
Chapter 3

Case Study of Self-Healing in Metallic

Composite with Embedded Low Melting

Temperature Solders

In the preceding chapter, we discussed the general principles of the thermodynamics

of self-healing with the emphasis on metallic materials. In this chapter, we concen-

trate on the multiscale nature of self-healing mechanisms. To illustrate the

multiscale nature of entropy production, we investigate a particular example of

grain growth in metals. After that we discuss a prototype system involving an Al

alloy reinforced with microtubes, filled with Sn60Pb40 solder; this is discussed as a

case study.

3.1 Introduction

Wear occurs at most solid surfaces that come in contact with other solid surfaces.

While biological surfaces and tissues usually have the ability to repair minor

wear damage, engineered self-healing materials only started to emerge recently.

An example of a smart self-healing material is the material with imbedded

microcapsules or microtubes, which rupture during crack propagation and release

a healing agent that repairs the crack. Self-healing mechanisms are hierarchical in

the sense that they involve interactions with different characteristic scale lengths.

While traditional models of self-healing require equations with many degrees of

freedom, taking into account the hierarchical organization allows us to reduce the

number of equations to a few degrees of freedom. We discuss the conditions under

which the self-healing occurs and provide a general theoretical framework and

criteria for self-healing using the concept of multiscale organization of entropy and

nonequilibrium thermodynamics (Table 3.1).

Self-healing is defined as the ability of a material or surface to heal (recover or

repair) damages automatically or autonomously (Ghosh 2009). Self-healing has

become an object of active investigation in recent years (Balazs 2007; Zwaag

2007; Wool 2008; Ghosh 2009; Nosonovsky and Bhushan 2008a, 2009), whereas

polymers have been the main focus of these studies (Chen et al. 2002; Hayes et al.

2007; Cordier et al. 2008). Self-healing materials including metals (Lumley 2007;

M. Nosonovsky and P.K. Rohatgi, Biomimetics in Materials Science: Self-Healing,
Self-Lubricating, and Self-Cleaning Materials, Springer Series in Materials Science 152,

DOI 10.1007/978-1-4614-0926-7_3, # Springer Science+Business Media, LLC 2012

53



Manuel 2009), ceramics (Nakao et al. 2009), and their composites as well as coatings

(Sloof 2007; Zheludkevich 2009) are also investigated.

Several design strategies have been suggested so far for self-healing metals.

These strategies include the release of a healing agent (e.g., capsules that are

ruptured during crack propagation and release a liquid that “glues” the crack

opening), circulation of a liquid healing agent (similar to the vascular blood

circulation in humans and animals), a mixture of a low melting point solder with

a high melting point alloy, reinforcement of the material with shape-memory alloys

(SMA), nanoparticle migration, etc. In some cases, an external intervention such as

heating is required to initiate healing (e.g., to cause melting of the healing agent or

the restoration of the original shape of the SMA), while other self-healing systems

are intended to act autonomously (Ghosh 2009).

There are several computational and analytical models for particular mechanisms

of self-healing (Balazs 2007; Wang et al. 2007b; Lucci et al. 2008a, b, c; Manuel

2009; Remmers and de Borst 2007; Vermolen et al. 2007). Most of these models

apply mechanical and hydrodynamic equations for crack propagation and propaga-

tion of the healing agent. They can be used to build a computational model such as a

finite element (FE), computational fluid dynamics (CFD), or molecular dynamic

(MD) analysis. However, most of these models are ad hoc and dependent on a

particular shape of voids and cracks. In this chapter, the development of a general

model using the physical principles of self-healing is presented.

Self-healing is, in a sense, opposite to degradation processes such as wear,

fatigue, and creep. Many of these processes occur at the surface or in the subsurface

layer, involving dry friction and wear and other dissipative processes that occur

during sliding of two solid surfaces (Bryant et al. 2008; Nosonovsky and Bhushan

2009). The main characteristic of a dissipative process is irreversibility; or, from the

thermodynamic point of view, the production of entropy. Self-healing may be

viewed in the broader context of self-organization. Recent studies have shown

that nonequilibrium thermodynamic processes during friction can lead to self-

organization and the formation of secondary structures that result in a significant

reduction of friction and wear (Fox-Rabinovich and Totten 2006; Fox-Rabinovich

et al. 2007; Nosonovsky and Bhushan 2009; Nosonovsky 2010b). In this chapter,

Table 3.1 Multiscale framework for properties of metals (Nosonovsky and Esche 2008b)

Scale

Characteristic

size Entropy

Simulation

method Input Output

Macro Specimen Increases Finite Element

Method

Yield

strength

Deflections, stresses

Micro

(meso)

Grain Decreases Monte Carlo

Method

Parameters

of (3.4)

Grain size

Molecular Crystal lattice Increases Molecular

Dynamics

Position of

atoms

Position of atoms,

parameters

of (3.4)
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we suggest a thermodynamic analysis of self-organization and self-healing during

friction and consider a case study of void self-healing in plant leaves that serves as an

inspiration for biomimetic self-healing coatings.

3.2 Modeling Self-Healing

3.2.1 Multiscale Effects of Crystal Grain Growth

It is generally accepted that physical, chemical, and mechanical properties of

crystalline materials can, in principle, be deduced from their microstructure. How-

ever, in practice, it is very difficult to predict such properties as the modulus of

elasticity, Poisson’s ratio, yield strength, and hardness because they are a result of

various, often random, factors, and interactions at different length scales, from

the macroscale down to the mesoscale and molecular scale. Similarly to other

dissipative systems of physical chemistry that involve interaction at various length

scales, such as the wetting of rough solids (Nosonovsky and Bhushan 2007b), a

multiscale method for simulating grain growth is needed. Modeling a material’s

mechanical behavior at the macroscale usually involves continuum solid state

mechanics (elasticity and plasticity) and corresponding computational methods such

as the finite element method (FEM), and the boundary element method (BEM). At the

mesoscale level, the imperfections of the lattice structure, such as grains, dislocations

and defects, define a characteristic length scale, and stochastic simulation methods,

such as the Monte Carlo (MC) method, are used. At the molecular level, molecular

dynamics (MD) simulation can be applied. Therefore, a multiscale framework is

needed to analyze the mechanical properties.

In order to provide a cross-scale linkage, a material property model has to be

used (Fig. 3.1a). The property model relates the mesoscale level of description with

the macroscale material properties. In particular, the average grain size r is the

parameter that affects the yield strength sY of the material. There are several

models that relate the grain size with the yield strength. The classical Hall–Petch

model of grain boundary strengthening developed in 1950s states that the yield

strength decreases with growing grains as

sY ¼ sY0 þ kffiffi
r

p ; (3.1)

where sY0 is the limiting value corresponding to large grains and k is a constant

coefficient (Hall 1951). The reasoning behind the Hall–Petch relationship is similar

to that of the linear elastic fracture theory, which states that the stress intensity

factor is proportional to the square root of the crack size. In order to initiate

yielding, the value of ðsY � sY0Þ
ffiffi
r

p
should reach a certain critical threshold

similarly to the crack growth initiation.
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According to the Taylor model of plasticity, dislocations are emitted from

Frank–Read sources andmove along a slip plane that is common tomany dislocations

(Fig. 3.1b). Due to their interaction with each other, the dislocations may become

stuck in the Taylor network, but when the externally applied stress exceeds the Peierls

stress of the dislocations sp, they start to move and plastic yielding is initiated. The

number of dislocations at a particular pile in a grain is proportional to the average grain

size r and to the applied stress, while the total stress at the lead dislocation sL is

proportional to the number of dislocations and the applied stress. Therefore, it can be

easily shown that to initiate yielding ðsL>spÞ, the value of the applied stress should be
proportional to

ffiffi
r

p
(Friedman and Chrzan 1998).

The Hall–Petch relationship predicts that the yield strength can increase with

decreasing grain size without limit. However, very small grains with sizes compa-

rable with that of the dislocations do not provide high strengths. In the past decade,

the inverse Hall–Petch relationship has been suggested theoretically and studied

experimentally for nanocrystalline materials with submicron grain sizes, and there

is experimental evidence of grain boundary softening, below grain size of 10 nm.

Several models of strain gradient plasticity that emerged since the 1990s predict

that the yield strength sY is scale dependent and decreases with the decreasing

characteristic size l of the system as:

sY ¼ sY0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ l0

l

r
; (3.2)

where l0 is a material parameter that characterizes the average distance that

dislocations can glide. The phenomenological explanation of the scale dependence

of the yield strength is that smaller volumes of a material have fewer defects and

Fig. 3.1 (a) Multiscale

modeling for material

processing and properties,

(b) scale effect in Hall–Petch

theory, (c) strain gradient

plasticity theory (Nosonovsky

and Esche 2008b)
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dislocations, which makes the material stronger. This idea is illustrated in Fig. 3.1c,

which shows that dislocations are needed to accommodate for strain compatibility

during the indentation deformation. Both the number of needed dislocations and the

average length of dislocation loops are proportional to the contact radius l, with the
volume being proportional to l3. The density of dislocations (total length of all loops
per unit volume) is thus proportional to 1/l. According to the Taylor relation, the

yield strength is proportional to the square root of the dislocation density. Thus,

sY � l�1=2, which is equivalent to (3.2) for l<<l0 (Nix and Gao 1998; Hutchinson

2000). In other words, for an indenter of small size, the volume where the

dislocations are created is not large enough to accommodate the surface deforma-

tion. This gives rise to the size-dependent strengthening predicted by the strain-

gradient plasticity.

Normally, l0 is a material parameter associated with the average distance that

dislocations can glide, and it is of the order of 1 mm (Hutchinson 2000). However,

for small grains, the grain size defines the distance that the dislocations can glide.

Therefore, it may be assumed that r ¼ l0, and the strain gradient plasticity approach
predicts grain boundary softening similarly to the inverse Hall–Petch relationship.

The length scale at which the transition from the Hall–Petch to inverse Hall–Petch

relationship occurs is estimated to be between dozens and hundreds of nanometers

(Friedman and Chrzan 1998; Conrad and Narayan 2000).

The grain size in metals is determined by thermally activated grain growth

processes and by recrystallization caused by applied stresses. Due to the misorienta-

tion of atoms in neighboring grains, there is excess energy associated with the grain

boundaries, and therefore the grain growth is driven by the reduction of the energy.

The grain growth is a thermally activated random process similar to diffusion, and

thus the kinetics of the grain growth is dependent on the temperature (Nosonovsky

and Esche 2008b).

TheMonte Carlo (MC) method is widely used to simulate the grain growth. In this

method, a 2D or 3D lattice is initiated by assigning a random orientation to every

lattice site. An energy functional is selected to account for the misorientation of

neighboring sites. Subsequently, at every MC step, an attempt is made to randomly

change the orientation, and the energy of the new configuration is compared with the

energy of the initial configuration. If the energy decreases as a result of the reorienta-

tion, the new orientation is accepted. A grain is defined as a group of neighboring sites

with the same orientation. Since the periodicity of the MC simulation lattice is much

greater than the atomic size, a scaling procedure is needed to relate the MC lattice

spacing to physical size units and the MC steps to physical time units (Nosonovsky

and Esche 2008b).

TheMC simulationmethod can be applied for various phenomena such as normal

grain growth in 2D or 3D and recrystallization, with varying temperature, aniso-

tropic material, etc. The normal isotropic grain growth at constant temperature

represents a convenient example because it has a theoretical solution for the average

grain size, with the parabolic dependence of the average grain radius r on time t:

r ¼ C
ffiffi
t

p
; (3.3)
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where C is a proportionality constant. The constant can be determined theoretically.

Then, (3.3) is given by:

r2 � r0
2 ¼ 4gAZVm

2

Na
2h

exp
DSf
R

� �
exp � Q

RT

� �
t; (3.4)

where r0 is the initial grain size, h is Planck’s constant, R is the gas constant, Vm=Na

is the atomic volume, DSf is the activation entropy, Q is the activation enthalpy, g is
the grain boundary energy, A is the accommodation probability, and Z is the

average number of atoms per unit area at the grain boundary. However, the

uncertainty in the values of the parameters of the (3.4) (especially DSf and Q,
which are arguments of the exponential function) is so large that it is more practical

to use (3.3) rather than (3.4). The parameters of (3.4) should be obtained from a

molecular scale investigation of crystals and then supplied to the mesoscale model

for the grain growth (Nosonovsky and Esche 2008b).

It is noted that the MC simulation usually takes into account only the mesoscale

level of the physical system (Table 3.2). An interesting consequence of this is that the

orderliness of the MC simulation lattice tends to grow, thus leading to a decreasing

entropy, which represents an apparent paradoxical contradiction to the second law of

thermodynamics, as it discussed in the following section. In the physical system,

however, the entropy grows at the molecular level, since the grain boundarymigration

involves dissipation, thus providing for the overall entropy increase.

MC simulations were shown to provide very close results to those predicted

by (3.4) in the case of constant temperature. However, the MC method can also

be applied to more complicated phenomena, such as recrystallization, thermo-

mechanical processing, and anisotropic grain growth. As the MC simulation results

are confirmed by theoretical considerations in the simple case of normal grain

growth, it is reasonable to extrapolate the approach for the more complicated

cases (Nosonovsky and Esche 2008b).

The temperature T enters into the simulation because the atomic jump frequency

that defines the time scale is dependent on T. Therefore, the normalized dependence

of the average grain size r on time t has the form

r2 � r0
2 ¼ Kt; (3.5)

Table 3.2 Hierarchy levels in the physical system and simulation (Nosonovsky and Esche 2008b)

Physical system Simulation

Objects Driving force Entropy Objects Driving force Entropy

Macroscale Continuum material – DSmacro ¼ 0 –

– –

Mesoscale Grains Decreasing

boundary

energy

DSmeso < 0 Cells Decreasing energy

functional

DS < 0

Nanoscale Atoms Thermal

fluctuations

DSnano > 0 – – –
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K ¼ K0 exp � Q

RT

� �
; (3.6)

where K and K0 are constants.

The MC simulations were started with an initial grain size of r ¼ 2:5 and

terminated after 242 MC steps when r � 15 was achieved, so that a significant

number of grains were preserved in the lattice. The initial grain size was selected so

as to reduce the time needed for grain growth at the initial steps compared with the

case of a completely random initial configuration. Ten simulations with different

seeds for random number generation were performed and their results were aver-

aged. The microstructure was examined every 10 MC steps. Typical results for the

dependence of the average grain size on the simulation time are shown in Fig. 3.2.

The multiscale approach to property simulation involves MC modeling of the

grain growth under given conditions and transferring the output to a property model

that allows the determination of the yield strength, which in turn is then passed on to

a continuum model. In our simulation, we utilized a previously described MC

simulation package and the property model based on (3.1)–(3.3). The data can

then be transferred to a FEM simulation package or used for the calculation of the

deformation of a structural element.

As a simple example, we consider here the twisting of an elastic–plastic rod of

radius R under a constant torque t (Fig. 3.3a). The transition from the elastic to the

plastic regime is controlled by the yield strength sY. Assuming that the interior of

the rod up to the radius r ¼ R0 is in the elastic state while the exterior R0<r � R is

in the plastic state, the rod can support a torque t of

Fig. 3.2 MC simulation results for grain size as a function of time (Nosonovsky and Esche 2008b)
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t ¼ LsY
R0

2

3
þ LsY

R2 � R0
2

2
¼ LsY

R2

2
� R0

2

6

� �
: (3.7)

From (3.7), R0ðt; sYÞ is found as

R0
2 ¼ 3R2 � 6T

LsY
; (3.8)

the polar moment of inertia J ¼ 0:5pR0
4 is calculated, and the twist angle y is found

as

y ¼ TL

GJ
¼ 2TL

GpR0
4
¼ 2TL

3Gp R0
2 � 2T

LsY

� �2
; (3.9)

where G is the modulus of torsional rigidity.

The twist angle y as a function of time t is presented in Fig. 3.3b for different

annealing temperatures t. The average grain size grows with time in accordance

with (3.1), (3.5), (3.6), and (3.8), (3.9) for K ¼ 4.5 � 106 mm2 s�1 (at T ¼ 300oC)

and K ¼ 7.6 � 106 mm2 s�1 (at T ¼ 600oC), r0 ¼ 17 mm, k ¼ 3 sY0 (mm)1/2, 2tL/
(3 R0

4Gp) ¼ 0.1, 2t/(R0
2LsY0) ¼ 1.4. With increasing grain size, the yield

strength decreases in accordance with (3.1). As the maximum shear strength due

to the twist deformation reaches the yield strength, a plastic flow zone is formed and

the material is softened in accordance with (3.7)–(3.9), until static failure occurs.

As expected, a higher temperature leads to the softening, while a lower temperature

prevents the transition to the plastic regime.

Fig. 3.3 (a) An

elastic–plastic shaft under

torsion, (b) twist angle

dependence on time

(Nosonovsky and Esche

2008b)
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We conclude that grain growth in metals involves interactions at three different

length scales, and thus a multiscale approach is needed for studying the grain

growth phenomenon in metals. Using such a multiscale approach, the simple

example of the normal grain growth in a simple rod structure at constant tempera-

ture was investigated. The same methodology can be applied for more complicated

situations such as the prediction of physico-chemical properties during the

thermomechanical treatment of structures with complicated geometries.

3.2.2 Multiscale Nature of Degradation and Healing

While the net entropy, as defined by (2.1)–(2.2), grows in most systems in accor-

dance with the second law of thermodynamics, some thermodynamic systems may

lead to an increasing orderliness and self-organization, supporting a decrease in

entropy. These are thermodynamically open systems that operate far from thermo-

dynamic equilibrium and can exchange energy, matter, and entropy with the

environment. Many of these self-organizing systems (such as the Bénard cells in

boiling liquid and oscillating chemical reactions) were known a long time ago;

however, the universality and generality of the processes involved in these systems

was understood only with the works by Prigogine (1961). It is believed that this

ability for self-organization of physical systems led to the formation of complex

hierarchical chemical and biological systems.

Processes that lead to degradation (wear, corrosion, fatigue, etc) often involve

interactions with different characteristic length scales. For example, friction and wear

involve interactions of microscale and nanoscale asperities and wear particles, capil-

lary interactions, adhesion, and chemical molecular bonding. In most cases, these

interactions lead to irreversible energy dissipation and, therefore, to the production of

entropy. However, in certain cases, the entropy production at a particular scale level

may be compensated by the entropy consumption at another level.

An interesting example of a self-organizing process is the thermally activated

grain growth in metals (Fig. 3.4). It is well known that metal crystals form grains,

characterized by different orientations of the lattice (Humphreys and Hatherly

1995). The typical grain size is in the range between microns and millimeters.

There is an additional energy associated with the grain boundaries due to the

misorientation of the neighboring grains. Therefore, it is energetically profitable

for larger grains to grow and to absorb smaller grains, thus reducing the total

number of grains and the total boundary area. The ideal state of a perfect crystal

with only one grain corresponds to the minimum energy. The grain growth is a

thermally activated diffusion-like process with the Arrhenius type of kinetics. For

normal isotropic grain growth, theoretical considerations predict a parabolic depen-

dence of the average grain radius r on time

r2 � r0
2 ¼ K0 exp � Q

RT

� �
t; (3.10)
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where Q is the activation enthalpy, R is the universal gas constant, K0 is a

proportionality constant, and r0 is the initial grain size (Yu et al. 2008).

Modeling the grain growth is a challenging task. Since it is a random process,

deterministic modeling is difficult. The Monte Carlo (MC) simulation and Cellular

Automata (CA) approaches are often used (Raabe 2000, 2002). CA algorithms

describe the spatial and temporal evolution of a complex system by applying

deterministic or probabilistic local rules to the cells of a regular lattice. CA

algorithms are based on finite difference formulations of local interaction laws.

The MC method is based on the use of randomly generated orientation numbers.

The lattice is initialized by randomly assigning to each lattice point an integer

number representing its orientation. Reorientations are randomly and sequentially

attempted for all lattice sites. If a new orientation is characterized by lower energy,

then it is accepted (Nosonovsky and Esche 2008a).

Fig. 3.4 MC simulation of grain growth (a) experimental observation of grains in aluminum at

different time intervals, (b) simulation lattice, (c) simulation results for grain growth (Nosonovsky

and Esche 2008a)
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A metal with grains represents a typical example of a partially ordered system

that occupies an intermediate position between the complete disorder (a random

collection of atoms) and complete order (a perfect single crystal). The grain growth

is also a self-organizing system, which naturally evolves from a disordered to an

ordered state being driven by random thermal fluctuations. Consider an array of N
cells, representing lattice cells in the simulation method, with each cell being in one

of M microstates. The total number of microstates of this system would then be:

O ¼ MN: (3.11)

When the system reaches its final state with all cells having the same orientation,

the total number of microstates becomes:

O ¼ M: (3.12)

Using the statistical mechanics definition of the entropy, one can find the initial

entropy S0 and the final entropy Sf of the system as:

S0 ¼ lnðMNÞ ¼ N lnM ¼ NSf ; (3.13)

Sf ¼ lnM: (3.14)

Based on (3.13) and (3.14), the entropy decreases between the initial and the

final states by an amount of

DS ¼ ðN � 1Þ lnM: (3.15)

This result constitutes an apparent paradox, because it seems to contradict to the

second law of thermodynamics, which states that the entropy of a closed system

does not decrease. Another formulation of the paradox is that the randomness of
thermal fluctuations leads to an increased orderliness of the system (Nosonovsky

and Esche 2008a).

To solve the paradox, we have to take into account that the system, under

consideration, can be studied at different scale levels, and that it is not a closed

system. At the macroscale we deal with a continuum system characterized by

certain bulk mechanical properties (e.g., yield strength, hardness) dependent on

the average grain size. At the macroscale, no change of entropy is expected,

DSmacro ¼ 0. At the mesoscale (or microscale) we deal with the grains that tend

to grow. Hence, the mesoscale entropy is essentially the configuration entropy and

with the increasing grain size it decreases due to the increased orderliness of the

system, DSmeso < 0. At the molecular scale (or nanoscale) we deal with the energy

barriers for grain growth and random thermal fluctuations. Every time when a

lattice site is reoriented, a certain amount of energy is dissipated because the energy

barrier must be overcome. However, if the system’s temperature is maintained
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constant, then the heat is removed from the system due to its contact with the

surroundings, and thus the system is not closed. This results in an increase in the

system’s temperature and entropy, where DSnano < 0. In other words, the random

fluctuations at the nanoscale lead to the orderliness increase at the mesoscale, which

is compensated by the entropy increase at the nanoscale. The net entropy of the

system can therefore be written as

DSnet ¼ DSmacro ¼ DSmeso þ DSnano: (3.16)

Since |DSnano| > |DSmeso|, the net entropy decreases and the second law of thermo-

dynamics is satisfied (Table 3.2). Note that (3.16) is similar to (2.3) with the only

difference that the mesoscale level is included in addition to the macro and micro/

nanoscales (Nosonovsky and Esche 2008a).

Therefore, we deal with the two different systems: the physical system,

characterized by the thermodynamic entropy, and the simulation system that

models the physical system and is characterized by the information entropy. As

far as the information entropy of the system, several interesting observations can be

made with regard to the self-organizing properties of this system. The numerical

CA/MC models consider only the mesoscale structure of the system, and thus only

the mesoscale (configurational) entropy change, DSmeso, can be determined from

the CA/MC model. This is the reason of the apparent entropy decrease. The

physical system is not insulated; the heat and entropy are removed from the system,

so it is not a closed system. However, the numerical CA/MC model does not take

into account that aspect, because it is concentrated on the mesoscale description of

the physical system. As a result, the second law of thermodynamics is apparently

violated in the simulation system in a paradoxical manner. The second law is valid

for closed physical systems; however, there is no reason why it cannot be violated

for CA/MC models during computer simulation. It should be kept in mind that the

work of a computer requires energy dissipation (that is one of the reasons why

computer processor is heated and requires permanent cooling), so the decrease in

entropy of the information system is compensated by an increase in the thermody-

namic entropy.

Our conclusion is that there is a correspondence between the physical system (a

metal crystal) and the information system, used for the simulation (for example,

CA). However, the physical system is a multiscale system, with the entropy

produced at the nanoscale and consumed at the mesoscale, so that the net sum of

the entropy grows. The information system simulates only the mesoscale level,

leading to the apparent reduction of the entropy. Thus, the second law of thermo-

dynamics is not observed within the computer simulation network. It is noted that

such a common dissipative process as the dry friction also has a hierarchical

(multiscale) organization (Nosonovsky and Bhushan 2007a; Nosonovsky and

Bhushan 2008d, e); therefore, the hierarchical approach to the entropy is important

for a broad class of physical systems.

The issue of interest for most applications is the integrity of the macroscale structure

(e.g., the absence of cracks) (Table 3.3). The integrity of the macroscale structure can
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be repaired at the expense of the micro- and atomic-scale structures. As an example, let

us consider a solid homogeneous body. The nanoscale level corresponds to the

vibrations of atoms in the crystalline lattice and is not of interest for us at this

point. The mesoscale structures, such as grains, defects, and dislocations correspond

to the microscale levels. A perfect single-crystal body with no defects has lower

mesoscale entropy, DSmeso, than a body with such defects. Larger scale defects such

as cracks and voids contribute to the macroscale component of the entropy, DSmacro

(Fig. 3.5a).

A material or a surface with a regular microstructure (e.g., a microtextured

surface) is more ordered, and thus it has lower mesoscale configurational entropy,

DSmeso, than a material with an irregular microstructure. This can be utilized for

Table 3.3 Effects of interest at various scale levels for two self-healing mechanisms

Self-healing

mechanisms

Microcapsule encapsulation

Embedding SMA

microwires

Physical

mechanisms

Interest for

application

Physical

mechanisms

Interest for

application

Macroscale Solid structure,

cracks

Integrity of the solid

structure

Solid structure,

cracks

Integrity of the solid

structure

Microscale Microcapsules Microwires

Nanoscale Atomic structure Atomic structure

Fig. 3.5 Schematic showing crack healing by embedded capsules at the macro- and microscale

levels. Crack healing decreases disorder (and entropy) as observed at the macroscale, while

fracture of the microcapsules increases disorder (and entropy) when observed at the mesoscale.

Macroscale healing occurs at the expense of the microscale disorder. The effectiveness of the

healing mechanism should be studied by relating microstructure parameters to the entropy
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healing of macroscale defects. Suppose there is excess entropy, DSmacro, associated

with the macroscale defects, such as cracks or voids. Healing can be triggered by

affecting the mesoscale structure, e.g., by release of the healing agent from

microcapsules, which decreases the orderliness of the microstructure and thus

increases the entropy for DSmeso. In the case DSmacro < DSmeso, the healing is

done by decreasing the macroscale component of entropy on the expense of the

mesoscale component (Fig. 3.5b).

3.2.3 Healing Agent Release by Fracture

Encapsulation of a healing agent is used for crack damage repair. When the crack

propagates, the capsule ruptures and liquid adhesive is released that can heal the

crack. Usually, in the case of polymeric materials, a catalyst should be placed in the

structure to initiate solidification of the healing agent. Crack propagation is an

irreversible process, because when intermolecular bonds are broken, the energy g is
released irreversibly, so the entropy amount

Scrack ¼ gKA=T; (3.17)

is produced to create a crack with area A. The coefficient 0 < K < 1 is the fraction

of the dissipated energy Q that is consumed for the creation of the crack, whereas

the rest of the energy is dissipated (Nosonovsky et al. 2009).

Another way to introduce the entropy of cracking is to consider the configurational

entropy. The ideal state without cracks corresponds to the minimum number of

microstates and thus the lowest possible configurational entropy. The crack can be

formed in many different ways and the cracked macrostate corresponds to many

microstates and excess configurational entropy, DSmacro. In a similar manner, when

a capsule ruptures and its content is released, the configurational entropy grows

because mixing occurs. The configurational entropy growth of mixing of two

substances is given by:

DSmixing ¼ �Rðn1 lnX1 þ n2 lnX2Þ (3.18)

where n1 and n2 are the amounts in moles of two pure substances, X1 and X2 are mole

fraction in the solution, and R is the gas constant (Craig 1992). Part of this excess

entropy can be consumed for healing the bonds at the crack. The net configurational

entropy grows; however, the growth is not due to the cracking but due to microcap-

sule rupture and an irreversible decrease in the number of filled microcapsules.

If N capsules are ruptured to heal the crack with the area A, the net entropy

production is given by the mesoscale entropy of mixing minus the macroscale

entropy of crack healing

DSnet ¼ DSmeso þ DSmacro þ NDSmixing � K
gL
T

> 0: (3.19)
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As it has been discussed, the macroscale entropy is reduced on the expense of the

mesoscale entropy.

A different technique involves material reinforcement with a shape-memory

alloy (SMA), such as NiTi. The shape-memory effect occurs due to the reversible

phase transition from the martensite to the austenite phase. Tiny SMA fibers that are

embedded into the matrix of the material change their shape (extend) as the crack

propagates. Heated SMA fibers restore their original shape and thus close the crack.

The macroscale structural integrity of the material is restored at the expense of the

increase in the nanoscale entropy due to the phase transition and heat release.

It is noted that we considered a highly simplified model of crack healing. A more

sophisticated model should take into account the entropy of the phase transition (in

this case, the solidification of the healing agent, DSsolidify) and chemical reactions

DSchemical (e.g., with the catalyst), as well as the corresponding chemical potentials.

Such a model is presented in the following section.

3.2.4 Healing Agent Release by Heating and Melting

There are two types of self-healing: autonomous and nonautonomous. While

autonomous healing is performed without any external intervention, an external

stimulation, such as heating, is needed for the nonautonomous healing. The typical

example of the nonautonomous self-healing is embedment of a low melting tem-

perature agent that melts after heating, fills cracks and voids, and solidifies after

that. The general expression of the entropy is

DSnet ¼ DSheating þ DSmelting þ DSchemical þ DSmixing þ DSsolidify
þ DScooling; (3.20)

where

DSheating ¼ �
Z

dQ

T
;

DScooling ¼
Z

dQ

T
; (3.21)

are the entropies associated with the heating and cooling process can be given as

DSmelting ¼ �DQ
T

;

DSsolidify ¼ DQ
T

; (3.22)
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are the entropies of phase transitions and DQ is the heat released or consumed

during the phase transitions. Since usually the process is not adiabatic and the heat

produced during heating and melting is irreversibly dissipated, the net entropy

change is

DSnet ¼
Z

dQ

T
þ DQ
Tmelting

þ DSchemical þ DSmixing: (3.23)

To summarize, the self-healing mechanism restores the macroscale structure of a

material at the expense of increasing the mesoscale and atomic scale entropy

(Nosonovsky et al. 2009).

3.3 Entropy, Degradation, and Healing Rates

During Self-Healing

Most models of self-healing use governing equations for crack propagation and for

the healing agent that can be used to develop a computational scheme. These

systems of equations involve many degrees of freedom (infinite number of degrees

of freedom for the continuum models and very high finite number of degrees of

freedom for the computational models). In this section, we suggest a different

approach and develop a system of equations for degradation parameters with a

low number of degrees of freedom.

3.3.1 Entropy and Degradation

Consider a process characterized by a degradation parameter x, for example, the

wear volume or the total area of the cracks. The rate of degradation in many cases is

proportional to the rate of entropy

_x ¼ B _S; (3.24)

where B is the degradation coefficient (Bryant et al. 2008).

Taking the degradation parameter equal to the wear volume, x ¼ w, (3.24)
yields the Archard wear law

_w ¼ k
WV

H
; (3.25)

where k ¼ mHB/T is the wear coefficient, and H is the hardness (Nosonovsky and

Bhushan 2009). For crack propagation, (3.24) is equivalent to (3.17) if B ¼ T/(gK).
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Thus, the physical meaning of (3.24) is that a constant fraction of the dissipated

energy at a given temperature is consumed for the degradation, and therefore the

rate of degradation is proportional to the rate of entropy.

3.3.2 Degradation and Healing

Healing is characterized by a healing parameter, z, for example, the volume of

released healing agent. The rate of healing or decrease of degradation, _xh, is
proportional to the amount of healing material, and to a function of x. The rate of
release of the healing agent, _z, is a function of the rate of increase in the degrada-

tion, gð _xdÞ, and the rate of consumption of the healing agent. For example, the

number of fractured microcapsules is proportional to the length of newly created

cracks, and thus the amount of the healing agent depends on the length of the newly

created cracks minus the amount of consumed healing agent

_z ¼ gð _xdÞ � C _xh; (3.26)

where C is a constant. Thus, the rate of crack healing depends on the amount of the

healing material and available crack length. Therefore, we have the system of

equations

_x ¼ _xd � _xh;
_xh ¼ f ðxÞz;
_z ¼ gð _xdÞ � C _xh: (3.27)

The entropy is related to the degradation rate according to (3.24). Since the

degradation rate involves two components, the net entropy also involves two terms:

the term responsible for the degradation and the term responsible for the healing.

DS ¼ DSd � DSh: (3.28)

The origin of these two terms is different. While the degradation term is given by

(3.24), the healing term is related to the process of repair of the damage, for

example, due to an encapsulated healing agent.

According to some studies, there are five steps in the self-healing cycle: (1) the

material is subjected to gradual deterioration, for example, by dynamic loading that

induces microcracks; (2) the hollow microcapsule or the fiber contains self-repair

fluid; (3) the fibers require a stimulus to release the repairing chemical; (4) a coating

or fiber wall must be removed in response to the stimulus; and (5) the fluid must

promote healing of the composite damage (Wool 2008). For a truly autonomous

self-healing material, the third step may be omitted, as the damage itself serves as

the stimulus (Fig. 3.6a). The scheme suggested by (3.26) scheme is intended to
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capture this process (Fig. 3.6b). It is noted that unlike the approach that uses

continuum constitutive equations with infinite degrees of freedom (Wang et al.

2007a, b, c), our method reduces the problem to only two degrees of freedom.

The criterion for self-healing is that the rate of healing is higher than the rate of

degradation

_xh � _xd: (3.29)

The function f(x) involves the dependence of the healing rate on the total length

of the cracks or other damage, because the same amount of the healing agent can

result in a different rate of repairing the crack. Assuming simple constant

dependencies f(x) ¼ B, gð _xdÞ ¼ D, and a constant degradation rate (e.g., a steady

growing crack), _xd ¼ A, the system of (3.27) yields

_xh ¼ ae�BQ þ AD

C
;

_xh ¼ Bz;

_x ¼ A 1� D

C

� �
� ae�BQ; (3.30)

Fig. 3.6 Schematic of (a) the

self-healing process and (b)

its representation with (3.26)

70 3 Case Study of Self-Healing in Metallic Composite with Embedded. . .



where a is a constant of integration, and in the steady state limit (a ¼ 0), the

condition (3.29) yields D/C > 1. In other words, the crack is healed if more healing

agent is released per unit length growth of the crack (constantD) than consumed per

unit length of the healed crack (constant C) (Nosonovsky et al. 2009).

3.4 Validation of the Model for Self-Healing Al Alloy

Lucci et al. (a, b, c) investigated both numerically and experimentally self-healing

of aluminum alloy 206 matrix reinforced with carbon fiber microtubes filled with

Sn60Pb40 solder. The melting point of the solder is between 189 and 190�C. The
inside and outside diameters of the tubes were 2,185 mm and 3,950 mm, respec-

tively, their length was 75 mm, the spacing between the tubes was 3 mm on average,

and a total of seven sealed tubes were placed. A hole was drilled in the specimen.

This sample was then heated above 300�C for 5 min and quenched to ambient

temperature. After a series of experiments, the crack was filled with the solder

either completely or partially. These experiments indicated the importance of the

factors that control filling of the crack by the liquid agent. These factors include the

amount of available solder and the wettability of the holes with liquid solder, and

the proximity of holes to healing agent as well as the diameter of holes (Fig. 3.7).

The volume of released liquid solder depends on the number of fractures

microtubes and the volume of solder in every microtube. A fraction of this volume

is available for healing and the healing process depends also on the size of the

crack. The degradation parameter x in this case is the volume of the crack, while

the healing parameter z is the volume of available liquid solder. The differential

equations for the crack volume and the volume of available healing agent are

given by

_x ¼ �f ðxÞz;
z ¼ g0 þ Cx: (3.31)

The first equation states that the volume of the crack decreases with the rate

proportional to the volume of available healing agent, with g0 is the maximum

volume of the healing agent. The second equation states that the volume of

available healing agent decreases as the agent is consumed for healing. The system

of (3.31) can be naturally derived from (3.18) with a number of natural

assumptions. These assumptions include zero degradation rate, _x ¼ � _xh (the

crack does not expand after it was initially created) and g ¼ 0.

In the case when all available solder is consumed, a constant dependency

f(x) ¼ B is assumed and the system of (3.31) reduces to one simple equation

_x ¼ �Bðg0 þ CxÞ; (3.32)
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Fig. 3.7 Self-healing Al

composite with microtube

reinforcement (a) geometry of

the sample, (b) front view,

(c) before and after the healing

(Lucci et al. 2008a, b, c)
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which can be immediately solved as

x ¼ � g0
C

þ D expð�BCtÞ: (3.33)

The fist term is the steady-state solution corresponding to the degree of degra-

dation after the healing is completed. The second term is the transient part of the

solution. It is beneficial for the system to have a high ratio of g0/C (maximum

volume of the healing agent, g0, over the rate of its consumption, C). We can

conclude that the model is consistent with the experimental data.

3.5 Summary

Conventional engineering surfaces tend to degrade and become worn due to

increasing thermodynamic entropy, which is a consequence of the dissipation

during sliding contact. Most biological tissues, however, have the ability of self-

healing. In order to embed the self-healing property into engineered materials,

special efforts should be made. From the thermodynamic point of view, self-healing

is a result of decreasing entropy. This is possible in the case of a special organiza-

tion of these systems. One possibility is in the case when the system has a special

multiscale structure with the dissipation occurring at one level of the system and

self-organization occurring at a different hierarchy level. This can be achieved,

for example, by embedding microcapsules or microtubes with a healing liquid

to prevent crack propagation. We also suggested a simple system of equations

that describes the degradation and healing process and provides a criterion for

self-healing.
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