition it is important to highlight
the significant loss for what concern the average metacentric height during a
wave passage with respect to the calm water value. The calm water metacentric
height of 2.46 m reduces to an average metacentric height

〈
GMzs (λw,aw)

〉
of

1.27 m for the considered wave. From the point of view of restoring, the direct
consequence can be considered as a reduction, on average, of static stability, at
least for small heeling angles. The difference between the calm water righting arm
and the average righting arm in waves has also been investigated in the past [4].
From a dynamical point of view the reduction of the average metacentric height
in waves leads to a roll natural frequency in waves ω0 (V,λw,aw) which becomes
significantly different, and in this case reduced, with respect to the calm water roll
natural frequency. The immediate consequence is a tendency towards a shift of the
resonance conditions for the inception of parametric roll with respect to the nominal
conditions estimated by using the calm water zero speed roll natural frequency.
The additional consequence of the significant reduction of the average metacentric
height in waves is an increase of the amplitude of the dimensionless parametric
excitation (i.e., say, the amplitude of the fluctuation of GM divided by the average
metacentric height) with respect to what would be determined by using the calm
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water metacentric height. The necessity of taking into account the variation of the
average metacentric height in waves with respect to the calm water value has also
been considered in the simplified methodology proposed by [7] for the assessment
of vulnerability to parametric roll at early design stage.

In order to graphically show that the harmonics up to the second one are
often sufficient to reproduce the behavior of the metacentric height in waves for
the considered trimaran vessel, Fig. 4.7 compares, for (λw = L,sw = 1/50), the
metacentric height in the considered wave from hydrostatic calculations and its
approximation up to the first and up to the second harmonic. It can be seen that
the approximation up to the second harmonic is a good approximation of the actual
curve.

4.4.3 (In)Stability Maps for the Upright Position in Longitudinal
Waves

The direct application of the Floquet theory allows to determine, for a given
wave and a given ship speed, whether the upright position φ = 0 is stable or
unstable. The obtained results are so-called stability maps, which allow to identify
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those conditions where the upright position, which is assumed as stable in calm
water, loses its stability. We have also shown that harmonics higher than the
first one in the fluctuation of the metacentric height are important for correctly
reproducing the behavior of the metacentric height in waves. In particular, the
second harmonic component of the fluctuation of GM has been shown to provide
the major correction to the first harmonic approximation of GM in waves in order
to obtain a good approximation of the actual metacentric height in waves. This has
a direct consequence also when dealing with the calculation of stability maps, as
shown also by [24] when dealing with surge effects on the inception of parametric
roll in following waves. Comparisons between calculated stability maps and results
from experiments have been reported by [8]. Here we want to look more closely at
how the approximation of the metacentric height in waves can lead to differences
in the determined stability maps. For this reason we have determined the regions of
instability for the upright position in longitudinal regular waves using the Floquet
theory and three different approximation for the metacentric height in waves. On one
side we have calculated the stability maps by using the metacentric height in waves
as determined from hydrostatic calculations. This basically means we have retained
all the harmonic components for the metacentric height in waves. On the other side,
similarly to what has been shown in Fig. 4.7, we have used two approximations
of the metacentric heights in waves by keeping a Fourier approximation up to the
first and up to the second harmonic respectively. In case of a wave length equal to
the ship length, the results from this analysis are shown in Fig. 4.8. The regions of
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instability for the upright position are shown as filled regions in the (V,sw) plane.
Results from experiments aimed at checking the stability of the solution φ = 0 are
also reported for comparison.

The results in Fig. 4.8 indicate that the approximation of the GM curve in
waves up to the second harmonic practically leads to the same instability regions
as obtained by using the complete GM curve in waves. On the other hand, the
first harmonic approximation of GM in waves leads to predicted instability regions
which are quite different from the other two cases. Differences are visible in
particular in the second parametric resonance region, where neglecting the second
harmonic component leads to a reduction in the extent of the predicted instability
region for the upright position. This means that neglecting higher-order harmonics
can lead to underestimations of the extent of the second, and higher, parametric
resonance regions. This outcome can be qualitatively explained by the fact that,
when the first harmonic of the fluctuation of GM is in the second parametric
resonance region, its second harmonic falls in the first parametric resonance
region, where the limiting threshold parametric excitation is smaller. Neglecting
this aspect by neglecting the second harmonic in the fluctuation of GM leads to an
underestimation of the extend of the second parametric resonance instability region.
A similar outcome is also observed in case of higher parametric resonance regions,
where the use of the first harmonic approximation of GM leads to a reduction in
the predicted extent of the instability regions. Interestingly this outcome seems
to be opposite to that described by [24]. The first parametric resonance region is
not significantly affected by the number of harmonics considered in the Fourier
expansion of the metacentric height in waves, apart from some effect in the region of
speeds close to V = 0 m/s. This is also expectable because when the first harmonic of
the fluctuation of the metacentric height is close to twice the roll natural frequency
in waves, higher harmonics fluctuate at frequencies which are out of parametric
resonance regions and therefore they have basically no effect in the determination of
the threshold limits for the inception of parametric roll when the ship is close to the
first parametric resonance region. Together with the numerical calculations of the
instability regions for the upright position, experimental results are also reported,
from which it can be seen that the predicted first parametric resonance instability
region extends a little bit too much at the high speed limit in comparison to what
has been experimentally determined. The predicted low speed limit for the first
parametric resonance region better agrees with experiments. In general, however,
there seems to be some overestimation of the instability zone for the upright position
with respect to the experiments. This is of course expectable, due to the fact that
the considered modeling contains significant simplifications with respect to reality,
in particular for what concerns the simplification of hydrodynamic lift effects and
the quasi-static approximation for the actually dynamic heave and pitch motions.
More details on comparisons between experimentally and numerically determined
stability maps are reported by [8].
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4.4.4 Nonlinear Roll Motion Above Threshold

Nonlinearities of restoring are known to lead to bending of the roll response curve in
regular beam waves [6, 13]. When nonlinearities of restoring are sufficiently strong
and/or the excitation is sufficiently large, such bending leads to coexisting steady
state solutions. Which solution the system will eventually be attracted to, depends on
the initial conditions. A similar situation also occurs in longitudinal regular waves
when parametric roll is excited [4, 5, 25]. In case of trimaran vessels the strongly
nonlinear behavior of the righting moment in waves leads to an exacerbation of
such nonlinear effects. It has indeed been observed, both from experiments and
simulations [8], that quite wide ranges of parameters (ship speed, wave length, wave
steepness, etc.) can be associated, in case of the considered trimaran configuration,
to multiple coexisting solutions. In addition, large amplitude rolling can be observed
outside the regions of instability for the upright position, i.e., a stable upright
position can coexist with one (or more) large amplitude rolling solutions [4, 5, 25].
From a practical point of view, this usually means that large amplitude rolling
motions, in this case in longitudinal waves, can be observed for trimaran vessels in
quite unexpected regions of speed which can be quite far from the speeds associated
with the 2:1 or 1:1 resonance based on nominal calm water rolling frequency. The
bending, in accordance with the softening restoring, is usually towards the region
of smaller ship–wave encounter frequencies, as it also happens in beam waves [6].
While the bending of the response curve is associated with the shape of the restoring
(softening or hardening) the shifting of the, say,“center speed” of the response curve
is due to the interaction of two effects. One point is that the average metacentric
height in waves tends to be different, and for trimaran vessels usually smaller, than
the calm water metacentric height. The other point is the variation of restoring
due to hull lift effects. These two aspects contribute to the modification of the roll
natural frequency in waves with respect to the calm water value, see (4.9), and are
also responsible for the winding of the instability region for the upright position as
reported in Fig. 4.8. Coexisting steady states have been quite extensively addressed
in the past from different points of view [4,5,8,25]. Therefore, here we only report in
Fig. 4.9 one example response curve with the intention of underlining that “nominal
worst conditions”, in terms of ship speed, can significantly differ from actual worst
conditions. The understanding of nonlinear features can therefore play a dominant
role in a correct assessment and interpretation of simulations and/or experimental
results. Figure 4.9 compares the outcomes from experiments and from simulations
based on the model (3.6) for the considered trimaran vessel in case of a short
wave having length equal to half the ship length (λw = 0.5 L) and wave steepness
sw = 1/50. The nonlinear roll damping has been modeled as a speed independent
purely quadratic function of the roll velocity (δ (V )= 0) with β (V )= β = 0.3rad−1.
In Fig. 4.9 the quantity ωe is the frequency of encounter between the ship and the
wave.

Looking at Fig. 4.9 it can be seen, first of all, that the numerical simulations based
on the model (4.6) closely reproduce the experimental data, despite the evident
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simplicity of the 1-DOF modeling. More comparisons between experiments and
simulations are given by [8]. It can also be noticed that the region of instability
for the upright position is shifted towards lower speeds in head seas, i.e., lower
encounter frequencies, when compared with the reported nominal first parametric
resonance condition based on the calm water zero speed roll natural frequency
ω0,zs. As anticipated, this shifting of the instability region for φ = 0 is mostly due
to the reduction of the average metacentric height in waves, as it is visible also
from Fig. 4.5. In the region where φ = 0 is unstable, a stable subharmonic rolling
motion develops. However, the most dangerous condition for what concerns the
rolling amplitude is observed, both numerically and experimentally, in the region
of low speeds in following waves, well outside the speed range where φ = 0
is unstable. The bending of the roll response curve towards the region of low
encounter frequencies is a direct consequence of the softening restoring. A similar,
but usually not so strong, behavior can also occur for conventional monohulls
[4, 5]. Since we are out of the zone of instability for φ = 0, the large amplitude
rolling in such region coexists with a stable upright position. However due to
the strongly nonlinear restoring which quite abruptly change derivative at small
heeling angles, the domain of attraction of the solution φ = 0 tends to be quite
small, while the domain of attraction of the large amplitude rolling tends to be
dominant [8]. This means that, for the majority of the initial conditions not leading
to capsize, the roll motion is eventually attracted to the large amplitude solution.
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It is also interesting to note that 2:1 subharmonic roll motions are numerically and
experimentally observed up to speeds close to the region where a check based only
on the nominal zero speed roll natural frequency would indicate, if any, an harmonic
1:1 response.

When addressing parametrically excited rolling motion for trimaran vessels it
is therefore important to have clear in mind the possible occurrence of nonlinear
phenomena such as those described in this example. Having them clear in mind
could avoid checking for parametric roll in wrong regions of speeds and could also
remind to check different initial conditions, or the influence of perturbations, for
verifying the presence of multiple solutions.

4.5 Optimum Longitudinal Positioning of the Outrigger

In the design of multihull vessels the positioning of the outriggers gives additional
degrees of freedom in the ship optimization process. A correct positioning of
outriggers should take into account static stability in calm water and in waves,
seakeeping, resistance, manoeuvring, the possibility of entering specific harbor
facilities, etc.

In this section we show an example of how the positioning of the outriggers
can significantly influence the variations of restoring in waves. We have indeed
underlined in the previous sections that one of the main reasons for the significant
reduction of initial stability in waves for the considered trimaran configuration is
to be associated with the (partial) emergence of outriggers from water. Moreover,
we have also underlined that the (partial) emergence of outriggers from water is the
reason for having a maximum of the metacentric height when the wave crest is close
to amidships for the considered trimaran configuration. On the contrary, for standard
monohulls, a wave crest close to amidships usually leads to an almost minimum of
the metacentric height in waves.

Changing the longitudinal positioning of the outriggers can have a significant
influence on the variations of stability in waves, because the possibility of keeping
the outriggers in water as the wave crest moves along the ship depends on the actual
longitudinal position of the outriggers combined with the resulting ship trim in
waves. We have therefore systematically changed the stagger of the outriggers, i.e.,
the distance between the transom of the main hull and the transom of the outriggers,
in a range going from 1 m to 70 m. A stagger of 1 m corresponds to outriggers
positioned at the stern region of the ship, while a stagger of 70 m corresponds to
outriggers positioned close to the ship bow. For each different longitudinal position
of the outriggers the variation of the metacentric height has been calculated for a
reference wave having length equal to the ship length (λw = L) and steepness equal
to 1/50. A Fourier analysis has been carried out on the resulting metacentric height
in waves for each position of the outriggers. The results from the different design
alternatives are shown in Fig. 4.10. From the results it can be seen that positioning
the outriggers towards the aft or forward end of the ship is beneficial with respect to
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a central positioning for what concerns the average metacentric height and also for
the amplitude of the first and second harmonics of the fluctuation.

In order to determine a unique “optimum stagger” it is necessary to reduce
our problem to a single-objective problem, otherwise we would have to address
a multi-objective optimization problem and hence a Pareto front. For this reason we
have defined, as example objective function, the dimensionless first harmonic of the
metacentric height in the considered reference wave. This quantity is defined as the
ratio between the amplitude of the first harmonic of GM and the average metacentric
height for the considered wave. The result is shown in Fig. 4.11.

It can be seen that the optimum configuration is determined as a stagger of about
7.25 m, i.e., a condition with outriggers close to the aft end of the ship. Of course
the obtained optimum stagger depends on the particular definition of the objective
function used in this exercise. Moreover, the obtained optimum depends on the
reference wave which we have selected for the calculations. Different assumptions
concerning the objective function and/or the reference wave can lead to, likely
slightly, different results in term of optimum stagger. Some check carried out
with waves having wave length equal to the ship length but different reference
steepnesses have led to small variations in the identified optimum position of the
outriggers. The original and the “optimum” configurations are compared in Fig. 4.12



4 Trimaran Vessels and Parametric Roll 85

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Trimaran S1 (clearance 10.45m) - T = 4.416m - KG = 5.9m

Stagger [m] (Ship length L = 105.6m)

D
im

en
si

o
n

le
ss

 1
st

 h
ar

m
o

n
ic

 G
M

 f
lu

ct
u

at
io

n
 [

n
d

]

Optimum
configuration:
Stagger = 7.25m

Original configuration:
Stagger = 31.7m

Reference wave:
λw=L sw= 1 / 50   

Fig. 4.11 Determination of “optimum stagger”. Wave length equal to the ship length and wave
steepness equal to 1/50

0

20

40

60

80

100
–10 0 10

0

5

Y

X

Z

0

20

40

60

80

100
–10 0 10

0

5

Y

X

Z

Optimum Configuration (stagger=7.25m)Original Configuration (stagger=31.7m)

Fig. 4.12 Comparison between original and “optimum” configurations. Ship geometry

while the hydrostatically calculated metacentric heights are compared in Fig. 4.13.
By looking at the metacentric height in waves reported in Fig. 4.13 it is evident how
significant can be the effect of the longitudinal positions of the outriggers on the
trimaran hydrostatic properties in waves.
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4.6 Final Remarks

Ships with outriggers, and in particular trimaran vessels, with limited transversal
separation between the outriggers and/or limited draught of the outriggers can be
characterized by not extremely large metacentric heights and by significant restoring
nonlinearities. Variations of restoring in waves for such configurations can also be
significant. The combination of these factors leads to the possibility of inception of
parametrically excited rolling motion with peculiar features which often represent
exacerbation of what usually happens in case of standard monohulls. This paper
addressed some of these peculiar features by assuming that their knowledge is
important for those designers and researchers having to deal with, and hopefully
eventually eliminate or at least limit, the risk of inception of parametric roll.

Parametric roll in longitudinal regular waves has been modeled by a simplified
1-DOF nonlinear mathematical model. The most peculiar and distinctive feature of
the proposed model is the explicit, although simplified, consideration of forward
speed effects not only for damping but also for restoring. It has been shown that
the fluctuation of the metacentric height in waves in case of the considered trimaran
vessel can be significantly different from a simple sinusoidal function, whereas the
sinusoidal approximation is often sufficient for standard monohulls. For this reason
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the regions of instability for the upright position have been determined by means of a
direct numerical application of the Floquet theory. Since the proposed methodology
for the numerical determination of stability maps is independent of the form of the
model containing periodic parameters, it can easily handle the unusual metacentric
height variations of the considered trimaran ship which would be more difficult to
address by more widely used semi-analytical approximate methods.

The analysis of the stability map for a sample case has shown that the first
parametric resonance region is the dominant region in terms of extension, but also
higher parametric resonance regions, and particularly the second one, could be
a concern. Particular attention should probably be given to the often overlooked
second parametric resonance region. It has been shown that the extent of this
region is particularly sensitive to the number of harmonics taken into account in
the description of the metacentric height in waves. For the considered sample case
it has been found that the description of the metacentric height in waves should
retain up to at least the second harmonic to obtain instability regions close to those
obtained by using the exact shape of GM in waves.

For what concerns rolling motion in the nonlinear range, an example has been
provided to show some characteristic features which should be borne in mind,
especially when planning experiments and/or simulations. First of all the variation
of the average metacentric height in waves with respect to the calm water value
can lead to a significant shifting of the regions of speeds where the upright position
becomes unstable in comparison to what would be predicted by using the nominal
calm water roll natural frequency. This aspect is also visible when analyzing the
stability maps. Some role in this shifting, though usually in the opposite direction,
is also played by forward speed lift effects on the restoring. The, possibly large
amplitude, roll motions in the region where the upright position is unstable can
therefore occur at partially unexpected speeds. In addition, the significant softening
nonlinearities of the restoring moment lead to a bending of the roll response curve
towards the region of low encounter frequencies. The first consequence is that in
wide ranges of speeds large amplitude rolling motions can coexist with a stable
upright position. Therefore, simulations and/or experiments should be carried out in
such a way to try to observe the coexisting steady states (e.g., by changing initial
conditions). The second consequence is that in almost all cases the maximum of the
rolling amplitude is observed at a speed where the upright position is stable, i.e.,
outside the regions of instability identified by the stability maps.

From the design point of view, changing the longitudinal position of the
outriggers can provide significant benefits in terms of variation of restoring in waves.
An example has been shown where the outriggers of the considered trimaran vessel
has been systematically shifted from the extreme aft to the extreme forward of the
ship. For each configuration the metacentric height in waves has been calculated
for a reference wave having length equal to the ship length and steepness of 1/50.
The ratio between the amplitude of the first harmonic of the fluctuation of GM
and the average GM has been used as single objective function to be minimized
for determining the optimum positioning of the outriggers. Outriggers positioned
in the central part of the ship have been found to be associated with the largest
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dimensionless first harmonic of the fluctuation of GM, whereas the positioning
outriggers in the aft part of the ship has been found to lead to the absolute
minimum of the objective function. An additional relative minimum has been found
in case of outriggers positioned in the forward part of the ship. The selection
of the longitudinal position of the outriggers, especially when they have a very
limited draught as in the considered case, should therefore take into account not
only resistance, manoeuvring, and general arrangement considerations, but also the
problem of stability in waves.
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Chapter 5
Probability of Parametric Roll in Random
Seaways

Jørgen Juncher Jensen

5.1 Introduction

The roll motion of ships can lead to various types of failures ranging from
seasickness over cargo shift and loss of containers to capsize of the vessel. Hence,
it is important to minimize the roll motion during a voyage. Currently, on-board
decision support systems, e.g., [28, 32, 35], are being installed in vessels with the
aim to provide the officer on watch with guidance on the best possible route, taking
into account the weather forecast, the time constraints for the voyage and limiting
criteria for motions etc.

A main problem is real-time estimation of the sea state. Here two approaches
are being tested in full scale. The first is based on the use of a wave radar, e.g.,
the WAVEX system, e.g., [3], and the second uses ship responses (e.g. motions,
accelerations, and strains) measured real-time by sensors installed on board together
with linear transfer functions to estimate the sea state, e.g., [29], where also a
comparison between the two approaches can be found.

After estimation of the sea state, a real-time estimation of the maximum ship
responses within the next few hours as function of ship speed and course is needed
to guide the officer on the action to take if excessive responses are foreseen with
the present course and speed. To linear responses the standard frequency domain
approach using transfer functions can easily be applied. For nonlinear responses
most often time domain simulations are performed to obtain short-term statistics for
the nonlinear roll response of ships, e.g., [6, 23, 34]. However, less time-consuming
stochastic procedures have also been suggested. Most of them are based on sim-
plifying, but often reasonable assumptions like equivalent linear damping, e.g., [4],
second- or third-order perturbation procedures, e.g., [27], Melnikov functions, e.g.,
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[13, 36] and moment closure techniques, [26]. More recently, different procedures
based on identification of critical wave episodes related to the roll motion have been
suggested, see [19, 20, 37]. The present note is largely based on [20] but deals only
with prediction of parametric rolling in head sea leaving out forced rolling.

5.2 Roll Motion of a Ship

A very comprehensive discussion of intact stability, including parametric rolling
can be found in the ITTC report on ship stability in waves, [15]. The report
discusses various modes of failure and the prediction procedures available. The
report is partly based on the result of a questionnaire distributed to a large number
of organizations and thus reflects very well the current status. To cover all modes
of failure (static loss of stability, parametric excitation, dynamic rolling, resonance
excitation, and broaching) a general nonlinear 6-DOF time domain procedure
including viscous effects and maneuvering models must be applied. Some codes,
e.g., LAMP, [11] and [33], seem to be able to do so with reasonable accuracy, but
are very time-consuming to run, restricting the application to regular waves or very
short stochastic realizations.

Another nonlinear 6-DOF procedure is GL-SIMPEL, see e.g., [31], based on
a nonlinear strip theory formulation. The frequency dependence of the added
mass and damping is taken into account using a higher differential equation
formulation. FREDYN, see e.g., [11], is another nonlinear code based on a strip
theory formulation. Generally, these codes are much faster than nonlinear 3-D
procedures like LAMP and, as the 3-D effects on the roll motion is usually not that
important, to be preferred for design work and onboard decision support system.

Other procedures have more limiting capabilities as some of the capsize modes
are excluded. An example is the ROLLS procedure, [24], where the following
nonlinear differential equation is used to estimate the roll angle φ , (omitting the
terms due to wind and fluids in tanks):

φ̈ =
Mφ +Msy −Md −Δ(g− ẅ)GZ(φ)− Ixz

[(
θ̈+θ φ̇2

)
sinφ − (ψ̈ +ψφ̇2

)
cosφ

]

Ixx − Ixz (ψ sinφ +θ cosφ)
.

(5.1)

Here Mφ , Msy, and Md are the roll moments due to waves, sway and yaw, and
hydrodynamic damping, respectively. Furthermore, Ixx and Ixz are the mass moment
of inertia about the longitudinal axis and the cross term mass moment of inertia.
The displacement of the ship is denoted by Δ and g is the acceleration of gravity.
The instantaneous value of the righting arm GZ is in irregular waves calculated
approximately using the so-called Grim’s effective wave. The heave w, pitch θ , and
yaw ψ motions are determined by standard strip theory formulations, whereas the
surge motion is calculated from the incident wave pressure distribution. The advan-
tage of this formulation compared to full nonlinear calculations is the much faster
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computational speed, still retaining a coupling between all six-degrees-of-freedom,
[23]. The model can, however, not deal with broaching due to the assumption of a
linear yaw motion. Both the ROLLS and the GL-SIMBEL procedures are described
and validated in [14, IMO-SLF submission by Germany 2007].

Here a simplified version of (5.1) is considered. The heave motion w is taken to
be a linear function of the wave elevation using the closed-form expression given by
[16]. The cross term mass moment of inertia is assumed to be small, and pitch is thus
only included through the static balancing of the vessel in waves in the calculation
of the GZ curve. Furthermore, the sway and yaw motions can be ignored as only
head sea is considered. The effect of speed variations due to the time varying added
resistance in waves was investigated in [41], showing some reduction in the overall
parametric roll behavior. Hence, the surge motion can be important, but will be
omitted in the present treatment. The damping term Md is modeled by a standard
combination of a linear, a quadratic and a cubic variation in the roll velocity. Finally,
the wave excitation roll moment Mφ is equal to zero in long-crested head sea. With
these simplifications (5.1) reads

φ̈ =−2β1ωφ φ̇ −β2φ̇
∣
∣φ̇
∣
∣− β3φ̇3

ωφ
− (g− ẅ)GZ(φ)

r2
x

, (5.2)

where rx is the roll radius of gyration. The roll frequency ωφ is given by the
metacentric height GMsw in still water:

ωφ =

√
gGMsw

rx
. (5.3)

The instantaneous GZ curve in irregular waves is estimated from numerical results
for a regular wave with a wave length equal to the length L of the vessel and
a wave height equal to 0.05 L. These numerical results are fitted with analytical
approximations of the form

GZ(φ ,xc) =
(

C0 sinφ +C1φ +C3φ3 +C5φ5
)

cos4
(

πxc

Le

)

+
(

D0 sinφ +D1φ +D3φ3 +D5φ5
)

sin

(
πxc

Le

)

, (5.4)

where the wave crest position xc is measured relative to the aft end of the vessel.
Similarly, the GZ curve in still water is fitted by:

GZsw(φ) =
(
GMsw −A1

)
sin φ +A1φ +A3φ3 +A5φ5. (5.5)

The coefficients (A1,A3,A5,C0,C1,C3,C5,D0,D1,D3,D5,Le) in (5.4)–(5.5) are
found by the least square method. Other polynomial or Fourier series representations
have been suggested, e.g., [5, 36], and generally a very good fit can be achieved for
the range of roll angles of interest.
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An alternative, albeit rather time-consuming, procedure to (5.4)–(5.5) is to
calculate the instantaneous value of the righting arm by static balancing the ship
in the instantaneous wave elevation, [41]. It was found that it did not change the
results significantly compared to more simplified approaches including (5.4)–(5.5).
Thus, (5.4)–(5.5) are assumed accurate enough for the present discussion focusing
on effective stochastic procedures for estimation of the probability of occurrence of
parametric roll.

In a stochastic seaway the following approximation to the instantaneous value of
the righting arm GZ(t) is then:

GZ(φ , t) = GZsw(φ)+
h(t)

0.05L

(
GZ(φ ,xc(t))−GZsw (φ)

)
. (5.6)

The instantaneous wave height h(t) along the length of the vessel and the position of
the crest xc in head sea are determined by an equivalent wave procedure somewhat
similar to the one used by [24]:

a(t) =
2
Le

∫ Le

0
H (X (x, t) , t)cos

(
2πx
Le

)

dx

b(t) =
2
Le

∫ Le

0
H (X (x, t) , t)sin

(
2πx
Le

)

dx

X (x, t) =−(x+Vt)

h(t) = 2
√

a2(t)+ b2(t)

xc(t) =

⎧
⎨

⎩

Le
2π arccos

(
2a(t)
h(t)

)
if b(t)> 0

Le − Le
2π arccos

(
2a(t)
h(t)

)
if b(t)< 0

(5.7)

Stationary sea conditions are assumed and specified by a JONSWAP wave spec-
trum with significant wave height Hs and zero-crossing period Tz. The frequency
range is taken to be π ≤ ωTz ≤ 3π covering the main part of the JONSWAP
spectrum.

The next step in the solution procedure is to account for the stochastic behavior of
the sea. The straight forward procedure is to generate time series of random waves
and use them as input to the ship motion code and then extract extreme values by
simple counting and subsequent fitting to a proper extreme value distribution, e.g.,
the Gumbel distribution. This, however, requires long simulation time and also CPU
time to get sufficient reliable results. A solution is to use cluster of computers. Other
methods seek to identify the most probable wave episodes leading to a specified
large roll angle. Spyrou and Themelis [37] describe such an approach in which a
specific ship motion parameter, e.g., a large roll angle, is calculated for a range
of wave heights, wave periods, and number of adjacent high waves. Thereafter, the
probabilities of encountering these wave groups are determined and used to estimate
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the corresponding probability of exceeding the prescribed ship motion response.
The feasibility of the method has been documented in [37] and [38] in the EU FP7
sponsored integrated project SAFEDOR.

A related procedure for calculation exceedance probabilities and associated
critical wave episodes has been developed in [19] for parametric roll in head sea
and extended in [20] to cover other types of roll motions. This procedure uses the
First-Order Reliability Method (FORM) to determine the mean out-crossing rate
of the ship response considered. The procedure also identifies a design point with a
corresponding most probably wave episode leading to the prescribed response value.
Thereby, the tedious task to identify critical wave episodes is done automatically
by the procedure and the user (i.e., the designer) only has to select or program a
proper time domain procedure able to model the ship response in question. All the
statistical estimates are then done within a standard FORM. In the present treatment,
the time domain simulation routine, (5.4), has been linked to the FORM software
PROBAN [8]. It is clear that (5.2) has a rather limited accuracy, but anyway contains
the main features needed to model parametric rolling. It is, however, straight forward
to replace (5.2) with (5.1) or another more general time domain ship motion code.

Apart from the FORM results, which is only asymptotically correct for very low
probability of occurrence, a very useful property can be derived from the FORM
analysis, namely that the reliability index is strictly inversely proportional to the
significant wave height. This observation can be used to accelerate MCS using
artificially increased significant wave heights. These results can then afterwards be
scaled down to the actual (real) wave height, resulting in several order of magnitudes
reduction in simulation time.

In the following, the FORM procedure is first described in general terms and then
results for a container ship are presented and compared with MCS using artificially
increased wave heights.

5.3 First-Order Reliability Method Applied to Wave Loads

5.3.1 Design Point and Reliability Index

In FORM, the excitation or input process is a stationary stochastic process.
Considering in general wave loads on marine structures, the input process is the
wave elevation and the associated wave kinematics. For moderate sea states the
wave elevation can be considered as Gaussian distributed, whereas for severer wave
conditions corrections for nonlinearities must be incorporated. Such corrections
are discussed and accounted for by using a second-order wave theory in a FORM
analysis of a jack-up platform [17]. In the present paper dealing with the roll motion
of a ship, linear, long-crested waves are assumed and hence the normal distributed
wave elevation H(X, t) as a function of space X and time t can be written as:

H(X , t) =
n

∑
i=1

(uici(X , t)+ ūic̄i(X , t)) , (5.8)
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where the variables ui, ūi are statistical independent, standard normal distributed
variables to be determined by the FORM procedure and with the deterministic
coefficients given by:

ci(x, t) = σi cos(ωit − kiX),

c̄i(x, t) =−σi sin(ωit − kiX),

σ2
i = S(ωi)dωi, (5.9)

where ωi and ki = ω2
i /g are the n discrete frequencies and wave numbers applied.

Furthermore, S(ω) is the wave spectrum and the increment between the discrete
frequencies. It is easily seen that the expected value E[H2] =

∫
S(ω)dω , thus

the wave energy in the stationary sea is preserved. Short-crested waves could be
incorporated, if needed, but require more unknown variables ui, ūi and thus a larger
computational effort.

From the wave elevation, (5.8)–(5.9), and the associated wave kinematics, any
nonlinear wave-induced response φ(t) of a marine structure can in principle be
determined by a time domain analysis using a proper hydrodynamic model:

φ = φ(t |u 1 , ū1,u2, ū2, . . .,un, ūn). (5.10)

Each of these realizations represents the response for a possible wave scenario.
In the present case the realization is the roll angle and the realization which exceeds
a given threshold φ0 at time t = t0 with the highest probability is sought. This
problem can be formulated as a limit state problem, well-known within time-
invariant reliability theory [7]:

G(u1, ū1,u2, ū2, . . .,un, ūn)≡ φ0 −φ(t0 |u 1 , ū1,u2, ū2, . . .,un, ūn) = 0. (5.11)

An approximate solution can be obtained by using FORM. The limit state surface
G is given in terms of the statistical independent, standard normal distributed
variables {ui, ūi}, and hence determination of the design point {u∗i , ū

∗
i }, defined as

the point on the failure surface G = 0 with the shortest distance to the origin, is
rather straightforward. A linearization about this point replaces (5.11) with a hyper
plane in 2n-space. The distance

βFORM = min

√
n

∑
i=1

(
u2

i + ū2
i

)
(5.12)

from the hyper plane to the origin is denoted the FORM reliability index. The
calculation of the design point {u∗i , ū

∗
i } and the associated value of βFORM can be

performed by standard reliability codes, e.g., [8]. Alternatively, standard optimiza-
tion codes using (5.12) as the objective function and (5.11) as the constraint can be
applied.
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The time integration in (5.11) must cover a sufficient time period {0, t0} to avoid
any influence on φ(t0) of the initial conditions at t = 0, i.e., to be longer than the
memory in the system. Proper values of t0 would usually be 1–3 min, depending on
the damping in the system. However, for bifurcation problems with low damping as
e.g., parametric roll a larger transient period can be expected. To avoid repetition in
the wave system and for accurate representation of typical wave spectra n = 25−50
would thus be needed.

The deterministic wave profile:

H∗(X , t) =
n

∑
i=1

(
u∗

i
ci(X , t)+ ū∗

i
c̄i(X , t)

)
(5.13)

can be considered as a design wave or a critical wave episode. It is the wave
scenario with the highest probability of occurrence that leads to the exceedance of
the specified response level φ0. For linear systems the result reduces to the standard
Slepian model, see e.g., [1, 9, 25, 40]. The critical wave episode in itself is a useful
result as it can be used as input in more elaborate time domain simulations to correct
for assumptions made in the hydrodynamic code, (5.10), applied in the FORM
calculations. Such a model correction factor approach can provide an effective tool
of accounting for even very complicated nonlinear effects [10].

It should be noted that other definitions of design waves based on a suitable
nonuniform distribution of phase angles have been applied, especially for experi-
mental application in model basins. The selection of the phase angle distribution is,
however, not obvious, see e.g., [2].

5.3.2 Mean Out-Crossing Rates and Exceedance Probabilities

The time-invariant peak distribution follows from the mean out-crossing rates.
Within a FORM approximation the mean out-crossing rate can be written as
follows [17]:

ν(φ0) =
1

2πβFORM
e−

1
2 β 2

FORM

√
n

∑
i=1

(
u∗2

i + ū∗2
i

)
ω2

i (5.14)

based on a general formula given by [22]. Thus, the mean out-crossing rate is
expressed analytically in terms of the design point and the reliability index. For
linear processes it reduces to the standard Rayleigh distribution. Often the gradient
vector {α∗

i , ᾱ∗
i } = {u∗i , ū∗i }/βFORM to the design point does not vary much with

exceedance level φ0. This is so for e.g., parametric rolling, [19]. Hence, (5.14)
reduces to

ν(φ0) = ν0e−
1
2 β 2

FORM , (5.15)
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where ν0 can be viewed as an effective mean zero out-crossing rate. It value can be
taken as the inverse of the roll period in calm water without notable error. Finally, on
the assumption of statistically independent peaks and, hence, a Poisson distributed
process, the number of exceedance of the level φ0 in a given time T can be calculated
from the mean out-crossing rate ν(φ0):

P

[

max
T

φ > φ0

]

= 1− e−ν(φ0)T . (5.16)

The present procedure can be considered as an alternative to the random constrained
simulation, see e.g., [9]. The present method has, however, the advantage that
the number of time domain simulations is much smaller due to the very efficient
optimization procedures within FORM, and that it does not require the curve-fitting
of lines of constant probabilities needed in the other procedure. Furthermore, the
present procedure does not rely on a mean wave conditional from a linear response
and can hence be applied also to bifurcation types of problems like parametric roll.

For bifurcation type of problems the optimization procedure used in the FORM
analysis must be chosen appropriately, i.e., of the nongradient type and here a
circle step approach is used [8]. Furthermore, to facilitate the convergence of the
optimization procedure, the limit state surface, (5.11), is replaced by a logarithm
transformation:

G̃(u1, ū1,u2, ū2, . . .,un, ūn)≡ logt(φ0)− logt(φ(t0 |u 1 , ū1,u2, ū2, . . .,un, ūn)) = 0,

(5.17)

where

log t(y)≡
⎧
⎨

⎩

−1− log(−y); y <−1
y; −1 ≤ y ≤ 1
1+ log(y); 1 < y

(5.18)

Finally, an arbitrary starting point different from zero is used and a range mono-
tonically increasing threshold values φ0 are applied in order to get convergence.

The FORM is significantly faster than direct MCS, but most often very accurate.
In a study by [19] dealing exclusively with parametric rolling of ships in head sea
the FORM approach was found to be two orders of magnitude faster than direct
simulation for realistic exceedance levels and with results deviating less than 0.1 in
the reliability index. However, a scaling property derived from the FORM procedure
can be used to accelerate very effectively the MCS. This will be investigated later in
this chapter.

5.4 Numerical Example

The same Panmax container ship as used in [20] is considered here. The pertinent
data including the coefficients in (5.4) and (5.5) can be found in [20], but it is
noted that the damping coefficients, β1–β3, are taken, quite arbitrarily, from a study
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Fig. 5.1 Left: GZ curve in still water. Right: GZ curves in regular waves with wave length equal to
the ship length L and a wave height equal to 0.05 L. Wave crest positions at xc = 0, 0.25 L, 0.5 L,
0.75 L, and 1.0 L [19]

Fig. 5.2 Parametric roll in a regular wave (solid line) and the roll response for a slightly smaller
regular wave (dashed line) [19]

considering a different vessel [5], and corresponds to about 0.05 in equivalent linear
roll damping. The ship is sailing in head sea with a forward speed of 6 m/s.

In the following the roll angles are given in radians. The approximate GZ curves,
(5.4)–(5.5) are accurate for roll angles up to 0.9 rad [18]. The GZ curves are shown
in Fig. 5.1 and it is clear that a significant reduction in righting lever occurs when
the wave crest moves from the aft perpendicular (AP) to 0.25 L forward of AP. This
is quite typical for ships with fine hull forms like container ships.

By use of the closed-form expressions given in [16] for the heave w, all pertinent
data for calculation of the roll angle as function of time is defined. In order to
show that (5.2) can model parametric roll, calculations have been performed with
a regular wave with an encounter frequency close to twice the roll frequency [19].
Two wave heights were used: one (3.65 m) where parametric roll is not triggered
and one slightly higher (3.7 m) where parametric roll develops. The roll motions
for the two wave heights are shown in Fig. 5.2. The onset of parametric roll and its
saturation level are clearly noticed.
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The regular wave height needed to trigger parametric roll is thus about 3.7 m
for the present vessel. If the wave height is increased above this value, parametric
roll develops faster and to a higher saturation level. These results are consistent
with both model test results and numerical calculations using more elaborate
hydrodynamic codes [11].

In the following, some results are shown for parametric roll motions in head sea
in a stochastic seaway. More results can be found in [19], whereas results for other
headings are given in [20]. A parameter study is included in [20] quantifying the
sensitivity of the reliability index βFORM to the zero-crossing wave period Tz and
the forward speed V. Here it is only noted that the probability of parametric roll
decreases if the speed is either lowered or increased for the present example.

The sea state has a significant wave height Hs = 12m and a zero-crossing wave
period Tz = 11.7s. The zero-crossing period is chosen such that parametric roll can
be expected due to occurrence of encounter frequencies in the range of twice the
roll frequency. Of course neither the encounter frequency nor the roll frequency is
constant in irregular waves.

The time simulations are carried out from t = 0 to t = t0 = 300s with a time
step of 0.5 s. The effect of the initial condition (φ(t = 0) = 0.01 rad) is negligible
after about 50 s, but in order to build up parametric roll a longer duration is needed.
With n = 50 equidistant frequencies, the wave repetition period relative to the ship
is about 400 s with a forward speed of 6 m/s.

5.4.1 Results by the First-Order Reliability Method

A detailed analysis using the present approach is given in [19]. As an example
the most probable roll response and the associated critical wave episode, (5.13),
corresponding to exceedance of a prescribed roll angle, i.e., φ0, of 0.5 rad, are shown
in Fig. 5.3.

The interesting observation is as stated in [19]:

“The critical wave episode is basically a sum of two contributions: firstly, a regular wave
with encounter frequency close to twice the roll frequency and a wave height just triggering
parametric roll and, secondly, a transient wave with magnitude depending on the prescribed
roll response φ0”.

The last part resembles the critical wave episodes as obtained from quasi-static
response analyzes, e.g., [1] and has basically the shape of the autocorrelation
function. The first term, which is independent of the prescribed response level, is
unique for parametric roll, but is needed to initiate parametric roll. After the peak in
roll angle has been reached (i.e., for t > 300 s) the first part is seen to disappear. This
is consistent with an unconditional mean wave equal to zero after t = t0 = 300s.

As the wave spectrum does not change shape with Hs the critical wave episode,
(5.13), becomes independent of Hs. A change of Hs by a factor μ will then just
change the design point {u∗i , ū∗i } and hence βFORM by a factor 1/μ . This behavior has
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Fig. 5.3 Left: Most probable roll response yielding φ0 = 0.5rad at t0 = 300s. Right: Correspond-
ing critical wave episode [20]

previously been noted by [39], based on a different argument, and is also mentioned
and discussed in the [14, IMO-SLF submission by Germany 2007]. Clearly this
property greatly facilitates the long-term convolution of the heeling angle, but is
also useful in MCS as will be discussed below.

5.4.2 Results by Monte Carlo Simulations

The FORM solution is asymptotically correct, i.e., only strictly valid for very
low probabilities of occurrence. Furthermore, the FORM solution does not always
converge, most probably due to parametric rolling being a bifurcation type of
problem. A comparison between FORM results and MCS has been made in [30].
Generally, fairly good agreement was found. However, if the simulation length, t0 in
(5.11), exceeded 600 s then the FORM solution did not converge using the present
FORM code. This might constitute a problem in some cases as parametric rolling
typically has a long transient run-in period due to the relative low roll damping.

The reliability index βFORM calculated by the FORM analysis is strictly inversely
proportional to the square root of the intensity of the excitation spectrum irre-
spectively of the nonlinearity in the system as shown in [20] and [12]: Hence, for
wave excitation in stationary stochastic sea based on the JONSWAP or the Pierson–
Moskowitz spectrum, βFORM is always inversely proportional to the significant wave
height as in a purely linear analysis:

βFORM(φ0 |Hs,Tz,V, . . . ) =
C(φ0 |Tz,V, . . . )

Hs
. (5.19)

If this property can be assumed valid also in the MCS the out-crossing rates can be
increased with a corresponding reduction of the necessary length of the time domain
simulations by using a larger significant wave height than relevant from a design
point-of-view in the simulations. The reliability index and the corresponding mean
out-crossing rate, (5.15), thus obtained can then afterwards be scaled down to the
actual significant wave height. The accuracy of this approach has been investigated
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Fig. 5.4 Reliability index from First-Order Reliability Method (FORM) and Monte Carlo simula-
tions (MCS) as function of 1/Hs

by [21] considering the overturning of a jack-up rig and the extreme wave bending
moment in a ship as examples. It was found that a relation of the type β = a+b/Hs,
where a and b are constants depending on the threshold level φ0, very accurately
modeled the MCS results.

The example is the same as above except that the threshold roll angle is increased
to φ0 = 0.6rad in order to lower the probability of occurrence and thereby increase
the computational time for direct simulations. With a significant wave height Hs =
12m the reliability index was found in [19] to be βFORM = 3.9047 whereas a MCS
simulation for the same problem using 1,000,000 simulations resulted in a mean
reliability index of 4.0208 with a 90% confidence interval of [3.9576, 4.1048] and a
CoV= 0.186. The agreement is good with FORM being slightly on the conservative
side, but there were two orders of magnitude in difference in the computational
time between the FORM analysis and the MCS, so an improvement in the MCS
is strongly needed. Therefore the MCS have now been performed again but with
significant wave heights Hs = 18m, 24 m, 30 m and 40 m using a CoV = 0.05 as
stopping criteria. The results for the reliability index thus calculated are shown in
Fig. 5.4 as function of 1/Hs. Clearly, a relation of the type β = a+b/Hs will provide
a very accurate fit of the MCS results using the reliability index β at Hs = 18m,
24 m and/or 30 m as input. The result for Hs = 40m falls a little outside this fit in
agreement with other studies [21, 39] showing that the linearity in the reliability
index β with 1/Hs usually only holds if β is greater than about 2.

It is noted that the simulation time for the results with the increased wave heights
only are small fractions of what was needed in the simulation with Hs = 12m. More
specifically, the number of simulations required to get results with the same CoV
is inversely proportional to the corresponding probability of exceedance. Hence,
if the values at Hs = 30m (β = 1.8001) and Hs = 24m (β = 2.1597) are used in
the extrapolation scheme β = a+ b/Hs, then the reduction in simulation time is
about 300. However, if simulation results for Hs = 10m was requested then the
extrapolation scheme will provide a four order of magnitude reduction in simulation
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time. Finally, it is noted that the FORM results seems to be asymptotically correct
as expected, but also that the extrapolation scheme for the MCS does not need any
input from a FORM analysis. Thus the two methods supplement each other rather
nicely, providing accurate results for low and high values of the reliability index.

5.5 Conclusions

The Monte Carlo simulation (MCS) results presented for the reliability index β for
parametric rolling of a ship suggest that the relation β = a+ b/Hs can provide an
accurate scaling of the reliability index with significant wave height. This could be
a useful procedure in case direct MCS for the design sea states are not feasible due
to too long computational time.

It is also noted that the result from First-Order Reliability Method (FORM) is
quite accurate, especially for high values of the reliability index.

From the reliability index the mean out-crossing rate and the probability of
exceedance directly follow from (5.15) and (5.16).
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Chapter 6
Domains of Parametric Roll Amplification
for Different Hull Forms

Claudio A. Rodrı́guez and Marcelo A.S. Neves

6.1 Introduction

Wave loads on specific hull forms under certain loading conditions can trigger
excessive roll motions on intact vessels. Due to these excessive motions loss of
carglo might occur or even capsizing. This is typically the situation when parametric
roll is involved [29]. This is specially true for small fishing vessels and large
container ships, [11, 12, 19], and hence of significant importance in the safe design
of such vessels. Various methods which are employed to simulate parametric rolling
are described in the literature, [4,5]. Most of these methods are based on uncoupled
mathematical models and the Mathieu equation and its variations are usually taken
as the governing equation of the resonant amplification process, [2, 7, 9, 31, 37].
Bulian [8] proposed a 1.5-DOF model; following another perspective, Spyrou [38]
investigated the coupling of surge motion with roll. For practical reasons more
commonly investigation focus on the first region of instability, which corresponds to
encounter frequency close to twice the roll natural frequency. A singular exception
is reported by Obreja et al. [27].

In following seas, parametric rolling may be reasonably conceived as an uncou-
pled process but in extreme head seas the coupling of the three restoring modes
(heave–pitch–roll) is essential, as coupling becomes significantly nonlinear [20].
Paulling and Rosenberg [28] and Blocki [7] are examples of limited formulations
involving more than one DOF. A third-order model coupled in heave, roll, and pitch
was first introduced in Neves and Rodrı́guez [21].

In order to allow incorporation of safety measures into ship design against
parametric rolling in head seas, the influence of hull forms and operating conditions
(including wave length and height) on the inception of this phenomenon and on the
resultant motion amplitudes should be well understood. Clarification of these issues

C.A. Rodrı́guez (�) • M.A.S Neves
LabOceano, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: claudiorc@peno.coppe.ufrj.br; masn@peno.coppe.ufrj.br

T.I. Fossen and H. Nijmeijer (eds.), Parametric Resonance in Dynamical Systems,
DOI 10.1007/978-1-4614-1043-0 6, © Springer Science+Business Media, LLC 2012

107



108 C.A. Rodrı́guez and M.A.S. Neves

is within the scope of the present work. This is intended to be achieved making use
of the concept of parametric amplification domain (PAD for short), a generalization
of the more usual concept of diagrams of limits of stability.

Spyrou and Tigkas [39], McCue et al. [18] and Bulian et al. [10] have employed
different techniques of analyzes related to limits of stability. Neves and Rodrı́guez
[25] introduced analytical expressions for the limits of stability of the roll linear
variational equation of the third-order model based on the technique developed
by Hsu [15]. An interesting aspect of these limits of stability is that they may
display upper frontiers, as a consequence of the bending to the right of the limits
of stability. This feature implies that at a given frequency, above a certain level of
wave amplitude, further increasing the wave amplitude may result in the complete
disappearance of parametric amplification.

Neves and Rodrı́guez [22, 23] proposed a 3-DOF mathematical model based on
multivariable Taylor series expansions of hydrostatic and incident wave pressure
fields with terms in heave, roll, and pitch expressed in terms of derivatives.
They showed that the 3-DOF algorithm efficiently reproduced intense parametric
rolling. That mathematical model has recently been extended to 6-DOF, Rodrı́guez
[32]. This more robust new model will be employed in the present investigation.
Examples of the capability of the 6-DOF model to adequately reproduce roll
amplification will be presented for two hulls for which experimental results are
available in the literature. These are a transom stern fishing vessel and a container
vessel. It is worth mentioning that the same hulls have been numerically investigated
by Ahmed et al. [3] employing a distinct algorithm. They compared the roll time
series for both hulls for different tested conditions, achieving in general adequate
agreement. However, the main target of the present investigation is not only to
demonstrate the good agreement of the numerical and experimental results. The
more ample objective here is to use the new model as a tool to, through systematic
mapping of PADs and a structured comparative analysis for different hulls, build up
a better understanding of the complexities of nonlinear parametric rolling, identify
tendencies in the responses and to achieve a consistent perception of the limitations
of the usual Mathieu modeling of parametric rolling as applied to the design of
safe ships.

Employing numerical techniques, it is possible to determine the mentioned
PADs for a given ship at different conditions (Neves and Rodrı́guez [24]). These
correspond to realistic mappings of roll amplifications, since the essential coupled
nonlinearities are kept in the approach. They are also more informative than the
classical Ince–Strut diagram (Belenky and Sevastianov [6]) or the more elaborate
Hsu [15] limits of stability, since all the regions inside the limits of stability are
mapped. Numerical PADs are here employed as a tool to investigate how distinct
hull forms may display substantially different standards of responses. These aspects
deserve careful examination in the context of the present IMO initiatives towards the
development of simple and reliable models for new generation intact ship stability
criteria.

A brief outline of the paper is as follows. In the next section a new 6-DOF
mathematical model is introduced. Subsequently, time series obtained from the
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6-DOF mathematical model are compared with experimental results. The nonlinear
responses of two ship hulls with marked hull form differences are considered, a
fishing vessel and a container ship. Additionally, a third hull, one of a large vertical
cylinder is taken as a counter example of parametric rolling weakly affected by
nonlinearities. Subsequently, the concept of parametric rolling amplification domain
is used to demonstrate the influence of relevant dynamical characteristics such as:
(a) coupling between modes; (b) influence of third-order terms on the topology of
the PADs; (c) influence of roll restoring curve; (d) influence of wave amplitude; and
(e) influence of initial conditions. Finally, main conclusions are drawn.

6.2 6-DOF Mathematical Model

The 6-DOF mathematical model is presented below in a concise form. More details
are given in Rodrı́guez [32]. Let the vector s(t) = [x(t),y(t),z(t),φ(t),θ (t),ψ(t)]T

represent rigid-body motions in 6-DOF with respect to an inertial frame of
reference. These are the surge, sway, and heave translational motions and roll,
pitch, and yaw angular motions. The nonlinear ship equations of motions may be
represented as:

(
M̃+ Ã

)
s̈+ B̃(φ̇)ṡ+Cr(s,ζ ) = Cext

(
ζ , ζ̇ , ζ̈

)
. (6.1)

In (6.1), M̃ is a 6× 6 matrix which describes hull inertial characteristics:

M̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m 0 0 0 mzG 0
0 m 0 −mzG 0 0
0 0 m 0 0 0
0 −mzG 0 Jxx 0 −Jzx

mzG 0 0 0 Jyy 0
0 0 0 −Jxz 0 Jzz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.2)

Its elements are: m, the ship mass, mzG a first moment, Jxx, Jyy and Jzz the mass
moments of inertia in the roll, pitch, and yaw modes, respectively, and Jxz, the
roll–yaw product of inertia, all moments taken with reference to the chosen origin.
Matrices Ã and B̃ are defined as:

Ã :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xẍ 0 Xz̈ 0 Xθ̈ 0
0 Yÿ 0 Yφ̈ 0 Yψ̈

Zẍ 0 Zz̈ 0 Zθ̈ 0
0 Kÿ 0 Kφ̈ 0 Kψ̈

Mẍ 0 Mz̈ 0 Mθ̈ 0
0 Nÿ 0 Nφ̈ 0 Nψ̈

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.3)
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B̃ :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xẋ 0 Xż 0 Xθ̇ 0
0 Yẏ 0 Yφ̇ 0 Yψ̇

Zẋ 0 Zż 0 Zθ̇ 0
0 Kẏ 0 Kφ̇ (φ̇ ) 0 Kψ̇

Mẋ 0 Mż 0 Mθ̇ 0
0 Nẏ 0 Nφ̇ 0 Nψ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.4)

Ã is also a 6×6 matrix, whose elements represent hydrodynamic generalized added
masses. Following the reasoning of Abkowitz [1], these hydrodynamic reactions
may be taken as linear. B̃ describes the coefficients of the hydrodynamic reactions
dependent on ship velocities (damping). These velocity-dependent reactions are also
taken as linear, except for the roll damping moment, which incorporates a quadratic
term in the roll equation:

Kφ̇ (φ̇ )φ̇ := Kφ̇ φ̇ +Kφ̇|φ̇ |φ̇
∣
∣φ̇
∣
∣ . (6.5)

Cr(s,ζ ) is a 6× 1 vector which describes nonlinear restoring forces and moments
dependent on the relative motions between ship hull and wave elevation ζ (t). On
the right-hand side of (6.1), the generalized 6× 1 vector Cext(ζ , ζ̇ , ζ̈ ) represents
linear wave external excitation, defined as the sum of the linear Froude–Krilov plus
diffraction wave forcing terms, dependent on wave heading χ , encounter frequency
ωe, wave amplitude Aw and time t. Its components represent the wave exciting forces
(XW, YW and ZW for surge, sway, and heave, respectively) and moments (KW, MW

and NW for roll, pitch, and yaw):

Cext(ζ , ζ̇ , ζ̈ ) = [XW(t),YW(t),ZW(t),KW(t),MW(t),NW(t)]T (6.6)

Elements in (6.3), (6.4), and (6.6) are derived assuming potential theory. WAMIT
code [42] is employed to compute zero-speed contributions of the added masses,
damping coefficients and exciting forces. Corrections due to ship speed of ad-
vance are introduced approximately considering the 2-D speed-correction terms of
Salvesen et al. [30] to be applicable to the 3-D panel methodology, a procedure that
was proposed by Inglis [16].

In the following the mathematical form of the nonlinear restoring actions Cr(s,ζ )
will be presented, more details may be found in Rodrı́guez [32]. Considering that
these actions are modeled with terms defined to third order in Taylor, they may be
grouped as constituted of first-, second-, and third-order contributions:

Cr(s,ζ ) = C(1)
r(s) +

(
C(2)

r(s) +C(2)
r(s,ζ )

)
+
(

C(3)
r(s) +C(3)

r(s,ζ )

)
. (6.7)

First-order terms are purely hydrostatic (depend only on ship displacements, s).
Second- and third-order terms have contributions from both hydrostatic (subscript
(s)) and incident wave pressure field (subscript (s,ζ )):
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C(1)
r(s) =

⎡

⎣
Zz 0 Zθ
0 Kφ 0

Mz 0 Mθ

⎤

⎦

⎡

⎢
⎣

z

φ
θ

⎤

⎥
⎦ (6.8)

C(2)
r(s) =

1
2

⎡

⎢
⎢
⎣

Zzzz+ 2Zzθ θ Zφφ φ Zθθ θ

0 2
(
Kzφ z+Kφθ θ

)
0

Mzzz+ 2Mzθ θ Mφφ φ Mθθ θ

⎤

⎥
⎥
⎦

⎡

⎢
⎣

z

φ
θ

⎤

⎥
⎦ (6.9)

C(3)
r(s) =

1
6

⎡

⎢
⎢
⎣

(Zzzzz+ 3Zzzθ θ )z2 + 3(Zφφzz+Zφφθ θ )φ2 +(Zθθθ θ + 3Zθθzz)θ 2

3Kzzφ z2φ +(Kφφφ φ2 + 6Kzφθ zθ )φ + 3Kθθφ θ 2φ

(Mzzzz+ 3Mzzθθ )z2 + 3(Mφφzz+Mφφθ θ )φ2 +(Mθθθ θ + 3Mθθzz)θ 2

⎤

⎥
⎥
⎦

(6.10)

C(2)
r(s,ζ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 Xζψ(t)

0 0 0 0 0 Yζψ(t)

0 0 Zζ z(t) 0 Zζθ (t) Zζψ(t)

0 0 0 Kζφ (t) 0 Kζψ (t)

0 0 Mζ z(t) 0 Mζθ (t) Mζψ (t)

0 0 0 0 0 Nζψ (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

y

z

φ
θ
ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.11)

C(3)
r(s,ζ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xζψz(t)ψz+Xζψφ (t)ψφ +Xζψθ (t)ψθ +Xζψψ(t)ψ2

Yζψz(t)ψz+Yζψφ (t)ψφ +Yζψθ (t)ψθ +Yζψψ(t)ψ2

Zζζ z(t)z+Zζ zz(t)z
2 +Zζ zθ (t)zθ +Zζφφ (t)φ2 +Zζζθ (t)θ

+Zζθθ (t)θ 2 +Zζψz(t)ψz+Zζψφ (t)ψφ +Zζψθ (t)ψθ +Zζψψ(t)ψ2

Kζζφ (t)φ +Kζ zφ (t)zφ +Kζφθ (t)φθ +Kζψz(t)ψz+Kζψφ (t)ψφ

+Kζψθ (t)ψθ +Kζψψ(t)ψ2

Mζζ z(t)z+Mζ zz(t)z
2 +Mζ zθ (t)zθ +Mζφφ (t)φ2 +Mζζθ (t)θ

+Mζθθ (t)θ 2 +Mζψz(t)ψz+Mζψφ (t)ψφ +Mζψθ (t)ψθ

+Mζψψ(t)ψ2 +Nζψz(t)ψz+Nζψφ (t)ψφ +Nζψθ (t)ψθ +Nζψψ(t)ψ2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.12)

The restoring coefficients nomenclature follows the logic for the derivatives coeffi-
cients in Taylor series expansions in which X, Y, Z, K, M, and N identify the DOF
of the restoring action and their subscripts represent the order of the dependency
of restoring forces and moments on ship motions and wave elevation. It should be
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noticed that purely hydrostatic terms have no components in the horizontal modes.
Second and third-order terms due to wave passage also incorporate dependency on
the instantaneous yaw angle (terms with ψ subscripts). In the case of longitudinal
waves this dependency may not be strong, but may be significant in oblique seas.
Each coefficient is obtained by means of polynomial fitting to the hydrostatic and
wave pressure variations obtained for displaced positions of the hull in heave, roll,
and pitch, as described in Rodrı́guez et al. [33] and Holden et al. [14].

6.3 Tested Hulls

Three hulls have been selected for the purpose of discussing the influence of
coupling on the development of parametric rolling:

(a) TS – a transom stern fishing vessel (Lpp = 22.09 m, GM = 0.37 m). Experi-
mental model tests in head seas at different speeds and tuning ωe/ωn4 =2 have
shown that this is a hull capable of developing intense parametric excitation in
very few cycles. Details of the hull characteristics and test program can be found
in Neves et al. [19].

(b) SAFEDOR – a container ship (Lpp = 150 m, GM = 1.38 m). Details of the
hull characteristics and experimental test program for this hull, also referred
in the literature as ITTC-A1 hull, can be found in SAFEDOR [34], Spanos and
Papanikolaou [35].

c) SPAR – a large cylindrical offshore platform (diameter D = 37.5 m; draft
T = 202.5 m, GM = 4.0 m) numerically and experimentally tested by Haslum
and Faltinsen [13]. Unfortunately their experimental results do not allow any
comprehensive validation of the model in this case. Neves et al. [26] numerically
investigated the possible causes of parametric rolling amplification of this
platform.

Figure 6.1 shows 3-D images of the three hulls (not to scale).

Fig. 6.1 3-D views:
(a) fishing vessel TS;
(b) containership SAFEDOR;
(c) SPAR platform
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6.4 Verification of the 6-DOF Mathematical Model

It is not a simple task to numerically reproduce all cases of parametric rolling in
head seas when a set of different wave conditions is considered, as demonstrated by
the recent SAFEDOR benchmark exercise, Spanos and Papanikolaou [35].

Samples of comparisons of roll motion, simulated numerical results against
experimental results are presented in Figs. 6.2 and 6.3 for the TS and SAFEDOR
hulls, respectively. It may be observed that the mathematical model in general
correctly captures the tendency for roll amplification for both hulls, although some
quantitative differences in roll amplitude may be observed in some cases. A larger
number of comparisons are given in Rodrı́guez [32], which additionally shows that
the nonoccurrence of parametric rolling is also adequately reproduced. It may be
concluded that, in general, the third-order mathematical model gives reliable results
when compared with the experimental results for both hulls for different speeds and
wave amplitudes, despite their marked differences in inertia and geometry.

Another successful verification exercise for this mathematical model in head seas
may be found in Rodrı́guez et al. [33] and Holden et al. [14], corresponding to a
large container vessel; in both references the original 3-DOF algorithm of Neves
and Rodrı́guez [22, 23] was employed.

6.5 Parametric Amplification Domains (PADs)

6.5.1 General

Analytical limits of stability have been discussed by Neves and Rodrı́guez [25]
based on the roll linear variational equation. The analytical approach, due to its
relatively easy implementation, may be easily applied in the ship preliminary design
stage. Two limitations are apparent: (a) the limits of stability are those of a linearized
mathematical model; (b) they do not provide information on the magnitude and
distribution of parametric rolling amplifications within the unstable region, only the
borders of the PADs are determined. To overcome this inconvenience, Neves and
Rodrı́guez [24] proposed a completely numerical approach considering the set of
nonlinearly coupled equations of the heave, roll, and pitch motions. By means of
direct integration of the set of equations for varying values of encounter frequency
and wave amplitude, the steady state roll amplitude may be mapped, therefore
adding, by means of appropriately defined color scaling, relevant quantitative
information to the area inside the limits of stability.

Considering the previously demonstrated strength of the new 6-DOF model to
simulate intense parametric rolling, in the following sub-sections the PADs for the
three hulls will be obtained. In the next five sub-sections a comparative analysis of
PAD topologies is addressed aiming at revealing global characteristics of the rolling
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Fig. 6.2 Ship TS: (a) Fn= 0.11, HW/λ = 1/24; (b) Fn= 0.20, HW/λ = 1/33; (c) Fn= 0.30,
HW/λ = 1/40; (d) Fn= 0.30, HW/λ = 1/31
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Fig. 6.3 Ship SAFEDOR: (a) Fn= 0.08, HW/λ = 1/49; (b) Fn= 0.08, HW/λ = 1/31;
(c) Fn= 0.12, HW/λ = 1/49; (d) Fn= 0.12, HW/λ = 1/31
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Fig. 6.4 PADs for ship TS: GM = 0.37 m, φ0 = 2◦, Fn = 0.11: (a) 1-DOF; (b) 6-DOF

Fig. 6.5 PADs for ship TS: GM = 0.37 m, φ0 = 2◦, Fn = 0.20: (a) 1-DOF; (b) 6-DOF

responses of substantially different hull forms and exploring influences of different
nonlinearities. The expected outcome of the following discussions is an increased
understanding of the complexities of parametric rolling.

6.5.2 Influence of Coupling

What essential characteristics of global responses are lost when a simple uncoupled
model is assumed? Are such losses comparable as distinct hull forms are consid-
ered?

Figures 6.4 and 6.5 show a comparison of PADs for TS hull considering on
the left-hand side diagram the PADs for 1-DOF (uncoupled) roll equation and on
the right the 6-DOF model. Results are given for two different ship speeds. For
both speeds, it is noticed that the PADs for uncoupled and coupled responses are
substantially different. In the case of the uncoupled model not only the topology
is different: the intensity of roll responses shown in the dark areas (indicating ship
capsizing) are much higher than the experimental results previously discussed in
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Fig. 6.6 PADs for ship SAFEDOR: GM = 1.38 m, φ0 = 2◦, Fn = 0.08: (a) 1-DOF; (b) 6-DOF

Fig. 6.7 PADs for ship SAFEDOR: GM = 1.38 m, φ0 = 2◦, Fn = 0.12: (a) 1-DOF; (b) 6-DOF

Sect. 6.4. Thus, it is clear that consideration of coupling is essential for this type
of hull, since PADs for uncoupled model indicate ship capsizing for the majority of
the domains. When 6-DOF model is applied, the large capsize area disappears and
results accordingly conform to the experimental results. It is important to notice that
in all cases the PADs display the occurrence of upper frontiers due to the existence
of a backbone curve inclined to the right. Figures 6.6 and 6.7 show comparisons
of PADs for SAFEDOR hull considering on the left-hand side of each figure the
1-DOF (uncoupled) roll equation and on the right the 6-DOF model.

Firstly, it is noticed that the PADs for this hull are much slimer than in the case of
the TS hull. Secondly, PADs are not too different for the two speeds considered. It
may also be observed that for both speeds the PADs are almost invariant, irrespective
of simulating with 1-DOF or 6-DOF. Thus, in general, this hull is somewhat
insensitive to coupling. Yet, if this hull do not depend much on nonlinear coupling
with the vertical modes, it still displays upper frontiers, which is a roll nonlinear
characteristic, essentially dependent on the heave and pitch responses. Noticing the
existence of a strong backbone bending the PADs to the right, it is concluded that
it is necessary for this hull to take into account the nonlinear additional stiffness R0

term defined in (28) of the Neves and Rodrı́guez [25] (or the k term defined in (6) of
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Fig. 6.8 PADs for SPAR platform: GM = 4.00 m, φ0 = 2◦, Fn = 0.00: (a) 1-DOF; (b) 6-DOF

the paper Spanos and Papanikolaou [36]) to the uncoupled roll equation. Further to
be observed is that, as a consequence of the strong backbone bending to the right, in
all cases the PADs for this hull are located totally to the right of the exact Mathieu
tuning, which corresponds to encounter frequency equal to twice the roll natural
frequency.

After examination of the PADs for the two ships, both of them quite prone to
parametric rolling, it is now time to compare their results with those corresponding
to the SPAR platform, here defined as a simple vertical cylinder. But, before that,
it is important to notice that Neves et al. [26] have demonstrated that hull forms
with vertical walls are not parametrically excited by variations of the hydrostatic
pressure field. Instead, it was shown that it is the incident wave potential that may
induce time-dependent characteristics to the system, proportional to its oscillatory
motions, thus creating an internal excitation at wave frequency. Therefore, a weak
parametric excitation is expected to result for this type of hull. As will be seen
below, this feature makes this hull an interesting counter example to the previous
cases. Here, it is possible to notice that the behavior of this type of hull may be
perfectly modeled as a linear Mathieu equation.

Figure 6.8 shows the 1-DOF and 6-DOF PADs for the SPAR hull. In practice,
nothing changes. As anticipated, the 1-DOF and 6-DOF models give the same
results. Therefore, a 1-DOF model may be adequate for modeling parametric rolling
in this case. Also important to realize is that the PADs have no upper frontiers. Quite
distinct from the previous cases presented for the TS and SAFEDOR hulls.

In order to summarize the above discussion, it may be seen that: (a) TS
hull, nonlinear coupling terms are crucially relevant, uncoupled roll equation is
not capable of taking into account the complexity of responses in this case;
(b) SAFEDOR hull, heave and pitch equations may be taken as uncoupled from
the roll mode, but the roll equation must include nonlinear terms responsible for the
bending to the right (backbone curve) discussed by Neves and Rodrı́guez [25] and
Spanos and Papanikolaou [36]; (c) SPAR: this may be seen as a physical system
nicely modeled by the linear Mathieu equation.
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Fig. 6.9 PADs for second-order modeling: (a) TS, Fn= 0.11; (b) SAFEDOR, Fn = 0.08;
(c) SPAR

6.5.3 Influence of Third-Order Terms

This analysis is relevant for the establishment of the concept of nonlinear additional
stiffness. It is convenient to address the influence of nonlinear couplings separately
from the analysis of roll/roll nonlinearities, which will be discussed in the next
sub-section. So, here the roll/roll nonlinearities will be kept in the simulations. By
means of an analytical methodology, Neves and Rodrı́guez [25] demonstrated that
the heave–pitch–roll coupling induce a bending to the right of the limits of stability.
Now, we wish to numerically verify this relevant characteristic, again following
the comparative approach. For this purpose Fig. 6.9 (upper) for TS hull should be
compared to Fig. 6.4 (right); Fig. 6.9 (lower left) for the SAFEDOR hull should be
compared to Fig. 6.6 (right); Fig. 6.9 (lower right) should be compared to Fig. 6.8
(right).

When third-order coupling terms are not considered, the resulting roll responses
for the TS hull are extremely (and unrealistically) high and the PAD has no upper
frontier, as shown in Fig. 6.9 (upper). This is indicative that the roll responses for this
hull are very much dependent on the third-order nonlinearities. When these terms
are deleted the equations of motions remain nonlinearly coupled but are not capable
of reproducing the experiments. Therefore, there is a direct connection between
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the existence of a backbone bent to the right and the efficient numerical control of
the excessive second-order results. In fact, this aspect had been highlighted in the
analytical analysis of Neves and Rodrı́guez [25]; this is now numerically confirmed
in the case of the nonlinear model.

Now it is interesting to check whether the other hulls tend to be also so much
dependent on this characteristic. Figure 6.9 (lower left) shows that the container
vessel is affected in its tendency to have the PAD bent to the right thus losing the
upper frontiers, as is the case with the classical Ince–Strutt diagram. Finally, it is
observed that in the case of the SPAR the PAD with the second-order terms (Fig. 6.9
(lower right)) and with third-order terms (Fig. 6.8 – right) are practically the same,
there is no noticeable influence of third-order terms, the amplifications having a
great resemblance to the Ince–Strutt diagram.

6.5.4 Influence of Roll/Roll Nonlinearities

Naval architects traditionally apply the rationale that the static restoring curve is of
fundamental importance in the characterization of the capability of a ship to avoid
the risks associated with unstable conditions. Accepting this view, it may be relevant
to point out the limited role that the restoring curve plays in the development of
unstable motions associated with parametric rolling in head seas.

The purpose here is to investigate what is the role of the nonlinearities of the
restoring curve when compared with the nonlinearities associated with the coupling
of roll with heave and pitch. Referring again to the analytical limits of stability
developed by Neves and Rodrı́guez [25], it was established that the limits of
stability, derived on the basis of the roll linear variational equation suffered no
influence from the shape of the restoring curve. The present nonlinear numerical
approach allows one to verify if the limits are changed as the restoring curve
is considered linear or not. The SAFEDOR hull will be used here as example.
Figure 6.10 (left) shows the PAD for simulations in which the 6-DOF had all
nonlinearities up to third-order, but the restoring curve was taken as linear. Figure
6.10 (right) corresponds to the complete model, with restoring curve adjusted by
a ninth-order polynomial. It should be noticed that Fig. 6.10 (right) is the same
as Fig. 6.6 (right). When comparing the two PADs, it is noticed that the area of
parametric amplification is exactly the same in both cases, what is different are the
roll amplitudes inside the domains of amplification. These tend to be distributed
inside the PAD in an inverted topology. That is, in Fig. 6.10 (right) the lower roll
amplitudes are distributed along the upper frontiers of the PAD, whereas in Fig. 6.10
(left) these are located along the lower frontiers of the PAD.
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Fig. 6.10 Influence of roll/roll nonlinearities on third-order modeling for ship SAFEDOR at
Fn = 0.08: (a) linear; (b) nonlinear

6.5.5 Influence of Wave Amplitude

It has been shown that wave amplitude plays a significant role on the development of
nonlinear characteristics of the coupling between roll motion and the other modes.
The aim here is to get a clear perception of the quite distinct bifurcations that each
hull would undergo as wave amplitude is increased. Figure 6.11 shows the steady
roll amplitudes inside the PAD as the tuning between encounter frequency and roll
natural frequency varies, for values close to the exact Mathieu tuning of ωe = 2ωn4,
that is, encounter frequency equal to twice the roll natural frequency. It is observed
in Fig. 6.11 (upper left) that for the fishing vessel, increasing wave amplitude the
roll amplitude starts to amplify at a given threshold wave amplitude and grows
up continuously and smoothly. It then reaches a maximum, and subsequently
diminishes in the form of an abrupt jump down to a condition of no amplification
response.

On the other hand, as shown in Fig. 6.11 (lower left) for the SAFEDOR container
ship, for low wave amplitudes the roll responses to parametric excitation start with
a jump bifurcation, reaching very rapidly high amplitude values, of the order of
24◦ for some frequencies. After this initial bifurcation, roll responses for increasing
wave amplitudes tend to decrease in a smooth trend, finally disappearing for higher
wave amplitudes. This trend had been observed in the experiments conducted by
Taguchi et al. [40]. It is concluded that the fishing vessel and container vessel display
quite distinct paths to bifurcations.

For both ship hulls a tendency for the roll responses to disappear for increased
wave amplitudes is observed. A markedly distinct variation of roll responses with
increasing wave amplitude is observed in the case of the SPAR hull, as shown in
Fig. 6.11 (lower right). In this case there is no upper limit of stability; hence roll
amplitudes are ever increasing with wave amplitude, following a well known trend
of linear systems.

There is here a point that deserves further discussion. If in all the previous
discussions it became apparent that the fishing vessel tends to display more complex
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Fig. 6.11 Influence of wave amplitude

dynamical responses than the container vessel, it is necessary to ponder that the
latter undergoes a sudden bifurcation to high roll amplitudes for small values of
wave amplitude. On the contrary, the fishing vessel has the same type of bifurcation
but located at the end of the range of larger wave amplitudes. This is a result that
must be taken into account when alert systems are to be designed for the on-line
prediction and detection of parametric rolling of container ships.

6.5.6 Influence of Initial Conditions

It is well known that numerically simulated roll parametric amplification may
develop earlier or later in time in case a different initial roll amplitude is as-
sumed. Matusiak [17] showed a case of numerical simulation in which a larger
initial roll amplitude resulted in parametric amplification developing earlier but
with the same final roll amplitude; this tendency has also been addressed by
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Fig. 6.12 Influence of initial conditions ship TS, Fn = 0.20: (a) φ0 = 2◦; (b) φ0 = 20◦

Fig. 6.13 Influence of initial conditions ship SAFEDOR, Fn = 0.08: (a) φ0 = 2◦; (b) φ0 = 20◦

Paulling [29]. Umeda et al. [41] applied the same reasoning when comparing
numerical simulations to experimental time series. However, there are conditions in
which the influence of different initial conditions may result in responses migrating
to substantially different attractors.

Figure 6.12 compares the PADs for the TS hull for two initial roll amplitudes.
Clearly, in this case the first noticeable influence of a distinct initial condition is
to radically modify the topology of the amplification region. In the case illustrated
in Fig. 6.12 the amplification region become much larger (growing mainly upwards
and to the left). Equivalent topological changes had already been observed in Neves
and Rodrı́guez [24] for the same TS hull employing the original 3-D mathematical
model. It is now interesting to verify in Fig. 6.13 that the SAFEDOR hull will
not undergo the same level of topological metamorphosis. In fact, in this case the
PAD is only marginally increased, particularly in the region of higher encounter
frequencies. On the other hand, it is possible to identify zones internal to both
PADs having distinct levels of roll amplification. This is exemplified in Fig. 6.14
which shows time series and phase diagrams indicating that for the same wave
conditions but distinct initial heel angles, for the SAFEDOR hull substantially
different attractors may be reached.
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Time series - SAFEDOR ship

roll simulated roll simulated
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Fig. 6.14 Time series and phase diagrams for distinct initial conditions

It is concluded that the SAFEDOR hull is substantially less affected by initial
conditions than the TS hull, thus confirming that the TS hull tends to display more
complex dynamical responses. It goes without demonstration that in the case of the
SPAR hull no dependency on initial conditions takes place.

6.6 Conclusions

A new 6-DOF mathematical model has been introduced and verified. The model
has been employed for generating numerical domains of roll amplification for three
different types of floating vessels. The following conclusions have been reached:

(a) Influence of coupling: PADs have been obtained for two mathematical models,
one with uncoupled roll, the second one with complete 6-DOF coupling. It was
shown that in the case of the fishing vessel the nonlinear couplings are essential,
resulting in quite distinct PADs for the distinct numerical models. On the other
hand, it was shown that the container ship dynamics may be approximately
modeled by means of an uncoupled model, but retaining a tendency to display
PADs with upper frontiers. Therefore, it may be concluded that the uncoupled
equation may be assumed to be an acceptable model for the container ship if
a detuning factor is considered; but this is not the case of the highly unstable
fishing vessel. On the other hand it has been shown that the SPAR platform
behaves as a typically uncoupled linear Mathieu-type solution.
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(b) Influence of third-order terms: it has been shown that a coupled second-order
model cannot reproduce adequately the roll amplifications for the two ships.

(c) Influence of roll/roll nonlinearities: it has been confirmed that the nonlinear roll
restoring curve affects only the intensity of roll responses inside the PAD, but
the borders of the PAD are not affected by these nonlinearities.

(d) Influence of wave amplitude: steady roll amplitudes simulated within the
amplification area have shown quite distinct characteristics when results for the
fishing vessel are compared to those corresponding to the container ship. The
appearance of bifurcations is quite distinct in each case, as wave amplitude is
increased in each case. This is an important dynamical characteristic displayed
by the present investigation: distinct hulls may display quite distinct responses
to roll parametric excitation. These aspects should be carefully examined when
on-line detection of parametric rolling is a design objective.

(e) Influence of initial conditions: by applying different initial conditions it has
been shown that different attractors may be reached, a dynamical feature of
relevance for the modeling of parametric rolling in irregular seas. This is an
important subject for future investigations.
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Chapter 7
Probabilistic Properties of Parametric Roll

Vadim Belenky and Kenneth Weems

7.1 Introduction

Parametric roll in irregular waves is characterized by a number of specific properties
making it different from other nonlinear ship motions in irregular seas. The
parametric excitation has a relatively narrow frequency band and a threshold that
depends on roll damping. The narrow frequency band makes autocorrelation to
decay slowly. The existence of damping thresholds adds statistical uncertainty; a
wave group slightly below the threshold does not add any energy into the dynamical
system; that is why parametric roll “comes and goes”.

7.2 Numerical Simulation

The driving force of parametric roll is variation of stability in waves. Therefore a
numerical tool for parametric roll must be based on body-nonlinear formulation for
hydrostatic and Froude–Krylov forces and moments.

Roll damping is another phenomenon that needs to be included as accurate
as possible. The only way to calculate roll damping completely is CFD/RANS.
However high computational cost prevents it from being a practical tool for Monte
Carlo simulation where long record may be required. A hybrid model is more
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practical, where potential forces of roll damping (wave damping) are computed
while skin friction and vortex forces are taking from the roll decay test. The model
and calculation procedure are described by Belenky et al. [4].

Influence of other degrees of freedom, namely pitch and heave may be important
especially in head or bow quartering seas where these motions are not insignificant.
As it was shown in [11], including heave and pitch may decrease the magnitude of
the change of stability in waves.

7.3 Configuration of a Sample Ship and Setup for Numerical
Simulations

Following the line of the previous studies from France et al. [7], Shin et al. [11],
Belenky et al. [3], C11-class post panamax container carrier was used as a sample
ship for the study. The sketch of the body plan and a panel model taken from Shin
et al. [11] are shown in Fig. 7.1.

Following Belenky et al. [3] JONSWAP spectrum was used. Fourier series are
used to represent the stochastic process of wave elevation.

ζw(t) =
N

∑
i=1

ai cos(ωit +ϕi) , (7.1)

where wi is the frequency set, amplitudes ai are defined from the spectrum, and
phase shift ji are random numbers with uniform distribution. Each realization of
waves is generated with a new set of random phase shift.

Discretization with 200 equally spaced frequencies provides 1500 s of simulation
time free from the self-repeating effect. Absence of the self-repeating effect is veri-
fied by evaluation of the autocorrelation function using cosine Fourier transform:

R(τ j) =

∫ ∞

0
s(ω)cos(ωτ j)dω =

Nt

∑
i=1

SWi cos(ωiτ j), τ j = Δ t · j. (7.2)

Fig. 7.1 Body plan and panel model of C11-class containership
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Fig. 7.2 Spectral density and autocorrelation function for wave elevations

Table 7.1 Parameters for
numerical simulation

Length BP, m 262 Speed, kn 10
Breadth, m 40 Number of records 50
Draft, m 12.36 Length of record, s 1500
Depth, m 27.4 Time step, s 0.8
KG, m 17.55 Number of points 1875

Here s is value of spectral density, SWi is the power spectrum, t j is current moment
of time and Dt is a time step. If the value of the autocorrelation function remains
near zero after the initial decay, then the self-repeating effect is not present and
formula (7.1) with the current frequency discretization is the valid model of the
stochastic process on the considered simulation time. On the details of self-repeating
effect (see Belenky [1,2]. The spectral density and the autocorrelation functions are
shown in Fig. 7.2. Key numerical parameters of the sample ship and the numerical
simulation setup are summarized in Table 7.1.

Configuration and conditions of simulation described above exactly correspond
to those used by Belenky et al. [3], where parametric roll in long-crested head seas
was detected. Numerical simulation included three degrees of freedom: heave, roll,
and pitch. Forward speed was assumed constant, influence of wave of ship motions
on speed and heading was not simulated. Hybrid solver LAMP-2 was used: it
included 3-D body-nonlinear formulation of hydrostatic and Froude–Krylov forces.
Hydrodynamic forces including diffraction, radiation, wave damping, and added
mass was simulated over a mean waterline, i.e., body-linear formulation was used.

This formulation allows utilization of Impulse Response Function (IRF) option
of LAMP-2. This lead to dramatic decrease of computational costs as the kernel of
the convolution integrals are pre-calculated and reused for each record.

Figure 7.3 shows samples of records of roll motions. Since the simulations
were performed in exact head long-crested seas, there is no direct roll excitation.
Therefore all roll motions are caused by parametric resonance; to provoke its
development all records were started with 10◦ initial angle.
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Fig. 7.3 Sample records of parametric rolls

Similar to the picture described in Belenky et al. [3], parametric roll comes and
goes in random instances of time, as the waves capable generating of parametric
excitation are not encountered all the time. This results in practical nonergodicity of
parametric roll, as generation of a sufficiently long wave record may be prohibitively
expensive due to self-repeating effect.

7.4 Spectrum of Parametric Roll

Figure 7.4 shows a power spectrum of the selected record produced by the numerical
simulations. These spectra were evaluated with FFT with 512 frequencies, so only
1024 points were used from each record.

As it can be seen from Fig. 7.4, the record power spectra of parametric roll
are highly variable from record to record. Sum of the spectral value presents a
variance estimate over the length of record that was used for spectral evaluation.
This estimate varies quite significantly, which can be seen as a manifestation of
practical nonergodicity.

Figure 7.5 presents a power spectrum averaged over the ensemble. As it can be
expected it is smoother than that any of the spectra calculated over a record. The
variance estimated over the averaged spectrum is closer to the statistical estimate
over the ensemble.

The value of spectral width e shown in Fig. 7.4 wave calculated using linear
interpolation of the spectral density s(ω) evaluated from the power spectrum S(ω),
followed by calculation of spectral moments of the second and fourth order:
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Fig. 7.4 Power spectra of different records

Fig. 7.5 Ensemble-averaged
power spectrum
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s(ω) =
S(ω)

Δω
, mr =

∫ ∞

0
s(ω)ωrdω , ε =

√

1− m2
2

m0m4
. (7.3)

Here mr is a spectral moment of rth order.

7.5 Autocorrelation Function

The autocorrelation function is another important characteristic of a stochastic
process showing the dependence of the current value from the previous history. It
is related with the spectral density through cosine Fourier transform (7.2), but also
can be estimated directly from each record:

R∗
j =

1
N − j

N− j

∑
i=1

(φi −m∗
φ )(φi+ j −m∗

φ )r
∗
j =

R∗
j

V ∗ . (7.4)

Here f are values of roll angle, m∗
φ is estimate of the mean value, r∗j is estimate of

relative autocorrelation function.
Figure 7.6 shows autocorrelation functions estimate for a selected sample

records. The most evident difference between these autocorrelation functions and
the one shown in Fig. 7.2 is that the statistical estimates do not decay. They not only
show some values at the end of the record, but even grow. This is a result of rising
statistical uncertainty. Once j in the formula (7.4) becomes large, there are fewer
and fewer data points left, the last values of the estimate (7.4) cannot be trusted. The
evaluation of the autocorrelation function with cosine Fourier transform does not
carry this type of uncertainty.

The artificial character of the increase of the estimate of autocorrelation function
can also be stated from general considerations; there is no physical reason why
the dependence should be stronger with time. Belenky and Weems [4] described
a procedure of cutting the autocorrelation function and demonstrated that it is
equivalent to smoothing of the spectrum.

The main idea of that procedure was to find a point where the estimate of
autocorrelation starts to grow again and cut it there. Looking at Fig. 7.6 it is
possible to visually define these points (shown as black arrows). These points appear
to be quite far from each other; this may be another manifestation of practical
nonergodicity of parametric roll.

Prior to cutting the autocorrelation function, it makes sense to find ensemble
average estimate of autocorrelation, shown in Fig. 7.7. As the ensemble-average
spectrum (Fig. 7.5) is smooth, the ensemble-averaged estimate of the autocorrelation
function has significantly reduced numerical error caused by statistical uncertainty.
Visually the cutting point (shown by the black arrow) is around 70 s.
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Fig. 7.6 Autocorrelation functions estimated over selected records

Fig. 7.7 Ensemble-averaged estimate of autocorrelation function

Indeed, the mean value of this error must be zero; once the number of records
tends to infinity, the estimate of autocorrelation function becomes the true the-
oretical autocorrelation function. Since there is no reason for an increase of the
autocorrelation function, its values beyond the virtual cut-off point must be small.

Belenky and Weems [5] proposed a formal procedure to find the cut-off point
using the piecewise linear envelope of the autocorrelation function. This procedure
can be improved if the formal definition of the envelope is used:

ER(τ) =
√

(R∗
a(τ))

2 +(Q∗
a(τ))

2 (7.5)

Here Q∗
a is the result of Hilbert transform of ensemble-averaged autocorrelation

function. It is defined as follows:

Q∗
a(τ) =

∫ ∞

0
(CI(ω)cos(ωτ)−CR(ω)sin(ωτ))dω , (7.6)
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Fig. 7.8 Envelope for the ensemble-averaged autocorrelation function

Fig. 7.9 Comparison of
power spectra calculated with
FFT and from the estimate of
autocorrelation function

Fig. 7.10 Autocorrelation function averaged between statistical and spectral estimates

where CR is real and CI is imagined part of Fourier coefficients of the R∗
a . So

the Hilbert transform produces a complimentary function to R∗
a by shifting it 90◦.

Numerically it was performed with the combination of direct and inverse FFT. The
results are shown in Fig. 7.8. The minimum of the envelope is the cut-off point.

The autocorrelation function can be used to calculate the spectrum:

s(ω j) =
2
π

∫ ∞

0
R(τ)cos(ω jτ)dτ =

2
π

N

∑
i=1

R∗ (τi)cos(ω jτi)Δτ. (7.7)

The spectrum calculated with formula (7.7) may contain a systematic numerical
error: instead of zero it tends to some small value both in low and high frequency.
This error can be easily corrected by subtraction of the spectral value corresponding
to highest frequency.

A comparison between the spectra calculated with both methods is shown
in Fig. 7.9. They are very close, which demonstrates validity of the considered
procedure. The autocorrelation function for the further analysis can be taken as an
average between statistical and spectral estimates, see Fig. 7.10.
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7.6 Uncertainty of Statistical Estimates of a Single Record

Estimates of the average and the variance of the record are expressed with well-
known formulae. The variance can be estimated using the true value of the average
m f (if known) or its estimate m∗

φ based on the volume of the sample N:

m∗
φ =

1
N

N

∑
i=1

φi, V ∗
φ =

1
N

N

∑
i=1

(
φi −mφ

)2
=

1
N

N

∑
i=1

(
φi −m∗

φ
)2
. (7.8)

The mean value and the variance estimated over a sample of a finite volume are
random numbers. Really, what is the estimate of the mean value? It is a sum of
random numbers divided by a constant. The result is, indeed, a random number.

As any other random numbers, the estimates have their own distribution and
all other properties. So, it is appropriate to introduce into consideration mean and
variance of the estimates.

As per the laws of big numbers, increasing volume of sample leads to more
accurate estimates; therefore the variance of a statistical estimate is expected to
decrease with the increase of the sample volume.

The mean value of the average equals to itself as the average is an unbiased
estimate. While the mean value of the variance does not equal to itself as the
variance estimate is slightly biased. This bias is removed with another well-known
formula.

m
(
m∗

φ
)
= m∗

φ , m
(
V ∗

φ
)
=

N
N − 1

V ∗
φ . (7.9)

Evaluation of the variance of the mean and the variance of the variance is more
complex as the variance of estimates bears information on statistical uncertainty. For
independent data points, the variances of the mean and the variance are given as:

V
(
m∗

φ
)
=

Vφ

N
≈ V ∗

φ

N
, V

(
V ∗

φ
)
=

M4

N
− N − 3

N − 1

V 2
φ

N
. (7.10)

Here M4 is the fourth central moment of the roll angle. It is defined as:

M4 :=
∫ ∞

−∞

(
φ −mφ

)4
f (φ)dφ =

1
N

N

∑
i=1

(
φi −m∗

φ
)4

= Kt · (V ∗
φ
)2
, (7.11)

where Kt is the kurtosis. This estimation, however, may be difficult, as it requires
impractical amount of data; due to the fourth power, the estimate is very sensitive
to outliers. As a result, better accuracy can be achieved if it is expressed through
an assumed kurtosis Kt of the distribution deemed suitable for the considered case.
The usual practice is to assume Kt = 3 for most periodic processes, i.e., the kurtosis
is taken from normal distribution. This leads to the following approximate formula
for the variance of the variance of the random variable:

V
(
V ∗

φ
)
=

2
N − 1

(
V ∗

φ
)2

(7.12)
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Formulae (7.10) and (7.12) are written for a set of independent data points. It is
not the case when considered a response of nonlinear dynamical system, which is
characterized by a certain degree of dependency of the data points. A correction
needs to be introduced that will “fine” the data for dependency. The estimate of
autocorrelation was needed exactly for this purpose. While the mean value itself is
not affected by the dependence, the variance of the mean for a set of dependent data
points xi, is expressed as [10]:

V
(
m∗

φ
)
=

1
N

N

∑
i=−N

R
(
τ|i|
)
(

1− |i|
N

)

. (7.13)

Here the dependency is defined by the autocorrelation function R(t), symbol |i|
is used as “absolute value of i ”.

The formula (7.13) can be seen as generalization of (7.10) for the case of
dependent data points. If the data points are independent (the case of white noise),
the autocorrelation function equals to zero everywhere except of the origin:

White noise: R(τ) =
{

Vφ τ = 0
0 τ > 0

(7.14)

Substitution of autocorrelation (7.14) into (7.13) leads to the first formula (7.10).
While the estimate of the variance itself is not affected by the dependence, the
variance of the variance is expressed as [10]:

V
(
V ∗

φ
)
=

2
N

N

∑
i=−N

(
R
(
τ|i|
))2

(

1− |i|
N

)

. (7.15)

This formula uses the assumption that the process has normal distribution, so Kt = 3.
The formula (7.15) can be also seen as a generalization for independent data points.
Substitution of (7.14) into (7.15) leads to

V
(
V ∗

φ
)
=

2
N

(
Vφ
)2
. (7.16)

For the large values of N, the formula (7.16) is practically identical to the second
formula (7.10).

Distribution of these estimates, strictly speaking, depends on the distribution of
the process (or a random variable) itself. For example, if the random variable is
normal, estimate of its mean value has Student t distribution while, the estimate
of the variance has chi-square distribution. The distribution of parametric roll is
quite far from normal, see Belenky et al. [3], Hashimoto et al. [8]. As can be seen
from Fig. 7.11, the distribution is leptokurtic (more “pointy” than normal). This
also means that the tail of the distribution is “thicker” than normal. This is a sign
of danger, as the ship tends to spend more time with large roll angles. Fitting a
distribution for parametric roll is a separate problem that falls beyond the scope of
this text.
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Fig. 7.11 Distribution of parametric roll

Distribution of both mean value and variance estimate must tend to normal distri-
bution with the increase of the volume of the sample. Central limit theorem provides
that a sum of independent comparable random variables tends to normal distribution
with the increase of number of components irrespective to the distribution of each
individual component.

Roll motions are presented with a set of dependent data point. In the considered
case of parametric roll, this dependence lasts for almost half of the record length.
Therefore application of the normal distribution for mean value and variance
estimates of a record is approximate.

Once the decision of approximation is made, calculation of confidence interval
for the mean value estimate is straight forward:

m∗
φ ±Δm∗

φ , Δm∗
φ = Kβ

√

V
(

m∗
φ

)
(7.17)

Kβ = QN (1− 0.5(1−β )), QN = Φ−1. (7.18)

Here QN is the inverse function to a normal cumulative distribution function with
zero mean and unity variance, β is accepted confidence probability.

Calculation of confidence interval for the variance estimate for a record is more
complex. By definition, the variance is a positive value, however, normal distribution
allows negative values as well. It means that application of formula (7.17) for
variance may, in principle, extend lower boundary of the confidence interval below
zero which does not carry any meaning.

An attempt to use chi-square distribution encounters difficulties. The mean value
and variance are known for the variance estimate. Chi-square distribution has only
one parameter – number of degrees of freedom. Therefore it is not possible to use it
for a random variable with known mean value and variance.

Another possibility is to try noncentral chi-square distribution. In addition to the
number of degrees of freedom it has a noncentric parameter, which must be positive
as well as the number of degrees of freedom (that is actually not necessarily integer).
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Fig. 7.12 Zero-truncated normal distributions for variance estimates

These limitations may prevent the use of noncentral chi-square distribution for the
considered case. The zero-truncated normal distribution, however, does not have
these limitations. It is defined as:

f (v;k, p1, p2) =

{
0 v < 0

k√
2π p2

exp
(
− (v−p1)

2

2p2

)
v ≥ 0.

(7.19)

Here v is the random variable, k is a normalization factor needed to make sure that
the area under the PDF equals 1. The parameters p1 and p2 take the place of mean
value and variance: the truncated normal distribution no longer directly use the mean
value and the variance as parameters.

As a result, the factor k as well as the parameters p1 and p2 need to be found from
the following system of algebraic equations:

⎧
⎪⎪⎨

⎪⎪⎩

∫ ∞
0 f (v;k, p1, p2)dv = 1
∫ ∞

0 f (v;k, p1, p2)vdv = m
(

V ∗
φ

)

∫ ∞
0 f (v;k, p1, p2)

(
v−m

(
V ∗

φ

))2
dv =V

(
V ∗

φ

)
.

(7.20)

Example distributions for records # 1 and 41 are shown in Fig. 7.12.
Once the distribution has been accepted, further calculation of the boundaries of

the confidence interval V ∗
Low and V ∗

Up does not encounter any principal difficulties.

V ∗
Low = QT (0.5(1−β )); V ∗

Up = QT (0.5(1+β )). (7.21)

Here β is the confidence probability, while QT is an inverse function of CDF of
truncated normal distribution F:

F(v;k, p1, p2) =

{
0 v < 0
∫ v

0
k√

2π p2
exp

(
− (z−p1)

2

2p2

)
dz v ≥ 0.

(7.22)
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7.7 Uncertainty of Statistical Estimates of an Ensemble

Consider an ensemble set containing NR independent records/subsets, each consist-
ing of Ni dependent data points. The estimate of mean value is expressed as:

m∗
Aφ =

1

∑NR
i=1 Ni

(
NR

∑
i=1

Ni

∑
j=1

φi j

)

=
NR

∑
i=1

(
Ni

∑NR
i=1 Ni

1
Ni

Ni

∑
j=1

φi j

)

=
NR

∑
i=1

Wim
∗
φ i. (7.23)

Here m∗
φ i is the mean value estimate of a record i defined by the formula (7.8). In

the considered case all of the records are of the same length, so Wi = 1/NR.
Evaluation of the confidence interval requires variance of the mean. It can

be calculated by applying variance operator to both sides of (7.23) taking into
account that random values m∗

φ i are deemed independent (as they were estimated
over independent records) and weights Wi are deterministic numbers. Using the
formula for a variance of the linear combination of independent random variables,
the variance of the mean of the ensemble can be expressed as:

V
(
m∗

Aφ
)
=V

(
NR

∑
i=1

Wim
∗
φ i

)

=
NR

∑
i=1

W 2
i V

(
m∗

φ i

)
. (7.24)

Results of calculations for the numerical example are given in Fig. 7.13. Normal
distribution was assumed for the ensemble estimate, while confidence probability
β was taken as 95%. The width of the confidence interval for the ensemble is
narrower than for any of the records. This is expected, as the ensemble contains
more statistical information.

Obviously, the true value for the mean of roll motion in the case of symmetric
problem is zero. However the zero is not even included in the ensemble confidence
interval. This is a result that all the records were started with the same initial
condition of 10◦ and the initial transient was kept in the records. As can be seen

Fig. 7.13 Estimates of mean values of records and ensemble
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from Fig. 7.10, it took almost one-third of a simulation time for the autocorrelation
function to decay. Therefore it could been expected that the initial conditions may
have some influence on the ensemble mean. However, this bias is pretty small
(0.032◦) and the mean value is not as important as variance for the purposes of
practical analysis of parametric roll.

The variance estimate of the ensemble can be expressed in a similar way, but it is
more convenient to consider the estimate of the second raw moment. Its definition,
estimate and relation with variance is expressed as:

α2 =

∫ ∞

−∞
φ2 f (φ)dφ ; α∗

2i =
1
Ni

Ni

∑
j=0

φ2
i j, Vφ = α2 −m2

φ . (7.25)

Here f (φ) is the PDF of roll angles. Consider the estimate of second raw moment
for the ensemble:

α∗
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1

∑NR
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NR

∑
i=1
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∑
j=1

φ2
i j

)
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∑
i=1

(
Ni
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i=1 Ni

1
Ni

Ni

∑
j=1

φ2
i j

)

=
NR

∑
i=1

Wiα∗
2i. (7.26)

The estimate of the variance of the ensemble is expressed taking into account that
the estimate of mean value is small:

V ∗
A =

NR

∑
i=1

Wi
(
V ∗

φ i +m2
φ i

)− (m∗
Aφ
)2 ≈

NR

∑
i=1

WiV
∗
φ i. (7.27)

Evaluation of confidence interval for the variance estimate requires evaluation of the
variance of the variance. It can be done by applying variance operator to both parts
of (7.27):

V
(
V ∗

Aφ
)
=V

(
NR

∑
i=1

WiV
∗
φ i

)

=
NR

∑
i=1

W 2
i V

(
V ∗

φ i

)
(7.28)

Figure 7.14 shows the results of calculations of the confidence interval for the
variance estimate of the ensemble together with estimates of each individual record.
Normal distribution was assumed for the ensemble estimate. This assumption seems
to be more reasonable for the ensemble as it contains significantly more independent
data in comparison with a single record.

Figure 7.14 shows a dramatic decrease of the width of the confidence interval
in comparison with a singe record. The figure also shows the scale of variability
of the variance estimate of the records. For example, the first two estimates shows
difference more than twofold: 29deg2 versus 72deg2. The difference between the
largest and the smallest estimates in the ensemble is more than a factor of 5 (15deg2

versus 77deg2).
The reason for such a dramatic difference is the nature of parametric excitation.

It is only capable of producing parametric resonance when a group of waves is
encountered and all characteristics of these waves lay within a certain range.
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Fig. 7.14 Estimates of variance values of records and ensemble

As can be seen from Fig. 7.3, once started, parametric roll continues for relatively
long time. It can be explained by a possible widening of the frequency range once the
amplitudes of roll motion become large enough. This effect was found, explained,
and demonstrated by Spyrou [12], Neves and Rodrigues [9], and others.

The relatively long duration of parametric roll occurrences leads to slow decay of
autocorrelation function, as frequency of parametric roll response is close to natural
roll frequency. As a result, the spectrum is narrow and the distribution is leptokurtic.

As was already noted, the random character of the occurrences of parametric
roll and their durations lead to significant variability of all characteristics of the
records: spectral estimates Fig. 7.4, autocorrelation estimates (Fig. 7.6), mean value
estimates (Fig. 7.13), and variance estimates (Fig. 7.14).

As a result, a single record contains relatively small amount of independent
statistical data. This leads to large confidence bands of record variance estimates
and represents a manifestation of the practical nonergodicity, meaning that several
independent records must be used in order to devise any judgment on statistical
characteristics of the parametric roll response.

7.8 Number of Records Required for Analysis

The practical nonergodicity of the parametric roll response raises a question of the
number of records required for an analysis of the results of numerical simulation or
model tests.

Theoretically, increased length of the record could lead to convergence. However,
this approach is hardly practical. Available model basin length effectively limits
duration of a record with forward speed. Self-repeating effect makes a long
record prohibitively expensive for any numerical simulation using Fourier series
for presentation of wave elevation. The auto-regression model of irregular waves
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Fig. 7.15 Convergence of ensemble estimate of variance

(Degtayrev [6]), in principle, can be considered as an alternative, but a practical
algorithm of pressure calculations has not been developed yet.

Figure 7.15 shows a series of calculations of the ensemble estimate of variance
performed for ensembles with varying number of records.

As it can be seen from Fig. 7.15, there is a very small change in the estimate
and its confidence interval after 20 records. Significant decrease of the confidence
interval is observed after 4 records. However, some steps of the calculation may go
unstable. In particular, smoothing of averaged spectrum and cutting autocorrelation
function may be problematic. Based on the considered example, calculations of
autocorrelation are stabilized after 12 records. However, it may be possible to get a
reasonable estimate of autocorrelation function out of 5 records by using statistical
procedure only or, possibly, by applying an alternative spectral smoothing.

These numbers were obtained from a rather limited number of calculations, so
they can be considered only as a first and very approximate assessment.

7.9 Conclusions

Statistical and spectral post-processing of numerical simulation of parametric roll of
C11 class container carrier in head seas allowed some insight into the probabilistic
properties of this phenomenon.

Parametric roll in irregular waves “comes and goes”. However, the occurrences of
parametric roll seem to be rather long. This can be possibly explained by alteration
of the frequency range caused by nonlinearity of restoring.

It takes a long time for the autocorrelation function to decay (7–11 min versus
less than 1 min for wave elevations) and the spectrum is narrow (width parameter is
about 0.4).

The probability distribution is leptokurtic (estimate of kurtosis is about 4). This
means a “fat tail” and a significant time spent with large roll angle. It is a symptom
of a dangerous roll motions mode.
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There is significant variability between different records expressed in spectral
estimates, variance estimates, and estimates of autocorrelation function. Decay time
of autocorrelation function also varies significantly.

Preliminary convergence study shows that 5 records (25 min each) may be
minimally sufficient for express analysis. For more detailed analysis, the data set
should include 12–20 such records.

Practical nonergodicity of parametric roll is one of the governing factors in
statistical post-processing of parametric roll records from numerical simulation or
model tests.
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Chapter 8
Experience from Parametric Rolling of Ships

Anders Rosén, Mikael Huss, and Mikael Palmquist

8.1 Introduction

Parametric rolling of merchant ships are rare events but probably less rare than
most shipping companies and officers consider them to be. The cases with large
amplitude rolling that result in shift of cargo or other critical consequences are
of course noted. Many of these incidents have, however, due to lack of detailed
records and understanding, been categorized as “normal” heavy weather damage
even though they have developed due to parametric excitation. The vast majority of
less critical parametric rolling events are probably not even noted and most certainly
not documented.

Historically, ship safety standards have developed as reactions on serious casual-
ties. Famous examples are the loss of Titanic which initiated the development of the
SOLAS convention, and the loss of Estonia which forced numerous amendments
to the convention. In a similar manner, parametric rolling incidents with a container
vessel reported in [6] and with a Ro–Ro Pure Car and Truck Carrier (PCTC) reported
in [13] have influenced the ongoing process of development of new intact stability
standards, e.g., [14, 15].

Many initiatives at IMO nowadays aim at turning from the traditional reactive
development of regulations toward a more proactive regime for the future. In order

A. Rosén (�)
KTH Royal Institute of Technology, Centre for Naval Architecture,
Teknikringen 8, SE-10044, Stockholm, Sweden
e-mail: aro@kth.se

M. Huss
Wallenius Marine AB, PO Box 17086, S-104 62, Stockholm, Sweden
e-mail: mikael.huss@walleniusmarine.com

M. Palmquist
Seaware AB, PO Box 1244, SE-131 28, Nacka Strand, Sweden
e-mail: mikael.palmquist@seaware.se

T.I. Fossen and H. Nijmeijer (eds.), Parametric Resonance in Dynamical Systems,
DOI 10.1007/978-1-4614-1043-0 8, © Springer Science+Business Media, LLC 2012

147



148 A. Rosén et al.

to be able to identify potential hazards before they develop into large-scale losses,
it is of utmost importance to analyze also incidents and near critical events that are
far more common than the recognized accidents.

From the early works by Grim [8] until the present day, a large number of
studies on parametric rolling based on analytical and numerical models and model
scale experiments have been published. The availability of data from real full-scale
events is, however, very scarce. This chapter reviews three recent full-scale events
with parametric rolling. The objective is to make the experiences from these events
available to the research community and in light of these events discuss on-board
operational guidance for assisting crews in avoiding parametric rolling.

8.2 Parametric Rolling of Ships

The primary mechanism in parametric rolling of ships is the time variation of the
restoring moment created by the varying relation between the geometry of the ship
hull and the wave surface as the ship travels through the waves. The prerequisites
for parametric rolling to develop can be summarized as follows:

1. Sufficiently large relative variation of stability is generated when the ship travels
through waves. This in turn requires a combination of:

(a) flared hull form with large beam/draft ratio,
(b) sufficiently high waves, and
(c) relatively low average stability (GM0).

2. Resonance, meaning

(a) encounter period about half of (or equal to) the roll natural period, and
(b) resonance condition according to 2(a) being kept for a sufficient number of

wave encountering cycles (regularity).

3. Sufficiently low roll damping.

Passenger cruise ships and fishing vessels are examples of ship types that
might experience stability variations that can be critical regarding parametric roll
excitation, e.g., [3, 20]. Also, ships optimized for large volumes of low weight
cargo, such as Lo–Lo container vessels and Ro–Ro ships, can experience very large
stability variations and therewith related sensitivity to parametric roll excitation,
e.g., [6, 13]. At the far end on this scale are modern Ro–Ro PCTCs. The standard
ocean going PCTC with a length of about 200 m and panamax breadth has developed
from a rather traditional hull form of the 1970s into today’s highly stability
optimized hull form which is able to carry significantly more cars by increased
cargo hold height.

During the last decade, a new class of larger car and truck carriers (LCTC) with
230 m length and a capacity of about 8,000 cars have been introduced. An example
of such a vessel is given in Fig. 8.1, typical main particulars are given in Table 8.1,
and typical stability variations in regular waves are exemplified in Fig. 8.2.
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Fig. 8.1 A modern LCTC

Table 8.1 Main particulars for a typical LCTC Length over all 227.8 m
Beam, moulded 32.26 m
Height to upper deck 34.7 m
Draft, design/max 9.5/11.3 m
Deadweight at max draft 30,137 t
Number of car decks 13 –

Fig. 8.2 Quasi-static stability variation in regular head/following waves with a wave height of 4 m
for the three presented cases

8.3 Service Experience

As a forerunner in the development of modern PCTCs and LCTCs, the Swedish
shipping company Wallenius had an early awareness of the potential problems
with stability variations in waves for this type of ship. Early in the 1990s, the



150 A. Rosén et al.

company supported the research project at the KTH Royal Institute of Technology
in Stockholm [11] which eventually resulted in the advanced Seaware EnRoute
Live onboard decision support system for seakeeping. Wallenius was then the first
shipping company to make the Seaware EnRoute Live system a standard within its
fleet. The cooperation with Seaware has extended to include also follow-up analysis
of incidents and proactive analysis of dynamic stability properties of new ships at the
design stage. In 2004, Wallenius and Seaware prepared a common report of a head
sea parametric roll incident that was submitted by Sweden to the IMO SLF sub-
committee [13]. The report describes probably the first time ever when full 6-DOF
motions have been recorded from an actual parametric rolling event in irregular
seas. In 2009, Wallenius, Seaware, and KTH joined a cooperative research program
to further develop knowledge and tools in this area.

In addition to making the technical decision support system a standard on board
the ships, Wallenius has also at various occasions informed their ship officers
about underlying causes of parametric rolling, the specific character of the ships,
and recommended actions to avoid critical situations. The shared knowledge and
understanding has most likely prevented a number of critical situations but has also
made it possible to identify situations where parametric roll actually occurred and
enabled collection of important data for further analysis. We will here discuss three
such events that represent three principally different modes of parametric rolling:

Case I: Principal parametric resonance where the period of encounter is half of
the roll natural period in following seas

Case II: Principal parametric resonance where the period of encounter is half of
the roll natural period in head seas

Case III: Fundamental parametric resonance where the period of encounter coin-
cides with the roll natural period in following seas

The events have occurred within the last two years and with the same ship design
but with two different ship individuals.

8.3.1 Case I – Principal 2:1 Parametric Resonance
in Following Seas

In this case, the ship had been idling for some hours in head sea at about 5 knots
outside a port that was closed due to bad weather. Some 20 min after the ship had
slowly turned back and increased speed to about 10 knots, a sudden heavy rolling
developed. Time series of roll, pitch, speed, and heading are given in Fig. 8.3. As
seen the rolling developed very fast, in the first sequence from moderate 2–4◦ up
to 20◦ in just four roll cycles. In the second sequence, a rolling amplitude of 30◦
was reached. A clear 2:1 relation between the roll and pitch periods can be observed
during the critical sequences. The rolling was stopped by the Master changing over
to hand steering and turning the vessel back toward the waves.
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Fig. 8.3 Recorded data for Case I
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Fig. 8.4 Unidirectional (left) and directional (right) reanalysis wave spectrum for the area in
question 3 h before the incident. (ECMWF Mediterranean Wave Analysis)

Table 8.2 Wave spectral parameters from re-analysis
data for three hours before and after the event

Time [h] Hs [m] Tp [s] Tz [s]

−3 4.3 9.2 6.9
+3 3.8 9.2 7.0

Table 8.3 Conditions summary for Case I

GM0 [m] T0 [s] Hs [m] Tp [s] λp/L [-] V [kn] β [deg] TEp [s] T0/TEp [-]

1.2 28 4.1 9.2 0.55 10 0 14.3 1.95

With the purpose of establishing as good as possible depiction of the sea state
at the time and position of interest, re-analysis wave data in terms of directional
wave spectra for a 0.5× 0.5 degree grid has been obtained from ECMWF. This
data covers from three hours before to three hours after the incident. The wave
spectra consisted mainly of wind waves with limited directional spread and a narrow
frequency peak. The wind data from the same re-analysis data source was concluded
to be in compliance with the on-board wind observations. The directional and the
corresponding unidirectional wave spectra assembled from the ECMWF data three
hours before the incident are displayed in Fig. 8.4.

The wave spectrum parameters calculated from the available spectra 3 h before
and after the incident displayed in Table 8.2 indicates that the sea state was rather
stationary. Through interpolation, the significant wave height and the spectrum peak
period at the incident are determined to 4.1 m and 9.2 s, respectively.

Table 8.3 presents a summary of characteristic parameters for this case. The
ship was loaded close to its design draft and had a GM of 1.2 m. The sea state
parameters are here based on the reanalysis of the wave spectra discussed above and
the assumption that the average period within high amplitude wave groups tends
to approach the peak period. The characteristic wave length λp and the encounter
period TEp are here hence determined for a harmonic wave whose period equals the
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Table 8.4 Conditions summary for Case II

GM0 [m] T0 [s] Hs [m] Tz [s] Tp [s] λp/L [-] V [kn] β [deg] TEp [s] T0/TEp [-]

2.3 21 5–6 8–9 11–13.5 0.9–1.3 9–14 140–190 8–11.5 1.8–2.6

Table 8.5 Conditions summary for Case III

GM0 [m] T0 [s] Hs [m] Tp [s] λp/L [-] V [kn] β [deg] TEp [s] T0/TEp [-]

1.3 23 4.1 10.5 0.8 18–20 20–50 16–26 0.7–1.2

spectral peak period of the irregular sea state (the same comes for Tables 8.4 and
8.5). It should be noted that this gives a simplified picture of the irregular seaway
and that conclusions should be drawn with this in mind.

To the officers on board at this occasion, the parametric rolling occurred “out of
nowhere” in conditions that were far from being perceived as potentially dangerous.
The significant wave height was only about 4 m and, as seen in Fig. 8.3, the motions
were very small prior to the onset with practically no pitch and only a few degrees
rolling. However, the fact that the ship was idling with reduced speed put her into a
2:1 parametric resonance that she would not encounter for regular service speeds
in the same sea state. In addition, the relatively low GM, although well above
regulatory minimum stability, contributed to the sensitivity.

8.3.2 Case II – Principal 2:1 Parametric Resonance in Head Seas

In the second case, the ship was running in head sea with a speed of about 11 knots
on route southward close outside the coast of New South Wales in Australia. During
a period of about four hours, the ship encountered clear parametric roll excitation a
number of times with amplitudes up to about 20◦. Time series of roll, pitch, speed,
and heading are given in Fig. 8.5. As for Case I, a clear 2:1 relation between the roll
and pitch periods can be observed during the critical sequences. The pitch amplitude
is here however significantly larger due to the head sea condition.

For this case, wave data are available from the nearby Eden wave buoy,
managed and operated by the Manly Hydraulics Laboratory, Sydney. This buoy is a
nondirectional Waverider type buoy manufactured by the Dutch company Datawell
BV. In Fig. 8.6, the position of the buoy is shown on a map (marked by triangle),
along with the sailed track and positions where parametric rolling occurred (marked
by dots). The distance between the buoy and the position of the last parametric
rolling event, closest to the buoy, is about 9 nautical miles. Measured wave spectra
from the Eden wave buoy, and corresponding spectral parameters, are given in
Figs. 8.7 and 8.8.

The conditions for this case, in terms of characteristic parameters, are summa-
rized in Table 8.4.

The ship was in light loaded condition and had a GM of about 2.3 m. Sea state
and operational parameters are here given in terms of intervals to reflect the fact that
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Fig. 8.5 Recorded data for Case II
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Fig. 8.7 Measured wave spectra from Eden wave buoy between 02:00 (leftmost) and 06:00
(rightmost) local time, with one hour increment

parametric rolling sequences occurred over a period of about four hours, over which
neither the sea state nor the operational condition may be considered stationary. The
forecast available on board at the time showed a rapidly increasing wave height
away east of the coast but underestimated the wave height close to the coast. This
was due to the relatively low spatial resolution in the forecast which was based on
the global ECMWF wave model.

In this case, the officers on board became aware that they were in conditions
with potential parametric resonance, but had during the first hours limited options to
choose a more favorable heading or speed. Eventually, they made a course deviation
of about 50◦ which led into somewhat more severe seas but enabled the ship to get
out of resonant conditions.



156 A. Rosén et al.

2 3 4 5 6
4

6

8

10

12

14

Hour

Hs (m)

Tz (s)

Tp (s)

Fig. 8.8 Spectral parameters derived from the wave spectra in Fig. 8.7

8.3.3 Case III – Fundamental 1:1 Parametric Resonance
in Following Seas

In the third case, the ship was running at full service speed in quartering seas with
a relative heading of 20–40◦. The master notified the office about a strange rolling
behavior characterized as “neither synchronous nor parametric, perhaps more like
loss of stability.” On a number of occasions during a couple of hours, the officers
turned to manual steering in order to interrupt increasing roll with amplitudes up to
10–15◦, but the situation was not considered critical enough to make any general
changes in course and speed.

Time series of roll, pitch, speed, and heading are given in Fig. 8.9. During the
critical sequences a clear asymmetric development of the roll motion can be seen,
which indicates a one-to-one relation between stability variation and rolling periods.
The time sequences also clearly show the active steering on board to interrupt the
resonance.

In this case with quartering sea, the rolling becomes a complex mixture of direct
wave induced synchronous excitation, wind heeling and asymmetric parametric
excitation, and less experienced and educated officers would most likely not even
have noted the special behavior under these conditions.

For this case, sea state data was obtained from the high-resolution wave model
run on the 25th of September 2010, 00 UTC. This means that the wave spectrum
presented here represents the +12 h forecast (12 UTC). In relation to using
reanalysis data, the present data source is considered by meteorologists to provide a
better estimate of the sea state due to the higher spatial resolution in the operational
high-resolution wave model, in relation to reanalysis data that is run using lower
spatial resolution. Figure 8.10 shows the forecast wave spectrum for a position close
to the ship. The significant wave height of this spectrum is 4.1 m, the peak period is
10.5 s and the directional spreading is relatively low.
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Fig. 8.9 Recorded data for Case III



158 A. Rosén et al.

W
av

e 
di

re
ct

io
n 

[d
eg

]

0.5 1 1.5 2

50

0

50

0 0.5 1 1.5 2
0

1

2

3

4

w (rad / s) w (rad / s)

S
(w

)

Fig. 8.10 Unidirectional (left) and directional (right) forecast wave spectrum for 12:00 UTC at a
position close to the ship position

The ship was medium loaded and had a GM of about 1.3 m. As for the previously
presented cases, a summary of characteristic parameters is given in Table 8.5,
showing T0/TEp ratios in the 1:1 region.

8.4 Operational Guidance

The concept of operational guidance is about providing information on how a
specific ship, in a specific loading condition, is expected to behave in a certain
environmental condition as a function of ship speed and heading, thus providing
assistance to the master on how to operate a vessel with respect to ship dynamics.
This can be applied both strategically as part of weather forecast-based route
planning procedures, in order to avoid potentially critical situations in the first
place, but also and equally important, tactically in terms of real-time guidance based
on actual conditions. For nonlinear and rare events such as parametric rolling, the
importance of operational guidance is specifically highlighted since it is very hard,
even for an experienced seaman, to sense the criticality in advance, as demonstrated
particularly in Cases I and II earlier.

There are many different approaches to supplying operational guidance on board
ships, ranging from the [14] circulars, through more advanced precalculated polar
plot documentation, to on-board computer systems for real-time or forecast-based
evaluation of all possible risks related to ship dynamics. The concept based on
precalculated polar plots allows for using very sophisticated dynamic models,
e.g., nonlinear multi-degree-of-freedom models, but faces problems in terms of
recognizing real conditions, e.g., wind waves and swell from different directions and
varying wave spectral shapes and bandwidths. The other approach using real-time
calculations, will generally have to use more simplified models for CPU efficiency,
but can more easily handle the complexity of real wave conditions. The fact that
there are such a large number of crucial parameters involved, depending on loading
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and operating conditions as well as on environmental conditions in terms of wave
spectra, speaks in favor for computer-based systems capable of measuring and
computing real-time risk indicators that can trig alerts.

Implementation of operational guidance for parametric roll prevention consti-
tutes an integration of many different topics, some frequently addressed within the
research community, and some that are of more practical nature. One topic is the
mechanical modeling of the dynamic problem. Another is the definition of the input
to the dynamic model, which in this case is constituted by the stochastic seaway.
Further, the dynamic model include parameters related to the ship, the loading
condition and the operating condition, which in practice are not always as easy to
define as one might anticipate.

8.4.1 Dynamic Modeling

A simple dynamic model of parametric rolling in heading or following seas can be
formulated in terms of a linear single DOF equation of motion:

φ̈ + 2δ φ̇ +ω2
0

GM(t)

GM0
φ = 0, (8.1)

where δ is the roll damping, ω0 is the undamped natural frequency, and GM0

is the metacentric height in calm water. GM(t) is the time variation of the
metacentric height which in regular waves with an encounter frequency of ωe can
be expressed as:

GM(t) = GMm +GMa cos(ωet), (8.2)

where GMm and GMa are the mean and amplitude of the GM-variation in the
regular wave in question, e.g., [21]. Figure 8.11 shows solutions to (8.1) and
(8.2) as critical (shaded) areas where combinations of relative stability variations
and relative periods result in growing parametric rolling (more than 10◦ degrees
roll amplitude growth in less than ten cycles). The roll damping used has been
determined from model tests and is considered representative for the presented
cases. For illustration purposes the relative stability variations and relative periods
for the cases have been indicated in Fig. 8.11 based on the data in Fig. 8.2 and Tables
8.3–8.5 taking the irregular sea state parameters Tp (peak period) and Hs (significant
wave height) as representatives of the regular wave period and wave height. One
could consider operational guidance based on a similar approach, e.g., as suggested
in [23]. However, depending on rather drastic simplifications of the stochastic
properties of the seaway such an approach is less feasible for quantification of actual
amplitudes or risk levels.

The stability variations for the three cases in Fig. 8.2 and Fig. 8.11 have been de-
termined by quasi-static balancing in heave and pitch. More advanced
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Fig. 8.11 Simplified interpretations of the conditions for the three presented cases in relation to
the solutions of (8.1) and (8.2) in terms of critical (shaded) areas where combinations of relative
stability variations and relative periods result in growing parametric rolling

single-degree-of-freedom modeling could for example include quasi-dynamic bal-
ancing in heave and pitch, nonlinear damping, nonlinear GZ variation, and irregular
waves, e.g., [7].

The next level of complexity is multidegree-of-freedom models. The state
of the art in multidegree-of-freedom parametric-roll modeling has recently been
evaluated in a large benchmark study where different simulation methods were
compared to model test data [22]. The overall efficiency of the benchmarked
methods was concluded to be low, but this was attributed to the wide spread
of individual methods both regarding modeling approaches and performances.
A group of leading simulation methods was, however, detected, for which the mean
probability to successfully detect the parametric roll resonance in relation to the
model experiments was estimated to be around 80%.

All three real cases presented here have been realized numerically using such
a multidegree-of-freedom simulation model. The used model is based on work of
[9] and participated in the above-mentioned benchmark study. For Cases I and III,
both in following sea with focused encountering wave spectra, the simulations were
able to give consistent and stable results similar to what was measured. However,
for Case II which was in head sea, most realizations did not develop parametric roll
at all. Figure 8.12 shows an example from one of the rare sequences where similar
rolling developed as was measured on board. The simulations for this case were
also very sensitive to small variations in conditions and sea state and would not
have been conclusive as basis for guidance on board.

Operational guidance based on multidegree-of-freedom modeling of the ship
dynamics is being considered as part of the new generation intact stability criteria,
which should comprise the design phase as well as the operational phase [15].
The principle for such approach could, for example, be as discussed in [18] where
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Fig. 8.12 Example of simulated parametric rolling for Case II using a multidegree-of-freedom
model

multidegree-of-freedom simulations are used to generate polar plots displaying
dangerous combinations of speed and relative heading regarding parametric rolling
for a large number of different ship conditions and sea states. With appropriate
presentation the precalculated polar plots could then be used for on-board guidance.

8.4.2 Definition of Ship Characteristics and Operational
Conditions

Regardless of using single or multidegree-of-freedom dynamic modeling, proper
consideration the present sea state and ship condition is of outmost importance in
assisting the crew with operational guidance to avoid dangerous situations regarding
parametric rolling. In principle, both GM and the moment of inertia that together
are decisive for the natural roll period T0, should be determinable based on the
data in the loading computer or trim and stability booklet for well-defined loading
conditions. However, experience shows that there can be significant uncertainties
involved already at this stage, e.g., [17]. A further uncertainty is the effect of free
surfaces in liquid tanks. For static stability, this can be equalized with a reduced GM.
In dynamic rolling situations, the effect might, however, be different due to internal
flow resistance in the tanks. Internal liquid movements might also have other effects
on the roll motions, especially for ships with active or passive roll stabilizing tanks.
The most precise method for determining T0 is probably to measure the roll period in
calm water after a sharp turn or in mild beam seas. Under well-controlled conditions
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possibly also the damping could be evaluated from forced roll tests, but it is hardly
feasible for every ship to exercise this under normal service. Due to differences
between GM in calm water and the average GM in waves, one could also expect a
difference between the roll natural period in calm water and in waves. For the here
presented ship type and cases, this difference is, however, calculated to be rather
small and can hardly be noted in the time series for roll. For other ship types and
conditions, this effect might, however, be more pronounced.

8.4.3 Definition of Sea State Parameters

Different approaches are used by crews to make visual estimates of the sea state.
In the Revised guidelines to the master for avoiding dangerous situations in adverse
weather and sea conditions [14] it is, for example, suggested that the wave period
should be measured by means of a stop watch as the time span between the
generation of a foam patch by a breaking wave and its reappearance after passing
the wave trough. However, besides the simple fact that it is dark half of the time,
the precision in such manual estimates is all too low to serve as input in high
quality operational guidance. Another source of sea state estimation is weather
forecast data in terms of wave parameters or complete 2-D wave spectra. Here, the
accuracy will depend heavily on the forecast model and its resolution in relation to
the ship position. Case II may here serve as an example. The ship was fairly close
to the shore while the forecast was a normal resolution forecast from a global wave
model incapable of catching the local effects, and the forecast available on board
underestimated the wave heights significantly. Using high resolution data from a
local wave model would probably have provided a much better sea state estimate.
The next step in sea state estimation is ship based in-situ estimation. One such
approach is to estimate the sea state from the ship motions. This approach is adopted
in the Seaware EnRoute Live system, using a further refined version of a variational
method originally described in [10]. A comparison of a ship motion estimation of the
wave spectra to the spectra measured by the Eden wave buoy in Case II is shown in
Fig. 8.13. Another kind of in-situ estimation based on image processing techniques
on raw X-band radar video signals, may provide reliable frequency and directional
spectral information.

8.4.4 The Stochastic Problem

One of the main challenges in quantitative prediction of parametric rolling lies
in the fact that it is a highly nonlinear dynamic problem subjected to complex
stochastic excitation. This means that parametric rolling in ocean waves generally
are rare events, thus requiring attention in terms of methodologies that enable
CPU-efficient computation of probability quantities or stability boundaries. The
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Fig. 8.13 Comparison of
wave spectra for Case II. The
solid spectrum is estimated in
real-time based on ship
motions. The dotted spectrum
was measured by the Eden
wave buoy, approximately 10
nautical miles west of the
ship position

most straightforward approach is to perform massive Monte Carlo simulations in
terms of a sufficiently large number of realizations of sufficiently long periods of
real time. At present, this is hardly a feasible approach for operational guidance
due to the CPU power required. It is therefore necessary to investigate other
possibilities. Since in practice, parametric rolling in irregular waves will only occur
during encountered wave sequences that are “fairly high and regular,” one such
possibility is to confine the time-consuming nonlinear simulation to such critical
wave sequences. Here, wave group theory, split time methods, and first order
reliability based methods play important roles, e.g., [1, 16, 19]. If the objective is
to find stability boundaries rather than probabilistic quantities for roll amplitudes,
there are a few conceptually different possible approaches by which the stochastic
problem can be considered. Bulian [2], for example, describes a method to calculate
stochastic stability boundaries based on a simplified analytical approach. Another
such approach is presented in [4,5] which is based on the concept of GM spectra by
considering GM(t) as a linear stochastic process in irregular waves.

8.5 Discussions

The ongoing work under the IMO SLF subcommittee developing vulnerability
criteria for ships regarding parametric roll and other critical events in waves is
welcomed. Eventually, this will make it possible to settle a refined common standard
of minimum stability robustness to be used in design of new ships. In addition to
this, we believe further developed operational guidance applicable to both existing
and new sensitive ship types will be a natural complement to assure safe service
under all conditions. Both design criteria and operational guidance limit values
should also preferably relate to relevant ship and operation specific design loads or
limits, e.g., for cargo lashings, hence putting the criteria and operational guidance
into a more risk-based context.
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There are many challenges still to be faced in this development. The risk models
should account for both the probability of parametric excitation and the severity of
the resulting motions and be based on the specific ship characteristics, operational
condition and sea state including inherent uncertainties. We believe full scale service
data and analysis from incidents and early warnings are essential in this development
as they expose complexities and considerations that are normally not included in
well-defined model tests or numerical simulations.
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Chapter 9
Ship Model for Parametric Roll Incorporating
the Effects of Time-Varying Speed

Dominik A. Breu, Christian Holden, and Thor I. Fossen

9.1 Introduction

In this work, we derive a ship model for roll parametric resonance valid for
time-varying velocity. In recent years, several ship models of different complexity
for parametric roll have been developed [1,8,11,13,14,16,17]. A prevalent, simple
model to describe parametrically excited roll motion is the Mathieu equation:

m44φ̈ + d44φ̇ +
[
k44 + kφt cos(ωet +αφ )

]
φ = 0 .

Here, m44 is the sum of the moment of inertia and the added moment of inertia in
roll, d44 the linear hydrodynamic damping coefficient, and k44 the linear restoring
moment coefficient. The amplitude of the change in the linear restoring coefficient
is kφt , ωe is the encounter frequency, and αφ is a phase angle. All the parameters are
considered constant.

A system described by the Mathieu equation parametrically resonates at ωe ≈
2
√

k44/m44 [12]. The encounter frequency ωe is the Doppler-shifted frequency
of the waves as seen from the ship. Under time-varying velocity, however, the
encounter frequency varies, and we show that Mathieu-type equations are not valid
to describe the roll dynamics for non-constant ωe.
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We derive a highly accurate 6-degree-of-freedom (6-DOF) model of a container
ship, taking into account the external forces and moments induced on the ship by
the hydrostatic and hydrodynamic pressure field of the surrounding ocean. For each
instant in time, the pressure is integrated over the instantaneous submerged hull,
giving the restoring forces.

The model is capable of handling complex sea states with nonsteady ship
motion, and wave-induced effects enter as first-order forces via the pressure field.
Unfortunately, the model is not analytical, and can only be implemented on a
computer. Because of this, the model is not suitable for mathematical analysis, but
it is highly suitable for simulation purposes.

We simplify the 6-DOF model to the three most important degrees of freedom
for ships in parametric roll resonance, i.e., heave, roll, and pitch [11, 14], assuming
steady, planar waves. The ship’s forward speed is allowed to be non-constant.
By assuming that the ship’s speed is slowly time-varying and using a quasi-steady
approach to derive explicit time-domain solutions to the heave and pitch motions,
we further reduce the 3-DOF model to a 1-DOF roll model. We also show how the
simplified model is linked to Mathieu-type equations. This reduced-order model is
analytical, and preserves the majority of the accuracy of the 6-DOF model.

To verify the simplified 1-DOF model, we implement the 6-DOF model on a
computer and show in simulations that the simplified model qualitatively captures
the behavior of the highly accurate 6-DOF model also for a time-varying encounter
frequency. We furthermore show why the Mathieu-type equation is incapable of
describing the ship’s rolling motion in parametric roll resonance when the encounter
frequency is not constant.

In Chap. 10, we will use the 1-DOF model to design a controller capable of
stopping parametric roll resonance by speed changes.

The rest of the chapter is organized as follows. Section 9.2 lays the theoretical
and mathematical framework of the 6-DOF model. In Sect. 9.3, the details of the
computer implementation of this model are described. Sections 9.4 and 9.5 derive
the simplified 1-DOF roll model, which is verified in Sect. 9.6, and Sect. 9.7 contains
the conclusion.

9.2 Equations of Motion

This section introduces the reference frames and presents the equations of motion
of the 6-DOF model of the ship.

9.2.1 Reference Frames

In this chapter, we are using two reference frames; one fixed to the surface of the
ocean, and one fixed to the ship. The one fixed to the ocean surface is assumed
inertial, and referred to as the inertial frame or the n-frame. We refer to the reference
frame fixed to the ship as the body frame or b-frame. It is a moving coordinate
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λWave direction
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Fig. 9.1 Reference frames

frame which has its origin somewhere along the ship’s transversal midline, so that
a port–starboard symmetric ship is mirrored about the body frame xz-plane, see
Fig. 9.1. The z-axis (not shown in the figure) points towards the center of the Earth
(with the gravity field).

Vectors expressed in the inertial reference frame are written in boldface with a
superscript n (e.g., xn), whereas vectors expressed in the body frame are denoted in
boldface with a superscript b (e.g., xb).

The location of the body frame origin relative to the inertial frame, expressed in
the inertial frame, is given as xn ∈ R

3, as indicated in Fig. 9.1. The two coordinate
systems can be rotated relative to each other. The rotation matrix R is associated
with this rotation so that xn = Rxn. R satisfies R� = R−1, det(R) = 1 [3, 7]. The
rotation matrix R belongs to the special orthogonal group of order 3, SO(3)⊂R

3×3,
see [3, 7].

The rotation matrix can be fully parametrized with (no less than) three parame-
ters. In this work, we use the so-called roll–pitch–yaw Euler angles. These angles
represent simple rotations about the three different body axes; roll (φ ) about the x-
axis, pitch (θ ) about the y-axis, and heave (ψ) about the z-axis. See [3,7] for details.

Combining these three angles into the vector ΘΘΘ = [φ ,θ ,ψ ]�, we can write R as:

R(ΘΘΘ) =

⎡

⎣
cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ
−sθ sφcθ cφcθ

⎤

⎦ , (9.1)

where c·= cos(·) and s·= sin(·).

9.2.2 6-DOF Ship Model

To derive the hydrodynamic forces and moments on a ship, we need to make certain
assumptions:

A 9.1. There is no current.
A 9.2. The hull can be split into triangular or quadrangular panels, where each

panel can be parametrized as a two-dimensional surface embedded in R
3.
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A 9.3. The frequency-dependent parameters of the damping, added mass, and
Coriolis/centripetal matrices are constant (i.e., maneuvering theory, see for
example [7]).

A 9.4. The ocean is infinitely deep.
A 9.5. The pressure field in the ocean is unchanged by the passage of the ship (in

effect, waves are traveling “through” the ship’s hull).

We define the ship’s generalized position vector q as:

q =
[

xn�, ΘΘΘ� ]� ∈ R
6, (9.2)

where

xn =
[

xn, yn, zn
]� ∈ R

3 (9.3)

is the ship’s position in the inertial frame and

ΘΘΘ =
[

φ , θ , ψ
]� ∈ R

3 (9.4)

the vector of Euler angles representing the ship’s rotation relative to the inertial
frame.

We define the ship’s generalized velocity vector ννν as:

ννν =
[

vb�, ωωωb� ]� ∈ R
6, (9.5)

where

vb =
[

vb
1, vb

2, vb
3

]�
= R�vn � R�ẋn = R� [ vn

1, vn
2, vn

3

]� ∈ R
3 (9.6)

is the ship’s linear velocity in the body frame and

ωωωb =
[

ωb
1 , ωb

2 , ωb
3

]� ∈R
3 (9.7)

the ship’s angular velocity relative to the inertial frame, expressed in the body frame.
We let τττc ∈ R

6 be the generalized forces generated by the actuators and τττe ∈ R
6

the environmental disturbances and unmodeled generalized forces.
From [7], we get the 6-DOF ship model

q̇ = P(ΘΘΘ)ννν (9.8)

Mν̇νν +D(ννν)ννν +C(ννν)ννν +k(q, t) = τττc +τττe, (9.9)

where

P(ΘΘΘ) =

[
R(ΘΘΘ) 03×3

03×3 G(ΘΘΘ)

]

∈ R
6×6 (9.10)
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with R as in (9.1) and

G(ΘΘΘ) =

⎡

⎢
⎣

1 sin(φ) tan(θ ) cos(φ) tan(θ )
0 cos(φ) −sin(φ)
0 sin(φ)

cos(θ)
cos(φ)
cos(θ)

⎤

⎥
⎦ , cos(θ ) �= 0 , (9.11)

and M�MRB+MA =M� > 0∈R
6×6 is the sum of the rigid-body inertia and added

mass, D(ννν) ∈ R
6×6 the damping matrix, and C(ννν) ∈ R

6×6 the Coriolis/centripetal
matrix; k = kp +kg where kp is the generalized pressure forces, and kg the gravity
forces. D satisfies y�D(ννν)y ≥ 0 ∀ y,ννν ∈ R

6.
If

M �
[

M11 M12

M21 M22

]

∈ R
6×6, M11,M12,M21,M22 ∈R

3×3

and

S(x)�

⎡

⎣
0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤

⎦ ∈ SS(3)⊂ R
3×3 ∀ x = [x1,x2,x3]

� ∈R
3

then

C(ννν) =
[

03×3 −S(M11vb +M12ωωωb)

−S(M11vb +M12ωωωb) −S(M21vb +M22ωωωb)

]

=−C�(ννν) ∈ R
6×6.

Here, SS(3) is the group of all skew-symmetric matrices of order 3, see [3, 7].
The gravity forces kg are given by [7]:

kg(q) =−mg

[
R� (ΘΘΘ)ez(

R� (ΘΘΘ)ez
)× rb

g

]

, (9.12)

where rb
g is the ship’s center of gravity in the the body frame, ez = [0,0,1]�, m the

ship’s mass, and g the acceleration of gravity.
By knowing the pressure field of the surrounding ocean, kp can be found. At any

given point rn in the ocean (in the inertial frame), there will be a local pressure field
Ψ ≈Ψ (rn, t) ∈R [15,18].1 We assume (Assumption A 9.2) that each section of the
ship’s hull can be parametrized with parameters u and v, so that the vector rb

i (u,v)
gives the position of a point on the surface of panel i, in the body frame. Defining

Ψi(u,v)�Ψ(Rrb
i (u,v)+ xn, t) , (9.13)

1Technically, the pressure field would also be a function of the ship’s state, except for Assump-
tion A 9.5.
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we can then take the generalized pressure force on the ship as [2, 15, 18]:

kp(q, t) = ∑
i

⎡

⎣

∫

Sw,i
Ψi(u,v)

∂rb
i

∂u (u,v)×
∂rb

i
∂v (u,v) du dv

∫

Sw,i
Ψi(u,v)rb

i (u,v)×
(

∂rb
i

∂u (u,v)×
∂rb

i
∂v (u,v)

)
du dv

⎤

⎦ , (9.14)

where Sw,i is the wetted (submerged) part of panel i and the ship is parametrized so
that the normal vector (∂rb

i /∂u)× (∂rb
i /∂v)2 points out of the hull. The effects of

current and waves can all be accounted for in the force kp [4, 15].
This model itself is nothing new; the computer implementation of the 6-DOF

model (9.8)–(9.9) is a novel contribution of this work.

9.3 Computer Implementation of the 6-DOF Model

To implement a computer version of the 6-DOF model (9.8)–(9.9), we use data from
a specific, 281 m long container ship. This is the same ship as used in [9–11].

Whereas the model can be used for any sea state in any condition, we have chosen
to create an implementation suitable for parametric roll. As such, we assume that the
waves are planar and sinusoidal.

9.3.1 Inertia and Damping Forces

We computed the parameters for inertia MRB, added mass MA, and damping D in
ShipX (VERES) [6]. We set the unmodeled force vector τττe to zero and the control
force τττc as:

τττc =−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kp

(
vb

1 − vb
1,d

)
+ ki

∫ t
t0

(
vb

1(T )− vb
1,d(T )

)
dT

0
0
0
0

κp(ψ −ψd)+κd(ψ̇ − ψ̇d)+κi
∫ t

t0
(ψ(T )−ψd(T )) dT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.15)

with vb
1,d the desired surge speed and ψd the desired heading. The rudimentary PID

controllers in surge and yaw are there to keep the ship on course in the presence

2See [2] for proof that this is a normal vector.
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of the other forces. Without these controllers, the simulated ship tends to drift quite
heavily off course. The parameters used are

MRB =

[
mI3 −mS(rb

g)

mS(rb
g) Jb

]

, m = 7.7358E7

rb
g = [−3.7486,0,−1.120]�

Jb =

⎡

⎣
1.41E10 0 0

0 3.70E11 0
0 0 3.70E11

⎤

⎦

MA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 7.59E7 0 6.43E7 0 −1.04E9
0 0 7.80E7 0 −7.83E8 0
0 6.43E7 0 2.20E9 0 −9.08E9
0 0 −7.83E8 0 3.39E11 0
0 −1.04E9 0 −9.08E9 0 4.48E11

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

D(ν) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.66E3 0 0 0 0 0
0 3.31E7 0 1.50E7 0 1.22E8
0 0 4.66E7 0 −1.05E9 0
0 1.50E7 0 2.48E8 0 −2.27E9
0 0 −4.03E8 0 2.73E11 0
0 −5.03E8 0 −2.79E9 0 1.35E11

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

[
2.83E4|v1| 01×5

05×1 05×5

]

kp = 7.7358E7 , ki = 7.7358E6 , κp = 8.18E11 , κd = 0 , κi = 0

with all values in base SI units (kg–m–s). With these numbers, all forces and
moments of the 6-DOF model (9.8)–(9.9) except for kp can be computed.

9.3.2 Pressure Forces

The final force that needs to be computed is the pressure spring term kp(q, t). This
is computed directly from (9.14) with some further simplifications:

A 9.6. The waves are a simple, planar, and standing sinusoid.
A 9.7. The “hydrostatic” part of the pressure extends from the instantaneous

ocean surface and down.
A 9.8. The “dynamic” part of the pressure extends from the average ocean surface

and down.
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By [5], these approximations and the ones used in deriving the 6-DOF model (9.8)–
(9.9) give a first-order approximation of the wave effects.

Pressure Field

From [5], we have that the ocean surface under these conditions is given by:

ζ (t,rn) = ζ0 cos(ω0t − kwrn
1 +αζ ) (9.16)

in the inertial frame, with ζ giving the wave height at a position rn = [rn
1,r

n
2 ,r

n
3]
�.

The instantaneous ocean surface is then at [rn
1,r

n
2 ,ζ (t,r

n)]�. The constant parame-
ters are the wave amplitude ζ0, the frequency of the waves as seen by an observer
stationary in the inertial frame ω0, and the wave number kw. For waves traveling in
negative x-direction, kw < 0 and vice versa.

By [5], the pressure field Ψ is given by:

Ψ(rn, t) = gρζ0e−kw max(rn
3,0) cos(ω0t − kwrn

1 +αζ )+ gρrn
3 . (9.17)

The parameters are the acceleration of gravity g and the density of sea water ρ . The
term gρrn

3 is the “hydrostatic” pressure, and gρζ0e−kw max(rn
3,0) cos(ω0t−kwrn

1 +αζ )
the “dynamic” pressure.

The Submerged Part of the Ship

The ship’s hull, as previously mentioned, is split into panels, each forming a triangle
or quadrangle. In the body frame, panel i has corners pb

i, j , j ∈ {1,2,3,4} for
quadrangles and j ∈ {1,2,3} for triangles. In the inertial frame,

pn
i, j = Rpb

i, j + xn . (9.18)

As (9.16) gives the explicit wave surface (in the inertial frame) one can compute
which points, at any given time and physical location, are above or below the wave
surface by solving the equation

[0,0,1]pn
i, j = ζ (t,pn

i, j) .

Rather than solving the equation explicitly, an approximation is used. First, the
points are transformed using

p̄n
i, j = pn

i, j − [0,0,ζ (t,pn
i, j)]

� . (9.19)

Any point with a positive z-value is submerged, see Fig. 9.3.
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Fig. 9.3 Transforming panels

Each panel is individually parametrized with a bilinear interpolation, so that, for
each panel i,

p̄n
i = k̄0 + k̄uu+ k̄vv+ k̄uvuv (9.20)

with u,v ∈ [0,1) defines all points on panel i.
For each partially submerged panel (one with at least one point underwater and

at least one point above water), the parametrization is used to find where the edges
of the panel intersect the water line, and to compute the coordinates of these points.
The submerged points and the points in the water line then make up (one or more)
new panel(s). Note that the panels whose submerged part forms a pentagon are split
into three triangular panels, whereas panels whose submerged part forms a triangle
or a quadrangle are kept as such, see Fig. 9.2.

The partially submerged panels and the panels wholly above the water line are
discarded. The fully submerged panels based on the partially submerged panels, and
the original fully submerged panels, are kept. The entire transformation–cutting–
reverse transformation process can be seen in Fig. 9.3.

The approximation to find the true intersection of the hull and the ocean surface
is good if the average size of the panels is small relative to the wave length.
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Generalized Forces

Before computing the forces and moments, the transformation (9.19) needs to be
reversed such that all points of the panels are expressed in the inertial frame. We
therefore take

pn
i, j = p̄n

i, j +[0,0,ζ (t,pn
i, j)]

� , (9.21)

and parameterize these panels bilinearly so that

pn
i = k0 +kuu+kvv+kuvuv (9.22)

with u,v ∈ [0,1) define all points on panel i, in the inertial frame. The partial
derivatives of pn

i with respect to u and v can be explicitly found as:

∂pn
i

∂u
= ku +kuvv ,

∂pn
i

∂v
= kv +kuvu . (9.23)

It is worth noting that for triangular panels, kuv = 0.
For each panel, we can compute the pressure force in the inertial frame as:

fn
i =

{∫ 1
0

∫ 1
0 Ψ (pn

i (u,v), t) [ku +kuvv]× [kv +kuvu] du dv quadrangles
∫ 1

0

∫ 1−v
0 Ψ(pn

i (u,v), t)ku ×kv du dv triangles
.

The integration must be done numerically. Although more points could be used, for
increased computational speed, only corner points are used in the calculation of the
pressure forces. Thus,

fn
i ≈

{
1
4 ∑4

j=1Ψ(pn
i (ū j, v̄ j), t) [ku +kuvv̄ j]× [kv +kuvū j] quadrangles

1
6 ∑3

j=1Ψ(pn
i (ū j, v̄ j), t)ku ×kv triangles

,

where

ū1 = 0, v̄1 = 0,

ū2 = 0, v̄2 = 1,

ū3 = 1, v̄3 = 0,

ū4 = 1, v̄4 = 1.

The computation for the torque is similar. However, we need the torque relative
to the body origin rather than the inertial origin. We therefore get

mn
i =

⎧
⎨

⎩

∫ 1
0

∫ 1
0 Ψ(pn

i (u,v), t) [p
n
i (u,v)− xn]

quadrs.× ([ku +kuvv]× [kv +kuvu]) du dv
∫ 1

0

∫ 1−v
0 Ψ(pn

i (u,v), t) [p
n
i (u,v)− xn]× (ku ×kv) du dv triangles

.

This is approximated as:
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mn
i ≈

⎧
⎪⎨

⎪⎩

1
4 ∑4

j=1Ψ(pn
i (ū j, v̄ j), t) [pn

i (ū j, v̄ j)− xn]
quadrs.× ([ku +kuvv̄ j]× [kv +kuvū j])

1
6 ∑3

j=1Ψ(pn
i (ū j, v̄ j), t) [pn

i (ū j, v̄ j)− xn]× (ku ×kv) triangles
.

Note that this torque is still in the inertial frame, but relative to the body origin.
If the set S consists of all i such that panel i is one of the original, fully submerged

panels or one of the newly created (also fully submerged) panels, we can then take

kp(q, t)≈
[

R� ∑i∈S fn
i

R� ∑i∈S mn
i

]

(9.24)

to get the total pressure force and moment in the body frame.
The system is simulated with a fixed time step, and for each time instant, the

outlined procedure for computing kp is performed.
Note that the procedure automatically handles such effects as (first-order) wave-

induced forces and Doppler shift of these. The first by simple virtue of the pressure
field including the dynamic pressure and the latter by including xn in (9.18).

9.4 Encounter Frequency

To an observer standing in a fixed location on the ocean surface, waves will appear
to have a specific frequency of oscillation (or a range of frequencies if the waves are
irregular). Ocean waves can be seen as planar waves [5], and for regular sinusoidal
waves, these can be described by (9.16). To a stationary observer, rn is constant.

To a moving observer, the waves will appear to behave differently than to the
stationary observer due to the Doppler effect. We take rn = xn to be the location of
the observer in the inertial frame (i.e., the body origin) and assume, without loss of
generality, that xn(t0) = 0. The observer’s velocity in the inertial x-direction is then

ẋn � vn
1 (9.25)

so that

ζ (t,xn) = ζ0 cos

(

ω0t − kw

∫ t

t0
vn

1(τ) dτ +αζ

)

. (9.26)

Since the velocity is given in the body frame in the 6-DOF model (9.8)–(9.9),

vn
1 = e�x Rvb, (9.27)

where ex = [1,0,0]�.
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We then define the encounter frequency, the frequency seen by the observer, as:

ωe �
d
dt

(

ω0t − kw

∫ t

t0
vn

1(τ) dτ
)

(9.28)

= ω0 − kwe�x Rvb ≈ ω0 − kwe�x R[vb
1,0,0]

�

= ω0 − kw cos(θ )cos(ψ)vb
1 ≈ ω0 − kwvb

1 (9.29)

and rewrite (9.26) as:

ζ (t,xn) = ζ0 cos

(∫ t

t0
ωe(τ) dτ +αζ

)

. (9.30)

We note that if vn
1 is a constant, then so is ωe, and the above simply becomes

ζ (t,xn) = ζ0 cos
(
ωet +αζ

)
.

It is an important fact that whereas we cannot change ω0, we can change ωe by
changing the velocity vn

1.

9.5 1-DOF Roll Models

The spring term in the full 6-DOF model is analytically unknown. We make the
following extra assumption to derive a 1-DOF roll model:

A 9.9. The ship is traveling directly into the waves.

Note that the ship is still allowed to change its forward speed.
For ships in parametric resonance, it is well-known that the most important

degrees of freedom are heave, roll, and pitch [11, 14]. Heave and pitch are already
coupled, and during parametric resonance these transfer energy to roll.

Setting all other degrees of freedom to zero, we define

qr3 �
[

zn, φ , θ
]�

, ννν r3 �
[

vb
3, ωb

1 , ωb
2

]�
(9.31)

and note that

q̇r3
=

⎡

⎣
cos(φ)cos(θ ) 0 0

0 1 sin(φ) tan(θ )
0 0 cos(φ)

⎤

⎦νννr3 ≈ ννν r3 . (9.32)

This 3-DOF model can be written as:

Mr3ν̇ννr3 +Cr3

(
νννr3

)
νννr3 +Dr3

(
νννr3

)
νννr3 +kr3

(
qr3 , t

)
= τττc,r3 +τττe,r3 . (9.33)
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For simplicity, we will assume that the velocities in heave and pitch are low, and
that the only coupling between these two degrees of freedom and roll exists in the
spring term kr3 . This allows us to write

Mr3 =

⎡

⎣
m33 0 m35

0 m44 0
m53 0 m55

⎤

⎦ , Cr3

(
νννr3

)
= 03×3 , Dr3

(
ννν r3

)
=

⎡

⎣
d33 0 d35

0 d44 0
d53 0 d55

⎤

⎦,

where mi j and di j are the i, jth element of M and D(0) from the 6-DOF model
(9.8)–(9.9).

Furthermore, following [11], we simplify kr3 to

kr3

(
qr3 , t

)≈
⎡

⎣
k33 0 k35

0 k44 0
k53 0 k55

⎤

⎦qr3 +

⎡

⎣
0

kzφ znφ + kφθ φθ + kφ 3φ3

0

⎤

⎦+ k̄r3 (t)

with

k̄r3 (t) =−

⎡

⎢
⎢
⎣

azζ0 cos
(∫ t

t0
ωe(τ) dτ +αz

)

0

aθ ζ0 cos
(∫ t

t0
ωe(τ) dτ +αθ

)

⎤

⎥
⎥
⎦,

where az, αz, aθ , and αθ are constant. We note that k̄r3 (t) is merely ζ of (9.26)
phase-shifted and scaled, effectively sent through a linear filter.

Neither heave nor roll nor pitch are likely to be directly actuated, so τττc,r3 = 0.
The unmodeled disturbances τττe,r3 are also assumed zero. We then rewrite (9.33) as

m44φ̈ + d44φ̇ + k44φ + kφ 3φ3 =−[kzφ ,kφθ ]qr2φ (9.34)

Mr2 q̈r2
+Dr2 q̇r2

+Kr2qr2 = τττe,r2 . (9.35)

with

qr2 = [zn,θ ]� , Mr2 =

[
m33 m35

m53 m55

]

, Dr2 =

[
d33 d35

d53 d55

]

Kr2 =

[
k33 k35

k53 k55

]

, τττe,r2(t) =

⎡

⎣
azζ0 cos

(∫ t
t0

ωe(τ) dτ +αz

)

aθ ζ0 cos
(∫ t

t0
ωe(τ) dτ +αθ

)

⎤

⎦ .

We note that the qr2 -subsystem (9.35) is completely decoupled from the roll-
subsystem (9.34) and is merely a linear ordinary differential equation with constant
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coefficients and a sinusoidal input. If we assume that ωe is constant, then the system
will have the steady-state solution

qr2 (t) =

⎡

⎣
āzζ0 cos

(∫ t
t0

ωe(τ) dτ + ᾱz

)

āθ ζ0 cos
(∫ t

t0
ωe(τ) dτ + ᾱθ

)

⎤

⎦ . (9.36)

The main purpose of this work is to derive a roll model for changing ωe, thus we
consider the case when ωe is not constant. We revisit the equation for ωe, and note

ω̇e =
d
dt

(
ω0 − kwe�x Rvb

)
=−kwe�x R

(
S(ωωωb)vb + v̇b

)
(9.37)

giving

|ω̇e| ≤ |kw|‖ex‖‖R‖
(
‖S(ωωωb)vb‖+ ‖v̇b‖

)
= |kw|

(
‖S(ωωωb)vb‖+ ‖v̇b‖

)
(9.38)

since ‖ex‖= ‖R‖= 1.
For large ships, neither the acceleration ‖v̇b‖ nor the term ‖S(ωωωb)vb‖ is likely to

be large. To cause parametric resonance, the wave length has to be approximately
the same as the length of the ship, and since kw is inversely proportional to the wave
length, kw is likely to be quite low. Thus |ω̇e| ≈ 0 and a quasi-steady approach can
be used. We therefore take the solution to (9.35) to be given by (9.36) even when ωe

is non-constant.
We insert the solution (9.36) into the right-hand side of (9.34) and get

[kzφ ,kφθ ]qr2 = kzφ āzζ0 cos

(∫ t

t0
ωe(τ)dτ + ᾱz

)

+ kφθ āθ ζ0 cos

(∫ t

t0
ωe(τ) dτ + ᾱθ

)

= kφt cos

(∫ t

t0
ωe(τ) dτ +αφ

)

,

where

k2
φt = ζ 2

0

[
k2

zφ ā2
z + k2

φθ ā2
θ + 2kzφ kφθ āzāθ cos(αθ −αz)

]

αφ = arctan

(
kzφ āz sin(αz)+ kφθ āθ sin(αθ )

kzφ āz cos(αz)+ kφθ āθ cos(αθ )

)

.

1-DOF roll model (time-varying speed) Under the stated assumptions, the roll
motion can be described by the 1-DOF parametric roll model:

m44φ̈ + d44φ̇ +

[

k44 + kφt cos

(∫ t

t0
ωe(τ) dτ +αφ

)]

φ + kφ 3φ3 = 0 . (9.39)
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1-DOF roll model (constant encounter frequency) If ω̇e = 0, then the roll motion
is described by the Mathieu equation:

m44φ̈ + d44φ̇ +
[
k44 + kφt cos(ωet +αφ )

]
φ + kφ 3φ3 = 0 . (9.40)

For both models, the natural roll frequency ωφ is given by ωφ �
√

k44/m44.

9.6 Model Verification

To verify the 1-DOF simplified roll model (9.39), we simulate it and compare it to
simulations of the full 6-DOF model (9.8)–(9.9) presented in Sect. 9.3. Since the
Mathieu equation (9.40) is commonly used to describe ships sailing with constant
surge speed experiencing parametric roll resonance, we additionally investigate its
ability to describe the dynamics of a ship for a non-constant encounter frequency.

In the simulations, we use the ship described in [9–11] and the same parameters
for inertia MRB, added mass MA, and damping D as in Sect. 9.3.1. We have
implemented the kinematics using quaternions, see [3, 7], instead of the Euler
angle representation in the simulations. Those two representations can be used
interchangeably and the choice of representation is to a certain degree arbitrary [7].

As the main difference between the models is in the spring term, we compare
these. Furthermore, the parameters of these are not known a priori, and need to be
identified. Denoting the roll angle computed based on the 1-DOF model (9.39) and
the Mathieu model (9.40) by φc and φm, respectively, we define the spring torque for
the 1-DOF roll model (9.39) and the Mathieu model (9.40) as

kφ ,c(t;s) =

[

k44 + kφt cos

(∫ t

t0
ωe (τ) dτ +αφ

)]

φc(t)+ kφ 3φ3
c (t) (9.41)

kφ ,m(t;s) =
[
k44 + kφt cos

(
ωet +αφ

)]
φm(t)+ kφ 3φ3

m(t). (9.42)

To determine the parameters s = [k44,kφt ,αφ ,kφ 3 ] in (9.41) and (9.42), we use
nonlinear least-squares curve fitting:

sc = argmin
s ∑

t
|k4(q(t), t)− kφ ,c(t;s)|2 (9.43)

sm = argmin
s ∑

t
|k4(q(t), t)− kφ ,m(t;s)|2, (9.44)

where k4 is the fourth element of kp in the full 6-DOF model (9.8)–(9.9).
The instantaneous encounter frequency in the simplified roll model (9.39) is

calculated from the simulation of the full 6-DOF model by (9.28). However, even
when attempting to keep constant speed, the waves cause the ship’s speed to
oscillate. This is reflected in the 6-DOF model. Using the instantaneous values of
ωe, the Mathieu model (9.40) will not oscillate. Thus, we use a low-pass filtered
encounter frequency when simulating the Mathieu model.
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Table 9.1 Simulation parameters, constant speed

Quantity Symbol Value

Mean forward speed vb
1 7.90 m/s

Mean encounter frequency ωe 0.645 rad/s
Wave amplitude ζ0 2.5 m
Wave length λ 281 m
Wave number kw −0.0224
Natural roll frequency ωφ 0.343 rad/s
Modal wave frequency ω0 0.4683 rad/s

k44 1.7646E9 kgm2/s2

Model parameters: kφ t 7.3224E8 kgm2/s2

Simplified roll equation αφ 0.2295 rad
kφ3 2.2741E9 kgm2/s2

k44 1.7685E9 kgm2/s2

Model parameters: kφ t 7.3369E8 kgm2/s2

Mathieu equation αφ 0.2118 rad
kφ3 2.2692E9 kgm2/s2

9.6.1 Constant Forward Speed

To compare the models when ωe is kept approximately constant, we simulate the
three models with constant speed (barring small variations due to wave-induced
forces in surge).

In the following, the signals of the 6-DOF model is represented without subscript,
while the subscripts c and m denote the simplified roll equation and the Mathieu
equation, respectively. The simulation parameters and the model parameters are
summarized in Table 9.1.

Figure 9.4 shows the simulation results for all three models. From Fig. 9.4a it
is evident that the ship is experiencing parametric roll resonance in this scenario.
Figure 9.4c compares the spring torque divided by the roll angle of the the full
6-DOF model to the ones of the simplified roll equation and the Mathieu equation
computed by (9.41) and (9.42), i.e., k4/φ versus

kφ ,c

φc
= k44 + kφt cos

(∫ t

t0
ωe (τ) dτ +αφ

)

+ kφ 3φ2
c

kφ ,m

φm
= k44 + kφt cos

(
ωet +αφ

)
+ kφ 3φ2

m .

Once steady-state is reached, there is good agreement between the 6-DOF model
(9.8)–(9.9) and the two 1-DOF models (9.39) and (9.40).

In this scenario, the 1-DOF model (9.39) and the Mathieu model (9.40) behave
almost identically. This is as expected, since with ω̇e = 0 the two models are
identical. The slight variations in ωe in this scenario are not enough to cause any
significant discrepancy.
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Fig. 9.4 Model comparison. φ , φc, and φm are roll angles from the 6-DOF model, the simplified
roll equation, and the Mathieu equation

Up till about 220 s, there is significant discrepancy between the 6-DOF model
(9.8)–(9.9) and the two 1-DOF models (9.39) and (9.40). The two 1-DOF models
(9.39) and (9.40) go to the maximum roll angle much faster than the 6-DOF model
(9.8)–(9.9). This is because the two 1-DOF models (9.39) and (9.40) are derived
under the assumption that heave and pitch are in steady-state. For the first 200 s or
so, that is not the case. Once steady-state heave and pitch are achieved, the 6-DOF
model (9.8)–(9.9) quickly catches up to the two models (9.39) and (9.40).
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9.6.2 Maximum Roll Angle

To compare the models under a wide range of scenarios, we simulate the three
models for different (almost constant) forward speeds and different wave amplitudes
and compute the maximum roll angle as a function of the encounter frequency and
the wave amplitude. The simulation scenarios and parameters are identical for all
three cases. The spring torque constants for the simplified 1-DOF roll model (9.39)
(sc of (9.43)) and the Mathieu model (9.40) (sm of (9.44)) are reestimated for each
forward speed and each wave amplitude.

It is well-known that parametric resonance occurs at wave encounter frequencies
approximately twice the natural roll frequency [8]. We therefore simulate the models
for an initial surge speed from 0.5 to 12.8 m/s, resulting in a frequency ratio ωe/ωφ
from 1.4 to 2.2. The wave amplitude ζ0 ranges from 0 to 6 m.

Figure 9.5 depicts the maximum roll angle for the models of different complexity
as a result of the simulations. The roll amplitude is limited to 90◦ in the plots for the
simplified roll equation (Fig. 9.5b) and the Mathieu equation (Fig. 9.5c) for the sake
of presentability. We note that qualitatively the simplified roll model (Fig. 9.5b) is
quite close to the 6-DOF model (Fig. 9.5a), at least for low wave amplitudes.

The Mathieu equation (Fig. 9.5c) simulated with the filtered wave encounter
frequency also behaves reasonably well and is almost indistinguishable from the
1-DOF model. This is reasonable, as there are only very small variations in ωe.

9.6.3 Time-Varying Forward Speed

Since the difference between the simplified roll model (9.39) and the Mathieu model
(9.40) only becomes apparent when the speed is non-constant, we simulate the
system with non-constant forward speed. The scenario tested is a simple speed
change, so that the desired forward speed vb

1,d is given by:

vb
1,d(t) =

⎧
⎪⎨

⎪⎩

vb
1,0 ∀ t ∈ [t0, t1]

vb
1,0 + l(t − t1) ∀ t ∈ [t1, t2]

vb
1,1 ∀ t ∈ [t2,∞)

,

where l is the desired acceleration and vb
1,1 = vb

1,0+ l(t2−t1). This gives an encounter
frequency

ωe(t)≈
⎧
⎨

⎩

ωe,0 ∀ t ∈ [t0, t1]
ωe,0 − kwl(t − t1) ∀ t ∈ [t1, t2]

ωe,1 ∀ t ∈ [t2,∞)

=

⎧
⎪⎨

⎪⎩

ω0 − kwvb
1,0 ∀ t ∈ [t0, t1]

ω0 − kw

[
vb

1,0 + l(t − t1)
]
∀ t ∈ [t1, t2]

ω0 − kwvb
1,1 ∀ t ∈ [t2,∞)

.
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Table 9.2 Simulation parameters, time-varying speed

Quantity Symbol Value

Initial mean forward speed vb
1,0 7.90 m/s

Desired acceleration l 0.005 m/s2

Final mean forward speed vb
1,1 9.43 m/s

Initial mean encounter frequency ωe,0 0.645 rad/s
Final mean encounter frequency ωe,1 0.680 rad/s
Simulation start time t0 0 s
Acceleration start time t1 300 s
Acceleration stop time t2 607 s
Wave amplitude ζ0 2.5 m
Wave length λ 281 m
Wave number kw −0.0224
Natural roll frequency ωφ 0.343 rad/s
Modal wave frequency ω0 0.4683 rad/s

k44 1.7646E9 kgm2/s2

Model parameters: kφ t 7.3224E8 kgm2/s2

Simplified roll equation αφ 0.2295 rad
kφ3 2.2741E9 kgm2/s2

k44 1.7676E9 kgm2/s2

Model parameters: kφ t 7.3333E8 kgm2/s2

Mathieu equation αφ 0.2122 rad
kφ3 2.2702E9 kgm2/s2

Due to small oscillations in surge, ωe does not exactly match the desired value,
as seen in Fig. 9.6b. The Mathieu model (9.40) is once again fed the low-pass
filtered values of ωe, while the 1-DOF model (9.39) uses the unfiltered values. The
parameters used in the simulation are shown in Table 9.2.

Figure 9.6 depicts the results of the simulation. Again, the ship is in parametric
roll resonance, as shown in Fig. 9.6a. The non-constant forward speed results in a
non-constant encounter frequency and frequency ratio, respectively, see Fig. 9.6b.
The spring torque divided by the roll angle is compared in Fig. 9.6c for the three
models. The simplified roll equation is able to estimate the roll motion well even
for non-constant speed, whereas it is apparent that the Mathieu equation is not. It
gradually becomes out of phase with the roll motion of the full 6-DOF model and
never gets back in phase even when steady-state is reached.

We conclude that the simulations indicate that the model based on the simplified
roll equation is adequate to describe the ship’s dynamics in parametric roll resonance
when the wave encounter frequency is non-constant. The Mathieu equation, on
the other hand, is not able to capture the dynamics to a sufficient extent unless the
encounter frequency is very close to constant and only if the low-pass filtered value
of ωe is used.
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Fig. 9.6 Model comparison. φ , φc, and φm are roll angles from the 6-DOF model, the simplified
roll equation, and the Mathieu equation

9.7 Conclusions

In this work, we have developed a ship model for parametric roll resonance that,
unlike most models in literature, is valid for both constant and non-constant ship
velocity. The resulting model is a complex and accurate 6-DOF model which
considers the induced external forces and moments due to the hydrostatic and
hydrodynamic pressure field of the surrounding ocean, which includes the effect
of waves. Gravity and viscous damping are also accounted for.

The model assumes that the pressure field is unchanged by the passage of the
ship, and wave-induced effects are in practice limited to first-order approximations.
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The model is not analytical, and is therefore only suitable for simulations. We
implemented the model in Matlab/Simulink using data from a specific, 281 m
container ship.

Assuming that the forward speed is slowly time-varying and using a quasi-steady
approach to derive explicit time-domain solutions to the heave and pitch motions
(which are the modes most tightly coupled to roll), we have also derived a simplified
1-DOF (roll) model which can readily be used for control purposes. For constant
wave encounter frequency, we have shown that the 1-DOF model is identical to a
Mathieu-type equation, which is commonly used to describe ships in parametric
roll resonance. However, unlike the Mathieu equation, the model is suitable also for
non-constant velocity.

We have verified the proposed 1-DOF model against the complex 6-DOF model
in simulations with constant and non-constant encounter frequencies, and we have
shown that it is able to qualitatively match the results of the full 6-DOF model in a
wide range of conditions. Furthermore, we have shown that Mathieu-type equations
are not capable of capturing the roll dynamics when the encounter frequency is
time-varying.
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Part III
Control of Parametric Resonance in Ships



Chapter 10
Frequency Detuning Control by Doppler Shift

Christian Holden, Dominik A. Breu, and Thor I. Fossen

10.1 Introduction

Control of parametric roll resonance has attracted considerable research in recent
years [1, 7–11, 13–15, 18, 19]. The proposed control methods can roughly be
categorized as direct or indirect methods. The direct methods are aimed at directly
controlling the roll motion by generating an opposing roll moment, as seen in
[11,19]. Indirect strategies attempt to violate the empirical conditions necessary for
the onset of parametric roll resonance, as seen in [1, 14, 15, 18]. A hybrid approach,
doing both at the same time, is also possible, as seen in [7–9].

In this work, we consider the indirect approach to control parametrically excited
roll motions. A simple model for parametric roll resonance is the Mathieu equation:

m44φ̈ + d44φ̇ +
[
k44 + kφt cos(ωet +αφ )

]
φ = 0,

where m44 is the sum of the moment of inertia and the added moment of inertia
in roll, d44 the linear hydrodynamic damping coefficient, k44 the linear restoring
moment coefficient and kφt the amplitude of its change, ωe the encounter frequency,
and αφ a phase angle. All the parameters are considered constant.

It is known from [17] that such a system parametrically resonates at ωe ≈
2
√

k44/m44 (an encounter frequency of twice the natural roll frequency). The
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encounter frequency ωe is the Doppler-shifted frequency of the waves as seen from
the ship. As the frequency is Doppler-shifted, it can be changed by changing the
ship’s speed.

The main purpose of this chapter is to show that it is feasible to control parametric
roll resonance by changing the encounter frequency to violate the condition ωe ≈
2
√

k44/m44. We call this frequency detuning.
As shown in Chap. 9, Mathieu-type equations are not valid for non-constant ωe.

To design and analyze the control system, we therefore use the simplified, 1-DOF
model (9.39) developed in Sect. 9.5, allowing the ship’s forward speed to change,
but only slowly. For ships susceptible to parametric roll – many of which are large
[2, 4–6] – this is not an unreasonable assumption.

Based on the 1-DOF roll model (9.39) in Sect. 9.5, we propose a simple controller
based on a linear change of the encounter frequency, achieved by variation of the
ship’s forward speed. We then prove mathematically that the proposed controller is
able to drive the ship out of parametric resonance, driving the roll motion to zero. It
is worth noting that the controller is in fact simple enough that a human helmsman
can perform the necessary control action, rendering a speed controller unnecessary.

The controller is tested with the simplified 1-DOF model (9.39) and the full
6-DOF model presented in Sect. 9.2.2, and is shown to work as expected in both
cases.

The rest of this chapter is organized as follows. Section 10.2 lists nomenclature.
Section 10.3 briefly summarizes the model used. The controller is derived and its
theoretical properties are proven in Sect. 10.4. Its performance in simulation is
shown in Sect. 10.5. Section 10.6 contains the conclusion. A short appendix contains
the proof of a lemma used in the proof of the controller’s performance.

10.2 Nomenclature

In this chapter, the following parameters are used:

vb = [vb
1,v

b
2,v

b
3]
� The linear velocity of the ship observed in a reference frame

attached to the ship.
ωωωb = [ωb

1 ,ω
b
2 ,ω

b
3 ]

� The angular velocity of the ship observed in a reference
frame attached to the ship.

vn = [vn
1,v

n
2,v

n
3]
� The linear velocity of the ship observed in an (assumed

inertial) reference frame attached to the mean ocean surface.
ωωωn = [ωn

1 ,ω
n
2 ,ω

n
3 ]

� The angular velocity of the ship observed in an (assumed
inertial) reference frame attached to the mean ocean surface.

R A rotation matrix rotating vectors from the body-fixed to the
inertial frame.

ΘΘΘ = [φ ,θ ,ψ ]� The roll–pitch–yaw Euler angles.
m44 > 0 The total moment of inertia in roll; the sum of the rigid-body

moment of inertia in roll and the added moment of inertia
in roll.

d44 > 0 The linear damping coefficient in roll.
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k44 > 0 The linear restoring coefficient in roll.
kφt > 0 The amplitude of the time-varying change in the linear

restoring coefficient in roll.
ωe(t) The time-varying encounter frequency; the Doppler-shifted

frequency of the waves as seen from the ship.
αφ The phase of the time-varying change in the linear restoring

coefficient in roll.
kφ 3 > 0 The cubic restoring coefficient in roll.
ω0 The frequency of the waves as seen by an observer in an

(assumed inertial) frame attached to the mean ocean surface.
kw The wave number as seen by an observer in an (assumed

inertial) frame attached to the mean ocean surface.
u = ω̇e The control input.
ε A control parameter.
t Time.
t0 The start time.
t1 The controller is turned on at time t = t1.
t2 The controller is turned off at time t = t2.
ωe,0 = ωe(t0) The initial value of the encounter frequency.
ωe,1 = ωe(t ≥ t2) The final value of the encounter frequency.
ᾱφ The phase of the time-varying change in the linear restoring

coefficient in roll at time t ≥ t2.
γ The normalized damping ratio.
κ The normalized linear restoring coefficient.
ι The normalized change in the linear restoring coefficient.
α The normalized cubic restoring coefficient.
T Normalized time (fast).
t̄ Normalized time (slow).
σ The detuning parameter.
a(t̄) The (slowly) time-varying amplitude of the steady-state roll

motion; φ ≈ a(t̄)cos(T −β (t̄)/2) for t ≥ t2.
β (t̄) The (slowly) time-varying phase of the steady-state roll

motion; φ ≈ a(t̄)cos(T −β (t̄)/2) for t ≥ t2.

10.3 Roll Model for Non-Constant Speed

As previously mentioned, we use no direct actuation in roll; instead, we are changing
ωe (by changing the forward speed) to detune the encounter frequency and thus
violate a necessary condition for the existence of parametric roll resonance.

We make the following assumptions:

A 10.1. The ship is traveling in head or stern seas.
A 10.2. The waves are planar, standing, and sinusoidal, with frequency ω0 and wave

number kw.
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A 10.3. The ship is changing speed only slowly.
A 10.4. The ship’s sway and heave velocities are small.
A 10.5. The ship’s pitch angle is small.

The ship is traveling with linear and angular velocities

vb = [vb
1,v

b
2,v

b
3]
� ∈ R

3 (10.1)

ωωωb = [ωb
1 ,ω

b
2 ,ω

b
3 ]

� ∈ R
3 (10.2)

as seen from the ship. For an observer standing on the mean ocean surface, the ship
will appear to have linear and angular velocities

vn = Rvb = [vn
1,v

n
2,v

n
3]
� ∈ R

3 (10.3)

ωωωn = Rωωωb = [ωn
1 ,ω

n
2 ,ω

n
3 ]

� ∈ R
3, (10.4)

where R is a rotation matrix given by:

R(ΘΘΘ) =

⎡

⎣
cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ
−sθ sφcθ cφcθ

⎤

⎦ , (10.5)

where c·= cos(·), s·= sin(·) and ΘΘΘ = [φ ,θ ,ψ ]� are the roll, pitch, and yaw angles
as defined in [3], see also Chap. 9.

To analyze the effects of speed changes, we need a model that is valid for time-
varying speed. As discussed in Chap. 9, the commonly used Mathieu equation is not
adequate in this case. We thus use the 1-DOF model (9.39) of Sect. 9.5, given by

m44φ̈ + d44φ̇ +

[

k44 + kφt cos

(∫ t

t0
ωe(t) dτ +αφ

)]

φ + kφ 3φ3 = 0, (10.6)

where φ is the roll angle, m44 the sum of the rigid-body moment of inertia about
the x-axis and the added moment of inertia in roll, d44 the linear hydrodynamic
damping, k44 the linear restoring moment coefficient, kφt the amplitude of its
change, and kφ 3 the cubic restoring force coefficient. These parameters are constant.

We note that the natural frequency of φ is ωφ �
√

k44/m44. From Chap. 9, we
have that the encounter frequency ωe is given by:

ωe = ω0 − kwvn
1 = ω0 − kw[1,0,0]Rvb . (10.7)

The encounter frequency is the frequency of the waves as seen from the ship. Due
to the Doppler effect, this is not the same as the frequency of the waves seen by a
stationary observer, ω0. For a ship traveling at constant velocity, ωe is constant and
the Mathieu equation can be used to describe the ship’s behavior, see Chap. 9.
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If the ship is nonrotating (i.e., ωωωb ≡ 0), then

ω̇e =−kw[1,0,0]Rv̇b ≈−kwe�x R[v̇b
1,0,0]

�

≈ −kwv̇b
1 cos(θ )cos(ψ)≈−kwv̇b

1 cos(ψ) (10.8)

by the assumption of small sway velocity, yaw rate, and pitch angle. The ship is
assumed to be sailing in head or stern seas, that is, cos(ψ) = 1 (head seas) or
cos(ψ) =−1 (stern seas).

We can set v̇b
1 directly; this is the forward acceleration and can be changed by

increasing or decreasing throttle. It will, however, be limited, so we take it to satisfy
|v̇b

1| ≤ v̇b
1,max. Thus, we take u � ω̇e to be the control input, satisfying

|u|= |ω̇e| ≤ umax = |kw|v̇b
1,max . (10.9)

Note that the assumption that the forward speed changes only slowly implies that
vb

1,max is quite small. The assumption of slow speed change is a necessity to derive
the model (10.6), as detailed in Sect. 9.5.

As we can see from the above equation, umax depends on the size of v̇b
1,max and

kw. For the type of large, slow vessels that are susceptible to parametric roll, v̇b
1,max is

likely to have quite a low value. For ships to parametrically resonate, the wave length
has to be rather long, or kφt will be too small [12]. A long wave length implies a
small kw, since |kw|= 2π/λ if λ is the wave length. Thus umax is quite small.

10.4 Control Design

The control objective is to design u such that the origin of the roll system (10.6) is
(at least) asymptotically stable. Choosing a v̇b

1 so that ω̇e is equal to the desired u is
a control allocation problem.1

10.4.1 Control Principle

The basic control principle is to (slowly) change the encounter frequency from an
undesired value ωe,0 to a desired value ωe,1. We tentatively choose the controller

1It is also possible to change ωe by changing course (i.e., changing ψ). This will have the unwanted
side effect that the ship will now be directly excited by waves (i.e., there will be an external force
on the right-hand side of (10.6) proportional to the wave amplitude), which may also result in
relatively large roll amplitude in the type of seas that give rise to parametric resonance. Changing
ψ to change the encounter frequency is not investigated in this work.
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u(t) =

⎧
⎨

⎩

0 ∀ t ∈ [t0, t1]
ε ∀ t ∈ [t1, t2]
0 ∀ t ∈ [t2,∞)

(10.10)

for some small constant ε , with t2 ≥ t1 ≥ t0. The initial time is t0.
If ωe(t0) = ωe,0, then

ωe(t) =
∫ t

t0
u(τ) dτ +ωe,0 =

⎧
⎨

⎩

ωe,0 ∀ t ∈ [t0, t1]
ωe,0 + ε(t − t1) ∀ t ∈ [t1, t2]

ωe,1 ∀ t ∈ [t2,∞)

, (10.11)

where ωe,1 = ωe,0 + ε(t2 − t1). This gives

∫ t

t0
ωe(τ) dτ =

⎧
⎨

⎩

ωe,0(t − t0) ∀ t ∈ [t0, t1]
ωe,0(t − t0)+ 1

2 ε(t − t1)2 ∀ t ∈ [t1, t2]
ωe,1(t − t2)+ωe,0(t2 − t0)+

1
2 ε(t2 − t1)2 ∀ t ∈ [t2,∞)

.

(10.12)

If cos(ψ) ≡ ±1 and vb
2 = vb

3 = θ = 0, then ωe(t) = ω0 − kwvb
1 cos(ψ) and the

encounter frequency of (10.11) can then be achieved with a surge velocity of

vb
1 =

ω0 −ωe(t)
kw cos(ψ)

=
1

kw cos(ψ)

⎧
⎨

⎩

ω0 −ωe,0 ∀ t ∈ [t0, t1]
ω0 −ωe,0 − ε(t − t1) ∀ t ∈ [t1, t2]

ω0 −ωe,1 ∀ t ∈ [t2,∞)

. (10.13)

Proving that the controller (10.10) works is done in two steps: First, ensuring
that there exists a (unique finite) solution of (10.6) at t = t2. This step is done in the
Appendix. Secondly, we need to prove that if ωe(t)≡ ωe,1 ∀ t ≥ t2, then the solution
to the initial value problem

m44φ̈ + d44φ̇ +
[
k44 + kφt cos

(
ωe,1t + ᾱφ

)]
φ + kφ 3φ3 = 0 ,

φ(t2) = φ2, φ̇ (t2) = φ̇2 , (10.14)

where

ᾱφ � αφ −ωe,1t2 +ωe,0(t2 − t0)+
1
2

ε(t2 − t1)
2

is a constant, goes to zero for all φ2, φ̇2.

10.4.2 The System in the Time Interval t ∈ [t2,∞)

From the results in the Appendix, we know that there exists a unique finite solution
to (10.6), valid at t = t2. From t ≥ t2, the trajectories of the system will be the
solution to the initial value problem (10.14).
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From [17], we know that there are parameter values of ωe,1 which ensure that the
trajectories of the system (10.14) go to zero. If we assume that ωe,0 ≈ 2ωφ (where
parametric resonance of (10.6) is known to occur), we can find theoretical values
for the regions of stability from the approximate methods of [17].

Theorem 10.1 (Main result). Assuming that d44 is not very large, the behavior of
(10.14) can be categorized into three different categories, depending on the value of
ωe,1:

• If 0 ≤ ωe,1 ≤ ωe, then the origin of (10.14) is globally attractive.
• If ωe < ωe,1 ≤ ωe, then the origin of (10.14) is unstable, and there exists a high-

amplitude, stable limit cycle. All trajectories of (10.14) converge to this limit
cycle, with the exception of those starting in the origin.

• If ωe,1 > ωe, then the origin of (10.14) is locally stable, there exists a high-
amplitude, stable limit cycle, and a slightly lower-amplitude, unstable limit cycle.

ωe and ωe are the solutions to the equations

√

1− d2
44ω2

e

k2
φt

− m44ω2
e

kφt

(

2

√
k44

m44ωe
− 1

)

= 0 (10.15)

√
√
√
√1− d2

44ω2
e

k2
φt

+
m44ω2

e

kφt

(

2

√
k44

m44ωe
− 1

)

= 0 . (10.16)

If d44 is very large, then all solutions to the initial value problem (10.14) go to zero.
In this theorem, asymptotic stability of limit cycles follows the definition of [16,

Definition 8.1].

Proof. To simplify the analysis, we define the alternative dimensionless time scale

T � 1
2

ωe,1t + ᾱφ (10.17)

giving

d
dt

=
1
2

ωe,1
d

dT

d2

dt2 =
1
4

ω2
e,1

d
dT 2 .

Using primes to indicate derivatives with respect to T , we rewrite the system
(10.14) as:

φ ′′+ 2ιγφ ′+[κ + 2ι cos(2T )]φ +αιφ3 = 0, (10.18)
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where

ι =
2kφt

m44ω2
e,1

,

γ =
d44ωe,1

2kφt
,

κ =
4k44

m44ωe,1
,

α =
2kφ 3

kφt
,

are all positive dimensionless parameters. It is assumed that ι is small.
Equation (10.18) is known to parametrically resonate if κ ≈ 1 (i.e., ωe,0 ≈ 2ωφ ;

the encounter frequency is twice the natural roll frequency).
Using an O(ι) (big O notation) approximation to the solution of (10.18), [17]

derives a solution using the method of multiple scales (see [17]) given by:

φ = acos(T −β/2)+O(ι), (10.19)

where a and β are slowly time-varying.
Defining an alternative (also dimensionless) time scale

t̄ = ιT (10.20)

(which is slowly varying) and letting

√
κ = 1− ισ (10.21)

(with σ representing the nearness of κ to unity, and thus the system to parametric
resonance), a and β satisfy the (nonlinear homogenous ordinary) differential
equations

∂a
∂ t̄

= − a

2
√

κ
sin(β )− γa (10.22)

a
∂β
∂ t̄

= 2σa− a√
κ

cos(β )− 3α
4
√

κ
a3 . (10.23)

The a–β system has equilibrium points (corresponding to a steady-state periodic
motion of φ , i.e., a limit cycle) given by:

a = 0, β is arbitrary (10.24)
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σ

a

RI RIIIRII

Fig. 10.1 Stability regions of
(10.18), theoretical

(the trivial solution) and

sin(β ) =−2
√

κγ, cos(β ) = 2σ
√

κ − 3α
4

a2. (10.25)

Since
√

κ = 1− ισ , the non-trivial steady-state solution of φ has the amplitude

a2 =
8σ
3α

± 4
3α

√
1− 4γ2, (10.26)

where only the positive root is relevant.
If 2γ > 1, then (10.26) has no real roots and only the trivial steady-state solution

exists. As this is equivalent to high damping, if 2γ > 1, parametric resonance will
not occur. (The origin of (10.18) is then globally attractive for all ωe,1).

If 2γ ≤ 1, then there is one real root of (10.26) if 2|σ | <
√

1− 4γ2, and two if
2|σ | >

√
1− 4γ2. The condition 2σ = −

√
1− 4γ2 corresponds to (10.15) (giving

ωe) and 2σ =
√

1− 4γ2 to (10.16) (giving ωe).
Figure 10.1 illustrates the stability properties of (10.18) for the different cases.

Dashed lines represent unstable equilibrium values of a for different values of σ ,
and solid lines stable equilibrium values.2

In Region RI, there is only the trivial solution. From [17], this is globally
attractive.

In Region RII (where we have parametric resonance), the trivial solution is
unstable, and there exists a large-amplitude steady-state solution, a limit cycle. Apart
from the case where φ(t2) = φ̇(t2) = 0, this limit cycle is globally attractive [17].

2It is worth noting that Fig. 10.1 bears strong similarity to a cross-section with the wave height kept
constant of the simulation of the full 6-DOF model (9.8)–(9.9) of Sect. 9.2.2, except that in that
chapter there is no evidence of the high-amplitude solutions of (10.18) in Region III. The stability
regions indicated from simulating the 6-DOF model are shown in Fig. 10.2.
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σ

a

RI RIIIRII

Fig. 10.2 Stability regions of
the 6-DOF model (9.8)–(9.9)
of Sect. 9.2.2, simulation

t0

t1
[t2, ∞)

[t2, ∞)

σ

a
Fig. 10.3 Control of
parametric roll resonance:
Increasing versus decreasing
the encounter frequency

Region RIII has three equilibrium values, and is somewhat more complicated.
The value a = 0 (equivalent to φ = 0) is (locally) asymptotically stable. However,
there exist two limit cycles, one high-amplitude and one low-amplitude. The high-
amplitude one is (locally) asymptotically stable, whereas the low-amplitude one is
unstable. ��

Based on the proof of Theorem 10.1, we conclude that it is possible that, if one
increases ωe so that ωe,1 � 2ωφ (i.e., σ � 0), φ does not go to zero but instead
to the high-amplitude limit cycle. If one instead decreases ωe so that ωe,1 � 2ωφ
(i.e., σ � 0), φ will go to zero no matter how large φ(t2) is. This is illustrated in
Fig. 10.3.

This suggests that reducing the encounter frequency is the most sensible choice,
and, in fact, the only option that can be guaranteed to work.

It is, however, worth noting that the analysis is based on a simplification of
the ship dynamics. The high-amplitude limit cycle has not been observed in the
simulations with the more physically accurate 6-DOF ship model (9.8)–(9.9) of
Sect. 9.2.2. [8, 18] came to the opposite conclusion regarding speeding up versus
slowing down. But bear in mind that in [8], the conclusion was largely predicated
on the need to have sufficient speed for the fins (which were used in addition to
speed change) to be effective.
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None the less, decreasing the encounter frequency has another benefit: If we
assume that σ starts at zero and slowly increases, trajectories will tend to go to a
higher-amplitude limit cycle as the steady-state value of a increases with increasing
σ in Region RII. However, if we instead decrease σ , trajectories will tend to go
to a lower-amplitude limit cycle even if we are still in parametric resonance. This
phenomenon has been observed in the simulations with the most accurate 6-DOF
model (9.8)–(9.9) of Sect. 9.2.2, so there is reason to suspect that this holds true for
real-world cases.

10.5 Simulation Results

To test the validity of the controller (10.10), we simulated the closed-loop system
using both the simplified model (10.6) and the full 6-DOF model (9.8)–(9.9) of
Sect. 9.2.2 in three different simulation scenarios. In all scenarios, we chose the
initial conditions such that the ship was experiencing parametric roll resonance.

In accordance with the open-loop simulations in Chap. 9, a reduction of the
frequency ratio to ωe,1/ωφ < 1.7 will lead the ship out of the region where the
ship is susceptible to parametric roll resonance.

We simulated three different scenarios:

1. Slow deceleration. The controller is turned on after parametric roll has already
fully developed.

2. Slow deceleration. The controller is turned on before parametric roll has fully
developed.

3. Fast deceleration. The controller is turned on before parametric roll has fully
developed.

The simulation parameters (the same as those used in Chap. 9) are listed in
Table 10.1. The control parameters are found in Tables 10.2–10.4. The simulation
results are summarized in Table 10.5, and can be seen in Figs. 10.4–10.6.

Table 10.1 Simulation parameters

Quantity Symbol Value

Wave amplitude ζ0 2.5 m
Wave length λ 281 m
Wave number kw −0.0224 –
Natural roll frequency ωφ 0.343 rad/s
Modal wave frequency ω0 0.4684 rad/s
Simulation start time t0 0 s

k44 1.7533×109 kgm2/s2

Model parameters kφ t 7.1373×108 kgm2/s2

(simplified roll equation) αφ 0.2741 rad
kφ3 2.2627×109 kgm2/s2



204 C. Holden et al.

Table 10.2 Control parameters, Scenario #1

Quantity Symbol Value

Control action ε −1.7889×10−4 rad/s2

Maximum deceleration v̇1,max 0.008 m/s2

Initial forward speed v1(t0) 7.44 m/s
Initial encounter frequency ωe,0 0.6346 rad/s
Final encounter frequency ωe,1 0.5831 rad/s
Final forward speed v1(t2) 5.14 m/s
Controller turned on t1 300 s
Controller turned off t2 588 s

Table 10.3 Control parameters, Scenario #2

Quantity Symbol Value

Control action ε −1.7889×10−4 rad/s2

Maximum deceleration v̇1,max 0.008 m/s2

Initial forward speed v1(t0) 7.44 m/s
Initial encounter frequency ωe,0 0.6346 rad/s
Final encounter frequency ωe,1 0.5831 rad/s
Final forward speed v1(t2) 5.14 m/s
Controller turned on t1 93 s
Controller turned off t2 381 s

Table 10.4 Control parameters, Scenario #3

Quantity Symbol Value

Control action ε −3.5778×10−4 rad/s2

Maximum deceleration v̇1,max 0.016 m/s2

Initial forward speed v1(t0) 6.67 m/s
Initial encounter frequency ωe,0 0.6174 rad/s
Final encounter frequency ωe,1 0.5660 rad/s
Final forward speed v1(t2) 4.37 m/s
Controller turned on t1 55 s
Controller turned off t2 199 s

Table 10.5 Simulation results, maximum roll angles

Simplified 1-DOF model Full 6-DOF model

Scenarios Uncontrolled Controlled Reduction Uncontrolled Controlled Reduction

#1 25.34◦ 25.34◦ 0% 23.34◦ 23.34◦ 0%
#2 25.34◦ 22.40◦ 11.6% 23.34◦ 20.33◦ 9.0%
#3 23.57◦ 13.71◦ 41.8% 17.99◦ 4.83◦ 73.2%

Figure 10.4 shows the simulation results for the controlled system in comparison
with the uncontrolled system for the first scenario. It is obvious from Fig. 10.4a
that the ship is experiencing large roll amplitudes caused by parametric resonance.
The frequency ratio is gradually decreased after 300 s (Fig. 10.4c), which causes the
expected gradual reduction of the roll motion to zero.
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Fig. 10.4 Simulation results, Scenario #1

The simulation results with the full 6-DOF model (9.8)–(9.9) of Sect. 9.2.2 are
shown in Fig. 10.4b. The controller works equally well with the more complex
model.

Of course, since the controller is turned on only after parametric roll has fully
developed, the maximum roll angle in Scenario #1 is the same for the controlled
and uncontrolled cases. (The steady-state roll angle is zero as predicted.)

The simulation results of the second scenario are shown in Fig. 10.5. In this
scenario, we reduce the encounter frequency when the roll angle is much lower
than in the first scenario, early enough that parametric rolling has not yet fully
developed (specifically, when the roll angle is about 5◦). Figure 10.5 shows that
both the simplified 1-DOF model and the full 6-DOF model behave similarly.
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Fig. 10.5 Simulation results, Scenario #2

However, despite the controller being turned on when roll is only at 5◦, the
maximum roll angle is not greatly reduced compared to the uncontrolled case. This
is simply because the ship is moving very slowly out of resonant condition. The
steady-state roll angle is none the less zero, as predicted.

To get the ship to move out of resonant condition before the roll angle has reached
dangerous levels requires, as it turned out, significantly faster deceleration than in
Scenarios #1 and #2, even if the controller was turned on at a lower roll angle.

To this effect, we simulated Scenario #3. The controller is turned on early, at a
time when the roll angle is about 2◦. The ship is decelerating at twice the rate of
Scenarios #1 and #2. Also, both the initial and final encounter frequencies are lower
in Scenario #3 than in the two others. The results are plotted in Fig. 10.6.
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From Fig. 10.6, we see that the controller is capable of reducing the roll angle
sufficiently fast such that the maximum roll angle is only from 1/2 (1-DOF
model) to 1/4 (6-DOF model) of the maximum roll angle of the uncontrolled case.
Interestingly, from Fig. 10.6 we see that the controller works significantly better for
the full 6-DOF model than for the simplified 1-DOF model. In steady-state, the roll
angle is zero, as expected.

From the simulation results, we see that the controller is capable of bringing the
ship out of parametric resonance and – assuming sufficient deceleration capability –
reduce the maximum roll angle significantly. It is also vital to turn on the controller
as early as possible. The simulations confirm the theoretical derivations presented
in Sect. 10.4.
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How practical the controller is in a real-world scenario depends almost entirely
on the ability of the captain (or the automated systems) to detect parametric
resonance, and the ability of the ship to rapidly decelerate. If these capabilities are
present, then the controller could prove useful. In the absence of one or both of these
abilities, the practicality of the controller is limited, at least on its own. However,
it might be possible to pair it with another control scheme such as fins as done
in [7, 9], u-tanks (investigated on their own in Chap. 12), gyro stabilizers, or other
active controllers.

10.6 Conclusions

A necessary, but not sufficient, condition for parametric resonance is that the
frequency of the parametric excitation has certain values. For ships, this frequency
can be changed (due to the Doppler effect) by changing the velocity. In this work, we
have derived a controller for parametric roll resonance in ships that takes advantage
of this and can drive the roll motion to zero. We call this frequency detuning control.

Based on the simplified 1-DOF roll model (9.39) developed in Sect. 9.5, we
proposed a simple controller incorporating a linear change of the wave encounter
frequency, accomplished by changing the forward speed of the ship. We showed
mathematically and in simulations – using both the simplified model and the 6-
DOF model (9.8)–(9.9) of Sect. 9.2.2 – that the proposed controller drives the roll
motion to zero. The derived controller is so simple that it can be implemented by a
helmsman, even without a speed controller on board.

However, while the controller drives the roll angle to zero, the transient behavior
can be problematic. Even if the controller is turned on at a very early stage, the ship
will have to be capable of a fairly rapid speed change to prevent high transient roll
angles. Frequency detuning does have the advantage that it can easily be paired with
direct actuation, such as the use of u-tanks, fins, or gyro stabilizers.

The effectiveness of the frequency detuning controller can be further increased
by course changes in addition to speed changes to alter the encounter frequency.
However, this can cause regular, directly induced roll excitation to become a
problem, and was not investigated in this work.

Frequency detuning can be used for other parametrically resonating systems as
long as it is possible to change the frequency of excitation. However, for most
systems with the ability to change the frequency of excitation, one presumably also
has the ability to change the amplitude of excitation. In that case, it is probably easier
to do so. In practice, this limits the applicability of the proposed control scheme to a
few systems, most notably those where the parametric resonance is induced by flow
past a free-moving body.

Acknowledgements This work was funded by the Centre for Ships and Ocean Structures
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Appendix

In this appendix, we prove the existence and uniqueness properties of (10.6).
From [17], we get the behavior of the system when ωe is a constant, but not

when it is changing. We need to guarantee a unique finite solution of (10.6) also for
time-varying ωe.

To prove the existence (and uniqueness) of the solution to (10.6), we will use the
following theorem and lemma, repeated here for convenience:

Theorem 10.2 ([16, Theorem 3.3]). Let f (t,x) be piecewise continuous in t and
locally Lipschitz in x for all t ≥ t0 and all x in a domain D ⊂ R

n. Let W be a
compact subset of D, x0 ∈W, and suppose it is known that every solution of

ẋ = f (t,x), x(t0) = x0

lies entirely in W. Then there is a unique solution that is defined for all t ≥ t0.

Lemma 10.1 ([16, Lemma 3.2]). If f (t,x) and ∂ f
∂x (t,x) are continuous on [a,b]×

D, for some domain D ⊂ R
n, then f is locally Lipschitz in x on [a,b]×D.

If we take x = [φ , φ̇ ]�, we can rewrite (10.6) as

ẋ =

[
x2

− d44
m44

x2 − 1
m44

[
k44 + kφt cos

(∫ t
t0

ωe(τ) dτ +αφ

)]
x1 −

kφ3

m44
x3

1

]

= f (t,x)

=

[
0 1

− k44
m44

− d44
m44

]

x+

[
0

− kφ t
m44

cos
(∫ t

t0
ωe(τ) dτ +αφ

)
x1 −

kφ3

m44
x3

1

]

= Ax+ g(t,x1) (10.27)

with

f (t,x) �
[

x2

− d44
m44

x2 − 1
m44

[
k44 + kφt cos

(∫ t
t0

ωe(τ) dτ +αφ

)]
x1 −

kφ3

m44
x3

1

]

A �
[

0 1
− k44

m44
− d44

m44

]

g(t,x1)�
[

0

− kφ t
m44

cos
(∫ t

t0
ωe(τ) dτ +αφ

)
x1 −

kφ3

m44
x3

1

]

.

Lemma 10.2. There is a unique solution of (10.27) (and thus (10.6)) defined for
all t ≥ t0.
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Proof. It is clear that f (t,x) of (10.27) is continuous in x for all x ∈ R
2. It is also

continuous in t for all t ≥ t0, as long as ωe(t) is piecewise continuous. Our choice
of ωe satisfies this.

The partial derivative of f with respect to x is given by:

∂ f
∂x

(t,x) = A−
[

0 0
kφ t
m44

cos
(∫ t

t0
ωe(τ) dτ +αφ

)
+ 3

kφ3

m44
x2

1 0

]

(10.28)

which, by the same argument, is continuous in x for all x ∈ R
2 and t ≥ t0. By [16,

Lemma 3.2], f is therefore locally Lipschitz in x for all t ≥ t0 and all x ∈ R
2. The

first part of [16, Theorem 3.3] is then satisfied.
To prove that the trajectories of the system are bounded, we use the Lyapunov

function candidate

V =
1
2

x�Px+
1
4

(

1+
m44

d44

)

kφ 3x4
1 (10.29)

with

P =

⎡

⎣
d44 + k44

(
1+ m44

d44

)
m44

m44 m44

(
1+ m44

d44

)

⎤

⎦= P� > 0 . (10.30)

The time derivative of V along the trajectories of the system (10.27) is given by:

V̇ = x�P(Ax+ g(t,x))+

(

1+
m44

d44

)

kφ 3x3
1x2

=−
(

k44 + kφt cos

(∫ t

t0
ωe(τ) dτ +αφ

))

x2
1 − d44x2

2 − kφ 3x4
1

− kφt cos

(∫ t

t0
ωe(τ) dτ +αφ

)(

1+
m44

d44

)

x1x2

≤−(k44 − kφt
)

x2
1 − d44x2

2 − kφ 3x4
1 + kφt

(

1+
m44

d44

)

|x1||x2| . (10.31)

While k44 > kφt , V̇ is only negative definite for sufficiently small values of kφt .
If kφt is sufficiently small, then the origin of the system (10.27) would be globally
uniformly exponentially stable, by [16, Theorem 4.10]. A priori we know that this
is not the case; in parametric resonance, the origin is, in fact, unstable.

However, V can be used to prove that the trajectories of (10.27) are bounded.
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For |x1| ≥ μ > 0 ⇒‖x‖ ≥ μ it holds that

V̇ ≤−(k44 − kφt
)

x2
1 − d44x2

2 − kφ 3x4
1 + kφt

(

1+
m44

d44

)

|x1||x2|

≤ −d44x2
2 − kφ 3 μ2x2

1 + kφt

(

1+
m44

d44

)

|x1||x2|

=−(1− δ )d44x2
2 − (1− δ )kφ 3μ2x2

1

+ kφt

(

1+
m44

d44

)

|x1||x2|− δd44x2
2 − δkφ 3 μ2x2

1 (10.32)

for some δ ∈ (0,1). Furthermore, the term

kφt

(

1+
m44

d44

)

|x1||x2|− δd44x2
2 − δkφ 3 μ2x2

1

is negative semidefinite if

k2
φt

(

1+
m44

d44

)2

≤ 4d44δ 2kφ 3 μ2 ⇒ μ ≥ 1

2δ
√

d44kφ 3

kφt

(

1+
m44

d44

)

.

(10.33)

Therefore, for μ satisfying the above inequality,

V̇ ≤−(1− δ )d44x2
2 − (1− δ )kφ 3μ2x2

1 (10.34)

which is negative definite. By [16, Theorem 4.18] the trajectories of (10.27) are
bounded for any initial condition x(t0).

Therefore, the second condition of [16, Theorem 3.3] is satisfied, and there exists
a unique solution of (10.27) (and thus (10.6)) that is defined for all t ≥ t0. ��
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Chapter 11
Optimal Speed and Heading Control
for Stabilization of Parametric Oscillations
in Ships

Dominik A. Breu, Le Feng, and Thor I. Fossen

11.1 Introduction

Recently, several active control strategies for the stabilization of parametric roll
oscillations in ships have been proposed [2,7–10,14,15,17,18,27,29]. The potential
of violating one of the conditions for the onset of parametric roll resonance (see [6])
has been effectively shown in [2, 8–10, 17, 18, 27]. Those control strategies, called
frequency detuning control in Chap. 10, are designed to change the frequency of the
parametric excitation for instance via the Doppler-shift of the encounter frequency
– that is, the frequency of the waves as seen from the ship. The Doppler-shift can be
achieved by variations of the ship’s speed and heading angle.

Whereas the effectiveness of frequency detuning control to stabilize parametri-
cally excited roll oscillations in ships has been reported, research on how to change
the encounter frequency with respect to optimality has been conducted only recently
[2]. Since changes of the ship’s speed and heading angle result in a shift of the
encounter frequency, optimal control methodologies can be used to determine the
optimal encounter frequency and the optimal setpoints for the ship’s speed and
heading angle.

In this work, two optimal control methods for the stabilization of parametric roll
resonance are proposed. Based on the results in Breu and Fossen [2], the extremum
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seeking (ES) methodology is adapted to iteratively determine the optimal setpoint
of the encounter frequency. The mapping of the encounter frequency to the two
controllable states, the ship’s forward speed and heading angle, is a constrained
optimization problem which can be posed in a two-step sequential least-squares
formulation. By defining an appropriate objective function and designing globally
exponential stable speed and heading controllers, it is shown that the proposed ES
controller is able to stabilize the roll oscillations caused by parametric excitation
effectively.

As a second approach, the application of a model predictive controller (MPC)
to ships experiencing parametric roll resonance is proposed. Constraints on inputs
and states as well as an objective function aiming to violate one of the empirical
conditions for the onset of parametric roll resonance are formulated in the MPC
framework. It is illustrated in simulations that the proposed MPC approach is apt to
be used for the stabilization of parametrically excited roll oscillations.

11.2 3-DOF Ship Model

A simplified 3-DOF model of the ship describing the coupled motions in surge, roll,
and yaw is used to represent the ship dynamics.

11.2.1 Reference Frames

Two reference frames are considered; a geographical reference frame fixed to the
ocean surface, and a reference frame fixed to the vessel (body frame). Figure 11.1
depicts the two reference frames in the horizontal plane, that is, the z-axis is not
shown in Fig. 11.1.

ob
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n

Fig. 11.1 Horizontal plane, reference frames, and angle definitions
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The reference frame fixed to the vessel is moving with the vessel and it has its
origin at a location ob midships. The body axes xb, yb, and zb coincide with the
principle axes of inertia, as defined in [5]. The vectors decomposed in the body
frame are denoted in boldface with a superscript b.

We make the following assumption:

Assumption 11.1. The geographical reference frame fixed to the ocean surface is
inertial.

The ocean surface reference frame is defined by the North-East-Down coordinate
system in [5], with the axes accordingly. Boldface and a superscript n denote the
vectors expressed in the inertial frame.

11.2.2 Ship Dynamics

The generalized velocity vector expressed in the body frame is denoted by the vector
ννν = [u,v,w, p,q,r]�. The generalized external forces τττRB = [X ,Y,Z,K,M,N]�,
expressed in the body frame, are the sum of the generalized environmental forces
τττenv and the generalized control forces τττ , that is, τττRB = τττenv +τττ . The generalized
position (position and attitude) vector is denoted as ηηη = [N,E,D,φ ,θ ,ψ ]�, where
the position vector [N,E,D]� is expressed in the inertial frame and the elements of
the attitude vector [φ ,θ ,ψ ]� are the Euler angles.

The relationship between the generalized position and the velocities
satisfies [5]

η̇ηη = J(ηηη)ννν, (11.1)

where J(ηηη) is the transformation matrix consisting of the linear and angular velocity
transformation matrices as defined by Fossen [5].

The rigid-body kinetics are given by:

MRBν̇νν +CRB (ννν)ννν = τττRB, (11.2)

where MRB is the rigid-body inertia matrix, satisfying MRB = M�
RB > 0 and

ṀRB=0. The rigid-body Coriolis and centripetal matrix CRB (ννν) = −C�
RB (ννν) is

due to the rotation of the body frame about the inertial frame. By the super-
script {1,4,6}, we indicate that only the motions in surge, roll, and yaw – the
first, fourth, and sixth rows and columns of the 6-DOF model are
considered.

Assumption 11.2. The mass is distributed homogeneously and the ship has xz-
plane symmetry.
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Since the origin of the body frame is in the centerline of the ship and the body axes
coincide with the principle axes of inertia, the rigid-body inertia matrix takes the
following form:

M{1,4,6}
RB =

⎡

⎣
m 0 0
0 Ix 0
0 0 Iz

⎤

⎦ , (11.3)

where m denotes the ship mass, whereas Ix and Iz are the moments of inertia about
the xb- and the zb-axis, respectively.

The rigid-body Coriolis and centripetal matrix can expressed by:

C1,4,6
RB

(
ννν{1,4,6}

)
=

⎡

⎣
0 mzgr −mxgr

−mzgr 0 0
mxgr 0 0

⎤

⎦= 0, (11.4)

where rb
g = [xg,yg,zg]

� denotes the vector from the body origin to the center
of gravity (CG) of the ship, expressed in the body frame. Next the following
assumptions are made.

Assumption 11.3. The CG and the origin of the body frame coincide, that is,
rb

g = 0.

Assumption 11.4. For a maneuvering ship in a seaway, the surge and yaw motions
are approximated by the zero-frequency potential coefficients while added mass and
damping in roll is approximated at the natural roll frequency ωφ . Furthermore, the
fluid memory effects are neglected.

By Assumption 11.4, it follows that

M{1,4,6}
A =

⎡

⎣
A11 (0) 0 0

0 A44
(
ωφ
)

0
0 0 A66 (0)

⎤

⎦ . (11.5)

From (11.5) it follows that the hydrodynamic Coriolis and centripetal matrix is

C{1,4,6}
A

(
ννν{1,4,6}

)
= 0. (11.6)

The linear damping is the sum of the potential and viscous damping and becomes

D{1,4,6}
l = D{1,4,6}

p +D{1,4,6}
V :=−

⎡

⎣
Xu 0 0
0 Kp 0
0 0 Nr

⎤

⎦ , (11.7)
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where the viscous damping matrix D{1,4,6}
V is approximated by a diagonal matrix

and the couplings between the roll and yaw motions are neglected. The nonlinear
damping is

D{1,4,6}
n

(
ννν{1,4,6}

)
:=−

⎡

⎢
⎣

X|u|u|u| 0 0
0 K|p|p|p| 0
0 0 N|r|r|r|

⎤

⎥
⎦ . (11.8)

The quadratic damping coefficient in surge may be modeled as, see Fossen [5],

X|u|u =−1
2

ρS (1+ kf)
0.075

(log10 Rn − 2)2 , Rn =
uLpp

νk
.

The water density is denoted by ρ , the wetted surface of the hull by S, and the form
factor yielding a viscous correction by kf. The Reynolds number Rn depends on the
length between perpendiculars Lpp and the kinematic viscosity of the fluid νk.

Motivated by the results presented in Galeazzi et al. [9], Neves and Rodrı́guez
[24], Shin et al. [28] and based on the model introduced in Chap. 9, the restoring
forces for the surface vessel are approximated as:

g{1,4,6}
(

ηηη{1,4,6}
)
≈
⎡

⎣
0

ρg∇GMT φ −Kφ 3φ3

0

⎤

⎦ , (11.9)

where g is the acceleration of gravity, ∇ the displaced water volume, and GMT the
transverse metacentric height given by:

GMT = GMm +GMa cos

(∫ t

0
ωe (τ)dτ

)

. (11.10)

Here, GMm is the mean metacentric height, GMa the amplitude of the metacentric
height change in waves, and ωe the encounter frequency. This model takes into
account velocity changes since ωe is allowed to vary with time.

The ship dynamics can be written as:

η̇ηη{1,4,6} = J{1,4,6}
(

ηηη{1,4,6}
)

ννν{1,4,6} (11.11)

Mν̇νν{1,4,6}+C
(

ννν{1,4,6}
)

ννν{1,4,6}+D
(

ννν{1,4,6}
)

ννν{1,4,6}+ g
(

ηηη{1,4,6}
)
= τττ{1,4,6}

(11.12)
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where

J{1,4,6}
(

ηηη{1,4,6}
)
=

⎡

⎣
cos(ψ) 0 0

0 1 0
0 0 cos(φ)

⎤

⎦

M = M{1,4,6}
RB +M{1,4,6}

A

=

⎡

⎣
m+A11 (0) 0 0

0 Ix +A44
(
ωφ
)

0
0 0 Iz +A66 (0)

⎤

⎦

C
(

ννν{1,4,6}
)
= C{1,4,6}

RB

(
ννν{1,4,6}

)
+C{1,4,6}

A

(
ννν{1,4,6}

)
= 0

D
(

ννν{1,4,6}
)
= D{1,4,6}

l +D{1,4,6}
n

(
ννν{1,4,6}

)

=−

⎡

⎢
⎣

Xu +X|u|u|u| 0 0
0 Kp +K|p|p|p| 0
0 0 Nr +N|r|r|r|

⎤

⎥
⎦

g
(

ηηη{1,4,6}
)
= g{1,4,6}

(
ηηη{1,4,6}

)

=

⎡

⎣
0

ρg∇
[
GMm +GMa cos

(∫ t
0 ωe(τ)dτ

)]
φ −Kφ 3φ3

0

⎤

⎦ .

For simplicity, it is assumed that the ship is controlled by a single rudder such that

τ{6} =−Nδ δ , (11.13)

where δ denotes the rudder angle. Then, the yaw subsystem can be approximated
by a first-order Nomoto model with time and gain constants T and K, respectively
(Fossen [5]):

T ṙ+ r = Kδ . (11.14)

The Nomoto constants T and K can be related to the hydrodynamic ship coefficients
such as the acceleration derivatives and the velocity derivatives. These coefficients
may be approximated by considering the geometrical dimensions of the ship, that is,
the length between the perpendiculars and the draft of the ship, as stated by Clarke
et al. [4].

The control inputs to the 3-DOF ship model (11.11) and (11.12) are the control
forces in roll τφ and surge τu, as well as the rudder deflection δ . Measured outputs
of the system are the roll angle φ , the roll rate φ̇ , the surge speed u, the heading
angle ψ and the heading rate ψ̇.
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11.2.3 Encounter Frequency Model

In this chapter, the following assumption is made:

Assumption 11.5. The waves are planar and regular sinusoidal.

Consequently, the waves can be described by:

ζ (r, t) = ζ̄ cos
(

ω0t −k�rn +φζ

)
, (11.15)

where ζ (r, t) is the sea surface elevation at a location rn at a time t. The vector rn is
expressed in the inertial frame. The amplitude of the sinusoid is ζ̄ , the modal wave
frequency ω0, and the initial phase shift φζ . The wave vector k implicitly defines
the wave number k:

k = ke

where e is the propagation vector, satisfying ‖e‖= 1. The wave length for a planar
wave is

λ =
2π
‖k‖ =

2π
k

(11.16)

and the phase velocity is

c =
ω0

‖k‖ =
λ
Tw

(11.17)

with Tw the period. We assume that ζ̄ , ω0, and k are constants for simplicity.
To an observer at a fixed location in the inertial reference frame, the frequency

at which the waves encounter the ship equals the modal wave frequency. This is
however not true when the observer is moving with the ship at a nonzero velocity.
A moving ship causes a shift in the peak frequency of the wave spectrum which can
be accounted for by introducing the encounter frequency.

From Fig. 11.1 it is evident that the encounter angle expressed in the inertial
frame is given by:

β n
w = βw +ψ .

We assume without loss of generality that β n
w is constant; that is, the waves are

always coming from the same compass direction. The horizontal velocity of the
ship v = ννν{1,2} is expressed in the body frame and can readily be expressed in the
inertial frame:

vn = R(ψ)v, (11.18)

where R(ψ) ∈ SO(2) is the rotation matrix about ψ . It satisfies R(ψ)R�
(ψ) = R� (ψ)R(ψ) = I and detR(ψ) = 1, that is, it is orthogonal. The rotation
matrix is given by:

R(ψ) =

[
cos(ψ) −sin(ψ)

sin(ψ) cos(ψ)

]

.
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The peak frequency shift of the wave spectrum is due to the Doppler shift. The
projection of the ship velocity vn on the wave vector k is

vp = vpe = ‖vn‖cos(β n
w − χ)e, (11.19)

where the course angle χ is the sum of the heading angle ψ and the sideslip angle
β . The encounter frequency, that is the frequency of oscillation of the waves as it
appears to an observer on the ship, can then be calculated by considering the Doppler
shift and by combining (11.18) and (11.19):

ωe = ω0
(
1− vp/c

)

= ω0

(

1− k
ω0

‖R(ψ)v‖cos(β n
w − χ)

)

= ω0 − k
√

u2 + v2 cos(β n
w −ψ −β ) . (11.20)

Under the assumption of deep water (h ≥ λ/2), where h is the water depth, the
dispersion relationship holds:

k =
ω2

0

g
. (11.21)

To decouple the surge model from the sway–yaw subsystem, it is assumed that the
forward speed of the vessel is slowly time-varying only, which implies:

‖v‖=
√

u2 + v2 ≈ u (11.22)

and that there is no ocean current present. From Fig. 11.1 it is apparent that the
sideslip angle β is

β = arcsin

(
v

‖v‖
)

≈ v
‖v‖ (11.23)

when β is small. Since the sway component of the ship velocity is neglected, the
sideslip angle is disregarded as well.

Hence, the encounter frequency can be expressed by:

ωe (u,ψ ,ω0,β n
w) = ω0 − ω2

0

g
ucos(β n

w −ψ) . (11.24)

Notice that the encounter frequency (11.24) couples the roll dynamics to the
surge and yaw dynamics in (11.12), respectively.
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11.3 Extremum Seeking Control

Extremum seeking control is a real-time optimization methodology, popular in both
research and industry. It is characterized by the online tuning of the a priori unknown
setpoint of a system to achieve an optimal output, with respect to an objective
functional for example. ES is not model based – it is applicable also when the model
is not perfectly known. In the ES methodology, a perturbation signal is added to the
system to find an estimate of the gradient of the objective signal. In Ariyur and
Krstić [1], a thorough introduction to ES control, including many applications in
various research areas, is presented.

11.3.1 Extremum Seeking Applied to Ships in Parametric Roll
Resonance

In this section, the ES method is adapted to the regulation of parametrically excited
roll motions in ships as depicted in Fig. 11.2. The proposed, overall scheme consists
of the ship – the surge and the yaw motions are coupled to the roll motion by
the encounter frequency (11.24) – the control block and a dynamic feedback loop
(ES loop).

Extremum seeking loop

Ship

Control
Speed

Controller
Surge

System

Control
Allocation

Frequency
Coupling

Roll
System

Heading
Controller
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System

+
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O
b
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e
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ωe,d
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J

φ

Fig. 11.2 Extremum seeking control applied to ships in parametric roll resonance
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The output J of the objective function has an extremum, that is a minimum or a
maximum, at ω∗

e,d . The ES loop adds a slow perturbation to the best current estimate
of ωe,d in order to iteratively and online tune the parameter ωe,d to its optimal value
ω∗

e,d .
By assuming the perturbation signal to be sufficiently slow compared to the open-

loop dynamics, the system can be viewed as a static map and its dynamics can be
neglected for the ES loop. The high-pass filter s/(s+ωh) serves to eliminate the
offset of the cost signal J and the second perturbation creates a sinusoidal response
of J. Adding a sinusoidal perturbation signal to the best estimate of ωe,d causes
the two sinusoids to be in phase or out of phase depending on whether the best
estimate is smaller or larger than its optimal value ω∗

e,d . Whereas the low-pass filter
ωl/(s+ωl) is used to extract the offset caused by multiplying the two sinusoids,
the integrator in the ES loop gives the approximate gradient update law. ([1])

The proposed ES control schemes requires three time scales in the overall system.
Since it is assumed that the map from the reference to the output of the objective
function is a static map, the time constant of the plant needs to be the fastest.
Furthermore, the perturbation signal must be sufficiently slow compared to the plant,
or it would not be fed through the plant properly. The filters give an estimate of the
gradient update law, implying that their time constants are required to be the slower
than those of both the plant and the perturbation signal.

The encounter frequency (11.24) depends among others on the ship’s forward
speed and heading angle which are controllable. The best estimate of the optimal
encounter frequency is therefore mapped to the desired surge speed ud and the
desired heading angle ψd by a (nonlinear) control allocation as depicted by the
control block in Fig. 11.2. Speed and heading controllers are then used to compute
the required control force in surge τu and the rudder deflection δ .

It is noteworthy that the optimal setpoint of the encounter frequency – and as a
matter of fact, the ship’s speed and heading angle – is a priori not known. There
lies the power of the ES control which iteratively tunes the encounter frequency, as
the parameter of the feedback loop, to its optimal value which minimizes a defined
objective functional. Hence, the vital role of the choice of the objective function is
apparent for the performance of the ES control applied to parametric roll resonance.

Treating the encounter frequency as the sole parameter in the proposed ES con-
trol scheme seems advantageous compared to the formulation as a multiparameter
ES method. In particular, control allocation allows to take into account restrictions
on the ship’s speed and heading angle as well as on their variation rate.

11.3.2 Objective Function

The objective function is one of the key factors with respect to the performance of
the proposed ES control method applied to ships in parametric roll resonance, as
depicted in Fig. 11.2. Its choice determines the ability to regulate the roll motion as
well as it accounts for mission dependent restrictions.
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It is well known that certain ships are prone to experience parametric roll
resonance when the encounter frequency is close to double the natural roll frequency
of the ship, that is, see Nayfeh and Mook [23]:

ωe ≈ 2ωφ . (11.25)

The objective function is constructed as the weighted superposition of two cost
functionals, accounting for the frequency condition (11.25) and the deviation from
the nominal cruise condition, respectively:

J = w1J1 +w2J2, (11.26)

where w1 and w2 are the weights. The two cost functionals are expressed by:

J1 = c1e−c2(ωe−2ωφ)
2

(11.27)

J2 = c3 (ωe −ωe,0)
2 , (11.28)

where ci > 0, i ∈ {1,2,3} are constants. Equation (11.27) represents the penalty
of the ship not violating the frequency condition (11.25). Equation (11.28), on the
other hand, penalizes the deviation of the ship from its nominal cruise condition
expressed by the nominal encounter frequency ωe,0, that is, the encounter frequency
(11.24) with the nominal setpoints for the ship’s surge speed u0 and heading angle
ψ0. By the choice of the constant parameters ci, i ∈ {1,2,3} in (11.27) and (11.28),
the shape of the cost functionals can be adjusted.

It is apparent from the definition of the objective function (11.26) that in order
to avoid parametric roll resonance the objective has to be minimized. Thus, the ES
loop is designed such that its parameter ωe,d is iteratively tuned to the optimal value
ω∗

e,d , resulting in a minimum of the objective function.

11.3.3 Control Allocation

The control allocation block depicted in Fig. 11.2 maps the parameter of the ES
loop ωe,d – the desired encounter frequency – to the desired trajectory of the control
variables, that is the ship’s desired surge speed ud and heading angle ψd. Revisiting
(11.24), the desired encounter frequency is approximated by a first-order Taylor
expansion, taking into account small variations of the ship’s forward speed and
heading angle:

ωe,d (u+Δu,ψ +Δψ , ·) = ω0 − ω2
0

g
cos(β n

w −ψ)u− ω2
0

g
cos(β n

w −ψ)Δu

− ω2
0

g
sin(β n

w −ψ)uΔψ . (11.29)



224 D.A. Breu et al.

Here, it is assumed that the desired encounter frequency can be achieved by
a deviation of Δu and Δψ from the ship’s forward speed and heading angle,
respectively. Equation (11.29) suggest that the virtual control input can be chosen as:

τv =− g

ω2
0

[

ωe,d (u+Δu,ψ +Δψ , ·)−
(

ω0 − ω2
0

g
cos(β n

w −ψ)u

)]

=− g

ω2
0

[
ωe,d (u+Δu,ψ +Δψ , ·)−ωe (u,ψ , ·)] (11.30)

The relation between the virtual control input (11.30) and the variations in surge
speed and heading angle can be expressed by the constrained linear mapping

τv = B(u,ψ ,β n
w)ζζζ , (11.31)

ζζζ min ≤ ζζζ ≤ ζζζ max (11.32)

where the control effectiveness matrix B(u,ψ ,β n
w) and the variation vector ζζζ are

given by:

B(u,ψ ,β n
w) =

[
cos(β n

w −ψ)

sin(β n
w −ψ)u

]

, ζ =

[
Δu
Δψ

]

. (11.33)

The constraints are expressed in (11.32) where ζmin and ζmax denote the lower and
upper bounds on ζ , respectively. The desired ship’s surge speed and heading angle
are then merely

ud = u+Δu (11.34)

ψd = ψ +Δψ . (11.35)

According to [11, 30], the control allocation problem (11.31) and (11.32) can be
split up into a two-step sequential least-squares problem to find the variation of the
ship’s forward speed and heading angle:

S = arg min
ζζζ min≤ζζζ≤ζζζ max

‖Wτv (B(u,ψ ,β n
w)ζζζ − τv)‖ (11.36)

ζζζ opt = argmin
ζζζ∈S

‖Wζ (ζζζ −ζζζ d)‖, (11.37)

where Wτv and Wζ are weight matrices. First, the set of feasible solutions S that
minimize B(u,ψ ,β n

w)ζζζ − τv is computed. Then, the best solution – the solution
which minimizes Wζ (ζζζ −ζζζd) – is determined. ζζζ d is the vector of desired variations
in ship’s surge speed and heading angle and is presumably null.

The sequential least-squares problem (11.36) and (11.37) is solved in Mat-
lab using the Quadratic Programming Control Allocation Toolbox (QCAT) (see
Härkegård [12]).
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11.3.4 Speed and Heading Controllers

The speed and heading controllers determine the appropriate control force in
surge and the rudder deflection from the desired surge speed and heading angle,
respectively, see Fig. 11.2.

By assumption, the inner control loop, consisting of the ship and the control block
in Fig. 11.2, is designed such that its dynamics can be neglected for the ES loop.
Thus, the inner control loop needs to be considerably faster than the overall closed-
loop system, yielding that the controllers are required to be fast in comparison to
the perturbation signal and the filters of the ES loop.

Speed Controller

The surge dynamics is given by the first row in (11.12). Assuming, that the mass
and the damping terms are perfectly known, the speed controller can be designed by
using feedback linearization:

τu = (m+A11 (0))vu +
(−Xu −X|u|u|u|

)
u. (11.38)

By taking the virtual control input vu as an ordinary proportional controller, the
closed-loop surge dynamics becomes

u̇ = vu =−ku,p (u− ud) , ku,p > 0 (11.39)

where ku,p is the controller gain, chosen such that the error dynamics is globally
exponentially stable (GES); see Fossen [5] or Khalil [20].

Heading Controller

The yaw dynamics is represented by the first-order Nomoto model (11.14). To
design the heading controller, is is assumed that ψ̇ ≈ r and that the rudder deflection
δ is the control input:

δ =−kψ,p (ψ −ψd)− kψ,d (ψ̇ − ψ̇d) , kψ,p, kψ,d > 0. (11.40)

The desired yaw rate ψ̇d is generated by using a third-order reference model. The
proportional and derivative gains, kψ,p and kψd , in (11.40) are determined such that
the error dynamics of the closed-loop system

T ψ̈ +
(
1+Kkψ,d

)
ψ̇ +Kkψ,pψ = Kkψ,pψd +Kkψ,dψ̇d (11.41)

is GES (Fossen [5] or Khalil [20]).
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11.3.5 Stability Considerations

It can be proven that the ES parameter converges to a neighborhood of its optimal
value and that the ES algorithm is exponentially stable (see Krstić and Wang [21]
and Breu and Fossen [2]). Consider the single-input, single-output nonlinear system:

ẋ = f(x,u) , (11.42)

y = h(x) , (11.43)

where x ∈R
n is the state vector, u ∈R the input, y ∈R the output; f : Rn ×R→R

n

and h : Rn → R are smooth. The control law u = α (x,θ ) is parametrized by θ ,
and assumed to be smooth. The closed-loop system corresponding to (11.42) and
(11.43) then becomes

ẋ = f(x,α (x,θ )) (11.44)

and it has equilibria parametrized by θ . For the stability analysis, the following
assumptions are made (see Krstić and Wang [21]).

Assumption 11.6. There exists a smooth function l : R→R
n such that:

f(x,α (x,θ )) = 0 if and only if x = l(θ ) . (11.45)

Assumption 11.7. The equilibrium x = l (θ ) of (11.44) is locally exponentially
stable (LES) with decay and overshoot constants uniform in θ for each θ ∈ R.

Assumption 11.8. There exists θ ∗ ∈ R such that:

(h ◦ l)′ (θ ∗) = 0 (11.46a)

(h ◦ l)′′ (θ ∗)> 0. (11.46b)

Assumptions (11.6) and (11.7) guarantee the robustness of the control law with re-
spect to θ , i.e., any equilibria produced by θ can be stabilized by the control law. As-
sumption 11.8 implies that the output equilibrium map has a minimum when θ = θ ∗.

It was proven by averaging for a static system and by the singular perturbation
method for a dynamic system that (11.44) converges to a unique, exponentially
stable, periodic solution in a neighborhood of the origin [21]. The perturbation
signal and the filters in the ES loop determine the size of this neighborhood.

Due to the three different time scales in the proposed ES control (see Sect. 11.3.1)
the plant – the surge and yaw subsystems – can be viewed as a static map.
The ES parameter ωe, determined from the ship’s forward speed and heading
angle, parametrizes the equilibria of the plant. The speed and heading controllers
ensure local exponential stability of the equilibria which may be produced by
the ES parameter ωe, see Sect. 11.3.4, and the objective function defined in
Sect. 11.3.2 fulfills locally Assumption 11.8. Thus, the parameter ωe converges to a
neighborhood of its optimal value ω∗

e .
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11.4 Model Predictive Control

Model predictive control (MPC) is a rather recent control methodology which is
characterized by the usage of an explicit plant model to predict the output of the
process. This prediction is consequently used to find an optimal control signal which
minimizes a specified objective function. The MPC formulation allows to address
the constraints of the states and the input explicitly. MPC has been successfully
applied to a wide variety of control problems and the increasing availability of
computing power has only added to its popularity in both academia and industry,
see, for example, Camacho and Bordons [3]. In ship control, MPC formulation
has been applied among others to autopilot control design, roll stabilization, fault-
tolerant control of a propulsion system, tracking, and control of ship fin stabilizers,
see Kerrigan and Maciejowski [19], Naeem et al. [22], Perez [25], and Perez and
Goodwin [26].

11.4.1 Model Predictive Control Applied to Ships in Parametric
Roll Resonance

The basic structure of a MPC setup is depicted in Fig. 11.3. The MPC algorithm
consists generally of the following elements, see Camacho and Bordons [3]:

• Prediction model
• Objective function
• Optimizer to obtain the control law

The strategy of MPCs can be summarized in a three step loop which is performed
at each time instant, see, for example, Camacho and Bordons [3]:

Model +

Optimizer

Past inputs
and outputs Predicted

outputs
−

Reference
trajectory

Future errors

Cost
function Constraints

Future
inputs

Fig. 11.3 Basic structure of a model predictive controller [3]



228 D.A. Breu et al.

1. The future process outputs are predicted for a prediction horizon N, depending
on the past inputs and outputs and on the future control signals.

2. An optimization problem is solved to determine the set of future control signals,
minimizing the objective function.

3. The first control signal is sent to the process and the steps 1–3 are repeated at the
next time instant.

In the context of the control of parametric roll resonance of ships, an approach
featuring the MPC formulation to control the ship’s forward speed and heading
angle simultaneously in order to damp the roll motion is used. Furthermore, it
is assumed that no control input affects the roll dynamics, that is, τφ = 0. The
ship’s surge speed and heading angle can however be changed. This results in
a time-varying encounter frequency and the transients due to heading and speed
changes must be taken into account. By changing the speed and heading actively it
is possible to violate a condition for parametric roll resonance. To that matter, the
MPC formulation is adapted to find the optimal surge speed and heading angle to
achieve a regulation of the roll motion while taking into account constraints on the
inputs as well as on the states.

11.4.2 State-Space Model

Consider the 3-DOF ship model (11.12) in Sect. 11.2.2. The encounter frequency
(11.24) couples the roll dynamics to the surge and yaw dynamics, respectively, as
derived in Sect. 11.2.3. For convenience the system dynamics is expressed as

ẋ = f(x,τττ) (11.47)

y = g(x) , (11.48)

where x =
[
ηηη{1,4,6},ννν{1,4,6}]� and

f(x,τττ) =
[

J{1,4,6} (ηηη{1,4,6})ννν{1,4,6}

M−1
[
τττ −C

(
ννν{1,4,6})ννν{1,4,6}−D

(
ννν{1,4,6})ννν{1,4,6}− g

(
ηηη{1,4,6})]

]

g(x) = x

11.4.3 Objective Function

The MPC objective function is constructed similar to the one in Sect. 11.3.2, that
is, as the weighted sum of cost functionals. Following the reasoning in Sect. 11.3.2,
the following objective function is proposed:

J = w1J1 +w2J2, (11.49)
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where the weights are wi, i ∈ {1,2} and

J1 = c1e−c2(ωe−2ωφ)
2

(11.50)

J2 = c3 (ωe −ωe,0)
2 , (11.51)

where ci > 0, i ∈ {1,2,3} are constants. As in Sect. 11.3.2, (11.50) represents
the penalty of the ship not violating the frequency condition (11.25), and (11.51)
penalizes the deviation of the ship from its nominal cruise condition given by ωe,0 –
the encounter frequency (11.24) with the nominal setpoints for the ship’s surge
speed u0 and heading angle ψ0.

11.4.4 Obtaining the Control Law

To obtain the control signal, the objective function (11.49) has to be minimized
at each time instant. The minimization of (11.49) is subject to equality constraints
which, for a state space model as presented in Sect. 11.4.2 and 11.2.2, respectively,
are the model constraints given by (see Camacho and Bordons [3]):

f(x,τττ) = 0 (11.52)

y− g(x) = 0. (11.53)

Furthermore, the minimization of (11.49) is as well subject to inequality
constraints expressed as

y ≤ y(t + j)≤ y, ∀ j = 1,N (11.54)

τττ ≤ τττ (t + j)≤ τττ, ∀ j = 1,M− 1 (11.55)

Δτττ ≤ Δτττ (t + j)≤ Δτττ, ∀ j = 1,M− 1, (11.56)

where N and M are the prediction horizon and the control horizon, respectively. The
solution of the problem to minimize the objective function (11.49) with the model
constraints (11.52) and (11.53) and the inequality constraints (11.54)–(11.56) is not
a trivial one. It generally involves solving a nonconvex, nonlinear problem.

The nonlinear MPC (NMPC) problem in the form of a general nonlinear

programming problem with w =
[
τττ�,x�,y�

]�
is, see Camacho and Bordons [3],

min
w

J (w)

subject to: c(w) = 0, h(w)≤ 0. (11.57)
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Here, c corresponds to the equality constraints (11.52) and (11.53) and h to the
inequality constraints (11.54)–(11.56).

The optimization (11.57) is performed by using the TOMLAB Optimization
Environment (TOMLAB/NPSOL),1 see Holmström et al. [16].

11.5 Simulation Results

The ship is simulated by applying both the ES control methodology and the
nonlinear MPC to the system. The initial values for the simulations are chosen
such that the ship is experiencing parametrically excited rolling. The nominal
cruise condition is chosen as u0 = 7.5m/s and ψ0 = 0◦. We assume that the
ship is initially in head sea condition, that is, β n

w = π . Table 11.1 lists the model
parameters. In the simulation results, the controlled variables are denoted by the
subscript c.

Table 11.1 Model parameters, adopted from [13]

Quantity Symbol Value

Moment of inertia, roll Ix 1.4014×1010 kgm2

Added moment of inertia, roll A44 2.17×109 kgm2

Nonlinear damping, roll K|p|p −2.99×108 kgm2

Linear damping, roll Kp −3.20×108 kgm2/s
Water density ρ 1025 kg/m3

Gravitational acceleration g 9.81 m/s2

Water displacement ∇ 76468 m3

Mean meta-centric height GMm 1.91 m
Amplitude of meta-centric height change GMa 0.84 m
Restoring coefficient Kφ3 −2.9740×109 kgm2/s2

Mass m 7.6654×107 kg
Added mass, surge A11 7.746×106 kg
Linear damping, surge Xu −5.66×103 kg/s
Wetted surface S 11800 m2

Form factor kf 0.1 −
Ship length Lpp 281 m
Kinematic viscosity νk 1.519×10−6 m2/s

Nomoto time constant T −160.15 s
Nomoto gain constant K −0.1986 1/s

Natural roll frequency ωφ 0.3012 rad/s
Modal wave frequency ω0 0.4353 rad/s

1See http://www.tomopt.com for information about the TOMLAB Optimization Environment.

http://www.tomopt.com
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11.5.1 Extremum Seeking

The ES control is initially deactivated but is turned on the time instant when the roll
amplitude exceeds φ = 3◦ for the first time.

The roll angle and frequency ratio with and without the ES control is shown in
Fig. 11.4. Note that, in the uncontrolled scenario, the ship is experiencing parametric
roll resonance with high roll amplitudes; see Fig. 11.4a. It is furthermore apparent
that, when the ES control is activated, the ship is driven out of the frequency
ratio relevant for parametric rolling and consequently the roll motion is reduced
significantly.

The frequency ratios ωe,d/ωφ and ωe,c/ωφ in Fig. 11.4b denote the desired
frequency ratio as output of the ES feedback loop and the actual, controlled,
frequency ratio, thus indicating the ability of the controllers to track the desired
encounter frequency.

Figure 11.5 shows the ship’s surge speed and the control force in surge, whereas
Fig. 11.6 depicts the ship’s heading angle and the rudder deflection for both the
uncontrolled and the controlled scenario.
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Fig. 11.5 Extremum seeking – Surge speed, control force τu

Both the ship’s surge speed and heading angle follow the reference trajectory,
determined by the control allocation block. Due to the perturbation signal in the
ES control, the ship’s surge speed and heading angle show an expected oscillatory
behavior.

The cost as defined in the objective function is shown in Fig. 11.7 and Fig. 11.8
shows a comparison of the roll angle, when the ES control is activated at different
roll angles, that is, at 3◦, 5◦, and 10◦, respectively.

11.5.2 Model Predictive Control

The MPC control, initially turned off, is activated when the roll amplitude exceeds
φ = 3◦ for the first time. In Fig. 11.9, the roll angle and the frequency ratio is
shown for the controlled and the uncontrolled scenario. Figure 11.9a depicts that
the ship is experiencing large roll angles due to parametric roll resonance in the
uncontrolled scenario. However, the reduction of the frequency ratio reduces the
roll angle quickly when the MPC is active.
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The ship’s forward speed and the control force in surge are shown in Fig. 11.10
and the ship’s heading angle and the rudder deflection are depicted in Fig. 11.11.
Again, the controlled and the uncontrolled scenario is shown.

Figure 11.12 shows the cost defined by the proposed objective function. Finally,
in Fig. 11.13, the roll angle is shown, when the MPC is activated at different time
instants, corresponding to roll angles of 3◦, 5◦, and 10◦, respectively.
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11.6 Conclusions

In this chapter, two active control approaches for the stabilization of parametric
oscillations in ships by frequency detuning have been proposed. This is done by
violating one of the conditions for the onset of parametric roll resonance by varying
the ship’s forward speed and heading angle simultaneously and thus controlling
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the frequency of encounter. The proposed control strategies feature optimality
considerations with respect to the optimal speed and heading changes to stabilize
parametrically excited roll motion.

The methodology of ES control has been applied to control ships exhibiting para-
metric roll resonance. The encounter frequency is tuned in real time to its optimal
setpoint by defining an appropriate objective function. The encounter frequency
commands are mapped to the ship’s forward speed and heading angle by formulating
the control allocation problem in the sequential least-squares framework, taking into
account constraints on the actuators. The speed and heading controllers guarantee
exponentially stable origins of the tracking error dynamics.

Furthermore, MPC is considered as a second approach for the stabilization of
parametric roll resonance. By explicitly formulating both constraints on the input
and the states as well as an objective function which accounts for the parametric roll
resonance condition, a controller has been presented that effectively drives the ship
out of parametric resonance and reduces the roll motion significantly.

Both the ES and the model predictive controllers have been successfully verified
in computer simulations and it has been shown that the combined variation of the
ship’s forward speed and heading angle in both control approaches is efficient to
stabilize the roll motion of a ship experiencing parametric roll resonance.
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12. Härkegård, O.: Dynamic control allocation using constrained quadratic programming. Journal
of Guidance, Control, and Dynamics 27(6), 1028–1034, American Institute of Aeronautics and
Astronautics, Inc., (2004)

13. Holden, C., Galeazzi, R., Rodrı́guez, C., Perez, T., Fossen, T.I., Blanke, M., Neves, M.A.S.:
Nonlinear container ship model for the study of parametric roll resonance. Modeling,
Identification and Control 28(4), 87–103 (2007)

14. Holden, C., Galeazzi, R., Fossen, T.I., Perez, T.: Stabilization of parametric roll resonance with
active u-tanks via Lyapunov control design. In: Proc. European Control Conference (ECC),
Budapest, Hungary (2009)

15. Holden, C., Perez, T., Fossen, T.I.: A Lagrangian approach to nonlinear modeling of anti-roll
tanks. Ocean Engineering 38(2–3), 341–359 (2011)
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Chapter 12
A U-Tank Control System for Ships
in Parametric Roll Resonance

Christian Holden and Thor I. Fossen

12.1 Introduction

To control parametric resonance, there are two basic approaches; use control force to
counter-act the unwanted motion, or ensure that the system’s parameters are in such
a state that parametric resonance cannot occur. We can call these methods direct
and indirect, respectively. The difference is perhaps best explained by analyzing a
differential equation.

A simple model for parametric resonance in ships is the Mathieu equation

m44φ̈ + d44φ̇ +
[
k44 + kφt cos(ωet +αφ )

]
φ = uc

where φ is the roll angle, uc an externally applied torque and the parameters are
constant. The system is known to parametrically resonate when ωe ≈ 2

√
k44/m44.

With indirect control, ωe is dynamically changed so that φ will not parametrically
resonate. With direct control, uc is used to set up a counter-moment to force the
system to zero. Direct and indirect methods can be combined, as seen in [8, 9].

As shown in Chaps. 9 and 10, it is possible to change the encounter frequency ωe

(which depends on the ship’s speed) and thus control the system indirectly. However,
in practice, this depends on very early detection and the ability of the ship to rapidly
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Fig. 12.1 U-tank design

perform a speed change. If the ship has high inertia or is at rest with the engines
turned off, it is unlikely that the ship can change its speed fast enough to avoid large
roll angles.

There are also some disadvantages associated with direct control. Ships are often
not equipped with actuation in roll, as such systems are not necessary for propulsion
[5]. Possible actuators include fins, tanks, and gyro stabilizers [21]. In this particular
work, we will focus on the use of u-tanks as actuators. These have the advantage
that they can be used even if the ship is at rest [18]. As they are internal, they do
not increase drag. Unfortunately, they do take up space inside the hull, potentially
decreasing the available space for other machinery, cargo, or passengers.

A u-tank (sometimes referred to as u-tube tank or u-shaped anti-roll tank)
consists of two reservoirs, one on the starboard side and one on the port side,
connected by a duct (see Fig. 12.1a). The basic principle is to use the weight and
motion of the fluid to give a direct moment in roll, which can be used to counteract
parametric resonance or other unwanted motion.

A disadvantage of u-tanks compared to other potential actuators, is that the roll
and tank modes are tightly coupled, and only indirectly give a control moment in
roll. Output stabilization (driving roll to zero) tends to not leave the tank in its
equilibrium position, as seen in [12].

Most models of u-tanks are derived for tanks shaped like three connected
rectangular prisms (see Fig. 12.1b) [14, 15, 17–19, 22], while several actually
installed tanks do not match this shape [20–22]. A model for more generic tank
shapes is therefore useful. In addition, most models are linear, and technically only
valid for small roll angles [6, 11, 15, 17–19]. During parametric resonance, the roll
angle can reach 40 to 50◦ [7, 9, 12, 13].

In this chapter, a novel nonlinear 2-DOF u-tank model is presented for an
arbitrarily-shaped u-tank, and a controller that stabilizes parametric roll resonance
with the aid of such a tank developed. The model is compared to existing models.
The validity of the controller is proved mathematically and tested by simulation.
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12.2 Preliminaries

The model will be derived using a combination of Lagrangian (analytical) and
Newtonian mechanics. Initially, the tank–ship interaction (which is conservative)
will be modeled using Lagrangian mechanics. Forces and moments induced by the
surrounding ocean, in addition to friction and other nonconservative forces, will be
modeled using Newtonian mechanics and incorporated into the conservative model.

Only roll and the motion of the tank fluid will be modeled in this chapter. We
assume that the ship is not translating relative to the inertial frame.

12.2.1 Coordinate Systems

To use the Lagrangian approach, the dynamics have to be derived in an inertial
reference frame [3]. The geometry of the vessel is easier to describe in a reference
frame fixed to the body, but as the body is rotating, a body-fixed frame is not inertial.
Therefore, we define two coordinate systems: an inertial frame fixed to the surface
of the Earth,1 and a noninertial frame fixed to the body.

The origin of the inertial reference can be placed arbitrarily. For simplicity, we
let the xy-plane coincide with the mean ocean surface and the z-axis point with
the gravity field. The body frame is placed at the transversal center of gravity at
the calm-water water plane, with the x-axis pointing forwards, the y-axis pointing
starboard and the z-axis pointing downwards, see Fig. 12.2. The ship is assumed
symmetric around the xz-plane.

Fig. 12.2 Reference frames used in this chapter

1As the Earth is not inertial, clearly an Earth-fixed reference frame is not inertial. However, the
effects of the non-inertial nature of the Earth’s motion are small for many applications [5].
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A vector r is denoted rn in the inertial frame and rb in the body-fixed frame.
These are related by rn = Rrb ⇔ rb = R�rn where R is a rotation matrix [3].

12.2.2 Modeling Hypothesis

To model the ship–tank system, some assumptions and simplifications have to
be made.

12.2.2.1 The Ship

The ship’s motion is assumed restricted to a single degree of freedom, namely roll.
It can be defined as the number φ so that the rotation matrix R can be written

R =

⎡

⎣
1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

⎤

⎦ . (12.1)

This is equivalent to having the body-fixed frame (and the ship with it) rotated an
angle φ about the inertial x-axis [3]. Note that, with the ship restricted to roll, the
inertial and body-fixed x-axes are parallel, and without loss of generality can be
assumed to be coinciding.

We note that the ship’s angular velocity relative to the inertial frame ωωω is then
given by

ωωωn =ωωωb = [φ̇ ,0,0]� . (12.2)

We also make some assumptions regarding the ship and the ocean:

A12.1. The ship is port–starboard symmetric (i.e., around the body xz-plane) in
mass and geometry.

A12.2. The ship is not translating relative to the inertial reference frame.
A12.3. The waves are sinusoidal, planar, and stationary.
A12.4. The wave length is approximately equal to the ship length.
A12.5. There is either head or stern seas.

By the first assumption, the ship’s center of gravity (excluding the tank fluid) is
given by

rb
g =

[
xb

g,0,z
b
g

]�
. (12.3)
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12.2.2.2 The Tank Fluid

A u-tank is simply two reservoirs of water or another liquid, one on the port side
and the other at starboard, with a duct in between to allow the passage of liquid. To
be able to model this intrinsically complicated behavior, some assumptions have to
be made:

A12.6. The surface of the fluid in the tank is perpendicular to the centerline of
the tank.

A12.7. The fluid in the tank is incompressible.
A12.8. The flow of fluid in the tank is one-dimensional.
A12.9. Tank fluid memory effects are negligible.
A12.10. The u-tank is placed at the transversal geometrical center of the ship.
A12.11. The tank is symmetrical around the centerline.
A12.12. There are no air bubbles in the tank.
A12.13. The centerline of the tank is smooth.
A12.14. The centerline of the tank runs port–starboard.

Assumption A12.6 is clearly false for a ship in motion; the actual fluid surface
in the tank is likely to behave in a complicated and chaotic fashion. Modeling
this accurately without resorting to computational fluid dynamics is unfeasible.
Assuming the fluid surface to be horizontal would not be much more accurate than
Assumption A12.6.

Assumptions A12.6–A12.14 imply that the tank fluid is parameterizable as a tube
of varying cross-sectional area. Defining the centerline of the tube of fluid as rt(σ)
with σ as parameter, rb

t (σ) can be written as

rb
t (σ) =

⎡

⎣
xb

t

yb
t (σ)

zb
t (σ)

⎤

⎦ . (12.4)

The parameter σ is defined to have its zero point at the ship centerline and
positive in the port direction. The fluid surfaces are located at σ = −ςs ≤ 0
(starboard side) and σ = ςp ≥ 0 (port side). Thus, σ ∈ [−ςs,ςp] ⊂ R defines the
fluid-filled part of the tank. When the water level is equal in both the starboard and
port side reservoirs, ςp = ςs = ς0, and σ ∈ [−ς0,ς0]⊂ R defines the fluid-filled part
of the tank.

Property 12.1. rb
t satisfies the following properties:

• xb
t is a constant, per Assumption A12.14.

• The functions yb
t and zb

t are smooth (specifically, C1 or greater), per Assump-
tion A12.13.

• yb
t is odd and lies in the second and fourth quadrants (i.e., yb

t (−σ) = −yb
t (σ),

yb
t (0) = 0 and yb

t (σ)< 0 ∀ σ > 0), per Assumptions A12.10 and A12.11.
• zb

t is even (i.e., zb
t (−σ) = zb

t (σ)), per Assumption A12.11.
• maxzb

t = zb
t (0), per Assumptions A12.10 and A12.11.
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Fig. 12.3 U-tank parameters

To fully describe the tank fluid, the cross-sectional area A(σ) is also needed.

Property 12.2. By Assumption A12.12, the fluid fills the entire area A(σ)∀σ ∈
[−ςs,ςp]. Assumption A12.11 implies that A(−σ) = A(σ)> 0.

See Fig. 12.3 for an illustration of the u-tank and its parameters.
The chief physically measurable states of the system are ςp, ςs and the volumetric

flow of the tank fluid Q (positive to port). ςp and ςs are related to the flow rate by

ς̇p =
Q

A(ςp)
, ς̇s =− Q

A(ςs)
.

We define the generalized tank coordinate qt as

qt �
1

A0

∫ ςp

ς0

A(σ) dσ , (12.5)

where A0 is an arbitrary constant with unit m2.
We note that the total fluid volume in the tank, Vt, is constant. Thus,

Vt �
∫ ς0

−ς0

A(σ) dσ =

∫ ςp

−ςs

A(σ) dσ =

∫ −ς0

−ςs

A(σ) dσ +

∫ ς0

−ς0

A(σ) dσ +

∫ ςp

ς0

A(σ) dσ

=

∫ −ς0

−ςs

A(σ) dσ +Vt+A0qt.

This gives

qt =− 1
A0

∫ −ς0

−ςs

A(σ) dσ . (12.6)

The time derivative of qt is given by

q̇t =
1

A0
A(ςp)

dςp

dt
=

Q
A0

. (12.7)
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By differentiating both sides of (12.5) and (12.6) with respect to qt, it follows
that

dςp

dqt
=

A0

A(ςp)
,

dςs

dqt
=− A0

A(ςs)
. (12.8)

The speed of the tank fluid relative to the tank walls (i.e., the ship), at any point
σ in the tank, is given by

‖vt,r(σ , q̇t)‖= Q
A(σ)

=
A0q̇t

A(σ)
.

From calculus, we know that velocity is tangential to the path, giving

vt,r(σ , q̇t) =
A0q̇t

A(σ)

dr̄t

dσ
(σ) , (12.9)

where

dr̄t

dσ
�

drt
dσ∥

∥
∥

drt
dσ

∥
∥
∥
. (12.10)

Noting that dxb
t /dσ = 0, we define

dȳb
t

dσ
� [0,1,0]

dr̄b
t

dσ
=

dyb
t

dσ√
(

dyb
t

dσ

)2
+
(

dzb
t

dσ

)2
, (12.11)

dz̄b
t

dσ
� [0,0,1]

dr̄b
t

dσ
=

dzb
t

dσ√
(

dyb
t

dσ

)2
+
(

dzb
t

dσ

)2
, (12.12)

such that

(
dȳb

t

dσ

)2

+

(
dz̄b

t

dσ

)2

≡ 1 .

Of course, the ship (and the tank with it) is rotating relative to the inertial frame.
Thus, the velocity of the tank fluid relative to the inertial frame, at any point σ in
the tank, is given by

vt(σ , q̇) =ωωω × rt(σ)+
A0q̇t

A(σ)

dr̄t

dσ
(σ) . (12.13)
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12.3 U-Tank Modeling

According to Lagrangian mechanics, it is necessary to derive the system’s kinetic
and potential energies.

Define the generalized coordinates q as

q � [φ ,qt]
� ∈R

2. (12.14)

Proposition 12.1 (Potential energy). The potential energy of the roll–tank system
is given by

U(q) = mgzb
g + 2gρt

∫ ς0

0
zb
t (σ)A(σ) dσ − gρt

[∫ ςp(qt)

−ςs(qt)
yb

t (σ)A(σ) dσ
]

sin(φ)

−
[

mgzb
g + gρt

∫ ςp(qt)

−ςs(qt)
zb
t (σ)A(σ) dσ

]

cos(φ), (12.15)

where m is the mass of the ship (excluding tank fluid), g is the acceleration of gravity
and ρt is the density of the tank fluid. Note that the first integral is a constant, and
that U(0) = 0.

Proof. See Appendix 1. ��
Proposition 12.2 (Kinetic energy). The kinetic energy of the roll–tank system is
given by

T (qt, q̇) =
1
2

q̇�Mt(qt)q̇, (12.16)

where

Mt(qt) =

[
J11 + Jt(qt) m4t(qt)

m4t(qt) m̄t(qt)

]

∈ R
2×2

Jt(qt) = ρt

∫ ςp(qt)

−ςs(qt)
A(σ)[[yb

t (σ)]2 +[zb
t (σ)]2] dσ

m4t(qt) = ρtA0

∫ ςp(qt)

−ςs(qt)

[

yb
t (σ)

dz̄b
t

dσ
(σ)− dȳb

t

dσ
(σ)zb

t (σ)

]

dσ

m̄t(qt) = ρtA
2
0

∫ ςp(qt)

−ςs(qt)

1
A(σ)

dσ

and J11 is the ship’s moment of inertia around the (body) x-axis (excluding the
moment of inertia of the tank fluid).

Proof. See Appendix 2. ��
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Proposition 12.3 (Lagrangian dynamics). The (lossless) roll–tank dynamics are
given by

Mt(qt)q̈+C(qt, q̇)q̇+kt(q) = 0, (12.17)

where

C(qt, q̇) =
φ̇
2

[
0 ∂Jt

∂qt
(qt)

− ∂Jt
∂qt

(qt) 0

]

+
q̇t

2

[
∂Jt
∂qt

(qt) 2 ∂m4t
∂qt

(qt)

0 ∂ m̄t
∂qt

(qt)

]

∂Jt

∂qt
(qt) = ρtA0

[
[yb

t (ςp(qt))]
2 − [yb

t (ςs(qt))]
2 +[zb

t (ςp(qt))]
2 − [zb

t (ςs(qt))]
2
]

∂m4t

∂qt
(qt) = ρt

A2
0

A(ςp(qt))

[

yb
t (ςp(qt))

dz̄b
t

dσ
(ςp(qt))− dȳb

t

dσ
(ςp(qt))z

b
t (ςp(qt))

]

−ρt
A2

0

A(ςs(qt))

[

yb
t (ςs(qt))

dz̄b
t

dσ
(ςs(qt))− dȳb

t

dσ
(ςs(qt))z

b
t (ςs(qt))

]

∂ m̄t

∂qt
(qt) = ρtA

3
0

[
1

A2(ςp(qt))
− 1

A2(ςs(qt))

]

kt(q) =

[ (
mgzb

g + gρt
∫ ςp
−ςs

zb
t A dσ

)
sin(φ)− gρt

∫ ςp
−ςs

yb
t A dσ cos(φ)

−gρtA0
[
yb

t (ςp)+ yb
t (ςs)

]
sin(φ)− gρtA0

[
zb
t (ςp)− zb

t (ςs)
]

cos(φ)

]

Proof. The Lagrangian L of the roll–tank system is given by

L (q, q̇) = T (qt,q)−U(q)

= gρt

∫ ςp(qt)

−ςs(qt)
yb

t (σ)A(σ) dσ sin(φ)−mgzb
g − 2gρt

∫ ς0

0
zb
t (σ)A(σ) dσ

+

[

mgzb
g + gρt

∫ ςp(qt)

−ςs(qt)
zb
t (σ)A(σ) dσ

]

cos(φ)+
1
2

q̇�Mt(qt)q̇ .

(12.18)

The dynamics of the system are then given by the Euler-Lagrange Equation [10]

d
dt

∂L

∂ q̇
− ∂L

∂q
= 0 . (12.19)
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It can be shown that

∂L

∂ q̇
= Mt(qt)q̇

d
dt

∂L

∂ q̇
= Ṁt(qt)q̇+Mt(qt)q̈ = q̇t

∂Mt

∂qt
q̇+Mt(qt)q̈ = C(qt, q̇)q̇+Mt(qt)q̈

∂L

∂qt
=−kt(q) .

Inserting this into (12.19) gives (12.17). ��
Proposition 12.4 (Two-DOF u-tank model). The dynamics of the tank–roll sys-
tem are given by

M(qt)q̈+C(qt, q̇)q̇+D(q̇)q̇+k(t,q) = bu, (12.20)

where

M(qt) =

[
ma,44 0

0 0

]

+Mt(qt) , D(q̇) = D0 +Dn(q̇) ,

D0 =

[
d44 0
0 dtt

]

, Dn(q̇) =
[

0 0
0 dtt,n|q̇t|

]

, b =

[
0
1

]

,

k(t,q) =
[

k̄44φ + kφt cos(ωet +αφ )φ + k3φ3

0

]

+kt(q)

the other matrices are as in Proposition 12.3 and u ∈ R is the control force on the
tank fluid. All the parameters are positive. D satisfies y�Dy > 0 ∀ y �= 0.

Proof. The forces and moments acting on the roll–tank system that are not captured
by the Lagrangian modeling are friction and other dissipative forces, added mass,
control forces, and pressure torques in roll.

Since nonviscous damping in roll is quite small [4], we model roll damping
linearly. Experiments conducted in [14] indicate that quadratic damping is extremely
important for the motion of the tank fluid, so this is included. The generalized
damping forces are collected in the term D(q̇)q̇. [14] experimentally investigated
the presence of off-diagonal elements in D, but the influence of such terms was
found to be negligible. Such terms have therefore been excluded here.

Added mass is a moment proportional to the acceleration of the ship [5], and is
caused by interaction with the surrounding ocean. As the tank fluid is not directly in
contact with the ocean, the added mass moment ma,44φ̈ only (directly) affects roll.
In general, ma,44 is nonconstant [5], but for simplicity we assume it to be constant
in this chapter.

The control force u only affects the tank fluid, which implies that b = [0,1]�.
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As done in [13], the calm-water pressure moment in roll (hydrostatic and -
dynamic buoyancy) is modeled as k̄44φ + k3φ3. The parametric excitation is, as in
[9, 12] assumed to take place in the linear roll spring term, giving an additional
moment of kφt cos(ωet +αφ )φ .

Combining all these forces with the Lagrangian-based dynamics of Proposition
12.3 gives (12.20). ��

12.3.1 Analysis

It is prudent to ask how the new model (12.20) compares to existing ones. As pointed
out in the introduction, most existing models are made for rectangular-prism u-
tanks (Fig. 12.1b) [14, 15, 17–19, 22]. Technically, such models cannot fit into the
framework developed here, as the tank centerline functions are only C0 rather than
C1 as required. The integrals that go into the model can still be computed, but the
model will technically be invalid.

However, if we ignore this fact, we can explicitly compute the integrals in
(12.20). This renders the model identical to the experimentally validated one of
[14]. However, that model requires that the duct is always full of water, a constraint
not found in the new model.

The linearization of the model is identical to that of [4] and [17, 18],2 other than
that in these works the models take into account sway and yaw in addition to roll
and the tank state, and that in [17, 18] Jt ≡ 0.

Excluding the tank moment of inertia Jt is likely to have only a small effect,
as it is significantly smaller than the moment of inertia of the ship itself, J11. The
coupling to the other degrees of freedom might be significant in general, but in this
work the ship is assumed not to be maneuvering.

12.4 Control Design

In [14], experiments with a rectangular-prism tank showed that a linearized model
was unsuitable to capture the full dynamics of the roll–tank system. However, the
experiments also indicated that the full nonlinear model was needlessly complicated,
and suggested an alternative model where the dynamics were linearized, with the
exception of the damping. This model was an adequate approximation even for
relatively high roll and tank state amplitudes. While the results in [14] were for

2Note that in [17, 18] the signage is wrong for the tank-induced moment in roll in [17, 18].
[18, (12.54b) p. 266)] reads (neglecting sway and yaw motions) (I44 + a44)ẍ4 + b44ẋ4 + c44x4 −
[a4τ τ̈ +c4τ τ ] = Fw40 sin(ωet + γ4), but should read (I44 +a44)ẍ4 +b44 ẋ4 +c44x4 +[a4τ τ̈ +c4τ τ ] =
Fw40 sin(ωet + γ4). This error is propagated throughout [17, 18].
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a rectangular-prism tank, and not in parametric roll, it seems reasonable that the
suggested simplifications would also be applicable in this case. This suggests the
model

M0q̈+D(q̇)q̇+K0(t)q = bu, (12.21)

where

M0 � M(0)

K0(t)�
∂k
∂q

∣
∣
∣
∣
q=0

=

[
k̄44 +mgzb

g + kφt cos(ωet +αφ )+ 2gρt
∫ ς0

0 zb
t A dσ −2gρtA0yb

t (ς0)

−2gρtA0yb
t (ς0) −2gρt

A2
0

A(ς0)
dzb

t
dσ (ς0)

]

.

We note that yb
t (ς0)< 0 and dzb

t
dσ (ς0)< 0. We refer to (12.21) as the nominal model.

We define

x � [q�, q̇�]� ∈ R
4 (12.22)

and rewrite the dynamics as

ẋ = Ax+Bu+G(t)x+ g(q̇), (12.23)

where

A =

[
02×2 I2

−M−1
0 Kl −M−1

0 D0

]

∈ R
4×4

Kl =

[
k̄44 +mgzb

g + 2gρt
∫ ς0

0 zb
t A dσ −2gρtA0yb

t (ς0)

−2gρtA0yb
t (ς0) −2gρt

A2
0

A(ς0)
dzb

t
dσ (ς0)

]

�
[

k44 k4t

k4t ktt

]

∈R
2×2

B =

[
02×1

M−1
0 b

]

∈ R
4×1

G(t) =

⎡

⎣
02×2 02×2

−M−1
0

[
kφt cos(ωet +αφ ) 0

0 0

]

02×2

⎤

⎦ ∈ R
4×4

g(q̇) =
[

02×1

−M−1
0 Dn(q̇)q̇

]

∈R
4×1.
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Theorem 12.1 (U-tank control). The origin of the system (12.23) is globally
(uniformly) exponentially stabilized (following [16, Definition 4.5]3) by the
controller

u = dtt,n|q̇t|q̇t −Kpx, (12.24)

where Kp = [Kp,1,Kp,2,Kp,3,Kp,4] ∈R
1×4 is a matrix such that A−BKp is Hurwitz

and the eigenvalues of A−BKp chosen such that

λmax(P)<
1

2kφt‖M−1
0 ‖2

, (12.25)

where P is the solution to the Lyapunov equation

P(A−BKp)+ (A−BKp)
�P =−I4

and λmax(P) is the maximum eigenvalue of P. Moreover, a Kp such that (12.25) is
satisfied can always be found.

Proof. See Appendix 3. ��
If we take a closer look at the controller (12.24), it cancels the nonlinear tank

damping. This damping is “good” damping; in the absence of the time-varying
disturbance (setting kφt = 0) it is fairly straight-forward to show that the origin
of the system (12.23) is GAS by using the energy-like Lyapunov function V̄ =
q̇�M0q̇ + q�Klq (via the Krasowskii–LaSalle theorem [16, Theorem 4.4]; this
theorem cannot be used for time-varying systems).

It is therefore reasonable to believe that this damping term is also beneficial
in the presence of the time-varying disturbance (kφt �= 0). However, proving this
has shown itself to be difficult, and the controller is therefore canceling this
term.

12.5 Simulation Study

We simulated the full system (12.20) both with and without the controller (12.24)
to test the validity and the robustness of the controller. For comparison, we also
simulated the controlled nominal system (12.23).

3By this definition, exponential stability is stronger than uniform asymptotic stability, and thus the
uniformity is implied.



252 C. Holden and T.I. Fossen

The tank functions yb
t , zb

t , and A were given by

yb
t (σ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w
2 ∀ σ ∈ (−∞,−w/2− ε]

−a0 − a1σ − a2σ2 ∀ σ ∈ [−w/2− ε,−w/2+ ε]
−σ ∀ σ ∈ [−w/2+ ε,w/2− ε]

a0 − a1σ + a2σ2 ∀ σ ∈ [w/2− ε,w/2+ ε]
−w

2 ∀ σ ∈ [w/2+ ε,∞)

, (12.26)

zb
t (σ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

rd +
w
2 +σ ∀ σ ∈ (−∞,−w/2− ε]

−b0 − b1σ − b2σ2 ∀ σ ∈ [−w/2− ε,−w/2+ ε]
rd ∀ σ ∈ [−w/2+ ε,w/2− ε]

−b0 + b1σ − b2σ2 ∀ σ ∈ [w/2− ε,w/2+ ε]
rd +

w
2 −σ ∀ σ ∈ [w/2+ ε,∞)

, (12.27)

A(σ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ar ∀ σ ∈ (−∞,−w/2+ ε]
c0 + c1σ ∀ σ ∈ [−w/2− ε,−w/2+ ε]

Ad ∀ σ ∈ [−w/2+ ε,w/2− ε]
c0 − c1σ ∀ σ ∈ [w/2− ε,w/2+ ε]

Ar ∀ σ ∈ [w/2+ ε,∞)

(12.28)

with ε � w/2 and

a0 =

(
ε − w

2

)2

4ε
, a1 =

w+ 2ε
4ε

, a2 = b2 =
1

4ε
, b0 =

(
ε − w

2

)2

4ε
− rd ,

b1 =
w− 2ε

4ε
, c0 =

2(Ad +Ar)ε +w(Ad −Ar)

4ε
, c1 =

Ad −Ar

2ε
.

Note that this choice of ai, bi,ci ensures that yb
t ,z

b
t ∈ C1 and that A ∈ C0. A tank

described by these functions has a centerline function describing half a rounded
rectangle. The tank state qt was limited so that |qt| ≤ qt,max =Vt/(2A0) so that there
always is tank fluid at the tank center point σ = 0.

Simulation parameters can be found in Table 12.1. The ship parameters J11,
ma,44, d44, k̄44, kφt , and k3 were taken from [13, Experiment 1174]. The tank
damping parameters are based on experimental values from [14] and formulas found
in [12] and [18]. The encounter frequency ωe was chosen to be twice the natural roll
frequency, when the system is known to parametrically oscillate.

The uncontrolled nominal system (12.23) had eigenvalues

λ (A)≈ [−0.0049± 0.3327i,−0.0051±0.2558i]

while the controlled system had eigenvalues

λ (A−BKp)≈ [−0.0196± 0.3327i,−0.0206±0.2558i] .

With the parameters of Table 12.1, Vt was computed to be Vt ≈ 337.8 m3. As per
the standard rules of u-tank design [18], the tank is dimensioned so that the natural
frequency of the tank (here, 0.2978 rad/s) is chosen to be approximately equal to
the natural roll frequency (here, 0.2972 rad/s).
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Table 12.1 Simulation parameters

Parameter Value Unit Parameter Value Unit

J11 1.4014E10 kgm2 Ar 30 m2

ma,44 2.17E9 kgm2 Ad 3.6145 m2

d44 3.1951E8 kgm2/s w 27 m
dtt 2.4618E3 kgm/s ε 1 m
dtt ,n 2.2742E5 kgm rd 2 m
k̄44 2.2742E9 kgm2/s2 ς0 17.5 m
kφ t 5.0578E8 kgm2/s2 A0 30 m2

k3 2.974E9 kgm2/s2 φ (t0) 5 ◦

m 7.64688E7 kg φ̇ (t0) 0 ◦/s
zb

g −1.12 m qt(t0) 0 m
g 9.81 m/s2 q̇t(t0) 0 m/s
ρt 1,000 kg/m3 Kp,1 3.9935E5 kgm/s2

ωe 0.594 rad/s Kp,2 7.2833E3 kg/s2

αφ 0 rad Kp,3 −4.1664E5 kgm/s
qt,max 5.6307 m Kp,4 3.9916E5 kg/s

The results of the simulation study can be seen in Figs. 12.4 and 12.5. We can
clearly see that the system trajectory converges to the origin. Note also that the
trajectory of the nominal system is almost identical to that of the true system.

From Fig. 12.4, we can also see that a passive (uncontrolled) tank is capable
of reducing the roll angle compared to not having a tank at all4 (a reduction in
maximum roll angle of approximately 21◦ to 7◦). However, both roll and the tank
fluid will end up in steady-state oscillations.

The issue of correctly tuning the natural frequency of the tank fluid bears some
consideration. For a rectangular-prism tank (and a tank like the one used in the
simulations), the natural frequency can be changed by adjusting the fluid level
ς0 or the ratio of Ar and Ad (cross-sectional area of the reservoirs and the duct,
respectively). The latter can of course only be done when the tank is constructed.

Unfortunately, the natural frequency is quite insensitive to changes in ς0 [18].
It is therefore almost impossible to change the natural frequency of the tank after
it has been built. However, there can be quite some uncertainty in the natural roll
frequency, which can also depend on loading conditions [4, 18].

If the natural frequency of the tank is not properly tuned, the effect of a passive
tank can be drastically reduced. The more badly tuned it is, the less effective the
tank is. However, as proven in Theorem 12.1, an active (controlled) tank will still be
able to stabilize the origin of the system.

4In [12] it was concluded that using a passive tank did not noticeably reduce the roll angle in
parametric resonance, but this tank had a badly tuned natural frequency.
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Fig. 12.4 Simulation of the closed- and open-loop system. True and nominal graphs are closed-
loop simulations of (12.20) and (12.21), respectively. Uncontrolled is open-loop simulation
of (12.20)
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The power and energy consumptions of the control system is also worth noting.
As can be seen from Fig. 12.5, at peak the controller requires a force of about 250 kN
and 210 kW. By integrating the power consumption (over 1,000 s), the total energy
use can be found to be approximately 8 MJ.

These numbers require some context. If force on the tank fluid is applied by using
high-pressure air in the reservoirs, the pressure difference in the two reservoirs has to
be about 8.5 kPa, or 0.085 bar. When considering the maximum power consumption
21 kW, bear in mind that the actuator is moving 337.8 metric tons of fluid, and that
the ship itself has a mass of 76,500 metric tons and is likely to have a fairly large
power system. The total energy consumption equals about 0.23 liters of gasoline
burned in a combustion engine (using 34.8 MJ/liter of gasoline [2]). All in all, the
control system if fairly modest in scale.

12.6 Conclusions

This work presents two important contributions: A novel model of u-tanks, suitable
for u-tanks of any shape and system response of any magnitude; and a u-tank control
system capable of exponentially driving the roll angle to zero and the tank fluid to
its equilibrium state during parametric roll resonance.

The proposed model has two degrees of freedom; roll, and one for the motion of
the tank fluid. To derive the model, the inherently complex motion of a fluid in a
tank was modeled as a one-dimensional flow. While technically not true, the model
is only designed to capture the tank fluid’s and the ship’s mutual effect on each other.
Only the macroscopic fluid effects are likely to be relevant in this case.

Unlike most existing u-tank models, which can only be used for tanks of a very
specific shape, the new model can describe u-tanks of arbitrary shape. The new
model also captures the inherently nonlinear behavior of the system, and is valid for
large system motions. Existing models are largely linear and assume small motions.

The control system was developed and its stability properties proven for a
simplification of the 2-DOF model. Under the assumption of no constraints on
the states or the input, the controller renders the origin of the closed-loop system
globally (uniformly) exponentially stable.5

The controller was tested in simulation on both the nominal (simplified) system
and the full nonlinear system. The responses of these two systems was virtually
indistinguishable in simulation, and the origin was stabilized, as shown theoretically.
The power and energy consumptions are quite reasonable; total energy required to
stabilize parametric roll is equivalent to a quarter of a liter of gasoline, and peak
power requirements are quite modest given the size of the ship.

5In the presence of limitations on the tank state or the input, the origin of the controlled system
might only be locally (uniformly) exponentially stable.
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Fig. 12.5 Simulation of the closed-loop system. True and nominal graphs are simulations of
(12.20) and (12.21), respectively
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Simulations also showed that a passive (uncontrolled) tank would be able to
reduce the roll angle significantly (21◦ to 7◦) in the presence of parametric roll,
but not to drive the roll angle to zero. It can also be shown that a passive tank
only works if it is correctly tuned (i.e., the natural tank frequency is identical to
the natural roll frequency). Changing the natural tank frequency without rebuilding
the tank is almost impossible. The natural roll frequency can change depending on
loading conditions, sailing conditions, and simple discrepancies between theoretical
design and practical implementation makes it, to a certain degree, unknown. This
makes correctly tuning the tank difficult.

However, the controlled tank would still be able to drive roll to zero, even with a
poorly tuned tank.

Acknowledgements This work was funded by the Centre for Ships and Ocean Structures
(CeSOS), Norwegian University of Science and Technology, Norway, and the Norwegian Research
Council.

Appendix 1

In this appendix, the potential energy of the ship–tank system is derived, proving
Proposition 12.1.

An infinitesimal volume block dV of the tank or ship at a position r has density
ρ(r) given by

ρ(r) =
{

ρt in the tank
ρs(r) in the ship

(12.29)

and is at a height h(r) above some arbitrary zero point. We note that h is the zero
level minus the inertial z-component of r, that is,

h(r) = h0 − [0,0,1]rn = h0 − [0,0,1]Rrb. (12.30)

The negative signage is because the z-axis has the same direction as the gravity field.
The potential energy dU of the volume block is then given by

dU = gρ(r)h(r)dV, (12.31)

which, in the body frame, can be written

dU = gρ(rb)h(rb) dV = gρ(rb)
(

h0 − [0,0,1]Rrb
)

dV. (12.32)
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The total potential energy U of the ship and the tank fluid is then given by

U =
∫

ship and tank
dU = gm0h0 − g[0,0,1]R

[∫

ship
ρs(rb)rb dV +ρt

∫

tank
rb

t dV

]

= gm0h0 − g[0,0,1]R
[

mrb
g +ρt

∫ ςp(qt)

−ςs(qt)
A(σ)rb

t (σ) dσ
]

(12.33)

by the definition of the center of gravity, where m0 is the combined mass of the
ship and tank fluid. From (12.1), [0,0,1]R = [0,sin(φ),cos(φ)] and, by assumption,
rb

g = [xb
g,0,z

b
g]
�. This gives

U = gm0h0 −mgzb
g cos(φ)− gρt

∫ ςp(qt)

−ςs(qt)
A(σ)yb

t (σ) dσ sin(φ)

− gρt

∫ ςp(qt)

−ςs(qt)
A(σ)zb

t (σ) dσ cos(φ). (12.34)

A priori, we know that q = 0 is an equilibrium point for the system, so we choose
U(q = 0) = 0. This gives

U(q = 0) = gm0h0 −mgzb
g − 2gρt

∫ ς0

0
A(σ)zb

t (σ) dσ = 0,

since ςs(0) = ςp(0) = ς0 and A(σ)zb
t (σ) is an even function. We therefore choose

gm0h0 = mgzb
g + 2gρt

∫ ς0

0
A(σ)zb

t (σ) dσ = 0

giving

U(q) = mgzb
g + 2gρt

∫ ς0

0
zb
t (σ)A(σ) dσ − gρt

∫ ςp(qt)

−ςs(qt)
yb

t (σ)A(σ) dσ sin(φ)

−
[

mgzb
g + gρt

∫ ςp(qt)

−ςs(qt)
zb
t (σ)A(σ) dσ

]

cos(φ), (12.35)

which we recognize as (12.15).

Appendix 2

In this appendix, the kinetic energy of the ship–tank system is derived, proving
Proposition 12.2.
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An infinitesimal volume block dV of the tank or ship at a position r in the body
frame has density ρ(r) given by (12.29) and velocity v(r) given by

v(r) =

{
ωωω × r+ A0q̇t

A(σ)
dr̄t
dσ (σ) in the tank

ωωω × r in the ship
, (12.36)

where ωωω is the angular velocity of the ship. The velocity of the tank fluid comes
from (12.13).

The volume block has kinetic energy dT given by

dT =
1
2

ρ(r)‖v(r)‖2
2dV, (12.37)

which, in the body frame, can be written

dT =
1
2

ρ(rb)‖vb(rb)‖2
2dV. (12.38)

The total kinetic energy T of the ship and the tank fluid is then given by

T =
1
2

∫

ship and tank
ρ(rb)‖vb(rb)‖2

2 dV

=
1
2

∫

ship
ρs(rb)‖ωωωb × rb‖2

2 dV +
ρt

2

∫

tank

∥
∥
∥
∥ωωωb × rb +

A0q̇t

A(σ)

dr̄b
t

dσ

∥
∥
∥
∥

2

2
dV

=−1
2

ωωωb�
[∫

ship
ρs(rb)S2(rb) dV

]

ωωωb

+
ρt

2

∫ ςp(qt)

−ςs(qt)
A(σ)

∥
∥
∥
∥φ̇ [0,−zb

t (σ),yb
t (σ)]�+

A0q̇t

A(σ)

dr̄b
t

dσ
(σ)

∥
∥
∥
∥

2

2
dσ .

We note that, by definition,

J =−
∫

ship
ρs(rb)S2(rb) dV ∈ R

3×3

is the moment of inertia of the ship and assumed a priori known. Furthermore,

ωωωb�Jωωωb = φ̇2[1,0,0]J[1,0,0]� = φ̇2J11,
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where J11 > 0 ∈ R is the top left element of J, that is, the moment of inertia about
the (body) x-axis. Thus,

T =
1
2

J11φ̇2 +
ρt

2

∫ ςp(qt)

−ςs(qt)
A(σ)

∥
∥
∥
∥φ̇ [0,−zb

t (σ),yb
t (σ)]�+

A0q̇t

A(σ)

dr̄b
t

dσ
(σ)

∥
∥
∥
∥

2

2
dσ

=
1
2

[

J11 +ρt

∫ ςp(qt)

−ςs(qt)
A(σ)

[
[yb

t (σ)]2 +[zb
t (σ)]2

]
dσ
]

φ̇2 +
q̇2

t

2

∫ ςp(qt)

−ςs(qt)

ρtA2
0

A(σ)
dσ

+ φ̇ q̇tρtA0

∫ ςp(qt)

−ςs(qt)

[

yb
t (σ)

dz̄b
t

dσ
(σ)− dȳb

t

dσ
(σ)zb

t (σ)

]

dσ (12.39)

since
∥
∥dr̄b

t /dσ
∥
∥2

2 = 1.
Defining

Jt(qt) = ρt

∫ ςp(qt)

−ςs(qt)
A(σ)[[yb

t (σ)]2 +[zb
t (σ)]2] dσ

m4t(qt) = ρtA0

∫ ςp(qt)

−ςs(qt)

[

yb
t (σ)

dz̄b
t

dσ
(σ)− dȳb

t

dσ
(σ)zb

t (σ)

]

dσ

m̄t(qt) = ρtA
2
0

∫ ςp(qt)

−ςs(qt)

1
A(σ)

dσ

Mt(qt) =

[
J11 + Jt(qt) m4t(qt)

m4t(qt) m̄t(qt)

]

∈ R
2×2,

we can rewrite (12.39) as

T (qt, q̇) =
1
2

q̇�Mt(qt)q̇, (12.40)

which we recognize as (12.16).

Appendix 3

This section contains the proof of Theorem 12.1.
We immediately note that by choosing u = dtt,n|q̇t|q̇t + v, we can transform the

dynamics of the system (12.23) into the linear system

ẋ = Ax+Bv+G(t)x. (12.41)
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The term G(t)x can be viewed as a time-varying disturbance to the system. We
cannot directly cancel it, both because the parameters are unlikely to be known and
because roll is not directly actuated.

The unperturbed system has the dynamics

ẋ = Ax+Bv. (12.42)

This system is controllable if its controllability matrix C =
[

B AB A2B A3B
]

has
full rank (i.e., is nonsingular) [1].

The controllability matrix is given by

C =

[
M−1

0 02×2

02×2 M−1
0

]

C̄ , C̄ �

⎡

⎢
⎢
⎣

0 0 a1 b1

0 1 a2 b2

0 a1 b1 c1

1 a2 b2 c2

⎤

⎥
⎥
⎦

[
a1

a2

]

=−D0M−1
0 B

[
b1

b2

]

= (D0M−1
0 D0 −Kl)M

−1
0 B

[
c1

c2

]

= (KlM
−1
0 D0 +D0M−1

0 Kl −D0M−1
0 D0M−1

0 D0)M−1
0 B .

From [1], we have that rank(C ) = rank(C̄ ) since the matrix diag(M−1
0 ,M−1

0 ) ∈
R

4×4 is nonsingular.
C̄ has full rank if its determinant is nonzero [1]. Since

det(C̄ ) =− 1
det(M0)2

(
[k44m12 − k4tm11]

2 + d2
1k4tm12

)
, (12.43)

this gives the condition

[k44m12 − k4tm11]
2 + d2

1k4tm12 �= 0 . (12.44)

As long as this condition is satisfied, (12.42) is controllable. Since all the parameters
in (12.44) are strictly positive, this condition is always satisfied.

As (12.42) is controllable, we can select a v = −Kpx, Kp ∈ R
1×4, such that

A−BKp is Hurwitz, and can place the poles arbitrarily far into the left half-plane
[1]. The closed-loop system is then given by

ẋ = (A−BKp)x+G(t)x . (12.45)

From [16], we know that for any positive definite symmetric matrix N, there
exists a positive definite symmetric matrix P such that

P(A−BKp)+ (A−BKp)
�P =−N . (12.46)
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We choose Lyapunov function candidate

V (x) = x�Px (12.47)

with P as the solution to (12.46). We note that it is positive definite and decrescent.
Specifically,

λmin(P)‖x‖2
2 ≤V (x)≤ λmax(P)‖x‖2

2, (12.48)

where λmin(P) and λmax(P) are the minimum and maximum eigenvalues of P.
The time derivative of V along the trajectories of the closed-loop system (12.45)

is given by

V̇ (x) = x�
[
P(A−BKp)+ (A−BKp)

�P
]

x+ x�
[
PG(t)+G�(t)P

]
x

=−x�Nx+ x�
[
PG(t)+G�(t)P

]
x

≤−λmin(N)‖x‖2
2 + 2λmax(P)max

t
‖G(t)‖2‖x‖2

2

≤−λmin(N)‖x‖2
2 + 2kφtλmax(P)‖M−1

0 ‖2‖x‖2
2

=−[λmin(N)− 2kφtλmax(P)‖M−1
0 ‖2

]‖x‖2
2, (12.49)

where we have used that

max
t

‖G(t)‖2 =

∥
∥
∥
∥
∥
∥

⎡

⎣
02×2 02×2

−M−1
0

[
kφt 0
0 0

]

02×2

⎤

⎦

∥
∥
∥
∥
∥
∥

2

≤ kφt‖M−1
0 ‖2 . (12.50)

By [16, Theorem 4.10], the origin of the controlled system (12.45) is globally
(uniformly) exponentially stable, as long as λmin(N)> 2kφtλmax(P)‖M−1

0 ‖2 or

kφt <
λmin(N)

2λmax(P)‖M−1
0 ‖2

.

The ratio λmin(N)/λmax(P) is maximized by choosing N = I4 [16]. Since we
can choose the eigenvalues of A − BKp arbitrarily far into the left half-plane,
we can choose λmax(P) arbitrarily, as this value depends on the eigenvalues of
A−BKp [1].

Thus, for any kφt , we can find a controller such that the origin of the controlled
system (12.45) is globally (uniformly) exponentially stable. ��
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Chapter 13
Parametric and Direct Resonances
in a Base-Excited Beam Carrying a Top Mass

Rob H.B. Fey, Niels J. Mallon, C. Stefan Kraaij, and Henk Nijmeijer

13.1 Introduction

The function of many structures in engineering practice is to carry a static load. To
minimize costs, it is often desired to reduce the mass of the supporting structure
as much as possible, while retaining a high stiffness. Thin-walled structures are
often applied for this purpose (e.g. in aerospace and civil engineering), because
of their favorable (high) stiffness to mass ratio. It is well-known that thin-walled
structures are liable to buckling and static buckling analysis is often carried out
to assess their static stability. In many situations, additionally to the static load, a
dynamic load is present, e.g. due to motions of the base of the structure. These
situations require assessment of the dynamic stability of the structure. Especially
excitation frequencies, which bring the structure into resonance, may induce
dynamic buckling/instability (large motions and deformations) of the structure. This
may lead to damage to the structure or even to total collapse of the structure.

In the last years, there is increasing attention for modeling and analysis to assess
the dynamic stability of structures. A well-known phenomenon, which may affect
the dynamic stability of a structure, is the occurrence of parametric resonance.
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Fig. 13.1 Base-excited slender beam with top mass

Recent textbooks for studying the parametric resonance phenomenon and for
dynamic stability assessment of structural elements are among others [1, 9, 17].

In this paper, nonlinear resonances in a coupled shaker-beam-top mass system are
investigated both numerically and experimentally. The imperfect, vertical, slender
beam carries a top mass and is coupled to and axially excited by the shaker at its
base. The top mass can only move in vertical direction. The boundary conditions of
the beam are clamped-clamped. Fig. 13.1 shows a schematic overview of the system.
This can be seen as an archetype system for studying the dynamic stability of a load
carrying, thin-walled structure. The weight of the top mass causes a compressive
prestress not large enough to cause static buckling. The harmonic base excitation,
however, may induce dynamic buckling due to parametric and/or direct resonance.

In literature, not many papers consider parametric excitation of a beam with a
point mass attached to it. In [18, 20], the top mass is completely free in contrast to
the situation in the current chapter. In [13], parametric excitation of a horizontal,
simply supported elastic beam with a point mass attached to one end is studied.

In the current chapter, a semi-analytical modeling approach is used resulting
in a low-dimensional model. Geometric imperfections of the beam and linear as
well as quadratic viscous damping are taken into account. The model also includes
models of the amplifier and shaker used in the experiments. Advanced numerical
tools are used for calculating branches of periodic solutions and their local stability
and for bifurcation analysis. In combination with the low-dimensional semi-
analytical model, these tools permit fast parameter studies. Single and two mode
discretizations for the beam are considered in obtaining steady-state responses.
Numerically obtained steady-state response results are validated by experiments.
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The outline of this chapter is as follows. In the next section, the semi-analytical
amplifier-shaker-structure model will be derived and discussed. In Sect. 13.3, the
experimental setup of the base-excited slender beam with top mass will be intro-
duced. The steady-state response results, predicted by the semi-analytical approach
and obtained experimentally, will be compared in Sect. 13.4. Finally, in Sect. 13.5,
conclusions will be presented.

13.2 Semi-analytical Model

At the experimental setup used, see Sect. 13.3, base-excitation of the slender beam
is realized by supplying an amplified harmonic input voltage to an electrodynamic
shaker system. The resulting base acceleration will not be purely harmonic, will not
have a constant amplitude but will be influenced by the dynamics of the shaker
system carrying the slender beam with top mass. Response results for voltage
excitation can thus not directly be compared with results for a prescribed harmonic
base-acceleration as considered in [6]. To be able to compare the experimental
results with the semi-analytical results in a quantitative manner, the equations of
motion for the base-excited slender beam with top mass will be coupled with a
model of the shaker. The derivation of this coupled model is the topic of this
section.

13.2.1 Modeling of the Slender Beam with Top Mass

Figure 13.1 shows the beam under consideration with length L, width b, and
thickness h. The beam is very slender, i.e. h� L. Consequently, the displacements of
the beam will be dominated by changes in curvature allowing to assume the beam
to be inextensible. In addition, the slender beam is considered to be initially not
perfectly straight. In the initial stress free state, the transversal shape of the slender
beam is denoted by v0(y). The axial displacement field relative to the absolute axial
base displacement Ub(t) is indicated by u(t,y) and the transversal displacement field
relative to v0(y) by v(t,y).

The length of an infinitesimally small piece of the beam in the initial state is [8]

ds2 = dy2 +(v0,y dy)2. (13.1)

Due to the inextensibility assumption, the length of ds remains constant. In the
deformed state this length satisfies [8]

ds2 = (dy+ u,y dy)2 +([v0,y+v,y ]dy)2. (13.2)



270 R.H.B. Fey et al.

By combining (13.1) and (13.2), the following inextensibility constraint results

u,y=
√

1− 2v0,y v,y−v,2y − 1. (13.3)

In the Cartesian coordinate system x,y, the centerline of the deformed imperfect
beam is described by the curve [X(t,y),Y (t,y)], where X(t,y) = v0(y)+ v(t,y) and
Y (t,y) = y+Ub(t)+ u(t,y). The exact curvature of this curve follows from [4]

κ =
X(t,y),yY (t,y),yy −X(t,y),yyY (t,y),y

(
X(t,y),y

2 +Y (t,y),y
2
) 3

2

, (13.4)

and can be evaluated in terms of (derivatives of) v0(y) and v(t,y) solely, after
substitution of (13.3). It is assumed that, depending on the maximum deflection,
the constraint (13.3) and the curvature (13.4) can be accurately approximated by
their Taylor series expansions in v,y and v0,y up to nth order with n sufficiently high.
For example, the 3rd order expansions of (13.3) and (13.4) yield

u,y =−v0,y v,y−1
2

v,2y , (13.5)

κ = κ0 + v,yy+
1
2
(v0,yy+v,yy )v,

2
y +v,yy v0,y v,y−1

2
v,yy v0,

2
y , (13.6)

where κ0 = v0,yy− 3
2 v0,yy v0,

2
y is (in this case) the 3rd order approximation of the

initial curvature.
The kinematic boundary conditions for the transversal displacement field of the

clamped-clamped beam, see Fig. 13.1, are

v(t,0) = v(t,L) = 0 and v(t,0), y = v(t,L), y = 0. (13.7)

Each of the following modes a priori obeys these conditions

vi(y) = cos [(i− 1)πy/L]− cos [(i+ 1)πy/L] , i = 1,2,3, . . . (13.8)

Using these modes, the transversal displacement field is discretized as

v(t,y) =
N

∑
i=1

Qi(t)vi(y), (13.9)

where Qi(t) [m] are N generalized degrees of freedom (DOFs). In a similar fashion,
the initial shape of the beam, i.e. the geometric imperfection, is discretized as

v0(y) =
Ne

∑
i=1

1
2

eihvi(y), (13.10)
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where ei are dimensionless imperfection parameters and Ne ≤N. After discretization
of v0(y) and v(t,y), the corresponding axial displacement field u(t,y) can be com-
puted by integrating an nth order expansion of (13.3). Subsequently, the absolute
axial displacement of the top mass, see Fig. 13.1, follows from

Ut(t) =Ub(t)+ u(t,L). (13.11)

Note that (in general) Ut depends in a nonlinear fashion on the DOFs Qi.
The kinetic energy Tbeam and the potential energy Vbeam of the beam with top

mass are determined by

Tbeam =
1
2

ρA
∫ L

0
v̇2dy+

1
2

mtU̇
2
t , (13.12)

Vbeam =
1
2

EI
∫ L

0
(κ −κ0)

2 dy+mtgUt , (13.13)

where A = bh is the cross-sectional area, I = bh3/12 is the second moment of area,
ρ is the mass density, E is the Young’s modulus of the beam, g is the acceleration
due to gravity, and mt is the top mass. Note that the axial and rotatory inertia of
the beam are neglected, i.e. the case ρAl � mt and h/L � 1 (as stated before) is
considered. Damping of the beam is modeled by including a linear and a quadratic
viscous damping force for each DOF Qi: Fd = −ciQ̇i − cq,i|Q̇i|Q̇i, where ci is the
linear viscous damping constant and cq,i is the quadratic viscous damping constant
for DOF Qi. With respect to the damping of slender beams, addition of quadratic
damping improves the agreement between theoretical and experimental results in
many studies [2, 18, 19]. These generalized damping forces result in the following
Rayleigh dissipation function

Rbeam =
N

∑
i=1

(
1
2

ciQ̇
2
i +

1
3

cq,isign
(
Q̇i
)

Q̇3
i

)

. (13.14)

Energy and work expressions (13.12)–(13.14) will be used to derive the coupled
shaker-structure model in Sect. 13.2.3.

13.2.2 Shaker Model

The dynamics of the electrodynamic shaker are described by the linear ODEs [7]

Lİ +RI+κcU̇b = E,

mbÜb + cbU̇b + kbUb = κcI+Fstr, (13.15)
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Table 13.1 Parameters amplifier-shaker model

cb 278 [kg/s] L 2.6×10−3 [H] Pamp −88.3 [-]
mb 3.0 [kg] κc 11.5 [N/A] bamp 1.4 ·10−3 [s−1]
kb 5.28×104 [N/m] R 0.9 [Ω ]

where I represents the current through the electric circuit of the shaker, R the coil
resistance, L the coil inductance, κc the current-to-force constant, E the harmonic
excitation voltage supplied by a power amplifier, Ub the vertical displacement of the
shaker armature mass mb, kb the stiffness of the mass suspension, cb the viscous
damping constant of this suspension, and Fstr the vertical force exerted to the shaker
mass by the structure it carries (the beam with top mass). This force in general
depends on Üb, generalized DOFs Qi, and their first and second time derivatives.
The mass of the shaker armature mb is a part of the total moving mass of the lower
linear sledge mo, see Fig. 13.1. The latter mass also includes the mass of the bottom
clamping of the slender beam, see Sect. 13.3. In the frequency domain, the relation
between E and E0, respectively the harmonic output and (known) harmonic input
voltage of the amplifier, is given by

E( jω) = Pamp( jωbamp + 1)E0( jω). (13.16)

This relation results in a good fit of the shaker-amplifier dynamics for the frequency
range of interest (0–300 [Hz]). The time domain version of (13.16), E(t) =
Pamp(bampĖ0(t) + E0(t)), can simply be substituted in (13.15). The parameters
of the amplifier-shaker model are identified using frequency domain techniques,
see [5] for more details. During the identification procedure of the unknown
parameters of the shaker-amplifier system, the bare shaker was used, i.e. Fstr = 0
[N]. The identified parameter values for the amplifier-shaker model are listed in
Table 13.1.

13.2.3 The Coupled Shaker-Structure Model

The coupled shaker-structure model will be derived by following a charge displace-
ment formulation of Lagrange’s equations [11]. In this formulation, energy and work
expressions of the coupled structure are formulated in terms of mechanical DOFs
and (in this case) a single additional charge coordinate q. The first time derivative
of q constitutes the current through the electrical part of the shaker model, i.e. q̇ = I.
The total set of N + 2 DOFs is collected in the column

Q∗ = [Q1, . . . ,QN ,Ub,q]
T, (13.17)

where the DOFs Qi are the N generalized DOFs of the beam, see (13.9).
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In the model of the slender beam, the axial motions are defined with respect to an
arbitrary base motion Ub. For the coupled shaker/structure system, the energy/work
expressions and the Rayleigh dissipation function now become

M =
1
2

Lq̇2 +κcq̇Ub, T = Tbeam +
1
2

moU̇2
b , V = Vbeam +

1
2

kbUb
2,

R = Rbeam +
1
2

cbU̇2
b +

1
2

RI2, δWnc = E(t)δq, (13.18)

where M is the magnetic energy of the moving coil of the shaker and δWnc is the
virtual work done by the output voltage of the amplifier E(t) [11]. Defining the
Lagrangian L of the complete system by L = T +M −V , the final coupled set
of equations of motion can be determined by

d
dt

L ,Q̇∗ −L ,Q∗ +R,Q̇∗= bE(t), (13.19)

where b = [0, ...,0,1]T is an N + 2 dimensional column vector. Among others, this
will lead to an explicit expression for Fstr, the force exerted to the shaker mass by
the slender beam with top mass, which was introduced in (13.15).

To illustrate some key features of the model, the equation of motion of the slender
beam structure is given for single-mode expansions of v(t,y) and v0(y), i.e. N =
Ne = 1 in (13.9) and (13.10), and using third-order Taylor-series approximations
according to (13.5) and (13.6). This results in two ODEs for the shaker, see (13.15),
which are coupled to the following single equation of motion for the beam with top
mass

M(Q1)Q̈1 + G(Q1, Q̇1)+C(Q̇1)+ p1
[
1− r0(1+Üb/g)− p2e2

1

]
Q1

+K(Q1) = p3e1r0
(
1+Üb/g

)
, (13.20)

where r0 = mtg/Pc is the ratio between the static load due to the weight of the top
mass and the static Euler buckling load of the (perfect) beam (Pc = 4π2EI/L2). In
(13.20), the following abbreviations are used

M(Q1) =

[
3
2

ρAL+
mtπ4

L2

(
h2e2

1 + 4he1Q1 + 4Q1
2)
]

,

G(Q1, Q̇1) =
2mtπ4

L2 Q̇2
1 (he1 + 2Q1) , C(Q̇1) = c1Q̇1 + cq,1|Q̇1|Q̇1,

K(Q1) =
2π6EI

L5

(
8Q1

3+9he1Q1
2) , p1=

8π4EI
L3 , p2=

π2h2

4L2 , p3=
h
2

p1. (13.21)

As can be noted, due to the nonlinear Eqs. (13.5) and (13.6), (13.20) contains
inertia nonlinearities in M(Q1)Q̈1 if mt > 0 and stiffness nonlinearities in K(Q1).
For e1 = 0, the inertia nonlinearities are of the softening type (mass increases
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for increasing |Q1|), whereas the stiffness nonlinearities are of the hardening type
(stiffness increases for increasing |Q1|). C contains linear and quadratic dissipative
forces. G contains centrifugal and Coriolis forces. Furthermore, Q1 is excited by Üb

in a parametric manner and for e1 �= 0 also in a direct manner. In the static situation,
for e1 = 0, the linear stiffness term becomes negative for r0 > 1, indicating that the
trivial static solution Q1 = 0 becomes unstable, if the static Euler buckling load is
exceeded; note that this does not depend on the order of the Taylor series expansion.

13.2.4 Discretizations and Parameter Identification

In Sect. 13.4, experimental steady-state response results will be compared to results
based on semi-analytical models. For this, two semi-analytical models will be used:
a model based on a single mode discretization of v and v0 (N = Ne = 1, see
(13.9) and (13.10)) and a model based on a two mode discretization of v and v0

(N =Ne = 2). Later on in this chapter, these two models will be respectively referred
to as the 1-MODE model (this beam model coupled to the shaker model actually
has five states: Q1, Q̇1,Ub,U̇b, I) and the 2-MODE model (this coupled model has
two additional states: Q2, Q̇2). All numerical responses presented in this chapter are
based on models using third-order Taylor series expansions of the inextensibility
constraint (13.3) and the curvature (13.4), i.e. (13.5) and (13.6). By considering
higher order expansions of the exact kinematics and a multi-mode discretization,
it is shown in [6], that the third-order single-mode semi-analytical model can (to a
large extent) accurately describe the first harmonic resonance and the first (large am-
plitude) 1/2 subharmonic resonance of the base-excited (initially unbuckled) slender
beam. It is noted that for accurate steady-state response prediction of an initially
buckled beam, in general higher order approximations of the exact kinematics are
required [10].

The semi-analytical models have a number of parameters, i.e. imperfection and
damping parameters, which must be experimentally identified. In addition, to cope
with small model errors, the Young’s modulus E is considered as a parameter to be
identified. Consequently, the 1-MODE model has four unknown parameters (i.e. e1,
c1, cq,1, and E) and the 2-MODE model has seven unknown parameters (i.e. e1, c1,
cq,1, e2, c2, cq,2, and E). The numerical values for these parameters are identified by
fitting periodic solutions, calculated using the semi-analytical models, to measured
periodic solutions using a weighted least squares method. In this method, harmonic
steady-state responses are used for eleven different excitation frequencies (i.e.
for 35, 37, 55, 60, 67, 74, 77, 91, 103, 121, and 136 [Hz]) on stable parts of
the harmonic branch, see Sect. 13.4. In general, responses around resonances are
useful to identify damping parameters, whereas low-amplitude solutions are useful
to identify geometric imperfections. The identification results are robust; using
different periodic solutions results in minor changes of the identified parameter
values. More details on the applied identification procedure can be found in [16].
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13.3 Experimental Setup

Both a picture and a schematic overview of the experimental setup are depicted
in Fig. 13.2. The base excitation of the slender, steel beam is realized by using an
electrodynamic shaker system. The slender beam is clamped between two linear
sledges with very low friction in axial direction. The linear sledge at the top side
of the beam is based on air bearings. This sledge with clamping block acts as the
rigid top mass mt. The top mass can be increased by mounting additional masses
on top of the upper linear sledge. At the bottom side of the beam, a linear sledge is
realized by an elastic support mechanism based on folded leaf springs. The bottom
linear sledge is mounted rigidly on top of the shaker. The moving mass of the lower
linear sledge, including the mass of the bottom clamping block and the mass of
the shaker armature, equals mo = 3.2 [kg]. The beam used for the experiments is

Fig. 13.2 Picture and schematic overview of the experimental setup: (a) top linear sledge (top
mass) based on air bearings, (b) slender beam, (c) laser vibrometer, (d) elastic support mechanism
for the base, (e) electrodynamic shaker
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Table 13.2 Material and geometrical
properties of the slender steel beam

E∗ 2.0×1011 [N/m2]
ρ 7,850 [kg/m3]
L 180 [mm]
b 15 [mm]
h 0.5 [mm]
∗This parameter will be
slightly modified during the
identification procedure with
the experimental results

made of spring steel. The material and geometric properties of the beam are listed
in Table 13.2. As stated before, note that the value for the Young’s modulus E later
will be used as a parameter to be identified to account for (small) model errors. This
will be discussed in more detail later. Obviously, the identified Young’s modulus
should not differ too much from its well-known value for steel given in Table 13.2.

At the experimental setup, the base-excitation is introduced by supplying the
following harmonic input voltage to the power amplifier

E0(t) = vd sin(2π f t) [V], (13.22)

where vd is the voltage amplitude and f = 1/T is the excitation frequency. The
output voltage of the amplifier E(t), see Fig. 13.2, is supplied to the shaker. The
amplifier operates in voltage mode, i.e. the output voltage of the amplifier is
kept proportional to its input voltage. No active feedback is used to control the
acceleration of the base Üb. Consequently, the resulting acceleration of the shaker
(and thus the effective axial force on the slender beam with top mass) will not be
proportional to the input voltage E0(t) as given by (13.22), but will be influenced
by the dynamics of the shaker system carrying the slender beam with top mass.
Due this fact, it is essential to derive a coupled shaker-structure model to be able to
compare numerical results with experimental results as has been done in Sect. 13.2.

A laser vibrometer (Ono Sokki LV 1500) is used to measure the transversal
velocity (v̇) at one point of the beam. In the static equilibrium state obtained for zero
input voltage (E0 = 0 [V]), the vibrometer is located at beam height y = L/4 (see
Fig. 13.1). Note that y is measured relative to the base motion Ub. In the dynamic
situation, the vibrometer measures the transversal velocity of the beam at a height
L/4−Ub,dyn(t) relative to the static equilibrium position of the base, where Ub,dyn(t)
is the dynamic part of the base motion caused by a non-zero input voltage E0. The
signal of the laser vibrometer is numerically integrated to obtain measurements in
terms of transversal displacements v. To avoid drift during the numerical integration,
the measurement signal is filtered using a high pass filter with a cut-off frequency
of f = 1.6 [Hz]. The data-acquisition and input signal generation is performed
using a laptop with Matlab/Simulink in combination with a TUeDACS AQI [15].
A sample frequency of 4 [kHz] is used. Note that Ub,dyn(t) � L/4. Therefore, the
experimentally observed transversal velocity and displacement at L/4−Ub,dyn may
be compared to the numerically obtained signals v̇(t,L/4) and v(t,L/4).
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13.4 Steady-State Response Results

In this section, experimental steady-state response results for the base-excited
slender beam with top mass will be compared with semi-analytical results obtained
for the 1-MODE model and the 2-MODE model, see Sect. 13.2. The experimental
steady-state results are obtained using a stepped sine frequency sweep: harmonic
excitation according to (13.22) is applied using a constant voltage amplitude vd and
a stepwise varying excitation frequency f = 1/T . Both a sweep-up (the excitation
frequency is incrementally increased) and a sweep-down (the excitation frequency
is incrementally decreased) are carried out using a step size of Δ f = 0.5 [Hz].
For each discrete value of f , the signals are saved during Ne = 150 excitation
periods. The data during the first Nt = 50 periods is not used to minimize transient
effects.

As explained before, the dynamic steady-state response of the beam is exper-
imentally characterized using the measured velocity signal V̇L/4(t) = v̇(t,L/4 −
Ub,dyn) and its corresponding displacement signal VL/4(t) = v(t,L/4 − Ub,dyn)

obtained by filtering and numerical integration of V̇L/4(t). The averaged peak-to-
peak amplitude of the steady-state velocity response is determined by

˜̇VL/4 =
1

Nm

Nm−1

∑
k=0

(

max
Tm

v̇(k)(t,L/4−Ub,dyn)−min
Tm

v̇(k)(t,L/4−Ub,dyn)

)

, (13.23)

where Tm = (Ne −Nt )T/Nm, T is the excitation period, Nm = 5 [-], and k refers
to the kth record. Averaging over Nm records is applied to cancel measure-
ment noise to some extent. Because Tm = 20, the peak-to-peak amplitude of a
1/20th subharmonic solution still can be estimated. In principle this is not possible
for subharmonic solutions with a period time longer than 20T and aperiodic
solutions.

Later on in this section, numerical steady-state results for the 1-MODE and
2-MODE models are obtained using the software package AUTO97 [3], which is
capable of: (1) calculating branches of periodic solutions of a nonlinear dynamic
system for a varying system parameter, (2) analyzing the local stability of these
branches using Floquet theory, and (3) detecting local bifurcations on these
branches. More theoretical background on these topics can be found in [14]. The
numerical peak-to-peak amplitude equivalent to the experimental quantity defined
in (13.23) is obtained as follows. In AUTO97, the equations of motion given by
(13.19) are programmed in first order form. This means that the periodic solutions
are available in state space, i.e. in terms of Q∗, see (13.17), and its first time
derivative. By substituting the first time derivatives Q̇i in the first time derivative
of (13.9), v̇(t,L/4) is obtained, from which directly the peak-to-peak value can be
derived.
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Fig. 13.3 Frequency-amplitude plot with vd = 0.03 [V] and mt = 0.51 [kg] (experimental versus
semi-analytical results based on 1-MODE model)

13.4.1 Steady-State Responses for the 1-MODE Model

In Fig. 13.3, the experimentally obtained frequency-amplitude plot in terms of ˜̇VL/4
[m/s] is depicted by means of black dots for vd = 0.03 [V] and mt = 0.51 [kg],
i.e. r0 = 0.135. Both frequency sweep-up and frequency sweep-down results are
plotted. In this figure, also the numerical steady-state response results are depicted
based on the semi-analytic 1-MODE model. Stable branches are indicated by solid
lines, unstable branches by dashed lines.

The identified parameter values are listed in the first column of Table 13.3.
The identified Young’s modulus E is a little bit lower than the theoretical value. The
eigenfrequencies and damping ratios of the 1-MODE model linearized around the
static equilibrium position are listed in the first column of Table 13.4. The lowest
eigenfrequency of the model ( f1) corresponds to the suspension mode of the shaker,
i.e. the mode shape is dominated by Ub. This mode is highly damped (although still
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Table 13.3 Identified parameter values
based on experimental results obtained
for vd = 0.03 [V] and mt = 0.51 [kg]

Parameters 1-MODE 2-MODE

e1 [-] 1.36 1.36
c1 [Ns/m] 0.0 0.0
cq,1 [kg/m] 0.20 0.2
e2 [-] – 0.04
c2 [Ns/m] – 0.04
cq,2 [kg/m] – 0.0
E [N/m2] 1.95 × 1011 1.95 × 1011

Table 13.4 Eigenfrequencies fi and damping
ratios ξi of linearized models with parameters
according to Table 13.3 and mt = 0.51 [kg]

1-MODE 2-MODE

f1 [Hz] 18.1 18.1
ξ1 [-] 0.489 0.489
f2 [Hz] 73.1 73.1
ξ2 [-] 0.001 0.001
f3 [Hz] – 215.8
ξ3 [-] – 0.007

undercritically damped). The second eigenfrequency of the model ( f2) corresponds
to the first bending mode of the beam, i.e. the mode shape is dominated by Q1. The
linear damping coefficient c1 is identified zero. Note that this does not result in a
zero damping ratio ξ2 for the first beam mode, see Table 13.4, since this mode has
some (linear) coupling with the heavily damped suspension mode of the shaker.

Next, the obtained steady-state responses as depicted in Fig. 13.3 are discussed in
detail. The focus is on the dynamics of the beam-top mass system. Therefore, only
excitation frequencies above 30 [Hz] are considered. The responses computed with
the semi-analytical model show a second superharmonic resonance at f ≈ f2/2,
a harmonic resonance at f ≈ f2, and a 1/2 subharmonic resonance (the latter
branch contains periodic solutions with period 2T ). The first two resonances are
caused by direct excitation, see the righthand side of (13.20). The 1/2 subharmonic
resonance is a parametric resonance, since it is caused by parametric excitation (in
the expression for the linear stiffness, a periodic time-dependent term is present), see
(13.20). This parametric resonance is initiated at two period doubling bifurcations
(indicated by two � symbols) near f = 2 f2. All three resonances are of softening
type due to the inertia nonlinearities and are qualitatively similar as found for the
case of harmonic base-acceleration, which is numerically investigated in [6]. Cyclic
fold bifurcations (indicated by o symbols) are found on all three resonance peaks.
Experimentally, large frequency hysteresis intervals can be observed between
58–68 [Hz] and 92–142 [Hz]. The numerically obtained bifurcation points mark
the boundaries for these frequency hysteresis intervals. At these bifurcation points,
in the experiments large sudden jumps in the peak-to-peak values occur during
the frequency sweep-up and the frequency sweep-down. Note that the frequency
hysteresis interval for the second superharmonic resonance near f ≈ f2/2 is very
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small because the frequencies, at which the two cyclic fold bifurcations occur,
are very close to each other. Therefore, sudden jumps are hardly noticeable.
The boundaries of the frequency hysteresis interval associated with the harmonic
resonance are marked by cyclic fold bifurcations at 58 [Hz] (a jump occurs to
the low amplitude branch in the sweep-down) and 68 [Hz] (a jump occurs to the
high amplitude branch in the sweep-up). The boundaries of the frequency hysteresis
interval associated with the 1/2 subharmonic (parametric) resonance are marked by
a cyclic fold bifurcation at 92 [Hz] (a jump occurs to the low amplitude branch in
the sweep-down) and a subcritical period doubling bifurcation at 142 [Hz] (a jump
occurs to the high amplitude branch in the sweep-up). Near the frequencies, where
jumps occur, sometimes intermediate experimental dots are visible, e.g. near 58 and
92 [Hz]. These arise from transient effects, i.e. for these frequencies 50 periods are
not enough to let the transient damp out related to the weakly damped first beam
mode.

During the parameter identification process it appeared that inclusion of quadratic
damping is essential to get good fit results, especially around the harmonic reso-
nance and the 1/2 subharmonic resonance. The beneficial influence of the quadratic
damping on the quality of the fit between numerical results and experimental results
is also observed in [2, 18]. In general, the experimental steady-state results are in
good correspondence with the semi-analytical results. However, some discrepancies
can be noted. First of all, the experimental results show a somewhat larger amplitude
in the peaks of the harmonic and the subharmonic resonance. Furthermore, in some
(small) frequency regions, the experimentally obtained frequency-amplitude plots
show small peaks and/or small jumps, which are not present in the semi-analytical
results. Two of these peaks/jumps can be clearly observed near the top of the
harmonic resonance ( f ≈ 60 [Hz]) and on the subharmonic resonance branch near
f = 120 [Hz], see enlargements A and B in Fig. 13.3. Figure 13.4 shows projections
of the experimental response on the phase plane spanned by VL/4(t) and V̇L/4(t)
and the corresponding Poincaré mappings, i.e. period T sampled values of VL/4

plotted against period T sampled values of V̇L/4, close to these two jumps. At f = 58
[Hz], at the left side of the jump, see enlargement A in Fig. 13.3, the Poincaré map
shows a single dot, indicating a harmonic response. However, at f = 60 [Hz], at the
right side of the jump, see enlargement A in Fig. 13.3, the Poincaré map shows two
dots, indicating a 1/2 subharmonic response. Similarly, for the scenario depicted in
enlargement B in Fig. 13.3, for f = 117 [Hz] the response is 1/2 subharmonic and
for f = 119 [Hz] the response has become 1/4 subharmonic.

13.4.2 Steady-State Responses for the 2-MODE Model

To examine if the experimentally observed period doubling behavior presented in
Fig. 13.4 and the related small peaks/jumps in enlargements A and B of Fig. 13.3
are due to nonlinear interaction with the second beam mode v2, a semi-analytical
model with two beam modes (the 2-MODE model) is derived, see Sect. 13.2. For
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Fig. 13.4 Phase-plane projections and Poincaré mappings for four experimentally obtained
responses for beam 2 with vd = 0.03 [V] and mt = 0.51 [kg]

the 2-MODE model, the identified parameter values are listed in the last column
of Table 13.3 and the eigenfrequencies and damping ratios linearized around the
static equilibrium position are listed in the last column of Table 13.4. A very
small geometric imperfection related to the second bending mode of the beam
is identified: e2 = 0.04 [-]. In the parameter identification for the second mode,
no quadratic damping is found, i.e. cq,2 = 0 [kg/m]. In Fig. 13.5, the steady-state
response predicted by the 2-MODE model is compared with the experimental results
obtained for vd = 0.03 [V] and mt = 0.51 [kg] (same values as used in Fig. 13.3).
The experimental results in Fig. 13.3 and Fig. 13.5 are obviously identical. As can
be noted in Fig. 13.5, inclusion of the second beam mode in the model instigates
a second harmonic resonance with softening around f = 215 [Hz]. This second
harmonic resonance is observed at a slightly lower frequency in the experimental
results. Furthermore, and in correspondence with the experimental results, in the
semi-analytical results for the 2-MODE model at the 1/2 subharmonic branch near
f = 123 [Hz], two period doubling bifurcations are observed (indicated by two �
symbols), resulting in a branch with 1/4 subharmonic responses, see enlargement
B in Fig. 13.5. Note that for clarity no experimental results are shown in the
enlargements. The 1/4 subharmonic branch exhibits three cyclic fold bifurcations
(indicated by o symbols) resulting in two (separate) stable parts of the branch. Due
to its complexity, this branch cannot be easily compared with the experimental
results in this region, see the experimental results in enlargement B of Fig. 13.3
(here, only results for the frequency sweep-down are shown). Nevertheless, it can



282 R.H.B. Fey et al.

Fig. 13.5 Frequency-amplitude plot with vd = 0.03 [V] and mt = 0.51 [kg] (experimental versus
semi-analytical results based on 2-MODE model)

be noted that for the semi-analytical results, the 1/4 subharmonic response continues
to a lower excitation frequency as observed experimentally. A similar phenomenon
occurs near the top of the first harmonic resonance. Again, in correspondence with
the experimental results, near f = 61 [Hz] two nearly coinciding period doubling
bifurcations occur (again indicated by two � symbols), from which now a 1/2
subharmonic branch bifurcates.

Furthermore, in the semi-analytical results near f = 72 ≈ f3/3 [Hz], see
enlargement A in Fig. 13.5, a small 3rd superharmonic resonance can be distin-
guished, which is related to the second beam mode with eigenfrequency f3, see
the last column of Table 13.4. This superharmonic resonance cannot be seen in
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the experimental results. However, the frequency interval, in which this resonance
occurs, is so small, that it is possibly missed in the frequency sweep due to a too
coarse frequency step. Subsequently, a very small 2nd superharmonic resonance
related to the second beam mode can be observed near f = 108 ≈ f3/2 [Hz], both
on the high amplitude 1/2 subharmonic branch and on the low-amplitude harmonic
branch. This resonance can be seen more clearly in the semi-analytical response
than in the experimental response. Finally, a very small resonance can be seen on
the 1/2 subharmonic branch near f = 144≈ 2 f3/3 [Hz]. Two cyclic fold bifurcations
associated with this resonance are indicated by o symbols. Also here, this resonance
can be seen more clearly in the semi-analytical response than in the experimental
response.

For further validation, power spectral densities (PSDs) of the experimentally
and semi-analytically obtained transversal velocities, i.e. V̇L/4(t) and v̇(t,L/4), are
compared. First, this is carried out for the 1/2 subharmonic solution at an excitation
frequency of f = 60 [Hz]. Both the experimentally and the semi-analytically
obtained PSDs (obviously with a base frequency of 30 [Hz]) show dominating
contributions of two frequency components, namely 60 [Hz] and 210 [Hz], indi-
cating a two-to-seven combination resonance of the first and second beam mode.
Subsequently, the comparison is carried out for the 1/4 subharmonic solution at an
excitation frequency of f = 119 [Hz]. In this case, both the experimentally and the
semi-analytically obtained PSDs (obviously with a base frequency of 29.75 [Hz])
again show dominating contributions of two frequency components, namely 59.5
[Hz] and 208.25 [Hz]. Again this indicates a two-to-seven combination resonance
of the first and second beam mode. A two-to-seven internal resonance between the
first two beam bending modes has also been observed experimentally in [12].

In conclusion, the 2-MODE model can qualitatively explain the experimentally
observed small extra resonances/jumps and period doubling behavior near the top
of the first harmonic resonance and on the 1/2 subharmonic branch. For a better
quantitative match of these (and other) dynamic response details, the damping and
imperfection parameters of the model may need to be further refined and, possibly,
also more beam modes must be included in the model. Moreover, more detailed
experiments based on smaller frequency sweep increments Δ f may be necessary for
(improved) identification of the (additional) damping and imperfection parameters.
This, however, is considered to be out of the scope of this work. Nevertheless, it
has been illustrated that, using a semi-analytical approach, the steady-state dynamic
response can be studied in detail.

13.5 Conclusions

In this chapter, the dynamic stability of a slender beam carrying a top mass has been
investigated. The weight of the top mass is well below the static buckling load. The
beam is dynamically excited at its base by means of an amplifier-shaker system with
a harmonic input voltage.
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A semi-analytical model has been derived for a base-excited slender beam
carrying a top mass. The beam has been assumed to be inextensible. The nonlinear
inextensibility constraint as well as the nonlinear expression for the curvature of the
beam have been approximated by third order Taylor series expansions. In the model,
geometrical imperfections of the beam have been taken into account. Furthermore,
the beam model includes linear as well as quadratic viscous damping forces. This
structural model has been extended by coupling it to a linear model of the shaker
(with amplifier). The resulting low-dimensional coupled model has been combined
with numerical tools for efficient calculation of periodic solution branches of the
system and their local stability, and for detection of bifurcation points.

An experimental set-up has been built and used to validate the numerically
obtained steady-state responses. In the experiments, frequency sweep-up and sweep-
down excitation has been performed via the harmonic input voltage. Shaker and
amplifier parameters have been identified experimentally for the bare amplifier-
shaker system. Damping and imperfection parameters of the semi-analytical model
have been identified by using a least-squares method, which fits numerically
obtained periodic solutions as good as possible to experimentally obtained periodic
solutions.

Frequency-amplitude curves have been calculated for both one-mode and two-
mode models of the beam. For the one-mode model, already a good match between
numerical and experimental steady-state responses is obtained. The main resonances
being a parametric 1/2 subharmonic resonance, a harmonic resonance, and a second
superharmonic resonance (all related to the first beam mode) are predicted well.
Also the frequencies, at which (period doubling and cyclic fold) bifurcations are
calculated, correspond well with the frequencies, at which experimentally sudden
jumps in the response amplitude are observed during the frequency sweep-up and
sweep-down. The two-mode model shows some additional resonances. Next to the
(expected) second harmonic resonance also some smaller resonances (and extra
bifurcations associated with these resonances) occur in the low-frequency range.
Some of these resonances can be identified as combination resonances of the two
beam modes. These additional resonances are also found in the experiments.

The results presented in this chapter in principle only refer to the coupled shaker-
beam system and thus depend on the particular shaker used. However, the nonlinear
resonance phenomena presented in the current chapter still occur if the bottom of
the beam is harmonically excited with constant amplitude. This is demonstrated by
simulations in [6]. To some extent, this is not really a surprise, since the shaker
dynamics are linear. Moreover, the resonance frequency (at 18.1 Hz) of the mode,
where the shaker vibration dominates, is clearly below the interesting frequency
range for the beam carrying the top mass (30–160 Hz). One could say that the shaker
is “designed” in such a way, that its dynamics do not qualitatively alter the dynamics
of the beam carrying the top mass with harmonic base excitation.
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Chapter 14
A Study of the Onset and Stabilization
of Parametric Roll by Using
an Electro-Mechanical Device

Jonatan Peña-Ramı́rez and Henk Nijmeijer

14.1 Introduction

Maritime industry plays a major role in our life and in the economy of the
world. Most of the merchandize and goods like electronics, cars, food, clothes,
are transported from producers to end consumers by ship containers from one
end of the world to the other end. Over the last decades, shipping industry has
experienced a continuous growing both in their fleets and in the total trade volume.
As a consequence of this growing, it has been necessary the design of new ships
and vessels capable of transporting as much as possible of products. This is the
reason why nowadays ships are designed using cutting edge technology in order to
find an optimal design looking mainly at economic aspects. For instance, modern
container ships hulls feature a bow flare and stern overhang in combination with a
flow-optimized geometry below the water line. This design is twofold: at one hand
it provides maximum space for container storage and at the other hand it provides
a minimal water resistance. However, modern designs of vessels and ships seem to
be prone to a phenomenon called parametric roll.

Parametric roll is an undesired phenomenon because it may produce cargo da-
mage, delay or even suspension of the activities performed by the crew, seasickness
in passengers and crew and in the limit case it can lead to the capsizing of the ship
[13]. It has been suggested (c.f. [5]) that the onset of parametric roll is due to the
occurrence of the following conditions: the ship is sailing in head seas, the natural
period of roll is approximately twice the wave encounter period, the roll damping is
low, the wave height exceeds a critical level and the wavelength is close to the ship
length.
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Probably, the earliest studies about this phenomenon are due to William Froude
(1810–1879), who in 1857 started a serious research in order to find the causes and
conditions that lead to parametric roll resonance. It was the time when the Great
Eastern, a ship that was so big in comparison with the size of any other ship, was
under construction. The designer, I. K. Brunel was concerned because he thought
that the ship could behave in an unexpected manner. Brunel then asked Froude to
start a theoretical study on parametric roll. One of Froude’s early discoveries was
that the roll angle can increase rapidly when the period of the ship is in resonance
with the period of wave encounter. He also came to the conclusion that the roll
motion is not produced by the waves hitting the side of the hull, but rather because
of the pressure of the waves acting on the hull. Although Froude made several
simplifications in his analysis because of the intractable mathematics, his research
ended with a theory of rolling in waves and its stabilization by the introduction of
bilge keels (c.f. [3, 13], and the references therein).

Because modern ships still experience dangerous roll motions, it continues being
a hot topic not only in the research field but also in the maritime industry. We
mention two incidents, where millions of dollars were lost. In 1998, a post-Panamax
C11 class container was caught by a violent storm and experienced parametric roll
with roll angles close to 40◦. As a consequence one-third of the on-deck containers
were lost overboard and a similar amount were severely damaged [5]. More recently,
in January 2003, another Panamax container vessel encountered a storm in the North
Atlantic. It was reported that the ship experienced violent rolling with angles close
to 47◦. As a result, 133 containers were lost overboard and other 50 presented severe
damage [4].

So far, several models of different sophistication have been proposed by the
researchers in order to analyze the dynamical behavior of a ship in a seaway. In
particular, there are models that have been developed for the study of parametric
roll, for instance, we mention the simplified nonlinear models presented in [8, 12],
where three DOF are considered (heave, pitch, and roll). Furthermore, some authors
have derived their models by using an analogy of the ship motions to a mechanical
system [10, 16]. Besides the development of models there is the issue of finding
stabilization techniques in order to cope with parametric roll phenomenon. Hence,
in the literature we can find different stabilization techniques as for example, the
use of bilge keels [10], passive and active U-tanks [1, 7], rudders [2] and fins
stabilizers [6].

In this work, we present an experimental study of parametric roll occurring in a
container ship. As a “towing tank” we use an electro-mechanical platform consis-
ting of two (controllable) mass-spring-damper oscillators mounted on an elastically
supported (controllable) beam. The stiffness and damping in the system have been
identified experimentally and the state vector is reconstructed by using the position
measurements. Then, via computer controlled feedback, the dynamical properties
of the system are modified by canceling the inherent dynamics of the setup and
enforcing the dynamics of a 3-DOF (heave, pitch, and roll) container ship. The
heave and pitch motions are represented by the displacement of the oscillators and
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the supporting beam is used to mimic the roll motion. Additionally, the experimental
setup is masked with the dynamics of a mechanical system consisting of two masses
restrained by elastic springs and supporting two identical pendula. Such model was
developed to simulate heave-pitch-roll motion of a ship in longitudinal waves.

At the end of the day, we want to show that our experimental setup is suitable for
the experimental analysis of parametric roll and that can facilitate the understanding
of ship dynamics. Actually, we want to show that the setup can be seen as a testbed
for controllers ad hoc designed to stabilize the roll motion.

The rest of the manuscript is organized as follows. In Sect. 14.2 we describe in
detail the experimental setup. Then, in Sect. 14.3 we present experimental results
related to the onset and stabilization of parametric roll in a container ship. Next, in
Sect. 14.4 we conduct an experimental analysis of the dynamics corresponding to a
mechanical system developed to simulate the most general case of heave-pitch-roll
motion in a vessel. Finally, in Sect. 14.5 we draw some conclusions.

14.2 The Experimental Setup

In this section, we describe the electro-mechanical device depicted in Fig. 14.1
which has been used for the experiments. It consists of two oscillators mounted
on an elastically supported beam. The system has three DOF corresponding to the
axial displacement of the oscillators and the beam. Moreover, each DOF is equipped
with a voice coil actuator and with a linear variable differential transformer position

Fig. 14.1 Photo of the experimental setup at Eindhoven University of Technology
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Fig. 14.2 Schematic model of the setup

sensor. The maximum stroke of the oscillators and the beam is approximately 6 mm.
and the position sensors are calibrated such that 1 [V] = 5 [mm]. In the other hand,
the actuators have a limited input of ± 0.42 [V].

The experimental setup is schematically depicted in Fig. 14.2. The masses
corresponding to the oscillators are given by mi ∈ R

+ (i = 1,2) and the mass
of the supporting beam is denoted by m3 ∈ R

+. This mass may be varied by
a factor 10. The stiffness and damping characteristics present in the system are
assumed to be linear with constants coefficients κi,βi ∈ R

+ respectively. However,
the experimental setup allows modeling of different types of springs (for instance,
linear or cubic) and any other desired effect within the physical limitations of the
setup. The electric actuator force for subsystem i (i= 1 . . .3) is denoted as ui. Finally,
xi ∈ R (i = 1,2,3) are the displacements of the oscillators and the supporting beam
respectively.

Using Newton’s 2nd law, it follows that the idealized – i.e. assuming that no
friction is present – equations of motion of the system of Fig. 14.2 are

m1ẍ1 = −κ1(x1 − x3)−β1(ẋ1 − ẋ3)+ u1,

m2ẍ2 = −κ2(x2 − x3)−β2(ẋ2 − ẋ3)+ u2,

m3ẍ3 =
2

∑
i=1

[κi(xi − x3)+βi(ẋi − ẋ3)− ui]−κ3x3 −β3ẋ3 + u3. (14.1)

For convenience, system (14.1) is written in the following manner

ẍ1 = −ω2
1 (x1 − x3)− 2ζ1ω1(ẋ1 − ẋ3)+

1
m1

u1,

ẍ2 = −ω2
2 (x2 − x3)− 2ζ2ω2(ẋ2 − ẋ3)+

1
m2

u2,

ẍ3 =
2

∑
i=1

μi

[

ω2
i (xi − x3)+ 2ζiωi(ẋi − ẋ3)− 1

mi
ui

]

−ω2
3 x3 − 2ζ3ω3ẋ3 +

1
m3

u3,

(14.2)
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Table 14.1 Parameters values for the experimental setup according
to model (14.2)

Oscillator 1 Oscillator 2 Supporting platform

ωi [rad s−1] 12.5521 14.0337 9.7369
ζi [−] 0.3362 0.4226 0.0409
mi [kg] 0.198 0.210 4.1

where ωi =
√

κi
mi

[rad s−1], ζi =
βi

2ωimi
[−] are the angular eigenfrequency and

dimensionless damping coefficient present in subsystem i (i = 1,2,3), the coupling
strength is denoted by μi =

mi
m3

(i = 1,2). After a suitable parametric identification
of model (14.2) the parameters presented in Table 14.1 were obtained (see [14]).

The potential of this experimental setup to perform experiments on several
dynamical systems relies on the fact that the properties of the system can be adjusted
or modified by a suitable design of the control inputs ui. These inputs are generated
as follows: a data acquisition system reads data from the sensors and forwards the
converted data to a computer. In the computer the state vector is reconstructed by an
observer [15] and the reconstructed state vector is used to construct the new desired
dynamics. With this data, the output ui is generated, it consists of a feed forward
part (to cancel the original dynamics) plus compensation terms plus the desired
dynamics. Then, it is clear that by means of state feedback, the original dynamics
are masked with the dynamics that we want. For example, in [14] the setup is used
for experimentally testing synchronization of coupled oscillators.

By means of two experiments we show the capabilities of the experimental setup
to conduct experiments on parametric roll. As a first example we implement the
dynamics of a 3-DOF nonlinear container ship model navigating in head seas and as
a second example the dynamics of a mechanical model for simulating heave-pitch-
roll motion of a ship in longitudinal waves.

In both cases, a controller is implemented in order to stabilize the parametric roll
resonance condition. Since the experimental setup is fully actuated, the choice of
the controller is arbitrary and therefore many controllers can be implemented and
tested in the setup.

14.3 Case 1: A High-Fidelity 3-DOF Nonlinear Container
Ship Model

A ship can be seen as a rigid body that can be modeled as a 6-DOF system. Three
of these DOF, named surge, sway, and yaw, correspond to unrestored motions in the
horizontal plane while the other three DOF named heave, pitch, and roll, correspond
to oscillating motions in the vertical plane. However, some simplifications can be
done in the model, depending on the desired analysis. For instance, for the study of
parametric roll, some authors [8, 9, 12, 17] agree in the fact that a 3rd order model
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(considering heave, pitch, and roll) is enough to study the phenomenon, since the
restoring forces that may produce resonance on the ship roll motion only act when
the ship is subjected to motions in the vertical plane.

In this section, the dynamical behavior of the experimental setup presented in the
previous section is modified in order to mimic the dynamics of a nonlinear container
ship model developed in [8]. Additionally, we implement a control strategy for the
stabilization of the roll motion. Such control law is presented in [6] and is based in
a combined speed and fin stabilizer control.

14.3.1 The Model and Its Implementation in the Setup

Consider the following nonlinear container ship model

s̈ = (M+A)−1
(

cext(ζ , ζ̇ , ζ̈ )−B(φ̇)ṡ− cres(s,ζ )
)
, (14.3)

where

s(t) = [z(t) φ(t) θ (t)]T (14.4)

is the generalized vector which contains the three restoring degrees of freedom,
heave, roll, and pitch, respectively. M ∈ R

3×3 is the generalized mass matrix,
A ∈ R

3×3 describes the hydrodynamic added mass matrix and B ∈ R
3×3 represents

the hydrodynamic damping matrix. cres ∈ R
3×1 contains the nonlinear restoring

forces and moments dependent on the relative motions between ship hull and wave
elevation ζ (t). Finally, the generalized vector cext ∈ R

3×1 contains the external
forces exerted by the waves. These forces are depending on weave heading,
encounter frequency, wave amplitude, and time. For the derivation of the model,
as well as for definitions and expressions for M, A, B, cres, and cext, the reader is
referred to [8, 12].

Indeed, system (14.3) has the following structure

⎡

⎣
z̈
φ̈
θ̈

⎤

⎦=

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦

︸ ︷︷ ︸
(M+A)−1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎣
cextz

cextφ
cextθ

⎤

⎦

︸ ︷︷ ︸

cext(ζ ,ζ̇ ,ζ̈ )

−
⎡

⎣
cresz

cresφ
cresθ

⎤

⎦

︸ ︷︷ ︸
cres(z,φ ,θ ,ζ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

−
⎡

⎣
c11 c12 c13

c21 c22 c23

c31 c32 c33

⎤

⎦

︸ ︷︷ ︸
(M+A)−1B

⎡

⎣
ż
φ̇
θ̇

⎤

⎦ . (14.5)

For convenience, we rewrite (14.5) as

z̈ = Fz(z,φ ,θ ,ζ , ζ̇ , ζ̈ )− c11ż− c12φ̇ − c13θ̇ , (14.6)

φ̈ = Fφ (z,φ ,θ ,ζ , ζ̇ , ζ̈ )− c21ż− c22φ̇ − c23θ̇ , (14.7)

θ̈ = Fθ (z,φ ,θ ,ζ , ζ̇ , ζ̈ )− c31ż− c32φ̇ − c33θ̇ , (14.8)
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where Fz(·) = a11cextz + a12cextφ + a13cextθ − a11cresz − a12cresφ − a13cresθ . Expre-
ssions for Fφ and Fθ can be derived from (14.5).

As we mention before, the experimental setup not only allows for the imple-
mentation of other dynamics (like the dynamics of a ship) but also a wide variety of
controllers can be implemented and validated within the physical limits of the setup.
Hence, a controller is incorporated in order to stabilize the parametric roll resonance
condition occurring in system (14.6)–(14.8).

For the time being, we use the controller presented in [6]. This controller has two
objectives: to avoid that the encounter frequency approaches twice the roll natural
frequency ωφ , and to increase the damping in roll.

Since in deep water, the encounter frequency (c.f. [11]) is given by

ωe = ω − ω2

g
U cos(μ), (14.9)

where ω is the wave frequency, U is the forward velocity of the ship and μ is the
heading angle. Then, it is clear that the first objective is achieved by varying the
forward velocity of the vessel. Different to [6], we do not generate the velocity in a
dynamical way; rather we consider that the velocity is given by a setpoint that can be
increased/decreased with a prescribed acceleration/deceleration rate. The setpoint is
changed whenever the roll angle achieves a certain threshold. In this way, we do not
need to increase the model to a 4th order model.

The second objective is achieved by including fin stabilizers. The hydraulic
machinery, that generates the fin-induced roll moment τφ is modeled as follows
(see [6])

τ̇φ =
1
tr

τmaxsat

(
τc

τmax

)

− 1
tr

τφ , (14.10)

where τmax is the maximum moment that can be provided by the fins, τc is the
moment generated by the controller and is given in [6]. The time constant tr corres-
ponds to the time constant of the hydraulic machinery.

Consequently, it follows from (14.6)–(14.8) and (14.10) that the simplified
nonlinear ship container model with fin stabilizer control is given by

z̈ = Fz(z,φ ,θ ,ζ , ζ̇ , ζ̈ )− c11ż− c12φ̇ − c13θ̇ , (14.11)

φ̈ = Fφ (z,φ ,θ ,ζ , ζ̇ , ζ̈ )+ τφ − c21ż− c22φ̇ − c23θ̇ , (14.12)

θ̈ = Fθ (z,φ ,θ ,ζ , ζ̇ , ζ̈ )− c31ż− c32φ̇ − c33θ̇ . (14.13)

The experimental setup depicted in Fig. 14.1 can be adjusted to mimic the
container ship dynamics (14.11)–(14.13). First, we make an analogy between the
electro-mechanical experimental setup and the heave, roll, and pitch motion of
the ship. In other experiments (related with synchronization), we have found that
under some circumstances, the oscillators can be in an oscillating state while the
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beam is at rest. Therefore, the following choice seems to be logic: displacement of
oscillator 1 will correspond to heave displacement, displacement of oscillator 2 will
represent the rotation angle in pitch and the supporting beam will denote the rotation
angle in roll.

Next, the virtual coordinate system s = [z φ θ ]T is obtained by choosing the
appropriate coordinate transformation. Since in the experimental setup all the
displacements are translational, the coordinate transformation should be chosen
such that translational displacements are mapped to rotation angles. Then, we write:

⎡

⎣
z
φ
θ

⎤

⎦=

⎡

⎢
⎢
⎣

1
x∗1

0 0

0 0 γ1
x∗3

0 γ2
x∗2

0

⎤

⎥
⎥
⎦

⎡

⎣
x1

x2

x3

⎤

⎦ , (14.14)

where x∗i , i = 1,2, are the maximal displacements of the oscillators and x∗3 is the
maximal displacement of the supporting beam. In the sequel, these values are taken
to be x∗1 = x∗2 = x∗3 = 5 [mm]. This mapping assures rotation angles of ±γi [rad].

In order to complete the adjustment of the experimental setup we choose the
actuator forces as follows

u1 = m1
(
ω2

1 Δx1 + 2ζ1ω1Δ̇x1 +Fz(·)− c11ż− c12φ̇ − c13θ̇
)
, (14.15)

u2 = m2
(
ω2

2 Δx2 + 2ζ2ω2Δ̇x2 +Fθ (·)− c31ż− c32φ̇ − c33θ̇
)
, (14.16)

u3 = m3
(
ω2

3 x3 − 2ζ3ω3ẋ3 + μ1
(
Fz(·)− c11ż− c12φ̇ − c13θ̇

)

+μ2
(
Fθ (·)− c31ż− c32φ̇ − c33θ̇

)
+Fφ (·)

+τφ − c21ż− c22φ̇ − c23θ̇
)
, (14.17)

where Δxi = (xi − x3), Δ̇xi = (ẋi − ẋ3).
In closed loop, the dynamics of system (14.2) with controllers (14.15)–(14.17)

coincides with dynamics (14.11)–(14.13). Therefore, the electro-mechanical expe-
rimental setup has been “converted” into a container ship.

14.3.2 Experimental and Numerical Analysis

In order to demonstrate that the experimental setup can actually mimic the dy-
namical behavior of a ship, in particular the onset and stabilization of parametric
roll, we present two experiments: one corresponding to the uncontrolled case,
where oscillations in roll appear and the other one corresponding to the controlled
case, where parametric roll is stabilized. Indeed, the second experiment shows the
capability of the setup to test and validate controllers that have been designed to
cope with the problem of parametric roll.
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Fig. 14.3 Onset of parametric roll. Solid line: experiment, dotted line: simulation

For the first experiment, we consider system (14.11)–(14.13) with parameters
listed in [8]. Such parameters correspond with a 1 : 45 scale model ship. Further-
more, the following experimental conditions are assumed: wave amplitude Aω = 2.5
[m], wave frequency ω = 0.4640 [rad/s], encounter angle μ = 180◦, and encounter
frequency, we = 0.5842 [rad/s]. For this experiment the forward velocity of the ship
is taken to be 5.4806 [m/s]. Note that the forward velocity of the ship is directly
related with the surge motion of the ship and therefore it cannot be related to the
velocity of the experimental setup, where heave, pitch, and roll motions are being
reproduced by the oscillators and the beam respectively. In this analysis, the forward
velocity is considered as a control parameter given by a setpoint implemented in
software and its changes are reflected in adjustments in the value of the encounter
frequency (see (14.9)). Ultimately, this is reflected in changes in the dynamical
behavior of system (14.11)–(14.13).

The initial conditions for the oscillators and the beam are as follows: x1(0) = 125
[μm], x2(0) = 0, x3(0) = 58.178 [μm], ẋ1 = ẋ2 = ẋ3 = 0. These initial conditions
are related to the initial conditions of system (14.11)–(14.13) by means of (14.14).
In this experiment, we want to investigate the onset of parametric roll, therefore the
control input τφ in (14.12) is taken to be zero.

Figure 14.3 shows the experimental (solid line) and numerical (dotted line)
results corresponding to heave, roll, and pitch. The onset of parametric roll becomes
immediately clear from the graph in the middle of Fig. 14.3 and after 400 s it
stabilizes with an amplitude of ±15◦. The figure also reveals that the experimental
results are in fair agreement with the simulation results. Indeed, in steady-state it is
hard to distinguish the difference.
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Fig. 14.4 Experimental result. Parametric roll is stabilized

In a second experiment, we implement controller (14.10) in order to stabilize
parametric roll. All the initial conditions and parameters are as in experiment one.
The controller is activated when the rotational angle in roll achieves a threshold
angle of 10◦. Furthermore, when controller (14.10) is activated, the forward velocity
of the vessel is increased 35% with an acceleration rate of 0.04 [m/s2]. This
increment in the forward velocity is also reflected in the value of the encounter
frequency, which is also increased from 0.5842 [rad/s] to 0.6263 [rad/s]. In the same
way, the value of the external wave forces and the values of the entries of the added
mass matrix and hydrodynamic damping matrix are updated. In our experiment,
the hydraulic machinery has been implemented in software and we have considered
a time constant tr = 1 [msec] since the data acquisition system of the setup has a
maximum sampling period of 1 [msec].

Initially, the controller is switched-off, but when the rotation angle in roll reaches
the threshold value φ = 10◦, the controller is switched-on and after the transient, the
oscillations in roll are “quenched” as depicted in Fig. 14.4.

For the mapping (14.14) we have used γ1 = 0.035 [rad], which assures a
maximal rotation in pitch of θ = ±2◦ and γ2 = 0.3 [rad], which yields a maximal
rotation in roll of φ = ±17◦. This mapping not only allows to convert translational
displacements to rotational angles but also yields the signals in a range that is
suitable for the experimental setup as can be seen in Fig. 14.5, where the inputs
ui (see equations (14.15)–(14.17)) are depicted. From this figure it is evident that
the inputs of the actuators are far from saturation, since the maximum voltage input
allowed by the actuators is ±0.42 [V].
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Fig. 14.5 Control inputs ui sent to the experimental setup

14.4 Case 2: Mechanical Model for Simulating
Heave-Pitch-Roll Motions

In this section, we investigate the onset of parametric roll by using the mechanical
model depicted in Fig. 14.6, which has been developed to simulate heave-pitch-roll
motions of a ship in longitudinal waves and it has been presented in [17]. As in
the previous case, we present experiments related to the uncontrolled and controlled
situations.

14.4.1 The Model and Its Implementation in the Setup

Consider the mechanical system depicted in Fig. 14.6. It consists of two masses
restrained by elastic springs and supporting two equal pendulums rigidly connected
by means of a weightless rod. Each mass is externally excited by a harmonic force.
These external forces have the same amplitude and frequency but there is a phase
lag between them. This phase shift is to include the delayed effects of the wave
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Fig. 14.6 Mechanical model for simulating heave-pitch-roll motion

propagating along the ship. This model was developed to simulate the heave-pitch-
roll motion of a ship in longitudinal waves. For more details about the model, the
reader is referred to [17].

The equations of motion for the system of Fig. 14.6 are:

(m1 +m)
(
z̈1 −αω2 cosω t

)
+ d1ż1 + k1z1 +ml

(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
= 0, (14.18)

(m2 +m)
(
z̈2 −αω2 cos(ω t−ψ)

)
+ d2ż2 + k2z2 +ml

(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
= 0,

(14.19)

1
2

ml
(
z̈1 −αω2 cosω t+ z̈2 −αω2 cos(ω t−ψ)

)
sinϕ

+ml2ϕ̈ + cϕ̇ +mgl sinϕ = τp, (14.20)

where τp is an external torque for the pendula. By defining the new time variable

τ =
√

g
l t, system (14.18)–(14.20) is rewritten in the following dimensionless form

(see [17])

ω
′′
1 +κ1ω

′
1 + q2

1ω1 + μm1

(
ϕ

′′
sinϕ +ϕ

′2 cosϕ
)
= aη2 cosητ , (14.21)

ω
′′
2 +κ2ω

′
2 + q2

2ω2 + μm2

(
ϕ

′′
sinϕ +ϕ

′2 cosϕ
)
= aη2 cos(ητ −ψ), (14.22)

1
2

[
ω

′′
1 − aη2 cosητ +ω

′′
2 − aη2 cos(ητ −ψ)

]
sinϕ +ϕ

′′
+κ0ϕ

′
+ sinϕ = τϕ ,

(14.23)

where ωi =
zi
l , κi =

di
ω0(mi+m) , q2

i =
ki

ω2
0 (mi+m)

, μmi =
m

(mi+m) for i= 1,2 and ω0 =
√

g
l ,

κ0 =
c

ω0ml2 , η = ω
ω0

, a = α
l and τϕ =

τp

ml2ω2
0

.
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It can be shown that this system (with τϕ = 0) has a steady-state solution which
has the property ∑2

i=1[ω2
i + ω̇2

i ] �= 0, ϕ = ϕ̇ = 0. This solution can become unstable
in certain intervals of the frequency of excitation, denoted as ω in (14.18)–(14.20).
When the solution becomes unstable, parametric roll resonance will appear (ϕ �= 0).

For the case where parametric roll resonance appears, it is necessary to stabilize
it. Then, we derive a controller by following the derivations presented in [6]. This
controller is designed by using backstepping. Note however that, at this stage, we
can adopt any controller for the experimental setup to be tested.

For the design of the control, we use the uncoupled equation for roll ((14.23)
with ω ′′

1 = ω ′′
2 = 0) and it follows that the control model verifies:

ϕ
′′
+κ0ϕ

′′
+ sinϕ +

1
2

[−aη2 cosητ − aη2 cos(ητ −ψ)
]

sinϕ = τϕ , (14.24)

τ̇ϕ +
1
tr

τϕ =
1
tr

τmaxsat

(
τc

τmax

)

, (14.25)

where tr is a time constant that coincides with the sampling period of the data
acquisition system of the experimental setup (1 msec), τmax is the maximum input
that can be delivered to the system and τc verifies

τc =−Q3z2 −Q2z1 −κ0Q1ϕ + sinϕ +Q2
1ϕ −Q2ż1tr, (14.26)

where z1 = ϕ̇ +Q1ϕ , z2 = τϕ +Q2z1 +κ0Q1ϕ − sinϕ −Q2
1ϕ , Q1 > 0, Q2 > (Q1 +

2γ −κ0), γ = aη2

2 , Q3 > 0.
After the derivation of the controller, the system (14.21)–(14.23) with controller

(14.25) is implemented in the experimental setup of Fig. 14.1. The analogy between
system of Fig. 14.6 and the setup of Fig. 14.1 is as follows: the vertical displacement
corresponding to mass 1 is represented by oscillator 1, the vertical displacement of
mass 2 is represented by oscillator 2 and the rotation angle of pendula is represented
by the supporting beam.

The next step is to obtain the virtual coordinate system s :=
[

ω1 ω2 ϕ
]T

. Then,
we use the transformation

⎡

⎣
ω1

ω2

ϕ

⎤

⎦=

⎡

⎢
⎢
⎣

ε1
x∗1

0 0

0 ε2
x∗2

0

0 0 α
x∗3

⎤

⎥
⎥
⎦

⎡

⎣
x1

x2

x3

⎤

⎦ , (14.27)

where x∗i has the same meaning as in (14.14). With this transformation, the
translational displacement of the supporting beam is mapped to rotation angle and
assures angles in roll of ±α [rad]. The constants εi > 0 are scaling factors used
in order to leave the signal corresponding to the vertical displacement of mass i
between suitable ranges for the setup.
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The adjustment continues by defining the actuator forces of the setup as follows:

u1 = m1

(
ω2

1 Δx1 + 2ζ1ω1Δ̇x1 +ω
′′
1

)
, (14.28)

u2 = m2

(
ω2

2 Δx2 + 2ζ2ω2Δ̇x2 +ω
′′
2

)
, (14.29)

u3 = m3

(
ω2

3 x3 + 2ζ3ω3ẋ3 + μ1ω
′′
1 + μ2ω

′′
2 +ϕ

′′)
(14.30)

with ω ′′
i , i = 1,2 and ϕ ′′

as given in (14.21)–(14.23). It is clear that the closed-loop
dynamics of the experimental setup coincides with the dimensionless dynamics of
the mechanical system depicted in Fig. 14.6.

14.4.2 Experimental and Simulation Results

Some experimental results are provided in order to show the capability of the ex-
perimental setup to mimic the dynamics of the mechanical model of Fig. 14.6 used
to simulate the heave-pitch-roll motion of a ship. The onset of parametric roll is
analyzed for the controlled and uncontrolled situations. We also analyze the effect
in the roll motion when the mass of the pendula (corresponding to the mass of the
supporting beam) is varied.

For the experiments, we consider model (14.21)–(14.23) with the following pa-
rameters: m = 8.1 [kg], m1 = m2 = 0.210 [kg], l = 9.81 [m], α = 0.5689 [-], ψ = π

8
[rad], g = 9.81 [m/s2], k1 = k2 = 8.0698 [N/s] d1 = d2 = 67.06 [Ns/m], c = 60
[Nms/rad], ω = 2 [rad/s].

In the first experiment, we investigate the occurrence of parametric roll reso-
nance. The initial conditions for the oscillators and the beam are as follows: x1(0) =
0.0011 [m], x2(0) = 0.001 [m], x3(0) = 0.00001 [m], ẋ1(0) = ẋ2(0) = ẋ3(0) = 0.
These initial conditions are related with the initial conditions of system (14.21)–
(14.23) by means of (14.27). In this experiment, parametric roll is not stabilized,
hence we consider τϕ = 0 in (14.23).

Figure 14.7 shows the time series for heave, pitch, and roll. The oscillations
in roll are slowly increasing until certain steady-state value (approximately 30◦)
as becomes evident from the graph at the bottom of the figure. The behavior in
heave and pitch motions is as expected, since the masses are excited with the
same amplitude and frequency but with a phase lag of π

8 [rad]. However, the
phase difference is a bit lower, in part, due to the “disturbance” produced by
the oscillations in roll, since we have verified in other experiments that when
parametric roll does not appear, the phase difference in heave and pitch is precisely
π
8 [rad]. The experimental and numerical results are fairly comparable and in
steady-state (around 350 s) the differences are negligible. The small differences
between experimental and numerical results observed in the transient are rather
quantitative than qualitative and the most probable cause is the slightly different
initial conditions and the natural damping present in the setup which is not perfectly
canceled.
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Fig. 14.7 Heave, pitch, and roll motions. Solid line: experimental results. Dotted line: simulation
results

In a second experiment, controller (14.25) is included in order to stabilize the
parametric roll resonance condition. The parameters of the controller are τmax =
0.01 [Nm], tr = 1 [msec], with gains Q1 = 5, Q2 = 10.155, and Q3 = 7. The
parameters for the model and the initial conditions are as in experiment one except
for x3(0) = 0.0002 and m = 6 [kg]. The controller is activated when the roll angle
achieves the threshold angle ϕ = 10◦. The experimental results are presented in
Fig. 14.8. From this figure it is possible to realize that parametric roll has been
stabilized. The control law τϕ has been implemented in software and is sent to the
setup by means of the data acquisition system. Finally, we present an experiment
in which one of the parameters of the system is varied during the experiment.
In [17] it has been shown that the stability threshold of the semi-trivial solution
∑2

i=1[ω2
i + ω̇2

i ] �= 0, ϕ , ϕ̇ = 0 is dependent on the parameters of the system. Indeed,
in experiments one and two, we have chosen the parameters such that the semi-
trivial solution is unstable (parametric roll occurs). However, we also find that by
considering m = 4.1 [kg] and with the same parameters as in experiment one, the
stability threshold is not violated and therefore no parametric roll appears. This is
illustrated experimentally. First, experiment one is repeated but with m = 4.1 [kg],
therefore no parametric roll occurs.
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Fig. 14.8 Parametric roll is stabilized
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Fig. 14.9 In this experiment parametric roll is triggered by varying the mass of the beam

At t=100 s, we add extra mass in the supporting beam. As a consequence, we
can observe resonance in the roll motion. At t ≈ 120 s, we remove the extra mass and
the resonance in roll disappears, as depicted in Fig. 14.9. Clearly, we can see that by
varying the mass of the supporting beam we can trigger the onset of parametric roll.
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14.5 Conclusions

We have presented an electro-mechanical setup which is capable of conducting
parametric roll experiments. The dynamical behavior of the system has been
modified such that we were able to mimic the dynamics of a simplified 3-DOF
nonlinear container ship model and the dynamics of a mechanical model which
simulates the heave-pitch-roll motion of a ship in a longitudinal sea. In both cases,
the oscillators are used to represent the heave and pitch motions and the supporting
beam is used to reproduce the roll motion. The experiments have been supported
by numerical results and are quite comparable with results that already have been
presented in the literature.

One of the advantages of this approach is the low implementation cost since for
the experiments we do not require additional equipment. The only requirement is a
computer and a data acquisition system. The rest is implemented in software. This
brings another advantage: in this setup it is possible to implement any external exci-
tation and hence, it is possible to create, for example, an excitation corresponding to
the waves of a rough sea or the situation in which the ship is navigating in random
seas. In the same way, it is possible to study the influence of specific parameters
in the onset of parametric roll, since we are able to change/update any parameter
at any time. Ultimately, this experimental testbed can be seen as an alternative for
the validation of models and mainly, for testing controllers ad hoc designed for the
stabilization of parametric roll, with the final aim of improving its performance in
real applications.

Acknowledgements The first author acknowledges the support of the Mexican Council for
Science and Technology (CONACYT).
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Chapter 15
Controlling Parametric Resonance: Induction
and Stabilization of Unstable Motions

Roberto Galeazzi and Kristin Y. Pettersen

15.1 Parametric Resonance: Threat or Advantage?

Parametric resonance is a well-known resonant phenomenon, which can determine
the instability of a system in response to small periodic variations of one of its
parameters. In the light of this simple description, the common sense suggests that
parametric resonance is a threat for any system where it can potentially onset. As
a matter of fact, if we restrain the analysis to marine structures and automotive
systems the former answer perfectly fits. For the last 12 years parametric roll
resonance on ships has been in focus of the maritime community as one of the
top stability related issues, and still it is. Several control strategies have been
proposed, which try to stabilize the large roll motion: backstepping controllers have
been designed to damp the resonant oscillations using, for example, active U-tanks
[5] or fin stabilizers [3]; an extremum seeking controller has been proposed to
detune the frequency synchronization by altering ship’s speed and/or course [2]. A
considerable effort has also been produced by the automotive research community,
in particular focusing on how periodic variations of the road profile can induce
unstable steering oscillations in motorcycles [8, 13].

However, if we look at a completely different class of systems it is possible to
find several applications where the onset of parametric resonance is an advantage.
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In micro-electromechanical systems parametric resonance phenomena are induced
in order to, for example, reduce the parasitic signal in capacitive sensing [16], or
to increase the sensitivity of mass sensors at the pico scale (10−12 g) [17],
or to increase robustness against parameter variations in micro-gyroscopes [12].
Analogous interests in capitalizing the large energy released by parametric resonant
oscillations to boost specific system features is also raising in the field of wave
energy exploitation. Here the idea is to induce parametric resonance in order to
increase the amount of energy producible by the converter [10, 11].

Therefore, by looking at the large variety of systems and possible applications
where parametric resonance may naturally occur or can be artificially induced, it
appears natural to investigate how active control strategies can be used in order
to either trigger the resonant phenomenon or to stabilize it. Starting from this
consideration, in this chapter the authors revisit some of the theory of parametric
resonance through the use of a mechanical equivalent, which can represent many of
the systems aforementioned, and they cast both the induction and the stabilization
of resonant oscillations as a tracking problem. An input–output feedback linearizing
controller is then designed and shown to be capable both of triggering parametric
resonance and stabilizing the unstable motion.

In particular, Sect. 15.2 introduces the mechanical system used in the analysis,
namely the pendulum with moving support, as a member of the class of autopara-
metric systems. Lagrangian description of the system’s dynamics is provided, and
the stability analysis of the open loop system is carried out. Section 15.3 formulates
the control problems, and it presents the design of the controller based on feedback
linearization theory. Section 15.4 illustrates the performance of the closed loop
system through simulation results. Section 15.5 draws some conclusions, and it
highlights possible future research paths.

15.2 Autoparametric Systems

Autoparametric systems consist of two or more vibrating components, which
interact in a nonlinear fashion [14]. The components are divided into the primary
system, which is usually in a vibrating state, and the secondary system, which is
usually at rest while the primary system is oscillating. This state is called semi-
trivial solution of the autoparametric system.

The excitation acts on the primary system under the form of external forcing, self-
excitation, parametric excitation, or a combination of those. Within certain intervals
of the excitation frequency the semi-trivial solution can become unstable, and the
system enters in autoparametric resonance. The vibrations of the primary system act
as parametric excitation on the secondary one, which will be no longer at rest.

Autoparametric systems in resonance condition can display different behaviors
including periodic, quasi-periodic, non-periodic, and also chaotic behaviors. More-
over, the occurrence of the resonance often goes along with saturation phenomena.
In particular, when the secondary system enters into parametric resonance it
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Fig. 15.1 Pendulum with
moving support. The
reference frame is
right-handed, therefore
positive rotations are
counterclockwise

functions as an energy absorber by draining energy from the external excitation
through the primary system. This entails a large increase of the amplitude of the
displacements of the secondary system whereas the oscillation’s amplitude of the
primary system is maintained as almost constant.

The energy absorbency of the secondary system can determine both undesirable
and desirable results. When parametric roll onsets on a ship, the roll motion becomes
the sink of the wave energy exciting the vessel, and the springing of violent roll
oscillations is definitely a troublesome outcome. Conversely if the resonance could
be induced in a wave energy converter, the capability of draining more energy out
of the wave motion will clearly be beneficial.

The difference between autoparametric resonance and parametric resonance
resides in the presence of a primary system driving the onset of the resonant
condition. For instance parametric roll on ships can be seen as either a parametric
resonance or an autoparametric resonance phenomenon depending on whether we
consider only the roll subsystem or we include the heave and/or pitch dynamics. In
the former case the parametric resonance origins as a results of the quasi-periodic
variations of the ship’s metacentric height, which is a parameter within the roll
dynamics; in the latter case are the oscillations in heave and/or pitch (primary
system), directly excited by the wave motion, which determine the onset of the
resonant behavior in roll.

15.2.1 Pendulum with Moving Support

A well-known autoparametric system is the pendulum with moving support, as that
represented in Fig. 15.1. The system consists of a pendulum, whose pivot point
is connected to a mass-spring-damper, which in turn is placed atop a cart. The
position of the pivot point can change both along the X and Y directions due to
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the vertical oscillation of the mass-spring-damper or to the horizontal displacement
of the cart. The mass-spring-damper together with the cart represent the primary
system, whereas the pendulum is the secondary system. The system is assumed
to be underactuated since no direct control action can be performed either on
the vertical motion of the mass-spring-damper or on the swinging motion of the
pendulum.

The mass-spring-damper is in a vibration state due to the action of an external
sinusoidal force; conversely the pendulum’s bob is not directly subject to any
force/moment apart from gravity, hence the secondary system is initially at rest.
In order to induce parametric resonance into the secondary system two conditions
must be fulfilled:

• The equilibrium position of the pendulum’s bob must be altered.
• The natural frequency of the pendulum must be approximately equal to half the

frequency of the external excitation.

Since the swinging of the pendulum cannot be directly actuated due to the absence
of a torque acting on the pivot point, the first requirement can be met by changing
the position of the cart, which will produce an inertia effect about the pivot point.
Considering that the natural frequency of a pendulum is a function of the length of
the pendulum’s rod, it is evident that in order to achieve the second requirement the
pendulum must have a variable length rod.

A four degrees-of-freedom model is first derived by applying Lagrange’s theory.
Then a stability analysis under the assumption of external sinusoidal excitation is
carried out to determine the stability conditions to be infringed in order to trigger
the resonant phenomenon.

15.2.1.1 Lagrangian Model

Consider a mass-spring-damper system of mass m1 oscillating under the action of
an external sinusoidal force Fy(t). A second mass m2 is attached to the bottom end
of a massless rod of variable length, whose pivot point is joint to the first mass m1.
The two masses are placed on top of a massless cart that is free to move along the
horizontal direction.

Said l0 the nominal length of the pendulum, the variable rod’s length is given by

l(t) = l0 + δl(t), ∀ t δl(t)>−l0,

where δl is the deviation from the nominal value. Then the vector of generalized
coordinates is defined as q � [xM,yM,θ ,δl ]

T, where (xM,yM) is the position of the
mass m1, and θ is the oscillation angle of the pendulum.

The equations of motion can be derived from Lagrange’s equations

d
dt

(
∂L (q, q̇)

∂ q̇

)

− ∂L (q, q̇)
∂q

= τ, (15.1)
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where
L (q, q̇) = T (q, q̇)−V (q) (15.2)

is the Lagrangian given by the difference between the kinetic energy T and the
potential energy V ; τ is the vector of the generalized forces that accounts for
unknown external forces (disturbances) τe and for control inputs τc

τ = τe + τc

=

⎡

⎢
⎢
⎣

0
Fe

y

0
0

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

Fc
x

0
0

Fc
δ

⎤

⎥
⎥
⎦ .

Given the position (xM,yM) of the mass m1, the position of the mass m2 at any
given instant in time is given by the vector (in the following the notation sθ and cθ
stands for sinθ and cosθ , respectively)

rP :

{
xP = xM +(l0 + δl)sθ
yP = yM − (l0 + δl)cθ

, (15.3)

and its velocity by the vector

vP :

{
ẋP = ẋM +(l0 + δl) θ̇cθ + δ̇lsθ
ẏP = ẏM +(l0 + δl) θ̇ sθ − δ̇lcθ

. (15.4)

The kinetic energy of the (m1,m2)-system is then given by

T (q, q̇) =
1
2

q̇TM(q) q̇

=
1
2

m1
(
ẋ2

M + ẏ2
M

)
+

1
2

m2
(
ẋ2

P + ẏ2
P

)

=
1
2
(m1 +m2)

(
ẋ2

M + ẏ2
M

)
+

1
2

m2

[
(l0 + δl)

2 θ̇ 2 + δ̇ 2
l

+ 2(l0 + δl)(ẋMcθ + ẏMsθ ) θ̇ + 2δ̇l (ẋMsθ − ẏMcθ )
]
, (15.5)

where M(q) is the mass-inertia matrix

M(q) =

⎡

⎢
⎢
⎣

m1 +m2 0 m2 (l0 + δl)cθ m2sθ
0 m1 +m2 m2 (l0 + δl)sθ −m2cθ

m2 (l0 + δl)cθ m2 (l0 + δl) sθ m2 (l0 + δl)
2 0

m2sθ −m2cθ 0 m2

⎤

⎥
⎥
⎦

M(q) = MT (q) ;
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whereas the potential energy reads

V (q) =
1
2

ky2
M +m2g(l0 + δl)(1− cθ) (15.6)

with k being the spring constant of the mass-spring-damper. The Lagrangian is
hence given by

L (q, q̇) =
1
2
(m1 +m2)

(
ẋ2

M + ẏ2
M

)
+

1
2

m2

[
(l0 + δl)

2 θ̇ 2 + δ̇ 2
l

+ 2(l0 + δl)(ẋMcθ + ẏMsθ ) θ̇ + 2δ̇l (ẋMsθ − ẏMcθ )
]
− 1

2
ky2

M

−m2g(l0 + δl)(1− cθ ) , (15.7)

which gives rise to the following equations of motion

(m1 +m2)ẍM + d1ẋM

+m2

[
(l0 + δl)θ̈cθ − (l0 + δl)θ̇ 2sθ + 2δ̇lθ̇cθ + δ̈lsθ

]
= Fc

x , (15.8)

(m1 +m2)ÿM + d2ẏM + ky

+m2

[
(l0 + δl)θ̈ sθ +(l0 + δl)θ̇ 2cθ + 2δ̇lθ̇ sθ − δ̈lcθ

]
= Fe

y , (15.9)

m2(l0 + δl)
2θ̈ + d3θ̇ +m2(l0 + δl)gsθ

+m2(l0 + δl)
[
ẍMcθ + ÿMsθ + 2δ̇lθ̇

]
= 0 (15.10)

m2δ̈l + d4δ̇l

−m2
[
(l0 + δl)θ̇ 2 + ẍMsθ − ÿMcθ + g(1− cθ)

]
= Fc

δ (15.11)

where linear damping terms diq̇i have been introduced. System (15.8)–(15.11) can
be rewritten in dimensionless form as

ẍ+ μ1ẋ+α
[
(1+ δ )

(
θ̈cθ − θ̇ 2sθ

)
+ 2δ̇ θ̇cθ + δ̈sθ

]
= Φc

x , (15.12)

ÿ+ μ2ẏ+ω2
y y+α

[
(1+ δ )

(
θ̈ sθ + θ̇ 2cθ

)
+ 2δ̇ θ̇ sθ − δ̈cθ

]
= Φe

y , (15.13)

θ̈ +
μ3

(1+ δ )2 θ̇ +
2

1+ δ
δ̇ θ̇ +

1
1+ δ

(
ω2

θ + ÿ
)

sθ +
1

1+ δ
ẍcθ = 0, (15.14)

δ̈ + μ4δ̇ − (1+ δ ) θ̇ 2 − ÿcθ + ẍsθ +ω2
θ (1− cθ ) = Φc

δ , (15.15)
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where

x =
xM

l0
, y =

yM

l0
, δ =

δl

l0

and the parameters are given by

α =
m2

m1 +m2
, ω2

θ =
g
l0

, ω2
y =

k
m1 +m2

,

μ1 =
d1

m1 +m2
, μ2 =

d2

m1 +m2
, μ3 =

d3

m2l2
0

, μ4 =
d4

m2l0
,

Φc
x =

Fc
x

(m1 +m2) l0
, Φe

y =
Fe

y

(m1 +m2) l0
, Φc

δ =
Fc

δ
m2l0

.

By means of matrix notation the following compact form can be achieved (the
symbol ˜ denotes non-dimensional quantities)

M̃(q̃) ¨̃q+ D̃ ˙̃q+ C̃
(
q̃, ˙̃q

)
˙̃q+ g̃(q̃) = τ̃, (15.16)

where q̃ = [x,y,θ ,δ ]T, and τ̃ =
[
Φc

x ,Φe
y ,0,Φc

δ
]T

. M̃(q̃) is the scaled mass-inertia
matrix

M̃(q̃) =

⎡

⎢
⎢
⎢
⎣

1 0 α (1+ δ )cθ αsθ

0 1 α (1+ δ )sθ −αcθ

(1+ δ )cθ (1+ δ )sθ (1+ δ )2 0

sθ −cθ 0 1

⎤

⎥
⎥
⎥
⎦
,

D̃ is the viscous damping matrix

D̃ =

⎡

⎢
⎢
⎢
⎣

μ1 0 0 0

0 μ2 0 0

0 0 μ3 0

0 0 0 μ4

⎤

⎥
⎥
⎥
⎦
, D̃ > 0,

C̃
(
q̃, ˙̃q

)
is the Coriolis-centripetal matrix

C̃
(
q̃, ˙̃q

)
=

⎡

⎢
⎢
⎢
⎢
⎣

0 0 −α
(
(1+ δ ) θ̇ sθ − δ̇cθ

)
αθ̇cθ

0 0 α
(
(1+ δ ) θ̇cθ + δ̇sθ

)
αθ̇ sθ

0 0 (1+ δ ) δ̇ (1+ δ ) θ̇
0 0 −(1+ δ ) θ̇ 0

⎤

⎥
⎥
⎥
⎥
⎦
,
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and g̃(q̃) is the vector of gravitational-restoring forces and moments

g̃(q̃) =

⎡

⎢
⎢
⎣

0
ω2

y y
(1+ δ )ω2

θ sθ
ω2

θ (1− cθ)

⎤

⎥
⎥
⎦ .

15.2.2 Stability Analysis

In this section, a stability analysis under the assumption of external sinusoidal
excitation is carried out, to determine the conditions to be infringed in order to
trigger the resonant phenomenon.

Consider the mass-spring-damper (15.13) driven by Φe
y = Φ0 cosωet, and no

control action is performed, that is Φc
x = Φc

δ = 0. Then the semi-trivial solution
of the system (15.12)–(15.15) is given by

x(t) = 0, (15.17)

y(t) = Y0 cos(ωet +ψy), (15.18)

θ (t) = 0, (15.19)

δ (t) = Δ0 cos(ωet +ψδ ), (15.20)

where the pairs of parameters (Y0,ψy) and (Δ0,ψδ ) can be found by substituting
(15.18) and (15.20) into the linear system

ÿ+ μ2ẏ+ω2
y y−αδ̈ = Φ0 cosωet, (15.21)

δ̈ + μ4δ̇ − ÿ = 0 . (15.22)

The stability of the semi-trivial solution is investigated by looking at its behavior
in a neighborhood defined as

x(t) = 0+ ux(t), (15.23)

y(t) = Y0 cosωet + uy(t), (15.24)

θ (t) = 0+ uθ(t), (15.25)

δ (t) = Δ0 cosωet + uδ (t), (15.26)

where ux(t), uy(t), uθ (t), and uδ (t) are small perturbations, and the phase shifts
ψy and ψδ have been arbitrarily set to zero. Substituting (15.23)–(15.26) into
the system (15.12)–(15.15) and linearizing around the semi-trivial solution the
following variational system in nondimensional time ζ = 1

2 ωet is obtained
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u′′x + μ̃1u′x −α (σ − 2μ̃4Δ0 sin(2ζ ))uθ − αμ̃3

1+Δ0 cos(2ζ )
u′θ = 0, (15.27)

u′′y + μ̃2u′y +
4ω2

y

ω2
e

uy + μ̃4u′δ = 0, (15.28)

u′′θ +
1

1+Δ0 cos(2ζ )

[(
μ̃3

1+Δ0 cos(2ζ )
+ 4(1−α)Δ0 sin(2ζ )

)

u′θ

+(σ + ε cos(2ζ ))uθ − μ̃1u′x

]

= 0, (15.29)

u′′δ + μ̃4u′δ + μ̃2u′y +
4ω2

y

ω2
e

uy = 0 . (15.30)

where σ =
4ω2

θ
ω2

e
, ε = 4Y0

ω2
e

, and μ̃i =
2μi
ωe

. Equations (15.28) and (15.30) form a

marginally stable linear system whose solution (uy,uδ ) converges to (0, ūδ ) for ζ
going to infinity. Therefore the stability of the overall system is solely determined
by the (ux,uθ )-subsystem.

The (ux,uθ )-subsystem (15.27) and (15.29) is a linear periodic system of the
form

ż = A(ζ )z, A(ζ +T ) = A(ζ ), (15.31)

where z = [ux,u′x,uθ ,u′θ ]
T, and the time-varying dynamical matrix A(t) is

A(ζ ) =

⎡

⎢
⎢
⎢
⎣

0 1 0 0
0 −μ̃1 α (σ −2μ̃4Δ0 sin(2ζ )) αμ̃3

1+Δ0 cos(2ζ )
0 0 1 0

0 μ̃1
1+Δ0 cos(2ζ ) − σ+ε cos2ζ

1+Δ0 cos(2ζ ) − μ̃3
(1+Δ0 cos(2ζ ))2 − 4(1−α)Δ0 sin(2ζ )

1+Δ0 cos(2ζ )

⎤

⎥
⎥
⎥
⎦
, (15.32)

whose entries are periodic functions of period T = π . According to Floquet theory
[4] the system (15.31) admits three different kinds of solutions, that is stable,
unstable, or periodic, depending on the characteristic multipliers associated to the
system. Further, the overall stability of the (ux,uθ )-subsystem relies on the stability
of the uθ dynamics as shown by (15.27), which admits a solution ux �= 0 only if
uθ �= 0.

If we assume that Δ0 � 1 then (15.29) reduces to the linear damped Mathieu
equation [9] linked to the cart dynamics through a velocity coupling. Therefore, it is
plausible that the stability properties of the uθ dynamics are quite similar to those of
the Mathieu equation with damping. In order to confirm this assumption the Fourier
spectral method [1, 15] is applied to numerically derive the stability chart of the
system (15.31).

Figure 15.2 shows the stability diagram around the first region of instability
derived for the following values of the system’s parameters: μ̃1 = 0.5, μ̃3 = 0.1,
μ̃4 = 0.8, Δ0 = 0.02, α ≈ 0.09. In particular, the dash-dotted lines are the transition
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Fig. 15.2 Stability diagram of the (ux,uθ )-subsystem: stable, periodic, and unstable solutions can
alternate depending upon the value of the parameter set (σ ,ε)

curves of the linear Mathieu equation coupled with the cart dynamics with μ̃i = 0;
the solid lines are the transition curves of system (15.31) with μ̃i = 0; the dashed
lines are the transition curves of system (15.31) with damping coefficients equal to
the values above mentioned.

By comparing the transition curves of the linear Mathieu equation (dash-dotted
lines) with those of system (15.31) when damping is not included (solid lines) we
can see that the effect of the time-varying rod length is to slightly push up the origin
of the unstable tongue detaching it from the σ -axis. Moreover, as for the standard
damped Mathieu equation, the effect of the damping is to increase the size of the
stable regions. As expected, system (15.31) shows three different behaviors: stable
if the (σ ,ε) pair is below the transition curve; periodic if the (σ ,ε) pair lies on
the transition curve; unstable if the (σ ,ε) pair is above the transition curves. The
three different scenarios are illustrated in the inserts within Fig. 15.2.

Concluding, the stability of the (ux,uθ )-subsystem is determined by three
parameters: the frequency tuning σ , which has to be close to 1 (i.e. ωθ ≈ 1

2 ωe)
in the first region of instability; the system damping, which defines the smallest
amplitude of the parametric excitation needed in order to trigger the resonance; the
amplitude of the parametric excitation ε , which determines the magnitude of the
system response.
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15.3 Parametric Resonance Control

As the stability analysis pointed out, parametric resonance is an instability phe-
nomenon, whose onset is due to the concurrent fulfillment of two conditions:

• The frequency of the parametric excitation is approximately equal to twice
the natural frequency of the secondary system (principal parametric resonance
condition).

• The amplitude of the parametric excitation is larger than the damping of the
secondary system.

Moreover, the secondary system must be perturbed from its stable equilibrium point
in order to trigger the resonance.

Control strategies aiming at stabilizing or inducing parametric resonance into the
system have to act on the primary or secondary system such that the aforementioned
conditions are failed or met, respectively. It is worth to note that the stabilization of
parametric resonance can be achieved by not satisfying only one of the require-
ments, for example increasing the damping of the secondary system; however by
failing both of them a faster convergence to a stable mode is obtained. Conversely,
the induction of parametric resonance requires that both prerequisites are attained.

The authors decided to focus on the frequency coupling condition in order to
both induce and stabilize the resonant oscillations, assuming that the damping
condition is implicitly satisfied. In particular, the induction of parametric resonance
is achieved by bringing the system into the principal parametric resonance region,
that is, where ωθ = 1

2 ωe.

15.3.1 Parametric Resonance Induction

Assuming that the frequency of the external excitation ωe acting on the mass-spring-
damper is retrievable by means of low-level signal processing, the induction of
parametric resonance into the system (15.16) can be set up as an output tracking
problem.

Problem 15.1. Let ωI(t) = 1
2 ωe be the induction reference frequency at time t.

Find a control law Φc
δ = Φc

δ (q̃, ˙̃q,ωI(t)) such that ωθ converges asymptotically to
the prescribed reference frequency trajectory ωI(t).

The solution of the output tracking problem results in designing the control law
Φc

δ such that the length of the pendulum rod δ converges to δ ∗ for t → ∞, where
δ ∗ =(4le− l0)/l0 with le being the length of the rod of a virtual pendulum oscillating
at the natural frequency ωe. However this control action alone is not sufficient to
trigger parametric resonance; in fact a small perturbation is necessary to bring the
pendulum away from its stable equilibrium point θ = 0. Problem 15.1 can then be
reformulated as
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Parametric Resonance Tracking. Given the system (15.16) and the induction
reference frequency ωI(t), find a control law τ̃c = [Φc

x (q̃, ˙̃q,x∗),Φc
δ (q̃, ˙̃q,ωI(t))]T

such that ωθ converges asymptotically to the prescribed frequency ωI(t), and
θ (t) �= 0 for all t > tc, where tc is the time instant where the control action starts.

The second control goal is achieved by arbitrarily changing the position of the
cart along the X axis, with no specific preference about the value of the new set point
or the direction of the motion. Therefore the controller goal in this case is limited to
stabilize the cart around the new chosen position x∗.

Consider the multivariable nonlinear system described in state space form as

ẋ = f(x)+b(x)u+p(x)w, (15.33)

y = h(x) (15.34)

in which x is the state vector split into the position x1 = [x1,x2,x3,x4]
T � [x,y,θ ,δ ]T

and the velocity x2 = [x5,x6,x7,x8]
T � [ẋ, ẏ, θ̇ , δ̇ ]T, u = [Φc

x ,Φc
δ ]

T is the vector
of control inputs, w = Φe

y is the disturbance. The following smooth vector fields
defined in an open set of R8

f(x)�
[

x2

−M̃(x1)
−1(D̃x2 + C̃(x1,x2)x2 + g̃(x1))

]

,

b(x)� 1
1−α

[
0 0 0 0 1 0 − cosx3

1+x4
−sinx3

0 0 0 0 −α sinx3 α cosx3 0 1

]T

,

p(x)� 1
1−α

[

0, 0, 0, 0, 0, 1, − sin x3

1+ x4
, cosx3

]T

describe the state dynamics, whereas the smooth functions

h(x)� [x1,x4]
T

describe the output evolution.

Proposition 15.1. The transformation of variables

z =
[

ξ
η

]

= T(x)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x5

x4

x8

x2

x3
αx8 cosx3−α(1+x4)x7 sinx3−x6

α cosx3

x7 +
x5 cosx3+x6 sinx3

1+x4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15.35)



15 Controlling Parametric Resonance: Induction and Stabilization... 317

is a local diffeomorphism on the domain Dx =
{

x ∈ R
8|x3 �= π

2 + nπ ∧ x3 �=
arcsin

(
α− 1

2

)
∧x4 �=−1

}
, which brings the system (15.33)–(15.34) into the normal

form

η̇ = f0(η ,ξ ), (15.36)

ξ̇ = Acξ +BcΓ (x)[u−ν(x)−υ(x)], (15.37)

y = Ccξ , (15.38)

where ξ ∈R
4, η ∈R

4, and (Ac,Bc,Cc) is a canonical form representation of a chain
of integrators.

Proof. The transformation of variables T(x) is obtained by exploiting the notion of
vector relative degree and applying Proposition 5.1.2 in [6]. System (15.33)–(15.34)

has vector relative degree {ρ1,ρ2} = {2,2} on the domain D1 =
{

x ∈ R
8|x3 �=

arcsin
(

α− 1
2

)}
; in fact by using the Lie derivative we obtain

Lb j hi = 0 , for 1 ≤ j ≤ 2, 1 ≤ i ≤ 2

and

Lb1Lf h1(x) =
1

1−α
, (15.39)

Lb1Lf h2(x) =− sinx3

1−α
, (15.40)

Lb2Lf h1(x) =−α sin x3

1−α
, (15.41)

Lb2Lf h2(x) =
1

1−α
. (15.42)

Moreover the matrix

Γ (x) =
[

Lb1Lf h1(x) Lb2Lf h1(x)
Lb1Lf h2(x) Lb2Lf h2(x)

]

=

[
1

1−α −α sinx3
1−α

− sinx3
1−α

1
1−α

]

(15.43)

is nonsingular on D1, since its determinant

det(Γ (x)) =
1−α sin2 x3

(1−α)2
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is zero if x3 = arcsin
(

α− 1
2

)
. Therefore we can define the first four new variables as

ξ1 � h1(x) = x1, (15.44)

ξ2 � Lf h1(x) = x5, (15.45)

ξ3 � h2(x) = x4, (15.46)

ξ4 � Lf h2(x) = x8 . (15.47)

Since ρ = ρ1 +ρ2 = 4 and the state space is eight dimensional, it is possible to
find four other functions ηi(x) such that the mapping

T(x) = [ξ1, . . . ,ξ4,η1, . . . ,η4]
T

is a local diffeomorphism. By noting that the distribution B = span{b1,b2} is
involutive on D1, we can determine the functions ηi by solving the set of linear
partial differential equations

Lb j ηi(x) = 0

⇒
{ ∂ηi

∂x5
− cosx3

1+x4

∂ηi
∂x7

− sinx3
∂ηi
∂x8

= 0

−α sin x3
∂ηi
∂x5

+α cosx3
∂ηi
∂x6

+ ∂ηi
∂x8

= 0
. (15.48)

A set of functions satisfying system (15.48) is given by

η1 � x2, (15.49)

η2 � x3, (15.50)

η3 �
αx8 cosx3 −α(1+ x4)x7 sinx3 − x6

α cosx3
, (15.51)

η4 � x7 +
x5 cosx3 + x6 sinx3

1+ x4
. (15.52)

which is defined on the domain D2 =
{

x ∈R
8|x3 �= π

2 + nπ ∧ x4 �=−1
}

. Therefore,
the change of variables (15.35) qualifies as a diffeomorphism since its jacobian
matrix is nonsingular on the domain Dx = D1 ∩D2.

Finally by applying the transformation T(x) to the system (15.33)–(15.34) we
obtain the normal form (15.36)–(15.38) where Γ (x) is given by (15.43) and
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ν(x) =

[
L2

f h1(x)
L2

f h2(x)

]

=

⎡

⎢
⎣

1
1−α

(
−μ1x5 +αμ4x8 sinx3 +

αμ3
1+x4

x7 cosx3 +αω2
θ sinx3

)

1
1−α

( −μ4x8 + μ1x5 sinx3 − μ2x6 cosx3

+(1−α)(1+ x4)x2
7 −ω2

θ (1− cosx3)−ω2
y x2 cosx3

)

⎤

⎥
⎦ ,

(15.53)

υ(x) =
[

LpLf h1(x)
LpLf h2(x)

]

=

[
0

cosx3
1−α

]

. (15.54)

��
Equation (15.54) shows that the disturbance Φe

y affects the output y2, whereas
the output y1 is insensitive to it. Hence the control design should also address
the problem of disturbance decoupling together with the tracking of parametric
resonance.

Proposition 15.2. Consider the system in normal form (15.36)–(15.38), and the
reference vector yR = [y1R(t), ẏ1R(t),y2R(t), ẏ2R(t)]T = [x∗1(t),x

∗
5(t),x

∗
4(t),x

∗
8(t)]

T.
The input–output feedback linearizing control law

u = Γ (x)−1(ν(x)+υ(x)w+φ(x)),

where
φ(x) = v+ ÿR(t)

solves the Parametric Resonance Tracking problem and decouples the disturbance
from the output y2. Moreover, the internal dynamics η̇ = f0(η ,ξ ) is bounded for all
t ≥ 0.

Proof. Let

e =

⎡

⎢
⎢
⎣

ξ1 − y1R(t)
ξ2 − ẏ1R(t)
ξ3 − y2R(t)
ξ4 − ẏ2R(t)

⎤

⎥
⎥
⎦= ξ − yR

be the tracking error vector. Introducing the tracking error into the normal form
(15.36) and (15.37) yields

η̇ = f0(η ,e+ yR), (15.55)

ė = Ace+BcΓ (x)
{

[u−ν(x)−υ(x)]−
[

ÿ1R

ÿ2R

]}

. (15.56)
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Hence the state feedback control

u = Γ (x)−1(ν(x)+υ(x)w+φ(x)) (15.57)

reduces the system (15.36)–(15.37) to the cascade system

η̇ = f0(η ,e+ yR), (15.58)

ė = Ace+Bcφ(x), (15.59)

where

φ(x) =−KIe+
[

ÿ1R

ÿ2R

]

. (15.60)

By selecting the gain matrix KI such that the matrix Ac −BcKI is Hurwitz, then the
Parametric Resonance Tracking problem is solved.

The normal form (15.36) and (15.37) has an equilibrium point at (η ,ξ ) = (0,0).
In particular, the zero dynamics η̇ = f0(η ,0) given by

η̇1(η ,0) =−αη3 cosη2 +αη4 sinη2

1−α sin2 η2
, (15.61)

η̇2(η ,0) =
η4 +

1
2 αη3 sin(2η2)

1−α sin2 η2
, (15.62)

η̇3(η ,0) =
μ2(η3 cosη2 +η4 sinη2)

(α sin2 η2 − 1)cosη2
−
(
η4 +

1
2 αη3 sin(2η2)

)
η3 sin(2η2)

2(α sin2 η2 − 1)cosη2

+
ω2

y η1

α cosη2
, (15.63)

η̇4(η ,0) =
η4 +

1
2 αη3 sin(2η2)

α sin2 η2 − 1

(

μ3 − (η3 cosη2 +η4 sinη2)α cosη2

α sin2 η2 − 1

)

−ω2
θ sinη2 (15.64)

is locally asymptotically stable in η = 0. In fact by linearizing the zero dynamics
around η = 0 we obtain the following matrix

A0 =

⎡

⎢
⎢
⎢
⎣

0 0 −α 0
0 0 0 1

ω2
y

α 0 −μ2 0
0 −ω2

θ 0 −μ3

⎤

⎥
⎥
⎥
⎦
, (15.65)
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whose eigenvalues

λ1,2 =−1
2

μ2 ±
√

μ2
2 − 4ω2

y , (15.66)

λ3,4 =−1
2

μ3 ±
√

μ2
3 − 4ω2

θ (15.67)

have always negative real part. Hence, applying Theorems 4.16 and 4.18 in [7]
it follows that for sufficiently small initial conditions of the error and internal
dynamics e(0), η(0), and for a small reference trajectory ωI(t) with small derivative,
the state η(t) will be bounded for all t ≥ 0. ��
Remark 15.1. Note that the proof about the local boundedness of the internal
dynamics is valid only if the reference trajectory is small. If this is not the case
the time-varying nonlinear system

η̇ = f0(η ,yR(t)) (15.68)

should be considered instead.

15.3.2 Parametric Resonance Stabilization

The choice of focusing on the frequency coupling condition allows to exploit
the control law (15.57) also for stabilizing the system once parametric resonance
has fully developed. This can be attained by defining a stabilizing trajectory
ωS(t) �= 1

2 ωe to be tracked by the closed-loop system. The control problem can
be formulated as

Parametric Resonance Stabilization. Assume that ωe = 2ωθ and that the system
(15.16) is in parametric resonance. Given the stabilizing reference frequency
ωS(t) = ω̄ �= 1

2 ωe(t), find a control law Φc
δ = Φc

δ (q̃, ˙̃q,ωS(t)) such that ωθ
converges asymptotically to ωS(t).

The solution of the Parametric Resonance Stabilization problem results in
designing the control law Φc

δ such that the length of the pendulum rod δ converges
to δ ∗ for t → ∞, where δ ∗ = (l̄− l0)/l0 with l̄ being the length of the rod of a virtual
pendulum oscillating at the natural frequency ω̄ .

Note that since the stabilization is achieved by detuning the frequency coupling
condition ωθ = 1

2 ωe there is no need for controlling the horizontal position of the
cart. Therefore in the following analysis it is assumed that the controller does not
actuate the cart, which will remain at the position x = x∗ where it was originally
placed.
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Proposition 15.3. Assume that ωe = 2ωθ and that the system in normal form
(15.36)–(15.37) is in parametric resonance. Consider the reference vector yR =
[y2R(t), ẏ2R(t)]T = [x∗4(t),x

∗
8(t)]

T. The input–output feedback linearizing
control law

u = Γ (x)−1(ν(x)+υ(x)w+φ(x)),

where

φ(x) = v+ ÿR(t)

solves the Parametric Resonance Stabilization problem and decouples the distur-
bance from the output y2. Moreover the internal dynamics η̇ = f0(η ,ξ ) is bounded
for all t ≥ 0.

Proof. Analogously to the proof of Proposition 15.2 we define the tracking error as

e =

⎡

⎢
⎢
⎣

0
0

ξ3 − y2R(t)
ξ4 − ẏ2R(t)

⎤

⎥
⎥
⎦ ,

where the first two entries are equal to zero because the cart is assumed to maintain
its position. The normal form (15.36) and (15.37) then reads

η̇ = f0(η ,e+ yR), (15.69)

ė = Ace+BcΓ (x)
{

[u−ν(x)−υ(x)]−
[

ÿ1R

ÿ2R

]}

. (15.70)

Therefore the state feedback control law

u = Γ (x)−1(ν(x)+υ(x)w+φ(x)) (15.71)

with φ(x) =−KSe+[0, ÿ2R]
T reduces the normal form to the cascade

η̇ = f0(η ,e+ yR), (15.72)

ė = (Ac −BcKS)e, (15.73)

where Ac −BcKS is Hurwitz.
The boundedness of the internal dynamics η(t) = f0(η ,ξ ) can be demonstrated

analogously as in Proposition 15.2. ��
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15.4 Simulation Results

The efficacy of the proposed control strategies for inducing and stabilizing paramet-
ric resonance has been tested in simulation.

Figure 15.3 shows an example of induction and tracking of parametric resonance.
For 0 < t < 100 s the mass-spring-damper oscillates under the action of the external
sinusoidal disturbance Φe

y while the pendulum is at rest. At t = 100 s a new reference
trajectory δ ∗(t), which ensures the tuning of the frequency coupling condition is
provided. As a consequence, the controller (15.57) enforces that the output y2(t)
follows the reference trajectory and that the frequency condition for the onset of
parametric resonance is fulfilled. At the same time the controller destabilizes the
pendulum by driving the cart to its new set point x∗. This produces the sparkle for
the onset of parametric resonance into the pendulum, which for 100 ≤ t < 400 s
develops oscillations of increasing amplitude at a frequency ωθ = 1

2 ωe,1. At t =
400 s the frequency of the external excitation decreases determining a temporary
frequency ratio ωθ/ωe,2 = 1 as shown in Fig. 15.4. Hence the controller increases
the rod’s length δ up to the new reference trajectory maintaining the parametric
resonance alive. The amplitude of the pendulum oscillations further increases due
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Fig. 15.3 Parametric resonance tracking: multiple variations of external excitation frequency ωe
are tracked by the controller
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Fig. 15.4 Parametric resonance tracking: the controller enforces that the frequency ratio ωe/ωθ is
kept equal to 2
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Fig. 15.5 Parametric resonance tracking: (top) control signals and (bottom) position errors of the
controlled variables

to the larger amplitude of the parametric excitation provided by y. Figure 15.5
illustrates the commanded control signals and the evolution of the position error.

Figure 15.6 shows an example of stabilization of parametric resonance after it
has been triggered according to the former description. At t = 600s a stabilizing
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Fig. 15.6 Parametric resonance stabilization: the controller stabilizes the pendulum about θ = 0
by detuning the frequency coupling condition

trajectory that detunes the frequency coupling condition is provided. Consequently,
the controller (15.71) enforces the output y2 to track the new reference signal, and
it brings the pendulum out of the principal parametric resonance condition within
200s. The decay rate of the pendulum oscillations could be increased if the proposed
control strategy is coupled with a damping injection into the secondary system. This
could be done by increasing the moment due to dissipative forces, for example, by
applying a direct torque on the pendulum’s pivot point or by moving the cart in
counter phase with respect to the pendulum oscillations.

15.5 Conclusions

Parametric resonance is a widespread phenomenon that may be threatening or
beneficial according to the particular system where it takes place. A four degrees-
of-freedom Lagrangian model of a pendulum with moving support has been derived
in order to, first, revisit some of the stability theory of autoparametric resonant
systems by applying Floquet theory, and, second, to design control strategies to
induce and stabilize the unstable oscillations. Two control problems, namely the
Parametric Resonance Tracking and the Parametric Resonance Stabilization, have
been set up as output tracking problems where induction and stabilization of
parametrically resonant behaviors are achieved by tracking a reference frequency,
which enforces or not the frequency coupling condition ωθ = 1

2 ωe. An input–
output feedback linearizing controller has been designed and analytically proven to
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solve both control problems. The efficacy of the proposed control strategy has been
also verified in simulation, where both induction and stabilization of parametric
resonance into the pendulum with moving support have been successfully obtained.

The authors believe that control strategies aiming at inducing and tracking
parametric resonance will be of particular interest for future application as energy
conversion systems where the obvious goal is to increase the energy throughput
while maintaining constant or even reducing the effort to produce such energy.
In this respect parametric resonance can become a very useful phenomenon since
very large oscillations can be generated by a rather small parametric excitation.
However the same feature that makes parametric resonance appealing should create
awareness of the potential danger hidden in such phenomenon. That is why a sound
and profound knowledge of the dynamics of the system where parametric resonance
is wished to be induced is needed in order to capture the energy flow between
the different system modes when the resonance takes places. Therefore models
and control methods which rely on the concept of energy exchange in the system
and through interacting systems seems to be particularly suited for these kinds of
applications.
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